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Doctor of Philosophy

An Integrative Analysis of the Human Placental Transcriptome

by Sam Buckberry

Pregnancy outcome is inextricably linked to placental development, which is

strictly regulated both temporally and spatially by mechanisms that are only

partially understood. Although the placenta is absolutely indispensable for fe-

tal development in utero, it remains the least understood human tissue. Although

the placenta is a shared organ between the mother and fetus, it is of embryonic

origin, and therefore its development is largely regulated by the fetal genome.

This overall goal of this research was to investigate three key aspects of human

placental gene regulation: (1) The effect of genomic imprinting on gene regulation,

(2) the differences in placental gene expression between the sexes, and (3) the co-

expression relationships that exist between genes on a transcriptome scale.

Firstly, this research identified a window of epigenetic imprinting plasticity for the

long non-coding RNA H19, which is heavily implicated in placental development

and function. These results suggested that variation in H19 imprinting may con-

tribute to early programming of placental phenotype and highlighted the need for

quantitative and robust methodologies to further elucidate the role of imprinted

genes in normal and pathological placental development.

Secondly, by conducting a transcriptome-scale meta-analysis of sex-biased gene

expression, this research revealed that 140 genes are differentially expressed be-

tween male and female placentae. A majority of these genes are autosomal, many

of which are involved in high-level regulatory processes such as gene transcrip-

tion, cell growth and proliferation and hormonal function. Of particular interest,

all genes in the LHB-CGB cluster were expressed more highly in female placen-

tas, which includes genes involved in placental development, the maintenance of



pregnancy and maternal immune tolerance of the conceptus. These results demon-

strated that sex-biased gene expression in the normal human placenta occurs across

the genome and includes genes that are central to growth, development and the

maintenance of pregnancy.

Thirdly, by undertaking a comprehensive analysis of human placental gene co-

expression using RNA sequencing and the integration of five human and one mouse

transcriptome dataset, this research identified clusters of correlated genes, whose

patterns of co-expression are highly preserved across human gestation and between

human and mouse, subsequently revealing highly conserved molecular networks

involved in placental development. Furthermore, by reducing the complexity of the

placental transcriptome by summarizing co-expressed genes, this work identified a

group of co-expressed genes implicated in preeclampsia and also outlines a novel

method for identifying for non-invasive biomarkers of placental development.

In summary, each aspect of this PhD research has provided new insights into how

gene expression is regulated in the human placenta and has revealed previously

unappreciated aspects of the placental transcriptional landscape.
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Chapter 1

Introduction

1.1 The Placenta Forms the Foundation of De-

velopment in utero

Placental development in humans begins shortly after an embryo implants into the

lining of the uterus. Here, placental cells begin their invasion and colonisation of

the uterine vessels and form finger-like projections known as villi, which provide

maximum contact area with the maternal blood. Placental chorionic villi facilitate

exchange of nutrients, gases and wastes between the mother and fetus, thereby

forming the foundation for successful pregnancy.

The process of placental trophoblast invasion, which has many similarities with

cancer metastasis [1], appears to be strictly controlled in humans, both spatially

and temporally, through mechanisms that are only partially understood [2, 3].

Impaired placental invasion has been implicated in several complications of preg-

nancy such as preeclampsia, intrauterine growth restriction [4] and preterm labour

[5, 6]. For example, in preeclampsia, invasion of the maternal spiral arterioles is

typically shallow, resulting in poor maternal blood flow to the placenta [4, 7, 8].

Despite extensive research efforts, our understanding of how placental develop-

ment is regulated at the molecular level remains inadequate, especially given the

severity of pathologies arising from abnormal placentation.

Although the placenta is most widely known for mediating fetal–maternal ex-

change, it also plays a major role in directing the mother’s adaptation to preg-

nancy. To achieve this, the placenta secretes a variety of steroid and peptide

hormones that intricately modulate maternal physiology in a way that enables

pregnancy to be sustained. For example, human chorionic gonadotropin (hCG)

1
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released from syncytiotrophoblast cells maintains progesterone secretion from the

corpus luteum in the ovary during the first trimester, which is essential for the

maintenance of pregnancy and fetal development.

Although the placenta is a shared organ between a mother and her fetus, it is

an extra-embryonic tissue that originates from the conceptus and is therefore ge-

netically identical to other fetal tissues. Subsequently, placental development and

function is primarily governed by the fetal genome in the context of a nutrient

supply from the mother.

1.2 Genomic Imprinting in the Placenta

One mechanism of placental genome regulation that has intrigued biologists for

decades is the phenomenon of genomic imprinting. This is where allelic expression

is dependent upon the parent from whom the allele was inherited. Imprinting af-

fects gene dosage, with the imprinted allele considered repressed and functionally

silenced [9, 10]. Imprinting is largely, although not exclusively, observed in euthe-

rian mammals and is thought to have arisen with viviparity and the evolutionary

emergence of the chorioallantoic placenta [11–14]. Of particular interest is the fact

that more imprinted genes are expressed in the placenta than any other tissue,

and the most widely recognised mechanism for maintenance of imprinting is DNA

methylation.

The prevailing model of imprinting suggests that DNA methylation imprints are

established across the genome shortly after fertilisation [10]. A vast majority of

research into the effects of genomic imprinting have centred around the regulation

of the H19-IGF2 locus, which encompasses the two most highly expressed genes

in the placenta [15]. Paternally expressed IGF2 encodes the growth-promoting

insulin-like growth factor 2, a potent mitogen involved in the regulation of cell

proliferation, growth and development. The reciprocally imprinted, maternally ex-

pressed H19 gene is located approximately 130 kb downstream of IGF2 on human

chromosome 11 and encodes a highly expressed, growth regulating, non-coding

RNA that shares regulatory elements with IGF2 [16]. However, the mechanisms

by which H19 interacts with IGF2 and regulates placental growth and develop-

ment are not fully understood.

Studies using animal models have demonstrated the functional importance of im-

printing H19 and IGF2 genes during intrauterine development [17–20], however

the timing of imprinting establishment in humans remains unclear. Limited re-

search on allele-specific expression in the human placenta suggests that imprinting
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may be dynamic across gestation. Although some differences in allele-specific ex-

pression of imprinted genes between the first trimester and term human placenta

have previously been reported [21], there appear to be no studies focused on po-

tential changes across the first trimester; a highly dynamic period of placental

growth and differentiation. Thus, there are few or no data on the establishment

of imprinting during early gestation, or any data regarding the stability of DNA

methylation imprints throughout the first trimester and later gestation.

The primary aim of the first study presented in this thesis was to quantify allele-

specific expression and DNA methylation for these reciprocally imprinted genes,

which have been widely used to exemplify the phenomenon of imprinting in humans

and rodents. The results indicated that the H19 long non-coding RNA has a high

degree of allelic variation between six and ten weeks of gestation, which stabilises at

around 11–12 weeks [22]. Given that H19 is a regulator of placental and embryonic

growth [23], these results suggested that the perturbation of H19 imprinting might

significantly influence early programming of placental phenotype.

Just prior to the results of this first study being published in PLoS One (Chapter

2), Keniry et al. reported in Nature Cell Biology that the growth suppressing abil-

ity of H19 was due to a microRNA (miR-675) encoded within the first H19 exon

[24]. They showed that levels of miR-675 increased as gestation progressed, which

acted to suppress placental growth towards the end of gestation [24]. Although

overall H19 expression remains largely unchanged throughout gestation, the RNA-

binding protein Elavl1 appeared to bind to the H19 RNA transcript, preventing

miR-675 from being excised early in gestation Keniry:2012fi. These results cer-

tainly suggested that the functionality of H19 was due to the actions of miR-675.

However, it is important to note that these experiments were conducted in the

mouse model and may not be directly translatable to humans. To further explore

the conclusions drawn by Keniry et al., I conducted a computational evaluation of

their proposed H19 /miR-675 model in humans. This analysis, which formed part

of a review published in Epigenetics (Chapter 3), provided several lines of evidence

indicating that miR-675 regulation is indeed different in the human placenta [25].

In this review, we also discuss an intriguing cluster of imprinted miRNAs that are

expressed almost exclusively in the placenta from the paternal allele. Of particular

interest, C19MC miRNAs are detectable in exosomes released from trophoblast

cells and in maternal blood, and are implicated in pregnancy complications such

as preeclampsia and preterm birth. However, the C19MC cluster is unique to the

primate lineage, which imposes serious limitations on model organism research.

Additionally, we review the evidence for X-linked miRNAs as potential drivers

of sex differences in placental gene expression. Since the majority of genes are
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autosomal, many sexually dimorphic traits are driven by the sex-biased expression

of autosomal genes. Much of the scientific literature in the past has attributed

the influence of sex hormones to sexual dimorphism; however, in this review, we

explore the idea that X-linked miRNA may target many autosomal genes, giving

rise to sex differences in autosomal gene expression. While many sex-specific gene

expression differences have been appreciated for some time, their phenotypic and

clinical implications, particularly in the placenta and in pregnancy complications,

remain relatively unexplored. We subsequently developed some of these ideas,

which led to the next major study presented in this thesis (Chapter 5).

1.3 Genome-Wide Sex Differences in Placental

Gene Expression

During intrauterine development, there are distinct sex differences in fetal growth

trajectories and hence in birth weight [26–28], with a sex bias in the prevalence

of preterm birth [29, 30], pregnancy complications such as preeclampsia [31, 32]

and perinatal death [33]. As fetal growth and development are highly dependent

on the exchange efficiency and capacity of the placenta, sex-specific differences in

normal and pathological fetal development are most likely due to sex differences in

placental function. Several studies have shown a distinct sex bias in the prevalence

of placental dysfunction in a spectrum of pregnancy and fetal health conditions

associated with abnormal placentation [32, 34–38]. However, the underlying mech-

anisms that predispose one sex over the other to deviate from a normal course of

development remain elusive.

Given our lack of knowledge regarding sex differences in placental genome regu-

lation, there was a crucial need to establish the baseline differences between the

sexes in normal development. Since the sex differences in expression observed in

other human tissues have been subtle [39–43], it was deemed necessary to under-

take a study large enough to have the power to detect small but significant sex

differences in placental gene expression.

To address this need, we conducted an integrative meta-analysis of publicly avail-

able microarray data to determine the extent of sex-biased placental gene expres-

sion. This involved mining gene expression data repositories for raw probe-level

data from non-pathological human placental tissue. After extensive curation and

filtering, the resulting dataset consisted of more than 300 samples with a total of

9.65 million data points. Analysis of these data revealed that more than 140 genes

consistently show significant sex-biased expression, and that a majority of these
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genes are autosomal. Of particular interest, we detected higher female expres-

sion from all seven genes in the LHB-CGB (hCG) cluster, which includes genes

involved in placental development, the maintenance of pregnancy and maternal

immune tolerance of the conceptus. This demonstrated that sex-biased gene ex-

pression in the normal human placenta occurs across the genome. This work was

published in the journal Molecular Human Reproduction (Chapter 5) [44].

At the beginning of this meta-analysis we encountered a significant problem: a

large proportion of publicly available data lacked sample sex information. To

overcome this problem, I created an algorithm that can predict the sex of samples

in gene expression datasets with a high degree of accuracy. A manuscript describ-

ing this algorithm was published in the journal Bioinformatics (Chapter 4) [45].

Pleasingly, the findings from this meta-analysis of sex-biased expression attracted

worldwide media attention and we were subsequently invited to write an editorial

piece describing this work to be published in Australasian Science. This short

article is presented, as published, in Chapter 6 [46].

1.4 The Underlying Organisation of the Human

Placental Transcriptome

Although the microarray meta-analysis generated a substantial amount of new

knowledge regarding gene regulation in the placenta, we also became increasingly

aware of how little was known about placental genome regulation throughout

gestation.

During my PhD candidature, two separate manuscripts were published describ-

ing the human placental transcriptome [15, 47]. The main outcome of these two

studies, which both utilised RNA sequencing (RNA-Seq) to quantify global gene

expression, was the identification of RNA transcripts that are enriched in the

placenta compared to other human tissues and placental-specific RNA splice vari-

ations [15, 47]. Although these higher resolution analyses surveyed the transcrip-

tome at the level of exon splicing, there were few new insights regarding the

organisation of placental gene transcription.

A common feature of a vast majority of previous studies on placental gene expres-

sion is that the data are typically summarised at the gene level for between-group

comparisons. Consequently, the greatest significance is then attributed to individ-

ual genes where the differences between groups reach an appropriate significance
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threshold. Although these gene-level analyses have unquestionable utility, the

inherent natural organisation of the transcriptome remains largely unexplored.

In other fields of research, more holistic approaches to the analysis of gene expres-

sion data have recently begun to reveal unappreciated patterns of transcriptional

organisation with regards to lipid metabolism [48], cancer [49], human brain de-

velopment and neuropathology [50–52], and embryonic development [53]. These

systems-level approaches typically involve the identification of groups of genes

with highly correlated expression across samples. By focusing on the relationships

between genes using a guilt-by-association approach, identifying groups of genes

that are expressed in a highly coordinated manner can uncover higher order re-

lationships among genes and their products. Further post hoc characterisation of

these relationships can then provide insight into the biological functions arising

from the underlying transcriptional program.

Considering the valuable insight to be gained by adopting a systems biology ap-

proach to analysing the placental transcriptome, the aim of the next study was

to closely examine the co-expression relationships between genes in the human

placenta. This study, presented in Chapter 7, involved profiling the human pla-

cental transcriptome by RNA-Seq and integrating several transcriptome datasets.

The results of this comprehensive analysis revealed highly correlated patterns of

gene expression that are associated with distinct biological processes, and high-

lighted a cluster of co-regulated genes implicated in preeclampsia. Furthermore,

by drastically reducing the dimensionality of gene expression data through sum-

marising highly correlated genes in this study, we illustrate a potential framework

for screening biomarkers of placental development.

1.5 Summary

The PhD research presented here focuses on three key aspects of placental gene

expression: (1) the regulation of expression by genomic imprinting, (2) the role of

fetal sex in placental genome regulation, and (3) the underlying organisation of

the transcriptome across gestation. All three unique aspects of this project have

provided novel insights into mechanisms of gene regulation in the placenta and

highlighted new avenues of research regarding the role of placental gene expres-

sion in pregnancy complications. Furthermore, many of the methods developed

during the course of these projects have not been previously applied in the fields of

placental biology or obstetric medicine, and subsequently provide a new framework

for investigating gene regulation at the fetal–maternal interface.
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Chapter 2

Quantitative Allele-Specific

Expression and DNA Methylation

Analysis of H19, IGF2 and

IGF2R in the Human Placenta

Across Gestation Reveals H19

Imprinting Plasticity

Sam Buckberry, Tina Bianco-Miotto, Stefan Hiendleder

and Claire T Roberts

Abstract

Imprinted genes play important roles in placental differentiation,

growth and function, with profound effects on fetal development. In

humans, H19 and IGF2 are imprinted, but imprinting of IGF2R re-

mains controversial. The H19 non-coding RNA is a negative regulator

of placental growth and altered placental imprinting of H19-IGF2 has

been associated with pregnancy complications such as preeclampsia,

which have been attributed to abnormal first trimester placentation.

This suggests that changes inimprinting during the first trimester may

precede aberrant placental morphogenesis. To better understand im-

printing in the human placenta during early gestation, we quantified

allele-specific expression for H19, IGF2 and IGF2R in first trimester

14
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(6–12 weeks gestation) and term placentae (37–42 weeks gestation) us-

ing pyrosequencing. Expression of IGF2R was biallelic, with a mean

expression ratio of 49:51 (SD = 0.07), making transient imprinting un-

likely. Expression from therepressed H19 allelesranged from 1–25%

and was higher (P < 0.001) in first trimester (13.5 ± 8.2%) compared

to term (3.4 ± 2.1%) placentae. Surprisingly, despite the known co-

regulation of H19 and IGF2, little variation in expression of the re-

pressed IGF2 alleles was observed (2.7±2.0%). To identify regulatory

regions that may be responsible for variation in H19 allelic expression,

we quantified DNA methylation in the H19-IGF2 imprinting control

region and H19 transcription start site (TSS). Unexpectedly, we found

positive correlations (P < 0.01) between DNA methylation levels and

expression of the repressed H19 allele at 5 CpG’s 2000 bp upstream of

the H19 TSS. Additionally, DNA methylation was significantly higher

(P < 0.05) in first trimester compared with term placentae at 5 CpG’s

39–523 bp upstream of the TSS, but was not correlated with H19 re-

pressed allele expression. Our data suggest that variation in H19 im-

printing may contribute to early programming of placental phenotype

and illustrate the need for quantitative and robust methodologies to

further elucidate the role of imprinted genes in normal and pathological

placental development.

2.1 Introduction

Genomic imprinting refers to parent-of-origin-dependent allele-specific gene ex-

pression. Imprinting affects gene dosage, with the imprinted allele considered

repressed and functionally silenced [1, 2]. Imprinting is largely, although not exclu-

sively, observed in eutherian mammals and is thought to have arisen with viviparity

and the evolutionary emergence of the chorioallantoic placenta [3, 4]. The prevail-

ing hypothesis on the origin of imprinting is based on paternal-maternal conflict

and postulates that paternally expressed genes have been selected to maximize

fetal resource acquisition from the mother, while maternally expressed genes have

been selected to balance resource allocation to current and future offspring [4]. As

imprinted genes appear to facilitate this tug-of-war between the maternal and pa-

ternal genomes, the conflict hypothesis predicts that imprinted genes are involved

in fetal and placental growth and development during pregnancy [2, 4, 5].

Studies using animal models have demonstrated the functional importance of im-

printing of H19, IGF2 and IGF2R genes during intrauterine development [6–
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10]. Paternally expressed IGF2 encodes the growth promoting insulin-like growth

factor II, a potent mitogen involved in regulating cell proliferation, growth and

development. The reciprocally imprinted, maternally expressed H19 gene is lo-

cated approximately 130kb downstream of IGF2 on human chromosome 11 and

encodes a highly expressed, growth regulating, non-coding RNA that shares reg-

ulatory elements with IGF2 [11]. The mechanism by which H19 interacts with

IGF2 and regulates growth is not fully understood and appears to involve long

range interaction of differentially methylated regions and complex loop structures

that regulate the activity of parental alleles [12–14]. More recently, H19 has been

identified as a trans regulator of an imprinted gene network for growth and devel-

opment [15], apparently through miRNAs processed from the H19 transcript [11,

16, 17]. The H19 large intergenic non-coding RNA (lincRNA) is highly expressed

in extra-embryonic cell lineages and is a developmental reservoir of miR-675 that

suppresses placental growth in the mouse [18]. The IGF2 receptor (IGF2R) medi-

ates endocytosis and clearance or activation of a variety of ligands involved in the

regulation of cell growth and motility, including insulin-like growth factor II [19–

21].

Studies in mice have demonstrated that altered imprinting of H19, IGF2 and

IGF2R are associated with placental and fetal growth abnormalities [11, 22,

23], some of which are consistent with data from human studies. For example,

(epi)mutations in the H19-IGF2 region are associated with Silver-Russell and

Beckwith-Wiedemann syndromes, which manifest in utero in severely growth-

restricted and overgrowth phenotypes, respectively [24]. Furthermore, altered

epigenetic regulation of the H19-IGF2 region in human placenta has been as-

sociated with pregnancy complications such as preeclampsia, which are preceded

by placental pathologies [25, 26]. A significant role in placental development has

been established for H19 and IGF2 in mouse and human, but knowledge on the

role of IGF2R in human placental development is limited. The IGF2R gene is

imprinted in all tissues except brain in mouse, but the majority of human samples

indicate non-imprinted biallelic expression [3, 27–29]. The minority of samples

with imprinted or partially imprinted expression suggested developmental stage-

specific transient imprinting. However, the developmental role of rare, transient

or partial IGF2R imprinting in the human placenta [3, 27, 30–33] remains to be

established.

In the human placenta, biallelic expression of imprinted genes, including H19, has

been observed at higher rates during the first trimester of pregnancy compared

to term [25, 34, 35]. Intriguingly, biallelic expression of H19 in term placentae

has been associated with preeclampsia in one study [25], yet subtle variation in

H19 allelic expression in healthy term placentae has also been observed [36]. This
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limited research on allele-specific expression in the human placenta suggested that

imprinting may be dynamic across gestation with potential plasticity in imprinting

beyond blastocyst and implantation stages. Although some differences in allele-

specific expression of imprinted genes between the first trimester and term human

placenta have been reported [34], there appear to be no studies addressing poten-

tial changes across the first trimester, a highly dynamic period of placental growth

and differentiation. Thus, there is little or no data on temporal variation in im-

printing of these genes across gestation, or if imprinting is stable throughout the

first trimester and later gestation. In the present study, we quantified the allelic

expression ratio for H19, IGF2 and IGF2R and DNA methylation in the H19-

IGF2 imprinting control region across 6–12 weeks of gestation in first trimester

placentae and in term placentae between 37–42 weeks of gestation.

2.2 Materials and Methods

2.2.1 Ethics Statement

Ethics approval was granted by the Children, Youth and Women’s Health Ser-

vice Research Ethics Committee (REC2249/2/13), the Central Northern Ade-

laide Health Service Ethics of Human Research Committee (Approval #2005082)

and the University of Adelaide Human Research Ethics Committee (H-137-2006).

Written informed consent was obtained from all patients.

2.2.2 Sample Collection

First trimester placental samples ranging from 6–12 weeks of gestation were ob-

tained from elective terminations of pregnancies at the Women’s and Children’s

Hospital, South Australia. The consulting physician determined gestational age

by observation and the date of the last menstrual period. Placental villous samples

were washed in sterile PBS and snap frozen in liquid nitrogen before being stored

at −80 ◦C. Term placenta samples were collected from pregnancies classified as

being uncomplicated by using the criteria described in [37], and were collected

and dissected post-delivery at the Lyell McEwin Health Service, South Australia,

and incubated in RNAlater solution (Invitrogen) at 4 ◦C for 24 hours before being

stored at −80 ◦C.



Chapter 2. Imprinting in the human placenta across gestation 18

2.2.3 Genotyping

DNA was extracted from placental tissue and parental blood using the Qiagen R©

DNeasy R© blood and tissue kit following the manufacturer’s instructions. DNA

concentration was determined using the NanoDrop R© ND-1000 Spectrophotometer

and diluted to 12 ng µL−1 with nuclease-free water (Mo Bio Laboratories). Isolated

DNA from first trimester placental samples was genotyped for IGF2 rs680, IGF2R

rs998075 and IGF2R rs1570070 single nucleotide polymorphisms (SNPs) by PCR

and High Resolution Melt (HRM) analysis (see Methods S1 S2.2 on page 39).

Term placenta and parental DNA SNP genotypes for H19 rs217727 and IGF2

rs680 were determined by multiplex PCR and the Sequenom R© MassARRAY R©

system, using the iPLEX R© GOLD single base extension reaction on custom arrays

at the Australian Genome Research Facility, Brisbane, Australia.

2.2.4 Quantification of Allele Specific Expression

Placental samples were thawed and homogenised with 1 mL TRIzol (Invitrogen)

per 100 mg tissue. TRIzol (Invitrogen) extraction was performed according to the

manufacturer’s guidelines. RNase-free glycogen (Ambion) was added at 25 µg per

1 mL of TRIzol (Invitrogen) to aid in RNA visualisation. RNA samples were DNase

treated using the TURBO DNA-freeTM kit (Ambion) following the manufacturer’s

instructions for rigorous treatment. Following DNase treatment, 2 µL of RNA was

subjected to PCR with DNA-specific primers (Table S2.1 on page 34). The DNase

treatment was determined to be effective if samples showed no amplification after

35 cycles. The concentration of DNase-treated RNA was calculated with the

NanoDrop R© ND-1000 Spectrophotometer.

First-strand cDNAs were synthesised from 500 ng DNase-treated RNA using the

iScriptTM cDNA Synthesis Kit (Bio-Rad), following the manufacturer’s instruc-

tions. Reverse transcriptase was omitted for negative controls and aliquots of

the master mix without added RNA were included in PCR experiments to rule

out contamination. Following reverse transcription, cDNA was diluted 1:10 with

nuclease-free water (Mo Bio Laboratories). Aliquots from five cDNA samples were

pooled and serially diluted 5-fold for primer validation and PCR optimisation.

PCR primers flanking SNP regions and pyrosequencing primers were designed us-

ing the PSQTM assay design software (BiotageTM). Reverse primers featured 5’

biotin modifications and were HPLC purified. All oligonucleotides were synthe-

sised by GeneWorks (Adelaide) and are listed in Table S2.2 on page 35. Each
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sample was pyrosequenced in triplicate, with each replicate generated in an inde-

pendent PCR cycling run. PCR was performed using 10 µL reactions with 2 µL of

cDNA, 5 µL SsoFast EvaGreen Supermix (Bio-Rad) and 300 nM of each primer.

Cycling conditions were 2 min enzyme activation at 95 ◦C followed by 40 cycles of

5 s at 95 ◦C and 20 s at 60 ◦C. PCR products were sequenced by pyrosequencing

using the methods detailed below.

2.2.5 Quantification of DNA Methylation

DNA for methylation analysis was extracted from placental villous tissue by ho-

mogenizing 50 mg to 100 mg tissue in 500 µL of TES (10 mM Tris-HCL pH 8.0,

1 mM EDTA, 100 mM NaCl), then adding 300 µg Proteinase K and 30 µL of 20%

SDS followed by an overnight incubation at 37 ◦C. Then 3 M NaCl was added

to precipitate proteins and the supernatant was collected by centrifugation. The

DNA was pelleted using 2 volumes of absolute ethanol and washed in 70% ethanol,

air dried and resuspended in TE pH 8.0 [38].

Each DNA sample was bisulfite treated in triplicate by EpigenDx (Massachusetts,

USA) using 500 ng of DNA and a proprietary bisulfite salt solution followed by

incubation for 14 hours at 50 ◦C. Bisulfite treated DNA was purified using Zymo-

gen DNA columns and was eluted with 20 µL of TE pH 8.0, 1 µL of which was

used for PCR reactions. The PCR was performed with 0.2 µM of each primer for

EpigenDx methylation assays ADS025, ADS596FS and ADS004 with one of the

PCR primers being biotinylated for purifying the final PCR product.

2.2.6 Pyrosequencing

The biotinylated PCR products were bound to Streptavidin Sepharose HP (Amer-

sham Biosciences, Sweden), and the Sepharose beads containing the immobilized

PCR product were purified, washed and denatured using a 0.2 M NaOH solu-

tion and rewashed all using the Pyrosequencing Vacuum Prep Tool (Qiagen) as

recommended by the manufacturer. Then 0.2 µM pyrosequencing primer was an-

nealed to the purified single-stranded PCR product. 10 µL of the PCR products

were sequenced using the PSQ96 HS System (Biotage AB) following the man-

ufacturer’s instructions at EpigenDX Genome and Epigenome Research Facility

(Massachusetts, USA). The status of each locus was analyzed individually using

QCpG software (Qiagen).
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2.2.7 Statistical Analysis

Repressed allele expression differences between gestational age classes for each

gene were analyzed using one-way analysis of variance (ANOVA). Differences be-

tween first trimester (6–12 weeks of gestation) and term (37–42 weeks of gestation)

samples were analyzed using the t-test. Differences in allelic expression measured

at two loci in the one sample were analyzed using the paired t-test. The relation-

ship between repressed allele expression from two genes in the same sample was

tested by calculating the Pearson’s bivariate correlation coefficient. Differences in

levels of DNA methylation between first trimester and term samples were tested

for each individual CpG site and for each region using independent t-tests. The

relationship between repressed allele expression and mean DNA methylation for

each region and CpG site was tested using Pearson’s correlation. Results were

considered significant at P < 0.05. All statistical analyses were performed using

GraphPad PRISM 5.0.

2.3 Results

2.3.1 Quantification of Allele-Specific Gene Expression in

the Human Placenta

DNA samples from placental tissue was genotyped for SNPs H19 rs217727, IGF2

rs680, IGF2R rs998075 and IGF2R rs1970070 to identify heterozygous individu-

als. Sixty-nine samples in total were heterozygous for at least one of the tested

candidate SNPs. The number of heterozygotes identified for each gestational age

class is summarized in Table 2.1 on the next page. As parental DNA corresponding

to term placenta samples was available for 28 cases, we genotyped maternal and

paternal DNA for H19 and IGF2 polymorphisms to determine the parental origin

of expressed alleles. In all cases with sufficient parental genotype information, H19

was maternally expressed (n = 11) and IGF2 (n = 9) was paternally expressed,

as expected (Table S2.3 on page 36).

Relative expression from each H19, IGF2 and IGF2R allele was quantified in

placenta samples by pyrosequencing of SNP loci. Relative allelic expression lev-

els for H19, IGF2 and IGF2R in first trimester and term placenta samples are

presented in Figure 2.1 on page 22 and Figure 2.2 on page 23 with each gene

showing a unique allele expression profile. Technical replicates obtained from

independent PCR reactions showed average standard deviations (SD) of 0.44%
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Table 2.1: Number of informative heterozygous samples for H19, IGF2 and
IGF2R for each gestational age class. First trimester samples range from 6–12
weeks, term samples range from 37–42 weeks.

Number of Heterozygotes

Gestational Age (weeks) H19 IGF2 IGF2R

6 1 1 1
7–8 6 5 14
9–10 4 6 8
11–12 2 2 1
37 1 0 NA
38 0 0 NA
39 7 5 NA
40 5 8 NA
41 5 6 NA
42 0 1 NA

Total 31 34 24

for H19 rs217727, 1.02% for IGF2 rs680, 3.14% for IGF2R rs998075 and 3.84%

for IGF2R rs1570070, respectively, indicating robust assays with negligible inter-

PCR variation. The greater standard deviation for IGF2R replicates is likely

due to the higher PCR quantification cycle (Cq) required for data acquisition as

compared with H19 and IGF2 (data not shown). The ratio of repressed allele

to predominantly expressed allele is depicted in Figure 2.3 on page 24, where a

0:100 ratio represents no expression from the repressed allele and a 50:50 ratio rep-

resents balanced, i.e., bialleleic, non-imprinted expression. Across first trimester

gestational age classes, expression from the H19 repressed allele shows notable

inter-individual variation in contrast to the almost uniform monoallelic expression

observed for IGF2 (Figure 2.3 on page 24). IGF2R allele-specific expression in

first trimester placenta samples showed balanced expression, with some samples

potentially showing a slight allelic bias (Figure 2.2 on page 23, Figure 2.3 on

page 24).

2.3.2 Biallelic Expression of IGF2R in the First Trimester

Placenta

Allelic expression ratios for IGF2R in first trimester placenta was measured at

two SNP loci (rs998075 n = 16 and rs1570070 n = 13). Five samples were het-

erozygous for both SNPs, and no significant difference (paired t-test, P = 0.42)

was detected between the expression ratios for the two SNP loci, indicating that
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Figure 2.1: Relative expression from H19 and IGF2 alleles in the human
placenta. Shaded bars for (A) H19 and (B) IGF2 represent the proportion of
expression (%) from each allele. Samples 1–38 are from first trimester (6–12
weeks of gestation) placentae and samples 39–69 are from term (37–42 weeks of
gestation) placentae.

both polymorphisms were equivalent in quantifying allele-specific expression (Fig-

ure 2.2C). All heterozygous IGF2R samples were therefore combined for analyses,

and, when expression was quantified at both loci in one sample, the average allelic

ratio of the two loci was used. The results clearly show biallelic IGF2R expression

in all first trimester placental samples assessed (Figures 2.2A, 2.2B), with a mean

allele expression ratio of 49:51 at both SNP loci (rs998075 SD = 7.1%, rs1570070

SD = 6.9%) with expression ratios ranging from 36:64 to 49:51 (Figure 2.3 on

page 24). These SNP based IGF2R pyrosequencing results provide no evidence

for IGF2R imprinted expression in the first trimester placenta and thus confirm

the non-imprinted status of IGF2R throughout gestation.
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Figure 2.2: Relative expression from IGF2R alleles in the human placenta.
Shaded bars for (A) IGF2R rs1570070 and (B) IGF2R rs998075 represent the
proportion of expression (%) in first trimester placentae. (C) Allelic expression
ratios for IGF2R measured two SNP loci in the same sample. These paired
samples indicate both SNP loci are equivalent (paired t-test, P = 0.42) for
evaluating IGF2R allele-specific expression.

2.3.3 Increased Expression from the H19 Repressed Allele

is Higher in First Trimester Placenta

Expression from the H19 repressed allele was quantified in 13 first trimester pla-

centa samples obtained at 6–12 weeks of gestation (Figure 2.1A). Mean expres-

sion from the repressed allele was 13.5% (SD±8.2; Figure 2.1A) and ranged from

0.9–24.7% (Figure 2.3 on the following page). Expression of the H19 repressed

allele appeared to decrease with gestational age in the first trimester samples (Fig-

ure 2.4A), but we found no significant differences between first trimester gesta-

tional age classes. To further test the hypothesis that expression from the repressed

H19 allele decreases across gestation, we then quantified allelic expression in term
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Figure 2.3: Allelic expression ratios for H19, IGF2 and IGF2R in the human
placenta. The 50:50 ratio represents equal expression from both alleles and
0:100 ratio represents expression exclusively from one allele. Each point on the
graph represents the allelic expression ratio measured in an individual placental
sample. H19 and IGF2 samples are from first trimester and term placentae,
IGF2R samples are all from first trimester placentae.

placenta samples obtained between 37–42 weeks of gestation (n = 18). Expression

from the repressed H19 allele at term was significantly lower (P < 0.001) than the

level of expression observed in first trimester placenta samples (Figure 2.4B and

Table 2.2).

Table 2.2: Relative levels of repressed allele expression in human first trimester
and term placentae.

% Repressed allele expression

First trimester Term P value

H19 13.5 ± 8.3 3.4 ± 2.0 < 0.0001
IGF2 2.6 ± 2.0 1.9 ± 1.1 0.1734
IGF2R 43.8 ± 3.2 ND

ND = Not Determined

Expression from the IGF2 repressed allele contributed on average 2.7% (SD 2.1%,

n = 34) to total IGF2 transcript in placenta samples (Figure 2.1B). No significant

differences in expression from the IGF2 repressed allele were observed between first

trimester gestational age classes (ANOVA P > 0.05) or between first trimester and

term (Table 2.2, Figures 2.4C, 2.4D) placentae. These results show that imprinted

IGF2 expression is tightly regulated and stable across gestation.
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Figure 2.4: Ratio of expression from each allele in human first trimester and
term placentae measured by pyrosequencing. Each point on the graph repre-
sents the allelic expression ratio observed in an individual placental sample.
(A) H19 allelic expression ratio for each gestational age class. (B) Expres-
sion from the H19 repressed allele is significantly higher (∗P < 0.001) in first
trimester placental samples. (C–D) IGF2 allelic expression ratios are similar
for each gestational age class (C) with no significant difference (D) between first
trimester and term. First trimester samples are 6–12 weeks of gestation term
samples are 37–42 weeks of gestation.
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Eleven placenta samples were heterozygous for both H19 and IGF2 polymor-

phisms, which allowed us to test for a correlation in repressed allele expression for

these adjacent co-regulated imprinted genes. We found that expression from the

H19 repressed allele was not correlated (P = 0.88, r = 0.54) with expression from

the IGF2 repressed allele (Figure 2.5).

Figure 2.5: Relative level of expression from repressed alleles in samples het-
erozygous for both H19 rs217727 and IGF2 rs680. Graph shows increased
expression from the H19 repressed allele is not correlated (P = 0.09, r = 0.54)
with expression from the IGF2 repressed allele.

2.3.4 Locus-Specific DNA Methylation Differences in the

H19-IGF2 Region Between First Trimester and

Term Placentae

To investigate if DNA methylation levels at specific CpG’s are correlated with

H19 repressed allele expression, we quantified methylation levels in three regions

(Figure 2.6 on the following page) using bisulfite pyrosequencing. The two regions

upstream of the transcription start site (TSS) (regions 1 and 2 on Figure 2.6) were

selected as they cover or are directly adjacent to sites that have been shown to be

differentially methylated [39], and region 3 (Figure 2.6) was selected as it spanned

the H19 promoter region and the TSS.

The first region (denoted 1 in Figure 2.6) encompassed five CpG sites with a

mean methylation level of 54.7±7.8%, which would be expected at a differentially

methylated imprinted locus. In region 1, there was no significant difference in mean
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Figure 2.6: Placental methylation levels in regions upstream and covering the
H19 transcription start site (TSS). Each genomic region where DNA methyla-
tion was measured is highlighted in yellow and numbered 1–3. DNA methy-
lation levels for individual CpG loci are shown for first trimester (red circles,
n = 13) and term (blue circles, n = 18) placentae. Distance (bp) of cytosine
nucleotide from H19 TSS is represented on x-axis. Each data point repre-
sents the mean methylation level for the gestational age class. * Indicates a
significant difference in methylation levels between first trimester and term pla-
centae at individual CpG sites. Error bars represent SEM and when not present
SEM was too low to depict on the graph. The schematic representation below
the graph highlights the regions between H19 and IGF2 where bisulfite DNA
pyrosequencing was performed. Region 1 covers 5 CpG sites (Chr11:2021011-
2021070), region 2 covers 12 CpG sites (Chr11:2021011-2021070) and region 3
covers 5 CpG sites (Chr11:2019079-2019145). Genomic coordinates refer to ref-
erence assembly GRCh37/hg19.

methylation levels between first trimester (54.8 ± 6.9%) and term (53.5 ± 7.2%)

placentae or at any of the 5 individual CpG sites (Figure 2.6, Table S2.4 on

page 37). The second region assessed (denoted 2 in Figure 2.6), covered 12 CpG

sites which showed overall hypomethylation, with a mean methylation level of

30.9 ± 3.9% in first trimester and 28.9 ± 5.3% in term placentae. When analyzed

independently, 4 of the 12 CpG sites, 3 of which are adjacent to each other,

showed significantly higher methylation in first trimester placentae in comparison

to term placentae (Figure 2.6). The third region that spanned the H19 TSS

showed mean methylation levels of 16.1 ± 3.1% in first trimester placentae and

15.5 ± 3.5% in term placentae. When each CpG site was analyzed individually,

the cytosine nucleotide 39 bp upstream from the H19 TSS (Figure 2.6) showed

significantly higher methylation (P = 0.02) in first trimester placentae (15.2±3.6%

vs 12.0 ± 3.2%). Details of DNA methylation levels in first trimester and term
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placentae at each individual CpG site and the statistical comparisons between the

groups are listed in Table S2.4 on page 37.

2.3.5 H19 Repressed Allele Expression is Correlated with

Higher Levels of DNA Methylation

As distinct variation in expression from the H19 repressed allele in first trimester

placentae was observed, we tested for correlations between the level of repressed

allele expression and levels of DNA methylation at CpG’s of first trimester pla-

centae. In region 1, a significant positive correlation (P < 0.001, r = 0.65) was

observed between repressed allele expression and the mean methylation level across

the region (Figure 2.7A). When each of the 5 CpG sites in this region were ana-

lyzed independently for the same correlation, the results remained significant for

each site (Table S2.5 on page 38). This correlation was not observed for region 2

(Figure 2.7B, P = 0.36, r = 0.07) or 3 (Figure 2.7C, P = 0.47, r = 0.05) or for

any individual CpG sites within these regions (Table S2.5).

Figure 2.7: Levels of H19 repressed allele expression and DNA methylation
in human first trimester placentae. (A) Increased expression from the repressed
H19 allele is positively correlated (P = 0.0016, r = 0.61) with increased DNA
methylation in region 1. (B & C) H19 repressed allele expression is not cor-
related with DNA methylation in region 2 (P = 0.3626, r = 0.08) or region 3
(P = 0.4791, r = 0.04). Each point on the graph represents individual first
trimester placenta samples. Methylation levels in each region represent the
average methylation from 5 CpG sites in region 1 (Chr11:2021011-2021070),
12 CpG sites in region 2 (Chr11:2021011-2021070) and 5 CpG sites in region 3
(Chr11:2019079-2019145). Genomic coordinates refer to reference assembly
GRCh37/hg19.
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2.4 Discussion

Imprinted genes are known to be critically involved in placental development and

function. Aberrant patterns of imprinted gene expression are implicated in preg-

nancy complications such as preeclampsia and intrauterine growth restriction [5,

40–43]. Although the symptoms of these conditions manifest late in pregnancy,

their pathogenesis is commonly attributed to compromised first trimester pla-

cental development [44]. Previous research on genomic imprinting in the human

placenta has focused on the term placenta [25, 32, 36, 41, 45, 46] and data during

the first trimester of gestation is limited [27, 34, 35, 47]. In the present study, we

investigated the imprinting status (i.e., allele-specific expression) of three genes,

H19, IGF2 and IGF2R, which have known, but poorly understood, associations

with pregnancy complications and placental abnormalities in humans and/or ani-

mal models [6–10]. We assessed allele-specific expression of these genes and DNA

methylation in the H19-IGF2 imprinting control region in first trimester (6–12

weeks of gestation) and term (37–42 weeks of gestation) placentae.

We assessed IGF2R allele-specific expression, as the imprinting status of this im-

portant gene for prenatal growth and development remains controversial in human.

We observed balanced expression from both IGF2R alleles, and although we did

not investigate any potential imprinting mechanisms for this gene, these results

suggest IGF2R is not imprinted in the first trimester placenta. Imprinting of

IGF2R has been suggested to be a polymorphic trait in humans, with a small

proportion of individuals showing monoallelic expression or partial imprinting [3,

27, 33]. In this study, we assessed more informative samples than previous stud-

ies [3, 27, 33, 48] but found no evidence for polymorphic IGF2R imprinting in

the placenta. Although we observed overall a balanced expression of alleles for

IGF2R, individual allelic expression ratios ranged from 36:64 to 49:51. This varia-

tion may reflect what has been described previously as partial repression or allelic

preference [27, 33]. It is presently unclear if this subtle imbalance of IGF2R allelic

expression is due to genetic variation in allele-specific epigenetic regulation or a

parent-of-origin effect.

Allele-specific expression of H19 showed considerable inter-individual variation,

with expression from the repressed (i.e. imprinted) allele contributing up to 25% of

total H19 transcript in the first trimester placenta. In contrast, IGF2 showed pre-

dominantly monoallelic expression and little variation between individuals, with

one allele contributing more than 90% of IGF2 transcript in all investigated sam-

ples. This indicated that IGF2 allele-specific expression is tightly regulated in the

first trimester placenta and suggests that IGF2 imprinting is established early in

development and remains stable throughout gestation.
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Determining loss of imprinting or biallelic expression of imprinted genes was pre-

viously performed by restriction fragment length polymorphism (RFLP) analysis.

This method provides a qualitative or semi-quantitative assessment of monoallelic

or biallelic expression. In human placentae from uncomplicated pregnancies, H19

RFLP data showed biallelic expression before 10 weeks of gestation and imprinted

expression at term [25, 35]. However, term placentae from preeclamptic preg-

nancies were reported to display biallelic expression with the RFLP method [25].

This biallelic H19 expression could indicate a failure to establish correct H19 im-

printing with downstream effects on placental development [25, 35]. The data

presented in the current study show that H19 expression from the imprinted, i.e.

repressed, allele can range from 9–22% at 9–10 weeks of gestation, highlighting

the potential ambiguity in classifying expression as mono- or biallelic by less sen-

sitive methods. Our data support the view [32, 49] that classification of genes

as imprinted or non-imprinted by qualitative methods may be a less meaningful

distinction than quantitative measurements of imprinting status based on precise

estimates of relative contributions from each allele.

More recently, quantitative PCR and pyrosequencing have been used to evalu-

ate allele-specific expression in placental tissue. By using these highly sensitive

methodologies, expression from the “silenced”, imprinted, alleles has been gener-

ally higher in first trimester placentae [46] with some variation at term [36]. Both

the RFLP assay and quantitative allele-specific expression approaches support the

concept that repressed allele expression changes through gestation in the placenta,

particularly during early pregnancy [25, 34, 35, 46]. Using placental tissue from

6–12 weeks of gestation, we tested the hypothesis that imprinted allele-specific ex-

pression changes during the first trimester of pregnancy. We found no significant

differences between early and late first trimester allelic expression ratios for H19,

IGF2 or IGF2R. Although we quantified allelic expression ratios using a highly

sensitive technique, the method used for classifying gestational age, our sample

size, and the proportion of heterozygotes in each group may have prevented the

detection of significant changes across first trimester age groups. When comparing

first trimester and term placenta samples for H19, we found a significant decrease

in the proportion of repressed allele expression at term. Furthermore, these re-

sults for H19 show notable inter-individual variation early during placental devel-

opment, and more uniformity in allelic expression ratios as gestation progresses.

This is a clear demonstration of dynamic change in imprinting status well beyond

the blastocyst and implantation stages. However, an alternative explanation for

the observed differences in H19 allelic expression ratios between first trimester

and term samples in the present study could be the unbiased sampling of material

from elective terminations of pregnancy versus the selected material at term that
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came from normal pregnancies only. Placental tissue from elective terminations of

pregnancy in first trimester will, by necessity, include those from pregnancies that

may have been destined to develop a pregnancy complication e.g. preeclampsia,

preterm labour or intrauterine growth restriction which are typically diagnosed

later in gestation. Potentially, first trimester placental samples exhibiting expres-

sion from the repressed allele may have been destined to retain biallelic expression

and associate with preeclampsia later. However, we consider this unlikely given

that 8 out of 13 first trimester samples had greater than 10% expression from the

repressed allele and preeclampsia occurs in just 8% of women in the community

where our samples were collected [50].

Our results show H19 expression from the repressed allele is not correlated with

expression from the IGF2 repressed allele in the same samples. The prevailing

regulatory model of the H19-IGF2 region based on differential DNA methylation

predicts that both genes are not expressed from a single chromosome. Although

this model is supported by considerable evidence [12, 51, 52] (and references cited

therein), there is also evidence to suggest that this model may be insufficient (re-

viewed in [53]). The data presented here show higher expression from the repressed

H19 allele is not correlated with any change in IGF2 repressed allele expression

in individual placentae. Additionally, we show that DNA methylation levels at

CpG sites (1946–2005 bp upstream of the H19 TSS) that flank the 6th CTCF

binding domain [39], are positively correlated with the level of expression from the

H19 repressed allele, which was unexpected given the prevailing regulatory model.

Furthermore, we observed significantly higher DNA methylation in first trimester

placentae in the region 422–524 bp upstream of the H19 TSS that surrounds the

differentially methylated region (DMR) [39], despite finding no correlation with

H19 repressed allele expression. This suggests DNA methylation in the DMR

decreases progressively throughout gestation with no effect on H19 allelic regula-

tion. Together, these findings suggest that the methylation dependant enhancer

competition model of the H19-IGF2 locus may not fully explain the patterns of

allele-specific expression observed for these genes in the early human placenta,

as suggested previously [53]. However, although we assessed DNA methylation

at sites within the H19-IGF2 regulatory region, we did not assess methylation

across all the CTCF binding sites upstream of H19. Moreover, we did not inves-

tigate additional regulatory mechanisms, such as the actions of other non-coding

RNA’s and repressive histone modifications that are involved in placental-specific

imprinting [54–57]. Therefore we are unable to rule out other mechanistic changes

that may be influencing H19 allele specific expression.

An important consideration when using placental tissue for studying genomic im-

printing is that this organ arises from multiple extra-embryonic and embryonic cell
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lineages. Cells descended from both the inner cell mass and trophectoderm may

show major epigenetic differences [58], and as a result, analysis of whole placental

villous tissue may not identify cell lineage-specific imprinting effects. In this study,

we show a clear imprinting effect for IGF2 in all heterozygous first trimester pla-

centa samples, which suggests that all cell types composing the placental villi had

IGF2 imprinting mechanisms in place. However, for H19 we observed notable

inter-individual variation in expression from the imprinted allele. This variation

could be due to the heterogeneous nature of the placental villous tissue sampled

and H19 lineage-specific imprinting at the single cell level. Cell-specific imprinted

gene expression has been proposed as an all or none phenomenon in placental cell

lines [59], and H19 biallelic expression has been shown to be specific to extravillous

cytotrophoblast cells [47], suggesting there is no intermediate imprinting effect at

the single cell level. Therefore, observing variations in relative expression from

the imprinted allele in placental tissue may simply reflect the fraction of cells with

complete biallelic expression [59]. As first trimester placental tissue sampling is

expected to yield a higher proportion of extravillous cytotrophoblast cells than

those collected at term, changes in the level of imprinting across gestation may re-

flect proportional changes in cell lineage populations as the placenta differentiates.

This suggests future studies of placental imprinting dynamics should consider the

potential influence of placental cell type heterogeneity.

The H19, IGF2 and IGF2R genes have key roles in placental development, yet

the phenotypic effect of their allele-specific expression across gestation remains

unknown. However, the role of H19 as a regulator of the recently described im-

printed gene network suggests potentially significant phenotypic effects [15]. This

may depend on differences in gene dosage, but could also involve more complex

regulatory effects in trans. To date, the normal developmental patterns of im-

printed gene expression in the human placenta are poorly understood. As altered

patterns of imprinting in term placentae are associated with pregnancy complica-

tions, identifying when these abnormal patterns are established may aid in elu-

cidating the origins of placental abnormalities implicated in their aetiology. Our

results highlight the requirement for robust and sensitive methods to determine the

role of imprinted allele-specific expression in placentae from complicated pregnan-

cies. Undoubtedly, precise methods and comprehensive studies will be required to

progress towards understanding the molecular basis of potentially life threatening

pregnancy complications in which defective placentation is implicated.



Chapter 2. Imprinting in the human placenta across gestation 33

Acknowledgements

We thank Liying Yan, Ann Meyer and Matthew Poulin of EpigenDx for their

pyrosequencing technical assistance and expertise. The authors would also like to

thank all members of the Claire T Roberts Placental Development Laboratory for

helpful discussions.



Chapter 2. Imprinting in the human placenta across gestation 34

S2.1 Supporting Information

Table S2.1: Genomic DNA specific primers used to detect DNA contamination
in RNA samples.

Gene Location Direction Primer Sequence (5′–3′)

IGF2R
Intron Fwd GCCTCTTCTTGTTAATTTCCCTGTT
Exon Rev TTCAGTTTCTCCACAGACATTCAA



C
hapter

2.
Im

prin
tin

g
in

the
hu

m
an

placen
ta

across
gestation

35

Table S2.2: Details of genes, SNP regions and primers used for quantifying allele-specific expression by pyrosequencing.

Gene SNP PCR primer sequence (5′–3′) Amplicon
size (bp)

Pyrosequencing primer (5′–3′)

H19 rs217727
Fwd-CGGCGACTCCATCTTCATG

75 ATGGCCACCCCCTGCG
Rev-(B)TCCAGCTCTGGGATGATGTG

IGF2 rs680
Fwd-TGGCCAGTTTACCCTGAAAATTC

116 CCTGTGATTTCTGGG
Rev-(B)TGGACTTGAGTCCCTGAACCA

IGF2R rs998075
Fwd-CTCGGTGTGTGTCTTTCATTGTT

73 TGTCTTTCATTGTTATAGGG
Rev-(B)CATATTATGATGGGATGATCCAAC

IGF2R rs1570070
Fwd-AGCAGCAGGATGTCTCCATAG

118 CCCAGAGCGGAGGTT
Rev-(B)TGTATTTCAGTTTCTCCACAGACA

(B) denotes 5′ nucleotide biotin modification
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Table S2.3: Parental and placental genotypes with placental allele expression
ratio for H19 and IGF2.

H19 rs217727 genotypes
Placenta allele
expression ratio

Sample Maternal Paternal Placenta C T Expression

41 C/T – C/T 0.02 0.98 ND
42 C/T C C/T 0.01 0.99 Maternal
43 T/T – C/T 0.04 0.96 Maternal
45 C/T – C/T 0.05 0.95 ND
47 C/C C/T C/T 0.97 0.03 Maternal
48 C/T C C/T 0.01 0.99 Maternal
49 C/T C C/T 0.03 0.97 Maternal
51 C/C C/T C/T 0.98 0.02 Maternal
52 C/C C/T C/T 0.95 0.05 Maternal
53 C/T C C/T 0.02 0.99 Maternal
55 C/C C/T C/T 0.91 0.09 Maternal
59 C/T – C/T 0.03 0.97 ND
61 C/T C/T C/T 0.04 0.96 ND
68 C/C – C/T 0.97 0.03 Maternal
69 C/T C/T C/T 0.02 0.98 Maternal

IGF2 rs680 Genotypes
Placenta allele
expression ratio

Sample Maternal Paternal Placenta C T Expression

40 C C/T C/T 0.01 0.99 Paternal
41 C – C/T 0.02 0.99 Paternal
44 C/T C/T C/T 0.06 0.94 ND
46 – C/T C/T 0.01 0.99 ND
47 C/T C/T C/T 0.02 0.98 ND
50 C/T – C/T 0.02 0.98 ND
51 C/T C/T C/T 0.02 0.98 ND
52 C – C/T 0.01 0.99 Paternal
54 C/T C/T C/T 0.99 0.01 ND
56 T C/T C/T 0.99 0.01 Paternal
57 C/T – C/T 0.98 0.02 ND
58 T C C/T 0.99 0.02 Paternal
60 C C/T C/T 0.01 1.00 Paternal
61 C/T C/T C/T 0.02 0.98 ND
62 – C/T C/T 0.98 0.02 ND
63 T C C/T 0.98 0.02 Paternal
66 C/T C/T C/T 0.02 0.98 ND
67 T – C/T 0.99 0.02 Paternal
68 T – C/T 0.98 0.02 Paternal

ND = Could not be determined
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Table S2.4: Parental and placental genotypes with placental allele expression
ratio for H19 and IGF2.

% DNA Methylation

Distance (bp)
from TSS

Genomic location
(GRCh37/hg19)

First trimester
N=13,
Mean± SD

Term
N=18
Mean±SD

P value

R
eg

io
n

1

−2004 2021069 47.0± 7.5 45.6± 7.1 0.5899
−1986 2021051 46.5± 6.2 45.1± 6.3 0.5527
−1967 2021032 50.1± 6.8 49.7± 6.6 0.8717
−1959 2021024 59.9± 7.9 57.6± 8.9 0.4636
−1947 2021012 70.6± 7.2 69.4± 9.3 0.7001
Region mean 54.8± 6.9 53.5± 7.2 0.6065

R
eg

io
n

2

−603 2019668 38.9± 6.0 39.3± 7.7 0.8885
−591 2019656 35.9± 4.3 36.5± 6.5 0.7559
−569 2019634 32.4± 2.5 32.2± 4.7 0.8808
−562 2019627 34.5± 5.8 36.0± 7.0 0.5248
−560 2019625 31.7± 4.5 32.0± 5.9 0.8789
−542 2019607 27.2± 8.1 23.5± 10.2 0.2959
−523 2019588 38.7± 4.4 32.7± 6.2 0.0056
−504 2019569 31.4± 6.6 33.8± 7.4 0.3604
−502 2019567 32.5± 4.3 30.0± 6.4 0.2361
−484 2019549 32.5± 4.2 23.7± 4.6 < 0.0001
−437 2019502 19.5± 2.6 14.8± 2.2 < 0.0001
−423 2019488 16.2± 2.4 11.7± 2.8 < 0.0001
Region mean 30.9± 3.9 28.9± 5.3 0.2377

R
eg

io
n

3

−39 2019144 15.2± 3.6 12.0± 3.2 0.0152
−25 2019130 24.7± 5.5 27.9± 4.8 0.0927
−12 2019117 21.6± 4.6 21.1± 4.3 0.7552
+15 2019091 10.0± 1.9 8.8± 3.2 0.2427
+26 2019080 8.8± 2.9 9.9± 4.2 0.4347
Region mean 16.1± 3.1 15.5± 3.5 0.6467
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Table S2.5: Pearson’s correlation of H19 repressed allele expression and DNA
methylation levels at individual CpG loci in human first trimester placentae.

Distance (bp)
from TSS

Genomic location
(GRCh37/hg19)

P value R2 value

R
eg

io
n

1

−2004 2021069 0.0011 0.6348
−1986 2021051 0.0008 0.6540
−1967 2021032 0.0017 0.6062
−1959 2021024 0.0007 0.6630
−1947 2021012 0.0077 0.4898
Region mean 0.0008 0.6527

R
eg

io
n

2

−603 2019668 0.1255 0.1999
−591 2019656 0.2814 0.1045
−569 2019634 0.3068 0.0945
−562 2019627 0.1494 0.1793
−560 2019625 0.2429 0.1216
−542 2019607 0.7337 0.0110
−523 2019588 0.6850 0.0155
−504 2019569 0.5050 0.0414
−502 2019567 0.5199 0.0386
−484 2019549 0.4551 0.0517
−437 2019502 0.3780 0.0712
−423 2019488 0.4514 0.0525
Region mean 0.3626 0.0758

R
eg

io
n

3

−39 2019144 0.7795 0.0074
−25 2019130 0.2029 0.1429
−12 2019117 0.3004 0.0969
+15 2019091 0.1589 0.1719
+26 2019080 0.6730 0.0168
Region mean 0.4791 0.0465
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S2.2 Methods S1

S2.2.1 DNA Genotyping by HRM

First trimester placenta DNA was genotyped for IGF2 and IGF2R SNPs by PCR

and high-resolution melt (HRM) analysis. PCR primers (Table S2.6 on the next

page) were custom designed using Primer Express (v2.0 Applied Biosystems), with

amplicon melting characteristics assessed using DinaMelt [60] and checked for

specificity using the UCSC in silico PCR tool (http://genome.ucsc.edu) with

the GRCh37/hg19 reference genome [61, 62]. All HRM oligonucleotides were man-

ufactured by GeneWorks (Adelaide). Gene, primer and amplicon details for the

PCR-HRM reactions are listed in Table S2.6. PCR-HRM was performed in 10 µL

reactions, including 25 ng of genomic DNA, 250 nM of each forward and reverse

primer, 5 µL of either SsoFast EvaGreen Supermix (Bio-Rad) for IGF2R rs1570070

or MeltDoctor (Applied Biosystems) for IGF2R rs998075 and IGF2 rs680 using

the Corbett Rotor-Gene 6000. Initial denaturation was 98 ◦C for 2 minutes (Sso-

Fast) or 10 minutes (MeltDoctor), followed by 40–45 cycles of 2-step temperature

cycling of 98 ◦C for 5 seconds and 60 ◦C for 20 seconds.

Immediately following PCR, samples were held at 50 ◦C for 30 seconds before tem-

perature ramping at 0.1 ◦C steps at 2 seconds per step across a melt domain of

> 10 ◦C, which was specific for each amplicon (Table S2.6). HRM curves were anal-

ysed using Corbett Rotor-Gene software (Corbett Research version 1.7, build 87).

Normalisation was performed using windows of 0.5 ◦C at least 2 ◦C before the first

melt transition and at least 1 ◦C after the sample had completely melted. Geno-

types were called at 90% confidence by comparison to sequence verified controls

using the Corbett Research HRM Software v 1.7 (Figure S2.1A). Control geno-

types were confirmed by visually checking sequence chromatograms (Figure S2.1B)

generated by the ABI 3130xl genetic analyser at Flinders and SouthPath Sequenc-

ing Facility, South Australia.

http://genome.ucsc.edu
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Table S2.6: Gene, SNP, and HRM genotyping assay details used for genotyping placental DNA.

Gene SNP PCR primer sequence (5′–3′)
Amplicon size

(bp)
HRM range

(◦C)

IGF2 rs680
Fwd-TGGCCAGTTTACCCTGAAAATTC

116 75–88
Rev-TGGACTTGAGTCCCTGAACCA

IGF2R rs1570070
Fwd-GCCTCTTCTTGTTAATTTCCCTGTT

95 67–77
Rev-TTCAGTTTCTCCACAGACATTCAA

IGF2R rs998075
Fwd-CTCGGTGTGTGTCTTTCATTGTT

73 69–81
Rev-CATATTATGATGGGATGATCCAAC

SNP = Single Nucleotide Polymorphism, HRM = High Resolution Mel
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Figure S2.1: Genotyping of IGF2R rs1570070 by HRM with sequenced con-
trols. (A) Normalised HRM melt plot showing rs1570070 TT, TC and CC
genotypes. Samples are grouped into distinct genotype curves. Green and
purple curves represent homozygous samples and grey curve represents het-
erozygous samples. Each curve group includes a sequenced control sample.
(B) Chromatogram traces confirm control sample genotypes, polymorphic site
highlighted for each genotype.
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Abstract

Pregnancy outcome is inextricably linked to placental development,

which is strictly controlled temporally and spatially through mecha-

nisms that are only partially understood. However, increasing evidence

suggests non-coding RNAs (ncRNAs) direct and regulate a consider-

able number of biological processes and therefore may constitute a pre-

viously hidden layer of regulatory information in the placenta. Many

ncRNAs, including both microRNAs and long non-coding transcripts,

show almost exclusive or predominant expression in the placenta com-

pared to other somatic tissues and display altered expression patterns

in placentas from complicated pregnancies. In this review we explore

the results of recent genome-scale and single gene expression studies

using human placental tissue but include studies in the mouse where

human data are lacking. Our review focuses on the ncRNAs epigenet-

ically regulated through genomic imprinting or X-chromosome inacti-

vation and includes recent evidence surrounding the H19 lincRNA, the
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imprinted C19MC cluster microRNAs, and X-linked miRNAs associ-

ated with pregnancy complications.

3.1 Introduction

The best-known function of the placenta is to mediate fetal-maternal exchange

throughout pregnancy but it also plays a major role in directing maternal adap-

tation to pregnancy by secreting a variety of steroid and peptide hormones that

modulate maternal physiology without which pregnancy could not be sustained.

The placenta is a unique organ in several respects. Firstly, although the pla-

centa is a shared organ between mother and fetus, it is an extra-embryonic tissue

and is therefore primarily regulated by the fetal genome. Secondly, the placenta

completely separates from mother and fetus after birth, making it the only truly

transient organ. For this reason, the placenta may not be under the same lifetime

epigenetic constraints as other somatic tissues. Placental development in humans

begins shortly after an embryo implants into the lining of the uterus where it

begins a strikingly invasive process that remodels the uterine spiral arterioles to

sequester a maternal blood supply to facilitate efficient feto-maternal exchange.

This invasive process, which has many similarities with cancer metastasis [1], ap-

pears to be strictly controlled both spatially and temporally in humans through

mechanisms that are only partially understood [2, 3]. However, emerging evi-

dence, particularly from high-throughput gene expression technologies, suggests

non-coding RNA molecules (ncRNAs) direct and regulate a considerable number

of biological processes and cellular functions. Therefore ncRNAs may constitute a

previously hidden layer of regulatory information in the placenta. In this review,

we focus on the imprinted and X-linked ncRNAs, which are typically expressed

from only one allele. We explore the regulation of these ncRNAs in the context of

human placental development. Examining particular influential genomic regions,

a key focus of this review will be the role that ncRNA expression in the pla-

centa plays in pregnancy complications such as preeclampsia that are attributed

to abnormal placental development. Although this review is focused on human

placental development, studies in the mouse are also discussed where human data

are lacking.
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3.2 The Placenta is Key to Fetal and Maternal

Health

The placenta is part of the conceptus and therefore is genetically identical to the

fetus. Its development is initiated at implantation about 5–6 days after conception

and follows a dynamic and constantly changing trajectory providing gaseous and

nutrient exchange functions between the maternal and fetal circulations to support

fetal growth [4]. Impaired placental (trophoblast) invasion has been implicated in

several complications of pregnancy such as preeclampsia and intrauterine growth

restriction (IUGR) [5] and pre-term labour [6, 7]. For example, in preeclampsia in-

vasion of the spiral arterioles and the maternal decidual stroma is shallow, resulting

in poor maternal blood flow to the placenta [5, 8, 9]. Despite huge research efforts,

our understanding of the highly complex molecular regulation of both normal and

abnormal placentation is still inadequate. However, ncRNAs are emerging as key

regulators of development [10, 11], and therefore provide new avenues of inquiry

relating to placental differentiation and function. If so, the perturbed regulation

of ncRNAs in the placenta may result in one or more of a continuum of pregnancy

complications that compromise the health of both mother and infant.

3.3 Classification and Detection of Non-Coding

RNA

There are many different classes of ncRNAs, as these molecules vary greatly with

regards to sequence length and complexity, splicing isoforms, polyadenylation, reg-

ulation and biological function. The most well-characterised class of ncRNAs are

the infrastructural RNAs (rRNAs, tRNAs, snRNAs, snoRNAs), which constitute

many integral cellular components and are involved in processes such as trans-

lation, transcript splicing and higher level regulatory processes including DNA

methylation [10]. Other ncRNAs are typically classed based on their sequence

length, with RNAs shorter than ∼ 200 nucleotides termed short non-coding RNAs

(sncRNAs), and those greater than ∼ 200 nucleotides are termed long non-coding

RNAs (lncRNAs) [11]. The sncRNAs include the microRNAs (miRNAs), piwi in-

teracting RNAs (piRNAs) and the small interfering RNAs (siRNAs). These short

RNAs, particularly the miRNAs, have received the most attention to date, and

currently dominate the ncRNA literature. However, there has been a steady accu-

mulation of evidence indicating that lncRNA transcripts, as a class, have a diverse
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repertoire of biological functions [11] and constitute a significant proportion of

total cellular RNA [12].

Although the central dogma of biology has previously allowed little scope for the

regulatory capabilities of ncRNA (for a review see ref. [13]), the ability to detect

and measure ncRNAs has also hindered progress towards appreciating the gamut

of their functional abilities. Detecting ncRNAs in any tissue has posed challenges

for several reasons. Firstly, distinguishing if a transcript has protein-coding ability

can be difficult as ncRNA transcripts can originate from intronic and untranslated

regions of coding transcripts, or can be alternative splice variations that abolish

a transcript’s coding potential [14, 15]. Secondly, lncRNAs can be transcribed

from DNA that spans intergenic and coding regions resulting in transcripts that

host protein-coding DNA sequence. Thirdly, many ncRNAs do not end with a

poly-A signal [12] which is characteristic of protein coding genes. This difference

has profound implications regarding ncRNA detection as many cDNA, SAGE,

microarray and RNA-Seq methods rely on poly-A labelling, enrichment or priming.

For these reasons among several others (see ref. [16]), ncRNA transcripts can be

difficult to discover and measure, which has subsequently hampered our ability to

annotate and functionally classify ncRNAs in health and disease.

3.4 The Roles of Non-Coding RNAs in Genomic

Imprinting in the Placenta

Imprinted genes are known to have significant effects on placental development

and are implicated in many placental pathologies [17–19]. Imprinted genes are

expressed in a parent-of-origin-dependent manner, with the imprinted alleles be-

ing epigenetically silenced [20, 21]. Genomic imprinting is typically observed in

clusters of ∼ 2–12 genes, with most of these clusters having at least one lncRNA

gene [22]. The epigenetic regulation of imprinting can involve DNA methyla-

tion imprints, repressive histone modifications, and complex enhancer competition

scenarios involving cis-acting lncRNA transcripts [22–25]. Ablation of lncRNAs

within imprinting clusters typically results in the loss of imprinting [22], demon-

strating that lncRNAs can act as cis regulators of autosomal gene expression.

Imprinting is largely, although not exclusively, observed in eutherian mammals

and is thought to have arisen with viviparity and the evolutionary emergence

of the placenta [26, 27]. The prevailing evolutionary hypothesis of imprinting

suggests that paternally-expressed genes have been selected to maximise fetal re-

source acquisition from the mother, while maternally-expressed genes have been
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selected to balance resources allocated to current and future offspring [27]. Since

imprinted genes are suggested to facilitate a tug-of-war between maternal and pa-

ternal genomes, this hypothesis predicts that imprinted genes are heavily involved

in fetal and placental growth and development throughout pregnancy [21, 27, 28].

Not surprisingly, more imprinted genes are expressed in the placenta than in any

other tissue, with several being placenta specific [29].

Although the exact mechanisms regulating imprinted regions remain unclear, the

maintenance of imprints appears to differ between embryonic and extra-embryonic

tissues [29]. This suggests that extra embryonic cell lineages, many of which make

up the placenta, may employ regulatory mechanisms involving ncRNAs that are

not observed in embryonic cell lineages. Despite the fact that much of our under-

standing of placental imprinting comes from studies in mice [29], the evidence from

human research to date suggests that many human placental abnormalities and

pregnancy complications are associated with altered imprinting involving ncRNAs.

3.5 The Imprinted H19 long Non-Coding RNA

and miR-675

H19 was one of the first lncRNAs to be discovered and is considered a key regula-

tory molecule in placental development. H19 lies within a large imprinted domain

(>1 MB), and is predominantly expressed from the maternal chromosome. H19

placental expression is largely monoallelic [30] and is one of the most highly ex-

pressed genes in the human placenta [31]. However, the functional roles of H19

are only now beginning to emerge.

H19, and the adjacent and reciprocally-imprinted IGF2 gene, make up one of the

most widely studied imprinted genomic regions in humans. Both H19 and IGF2

share many cis-regulatory elements, with the prevailing regulatory model of this

locus indicating a complex interaction of DNA methylation, CTCF binding and

enhancer competition scenarios mainly elucidated through targeted deletion and

transgenic techniques in murine models [32].

Somewhat consistent with observations in humans, studies in mice have further

demonstrated that altered imprinting of H19 is associated with placental and fe-

tal growth abnormalities [32–34]. For example, (epi)mutations in the H19-IGF2

region are associated with Silver-Russell and Beckwith-Wiedemann syndromes,
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which manifest phenotypically in utero as severe growth-restriction and over-

growth, respectively [35]. Furthermore, altered epigenetic regulation of the H19-

IGF2 region in human placentas has been associated with the pregnancy compli-

cation preeclampsia, which is attributed to abnormal placental development early

in gestation [36, 37]. Biallelic expression of H19 has been observed at higher rates

during the first trimester of pregnancy compared to term [36, 38, 39] with the early

first trimester placenta showing patterns of imprinting plasticity [30]. Together,

these studies suggest H19 plays an important regulatory role in early placental

development.

Recent work suggests that H19 is a trans regulator of an imprinted gene network

for growth and development [40] involving miRNAs hosted within the H19 tran-

script [32, 41, 42], which may account for some of H19 ’s bioactivity. Most recently,

Keniry et al. have described H19 as a developmental reservoir of miR-675 in the

mouse [43]. This study shows the miR-675 microRNA is processed from the first

exon of H19 in a developmental stage specific manner in the placenta. They also

showed that levels of miR-675 increased with gestation acting as a placental growth

suppressor [43]. Although overall H19 expression remained unchanged through-

out gestation, the RNA-binding protein Elavl1 (also known as HuR) appeared to

bind to the H19 transcript preventing excision of miR-675 early in gestation [43].

Elavl1 abundance decreased as gestation progressed, enabling miR-675 to be pro-

cessed and to act as a placental growth suppressor [43]. Although this study has

increased our knowledge of H19 function in the placenta, it may not accurately

portray the situation in humans for several reasons. Firstly, the human and mouse

H19 transcripts show notable sequence divergence. Secondly, a microarray analy-

sis by Sitras et al. found no significant difference in ELAVL1 expression between

first trimester and third trimester human placentas [44], (Figure 3.1A) which is

contrary to the observation in mice. However, as suggested by Keniry et al., the ex-

cision of miR-675 may also be regulated by additional RNA binding proteins [43].

To examine this possibility, we performed an in silico analysis of RNA binding

protein domains within the human and mouse H19 transcripts. We note that the

ELAVL1 binding sites that flank the miR-675 locus in mouse are not present in

the human transcript (Figure 3.1A). However, we observed that binding domains

flanking miR-675 existed for the RNA binding proteins NONO and YBX1 in the

human H19 transcript, and these proteins show a significant decrease in expres-

sion as gestation progresses (Figure 3.1B). These differences between mouse and

human indicate further work is required to elucidate the true extent of H19 and

miR-675 regulation and functionality in the human placenta. This would require

miR-675 expression across human gestation to be evaluated, followed by a careful

analysis of how miR-675 excision is repressed in humans. These experiments using
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human derived samples will be a fundamental step towards determining why H19

is implicated in human pregnancy complications attributed to abnormal placental

development.
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Figure 3.1: The H19 lncRNA transcript and RNA binding proteins in human and mouse. (A) Schematic representation of human and
mouse H19 transcripts indicating locations of RNA binding protein motifs. The ELAVL1 binding motifs that surround the miR-675
locus in the mouse transcript are not present in the human transcript, however binding motifs for the NONO and YBX1 proteins
are present in the human transcript. (B) Expression of genes that encode the RNA binding proteins ELAVL1, NONO and YBX1
in human first and third trimester placentas. Expression of NONO and YBX1 show a significant decrease in expression as gestation
progresses, with ELAVL1 showing no difference across gestation. Data for RNA binding protein expression differences between first
and third trimester were reported in ref. [44] and the figures were generated using normalized array data obtained from the NCBI Gene
Expression Omnibus (accession GSE28551). The RNA binding protein recognition sequences were predicted using the RNA binding
protein database [45]. Human and mouse H19 transcript sequences obtained from UCSC reference genomes hg19 and mm10 respectively.
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3.6 The Imprinted C19MC miRNA Cluster

An intriguing observation of placental-expressed miRNAs arises from the largest

known miRNA cluster discovered to date; C19MC. This cluster, located at human

chromosome 19 (19q13.42), features ∼46 miRNA genes transcribed from a ∼100kb

region. C19MC is imprinted, with only the paternally-inherited chromosome being

expressed [46, 47] predominantly, if not exclusively, in the placenta [48]. Further-

more, C19MC is unique to the primate lineage, excluding model organism research

to determine the functions of miRNAs in this cluster [48].

Transcription of C19MC miRNAs can be activated in some cells by treatment with

DNA methylation inhibitors indicating that the region is under DNA methylation

dependent epigenetic control [46, 49, 50]. Further evidence also suggests that the

C19MC miRNAs are excised from a much larger lncRNA, which is transcribed

from an RNA Pol II promoter within a CpG-rich region [46, 48]. C19MC miRNAs

are also expressed in exosomes released from primary human trophoblast cells and

are detectable in the serum of pregnant women [51], highlighting their potential

as fetal maternal signalling molecules that may modulate maternal adaptation

to pregnancy. Although the precise functional mechanisms of C19MC miRNAs

remain largely unknown, the abundance of C19MC transcripts in the placenta,

their imprinted regulation, and detection in the maternal circulation, suggest a

significant role in placental biology.

Studies of pregnancy complications attributed to abnormal placental development,

in particular those focusing on placental gene expression in preeclampsia where a

transcriptome-wide method (microarrays or high-throughput RNA sequencing) is

employed, have shown differential regulation in the placental expression of some

miRNAs in the C19MC family (Table 3.1) [52–55].

Together, these studies have identified 21 miRNAs with increased placental expres-

sion in preeclampsia and/or pre-term birth when compared to normal pregnancies,

with eight of these miRNAs showing increased expression in at least two studies

(Table 3.1). Although empirical evidence is currently lacking for the targets of

many C19MC miRNAs, miR-520g and miR-520h have been shown experimentally

to repress expression of VEGF, an angiogenic gene implicated in preeclampsia [56].

Furthermore, expression of the VEGF receptor gene, FLT1, has also shown con-

sistently higher expression in placentas from preeclamptic pregnancies [57–63].

Additionally, the cell cycle inhibitor and apoptosis associated CDKN1A (p21)

gene is a validated target of several C19MC miRNAs differentially expressed in

preeclampsia (Table 3.1), which further implicates these miRNA genes given the

links preeclampsia has with perturbed apoptosis [64].
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These results are of particular interest for several reasons, particularly with re-

spect to preeclampsia. Firstly, as the C19MC region is imprinted, increased

miRNA expression may result from loss of imprinting, and the loss of imprinting

of other placental ncRNAs such as H19 has known associations with preeclamp-

sia [36]. Secondly, C19MC allelic repression is regulated by DNA methylation

imprints [46], and alteration to DNA methylation in the placenta is also associ-

ated with preeclampsia [65]. Thirdly, at least two miRNAs in the C19MC cluster

target the VEGFA gene that is closely networked to the FLT1 gene. Fourthly,

at least three C19MC miRNAs have been shown to target the ELAVL1 gene,

which may be involved in regulating miR-675 excision from H19 transcript (see

discussion of ref. [43] above).

The differential expression of several C19MC miRNAs in the placenta is also asso-

ciated with preterm labour [66]. Preterm birth and subsequent preterm delivery

allows the investigation of placental gene expression at a much earlier time-point

than normal laboured deliveries. As such, the changes in miRNA expression may

simply reflect the changing patterns of C19MC miRNAs as gestation progresses,

and not be indicative of pathology. However, expression of C19MC miRNAs in

cells derived from matched placentas sampled during both first trimester and term

is comparable [47], suggesting the aberrant C19MC regulation in preterm birth

is not due to developmental stage differences. Together, these findings warrant

further inquiry into the biological role of the C19MC miRNAs, particularly in

identifying their regulatory potential, as this increased understanding could reveal

novel therapeutic targets.
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Table 3.1: Imprinted or X-linked miRNA differentially expressed in preeclampsia (PE) and pre-term birth (PTB) with validated
targets and potential mechanisms

Pregnancy

complication

miRNA

(cytoband)

Expression in

complication

vs. control

Experimentally validated target

genes [67, 68] detectable in the

human placenta [31] Potential roles and contributing mechanisms

PE miR-20b [54, 55,

69] (Xq26.2)

Increased ARID4B, BAMBI, CDKN1A,

CRIM1, ESR1, HIF1A, HIPK3,

MYLIP, PPARG, STAT3, VEGFA

Impairing placental function through

suppression of genes (CRIM1, HIF1A,

VEGFA) that have a role in maintaining

endothelial cell function and

angiogenesis [70–73].

Repression of genes (CDKN1A, HIPK3,

STAT3) involved in apoptosis and trophoblast

invasion [74–76].

PE miR-222 [55, 77]

(Xq11.3)

Increased BBC3, BCL2L11, CDKN1B,

CDKN1C, CORO1A, ESR1, FOS,

FOXO3, ICAM1, MMP1,

PPP2R2A, PTEN, SOD2,

SSSCA1, STAT5A, TCEAL1,

TNFSF10, TP53

Down-regulation of genes (BBC3, BCL2,

CORO1A, FOS, FOXO3, TNFSN10, TP53)

that can promote apoptosis [78–83].

Down regulation of genes (ICAM1) involved in

endothelial cell function [84].

Down regulation of genes (CDKN1B,

CDKN1C) that regulate cell cycle progression

and trophoblast differentiation [85].

Continued on next page
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Table 3.1 – continued from previous page

Pregnancy

complication

miRNA

(cytoband)

Expression in

complication

vs. control

Experimentally validated target

genes [67, 68] detectable in the

human placenta [31] Potential roles and contributing mechanisms

PE miR-223 [53, 54]

(Xq12)

Decreased CHUK, Il6, IRS1, LMO2, NFIX,

RHOB, STMN1

Up-regulation of a gene (RHOB) involved in

apoptosis signaling [86].

Up-regulation of a gene (IL6) involved with

immune response and inflammation [87].

PE miR-519b [54, 55]

(19q13.42)

Increased CDKN1A, ELAVL1 Alteration of apoptosis signals (CDKN1A) [74].

Down-regulation of ELAVL1, potentially

altering miR-675 excision from the H19

lincRNA [43].

PE miR-519e [53, 54]

(19q13.42)

Increased CDKN1A Alteration of apoptosis signals (CDKN1A) [74].

PE miR-520g [54, 55]

(19q13.42)

Increased VEGFA Impaired endothelial cell function and

angiogenesis (VEGFA) [88].

PE miR-524 [54, 69]

(19q13.42)

Increased – –

PE/PTB miR-517a [53, 66]

(19q13.42)

Increased – Regulation of apoptosis [89]

PE/PTB miR-518b [53, 54,

66, 90] (19q13.42)

Increased – –

Continued on next page
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Table 3.1 – continued from previous page

Pregnancy

complication

miRNA

(cytoband)

Expression in

complication

vs. control

Experimentally validated target

genes [67, 68] detectable in the

human placenta [31] Potential roles and contributing mechanisms

PE/PTB miR-520h [54, 90]

(19q13.42)

Increased ABCG2, CDKN1A, ID1, ID3,

SMAD6, VEGFA

Down-regulation of a gene (ABCG2 ) involved

in protecting fetal exposure to xenobiotics

ingested by the mother [91].

Alteration of apoptosis signals (CDKN1A) [74].

Impaired endothelial cell function and

angiogenesis (VEGFA) [88].

PE/PTB miR-526b [54, 66]

(19q13.42)

Increased – –
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3.7 X-Chromosome ncRNAs in Placental Devel-

opment and Pregnancy Complications

During intrauterine development, there are distinct sex differences in fetal growth

trajectories and hence in birth weight [92–94], with a sex bias in the prevalence

of preterm birth [95, 96], pregnancy complications such as preeclampsia [97, 98]

and perinatal death [99]. As fetal growth and development are highly dependent

on the exchange efficiency and capacity of the placenta, sex-specific differences in

normal and pathological fetal development are most likely due to sex differences

in placental function. Recent work has shown that there is a distinct male sex bias

in the prevalence of placental dysfunction [98], which supports the findings of pre-

vious studies [100–104] showing sex biases in a spectrum of pregnancy conditions

and fetal health associated with abnormal placentation. However, the underlying

mechanisms that predispose one sex over the other to deviate from a normal course

of fetal development remain unknown.

Since the majority of genes are autosomal, many sexually dimorphic traits are

driven by the sex-biased expression of autosomal genes [105]. For decades, much

of the scientific literature has solely attributed the influence of sex hormones to

sexual dimorphism, yet increasing evidence suggests sex chromosome genes are

also implicated in the regulation of autosomal gene expression. (for a review see

ref. [105]) While many sex specific gene expression differences have been appreci-

ated for some time, their phenotypic and clinical implications, particularly in the

placenta and in pregnancy complications, remain relatively unexplored [106–109].

3.8 X-Linked miRNAs as Potential Drivers of

Sex Differences in Placental Gene Expres-

sion

When comparing the X chromosome to the 22 autosomes, the human X chromo-

some (with 140 annotated miRNAs in miRBase [110]) appears to be enriched for

miRNA genes when considering its size and genomic content. Only chromosome 1,

which features eleven more miRNA genes than the X chromosome, is richer in

miRNA content and is ∼100MB larger in size. In contrast, the Y chromosome has

only two annotated miRNA genes in a pseudo-autosomal region, which undergoes

recombination with the X chromosome.
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The observation that X chromosomes have high miRNA gene content highlights

the potential of X-linked miRNAs to contribute to sex-biased autosomal gene ex-

pression. As X-linked miRNAs can potentially target multiple autosomal genes,

sex-biased expression of X linked miRNAs could trigger cascade-like effects, po-

tentially driving sex-biased expression of many autosomal genes.85 Additionally,

∼35 X-linked miRNAs are located within introns of protein-coding genes which are

likely to share transcriptional elements with their host genes, potentially resulting

in co-regulation. For example, the X-linked gene CHM which hosts miR-361 is

known to escape X chromosome inactivation (XCI), which could therefore lead to

sex-biased expression of miR-361, and through autosomal gene targeting result in

sex biased expression of autosomal genes.

3.9 Previous Studies Provide Few Clues to

Which miRNAs Escape XCI

Although X-linked miRNAs are potential drivers of sex differences in placental

development and function, there is little evidence to suggest which, if any, of these

miRNAs actually escape XCI, leading to biallelic (and potentially increased) ex-

pression in females. The inactivation of X chromosomes in human extra-embryonic

tissues has been a topic of continual research over the past three decades, although

the status and extent of XCI in the human placenta remains controversial. Most

early studies focused on allele-specific expression from the G6PD (Xq28) locus

to determine if the X chromosome was randomly inactivated or skewed towards

paternal or maternal XCI, and showed that XCI varies notably across samples,

with patterns of random and skewed X-inactivation [111–115]. In later attempts

to clarify the status of XCI in the human placenta, research shifted to different

loci, again showing mixed results of skewed and random XCI [116–121]. Taken

together, these results suggest a high degree of XCI heterogeneity in the extra-

embryonic tissues of female fetuses. Although only assessing genes on the q-arm

of the X chromosome, these studies suggest that when XCI deviates from random,

it is the paternal X chromosome that is most often inactivated.

What has become increasingly apparent over the past decade however, is that

multiple X chromosome regions escape inactivation, and that these extend beyond

chromosomal regions with Y chromosome homologues [106, 122]. As the results

of any XCI assay are dependent on the loci under investigation, it now appears

spurious to infer the regulation of a whole chromosome (or region) based on the

assessment of one or two X chromosome loci. In an attempt to widen the scope of
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our understanding of XCI in the human placenta, recent work has demonstrated

allele-specific expression profiles of 22 genes spread across the X chromosome [123].

The results of this most comprehensive placental study to date suggest that XCI

in the human placenta is random, with localised mosaic patterns of maternal and

paternal XCI [123]. However, given the number of samples and the methodological

limitations [124–126], placental XCI studies still lack the depth of XCI research

conducted using other human tissues. Subsequently, we have very little indication

of what ncRNAs, particularly miRNAs, escape XCI and potentially contribute to

sex-biased placental gene in normal and complicated pregnancies.

3.10 X-Linked miRNAs Associated with

Preeclampsia

Recent studies have shown many X chromosome miRNAs that occur in clus-

ters are differentially regulated in placentas from preeclamptic pregnancies (Fig-

ure 3.2). When summarising the results of these studies, increased expression of

miR-20b [54, 55, 69] and miR-222 [55, 77] and decreased expression of miR-223 [53,

54] is supported by two or more studies. Of particular interest, these miRNA have

been shown experimentally to target multiple genes involved in processes such as

apoptosis, angiogenesis and immune response (Table 3.1), all of which are impli-

cated in the pathogenesis of preeclampsia [64, 70, 127].

There is also evidence implicating the miRNA cluster at Xq26.3 which flanks the

placenta-specific PLAG1 gene. This cluster contains six miRNAs, four of which

(miR-424, miR-542, miR-450a-1 and miR-450b) have been shown to be differen-

tially regulated in placentas from preeclamptic pregnancies [52–55]. Curiously,

at the individual miRNA level, miR-424 is up-regulated in preeclampsia, while

miR-542 and miR-450b are down-regulated, and for miR-450a-1 the data are con-

flicting [53, 55]. miR-424 is an interesting case since it overlaps the transcription

start site of MGC16121, a lincRNA that is virtually unstudied. Additionally, miR-

424 is a hypoxia-induced regulator of HIF1A and involved in angiogenesis [128],

highlighting its potential role in preeclampsia.

Although many of these miRNAs are in close proximity to genes shown to escape

XCI (Figure 3.2), sample sex information would be required to determine if these

X-linked miRNA expression differences are indeed sex related and resulting from

differential X chromosome epigenetic regulation. However tenuous the link be-

tween XCI and expression differences in preeclampsia, the preliminary evidence

discussed here justifies further investigation. Future work focused on delineating
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the boundaries of XCI in the human placenta and validating the targets of miR-

NAs that escape XCI may provide clues to the mechanisms giving rise to sex-biases

in placental development and the downstream implications for adverse pregnancy

outcomes such as preeclampsia.
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Locus of genes known to escape X inactivation Locus of miRNAs differentially regulated in preeclampsia

Figure 3.2: Idiogram representation of the human X chromosome showing the X-linked miRNAs associated with preeclampsia (red)
occur in clusters in close proximity of genes that escape X inactivation (blue). The data for miRNAs showing altered expression in
preeclampsia were derived from refs. [52–55, 77, 129] and the data for genes that escape inactivation were adapted from ref. [106] with
genomic coordinates converted to hg19 coordinates using the UCSC liftOver tool.
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3.11 Conclusions

Non-coding RNAs are increasingly implicated in many developmental and patho-

logical processes; placental development is no exception. Although much research

points towards the central role of ncRNAs in placental development and function,

large gaps in our knowledge remain. In particular, the ncRNAs under epigenetic

regulatory control through mechanisms such as XCI of genomic imprinting appear

to be influential players. However, many questions remain regarding the functional

actions of these transcripts and whether their change in expression in associated

pregnancy complications is a cause or consequence. In either case, increasing our

understanding of the epigenetically regulated ncRNAs in normal placental devel-

opment is essential if these perplexing molecules are ever to be used as diagnostic

or predictive biomarkers.

Acknowledgements

SB is supported by a Healthy Development Adelaide & Channel 7 Children’s Re-

search Foundation PhD Scholarship and an Australian Postgraduate Award. TB-

M is supported by the Cancer Council SA and SAHMRI Beat Cancer Project

(TBM APP1030945). CTR is supported by a National Health and Medical

Research Council (NHMRC) Senior Research Fellowship APP1020749. The

research described herein was funded by NHMRC Research Project #565320

(http://www.nhmrc.gov.au/). The funders had no role in study design, data

collection and analysis, decision to publish, or preparation of the manuscript.

http://www.nhmrc.gov.au/


Bibliography

[1] Murray, M. J. and Lessey, B. A. Embryo implantation and tumor metas-

tasis: common pathways of invasion and angiogenesis. Semin Reprod En-

docrinol, 17(3) (1999), pp. 275–90.

[2] Graham, C. H. and Lala, P. K. Mechanisms of placental invasion of the

uterus and their control. Biochem Cell Biol, 70(10-11) (1992), pp. 867–74.

[3] Lyall, F. The human placental bed revisited. Placenta, 23(8-9) (2002),

pp. 555–62.

[4] Roberts, C. IFPA Award in Placentology Lecture: Complicated interactions

between genes and the environment in placentation, pregnancy outcome

and long term health. Placenta, 31 Suppl (2010), S47–53.

[5] Khong, T. Y., De Wolf, F., Robertson, W. B., and Brosens, I. Inadequate

maternal vascular response to placentation in pregnancies complicated by

pre-eclampsia and by small-for-gestational age infants. BJOG: An Interna-

tional Journal of Obstetrics & Gynaecology, 93(10) (1986), pp. 1049–1059.

[6] Kim, Y. M., Bujold, E., Chaiworapongsa, T., Gomez, R., Yoon, B. H.,

Thaler, H. T., Rotmensch, S., and Romero, R. Failure of physiologic trans-

formation of the spiral arteries in patients with preterm labor and intact

membranes. American Journal of Obstetrics and Gynecology, 189(4) (2003),

pp. 1063–1069.

[7] Kim, Y. M., Chaiworapongsa, T., Gomez, R., Bujold, E., Yoon, B. H.,

Rotmensch, S., Thaler, H. T., and Romero, R. Failure of physiologic trans-

formation of the spiral arteries in the placental bed in preterm premature

rupture of membranes. American Journal of Obstetrics and Gynecology,

187(5) (2002), pp. 1137–1142.

[8] Rinkenberger, J. L., Cross, J. C., and Werb, Z. Molecular genetics of im-

plantation in the mouse. Developmental genetics, 21(1) (1997), pp. 6–20.

68



Chapter 3. Non-coding RNAs as regulators of placental function 69

[9] Zhou, Y., Genbacev, O., Damsky, C. H., and Fisher, S. J. Oxygen regu-

lates human cytotrophoblast differentiation and invasion: implications for

endovascular invasion in normal pregnancy and in pre-eclampsia. Journal

of Reproductive Immunology, 39(1-2) (1998), pp. 197–213.

[10] Mattick, J. S. and Makunin, I. V. Non-coding RNA. Hum Mol Genet, 15

Spec No 1 (2006), R17–29.

[11] Mercer, T. R., Dinger, M. E., and Mattick, J. S. Long non-coding RNAs:

insights into functions. Nat Rev Genet, 10(3) (2009), pp. 155–9.

[12] Kapranov, P., St Laurent, G., Raz, T., Ozsolak, F., Reynolds, C. P.,

Sorensen, P. H., Reaman, G., Milos, P., Arceci, R. J., Thompson, J. F., and

Triche, T. J. The majority of total nuclear-encoded non-ribosomal RNA in

a human cell is ’dark matter’ un-annotated RNA. BMC Biol, 8 (2010),

p. 149.

[13] Mattick, J. S. Challenging the dogma: the hidden layer of non-protein-

coding RNAs in complex organisms. Bioessays, 25(10) (2003), pp. 930–9.

[14] Moran, V. A., Perera, R. J., and Khalil, A. M. Emerging functional and

mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids

Res, 40(14) (2012), pp. 6391–400.

[15] Frankish, A., Mudge, J. M., Thomas, M., and Harrow, J. The importance of

identifying alternative splicing in vertebrate genome annotation. Database

(Oxford), 2012 (2012), bas014.

[16] Mercer, T. R., Gerhardt, D. J., Dinger, M. E., Crawford, J., Trapnell, C.,

Jeddeloh, J. A., Mattick, J. S., and Rinn, J. L. Targeted RNA sequencing

reveals the deep complexity of the human transcriptome. Nat Biotechnol,

30(1) (2012), pp. 99–104.

[17] Fowden, A. L., Coan, P. M., Angiolini, E., Burton, G. J., and Constancia,

M. Imprinted genes and the epigenetic regulation of placental phenotype.

Prog Biophys Mol Biol, 106(1) (2011), pp. 281–8.

[18] Frost, J. M. and Moore, G. E. The importance of imprinting in the human

placenta. PLoS Genet, 6(7) (2010), e1001015.

[19] Bressan, F. F., De Bem, T. H., Perecin, F., Lopes, F. L., Ambrosio, C. E.,

Meirelles, F. V., and Miglino, M. A. Unearthing the roles of imprinted genes

in the placenta. Placenta, 30(10) (2009), pp. 823–34.

[20] Ferguson-Smith, A. C. and Surani, M. A. Imprinting and the epigenetic

asymmetry between parental genomes. Science, 293(5532) (2001), pp. 1086–

9.



Chapter 3. Non-coding RNAs as regulators of placental function 70

[21] Reik, W. and Walter, J. Genomic imprinting: parental influence on the

genome. Nat. Rev. Genet., 21(1) (2001), pp. 21–32.

[22] Koerner, M. V., Pauler, F. M., Huang, R., and Barlow, D. P. The function

of non-coding RNAs in genomic imprinting. Development, 136(11) (2009),

pp. 1771–83.

[23] Constancia, M., Pickard, B., Kelsey, G., and Reik, W. Imprinting mecha-

nisms. Genome Res, 8(9) (1998), pp. 881–900.

[24] Kacem, S. and Feil, R. Chromatin mechanisms in genomic imprinting.

Mamm Genome, 20(9-10) (2009), pp. 544–56.

[25] Koerner, M. V. and Barlow, D. P. Genomic imprinting-an epigenetic gene-

regulatory model. Curr Opin Genet Dev, 20(2) (2010), pp. 164–70.

[26] Monk, D., Arnaud, P., Apostolidou, S., Hills, F. A., Kelsey, G., Stanier, P.,

Feil, R., and Moore, G. E. Limited evolutionary conservation of imprinting

in the human placenta. In: Proc. Natl. Acad. Sci., vol. 103. 2006, pp. 6623–

6628.

[27] Haig, D. Altercation of generations: genetic conflicts of pregnancy. Am J

Reprod Immunol, 35(3) (1996), pp. 226–232.

[28] Haig, D. Genetic Conflicts in Human Pregnancy. Q Rev. Biol., 68 (1993),

pp. 495–532.

[29] Wagschal, A. and Feil, R. Genomic imprinting in the placenta. Cytogenet

Genome Res, 113(1-4) (2006), pp. 90–8.

[30] Buckberry, S., Bianco-Miotto, T., Hiendleder, S., and Roberts, C. T. Quan-

titative allele-specific expression and DNA methylation analysis of H19,

IGF2 and IGF2R in the human placenta across gestation reveals H19 im-

printing plasticity. PLoS One, 7(12) (2012), e51210.

[31] Kim, J., Zhao, K., Jiang, P., Lu, Z., Wang, J., Murray, J. C., and Xing,

Y. Transcriptome landscape of the human placenta. BMC Genomics, 13

(2012), p. 115.

[32] Gabory, A., Ripoche, M., Yoshimizu, T., and Dandolo, L. The H19 gene:

regulation and function of a non-coding RNA. Cytogenet. Genome Res.,

113 (2006), pp. 188–193.

[33] Lau, M. M., Stewart, C. E., Liu, Z., Bhatt, H., Rotwein, P., and Stewart,

C. L. Loss of the imprinted IGF2/cation-independent mannose 6-phosphate

receptor results in fetal overgrowth and perinatal lethality. Genes Dev,

8(24) (1994), pp. 2953–63.



Chapter 3. Non-coding RNAs as regulators of placental function 71

[34] Constancia, M., Hemberger, M., Hughes, J., Dean, W., Ferguson-Smith,

A., Fundele, R., Stewart, F., Kelsey, G., Fowden, A., Sibley, C., and Reik,

W. Placental-specific IGF-II is a major modulator of placental and fetal

growth. Nature, 417(6892) (2002), pp. 945–948.

[35] Hirasawa, R. and Feil, R. Genomic imprinting and human disease. Essays

Biochem, 48(1) (2010), pp. 187–200.

[36] Yu, L., Chen, M., Zhao, D., Yi, P., Lu, L., Han, J., Zheng, X., Zhou, Y.,

and Li, L. The H19 gene imprinting in normal pregnancy and pre-eclampsia.

Placenta, 30(5) (2009), pp. 443–7.

[37] Gao, W. L., Li, D., Xiao, Z. X., Liao, Q. P., Yang, H. X., Li, Y. X., Ji,

L., and Wang, Y. L. Detection of global DNA methylation and paternally

imprinted H19 gene methylation in preeclamptic placentas. Hypertens Res,

34(5) (2011), pp. 655–61.

[38] Pozharny, Y., Lambertini, L., Ma, Y., Ferrara, L., Litton, C. G., Diplas, A.,

Jacobs, A. R., Chen, J., Stone, J. L., Wetmur, J., and Lee, M. J. Genomic

loss of imprinting in first-trimester human placenta. Am. J. Obstet. Gynecol,

202(4) (2010), pp. 391–398.

[39] Jinno, Y., Ikeda, Y., Yun, K., Maw, M., Masuzaki, H., Fukuda, H., Inuzuka,

K., Fujishita, A., Ohtani, Y., and Okimoto, T. Establishment of functional

imprinting of the H19 gene in human developing placentae. Nat Genet,

10(3) (1995), pp. 318–324.

[40] Gabory, A., Jammes, H., and Dandolo, L. The H19 locus: role of an im-

printed non-coding RNA in growth and development. Bioessays, 32(6)

(2010), pp. 473–80.

[41] Cai, X. and Cullen, B. R. The imprinted H19 noncoding RNA is a primary

microRNA precursor. RNA, 13(3) (2007), pp. 313–6.

[42] Steck, E., Boeuf, S., Gabler, J., Werth, N., Schnatzer, P., Diederichs, S.,

and Richter, W. Regulation of H19 and its encoded microRNA-675 in os-

teoarthritis and under anabolic and catabolic in vitro conditions. J Mol

Med (Berl), 90(10) (2012), pp. 1185–95.

[43] Keniry, A., Oxley, D., Monnier, P., Kyba, M., Dandolo, L., Smits, G., and

Reik, W. The H19 lincRNA is a developmental reservoir of miR-675 that

suppresses growth and Igf1r. Nat Cell Biol, 14(7) (2012), pp. 659–65.

[44] Sitras, V., Fenton, C., Paulssen, R., V̊artun, A., and Acharya, G. Differences

in Gene Expression between First and Third Trimester Human Placenta:

A Microarray Study. PLoS ONE, 7 (2012), e33294.



Chapter 3. Non-coding RNAs as regulators of placental function 72

[45] Cook, K. B., Kazan, H., Zuberi, K., Morris, Q., and Hughes, T. R. RBPDB:

a database of RNA-binding specificities. Nucleic Acids Res, 39(Database

issue) (2011), pp. D301–8.

[46] Noguer-Dance, M., Abu-Amero, S., Al-Khtib, M., Lefevre, A., Coullin, P.,

Moore, G. E., and Cavaille, J. The primate-specific microRNA gene cluster

(C19MC) is imprinted in the placenta. Hum Mol Genet, 19(18) (2010),

pp. 3566–82.

[47] Flor, I., Neumann, A., Freter, C., Helmke, B. M., Langenbuch, M., Rippe,

V., and Bullerdiek, J. Abundant expression and hemimethylation of C19MC

in cell cultures from placenta-derived stromal cells. Biochem Biophys Res

Commun, 422(3) (2012), pp. 411–6.

[48] Bortolin-Cavaille, M. L., Dance, M., Weber, M., and Cavaille, J. C19MC

microRNAs are processed from introns of large Pol-II, non-protein-coding

transcripts. Nucleic Acids Res, 37(10) (2009), pp. 3464–73.

[49] Saito, Y., Suzuki, H., Tsugawa, H., Nakagawa, I., Matsuzaki, J., Kanai,

Y., and Hibi, T. Chromatin remodeling at Alu repeats by epigenetic treat-

ment activates silenced microRNA-512-5p with downregulation of Mcl-1 in

human gastric cancer cells. Oncogene, 28(30) (2009), pp. 2738–44.

[50] Tsai, K. W., Kao, H. W., Chen, H. C., Chen, S. J., and Lin, W. C. Epi-

genetic control of the expression of a primate-specific microRNA cluster in

human cancer cells. Epigenetics, 4(8) (2009), pp. 587–92.

[51] Donker, R. B., Mouillet, J. F., Chu, T., Hubel, C. A., Stolz, D. B., Morelli,

A. E., and Sadovsky, Y. The expression profile of C19MC microRNAs in

primary human trophoblast cells and exosomes. Mol Hum Reprod, 18(8)

(2012), pp. 417–24.

[52] Enquobahrie, D. A., Abetew, D. F., Sorensen, T. K., Willoughby, D., Chi-

dambaram, K., and Williams, M. A. Placental microRNA expression in

pregnancies complicated by preeclampsia. Am J Obstet Gynecol, 204(2)

(2011), pages.

[53] Zhu, X. M., Han, T., Sargent, I. L., Yin, G. W., and Yao, Y. Q. Differential

expression profile of microRNAs in human placentas from preeclamptic

pregnancies vs normal pregnancies. Am J Obstet Gynecol, 200(6) (2009),

pages.



Chapter 3. Non-coding RNAs as regulators of placental function 73

[54] Ishibashi, O., Ohkuchi, A., Ali, M. M., Kurashina, R., Luo, S. S., Ishikawa,

T., Takizawa, T., Hirashima, C., Takahashi, K., Migita, M., Ishikawa, G.,

Yoneyama, K., Asakura, H., Izumi, A., Matsubara, S., Takeshita, T., and

Takizawa, T. Hydroxysteroid (17-beta) dehydrogenase 1 is dysregulated

by miR-210 and miR-518c that are aberrantly expressed in preeclamptic

placentas: a novel marker for predicting preeclampsia. Hypertension, 59(2)

(2012), pp. 265–73.

[55] Hu, Y., Li, P., Hao, S., Liu, L., Zhao, J., and Hou, Y. Differential ex-

pression of microRNAs in the placentae of Chinese patients with severe

pre-eclampsia. Clin Chem Lab Med, 47(8) (2009), pp. 923–9.

[56] Ye, W., Lv, Q., Wong, C. K., Hu, S., Fu, C., Hua, Z., Cai, G., Li, G.,

Yang, B. B., and Zhang, Y. The effect of central loops in miRNA:MRE

duplexes on the efficiency of miRNA-mediated gene regulation. PLoS One,

3(3) (2008), e1719.

[57] Enquobahrie, D. A., Meller, M., Rice, K., Psaty, B. M., Siscovick, D. S.,

and Williams, M. A. Differential placental gene expression in preeclampsia.

Am J Obstet Gynecol, 199(5) (2008), pages.

[58] McCarthy, C., Cotter, F. E., McElwaine, S., Twomey, A., Mooney, E. E.,

Ryan, F., and Vaughan, J. Altered gene expression patterns in intrauterine

growth restriction: potential role of hypoxia. Am J Obstet Gynecol, 196(1)

(2007), pages.

[59] Nishizawa, H., Pryor-Koishi, K., Kato, T., Kowa, H., Kurahashi, H., and

Udagawa, Y. Microarray analysis of differentially expressed fetal genes in

placental tissue derived from early and late onset severe pre-eclampsia.

Placenta, 28(5-6) (2007), pp. 487–97.

[60] Winn, V. D., Gormley, M., Paquet, A. C., Kjaer-Sorensen, K., Kramer,

A., Rumer, K. K., Haimov-Kochman, R., Yeh, R. F., Overgaard, M. T.,

Varki, A., Oxvig, C., and Fisher, S. J. Severe preeclampsia-related changes

in gene expression at the maternal-fetal interface include sialic acid-

binding immunoglobulin-like lectin-6 and pappalysin-2. Endocrinology,

150(1) (2009), pp. 452–62.

[61] Jarvenpaa, J., Vuoristo, J. T., Savolainen, E. R., Ukkola, O., Vaskivuo,

T., and Ryynanen, M. Altered expression of angiogenesis-related placen-

tal genes in pre-eclampsia associated with intrauterine growth restriction.

Gynecol Endocrinol, 23(6) (2007), pp. 351–5.

[62] Sitras, V., Paulssen, R., Leirvik, J., V̊artun, A., and Acharya, G. Placental

gene expression profile in intrauterine growth restriction due to placental

insufficiency. Reprod Sci, 16 (2009), pp. 701–711.



Chapter 3. Non-coding RNAs as regulators of placental function 74

[63] Meng, T., Chen, H., Sun, M., Wang, H., Zhao, G., and Wang, X. Identifica-

tion of differential gene expression profiles in placentas from preeclamptic

pregnancies versus normal pregnancies by DNA microarrays. OMICS, 16(6)

(2012), pp. 301–11.

[64] Levy, R. The role of apoptosis in preeclampsia. The Israel Medical Associ-

ation journal: IMAJ, 7(3) (2005), pp. 178–81.

[65] Novakovic, B. and Saffery, R. The ever growing complexity of placental

epigenetics - role in adverse pregnancy outcomes and fetal programming.

Placenta, 33(12) (2012), pp. 959–70.

[66] Mayor-Lynn, K., Toloubeydokhti, T., Cruz, A. C., and Chegini, N. Ex-

pression profile of microRNAs and mRNAs in human placentas from preg-

nancies complicated by preeclampsia and preterm labor. Reprod Sci, 18(1)

(2011), pp. 46–56.

[67] Papadopoulos, G. L., Reczko, M., Simossis, V. A., Sethupathy, P., and

Hatzigeorgiou, A. G. The database of experimentally supported targets: a

functional update of TarBase. Nucleic acids research, 37(Database issue)

(2009), pp. D155–8.

[68] Hsu, S. D., Lin, F. M., Wu, W. Y., Liang, C., Huang, W. C., Chan, W. L.,

Tsai, W. T., Chen, G. Z., Lee, C. J., Chiu, C. M., Chien, C. H., Wu,

M. C., Huang, C. Y., Tsou, A. P., and Huang, H. D. miRTarBase: a

database curates experimentally validated microRNA-target interactions.

Nucleic Acids Research, 39(Database issue) (2011), pp. D163–9.

[69] Wang, W., Feng, L., Zhang, H., Hachy, S., Satohisa, S., Laurent, L. C.,

Parast, M., Zheng, J., and Chen, D. B. Preeclampsia up-regulates

angiogenesis-associated microRNA (i.e., miR-17, -20a, and -20b) that tar-

get ephrin-B2 and EPHB4 in human placenta. J Clin Endocrinol Metab,

97(6) (2012), E1051–9.

[70] Andraweera, P., Dekker, G., Thompson, S., and Roberts, C. Single-

nucleotide polymorphisms in the KDR gene in pregnancies complicated

by gestational hypertensive disorders and small-for-gestational-age infants.

Reprod Sci, 19 (2012), pp. 547–554.

[71] Glienke, J., Sturz, A., Menrad, A., and Thierauch, K. H. CRIM1 is involved

in endothelial cell capillary formation in vitro and is expressed in blood

vessels in vivo. Mechanisms of development, 119(2) (2002), pp. 165–75.

[72] Pugh, C. W. and Ratcliffe, P. J. Regulation of angiogenesis by hypoxia:

role of the HIF system. Nature medicine, 9(6) (2003), pp. 677–84.



Chapter 3. Non-coding RNAs as regulators of placental function 75

[73] Pringle, K. G., Kind, K. L., Sferruzzi-Perri, A. N., Thompson, J. G., and

Roberts, C. T. Beyond oxygen: complex regulation and activity of hypoxia

inducible factors in pregnancy. Human reproduction update, 16(4) (2010),

pp. 415–31.

[74] Cazzalini, O., Scovassi, A. I., Savio, M., Stivala, L. A., and Prosperi, E.

Multiple roles of the cell cycle inhibitor p21(CDKN1A) in the DNA damage

response. Mutation Research, 704(1-3) (2010), pp. 12–20.

[75] Curtin, J. F. and Cotter, T. G. Live and let die: regulatory mechanisms in

Fas-mediated apoptosis. Cellular Signalling, 15(11) (2003), pp. 983–92.

[76] Poehlmann, T. G., Fitzgerald, J. S., Meissner, A., Wengenmayer, T.,

Schleussner, E., Friedrich, K., and Markert, U. R. Trophoblast invasion:

tuning through LIF, signalling via Stat3. Placenta, 26 Suppl A (2005),

S37–41.

[77] PengFei, L., YaLi, H., Sha, H., Liu, L., JunLi, Z., and YaYi, H. The expres-

sion of microRNA in placenca from severe preeclampsia patients. Chinese

Journal of Practical Gynecology and Obstetrics, 25 (2009), pp. 911–14.

[78] Thomadaki, H. and Scorilas, A. BCL2 family of apoptosis-related genes:

functions and clinical implications in cancer. Critical Reviews in Clinical

Laboratory Sciences, 43(1) (2006), pp. 1–67.

[79] Chan, K. T., Creed, S. J., and Bear, J. E. Unraveling the enigma: progress

towards understanding the coronin family of actin regulators. Trends in

Cell biology, 21(8) (2011), pp. 481–8.

[80] Preston, G. A., Lyon, T. T., Yin, Y., Lang, J. E., Solomon, G., Annab, L.,

Srinivasan, D. G., Alcorta, D. A., and Barrett, J. C. Induction of apoptosis

by c-Fos protein. Molecular and cellular biology, 16(1) (1996), pp. 211–8.

[81] Urbich, C., Knau, A., Fichtlscherer, S., Walter, D. H., Bruhl, T., Potente,

M., Hofmann, W. K., Vos, S. de, Zeiher, A. M., and Dimmeler, S. FOXO-

dependent expression of the proapoptotic protein Bim: pivotal role for apop-

tosis signaling in endothelial progenitor cells. FASEB journal: official pub-

lication of the Federation of American Societies for Experimental Biology,

19(8) (2005), pp. 974–6.

[82] Gonzalvez, F. and Ashkenazi, A. New insights into apoptosis signaling by

Apo2L/TRAIL. Oncogene, 29(34) (2010), pp. 4752–65.

[83] Halperin, R., Peller, S., Sandbank, J., Bukovsky, I., and Schneider, D. Ex-

pression of the p53 gene and apoptosis in gestational trophoblastic disease.

Placenta, 21(1) (2000), pp. 58–62.



Chapter 3. Non-coding RNAs as regulators of placental function 76

[84] Dye, J. F., Jablenska, R., Donnelly, J. L., Lawrence, L., Leach, L., Clark, P.,

and Firth, J. A. Phenotype of the endothelium in the human term placenta.

Placenta, 22(1) (2001), pp. 32–43.

[85] Ullah, Z., Kohn, M. J., Yagi, R., Vassilev, L. T., and DePamphilis, M. L.

Differentiation of trophoblast stem cells into giant cells is triggered by

p57/Kip2 inhibition of CDK1 activity. Genes & development, 22(21) (2008),

pp. 3024–36.

[86] Prendergast, G. C. Actin’ up: RhoB in cancer and apoptosis. Nature re-

views. Cancer, 1(2) (2001), pp. 162–8.

[87] Akira, S., Hirano, T., Taga, T., and Kishimoto, T. Biology of multifunc-

tional cytokines: IL 6 and related molecules (IL 1 and TNF). FASEB Jour-

nal, 4(11) (1990). Official publication of the Federation of American Soci-

eties for Experimental Biology, pp. 2860–7.

[88] Andraweera, P. H., Dekker, G. A., and Roberts, C. T. The vascular en-

dothelial growth factor family in adverse pregnancy outcomes. Human Re-

production Update, 18 (2012), pp. 436–457.

[89] Yoshitomi, T., Kawakami, K., Enokida, H., Chiyomaru, T., Kagara, I.,

Tatarano, S., Yoshino, H., Arimura, H., Nishiyama, K., Seki, N., and Nak-

agawa, M. Restoration of miR-517a expression induces cell apoptosis in

bladder cancer cell lines. Oncology Reports, 25(6) (2011), pp. 1661–8.

[90] Montenegro, D., Romero, R., Kim, S. S., Tarca, A. L., Draghici, S., Ku-

sanovic, J. P., Kim, J. S., Lee, D. C., Erez, O., Gotsch, F., Hassan, S. S.,

and Kim, C. J. Expression patterns of microRNAs in the chorioamniotic

membranes: a role for microRNAs in human pregnancy and parturition. J

Pathol, 217(1) (2009), pp. 113–21.

[91] Kolwankar, D., Glover, D. D., Ware, J. A., and Tracy, T. S. Expression and

function of ABCB1 and ABCG2 in human placental tissue. Drug Metabol

Dispos, 33(4) (2005), pp. 524–9.

[92] Crawford, M. A., Doyle, W., and Meadows, N. Gender differences at birth

and differences in fetal growth. Hum Reprod, 2(6) (1987), pp. 517–20.

[93] Bertino, E., Coscia, A., Boni, L., Rossi, C., Martano, C., Giuliani, F., Fab-

ris, C., Spada, E., Zolin, A., and Milani, S. Weight growth velocity of very

low birth weight infants: role of gender, gestational age and major morbidi-

ties. Early Hum Dev, 85(6) (2009), pp. 339–47.

[94] de Onis, M., Siyam, A., Borghi, E., Onyango, A. W., Piwoz, E., and Garza,

C. Comparison of the World Health Organization growth velocity standards

with existing US reference data. Pediatrics, 128(1) (2011), e18–26.



Chapter 3. Non-coding RNAs as regulators of placental function 77

[95] Brettell, R., Yeh, P. S., and Impey, L. W. Examination of the association

between male gender and preterm delivery. Eur J Obstet Gynecol Reprod

Biol, 141(2) (2008), pp. 123–6.

[96] Ingemarsson, I. Gender aspects of preterm birth. British Journal of Obstet-

rics and Gynaecology, 110 (2003), pp. 34–38.

[97] Elsmen, E., Kallen, K., Marsal, K., and Hellstrom-Westas, L. Fetal gender

and gestational-age-related incidence of pre-eclampsia. Acta Obstet Gynecol

Scand, 85(11) (2006), pp. 1285–91.

[98] Murji, A., Proctor, L. K., Paterson, A. D., Chitayat, D., Weksberg, R.,

and Kingdom, J. Male sex bias in placental dysfunction. Am J Med Genet,

158A (2012), pp. 779–783.

[99] Vatten, L. J. and Skjaerven, R. Offspring sex and pregnancy outcome by

length of gestation. Early Hum Dev, 76(1) (2004), pp. 47–54.

[100] Clifton, V. L. Review: Sex and the human placenta: mediating differential

strategies of fetal growth and survival. Placenta, 31 Suppl (2010), S33–9.

[101] Hodyl, N. A., Wyper, H., Osei-Kumah, A., Scott, N., Murphy, V. E., Gib-

son, P., Smith, R., and Clifton, V. L. Sex-specific associations between

cortisol and birth weight in pregnancies complicated by asthma are not

due to differential glucocorticoid receptor expression. Thorax, 65(8) (2010),

pp. 677–83.

[102] Di Renzo, G. C., Rosati, A., Sarti, R. D., Cruciani, L., and Cutuli, A. M.

Does fetal sex affect pregnancy outcome? Gend Med, 4(1) (2007), pp. 19–

30.

[103] Edwards, A., Megens, A., Peek, M., and Wallace, E. M. Sexual origins of

placental dysfunction. Lancet, 355(9199) (2000), pp. 203–4.

[104] Ghidini, A. and Salafia, C. M. Gender differences of placental dysfunction

in severe prematurity. BJOG, 112(2) (2005), pp. 140–4.

[105] Wijchers, P. J. and Festenstein, R. J. Epigenetic regulation of autosomal

gene expression by sex chromosomes. Trends Genet, 27(4) (2011), pp. 132–

40.

[106] Carrel, L. and Willard, H. F. X-inactivation profile reveals extensive vari-

ability in X-linked gene expression in females. Nature, 434(7031) (2005),

pp. 400–404.

[107] Ober, C., Loisel, D. A., and Gilad, Y. Sex-specific genetic architecture of

human disease. Nat Rev Genet, 9(12) (2008), pp. 911–22.

[108] Graves, J. A. Review: Sex chromosome evolution and the expression of

sex-specific genes in the placenta. Placenta, 31 Suppl (2010), S27–32.



Chapter 3. Non-coding RNAs as regulators of placental function 78

[109] Arnold, A. P. and Lusis, A. J. Understanding the sexome: measuring and

reporting sex differences in gene systems. Endocrinology, 153(6) (2012),

pp. 2551–5.

[110] Kozomara, A. and Griffiths-Jones, S. miRBase: integrating microRNA an-

notation and deep-sequencing data. Nucleic Acids Res, 39(Database issue)

(2011), pp. D152–7.

[111] Ropers, H. H., Wolff, G., and Hitzeroth, H. W. Preferential X inactivation

in human placenta membranes: is the paternal X inactive in early embryonic

development of female mammals? Hum Genet, 43(3) (1978), pp. 265–73.

[112] Migeon, B. R. and Do, T. T. In search of non-random X inactivation: studies

of fetal membranes heterozygous for glucose-6-phosphate dehydrogenase.

Am J Hum Genet, 31(5) (1979), pp. 581–5.

[113] Harrison, K. B. and Warburton, D. Preferential X-chromosome activity

in human female placental tissues. Cytogenet Cell Genet, 41(3) (1986),

pp. 163–8.

[114] Harrison, K. B. X-chromosome inactivation in the human cytotrophoblast.

Cytogenet Cell Genet, 52(1-2) (1989), pp. 37–41.

[115] Mohandas, T. K., Passage, M. B., Williams J. W., 3., Sparkes, R. S., Yen,

P. H., and Shapiro, L. J. X-chromosome inactivation in cultured cells from

human chorionic villi. Somat Cell Mol Genet, 15(2) (1989), pp. 131–6.

[116] Goto, T., Wright, E., and Monk, M. Paternal X-chromosome inactivation

in human trophoblastic cells. Mol Hum Reprod, 3(1) (1997), pp. 77–80.

[117] Looijenga, L. H., Gillis, A. J., Verkerk, A. J., Putten, W. L. van, and Oost-

erhuis, J. W. Heterogeneous X inactivation in trophoblastic cells of human

full-term female placentas. Am J Hum Genet, 64(5) (1999), pp. 1445–52.

[118] Zeng, S. M. and Yankowitz, J. X-inactivation patterns in human embryonic

and extra-embryonic tissues. Placenta, 24(2-3) (2003), pp. 270–5.

[119] Willemsen, R., Bontekoe, C. J., Severijnen, L. A., and Oostra, B. A. Timing

of the absence of FMR1 expression in full mutation chorionic villi. Hum

Genet, 110(6) (2002), pp. 601–5.

[120] Dhara, S. K. and Benvenisty, N. Gene trap as a tool for genome annotation

and analysis of X chromosome inactivation in human embryonic stem cells.

Nucleic Acids Res, 32(13) (2004), pp. 3995–4002.

[121] Uehara, S., Tamura, M., Nata, M., Ji, G., Yaegashi, N., Okamura, K., and

Yajima, A. X-chromosome inactivation in the human trophoblast of early

pregnancy. J Hum Genet, 45(3) (2000), pp. 119–26.



Chapter 3. Non-coding RNAs as regulators of placental function 79

[122] Lee, J. T. Gracefully ageing at 50, X-chromosome inactivation becomes a

paradigm for RNA and chromatin control. Nature Reviews Molecular cell

Biology, 12 (2011), pp. 815–826.

[123] Moreira de Mello, J. C., Araujo, E. S. de, Stabellini, R., Fraga, A. M.,

Souza, J. E. de, Sumita, D. R., Camargo, A. A., and Pereira, L. V. Random

X inactivation and extensive mosaicism in human placenta revealed by

analysis of allele-specific gene expression along the X chromosome. PLoS

One, 5(6) (2010), e10947.

[124] Ge, B., Gurd, S., Gaudin, T., Dore, C., Lepage, P., Harmsen, E., Hudson,

T. J., and Pastinen, T. Survey of allelic expression using EST mining.

Genome Res, 15(11) (2005), pp. 1584–91.

[125] Wang, H. and Elbein, S. C. Detection of allelic imbalance in gene expression

using pyrosequencing. Methods Mol Biol, 373 (2007), pp. 157–76.

[126] Knight, J. C. Allele-specific gene expression uncovered. Trends Genet, 20(3)

(2004), pp. 113–6.

[127] Borzychowski, A. M., Sargent, I. L., and Redman, C. W. Inflammation

and pre-eclampsia. Seminars in fetal & neonatal medicine, 11(5) (2006),

pp. 309–16.

[128] Ghosh, G., Subramanian, I. V., Adhikari, N., Zhang, X., Joshi, H. P., Basi,

D., Chandrashekhar, Y. S., Hall, J. L., Roy, S., Zeng, Y., and Ramakrish-

nan, S. Hypoxia-induced microRNA-424 expression in human endothelial

cells regulates HIF-alpha isoforms and promotes angiogenesis. J Clin Invest,

120(11) (2010), pp. 4141–54.

[129] Lazar, L., Nagy, B., Molvarec, A., Szarka, A., and Rigo J., J. Role of hsa-

miR-325 in the etiopathology of preeclampsia. Mol Med Rep, 6(3) (2012),

pp. 597–600.





Chapter 4

massiR: a Method for Predicting

the Sex of Samples in Gene

Expression Microarray Datasets

Sam Buckberry, Stephen J Bent, Tina Bianco-Miotto

and Claire T Roberts

Abstract

High-throughput gene expression microarrays are currently the most

efficient method for transcriptome-wide expression analyses. Conse-

quently, gene expression data available through public repositories has

largely been obtained from microarray experiments. However, the

metadata associated with many publicly available expression microar-

ray datasets often lacks sample sex information, therefore limiting the

reuse of these data in new analyses or larger meta-analyses where the

effect of sex is to be considered. Here we present the massiR package,

which provides a method for researchers to predict the sex of samples

in microarray datasets. Using information from microarray probes rep-

resenting Y chromosome genes, this package implements unsupervised

clustering methods to classify samples into male and female groups,

providing an efficient way to identify or confirm the sex of samples in

mammalian microarray datasets.

Availability: massiR is implemented as a Bioconductor package in R.

The package and the vignette can be downloaded at bioconductor.

org and are provided under a GPL-2 license.
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4.1 Introduction

For over a decade, high-throughput microarray experiments have been generating

large volumes of genome-wide expression data and the reporting requirements of

many journals have seen that much of these data are made publicly available.

Given the substantial value of these accumulated datasets, it is becoming increas-

ingly common to reuse gene expression data to validate new findings or to pose

new biological questions. However, the value of microarray datasets is largely

dependent on the completeness and accuracy of the associated metadata, which

is reliant on diligent reporting by researchers and accurate representation upon

submission [1].

Given that the sex of many species is an easily observable and usually unambiguous

classification, it is surprising the number of microarray datasets in public reposi-

tories that lack the associated sample sex information. Sex-biased gene expression

in normal and pathological tissues is well recognized for both sex chromosome and

autosomal genes [2, 3]. Sex biases also exist in the prevalence and severity of many

common human diseases, such as cardiovascular disease and some cancers [4]. As

sex is a potential influencing factor of both pathological and non-pathological phe-

notypes, gene ex-pression analyses that do not account for sex-specific effects could

fail to identify a significant proportion of genes that contribute to the condition

under investigation [4]. Therefore, the absence of sample sex information restricts

the reuse of gene expression datasets where the researcher intends to factor the

effect of sex in reanalysis or reinterpretation, or when intending to include such

datasets in larger gene expression meta-analyses.

In this application note we present massiR (MicroArray Sample Sex Identifier),

a Bioconductor package for predicting the sex of samples in microarray datasets.

This method allows researchers to expand their analyses to retrospectively in-

corporate sex as a variable, generate or confirm sex information associated with

publicly available datasets, to accurately predict the sex for samples missing this

information or to identify mislabeled samples.

4.2 Methods and Validation

Methods

The massiR analysis begins by importing normalized gene expression data using

standard methods. The first step extracts the expression values for probes that
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correspond to Y chromosome genes. Here the user has the option of using their

own list of probes corresponding to Y chromosome genes or using the probe lists

included with the package. The included lists correspond to popular microarray

platforms and contain identifiers for probes that uniquely map to Y chromosome

genes (for details see Supplementary Information).

When the expression values for Y chromosome probes are extracted, the expression

variance for each probe across all samples is calculated. This allows the identifica-

tion of low variance probes that are unlikely to be informative in sex classification.

The user has the option of selecting a probe variation threshold so only the most

informative probes are used in the classification process, a decision which can be

informed by inspecting an easily generated probe variation plot.

To classify samples as either male or female, clustering is performed using the

values from the subset of Y chromosome probes by implementing the partitioning

around medoids algorithm to perform k-medoids clustering [5], where samples are

assigned to one of two clusters. The two clusters are then compared using the

probe expression values across all samples in each cluster. Samples within the

cluster featuring the highest Y chromosome probe values are classed as male and

those amongst the cluster with the lowest Y probe values are classed as female.

Results such as sample probe mean, standard deviation and z-scores are returned

with the sex predicted for each sample.

The massiR package includes functions for generating informative plots of the data

at different stages of the analysis, enabling the user to inspect various elements

of the data. These include a bar plot of mean probe expression for each sample,

a heat map of probe values for each sample and principal component plots of

sample clusters The vignette accompanying the massiR package provides a concise

description of the workflow and detailed examples of how to use all the included

functions.

Validation

We tested the sex classification accuracy of the massiR package using publicly

available gene expression datasets for human and mouse tissues with sample sex

information (See Supplementary Information for results). Additionally, we tested

the accuracy of sex classification in datasets with skewed sex ratios by randomly

selecting male and female samples from five empirical human datasets to create

data subsets with a wide range of male/female ratios (Figure 4.1). Assuming sex

was correctly reported in the metadata, the results from this testing show that
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the correct sex prediction rate is 97.2% (±1.2 SEM) for datasets that contain

between 15–85% males. As we observed greater variability in prediction accuracy

outside this range (Figure 4.1), we include a function in the massiR package for

detecting datasets with skewed sex ratios using an implementation of the dip test

for unimodality [5, 6]. See the Supplementary Information for details on further

testing and results.

Figure 4.1: Sex prediction accuracy of the massiR package using human gene
expression datasets with a range of male/female ratios. The correct sex predic-
tion rate is 97.2% (±1.2 SEM) for datasets with > 15% and < 85% males which
is the area between the vertical dotted lines. Points represent mean, vertical
bars show the standard error of the mean. The grey band at the top of the
plot shows the 95–100% range. These results are a summary of tests conducted
using publicly available expression data from human brain, colorectal, kidney,
and placenta tissue, and peripheral blood mononuclear cells. The data subsets
for each were generated by randomly selecting male and female samples for
pre-determined dataset sizes and sex ratios.

4.3 Conclusion

To our knowledge this is the only available software package for predicting the

sex of samples in gene expression microarray datasets. This easily implemented

method opens the door to both prospective and retrospective gene expression

analyses that wish to consider the effect of sex on gene expression.
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S4.1 Supporting Information

S4.2 Y Chromsome Probe Indentifiers Included

with the Massi Package

To identify probes that represent Y chromosome genes, we used the Ensembl

mappings of probes for commercially available microarray platforms. We selected

this option because Ensembl have independently mapped the probes from nu-

merous platforms to a common reference genome, and the annotation informa-

tion for many platforms is accessible through the Bioconductor package biomaRt.

This method allowed us to select probes that map uniquely to Y chromosome

genes. A detailed example on how to obtain probe information for commercial

microarray platforms is included with the massiR vignette. For details on probe

mapping methods, see the permalink: http://jan2013.archive.ensembl.org/

info/docs/microarray_probe_set_mapping.html.

S4.3 Testing and Validation

We searched the NCBI GEO public repository for gene expression microarray

datasets with associated sex information in the metadata for testing purposes

(Supplementary Table S4.1). When raw data were available, we preprocessed

and normalized the arrays before performing quality assessments using standard

methods and Bioconductor packages in R. Any arrays that were deemed to be

outliers were removed from the dataset, then the data were re-normalised before

predicting the sex of samples using the massiR package.

To test the accuracy of this method, we selected ten datasets encompassing multi-

ple microarray platforms and samples derived from various normal and patholog-

ical tissues (Supplementary Table S4.1). In 6/10 datasets, this method predicted

the sex of the samples with 100% accuracy (Supplementary Table S4.1). How-

ever, this validation methodology is dependent on the accuracy of the associated

metadata. Given that this prediction method only uses information from Y chro-

mosome probes, we interrogated each dataset to examine probe-specific expression

values for each sample to further understand why we encountered a few isolated

cases of misclassification (see below). Therefore it is reasonable to suggest that

some of these discrepancies may be due to unintended errors in the metadata and

not due to misclassification.

http://jan2013.archive.ensembl.org/info/docs/microarray_probe_set_mapping.html
http://jan2013.archive.ensembl.org/info/docs/microarray_probe_set_mapping.html
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Table S4.1: Validation results for predicting the sex of samples in microarray datasets using the MASSI package.

Male samples Female samples

GEO

accession Species Tissue Platform

No.

Samples

No.
correctly

predicted

Overall
Prediction

accuracy

No.

samples

No.
correctly

predicted

Prediction

accuracy

No.

samples

No.
Correctly

predicted

Prediction

accuracy

GSE45330 Human Blood

cells

Illumina

Human HT-12 V4

77 76 98.70% 33 32 96.97% 44 44 100.00%

GSE29378 Human Brain Illumina

Human HT-12 V3

63 61 96.83% 38 38 100.00% 25 23 92.00%

GSE35896 Human Colorectal Affymetrix

HG-U133 Plus 2.0

58 57 98.28% 27 26 96.30% 31 31 100.00%

GSE25906 Human Placenta Illumina

Human-6 V2

60 60 100.00% 31 31 100.00% 29 29 100.00%

GSE13546 Human Lung

cancer

Affymetrix

HG-U133 Plus 2.0

15 15 100.00% 3 3 100.00% 12 12 100.00%

GSE20950 Human Adipose Affymetrix

HG-U133 Plus 2.0

39 39 100.00% 12 12 100.00% 27 27 100.00%

GSE14335 Human Fibroblast

cells

Affymetrix

HG-U133A 2.0

10 10 100.00% 3 3 100.00% 7 7 100.00%

GSE40435 Human Kidney Illumina
Human HT-12 V4

202 195 96.53% 118 113 95.76% 84 82 97.62%

GSE29585 Mouse Placenta Affymetrix
Mo. Exon 1.0 ST

16 16 100.00% 8 8 100.00% 8 8 100.00%

GSE35182 Mouse Heart Affymetrix

Mo. Gene 1.0 ST

24 24 100.00% 12 12 100.00% 12 12 100.00%

Totals 564 553 98.05% 285 278 97.54% 279 275 98.57%



Chapter 4. massiR: an algorithm for sample sex prediction 88

S4.3.1 Samples Classified as Male but Listed as Female in

the Metadata

There were four cases across two datasets where samples were predicted as male us-

ing this method but listed as female in the metadata (Supplementary Table S4.1).

When interrogating the individual Y chromosome probe values, we observed that

all of these samples show expression of Y chromosome genes well within the range

of all the other male samples in the dataset (Supplementary Figures S4.1 & S4.2).

S4.3.2 Samples Classified as Female but Listed as Male in

the Metadata

There were eight cases across three datasets where samples were classified as fe-

male using this method but indicated as male in the metadata (Supplementary

Table S4.1). In all but one of these cases (Supplementary Figure S4.3) the inten-

sity values for Y chromosome probes was well within the range of female samples,

and showed no indication of any Y chromosome gene expression (Supplementary

Figures S4.2–S4.4). However, although this infers that several of these samples

are female (as predicted), one cannot exclude the possibility that the cells assayed

were not expressing Y chromosome genes at that time point.

S4.3.3 Performance with Skewed Sex Ratios

To test the performance of the massiR method with datasets with skewed sex

ratios, we randomly selected male and female samples from large array datasets to

generate random data subsets with a spectrum of sex ratios. This was performed

with human brain (GSE29378), colorectal (GSE35896), kidney (GSE40435), pla-

centa tissue (GSE25906) and peripheral blood mononuclear cells (GSE45330). For

each dataset, we separated the male and female samples and then randomly se-

lected samples from each group to create datasets of pre-determined sex ratios

and sample sizes. For each dataset, we performed this randomized dataset con-

struction process in triplicate. The summarized results for each tissue type are

presented in Supplementary Figure S4.5.
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Figure S4.1: Prediction and validation of the sex of samples in dataset
GSE29378. Plots show microarray probe intensity values for Y chromosome
genes EIF1AY (A), NLGN4Y (B) and KDM5D (C). This shows that two sam-
ples (blue crosses) listed as female in the metadata show Y chromosome gene
expression values comparable to male samples (blue dots), which are distinct
from the samples confirmed as female (red dots).
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Figure S4.2: Prediction and validation of the sex of samples in dataset
GSE40435. Plots show microarray probe intensity values for Y chromosome
genes EIF1AY (A), TXLNGP2 (B), KDM5D (C). Samples are derived from
paired tumor and adjacent non-tumor tissue. Dots within the male (blue) and
female (red) groups were predicted to be the same sex as listed in the meta-
data. Samples with discrepant classification are represented by crosses, with the
colour corresponding to the predicted sex. The pairs of samples within circle
(1–4) were obtained from the same individual. These plots show the misclas-
sification occurred for both samples in three pairs (1–3). In paired group 4,
the misclassified sample was derived from the tumor tissue and the correctly
classified sample was derived from adjacent normal tissue.
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Figure S4.3: Prediction and validation of the sex of samples in dataset GSE35896. Plots show probe intensity values for Y chromosome
genes RPS4Y1 (A), EIF1AY (B), DDX3Y (C). One sample, indicated by the red cross was predicted to be female but listed as male
in the metadata. This misclassified sample showed probe intensity values for all three genes greater than all other female samples
(red dots), but less than that of males (blue dots), which suggests a genuine misclassification. When inspecting the PCA plot of these
samples (D), this misclassified sample is plotted distinctly apart from the other female samples, although placed within female cluster.
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S4.3.4 Detecting Datasets with Skewed Ratios

The massiR package includes a function that aids in detecting if a dataset has

a skewed male/female ratio. This function calculates a standardized score for

each sample and implements the dip test to test for unimodality. As a relatively

sex-balanced dataset would typically show a bi-modal distribution of these stan-

dardized scores, the dip statistic is used to predict if a dataset shows a unimodal

distribution that would be expected if a vast majority of samples were of one

sex. We tested this function using the same randomly generated data as above

to develop the guidelines for detecting dataset with skewed sex ratios which are

outlined in the massiR package vignette (Supplementary Figure S4.6).



Chapter 4. massiR: an algorithm for sample sex prediction 93

Figure S4.4: Prediction and validation of the sex of samples in dataset
GSE45330. Plots show probe intensity values for Y chromosome genes
EIF1AY (A), TXLNGP2 (B), KDM5D (C). One sample, indicated by the
red cross was predicted to be female but listed as male in the metadata. The Y
chromosome probe intensity values for this sample are in the range of all other
female samples (red dots) in this dataset and distinct from all the male samples
(blue dots).
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Figure S4.5: Sex prediction accuracy of the massiR package using five hu-
man gene expression datasets and a range of male/female ratios. (A) Results
summary of the five datasets, (B) Kidney tissue (GSE40435), (C) placenta tis-
sue (GSE25906), (D) colorectal tissue (GSE35896), (E) Blood mononucleocytes
(GSE45330), (F) brain tissue (GSE29378). Points represent mean, vertical bars
represent the standard error of the mean. The grey band at the top of the plot
shows the 95–100% range. The correct sex prediction rate is 97.2% (±1.2 SEM)
for datasets with > 15% and < 85% males which is the area between the vertical
dotted lines.



Chapter 4. massiR: an algorithm for sample sex prediction 95

[ht]

Figure S4.6: The dip test statistic as a method for identifying datasets with a
skewed sex ratio. This plot shows the relationship between the dip test statistic
as returned by the massi.dip function and the proportion of males in the dataset.
This plot summarizes randomly selected sample and data subsets adapted from
empirical kidney tissue (GSE40435), placenta tissue (GSE25906), colorectal tis-
sue (GSE35896), Blood mononucleocytes (GSE45330), brain tissue (GSE29378)
datasets. Points represent mean, vertical bars represent the standard error of
the mean. Datasets with a dip test statistic greater than the threshold (0.08)
are unlikely to feature skewed sex ratios that will affect the performance of
predicting sample sex using the massiR package.
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Abstract

As males and females share highly similar genomes, the regulation of

many sexually dimorphic traits is constrained to occur through sex-

biased gene regulation. There is strong evidence that human males

and females differ in terms of growth and development in utero, and

that these divergent growth strategies appear to place males at in-

creased risk when in sub-optimal conditions. Since the placenta is

the interface of maternal-fetal exchange throughout pregnancy, these

developmental differences are most likely orchestrated by differential

placental function. To date, progress in this field has been hampered

by a lack of genome-wide information on sex differences in placental

gene expression. Therefore, our motivation in this study was to charac-

terize sex-biased gene expression in the human placenta. We obtained

gene expression data for > 300 non-pathological placenta samples from

99
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11 microarray datasets and applied mapping-based array probe re-

annotation and inverse-variance meta-analysis methods which showed

that > 140 genes (FDR < 0.05) are differentially expressed between

male and female placentae. A majority of these genes (> 60%) are au-

tosomal, many of which are involved in high-level regulatory processes

such as gene transcription, cell growth and proliferation, and hormonal

function. Of particular interest, we detected higher female expression

from all seven genes in the LHB-CGB cluster, which includes genes

involved in placental development, the maintenance of pregnancy, and

maternal immune tolerance of the conceptus. These results demon-

strate that sex-biased gene expression in the normal human placenta

occurs across the genome and includes genes that are central to growth,

development, and the maintenance of pregnancy.

5.1 Introduction

Females and males of many species demonstrate numerous differences in morphol-

ogy and physiology, yet they share highly similar genomes. This suggests that the

regulation of many sexually dimorphic traits occurs through sex-specific patterns

of gene regulation. Since fetal growth in utero is dependent on the capacity of

the placenta to facilitate exchange between the mother and fetus, developmen-

tal disparities between the sexes are likely orchestrated by differential placental

function.

The observation that males grow faster in utero and have a greater body length

and weight at birth than females with equivalent placental size [1] indicates that

the male placenta functions more efficiently [2, 3]. However, there is a devel-

opmental trade-off: a consequence of growing more quickly and being larger in

utero is that males are left with less reserve placental capacity to draw upon if

sub-optimal conditions arise. In turn, this places males at increased risk of under

nutrition [3], which can restrict growth and lower birth weight, both of which have

been linked to males’ increased risk of adult-onset disorders such as cardiovascular

disease [4]. A recent study has also shown a distinct male bias in the prevalence

of placental dysfunction [5], and supports the findings of previous studies showing

sex biases in a spectrum of pregnancy complications and fetal health outcomes as-

sociated with abnormal placental development [6–10]. Although sex differences in

terms of growth, development and predisposition to pregnancy complications are

increasingly becoming recognized, the underpinning sex biases in placental gene

regulation remain unclear.
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Recent efforts using massively parallel sequencing techniques have begun to ex-

pand our knowledge of the human placental transcriptional [11] and epigenetic

landscapes [12]. These studies have revealed that the placenta is unique in several

ways, including the expression of placenta-specific genes, placenta-specific alter-

native splicing, and widespread partially DNA methylated domains that regulate

gene expression [11, 12]. Despite advancing our understanding of human placental

gene regulation, these studies were not designed to capture the effect of sex, and

therefore provide no clues as to underlying sex differences in placental function. An

earlier study, which was the first to describe the human placental transcriptome,

noted several genes with a sex-biased expression; these were located on both sex

chromosomes and the autosomes [13]. However, given the low number of placental

samples assessed, it is unlikely that the study was able to detect the true extent

of sex-biased gene expression in the placenta.

In the present study, our aim was to comprehensively characterize the extent of

sex-biased gene expression in the human placenta. To achieve this, we took advan-

tage of the vast amount of human placental gene expression microarray data avail-

able in public repositories to perform a large-scale gene expression meta-analysis.

In order to characterize only normal placental function, we selected samples from

microarray datasets where no placental pathology or associated pregnancy compli-

cation was indicated. In applying integrative meta-analysis methods, our results

demonstrate that sex-biased gene expression in the normal human placenta oc-

curs across the genome and includes genes that are central to placental growth,

development, and the maintenance of pregnancy.

5.2 Results and Discussion

5.2.1 Meta-Analysis of Sex-Biased Gene Expression in the

Human Placenta

This meta-transcriptome analysis of the sex differences in human placental gene

expression incorporated 303 samples from 11 microarray datasets generated on

six different platforms (Table 5.1). We limited this analysis to non-pathological

placental samples to provide the most accurate evaluation of sex differences in

relative gene expression in normal human pregnancies at the time the fetus was

delivered.
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Table 5.1: Details of each datasets included in the meta-analysis

Dataset GEO Accession Array manufacturer Array platform No. of Samples Male Female

1 GSE10588 [14] Applied Biosystems Human Genome Survey v2 21 14 7
2 GSE12216 [15] Applied Biosystems Human Genome Survey v2 8 5 3
3 GSE18809 [16] Affymetrix U133 plus 2 9 3 6
4 GSE24129 [17] Affymetrix Human Genome 1 ST 8 5 3
5 GSE25906 [18] Illumina Human-6 v2 37 21 16
6 GSE27272 [19] Illumina HumanRef-8 v3 51 32 19
7 GSE28551 [20] Applied Biosystems Human Genome Survey v2 20 14 6
8 GSE30032 [21] Illumina HumanRef-8 v3 54 26 28
9 GSE35574 [22] Illumina Human-6 v2 40 23 17
10 GSE36828 (Unpublished) Illumina HumanHT-12 v3 47 26 21
11 GSE7434 [23] Affymetrix U133 plus 2 8 5 3

Total 303 174 129
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To improve microarray cross-platform concordance and to standardize gene iden-

tifiers throughout this meta-analysis, we re-annotated array probes by mapping to

a common reference genome. After this re-annotation and summary process, we

were able to quantify expression of 31,844 Ensembl genes (hereafter referred to as

genes) across the human genome. To confirm the sex of samples and to predict sex

when it was not listed in the associated meta-data or publication, we employed

an unsupervised clustering technique that classifies the sex of samples in microar-

ray datasets using signal intensity values for probes that map unambiguously to

Y-chromosome genes [24].

When limiting the results to genes measurable in at least three studies and with a

false discovery rate (FDR) of < 0.05, a total of 142 genes showed significant sex-

biased expression. Of these 142 genes, 75 showed higher expression in placentas

from female fetuses and 67 genes were more highly expressed in placentas from

male fetuses (Figure 5.1). At the FDR of 0.05, we expect 3.75 and 3.35 genes to

be false positives in female and male groups, respectively. In the female group, 55

up-regulated genes were autosomal and 20 were X-linked. Of genes significantly

up-regulated in the male group, 33 genes were expressed from the autosomes,

16 were expressed from the X chromosome, and 18 were Y chromosome genes

(Figure 5.2). We do not consider the Y-linked genes to be differentially expressed;

rather these genes are expressed at consistently detectable levels in placentas from

male fetuses, and therefore may potentially influence placental phenotype.

The majority of sex-biased genes were autosomal but, as expected, many were lo-

cated on the sex chromosomes. The X-linked and autosomal genes with the highest

level of significance were HDHD1 and CGB, respectively (Figure 5.1). When in-

specting the contribution of individual studies for autosomal gene expression bias,

despite there being a lower magnitude of difference, the direction of change was

consistent across datasets for many male and female biased genes (Figure 5.3). The

results for all genes, the number of studies where they were measurable, and the

expression differences with statistics are provided in Supplementary Data File 1.

When comparing these results with previous studies where sex-biased expression

has been assessed in other human tissues, genes showing sex-biased expression

appear to exhibit that bias with a high degree of tissue specificity. A vast majority

of sex-biased genes in the human placenta are not observed to have sex-biased

expression in human brain, liver or blood [27–29] (Figure S5.1A). When comparing

our results to studies where sex-biased expression was assessed in placental tissue

or cells, many of the genes in this study have no previously reported sex expression

bias (Figure S5.1B).
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Figure 5.1: Volcano plot showing pooled effect size and level of significance for
31,844 Ensembl genes when comparing sex-biased gene expression in the human
placenta. Blue dots represent genes with significant male-biased expression and
red dots are those with significant female-biased expression. Horizontal bars
indicate the 95% confidence interval. Points represent genes detected in at least
three studies.

5.2.2 Identification of Potential Transcriptional Regula-

tors of Sex-Biased Gene Expression

To predict transcription factors (TFs) that may be involved in regulating sex-

biased gene expression, we searched for conserved transcription factor binding sites

(TFBS) in the 10kb of DNA sequence up and downstream of the transcription start

sites of sex-biased genes. This was done using oPOSSUM-3 and the JASPAR core

motifs [30, 31]. This analysis identified potential binding sites for 166 vertebrate

TFs.

Since the results of this analysis are best interpreted using relative rankings [30],

we selected the TFs that ranked in the upper quartiles of both z-scores and Fisher

scores (Figure S5.2), which limited the initial list to 14 TFs (Table S5.1). In

order to further investigate whether these TFs may be involved in regulating sex-

biased gene expression, we checked if the genes encoding these TFs were expressed

at detectable levels in the human term placenta using publicly available RNA-Seq

data [11]. In this comparison, expression data for nine of these TFs were available,
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Figure 5.2: Circos plot summarizing the meta-analysis of sex-biased gene
expression in the human placenta. The outer-most scatterplot track depicts
chromosomal location and level of significance (− log 10 FDR p-value). The
red points represent genes with FDR p-values < 0.05. The closer points are to
the outside of the track, the higher the significance. The inner track is a loess
smoothed line plot representing the number of datasets where information was
available for each genomic region, ranging from 3 to 11 datasets. Gene labels
for selected genes of significance are plotted outside the chromosome highlights.
Circos plot was generated using an R implementation of Circos [25, 26].

with seven being expressed at detectable levels and comparable with human adult

tissues expression (Figure 5.4A and Figure S5.3).
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Figure 5.3: Forest plots showing the standardized mean difference be-
tween males and females for the most statistically significant X-linked gene
HDHD1 (A) and autosomal gene CGB (B). Size of the blue box for each study
is proportional to sample size; horizontal lines represent standard error. Yellow
diamond represents the gene summary across all studies where the gene was
detectable. GEO accession identifiers on the y-axis represent datasets.
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Figure 5.4: (A) Transcription factors expressed in the human placenta that show enriched binding domains surrounding genes with
sex-biased expression. (B) Top biological functions and canonical pathways associated with sex-biased gene expression in the human
placenta. Functions and pathways were determined using Ingenuity Pathway Analysis.
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Expression of MYCN is highest in placental tissue when compared to any of the

adult tissues (Figure S5.3); this is also the gene that encodes the TF of high-

est significance in the TF-binding motif analysis (Table S5.1). NKX3-1, which

encodes a homeobox-containing TF, showed significant female expression bias in

this meta-analysis, and significant enrichment in the TF-binding motif analysis.

NKX3-1 expression in the placenta is detectable and comparable with a majority

of other adult tissues (Figure S5.3). NKX3-1 is a tumor suppressor and its ex-

pression appears to be strictly regulated by androgens and loss of its expression

is associated with prostate cancer development [32]. This suggests the NKX3-1

female expression bias observed in this study may be due to different androgen

profiles in male and female placentas, which in turn may drive sex differences in

the transcription of the numerous NKX3-1 target genes.

RXRA, which encodes a hypoxic responsive hormone receptor and TF, showed

a consistent male expression bias in this study. Although falling just below our

cut-off criteria for enriched TF binding sites, the binding of RXRA in four dif-

ferent complexes with other proteins was detected in the enrichment analysis

(Figure S5.2). In the mouse, RXRA knockout placentas exhibit multiple defects,

and RXRA antagonists are known to be involved in stimulating hCG production

through interaction with CGB gene promoters [33] (see results below). RXRA was

also identified as a target of MYCN in the TF-binding motif analysis, suggesting

the RXRA-encoded TF may be a significant player in defining the sex differences

in gene transcription and placental function.

5.2.3 High-Level Molecular Functions and Pathways are

Associated with Sex-Biased Genes

Since pathway analysis is a valuable tool in estimating gene function in different

tissues and systems, we applied the list of sex-biased genes to search for molecu-

lar pathways and processes statistically enriched with sex-biased genes. Ingenuity

Pathway Analysis showed that sex-biased genes are involved with high-level func-

tions such as cellular movement, organ morphology and endocrine function (Figure

4B). Among the top five canonical pathways associated with sex-biased genes were

mTOR and VEGF signaling (Figure 5.4B). The mTOR signaling pathway is a key

regulator of cell growth and proliferation, and is activated during angiogenesis [34].

The VEGF pathway involves many genes implicated in angiogenesis, placental de-

velopment and adverse pregnancy outcomes [35]. These suggest that sex-biased

expression of genes involved in these placental development pathways could po-

tentially drive differential function of pathways involved in other key placental
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processes such as establishing the vascular architecture (angiogenesis), and the

proliferation of placental cells.

The list of sex-biased genes was also enriched for genes involved in eIF2 and eIF4

signaling pathways (involving several X-linked genes), which are chiefly involved in

regulating protein translation. Taken together, sex-biased genes appear to be in-

volved in numerous high-level regulatory processes that could have a multi-factorial

influence on developmental processes contributing to sex differences in placental

function and hence fetal well being.

5.2.4 Sex-Biased Expression of X-Linked Genes

In female mammals, one of the two X chromosomes is typically inactivated to com-

pensate for gene dosage differences between the sexes (for review see refs [36, 37]).

However, some genes escape X-inactivation (XCI) and are expressed from both X

chromosomes in females. Subsequently, those genes that escape XCI potentially

contribute to sexually dimorphic traits.

Numerous studies have measured escape from XCI in human cells and tissues,

although the extent of escape from XCI in extra-embryonic tissues, including the

human placenta, remains controversial [38]. We detected 20 X-linked genes with

significant female-biased expression, many of which appear to cluster in distinct

chromosomal regions (Figure 5.5). The most significant of these genes was HDHD1

(Figure 5.3A), which encodes a phosphatase involved in the dephosphorylation of

modified RNA nucleotides [39]. Additionally, the long non-coding RNAs XIST and

JPX, which are known to be involved in the mechanisms giving rise to XCI [36,

37], also showed significant female expression bias, as expected.

To assess whether escape from XCI may be the underlying cause of X-linked

gene expression bias in this study, we compared our results with a previously

published extensive profile of human XCI [40] (Figure 5.5). Of the 20 X-linked

genes with female expression bias, XCI profiling information was available for 16,

of which 11 had strong evidence of expression from the inactive X chromosome [40].

This suggests that this is most likely to be the primary cause of X-linked female

expression bias. The female biased X-linked genes are associated with several

biological functions, including conversion of sulfated steroid precursors to estrogens

(STS ), and histone demethylation (KDM6A).

Additionally, we observed clusters of X-linked genes with male expression bias

including five genes at the pseudo-autosomal Xp22.33 region, and two genes at

Xq22.1 in the ARMCX family (Figure 5.5.) The ARMCX3 and ARMCX6 genes
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Figure 5.5: Sex-biased expression of X-linked genes in the human placenta.
Red points indicate genes showing significantly higher expression in female sam-
ples, blue points represent genes expressed significantly higher in male samples.
Heat map below plot represents the level of expression from the inactive X
chromosome observed in [40].

are thought to have originated during the evolution of placental mammals, and

are known to be involved in mitochondrial regulation [41].

Taken together, the X-linked genes comprise a considerable proportion of highly

significant sex-biased genes detected in this study, and have biological functions

relating to hormone regulation, and higher order regulatory mechanisms such as

RNA modification and histone methylation. Given that the sex chromosomes de-

fine the difference between the sexes at a cellular level, sex chromosome genes with

expression biases are clearly potential drivers or regulators of sex-biased autosomal

gene expression.

5.2.5 LHB-CGB Cluster Genes Show Female Expression

Bias

Among the sex-biased autosomal genes, the LHB-CGB cluster of seven genes on

chromosome 19 showed the most significant female expression bias (Figure 5.6).

This contiguous cluster consists of the LHB gene that encodes the beta-subunit of
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Figure 5.6: Female-biased expression of LHB and CGB cluster genes. Boxes
represent mean expression difference for each gene, and bars represent 95%
confidence interval. FDR p-value < 0.05 for all genes. Dendrogram shows
the average distance between genes using percent identity of the amino acid
sequences, and branch lengths represent the percentage mismatch between two
nodes. Colored bars depict functional groupings; Yellow represents LHB, green
represents identical CGB protein isoforms, red represents pseudogenes, blue
represents a divergent CGB isoform. Note that CGB, CGB5 and CGB8 have
identical amino acid sequences.

luteinizing hormone (LH), four chorionic gonadotropin (hCG) beta-subunit cod-

ing genes (CGB, CGB5, CGB7, and CGB8 ) and two pseudogenes (CGB1 and

CGB2 ) [42]. The four CGB genes encoding hCG beta-subunits can be grouped

into two classes based on protein sequence; CGB, CGB5, and CGB8 encode iden-

tical amino acid sequences, while CGB7 encodes a variant peptide (Figure 5.6 and

Figure S5.4).

The CGB -encoded hCG hormone is the important embryonic signal for maternal

recognition of pregnancy in primates. Indeed it is essential for the prolongation of

corpus luteal function and hence progesterone synthesis until the placenta takes

over. The many functions of hCG relating to placental growth, invasion, angio-

genesis, and the regulation of maternal immune tolerance of the placenta and fetus

are well-described (for reviews see [43, 44]). Lowered CGB expression in the pla-

centa has also been observed in miscarriages, and is higher in ectopic, molar, and

growth-restricted pregnancies [45, 46]. The LHB -encoded luteinizing hormone

(LH) is primarily expressed in the pituitary gland, and is widely known for its

action in the gonads to induce sex steroid synthesis and gametogenesis (see ref-

erence [47] for review). However, LHB is also expressed at appreciable levels in

the human placenta (Figure S5.5), which is a feature that appears to be conserved

across therian mammals [48].
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Both hCG and LH hormones bind to the same transmembrane receptor (LHCGR),

which is known to induce multiple signals including cyclic adenosine monophos-

phate (cAMP) [49]. hCG is also known to regulate VEGF and its receptors [50],

which are heavily implicated in placental development and adverse pregnancy out-

comes [35]. Meta-analysis profiling of placental gene expression in preeclampsia

indicates that up-regulation of LHB contributes to the gene expression signature

of preeclampsia [51], while up-regulation of LHB and CGB in the placenta are

associated with intrauterine growth restriction [46].

Taken together, these results provide substantial evidence for female-biased ex-

pression of the hormone-coding LHB and CGB genes in the human placenta.

This suggests that, through the actions of LHB and CGB genes, female fetuses

may invest more in placental growth and vasculogenesis, while males invest these

resources in body growth. Indeed, the ratio of birthweight to placental weight in

male human infants is higher than for females [7] suggesting that to maintain a

high growth rate the male fetus extracts maximal nutrients from the placenta with

little reserve capacity if adversity strikes. Perturbed expression of LHB and CGB

is also associated with preeclampsia [51] and intrauterine growth restriction [46]

where placental pathology is implicated. This indicates fetal sex-specific risks for

these conditions could be partially attributable to differential regulation of gene

networks involving these genes.

5.3 Conclusions

In this study, we have characterized the gene expression profiles of human male and

female placentas from non-pathological term pregnancies. Using an integrative

meta-analytical approach, we show that sex-biased gene expression is genome-

wide, with many genes showing sex-biased expression patterns not observed in

other human tissues.

Female-biased expression of X-linked genes appears largely to be the result of

escape from XCI, including genes with high-level regulatory functions. As the

mechanisms regulating X-chromosome regulation are non-hormonal, this is a clear

demonstration of sex-biased gene expression that is not directly regulated by the

sex hormones.

The results presented here also demonstrate sex-biased expression for many auto-

somal genes, including genes encoding the LH and hCG hormones. Given that LH

and hCG have a potent ability in promoting placental growth and vasculogenesis,
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these results suggest that female fetuses invest more in extra-embryonic tissue de-

velopment than males. Since mothers can allocate limited resources to a fetus in

utero, these findings support the conjecture that males invest more resources in

body growth and development (embryonic tissues) at the expense of investing less

in the development of extra-embryonic tissues [3, 6]. This may be a key reason as

to why there is a male bias in the incidence of placental dysfunction [5], and in

pregnancy complications where placental pathology is implicated [51–53].

This study has extended current knowledge surrounding sex-biased gene expression

in the human placenta. Having observed widespread sex-biased gene expression

in non-pathological tissues, and that the influence of sex is not always considered

in gene expression studies, these results highlight the importance of the effect of

sex in understanding the natural, sex-based gene expression differences in normal

and pathological tissues. This consideration is crucial to begin elucidating the

factors that may contribute to the etiology of developmental and chronic adult-

onset diseases in which sex biases exist both in terms of incidence and severity.

5.4 Materials and Methods

5.4.1 Study Selection

We searched the public data repositories GEO and ArrayExpress, and the litera-

ture, for microarray gene expression datasets containing samples of human placen-

tal tissue. Our initial selection criteria required candidate datasets to have at least

six individual placenta samples that were collected at the time of delivery. With

the focus being on sex differences in normal development, we limited the inclusion

of samples to those where no pregnancy or placental pathology was detailed in

the associated metadata. For example, if a dataset contained placenta samples

from pregnancies featuring preeclampsia and normal pregnancy controls, only the

control sample arrays were included in the meta-analysis. Additionally, the meta-

analysis was limited to studies where the raw, non-normalized, probe-level data

were available for all the array probes. Arrays with pooled samples were excluded.

5.4.2 Array Pre-Processing and Quality Control

Since data were obtained from multiple microarray platforms, pre-processing meth-

ods were tailored to each platform. Affymetrix datasets were pre-processed, log-

transformed and normalized using either the robust multi-array average (RMA) or
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GeneChip-RMA (GC-RMA) method depending on platform using Simpleaffy [54].

Applied Biosystems arrays were pre-processed using comprehensive R-based mi-

croarray analysis (CARMA); probes with a flag value of > 100 were removed

from the dataset before quantile normalization [55]. Illumina bead arrays were

pre-processed using Beadarray before quantile normalization [56]. Datasets with

arrays processed in multiple batches (as detailed in the meta-data), were batch-

corrected using the ‘comBat’ function in the SVA package [57, 58]. Outliers were

eliminated from each dataset (see table S5.2) before re-normalization by checking

the distance between arrays and assessing MA plots generated using ArrayQuali-

tyMetrics [59].

5.4.3 Predicting The Sex of Samples in Datasets Lacking

Sex Information

In 7 of the 11 datasets in this meta-analysis, the sample’s sex was not identi-

fied in either the associated repository meta-data or in the associated publication.

Therefore, to maximize the number of usable datasets, we used the Bioconductor

package massiR to predict fetal sex [24]. This method utilizes expression val-

ues for probes that map unambiguously to the Y chromosome, and unsupervised

clustering of samples based on Y chromosome probes with the highest variance.

We tested this method on placental datasets with known sample sex to determine

its accuracy with placental data, and to validate the sex of samples in datasets

where sex information was detailed in the meta-data. For datasets with known

sex, this method predicted the correct sex with 100% accuracy in all but one

dataset (GSE30032), where the sex of every sample was the opposite of the pre-

dicted sex in every case (as detailed in the GEO metadata). This method uses Y

chromosome-specific probe information, so given that all samples designated male

in the metadata were predicted to be female, and vice-versa, we concluded that

the metadata were incorrect. Therefore, we used the massiR predicted sex in this

study.

5.4.4 Re-Annotation of Microarray Datasets and Probe

Summarization

Gene expression data were obtained from various microarray platforms that have

different probes targeting the same genes. We therefore annotated each dataset

with common gene identifiers to increase cross-platform concordance. We selected
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the gene identifiers from Ensembl Genes release 69 annotation [60] for probe map-

ping, which is the genome annotation used in the human GENCODE project [61].

Probes from all Illumina and Affymetrix datasets were mapped to the human

reference genome (GRCh37.3p) to translate platform-specific, probe-level identi-

fiers to the Ensembl gene level identifiers. Probes were mapped using the En-

sembl Functional Genomics Array Mapping Environment, in which individual

probes are mapped to both the genome and the cDNA sequence. Alignments

were performed by Ensembl using an analysis pipeline which implements the Ex-

onerate sequence comparison and alignment tool [62]. A 1 bp mismatch was per-

mitted between the probe and the genome sequence assembly, and probes that

match at 100+ locations (e.g. suspected Alu repeats) are discarded (see perma-

link for detailed methods http://jan2013.archive.ensembl.org/info/docs/

microarray_probe_set_mapping.html).

Probe sequences were unavailable for the Applied Biosystems arrays, so Ensembl

gene identifiers supplied by the manufacturer were used to identify target genes.

For Applied Biosystems probes with no listed Ensembl identifier, the supplied gene

symbol was used to identify the target gene using the HGNC database [63], and

an Ensembl Gene identifier was subsequently assigned. Any remaining identifiers

with GenBank accessions [64] were checked for a match against human sequences

with sufficient gene information, and then designated an Ensembl Gene Identifier.

Probe mapping and annotation of all datasets (except Applied Biosystems arrays)

allowed identification of four cases: (1) probes that map uniquely to a single gene

identifier (one-to-one mapping), (2) probes that map to multiple gene identifiers

(one-to-many mapping), (3) multiple probes that map to the same gene identifier

(many-to-one mapping), and (4) probes that do not map to any genes in the

reference genome. These re-annotation results are summarized in Table S5.3.

When a probe mapped to multiple gene identifiers, (case 2) a new probe identifier

was created for each probe-to-gene mapping; this allowed the use of all possible in-

formation for each gene in the analysis. For gene identifiers where multiple probes

were mapped, (case 3) probe values were summarized into a single representative

value per gene identifier within each study, using a fixed inverse-variance model

as previously described [65]. Probes with insufficient information, or that did not

map any gene identifier, were removed from the analysis.

http://jan2013.archive.ensembl.org/info/docs/microarray_probe_set_mapping.html
http://jan2013.archive.ensembl.org/info/docs/microarray_probe_set_mapping.html
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5.4.5 Meta-Analysis of Annotated Datasets

To meta-analyze the 11 annotated microarray datasets, we applied the inverse-

variance method as detailed in [65] using the rmeta package, functions adapted

from the metaGEM package (https://spiral.imperial.ac.uk/handle/10044/

1/4217) and custom R scripts. Briefly, study-specific effect sizes were calculated

for each probe within each study by calculating the probe mean and standard

deviation, corrected for effect size using Hedges’ g to account for the number of

samples in each group. These study-specific estimates were then combined using

a random effects inverse-variance method for each gene identifier to calculate the

pooled effect size and standard error. Z-statistics were then calculated for each

gene identifier to obtain a nominal p-value, which was then corrected using the

False Discovery Rate (FDR). After significance testing, the resulting dataset was

limited to genes represented by at least three studies for downstream analyses.

All data processing and analyses were carried out in the R statistical environment

(version 2.15.2).

5.4.6 Prediction of Upstream Transcription Factor Regu-

lation

The sex-biased gene set was analyzed for enrichment of TFBSs using the oPOS-

SUM program, and the JASPAR vertebrate core profiles [30, 31]. For each gene,

we searched for TF binding motifs in the conserved regions of the 10kb upstream/-

downstream sequences using a conservation cut-off of 0.4, a matrix score threshold

of 85% and a minimum specificity of 8-bits. The highly enriched TFBSs were iden-

tified by ranking transcription factors using results from Fisher’s exact test and

z-score rankings.

5.4.7 Resolving CGB/LHB Cluster Sequence Homology

Genes in the LHB-CGB cluster are both functionally and evolutionarily re-

lated [42], and subsequently have a high degree of sequence homology. In such

cases, the sequence specificity of each microarray probe is a key determinant in

differentiating between the expression of individual genes. We re-annotated all

array probes through mapping to a common reference genome, therefore were able

to determine which probes mapped uniquely, or mapped to multiple genes, in the

LHB-CGB cluster. In this meta-analysis, all probes that represent LHB expres-

sion mapped uniquely; therefore it is unlikely that the LHB expression results are

https://spiral.imperial.ac.uk/handle/10044/1/4217
https://spiral.imperial.ac.uk/handle/10044/1/4217
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confounded by non-specific binding with CGB gene transcripts. In the case of the

CGB genes, mapping specificity differed between platforms. Affymetrix probes

mapped with low specificity: 10 probes mapped to all CGB cluster genes, and

only one probe mapped uniquely (to CGB7 ). However, probes from the Illumina

platforms mapped with much higher specificity. Of these, nine probes mapped

specifically genes in one of the three classes of CGB protein isoforms (Figure 5.6),

and three of these probes had single-gene specificity. A majority of samples in

this study (76%) were assayed on Illumina platforms, so we have reasonably high

confidence that the expression results for CGB genes are composed primarily of

values from probes with the highest specificity.

Amino acid sequences for LHB and CGB cluster genes were downloaded from EN-

SEMBL. Sequences were aligned using MAFFT (v7.130b) with L-INS-i settings,

and the tree was calculated with the average distance using percent identity in

Jalview (v2.8). Branch lengths represent the percentage mismatch between two

nodes.

5.4.8 Gene Enrichment and Pathway Analysis

Enriched biological functions and canonical pathways associated with sex-biased

genes were determined using Ingenuity Pathway Analysis (Ingenuity Systems,

v18030641).
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S5.1 Supplementary Information

This file contains a summary of the results of this meta-analysis. It includes details

for all genes including Ensembl gene ID, HUGO gene symbol, number of studies

with probes mapped to each gene, standardized mean difference summary for each

gene and associated standard error, p-values and FDR p-values.

Figure S5.1: (A) Venn diagram showing the overlap of sex-biased genes in dif-
ferent human tissue/cell types. This comparison of the results from previously
published work [27–29] suggests sex-biased gene expression is largely regulated
in a tissue specific manner. (B) Comparison of differentially expressed genes in
this meta-analysis and previously studies investigating sex-biased gene expres-
sion in placental tissue [13], and placental epithelium and endothelial tissue [66].
A majority of overlapping genes are located on the Y chromosome. Venn dia-
grams created using the published lists of differentially expressed genes in each
study. Gene identifiers from each study were converted to common identifiers
for this comparison.
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Figure S5.2: Statistical measures for transcription factor binding motifs flank-
ing transcription start sites of genes with sex-biased expression in the human
placenta. Each point on the graph represents a transcription factor with exper-
imentally validated binding motif. Red points represent transcription factors
in the upper quartile (dashed lines) of both z-scores and Fisher score rankings.
Z-scores on the X-axis are indicative of the likelihood that the number of TFBS
nucleotides detected for the sex-biased genes is significant as compared with
the number of TFBS nucleotides detected for the entire gene set in the meta-
analysis. For each transcription factor, the Fisher scores are the negative natural
log of the probability that the number of hits vs. non-hits for the sex-biased
genes could have occurred by random chance based on the hits vs. non-hits for
the entire background gene set.
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Figure S5.3: Comparative gene expression levels of transcription factors in
the human term placenta (chorion and decidua as red dots) and sixteen adult
human tissues (grey circles). Gene expression represented as Fragments per
Kilobase per Million mapped reads (FPKM). Genes with FPKM > 0.1 were
considered detectable. This figure was created using RNA-Seq data adapted
from Kim et al. and the Illumina human body map dataset [11].
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Figure S5.4: LHB-CGB gene cluster amino acid sequence alignment. Amino acid sequences for each gene were downloaded from
ENSEMBL and aligned using MAFFT (v7.130b) with L-INS-i settings.
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Figure S5.5: LHB expression in multiple human tissues, with extra-embryonic
tissues highlighted in red. This figure was created using RNA-Seq data from
Kim et al. and the Illumina human body map dataset [11]. Note that expression
data from the pituitary gland is not included in this dataset.
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Table S5.1: Transcription factors with enriched binding sites surrounding genes with sex biased expression.

Transcription
factor Class Family Associated gene ID

Expression in
human placenta

Sex-biased
gene hits FDR

MYCN Zipper-Type Helix-Loop-Helix ENSG00000134323 Detected 65 4.80E-49
MYC Zipper-Type Helix-Loop-Helix – No data 62 1.53E-20
ARNT::AHR Zipper-Type Helix-Loop-Helix – No data 91 3.19E-20
ARNT Zipper-Type Helix-Loop-Helix ENSG00000143437 Detected 58 3.98E-10
MYC::MAX Zipper-Type Helix-Loop-Helix ENSG00000125952 Detected 33 1.97E-08
NFATC2 Ig-fold Rel ENSG00000101096 Detected 94 1.45E-06
T Beta-Hairpin-Ribbon T ENSG00000164458 Not detected 23 1.18E-05
USF1 Zipper-Type Helix-Loop-Helix ENSG00000158773 Detected 67 4.83E-05
HIF1A::ARNT Zipper-Type Helix-Loop-Helix – No data 79 7.89E-05
REL Ig-fold Rel – No data 74 1.73E-04
EWSR1-FLI1 Winged Helix-Turn-Helix Ets – No data 3 2.23E-04
PAX6 Helix-Turn-Helix Homeo ENSG00000007372 Not detected 15 9.88E-04
SRF Other Alpha-Helix MADS ENSG00000112658 Detected 10 2.38E-03
NKX3-1 Helix-Turn-Helix Homeo ENSG00000167034 Detected 83 7.07E-03
MYCN Zipper-Type Helix-Loop-Helix ENSG00000134323 Detected 65 4.80E-49
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Table S5.2: Number of arrays at each step of the selection process for the
meta analysis.

Dataset
Accession

No. of
arrays in

dataset

No. of arrays from
non-pathological

samples

Number of
arrays failed

QC

No. of arrays
included in

meta-analysis

GSE10588 43 21 0 21
GSE12216 16 8 0 8
GSE18809 10 10 1 9
GSE24129 24 8 0 8
GSE25906 60 37 0 37
GSE27272 54 54 3 51
GSE28551 37 21 1 20
GSE30032 57 57 3 54
GSE35574 94 40 0 40
GSE36828 48 48 1 47
GSE7434 10 10 2 8

Total 453 314 11 303
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Table S5.3: Re-annotation and gene summarization details for each microarray platfoms.

Manufacturer Platform
Total

probes

Probes
mapped to

Ensembl genes

Probes with
one-to-one

mapping

ID’s after
gene

expanding

Total Ensembl
genes after

Summarisation

Applied Biosystems Human Genome Survey 2 32,878 16,265 16,185 16,345 14,391

Affymetrix Human Gene 1 ST Array 32,321 28,126 24,760 36,260 27,928

Affymetrix Human Genome U133 Plus
2

54,675 29,206 28,451 30,378 15,895

Illumina Human-6 2 48,701 26,952 24,810 30,321 22,699

Illumina HumanHT-12 3 48,804 31,211 28,630 35,444 22,903

Illumina HumanRef-8 3 24,526 22,346 20,989 24,193 18,007
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Table S5.4: Top 5 Ingenutiy canonical pathways and biological functions enriched for sex-biased genes.

Enriched pathway/function
− log

(p-value)
No. of

molecules
Molecules with male
biased expression

Molecules with female biased
expression

C
a
n
o
n
ic

a
l

p
a
th

w
a
y
s Regulation of eIF4 and

p70S6K Signaling
4.81 7 EIF1AY, RPS4Y1,

PPP2R3B, RPS4Y2
RPS4X, EIF1AX, EIF2S3

EIF2 Signaling 2.49 5 RPS4Y1, RPS4Y2 RPS4X, EIF1AX, EIF2S3

mTOR Signaling 2.42 5 RPS4Y1, RPS6KA6,
PPP2R3B, RPS4Y2

RPS4X

Spermine Biosynthesis 1.97 1 – SMS

VEGF Signaling 1.87 3 EIF1AY EIF1AX, EIF2S3

B
io

lo
g
ic

a
l

fu
n
ct

io
n
s

Cellular Movement 4.27 3 – ANGPT2, HSPE1, NKX3-1

Organ Morphology 3.37 2 – LHB, NKX3-1

Reproductive System
Development and Function

3.37 2 – LHB, NKX3-1

Sex-linked Hereditary
Disorder

3.36 7 CA2, USP9Y CA5B, HSD17B10, NAA10,
SMS, STS,

Endocrine System
Development and Function

3.22 2 – HSD17B10, DHRS9
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Hakkola, J., and Pasanen, M. Microarray analysis of the global alterations

in the gene expression in the placentas from cigarette-smoking mothers.

Clin Pharmacol Ther, 83 (2008), pp. 542–550.

[24] Buckberry, S., Bent, S. J., Bianco-Miotto, T., and Roberts, C. T. massiR:

a method for predicting the sex of samples in gene expression microarray

datasets. Bioinformatics, (2014).

[25] Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman,

D., Jones, S. J., and Marra, M. A. Circos: an information aesthetic for

comparative genomics. Genome Res, 19 (2009), pp. 1639–1645.

[26] Zhang, H., Meltzer, P., and Davis, S. RCircos: an R package for Circos 2D

track plots. BMC Bioinformatics, 14 (2013), p. 244.

[27] Zhang, Y., Klein, K., Sugathan, A., Nassery, N., Dombkowski, A., Zanger,

U. M., and Waxman, D. J. Transcriptional profiling of human liver identi-

fies sex-biased genes associated with polygenic dyslipidemia and coronary

artery disease. PLoS ONE, 6 (2011), e23506.

[28] Whitney, A. R., Diehn, M., Popper, S. J., Alizadeh, A. A., Boldrick, J. C.,

Relman, D. A., and Brown, P. O. Individuality and variation in gene ex-

pression patterns in human blood. In: Proc Natl Acad Sci USA, vol. 100.

2003, pp. 1896–1901.

[29] Trabzuni, D., Ramasamy, A., Imran, S., Walker, R., Smith, C., Weale,

M. E., Hardy, J., and Ryten, M. Widespread sex differences in gene expres-

sion and splicing in the adult human brain. Nat Commun, 4 (2013). North

American Brain Expression Consortium, p. 2771.

[30] Kwon, A. T., Arenillas, D. J., Hunt, R. W., and Wasserman, W. W.

oPOSSUM-3: Advanced Analysis of Regulatory Motif Over-Representation

Across Genes or ChIP-Seq Datasets. G3, 2 (2012), pp. 987–1002.



Chapter 5. Transcriptome meta-analysis of sex-biased expression 131

[31] Mathelier, A., Zhao, X., Zhang, A. W., Parcy, F., Worsley-Hunt, R., Arenil-

las, D. J., Buchman, S., Chen, C. Y., Chou, A., and Ienasescu, H. JASPAR

2014: an extensively expanded and updated open-access database of tran-

scription factor binding profiles. Nucleic Acids Res, 42 (2013), pp. D142–

D147.

[32] Meeks, J. J. and Schaeffer, E. M. Genetic Regulation of Prostate Develop-

ment. Journal of Andrology, 32 (2011), pp. 210–217.

[33] Barak, Y., Sadovsky, Y., and Shalom-Barak, T. PPAR Signaling in Placen-

tal Development and Function. PPAR Res, 142082 (2008).

[34] Laplante, M. and Sabatini, D. M. mTOR Signaling. Cold Spring Harbor

Perspectives in Biology, 4 (2012), a011593–a011593.

[35] Andraweera, P., Dekker, G., Thompson, S., and Roberts, C. Single-

nucleotide polymorphisms in the KDR gene in pregnancies complicated

by gestational hypertensive disorders and small-for-gestational-age infants.

Reprod Sci, 19 (2012), pp. 547–554.

[36] Lee, J. T. Gracefully ageing at 50, X-chromosome inactivation becomes a

paradigm for RNA and chromatin control. Nature Reviews Molecular cell

Biology, 12 (2011), pp. 815–826.

[37] Augui, S., Nora, E. P., and Heard, E. Regulation of X-chromosome inac-

tivation by the X-inactivation centre. Nat Rev Genet, 12 (2011), pp. 429–

442.

[38] Buckberry, S., Bianco-Miotto, T., and Roberts, C. T. Imprinted and X-

linked non-coding RNAs as potential regulators of human placental func-

tion. Epigenetics, 9 (2014). Advanced access publication March 22, pp. 81–

89.

[39] Preumont, A., Rzem, R., Vertommen, D., and Van Schaftingen, E. HDHD1,

which is often deleted in X-linked ichthyosis, encodes a pseudouridine-5’-

phosphatase. Biochem J, 431 (2010), pp. 237–244.

[40] Carrel, L. and Willard, H. F. X-inactivation profile reveals extensive vari-

ability in X-linked gene expression in females. Nature, 434(7031) (2005),

pp. 400–404.
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Placental Transcriptome

Co-Expression Analysis Reveals

Conserved Regulatory Programs

and Points Toward a

Preeclampsia Gene Cluster

Sam Buckberry, Tina Bianco-Miotto, Stephen J Bent,

Gustaaf A Dekker and Claire T Roberts

Abstract

Mammalian development in utero is absolutely dependent on proper

placental development, which is ultimately governed by the molecu-

lar instructions encoded in the placental genome. The regulation of

the placental genome can be directly studied by exploring the under-

lying organisation of the placental transcriptome through a system-

atic analysis of gene-wise co-expression relationships. In this study,

we performed a comprehensive analysis of human placental gene co-

expression using RNA sequencing and the integration of multiple tran-

scriptome datasets spanning human gestation. We identified modules

of co-expressed genes that are highly preserved across gestation, and

between human and mouse, revealing highly conserved molecular net-

works involved in placental development. Our analyses identified a

cluster of genes implicated in preeclampsia that show highly corre-

lated patterns of expression suggesting regulation by a common set

142



Chapter 7. Placental transcriptome co-expression network analysis 143

of factors. Furthermore, by summarising co-expressed gene modules,

we demonstrate a novel way of screening for biomarkers of placental

gene expression and development. Together, our findings provide a

new framework for studying gene expression in the placenta and re-

veal previously unappreciated aspects of the placental transcriptional

landscape.

7.1 Introduction

The placenta is the first human organ to start developing once the embryo im-

plants into to the mother’s uterus shortly after conception. At implantation,

placental trophoblast cells begin to invade into the lining of the uterus, where

they colonise and transform the mother’s spiral arterioles and additionally extra-

embryonic tissue establishes its own placental network of blood vessels. Together

these processes facilitate the exchange of all nutrients, gases and waste through-

out pregnancy. However, despite the placenta’s indispensable role in intrauterine

mammalian development, the placenta remains the least understood human tis-

sue [1].

Normal placental function is dependent on appropriate growth and development

of its structural components, which are underpinned by the fine-tuned regulation

of gene expression. Consequently, alterations to placental gene regulation are

thought to be a major contributor to pregnancy pathologies. Several studies aimed

at elucidating the molecular basis of placental development have utilised high-

throughput gene expression technologies, such as RNA sequencing (RNA-Seq) and

microarrays, and show that the placenta undergoes global shifts in gene expression

between the first and third trimesters [2]. They also show that placentas from pre-

eclamptic pregnancies feature a distinct expression signature [3], and that some of

these expression differences arise approximately six months before the condition

manifests [4]. Recently, two placental transcriptome studies employing RNA-Seq

have described the breadth of gene expression in the human placenta and show that

the placenta exhibits unique patterns of exon splicing and greater than four-fold

enrichment for > 800 genes compared to other human tissues [5, 6].

Despite these efforts, progress towards developing accurate markers of healthy and

pathological pregnancy has been slow. Likewise, the spectrum of environmental

factors influencing placental development remain unclear. This slow progress can

be attributed, in part, to the inherent difficulties in obtaining placental tissue

from multiple time points prior to birth, a limited understanding of how placental
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development is influenced by environmental factors and maternal physiology, and

the lack of suitable animal models for studying human pregnancy pathology. This

paucity of knowledge was recently recognised by the National Institute of Child

Health and Human Development (NICHD) and the National Institutes of Health

(NIH) in the United States, which subsequently prompted the inception of the

Human Placenta Project [1, 7].

A common feature in previous studies on placental gene regulation is that ex-

pression data are typically summarised at the gene level for between-group com-

parisons, widely known as differential expression. With differential expression, the

greatest significance is attributed to individual genes where the differences between

groups reach an appropriate significance threshold. Although differential expres-

sion analyses have unquestionable utility, the inherent natural organisation of the

transcriptome remains largely unexplored. Conversely, more holistic methods that

consider the gene-wise relationships in gene expression data have cast new light

on previously unappreciated patterns of transcriptional organisation with regards

to lipid metabolism [8], cancer [9], human brain development and neuropathol-

ogy [10–12], and embryonic development [13]. These co-expression ‘systems’ ap-

proaches identify groups of genes where expression levels are highly correlated

across samples. By leveraging the inter-individual expression variability between

biological samples, such strategies enable the identification of higher-order rela-

tionships among genes. Further post hoc characterisation of these relationships

then has the ability to provide insight into the biological processes arising from

the underlying transcriptional program.

To gain a new perspective on placental genome regulation, we performed a compre-

hensive analysis of placental gene co-expression. Our results reveal distinct groups

of genes that show highly correlated patterns of gene expression and are associ-

ated with specific biological processes and placental pathologies. By drastically

reducing the dimensionality of gene expression data through summarising highly

correlated genes, we illustrate a potential framework for screening biomarkers of

placental gene expression and development.
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7.2 Results

7.2.1 Constructing a Weighted Human Placental Co-

Expression Gene Network

To explore patterns of gene co-expression in the healthy human term placenta, we

performed single-strand 100-base paired-end total RNA-Seq for 16 samples at an

average depth of 38 million uniquely mapped reads per sample. By summarising

the RNA-Seq reads by counting the number of overlaps with known genes, we

detected 15,861 genes above the threshold of > 1 read count per million, which

we show is an accurate threshold of detection based on quantification of spiked

synthetic RNAs (Figure S7.1 on page 164).

To integrate gene-level expression profiles into a higher-order systems level frame-

work, normalised gene expression values were used to perform a weighted gene

co-expression network analysis (WGCNA) [14]. To construct the gene-wise net-

work, we first calculated Pearson’s correlation matrix, then raised this matrix to

a power to weight strong correlations at the expense of weaker ones, thus result-

ing in a weighted network (see Methods). To identify groups of genes with highly

correlated patterns of expression, these data were then transformed into a topolog-

ical overlap matrix of ‘connection-strengths’ [14]. This was then used as input for

unsupervised hierarchical clustering, where we employed a dynamic tree-cutting

algorithm [15] to group tree branches into 13 distinct clusters of highly connected

genes, which we refer to as modules (Figure 7.1).

Figure 7.1: Weighted gene co-expression network analysis of the human pla-
centa reveals distinct clusters of co-expressed genes. Average linkage hierarchi-
cal clustering dendrogram of genes based on gene expression topological overlap.
Modules of co-expressed genes were assigned colours and identifiers M1–M13,
which are represented in the horizontal bar below the dendrogram.
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Each module was then summarised by calculating the module eigengene for each

sample, which is the first principal component of gene expression values for the

module. Therefore, the eigengene represents a weighted average of gene expres-

sion. For each gene, we then define its membership in each module as the absolute

correlation between the gene’s expression and the module’s eigengene, and rep-

resent this correlation as kME [14]. Genes are assigned to modules if they have

an absolute kME > 0.7. Note that by quantifying membership through correla-

tion, module membership for each gene is no longer binary and allows genes to be

members of more than one module (Figure S7.2), thus connecting modules in a

network.

The proportion of gene expression variation explained by each eigengene ranged

between 39.1% (M10) and 79.6% (M3) (Table 7.1). This demonstrates that even

for large modules such as M3 (844 genes), a significant proportion of variance can

be captured by a single representative value. For each gene module, the top hub

genes (kME > 0.9) are reported in Table 7.1, and genes with a kME > 0.7 for

each module are listed in Table S1 (See Supplementary Data File). The plots

in Figure 7.2 demonstrate the high correlation of the top ten most connected

genes for modules M2 and M3, and how gene variance is accurately reflected by

the module eigengene. A gene ontology analysis showed co-expression modules

are enriched for distinct biological processes and molecular functions (Table S2 in

Supplementary Data File).
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Table 7.1: Co-expression module characteristics.

Module No. of

genes

Variance

explained by

eigengene

Top ten hub genes (kME > 0.9)

M1 740 44.6% ZNF845, ZNF808, GPR160, GIN1, ATP5J,

ZNF567, ANAPC10, C8orf59, MRPS36, RBM7

M2 262 48.9% EPHA10, ARIH2OS, TUBD1, FLJ42102,

KIAA0101, RPL13AP20, CD96, PDE6A, GGT8P,

SLC35F1

M3 844 79.6% NOTCH3, PLXND1, PALM, CSPG4, ARHGEF17,

DCHS1, MARK4, KIRREL, LTBP4, AXL

M4 566 51.5% HMMR, CASC5, DEPDC1, CDK1, KIF15, CCNA2,

AIM1, TTK, ESCO2, EXO1

M5 116 45.5% ATP2A1, C11orf35, P2RY2, CCDC33, ASIC3,

KIFC2, IL17REL, CLIC3, MTVR2, RBBP8NL

M6 88 51.4% HN1, ASAP3, SLC12A8, ASPHD2, B3GNT7,

IL17RE, PRG2, NOG, IL2RB, PIPOX

M7 112 41.5% SNORD114-29, CDH11, FAM198B, SNORD114-7,

SNORD114-10, FKBP7, SNORD114-14, C4orf32,

SNORD114-26, SNORD113-2

M8 390 68.1% SBF1, ULK1, STRA6, DOT1L, BCAR1,

TMEM184A, B3GNT8, SLC25A22, C19orf71,

INTS1

M9 79 44.5% SELL, S100A12, LRRK2, CYTIP, MNDA, ACSL1,

FPR2, TGFA, LOC100505806, TMEM71

M10 110 39.1% MTHFS, TTTY15, RPS4Y1, TXLNG2P, TTTY10,

KDM5D, UTY, EIF1AY, ZFY, PRKY

M11 112 43.1% PGAP3, GPR137, PRR5, ARTN, C10orf10,

C7orf43, ALDH4A1, EFS, RELL2, ADIRF

M12 81 51.7% PVRL4, ARHGEF4, NDRG1, INHBA, SYDE1,

INHA, MIR210HG, C8orf58, SIGLEC6, PDZD7

M13 414 71.0% FAM195B, FBXL15, BRAT1, AKAP2, SCAND1,

EME2, CCDC85B, C19orf60, PGLS, TSR3
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Figure 7.2: Gene–eigengene correlations identify module hub genes that are
consistently co-expressed in the human placenta. The upper line plots show
the top ten genes with the highest module membership (kME ) for modules M3
(A) and M2 (B). Each continuous line represents a gene, with different genes
showing a similar variability of expression across samples on the x-axis.

7.2.2 Co-Expression Modules are Reproducible

To evaluate the reproducibility of these gene modules in the third trimester pla-

centa, we obtained raw RNA-Seq data from a previously published study on the

human placental transcriptome [5] and tested whether the density and connectivity

patterns of gene modules we defined in our reference dataset were preserved. To

quantify reproducibility, we applied a preservation permutation test [16] to sum-

marise evidence that the network topology is preserved in independent test sets

and report the Zsummary statistic to summarise module preservation. In this inde-

pendent third trimester dataset, 4/14 modules show highly significant preservation

scores (Zsummary > 10), and 8/14 were at least moderately preserved (Zsummary > 5)

despite a lower depth of sequencing [5] (Figure 7.3).
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Figure 7.3: Preservation heat map of co-expression gene modules in indepen-
dent datasets shows level of module preservation in the human placenta across
human gestation and in mid gestation mouse placenta (E11.5). Colours repre-
sent four classes of co-expression preservation as represented by Z-score sum-
mary of preservation statistics. Zsummary > 10 indicates high level of evidence
for module preservation, Zsummary5 – 10 indicates moderate–high preservation,
Zsummary2 – 5 indicates low-moderate preservation, and Zsummary < 2 indicates
no evidence for preservation. Numbers within cells are the Z-score summary
statistic. Third trimester reference is data column (far right) represents results
from running permutation tests using the data collected in this study. Other
columns show the permutation test preservation statistics for previously pub-
lished placenta transcriptome data [2, 5, 17, 18].
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7.2.3 Key Co-Expression Modules are Preserved Across

Human Gestation and Conserved in the Mouse

Given that the human placenta undergoes significant growth and remodelling

throughout the nine months of gestation [19], we reasoned that if particular co-

expression modules were involved in core placental functions, then these modules

would be reproducible using gene expression data from earlier gestational time

points. To test this hypothesis, we obtained microarray gene expression data from

placental tissue collected during the first [2] and second trimesters [17]. Although

these datasets contain expression data for substantially fewer genes after filtering

and annotation (57.6% and 63.9% of detectable genes in the RNA-Seq dataset, re-

spectively), the module preservation statistics indicate that a majority of modules

are nevertheless preserved across gestation at a low to moderate level of signifi-

cance (Figure 7.3). In particular, M4 shows moderate preservation (Zsummary > 5)

across all gestational time points, indicating a conserved pattern of gene regulation

throughout human gestation. In contrast, the M2 module is highly preserved in the

third trimester datasets (Zsummary > 10) with little to no evidence of preservation

during the first or second trimesters, suggesting M2 genes constitute a molecular

program more specific to third trimester placental functions.

As the mouse is the most widely utilised model for studying placental development,

we next asked whether the co-expression gene modules were conserved between

human and mouse. To achieve this, we obtained raw RNA-Seq data for 23 mid-

gestation (E11.5) mouse placenta samples [18] and showed that 5/14 had some

degree of evidence for module preservation (Zsummary > 2), with M3 showing a

highly significant preservation score (Zsummary > 10) (Figure 7.3). To further val-

idate the conservation of co-expression between human and mouse, we assembled

an independent and unsupervised de novo mouse co-expression network using the

same methods as our human dataset. By counting the overlapping genes for each

module and performing Fisher exact tests, we show that five human modules have

at least one mouse counterpart (Bonferonni corrected p < 0.05, Figure 7.4). As

predicted from the human–mouse Zsummary statistics, M3 showed the highest de-

gree of overlap with a mouse module (Bonferroni p = 2.78 × 10−20) and a highly

significant kME correlation (Pearson’s r = 0.4, p = 2.6 × 10−102).
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Figure 7.4: Overlap between weighted gene co-expression network modules
for human and mouse placenta. Heat map colours represent Fisher exact test
− log10 p-values. Numbers within cells represent the number of overlapping
genes with Bonferroni p < 0.05 and shows five human co-expression modules
(M1, M3, M4, M8 and M9) have a significant corresponding module in the
mouse.

7.2.4 Preserved Modules Feature a Core Set of Transcrip-

tion Factor Motifs

As M3 genes appear to constitute a highly conserved transcriptional network, we

tested for the enrichment of known transcription factor (TF)-binding motifs in the

sequence flanking M3 transcription start sites. Of the TFs predicted to target M3

genes (Figure 7.5A), ZNF423 and EBF1 were both detectable in the placenta and

members of the M3 module (kME = 0.85 and kME = 0.78, respectively), and

highly correlated with the M3 eigengene (Figure 7.5C). ZNF423 has previously

been reported to interact with EBF1 [20–23]. Here we show a majority of M3

genes with ZNF423-binding motifs also feature EBF1 motifs (Figure 7.5B), and the

density of these motifs is greatest immediately upstream of M3 transcription start

sites (Figure 7.5D). These multiple lines of evidence suggest ZNF423 and EBF1 are

key regulators of M3 gene transcription. When we performed the same enrichment

tests for all other modules, ZNF423 and EBF1 were predicted to target a high

proportion of genes within other co-expression modules (Table S7.1 on page 168).
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Further inquiry revealed that the most highly preserved modules across human

gestation, and between human and mouse (M1, M3-5, M8), feature a core set of

TF-binding motifs (Figure S7.3 on page 166), suggesting these co-expressed genes

share common regulatory factors and have a high degree of upstream sequence

similarity.

Figure 7.5: EBF1 and ZNF423 are potential upstream regulators of M3 gene
expression. (A) Enrichment test for TF-binding motifs in the 10kb up- and
down-stream of transcription start sites identify two TFs, ZNF423 (blue) and
EBF1 (orange), that are members of the M3 module. (B) EBF1 and ZNF423
are predicted to target many of the same M3 genes. Circles in the Venn dia-
gram represent the number of genes targeted by TFs and their overlap – EBF1
(orange), ZNF423 (blue), and when both have motifs directly adjacent to each
other (anchored analysis, yellow). (C) ZNF423 and EBF1 expression is highly
correlated with M3 eigengene expression. Points represent individual samples.
(D) TF-binding motif density is greatest immediately upstream of M3 tran-
scription start sites. Coloured lines represent the density TF motifs for EBF1
(orange), ZNF423 (blue) and the combination of both (green).
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7.2.5 Modules of Co-Expressed Genes are Implicated in

Pregnancy Complications

The origins of several pregnancy pathologies, such as preterm birth (PTB) and

preeclampsia (PE) are largely attributed to abnormal placental development [24–

26]. If co-expression modules constitute gene networks involved in placental de-

velopment, we reasoned that if a particular module underpinned key placental

processes, it may be enriched for genes implicated in pregnancy complications.

To address this question, we obtained a curated gene list from the PTB gene

database [27], and a set of meta-analysis-validated differentially expressed genes

in PE [3], and tested our co-expression gene modules for enrichment of genes im-

plicated in these pathologies (Figure 7.6). M9 was statistically enriched for genes

associated with PTB (OR = 3.4, FDR = 0.03), but more strikingly, modules M11

and M12 showed significant enrichment for PE-related genes (M11 OR = 16.6,

FDR = 2.1×10−3; M12 OR = 101.3, FDR = 1.2×10−16). Notably, three M12 in-

tramodular hub genes (PVRL4, INHBA and INHA) have consistently been shown

to be up-regulated in PE [3]. This provided the first line of evidence that M12

gene co-expression genes may be altered in PE.

To further validate the finding that M12 was enriched for genes differentially ex-

pressed in PE, we obtained additional independent microarray expression data

from a recent study on early-onset PE (n = 16) [28] and tested for differences in

M12 gene expression. First, a rotation gene set test [29] showed that M12 genes

are significantly up-regulated in the PE placenta (p = 0.021), providing a second

line of evidence for the involvement of M12 in preeclampsia (Figure 7.7A). Follow-

ing this, we calculated the first principal component for M12 genes in this dataset

to obtain an eigengene measure, and showed that M12 eigengene expression is sig-

nificantly different (t-test, p = 1.7× 10−4) between PE and control (Figure 7.7B).

This demonstrates the robust nature of the eigengene for testing for differences

in gene regulation between control and PE pregnancies. Furthermore, the tran-

scriptional regulator INSM1 that is functionally related to placentation [30] was

predicted to target a majority of M12 genes (Table S7.3 on page 166), in particu-

lar those genes dysregrulated in PE. Moreover, INSM1 is implicated in regulating

LEP [31], which showed the highest expression difference between PE and controls

(Figure 7.7A). Together, these results strongly implicate M12 co-expressed genes

in PE and suggest that the mechanisms regulating M12 co-expression may be al-

tered in PE. Thus, we demonstrate a new framework for investigating placental

genome regulation in this pregnancy pathology.
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Figure 7.6: M12 is enriched for genes that show a meta-signature for
preeclampsia. (A) Heat map table shows the statistical enrichment (FDR) of
module genes in preterm birth (PTB) and preeclampsia (PE), and cell colours
represent log2 odds ratio. (B) M12 genes implicated in PE and their module
membership (kME ). M12 intramodular hubs are in bold.

7.2.6 Eigengenes can be Used to Screen for Non-Invasive

Markers of Placental Gene Expression

One objective of the recently established Human Placenta Project is to improve

current methods and develop new technologies for real-time assessment of placental

development across pregnancy [1, 7]. Up to this point, we have demonstrated

that the organisation of the placental transcriptome can be summarised through

identifying modules of functionally related co-expressed genes, and module gene

expression is accurately reflected by the eigengene. Therefore, given the dimension-

reducing ability and explanatory power of eigengenes, we postulated that they

could be used to screen for markers of placental gene expression.

In this study, we had access to placenta-matched maternal blood samples taken at

15 weeks of gestation. To explore the concept of developing markers of placental

gene expression, we assayed a panel of biomarkers in maternal blood and screened

for eigengene correlates. After reducing the gene modules to those highly preserved

(Zsummary < 10) in the third trimester reference and validation datasets, and at
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Figure 7.7: M12 genes are significantly up-regulated in preeclampsia placen-
tas. (A) Bar plot showing the log2 fold-change between preeclampsia and control
placentas. Orange bars represent M12 hub genes. (B) The M12 eigengene (first
principal component) is significantly different between preeclampsia and control
placentas.

least low preservation in the first trimester placenta (Zsummary > 2), this screen

identified maternal blood Caspase-3 as a potential marker (FDR = 0.03, Pearson’s

r = 0.76) of M12 eigengene expression (Figure 7.8A). Closer inspection revealed

that the M3 hub gene NDGR1 is the key driver of this correlation (Figure 7.8B–

C). These results demonstrate that by clustering highly correlated genes, it is

possible to drastically reduce the dimensionality of gene expression data, which

subsequently increases the statistical power for screening biomarkers of placental

gene expression.
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Figure 7.8: Module eigengenes can be used to screen for non-invasive biomark-
ers of placental gene expression. (A) Heatmap showing Pearson correlations
between maternal blood biomarkers at 15 weeks of gestation and term placenta
co-expression module eigengenes. (B) Caspase-3.13a in maternal blood is a
strong predictor of both M12 eigengene expression (B), and the M12 hub gene
NDRG1 (C).

7.3 Discussion

By conducting the first comprehensive co-expression network analysis of the hu-

man placental transcriptome, we reveal previously unappreciated aspects of tran-

scriptional organisation at the fetal-maternal interface. This analysis entailed the

integration of multiple gene expression datasets and curated databases, which en-

abled the testing of specific hypotheses regarding placental genome regulation.
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Our results demonstrate that a large proportion of the placental transcriptome is

organised into distinct modules of co-expressed genes, some of which are preserved

across gestation, and conserved between human and mouse. The reproducibility

of these networks, constructed from independent datasets and different platforms

(RNA-Seq and microarrays) suggest a fundamental modular organisation of the

placental transcriptome. Moreover, our cross-species analysis demonstrates that

certain aspects of human placental transcriptional organisation are highly pre-

served in the mouse, indicating the evolutionary conservation of molecular pro-

cesses which drive mammalian placental development.

When comparing the de novo human and mouse networks, five genes were identi-

fied as M3/m3 intramodular hub genes (kME > 0.9) in both species (ARHGEF17,

DOCK6, MLK1, OSBPL7, and PRR12 ), demonstrating a high degree of inter-

species module reproducibility. These hub genes are centrally located within the

M3 module and may be critical components of the network. Of particular interest,

DOCK6 mutations in humans are associated with extreme placental angiopathy

and a severely abnormal placental phenotype [32], while DOCK6 expression is

reported to be down-regulated in placentas from growth-restricted fetuses [33].

Similarly, OSBPL7, an oxysterol-binding protein, is also reported to be differen-

tially expressed in placentas from preeclamptic pregnancies [34]. Together, these

results indicate that M3 co-expressed genes have significant involvement in pla-

cental development.

Investigation of the TFs that potentially regulate co-expression revealed that the

most preserved modules are predicted to be regulated by a core set of transcrip-

tion factors, including the M3 genes EBF1 and ZNF423, which potentially target

a high proportion of genes in the most highly preserved modules. Although the ef-

fects of ZNF423 and EBF1 on placental gene regulation remain largely unexplored,

ZNF423 appears to be a multi-functional transcription factor associated with B

cell regulation, retinoic acid signalling, notch signalling, DNA damage response

pathways, adipogenesis and cancer [20]. Furthermore, homozygous mutation in

the homologous gene in mice (Zfp423 ) results in smaller ataxic pups who die

shortly after birth [35]. This indicates a critical role for ZNF423 in development.

EBF1 can act as both a transcriptional activator and repressor and has known

roles in tumour suppression [36]. When EBF1 binds DNA directly as a dimer,

it can activate transcription via p300-CBP co-activation [36]. In other contexts,

the same DNA binding dimer in conjunction with ZNF423 can recruit the nucle-

osome remodelling and deacetylase (NuRD) complex, triggering EBF1-mediated

transcriptional repression [36]. The observation that EBF1 and ZNF423 are co-

expressed in the placenta and members of the M3 module, and their widespread
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targeting potential across modules of co-expressed genes indicates that these TFs

are candidate key regulators of transcription in the placenta.

The identification of M12 being enriched for genes implicated in PE highlights

a new method for identifying genes that may respond to the pathology, or may

indeed underlie its aetiology. This guilt-by-association approach, clustered genes

implicated in PE (M12) in a completely unsupervised manner, suggesting ex-

pression differences in these genes are driven by a set of common factors. The

observation that several M12 hub genes are up-regulated in PE, and show highly

correlated patterns of expression, implies that expression of other genes within

this module is likely driven by the same underlying factors. Viewed in this way,

further investigation of the involvement of M12 genes and their upstream regula-

tors in placental development may prove to be a valuable way of generating new

hypotheses regarding the placental origins of PE.

The intramodular M12 hub gene PVRL4, which is up-regulated in PE [3], is ex-

pressed more highly in the placenta compared to other human tissues [37]. PVRL4

is a potent mediator of epithelial cell colony formation [38] and is also highly ex-

pressed in ovarian cancer tissue [39]. Furthermore, cleaved PVRL4 is elevated

in the serum of patients with ovarian cancer and is correlated with PVRL4 ex-

pression [39], suggesting that maternal serum PVRL4 may hold potential as a

biomarker of PE.

Screening of maternal blood biomarkers for eigengene correlates revealed Caspase-3

as a potential surrogate marker for M12 gene expression, and the M12 intramodu-

lar hub gene NDRG1 was most significantly associated with maternal Caspase-3.

Intriguingly, NDRG1 is necessary for p53-mediated caspase activation and apop-

tosis [40]. This apoptosis pathway is implicated in trophoblast apoptosis and

placental pathologies [41], highlighting a new avenue of inquiry regarding the po-

tential relationship between maternal Caspase-3 and M12 genes. However, given

the temporal separation between maternal blood sampling and placental delivery,

the conclusions that can be drawn from their relationship are limited and require

further investigation. Nevertheless, we view this screening analysis as a proof-of-

concept, which demonstrates the power of using eigengenes as a screening tool in

the search for non-invasive markers of placental development and function.

Several new questions arise from this comprehensive co-expression network anal-

ysis. Firstly, are patterns of co-expression altered in placental pathologies? Our

analysis of independent expression datasets from PE placentas provide compelling

preliminary evidence that M12 genes are up-regulated in PE, which warrants fur-

ther investigation into the regulators of M12 genes. Secondly, what genetic and

environmental factors influence co-expression? A comprehensive assessment of
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genotypes and environmental factors such as maternal diet has the potential to

reveal drivers of placental expression variation. Thirdly, does silencing of hub

genes shift module co-expression and influence placental cell phenotype and be-

haviour? Functional studies aimed toward elucidating the biological function of

co-expression modules may yield new insights into how placental development is

regulated.

In summary, we show that a weighted gene co-expression network analysis can

provide novel insights into the functional organisation of the placental transcrip-

tome. To the best of our knowledge, the networks described herein have not been

described previously, and emphasise that these findings could not be revealed

through conventional gene-level summaries or differential expression experiments.

In typical differential expression analyses, emphasis is placed on genes where the

expression differences reach an appropriate level of significance. Although such ex-

periments have contributed significantly to our understanding of placental genome

regulation, the significance of each gene is typically determined in isolation, sub-

sequently failing to connect genes in a manner that reflects the functional or-

ganisation of the transcriptome. By connecting genes in a manner that reflects

underlying genome regulatory programs, we have exposed previously unappreci-

ated aspects of the placental transcriptional landscape and provide a framework

for multiple avenues of post hoc inquiry.

7.4 Methods

Ethics Statement

Ethics approval was granted by the Central Northern Adelaide Health Service

Ethics of Human Research Committee (Approval #2005082) and the University

of Adelaide Human Research Ethics Committee (H-137-2006). Written, informed

consent was obtained from all patients.

Sample Collection

Third trimester placenta samples were collected from pregnancies classified as

being uncomplicated by using the criteria described in [42], and were collected

and dissected post-delivery at the Lyell McEwin Health Service, South Australia.

Samples were incubated in RNAlater solution (Invitrogen) at 4 ◦C for 24 hours
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before being stored at −80 ◦C. Full sample details are listed in Table S7.1 on

page 168.

RNA Sequencing

RNA was extracted from 16 placental samples using TRIzol following the man-

ufacturer’s protocol. All samples were spiked with 96 External RNA Controls

Consortium (ERCC) ExFold RNA transcripts. Ribosomal RNAs were depleted

from samples using Ribo-Zero Gold and sequencing libraries were prepared using

Illumina R©TruSeq R©Stranded Total RNA Sample Preparation kits. Sequencing was

performed on the Illumina Hi-Seq 2500 using a 100bp paired-end protocol at the

Australian Cancer Genomics Facility in Adelaide.

Sequence adapters were trimmed using AdapterRemoval with options --trimns,

--minlength 20. Trimmed RNA-Seq reads were aligned to known UCSC

hg19 genes and the hg19 genome using Bowtie 2 v2.1.0 and TopHat

v2.0.9 with options --library-type=fr-firststrand --mate-inner-dist -20

--mate-std-dev 180. UCSC hg19 reference genome and transcriptome was ob-

tained through Illumina iGenomes link.

Aligned RNA-Seq reads were summarised using the summarizeOverlaps al-

gorithm with the options overlapMode=‘‘Union’’, ignoreStrand=FALSE,

singleEnd=FALSE, fragments=TRUE [43] to generate a table of unique read counts

per gene for each sample. Only genes > 1FPKM were retained (15,861 genes) and

count data were transformed and quantile-normalised using the Voom method [44]

to produce a numeric matrix of normalised expression values on the log2 scale.

Network Construction

To construct the network of co-expressed genes, we selected the most variable up-

per third of genes in the placental RNA-Seq dataset using the Weighted Gene Co-

expression Network Analysis methods implemented in the WGCNA R package [14].

Briefly, gene expression values were used to construct a signed co-expression net-

work by computing a Pearson’s correlation matrix, which is then used to compute

an adjacency matrix by raising the correlation matrix to a power. We chose a

power of eight, which was determined by plotting scale-free fit and mean con-

nectivity as a function of power (Figure S7.4 on page 167) using the scale-free

topology criteria outlined in [45]. By raising the absolute value of the correlation
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to a power, the construction of co-expression networks emphasises high correla-

tions at the expense of low correlations [14]. The interconnectedness (topological

overlap) of each gene pair was calculated using the adjacency matrix, which was

then used as input for average linkage hierarchical clustering.

Gene modules were then defined as branches of the resulting clustering tree, with

the branches cut into defined modules using the dynamic tree-cut algorithm [15].

Gene modules were then summarised by calculating module eigengenes, which are

defined as the first principal components of the module expression profiles. As

module eigengenes capture the maximum amount of variation of gene expression

within a module, the eigengene is considered a representative value (or weighted

average) of module gene expression [14]. For each module, the gene membership

value (kME ) is defined as the correlation between the standardised gene expression

values for each gene and the module eigengene for each sample [14]. We assigned

genes to modules if they had a high module membership defined as kME > 0.7,

and genes with a value below this threshold were assigned to the M0 (grey) module.

Note that using this method allows genes to be members of more than one module.

Module Preservation

To evaluate the preservation of human third trimester placenta gene modules in

independent placenta gene expression datasets, we used the WGCNA moduleP-

reservation function to generate module preservation statistics [14]. These methods

test whether the density and connectivity patterns of gene modules defined in our

reference dataset are preserved in independent datasets. We used the Zsummary

statistic to summarise the evidence for significant module preservation compared

to a random sample of all network genes reiterated over 100 permutations per

dataset. We adopted the thresholds suggested by Langfelder et al [8], who indi-

cate Zsummary < 2 implies no evidence for module preservation, 2 < Zsummary < 10

implies weak to moderate preservation, and Zsummary > 10 implies strong evidence

for module preservation.

RNA-Seq Validation Dataset

We used the raw RNA-Seq reads from 20 human third trimester placenta sam-

ples as previously described in a separate analysis of the human placental tran-

scriptome [5]. In this current study, RNA-Seq reads were aligned to the human

reference genome and UCSC known genes (hg19) using Tophat 2 with the op-

tions --library-type=fr-unstranded --segment-length=18. For the mouse
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expression data, we obtained RNA-Seq fastq files for 23 samples from the NCBI

short read archive (SRA062227). Reads were aligned to mm10 genome and UCSC

known genes using Tophat2 with the options --library-type=fr-unstranded

--read-mismatches 3 --read-edit-dist 3. Alignment bam files were sum-

marised to obtain the number of unique read counts per gene using the summa-

rizeOverlaps function in the genomicAlignments R package [43] with the options

ignore.strand=TRUE, paired=FALSE, mode=‘‘union’’ followed by log2 counts

per million transformation and quantile normalisation. To enable the comparison

of human and mouse datasets, mouse gene identifiers were converted to ortholo-

gous human gene identifiers using Ensembl Biomart and the biomaRt R package.

Genes with no corresponding human gene were removed from the analysis.

Microarray Validation Datasets

For second trimester placenta, Affymetrix CEL files for 27 samples (GSE5999)

were pre-processed, background subtracted and normalised using the robust multi-

average (RMA) algorithm [46]. Pre-processed and normalised data from 16 first

trimester placenta samples (GSE2551) and third trimester preeclampsia samples

(GSE44711) were downloaded directly from NCBI GEO. Only probes that mapped

uniquely to human genes were retained. In cases where multiple probes mapped to

the same gene, we selected the probe with the highest mean expression. Differential

expression testing of GSE44771 was performed using linear models and a rotation

gene set test [29].

Gene Ontology

Gene lists for each module were tested for enrichment of gene ontology (GO)

terms using Fisher tests to compute p-values for statistical over-representation of

GO terms. These were compared with all the detectable genes (15,861) in our

placental gene expression dataset [47].

Transcription Factor Motif Enrichment

The genes within each co-expression gene module were analysed for enrichment of

transcription factor (TF)-binding sites (TFBS) against a background gene set of

all detectable genes in the placenta dataset (15,861) using the oPOSSUM program

and the JASPAR vertebrate core profiles [48, 49]. For each gene, we searched for
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TFBS motifs in the conserved regions of the 10kb upstream/downstream sequences

using a conservation cut-off of 0.4, a matrix score threshold of 85% and a minimum

specificity of 8-bits. The highly enriched TFBSs were identified by ranking TFs

using results from Fisher tests and Z-score rankings.

Maternal Blood Biomarkers

A panel of 47 maternal serum biomarkers (15 weeks gestation) were assayed by

Alere Discovery (San Diego) to screen for molecules that may influence or be in-

dicative of placental function, as described previously [50]. We removed redundant

and potentially uninformative biomarkers using the linear correlation filter in the

FSelector R package. We then selected the top three hub genes from modules with

absolute eigengene-biomarker correlations > 0.7, and performed univariate linear

regression analyses to identify hub genes that are correlated with the maternal

blood biomarkers.
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S7.1 Supporting Information

Figure S7.1: RNA-Seq metrics and quality control. (A) Number of mapped
reads per sample. (B) Absolute concentration of ERCC spike-in RNA tran-
scripts is highly correlated with normalised expression above 1 count per million
(CPM). (C) Delta fold change (absolute fold difference – the detected fold differ-
ence) for ERCC spike-in RNA transcripts (x-axis) versus normalised expression
level.
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Figure S7.2: Heat map showing the gene overlap between modules. Colour
intensity represents the number of overlapping genes between two modules.
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Figure S7.3: Heat map showing the number of overlapping top ten transcrip-
tion factors predicted to regulate each co-expression module. The same top ten
transcription factors are predicted in M1, M3, M4 and M8 and are shown in the
table above heat map.
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Figure S7.4: Summary network indices (y-axes) as functions of the soft-
thresholding power (x-axes) for human and mouse. Numbers in the plots indi-
cate the corresponding soft-thresholding powers. Plots indicate that approxi-
mate scale-free topology is attained around the soft-thresholding power of eight
for both datasets. Because the summary connectivity measures decline steeply
with increasing soft-thresholding power, it is advantageous to choose the lowest
power that satisfies the approximate scale-free topology criterion.
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Table S7.1: Sample characteristics.

Sample

ID

Mother’s

BMI

Fetal sex Fetal birth

weight (g)

Head circum-

ference (cm)

Length

(cm)

1 24.4 Female 3140 33.3 47.9

2 21.9 Female 3050 33.5 47.8

3 24.8 Male 3565 34.5 50.4

4 20.9 Male 3150 34.8 49.6

5 25.2 Female 4010 36 53

6 26.9 Male 3990 35.8 50.8

7 21.6 Male 3464 34.5 49.5

8 19 Female 3705 35 51

9 18.9 Female 3250 33.5 50.5

10 18 Female 3860 35.7 50.2

11 26.3 Male 3875 36 50.2

12 25.7 Male 3600 36 49.8

13 24.5 Male 4200 36.5 52.9

14 24.6 Female 3550 35.3 49.2

15 25.4 Female 3120 33 48

16 24 Male 3680 34.5 48.5

Mean 23.3 – 3575.6 34.9 50.0

SD 2.8 – 358.1 1.1 1.6
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Chapter 8

General Discussion

The primary aim of this project was to further our understanding of three aspects

of placental genome regulation: (1) the establishment of DNA methylation during

first trimester gestation; (2) the effect of fetal sex on placental gene expression;

and (3) the underlying organisation of the human placental transcriptome. The

work presented in this thesis has provided novel insight into the establishment

of DNA methylation imprints during the first trimester; the first comprehensive

assessment of sex differences in the human placental transcriptome; and the first

integrative analysis of placental gene co-expression.

8.1 Overall Significance

8.1.1 Epigenetic Plasticity in the Human Placenta at 6–10

Weeks Gestation

The research presented in Chapter 2 on genomic epigenetic imprinting during de-

velopment of the human first trimester placenta highlighted a window of epigenetic

plasticity between six and ten weeks of gestation [1]. These results indicate that

imprinting at the H19 locus is not established as early as was previously thought

and may contribute to early programming of placental phenotype. Furthermore,

this study was the first to employ a highly quantitative measure of allele-specific

expression for these genes in the human placenta. Our demonstration of signifi-

cant allelic variation in H19 expression, and the observation of consistent biallelic

IGF2R expression, illustrated the need for robust methodologies to determine the

role of imprinted genes in normal and pathological placental development.
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8.1.2 Widespread Sex-Biased Gene Expression in the Hu-

man Placenta

Our transcriptome meta-analysis [2] revealed that the extent of sex-biased expres-

sion in the placenta is more extensive than that described in previous reports [3,

4]. Our results demonstrate that a vast majority of sex-biased genes in the hu-

man placenta have not been observed to show sex biases in studies of other human

tissues [5–7]. Importantly, given the significant sex biases observed for healthy pla-

cental (‘control’) tissue, the results of this study highlight the need to incorporate

fetal sex as a covariate in any studies of placental gene expression. We consider

these results to be highly robust, since this study incorporated data from samples

collected in Europe, USA and Asia using a variety of microarray platforms from

three different manufacturers.

8.1.3 Sex-Biased Expression of Genes Encoding hCG

As human chorionic gonadotropin (hCG) promotes placental growth and vasculo-

genesis, our observation of consistently higher female expression of genes encoding

hCG suggests that female fetuses invest more in extra-embryonic tissue develop-

ment than males. Since a mother has finite resources to allocate to a fetus in

utero, these findings support the supposition that males invest more resources in

the growth and development of embryonic tissues at the expense of investing less

in the development of extra-embryonic tissues [8, 9]. This may be one contributing

factor to the male bias in the incidence of placental dysfunction [10] and pregnancy

complications where placental pathology is implicated [11–13].

8.1.4 Conservation of Gene Regulatory Programs across

Gestation

To investigate transcriptome-wide gene co-expression we assembled 16 human term

placental transcriptome datasets (37–40 weeks of gestation) and identified distinct

clusters of genes that are expressed in a highly coordinated manner. By integrating

these data with additional placental transcriptome datasets from both human and

mouse, we show that distinct patterns of co-expression are preserved across hu-

man gestation (8–40 weeks). These patterns are highly conserved between human

and mouse, subsequently revealing previously unappreciated molecular networks

involved in placental development. To the best of our knowledge, this is the

first detailed investigation into human placental gene co-expression. Our findings
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provide a new foundation for investigations into placental genome regulation by

revealing the underlying organisation of the human placental transcriptome.

8.1.5 Evidence of Co-Regulation of Genes Implicated in

Preeclampsia

Our transcriptome co-expression analyses also identified a cluster of genes heavily

implicated in preeclampsia, which show highly correlated patterns of expression.

This suggests regulation by a common set of factors. Numerous studies have

identified several genes that are differentially expressed in placentas from normal

pregnancies compared to those affected by preeclampsia, however the results have

been mixed and largely lack consensus. In our study we demonstrate that many

genes previously found to be associated with preeclampsia show highly coordinated

patterns of expression. This indicates that specific factors (currently unknown),

which modulate gene expression, may be perturbed in preeclampsia. These results

therefore provide a new framework for investigating altered gene expression in the

placentas from preeclamptic pregnancies.

8.2 Contributions to the Field

8.2.1 Detailed Reference of Placental Sex-Biased Gene Ex-

pression

The transcriptome meta-analysis presented in Chapter 5 represents the most com-

prehensive assessment of sex-biased expression in the non-pathological placenta to

date. This serves as a baseline measure of healthy sex-biased gene expression that

will enable more in-depth research into sex biases in placental pathologies. Com-

plete annotated results of this study have been made available as supplementary

data to this study and serve as a resource for the wider research community.

8.2.2 The massiR Software Package

The software package massiR, developed during this project, implements algo-

rithms for predicting sample sex from high-throughput gene expression datasets

and constitutes a valuable contribution to the wider research community. By en-

abling post hoc identification of sample sex, this tool increases the useability of
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thousands of publicly available datasets for researchers wishing to test for sex dif-

ferences in expression, or to include sex as a covariate in statistical analyses. The

massiR package is also a valuable validation tool for newly generated datasets,

which can aid in detecting common laboratory errors such as tube mislabelling.

The massiR package is currently hosted on Bioconductor, the world’s leading

bioinformatics software repository, and is currently downloaded more than 200

times per month.

8.2.3 Comprehensive Placental Transcriptome Dataset

The placental co-expression analysis presented in this thesis (Chapter 7) provides

both the resources and the framework for further investigations into the organisa-

tion of placental gene regulation. Upon publication of this work, a fully annotated

transcriptome assembly, along with comprehensive co-expression results, will be

released into the public domain. This will constitute a valuable community re-

source for researchers conducting further analyses into placental gene regulation.

8.2.4 A New Framework for Screening Biomarkers of Pla-

cental Development and Function

In summarising the placental transcriptome by grouping co-expressed genes,

we demonstrated a method that significantly reduces the dimensionality of

transcriptome-scale data. The results of the study presented in Chapter 7 show

how hundreds of functionally related co-expressed genes can be accurately decom-

posed to a single value with a high degree of information being retained. One

powerful implementation of these summarised gene expression measures is to use

them to screen for correlates of gene expression without having to impose severe

adjustments for testing multiple hypotheses. This subsequently opens the door

for high-throughput screening of biomarkers of placental gene expression. Given

recent initiatives to pursue non-invasive methods of monitoring placental develop-

ment in real-time, the approach outlined in Chapter 7 constitutes an important

step toward surrogate markers of placental development.
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8.3 Problems Encountered and Limitations

8.3.1 Genomic Imprinting in the Placenta

The major limitation with allele-specific expression and methylation analyses was

the limited number of loci under investigation. In this first study, we adopted

a candidate gene approach, which focused on two genes that have been widely

utilised to investigate parent-of-origin allele-specific expression and have known

effects on placental phenotype. However, current estimates indicate that the num-

ber of imprinted genes expressed in the placenta is in the hundreds, which may be

regulated by more than one epigenetic mechanism (DNA methylation and histone

modifications). A secondary limitation relates to the study of first trimester pla-

cental tissue from elective terminations of pregnancy. Approximately one in five

pregnancies feature a complication that could be partially or fully attributed to

improper placental development. For this reason, we have little idea if these pla-

centas were obtained from pregnancies that were destined to feature an obstetric

complication. Ideally, analysis of first trimester chorionic villous samples from on-

going pregnancies for which outcome is known would provide the best information

but also shed light on first trimester origins of pregnancy complications.

8.3.2 Transcriptome Meta-Analysis

Regarding the sex-biased expression analysis, the lack of appropriate software for

conducting a microarray meta-analysis with raw probe-level data on this scale

meant a significant effort was required to develop robust analysis pipelines for

normalising, summarising and ultimately meta-analysing all of the gene expression

data.

There were also issues encountered in the use of publicly available data, relating

to metadata availability. Firstly, the majority of samples lacked sex information.

Although this was overcome by creating an algorithm for predicting sample sex

(Chapter 4), it was challenging to obtain sufficient empirical datasets with con-

firmed sex information in order to validate the algorithm. Given the diversity of

the human population, we would have also been able to conduct a much more

comprehensive analysis if more detailed metadata were included with publicly

available expression data (e.g. body mass index, ethnicity, age, parity, smoking

status, etc.). Secondly, authors do not always make placental gene expression ar-

ray data publicly available in its raw format – if they had, we would have been

able to conduct a larger and more powerful study. Finally, the annotation of many
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probes on most, if not all, microarray platforms is often ambiguous and we had to

exercise caution in deciding which probes to include in the analysis. Although we

re-annotated all the arrays by mapping probes back to a common reference genome

using a relatively conservative approach, there were still some ambiguities, which

raised issues when interpreting the results. However, the shift in the field towards

RNA sequencing to quantify global gene expression will help to overcome some of

these issues if researchers are more diligent with metadata reporting.

8.3.3 Transcriptome Co-Expression Analysis

At the start of this PhD, RNA-Seq had only just begun to be widely utilised for the

quantification of gene expression. For this reason, many algorithms for assembling

and quantifying RNA transcripts were immature, and there remains no consensus

on the most appropriate way(s) to reliably quantify expression. A large proportion

of time during my candidature was therefore spent learning about the algorithms

used for RNA-Seq mapping and quantification; optimising the mapping, transcript

assembly and quantification pipelines; developing methods of RNA-Seq quality

control; and extensively testing the analytical tool parameters. Although time-

consuming, a vast amount of experience was gained.

One weakness of our RNA-Seq co-expression analysis relates to the number of

biological replicates in our experiment (n = 16). A very recent study has suggested

that thousands of samples may be required for a gold-standard weighted-gene co-

expression network analysis [14]. It was not feasible for us to conduct a study

on this scale due to the prohibitive cost of RNA-Seq. However, by integrating

multiple datasets from previously published studies, we were able to validate and

extend our findings, which undoubtedly strengthened our results. Regardless, this

approach is largely reliant on the diligence and transparency of other researchers

in terms of their sample collection, accurate metadata reporting, and their use of

appropriate quality controls.

8.4 Future Directions

In recent years, undeniable progress has been made towards obtaining a clearer

understanding of how genomic information orchestrates the complex processes of

mammalian development and cellular function. However, this progress is some-

what paradoxical; the more we learn, the more we realise that there is much we

still do not know. The research presented here has cast new light upon the role
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of genome regulation in placental development and related pregnancy pathologies,

yet many important questions remain.

Firstly, to what degree is the placental epigenome modulated throughout gesta-

tion? To what extent does this influence placental phenotype and fetal develop-

ment? Although the research presented here has increased our understanding of

gene expression patterns maintained in the placenta across gestation, we possess

limited knowledge of the epigenetic mechanisms that govern such precise regula-

tion. Future work focused on profiling the placental epigenome throughout ges-

tation will undoubtedly help to delineate the role of the epigenome in regulating

placental development and function. Moreover, identifying periods of dynamic

epigenetic change during placental development may allow us to determine sen-

sitive periods where the regulatory framework for the remainder of gestation is

established. This may be crucial to determine how the maternal and external

environments can induce stable epigenetic change in the placenta, and how this

influences fetal development and health in utero and beyond.

Secondly, coupling RNA-Seq with the epigenome profiles outlined above will allow

a detailed investigation of genomic imprinting in the placenta across gestation. To

date, there have been no comprehensive genome-wide assessments of imprinted

gene regulation across gestation. Given that imprinted genes are known to have a

profound influence on placental phenotype and fetal development, the information

gained from such a study would be incredibly valuable to placental researchers

and the wider genomics community.

Thirdly, to what extent are rodent models useful for understanding human placen-

tal development? One component of this PhD research revealed a highly conserved

transcriptional program between human and mouse, suggesting the existence of

common regulatory mechanisms in the placenta. However, several modules of co-

regulated genes were not conserved in the mouse, particularly that implicated in

preeclampsia. This indicates that these molecular networks underpin functions

that may be more specific to human placental development and to human (or

primate) pregnancy complications that do not occur in other mammalian orders.

Given that the placenta is one of the most highly diverse tissues among mammals,

future studies focused on elucidating the specific aspects of conservation and diver-

gence between human and mouse will be required. This will allow us to carefully

evaluate the conditions under which rodent models are useful for providing insight

into human placental development, and which conditions have limited utility.

Finally, one of the biggest challenges in placental biology is to develop non-invasive

methods of monitoring placental development and function in real-time. In Chap-

ter 7, we demonstrated how to screen for surrogates of placental gene expression
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by reducing the complexity of the transcriptome. A series of carefully designed

experiments would need to be carried out to pursue this idea further. Firstly, full

transcriptome profiling is needed, using many more placental samples from nor-

mal and pathological pregnancies to generate a highly robust gene co-expression

network. Secondly, we would need to measure a high number of biomarkers in

placental-matched maternal blood samples and develop methods for combining

biomarkers (maternal SNPs, proteins, enzymes, placenta-derived RNAs) that most

accurately predict the level of co-expressed genes. Thirdly, through a series of cell

and animal model experiments, we would need to determine the regulators and

hub genes most critical to the gene networks in order to refine biomarker screening

around these results. The integration of genome–epigenome–transcriptome data

with clinical phenotypes and biomarkers presents unique challenges that must

be overcome if we are to transition into a functioning field of genomic–obstetric

medicine. Although such projects are ambitious, the information gained would be

of immense value to the discipline of obstetrics and gynaecology.

8.5 Conclusion

The sequence of the human genome encodes the genetic instructions underpinning

human physiology. Just over a decade ago, the International Human Genome

Sequencing Consortium released the first highly accurate build of the human

genome [15], but this was not the end – it was a new beginning. The discovery

that the human genome encodes only 20,000–25,000 protein-coding genes meant it

rapidly became apparent that physiological processes hinge as much upon genome

regulation as genome content.

The work presented in this thesis has explored several aspects of human placen-

tal genome regulation and demonstrates the complex and multi-faceted landscape

of the human placental transcriptome. We have demonstrated that important

changes occur in the regulation of imprinted genes during the first trimester, that

fetal sex has a profound influence on placental gene regulation, and that the pla-

cental transcriptome is organised into functional modules of co-expressed genes.

The work published from this thesis will contribute to the advancement of research

into how the placental genome influences fetal development in utero. Furthermore,

the analytical framework established in this thesis may be beneficial to develop

non-invasive methods of monitoring placental development and function in real-

time.



Bibliography

[1] Buckberry, S., Bianco-Miotto, T., Hiendleder, S., and Roberts, C. T. Quan-

titative allele-specific expression and DNA methylation analysis of H19,

IGF2 and IGF2R in the human placenta across gestation reveals H19 im-

printing plasticity. PloS one, 7(12) (2012), e51210.

[2] Bianco-Miotto, T., Bent, S. J., Dekker, G. A., and Roberts, C. T. Inte-

grative transcriptome meta-analysis reveals widespread sex-biased gene ex-

pression at the human fetal–maternal interface. Molecular Human Repro-

duction, (2014).

[3] Sood, R., Zehnder, J. L., Druzin, M. L., and Brown, P. O. Gene expres-

sion patterns in human placenta. Proceedings of the National Academy of

Sciences, 103(14) (2006), pp. 5243–5244.

[4] Cvitic, S., Longtine, M. S., Hackl, H., Wagner, K., Nelson, M. D., Des-

oye, G., and Hiden, U. The Human Placental Sexome Differs between

Trophoblast Epithelium and Villous Vessel Endothelium. PloS one, 8(10)

(2013), e79233.

[5] Trabzuni, D., Ramasamy, A., Imran, S., Walker, R., Smith, C., Weale,

M. E., Hardy, J., Ryten, M., and North American Brain Expression Con-

sortium. Widespread sex differences in gene expression and splicing in the

adult human brain. Nature communications, 4 (2013), p. 2771.

[6] Zhang, Y., Klein, K., Sugathan, A., Nassery, N., Dombkowski, A., Zanger,

U. M., and Waxman, D. J. Transcriptional profiling of human liver identi-

fies sex-biased genes associated with polygenic dyslipidemia and coronary

artery disease. PloS one, 6(8) (2011), e23506.

[7] Whitney, A. R., Diehn, M., Popper, S. J., Alizadeh, A. A., Boldrick, J. C.,

Relman, D. A., and Brown, P. O. Individuality and variation in gene ex-

pression patterns in human blood. Proceedings of the National Academy of

Sciences of the United States of America, 100(4) (2003), pp. 1896–1901.

[8] Clifton, V. L. Review: Sex and the human placenta: mediating differential

strategies of fetal growth and survival. Placenta, 31 Suppl (2010), S33–9.

183



Chapter 8. General discussion 184

[9] Eriksson, J. G., Kajantie, E., Osmond, C., Thornburg, K., and Barker,

D. J. P. Boys live dangerously in the womb. American journal of human

biology : the official journal of the Human Biology Council, 22(3) (2010),

pp. 330–335.

[10] Murji, A., Proctor, L. K., Paterson, A. D., Chitayat, D., Weksberg, R., and

Kingdom, J. Male sex bias in placental dysfunction. American Journal of

Medical Genetics Part A, 158A (2012), pp. 779–783.

[11] Vatten, L. J. and Skjaerven, R. Offspring sex and pregnancy outcome by

length of gestation. Early Human Development, 76(1) (2004), pp. 47–54.

[12] Di Renzo, G., Rosati, A., Sarti, R., and Cruciani, L. Does fetal sex affect

pregnancy outcome? Gender medicine, 4(1) (2007), pp. 19–30.

[13] Kleinrouweler, C. E., Uitert, M. van, Moerland, P. D., Ris-Stalpers, C.,

Post, J. A. M. van der, and Afink, G. B. Differentially expressed genes in

the pre-eclamptic placenta: a systematic review and meta-analysis. PloS

one, 8(7) (2013), e68991.

[14] Ballouz, S., Verleyen, W., and Gillis, J. Guidance for RNA-seq co-expression

network construction and analysis: safety in numbers. Bioinformatics (Ox-

ford, England), (2015).

[15] Consortium, I. H. G. S. Finishing the euchromatic sequence of the human

genome. Nature, 431(7011) (2004), pp. 931–945.



Appendix A

Publication Format: Quantitative

Allele-Specific Expression and

DNA Methylation Analysis of

H19, IGF2 and IGF2R in the

Human Placenta Across

Gestation Reveals H19

Imprinting Plasticity

185



Quantitative Allele-Specific Expression and DNA
Methylation Analysis of H19, IGF2 and IGF2R in the
Human Placenta across Gestation Reveals H19
Imprinting Plasticity
Sam Buckberry1, Tina Bianco-Miotto1,2, Stefan Hiendleder1,3, Claire T. Roberts1*

1 The Robinson Institute, Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia,

Australia, 2 The Robinson Institute, Research Centre for Early Origins of Health and Disease, School of Paediatrics and Reproductive Health, The University of Adelaide,

Adelaide, South Australia, Australia, 3 JS Davies Epigenetics and Genetics Group, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South

Australia, Australia

Abstract

Imprinted genes play important roles in placental differentiation, growth and function, with profound effects on fetal
development. In humans, H19 and IGF2 are imprinted, but imprinting of IGF2R remains controversial. The H19 non-coding
RNA is a negative regulator of placental growth and altered placental imprinting of H19-IGF2 has been associated with
pregnancy complications such as preeclampsia, which have been attributed to abnormal first trimester placentation. This
suggests that changes in imprinting during the first trimester may precede aberrant placental morphogenesis. To better
understand imprinting in the human placenta during early gestation, we quantified allele-specific expression for H19, IGF2
and IGF2R in first trimester (6–12 weeks gestation) and term placentae (37–42 weeks gestation) using pyrosequencing.
Expression of IGF2R was biallelic, with a mean expression ratio of 49:51 (SD = 0.07), making transient imprinting unlikely.
Expression from the repressed H19 alleles ranged from 1–25% and was higher (P,0.001) in first trimester (13.568.2%)
compared to term (3.462.1%) placentae. Surprisingly, despite the known co-regulation of H19 and IGF2, little variation in
expression of the repressed IGF2 alleles was observed (2.762.0%). To identify regulatory regions that may be responsible for
variation in H19 allelic expression, we quantified DNA methylation in the H19-IGF2 imprinting control region and H19
transcription start site (TSS). Unexpectedly, we found positive correlations (P,0.01) between DNA methylation levels and
expression of the repressed H19 allele at 5 CpG’s 2000 bp upstream of the H19 TSS. Additionally, DNA methylation was
significantly higher (P,0.05) in first trimester compared with term placentae at 5 CpG’s 39–523 bp upstream of the TSS, but
was not correlated with H19 repressed allele expression. Our data suggest that variation in H19 imprinting may contribute to
early programming of placental phenotype and illustrate the need for quantitative and robust methodologies to further
elucidate the role of imprinted genes in normal and pathological placental development.
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Introduction

Genomic imprinting refers to parent-of-origin-dependent allele-

specific gene expression. Imprinting affects gene dosage, with the

imprinted allele considered repressed and functionally silenced

[1,2]. Imprinting is largely, although not exclusively, observed in

eutherian mammals and is thought to have arisen with viviparity

and the evolutionary emergence of the chorioallantoic placenta

[3,4]. The prevailing hypothesis on the origin of imprinting is

based on paternal-maternal conflict and postulates that paternally

expressed genes have been selected to maximize fetal resource

acquisition from the mother, while maternally expressed genes

have been selected to balance resource allocation to current and

future offspring [4]. As imprinted genes appear to facilitate this tug-

of-war between the maternal and paternal genomes, the conflict

hypothesis predicts that imprinted genes are involved in fetal and

placental growth and development during pregnancy [2,4,5].

Studies using animal models have demonstrated the functional

importance of imprinting of H19, IGF2 and IGF2R genes during

intrauterine development [6,7,8,9,10]. Paternally expressed IGF2

encodes the growth promoting insulin-like growth factor II, a

potent mitogen involved in regulating cell proliferation, growth

and development. The reciprocally imprinted, maternally ex-

pressed H19 gene is located approximately 130 kb downstream of

IGF2 on human chromosome 11 and encodes a highly expressed,

growth regulating, non-coding RNA that shares regulatory

elements with IGF2 [11]. The mechanism by which H19 interacts

with IGF2 and regulates growth is not fully understood and
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appears to involve long range interaction of differentially

methylated regions and complex loop structures that regulate

the activity of parental alleles [12,13,14]. More recently, H19 has

been identified as a trans regulator of an imprinted gene network

for growth and development [15], apparently through miRNAs

processed from the H19 transcript [11,16,17]. The H19 large

intergenic non-coding RNA (lincRNA) is highly expressed in

extra-embryonic cell lineages and is a developmental reservoir of

miR-675 that suppresses placental growth in the mouse [18]. The

IGF2 receptor (IGF2R) mediates endocytosis and clearance or

activation of a variety of ligands involved in the regulation of cell

growth and motility, including insulin-like growth factor II

[19,20,21].

Studies in mice have demonstrated that altered imprinting of

H19, IGF2 and IGF2R are associated with placental and fetal

growth abnormalities [11,22,23], some of which are consistent

with data from human studies. For example, (epi)mutations in the

H19-IGF2 region are associated with Silver-Russell and Beckwith-

Wiedemann syndromes, which manifest in utero in severely growth-

restricted and overgrowth phenotypes, respectively [24]. Further-

more, altered epigenetic regulation of the H19-IGF2 region in

human placenta has been associated with pregnancy complications

such as preeclampsia, which are preceded by placental pathologies

[25,26]. A significant role in placental development has been

established for H19 and IGF2 in mouse and human, but

knowledge on the role of IGF2R in human placental development

is limited. The IGF2R gene is imprinted in all tissues except brain

in mouse, but the majority of human samples indicate non-

imprinted biallelic expression [3,27,28,29]. The minority of

samples with imprinted or partially imprinted expression suggested

developmental stage-specific transient imprinting. However, the

developmental role of rare, transient or partial IGF2R imprinting

in the human placenta [3,27,30,31,32,33] remains to be estab-

lished.

In the human placenta, biallelic expression of imprinted genes,

including H19, has been observed at higher rates during the first

trimester of pregnancy compared to term [25,34,35]. Intriguingly,

biallelic expression of H19 in term placentae has been associated

with preeclampsia in one study [25], yet subtle variation in H19

allelic expression in healthy term placentae has also been observed

[36]. This limited research on allele-specific expression in the

human placenta suggested that imprinting may be dynamic across

gestation with potential plasticity in imprinting beyond blastocyst

and implantation stages. Although some differences in allele-

specific expression of imprinted genes between the first trimester

and term human placenta have been reported [34], there appear

to be no studies addressing potential changes across the first

trimester, a highly dynamic period of placental growth and

differentiation. Thus, there is little or no data on temporal

variation in imprinting of these genes across gestation, or if

imprinting is stable throughout the first trimester and later

gestation. In the present study, we quantified the allelic expression

ratio for H19, IGF2 and IGF2R and DNA methylation in the H19-

IGF2 imprinting control region across 6–12 weeks of gestation in

first trimester placentae and in term placentae between 37–42

weeks of gestation.

Materials and Methods

Ethics Statement
Ethics approval was granted by the Children, Youth and

Women’s Health Service Research Ethics Committee (REC2249/

2/13), the Central Northern Adelaide Health Service Ethics of

Human Research Committee (Approval #2005082) and the

University of Adelaide Human Research Ethics Committee (H-

137-2006). Written informed consent was obtained from all

patients.

Sample Collection
First trimester placental samples ranging from 6–12 weeks of

gestation were obtained from elective terminations of pregnancies

at the Women’s and Children’s Hospital, South Australia. The

consulting physician determined gestational age by observation

and the date of the last menstrual period. Placental villous samples

were washed in sterile PBS and snap frozen in liquid nitrogen

before being stored at 280uC. Term placenta samples were

collected from pregnancies classified as being uncomplicated by

using the criteria described in [37], and were collected and

dissected post-delivery at the Lyell McEwin Health Service, South

Australia, and incubated in RNAlater solution (Invitrogen) at 4uC
for 24 hours before being stored at 280uC.

Genotyping
DNA was extracted from placental tissue and parental blood

using the QiagenH DNeasyH blood and tissue kit following the

manufacturer’s instructions. DNA concentration was determined

using the NanoDropH ND-1000 Spectrophotometer and diluted to

12.5 ng/mL with nuclease-free water (Mo Bio Laboratories).

Isolated DNA from first trimester placental samples was genotyped

for IGF2 rs680, IGF2R rs998075 and IGF2R rs1570070 single

nucleotide polymorphisms (SNPs) by PCR and High Resolution

Melt (HRM) analysis (see Methods S1). Term placenta and

parental DNA SNP genotypes for H19 rs217727 and IGF2 rs680

were determined by multiplex PCR and the SequenomH
MassARRAYH system, using the iPLEXH GOLD single base

extension reaction on custom arrays at the Australian Genome

Research Facility, Brisbane, Australia.

Quantification of Allele Specific Expression
Placental samples were thawed and homogenised with 1 mL

TRIzol (Invitrogen) per 100 mg tissue. TRIzol (Invitrogen)

extraction was performed according to the manufacturer’s

guidelines. RNase-free glycogen (Ambion) was added at 25 mg

per 1 mL of TRIzol (Invitrogen) to aid in RNA visualisation. RNA

samples were DNase treated using the TURBO DNA-freeTM kit

(Ambion) following the manufacturer’s instructions for rigorous

treatment. Following DNase treatment, 2 mL of RNA was

subjected to PCR with DNA-specific primers (Table S1). The

DNase treatment was determined to be effective if samples showed

no amplification after 35 cycles. The concentration of DNase-

treated RNA was calculated with the NanoDropH ND-1000

Spectrophotometer.

First-strand cDNAs were synthesised from 500 ng DNase-

treated RNA using the iScriptTM cDNA Synthesis Kit (Bio-Rad),

following the manufacturer’s instructions. Reverse transcriptase

was omitted for negative controls and aliquots of the master mix

without added RNA were included in PCR experiments to rule

out contamination. Following reverse transcription, cDNA was

diluted 1:10 with nuclease-free water (Mo Bio Laboratories).

Aliquots from five cDNA samples were pooled and serially diluted

5-fold for primer validation and PCR optimisation.

PCR primers flanking SNP regions and pyrosequencing primers

were designed using the PSQTM assay design software (Biota-

geTM). Reverse primers featured 59 biotin modifications and were

HPLC purified. All oligonucleotides were synthesised by Gene-

Works (Adelaide) and are listed in Table S2. Each sample was

pyrosequenced in triplicate, with each replicate generated in an

independent PCR cycling run. PCR was performed using 10 mL

Imprinting in the Human Placenta across Gestation
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reactions with 2 mL of cDNA, 5 mL SsoFast EvaGreen Supermix

(Bio-Rad) and 300 nM of each primer. Cycling conditions were

2 min enzyme activation at 95uC followed by 40 cycles of 5 sec at

95uC and 20 sec at 60uC. PCR products were sequenced by

pyrosequencing using the methods detailed below.

Quantification of DNA Methylation
DNA for methylation analysis was extracted from placental

villous tissue by homogenizing 50–100 mg tissue in 500 ml of TES

(10 mM Tris-HCL pH8.0, 1 mM EDTA, 100 mM NaCl), then

adding 300 mg Proteinase K and 30 ml of 20% SDS followed by an

overnight incubation at 37uC. Then 3 M NaCl was added to

precipitate proteins and the supernatant was collected by

centrifugation. The DNA was pelleted using 2 volumes of absolute

ethanol and washed in 70% ethanol, air dried and resuspended in

TE pH 8.0 [38].

Each DNA sample was bisulfite treated in triplicate by

EpigenDx (Massachusetts, USA) using 500 ng of DNA and a

proprietary bisulfite salt solution followed by incubation for 14

hours at 50uC. Bisulfite treated DNA was purified using Zymogen

DNA columns and was eluted with 20 ml of TE pH 8.0, 1 ml of

which was used for PCR reactions. The PCR was performed with

0.2 mM of each primer for EpigenDx methylation assays ADS025,

ADS596FS and ADS004 with one of the PCR primers being

biotinylated for purifying the final PCR product.

Pyrosequencing
The biotinylated PCR products were bound to Streptavidin

Sepharose HP (Amersham Biosciences, Sweden), and the Sephar-

ose beads containing the immobilized PCR product were purified,

washed and denatured using a 0.2 M NaOH solution and

rewashed all using the Pyrosequencing Vacuum Prep Tool

(Qiagen) as recommended by the manufacturer. Then 0.2 mM

pyrosequencing primer was annealed to the purified single-

stranded PCR product. 10 ml of the PCR products were

sequenced using the PSQ96 HS System (Biotage AB) following

the manufacturer’s instructions at EpigenDX Genome and

Epigenome Research Facility (Massachusetts, USA). The status

of each locus was analyzed individually using QCpG software

(Qiagen).

Statistical Analysis
Repressed allele expression differences between gestational age

classes for each gene were analyzed using one-way analysis of

variance (ANOVA). Differences between first trimester (6–12

weeks of gestation) and term (37–42 weeks of gestation) samples

were analyzed using the t-test. Differences in allelic expression

measured at two loci in the one sample were analyzed using the

paired t-test. The relationship between repressed allele expression

from two genes in the same sample was tested by calculating the

Pearson’s bivariate correlation coefficient. Differences in levels of

DNA methylation between first trimester and term samples were

tested for each individual CpG site and for each region using

independent t-tests. The relationship between repressed allele

expression and mean DNA methylation for each region and CpG

site was tested using Pearson’s correlation. Results were considered

significant at P,0.05. All statistical analyses were performed using

GraphPad PRISM 5.0.

Results

Quantification of Allele-specific Gene Expression in the
Human Placenta

DNA samples from placental tissue was genotyped for SNPs

H19 rs217727, IGF2 rs680, IGF2R rs998075 and IGF2R

rs1970070 to identify heterozygous individuals. Sixty-nine

samples in total were heterozygous for at least one of the

tested candidate SNPs. The number of heterozygotes identified

for each gestational age class is summarized in Table 1. As

parental DNA corresponding to term placenta samples was

available for 28 cases, we genotyped maternal and paternal

DNA for H19 and IGF2 polymorphisms to determine the

parental origin of expressed alleles. In all cases with sufficient

parental genotype information, H19 was maternally expressed

(n = 11) and IGF2 (n = 9) was paternally expressed, as expected

(Table S3).

Relative expression from each H19, IGF2 and IGF2R allele was

quantified in placenta samples by pyrosequencing of SNP loci.

Relative allelic expression levels for H19, IGF2 and IGF2R in first

trimester and term placenta samples are presented in Figures 1

and 2 with each gene showing a unique allele expression profile.

Technical replicates obtained from independent PCR reactions

showed average standard deviations (SD) of 0.44% for H19

rs217727, 1.02% for IGF2 rs680, 3.14% for IGF2R rs998075 and

3.84% for IGF2R rs1570070, respectively, indicating robust assays

with negligible inter-PCR variation. The greater standard

deviation for IGF2R replicates is likely due to the higher PCR

quantification cycle (Cq) required for data acquisition as compared

with H19 and IGF2 (data not shown). The ratio of repressed allele

to predominantly expressed allele is depicted in Figure 3, where a

0:100 ratio represents no expression from the repressed allele and

a 50:50 ratio represents balanced, i.e., bialleleic, non-imprinted

expression. Across first trimester gestational age classes, expression

from the H19 repressed allele shows notable inter-individual

variation in contrast to the almost uniform monoallelic expression

observed for IGF2 (Figure 3). IGF2R allele-specific expression in

first trimester placenta samples showed balanced expression, with

some samples potentially showing a slight allelic bias (Figures 2, 3).

Table 1. Number of informative heterozygous samples for
H19, IGF2 and IGF2R for each gestational age class.

Number of Heterozygotes

Gestational Age (weeks) H19 IGF2 IGF2R

6 1 1 1

7–8 6 5 14

9–10 4 6 8

11–12 2 2 1

37 1 0 NA

38 0 0 NA

39 7 5 NA

40 5 8 NA

41 5 6 NA

42 0 1 NA

Total 31 34 24

First trimester samples range from 6–12 weeks, term samples range from 37–42
weeks.
doi:10.1371/journal.pone.0051210.t001

Imprinting in the Human Placenta across Gestation
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Biallelic Expression of IGF2R in the First Trimester
Placenta

Allelic expression ratios for IGF2R in first trimester placenta

was measured at two SNP loci (rs998075 n = 16 and rs1570070

n = 13). Five samples were heterozygous for both SNPs, and no

significant difference (paired t-test, P = 0.42) was detected

between the expression ratios for the two SNP loci, indicating

that both polymorphisms were equivalent in quantifying allele-

specific expression (Figure 2C). All heterozygous IGF2R samples

were therefore combined for analyses, and, when expression was

quantified at both loci in one sample, the average allelic ratio of

the two loci was used. The results clearly show biallelic IGF2R

expression in all first trimester placental samples assessed

(Figures 2A, B), with a mean allele expression ratio of 49:51

at both SNP loci (rs998075 SD = 7.1%, rs1570070 SD = 6.9%)

with expression ratios ranging from 36:64 to 49:51 (Figure 3).

These SNP based IGF2R pyrosequencing results provide no

evidence for IGF2R imprinted expression in the first trimester

placenta and thus confirm the non-imprinted status of IGF2R

throughout gestation.

Increased Expression from the H19 Repressed Allele is
Higher in First Trimester Placenta

Expression from the H19 repressed allele was quantified in 13

first trimester placenta samples obtained at 6–12 weeks of

gestation (Figure 1A). Mean expression from the repressed allele

was 13.5% (SD68.2; Figure 1A) and ranged from 0.9–24.7%

(Figure 3). Expression of the H19 repressed allele appeared to

decrease with gestational age in the first trimester samples

(Figure 4A), but we found no significant differences between first

trimester gestational age classes. To further test the hypothesis

that expression from the repressed H19 allele decreases across

gestation, we then quantified allelic expression in term placenta

samples obtained between 37–42 weeks of gestation (n = 18).

Expression from the repressed H19 allele at term was

significantly lower (P,0.001) than the level of expression

Figure 1. Relative expression from H19 and IGF2 alleles in the human placenta. Shaded bars for (A) H19 and (B) IGF2 represent the
proportion of expression (%) from each allele. Samples 1–38 are from first trimester (6–12 weeks of gestation) placentae and samples 39–69 are from
term (37–42 weeks of gestation) placentae.
doi:10.1371/journal.pone.0051210.g001
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observed in first trimester placenta samples (Figure 4B and

Table 2).

Expression from the IGF2 repressed allele contributed on

average 2.7% (SD 2.1%, n = 34) to total IGF2 transcript in

placenta samples (Figure 1B). No significant differences in

expression from the IGF2 repressed allele were observed between

first trimester gestational age classes (ANOVA P.0.05) or between

first trimester and term (Table 2, Figures 4C, D) placentae. These

results show that imprinted IGF2 expression is tightly regulated

and stable across gestation.

Eleven placenta samples were heterozygous for both H19 and

IGF2 polymorphisms, which allowed us to test for a correlation in

repressed allele expression for these adjacent co-regulated

imprinted genes. We found that expression from the H19

repressed allele was not correlated (P = 0.88, r = 0.54) with

expression from the IGF2 repressed allele (Figure 5).

Locus-specific DNA Methylation Differences in the H19-
IGF2 Region between First Trimester and Term Placentae

To investigate if DNA methylation levels at specific CpG’s are

correlated with H19 repressed allele expression, we quantified

methylation levels in three regions (Figure 6) using bisulfite

pyrosequencing. The two regions upstream of the transcription

start site (TSS) (regions 1 and 2 on Figure 6) were selected as they

cover or are directly adjacent to sites that have been shown to be

differentially methylated [39], and region 3 (Figure 6) was selected

as it spanned the H19 promoter region and the TSS.

The first region (denoted 1 in Figure 6) encompassed five CpG

sites with a mean methylation level of 54.767.8%, which would be

Figure 2. Relative expression from IGF2R alleles in the human placenta. Shaded bars for (A) IGF2R rs1570070 and (B) IGF2R rs998075
represent the proportion of expression (%) in first trimester placentae. (C) Allelic expression ratios for IGF2R measured two SNP loci in the same
sample. These paired samples indicate both SNP loci are equivalent (paired t-test, P = 0.42) for evaluating IGF2R allele-specific expression.
doi:10.1371/journal.pone.0051210.g002
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expected at a differentially methylated imprinted locus. In region

1, there was no significant difference in mean methylation levels

between first trimester (54.866.9%) and term (53.567.2%)

placentae or at any of the 5 individual CpG sites (Figure 6, Table

S4). The second region assessed (denoted 2 in Figure 6), covered

12 CpG sites which showed overall hypomethylation, with a mean

methylation level of 30.963.9% in first trimester and 28.965.3%

in term placentae. When analyzed independently, 4 of the

12 CpG sites, 3 of which are adjacent to each other, showed

significantly higher methylation in first trimester placentae in

comparison to term placentae (Figure 6). The third region that

spanned the H19 TSS showed mean methylation levels of

16.163.1% in first trimester placentae and 15.563.5% in term

placentae. When each CpG site was analyzed individually, the

cytosine nucleotide 39 bp upstream from the H19 TSS (Figure 6)

showed significantly higher methylation (P = 0.02) in first trimester

placentae (15.263.6% vs 12.063.2%). Details of DNA methyla-

tion levels in first trimester and term placentae at each individual

CpG site and the statistical comparisons between the groups are

listed in Table S4.

H19 Repressed Allele Expression is Correlated with
Higher Levels of DNA Methylation

As distinct variation in expression from the H19 repressed allele

in first trimester placentae was observed, we tested for correlations

between the level of repressed allele expression and levels of DNA

methylation at CpG’s of first trimester placentae. In region 1, a

significant positive correlation (P,0.001, r = 0.65) was observed

between repressed allele expression and the mean methylation

level across the region (Figure 7A). When each of the 5 CpG sites

in this region were analyzed independently for the same

correlation, the results remained significant for each site (Table

S5). This correlation was not observed for region 2 (Figure 7B,

P = 0.36, r = 0.07) or 3 (Figure 7C, P = 0.47, r = 0.05) or for any

individual CpG sites within these regions (Table S5).

Discussion

Imprinted genes are known to be critically involved in placental

development and function. Aberrant patterns of imprinted gene

expression are implicated in pregnancy complications such as

preeclampsia and intrauterine growth restriction [5,40,41,42,43].

Although the symptoms of these conditions manifest late in

pregnancy, their pathogenesis is commonly attributed to compro-

mised first trimester placental development [44]. Previous research

on genomic imprinting in the human placenta has focused on the

term placenta [25,32,36,41,45,46] and data during the first

trimester of gestation is limited [27,34,35,47]. In the present

study, we investigated the imprinting status (i.e., allele-specific

expression) of three genes, H19, IGF2 and IGF2R, which have

known, but poorly understood, associations with pregnancy

complications and placental abnormalities in humans and/or

animal models [6,7,8,9,10]. We assessed allele-specific expression

of these genes and DNA methylation in the H19-IGF2 imprinting

control region in first trimester (6–12 weeks of gestation) and term

(37–42 weeks of gestation) placentae.

We assessed IGF2R allele-specific expression, as the imprinting

status of this important gene for prenatal growth and development

remains controversial in human. We observed balanced expression

from both IGF2R alleles, and although we did not investigate any

potential imprinting mechanisms for this gene, these results suggest

IGF2R is not imprinted in the first trimester placenta. Imprinting

of IGF2R has been suggested to be a polymorphic trait in humans,

with a small proportion of individuals showing monoallelic

expression or partial imprinting [3,27,33]. In this study, we

assessed more informative samples than previous studies

[3,27,33,48] but found no evidence for polymorphic IGF2R

imprinting in the placenta. Although we observed overall a

balanced expression of alleles for IGF2R, individual allelic

expression ratios ranged from 36:64 to 49:51. This variation

may reflect what has been described previously as partial

repression or allelic preference [27,33]. It is presently unclear if

this subtle imbalance of IGF2R allelic expression is due to genetic

Figure 3. Allelic expression ratios for H19, IGF2 and IGF2R in the human placenta. The 50:50 ratio represents equal expression from both
alleles and 0:100 ratio represents expression exclusively from one allele. Each point on the graph represents the allelic expression ratio measured in
an individual placental sample. H19 and IGF2 samples are from first trimester and term placentae, IGF2R samples are all from first trimester placentae.
doi:10.1371/journal.pone.0051210.g003
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variation in allele-specific epigenetic regulation or a parent-of-

origin effect.

Allele-specific expression of H19 showed considerable inter-

individual variation, with expression from the repressed (i.e.

imprinted) allele contributing up to 25% of total H19 transcript

Figure 4. Ratio of expression from each allele in human first trimester and term placentae measured by pyrosequencing. Each point
on the graph represents the allelic expression ratio observed in an individual placental sample. (A) H19 allelic expression ratio for each gestational
age class. (B) Expression from the H19 repressed allele is significantly higher (*P,0.001) in first trimester placental samples. (C-D) IGF2 allelic
expression ratios are similar for each gestational age class (C) with no significant difference (D) between first trimester and term. First trimester
samples are 6–12 weeks of gestation term samples are 37–42 weeks of gestation.
doi:10.1371/journal.pone.0051210.g004
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in the first trimester placenta. In contrast, IGF2 showed

predominantly monoallelic expression and little variation

between individuals, with one allele contributing more than

90% of IGF2 transcript in all investigated samples. This

indicated that IGF2 allele-specific expression is tightly regulated

in the first trimester placenta and suggests that IGF2 imprinting

is established early in development and remains stable

throughout gestation.

Determining loss of imprinting or biallelic expression of

imprinted genes was previously performed by restriction fragment

length polymorphism (RFLP) analysis. This method provides a

qualitative or semi-quantitative assessment of monoallelic or

biallelic expression. In human placentae from uncomplicated

pregnancies, H19 RFLP data showed biallelic expression before 10

weeks of gestation and imprinted expression at term [25,35].

However, term placentae from preeclamptic pregnancies were

reported to display biallelic expression with the RFLP method

[25]. This biallelic H19 expression could indicate a failure to

establish correct H19 imprinting with downstream effects on

placental development [25,35]. The data presented in the current

study show that H19 expression from the imprinted, i.e. repressed,

allele can range from 9–22% at 9–10 weeks of gestation,

highlighting the potential ambiguity in classifying expression as

mono- or biallelic by less sensitive methods. Our data support the

view [32,49] that classification of genes as imprinted or non-

imprinted by qualitative methods may be a less meaningful

distinction than quantitative measurements of imprinting status

based on precise estimates of relative contributions from each

allele.

More recently, quantitative PCR and pyrosequencing have

been used to evaluate allele-specific expression in placental tissue.

By using these highly sensitive methodologies, expression from the

‘‘silenced’’, imprinted, alleles has been generally higher in first

trimester placentae [46] with some variation at term [36]. Both the

RFLP assay and quantitative allele-specific expression approaches

support the concept that repressed allele expression changes

through gestation in the placenta, particularly during early

pregnancy [25,34,35,46]. Using placental tissue from 6–12 weeks

of gestation, we tested the hypothesis that imprinted allele-specific

expression changes during the first trimester of pregnancy. We

found no significant differences between early and late first

trimester allelic expression ratios for H19, IGF2 or IGF2R.

Although we quantified allelic expression ratios using a highly

sensitive technique, the method used for classifying gestational age,

our sample size, and the proportion of heterozygotes in each group

may have prevented the detection of significant changes across first

trimester age groups. When comparing first trimester and term

placenta samples for H19, we found a significant decrease in the

proportion of repressed allele expression at term. Furthermore,

these results for H19 show notable inter-individual variation early

during placental development, and more uniformity in allelic

expression ratios as gestation progresses. This is a clear demon-

stration of dynamic change in imprinting status well beyond the

blastocyst and implantation stages. However, an alternative

explanation for the observed differences in H19 allelic expression

ratios between first trimester and term samples in the present study

could be the unbiased sampling of material from elective

terminations of pregnancy versus the selected material at term

that came from normal pregnancies only. Placental tissue from

elective terminations of pregnancy in first trimester will, by

necessity, include those from pregnancies that may have been

destined to develop a pregnancy complication e.g. preeclampsia,

preterm labour or intrauterine growth restriction which are

typically diagnosed later in gestation. Potentially, first trimester

placental samples exhibiting expression from the repressed allele

may have been destined to retain biallelic expression and associate

with preeclampsia later. However, we consider this unlikely given

that 8 out of 13 first trimester samples had greater than 10%

expression from the repressed allele and preeclampsia occurs in

just 8% of women in the community where our samples were

collected [50].

Our results show H19 expression from the repressed allele is not

correlated with expression from the IGF2 repressed allele in the

same samples. The prevailing regulatory model of the H19-IGF2

region based on differential DNA methylation predicts that both

genes are not expressed from a single chromosome. Although this

model is supported by considerable evidence [12,51,52] (and

references cited therein), there is also evidence to suggest that this

model may be insufficient (reviewed in [53]). The data presented

here show higher expression from the repressed H19 allele is not

correlated with any change in IGF2 repressed allele expression in

individual placentae. Additionally, we show that DNA methylation

levels at CpG sites (1946–2005 bp upstream of the H19 TSS) that

flank the 6th CTCF binding domain [39], are positively correlated

with the level of expression from the H19 repressed allele, which

Table 2. Relative levels of repressed allele expression in
human first trimester and term placentae.

% Repressed allele expression

First trimester Term P value

H19 13.568.3 3.462.0 ,0.0001

IGF2 2.662.0 1.961.1 0.1734

IGF2R 43.863.2 ND –

ND = Not Determined.
doi:10.1371/journal.pone.0051210.t002

Figure 5. Relative level of expression from repressed alleles in
samples heterozygous for both H19 rs217727 and IGF2 rs680.
Graph shows increased expression from the H19 repressed allele is not
correlated (P = 0.09, r = 0.54) with expression from the IGF2 repressed
allele.
doi:10.1371/journal.pone.0051210.g005
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was unexpected given the prevailing regulatory model. Further-

more, we observed significantly higher DNA methylation in first

trimester placentae in the region 422–524 bp upstream of the H19

TSS that surrounds the differentially methylated region (DMR)

[39], despite finding no correlation with H19 repressed allele

expression. This suggests DNA methylation in the DMR decreases

Figure 6. Placental methylation levels in regions upstream and covering the H19 transcription start site (TSS). Each genomic region
where DNA methylation was measured is highlighted in yellow and numbered 1–3. DNA methylation levels for individual CpG loci are shown for first
trimester (red circles, n = 13) and term (blue circles, n = 18) placentae. Distance (bp) of cytosine nucleotide from H19 TSS is represented on x-axis. Each
data point represents the mean methylation level for the gestational age class. * Indicates a significant difference in methylation levels between first
trimester and term placentae at individual CpG sites. Error bars represent SEM and when not present SEM was too low to depict on the graph. The
schematic representation below the graph highlights the regions between H19 and IGF2 where bisulfite DNA pyrosequencing was performed. Region
1 covers 5 CpG sites (Chr11:2021011–2021070), region 2 covers 12 CpG sites (Chr11:2021011–2021070) and region 3 covers 5 CpG sites
(Chr11:2019079–2019145). Genomic coordinates refer to reference assembly GRCh37/hg19.
doi:10.1371/journal.pone.0051210.g006

Figure 7. Levels of H19 repressed allele expression and DNA methylation in human first trimester placentae. (A) Increased expression
from the repressed H19 allele is positively correlated (P = 0.0016, r = 0.61) with increased DNA methylation in region 1. (B & C) H19 repressed allele
expression is not correlated with DNA methylation in region 2 (P = 0.3626, r = 0.08) or region 3 (P = 0.4791, r = 0.04). Each point on the graph
represents individual first trimester placenta samples. Methylation levels in each region represent the average methylation from 5 CpG sites in region
1 (Chr11:2021011–2021070), 12 CpG sites in region 2 (Chr11:2021011–2021070) and 5 CpG sites in region 3 (Chr11:2019079–2019145). Genomic
coordinates refer to reference assembly GRCh37/hg19.
doi:10.1371/journal.pone.0051210.g007

Imprinting in the Human Placenta across Gestation

PLOS ONE | www.plosone.org 9 December 2012 | Volume 7 | Issue 12 | e51210



progressively throughout gestation with no effect on H19 allelic

regulation. Together, these findings suggest that the methylation

dependant enhancer competition model of the H19-IGF2 locus

may not fully explain the patterns of allele-specific expression

observed for these genes in the early human placenta, as suggested

previously [53]. However, although we assessed DNA methylation

at sites within the H19-IGF2 regulatory region, we did not assess

methylation across all the CTCF binding sites upstream of H19.

Moreover, we did not investigate additional regulatory mecha-

nisms, such as the actions of other non-coding RNA’s and

repressive histone modifications that are involved in placental-

specific imprinting [54,55,56,57]. Therefore we are unable to rule

out other mechanistic changes that may be influencing H19 allele

specific expression.

An important consideration when using placental tissue for

studying genomic imprinting is that this organ arises from multiple

extra-embryonic and embryonic cell lineages. Cells descended

from both the inner cell mass and trophectoderm may show major

epigenetic differences [58], and as a result, analysis of whole

placental villous tissue may not identify cell lineage-specific

imprinting effects. In this study, we show a clear imprinting effect

for IGF2 in all heterozygous first trimester placenta samples, which

suggests that all cell types composing the placental villi had IGF2

imprinting mechanisms in place. However, for H19 we observed

notable inter-individual variation in expression from the imprinted

allele. This variation could be due to the heterogeneous nature of

the placental villous tissue sampled and H19 lineage-specific

imprinting at the single cell level. Cell-specific imprinted gene

expression has been proposed as an all or none phenomenon in

placental cell lines [59], and H19 biallelic expression has been

shown to be specific to extravillous cytotrophoblast cells [47],

suggesting there is no intermediate imprinting effect at the single

cell level. Therefore, observing variations in relative expression

from the imprinted allele in placental tissue may simply reflect the

fraction of cells with complete biallelic expression [59]. As first

trimester placental tissue sampling is expected to yield a higher

proportion of extravillous cytotrophoblast cells than those

collected at term, changes in the level of imprinting across

gestation may reflect proportional changes in cell lineage

populations as the placenta differentiates. This suggests future

studies of placental imprinting dynamics should consider the

potential influence of placental cell type heterogeneity.

The H19, IGF2 and IGF2R genes have key roles in placental

development, yet the phenotypic effect of their allele-specific

expression across gestation remains unknown. However, the role

of H19 as a regulator of the recently described imprinted gene

network suggests potentially significant phenotypic effects [15].

This may depend on differences in gene dosage, but could also

involve more complex regulatory effects in trans. To date, the

normal developmental patterns of imprinted gene expression in

the human placenta are poorly understood. As altered patterns of

imprinting in term placentae are associated with pregnancy

complications, identifying when these abnormal patterns are

established may aid in elucidating the origins of placental

abnormalities implicated in their aetiology. Our results highlight

the requirement for robust and sensitive methods to determine the

role of imprinted allele-specific expression in placentae from

complicated pregnancies. Undoubtedly, precise methods and

comprehensive studies will be required to progress towards

understanding the molecular basis of potentially life threatening

pregnancy complications in which defective placentation is

implicated.
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1 The Problem

Given that the sex of many species is an easily observable and usually un-
ambiguous classification, it is surprising the number of microarray data sets in
public repositories that lack the associated sample sex information. Sex-biased
gene expression in normal and pathological tissues is a well recognized for both
sex chromosome and autosomal genes. Sex biases also exist in the prevalence
and severity of many common human diseases, such as cardiovascular disease
and some cancers. As sex is a potential influencing factor of both pathological
and non-pathological phenotypes, gene expression analyses that do not account
for sex-specific effects could fail to identify a significant proportion of genes that
contribute the condition under investigation. Therefore, the absence of sample
sex information restricts the reuse of gene expression data sets where the re-
searcher intends to factor the effect of sex in reanalysis or reinterpretation, or
when intending to include such data sets in larger gene expression meta-analyses.

This is why we developed massiR, a package for predicting the sex of sam-
ples in microarray data sets. This package allows researchers to expand their
analyses to retrospectively incorporate sex as a variable, generate or confirm sex
information associated with publicly available data sets, to accurately predict
the sex of samples missing sex information, or as a simple sanity check for your
own microarray gene expression data.

2 Importing data and beginning the analysis

The massiR analysis begins by importing standard gene expression data of
normalized and log transformed probe values. The gene expression data can be
in the form of a data.frame object and have the sample identifiers as the column
names and the probe identifiers as the row names, or as an ExpressionSet object.
The identifiers for probes corresponding to Y chromosome genes must be as a
data.frame object with the probe identifiers as row.names.

To load the included test massiR gene expression data:

> library(massiR)

> data(massi.test.dataset)

The included gene expression data is composed of 60 samples and 1026 probes
as a data.frame object.

To load the test Y chromosome probes corresponding to the included data:

> data(massi.test.probes)

The Included list of Y chromosome probes contains probe identifiers as row.names
in the data.frame class.
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3 Extracting the Y chromosome probe data

The first step of the massiR analysis involves extracting the expression values
for probes that correspond to Y chromosome genes. The user has the option of
using their own list of probes corresponding to Y chromosome genes or using the
probe lists included with the package. The included lists correspond to popular
microarray platforms and contain identifiers for probes that map uniquely to Y
chromosome genes. See section 8 for detials on using the included probes and
section 9 for details on obtaining Y chromosome probes easily from Ensembl
Biomart.

When the expression values for Y chromosome probes are extracted, the
expression variance for each probe across all samples is calculated. This allows
the identification of low variance probes, which are unlikely to be informative
in sex classification. The user has the option of selecting a probe variation
threshold, so only the most informative probes are used in the classification
process. Deciding on a probe variation threshold can be informed by inspecting
a probe variation plot (Figure 1) generated by the massi.y.plot function. In our
experience, using the most variable 25-50% of probes (typically 10-40 probes,
depending on platform) produces good results.

To extract data corresponding to Y chromosome probes from the test data
set and look at a probe variation plot:

> massi.y.out <- massi_y(massi.test.dataset, massi.test.probes)

> massi_y_plot(massi.y.out)

This plot (Figure 1) is output to the R graphics device.
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Figure 1: Expression variation (CV) of Y chromosome probes across all samples
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After viewing the probe variation plot, a decision can be made regarding
which probes to use in the clustering step. The massiR package includes methods
for selecting probe variation thresholds based on quantiles. The threshold can
be determined by quantiles of probe variance (CV): 1=All probes, 2=Upper
75%, 3=Upper 50%, 4=Upper 25%. It is highly recommended that probe CV
plot generated using the massi y plot function be inspected to inform threshold
choice (Figure 1). The default threshold value is 3.

Once a probe threshold has been decided upon, run the massi select function.
This will return a data.frame with the samples as columns and the subset of
selected y chromosome probes as row names.

> massi.select.out <-

+ massi_select(massi.test.dataset, massi.test.probes, threshold=4)

Check the output for the first 5 samples:

> head(massi.select.out)[,1:5]

S1 S2 S3 S4 S5

ILMN_1670821 5.746427 5.686032 6.307110 6.179258 6.594808

ILMN_1685690 5.459125 5.567289 6.919465 6.789817 6.559376

ILMN_1739587 5.883483 5.764190 6.441775 6.438789 6.707278

ILMN_1755537 5.882456 5.831844 8.133164 8.052959 8.298985

ILMN_1772163 5.696833 5.680091 5.907170 6.017871 6.465122

ILMN_1804958 5.815093 5.654395 5.929610 6.104089 5.868732

4 Predicting the sex of samples

To classify samples as either male or female, clustering is performed using
the values from the subset of Y chromosome probes by implementing the parti-
tioning around medoids algorithm which performs k-medoids clustering (Hennig
2013), where samples are assigned to one of two clusters. The two clusters are
then compared using the probe expression values across all samples in each
cluster. Samples within the cluster featuring the highest Y chromosome probe
values are classed as male and those within the cluster with the lowest Y probe
values classed as female. Results such sample probe mean, standard deviation
and z-scores are reported in a table together with the sex predicted for each
sample.

To predict the sex of the samples using massi cluster:

> results <- massi_cluster(massi.select.out)

Extract the results for each sample from the returned list:

> sample.results <- data.frame(results[[2]])

> head(sample.results)
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ID mean_y_probes_value y_probes_sd z_score sex

1 S1 5.911089 0.4572756 -0.6453629 female

2 S10 6.749520 0.8418586 0.7773050 male

3 S11 5.689586 0.4750484 -1.1074329 female

4 S12 6.702993 0.7894613 0.7045705 male

5 S13 5.838450 0.6759924 -0.7193198 female

6 S14 5.819845 0.6593184 -0.7524047 female

As you can see, it is a relatively straightforward procedure to produce a table
with the predicted sex of each sample with some basic metrics.

5 Visualizing the massiR analysis data

The massiR package includes a function which allows various aspects of the
data used in the analysis to be visualized. These plots enable to used to inspect
sample and clustering characteristics which could aid in identifying problematic
samples and outliers.

To run the massi.plot function with the output from the massi select and
massi cluster functions:

> massi_cluster_plot(massi.select.out, results)

This function will generate a heat map with dendrogram of Y chromosome
probes as rows and individual samples in columns (Figure 2), a bar plot of
mean values and standard deviation from the subset of Y chromosome probes
used in K-medoids clustering (Figure 3), with the bars colored with respect to
predicted sex and a principal component plot showing clusters (Figure 4). These
plots can aid the user in identifying sample outliers or probes that may not be
informative in the clustering step.
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6 Check for potential sex bias using the dip test

The massiR method for predicting the sex of samples is >97% accurate for
data sets with 6 or more samples and with at least of 15% of either males or
females. Outside of this range, this method still performs well in most cases.
As there is no guarantee that publicly available data sets will fall within these
limits, the function massi.dip can be used to test if the data set might have a
male/female ratio that might affect performance.

The massiR method was tested using empirical data sets for five different human
tissues. Individual data subsets were randomly generated for each tissue data
set ranging from 6-50 samples and with a wide-range of Male/Female ratios.
The results of this testing suggest for data sets with >10 samples a dip statistic
>0.08 is indicative of at least 15% of males or females in the data set.

The massi dip function calculates z-scores for each sample and implements
the dip test to test for unimodality (Maechler 2013). As a relatively balanced
dataset would typically show a bi-modal distribution of the z-scores, the dip
statistic is then used to predict if a dataset shows a unimodal distribution that
would be expected if a vast majority of samples were of one sex.

To use massi dip function, which calculates the dip statistic using the data
output from the massi select function:

> dip.result <- massi_dip(massi.select.out)

This returns the message: dip test statistic is >0.08. This suggests that the
proportion of male and female samples in this data set is relatively balanced

Visually inspecting this distribution as a density plot (figure 5) or a his-
togram plot (figure 6) enables the user to see if there is the expected bi-modal
distribution (as there should be distinct distributions for each sex).

To produce a density plot and histogram of sample z-scores:
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> dip.result <- massi_dip(massi.select.out)

> plot(dip.result[[3]])
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Figure 5: Density plot of mean y chromosome probe z-scores
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> dip.result <- massi_dip(massi.select.out)

> hist(x=dip.result[[2]], breaks=20)
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Figure 6: Histogram of mean y chromosome probe z-scores
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If the data set was has a sex bias that may influence the accuracy of the
massiR sex prediction, then the massi dip function is likely to return a dip
statistic of <0.08. For example, if we are to use the massiR test data set to
generate a subset to 20 samples composed of 10% males, we will see that the
dip statistic returned is <0.08.

To create this female skewed bias:
get the sample id’s for the male and female samples:

> male.ids <-

+ subset(sample.results$ID,

+ subset=sample.results$sex=="male")

> female.ids <-

+ subset(sample.results$ID,

+ subset=sample.results$sex=="female")

Create a data subsest of 20 samples with 10% males:

> bias.subset.ids <- c(female.ids[1:18], male.ids[1:2])

> bias.subset <- massi.select.out[bias.subset.ids]

Use the massi.dip function to test for sex-biased data set:

> bias.dip <- massi_dip(bias.subset)

Please note that a dip >0.08 is a good indication that there is not a sex
bias present that will affect the accuracy of the massiR method. However, and
dip statistic <0.08 may still be returned for data sets with >15% males or
female or data sets that a suitable for massiR analysis, therefore the results of
the massi dip function should be interpreted with caution and in light of the
massi cluster results.

7 Performing massiR analysis with an Expres-
sionSet object

The massiR pipeline allows the input of expression data in the class Expres-
sionSet. Here is an example of how to use data in the ExpressionSet class in a
massiR analysis and how to put the results back into the ExpressionSet:

Load the example ExpressionSet data included with the massiR package:

> data(massi.eset, massi.test.probes)

Using massiR with an ExpressionSet is the same as using a data.frame as in
the above example:

> eset.select.out <-

+ massi_select(massi.eset, massi.test.probes)

> eset.results <-

+ massi_cluster(eset.select.out)
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Now to get the massi.cluster results and add them to the ExpressionSet:

> # Get the sex for each sample from the massi_cluster results

> eset.sample.results <-

+ data.frame(eset.results[[2]])

> sexData <-

+ data.frame(eset.sample.results[c("ID", "sex")])

> # Extract the order of samples in the ExpressionSet and match with results

> eset.names <-

+ colnames(exprs(massi.eset))

> # match the sample order in massiR results to the same as the ExpressionSet object

> sexData <- sexData[match(eset.names, sexData$ID),]

> # create an annotatedDataFrame to add to ExpressionSet

> pData <- new("AnnotatedDataFrame", data = sexData)

> # add the annotatedDataFrame to the Expressionset as phenoData

> phenoData(massi.eset) <- pData

Check the phenoData is in the ExpressionSet and double check that all
sample id’s from the massiR analysis match the sample identifiers in the Ex-
pressionSet.

> # check the phenodata is now within the ExpressionSet

> phenoData(massi.eset)

An object of class 'AnnotatedDataFrame'

rowNames: 1 12 ... 57 (60 total)

varLabels: ID sex

varMetadata: labelDescription

> # check that all phenodata id's match expressionSet column names.

> # This must return "TRUE"

> all(massi.eset$ID == colnames(exprs(massi.eset)))

[1] TRUE

8 Using the included massiR Y chromosome probe
lists

The massiR package includes lists of Y chromosome probes for widely used
Illumina and Affymetrix human gene expression platforms. If you wish to use
one of the included probe lists, for example the Illumina human v2 probes:

Load the massiR included probe lists:

> data(y.probes)

Check the names of the platforms for the probe lists.

> names(y.probes)
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[1] "illumina_humanwg_6_v1" "illumina_humanwg_6_v2" "illumina_humanwg_6_v1"

[4] "illumina_humanht_12" "affy_hugene_1_0_st_v1" "affy_hg_u133_plus_2"

To get probe list into format for massiR analysis:

> illumina.v2.probes <- data.frame(y.probes["illumina_humanwg_6_v2"])

The names of the probe lists correspond to Ensembl biomart attribute names.
For instructions on obtaining probe identifiers for other platforms, see the section
”Using biomaRt to obtain y chromosome probe lists”

9 Using biomaRt to obtain y chromosome probe
lists

Obtaining y chromosome probes lists for many microarray platforms is rel-
atively easy using the biomaRt package (Durinik et al. 2005 and Durinik et al.
2009). This method is recommended because Ensembl have mapped probe se-
quences to reference genomes for many platforms and this allows ambiguous and
non-specific probes to be removed. For details on probe mapping methods, see
<http://jan2013.archive.ensembl.org/info/docs/microarray_probe_set_

mapping.html>

For example, you can download the probes corresponding to the massiR test
data set and obtain the Entrez gene id and genomic positions and convert these
into a format for a massiR analysis:

Use the biomaRt package to download genomic regions and Entrez gene id’s
for Illumina v2 probes:

> library(biomaRt)

> mart <- useMart('ensembl', dataset="hsapiens_gene_ensembl")

> filters <- listFilters(mart)

> attributes <- listAttributes(mart)

> gene.attributes <-

+ getBM(mart=mart, values=TRUE,

+ filters=c("with_illumina_humanwg_6_v2"),

+ attributes= c("illumina_humanwg_6_v2", "entrezgene",

+ "chromosome_name", "start_position",

+ "end_position", "strand"))

Remove the probes mapped to multiple genomic regions:

> unique.probe <-

+ subset(gene.attributes, subset=!duplicated(gene.attributes[,1]))

Select the probes that correspond to y chromosome genes:

> y.unique <-

+ subset(unique.probe, subset=unique.probe$chromosome_name == "Y")

15



Get the probe id’s as row.names in the format for massiR analysis:

> illumina.v2.probes <-

+ data.frame(row.names=y.unique$illumina_humanwg_6_v2)

This is a straightforwd way of obtaining Y chromosome probes for many
microarray platforms that is independent of platform manufacturer annotations
and is highly reccomended.
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