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ABSTRACT 

Tumour hypoxia is widely recognised as a major cause of treatment failure and poor 

outcome for a variety of malignancies. Tumour hypoxia also results in resistance to 

conventional anticancer therapies leading to an increase in malignancy and metastases to other 

sites, in particular, the bone. Bone metastases occur in more than 75% of patients with breast, 

prostate and lung cancer. Tumours in the bone are often resistant to anticancer therapy due to 

the hypoxic nature of the bone micro-environment, resulting in their recurrence and 

metastasis. 

Hypoxia also offers treatment opportunities, exemplified by the development of highly 

active compounds that target hypoxic zones known as Hypoxia Activated Pro-drugs. 

Evofosfamide is a hypoxia activated pro-drug created by the conjugation of 2-nitroimidazole 

to bromo-isophosphoramide (Br-IPM). When Evofosfamide is delivered to regions of 

hypoxia, Br-IPM, the DNA cross linking toxin is released resulting in cancer cell death. 

The cytotoxic activity of evofosfamide against osteosarcoma cells was assessed in 

vitro and its anticancer efficacy as a single agent and in combination with doxorubicin was 

evaluated in an orthotopic mouse model of human osteosarcoma (OS). In vitro, evofosfamide 

was cytotoxic to osteosarcoma cells selectively under hypoxic conditions, whereas primary 

normal human osteoblasts were protected. Animals transplanted with OS cells directly into 

their tibiae and left untreated developed mixed osteolytic/osteosclerotic bone lesions and 

subsequently developed lung metastases. Evofosfamide reduced tumor burden in bone and 

cooperated with doxorubicin to protect the bone from osteosarcoma induced bone destruction, 

while also reducing lung metastases. 
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In addition, under hypoxic conditions in vitro, evofosfamide cooperated with Pro 

Apoptotic Receptor Agonists (PARAs) dulanermin and drozitumab, resulting in a dose-

dependent increase in cytotoxicity to osteosarcoma cells selectively under hypoxic conditions. 

In contrast primary normal human osteoblasts under the same hypoxic conditions were 

resistant. In vivo, evofosfamide cooperated with drozitumab, reducing tumor burden in the 

orthotopic mouse model of human osteosarcoma and protected the bone from osteosarcoma-

induced bone destruction while also reducing the growth of pulmonary metastases. 

In order to assess the anticancer efficacy of evofosfamide against breast cancer, a 

panel of human breast cancer cell lines were treated with evofosfamide and shown to be 

highly cytotoxic under hypoxia. Osteolytic MDA-MB-231-TXSA cells were transplanted into 

the mammary fat pad or into the tibiae of mice, allowed to establish and treated with 

evofosfamide, paclitaxel, or both. In vivo evofosfamide demonstrated tumor suppressive 

activity as a single agent and cooperated with paclitaxel to reduce mammary tumor growth. 

Breast cancer cells transplanted into the tibiae of mice developed osteolytic lesions. Treatment 

with evofosfamide or paclitaxel resulted in a significant delay in tumor growth and with an 

overall reduction in tumor burden in bone, whereas combined treatment resulted in a 

significantly greater reduction in tumor burden in the tibia of mice. 

In conclusion the preclinical data presented in this thesis demonstrate that 

evofosfamide may be an attractive therapeutic agent when used alone and in combination with 

chemotherapy or PARAs for the treatment of osteosarcoma and breast cancer. 
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Hypoxia and Cancer 

An important limitation to current cancer therapy is the cellular environment within 

solid tumours. This microenvironment has subregions of nutrient deprivation, low 

extracellular pH, high interstitial fluid pressure and hypoxia (Kaisa R Luoto1†, 2013). 

Hypoxia is a factor which is present within nearly all cancer types and plays a central role in 

cancer progression. The vasculature within most solid tumours consists of poorly functional 

and abnormally formed blood vessels that are unable to deliver enough oxygen and nutrients 

to support the rapidly growing tumour mass. This reduction in oxygen is lethal to some cancer 

cells resulting in necrotic regions within the tumour, but some cancer cells adapt and survive 

the low oxygen conditions (Bennewith & Dedhar, 2011). 

These hypoxic cancer cells evade most anticancer drugs, because hypoxic cells reside 

some distance away from blood vessels, therefore conventional chemotherapy, which is 

administered systemically, cannot reach these cells. Most antitumor agents cannot penetrate 

more than 50-100 M from capillaries, which leads to cytotoxic concentrations not being 

attained in hypoxic regions. Cellular proliferation also decreases partly due to hypoxia and 

cells in this hypoxic environment have lower sensitivity to p53 mediated apoptosis. In 

summary, tumours in the hypoxic environment have a more malignant phenotype, have 

increased rates of mutations and they express genes which are associated with angiogenesis, 

tumour invasion and anticancer resistance. These tumour cells are also highly metastatic 

(Graeber et al., 1996). Therefore, the presence of hypoxic regions within the tumour is a major 

cause of treatment failure and poor outcome for a wide variety of malignancies. 

In addition, an important transcriptional factor involved in the resistance of cancer 

cells in the hypoxic environment is the stabilization of Hypoxia Inducible Factor 1 (HIF-1). 

HIF-1 is the transcriptional factor that is essential in the response of cells to hypoxia and is a 

key regulator in oxygen homeostasis (Maxwell, 2004). HIF-1α is the molecule that is 

constantly present in normoxic conditions and under these conditions, this molecule is 

regulated post transcriptionally by prolyl hydroxylases via hydrolysis and is constantly 

degraded. This hydrolysisis inhibited under hypoxia, resulting in the accumulation HIF-1α 

instantaneously and translocating to the nucleus (Semenza, 2004). Heterodimerization of HIF-

1 and HIF-1(which is constantly expressed in both normoxic and hypoxic conditions) 

subunits result in the formation of the HIF-1 protein, activating the transcription of specific 

hypoxia-responsive genes (Ljungkvist, Bussink, Kaanders, & van der Kogel, 2007). 
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Fig.1. Squamous cell carcinoma (×40) showing hypoxia staining in brown (pimonidazole 

adducts) and blood vessels in red (factor VIII). N = area of necrosis (Bonn, 2000). 
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HIF-1 regulates more than 70 genes which are involved in cellular adaptation to 

hypoxia (Semenza, 2004), including Lysyl oxidase, Carbonic anhydrase 9, Chemokine 

receptor 4, Facilitated glucose transporter 1 and VEGF. This stabilization of HIF-1 adds to the 

adaption capability of cancer cells to the hypoxic tumour environment and also leads to the 

resistance of cancer cells to conventional chemotherapeutic drugs and radiotherapy. 

 

The Bone Micro-environment 

Bone is made up of both trabecular (spongy) and cortical (solid) bone and these 

compositions are constantly being remodelled in order to maintain skeletal integrity. Within 

these bone types there are two categories of bone cells. The first category of bone cells is 

made up of osteoblasts, osteocytes and endosteal cells. Osteoblasts are derived from the 

mesenchymal lineage (Rauner, Stein, & Hofbauer, 2012) and synthesize proteins that form the 

organic matrix of bone. Osteoblasts control the mineralisation of bone and have receptors for 

hormones such as vitamin D, estrogen glucocorticoids, leptin and the parathyroid hormone. 

When osteoblasts finish making new bone they become surrounded with matrix and 

differentiate into osteocytes or they remain on the surface of new bone and differentiate into 

lining cells (Rauner, Stein & Hofbauer 2012). 

Osteocytes exist inside the bone and have long branches to allowing contact with each 

other and lining cells. Osteocytes secrete various factors that activate, osteoblasts, osteoclasts 

or lining cells which then remodel bone (Bonewald, 2011). The lining cells cover the surface 

of the bone and have receptors for hormones and other factors that can initiate bone 

remodelling (Miller, de Saint-Georges, Bowman, & Jee, 1989), thereby acting as a blood-bone 

barrier while still having the ability become osteoblasts upon exposure to the parathyroid 

hormone or mechanical forces (Clarke, 2008). 

The second category of bone cells are osteoclasts which are multinucleated cells 

derived from the hematopoietic lineage that dissolve and resorb bone. Osteoclasts are derived 

from monocytes which become osteoclast precursor cells and are transformed into osteoclasts 

when RANK (‘receptor activator of NF-kB’) is activated by RANK-ligand on osteoclast 

precursor cells. RANK-ligand is a member of the TNF family which is secreted by osteoblasts 

and stromal cells (Lacey et al., 1998). 

Osteoprotegerin (OPG) is also produced by osteoblasts, it binds with and neutralises 

RANK-ligand and is involved in inhibiting osteoclast activation and function (Simonet et al., 

1997). When osteoclasts are finished resorbing bone they undergo apoptosis. 
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Fig.2. Normal bone remodelling. Osteoblasts and stromal cells produce RANKL which 

binds to the RANK receptor on pre-osteoclasts, stimulating their differentiation and 

maturation into functional osteoclasts. However OPG, also produced by osteoblasts binds 

to RANKL, inhibiting the association between RANKL and RANK, therefore inhibiting 

osteoclast formation (Kohli & Kohli, 2011). 
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In addition the bone is a hypoxic micro-environment. Hypoxia regulates normal 

marrow haemopoiesis and mesenchymal differentiation. This is achieved by hypoxia 

stimulating the formation and activation of cells which have been generated from marrow 

precursors, including cells of the monocyte–macrophage lineage. The medullary cavity 

oxygen pressure in humans is estimated to be 5% O2 (Asosingh et al., 2005) and the bone 

tissue has oxygen levels that range between 1-7%. Recent studies have also shown that 

hypoxia blocks the growth and differentiation of osteoblasts, while stimulating osteoclast 

formation (Arnett, 2010). 

This balance of bone formation and bone resorption resulting from the interaction of 

these cells in the hypoxic bone environment can be altered due to a variety of bone diseases 

including osteosarcoma and metastatic breast cancer. 

 

The Vicious Cycle of Bone Cancer 

Bone is a preferred site for breast and prostate cancer metastasis in patients with late 

stage disease. Cancer within the bone forms two types of lesions. Osteolytic lesions, which are 

caused by excessive osteoclast activity in relation to osteoblast bone formation, resulting in 

net bone loss. The second type, osteosclerotic lesions are caused by an increase of osteoblastic 

activity in relation to osteoclast resorption. This leads to an increase in disorganised bone 

formation. In most patients, cancers in the bone are characterised by a combination of both, as 

the processes of bone resorption and bone formation are linked but distorted in cancer 

(Mundy, 2002a). 

This imbalance of bone remodelling caused by cancer creates a ‘vicious cycle’, where 

bone resorption is induced by the tumour, causing the release growth factors from the bone 

matrix. This further promotes tumour growth, leading to increases of pro-resorptive factors, 

which further break down bone (Ooi, Zheng, Stalgis-Bilinski, & Dunstan, 2011). The vicious 

cycle is largely osteolytic, leading to a variety of SREs which include bone pain, 

hypercalcaemia, pathological fractures, spinal cord and nerve compressions, these 

complications lead to a diminished quality of life and ultimately death in these patients caused 

by metastases to other sites in the body such as the lung, liver and brain (R. E. Coleman, 

1997). 

The bone matrix is rich in growth factors such as transforming growth factor-β (TGF-

β) and insulin growth factors (IGFs). These growth factors are released during osteolysis 

caused by osteoclast activity, further stimulating tumour cell proliferation. 
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Metastatic cells in the bone environment, in particular breast cancer cells secrete 

parathyroid hormone-related protein (PTHrP). PTHrP increases osteoblast production of 

RANKL, which stimulates osteoclast formation and activity, resulting in an increase in bone 

resorption, releasing more growth factors such as TGF-β and IGFs from the bone and 

ultimately maintaining this vicious cycle. TGF-β also increases hypoxic signalling by 

inhibiting prolyl hydroxylase 2 resulting in the decrease in HIF-1α degradation which 

stabilises HIF-1 and results in the transcription of HRE genes. 

Bone itself is a hypoxic environment, with oxygen levels ranging between 1-5% O2 

(Asosingh et al., 2005). Cancer cells that survive in this hypoxic bone environment proliferate 

and participate in this vicious cycle of bone destruction (Kingsley, Fournier, Chirgwin, & 

Guise, 2007). Hypoxia is usually accompanied by an increase in acidity in the bone which 

also has significant effects on bone remodelling. Extracellular acidification increases 

osteoclast activity leading to bone resorption, while osteoblast mineralisation is inhibited by 

acidic pH (Brandao-Burch, Utting, Orriss, & Arnett, 2005). Bone destruction also leads to 

increase in calcium levels which also promote tumour growth and the production of PTHrP. 

Therefore this bone microenvironment consists of numerous factors, such as hypoxia, 

acidosis, extracellular calcium, and growth factors which all combine to drive this vicious 

cycle of bone destruction in the presence of tumour cells in the bone. 
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Fig.3. The Vicious Cycle of Bone Cancer. Tumour cells produce factors such as PTHrP that 

promote the formation and activation of osteoclasts. Osteoclast activation results in bone 

resorption and thus release of factors from the bone matrix, such as TGF-β, IGFs and Ca
2+

 

which stimulate tumour cell proliferation. (Ignatiadis & Sotiriou, 2013). 

Bone derived 

growth factors, 

TGF-β, IGFs, Ca²⁺
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Osteosarcoma 

Osteosarcoma is a cancer derived from primitive bone-forming mesenchymal cells and 

is the most common primary bone cancer and the eighth most common tumor in children and 

adolescents (Ottaviani & Jaffe, 2009). Osteosarcoma can occur in any bone, but the most 

common sites are the femur, the tibia and the humerus (Chou & Gorlick, 2006). Bone lesions 

caused by osteosarcoma are characterized on the basis of their radiologic appearance and 

present as either osteolytic which results in net bone loss, osteoblastic (osteosclerotic) which 

results in highly disorganised bone formation, or mixed (Mundy, 2002a). Metastatic spread 

from the bone is preferential to the lungs and is seen in 20% of osteosarcoma patients which is 

correlated with poor survival (Link et al., 1991; Saeter et al., 1997). 

Current treatment of osteosarcoma includes approximately 10 weeks of preoperative 

chemotherapy comprised of doxorubicin, cisplatin and high dose methotrexate, followed by 

surgery which involves the removal of the primary tumour and if present, all sites of the 

metastatic disease. After surgery patients receive 20 weeks of maintenance chemotherapy with 

the same 3 agents (Stefano Ferrari et al., 2012). Following this treatment, a 5 year survival 

rate for non-metastatic osteosarcoma is 70% (Akiyama, Dass, & Choong, 2008). However if 

metastatic osteosarcoma disease is detected at the time of initial diagnosis, then this leads to 

poor prognosis, with long term survival rates between 10-40% (Kager et al., 2006). Therefore 

there is a need to develop new anticancer therapies to improve survival in osteosarcoma 

patients. 

 

Breast Cancer 

Breast Cancer is the most common malignancy and the leading cause of cancer 

mortality in women worldwide. It occurs in 1 out of 9 women and accounts for 23% of the 

total new cases of cancer and 14% of the total cancer deaths in 2008 worldwide (Ferlay et al., 

2010; A. Jemal et al., 2011). It is also estimated that worldwide, over 508000 women died in 

2011 due to breast cancer (Metin Seker et al., 2014). The incidence of breast cancer is 

increasing in the developing world due to increase life expectancy, increase urbanization and 

adoption of western lifestyles (Hery, Ferlay, Boniol, & Autier, 2008). In contrast, breast 

cancer death rates have been decreasing in developed countries for the past 25 years, largely 

as a result of early detection through the wide spread use of mammography, an increase in 

breast cancer awareness and improved treatment by chemotherapy, hormone targeted therapy 

and more recently drugs that target the cancer’s specific proteins, genes or tissue environment 

(DeSantis et al., 2015; Ahmedin Jemal, Center, DeSantis, & Ward, 2010). 
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Treatment depends upon tumor size, the number and location of the lymph nodes 

involved, the presence or absence of distant metastatic disease and pathologic features such as 

receptor status and tumor grade (Moulder & Hortobagyi, 2008). Early stage breast cancer is 

often treated using local therapy. Local therapy can include breast conserving surgery or 

mastectomy which is followed by radiotherapy. More advanced breast cancer requires 

systemic therapy that can reach cancer cells anywhere in the body. Types of systemic therapy 

used to treat breast cancer include the use of chemotherapeutic agents such as paclitaxel, 

doxorubicin, cyclophosphamide, carboplatin and 5-fluorouracil, which are given to patients in 

various combinations (Guarneri & Conte, 2004). In addition, the use of hormone therapeutic 

drugs such as tamoxifen can specifically target breast cancer types that require estrogen and 

progesterone to fuel their growth, due to their estrogen and progesterone receptor positivity. 

Advances in targeted therapy have also improved patient outcomes. Therapeutic targeting 

drugs target specific changes to breast cancer cells which are different from normal cells, such 

as HER2 targeted therapy, which target breast cancer cells that are HER2 positive (Arteaga et 

al., 2012). 

Current treatment options for the treatment of the early stages of breast cancer have 

been very effective in prolonging survival and improving the quality of life in women 

diagnosed with early breast cancer. However despite the significant improvements in 

detecting and treating the early stages of breast cancer 30% of women diagnosed with early-

stage breast cancer, will eventually have locally advanced or metastatic breast cancer. 

 

Breast Cancer and Bone Metastasis 

Patients diagnosed with advanced breast cancer experience poor prognosis and as a 

result the 5 year survival rate is reduced to 20% (Beaumont & Leadbeater, 2011). The low 

survival rate is not due to the cancer at the primary site, but the result of the subsequent 

metastasis to secondary sites in the body, most common site being the skeleton. 

An estimated 80% of patients with advanced breast cancer develop skeletal metastasis 

(R. E. Coleman, 2006; Siegel, Ward, Brawley, & Jemal, 2011). Bone metastases result in 

various pathological complications that can result in patients experiencing debilitating skeletal 

related events (SREs). These SREs include pathological skeletal fractures, hypercalcaemia 

and spinal cord compression. 
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SREs such as fractures have become less frequent with bisphosphonate therapy which 

blocks bone destruction by inhibiting the formation of osteoclasts (Ganz & Stanton, 2015), 

however, patients still suffer from severe bone pain and loss of mobility which eventually 

leads to reduction of quality of life and survival (Robert E. Coleman, 2012). 

These SREs arise because breast cancer cells that metastasize to the bone disrupt 

normal bone remodeling which leads to extensive bone destruction. Most patients with late 

stage metastatic breast cancer receive chemotherapy which includes taxanes (paclitaxel), 

anthracyclines (doxorubicin), hormone therapy and sometimes surgery (DeSantis et al., 2014). 

However, due to high toxicity and the development of drug resistance, such anticancer 

treatments are often discontinued and in patients with advanced disease in particular where the 

cancer has metastasized to the bone, the treatment becomes only palliative. 

 

Hypoxia Activated Pro-drugs (HAPs) 

Prodrugs that are enzymatically converted within tumours to active metabolites have 

been of particular interest for selective cancer therapy. HAPs have been investigated for the 

treatment of cancer for over 30 years and exploit a generic feature that differentiates tumours 

from normal tissue, potentially overcoming the resistance that hypoxic tumours have to 

conventional chemotherapy and radiotherapy. HAPs that have been evaluated in various 

stages of clinical trials but have been discontinued include Tirapazamine (3-amino-1,2,4-

benzotriazine 1,4-dioxide; SR 4233) which under hypoxic conditions is bioreduced to a 

nitroxide-base free radical that removes hydrogen from DNA strands causing DNA damage. 

When tirapazamine was used in combination with cisplatin and with radiotherapy in phase 3 

clinical trials, it did not improve overall survival in patients with advanced head and neck 

cancer (NCT00094081). In addition these combinations led to an increase in toxicities which 

caused nausea, diarrhoea, vomiting, myalgia, and muscle spasms (Wu et al., 2012). 

PR-104 is a water soluble phosphate ester that gets converted to the corresponding 3,5-

dinitrobenzamide mustard prodrug, PR-104A. Nitroreduction of PR104A leads to the 

formation of the cytotoxic hydroxylamine (PR104H) and amine (PR104M) by crosslinking 

DNA which is determined by hypoxia, relevant oxidoreductases and the functional status of 

DNA repair pathways in the cell (Christopher P. Guise et al., 2012). PR-104 has also been 

discontinued after phase I studies for the treatment of numerous solid tumour types resulted in 

myelotoxicity in 2 out of 3 patients in the study (NCT00349167). In addition PR-104 as a 

monotherapy also caused myelotoxicity and grade four thrombocytopenia (NCT00459836) 

(McKeage et al., 2012). 
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The HAP AQ4N (banoxantrone; 1,4-bis((2-(dimethylamino)-N-ethyl)amino)-5,8-

dihydroxyanthracene-9,10-dione)  is nontoxic until bioreduced in hypoxic cells by a number 

of cytochrome P450 isozymes (CYP) or inducible nitric oxide synthase (NOS2A)  in tumours 

to form the short  term mono-N-oxide intermediate AQ4M, which then becomes the cytotoxic 

ditertiary cationic amine AQ4 (Manley & Waxman, 2013). AQ4 then intercalates DNA and 

inhibits toposomerase 2 (C. P. Guise et al., 2013). Phase I clinical studies investigating the 

HAP Banoxantrone (AQ4N) against solid malignancies and Non-Hodgkin’s Lymphoma 

(NCT00090727) have also been terminated. Among the most common adverse events 

observed by the administration of AQ4N in Phase I clinical trials were fatigue, diarrhoea, 

nausea, vomiting, and anorexia (Albertella et al., 2008; Papadopoulos et al., 2008). 

Evofosfamide (TH-302) and Tarloxotinib bromide (TH-4000) which is a prodrug that 

selectively releases a covalent (irreversible) EGFR tyrosine kinase inhibitor under hypoxic 

conditions are still in clinical trials, of which evofosfamide is the most advanced as well as 

having the least amount of toxicities. 
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Fig.5. Chemical structures of PR104,  its converted form PR-104A and reduced cytotoxic 

hydroxylamine PR-104H and amine PR-104M (Gu et al., 2009). 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

Tirapazamine 

Fig.4. Chemical structure of tirapazamine (Francis W. Hunter et al., 2012). 

Fig.6. Chemical structures of AQ4N its intermediate AQ4M and reduced cytotoxic amine AQ4 

(Loadman, Swaine, Bibby, Welham, & Patterson, 2001). 

Fig.7. Chemical structure of tarloxotinib bromide and its 1e- reduction resulting in the 

EGFR/HER2 tyrosine kinase inhibitor being released under hypoxic conditions (Stephen V 

Liu & Stew Kroll, 2016). 
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Evofosfamide 

Evofosfamide is a 2-nitromidazole-linked prodrug of a brominated version of the 

cytotoxin bromo-isophosphoramide mustard (Br-IPM) developed by Threshold 

Pharmaceuticals. The 2-nitromidazole functional group of evofosfamide is attracted to 

hypoxic conditions and acts as a hypoxia activated trigger under these conditions, releasing 

Br-IPM into the hypoxic environment. Br-IPM acts as a DNA crosslinking agent which is able 

to kill both dividing and non-dividing cells in this hypoxic environment. 

Evofosfamide also has a ‘bystander effect’, where once activated evofosfamide can 

also diffuse into normoxic areas to act against neighbouring cells in the normoxic regions 

within the tumour. Hypoxia activation of evofosfamide occurs when the 2-nitromidazole 

portion of evofosfamide undergoes electron rearrangement forming a radical anion under 

hypoxia and then fragments releasing the toxic bromo-isophosphoramide mustard which 

diffuses into the hypoxic tumour (Meng et al., 2012). However under normoxic conditions, 

evofosfamide is converted into the radical anion and then back oxidized into its pro-drug form 

in a futile cycle generating superoxides from the reduction of oxygen (Fig.6). These 

superoxides react with free hydroxyl radicals which act as oxidants that can also damage DNA 

(Keyer & Imlay, 1996). 

Evofosfamide showed encouraging data in phase II clinical trials for the treatment of 

metastatic or locally advanced unresectable soft tissue sarcoma with doxorubicin and for the 

treatment of pancreatic ductal adenocarcinoma with gemcitabine. Unfortunately phase III 

studies did not achieve primary overall endpoints in combination with chemotherapy for the 

treatment of soft tissue sarcoma (NCT01440088) and metastatic pancreatic adenocarcinoma 

(NCT0174679). These phase III results have led to the termination and withdrawal of a 

number of phase II trials such as the treatment of oesophageal cancer (NCT02598687), non-

squamous non-small cell lung cancer (NCT02093962), liver cancer (NCT01497444), soft 

tissue sarcoma (NCT02255110) and pancreatic cancer (NCT02047500, NCT02496832). 

However evofosfamide is still being investigated in phase II trials for multiple 

myeloma (NCT01522872), high grade astrocytoma (NCT01403610), metastatic 

neuroendocrine pancreatic tumours (NCT02402062), metastatic melanoma (NCT01864538) 

and advanced biliary tract cancer (NCT02433639). Phase I trials include solid tumours 

(NCT02020226, NCT01485042) and hepatocellular carcinoma (NCT01721941). 
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The strategy of hypoxia-targeted treatment with evofosfamide in the hypoxic bone 

marrow has been tested in preclinical studies of multiple myeloma (Jinsong Hu et al., 2010; J. 

Hu et al., 2013) and acute myeloid leukaemia (Benito et al., 2015). 

These preclinical studies investigating the anticancer efficacy of evofosfamide against 

multiple myeloma have provided support for the currently active phase II clinical trial to 

evaluate evofosfamide and dexamethasone, with or without bortezomib, or pomalidomide for 

the treatment of patients with relapsed/refractory multiple myeloma (NCT01522872).  The 

preclinical data investigating evofosfamide for the treatment of acute myeloid leukaemia also 

provides support for the future clinical assessment of evofosfamide in the treatment of various 

leukaemia types, following the recent completion of the phase I study (NCT01149915), which 

determined the maximum tolerated dose, dose limiting toxicity, safety and tolerability of 

evofosfamide in patients with various types of advanced leukaemias (Badar et al., 2016). 

To date, there has been no investigation of evofosfamide or any other HAP for the 

treatment of solid tumours that originates or metastasizes to the bone. These previous studies, 

which investigate the role of evofosfamide against multiple myeloma and leukaemia provide 

supporting evidence that targeting the hypoxic bone microenvironment niche with the HAP 

evofosfamide, is a useful and novel strategy for the treatment of cancer in bone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8. Chemical structure of evofosfamide and its 1e- reduction resulting in the bis-alkylator 

warhead  (Br-IPM) being released under hypoxic conditions (Meng et al., 2012). 
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The Apoptotic Pathways 

Apoptosis is the major mechanism to eliminate damaged cells via programmed cell 

death. It can be stimulated by a variety of factors including developmental cues, cellular stress 

or damage to cellular components caused by radiation, heat shock, infection, oncogenic 

tranformation and cytotoxic drugs (Fadeel, Orrenius, & Zhivotovsky, 1999). The deficiency in 

apoptosis is one of the key hallmarks in cancer (Hanahan & Weinberg, 2000). Two pathways 

induce apoptosis in mammalian cells, firstly the intrinsic pathway, which is activated by 

intracellular processes and depends on the mitochondrion releasing proapoptotic factors. 

Secondly, the extrinsic pathway, which receives signals through the binding of extracellular 

protein ligands to proapoptotic death receptors which are located on the cell surface 

(Gonzalvez & Ashkenazi, 2010). 

Both pathways stimulate pro-apoptotic caspases which are a family of cysteine 

proteases that exist as procaspases. Activation of these procapspases is known as ‘the caspase 

cascade’. Apoptosis is firstly stimulated by the initiator caspases (caspase-8,-9,-10) which 

then activate the effector caspases (caspase-3,-6-7) by proteolytic processing. These effector 

caspases then process cellular proteins, which lead to the unique features of apoptosis such as 

plasma membrane ‘blebbing’, cell shrinkage, chromatin condensation and DNA fragmentation 

(Ashkenazi, 2008b). 
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Fig.9. The intrinsic and extrinsic apoptotic pathways. These two pathways are also 

known as the “death receptor” and the “mitochondrial pathway” respectively. Caspase 8 is 

the initiator caspase of the death receptor pathway, and cleavage of bid results in 

cytochrome c being released from the mitochondrion. Both pathways activate the effector 

caspases (Torok & Gores, 2004). 
 

 

 

 

 

mitochondrial pathway, different signals directly stimulate cytochrome c release from the 

mitochondria, which activated the initiator caspase 9 along with the Apaf-1. The downstream 

effects are common in both pathways, activation of the effector caspases (Torok & Gores, 2004). 
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Pro-Apoptotic Receptor Agonists (PARAs) 

ProApoptotic receptor Agonists dulanermin and drozitumab can induce apoptosis 

selectively in cancer cells in vitro and in vivo and as a result have demonstrated anticancer 

efficacy in numerous preclinical studies. Both dulanermin (Apo2L/TRAIL/TNFSF10) and 

drozitumab target the extrinsic apoptotic pathway of cancer cell death, whereas most 

conventional anticancer therapies stimulate apoptosis via the intrinsic pathway. Inactivation of 

p53 in this intrinsic pathway is the most common mutation that allows cancer cells to become 

resistant to apoptosis (Ashkenazi & Herbst, 2008). By focusing on the extrinsic pathway these 

new compounds may overcome cancer cell resistance to chemotherapy. 

Dulanermin activates apoptosis through death domain containing receptors DR4 

(TNFRSF10A/TRAILR1) and DR5 (TNFRSF10B/TRAILR2). In addition, dulanermin also 

interacts with decoy receptors known as DcR1 (TNFRSF10C/TRAILR3), DcR2 

(TNFRSF10D/TRAILR4) and Osteoprotegerin (TNFRSF11B/OPG) which do not transmit 

apoptotic signals. However the expression of DcR1 and DcR2 determines which cells undergo 

apoptosis (Pan, Ni, Yu, Wei, & Dixit, 1998). Dulanermin selectively triggers apoptosis in 

tumor cells over normal cells, which highlights its potential as a therapeutic drug in cancer 

treatment. 

Dulanermin has been tested in phase I and II clinical trials in patients with range of 

cancer types including advanced solid and hematologic tumours, alone or in combination with 

traditional chemotherapy. Dulanermin was well-tolerated by all patients, and most of the 

studies reported some partial responses or stable disease (Amarante-Mendes & Griffith, 

2015). However, dulanermin did not demonstrate significant clinical efficacy when it came to 

complete responses. One possible explanation is the short bioavailability of 30 minutes 

(Ashkenazi et al., 1999) and its inability to bind to death-inducing TRAIL receptors, 

preferring to bind with the decoy TRAIL receptors in various cancer types. 

As an alternative to dulanermin, drozitumab is a fully human agonistic monoclonal 

antibody that specifically binds to and activates DR5 in the same manner as Apo2L/TRAIL (I. 

Zinonos et al., 2009). Drozitumab has a half-life ranging from several days to weeks and has 

been developed to specifically target DR5 (Ashkenazi, 2008a) and not the TRAIL decoy 

receptors. In addition, circulating Fragment Crystalline Gamma (Fcγ) receptors expressed on 

the surface of various immune cells, crosslink with drozitumab which leads to enhanced 

antibody-dependent, cell-mediated cytotoxicity (ADCC) (Wilson et al., 2011), resulting in 

immune cell activation leading to recruitment of other Fcγ receptor expressing cells to the 

tumor microenvironment. 
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The apoptotic tumor cells are then phagocytosed by the activated Fcγ receptor 

expressing immune cells (Takeda et al., 2004), further enhancing the cytotoxic activity of 

drozitumab against cancer. 

Drozitumab has undergone phase I and II clinical trials for the treatment of colorectal 

cancer and advanced tumours (Lemke, von Karstedt, Zinngrebe, & Walczak, 2014). 

Drozitumab was well tolerated with minimal adverse events. Despite the favourable safety 

profile, patients receiving drozitumab in clinical trials receive only minor benefit from 

treatment (Micheau, Shirley, & Dufour, 2013). 

 

PARAs in bone 

In the context of bone related malignancies, the anticancer efficacy of PARAs has 

been evaluated in bone cancer therapy. Preclinically, Apo2L/TRAIL and drozitumab reduce 

tumour burden in bone and limit cancer-induced bone destruction in murine intratibial models 

of metastatic breast cancer and multiple myeloma without compromising normal bone 

metabolism (Agatha Labrinidis et al., 2009; Thai et al., 2006; I. Zinonos et al., 2009). 

However some tumours exhibited or acquired resistance to PARAs-induced apoptosis and 

prolonged treatment failed to completely eradicate tumours from the bone, giving rise to late 

recurrence in both a myeloma and a breast cancer model. The basis for this resistance is not 

well understood, with multiple mechanisms proposed (Ashkenazi, 2015; Ashkenazi & Herbst, 

2008; Bouralexis et al., 2003; Agatha Labrinidis et al., 2009). 

Therefore additional agents such as HAPs can potentially resensitize cancer cells in the 

bone to PARAs and as yet, there have been no clinical trials investigating PARAs in the 

treatment of primary or metastatic bone tumours (Picarda, Trichet, Teletchea, Heymann, & 

Redini, 2012). 

Conventional chemotherapeutic drugs have a significant effect on bone health and 

patients who have received certain chemotherapeutics are at an increased risk for developing 

osteoporosis due to the toxicities to cells of the bone marrow. Preclinical studies show that 

PARAs have no effect on normal bone metabolism (A. Labrinidis et al., 2008). Therefore, the 

combination of HAPs and PARAs should provide great efficacy in the elimination of cancer 

in the bone and metastasis, with the additional advantage that this combination should be non-

toxic and safe. 
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Hypothesis 

Selective targeting of hypoxic tumour cells with the Hypoxia Activated Pro-drug 

evofosfamide in combination with conventional chemotherapeutic agents and Pro-Apoptotic 

Receptor Agonists (PARAs) is an effective approach to eliminate cancer in bone, with 

minimal toxicity to normal bone metabolism. 

 

Aims 

Aim 1: To evaluate the anticancer efficacy of the hypoxia activated pro-drug evofosfamide, 

alone and in combination with doxorubicin against osteosarcoma using both in vitro and in 

vivo systems. 

Aim 2: To evaluate the anticancer efficacy of the hypoxia activated pro-drug, evofosfamide 

alone and in combination with paclitaxel against breast cancer using both in vitro and in vivo 

systems 

Aim 3: To evaluate the anticancer efficacy of the hypoxia activated pro-drug, evofosfamide, 

alone and in combination with Pro-Apoptotic Receptor Agonists against osteosarcoma using 

both in vitro and in vivo systems 

 

Significance and contribution to the discipline 

Bone metastases occur in more than 75% of patients with late stage breast, prostate 

and lung cancer. Cancer in bone is often associated with bone destruction, which causes 

considerable morbidity and reduced quality of life (R. E. Coleman, 1997). Bone destruction 

caused by primary and metastatic cancer leads to bone pain, paralysis due to spinal cord 

compression, hypercalcaemia, fractures and the need for extensive orthopaedic surgical 

intervention (Mundy, 2002a). The cost of this morbidity is enormous, especially since patients 

with cancer in the bone often survive for a longer time than patients with visceral metastases.  

Data from this thesis will raise the possibility that HAPs may be potential therapeutic 

targets in combination with conventional therapeutic strategies and PARAs against tumour 

progression which gives hope of eradicating the tumour completely. Adding to this, the thesis 

will provide important information for future clinical trials of evofosfamide and PARAs in the 

treatment of osteosarcoma and metastatic breast cancer. 
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Appendix: Supplementary Figures 

 

Supplementary Figure 1: 

Activity of TH-302 against OS cells in vitro: A. OS Cell lines MG-63, SAOS and SJSA-1 

were seeded in 96 well plates at 1×10
4
 cells per well and treated with TH-302 in normoxia 

(21% O2) and of hypoxia (1% O2) for 24 hours. TH-302 exhibited dose dependent cytotoxicity 

in hypoxic conditions to all 3 OS cell lines. Data points represent means of quadruplicate 

results from a representative experiment, repeated at least twice. Data are presented as the 

mean ±SD of quadruplicate wells, and are expressed as a percentage of the number of control 

cells. 
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Supplementary Figure 2: TH-302 downregulates c-IAP1 and c-IAP2 in the OS BTK-143 

BTK-143 cells were seeded and treated in a similar manner to the K-HOS and NHB cells. 

Protein lysates were then collected and immunoblotted with Abs against c-IAP1, c-IAP2, 

XIAP and Actin, as shown. 
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 Abstract: 

Tumor hypoxia is a major cause of treatment failure for a variety of malignancies. 

However, hypoxia also leads to treatment opportunities as demonstrated by the development 

of compounds that target regions of hypoxia within tumours. Evofosfamide is a hypoxia 

activated prodrug that is created by linking the hypoxia seeking 2-nitroimidazole moiety to the 

cytotoxic bromo-isophosphoramide mustard (Br-IPM). When evofosfamide is delivered to 

hypoxic regions of tumours, the DNA cross linking toxin, Br-IPM, is released leading to cell 

death. This study assessed the anticancer efficacy of evofosfamide in combination with the 

Pro Apoptotic Receptor Agonists (PARAs) dulanermin and drozitumab against human 

osteosarcoma in vitro and in an intratibial murine model of osteosarcoma. 

Under hypoxic conditions in vitro, evofosfamide cooperated with dulanermin and 

drozitumab, resulting in the potentiation of cytotoxicity to osteosarcoma cells. In contrast 

under the same conditions, primary human osteoblasts were resistant to treatment. Animals 

transplanted with osteosarcoma cells directly into their tibiae developed mixed 

osteosclerotic/osteolytic bone lesions and consequently developed lung metastases three 

weeks post cancer cell transplantation. Tumour burden in the bone was reduced by 

evofosfamide treatment alone and in combination with drozitumab and prevented 

osteosarcoma-induced bone destruction while also reducing the growth of pulmonary 

metastases. 

These results suggest that evofosfamide may be an attractive therapeutic agent, with 

strong anticancer activity alone or in combination with either drozitumab or dulanermin 

against osteosarcoma. 
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Introduction: 

Osteosarcoma (OS) is the most common primary type of cancer that develops in the 

bone and accounts for 20% of all primary osseous neoplasms (Campanacci, 1999; Pringle, 

1999). Most OS occur in young adults and children and usually develops in areas where the 

bone is rapidly growing such as the proximal tibia, distal femur and proximal humerus (Tang, 

Song, Luo, Haydon, & He, 2008). Metastatic spread of OS preferentially occurs in the lungs 

which is correlated with poor survival and is seen in 20% of patients with OS (Link et al., 

1991; Saeter et al., 1997). Over the past 20 years treatment of OS has advanced considerably 

due to the increased efficacy of conventional chemotherapeutic agents. The type, combination 

as well as the doses of chemotherapeutic agents given as well as the sensitivity of the tumour 

cells determine the patients’ response to treatment. Despite these advances in treatment, drug 

resistance still remains a problem (Chan, Grogan, Haddad, DeBoer, & Ling, 1997). In 

addition, conventional chemotherapeutic drugs have a significant impact on normal bone 

health, leading to a greater risk of developing osteoporosis and myelosuppression due to 

toxicities in the bone marrow (Gralow et al., 2009; Lustberg, Reinbolt, & Shapiro, 2012). 

The characteristics of bone lesions caused by OS are based on their radiologic 

appearance which can be either osteoblastic (osteosclerotic), osteolytic, or a combination of 

both (Mundy, 2002b). Osteolysis is common with OS and is caused by the bone resorbing 

activity of osteoclasts (Goltzman, 2001; Taube, Elomaa, Blomqvist, Beneton, & Kanis, 1994). 

Tumour growth is stimulated by factors released from the bone and in turn tumour cells 

produce factors that stimulate osteoclastic bone resorption, resulting in a mutual relationship 

of bone destruction between the cell types known as “the vicious cycle” (Chirgwin & Guise, 

2000). In contrast, osteoblastic lesions are associated with tumour cells that stimulate 

osteogenesis (Goltzman, 1997; Goltzman, Karaplis, Kremer, & Rabbani, 2000). 
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As with most solid tumours, early stage OS displays significant regions of hypoxia, 

where resistant tumour cells reside which results in tumour recurrence and metastasis, leading 

to treatment failure and poor outcomes. These hypoxic conditions found in tumor sub-regions 

are rarely observed in normal tissue, tumor hypoxia can therefore provide the basis for 

selective cancer therapy and there are a number of strategies currently being investigated to 

selectively target tumor cells in this hypoxic environment. Hypoxia-activated prodrugs 

(HAPs) selectively deliver cytostatic or cytotoxic agents to hypoxic sub regions. 

Evofosfamide (formerly TH-302) is a hypoxia-activated prodrug composed of 2-

nitroimidazole linked to bromo-isophosphoramide mustard (Br-IPM) (Jian-Xin Duan, Monica 

Banica, & W. Steve Ammons, 2007). The 2-nitroimidazole component of evofosfamide 

serves as an oxygen sensor, releasing the crosslinking DNA-alkylating Br-IPM into the 

hypoxic regions of tumors. To date, evofosfamide has been investigated both as a stand-alone 

agent and in combination with chemotherapy and other targeted cancer drugs against 

numerous solid tumor types and blood cancers (Borad et al., 2014; Chawla et al., 2014; 

Wojtkowiak et al., 2015).  

Pro-Apoptotic Receptor Agonists (PARAs), either as monotherapy or in combination 

with other agents, are generally well-tolerated by patients with very few side effects (Dine et 

al., 2016) and although phase 1/1b studies provided encouraging preliminary results, findings 

from randomized Phase 2 studies failed to demonstrate significant clinical benefit (Herbst et 

al., 2010; Kindler et al., 2012; Soria et al., 2010; Younes et al., 2010). Despite these clinical 

observations, there has been no investigation examining the anticancer efficacy of 

evofosfamide alone or in combination with either the Pro-Apoptotic Receptor Agonists 

(PARAs) dulanermin (formerly known as Apo2L/TRAIL), or drozitumab for the treatment of 

osteosarcoma. 
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This study investigates the cytotoxic activity of evofosfamide alone and in 

combination with dulanermin and drozitumab against human OS cells in vitro and in vivo, 

using a clinically relevant orthotopic mouse model of OS and on their subsequent lung 

metastases. 

 

Materials and Methods: 

Cells 

The human OS cell lines BTK-143 and K-HOS were obtained from ATCC (Manassas, 

VA, USA) and were authenticated by DNA (STR) profiling. Cells were cultured in 

Dulbecco’s Modified Eagle’s Medium (DMEM), supplemented with 2mM glutamine, 100 

IU/ml penicillin, 160 g/ml gentamicin and 10% fetal bovine serum (Life Technologies, 

Carlsbad, CA, USA) in a 5% CO2-containing humidified atmosphere. The generation of 

luciferase-tagged BTK-143-TGL has been described previously (Irene Zinonos et al., 2009). 

Normal human osteoblasts (NHB) were obtained from bone marrow aspirations from 

the iliac crest of normal healthy donors or from the trabecular bone of osteoarthritic patients 

at joint replacement surgery,  grown in MEM (SIGMA, Saint Louis, Missouri, USA) 

containing L-ascorbic acid 2-phosphate (Life Technologies, Carlsbad, CA, USA) and 10% 

fetal bovine serum. Medium was then replaced at 4 day intervals cells were then consequently 

sub cultured by treatment with a (0.1%) (w/v) mixture of collagenase and dispase. In all 

experiments, cells from the first passage were used in all experiments. 

Drugs 

Threshold Pharmaceuticals (South San Francisco, CA, USA) provided the 

evofosfamide powder which was dissolved in a sterile saline solution at a concentration of 

13.2mM. The Caspase Inhibitor-1 ZVAD-fmk, was purchased from Calbiochem Inc. (La 

Jolla, CA, USA). 
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Both drozitumab and dulanermin were a gift from Dr Avi Ashkenazi, Genentech, Inc. 

(South San Francisco, CA, USA). Affinity Pure Goat anti-human IgG Fcγ fragment was 

purchased from Jackson Immuno Research Laboratories Inc. (West Grove, PA, USA). 

Cell Viability Assay 

To determine the cytotoxicity of evofosfamide on cell growth, 1 x 10
4
 cells per well 

were seeded in 96-well microtitre plates and allowed to attach overnight. Cells were then 

treated with increasing concentrations of evofosfamide (1-100M) alone and in combination 

with 100ng/ml of either dulanermin or drozitumab for 24 hours under both hypoxic (1% O₂) 

and normoxic conditions. Drozitumab was cross-linked with an anti-human IgG Fcγ for 30 

minutes at 4˚C prior to treatment before all in vitro experiments. Crystal Violet staining was 

used to determine cell viability and optical density was measured at 570 nm wavelength 

(OD570). Results of representative experiments are presented as the mean +/- SD which were 

performed in triplicate and repeated at least 3 times. 

Apoptosis Analysis 

Measurement of DEVD-caspase activity with and without Caspase Inhibitor 1, ZVAD-fmk 

DEVD-caspase activity was assayed by cleavage of the fluorogenic substrate zDEVD-

AFC and based on the peptide sequence at the caspase-3 cleavage site of poly (ADP-ribose) 

polymerase. Cells were grown in 96 well plates at a density of 1x10
4
/well and treated for 24 

hours as indicated, washed once with PBS, and resuspended in 30μl lysis buffer containing 

5mmol/L EDTA, 5mmol/L Tris-HCl and 10% Igepal (pH 7.5). Cell lysate containing 20μg of 

protein was added to each well containing 8μmol/L substrate in 1ml fluorometric protease 

buffer which contained 10% sucrose, 50mmol/L HEPES, 0.1% CHAPS (pH 7.4), 10mmol/L 

DTT. 

Fluorescence was then quantified (Ex 400 and Em 505) after 4 hours at room 

temperature using a BMG FLUOstar OPTIMA microplate reader. 
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Results were expressed relative to the protein concentration of the sample, which was 

determined using a commercial BCA protein assay reagent from Thermo Fisher Scientific 

(Waltham, MA, USA). Caspase Inhibitor 1, ZVAD-fmk, was resuspended at a concentration 

of 50mM and added to the cells at 50μM alone, with evofosfamide at 50μM, drozitumab + 

anti-human IgG Fcγ or dulanermin at 100ng/ml. 

Western Blot analysis 

Cells were treated with 50M of evofosfamide, alone or in combination with 

100ng/ml of either dulanermin or drozitumab (cross-linked with an anti-human IgG Fcγ), 

under hypoxic (1% O2) and normoxic (21%O2) conditions for 24 hours and lysed in buffer 

containing 150mM NaCl, 10mM Tris HCl (pH 7.6), 0.1% sodium dodecyl sulphate, 1% 

Triton X-100, 2mM sodium vanadate and a protease inhibitor tablet (Roche Diagnostics, 

Mannheim, Germany). Protein lysates were heated for 10 minutes at 70
o
C and loaded under 

reducing conditions into 4-12% polyacrylamide gels for electrophoresis. Separated proteins 

were transferred to PVDF membranes (GE Healthcare, Buckinghamshire, UK) 

electrophoretically and blocked in PBS containing 5% blocking reagent (GE Healthcare, 

Buckinghamshire, UK) and 0.1% Tween 20 for 1 hour at room temperature. 

Immunodetection was performed at 4
o
C overnight in blocking reagent/PBS, using the 

following primary antibodies mAb anti-caspase-8, pAb anti-caspase-9, mAb anti-caspase-3 

and pAb anti-bid which were purchased from Cell Signaling Technology (Beverly, MA, 

USA), pAb anti-Inhibitor of Apoptosis 2 (cIAP2), pAb anti-Inhibitor of Apoptosis 1 (cIAP1), 

pAb anti-XIAP, pAb death receptor 4 (DR4), pAb death receptor 5 (DR5), pAb decoy 

receptor 1 (dcR1) and pAb decoy receptor 2 (dcR2) purchased from R&D systems, pAb anti-

Poly-(ADP-Ribose) Polymerase (PARP) from Roche Diagnostics (Mannheim, Germany). 

Anti-actin mAb was used as a loading control and was purchased from SIGMA, Saint Louis, 

Missouri, USA. 
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All primary antibodies were used at the dilutions suggested by their manufacturers. 

Membranes were then rinsed three times with PBS containing 0.1% Tween-20 and incubated 

for 1 hour with a 1:5,000 dilution of anti-goat, anti-mouse, or anti-rabbit alkaline 

phosphatase-conjugated secondary antibodies (Thermo Fisher Scientific, Waltham, MA, 

USA). The ECF substrate reagent kit purchased from (GE Healthcare, Buckinghamshire, UK) 

and the FluorImager (Molecular Dynamics Inc., Sunnyvale, CA, USA) were used to visually 

assess and quantify the protein bands. 

Animals 

For a minimum period of 1 week prior to the commencement of experimentation, 4 

week old female athymic mice were acclimatized to the animal housing facility under 

pathogen free conditions (Institute of Medical and Veterinary Services Division, Gilles Plains, 

SA, Australia). Throughout the experiments the general physical well-being and weight of 

animals were monitored. All experimental procedures on animals were carried out with strict 

adherence to the guidelines and rules for the ethical use of animals in research and were 

approved by the Animal Ethics Committees of the Institute of Medical and Veterinary 

Science and the University of Adelaide, SA, Australia. 

Intra-tibial injections of osteosarcoma cells 

The BTK-143-TGL OS cell line was cultured as described previously until 70-80% 

confluency was reached. Cells were removed from flasks with 2mM EDTA and resuspended 

at 1x10
5 

cells per 10μl PBS and kept on ice in an eppendorf tube. The left tibia was wiped 

with 70% ethanol and with the knee flexed, coupled to a Hamilton syringe a 27 gauge needle 

was inserted through the tibial plateau and 1x10
5
 BTK-143-TGL cells resuspended in 10l of 

PBS were injected in the marrow space. As the control all animals were injected with PBS 

into the contralateral tibia. Mice were randomly assigned into groups of 7 animals and 7 days 

after cancer cell transplantation drug dosing started. 
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Evofosfamide was administered via i.p injection once a day for 5 days followed by 2 

days of rest at 50mg/kg body weight, whereas drozitumab was administered at 3mg/kg i.p 

once a week until the end of the experiment. 

In vivo bioluminescent imaging 

The IVIS 100 Imaging system (Xenogen, Alameda, CA) was used weekly to perform 

non-invasive, whole body imaging to monitor the luciferase-expressing OS cell line BTK-

143-TGL in mice using 100 μl of the D-Luciferin (Xenogen Alameda, CA) solution at final 

dose of 3mg/20g mouse body weight was injected i.p. Mice were then gas-anaesthetized with 

Isoflurane (Faulding Pharmaceuticals, Salisbury, SA, Australia). Images were acquired from 

the side angle for 0.5-30 seconds (representative images are shown at 1 second) and the 

Xenogen Living image (Igor Pro version 2.5) software was used to capture and quantify 

photon emission from mice in photons/sec/cm
2
. 

Micro-computed tomography ex vivo analysis 

The SkyScan-1072 high-resolution μCT Scanner (Kontich, Skyscan, Belgium) was 

operated at 80kV, 120 μA, rotation step 0.675, with a 0.5 mm Al filter and scan resolution of 

5.2μm/pixel was used to scan surgically resected limbs. Cross sections of the samples were 

reconstructed using a cone-beam algorithm (software Cone rec, Skyscan). The growth plate 

was identified using the 2D images obtained from the μCT scan and starting from the growth 

plate/tibial interface and moving down the tibia 450 sections were selected for quantification.  

To determine 3D bone morphometric parameters (software CTAn, Skyscan), 3D 

evaluation was performed on all data sets acquired by selecting total bone of the proximal 

tibia, the cross sections were reconstructed using a cone-beam algorithm (software Cone_rec, 

Skyscan). Files were then imported into CTAn software (Skyscan) for 3D analysis and 3D 

image generation. All images are viewed and edited using ANT visualisation software 

(Skyscan). 
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Data Statistics and Analysis 

Experiments were performed in triplicate and data presented as mean ± SE. SigmaStat 

for Windows version 3.0 (Systat Software, Inc., Port Richmond, CA) was used for all 

statistical analysis using the unpaired Students’ T test. Spearman Rank correlation coefficient 

was used to assess the association between two variables and comparisons between groups 

were assessed using a one way ANOVA test. In all cases, p < 0.05 was considered statistically 

significant. 
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Results 

Evofosfamide cooperates with drozitumab and dulanermin, displaying increased hypoxia-

selective cytotoxicity against OS cells. 

Human OS cell lines K-HOS and BTK-143were assessed for their sensitivity to the 

cytotoxic activity of evofosfamide alone and in combination with a maximum dose of 

100ng/ml of drozitumab or dulanermin for 24 hours under normoxic (21% O₂) and hypoxic 

(1% O₂) conditions. In both OS cell lines as a single agent, evofosfamide had minimal toxicity 

under normoxic conditions. In contrast, under hypoxic conditions, evofosfamide dose 

dependently decreased cell viability in both OS cell lines, with 43% viability for the BTK-143 

cells and 65% viability for the K-HOS cells at 25μM. Under normoxic conditions, both OS 

cell lines were resistant to the cytotoxic activity of drozitumab and dulanermin alone at 

100ng/ml. However under hypoxic conditions, K-HOS cells were comparably more sensitive 

to the cytotoxic activity of both drozitumab and dulanermin alone (39 and 47% viability 

respectively), whereas BTK-143 cells were relatively resistant (94 and 77% viability). 

Both OS cell lines showed a significant increase in cytotoxicity when either 

drozitumab or dulanermin were combined with evofosfamide in a dose dependent manner 

under hypoxic conditions, resulting in 95% loss of viability at 25μM for both OS cell lines 

(Fig. 1A). In contrast, primary normal human osteoblasts, cultured from patients undergoing 

hip replacement surgery, were resistant to the cytotoxic activity of evofosfamide at 100μM in 

combination with either drozitumab or dulanermin under similar conditions (Fig. 1B). 
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Figure 1: Activity of evofosfamide in combination with drozitumab and dulanermin against 

OS cells and primary normal human osteoblasts in vitro. (A) OS cell lines BTK-143 and K-

HOS were seeded in 96 well plates at 1x10
4
 cells per well and treated with increasing doses of 

evofosfamide alone and in combination with either drozitumab or dulanermin under normoxic 

(21% O2) and hypoxic (1% O2) conditions for 24 hours. (B) Primary normal human 

osteoblasts were resistant to evofosfamide and the combination with either drozitumab or 

dulanermin under the same conditions. Cell viability was assessed by crystal violet staining. 

Data points show means of quadruplicate results from a representative experiment, repeated at 

least twice and presented as the mean SD of quadruplicate wells and expressed as a 

percentage of the number of control cells. 
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Evofosfamide mediated OS cytotoxicity is only partly caspase 3 dependant. 

The increase in caspase-3 activation with 50μM of evofosfamide treatment under 

hypoxic conditions alone and in combination with drozitumab or dulanermin (100ng/ml) was 

associated with a decrease in cell viability. However co-administration with ZVAD-fmk, a 

pan-caspase inhibitor did not prevent the reduction in cell viability caused by evofosfamide in 

both OS cell lines under hypoxic conditions, despite irreversibly inhibiting the activity of 

caspase-3 (Fig. 2), suggesting that the mechanisms involved in evofosfamide-mediated 

cytotoxicity are not entirely caspase dependent. 

However ZVAD-fmk completely reversed the cytotoxic activity of both drozitumab 

and dulanermin in both OS cell lines, indicating that the cytotoxicity of these PARAs against 

these OS cells is largely caspase dependant, this being in line with the well-established 

mechanism of action of these pro-apoptotic agents. When either drozitumab or dulanermin 

was combined with evofosfamide and the caspase inhibitor ZVAD-fmk was added, there was 

a significant reduction in cytotoxicity against both OS cell lines when compared to the 

combination of these drugs without ZVAD-fmk. 

The molecular determinants involved in evofosfamide-mediated apoptotic signaling 

alone and in combination with drozitumab or dulanermin were characterised (Fig. 3). 

Evofosfamide alone treatment at 50μM under hypoxic conditions (1% O₂), for 24 hours 

activated the caspase cascade with robust cleavage of the initiator caspase-8, caspase-9, 

caspase-3 and cleavage of poly ADP-ribose polymerase (PARP). The mitochondrial pro-

apoptotic Bcl-2 family protein BID, inhibitor of apoptosis proteins cIAP1, cIAP2 and XIAP 

however remained unchanged. 
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The combination of evofosfamide with dulanermin or drozitumab in both OS cell lines 

resulted in increased processing of caspases 8, 9, 3 and PARP. Importantly, combination 

treatment under hypoxia resulted in the robust cleavage of BID, likely resulting in the 

amplification of apoptotic signaling. 

Interestingly we observed a significant decrease in the levels of inhibitor of apoptosis 

proteins cIAP1, cIAP2 and XIAP in the K-HOS cell line. The levels of cIAP2 in the BTK-143 

remained unchanged. 

Under hypoxic conditions evofosfamide alone and in combination with either 

dulanermin or drozitumab up-regulated the death receptor DR5 in both cell lines. In the K-

HOS cell line which was more sensitive to dulanermin and drozitumab when compared to the 

BTK-143 cell line, dulanermin and drozitumab alone also upregulated DR5 as single agents 

under both normoxic and hypoxic conditions. There were no significant differences in the 

expression of the other agonistic receptors DR4 or decoy receptors DcR1 and DcR2 following 

treatment. 
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Figure 2: The cytotoxic activity of dulanermin and drozitumab is caspase dependant, 

whereas evofosfamide is not. OS cell lines were seeded in 96 well plates at 1x10
4
 cells per 

well and treated with evofosfamide alone at 50M and with drozitumab IgG 100ng/ml, 

dulanermin 100ng/ml or co-incubated with the broad specificity caspase inhibitor z-VAD-fmk 

(50M). To exclude possible toxic effects of the inhibitor, cells were also treated with the 

inhibitor alone under normoxic and hypoxic (1% O2) conditions. Cell lysates were used to 

determine caspase-3-like activity, using the caspase-3 specific fluorogenic substrate, zDEVD-

AFC and cell viability was assessed via crystal violet staining. Data points show means of 

quadruplicate results from a representative experiment, repeated at least twice; bars  SD. 
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Figure 3: Apoptotic signalling of evofosfamide, dulanermin and drozitumab against OS 

cells. OS cells were seeded at 2 x 106 per T25 flask and were treated with evofosfamide at 

50μM, dulanermin and drozitumab at 100ng/ml under normoxic (21% O2) and hypoxic (1% 

O2) conditions. After 24 hours cells were lysed and protein was collected. Cell lysates were 

analysed by polyacrylamide gel electrophoresis and transferred to PVDF membranes for 

Immunodetection as described in the Materials and Methods and immunoblotted with various 

Ab, as shown. 
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Cytotoxic activity of evofosfamide and drozitumab against osteosarcoma-induced bone 

destruction 

Drozitumab was specifically chosen as opposed to dulanermin in this preclinical 

study due to its ability to specifically bind to DR5 and not the TRAIL decoy receptors. In 

addition, drozitumab has a longer half-life when compared to dulanermin (Ashkenazi, 

Holland, & Eckhardt, 2008). 

To investigate the anticancer efficacy of drozitumab and evofosfamide against 

osteosarcoma progression and metastasis, an orthotopic model of OS  was used in which 

luciferase tagged BTK-143-TGL cells were directly transplanted into the tibial marrow cavity 

of female athymic nude mice and accurately monitored and quantified using non-invasive 

bioluminescence imaging over a 28 day period (I. Zinonos et al., 2009). Treatment with 

drozitumab, evofosfamide or the combination of both agents commenced 7 days after the 

intratibial OS cell injections. All vehicle treated animals showed an increase in mean photon 

emission exponentially, which indicated an increase in tumor burden palpable from day 7 

onwards, reaching a maximum signal at day 28, at which point animals were humanely killed. 

In contrast, treatment with evofosfamide or drozitumab showed a reduction in tumor burden 

over the same period in all animals. Importantly, the combination demonstrated a far greater 

anticancer efficacy in the bone (Fig 4A and B). The tibiae of all mice were dissected at the 

end of the experiment and the qualitative and quantitative assessment of bone destruction was 

analysed using high resolution µCT (Fig 4C). In the vehicle treated animals extensive 

osteolysis was clearly evident such that the net loss in bone volume (BV) was 69% in the left 

tumor-bearing tibiae when compared to the contralateral non-tumor bearing right tibiae. 

Although tumor burden was reduced by evofosfamide treatment, this did not prevent 

bone destruction such that the extent of osteolysis was not significantly different when 

compared to the vehicle treated group. 
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Remarkably, treatment with drozitumab alone resulted in extensive bone remodeling, 

resulting in a gain of bone volume of 27% when compared to the untreated right tibia. Micro-

CT analysis showed extensive bone remodeling that was noticeable under the growth plate 

and extended down the length of the tibia where the tumor resided. Tumour healing in the 

treatment of osteosarcoma in patients if often correlated with a significant increase in 

calcification, which would account for the increase in calcification in the tumour affected tibia 

of mice treated with drozitumab (S. Ferrari, Balladelli, Palmerini, & Vanel, 2013). In animals 

treated with the combination of drozitumab and evofosfamide, the tibia had a normal 

appearance due to the full mineralization of the cortical bone, demonstrating additional 

protection of the bone architecture, less calcification and more advanced bone remodeling, 

such that the net gain of BV was reduced to 6%. 

Ex-vivo bioluminescence imaging showed no differences between the treated groups 

(3 out of 7 mice) in the number of mice that developed lung metastases. However the tumor 

burden in the lungs of the mice with metastases which was measured as a function of 

bioluminescence signal showed a reduction in tumour growth with evofosfamide treatment. In 

addition, drozitumab maintained its cytotoxicity against metastatic OS cells in the lungs, 

which led to the tumour burden being reduced in both the drozitumab and combination groups 

(Fig 4D). 
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Figure 4: Drozitumab co-operates with evofosfamide to reduce OS intratibial tumours in 

vivo. BTK-143-TGL cells were injected directly into the tibial marrow cavity of 4 week 

female athymic mice, allowed to establish for 7 days, as described in the methods, mice were 

imaged weekly using the Xenogen IVIS 100 bioluminescence imaging system. (A). 

Representative whole body bioluminescent images of a single mouse from each group during 

the course of the experiment are shown. (B). The line graph, showing average tumor signal 

over time, expressed as mean photon counts per second during the course of the experiments 

are shown. Animals receiving treatment with evofosfamide and drozitumab as single agents 

showed a significant delay in tumor growth. In addition, all mice receiving the combination 

of evofosfamide and drozitumab showed a further delay of tumor growth when compared 

with each agent individually. (C). Quantitative assessment of Total bone loss (%) comparing 

the tumor bearing tibiae of each group to the contralateral tibiae and the qualitative 3-D 

micro CT images show the osteolytic nature of the BTK-143-TGL cell line, which was 

reduced by drozitumab alone and the combination of evofosfamide and drozitumab. (D). 

Average lung tumor growth was assessed via bioluminescence showing evofosfamide, 

drozitumab and the combination of both agents caused a reduction in lung tumor growth of 

the BTK-143-TGL cell line when compared to the vehicle group. Data shown in each case 

are the average BLI from all animals in that group: points are means SEM. 
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Effect of evofosfamide on bone metabolism 

Our experimental approach also provides an opportunity to assess the normal bone 

parameters after treating the mice with evofosfamide, drozitumab and the combination of 

both. After three weeks of treatment, the use of high resolution micro-CT analysis to compare 

the contralateral non tumor bearing tibiae of treated and untreated animals showed no 

differences in any of the micro architectural bone morphometric parameters, which included 

total bone volume, bone surface, trabecular number, trabecular thickness or trabecular spacing 

(Table 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1:  Comparison of bone morphometric parameters of contralateral non tumour 

injected tibiae from vehicle, evofosfamide, drozitumab, evofosfamide + drozitumab treated 

animals 

Parameters 
Vehicle 

control 
Evofosfamide Drozitumab 

Evofosfamide 

+ Drozitumab 

  Mean SE Mean SE Mean SE Mean SE 

Bone Volume(mm3) 2.34 0.05 2.27 0.07 2.31 0.14 2.30 0.11 

Bone Surface (mm2) 191.68 4.07 194.55 4.94 188.71 6.58 195.52 10.91 

Inter-section Surface. (mm2) 0.36 0.03 0.32 0.04 0.38 0.03 0.36 0.09 

Trabecular Space (mm) 1.53 0.02 1.49 0.04 1.57 0.04 1.45 0.03 

Trabecular Number (1/mm) 0.16 0.07 0.18 0.01 0.16 0.02 0.20 0.02 

Trabecular Thickness (mm) 0.05 0 0.05 0 0.06 0 0.05 0 

Trabecular Pattern factor (1/mm) 24.24 1.37 21.17 1.79 23.90 0.77 22.05 1.05 

Structure Model Index 2.14 0.04 2.04 0.23 2.08 0.03 1.92 0.06 

Bone volume, bone surface, inter-section surface, trabecular space, trabecular number, 

trabecular thickness, trabecular pattern factor and structure model index were measured by 

three dimensional analysis of  μCT images of the contralateral tibial bone. Results are 

expressed as mean ± SE. Significance of results is with respect to untreated animals obtained 

using Student’s t test. 
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Discussion 

 

In addition to surgical intervention, chemotherapeutic agents such as doxorubicin, 

etoposide, cisplatin and cyclophosphamide used alone, or in combination have significantly 

improved overall survival for patients with OS. Yet despite these improvements in treating the 

primary tumour, a large number of patients with OS eventually develop lung metastases, even 

after surgical excision and conventional chemotherapy. There is a need to therefore, develop 

safe and new approaches for OS treatment (Botter, Neri, & Fuchs, 2014; Jin-Peng He & Jin 

Guo, 2014; Yang & Zhang, 2013). 

It must be noted that when compared to other tissues, the bone marrow and in particular 

the haemopoietic niche close to the endosteal surface is hypoxic, which is required for normal 

haemopoiesis to occur (Miharada et al., 2011). Unlike soft tissue tumors, OS can also adapt to 

this hypoxic bone microenvironment. The ability to target OS in this hypoxic bone 

environment is therefore an important feature that evofosfamide has over other cancer 

therapies. In addition conventional chemotherapeutics are usually cytotoxic to normal bone 

cells in the bone marrow, an important goal of anticancer treatment is to selectively target 

cancer cells but not normal bone cells.  

A combinatorial approach using agents with additive or synergistic cytotoxic activities 

are appealing because they allow lower drug doses to be used, which reduce harmful side-

effects, particularly in the bone. Consistent with our previous published data (V. Liapis et al., 

2015; V. Liapis et al., 2016) under normoxic conditions evofosfamide alone resulted in 

minimal toxicity against OS, whereas under hypoxic conditions evofosfamide decreased OS 

cell viability. This cytotoxic activity was further increased when evofosfamide was combined 

with either drozitumab or dulanermin under hypoxic conditions. 
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The combination of the chemotherapeutic agents’ drozitumab and dulanermin with 

evofosfamide was not toxic to either normal human bone cells in vitro or normal bone 

metabolism in vivo, corroborating with previous studies which demonstrate that these agents 

individually are nontoxic to normal bone. (Agatha Labrinidis et al., 2009; V. Liapis et al., 

2015; I. Zinonos et al., 2009). These results highlight not only the hypoxic selectivity of 

evofosfamide, but also the specific tumor selectivity of both evofosfamide and PARAs. 

In the search for more effective treatments for OS, PARAs including recombinant 

dulanermin and the agonistic antibody drozitumab induce apoptosis through different but 

overlapping signaling pathways, whereas evofosfamide induces apoptosis mainly through 

caspase-independent mechanisms as described previously (Vasilios Liapis et al., 2016). As a 

result, the combination of PARAs and evofosfamide were considerably more cytotoxic to 

tumour cells that resist cytotoxic activity through a single pathway, where inhibiting caspase 

activity to prevent the activity of both drozitumab and dulanermin still resulted in both OS cell 

lines under hypoxic conditions being sensitive to the cytotoxic activity of evofosfamide. This 

is also reflected by the activation of caspase-8, caspase-9, caspase-3, PARP, cleavage of Bid, 

a member of the Bcl-2 family protein, and the downregulation of c-IAP1 when evofosfamide 

was combined with dulanermin or drozitumab as well as both PARAs activating the extrinsic 

pathway by the upregulation of DR5. 

Based on our in vitro results, the therapeutic potential of evofosfamide was expected to 

be greatest in combination with adjuvant cytotoxic chemotherapy. When transplanted into the 

tibial marrow cavity of mice, BTK-143 cells are highly osteolytic and this results in extensive 

bone destruction and the development of metastases to the lung three to four weeks post 

cancer cell transplantation. 
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This in vivo model mimics OS activity in the bone as seen in patients with the disease 

and is ideal for determining the potential of drug treatment on cancer growth in the bone as 

well as cancer-induced bone destruction (Vasilios Liapis et al., 2015; I. Zinonos et al., 2009). 

The activity of evofosfamide in combination with drozitumab was tested in this context, in a 

preclinical model of OS progression and development for the following reasons. In contrast to 

dulanermin, which has a short bioavailability of 30 minutes, which requires daily treatment 

for patients and the inability to bind to death-inducing TRAIL receptors in various cancer 

types, preferring to bind with the decoy TRAIL receptors (Amarante-Mendes & Griffith, 

2015; Ashkenazi et al., 1999), drozitumab is a fully agonistic human monoclonal antibody that 

specifically binds to and activates DR5 in the same manner as dulanermin (I. Zinonos et al., 

2009). Drozitumab has a half-life ranging from several days to weeks and has been developed 

to specifically target DR5 (Ashkenazi, 2008a) and not the TRAIL decoy receptors. In 

addition, circulating Fragment Crystalline Gamma (Fcγ) receptors expressed on the surface of 

various immune cells (Holland, 2013; Robak, 2013), crosslink with drozitumab which leads to 

enhanced antibody-dependent, cell-mediated cytotoxicity (ADCC) (Wilson et al., 2011), 

resulting in immune cell activation leading to recruitment of other Fcγ receptor expressing 

cells to the tumor microenvironment (Amarante-Mendes & Griffith, 2015; Wilson et al., 

2011). The apoptotic tumor cells are then phagocytosed by the activated Fcγ receptor 

expressing immune cells (Takeda et al., 2004), further enhancing the cytotoxic activity of 

drozitumab against cancer. 

The activity of drozitumab against OS in bone has yet to be reported and in addition, 

this OS cell line is relatively resistant to drozitumab in vitro, allowing the detection of any 

synergistic or additive activity to be easily observed. As a single agent evofosfamide had 

limited impact in reducing tumour growth in the tibia or protecting the tibia from the cancer 

induced bone destruction caused by this highly aggressive osteolytic cell line. 
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The cytotoxic activity displayed by drozitumab in vivo contradicts the resistance of this 

human osteosarcoma shown in vitro. A possible explanation to account for the increase in 

cytotoxicity of drozitumab in vivo is the circulation of Fcγ receptors expressed by leukocytes 

in mice. The engagement of leukocyte Fcγ receptors by antibody-antigen complexes leads to 

an enhanced antibody-dependent, cell-mediated cytotoxicity (ADCC) (Wilson et al., 2011), 

which can interact more efficiently with the DR5 agonistic antibody drozitumab when 

compared to artificial Fc crosslinking in vitro, leading to improved cytotoxicity against the 

human osteosarcoma in the tibia and lungs of the mice. 

The combination of both evofosfamide and drozitumab had a profound effect in 

preventing growth of the tumor within the tibia which also translated to increased bone 

protection and a reduction in tumour burden in the lung. This may be related to the ability of 

evofosfamide to upregulate DR5 expression under hypoxic conditions, resulting in increased 

sensitivity to Drozitumab as observed in previous studies (Alexiou, Tsamis, & Kyritsis, 2015). 

In addition, each drug specifically targets tumours regions of different oxygen tensions 

accordingly.  

PARAs including drozitumab and dulanermin have been tested either alone or in 

combination with other agents in phase I and II clinical trials (Dine et al., 2016), with little 

clinical benefit observed to date which has led to the discontinuation of the development of 

PARAs in many cases (Holland, 2014). However, none of these clinical trials have examined 

the anticancer efficacy of PARAs against cancers in the bone such as OS. 

Evofosfamide is currently being evaluated both as monotherapy and in combination 

with conventional chemotherapy and radiotherapy in numerous phase I and phase II clinical 

trials against a variety of cancer types. 
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To date, two phase 3 trials targeting unresectable or metastatic soft tissue sarcoma 

NCT01440088 and unresectable pancreatic adenocarcinoma NCT01746979 (Alama, Orengo, 

Ferrini, & Gangemi, 2012) failed to meet their primary endpoint of improving overall survival 

with statistical significance. Nonetheless, from the observations in phase I and II clinical trials 

of evofosfamide and PARAs, and from the results presented in this study, which indicate that 

these compounds are nontoxic to normal bone metabolism suggest that OS patients may 

benefit from evofosfamide when used in combination with PARAs. 
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Discussion 

Tumor hypoxia is a major cause of treatment failure and poor outcome for a wide 

variety of malignancies. Within most solid tumours, there are significant areas of hypoxia, 

which contain cancer cells that resist conventional chemotherapy and radiotherapy, 

predisposing to tumor recurrence and metastasis. However, tumor hypoxia also provides 

treatment opportunities, exemplified by the development of highly active compounds known 

as HAPs that can specifically target tumor hypoxic zones. 

In considering the use of the HAP evofosfamide specifically for cancers in the bone, it 

is important to note that the bone marrow, particularly the hematopoietic niche proximal to the 

endosteal surface, is hypoxic and this is a prerequisite for normal haemopoiesis. In humans, 

the average oxygen tension (pO2) in the bone marrow is between 1 and 7% (cf atmospheric 

oxygen = 21%) (Carreau, El Hafny-Rahbi, Matejuk, Grillon, & Kieda, 2011). Cancer cells 

normally home to hypoxic endosteal niches where the oxygen tension is estimated to be 

<1.3% (Spencer et al., 2014). Unlike soft tissue tumours, cancer cells in bone are adapted to 

survive and grow in a microenvironment, which is already hypoxic (Brahimi-Horn, Chiche, & 

Pouyssegur, 2007). Therefore tumor hypoxia is a major contributor to the incurability of bone 

cancer. 

The results of the first aim which investigated the anticancer activity of evofosfamide 

against osteosarcoma showed that in vivo evofosfamide dose-dependently was cytotoxic to 

human OS cells selectively under hypoxic conditions, whereas primary normal human 

osteoblasts under the same conditions were relatively resistant to treatment, highlighting not 

only the hypoxic selectivity but also the tumor selectivity of the drug, which is likely related 

to the more rapid proliferation of tumor cells when compared to normal cells. In vivo 

evofosfamide as a single agent delayed tumor growth in bone and cooperated with 

doxorubicin for increased anticancer efficacy. 
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This effect was associated with significant protection from OS induced bone 

destruction and was observed in two distinct intratibial mouse models of human OS giving 

rise to different types of bone lesions. Evofosfamide alone reduced the incidence of lung 

metastases in both OS models. However, the tumor burden within the lungs of the remaining 

animals with metastases was no different from those seen in the vehicle treated groups, 

suggesting that osteosarcoma cells that escaped from the bone marrow and lodged into the 

lungs were refractory to evofosfamide treatment in this highly oxygenated environment, 

highlighting the hypoxia selectivity of this drug in vivo. In contrast, doxorubicin maintained 

its tumor suppressive activity in the lung. 

To date, the activity of evofosfamide against breast cancer both at the orthotopic site 

and bone metastases has not been reported. Therefore the second aim investigated the 

anticancer efficacy of evofosfamide in a preclinical model of breast cancer. In vitro 

evofosfamide exhibited relatively minimal toxicity under normoxic conditions, against a panel 

of human breast cancer lines, whereas under increasing hypoxia evofosfamide treatment dose 

dependently decreased the cell viability of a variety of human breast cancer cell lines. Normal 

breast epithelial cell lines MCF-10A and MCF-12A were also equally sensitive to 

evofosfamide under hypoxic conditions, which may be related to their proliferative capacity 

being similar to that of breast cancer cells. In contrast, primary dermal and normal mammary 

fibroblasts were relatively resistant to the cytotoxic activity of evofosfamide under the same 

conditions. 

The anticancer efficacy of evofosfamide alone and in combination with paclitaxel 

against breast cancer growing in the orthotopic site and in the bone marrow was assessed by 

using the aggressive and highly osteolytic human MDA-MB-231-TXSA breast cancer cell 

line in vivo. 
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When these human breast cancer cells were injected into the mammary fat pad of 

mice, treatment with evofosfamide or paclitaxel as single agents showed a significant 

reduction in tumor burden over the same period, whereas the combination of both was more 

effective in reducing tumor growth. In the intratibial model, evofosfamide treatment inhibited 

tumor growth in bone, leading to a significant reduction in the overall tumor burden. 

However, the reduction in tumor burden did not translate to a significant inhibition of 

osteolysis attesting to the aggressive osteolytic properties of these cells. In contrast, paclitaxel 

as a single agent was highly effective in reducing tumor load in bone while also protecting the 

bone from cancer induced bone destruction. The combined treatment resulted in a further 

reduction in tumor burden. 

The third aim investigated evofosfamide in combination with the PARAs drozitumab 

and dulanermin. To date, there has been no assessment of PARAs for the treatment of 

osteosarcoma. PARAs have been investigated previously against breast cancer growth in bone 

and were shown to inhibit intra and extra osseous bone growth while being non-toxic towards 

normal bone metabolism (I. Zinonos et al., 2009). Consistent with the results of the first aim, 

evofosfamide alone exhibited relatively minimal toxicity under normoxic conditions, whereas 

under hypoxia evofosfamide decreased OS cell viability. This cytotoxic activity was further 

increased when evofosfamide was combined with either drozitumab or dulanermin under 

hypoxic conditions. In contrast, normal human osteoblasts were resistant to the cytotoxic 

activity of evofosfamide alone and in combination with either drozitumab or dulanermin 

under the same conditions. 

As single agents in vivo, evofosfamide and in particular drozitumab were highly 

effective in reducing primary tumor burden and metastatic burden in the lungs. Evofosfamide 

however did not significantly reduce the cancer induced bone destruction caused by this 

highly aggressive osteolytic osteosarcoma cell line. 
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However the combination of both agents further prevented growth of the tumor within 

the tibia which also translated to increased bone protection and a reduction in tumour burden 

in the lung. PARAs including drozitumab and dulanermin, have been tested alone or in 

combination with other agents in phase I and II clinical trials and little clinical benefit has 

been observed to date which has led to the discontinuation of the development of PARAs in 

many cases (Holland, 2014). However, none of these clinical trials have examined the 

anticancer efficacy of PARAs against cancers in the bone such as OS.  

To date no data exist on the effects of evofosfamide or any other HAP for that matter on 

normal bone metabolism in the context of osteoclasts, osteoblasts, or osteocyte survival and 

function. From these three studies, the micro architectural bone morphometric parameters of 

the contralateral non tumor injected tibiae from untreated and evofosfamide treated animals 

were compared using high resolution micro-CT which demonstrated no changes in micro 

architectural bone parameters including, total or trabecular BV measurements with 

evofosfamide treatment. 

The results obtained in addressing the aims of this thesis as well as results obtained 

from the early stages of clinical trials of evofosfamide for the treatment of other cancer types, 

including the lack of toxicity to normal bone cells, suggest that patients diagnosed with 

primary OS may benefit from evofosfamide therapy when used in combination with the 

conventional chemotherapeutic drug doxorubicin. These studies also indicate that patients 

may also benefit from evofosfamide when used in combination with PARAs as both these 

compounds are nontoxic to normal bone metabolism when compared to chemotherapeutic 

treatment of patients suffering from OS. 
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Data generated the second aim which investigated the anticancer efficacy of 

evofosfamide against breast cancer further supports the clinical development of evofosfamide 

as a novel approach in the treatment of patients with breast cancer, especially those with 

existing bone metastases. 

The data presented in this thesis provides an important preclinical evaluation for the 

treatment of cancer that originates in the bone such as osteosarcoma or metastasizes to the 

bone such as breast cancer using the HAP evofosfamide with either conventional 

chemotherapeutic drugs such as doxorubicin and paclitaxel, or drugs such as the PARAs 

drozitumab and dulanermin which, although the PARAs drozitumab and dulanermin have 

failed to progress further than phase II clinical trials, they are continually investigated by 

researchers and clinicians because they are well tolerated by patients with only small side 

effects. 

While outcomes for the treatment of patients suffering from bone cancers have 

improved over the past 30 years with the use of aggressive chemotherapeutics, these 

chemotherapeutic drugs cause many side effects and often give rise to second malignancies. In 

addition, the frequent acquisition of drug resistance as well as the toxic side effects which is 

often associated with the use of these drugs is a serious problem. Therefore evofosfamide and 

PARAs may have potential roles in the treatment of bone cancer, given that data generated in 

this thesis and form previous preclinical studies suggest that both evofosfamide and PARAs 

are non-toxic and safe. 
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Future Directions 

Tumour hypoxia has been pursued as a potential selective cancer drug treatment for 

over 30 years. Yet despite the link between hypoxia with treatment resistance and poor 

prognosis, a number of HAPs including evofosfamide have failed to demonstrate efficacy in 

phase III clinical trials and as yet no HAPs have been FDA approved. 

Evofosfamide, which was the most advanced and the least toxic of all HAPs that 

have entered clinical trials, failed two phase III trials for the treatment of advanced pancreatic 

cancer (MAESTRO) and advanced soft tissue sarcoma (TH-CR-406/SARC021). The reason 

for the failure of the MAESTRO study was that evofosfamide did not improve overall survival 

in combination with gemcitabine when compared to gemcitabine plus placebo. 

Pancreatic ductal adenocarcinoma is incurable and the most lethal common cancer 

because it is usually diagnosed at an advanced stage which is resistant to therapy (Ryan, 

Hong, & Bardeesy, 2014). Although the primary endpoint of overall survival in the 

MAESTRO study narrowly missed statistical significance (p=0.0589, where p=0.05 is 

statistically significant), secondary endpoints, overall response rates and progression free 

survival gave significant improvements for patients treated with gemcitabine plus 

evofosfamide compared to gemcitabine plus placebo (Russo & Saif, 2016). In addition a 

subgroup of 123 patients enrolled in the treatment arm at Japanese and South Korean sites had 

a risk of death reduction of 42% when compared to the control arm (Zeng, 2016). These 

results, which include the narrowly missed statistical significance of p=0.058, require further 

analysis to determine whether the phase III failure is due to the trial design or the drug 

evofosfamide itself, leading to the possibility that there may still be an opportunity to treat 

patients with pancreatic cancer with evofosfamide. 
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Importantly, in the context of cancer in the bone updated data from the phase II study 

investigating evofosfamide in combination with bortezomib and low dose dexamethasone 

(NCT01522872) suggests that of the 18 patients in the trial with advanced multiple myeloma, 

14 patients showed a clinical benefit rate of 29% (Zeng, 2016). This preliminary data suggest 

that the combination of evofosfamide with dexamethasone is active in patients who have 

failed conventional therapy for the treatment of multiple myeloma.  

In addition to the phase II multiple myeloma trial, a phase I study investigating the 

clinical activity of evofosfamide for the treatment of patients with relapsed leukaemia 

(NCT01149915) demonstrated that evofosfamide as a single agent has activity in heavily pre-

treated leukaemia patients. To characterise the extent of the hypoxic bone environment in 

these leukaemia patients, this study also incorporated the hypoxia markers HIF-1a and CAIX, 

which were highly expressed in leukemic bone marrow and were significantly reduced after 

evofosfamide therapy (Badar et al., 2016). 

Although both multiple myeloma and leukaemia are defined as blood cancers, the 

bone marrow microenvironment promotes the growth of these cancer types, which ultimately 

leads to bone destruction and resistance to conventional therapies (Hideshima, Mitsiades, 

Tonon, Richardson, & Anderson, 2007). Therefore based on these phase I and II trials and 

preclinical data that investigated evofosfamide for the treatment of various types of cancer 

that occurs in the bone, patients with these bone cancers may benefit from evofosfamide 

therapy. In addition as indicated in the preclinical studies conducted as part of this thesis, 

evofosfamide may also have a potential role in the treatment of osteosarcoma and metastatic 

breast cancer. This will require further preclinical studies with more osteosarcoma and breast 

cancer cell lines in order to generate enough evidence to warrant future clinical trials 

investigating evofosfamide against osteosarcoma and metastatic breast cancer. 
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In addition to investiging the role of evofosfamide on osteosarcoma and metastatic 

breast cancer as outlined in this thesis, other cancer types that metastasize to the bone should 

also be investigated such as prostate, lung kidey and thyroid cancers. 

However there are limitations in the use of HAPs such as evofosfamide to target 

hypoxic regions in solid tumours and bone cancers, which may explain why evofosfamide 

failed to meet its primary endpoints in both phase III trials. Hypoxia between and within the 

tumour including in bone cancers is highly variable and is not always the cause of resistance 

to treatment. 

The use of direct and indirect hypoxia measuring factors in order to determine the 

levels of hypoxia have shown large variations of hypoxia between cancers within patients. 

These levels of hypoxia also determine the possibility of treatment failure by radiotherapy and 

conventional chemotherapy which are most effective in the normoxic regions of the tumour 

(Dhani et al., 2015; Milosevic et al., 2012). There have been no phase II and III clinical trials 

that have incorporated biomarkers that accurately measure hypoxia in patients. This would 

explain why some patients in these clinical trials had little benefit for HAPs as their tumours 

would have had very few areas of hypoxia (F. W. Hunter, Wouters, & Wilson, 2016). 

Secondly, not only is the efficacy of HAPs against cancer dependent on the levels of 

oxygen in hypoxic regions to activate the drug, but also the level of resistance of the cancer to 

the cytotoxic effector compound. Defining predictive biomarkers for HAPs in order to predict 

the efficacy of their effector drugs against tumours will determine their potential in the 

treatment of cancer. The dosing schedule of HAPs in combination with conventional 

chemotherapeutic agents will also be a contributing factor in determining tumour response 

while reducing side effects and allowing these drugs to complement each other (Lindsay, 

Garvey, Mumenthaler, & Foo, 2016).  
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Therefore biomarkers that can accurately detect and quantify the hypoxic tumour 

microenvironment as well as determining the tumour resistance against the effector compound 

are needed to determine the potential of HAPs in the treatment of cancer, including cancer in 

the bone. 

Taken together, despite the lack of success of HAPs in phase III clinical trials, HAP 

research and development has produced a wealth of knowledge, understanding and expertise 

leading to novel approaches in targeting hypoxia in the tumour and bone microenvironment 

which will implement the principles and experience gained from over 30 years of developing 

HAPs and incorporate them into the design of future preclinical and clinical studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



98 

 

 

 

 

 

 

 

 

 

BIBLIOGRAPHY 

 

 

 

 

 

 

 

 

 

 

 



99 

References 

 

Akiyama, T., Dass, C. R., & Choong, P. F. (2008). Novel therapeutic strategy for osteosarcoma targeting 

osteoclast differentiation, bone-resorbing activity, and apoptosis pathway. Mol Cancer Ther, 7(11), 

3461-3469. doi:10.1158/1535-7163.MCT-08-0530 

Alama, A., Orengo, A. M., Ferrini, S., & Gangemi, R. (2012). Targeting cancer-initiating cell drug-resistance: a 

roadmap to a new-generation of cancer therapies? Drug Discov Today, 17(9-10), 435-442. 

doi:10.1016/j.drudis.2011.02.005 

Albertella, M. R., Loadman, P. M., Jones, P. H., Phillips, R. M., Rarnpling, R., Burnet, N., Twelves, C. J. 

(2008). Hypoxia-selective targeting by the bioreductive prodrug AQ4N in patients with solid tumors: 

Results of a phase I study. Clinical Cancer Research, 14(4), 1096-1104. doi:10.1158/1078-0432.ccr-07-

4020 

Alexiou, G. A., Tsamis, K. I., & Kyritsis, A. P. (2015). Targeting Tumor Necrosis Factor-Related Apoptosis-

Inducing Ligand (TRAIL): A Promising Therapeutic Strategy in Gliomas. Semin Pediatr Neurol, 22(1), 

35-39. doi:10.1016/j.spen.2014.12.002 

Amarante-Mendes, G. P., & Griffith, T. S. (2015). Therapeutic applications of TRAIL receptor agonists in 

cancer and beyond. Pharmacol Ther, 155, 117-131. doi:10.1016/j.pharmthera.2015.09.001 

Arnett, T. R. (2010). Acidosis, hypoxia and bone. Arch Biochem Biophys, 503(1), 103-109. 

doi:10.1016/j.abb.2010.07.021 

Arteaga, C. L., Sliwkowski, M. X., Osborne, C. K., Perez, E. A., Puglisi, F., & Gianni, L. (2012). Treatment of 

HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol, 9(1), 16-32. 

doi:10.1038/nrclinonc.2011.177 

Ashkenazi, A. (2008a). Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nature 

Reviews Drug Discovery, 7(12), 1001-1012. doi:10.1038/nrd2637 

Ashkenazi, A. (2008b). Targeting the extrinsic apoptosis pathway in cancer. Cytokine & growth factor reviews, 

19(3-4), 325-331. doi:10.1016/j.cytogfr.2008.04.001 

Ashkenazi, A. (2015). Targeting the extrinsic apoptotic pathway in cancer: lessons learned and future directions. 

Journal of Clinical Investigation, 125(2), 487-489. doi:10.1172/jci80420 

Ashkenazi, A., & Herbst, R. S. (2008). To kill a tumor cell: the potential of proapoptotic receptor agonists. 

Journal of Clinical Investigation, 118(6), 1979-1990. doi:10.1172/jci343s9 

Ashkenazi, A., Holland, P., & Eckhardt, S. G. (2008). Ligand-based targeting of apoptosis in cancer: The 

potential of recombinant human apoptosis ligand 2/tumor necrosis factor-related apoptosis-inducing 

ligand (rhApo2L/TRAIL). Journal of Clinical Oncology, 26(21), 3621-3630. 

doi:10.1200/jco.2007.15.7198 

Ashkenazi, A., Pai, R. C., Fong, S., Leung, S., Lawrence, D. A., Masters, S. A., Schwall, R. H. (1999). Safety 

and antitumor activity of recombinant soluble Apo2 ligand. Journal of Clinical Investigation, 104(2), 

155-162. doi:10.1172/jci6926 

Asosingh, K., De Raeve, H., de Ridder, M., Storme, G. A., Willems, A., Van Riet, I., Vanderkerken, K. (2005). 

Role of the hypoxic bone marrow microenvironment in 5T2MM murine myeloma tumor progression. 

Haematologica-the Hematology Journal, 90(6), 810-817.  

Badar, T., Handisides, D. R., Benito, J. M., Richie, M. A., Borthakur, G., Jabbour, E., Konopleva, M. (2016). 

Phase I study of evofosfamide, an investigational hypoxia-activated prodrug, in patients with advanced 

leukemia. Am J Hematol, 91(8), 800-805. doi:10.1002/ajh.24415 

Beaumont, T., & Leadbeater, M. (2011). Treatment and care of patients with metastatic breast cancer. Nurs 

Stand, 25(40), 49-56.  

Benito, J., Ramirez, M. S., Millward, N. Z., Velez, J., Harutyunyan, K. G., Lu, H., Konopleva, M. (2015). 

Hypoxia-Activated Prodrug TH-302 Targets Hypoxic Bone Marrow Niches in Preclinical Leukemia 

Models. Clin Cancer Res. doi:10.1158/1078-0432.CCR-14-3378 

Bennewith, K. L., & Dedhar, S. (2011). Targeting hypoxic tumour cells to overcome metastasis. BMC Cancer, 

11, 504. doi:10.1186/1471-2407-11-504 

Bonewald, L. F. (2011). The Amazing Osteocyte. Journal of Bone and Mineral Research, 26(2), 229-238. 

doi:10.1002/jbmr.320 

Bonn, D. (2000). Why do hypoxic cells behave badly? The lancet oncology, 1, 202-202. doi:10.1016/s1470-

2045(00)00143-1 

Borad, M. J., Reddy, S. G., Bahary, N., Uronis, H. E., Sigal, D., Cohn, A. L., Ryan, D. P. (2014). Randomized 

Phase II Trial of Gemcitabine Plus TH-302 Versus Gemcitabine in Patients With Advanced Pancreatic 

Cancer. J Clin Oncol. doi:10.1200/jco.2014.55.7504 

Botter, S. M., Neri, D., & Fuchs, B. (2014). Recent advances in osteosarcoma. Curr Opin Pharmacol, 16, 15-23. 

doi:10.1016/j.coph.2014.02.002 



100 

Bouralexis, S., Findlay, D. M., Atkins, G. J., Labrinidis, A., Hay, S., & Evdokiou, A. (2003). Progressive 

resistance of BTK-143 osteosarcoma cells to Apo2L/TRAIL-induced apoptosis is mediated by 

acquisition of DcR2/TRAIL-R4 expression: resensitisation with chemotherapy. British Journal of 

Cancer, 89(1), 206-214. doi:10.1038/sj.bjc.6601021 

Brahimi-Horn, M. C., Chiche, J., & Pouyssegur, J. (2007). Hypoxia and cancer. Journal of Molecular Medicine-

Jmm, 85(12), 1301-1307. doi:10.1007/s00109-007-0281-3 

Brandao-Burch, A., Utting, J. C., Orriss, I. R., & Arnett, T. R. (2005). Acidosis inhibits bone formation by 

osteoblasts in vitro by preventing mineralization. Calcified Tissue International, 77(3), 167-174. 

doi:10.1007/s00223-004-0285-8 

Campanacci, M. (1999). Bone and Soft Tissue Tumors (2nd ed.). Padova: Piccin Nuova Libraria. 

Carreau, A., El Hafny-Rahbi, B., Matejuk, A., Grillon, C., & Kieda, C. (2011). Why is the partial oxygen 

pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med, 15(6), 

1239-1253. doi:10.1111/j.1582-4934.2011.01258.x 

Chan, H. S., Grogan, T. M., Haddad, G., DeBoer, G., & Ling, V. (1997). P-glycoprotein expression: critical 

determinant in the response to osteosarcoma chemotherapy. J Natl Cancer Inst, 89(22), 1706-1715.  

Chawla, S. P., Cranmer, L. D., Van Tine, B. A., Reed, D. R., Okuno, S. H., Butrynski, J. E., Ganjoo, K. N. 

(2014). Phase II study of the safety and antitumor activity of the hypoxia-activated prodrug TH-302 in 

combination with doxorubicin in patients with advanced soft tissue sarcoma. J Clin Oncol, 32(29), 

3299-3306. doi:10.1200/JCO.2013.54.3660 

Chirgwin, J. M., & Guise, T. A. (2000). Molecular mechanisms of tumor-bone interactions in osteolytic 

metastases. Crit Rev Eukaryot Gene Expr, 10(2), 159-178.  

Chou, A. J., & Gorlick, R. (2006). Chemotherapy resistance in osteosarcoma: current challenges and future 

directions. Expert review of anticancer therapy, 6(7), 1075-1085. doi:10.1586/14737140.6.7.1075 

Clarke, B. (2008). Normal bone anatomy and physiology. Clin J Am Soc Nephrol, 3 Suppl 3, S131-139. 

doi:10.2215/CJN.04151206 

Coleman, R. E. (1997). Skeletal complications of malignancy. Cancer, 80(8), 1588-1594. 

doi:10.1002/(sici)1097-0142(19971015)80:8+<1588::aid-cncr9>3.3.co;2-z 

Coleman, R. E. (2006). The role of bone markers in metastatic bone disease. Cancer Treat Rev, 32 Suppl 1, 1-2.  

Coleman, R. E. (2012). Prevention and treatment of bone metastases. Nature Reviews Clinical Oncology, 9(2), 

76-78. doi:10.1038/nrclinonc.2011.198 

DeSantis, C. E., Bray, F., Ferlay, J., Lortet-Tieulent, J., Anderson, B. O., & Jemal, A. (2015). International 

Variation in Female Breast Cancer Incidence and Mortality Rates. Cancer Epidemiology Biomarkers & 

Prevention, 24(10), 1495-1506. doi:10.1158/1055-9965.epi-15-0535 

DeSantis, C. E., Lin, C. C., Mariotto, A. B., Siegel, R. L., Stein, K. D., Kramer, J. L., Jemal, A. (2014). Cancer 

Treatment and Survivorship Statistics, 2014. Ca-a Cancer Journal for Clinicians, 64(4), 252-271. 

doi:10.3322/caac.21235 

Dhani, N. C., Serra, S., Pintilie, M., Schwock, J., Xu, J., Gallinger, S., Hedley, D. W. (2015). Analysis of the 

intra- and intertumoral heterogeneity of hypoxia in pancreatic cancer patients receiving the 

nitroimidazole tracer pimonidazole. British Journal of Cancer, 113(6), 864-871. 

doi:10.1038/bjc.2015.284 

Dine, J. L., O'Sullivan, C. C., Voeller, D., Greer, Y. E., Chavez, K. J., Conway, C. M., Lipkowitz, S. (2016). The 

TRAIL receptor agonist drozitumab targets basal B triple-negative breast cancer cells that express 

vimentin and Axl. Breast Cancer Res Treat, 155(2), 235-251. doi:10.1007/s10549-015-3673-z 

Fadeel, B., Orrenius, S., & Zhivotovsky, B. (1999). Apoptosis in human disease: A new skin for the old 

ceremony? Biochem Biophys Res Commun, 266(3), 699-717. doi:10.1006/bbrc.1999.1888 

Ferlay, J., Shin, H. R., Bray, F., Forman, D., Mathers, C., & Parkin, D. M. (2010). Estimates of worldwide 

burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer, 127(12), 2893-2917. doi:10.1002/ijc.25516 

[doi] 

Ferrari, S., Balladelli, A., Palmerini, E., & Vanel, D. (2013). Imaging in bone sarcomas. The chemotherapist's 

point of view. Eur J Radiol, 82(12), 2076-2082. doi:10.1016/j.ejrad.2011.11.028 

Ferrari, S., Ruggieri, P., Cefalo, G., Tamburini, A., Capanna, R., Fagioli, F., Bacci, G. (2012). Neoadjuvant 

Chemotherapy With Methotrexate, Cisplatin, and Doxorubicin With or Without Ifosfamide in 

Nonmetastatic Osteosarcoma of the Extremity: An Italian Sarcoma Group Trial ISG/OS-1. Journal of 

Clinical Oncology, 30(17), 2112-2118. doi:10.1200/jco.2011.38.4420 

Ganz, P. A., & Stanton, A. L. (2015). Living with Metastatic Breast Cancer. In P. A. Ganz (Ed.), Improving 

Outcomes for Breast Cancer Survivors: Perspectives on Research Challenges and Opportunities (Vol. 

862, pp. 243-254). 

Goltzman, D. (1997). Mechanisms of the development of osteoblastic metastases. Cancer, 80(8 Suppl), 1581-

1587.  

Goltzman, D. (2001). Osteolysis and cancer. J Clin Invest, 107(10), 1219-1220.  



101 

Goltzman, D., Karaplis, A. C., Kremer, R., & Rabbani, S. A. (2000). Molecular basis of the spectrum of skeletal 

complications of neoplasia. Cancer, 88(12 Suppl), 2903-2908.  

Gonzalvez, F., & Ashkenazi, A. (2010). New insights into apoptosis signaling by Apo2L/TRAIL. Oncogene, 

29(34), 4752-4765. doi:10.1038/onc.2010.221 

Graeber, T. G., Osmanian, C., Jacks, T., Housman, D. E., Koch, C. J., Lowe, S. W., & Giaccia, A. J. (1996). 

Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature, 

379(6560), 88-91. doi:10.1038/379088a0 

Gralow, J. R., Biermann, J. S., Farooki, A., Fornier, M. N., Gagel, R. F., Kumar, R. N., Van Poznak, C. H. 

(2009). NCCN Task Force Report: Bone Health in Cancer Care. Journal of the National 

Comprehensive Cancer Network, 7, S1-S32.  

Gu, Y., Patterson, A. V., Atwell, G. J., Chernikova, S. B., Brown, J. M., Thompson, L. H., & Wilson, W. R. 

(2009). Roles of DNA repair and reductase activity in the cytotoxicity of the hypoxia-activated 

dinitrobenzamide mustard PR-104A. Mol Cancer Ther, 8(6), 1714-1723. doi:10.1158/1535-7163.mct-

08-1209 

Guarneri, V., & Conte, P. F. (2004). The curability of breast cancer and the treatment of advanced disease. Eur J 

Nucl Med Mol Imaging, 31 Suppl 1, S149-161. doi:10.1007/s00259-004-1538-5 

Guise, C. P., Abbattista, M. R., Tipparaju, S. R., Lambie, N. K., Su, J., Li, D., Patterson, A. V. (2012). Diflavin 

Oxidoreductases Activate the Bioreductive Prodrug PR-104A under Hypoxia. Molecular 

Pharmacology, 81(1), 31-40. doi:10.1124/mol.111.073759 

Guise, C. P., Mowday, A. M., Ashoorzadeh, A., Yuan, R., Lin, W. H., Wu, D. H., Ding, K. (2013). Bioreductive 

prodrugs as cancer therapeutics: targeting tumor hypoxia. Chin J Cancer. doi:10.5732/cjc.012.10285 

Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57-70. doi:10.1016/s0092-

8674(00)81683-9 

Herbst, R. S., Eckhardt, S. G., Kurzrock, R., Ebbinghaus, S., O'Dwyer, P. J., Gordon, M. S., Mendelson, D. S. 

(2010). Phase I Dose-Escalation Study of Recombinant Human Apo2L/TRAIL, a Dual Proapoptotic 

Receptor Agonist, in Patients With Advanced Cancer. Journal of Clinical Oncology, 28(17), 2839-

2846. doi:10.1200/jco.2009.25.1991 

Hery, C., Ferlay, J., Boniol, M., & Autier, P. (2008). Quantification of changes in breast cancer incidence and 

mortality since 1990 in 35 countries with Caucasian-majority populations. Annals of Oncology, 19(6), 

1187-1194. doi:10.1093/annonc/mdn025 

Hideshima, T., Mitsiades, C., Tonon, G., Richardson, P. G., & Anderson, K. C. (2007). Understanding multiple 

myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer, 7(8), 

585-598. doi:10.1038/nrc2189 

Holland, P. M. (2013). Targeting Apo2L/TRAIL receptors by soluble Apo2L/TRAIL. Cancer Letters, 332(2), 

156-162. doi:10.1016/j.canlet.2010.11.001 

Holland, P. M. (2014). Death receptor agonist therapies for cancer, which is the right TRAIL? Cytokine & 

growth factor reviews, 25(2), 185-193. doi:10.1016/j.cytogfr.2013.12.009 

Hu, J., Handisides, D. R., Van Valckenborgh, E., De Raeve, H., Menu, E., Broek, I. V., Vanderkerken, K. 

(2010). Targeting the multiple myeloma hypoxic niche with TH-302, a hypoxia-activated prodrug. 

Blood, 116(9), 1524-1527. doi:10.1182/blood-2010-02-269126 

Hu, J., Van Valckenborgh, E., Xu, D., Menu, E., De Raeve, H., De Bryune, E., Vanderkerken, K. (2013). 

Synergistic induction of apoptosis in multiple myeloma cells by bortezomib and hypoxia-activated 

prodrug TH-302, in vivo and in vitro. Mol Cancer Ther, 12(9), 1763-1773. doi:10.1158/1535-

7163.MCT-13-0123 

Hunter, F. W., Wang, J., Patel, R., Hsu, H.-L., Hickey, A. J. R., Hay, M. P., & Wilson, W. R. (2012). 

Homologous recombination repair-dependent cytotoxicity of the benzotriazine di-N-oxide CEN-209: 

Comparison with other hypoxia-activated prodrugs. Biochemical Pharmacology, 83(5), 574-585. 

doi:http://dx.doi.org/10.1016/j.bcp.2011.12.005 

Hunter, F. W., Wouters, B. G., & Wilson, W. R. (2016). Hypoxia-activated prodrugs: paths forward in the era of 

personalised medicine. Br J Cancer, 114(10), 1071-1077. doi:10.1038/bjc.2016.79 

Ignatiadis, M., & Sotiriou, C. (2013). Luminal breast cancer: from biology to treatment. Nature Reviews Clinical 

Oncology, 10(9), 494-506. doi:10.1038/nrclinonc.2013.124 

Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA 

Cancer J Clin, 61(2), 69-90. doi:10.3322/caac.20107 

Jemal, A., Center, M. M., DeSantis, C., & Ward, E. M. (2010). Global Patterns of Cancer Incidence and 

Mortality Rates and Trends. Cancer Epidemiology Biomarkers & Prevention, 19(8), 1893-1907. 

doi:10.1158/1055-9965.epi-10-0437 

 

 



102 

Jian-Xin Duan, † Hailong Jiao,† Jacob Kaizerman,† Timothy Stanton,† James W. Evans,† Leslie Lan,† Gustavo 

Lorente,†, Monica Banica, D. J., † Jinwei Wang,‡ Huaiyu Ma,‡ Xiaoming Li,‡ Zhijian Yang,‡ Robert 

M. Hoffman,‡, & W. Steve Ammons, C. P. H., † and Mark Matteucci*,†. (2007). Potent and Highly 

Selective Hypoxia-Activated Achiral Phosphoramidate Mustards as Anticancer Drugs. J. Med. Chem, 

51, 2412–2420.  

Jin-Peng He, Y. H., Xiao-Lin Wang, Xiao-Jin Yang, Jing-Fan Shao, Feng-, & Jin Guo, J.-X. F. (2014). Review 

of the Molecular Pathogenesis of Osteosarcoma. Asian Pacific Journal of Cancer Prevention, 15, 5967-

5976. doi:10.7314/apjcp.2014.15.15.5967 

Kager, L., Zoubek, A., Kastner, U., Kempf-Bielack, B., Potratz, J., Kotz, R., Bielack, S. (2006). Skip metastases 

in osteosarcoma: Experience of the cooperative osteosarcoma study group. Journal of Clinical 

Oncology, 24(10), 1535-1541. doi:10.1200/jco.2005.04.2978 

Kaisa R Luoto1†, R. K., 2† and Robert G Bristow1. (2013). Tumor hypoxia as a driving force in genetic 

instability. GENOME INTEGRITY.  

Keyer, K., & Imlay, J. A. (1996). Superoxide accelerates DNA damage by elevating free-iron levels. 

Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13635-

13640. doi:10.1073/pnas.93.24.13635 

Kindler, H. L., Richards, D. A., Garbo, L. E., Garon, E. B., Stephenson, J. J., Jr., Rocha-Lima, C. M., Fuchs, C. 

S. (2012). A randomized, placebo-controlled phase 2 study of ganitumab (AMG 479) or conatumumab 

(AMG 655) in combination with gemcitabine in patients with metastatic pancreatic cancer. Annals of 

Oncology, 23(11), 2834-2842. doi:10.1093/annonc/mds142 

Kingsley, L. A., Fournier, P. G., Chirgwin, J. M., & Guise, T. A. (2007). Molecular biology of bone metastasis. 

Mol Cancer Ther, 6(10), 2609-2617. doi:10.1158/1535-7163.MCT-07-0234 

Kohli, S. S., & Kohli, V. S. (2011). Role of RANKL-RANK/osteoprotegerin molecular complex in bone 

remodeling and its immunopathologic implications. Indian journal of endocrinology and metabolism, 

15(3), 175-181. doi:10.4103/2230-8210.83401 

Labrinidis, A., Diamond, P., Martin, S., Hay, S., Liapis, V., Zinonos, I., Evdokiou, A. (2009). Apo2L/TRAIL 

Inhibits Tumor Growth and Bone Destruction in a Murine Model of Multiple Myeloma. Clinical 

Cancer Research, 15(6), 1998-2009. doi:10.1158/1078-0432.ccr-08-2444 

Labrinidis, A., Liapis, V., Thai, L. M., Atkins, G. J., Vincent, C., Hay, S., Evdokiou, A. (2008). Does 

Apo2L/TRAIL play any physiologic role in osteoclastogenesis? Blood, 111(11), 5411-5412. 

doi:10.1182/blood-2008-03-144261 

Lacey, D. L., Timms, E., Tan, H. L., Kelley, M. J., Dunstan, C. R., Burgess, T., Boyle, W. J. (1998). 

Osteoprotegerin (OPG) ligand is a cytokine that regulates osteoclast differentiation and activation. 

Journal of Interferon and Cytokine Research, 18(5), A38-A38.  

Lemke, J., von Karstedt, S., Zinngrebe, J., & Walczak, H. (2014). Getting TRAIL back on track for cancer 

therapy. Cell Death and Differentiation, 21(9), 1350-1364. doi:10.1038/cdd.2014.81 

Liapis, V., Labrinidis, A., Zinonos, I., Hay, S., Ponomarev, V., Panagopoulos, V., Evdokiou, A. (2015). 

Hypoxia-activated pro-drug TH-302 exhibits potent tumor suppressive activity and cooperates with 

chemotherapy against osteosarcoma. Cancer Lett, 357(1), 160-169. doi:10.1016/j.canlet.2014.11.020 

Liapis, V., Zinonos, I., Labrinidis, A., Hay, S., Ponomarev, V., Panagopoulos, V., Evdokiou, A. (2016). 

Anticancer efficacy of the hypoxia-activated prodrug evofosfamide (TH-302) in osteolytic breast cancer 

murine models. Cancer Med, 5(3), 534-545. doi:10.1002/cam4.599 

Lindsay, D., Garvey, C. M., Mumenthaler, S. M., & Foo, J. (2016). Leveraging Hypoxia-Activated Prodrugs to 

Prevent Drug Resistance in Solid Tumors. PLoS Comput Biol, 12(8), e1005077. 

doi:10.1371/journal.pcbi.1005077 

Link, M. P., Goorin, A. M., Horowitz, M., Meyer, W. H., Belasco, J., Baker, A., Shuster, J. (1991). Adjuvant 

chemotherapy of high-grade osteosarcoma of the extremity. Updated results of the Multi-Institutional 

Osteosarcoma Study. Clin Orthop Relat Res(270), 8-14.  

Ljungkvist, A. S. E., Bussink, J., Kaanders, J. H. A. M., & van der Kogel, A. J. (2007). Dynamics of tumor 

hypoxia measured with bioreductive hypoxic cell markers. Radiation Research, 167(2), 127-145. 

doi:10.1667/rr0719.1 

Loadman, P. M., Swaine, D. J., Bibby, M. C., Welham, K. J., & Patterson, L. H. (2001). A preclinical 

pharmacokinetic study of the bioreductive drug AQ4N. Drug Metabolism and Disposition, 29(4), 422-

426.  

Lustberg, M. B., Reinbolt, R. E., & Shapiro, C. L. (2012). Bone Health in Adult Cancer Survivorship. Journal of 

Clinical Oncology, 30(30), 3665-3674. doi:10.1200/jco.2012.42.2097 

Manley, E., Jr., & Waxman, D. J. (2013). Impact of tumor blood flow modulation on tumor sensitivity to the 

bioreductive drug banoxantrone. J Pharmacol Exp Ther, 344(2), 368-377. doi:10.1124/jpet.112.200089 

Maxwell, P. H. (2004). HIF-1's relationship to oxygen - Simple yet sophisticated. Cell Cycle, 3(2), 156-159.  



103 

McKeage, M. J., Jameson, M. B., Ramanathan, R. K., Rajendran, J., Gu, Y., Wilson, W. R., Tchekmedyian, N. 

S. (2012). PR-104 a bioreductive pre-prodrug combined with gemcitabine or docetaxel in a phase Ib 

study of patients with advanced solid tumours. BMC Cancer, 12. doi:10.1186/1471-2407-12-496 

Meng, F., Evans, J. W., Bhupathi, D., Banica, M., Lan, L., Lorente, G., Hart, C. P. (2012). Molecular and 

Cellular Pharmacology of the Hypoxia-Activated Prodrug TH-302. Mol Cancer Ther, 11(3), 740-751. 

doi:10.1158/1535-7163.mct-11-0634 

Metin Seker, M., Yucel, B., Seker, A., Ay Eren, A., Bahar, S., Celasun, G., Bahceci, A. (2014). Treatment and 

prognosis of breast cancer in elderly: Different from young patients? European Geriatric Medicine, 

5(4), 261-264. doi:10.1016/j.eurger.2014.02.004 

Micheau, O., Shirley, S., & Dufour, F. (2013). Death receptors as targets in cancer. British Journal of 

Pharmacology, 169(8), 1723-1744. doi:10.1111/bph.12238 

Miharada, K., Karlsson, G., Rehn, M., Rorby, E., Siva, K., Cammenga, J., & Karlsson, S. (2011). Cripto 

regulates hematopoietic stem cells as a hypoxic-niche-related factor through cell surface receptor 

GRP78. Cell Stem Cell, 9(4), 330-344. doi:10.1016/j.stem.2011.07.016 

Miller, S. C., de Saint-Georges, L., Bowman, B. M., & Jee, W. S. (1989). Bone lining cells: structure and 

function. Scanning Microsc, 3(3), 953-960; discussion 960-951.  

Milosevic, M., Warde, P., Menard, C., Chung, P., Toi, A., Ishkanian, A., Bristow, R. (2012). Tumor Hypoxia 

Predicts Biochemical Failure following Radiotherapy for Clinically Localized Prostate Cancer. Clinical 

Cancer Research, 18(7), 2108-2114. doi:10.1158/1078-0432.ccr-11-2711 

Moulder, S., & Hortobagyi, G. N. (2008). Advances in the treatment of breast cancer. Clinical Pharmacology & 

Therapeutics, 83(1), 26-36. doi:10.1038/sj.clpt.6100449 

Mundy, G. R. (2002a). Metastasis to bone: Causes, consequences and therapeutic opportunities. Nature Reviews 

Cancer, 2(8), 584-593. doi:10.1038/nrc867 

Mundy, G. R. (2002b). Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer, 

2(8), 584-593. doi:10.1038/nrc867 [doi] nrc867 [pii] 

Ooi, L. L., Zheng, Y., Stalgis-Bilinski, K., & Dunstan, C. R. (2011). The bone remodeling environment is a 

factor in breast cancer bone metastasis. Bone, 48(1), 66-70. doi:10.1016/j.bone.2010.05.007 

Ottaviani, G., & Jaffe, N. (2009). The epidemiology of osteosarcoma. Cancer Treat Res, 152, 3-13. 

doi:10.1007/978-1-4419-0284-9_1 

Pan, G. H., Ni, J., Yu, G. L., Wei, Y. F., & Dixit, V. M. (1998). TRUNDD, a new member of the TRAIL 

receptor family that antagonizes TRAIL signalling. Febs Letters, 424(1-2), 41-45. doi:10.1016/s0014-

5793(98)00135-5 

Papadopoulos, K. P., Goel, S., Beeram, M., Wong, A., Desai, K., Haigentz, M., Sarantopoulos, J. (2008). A 

Phase 1 Open-Label, Accelerated Dose-Escalation Study of the Hypoxia-Activated Prodrug AQ4N in 

Patients with Advanced Malignancies. Clinical Cancer Research, 14(21), 7110-7115. 

doi:10.1158/1078-0432.ccr-08-0483 

Picarda, G., Trichet, V., Teletchea, S., Heymann, D., & Redini, F. (2012). TRAIL receptor signaling and 

therapeutic option in bone tumors: the trap of the bone microenvironment. American Journal of Cancer 

Research, 2(1), 45-64. 

Pringle, J. A. S. (1999). Bone-forming neoplasms arising within bone. In T. R. Helliwell (Ed.), Pathology of 

bone and joint neoplasms. Philadelphia: Saunders. 

Rauner, M., Stein, N., & Hofbauer, L. C. (2012). Basics of Bone Biology. 

Robak, T. (2013). Emerging monoclonal antibodies and related agents for the treatment of chronic lymphocytic 

leukemia. Future Oncology, 9(1), 69-91. doi:10.2217/fon.12.157 

Russo, S., & Saif, M. W. (2016). 2016 Gastrointestinal Cancers Symposium: update on pancreatic cancer. Ann 

Gastroenterol, 29(2), 238-240. doi:10.20524/aog.2016.0024 

Ryan, D. P., Hong, T. S., & Bardeesy, N. (2014). Pancreatic adenocarcinoma. N Engl J Med, 371(11), 1039-

1049. doi:10.1056/NEJMra1404198 

Saeter, G., Alvegard, T. A., Elomaa, I., Wiebe, T., Bjork, O., Strander, H., & Solheim, O. P. (1997). 

Chemotherapy for osteosarcoma and Ewing's sarcoma. Acta Orthopaedica Scandinavica, 68, 120-125.  

Semenza, G. L. (2004). Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology (Bethesda), 

19, 176-182. doi:10.1152/physiol.00001.2004 

Siegel, R., Ward, E., Brawley, O., & Jemal, A. (2011). Cancer statistics, 2011: the impact of eliminating 

socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin, 61(4), 212-236. 

doi:caac.20121 [pii] 10.3322/caac.20121 [doi] 

Simonet, W. S., Lacey, D. L., Dunstan, C. R., Kelley, M., Chang, M. S., Luthy, R., Boyle, W. J. (1997). 

Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell, 89(2), 309-

319. doi:10.1016/s0092-8674(00)80209-3 

 



104 

Soria, J.-C., Smit, E., Khayat, D., Besse, B., Yang, X., Hsu, C.-P., Blackhall, F. (2010). Phase 1b Study of 

Dulanermin (recombinant human Apo2L/TRAIL) in Combination With Paclitaxel, Carboplatin, and 

Bevacizumab in Patients With Advanced Non-Squamous Non-Small-Cell Lung Cancer. Journal of 

Clinical Oncology, 28(9), 1527-1533. doi:10.1200/jco.2009.25.4847 

Spencer, J. A., Ferraro, F., Roussakis, E., Klein, A., Wu, J., Runnels, J. M., Lin, C. P. (2014). Direct 

measurement of local oxygen concentration in the bone marrow of live animals. Nature, 508(7495), 

269-273. doi:10.1038/nature13034 

Stephen V Liu, C. A., Christina Brzezniak, David E Gerber, Barbara Gitlitz, Leora Horn, Benjamin Solomon, 

Tom Stinchcombe, Liza Villaruz, Howard West, Ian Anderson, Thomas Wilson, Vanessa Huels,, & 

Stew Kroll, T. P., D Ross Camidge. (2016). A Phase 2 Study (NCT02454842) of Tarloxotinib Bromide 

(TH-4000) in Patients with EGFR Mutant, T790M-Negative, Advanced NSCLC Progressing on an 

EGFR TKI.  

Takeda, K., Yamaguchi, N., Akiba, H., Kojima, Y., Hayakawa, Y., Tanner, J. E., Smyth, M. J. (2004). Induction 

of tumor-specific T cell immunity by anti-DR5 antibody therapy. Journal of Experimental Medicine, 

199(4), 437-448. doi:10.1084/jem.20031457 

Tang, N., Song, W. X., Luo, J. Y., Haydon, R. C., & He, T. C. (2008). Osteosarcoma development and stem cell 

differentiation. Clinical Orthopaedics and Related Research, 466(9), 2114-2130. doi:10.1007/s11999-

008-0335-z 

Taube, T., Elomaa, I., Blomqvist, C., Beneton, M. N., & Kanis, J. A. (1994). Histomorphometric evidence for 

osteoclast-mediated bone resorption in metastatic breast cancer. Bone, 15(2), 161-166.  

Thai, L., Labrinidis, A., Hay, S., Liapis, V., Bouralexis, S., Coventry, B. J., Evdokiou, A. (2006). Apo2L/tumor 

necrosis factor-related apoptosis-inducing ligand prevents breast cancer-induced bone destruction in a 

mouse. Cancer Research, 66(10), 5363-5370. doi:10.1158/0008-5472.can-05-4386 

Torok, N. J., & Gores, G. J. (2004). Apoptosis of biliary epithelial cells. Pathophysiology of Biliary Epithelia, 

219-226.  

Wilson, N. S., Yang, B., Yang, A., Loeser, S., Marsters, S., Lawrence, D., Ashkenazi, A. (2011). An Fc gamma 

Receptor-Dependent Mechanism Drives Antibody-Mediated Target-Receptor Signaling in Cancer 

Cells. Cancer Cell, 19(1), 101-113. doi:10.1016/j.ccr.2010.11.012 

Wojtkowiak, J. W., Cornnell, H. C., Matsumoto, S., Saito, K., Takakusagi, Y., Dutta, P., Gillies, R. J. (2015). 

Pyruvate sensitizes pancreatic tumors to hypoxia-activated prodrug TH-302. Cancer Metab, 3(1), 2. 

doi:10.1186/s40170-014-0026-z 

Wu, L., Wu, J., Zhou, Y., Tang, X., Du, Y., & Hu, Y. (2012). Enhanced antitumor efficacy of cisplatin by 

tirapazamine-transferrin conjugate. Int J Pharm, 431(1-2), 190-196. doi:10.1016/j.ijpharm.2012.04.032 

Yang, J., & Zhang, W. (2013). New molecular insights into osteosarcoma targeted therapy. Current Opinion in 

Oncology, 25(4), 398-406. doi:10.1097/CCO.0b013e3283622c1b 

Younes, A., Vose, J. M., Zelenetz, A. D., Smith, M. R., Burris, H. A., Ansell, S. M., Czuczman, M. S. (2010). A 

Phase 1b/2 trial of mapatumumab in patients with relapsed/refractory non-Hodgkin's lymphoma. British 

Journal of Cancer, 103(12), 1783-1787. doi:10.1038/sj.bjc.6605987 

Zeng, G. (2016). Threshold (THLD): Evofosfamide May Be Effective in Some Pancreatic Cancer Patients [Press 

release] 

Zinonos, I., Labrinidis, A., Lee, M., Liapis, V., Hay, S., Ponomarev, V., Evdokiou, A. (2009). Apomab, a fully 

human agonistic antibody to DR5, exhibits potent antitumor activity against primary and metastatic 

breast cancer. Mol Cancer Ther, 8(10), 2969-2980. doi:10.1158/1535-7163.MCT-09-0745 

 




