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 Abstract 

The fact that only one–thousandth of the Sun’s energy incident on the Earth is equal 

to the entire world's current energy needs means direct conversion of this energy into 

electricity–photovoltaic (PV) energy–is now a mainstream renewable energy source.  

There are many types of emerging PV cells. Dye–sensitized solar cells (DSSCs) are 

an attractive potential source of renewable energy due to their eco–friendliness and 

ease of fabrication. However, in DSSCs, the rarity and high cost of some electrode 

materials (e.g. platinum) and the inefficient performance caused by slow electron 

transport, poor light–harvesting efficiency, and significant charge recombination 

present significant limitations. Over the past several years, carbon nanomaterials 

including carbon particles, carbon nanotubes and graphene have played important 

roles in addressing these issues. Although excellent progress has been made in the 

application of carbon materials in DSSCs, the exact role of nanocarbons in both the 

photoelectrode and counter electrode (CE) of DSSCs is still unclear. 

Organic–inorganic halides based perovskite solar cells (PSCs) have attracted a great 

deal of attention due to the extremely rapid increases in efficiencies observed over 

the past few years. Although the efficiencies of the PCS have exceeded 20%, they do 

have some disadvantages such as use of expensive electrode materials, the high 

temperature processing required during production and poor stability when in use. In 

this regard, it is no surprise that carbonaceous materials would have significant role 

in the development of PSCs as nanocarbons have been extensively studied in various 

energy related applications because of their fascinating properties, low cost and 

abundance. Research into the potential application of carbon nanomaterials in PSC is 

still at an early stage and a lot remains to be explored. 

This Ph.D. project focuses on the application and development of carbon 

nanomaterials for emerging PV devices such as DSSCs and PSCs. The following 

research has been included in this thesis: 

1) A hybrid structure consisting of SnO2 and reduced graphene oxide (SnO2-RGO) 

was synthesized via a microwave-assisted method and has been employed as a 

photoanode in DSSCs, for the first time. It was found that the incorporation of RGO 



x 
 

into the SnO2 film not only enhances the electron transfer rate of the photoanode, but 

it also increases the adsorption of dye molecules into the film. Both these effects 

greatly enhance the DSSC performance. 

2) As an alternative to platinum (Pt), a hybrid electrocatalyst based on sulfur-doped 

graphene with FeS2 microspheres (SGN-FeS2) was designed and used as a CE of 

DSSCs. Benefiting from the high conductivity of SGN and excellent electrocatalytic 

activity of FeS2, the bifunctional hybrid electrocatalyst based device displays an 

efficiency of 8.1%, which was comparable to that (8.3%) of expensive Pt CE based 

DSSC and also exhibits excellent stability in ambient conditions. 

3) Solution processed transparent conductive graphene films are utilized, for the first 

time, as an alternative to traditional transparent conducting oxide (TCO) electrodes at 

the electron collecting layer in perovskite solar cells (PSCs). By optimising the sheet 

resistance (Rs) and transparency of the films, maximum power conversion efficiency 

of 0.62% was obtained. The successful incorporation of graphene structures into both 

compact TiO2 and mesoporous TiO2 layers of the PSCs was also demonstrated. 

4) The influence of CNTs on the PV performance of 1D titanium dioxide nanofiber 

(TiO2 NF) photoelectrode perovskite solar cells (PSCs) was systematically explored. 

It was found that in addition to the significant enhancement in the efficiency of PSCs 

with SWCNTs, the incorporation of SWCNTs into TiO2 NFs reduced the hysteresis 

effect and improved the stability of the PSC devices both under light and during 

storage in ambient conditions. 

5) Significant enhancement in the power conversion efficiency (PCE) and stability 

(light- and long-term storage-stability) of perovskite solar cells (PSCs) by 

incorporating single-walled carbon nanotubes (SWCNTs) into the nanocrystalline 

TiO2 photoelectrode was reported. The TiO2-SWCNTs photoelectrode based PSC 

device exhibited a PCE of up to 16.11%, while the cell fabricated without SWCNTs 

displayed an efficiency of 13.53%. 
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1.1.  Background 

The world’s energy consumption has dramatically increased because of the rapidly 

growing global population and development of modern technologies. The U. S. 

Department of Energy predicts that the world’s energy demands will double by 2050 

and triple by 2100.[1] Today’s energy requirements are principally met by burning 

fossil fuels. However, continued increases in fuel price must be taken into account. 

More importantly, potentially harmful damage to the environment, caused by this 

combustion process, has become a serious problem. All these issues have the 

potential for disastrous consequences and solutions should be pursued with a great 

sense of urgency. Until now, significant developments have been made in renewable 

energy technologies including wind power,[2] biofuels,[3] solar cells[4] and fuel cells[5]. 

Amongst these renewable energy technologies, solar cells, which convert sunlight 

directly into electricity, is a serious alternative to traditional fossil energy owing to 

its unlimited potential power production at reasonable cost. 

Photovoltaic (PV) cells are generally classified into main three generations. In brief: 

(1) The first generation solar cells based on single-crystalline silicon, which make up 

~90% of the commercial production at present, are estimated to deliver power with 

approximately 15% efficiency, but they suffer from high manufacturing, installation 

and material costs. (2) The second generation cells (also referred as a thin film tech) 

are lower cost than the traditional PV cells, but their lower performance is the main 

concern. (3) The third generation PV cells, which include organic solar cells, dye-

sensitized solar cells (DSSCs) and perovskite solar cells (PSCs), are designed to 

further lower the costs of the second generation cells, by maintaining the economic 

and environmental aspects while increasing the performance. Of particular interests 

in this Ph.D. thesis are DSSCs and PSCs. 

 

1.1.1.  Dye-sensitized solar cells (DSSCs) 

In particular, DSSCs have gained much attention because of not only the simple 

fabrication method, low manufacturing cost and eco-friendliness, but also their high 

efficiency (13%[6] for DSSCs) compared to OPVs (10.7%[7] for organic PV (OPV) 

cells). Because of the rapidly growing interest in this cutting-edge technology, 

several companies, (namely Solaronix from Switzerland, Dyesol from Australia and 
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Dyenamo from Sweden) have been established to contribute to DSSCs 

commercialization. Moreover, in 2009, G24-Power introduced the world’s first 

commercial production of DSSCs using a roll-to-roll manufacturing process.[8] 

Typically, a DSSC consists of a transparent conductive oxide (TCO) substrate, dye 

molecules (Ru-based organic dye) adsorbed nanocrystalline semiconducting oxide 

film, a platinum (Pt) counter electrode and an electrolyte containing iodide/tri-iodide 

(I–/I3
–) redox couple between two electrodes (Figure 1-1).[9] The working principle of 

DSSC can be found elsewhere.[10-12] However, this conventionally structured DSSC 

suffers from the following significant issues: (i) the low energy conversion efficiency 

caused by charge recombination (red dashes in Figure 1-1) between the injected 

electrons and either the oxidized dye molecules or electron-accepting species in the 

electrolyte, (ii) the high cost and scarcity of materials such as indium or fluoride used 

for TCO electrodes such as indium-doped tin oxide (ITO) and fluorine-doped tin 

oxide (FTO) and (iii) the expensive and rarity of platinum (Pt). 

 

 

Figure 1-1. The structure an operational mechanism of a typical DSSC, Gold arrows 

represent sunlight. Reproduced with permission from ref. 9 © 2015, Wiley-VCH. 

 

In order to improve the performance and lower the production cost of DSSCs, it is 

believed that nanostructured materials will play an important role. In particular, 
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carbon nanomaterials including carbon particles, carbon nanotubes (CNTs) and 

graphene have attracted great attention for use in various components of DSSCs 

because of their unique properties such as excellent conductivity, good transparency, 

high catalytic activity, low cost and abundance.[13,14] 

A nanocrystalline TiO2 film made up of 20 nm diameter nanoparticles is commonly 

used as a conventional photoanode material for DSSCs. However, the conventional 

TiO2 nanostructured photoanodes have the following disadvantages: (i) slow electron 

transport caused by a large number of grain boundaries (Figure 1-2a), (ii) high rate of 

charge recombination between TiO2-photosensitizer and TiO2-electrolyte (Figure 

1-2b), and (iii) significant light loss (Figure 1-2c). In order to address these 

bottlenecks, several attractive strategies have been developed and their advantages 

and disadvantages are systematically highlighted in recent reviews.[9, 13] These 

strategies include the use of a light scattering layer, hole-blocking layer, surface 

plasmonic effects, 1D materials and their composites and hierarchical structures.[15-19] 

Moreover, a range of alternative metal oxide semiconductors have been explored as a 

substitute for the TiO2, including ZnO, SnO2, Nb2O3 etc., owing to their suitable 

energy band structure and high charge mobility.[15-19] However, none of these 

materials have successfully replaced the TiO2 due partially to the lower low surface-

area-to-volume ratio of the various oxides used.[20] Therefore, further development in 

these metal oxide semiconductors such as SnO2 based DSSCs is highly desired 

because they have the potential to achieve an excellent efficiency. 

 

 

Figure 1-2. Schematic illustration for (a) slow electron transport caused by TiO2 

grain boundaries, (b) charge recombination between TiO2-dye and TiO2-electrolyte 

and (c) unabsorbed lights in the conventional TiO2 photoanode of DSSCs and 

QDSSCs. Reproduced with permission from ref. 30 © 2016, Wiley-VCH. 
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In DSSCs, a Pt based electrocatalyst coated TCO electrode (counter electrode) serves 

an important role in reducing I3
− to I− for the regeneration of the photosensitizer. 

However, in addition to its high cost and scarcity, the slow dissolution of the Pt 

electrode in the corrosive redox electrolyte leads to deterioration of device 

performance. For this reason, there has been a surge of research interest in finding 

low-cost alternative electrocatalysts that are readily available for use and can achieve 

higher or comparable performance to the typical Pt.[21-25] Although excellent progress 

has been made in nanocarbons based counter electrode materials for DSSCs, finding 

cheaper and more efficient electrocatalyst materials for the iodine reduction reaction 

in DSSCs is still needed to further lower the manufacturing cost of this technology. 

 

1.1.2.  Perovskite solar cells (PSCs) 

Over the past few years, the unprecedented rapid progress that has been made in the 

energy conversion efficiency of organometal halide light absorbers based perovskite 

solar cells (PSCs) have attracted increasing attention from the whole photovoltaic 

(PV) community. The power conversion efficiencies (PCEs) of PSCs have increased 

from 3.8% in 2009 to 22.1% in early-2016 (shown in Figure 1-3), making it the 

fastest-advancing PV technology.[26-29] The efficiencies of PSCs are now 

approaching that of commercially available silicon-based solar cells. With the 

potential of producing remarkably high PCEs with low manufacturing costs, these 

PV cells have become commercially attractive, in addition to their success in 

research sector. Since the first report published in 2009,[26] the number of 

publications regarding PSCs has increased very rapidly (see the inset of Figure 1-3). 

This extremely rapid growth in publication rate underlines the importance and 

emergence of perovskite based PV cells. 

However, despite these advantages, they also suffer from several drawbacks namely: 

(i) use of expensive, rare materials, (ii) high-temperature processing of n-type TiO2 

layer, (iii) relatively slow electron transport between the perovskite and TiO2 and (iv) 

a lack of long-term stability. Consequently, it is necessary to overcome these issues 

in order to make this novel high efficiency solar cell commercially viable. 

Due to their excellent properties, low cost and abundance, it is expected that carbon 

nanomaterials including carbon particles, CNTs and graphene will have significant 
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role in the development of PSCs. It is expected that the use of carbonaceous 

materials will advance the PV performance of PSCs whilst maintaining low 

production cost. But, research into the practical use of nanocarbon materials in PSC 

is still at an early stage, and a lot remains to be explored. 

 

 

Figure 1-3. Efficiency records vs. year of PSCs. Abbreviations: SKKU – 

Sungkyunkwan University, KRICT – Korea Research Institute of Chemical 

Technology, EPFL – École Polytechnique Fédérale de Lausanne, UCLA – 

University of California, Los Angeles, and UNIST – Ulsan National Institute of 

Science and Technology. Inset shows the number of publications from 2009 to 2015. 

 

Overall, this Ph.D. research project aims to address many of aforementioned issues in 

both DSSCs and PSCs by employing various types of carbon nanomaterials and their 

hybrids. In addition to addressing the issues in these two cutting-edge photovoltaic 

technologies, we also aim to enhance the power conversion efficiencies of the 

devices by using carbon nanotubes and graphene; and their derivatives. 
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1.2.  Aims and Objectives 

The aim of this Ph.D. thesis is to explore the applicability of carbon nanomaterials 

including carbon nanotubes and graphene derivatives in emerging photovoltaic 

devices such as dye-sensitized solar cells and perovskite solar cells. As such, the 

following objectives were set for this thesis: 

(a) Understanding the role and mechanism of action of carbonaceous materials in 

dye-sensitized solar cells. 

(b) Exploring the effect of reduced graphene oxide on the photovoltaic performance 

of SnO2 photoelectrode based dye-sensitized solar cells.  

(c) Developing efficient Pt-free electrocatalysts based on graphene nanosheets for 

use as counter electrode materials in dye-sensitized solar cells. 

(d) Preparing low-temperature processable transparent conductive graphene films 

and exploring their feasibility as alternatives to the traditional transparent conducting 

oxide electrodes in perovskite solar cells. 

(e) Investigating the influence of graphene and carbon nanotubes in the TiO2 

photoelectrode on the efficiency, light- and long-term storage stability of perovskite 

solar cells. 

 

1.3.  Thesis Outline 

The outline of the thesis is described as follows: 

Chapter 1 provides an overview of the research topics studied in this Ph.D., aims, 

objectives and outline of the thesis. 

Chapter 2 reviews recent advancements that have been achieved in the application 

of carbonaceous-based materials in the photoelectrodes of DSSCs and how these 

advancements have improved performance. 

Chapter 3 presents a facile preparation method for hybrid structures based on 

morphologically controllable SnO2 combined with reduced graphene oxide for use as 

a photoelectrode in dye-sensitized solar cells. The application of reduced graphene 

oxide overcomes the major shortcoming of SnO2 when applied as a DSSC 
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photoanode, namely poor dye adsorption. In addition, owing to its suitable energy 

levels and excellent conductivity, reduced graphene oxide significantly improves the 

electron transport in the cells. 

Chapter 4 reports the development of efficient electrocatalyst material as an 

alternative to the conventional platinum counter electrode (CE) for dye-sensitized 

solar cells. This chapter compares seven different graphene based materials 

including, graphene oxide, graphene, I–doped graphene, P–doped graphene, B–

doped graphene, N–doped graphene and S–doped graphene for use as CEs in DSSCs. 

By employing the best candidate (S-doped graphene) among these heteroatom doped 

graphene materials, the hybrid electrocatalyst based on sulfur-doped graphene with 

FeS2 microspheres (SGN-FeS2) was designed and used as a CE of DSSCs. The 

optimized device fabricated with this SGN-FeS2 hybrid CEs exhibits an efficiency of 

8.10 %, which is comparable to the Pt based cell (8.33 %). 

Chapter 5 examines the feasibility of transparent conductive graphene films as a 

substitute for the conventional electron collecting transparent conducting oxide 

electrode (TCO) in perovskite solar cells. This chapter also reports the preparation of 

transparent conductive graphene films from chemically derived graphene (or solution 

processed graphene) using a low-temperature processable technique. The chapter 

further demonstrates that the incorporation of graphene nanosheets into TiO2 electron 

transporting layers can enhance the efficiency of perovskite solar cells. An efficiency 

of 0.62% is achieved using TCO-free perovskite solar cells. 

Chapter 6 investigates the influence of various types of carbon nanotubes on the 

photovoltaic performance, hysteresis behavior and stability of TiO2 nanofiber 

photoelectrode based perovskite solar cells. This chapter also reports the preparation 

of one-dimensional (1D) TiO2 nanofibers for use as electron transporting materials in 

perovskite solar cells. The best performing PSC device constructed with single-

walled carbon nanotubes structures displays a PCE of 14.03%. In addition to the 

enhancement in the efficiency, the incorporation of SWCNTs into TiO2 NFs reduces 

the hysteresis effect and improves the stability of the PSC devices both under light 

and during storage in ambient conditions (>60% humidity). 

Chapter 7 focuses on increasing the power conversion efficiency of TiO2 

nanoparticle photoelectrode based perovskite solar cells by introducing highly 
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conductive single-walled carbon nanotubes (SWCNTs) into the electron transporting 

layer. The perovskite solar cells fabricated with nanocomposite of TiO2 nanoparticles 

and SWCNTs based photoelectrode shows a remarkable PCE of 16.11%. More 

importantly, the use of SWCNTs in the photoelectrodes reduces the anomalous 

hysteretic J-V behavior, while it also improves the light- and long-term storage-

stability of the devices. 

Chapter 8 summarizes the research that have been carried out and reported in this 

thesis and highlights some important future directions in this research field. 
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Abstract 

High photovoltaic efficiency is one of the most important keys to the 

commercialization of dye sensitized solar cells (DSSCs) in the quickly growing 

renewable electricity generation market. The heart of the DSSC system is a wide 

band–gap semiconductor based photoelectrode film that helps to adsorb dye 

molecules and transport the injected electrons away into the external electrical 

circuit. However, charge recombination, poor light harvesting efficiency and slow 

electron transport of the nanocrystalline oxide photoelectrode film are major issues in 

DSSCs’ performance. Recently, semiconducting composites based on carbonaceous 

materials (carbon nanoparticles, carbon nanotubes (CNTs) and graphene) have been 

shown to be promising materials for the photoelectrode of DSSCs due to their 

fascinating properties and low cost. After a brief introduction to development of 

nanocrystalline oxide based films, this review outlines advancements that have been 

achieved in the application of carbonaceous–based materials in the photoelectrode of 

DSSCs and how these advancements have improved performance. In addition, 

several of the unsolved issues in this research area are discussed and some important 

future directions are also highlighted. 

 

Keywords: photovoltaic cells, dye-sensitized solar cell, photoelectrode, carbon 

particle, carbon nanotube, graphene 
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2.1.  Introduction 

The fact that only one-thousandth of the Sun’s energy incident on the Earth is equal 

to the entire World’s current energy needs[1] means direct conversion of this energy 

into electricity – photovoltaic (PV) energy – is now a mainstream renewable energy 

source.[2] PV devices, or solar cells, have undergone considerable development over 

the past two decades: (i) first generation silicon (Si) solar cells;[3] (ii) second 

generation solar cells based on semiconductor thin films;[4] and (iii) most recently, 

third generation solar cells represented by dye sensitized solar cells (DSSCs) and 

organic semiconductor solar cells.[5, 6] While the first two generations are well 

established, their manufacture is inherently complex and expensive.[5] The third 

generation cells such as DSSCs, on the other hand, are in principle far easier and 

cheaper to manufacture while also offering, at least in theory, greater efficiencies,[7-9] 

although these have yet to be realized.[10] Indeed, the highest standard configuration 

DSSC efficiency achieved to date is around 13%.[10] 

A typical DSSC consists of a metal-oxide semiconductor electrode on which a 

photoactive dye is adsorbed (the photoelectrode), an electrolyte, and a counter-

electrode, as shown in Figure 2-1.[11-13] Upon exposure to photons, electrons from the 

dye molecules are excited and injected into the metal-oxide electrode (i.e. the dye 

molecules are oxidized). These electrons then slowly diffuse through the metal-oxide 

electrode before being conducted away through a power circuit to the counter-

electrode. The electrons then pass from the counter-electrode into the electrolyte (i.e. 

the ions of the electrolyte are reduced), which in turn diffuses to the photoelectrode 

where it gives up the electrons to the dye molecules that have previously lost an 

electron to the circuit (i.e. they are regenerated). Of particular concern in this review 

is the photoelectrode. 

In order to gain sufficient power, the photoelectrode of a DSSC is typically 

mesoporous so as to balance the need to maximize the density of adsorbed dye 

molecules while minimizing the resistance to electrolyte diffusion to the dye 

molecules. The most common (and original) mesoporous photoelectrodes are 

composed of titania (TiO2) nanoparticles of around 20 nm in diameter deposited on a 

conductive transparent medium such as fluoride-doped tin dioxide (FTO) glass. A 

variety of other nanostructured semi-conducting films have, however, also been 
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investigated, including those composed of zinc oxide (ZnO), tin oxide (SnO2) and 

niobium pentoxide (Nb2O5) nanoparticles.[14-16] A significant issue with these 

nanostructured films is charge recombination arising from reaction between the 

photoexcited electrons that are slowly diffusing through them (towards the circuit) 

and the oxidized electrolyte species at that part of the electrode surface that happens 

to not be covered by dye molecules. This issue has led to some effort being focused 

on alternative photoelectrode materials, including those based on carbonaceous 

materials such as carbon particles, carbon nanotubes (CNTs) and, most recently, 

graphene. Therefore, review articles on carbon nanomaterials for the energy related 

applications are well documented.[17-28] It should be noted that since the production 

of this article, two other reviews of the use of graphene for DSSCs have been 

published.[29, 30] The most recent one is very comprehensive and spans all aspects of 

DSSCs,[29] while the other one briefly discussed the recent progresses of graphene 

based nanostructures in DSSCs.[30] Here, we pay particular attention to the use of the 

complete spectrum of carbon materials and briefly cover some of the graphene work 

in the photoelectrodes of DSSCs. Following a brief overview of nanostructured 

DSSC photoelectrodes, we focus on the latest advancements that have been made on 

the utilization of carbonaceous materials in this context. 

 

 

Figure 2-1. A schematic representation and principle of a typical DSSC with 

nanocrystalline TiO2 photoelectrode. 

 



22 
 

2.2.  Development of Photoelectrodes in DSSCs 

2.2.1.  Nanostructured photoelectrodes 

In the early 1960s, metal oxide semiconductors with wide band–gap structures such 

as ZnO, TiO2, and SnO2 were used as photosensitizer materials.[31-33] However, one 

major drawback of these wide band–gaps materials is their poor response to much of 

the solar spectrum. In particular, they only efficiently harvest the ultraviolet (UV) 

light, which constitutes around 2–3% of sunlight.[34] This issue was eventually 

addressed by ‘sensitizing’ the semiconductors with dye molecules whose light 

absorption capacity lies in the visible region (i.e. wavelengths greater than 400 

nm).[35] By adsorbing dye molecules onto the oxides in this way, electrons excited in 

the dye by the sunlight can be injected into the conduction band of oxides (Figure 

2-2). The problem then was to adsorb a sufficient density of dye molecules to obtain 

the desired power – this was duly achieved by adopting thin (~10 µm) mesoporous 

films of metal oxide nanoparticles,[36] which possess relatively high surface area to 

volume ratios. 

 

 

Figure 2-2. A schematic of electron transport in nanocrystallites based film. Electron 

trapping and detrapping process.[50, 51] Reproduced with permission from ref. 50 © 
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2004, Elsevier. Reproduced with permission from ref. 51 © 2000, American 

Chemical Society. 

 

Since the initial work of O’Regan and Graetzel, a range of n-type metal oxide 

semiconductors have been investigated as alternatives to the TiO2 they used, 

including ZnO, SnO2, Nb2O5 and SrTiO3, all of which exhibit higher electron 

mobility than TiO2 while still being low cost and non-toxic.[37-40] None have, 

however, replaced the nanostructured TiO2 (Figure 2-3a) because surface area to 

volume ratios of these materials are lower than that of TiO2.[13, 41-43] There are three 

primary factors that limit the performance of DSSCs fabricated based on these 

nanostructured semiconducting oxide materials: (i) they are poor light harvesters 

because their constituent nanoparticles, which are smaller than the wavelength of the 

light, do not scatter the light;[44-47] (ii) charge recombination is of major concern in 

the case of films consisting of nanocrystallites due to the fact that their size is several 

tens of nanometers and they are soaked in a liquid electrolyte with high ion 

concentration meaning they cannot support the required charge separation or 

facilitate a rapid electron transfer within the nanocrystallite network.[48, 49] and (iii) 

numerous grain boundaries between the nanoparticles and the diffusion of photo-

generated electrons in the nanocrystalline films suffer from random walk of electrons 

caused by a series of trapping and detrapping processes (Figure 2-2).[50, 51] The 

electron trapping in the nanocrystalline film is a mechanism that causes significant 

energy loss. To date, several interesting approaches have been demonstrated to 

address these issues.[41, 44, 48, 52] Here, the most important of these are briefly 

discussed. 

One means of bringing about light scattering within the photoelectrode and, hence, 

improved interaction with the adsorbed dye is through the use of a bilayer structure 

as illustrated in Figure 2-3b.[53, 54] Typically, the double layer structure consists of a 

layer of particles larger than the light wavelength (~400 nm in size) being layered 

over the traditional film of small particles (~20 nm in size).[55] This layer of larger 

particles backscatters the light that passes through the layer of smaller particles so as 

it has a further opportunity to interact with the dye molecules adsorbed within it. This 

bilayer approach is an effective way to enhance the optical absorption of the 

photoelectrode, especially at wavelengths over 700 nm where the dye is not as 
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efficient at absorbing light. Moreover, it is known that more than 40% of the total 

irradiance is absorbed in this wavelength region.[44] Although the use of bilayer 

structure improves light collection efficiency, the large particles also bring a decrease 

in surface area and, hence, power generation capacity. 

 

 

Figure 2-3. The structures of different photoelectrodes for DSSCs. (a) 

Nanocrystalline TiO2 based photoelectrode film, (b) double layer structured 

photoelectrode film, (c) plasmon–enhanced photoelectrode film, (d) hierarchically 

structured nanoporous film, (e) 1D structured photoelectrode film, (f) 

1D/nanoparticles hybrid structure based film and (g) hierarchically structured 1D 

photoelectrode. 

 

In the past few years, localized surface plasmon resonance (LSPR) of metal 

nanostructures has been considered a promising way to improve DSSC 

performance.[56] Plasmonic noble metal nanostructures interact with light in the 
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visible to near-IR range through the creation of resonant surface plasmons. Several 

authors have seen significant improvement in the DSSC photocurrent by 

incorporating metal (Au, Ag) particles into semiconducting oxide nanoparticles (see 

Figure 2-3c).[57-61] For example, Hou et al.[57] observed a very high (2.4–fold) 

enhancement in the PV efficiency compared to the conventional TiO2 film based 

DSSC due to the extension of light absorption over the wavelength range from 460–

730 nm. However, the preparation method of homogeneous plasmonic 

nanocomposites involves a number of complex steps and high temperature & 

pressure, and the metal NPs are susceptible to corrosion by the electrolyte.[62, 63] 

Hierarchical spherical nanostructures (HSN) such as that illustrated in Figure 2-3d 

have also been recently proposed as a means of simultaneously addressing the poor 

light harvesting efficiency of conventional DSSC films while boosting the surface 

area.[44, 64] By using micrometer sized aggregates of nanosized particles, HSNs 

enhance the scattering of light within the films while retaining the area associated 

with the nanoparticles.[39, 44, 65] The first study of such a bifunctional (high surface 

area to volume ratio and good light scattering property) structure in DSSCs was 

reported by Koo et al.[65] who observed the amount of adsorbed dye was about 5 

times greater than for film composed of similarly micro-sized TiO2 particles. This 

leads to an energy conversion efficiency of 10.34%.[65] Even though the HSNs 

remarkably improve both the light harvesting efficiency and adsorption of dye 

molecules into the film, the electrodes still suffer from charge recombination and 

slow electron transfer because they are composed of several small (20 nm) 

nanoparticles that cause electron trapping and detrapping. 

The high rate of charge recombination and slow electron transfer in the 

nanocrystalline films increase the energy loss in the DSSC. In an effort to eliminate 

this issue, one dimensional (1D) nanostructures (see Figure 2-3e) such as 

nanotubes,[66, 67] nanowires,[68] nanorods,[69, 70] and nanofibers[71] have been proposed. 

The use of single crystal anatase TiO2 nanowires resulted in a photo conversion 

efficiency (PCE) of ~9.3%.[68] While 1D materials lead to much more rapid transport 

of the electrons to the circuit, they suffer from low surface area to volume ratio due 

to their relatively large diameter[66] (~100 nm) and/or free space between them.[37, 52] 

In order to address the low surface area to volume ratio and free space of 1D 

nanomaterials photoelectrode, a composite of 1D nanomaterials and nanoparticles 
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such as that illustrated in Figure 2-3f have been proposed.[72, 73] These composites not 

only ensure rapid electron transport and efficient use of space, they also enhance 

light scattering.[37, 48] However, the PV performance (3.1%) obtained by this strategy 

was not as high as expected.[74] This lower performance was, once again, attributed 

to the large number of grain boundaries between the 1D nanostructures and the 

spherical nanoparticles, leading to high electron recombination.[52] 

In an effort to gain the advantages of 1D nanomaterials while avoiding the issues of 

poor volume utilization and excessive grain boundaries, Qu et al.[75] have developed 

the hierarchical structure shown in Figure 2-3g. This structure fabricated using 1D 

hierarchical TiO2 yielded a PCE of 4.46%, far higher than that obtained from the 1D-

only structure in Figure 2-3f.[75] Although 1D hierarchical TiO2 may fulfil many of 

the requirements of the ideal photoelectrode, the performance of the corresponding 

DSSC is still not high enough. Moreover, the synthesis of such structured TiO2 

materials for the photoelectrodes uses complicated processes but still does not yield 

high performing devices. Very recently, due to their excellent conductivity, high 

electron mobility, low cost, good stability and abundance, carbonaceous materials 

have been considered good candidates for the photoelectrode of DSSCs. The detailed 

discussion of DSSCs fabricated with semiconducting composites based on the 

carbonaceous materials is presented in the following. 

 

2.2.2.  Carbonaceous photoelectrodes 

2.2.2.1.  Carbon particles 

A wide range of carbon nanomaterials have been applied in DSSCs.[76-83] Among 

them, carbon black is one of the most commonly used materials for the counter 

electrode in DSSCs owing to its good electrical conductivity, catalytic activity, low 

cost and availability.[76, 81] Although carbon blacks have been widely used in counter 

electrodes, they have been rarely used in DSSC photoelectrode. 

Ting and Chao were the first to use carbon black in photoelectrodes.[84] They used 22 

nm diameter carbon particles as a bridge between nanocrystalline TiO2 and dye 

molecules in the photoelectrode of DSSCs (Figure 2-4a). The open-circuit voltage 

(Voc) of the cell improved after incorporating carbon black into TiO2 films. The 

authors hypothesized that this improvement is due to the increased energy level of 
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TiO2 conduction band by adding carbon black (Figure 2-4b). It is well known that the 

Voc in PV cells is mainly determined by the energy difference between the 

conductive band of semiconducting material and the potential energy of redox couple 

in the electrolyte (see Figure 2-1).[13] However, the DSSC efficiency declined sharply 

when a high concentration of the carbon black was used. The authors suggested that 

this decrease in performance was due to the high loading of carbon particles in the 

photoelectrode films which interrupted the contact among TiO2, dye and electrolyte. 

In addition to this explanation, too much carbon black could decrease the light 

absorption of the window electrode and thereby limit the photoexcitation process. 

Indeed, the PCE (max. 0.17%) obtained in this study was relatively low compared to 

the typical DSSCs because of the major replacement of each component.[84] 

 

 

Figure 2-4. (a) Schema of the TiO2 particle, carbon black and dye (triangular 

structure) and (b) a possible mechanism for the Voc improvement of TiO2 by adding 

carbon black. Figures are drawn based on the discussion of ref. 84. 
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In order to effectively utilize the carbon particles in the photoelectrode of DSSCs, 

several researchers have used thermal treatment processes on the carbon powder 

incorporated TiO2 film.[85-87] By using this method, these authors prepared highly 

porous structured films with improved surface area for high dye loading and light 

scattering ability. In Kang et al.,[85] after applying thermal treatment on carbon/TiO2 

electrode, a considerable improvement (max. ~31%) in the surface area of the film 

was observed as compared to a TiO2 only film. Because of this improved surface 

area, they achieved a high energy conversion efficiency of 5.65% using DSSCs 

fabricated with 1 wt% (optimized content) carbon particles added to the TiO2 film. 

This optimum concentration of the carbon powder in TiO2 film was further 

confirmed by Kim et al.[86] who also prepared nanoporous carbon/TiO2 films using a 

hydrothermal method for use as the photoelectrode in DSSCs. The efficiency of their 

carbon/TiO2 photoelectrode based DSSC was about 3.4% which was higher than that 

(2.5%) of the reference device. 

Yang et al.[87] synthesized spherical carbon particles with three different sizes 

(diameters of 250 nm, 500 nm and 700 nm) using a hydrothermal method and 

incorporated them into nanocrystalline TiO2 films. After sintering the films at high 

temperature, the carbon spheres were burned out and thus holes were formed 

corresponding to the size of initial carbon spheres. The authors studied the influence 

of hole sizes made in the films on the light absorption characteristics for DSSC 

performance. The sequence of the light scattering ability of these films was C500 > 

C700 > C250 > C0. Due to the higher light scattering ability of the C500 film, a 

26.5% improvement in the Jsc (when compared to a TiO2 nanocrystalline only film 

based device) was achieved using photoelectrodes based on the 500 nm carbon 

spheres. A poor Jsc obtained by DSSCs with the large holes (700 nm) was due to the 

decreased amount of dye in the film. Indeed, by balancing the light absorption and 

dye adsorption ability of the film, the highest efficiency was 7.2% achieved by the 

cell fabricated with 500 nm carbon particles, while the standard cell reaches 5.6% 

efficiency. 

Carbon fibres (CFs) are cylindrical structures with graphene layers arranged as 

stacked cones, cups, ribbons or plates. In the past few years, CFs have been used in 

the photoelectrode of DSSCs due to their good conductivity, low weight and high 

stability.[88, 89] Moreover, the cylindrical shape of CFs is also expected to promote 
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electron transport within the film.[90] Recently, Guo et al.[89] synthesized rectangular 

bunched TiO2 nanorod (NR) arrays using a hydrothermal approach. This structure 

was vertically aligned on the CFs to build the photoelectrode of DSSCs. The 

preparation route of NRs on the CFs is shown in Figure 2-5a. This synthesis method 

of the CFs with TiO2 NRs is called a “dissolve and grow” process. In the resulting 

structure (Figure 2-5b), the rectangular bunched TiO2 NRs (as termed by the authors) 

were designed to simultaneously address the poor dye loading of a 1D structure and 

the light capturing ability of TiO2 nanocrystalline film. Therefore, the bunched 

NRs/CFs structured photoelectrode exhibited an improved surface area, which 

enabled more dye molecules to be adsorbed. With the 3D structured photoelectrode 

made using the carbon fibres (Figure 2-5c), the conversion efficiency of DSSC 

reached 1.28%, which was ~68% higher than that of the NRs–only (see Figure 2-5d). 

 

 

Figure 2-5. (a) A schematic illustration of the growth of rectangular bunched TiO2 

NRs on CFs, (b) SEM of 3D structure formed with TiO2 NRs@CFs, (c) DSSC 

fabricated with 3D structured photoelectrode and (d) current density–voltage (J–V) 
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curves of DSSCs fabricated with the TiO2 NRs and TiO2 NRs@CFs.[89] Reproduced 

with permission from ref. 89 © 2012, American Chemical Society. 

 

Application of carbon structures in TiO2 nanocrystalline based films is a good 

strategy that can suppress the charge recombination using a highly conductive carbon 

layer. A graphitic thin film embedded (referred as carbonized) with semiconducting 

oxide particles was prepared for use as the photoelectrode of a DSSC.[91] In Jang et 

al.,[91] three different (carbon layer under, on or both under and on the film) 

carbonized nanocrystalline TiO2 films were fabricated. By introducing graphitic 

carbons into the TiO2, the amount of dye loading was decreased slightly due to the 

reduced surface area of the film. Although the adsorption of dye molecules was 

reduced, the embedded carbons in the TiO2 film improved the electron 

recombination lifetimes (τr) of DSSCs significantly because of their high 

conductivity. Due to this improved property of the cells, carbonized TiO2 films based 

DSSCs achieved very high current densities (Table 2-1). It was noted by these 

authors that the surface area of the films in such structured device plays a minor role 

for the PV performance.[91] Finally, a 40.6% improvement (as compared to the 

reference cell) in the PV efficiency was obtained by DSSC fabricated with both parts 

(under and on top) carbonized TiO2 thin layers. 

 

Table 2-1. PV and electrochemical characteristics of four different DSSCs fabricated 

in the literature (Data points are collected from ref. 91). 

Photoelectrode Dye amount, 

(mmol cm-2) 

Rct (Ω) τr (ms) Jsc 

(mA cm-2) 

PCE (%) 

TiO2–only film 7.19 x 10-5
 74.47 5.1 6.58 3.21 

Lower part 

carbonized film 

6.09 x 10-5
 64.02 22.1 6.94 3.71 

Upper part 

carbonized film 

5.78 x 10-5
 52.10 25.3 8.96 4.91 

Both parts 

carbonized film 

5.47 x 10-5
 51.84 29.6 9.35 5.21 
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Carbon particles can be prepared from sucrose, glucose and starch which are 

generated by the polymerization and aromatization of carbohydrate molecules. The 

carbohydrates are mostly converted into carbons using a hydrothermal method under 

certain conditions.[92, 93] Preparing carbons from the carbohydrates has many 

advantages including a lack of toxicity, a facile synthesis process, use of relatively 

low temperature coupled with economic viability. Due to these advantages, Jang and 

co-workers used a glucose–based carbon incorporated TiO2 photoelectrode film (see 

Figure 2-6) for DSSC.[94] The Jsc and PCE of the DSSCs containing glucose/TiO2 

photoelectrode were increased by 20.9% and 11.6%, respectively, as compared to 

those of the conventional DSSC. The improved performance by adding glucose–

based carbon was proven to be due to the improved charge transport within the 

photoelectrode. However, the cell efficiency was significantly decreased when a high 

concentration of carbons were used because the presence of large amount of carbons 

acted as a competitor of dye molecules in light harvesting. 

 

 

Figure 2-6. Configuration of DSSC fabricated with glucose–based carbon/TiO2 

film.[94] Reproduced with permission from ref. 94 © 2013, Wiley-VCH. 
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2.2.2.2.  Carbon nanotubes (CNTs) 

As shown by red dash arrows in Figure 2-1, charge recombination and/or back 

electron transfer are the most pressing problems to be solved to give an improvement 

in DSSC efficiency. There are mainly two possible recombination routes in DSSCs: 

the direct recombination of electrons from the conduction band of semiconducting 

TiO2 to the oxidized dyes or to the electrolyte. The frequency of the electron 

recombination to the dye molecule is in the order of a micro to millisecond, whereas 

that to the electrolyte is in the range of a millisecond to second. Both these 

recombinations take place at the TiO2/dye and TiO2/electrolyte interface. It has been 

established that these recombinations can be suppressed by using 1D nanostructures 

based photoelectrodes. In this regard, as a first member of 1D structures, CNTs are 

very promising candidates for the DSSC photoelectrodes due to several of their 

extraordinary properties. Notably, CNTs not only benefit from the 1D structure that 

provides fast electron transport pathway, their highly conductive character also plays 

a critical role in DSSCs. 

Because of their high charge mobility and/or excellent electrical conductivity that 

can decrease the charge transfer resistance (Rct) of films, CNTs were expected to 

improve the performance of DSSCs. In 2004, Jang et al.[95] were the first to report 

using CNTs in the photoelectrode of DSSCs and they achieved a 25% increase in the 

Jsc compared to the CNTs–free cell. Since this significant improvement in the DSSC 

performance was demonstrated by these authors using CNTs, considerable attention 

has been paid to the research on this topic.[96-109] For instance, Lin et al.[99] prepared 

bilayer structured photoelectrode films composed of multi-walled carbon nanotubes 

(MWCNTs)–TiO2/TiO2 which when used in DSSCs exhibited two times higher PV 

efficiency than the cell fabricated with the bare TiO2 film. This improvement in the 

PV performance has been demonstrated to be related to the 1D CNT which supports 

transfer of the photo-generated charges quickly, thus suppressing charge 

recombination. Figure 2-7a depicts the complete attachment of TiO2 to the CNT 

surface. The injected electrons from the excited dye molecules into the conduction 

band of TiO2 can be transferred quickly through the CNTs conduit, as expressed in 

Figure 2-7b. Furthermore, Chen et al.[100] confirmed that the electrical conductivity 

of the bare TiO2 films can be significantly improved by incorporating the CNTs 

structure into TiO2 nanocrystalline films. Although the conductivity of the films can 
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be improved by incorporating higher CNTs content, the opaqueness and light 

absorbing properties of CNTs with high concentration ultimately decreases the 

incident photon-to-conversion efficiency (IPCE) of the film electrodes. Therefore, it 

is very important to pursue the right content of CNTs structures in TiO2 films that 

can optimize the conductivity and light harvesting efficiency of the electrode. 

 

 

Figure 2-7. (a) TEM image of MWCNTs-TiO2 composite,[99] Reproduced with 

permission from ref. 99 © 2011, Elsevier; and (b) schematic diagram for electron 

transfer in the CNTs-TiO2 film. 

 

In order to obtain a balance between the Rct and IPCE, several efforts have been 

undertaken with different concentrations of CNTs structures.[97, 100-104] In these 

studies, the optimized concentrations of CNTs in TiO2 films were relatively different 

because the corresponding DSSCs were fabricated under different experimental 

conditions. A general method to prepare CNTs/TiO2 photoelectrodes is as follows: 

CNTs are first chemically treated using acid solutions (HNO3 or H2SO4) to generate 

functional groups such as hydroxyl (–OH), carbonyl (C=O) and carboxyl (–COOH) 

groups. Then, the functionalized CNTs are mixed with nanocrystalline TiO2 

nanoparticles, followed by a drying process under a certain temperature to prepare 

CNTs/TiO2 pastes. Finally, the obtained paste can be either deposited on transparent 

conducting oxide substrates via doctor blade technique or screen printing technique. 

By applying this method, Yu et al.[101] prepared CNTs/TiO2 based photoelectrodes 

with various concentrations of CNTs (0–1.0 wt%) and compared the efficiencies of 

the devices. As a result, a maximum conversion efficiency of 4.5% was obtained for 
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a DSSC with a photoelectrode with 0.2 wt% CNTs incorporated into the TiO2 film. 

Furthermore, a similar observation has been made by Chen et al.[100] who prepared 

MWCNTs/TiO2 composite films with CNTs concentrations of 0, 0.021, 0.043, 0.086, 

0.172, 0.258, and 0.343 wt%. The DSSC made using a 0.172 wt% CNTs/TiO2 based 

photoelectrode gave the highest efficiency of ~5.2%. On the other hand, some studies 

showed that to obtain the best DSSC performance the concentration of CNTs in TiO2 

film should be around 0.01–0.03 wt%.[102-104] These different optimized contents in 

these case studies are mainly due to the fact that those CNTs were not functionalized 

using chemical acids prior to incorporating into TiO2 films. By comparing these 

results reported in the literatures,[97, 100-104] it can be concluded that the optimal 

content of the functionalized CNTs in TiO2 films varies from 0.1 to 0.3 wt% 

depending on the acid–functionalization level. 

The performance of DSSCs containing CNTs materials strongly depends on the 

dispersion of CNTs in a base fluid.[105, 106] It has been established that pristine CNTs 

are difficult to disperse in base fluids (distilled water, anhydrous ethanol, etc.), which 

could be due to a large aspect ratio and lack of hydrophilic groups.[110] Therefore, 

enhanced spatial distribution and improved dispersibility of CNTs in the solvents are 

the key requirements to obtain the excellent properties of CNTs. Recently, Zhang et 

al.[106] introduced DNA as a biological scaffold on semiconducting single–walled 

carbon nanotubes (s–SWCNTs) network in order to upgrade the dispersibility of 

CNT solution. The upgraded s–SWCNTs dispersion was then utilized to integrate the 

s–SWCNTs/TiO2 composite for the use in photoelectrode films. In addition, they 

also added plasmonic metallic silver nanoparticles (AgNPs) into the s–

SWCNTs/TiO2 film to further improve the performance of DSSCs. The synthesis 

process of the s–SWCNTs/TiO2/AgNPs nanocomposite is illustrated in Figure 2-8a-

e. In this work,[106] the energy conversion efficiency of the DSSC increased from 

4.37% to 5.32% after adding 0.15 wt% s–SWCNTs compared to the TiO2–only 

photoelectrode system. Furthermore, the DSSC fabricated with s–

SWCNTs/TiO2/AgNPs photoelectrode exhibited the highest efficiency of 5.99% due 

to the improved electron collection and transportation by s–SWCNTs, and the 

enhanced light-harvesting efficiency by plasmonic AgNPs (see Figure 2-8f and g). 
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Figure 2-8. (a–e) Schematic illustration of the synthesis process of s-

SWCNTs/TiO2/Ag nanocomposite for the DSSC photoelectrode, (f) J–V curves and 

(g) IPCE spectra of DSSCs fabricated with TiO2-only, s-SWCNTs/TiO2 and s-

SWCNTs/TiO2/Ag photoelectrodes.[106] Reproduced with permission from ref. 106 © 

2013, Royal Society of Chemistry. 

 

Several researchers have used CNT materials in TiO2 photoelectrode films to boost 

the PV efficiency of DSSCs.[96-109] It can be clearly seen from Figure 2-9 that the 

recorded efficiencies of CNTs/TiO2 photoelectrodes based DSSCs vary from 4.1% to 

10.6% depending on the experimental conditions and applied techniques. So far, the 

best efficiency of CNTs/TiO2 photoelectrode based DSSC has been achieved by 
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Dang et al.[107] who introduced multiple genes of a virus into s–SWCNTs based 

aqueous solution. The prepared pastes composed of virus/s–SWCNTs/TiO2 were 

deposited onto FTO glass substrates using a doctor blade technique. As a result, the 

observed Jsc, Voc and FF for DSSC fabricated with 0.1 wt% s–SWCNTs/TiO2 

composite film were 20.3 mA cm−2, 0.78 V and 0.7, respectively, and yielded a very 

high energy conversion efficiency of 10.6%. Interestingly, these authors observed a 

27% improvement in the Jsc when s–SWCNTs were used; whereas the Jsc was 

decreased by ~20% after adding a pure metallic SWCNTs (m–SWCNTs), as 

compared to only TiO2 based DSSC. 

 

 

Figure 2-9. PV efficiencies of DSSCs fabricated with and without CNTs in the TiO2 

films. (Data are obtained from obtained from ref. 97-109). 

 

Guai et al.[108] later showed a similar finding to that of Dang et al.,[107] namely that 

the s–SWCNTs suppress the charge recombination in DSSCs and thereby enhance 

the overall efficiency. The improved performance of DSSC was because of the 

increased electron diffusion length by s–SWCNTs, leading to higher electron 

collections. Notably, the s–SWCNTs possess a non-continuous band structure, while 
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the m–SWCNTs have zero band gap.[107] So, in the 3D networks of s–

SWCNTs/TiO2, the electrons, transferred from the conduction band of TiO2, can be 

transported to the conducting oxide film without charge recombination because the 

higher energy barrier of s-SWCNTs compared to m-SWCNTs and this blocked the 

back flow of dye-injected electrons to the electrolyte (see Figure 2-10a). For the case 

of the m–SWCNTs, although they can transport the photoelectrons more rapidly due 

to higher mobility than s-SWCNTs, the charge transport was disrupted with an 

increased back electron transfer to the electrolyte (Figure 2-10b). 

 

 

Figure 2-10. A schematic representation of the energy diagram of DSSCs with (a) s–

SWCNTs and (b) m–SWCNTs added TiO2 films.[108] Reproduced with permission 

from ref. 108 © 2012, Wiley-VCH. 
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SWCNTs can be metallic or semiconducting with band–gaps ranging from 0 to 2.0 

eV depending on their diameter, level of defects or functionalization, and degree of 

aggregation.[111] Based on this concept, it should be possible to improve the 

efficiency of DSSCs by optimizing the band gap energy of s–SWCNTs. Therefore, 

systematically exploring the influence of different band–gap energies of s–SWCNTs 

on the performance of DSSCs would be of great value. 

 

2.2.2.3.  Graphene 

Graphene[112] – a single layer of carbon atoms arranged in a hexagonal lattice – is a 

material that possesses remarkable properties including excellent conductivity, 

superior strength to any material ever isolated, good flexibility, high transparency 

and chemical resistivity.[113-117] The 2010 Nobel Prize in physics was awarded to 

Andre Geim and Konstantin Novoselov for their discovery of the unique properties 

of graphene.[112] Since then, graphene has become known the world-over as an 

advanced material and is quickly moving from research laboratories to industrial 

applications.[118] The exceptional properties of this material have pioneered recent 

explorations to apply graphene structures in the photoelectrode of DSSCs.[119-131] It 

can be clearly seen from Table 2-2 that the improved efficiencies of DSSCs with 

graphene materials incorporated TiO2 photoelectrode films vary from 1.68% to 

8.13%. These differences in the cell performances are possibly due to the utilization 

of different experimental conditions such as the active area of the cells, type of dyes, 

film preparation methods and various treatments (see Table 2-2). 

Moreover, as listed in Table 2-2, the efficiencies recorded for the conventional 

DSSCs also vary considerably ranging from 0.32% to 5.8%, despite all the cells 

being made very similarly (TiO2 photoelectrode film, Ruthenium based organic dye, 

iodolyte electrolyte and Pt counter electrode). Because of these varying 

performances, it is difficult to compare the improvements that have been achieved by 

the use of graphene structures. To better understand the real enhancement of DSSCs 

performance obtained by applying carbonaceous materials based films, the efficiency 

enhancements are calculated and plotted in Figure 2-11. 
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Table 2-2. PV characteristics of different DSSCs fabricated under various 

conditions. Graphene, modified Hummers method[132] and hydrazine are abbreviated 

as “G”, “MH method” and “hyd”, respectively. The abbreviation of “↑↑” and “↓” in 

the dye adsorption column represents the amount of adsorbed dye in the rGO/TiO2 

film “increased” and “decreased”, respectively, as compared to TiO2–only film. 

Photoelec
trode film 

Jsc, 
mA*cm-2 

PCE, 
% 

Area
, cm2 

Dye 
type  

Deposition 
method 

Synthesis of 
“G” 

Treatment “G” 
conc 

Dye 
(↑↑,↓) 

Ref 

rGO/TiO2 

TiO2 

16.29 

11.26 

6.97 

5.01 
0.2 N3 

doctor 
blade 

MH method – 
hyd & thermal 

reduction 

poly vinyl–
alcohol 

0.6 
wt% 

– 121 

rGO/TiO2 

TiO2 

6.67 

1.95 

1.68 

0.32 
0.5 N719 

electro-
phoretic 

MH method – 

hyd reduction 

molecular 
grafting 

– ↑↑ 122 

G/G/TiO2 

TiO2 

19.47 

15.2 

8.13 

5.8 
0.25 N719 

doctor 
blade 

MH method – 

hyd & thermal 
reduction 

‘G’+TiCl4 
coated 
FTO 

– ↓ 123 

rGO/TiO2 

P25 TiO2 

13.5 

6.2 

7.25 

2.85 
0.2 N719 

doctor 
blade 

MH method – 

solvothermal 
reduction 

ultrathin 
TiO2 NRs 

– ↑↑ 124 

rGO/TiO2 

P25 TiO2 

14.8 

11.9 

6.49 

4.96 
0.15 

Indolin
e 

doctor 
blade 

MH method – 

hyd & hydro-
thermal 

reduction 

multilayer 
film 

– ↑↑ 125 

rGO/TiO2 

TiO2 

13.93 

10.99 

7.1 

5.3 
– N719 

doctor 
blade 

MH method – 

high thermal 
reduction 

in situ 
reduction-
hydrolysis 

– ↓ 126 

rGO/TiO2 

TiO2 

7.6 

4.96 

2.78 

1.79 
0.5 N719 

doctor 
blade 

MH method – 

thermal 
reduction 

– 
0.83 
wt% 

↓ 127 

rGO/TiO2 

TiO2 

16.8 

13.7 

5.77 

4.61 
0.4 N719 

doctor 
blade 

– 
pre-treated 

TiO2 
0.75 
wt% 

– 128 

rGO/TiO2 

TiO2 

12.16 

10.75 

5.5 

4.2 
0.5 N719 

screen 
print 

MH method – 
solvothermal 

reduction 

GO in 
ethylene 
glycol 

0.75 
wt% 

– 129 

G/TiO2 

TiO2 

19.92 

18.83 

6.86 

5.98 
– N719 

spin 
coating 

– 
Addition 
surfactant 

1.0 
wt% 

↑↑ 130 

rGO/TiO2 

TiO2 

18.2 

16.4 

6.06 

5.09 
0.16 D9 

doctor 
blade & 

spray coat 

MH method – 

hyd & thermal 
reduction 

rGO was 
coated on 
TiO2 film 

– ↓ 131 
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Figure 2-11. Efficiency enhancements of the DSSCs with carbon particles, CNTs 

and graphene incorporated TiO2 films. (Data points are adopted from ref. 85, 87, 91, 

94, 100, 101, 103, 104, 107, 108 and 121-127). 

 

Figure 2-11 shows the efficiency enhancements (%) of various DSSCs fabricated 

using carbon particles, CNTs and graphene incorporated TiO2 photoelectrode films. 

One can simply observe from Figure 2-11 that the average enhanced efficiencies 

obtained by graphene/TiO2 photoelectrode based DSSCs are higher than those 

achieved by DSSCs with carbon particles and CNTs based TiO2 films. There are 

several reasons that can be given to explain this observation that graphene improves 

the performance of cells more compared to other carbonaceous materials. 

The reasons can be listed as follows: (i) For the case of CNTs, although they can 

improve the efficiency of DSSCs, their poorer interconnection with the spherical 

TiO2 nanoparticles (as compared to the graphene) would limit the overall 

performance of DSSCs due to some charge transfer barrier and possibility of 

recombination (see Figure 2-12a). In contrast, graphene is a large single sheet that 

can significantly contact TiO2 nanocrystallites, thus, it would significantly suppress 

the charge recombination (see Figure 2-12b). 
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Figure 2-12. Schematic representation of (a) CNTs/TiO2 and (b) graphene/TiO2 

films, demonstrating that in graphene/TiO2 composite, the TiO2 particles can anchor 

in the graphene better. 

 

(ii) The work function of graphene (–4.42 eV)[122] lies between the conduction band 

of TiO2 (–4.4 eV)[13] and FTO substrate (–4.7 eV)[13]. Owing to this suitable energy 

level, photo-generated electrons transfer stepwise from the TiO2 to FTO without an 

energy barrier (see Figure 2-13). Here, graphene can act as a bridge between TiO2 

and FTO. 

 

 

Figure 2-13. Schematic diagram of the energy level for graphene/TiO2 film based 

DSSC. 
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(iii) The very high conductivity of graphene can accelerate the electron transport 

process and reduces the rate of charge recombination (see Figure 2-14). Because of 

these advantages, graphene materials have been believed to be perfect candidates for 

the photoelectrode of DSSCs. 

 

 

Figure 2-14. A mechanism for the enhanced electron transfer in graphene/TiO2. 

 

To the best of our knowledge, the first study incorporating graphene materials in a 

TiO2 photoelectrode was reported by Kim et al.[120], who used a reduced graphene 

oxide/TiO2 nanoparticles composite as interfacial layer between the FTO and 

nanocrystalline TiO2 film. By applying this reduced graphene oxide/TiO2 blocking 

layer, they obtained an energy conversion efficiency of 5.26% which was slightly 

higher than that (4.89%) of the reference cell. Based on this low improvement in the 

DSSC performance (only 7.56%), it seems that the common TiCl4 treatment (TiO2 

blocking layer) is a more effective method than using this reduced graphene 

oxide/TiO2 blocking layer. Although the enhancement in the DSSC efficiency 

achieved using graphene materials as blocking layer was relatively low in this 

work,[120] the idea has inspired many studies to further advance this topic. 

Tang et al.[122] prepared graphene/TiO2 nanocomposite based photoelectrodes for 

highly efficient DSSCs using a molecular grafting method on titanium (IV) butoxide 

and graphene sheet. Because of the presence of oxygen containing functional groups 

on graphene, organic titanium molecules could be grafted on the functionalized 

graphene sheets by chemisorption. By adjusting the reduction level of graphene 

oxide, a good interconnection of TiO2 particles to the graphene sheets was achieved 
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producing a highly conductive film. As a result, when the optimized amount of 

graphene was incorporated into TiO2 nanoparticles based film, the cell obtained five 

times higher efficiency than the bare TiO2 based one. These authors showed that this 

significant improvement in the DSSC performance was due to the increased 

adsorption of dye molecules in the graphene/TiO2 film as compared to the TiO2–only 

film. Several other studies have showed that the presence of graphene in the 

nanocrystalline films improves the dye loading.[124, 125, 130] The reason for this 

improvement in the dye loading was explained by these authors as follows: the high 

surface area to volume ratio of graphene provides more anchoring sites for TiO2 

which enable the loading of a high amount of dye molecules. In contrast, it can be 

seen from Table 2-2 that in some studies,[123, 126, 127, 131] the dye loading in the TiO2 

nanocrystallites film decreased after adding the graphene structures. Recently, Chen 

et al.[126] showed that the amount of adsorbed dye in the graphene incorporated TiO2 

film was measured to be 7.6 x 10–9 mol cm–2, which was lower than that (1.0 x 10–8 

mol cm–2) of the film with only TiO2 nanoparticles. Furthermore, some other authors 

also suggested that the incorporation of graphene in TiO2 based film does not 

significantly increase the dye adsorption into the film, despite the fact that graphene 

with a high surface area to volume ratio was used.[123, 127, 131] Based on this argument, 

it can be concluded that the high surface area to volume ratio of graphene does not 

completely explain the mechanism of the dye adsorption characteristic. Therefore, 

the kinetics of dye adsorption in graphene based films is still unclear, with some 

studies showing contrary results. For this reason, a deeper understanding and 

reasonable explanation of dye adsorption onto graphene incorporated films needs to 

be provided based on the careful investigations. For example, it would be reasonable 

to explore the amount of oxygen containing functional groups on graphene surface 

for the adsorption of dye molecules. Graphene is mostly synthesized by a chemical 

oxidation (Hummers method),[132] followed by a chemical (by hydrazine) or a 

thermal reduction process. The chemically oxidized graphene involves various 

functional groups such as –OH, C=O and –COOH. On the other hand, it has been 

reported that the functionalized graphene (graphene oxide) is capable of hydrogen 

bonding and π–π stacking with other organic dye molecules.[43, 133, 134] This may 

mean graphene with a high number of functional groups may adsorb more dye 

molecules onto their surface. On the other hand, the pristine graphene has a higher 

electrical conductivity than the functionalized graphene. Therefore, if the functional 
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groups on graphene play an important role in the dye loading, further investigation 

will be required to determine a balance between the conductivity and the dye 

adsorption ability of graphene oxide by optimizing the oxidation or reduction level. 

It is obvious that a high concentration of graphene significantly reduces the Rct of 

DSSCs that improves the electron transport rate, whereas this downgrades the 

transparency of films and thereby decreases the light harvesting efficiency of the 

photoelectrode. Therefore, advanced work was needed to find an optimal graphene 

content that benefits for both the charge recombination and light harvesting 

efficiency. Yang et al.[121] synthesized graphene/TiO2 composites by varying the 

content (0–8.5 wt%) of graphene in the DSSC photoelectrodes. They found that the 

optimal content of reduced graphene oxide in the TiO2 film is ~0.6 wt% which is the 

best for cell performance. Furthermore, many studies have explored the influence of 

graphene content on the DSSC performance.[127-129] It can be clearly seen from Table 

2-2 that loading ranging from 0.6 to 0.83 wt% of reduced graphene oxide 

incorporated in the TiO2 photoelectrode films achieved the highest efficiency in the 

majority of studies. 

Due to the π–π interactions and/or hydrophobic surface of graphene layers, pristine 

graphene is insoluble in conventional solvents such as water and anhydrous ethanol, 

which is a major barrier to its successful utilization. Several noteworthy approaches 

have been developed to overcome this issue.[135, 136] Yen and co–workers improved 

the dispersion stability of graphene in an ethanol solution using MWCNTs as a 

spacer between graphene layers (see Figure 2-15a) and they used the 

graphene/MWCNTs materials in the DSSC photoelectrodes.[136] This 3D structured 

photoelectrode composed of graphene/MWCNTs/TiO2 nanocomposites exhibited an 

efficiency of 6.11%, which was significantly higher than that (4.54%) obtained by 

the TiO2–only cell, as shown in Figure 2-15b. The improved performance was 

proven to be due to the improved dispersibility of graphene and MWCNTs in ethanol 

solution. 
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Figure 2-15. (a) TEM image of MWCNTs/graphene composite and (b) J–V curves 

of DSSCs based on acid functionalized-MWCNTs (electrode 1), MWCNTs/graphene 

composite (electrode 2), graphene (electrode 3) and TiO2-only (electrode 4) 

photoelectrodes.[136] Reproduced with permission from ref. 136 © 2011, Elsevier. 

 

2.3.  Conclusion and Future Directions 

In this review, we discussed the advanced research on the use of carbon materials in 

the photoelectrodes of DSSCs because the activity in this research field has been 

rapidly growing in the past few years. A brief overview of novel nanostructured 

materials based photoelectrodes is also provided. Based on the results of extensive 

research, it can be concluded that CNTs and graphene are very promising materials 

for high performance photoelectrodes for DSSCs due to their fascinating properties. 

Although significant achievements have been made in this cutting-edge research, 

several challenges must be addressed to build up high–performance devices based on 

CNTs and graphene. Further optimizations of carbonaceous photoelectrodes in 

DSSCs are still required. 

It was found that vertically aligned CNTs are promising counter electrode materials 

to achieve highly efficient Pt–free DSSCs due to its improved electrical conductivity 

and electrocatalytic activity.[77, 137, 138] It is reasonable to expect improved 

performance of DSSCs by applying vertically grown CNTs structure with the TiO2 

photoelectrode films. 

S–SWCNTs can significantly enhance the efficiency of DSSCs because of their non-

continuous band structure, whereas the m–SWCNTs reduce the cell performance. 

Therefore, the band gap of s–SWCNTs can be tuned by controlling their defect or 
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functionalization level, diameter and aggregation degree etc. In this regard, exploring 

the influence of different band structures of s–SWCNTs on the cell performance will 

be an important research direction for further development of DSSCs. Similarly, 

chemically functionalizing graphene is an established method to open the band gap 

of graphene and is critical to the improvements in the cell characteristics. The band 

structure of graphene oxide or reduced graphene oxide can be tuned by the level of 

functionalization.[139, 140] The electronic band structure of the functionalized graphene 

should be considered in the future studies of graphene materials based DSSCs. 

Since the dye adsorption kinetics on graphene structures based DSSCs are not fully 

understood, the underlying fundamental driving forces of dye interactions should be 

explored in depth. According to the literature,[43, 133, 134] it seems reasonable that the 

reactive sites (functional groups) on graphene surfaces and edges would play a major 

roles in dye interactions and this will need to be investigated to better understand the 

dye loading characteristics. If the functional groups on graphene play a critical role 

in the dye adsorption, further optimization of the oxidation or reduction level of 

graphene may be required to achieve the highest possible performance of DSSCs. 

Dye lifetime is also another critical limiting factor in DSSCs.[29] The presence of 

carbonaceous materials with high conductivity may help extend dye lifetimes. The 

use of thin films of carbonaceous material would allow the selective filtering of 

certain regions of the spectrum which will extend dye lifetimes.[141, 142] For example, 

chirally sorted CNTs of particular types could be applied on the incident light side of 

the photoelectrode to absorb UV-light while letting visible light pass for adsorption 

by the dye. The lack of UV- light reaching the dye will enhance the active lifetime of 

the photoelectrode. 

Furthermore, chirally sorting of the CNTs would allow the precise tuning of 

electronic energy levels in the electrode. This has the potential to improve 

performance but it will also provide avenues to investigate the exact role of CNTs in 

the hybrid photoelectrodes. The current understanding of the semiconducting 

photoelectrodes with carbonaceous structures in DSSCs is somewhat limited in terms 

of the exact roles of each component. Therefore, future investigations to elucidate the 

exact role of the various carbon materials (especially CNTs and graphene) in the 

photoelectrode of DSSCs will be of great value. 
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Some workers have also explored the effect of different types of nanotubes in the 

counter electrode of DSSCs.[143, 144] While this review highlighted the differences 

between SWCNTs and MWCNTs, there seem to have been little work with double-

walled CNTs (DWCNTs). Interestingly, there is considerable work showing that 

DWCNTs can often provide enhanced conductivity while still providing very similar 

structural properties of SWCNTs.[143, 145, 146] The use of DWCNTs in photoelectrodes 

is a clear research opportunity that is still to be extensively explored. 

Chemical doping has been shown to be an effective method to enhance the 

conductivity of CNTs and graphene.[147-149] In this regard, the use of chemically 

doped CNTs and graphene in the photoelectrode of DSSCs would be a valuable 

research direction. Additionally the use of these nanomaterials offers the exciting 

opportunity of nanostructuring the photoelectrode. For example, a layered structure 

would allow the selective, efficient harvesting of different portions of the solar 

spectrum as the light passed through the electrode. This affords the opportunity to 

make use of very high adsorbing dyes for narrow wavelength regions and this stack 

of high absorbers could be more efficient that the broad spectrum absorbers currently 

in use. 

It has been shown in polymer based solar cells that beyond the electronic properties 

of the donor/acceptor system where functionalized CNTs are involved, the 

morphology also plays a key role in PV applications.[150] For instance, the addition of 

functionalized CNTs to a PEDOT: PSS lowered the overall performance, but did 

increase the current. These changes were attributed to the nano-morphology of the 

system. Recent work has demonstrated the key importance of the nanostructure of 

the active layer and indeed suggests light trapping in this layer could be a powerful 

approach to improve performance. The best structure is difficult to predict due to the 

competing influences of light trapping and charge conduction.[151] 

Alignment within a CNT film has been demonstrated recently and offers the 

opportunity to both increase light transmission and film conductivity.[152] These films 

offer a smooth substrate which might also be of benefit in a layered structure where 

direct contact between a high loading of dye molecules and the conducting element 

of the electrode will be possible but the current alignment approaches using highly 

toxic chemicals will need to be improved before this approach can be considered a 

serious alternative for wide scale use. 
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It has been demonstrated that carbon materials exhibit excellent electrocatalytic 

activity for the reduction of liquid electrolyte.[22, 29, 80] However, the use of too high a 

concentration of the carbonaceous materials in the photoelectrode brings significant 

charge recombination at the interface of carbons and electrolyte by reducing tri-

iodide to iodide. Therefore, the electrocatalytic activity of carbonaceous materials 

should be taken into account when they are used in the photoelectrode. Graphene is 

known not to be penetrable by gases so a film of graphene on the photoelectrode may 

offer an ability to control molecular diffusion while still allowing efficient charge 

transport. Such diffusion control might extend the lifetime of the electrolyte. This 

work would likely require the construction of a complex hybrid electrode perhaps 

using CNTs to enhance conductivity or tune electronic states while using graphene to 

control levels of reactivity at the critical interfaces. 

We believe that the carbonaceous material will bring an important breakthrough 

when they are used in the photoelectrode of solid state DSSCs. 

In addition, we note that review article on the application of carbon nanomaterials in 

perovskite solar cells is provided in the introduction of this Thesis, which links to the 

future chapters of this Thesis. 
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Abstract 

In dye-sensitized solar cell (DSSC) photoanodes, tin dioxide (SnO2) structures are a 

promising alternative semiconducting oxide to the conventional titania (TiO2), but 

they suffer from poor photovoltaic (PV) efficiency caused by insufficient dye 

adsorption and low energy of the conduction band. A hybrid structure consisting of 

SnO2 and reduced graphene oxide (SnO2–RGO) was synthesized via a microwave-

assisted method and has been employed as a photoanode in DSSCs. Incorporation of 

RGO into the SnO2 photoanode enhanced the power conversion efficiency of DSSC 

device by 91.5%, as compared to the device assembled without RGO. This efficiency 

improvement can be attributed to increased dye loading, enhanced electron transfer 

and addition of suitable energy levels in the photoanode. Finally, the use of RGO 

addresses the major shortcoming of SnO2 when employed as a DSSC photoanode, 

namely poor dye adsorption and slow electron transfer rate. 

 

Keywords: Photovoltaic, dye-sensitized solar cells, photoanodes, tin oxide, graphene 
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3.1.  Introduction 

One of the mature developments in new energy production approaches is the dye-

sensitized solar cell (DSSC).[1] For a broad perspective of the field, there are several 

good reviews available.[2-4] A typical DSSC photoanode is made using a transparent 

conducting oxide (TCO) substrate, wide band gap oxide semiconductor and dye 

sensitizer. A nanocrystalline TiO2 semiconductor is mostly used as the 

semiconductor due to its unique properties.[5] Despite the high power conversion 

efficiencies (PCEs) achieved by devices fabricated with TiO2 photoanodes,[6-8] the 

intrinsic low carrier mobility of TiO2 is a matter of great concern.[9, 10] This issue has 

led many researchers to probe the development of alternative photoanode materials. 

Among many alternative semiconductors, SnO2 has been the subject of numerous 

investigations.[11-13] This is partially due to the fact that SnO2 has a higher electron 

mobility than TiO2.[14, 15] Since the first use of SnO2 in DSSCs, significant 

developments have been made in the SnO2 photoanodes.[11, 13] These developments 

include morphology control, doping with various species, surface modification, and 

hybrid structures with other oxide semiconductors.[16-18] Despite the considerable 

effort to improve SnO2 based photoanodes, a major challenge for SnO2 based DSSCs 

is still their low performance caused by poor dye adsorption capability.[19] 

Additionally, the SnO2 photoanode based DSSCs suffer from a low open circuit 

voltage (Voc) value due to the intrinsically low energy of the conduction band of 

SnO2.[20] Therefore, addressing these issues is of great importance for the 

development of SnO2 based photovoltaic (PV) cells. Moreover, although SnO2 

possesses higher electron mobility than TiO2, further improvement in the electron 

transport in SnO2 photoanode would be of great value to maximize the efficiency. 

Due to their excellent conductivity, carbon nanotubes (CNTs) and graphene can act 

to improve electron transport and reduce the charge recombination which results 

from sluggish charge transport of semiconducting oxide based photoanodes; thus 

significantly enhancing the PCE of PV cells.[21-26] Over the past few years, 

researchers have incorporated graphene derivatives into various TiO2 structures and 

shown remarkable efficiency enhancement.[27-30] However, until now, there has been 

no report on the use of graphene structures in SnO2 photoanodes for DSSCs. 

Moreover, the kinetics of dye adsorption and performance enhancement for 
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carbonaceous photoanodes is still unclear, with some studies suggesting contrary 

results.[21, 28, 29, 31, 32] Therefore, exploring the effect of graphene or reduced graphene 

oxide (RGO) in SnO2 photoanode based DSSCs would be valuable. 

Herein we report a facile preparation of hybrid structures based on morphologically 

controllable SnO2 combined with RGO for use as a photoanode in DSSCs. To the 

best of our knowledge, this work is the first effort involving the application of a 

graphene structure in SnO2 photoanode based DSSCs. We found that the 

incorporation of RGO into the SnO2 film not only enhances the electron transfer rate 

of the photoanode, it also increases the adsorption of dye molecules into the film, 

thus greatly improving DSSC performance. 

 

3.2.  Experimental 

3.2.1.  Materials 

All chemicals were purchased from Sigma-Aldrich and used without further 

purification, unless otherwise stated. Tin (II) chloride dihydrate (SnCl2·2H2O) 

powder (>99% purity, Merck) was used as a starting material. Flourine-doped tin 

oxide (FTO) coated glass electrode with a sheet resistance (Rs) of ~12 Ω/□ (TCO30-

8), Ruthenizer 535-bisTBA (N719 dye), iodide/tri-iodide electrolyte (Iodolyte Z-50), 

DuPont Surlyn® (Meltonix 1170-60) and Platinum catalyst (Platisol T) were 

obtained from Solaronix, Switzerland. 

 

3.2.2.  Preparation of graphene oxide 

Graphite oxide was prepared from natural graphite using the approach from Marcano 

et al.[33] Briefly, a 9:1 (v:v) mixture of sulfuric acid (95-98% H2SO4) and phosphoric 

acid (85% H3PO4) (240:27 mL) was kept in the cold room (3-5oC) until it was added 

to a mixture of graphite flakes (2 g) and potassium permanganate (99% KMnO4) (12 

g). The oxidation process of graphite was carried out by stirring the mixture at ~50oC 

for 12 h. Upon completion, the reaction was cooled down to room temperature and 

poured onto ice (approximately 300 mL) with 30% hydrogen peroxide (H2O2) (2 

mL). The mixture was then washed with distilled (DI) water, 30% hydrochloric acid 

(HCl) and ethanol (x 2 times). For each sequential wash, the product was centrifuged 
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at 4400 rpm for 3 h and the supernatant decanted away. The light brown sample 

obtained was then vacuum-dried overnight at room temperature. Then the as-

prepared graphite oxide was exfoliated in water (1 mg mL-1) by bath ultrasonication 

(Elma, Germany) for 60 min to obtain homogenous graphene oxide (GO) dispersion. 

 

3.2.3.  Synthesis of SnO2-RGO hybrid 

The SnO2-RGO hybrid was prepared using a facile microwave-assisted method.[34] In 

a typical process, six glass beakers containing 90 mL DI water and different amounts 

of GO (0 mg, 2 mg, 4.5 mg, 7 mg, 12 mg and 50 mg) were ultrasonicated for 2h. 

Meanwhile, 1.5 g of SnCl2·2H2O powder was added into 200 mL of 0.02M HCl 

solution. Then the previously prepared GO dispersions were added into the 

SnCl2·2H2O solutions, followed by stirring for 30 min. The as-obtained mixtures 

were then reacted using a microwave technique (StartSYNTH Microwave Synthesis 

Labstation, Milestone s.r.l) for 5 min under 600 W power. The temperature was 

adjusted to 90oC during the microwave treatment. After cooling to room temperature, 

the obtained precipitates were centrifuged at 2000 rpm for 10 min and washed 

several times with DI water, followed by drying overnight at 80oC in an oven to 

obtain SnO2-RGO powders. Finally, six samples of different RGO content (0 wt%, 

0.2 wt%, 0.45 wt%, 0.7 wt%, 1.2 wt% and 4.75 wt% in the hybrid) were prepared 

and have been used for DSSC fabrication. It should be noted that the amount of SnO2 

in these samples was not changed. For the calculation of the RGO concentration in 

the hybrid, it was assumed that the conversion of SnCl2·2H2O to SnO2 is 100% based 

on the lack of Cl peak observed in various hybrid characterizations. 

 

3.2.4.  Device fabrication 

Firstly, viscous SnO2 and SnO2-RGO pastes were prepared from the previously 

prepared six samples according to the established procedures described in the 

literature.[35] FTO coated glass substrates were cleaned by a detergent (Pyroneg), 

followed by washing with Milli-Q water, acetone and ethanol under ultrasonication 

for 10 min each and subsequently dried with a nitrogen gas. The cleaned FTO glass 

substrates were immersed in a 40 mM TiCl4 aqueous solution at 70oC for 30 min. 

Then the TiCl4 treated FTO electrodes were coated with the SnO2 and SnO2-RGO 
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pastes by a doctor blade technique to prepare the photoanodes. All photoanode films 

were obtained by applying two layers of adhesive scotch tape (Magic™ Tape, 3M) 

on the FTO electrode, which gives a film thickness of ~15 µm.[36] It is well 

established that a photoanode thickness of 12-16 µm is the optimum condition to 

achieve high DSSC performance.[36-38] After the deposition of SnO2 and SnO2-RGO 

pastes onto the FTO substrates, the photoanode films were gradually heated under an 

air flow at 125oC for 5 min, 325oC for 5 min, at 375oC for 15 min and at 450oC for 

30 min, followed by cooling to room temperature. Then the films were again soaked 

in 40 mM TiCl4 solution at 70oC for 30 min, followed by sintering at 450oC for 30 

min. After cooling to ~50oC, the prepared films were immersed into 0.5 mM N719 

dye in an ethanol solution for 20 h at 40oC. Then, the dye adsorbed photoanodes 

were washed with ethanol to remove non-adsorbed dye from the films. 

In the meantime, the platinum (Pt) catalyst was coated onto FTO substrates from Pt 

precursor (Solaronix) by a brush-painting method to prepare the counter electrodes. 

The dye-adsorbed photoanodes and Pt counter electrodes were assembled into a 

sealed sandwich-type cell, with a 60 µm thick hot-melt sealing Surlyn between each 

layer. The electrolyte solution, Iodolyte Z-50 (Solaronix), was introduced into the 

cell via a vacuum-filling method through an injection hole on the counter electrode 

side. Finally, the hole was sealed with scotch tape. 

 

3.2.5.  Characterization 

Scanning electron microscopy (SEM) images were obtained using an Inspect F50 

SEM (FEI) with accelerating voltage of 10 kV. Energy dispersive X-ray 

spectroscopy (EDX) analysis was completed on the same system with Team EDS 

Octane Pro (EDAX) attachment. Elemental compositions of the samples were 

analyzed at binding energy ranging from 0 eV to 1200 eV using a X-ray 

photoelectron spectrometer (XPS), Leybold Heraeus LHS-10 with a SPECS XR-50 

dual anode source operating at 250W. A Mg-Kα source, which has energy of 1253.6 

eV, was used for the XPS analysis. X-ray diffraction (XRD) patterns were carried out 

on a powder X-ray diffractometer at 40 kV and 15 mA in the range of 2θ = 3–80° 

using Cu Kα radiation (Model Miniflex 600, Rigaku, Japan). Attenuated Total 

Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR) spectra were 
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acquired over a wavenumber range of 4000-500 cm–1 in transmission mode using a 

Frontier FTIR spectrometer (Perkin Elmer, USA) with a germanium crystal. Raman 

spectroscopy was carried out on LabRAM HR Evolution spectrometer (Horiba Jobin 

Yvon, Japan). Raman spectra were collected using a 532 nm laser (mpc 3000) as the 

excitation source. A 50x objective was used with a confocal hole size of 100 μm. 

Auger spectromicroscope “PHI 710 scanning auger nanoprobe” operating at base 

vacuum below 1 x 10–9 Torr was used to analyse the elemental analysis of the 

samples. Sputtering samples for the analysis was performed using ultra high purity 

Argon. Data was collected using an electron beam of 10 kV, 10nA. 

To determine the adsorbed amount of dye molecules in the SnO2 and SnO2-RGO 

films, the dye in the films was dissolved in 0.1 M NaOH aqueous solution and then 

measured by a Varian Cary 50G UV-vis Spectrophotometer at wavelengths ranging 

from 300 to 1000 nm. Sheet resistivities were determined on a microscope slide 

substrate coated with SnO2-only and/or SnO2-RGO hybrid using a four point probe 

technique (KeithLink Technology Co., Ltd. Taiwan). The photocurrent–voltage (J–

V) characteristics were investigated using a Keithley 2400 SMU instrument and 

recorded using a custom LabView Virtual Instrument program. A standard silicon 

test cell with NIST-traceable certification was used to calibrate the power density as 

100 mW cm-2 at the sample plane of the collimated xenon-arc light source, which 

was passed through an AM 1.5G filter. The active area of each device was 0.25 cm2. 

The J-V curves were measured in the air through the reverse-scan direction from 1 V 

to -1 V. Incident-photon-to-current conversion efficiency (IPCE) measurements as a 

function of wavelength ranging from 400 nm to 800 nm were taken by passing 

chopped light from a Xenon source through a monochromator and onto the devices. 

 

3.3.  Results and Discussion 

The preparation of SnO2–RGO hybrid is shown in Scheme 3-1. Firstly, SnCl2·2H2O 

powder (Figure S3-1) was mixed with GO (Figure 3-1a) in aqueous hydrochloric 

acid (HCl, 0.02 M) to form a homogenous solution, which was stirred and reacted 

using a microwave technique. During this process, GO was reduced and is termed 

“RGO”. Then, the resulting product was centrifuged and dried to obtain a SnO2-RGO 
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hybrid. For comparison, the same process was carried out in the absence of GO to 

produce only SnO2.[36] 

 

 

Scheme 3-1. Synthetic procedure of SnO2–RGO hybrid structure. 

 

The SEM image in Figure 3-1b shows that the synthesized SnO2 is a 1 dimensional 

(1D) microstructure with a rod-like shape. It is worth noting that 1D structures can 

provide fast electron transport pathway.[39] Figure 3-1c depicts the SEM image of the 

SnO2-RGO hybrid, which demonstrates clear differences compared to GO (Figure 

3-1a) and SnO2-only. It can be seen that the SnO2 micro-rods were well mixed and 

wrapped in the RGO flakes, as expected, to form the hybrid material. As shown in 

Figure 3-1d and e, during the microwave-assisted synthesis, small SnO2 

nanoparticles were also formed on both SnO2 rods and RGO flakes which are 

expected to be beneficial for dye adsorption. 

Figure 3-2a shows the XRD patterns of GO, SnO2-only and SnO2-RGO hybrid. GO 

displays an intense peak at around 2θ = 10.9°, which corresponds to the (002) 

reflection of the stacked GO nanosheets.[40] It can be observed that the SnO2-only 

sample shows broad and weak peaks ((110), (101), (200), (211) and (112)), which 

can be indexed to a tetragonal-structured SnO2 with poor crystallinity.[41] It is well 

known that after the reduction process, the diffraction peak of the GO shifts to 

around 2θ = 24.5°. This peak at 2θ = 24.5° cannot be observed in the XRD pattern of 

the hybrid because this peak will be overlapped by the SnO2 peak (110). Another 

noticeable feature in the XRD pattern of SnO2-RGO is that the SnO2 in the hybrid 

shows narrow and strong peaks, which can be assigned to a tetragonal structure 

(JCPDS card no. 41-1445), indicating an improved crystallinity of SnO2 and larger 
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average crystal size.[42] This improvement in the crystallinity is often observed in 

nanocarbon-metal oxide materials and is attributed to a heat-sink effect in which the 

nanocarbon facilitates crystallization via heat transfer.[43] Moreover, in the hybrid 

synthesis, GO may played an important role in producing highly crystalline hybrid 

SnO2-RGO due to e.g. heterogeneous nucleation. 

 

 

Figure 3-1. SEM images of (a) GO, (b) SnO2 micro-rod and (c) SnO2-RGO hybrid. 

High resolution SEM images of (d) SnO2 micro-rod and (e) RGO sheet in the hybrid 

showing that small SnO2 nanoparticles are formed on SnO2 and RGO surface. 

 

 

Figure 3-2. (a) XRD patterns and (b) XPS survey spectra of the samples. 
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The results of the XRD analysis were further confirmed by characterizing the 

samples using XPS (Figure 3-2b), ATR-FTIR (Figure 3-3a) and Raman spectroscopy 

(Figure 3-3b). It can be clearly observed from the Raman spectra of the SnO2-RGO 

hybrid (Figure 3-3b) that the ID/IG ratio of RGO increased compared to that (1.08) of 

the GO (0.88). This increase in the ID/IG ratio can be attributed to the defects caused 

during reduction of GO.[27] Moreover, it should be noted that in the XPS survey 

spectra, negligible Cl peaks (Cl 2p) can be found in the SnO2-based samples, which, 

if present, could be attributed to the unreacted Cl– of SnCl2·2H2O. Additionally, 

Auger and EDX elemental analysis were carried out on selected areas of the SEM 

images of the SnO2-RGO hybrid and reveal very small amounts of chlorine 

remaining in the sample (see Figure S3-2). The results from Auger and EDX 

spectroscopies were in good agreement with the XPS and may explain the improved 

crystallinity of the SnO2-RGO hybrid. 

 

 

Figure 3-3. (a) ATR-FTIR and (b) Raman spectra of SnO2-only, GO and SnO2-RGO 

hybrid materials. Long dash line in ATR-FTIR spectra proves that “–OH” is different 

from the “C=C” in the hybrid. 

 

To study the influence of RGO on the efficiency of PV cells, DSSCs were fabricated 

using six photoanodes of different RGO content in the hybrid and were evaluated 

using simulated AM1.5 sunlight with an output power of 100 mW cm-2. Notably, for 

the fabrication of DSSCs, the photoanodes were immersed in a TiCl4 aqueous 

solution before they were soaked in the dye solution. This process is a commonly 

followed strategy to deposit a thin layer of TiO2 over SnO2 (SnO2-RGO in our case) 
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which can improve the Voc of the SnO2-based DSSCs.[18, 44-46] Therefore, the 

photoanodes were denoted as “TiO2-SnO2-RGO (X)”, where the value of X indicates 

the weight concentration (wt%) of RGO in the hybrid. For example, the photoanode 

film prepared with 0.2 wt% RGO is denoted “TiO2-SnO2-RGO (0.2)”. 

 

 

Figure 3-4. (a) J–V curves of DSSCs assembled with different RGO content in the 

TiO2-SnO2 photoanode. (b) UV-vis spectra of N719 dye molecules desorbed from 

SnO2 films with different amount of RGO using 0.1 M NaOH solution. (c) J–V 

curves of DSSCs fabricated without and with RGO in the SnO2 photoanodes 

measured under the dark state. (d) Normalized IPCE value of DSSCs fabricated 

based on TiO2-SnO2 photoanodes with (0.45 wt%) and without RGO. 

 

The photocurrent density–voltage (J–V) characteristics of the DSSCs assembled with 

these photoanodes are shown in Figure 3-4a and the corresponding PV parameters 

have been summarized in Table 3-1. The control DSSC device (TiO2-SnO2-RGO (0)) 

fabricated based on SnO2 photoanode without RGO showed an average PCE (η) of 

1.28 ± 0.52% with a short–circuit current (Jsc) value of 4.78 ± 0.95 mA cm–2 and Voc 

of 0.64 ± 0.01V which are typical values for such cells.[12, 18] 
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Table 3-1. PV parameters of the DSSCs fabricated based on SnO2 photoanodes with 

different RGO content. Average values and the standard deviations of the DSSCs are 

shown based on at least three cells for each device. Parameters of the best cells are 

highlighted in bold. 

Device RGO, 

wt% 

Jsc, 

(mA cm–2) 

Voc, 

(V) 

FF η (%) 

TiO2-SnO2-

RGO (0) 

0 5.735; 

4.78 ± 0.95 

0.64; 0.64 

± 0.01 

0.45; 0.43 

± 0.04 

1.65; 1.28 

± 0.52 

TiO2-SnO2-

RGO (0.2) 

0.2 8.196; 

8.20 ± 0.15 

0.64; 0.63 

± 0.01 

0.45; 0.44 

± 0.01 

2.36; 2.27 

± 0.07 

TiO2-SnO2-

RGO (0.45) 

0.45 10.185; 

9.41 ± 1.00 

0.67; 0.67 

± 0.01 

0.46; 0.46 

± 0.01 

3.16; 2.94 

± 0.24 

TiO2-SnO2-

RGO (0.7) 

0.7 10.954; 

10.23 ± 0.88 

0.52; 0.50 

± 0.02 

0.39; 0.41 

± 0.04 

2.15; 2.08 

± 0.17 

TiO2-SnO2-

RGO (1.2) 

1.2 2.914; 

2.91 ± 0.03 

0.52; 0.51 

± 0.01 

0.45; 0.44 

± 0.01 

0.68; 0.66 

± 0.03 

TiO2-SnO2-

RGO (4.75) 

4.75 1.984; 

1.74 ± 0.26 

0.31; 0.27 

± 0.05 

0.46; 0.43 

± 0.04 

0.29; 0.22 

± 0.08 

 

It can be seen from Table 3-1 that from TiO2-SnO2-RGO (0) to TiO2-SnO2-RGO 

(0.7) (increasing RGO content), the Jsc value increases from 4.78 ± 0.95 to 10.23 ± 

0.88 mA cm–2. We hypothesize that this increase in the Jsc is due to the improved dye 

loading into the film and enhanced electron transfer within the photoanode.[22, 27, 28] 

In order to confirm our hypothesis, we fabricated SnO2 films (Figure S3-3) with 

different RGO content and investigated the dye adsorption capability of the films. No 

treatment with TiCl4 solution was done to allow the effect of RGO in the SnO2 film 

on the extent of dye adsorption to be probed without any interference. As shown in 

Figure S3-3, the films after dye adsorption and also the solutions after subsequent 

desorption of the dye molecules using NaOH show that the dye adsorption of the 

SnO2 films was significantly improved by incorporating RGO. Moreover, UV-vis 

spectra in Figure 3-4b show the absorbance of dye desorbed from the films and 

shows that dye adsorption increases with increasing RGO concentration in the 

hybrid. This improvement in the dye adsorption is most likely due to a better 
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matching of the molecular nature of the N719 dye and the chemical nature of the 

hybrid. N719 has both polar groups and aromatic regions. Since our RGO was 

derived from GO, some functional groups (–OH, –COOH etc.) would remain on the 

surface of RGO due to the partial reduction and these would interact with the polar 

groups on N719. These functional groups may be playing an important role in the 

dye adsorption.[21] SnO2 would also interact with these polar groups. The 

introduction of the RGO provides some aromatic nature to the hybrid and one can 

speculate that this will create polar and aromatic regions in close proximity and will 

further enhance dye adsorption. Additionally the high-surface area of RGO may 

contribute to the adsorption of the dye.[28] Interestingly, the dye adsorption of the 

film with the highest RGO content (4.75 wt%) is starting to saturate, indicating that 

adding more RGO into the film would likely not lead to significant further increases 

in dye adsorption (see Figure S3-4). 

To determine the mechanism for the improved Jsc value, the resistivity (Rs) of the 

TiCl4 treated SnO2 film without and with 0.45 wt% RGO was measured using a four 

point probe. The same film thickness on a glass substrate was obtained using the 

doctor blade method (see experimental details). The film without RGO shows a Rs of 

4.51 x 106 Ω/□, while the RGO incorporated film exhibits a comparatively low Rs 

(1.81 x 106 Ω/□) (see Table S3-1). The decrease in the Rs (nearly 3-fold) of the film 

with RGO is due to the fact that the high conductivity of the RGO in the hybrid 

reduces the interfacial resistance between SnO2. In addition, the measured series 

resistance (Rseries) of the TiO2-SnO2-RGO (0.45) based DSSC was 97.9 Ω, which was 

~1.7-fold lower than that of the control cell. It should be noted that the Rseries of the 

devices were calculated from the J-V measurement of the DSSCs. On the basis of 

these results, it is clear that the presence of RGO accelerated electron transport 

process within the photoanode and suppressed the charge recombination of the cells; 

thus significantly enhancing the η. 

However, although TiO2-SnO2-RGO (0.7) based cell showed the highest Jsc (10.95 

mA cm–2), the measured average η (2.08 ± 0.17%) was not the best observed, despite 

the films having high dye adsorption. When the RGO concentration in the hybrid 

further increased to 1.2 wt% and 4.75 wt%, a significant drop in the Jsc value and Voc 

was observed for the TiO2-SnO2-RGO (1.2) and TiO2-SnO2-RGO (4.75) based 

DSSCs, thus resulting in very poor efficiencies. We attribute this η decrease of the 
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DSSCs with higher RGO loading to (i) opacity of the film (see films before dye 

adsorption in Figure S3-3) reducing light absorption and (ii) high catalytic property 

of RGO, which has been shown to limit the continuous electron transfer at the 

photoanode.[2, 21, 47] 

It is well established that though carbon materials can facilitate electron transport in 

DSSCs, the catalytic activity of carbon materials toward reduction of the electrolyte 

causes significant charge recombination at the interface of the photoanode and 

electrolyte (since this reaction should only occur at the cathode) if too high 

concentration of carbon is used.[2] Figure 3-4c shows the dark J–V characteristics of 

DSSCs fabricated without and with RGO in the SnO2 photoanodes. It is known that 

the magnitude and onset of the dark current indicates the level of charge 

recombination between the electrons from the dye excitation process and the I3
− ions 

in the electrolyte.[48] It can be seen that the dark current onset shifted to a lower 

potential after adding a small amount of RGO into the SnO2 photoanodes. This is 

known to be due to the increased charge recombination rate of the DSSCs caused by 

the reaction between the RGO and electrolyte. Therefore, at a given voltage, the dark 

current increased when the RGO was added into the SnO2 photoanode of DSSC. Our 

finding is in line with similar report of adding carbon powders into TiO2 

photoanodes.[48] 

Indeed, the highest η (3.16%) with an average η of 2.94 ± 0.24% was achieved for 

the device based on TiO2-SnO2-RGO (0.45). In the TiO2-SnO2-RGO based DSSC, 

the TiO2 can act as a barrier layer reducing the contact of RGO with the electrolyte 

and therefore reducing the likelihood of RGO catalyzing recombination at the 

photoanode. Taking into account the TiO2 deposition process (dip coating) which is 

unlikely to achieve 100 % coverage, we speculate that with higher RGO content the 

net amount of RGO in contact with the electrolyte will increase accordingly. 

Moreover, we fabricated SnO2 and SnO2-RGO photoanodes based DSSCs without 

TiCl4 treatment and their PV results have been plotted in Figure S3-5a. The 

efficiencies of these DSSCs were ~2-fold lower than those of the devices fabricated 

with TiCl4 treatment, confirming that the use of TiCl4 treatment is a vital method to 

enhance the cell performance in SnO2 photoanode DSSCs. 

It can be seen from Table 3-1 that all parameters of DSSC fabricated with SnO2 

photoanodes increased after incorporating 0.45 wt% RGO. The calculated η 
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enhancement of TiO2-SnO2-RGO (0.45) photoanode based device was impressive 

(91.5%) as compared to the control cell especially in light of the fact that a very 

small amount of RGO is required to realise these large improvements in efficiency. 

This photoanode (TiO2-SnO2-RGO (0.45)) was chosen for further investigation to 

fully understand the role of RGO in the DSSC. 

IPCE spectra offer important information on the light harvesting efficiency which is 

mainly determined by the absorption of light by the dye molecules at the photoanode 

and electron transport processes. The IPCE spectra of the DSSCs with and without 

RGO in the photoanode are illustrated in Figure 3-4d. It should be noted that the 

IPCE spectra of the DSSCs were characterized after the devices were aged for 

approximately 10 days. The IPCE of the TiO2-SnO2-RGO (0.45) photoanode based 

device is higher than that of the control DSSC over the entire wavelength region. The 

lack of wavelength dependence indicates that the addition of RGO into the SnO2 

photoanode improves the DSSC performance without altering the internal 

mechanism, likely by enhancing electron transfer rate and increasing dye adsorption 

onto the photoanode. 

As discussed earlier, RGO in the hybrid ensures rapid electron transport process 

(Figure 3-5a) and significantly enhances the Jsc value of the DSSC. Importantly, it 

can be expected that incorporation of RGO in the SnO2 photoanode would improve 

the DSSC performance owing to presence of suitable energy levels. Figure 3-5b 

shows an energy level diagram for the TiCl4 treated SnO2 photoanode with RGO. 

Since a thin TiO2 layer was deposited on the FTO and on the SnO2 or SnO2-RGO 

layers by TiCl4 treatment, it is reasonable to include the energy level of TiO2 in this 

diagram. The red arrow in Figure 3-5b represents the fact that the electron transfer 

from the conduction band of SnO2 to that of TiO2 is not possible due to their 

mismatching band energy levels. As the TiO2 coverage on the FTO is incomplete 

(not 100%), both SnO2 and TiO2 are in contact with the FTO and hence electron 

transfer from both the SnO2 and TiO2 to the FTO is still feasible. The results from 

Figure S3-6 and Figure S3-7 show that despite the fact that the TiO2 on the FTO is 

very thin, it does make a contribution to the current and voltage of the cell and as 

such is important to show. Since the energy level of RGO (-4.40 eV) lies between the 

conduction band of TiO2 (-4.26 eV) and SnO2 (-4.56 eV), the electrons can be 

rapidly transferred stepwise from the TiO2 to the SnO2 conduction band (see Figure 
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3-5b).[18, 28] Here RGO can act as a bridge between TiO2 and SnO2. This effective 

electron transfer would likely reduce the charge recombination of the cell, thus 

improves the performance. 

 

 

Figure 3-5. (a) A possible mechanism for the enhanced electron transfer in SnO2-

RGO hybrid. (b) Energy diagram for the TiCl4 treated SnO2 photoanode with RGO. 
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Table 3-2. PV parameters of the DSSCs fabricated based on various SnO2 

photoanode structures and our best performing cell (TiO2-SnO2-RGO (0.45). 

Structure Ref. Jsc, 

(mA cm–2) 

Voc, 

(V) 

FF η (%) 

This study - 10.18 0.67 0.46 3.16 

SnO2 nanoparticles [49] 7.63 0.35 0.43 1.14 

SnO2 nanoparticles [44] 4.90 0.40 0.51 1.00 

SnO2 nanoparticles [50] 7.90 0.47 0.55 2.03 

SnO2 nanofibers [51] 7.04 0.51 0.38 1.34 

SnO2 multiporous NFs [12] 10.0 0.44 0.45 2.00 

SnO2 nanoflowers [52] 7.30 0.70 0.60 3.00 

SnO2 NWs + NPs [53] 9.90 0.53 0.49 2.53 

SnO2 spheres (hierarchical) [54] 12.3 0.52 0.58 3.70 

 

Finally, the PV parameters of our best-performing cells have been compared with 

values reported in the literature for other DSSCs with SnO2 based photoanodes. 

Table 3-2 summarizes the PV parameters such as Jsc, Voc, FF and η of DSSC devices 

fabricated with various SnO2 structures based photoanodes and our best performing 

cells. It can be observed from Table 3-2 that the efficiency observed for our DSSCs 

fabricated with SnO2-RGO photoanode is comparable or higher than those achieved 

by other 1D and 3D SnO2 structured photoanode films. Therefore, this indicates that 

the incorporation of graphene structures into SnO2 photoanode is an effective 

strategy to achieve high efficiency DSSCs. 

 

3.4.  Conclusion 

In summary, the successful application of RGO structures in 1D SnO2 micro-rod 

based photoanodes for DSSCs has been demonstrated. Herein we show that the 

application of RGO overcomes the major shortcoming of SnO2 when applied as a 

DSSC photoanode, namely poor dye adsorption. In addition, owing to its suitable 

energy levels and excellent conductivity, RGO significantly improved the electron 

transport rate in the cells. Importantly, PCE (η) of the DSSC was significantly 

improved to 3.16% by incorporating a very small amount of RGO into the 
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photoanode, demonstrating a ~91.5% enhancement in the efficiency when compared 

to SnO2-only photoanode based DSSC (1.65%). 
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Figure S3-1. SEM image and EDX elemental analysis (inset) of SnCl2·2H2O sample 

(used as the starting material). 

 

 

Figure S3-2. (a) Auger and (b) EDX elemental analysis on the selected area 

(highlighted by red rectangle in (a) and circle in (b)) of the corresponding SEM 

images of SnO2-RGO hybrid, as shown in the inset in b). 

 

 

Figure S3-3. Dye adsorption capability of the films (SnO2-RGO (X)) with different 

RGO content. In SnO2-RGO (X), the value of X indicates the weight concentration 
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(wt%) of RGO in the hybrid. For instance, the concentration of RGO in the SnO2-

RGO (0.45) was 0.45 wt%. 

 

 

Figure S3-4. The absorbance of these solutions at a wavelength of 520 nm. 

 

Figure S3-5a shows the J–V curves of DSSCs assembled with different RGO in the 

SnO2 photoanodes (without any TiCl4 treatment on the photoanode).The overall 

trend in the efficiency changes (increased after adding an appropriate amount of 

RGO into the SnO2 and decreased at too high concentration of RGO in the 

photoanodes) of DSSCs without and with TiCl4 treatment was very similar, 

demonstrating that adding RGO into SnO2 photoanode can enhance the PV 

efficiency, regardless of additional TiCl4 treatment. A possible energy diagram for 

SnO2-RGO photoanode based DSSC is shown in Figure S3-5b. In this device 

structure, RGO enhances the electron transport rate and can also act as a bridge 

between dye and SnO2. Notably, the efficiency of our SnO2-only based DSSC was 

within the range (ranging from 0.6% to 1.0%) of previously reported values.[1-3] 
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Figure S3-5. (a) J–V curves of DSSCs fabricated with different RGO content in the 

SnO2 photoanode without the TiO2 blocking layer and (b) an energy level diagram 

for the SnO2-RGO photoanode without any TiO2 blocking layer. 

 

It should be noted that TiO2 was formed on the FTO by TiCl4 treatment. However, it 

is well established that the TiO2 does not completely cover FTO which makes 

electron transfer process possible between SnO2 and FTO.[4–7] In order to prove that 

the coverage of TiO2 during from TiCl4 treatment on FTO is not 100%, DSSCs with 

a structure FTO/TiO2/SnO2/dye/electrolyte/Pt/FTO (without the second TiCl4 

treatment) were fabricated and their J-V characteristics are illustrated in Figure 

S3-6a. It is reasonable to expect that the DSSC fabricated with such structure cannot 

work if the TiO2 completely (100%) covered the FTO because the conduction band 

of TiO2 (-4.25 eV) is higher than that of SnO2 (-4.56 eV) and thus energy transfer 

from the SnO2 to the FTO through TiO2 layer would not be feasible (see Figure 

S3-6b). Interestingly, the fabricated DSSC exhibited a good efficiency (1.17%) with 

increased Voc value, as compared to SnO2 photoanode based DSSC without any 

blocking layer TiCl4 treatment. Cells with the TiO2 blocking layer only and SnO2–

free photoanode give a very poor performance (see Figure S3-7). The improvement 

in efficiency for the cell of Figure S3-6 compared to the cell without graphene of 

Figure S3-5 means that while the TiO2 on the FTO must play a small role in the cell, 

the SnO2 must also be in direct contact with the FTO and able to transfer electrons. 

This clearly shows the thin TiO2 layer does not cover the FTO completely and 

electron transfer from both oxides must occur. The incomplete coverage of TiO2 on 

the FTO means the majority of the photovoltaic performance is from the SnO2 layer. 
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Figure S3-6. (a) J–V curves of DSSC device assembled with the photoanode 

structure of FTO/thin TiO2/SnO2/dye (without second TiCl4 treatment). Inset shows 

the device structure. (b) A possible energy level diagram for this DSSC photoanode. 

 

In addition, DSSCs based on only TiCl4 treated FTO as a photoanode were fabricated 

and their performance is depicted in Figure S3-7. For this experiment, the cleaned 

FTO was immersed in a 40 mM TiCl4 aqueous solution at 70oC for 30 min, followed 

by drying with N2 gas and annealing at 450oC for 30 min. After cooling to room 

temperature, a second TiCl4 treatment was performed in a same manner. Finally the 

film was sintered at 450oC for 30 min and then exposed the dye solution as before. 

As a result, the fabricated cell showed high Voc value, but its PCE was very poor 

(0.13%). This result is reasonable since the Voc parameter is determined by the 

energy level difference between the conduction band of semiconducting photoanode 

material (TiO2 here in this device) and the potential energy of the electrolyte. The 

very low Jsc value of this cell is due to the insufficient dye-loading into the 

photoanode film as only a very thin TiO2 and low surface area layer is formed on the 

FTO. A poor fill factor value could also be associated with the incomplete coverage 

of TiO2 on the FTO. These results again show that the SnO2 is the main active 

element of these photoanodes. 
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Figure S3-7. J–V curves of DSSC fabricated with thin TiO2 layers on FTO as a 

photoanode. Notably, TiO2 layers were formed on the FTO by 2 times TiCl4 

treatment as was done for the normal device. Inset shows the device structure. 

  

Table S3-1. Electrical parameters of SnO2 photoanode without and with RGO and 
their DSSCs. 

Sample Sheet resistance, 

Rs (Ω/□) 

Series resistance, 

Rseries (Ω) 

Shunt resistance, 

Rshunt (Ω) 

TiO2-SnO2-RGO (0) 4.51 x 106 167.0 1600 

TiO2-SnO2-RGO (0.45) 1.81 x 106 97.9 1920 
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Abstract 

As an alternative to platinum (Pt), hybrid electrocatalysts based on sulfur–doped 

graphene with FeS2 microspheres (SGN–FeS2) were used as a counter electrode (CE) 

in dye–sensitized solar cells (DSSCs). Benefiting from the high conductivity of SGN 

and excellent electrocatalytic activity of the FeS2, the bifunctional hybrid 

electrocatalyst based device displays a power conversion efficiency (PCE) of 8.1%, 

which is comparable to that (8.3%) of traditional Pt CE based DSSC, while also 

exhibiting excellent stability in ambient conditions. These characteristics, in addition 

to its low-cost and facile preparation, make the SGN–FeS2 hybrid an ideal CE 

material for DSSCs. 

 

Keywords: Counter electrode, dye-sensitized solar cells, doping, graphene, iron 

disulfide 
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4.1.  Introduction 

Dye–sensitized solar cells (DSSCs) have attracted tremendous interest from the 

photovoltaic (PV) community owing to the potential they offer in terms of low 

manufacturing cost, high power conversion efficiency (PCE), and excellent 

stability.[1, 2] A typical DSSC consists of organic dye–sensitizers adsorbed onto a 

porous TiO2 photoelectrode, an iodide/triiodide (I–/I3
–) redox electrolyte and a 

platinum (Pt) coated counter electrode (CE).[3] In this device structure, the Pt coated 

CE serves an essential role in reducing I3
– to I– (called the iodine reduction reaction, 

IRR). However, Pt is an expensive and relatively rare material, which limits its use in 

the large–scale commercialization of DSSCs.[4] 

Over the past two decades, the development of alternative electrocatalysts that are 

low–cost and can exhibit higher or comparable performance to the conventional Pt 

has been the subject of intense research.[5, 6] The ideal CE materials for DSSCs 

should possess not only high electrical conductivity, but also excellent catalytic 

activity.[7] A wide range of alternative materials have been explored as 

electrocatalysts for IRR in DSSCs.[7-12] Graphene nanosheets doped with heteroatoms 

such as sulfur (S),[13] nitrogen (N),[14] boron (B),[15] phosphorous (P)[16] show great 

promise as the catalyst for the IRR in DSSCs owing to their high surface area and 

good conductivity. These alternative electrocatalysts based DSSCs have already 

showed excellent efficiencies that are comparable to or high than that of the 

corresponding control Pt CEs based devices. Among the different doping atoms, S–

doped graphene (SGN) has to date yielded the most efficient electrocatalyst for IRR 

(also found in our preliminary investigation, see supporting information (SI)).[13, 17] 

This is in part due to the  sulfur “S” atoms being efficient electrocatalytic active sites 

for the IRR.[18] This good performance is also linked to the SGN possessing 

enhanced electrical conductivity and improved surface area compared to un-doped 

graphene,[19, 20] which helps improve the charge transfer process in DSSCs. Despite 

these advantages, the performance of devices fabricated with SGN only based CEs 

are still lower than that of the Pt based CEs cells because the electrocatalytic activity 

of single SGN for IRR is inferior to that of Pt. 

Recently, iron pyrite (FeS2), a narrow band–gap semiconductor, has been shown to 

be a promising candidate for use as a CE material in DSSCs owing to its abundance 
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in nature, non–toxicity, low–cost as well as outstanding electrocatalytic activity.[21-23] 

Although FeS2 has shown some promise as a CE material in DSSCs, its relatively 

low conductivity limits the further improvement of the device performances. 

Therefore combining the excellent catalytic activity of FeS2 with the high 

conductivity of SGN would be a promising strategy to produce highly efficient 

electrocatalyst material for DSSC. 

In this work, we report the preparation of Pt–free hybrid electrocatalysts, consisting 

of SGN nanosheets wrapped FeS2, for use as CE materials in DSSCs. The DSSC 

device fabricated with this hybrid electrocatalyst yields a PCE of 8.1%, which was 

comparable to that (8.3%) of the cell using Pt. Electrochemical measurements in 

combination with electrical conductivity analysis reveal that this remarkable PV 

performance of DSSC originates from the synergistic effect of this hybrid 

electrocatalyst, in which FeS2 provides excellent electrocatalytic activity for the IRR, 

while SGN facilitates the electron–transfer process (Scheme 4-1). 

 

 

Scheme 4-1. Schematic illustration of DSSC device fabricated with SGN–FeS2 

electrocatalyst as a CE material. Note: FeS2 spheres used in this scheme are from the 

scanning electron microscopy (SEM) images of the synthesized FeS2. 

 

4.2.  Results and Discussion 

In order to compare the doping effect of different heteroatoms on graphene in terms 

of their ability to catalyze the IRR in DSSC system, five individual nonmetallic 

elements (I, P, B, N, S) were selected and species containing each element were used 

to prepare single atom–doped GN materials. All the doped GN materials including I–

doped GN (IGN), P–doped GN (PGN), B–doped GN (BGN), N–doped GN (NGN) 

and S–doped GN (SGN) were prepared from graphene oxide (GO) by using different 



98 
 

precursors under the same experimental conditions (details can be found in the SI, 

Table S4-1). These heteroatom–doped graphene electrocatalysts were then used as 

CE materials in DSSCs. We found that due to its good electrocatalytic activity and 

high conductivity, the SGN nanosheets based device showed the best PCE as 

compared to DSSCs with CEs made using the other heteroatom–doped GN materials 

(see Figure S4-1). The successful doping of sulfur atoms onto the GN nanosheets 

was confirmed using X–ray photoelectron spectroscopy (XPS) (Figure S4-2a and b). 

The morphology of the SGN nanosheets examined by scanning electron microscopy 

(SEM) is depicted in Figure S4-2c. Although the SGN materials exhibited the highest 

electrocatalytic activity and lowest charge–transfer resistance (Rct) as compared the 

other doped GN nanosheets (see Table S4-2), the PCE of the DSSCs fabricated with 

this material was still unsatisfactory. Therefore, further work was needed to improve 

the performance of this single SGN electrolcatalyst. 

Recent studies have demonstrated that FeS2 is very promising material for DSSC 

application because of its excellent electrocatalytic activity.[21, 23] In this work, FeS2 

spheres (Figure S4-2d) were synthesized using a hydrothermal method (see 

experimental details in the SI).[24] In addition to XPS (see Figure S4-2e and f for 

detail), X–ray diffraction (XRD) analysis was used to evaluate the composition of the 

prepared FeS2 sample. The majority of the XRD diffraction peaks in Figure 4-1a can 

be readily indexed to a cubic lattice of pyrite FeS2 and is in good agreement with the 

previously published literature.[23, 25] Moreover, based on the XRD pattern, we note 

that some other components such as oxidized Fe and sulfur were present in the 

sample. 

The SGN–FeS2 hybrid electrocatalyst was prepared by mixing and sonicating the 

previously prepared SGN (Figure S4-2c) and FeS2 spheres (Figure S4-2d) in an 

ethanol dispersion. The XRD patterns of the samples are illustrated in Figure 4-1a. 

The XRD of the SGN sample shows a pronounced broad peak at around 2θ = 26° 

and a weak peak at ≈2θ = 43.2° corresponding to the (002) and (100) diffraction 

planes, respectively.[14, 26] When analyzing the SGN–FeS2 (40 wt % FeS2) hybrid 

sample, XRD diffraction peaks corresponding to both SGN and FeS2 throughout the 

sample were observed. However, the intensity of the diffraction peaks for FeS2 in the 

hybrid was very low. This is not unexpected as the 60:40 weight ratio of SGN:FeS2 

corresponds to an atomic ratio on the order of 15:1 meaning the intensity of the X-
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ray scattering from the carbon material, even with the lower scattering probability 

from the lighter element, will be much greater than the scattering from the lower 

amount of FeS2. 

The morphology of the as–prepared hybrid catalyst was examined by SEM. The 

SEM image in Figure 4-1b shows that the FeS2 particles are wrapped by several 

layers of transparent silk–like SGN nanosheets. It can also be seen from Figure 4-1c 

that the FeS2 particles are well distributed in the SGN nanosheets. Energy dispersive 

X–ray spectroscopy (EDX) elemental mapping was acquired to further investigate 

the distribution of different species in this hybrid electrocatalyst (Figure 4-1d). EDX 

elemental mapping confirmed that C, O, Fe and S were uniformly distributed in the 

SGN–FeS2 hybrid sample (Figure 4-1e). 

 

 

Figure 4-1. (a) XRD patterns of SGN, FeS2 and SGN–FeS2 hybrid samples. (b) High 

and (c) low resolution SEM image of SGN–FeS2 hybrid. The red box in the inset is 

the selected area for EDX elemental mapping. SEM–EDX elemental mapping of (d) 

overlay image and (e) elemental C, O, S and Fe in the SGN–FeS2 hybrid sample. 



100 
 

 

To evaluate the electrocatalytic activity of CEs based on SGN, FeS2, SGN–FeS2 

hybrid and Pt for the IRR in the DSSC system, cyclic voltammetry (CV) 

measurements were carried out with a three–electrode system and recorded at the 

same scan rate of 50 mV s–1. In Figure 4-2a, two pairs of oxidation and reduction 

peaks (Ox–A/Red–A (left) and Ox–B/Red–B (right)) are clearly observed for all 

samples, which can be attributed to the oxidation and reduction reactions of I–/I3
– and 

I3
–/I2, respectively.[27] Since the main role of the CE in DSSCs is to catalyze the 

reduction of I3
– to I–, which corresponds to the lower voltage pair of peaks (Ox–A 

and Red–A) in the CV curves, the characteristics of these peaks were the main focus 

of our investigation. The peak separation between the anodic and cathodic peaks 

(Epp) and the peak current density are the main parameters needed to evaluate the 

electrocatalytic activity of CE materials.[28] In general, an ideal material for IRR – 

one with the highest electrocatalytic activity – should exhibit the lowest Epp value, 

while achieving the highest peak current density. As shown in Figure 4-2a, the SGN–

FeS2 hybrid electrode displayed an Epp value of 0.279 V, which was lower than that 

of the SGN (0.285 V) and Pt (0.345 V) (Table 4-1). We note that the Epp value of our 

Pt is consistent with recent studies.[14, 23, 27, 29, 30] Interestingly, the FeS2 electrode 

showed an Epp value of as low as 0.161 V owing to its known excellent 

electrocatalytic activity,[21, 23] but its current density from the CV measurement was 

very low. To determine the mechanism for this low current density value of the FeS2, 

we explored the sheet resistance (Rsheet) of the thin films based on our samples using 

a four point probe and their results are summarized in Table 4-1. We confirm that a 

very high Rsheet (1.50 ± 0.09 x 106 Ω/□) of the FeS2 is responsible for its low current 

density. Because of its improved electrical conductivity (see Table 4-1), the SGN–

FeS2 hybrid electrocatalyst based electrode exhibited a high peak current density. 

Higher peak current density and lower Epp values (see Figure 4-2a) suggest that the 

SGN–FeS2 hybrid electrocatalyst possess excellent electrochemical activity for the 

IRR, which is even comparable and/or superior to that of Pt electrode. Moreover, it 

can be observed from Figure S4-3 that our SGN–FeS2 hybrid is electrochemically 

stable in tri–iodide electrolyte system. 
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Figure 4-2. (a) Cyclic voltammograms (CV) of SGN, FeS2, SGN–FeS2 hybrid and Pt 

electrodes in acetonitrile solution containing 10 mM LiI, 1 mM I2, and 0.1 mM 

LiClO4 at a scan rate of 50 mV s–1. (b) Nyquist plots of symmetric sandwich cells 

structure fabricated with different CE materials on FTO electrodes. Inset shows the 

equivalent circuit diagrams for the control Pt and other electrodes for EIS analysis. 

 

Table 4-1. Detailed PV parameters of the DSSC devices fabricated based on 

different CE materials. Average values and the error bars are calculated based on five 

cells and samples. Parameters of the best cells are highlighted in bold. Epp: peak-to-

peak voltage separation was calculated from the CV measurements. Rct: charge-

transfer resistances were obtained from the EIS analysis by fitting the measured EIS 

data to a modelled equivalent circuit diagram. Rsheet: sheet resistances were measured 

using a four–point probe technique. 

Samples Jsc,  

(mA cm–2) 

Voc, 

(V) 

FF PCE, 

(%) 

Epp, 

(V) 

Rct, 

(Ω) 

Rsheet, 

(Ω/□) 

SGN 15.96; 

15.86 ± 0.33 

0.77; 

0.77 ± 0.01 

0.55; 

0.52 ± 0.02 

6.79; 

6.36 ± 0.32 

0.285 22.3 2.37 ± 

0.54 x 103 

FeS2 15.94; 

15.86 ± 0.37 

0.73; 

0.74 ± 0.01 

0.47; 

0.46 ± 0.02 

5.51; 

5.43 ± 0.09 

0.161 39.8 1.50 ± 

0.09 x 106 

SGN–

FeS2 

16.43; 

16.51 ± 0.26 

0.82; 

0.80 ± 0.02 

0.60; 

0.59 ± 0.02 

8.10; 

7.82 ± 0.26 

0.279 11.2 4.52 ± 

0.15 x 103 

Platinum 16.96; 

16.77 ± 0.47 

0.81; 

0.81 ± 0.00 

0.60; 

0.60 ± 0.01 

8.33; 

8.13 ± 0.21 

0.345 14.2 – 
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Electrochemical impedance spectroscopy (EIS) is another important technique to 

understand the capacity of CE materials to catalyze the IRR in DSSCs. EIS were 

recorded for the dummy cells consisting of a symmetrical sandwich structure 

(electrode/I–/I3
– electrolyte/electrode) with SGN, FeS2, SGN–FeS2 hybrid and Pt as 

electrodes. The Nyquist plots shown in Figure 4-2b are obtained by fitting the 

measured EIS data to a modelled equivalent circuit diagram. Typical modelled 

equivalent circuit diagrams used for Pt and carbon based CEs are illustrated in the 

inset of Figure 4-2b. A typical Nyquist plot for CE materials for the IRR consists of 

two semi-circles.[28, 29, 31] The lower Z´ semicircle is attributed to the Rct, which 

originates from the interface between CEs and electrolyte; whereas the higher Z´ 

semicircle is related to ionic diffusion impedance (ZN) of the redox couples in the 

electrolyte.[29] Since Rct directly reflects to the performance of the electrocatalyst 

materials, the measured Rct values of the SGN, FeS2, SGN–FeS2 hybrid and Pt cells 

are listed in Table 4-1. Due the combination of excellent conductivity and high 

catalytic activity, the SGN–FeS2 hybrid electrocatalyst exhibited the smallest Rct 

value (11.2 Ω), which was even slightly lower than that of Pt (14.2 Ω) and 

significantly lower than the values for SGN (22.3 Ω) and FeS2 (39.8 Ω). The EIS 

results were in good agreement with the CV results. Overall, the electrochemical 

characterization (CV and EIS analysis) clearly indicate that our SGN–FeS2 

electrocatalyst could be used as a promising alternative CE to catalyze the IRR in 

DSSCs. Therefore, as compared to the Pt CE based devices, we expected to achieve 

comparable or even higher PV performance of DSSCs using this hybrid 

electrocatalyst based CEs. 

As mentioned earlier, good CE materials should have both high catalytic activity and 

excellent electrical conductivity to efficiently catalyze the redox reaction and rapidly 

transfer the electrons in DSSCs.[7] Since our findings from the electrochemical and 

electrical characterization suggest that the SGN possesses excellent conductivity and 

FeS2 has high catalytic activity, the amount (loadings) of SGN or FeS2 in the hybrid 

would play an important role for the DSSC performance. There is clearly an 

optimum concentration of SGN or FeS2 in the hybrid. Therefore, based on DSSC 

efficiencies, we optimized the concentration of the SGN or FeS2 in the hybrid CEs 

for DSSCs and found that 60 wt% SGN and 40 wt% FeS2 in the hybrid are the 

optimum loadings (see Figure 4-3a). 
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Figure 4-3. (a) Influence of SGN and FeS2 loadings in the hybrid on the efficiency 

of the DSSCs. (b) J–V curves of best performing DSSCs fabricated with different 

CEs. (c) Normalized PCE of DSSCs fabricated with SGN–FeS2 and Pt as a function 

of long-term storage time in ambient conditions. 
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Furthermore, DSSC devices were fabricated using the four electrocatalysts, namely 

SGN, FeS2, SGN–FeS2 and Pt as CE materials. The photocurrent density–voltage (J–

V) characteristics of the DSSCs fabricated with these CEs are illustrated in Figure 

4-3b and the corresponding PV parameters have been summarized in Table 4-1. The 

control DSSC fabricated with the conventional Pt CE showed a PCE of as high as 

8.33% with a short–circuit current (Jsc) of 16.96 mA cm–2, open–circuit voltage (Voc) 

of 0.81 V and fill factor (FF) of 0.60. As expected, the PCEs of single SGN–only 

(6.79%) and FeS2–only (5.51%) based DSSCs are significantly lower than the 

conventional Pt CE based devices. The lower PCE of the DSSCs with SGN–only, as 

compared to the Pt based cells, is mainly due to the lack of electrocatalytic activity, 

while the poor conductivity of FeS2 is responsible for its poor PV efficiency. By 

coupling both excellent conductivity of SGN and high catalytic activity of FeS2, the 

cell fabricated with the SGN–FeS2 hybrid based CE showed a notable enhancement 

in the PCE as compared to the efficiencies of single SGN–only and FeS2–only based 

DSSCs. In particular, the measured Jsc, Voc, and FF values for this hybrid CE based 

DSSC were 16.43 mA cm–2, 0.82 V, and 0.60, respectively, and a PCE of 8.10% was 

achieved. The results of PV performances were in line with our electrochemical 

characterization (CV and EIS). More importantly, this impressive PCE (8.10%) 

achieved by the SGN–FeS2 hybrid electrocatalyst based DSSC was comparable to 

that (8.33%) of the expensive Pt electrocatalyst based device. 

The stability of PV devices is one of the most critical factors for their potential 

commercialization on an industrial scale. For the storage–stability test, the 

unencapsulated DSSC devices fabricated with SGN–FeS2 and Pt CEs were kept in 

ambient conditions for 90 days. Normalized PCEs of these two devices are plotted in 

Figure 4-3c. It can be seen from Figure 4-3c that the SGN–FeS2 hybrid CE based 

DSSC showed excellent storage–stability (more than 90% of initial PCE after 90 

days of storage was retained), which was comparable to the stability of the cell with 

Pt CE. This excellent stability of our SGN–FeS2 hybrid based DSSC confirms the 

good electrochemical stability explored using CV measurements (see Figure S4-3) of 

this electrocatalyst. 
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4.3.  Conclusion 

In summary, in this work, a series of heteroatom (I, P, B, N, S)–doped graphene 

materials have been prepared and employed as CE materials to catalyze the IRR in 

DSSCs. We found based on the electrochemical characterization and PV analysis 

that the elemental S–doping on graphene is the most effective in improving the 

electrocatalytic activity among other types of doping atoms. Furthermore, we 

prepared highly efficient hybrid electrocatalysts by incorporating the excellent 

conductivity of SGN and high catalytic activity of FeS2 for use in DSSCs. A device 

fabricated with this hybrid electrocatalyst based CE exhibited not only an excellent 

storage–stability, but also displayed a high PCE of 8.10%, which is comparable to 

that of Pt CE based DSSCs. The combination of high electrocatalytic activity, good 

electrical conductivity, outstanding electrochemical stability and impressive device 

performance of the SGN–FeS2 hybrid electrocatalyst makes this material an ideal 

candidate for highly efficient and stable DSSCs. 
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Experimental Section 

Materials: 

Unless otherwise specified, all chemicals used in this work were obtained from 

Sigma–Aldrich. Sodium hydroxide (NaOH) (purity >98%) and sulfur (S) (purity 

>98%) powders were purchased from Chem–Supply Pty Ltd. Ruthenizer 535–

bisTBA (N719 dye), iodide/tri–iodide electrolyte (Iodolyte Z–50), DuPont Surlyn® 

(Meltonix 1170–60) and Platinum (Pt) catalyst (Platisol T) were purchased from 

Solaronix, Switzerland. A fluorine–doped tin oxide (FTO) coated glass electrodes 

with a sheet resistance (Rs) of ~8 Ω/□ (TEC8), transparent TiO2 paste (18NR–T), 

reflector TiO2 paste (WER2–O) were purchased from Dyesol, Australia. 

 

Preparation of graphene oxide (GO): 

Graphene oxide (GO) was prepared via the oxidation and exfoliation of natural 

graphite according to an improved Hummers method reported by Marcano et al.[1] In 

brief, a 9:1 (v:v) mixture of sulfuric acid (95–98% H2SO4) and phosphoric acid (85% 

H3PO4) (240:27 mL) was kept in the cold (3–5oC) until it was added to a mixture of 

graphite flakes (2 g) and potassium permanganate (99% KMnO4) (12 g). The 

oxidation process of graphite was carried out by stirring the mixture at ~50 oC for 12 

h. Then, the reaction was cooled down to room temperature and poured onto ice (300 

mL) with 30% hydrogen peroxide (H2O2) (2 mL). The mixture was then washed with 

distilled (DI) water, 30% hydrochloric acid (HCl) and ethanol (x 2 times). For each 

sequential wash, the product was centrifuged at 4400 rpm for 3 h and the supernatant 

decanted away. The light brown sample obtained was dispersed and exfoliated in an 

aqueous solution, and then freeze–dried to obtain GO powder. 

 

Preparation of heteroatom–doped graphene: 

Different heteroatoms (I, P, B, N, S)–doped graphene were prepared by the 

carbonization of the mixture of GO and dopant precursor in a programmable tube 

furnace under N2 atmosphere using a previously established method.[2] Typically, 

100 mg of GO and 500 mg of precursor (see Table S4-1 for the types of dopant 

precursors) were ground in a ceramic mortar to form the mixture powder of GO and 
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precursor. The mixture was then poured into a crucible and carbonized at 900 oC for 

3 h with a heating rate of 5 oC min–1. The calcination process includes five steps: 1) 

purge the tube furnace with N2 gas at room temperature for 30 min, 2) increase the 

temperature to 120 oC, 3) Hold at 120 oC for 2 hr to remove moisture in the GO, 4) 

Increase the temperature to 900 oC, 5) Hold at 900 oC for 3 hrs, followed by cooling 

down to room temperature. The heating ramp for all heating and/or calcining 

processes was 5 oC min–1. 

 

Preparation of FeS2 particles: 

The FeS2 partciles were synthesized using a hydrothermal method according to a 

previously reported method with slight modifications.[3] In a typical experiment, 

Polyvinylpyrrolidone (PVP) and poly (ethylene glycol) (PEG–6000) (1.5 : 1 weight 

ratio) were dissolved in 10 mL DI water and stirred for 15 min to obtain a completely 

dissolved transparent solution. 2.2 g FeCl2 · 4H2O was then added into the above 

solution, followed by gradual addition of 10 mL NaOH solution (0.5 M) with 

stirring. Then, 0.2 g S powder was also added into the solution, followed by stirring 

and sonication three times. After obtaining a well dissolved precursor solution, the 

sample was transferred into a hydrothermal reactor and heated to 200 oC for 12 h. 

After the reaction, the obtained sample was filtered, washed with DI water and 

ethanol, and dried for further use. 

 

Preparation of pastes and counter electrodes: 

Viscous pastes based on different electrocatalysts including GO, GN, IGN, PGN, 

BGN, NGN, SGN, FeS2 and SGN–FeS2 hybrid were prepared according to the 

established procedures described in the literature without any modification.[4] For the 

preparation of hybrid pastes, the concentrations of SGN or FeS2 in the hybrid were 

varied from 0 to 100 wt% with an interval of 20 wt% (e.g. weight ratio of 100% : 

0%, 80% : 20%, 60% : 40%, 40% : 60%, 20% : 80%, and 0% : 100%,). The as–

prepared pastes were sonicated for 5 min before use and then coated onto the cleaned 

FTO electrodes via a doctor blade technique. The FTO glass was cleaned with a 

detergent followed by washing with Milli–Q water, acetone and ethanol under 

ultrasonication for 10 min each before use. After the paste deposition onto the FTO 
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electrodes, the films were dried in an oven at 90 oC for 5–10 min and annealed at 420 
oC for 30 min under the protection of Argon gas. In the meantime, for comparison, Pt 

CEs were prepared by coating Pt precursor onto FTO substrates using a brush–

painting method, followed by platinizing at 450 oC for 20 min. Finally, the prepared 

counter electrodes (CEs) were cooled to room temperature. 

 

Device fabrication: 

The N719 dye–sensitized solar cell devices were fabricated as reported elsewhere.[5] 

Briefly, the cleaned FTO glass electrodes were first immersed into a 40 mM aqueous 

TiCl4 solution at 70 oC for 30 min, and rinsed with water and ethanol. Then, ~10 μm 

thick transparent TiO2 layers (Dyesol 18NR–T, 20 nm in diameter) were deposited 

on the FTO electrodes by a doctor blading technique. The transparent TiO2 films 

were gradually heated under an air flow at 125 oC for 5 min, 325 oC for 5 min, at 375 
oC for 15 min and at 450 oC for 30 min, followed by cooling to room temperature. 

Then, ~6 μm thick reflector TiO2 layers (Dyesol WER2–O, 150–250 nm in diameter) 

were coated on the transparent TiO2 layers. The photoelectrodes coated with 

transparent and reflector TiO2 layers were sintered at 500 oC for 1 h. After sintering, 

the photoelectrodes were immersed in aqueous TiCl4 (40 mM) solution at 70 oC for 

30 min, followed by final annealing at 500 oC for 1 h. After cooling to ~50 oC, the 

prepared TiO2 films were immersed into 0.5 mM N719 dye in an ethanol solution for 

20 h at room temperature. The dye adsorbed photoelectrodes and previously prepared 

CEs were assembled into a sealed sandwich–type cell, with a 60 µm thick hot–melt 

sealing Surlyn between each layer. The electrolyte solution, Iodolyte Z–50 

(Solaronix), was introduced into the cell via a vacuum–filling method through an 

injection hole on the CE side. Finally, the hole was sealed with scotch tape. 

 

Characterization and measurements: 

Scanning electron microscopy (SEM) images were obtained using an Inspect F50 

SEM (FEI) with accelerating voltage of 20 kV. Energy dispersive X–ray 

spectroscopy (EDX) elemental mapping analysis was completed on the same system 

with a Team EDS Octane Pro (EDAX) attachment. X–ray diffraction (XRD) patterns 

were carried out on a powder X–ray diffractometer at 40 kV and 15 mA in the range 
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of 2θ = 10–80° using Cu Kα radiation (Model Miniflex 600, Rigaku, Japan). X–ray 

photoelectron spectroscopy (XPS) using a Leybold Heraeus LHS–10 with a SPECS 

XR–50 dual anode source operating at 250W was carried out at binding energy 

ranging from 0 eV to 1200 eV. The Mg–Kα source, which has energy of 1253.6 eV, 

was used for the XPS analysis. Curve fitting of the XPS spectra was done using peak 

fitting software "CASA XPS". High resolution XPS spectra were collected with a 

step size of 0.1 eV and the presented spectra are an average of 5 collections. The 

XPS spectra were referenced to the carbon 1s peak at 284.5 eV. 

Both cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) 

measurements were performed using an electrochemical analysis workstation 

(Autolab Nova Potentiostat). The CV was carried out in a three electrode system 

with different CE materials as the working electrode, a platinum wire as the CE, and 

Ag/Ag+ electrode as the reference electrode, at a scan rate of 50 mV s–1. For the 

preparation of the working electrode, 15 µL ink of each sample was dropped on the 

mirror polished glassy carbon electrodes. The electrodes were dipped in an 

anhydrous acetonitrile solution containing 10 mM LiI, 1 mM I2, and 0.1 mM LiClO4. 

EIS measurements were carried out by scanning the symmetric cells with the 

structure of CE/electrolyte/CE. The resultant EIS spectra were analyzed by means of 

the Z–view software. 

Sheet resistance measurements were performed on the SGN, FeS2 and SGN–FeS2 

hybrid coated microscope slides using a four point probe technique (KeithLink 

Technology Co., Ltd. Taiwan). 

The photocurrent–voltage (J–V) characteristics were analyzed using a Keithley 2400 

SMU instrument and recorded using a custom LabView Virtual Instrument program. 

A standard silicon test cell with NIST-traceable certification was used to calibrate the 

power density as 100 mW cm–2 at the sample plane of the collimated a 150W xenon–

arc light source (Newport), which was passed through an AM 1.5G filter. The active 

area of the fabricated devices was 0.19 cm2. 
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Table S4-1. Experimental conditions and parameters for the preparation of different 

heteroatoms doped graphene electrocatalysts. For the preparation of all samples, 

graphene oxide ((GO), prepared from natural graphite using improved synthesis 

method) was used as a starting material. The weight ratio of GO : precursor was 1 : 5 

for all samples. 

Samples Doping Precursor Annealing 
Temperature 

Annealing 
Time 

Gas 

Graphene Oxide - - - - 

Graphene - 900oC 3 h N2 

I-doped Graphene Iodine (I2) 900oC 3 h N2 

P-doped Graphene Triphenylphosphine 

(C18H15P) 

900oC 3 h N2 

B-doped Graphene Boric Acid (H3BO3) 900oC 3 h N2 

N-doped Graphene Melamine (C3H6N6) 900oC 3 h N2 

S-doped Graphene Diphenylsulfide 

(C12H10S2) 

900oC 3 h N2 

 

Five individual nonmetallic elements (I, P, B, N, S) were introduced onto GN 

nanosheets to obtain single atom-doped GN materials. These materials (IGN, PGN, 

BGN, NGN and SGN) were prepared from GO by using different types of precursors 

under the same experimental conditions (see Table S4-1). GO was prepared via the 

oxidation of natural graphite according to an improved Hummers method.[1]  

The prepared heteroatom–doped GN materials were used to fabricate DSSC devices. 

It should be noted that the thickness of mesoporous TiO2 layer in these DSSCs was 

~9–10 µm achieved by using 1 layer of 3M scotch tape. This thin TiO2 layer resulted 

in slightly lower short-circuit current (Jsc) value (see Figure S4-1 and Table S4-2) 

and was intentionally used in order to compare these various types of doped 

graphene CEs for DSSCs. 
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Figure S4-1. (a) Cyclic voltammograms (CV) and (b) electrochemical impedance 

spectra (EIS) of various heteroatoms doped graphene (GN) electrodes for IRR. Inset 

shows the EIS of graphene oxide (GO). (c) Photocurrent-voltage (J–V) curves and 

(d) PCE comparison of DSSC devices fabricated with different heteroatoms doped 

graphene based counter electrodes (CEs). Note: These devices were fabricated based 

on only ~9–10 µm TiO2 mesoporous layer (without light scattering layer). 

 

High-resolution X-ray photoelectron spectroscopy (XPS) spectra for the C 1s and S 

2p regions of the SGN sample are shown in Figure S4-2a and b, respectively. The C 

1s peak for the SGN material was observed at ~284.5 eV, which is consistent with 

graphene sp2 carbon in the samples.[6,7] Moreover, there are some minor shoulder 

contributions to the XPS signals at binding energies of 285.0–288.0 eV, which can 

be assigned to sulfur- and/or oxygen-bound carbon atoms on the surface of SGN 

nanosheets.[8] Another broad peak at binding energies of 287.0–290.0 eV is assigned 

to the C=O and O–C=O chemical environments, which is in agreement with previous 

literature.[9] The broad signals at 290.0–292.0 eV correspond to the π–π* shake-up 
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peak. The main peaks in the S 2p for the XPS spectra of SGN material are at binding 

energies of around 163.7 eV and 164.9 eV can be attributed to the spin-orbit splitting 

of S atoms doped onto the graphene layers, e.g. S dominated in the graphene via the 

formation of the sulfide bridges. This result is in very good agreement with the 

literature.[10,11] 

 

Table S4-2. Photovoltaic (PV) parameters of different heteroatoms doped graphene 

CEs based DSSCs. Note: These devices were fabricated based on only ~9–10 µm 

TiO2 mesoporous layer (without light scattering layer). The average values and 

standard deviations are calculated based on at least three devices. Parameters of the 

best cells are highlighted in bold. The charge transfer resistances (Rct) were 

calculated by fitting the electrochemical impedance spectra (EIS) of dummy cells 

with a symmetric sandwich-like structure fabricated with different CE materials. 

Samples J
sc

 (mA cm
-2

) V
oc

 (V) FF PCE (%) Rct (Ω) 

Graphene 

Oxide 

8.158; 

8.49 ± 0.76 

0.786; 

0.76 ± 0.03 

0.21; 

0.19 ± 0.02 

1.34; 

1.25 ± 0.09 
3100 

Graphene 
10.154; 

9.96 ± 0.28 

0.719; 

0.73 ± 0.02 

0.35; 

0.35 ± 0.00 

2.58; 

2.54 ± 0.04 
92.4 

I-doped 

Graphene 

10.487; 

10.79 ± 0.43 

0.629; 

0.61 ± 0.02 

0.35; 

0.34 ± 0.01 

2.32; 

2.24 ± 0.11 
94.2 

P-doped 

Graphene 

11.168; 

11.06 ± 0.11 

0.733; 

0.73 ± 0.01 

0.35; 

0.35 ± 0.00 

2.88; 

2.83 ± 0.05 
83.3 

B-doped 

Graphene 

11.622; 

11.32 ± 0.42 

0.714; 

0.71 ± 0.01 

0.45; 

0.44 ± 0.02 

3.75; 

3.51 ± 0.35 
70.9 

N-doped 

Graphene 

11.493; 

11.55 ± 0.07 

0.721; 

0.71 ± 0.01 

0.49; 

0.47 ± 0.02 

4.09; 

3.87 ± 0.19 
44.0 

S-doped 

Graphene 

11.970; 

11.92 ± 0.09 

0.723; 

0.72 ± 0.01 

0.53; 

0.53 ± 0.01 

4.60; 

4.49 ± 0.07 
22.3 
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The Fe 2p and S 2p spectra are illustrated in Figure S4-2e and f, respectively. In 

Figure S4-2e, there are two predominant peaks at binding energies of around 707 eV 

(Fe 2p3/2) and 720.0 eV (Fe 2p1/2), which are consistent with the binding energies of 

Fe in the Fe(II)–S bond.[12] Furthermore, in Figure S4-2f, the 2p3/2 and S 2p1/2 peaks 

at around 163 eV and 164.2 eV, respectively are also consistent with the sulfur 

binding energy in the FeS2.[13] 

 

 

Figure S4-2. (a) C 1s and (b) S 2p XPS spectra of SGN sample. SEM image of (c) 

SGN nanosheets and (d) FeS2 spheres. (e) Fe 2p and (f) S 2p XPS spectra of the as–

prepared FeS2. 
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Figure S4-3. Electrochemical stability of SGN–FeS2 hybrid electrocatalyst tested by 

measuring CV for 15 cycles. 
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Abstract 

Organometallic trihalide perovskite light absorber based solar cells have drawn 

increasing attention because of their recent rapid increase in power conversion 

efficiency (PCE). These photovoltaic cells have relied significantly on transparent 

conducting oxide (TCO) electrodes which are costly and brittle. Herein, solution 

processed transparent conductive graphene films (TCGFs) are utilized, for the first 

time, as an alternative to traditional TCO electrodes as the electron collecting layer in 

perovskite solar cells (PSCs). By investigating and optimizing the trade-off between 

transparency and sheet resistance (Rs) of the graphene films, a PCE of 0.62% is 

achieved. This PCE is further improved to 0.81% by incorporating graphene 

structures into both compact and mesoporous TiO2 layers of the solar cell. We 

anticipate that the present study will lead to further work to develop graphene-based 

transparent conductive electrodes for future solar cell devices. 

 

Keywords: Perovskite solar cells, photoelectrode, transparent conductive film, 

graphene, nanocomposite 
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5.1.  Introduction 

Photovoltaic (PV) cells are devices that convert sunlight directly into electrical 

power and have great potential to meet society’s continuously increasing energy 

demands with negligible environmental impact.[1] The current PV market is mainly 

dominated by crystalline silicon (1st generation) and compound semiconductor (2nd 

generation) based solar cells, which can produce energy with a power conversion 

efficiency (PCE) that is highest of all solar cell technologies.[2, 3] These commercially 

available solar devices are, however, produced using complex, high-cost 

manufacturing processes. Recently reported solar cells based on hybrid 

organometallic halide perovskites are considered the most promising alternatives to 

the more established solar cell technologies because of their relatively high PCE, and 

simpler, cheaper fabrication processes.[4-7] 

Organic–inorganic halide structures (such as CH3NH3PbX3 (X = Cl, I or Br)), called 

perovskite materials, have been known for several decades and have recently 

attracted much attention from the PV community owing to some key exceptional 

properties.[8] These properties include the ability to absorb significant levels of 

incident light across a wide part of the solar spectrum, and the ability to effectively 

carry the photoelectrons created from the incident light away into a circuit.[9] The 

PCE of perovskite solar cells (PSCs) has rapidly increased from less than 4% to more 

than 20% in only 6 years,[10-13] making the efficiency comparable with current 

commercial technologies.[12, 13] 

A typical PSC is composed of a transparent conducting oxide (TCO) (indium-doped 

and/or fluorine-doped tin oxide (ITO or FTO)) electrode, a thin compact hole 

blocking (TiO2) layer, a perovskite layer with or without a porous metal oxide 

scaffold layer, a hole transporting layer (HTL) and a metal contact (Au or Ag).[11, 14, 

15] In such a device structure, the TCO electrode plays a vital role in collecting 

electrons from the semiconducting TiO2 and transferring them to the external circuit. 

However, limited resources of the materials used in typical TCO electrodes and 

consequent high cost are major issues.[16] Additionally, their brittle nature and high 

structural defects are a major concern for PSC technologies where ease of 

transportation, handling and installation are important.[17] Therefore, the replacement 

of TCO electrodes with cheaper and robust alternatives is desirable. 
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Graphene has attracted considerable interest for potential applications in various 

optoelectronic devices due to its properties including excellent conductivity, low cost 

and high flexibility.[18, 19] Moreover, compared to ITO and FTO, graphene has 

several advantages such as abundance, high transparency in the near-infrared region 

and high stability in the presence of acid or base.[16, 20] These unique properties 

suggest graphene films could be a possible replacement for TCO electrodes. To date, 

two main processes have been developed for the fabrication of graphene films.[21] 

The first is based on chemical vapor deposition (CVD) of graphene using a metal 

sheet catalyst (Cu or Ni), followed by transfer printing to target substrates. However, 

CVD is expensive and its operation is complicated while it also requires high 

temperatures (>750oC). Alternatively, solution processed graphene has been 

considered a promising future electrode material because it can be deposited on 

large-area flexible substrates and is compatible with roll-to-roll manufacturing 

techniques.[22] Based on these advantages, solution processed graphene films have 

been used as transparent electrodes for inorganic-organic hybrid solar cells,[23, 24] 

organic photovoltaic cells,[25, 26] and dye-sensitized solar cells (DSSCs)[27]. In 

addition, CVD processed-graphene based transparent conductive films have very 

recently been employed as hole collecting electrodes in PSCs even though they are 

costly and difficult to produce.[28, 29] However, until now, there has been no effort in 

the application of graphene based transparent and conductive films to replace 

traditional TCO electrodes in PSCs despite recent reviews[30, 31] and a computational 

study[32] suggesting some promise. 

In the work reported here, transparent conductive graphene films (TCGFs) prepared 

from low-temperature processed and chemically derived graphene (or solution 

processed graphene, Scheme 5-1) have been employed as a substitute for the electron 

collecting TCO electrode to test their feasibility in PSCs. Furthermore, the 

incorporation of graphene structures into semiconducting oxide scaffolds has been 

shown to be a promising strategy to enhance the efficiency in DSSCs.[33] After 

optimizing sheet resistance (Rs) and light transmittance for PSC performance, we 

further improved the PCE by employing graphene into both compact and 

mesoporous TiO2 layers of the devices. 
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Scheme 5-1. Schematic of the preparation procedure of graphene films. 

 

5.2.  Results and Discussion 

5.2.1.  Preparation and characterization of graphene films 

Graphite oxide was synthesized from natural graphite by an improved Hummers 

method followed by exfoliation to produce graphene oxide (GO) sheets (Scheme 
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5-1a-c).[34] A detailed description of the process is given in the experimental section. 

The prepared GO is known to be electrically non-conductive and the removal of its 

functional groups is necessary to obtain conductive graphene-based materials.[17] In 

general, GO can be reduced by using chemical agents such as hydrazine or sodium 

borohydride.[35] However, the insolubility of the GO after such chemical reduction 

limits its further application. In order to tackle this limitation, we added sodium 

dodecylbenzene sulfonate (SDBS) surfactant into the graphite oxide solution before 

the exfoliation step (Scheme 5-1c).[36, 37] 

In a typical experiment, large-area GO with or without SDBS surfactant was 

produced by the exfoliation of the previously prepared graphite oxide solution 

(Scheme 5-1c). It should be noted that the prepared GO aqueous dispersion was very 

stable without any precipitation for several months, which is known to be due to the 

presence of hydrophilic groups (e.g., hydroxyl, epoxy, or carboxyl) on the surface of 

graphene.[21] Subsequently, the chemical reduction of GO aqueous solution was 

carried out with hydrazine solution in the presence of SDBS. For comparison, the 

same procedure was also performed in the absence of SDBS. Chemically reduced 

graphene oxide (CRGO-only) without surfactant disperses poorly in aqueous 

conditions because of its hydrophobic surface after the removal of oxygen containing 

functional groups during the reduction process.[23] Subsequently, strong π-π 

interaction between CRGO flakes leads to agglomeration and poor dispersion (inset 

of Figure 5-1a). The atomic force microscopy (AFM) image in Figure 5-1a shows 

that the CRGO-only flakes without SDBS are aggregated or stacked on each other 

and their lateral size was measured to be smaller than 1 µm, which is consistent with 

the results reported in the literature.[38, 39] In contrast, the SDBS supported CRGO 

(Scheme 5-1d, termed “CRGO-SDBS”) showed dramatically improved dispersion in 

aqueous solution. As illustrated in the inset of Figure 5-1b, no precipitate was 

observed and the solution was stable for several months. More importantly, the flake 

size of the CRGO-SDBS (Figure 5-1b) was significantly larger than that of CRGO-

only (Figure 5-1a).[40] It is known that sonication and conventional chemical 

reduction steps of GO create many structural defects and decrease the flake size and 

increase the degree of sp3 hybridization.[21] Interestingly, in this study, the SDBS acts 

to prevent CRGO from fracturing during ultrasonication resulting in large-size 

graphene sheets. The large-sized graphene structures should, in principle, exhibit 
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lower Rs when used in transparent conductive films because the larger flakes will 

have less charge scattering related to charge hopping through sheet-sheet contacts in 

the film.[41, 42] 

Structural information for these samples was obtained using Raman spectroscopy. It 

is well known that the intensity ratio (ID/IG) is usually used to determine the level of 

defects.[43] Raman spectra (see Figure S5-1) shows that the ID/IG value of the CRGO-

SDBS is lower than that of the CRGO without surfactant, confirming that the 

chemical (hydrazine) reduction of GO in the presence of SDBS creates less defects 

on the CRGO compared to the number produced without any surfactant present. 

Although the use of SDBS during the chemical reduction process has the additional 

advantage of preventing defect production in the CRGO and providing large 

graphene sheets, the presence of residual SDBS surfactant may degrade the electrical 

properties of the graphene films because of its highly insulating nature.[36] Therefore, 

removing SDBS surfactant from the prepared films is of great importance for 

maximizing the electrical conductivity of the films. In addition, it is well known that 

the chemical reduction with hydrazine alone is not sufficient to fully reduce the 

oxygen containing functional groups from the graphene layers.[44] 

 

 

Figure 5-1. AFM images (5 x 5 µm2) of chemically reduced graphene oxide (CRGO) 

(a) without and (b) with SDBS. Insets show digital photographs of the corresponding 

samples in an aqueous 1 mg mL–1 solution. 
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In order to improve the quality of graphene structures, the films were prepared from 

the CRGO-SDBS solution using a vacuum-filtration and transfer technique,[44] and 

have been thermally annealed at a temperature of 400oC under the protection of an 

Ar and H2 gas flow. Interestingly, we observed that the filtration time for the CRGO-

SDBS solution was longer than that for the CRGO-only samples. We attribute this 

phenomenon to the size of the graphene sheets with the larger CRGO-SDBS sheets 

blocking the filter paper pores faster. After the thermal annealing of CRGO-SDBS 

film, the resultant product (Scheme 5-1e) is denoted “RGO-SDBS”. 

The extent of reduction of the prepared samples was studied by Attenuated total 

reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray 

photoelectron spectroscopy (XPS). ATR-FTIR spectra of GO, CRGO-only, CRGO-

SDBS and RGO-SDBS are presented in Figure 5-2a. All the observed peaks can be 

ascribed to O–H stretching mode, C=O carboxyl or carbonyl stretching vibration, 

C=C stretching, O–H deformations in the C–OH groups, C–OH stretching and C–O 

stretching vibrations in C–O–C in epoxide from GO.[34] After chemical reduction, the 

peak intensities of the oxygen containing functional groups in both CRGO-only and 

CRGO-SDBS become very weak compared to that of GO, but not completely gone, 

indicating that only partial reduction of GO was obtained using hydrazine 

monohydrate solution (Scheme 5-1d). However, the CRGO-SDBS exhibits new 

prominent characteristic peaks at 2960 cm–1, 2928 cm–1 and 2870 cm–1 which 

correspond to C–H vibrations in SDBS. These absorption peaks in the CRGO-SDBS 

sample indicates that the SDBS is adsorbed on the CRGO.[40] After thermal 

annealing, the majority of peaks associated with the oxygen containing functional 

groups in CRGO-SDBS became very weak, confirming the successful reduction of 

the GO by the combination of chemical and thermal processes (Scheme 5-1e, 

confirmed by curve fitting of C1s peaks in XPS spectra shown in Figure S5-2). 

However, the absorption peaks due to the presence of SDBS remain unchanged after 

annealing at 400oC for 1 h. This result suggests that the insulating SDBS was not 

removed by the low-temperature thermal treatment. 
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Figure 5-2. (a) ATR-FTIR and (b) XPS survey spectra of GO, CRGO-only, with 

SDBS and thermally reduced CRGO-SDBS (RGO-SDBS). 

 

XPS survey spectra of CRGO-SDBS and RGO-SDBS (Figure 5-2b) show responses 

(in addition to 283.5 eV (C 1s) and 530.5 eV (O 1s)) at binding energies of around 

166 eV (S 2p), 262 eV (Na KLL) and 1059.5 eV (Na 1s), further illustrating that the 

SDBS remains on the CRGO structure after annealing at 400oC. Nevertheless, it 

should be noted that the peak intensities of both ATR-FTIR and XPS for CRGO-

SDBS structure decreased slightly after annealing at 400oC. Another noticeable 

feature from the XPS survey spectra in Figure 5-2b is that the appearance of Si 2s 

and Si 2p peaks at around 99.0 eV and 149.5 eV, respectively for the CRGO without 

SDBS. These Si peaks can be explained by the poor solubility of the CRGO solution. 

Due to the large aggregation of CRGO in the solvent, the CRGO sample did not 

completely cover the silicon substrate. Additionally, the thermal stability of SDBS 

was investigated using thermo-gravimetric analysis (TGA) (see Figure S5-3). Our 

finding from TGA analysis was in good agreement with the ATR-FTIR and XPS and 

suggests that the thermal annealing at 400oC cannot remove the residual surfactants 

from the graphene. Therefore, further treatment is required to completely remove the 

SDBS. 

According to previous studies,[45-48] the application of concentrated acid solution can 

be an effective way to completely remove the residual SDBS surfactant and other 

organic contaminants from the graphene films. Therefore, we used concentrated 

nitric acid (HNO3, 68%) solution (Scheme 5-1f). It is widely accepted that the use of 

HNO3 has the advantage of not only eliminating the insulating surfactant, it also 
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enhances the electrical properties of carbon films by an oxidative doping effect.[49, 50] 

In addition to these effects, chemical HNO3 treatment can also cause some weak 

edge defects with oxygen containing functional groups (see Scheme 5-1f, termed as 

“RGO”),[45, 51, 52] which could be very useful for further treatment to maximize the 

film performance. In order to produce high-performance graphene films, we also 

introduced metallic gold nanoparticles (AuNPs) onto our RGO by dipping HNO3-

functionalized RGO films into HAuCl4 solution (Scheme 5-1g, called “AuNPs-

RGO”). The removal of SDBS and the deposition of AuNPs of the RGO films were 

characterized by using XPS, scanning electron microscopy (SEM) and Energy-

dispersive X-ray spectroscopy (EDX). 

 

 

Figure 5-3. (a) XPS survey spectra (inset: SEM image of AuNPs-RGO) and (b) 

EDX analysis (red box in the inset is the selected area for analysis) of RGO-SDBS 

film after HNO3 and HAuCl4 treatments. 
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Figure 5-3a shows that the peaks of RGO-SDBS sample at binding energy of 166 eV 

(S 2p), 262 eV (Na KLL) and 1059.5 eV (Na 1s) have disappeared after treatment 

with HNO3 and HAuCl4 solutions, indicating the successful removal of the surfactant 

from the RGO. Additionally, in Figure 5-3a, the appearance of two new prominent 

peaks at around 83.5 eV (Au 4f) and 200 eV (Cl 2p) indicates the successful AuNPs 

deposition and some residual HAuClx. Moreover, the SEM image (inset of Figure 

5-3a) clearly shows that the AuNPs were formed on the RGO after dipping the 

partially functionalized RGO film (Scheme 5-1f) into HAuCl4 solution. It is worth 

noting that the deposition of AuNPs on the RGO was achieved without the assistance 

of any reducing agents due to the HNO3 post-treatment. Therefore the edge defects 

(OH–, COOH– etc.) in RGO introduced by HNO3 treatment play an important role in 

reducing Au3+ to Au0.[52, 53] Moreover, the EDX elemental analysis (Figure 5-3b) was 

carried out on the selected area of SEM image of the prepared sample and further 

confirms the removal of residual SDBS from the RGO and the formation of AuNPs 

on the RGO films. 

 

5.2.2.  Optical and electrical properties of the graphene films 

An ideal PV device – one with the highest PCE – is achieved by having the lowest 

sheet resistance of the TCF, Rs, while achieving the highest transparency. Thin 

graphene films can exhibit high optical transparency, but they suffer from relatively 

high Rs. The Rs can be reduced by making the graphene films thicker, but this leads 

to an increase in the film opacity. There is clearly an optimum film thickness. We 

sought this thickness by changing the volume of filtered CRGO-SDBS solution. 

Figure 5-4a illustrates the Rs of graphene films prepared from four different 

structures plotted as a function of filtration volume. These graphene structures are (a) 

CRGO–SDBS films (Scheme 5-1d), (b) RGO–SDBS films (Scheme 5-1e), (c) RGO 

films (Scheme 5-1f, HNO3-treated), and (d) AuNPs-RGO films (Scheme 5-1g). 

Additionally, the wavelength-dependent optical transparencies of each film with 

different thicknesses and their corresponding Rs values are shown in Figure S5-4. It 

can be seen from Figure S5-4a that the transparency of the films decreased with 

increasing filtered volume of the RGO solution. As shown in Figure 5-4a, the Rs of 

our CRGO-SDBS films were in the range from 2 MΩ/□ to 12 MΩ/□ depending on 

the thickness. Interestingly, these Rs values are found to be slightly lower than that of 
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previously reported chemically reduced GO films,[44, 54, 55] despite our films 

containing insulating SDBS. We attribute this better performance of our CRGO-

SDBS films to the production of large-size graphene sheets.[40] Although our CRGO-

SDBS films showed lower Rs compared to other studies, such Rs values are still too 

high for satisfactory solar devices. 

As also demonstrated in Figure 5-4a, the Rs of CRGO-SDBS film decreased by more 

than 2 orders of magnitude for a given thickness after the thermal treatment. This 

improvement in the electrical properties is known to be due to the better 

graphitization, deoxygenation and cross-linking of the graphene sheets.[27, 39] 

However, the thermal reduction of the CRGO-SDBS film reduced the transparency 

by 4-5 % (Figure S5-4b). The darkening of the films after thermal annealing is due to 

the restoration of the π–electron system in the graphene structure and some 

impurities from the re-deposition of carbonaceous material which desorbs during 

thermal treatment and then adsorbs on both sides of the substrate.[55] Although 

residual insulating SDBS is still present in the film after thermal treatment, we were 

able to achieve a Rs of as low as 8.5 kΩ/□ using this film such as that shown in 

Scheme 5-1e. Therefore, the removal of the SDBS surfactants with HNO3 was 

expected to improve the performance of our films. 

As expected, the Rs of the RGO-SDBS films were significantly reduced (by more 

than 2-fold) after treating with concentrated HNO3 (see Figure 5-4a). This dramatic 

improvement in the electrical properties is most likely due to the removal of any 

remaining SDBS from the film. Another possible reason behind the enhanced 

conductivity is the chemical doping effect of HNO3 on graphene films.[17, 49, 56] In 

particular, the Rs value of the RGO-SDBS films was reduced from 8.5 kΩ/□ to 3.74 

kΩ/□ at the same thickness after treating with HNO3 solution. More importantly, the 

HNO3 treatment not only enhanced the electrical conductivity of the films, it also 

increased the transparency by around 5% for any given thickness (Figure S5-4c). The 

increase in the transparency of the films after washing with HNO3 could be ascribed 

to the removal of remaining impurities of the films, particularly on the underside of 

the glass. 
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Figure 5-4. (a) Rs vs. thickness of the graphene films prepared from four different 

structures; (b) Rs and transmittance (at λ = 550 nm) of selected TCGFs with different 

thicknesses; (c) comparison of Rs as a function of transmittance (at λ = 550 nm) 

between our AuNPs-RGO films and other studies. Dash lines show the two regions 

of differing resistance for the graphene films and the threshold transmittance and 

corresponding Rs. 
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After depositing the AuNPs on RGO films, the Rs and transmittance of the dried 

films were measured. Figure 5-4a shows that the Rs of RGO films decreased by 

about 1.8 times after introducing AuNPs onto the films, while no degradation in 

transmittance was observed (Figure S5-4d) compared to the HNO3-treated RGO 

films. The improved conductivity could be due to the fact that the AuNPs deposited 

on RGO created bridges between adjacent sheets, both in-plane and out-of-plane. A 

low electrical conductivity of graphene film mainly arises from the high inter-sheet 

contact resistance (deriving from charge hopping) between the edges of graphene 

sheets.[41] In our AuNPs deposited RGO films, the AuNPs play a vital role in 

conjugating adjacent graphene sheets and subsequently reducing the overall Rs of the 

film. 

The correlation of Rs and transmittance at λ = 550 nm of our AuNPs-RGO films to 

their volume of filtered solution is depicted in Figure 5-4b. Through the systematic 

treatments, we obtained an Rs of as low as 1.96 kΩ/□ for the thick graphene film 

with transmittance of 42.3%. In contrast, a high optical transparency of 86.6% was 

achieved for the thin film, but its Rs is 15.7 kΩ/□. It should be noted that our Rs 

values are comparable to previous reports of solution processed graphene films 

produced by using hydrazine reduction and high-temperature annealing processes 

(800-1100oC) (Figure 5-4c).[25, 27, 55, 57-61] Therefore, these TCGFs exhibit great 

potential for use as transparent electrodes in PV devices. The films based on AuNPs-

RGO structures such as that illustrated in Scheme 5-1g have been chosen for the 

fabrication of PSC devices. Moreover, we calculated a figure of merit (σDC/σOP) for 

these TCGFs (Table 5-1) and the film with Rs = 3.08 kΩ/□ at T = 55% showed a 

high figure of merit (0.176). This σDC/σOP value was higher than that of thinner films, 

which is expected to correlate with high performance of solar cells. 

 

5.2.3.  Fabrication and characterization of PV devices 

5.2.3.1.  Transparent graphene electrodes based PSCs 

To investigate the suitability of our TCGFs as transparent electrodes in PV devices, 

CH3NH3PbI3-xClx perovskite sensitizer based solar cells were fabricated on the 

graphene films. The layered structure of the device is displayed in Figure 5-5a. In our 

devices, a thin TiO2 compact layer was used as blocking layer to suppress the 
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possible charge recombination between the graphene anode and the hole transporting 

material (HTM). Spiro–OMeTAD (HTM) was used as electron blocking layer 

between the perovskite sensitizer and Au cathode. Mesoporous TiO2 and 

CH3NH3PbI3-xClx perovskite were employed as electron transporting layer and 

photosensitizer, respectively. In order to investigate the balance between 

transparency and Rs of the graphene films, six PSC devices (device 1–6) were built 

on the TCGFs with different thicknesses (see Figure 5-4b for properties). Digital 

photographs of the graphene films are also shown in Figure 5-5a. The device number 

depends on the transparency and Rs of the films. For example, the film with highest 

transparency and highest Rs based cell is denoted ‘device 1’ while the TCGF with 

lowest transparency and lowest Rs based PSC is denoted ‘device 6’. 

 

 

Figure 5-5. (a) Device structure, (b) photocurrent density–voltage (J–V) curve of the 

fabricated solar cells with transparent graphene electrodes. PSC devices with 0.075 

cm2 active area were illuminated under AM 1.5G simulated sunlight (100 mW cm−2). 
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Table 5-1. PV parameters and PCE (η) of TCO-free PSCs with graphene films. 

Results for champion cells shown. 

Device Rs@T σDC/σOP Jsc (mA cm–2) Voc (V) FF η (%) 

1.  

(80 mL) 

15.7kΩ/□ 

@86.6% 

0.161 0.56 0.692 0.25 0.1 

2.  

(200 mL) 

6.93kΩ/□ 

@72.3% 

0.154 1.25 0.695 0.26 0.23 

3.  

(320 mL) 

4.61kΩ/□ 

@64.1% 

0.164 2.02 0.700 0.29 0.41 

4.  

(440 mL) 

3.08kΩ/□ 

@55.0% 

0.176 2.55 0.690 0.35 0.62 

5.  

(560 mL) 

2.41kΩ/□ 

@48.0% 

0.176 2.43 0.690 0.36 0.60 

6.  

(680 mL) 

1.96kΩ/□ 

@42.3% 

0.177 2.21 0.694 0.37 0.57 

 

The photocurrent density–voltage (J–V) characteristics of the PSCs fabricated with 

different TCGFs are shown in Figure 5-5b and the corresponding PV parameters 

such as open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF) 

and PCE have been summarized in Table 5-1. The measured Voc values of all devices 

are essentially constant at 0.695 ± 0.05 V, indicating that the thickness of graphene 

films does not influence this parameter. This is reasonable since the Voc parameter is 

mainly determined by the energy level difference between the conduction band of 

electron transporting material and the potential energy of the HTM. In contrast, 

significant changes in the Jsc and FF were observed. Because of its comparatively 

high Rs, device 1 showed the lowest Jsc (0.56 mA cm-2) and FF (0.25) values, despite 

the transparency of graphene film being quite high. Interestingly, the FF value of our 

PSCs continuously increased from device 1 to device 6, likely to be due to the 

improvement in the Rs of the graphene films. Therefore the maximum FF value 

(0.37) was achieved for the device 6 which is made of our most-conductive graphene 

film with lowest transparency. However, the measured Jsc value (2.21 mA cm–2) of 
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the device 6 was not the highest observed. Unlike the FF parameter, no continuous 

increase was observed for the Jsc value of our devices when the thickness of graphene 

films increases. In particular, from device 1 to device 4 (an increase in the thickness 

of graphene films), the Jsc increases from 0.56 to 2.55 mA cm–2 owing to the 

reduction of Rs. However, when the transmittance of the film drops below 55%, Jsc of 

the cells decreases (device 5 & 6) despite the films having reduced Rs. This decrease 

in Jsc is due to the absorption of incident light by the TCGF before it reaches the 

active perovskite layer. Indeed, the optimum PV parameters for the TCGFs-based 

PSC were achieved for the graphene film with 3.08 kΩ/□@55.0%T. The observed 

Jsc, Voc and FF values for this PSC (device 4) were 2.55 mA cm–2, 0.69 V and 0.35, 

respectively, yielding an energy conversion efficiency of 0.62%. 

For comparison, an FTO electrode based PSC device was also fabricated under the 

same conditions as devices 1-6 and its J–V curve is plotted in Figure S5-5. The FTO 

based device exhibited a Jsc of 17.49 mA cm–2, Voc of 0.71 V and FF of 0.63, 

yielding a PCE of 7.82%. It is obvious that the PCE of our graphene film-based 

PSCs is significantly lower to that of the control cell based on FTO. The major issues 

for our TCGFs based devices are relatively low Jsc and lower FF values as compared 

to the cell based on FTO. This might be due to the high Rs and poor optical 

transmittance of our graphene films. Although the PCE (0.62%) of our graphene 

electrode based device is far from that of the PSC fabricated with FTO, this 

efficiency value is higher than that achieved for previously published inorganic-

organic hybrid solar cell,[24] or DSSC,[27] in which graphene films act as the electron 

collection electrode. It should also be noted that the Voc value (0.71 V) and PCE 

achieved using our typical FTO based PSC is lower than recently reported values for 

standard cells using typical ITO or FTO transparent conducting electrodes.[62-64] The 

perovskite precursor and deposition process we have used were chosen for their 

simplicity in deposition and under the conditions we followed typically yield PCEs 

of 7-9% with low Voc (0.7 V-0.8 V),[65-67] which are consistent with our results using 

the standard transparent conducting electrodes. More importantly, here in this work, 

we demonstrate the feasibility of solution processed graphene films as alternatives to 

the traditional TCO electrodes in the state-of-the-art PSCs. We anticipate that 

significant improvement in the PCE can be made for this class of PV devices by 
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enhancing the performance of the graphene films and/or using other solar cell 

architectures. 

 

5.2.3.2.  Effect of graphene structures in the TiO2 layers 

The use of carbonaceous materials in the semiconducting oxide scaffolds has 

previously led to great enhancement in the efficiency of DSSCs.[68, 69] Therefore, in 

this work, we introduce this concept of incorporating graphene structures into the 

electron transporting TiO2 layers of the mesoscopic PSCs to further improve the 

efficiency of our graphene electrode based device. The TCGF, which was previously 

used for the device 4 and gave the best PCE, was chosen for the fabrication of the 

graphene incorporated TiO2 photoanode-based PSCs. In the fabricated device, the 

graphene structures were incorporated into the compact TiO2 only, the mesoporous 

TiO2 only and both the compact and mesoporous TiO2 layers. The incorporated 

graphene was prepared by mixing GO (0.6 and 0.2 % w/w in blocking layer and 

mesoporous layer, respectively) with the TiO2 precursors prior to deposition. The GO 

is then thermally reduced in situ when sintering the TiO2 layers at 500oC in an Ar 

atmosphere. 

The J–V characteristics and device structures of the TCGFs based PSCs with and 

without graphene in the semiconducting oxide layers are illustrated in Figure 5-6. 

The PV performances of these PSC devices have been summarized in Table 5-2. For 

comparison, the J–V curve and the corresponding energy level diagram of device 4 

(TCGF based PSC without graphene in the semiconducting layer) is also plotted in 

Figure 5-6a and Figure 5-6a′, respectively. Since the work function of RGO is close 

to that of FTO, and lower than the conduction band of TiO2,[25] it is reasonable to 

expect that the injected electrons at the TiO2 conduction band can be transferred to 

the graphene electrode without any barrier. Changes to the work function of gold 

chloride doped graphene have previously been shown to be minimal after thermal 

annealing, as has been done in this work.[70] 

On the other hand, the application of graphene in the semiconducting oxide layers 

should principally increase the efficiency of this class of solar cells due to enhanced 

charge transport.[71] However, as shown in Figure 5-6b, no significant improvement 

in the PV parameters for the PSC was observed after incorporating graphene into the 
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mesoporous TiO2 layer only (Structure 2). We hypothesize that these unchanged PV 

parameters are associated with the energy level alignments of TiO2 and graphene. In 

fact, the injected electrons from the excited perovskite and/or mesoporous TiO2 into 

the graphene cannot be transferred to the conduction band of the compact TiO2 

(Figure 5-6b′) which results in incomplete electron transport within the networks.  

Furthermore, the addition of graphene into the compact TiO2 layer of device 

(Structure 3) exhibited some enhancement in the Jsc and FF parameters and displayed 

a PCE of 0.75%, as illustrated in Figure 5-6c. These increased Jsc and FF values 

could be due to the suitable energy levels of graphene in the cell. The energy levels 

of graphene in the compact TiO2 layer can be ideal for this class of PSC (Structure 3) 

as its work function sits between the TiO2 and graphene anode and so that the 

electrons transfer stepwise from the perovskite to the graphene anode without an 

energy barrier (see Figure 5-6c′). Here, graphene, which was incorporated into the 

compact TiO2 layer, acts as a bridge between TiO2 and graphene anode. In the 

energy diagram, it is reasonable to assume that the work function of RGO (graphene 

anode; used as a transparent conductive film in the PSC) is higher than that of the 

graphene used in the semiconducting oxide layers because the extent of reduction in 

the electrode is relatively high. 

 

 

Figure 5-6. J–V curves (top) and the corresponding energy level diagrams (bottom) 

of TCGF film based PSCs with and without graphene in the semiconducting oxide 

layers. The device structures are shown in the insets. The word abbreviations are as 

follows: RGO – reduced graphene oxide; graphene – GPN; mp-TiO2 – mesoporous 

TiO2; cp-TiO2 – compact TiO2. 
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Table 5-2. Summary of the PV performance of PSCs (Structure 1-4, shown in Figure 

5-6) with RGO incorporated in different segments. Average values and the standard 

deviation (at least three cells for each structure) of the PSCs are shown. Parameters 

of the best cells are also highlighted in bold. 

Device Jsc (mA cm–2) Voc (V) FF η (%) 

Structure 1 2.55; 2.55 ± 

0.03 

0.690; 0.689 ± 

0.001 

0.35; 0.35 ± 

0.01 

0.62; 0.62 ± 

0.00 

Structure 2 2.77; 2.75 ± 

0.02 

0.684; 0.686 ± 

0.002 

0.36; 0.36 ± 

0.00 

0.66; 0.65 ± 

0.01 

Structure 3 2.90; 2.85 ± 

0.05 

0.690; 0.695 ± 

0.005 

0.38; 0.38 ± 

0.00 

0.75; 0.74 ± 

0.01 

Structure 4 3.05; 2.94 ± 

0.11 

0.687; 0.689 ± 

0.002 

0.38; 0.38 ± 

0.01 

0.81; 0.79 ± 

0.02 

 

Structure 4 showed a promising improvement in the energy conversion efficiency 

(0.81%) (Figure 5-6d). In particular, the Jsc and FF values of Structure 4 increased to 

3.04 mA cm–2 and 0.38, respectively, after incorporating graphene structures into 

both the compact TiO2 and mesoporous TiO2 layers. The improvement in these 

parameters (Jsc and FF) can be ascribed to the fact that the conductive graphene in the 

cells enhances the charge transport rate and suppresses the charge recombination. 

Moreover, it is reasonable to expect that the presence of graphene in both the 

compact and mesoporous TiO2 layers provides a thermodynamically favorable 

energy transfer path and potentially offers an extra graphene to graphene conduction 

path both of which enable successful charge collection and hence higher PCE (see 

Figure 5-6d′). A detailed investigation on the effect of carbonaceous materials in the 

TiO2 photoanodes of PSCs is ongoing research in our group. 

The external quantum efficiency (EQE) is an important parameter for evaluating the 

performance of solar cells. PSC devices (Structure 4 in Figure 5-6) with TCGF and 

also graphene in mesoporous and compact TiO2 were chosen for EQE analysis. For 

comparison, the EQE characteristic of the conventional PSC fabricated on FTO 

electrode without graphene was also investigated. Figure 5-7 compares the EQE 

spectra obtained. Both cells show a broad EQE peak across the visible region, typical 

for PSCs.[66] The cell fabricated with graphene (Structure 4 in Figure 5-6) shows a 



146 
 

similar shape to the FTO-electrode based PSC (see Figure 5-7 inset) but much lower 

EQE value, showing that the difference is wavelength independent which indicates 

that the use of graphene film did not alter the internal mechanism of the PSC. The 

lower EQE value of TCGF based cell is expected when considering the low PCE 

obtained, as discussed previously. Moreover, the stability of these two PSCs, namely 

FTO-based and TCGF-based, was investigated for 60 h and the results are plotted in 

Figure S5-6. The degradation rate of TCGF based cell was very similar to that of a 

FTO-based device. 

 

 

Figure 5-7. EQE spectra of FTO electrode (black dots) and TCGF (blue dots, 

Structure 4 (as termed in Figure 5-6 and Table 5-2)) based PSCs. Inset shows the 

expanded EQE spectrum of RGO electrode based PSC. 

 

The initial reported PCE of PSCs was relatively low but has increased rapidly in just 

a few years. It is anticipated that PCE of TCGF in PSCs will show a similar rapid 

improvement as they have in other solar cell architectures.[19] A promising result is 

that the observed Voc for all devices fabricated with TCGF films were similar to that 

of FTO electrodes based cells, indicating that the energy bands of graphene are 

suitable for application in PSCs, supporting theoretical predictions.[32] Therefore, our 

results demonstrate that the use of graphene films as the electron transporting 

transparent conducting electrode in the PSCs is viable. The two key areas for 

research are the improvement in Rs with high transmittance and the creation of 
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flexible PSCs using TCGFs. Further modification of the reduction of GO to increase 

flake size could produce graphene films with better performance for PSCs without 

increasing manufacturing cost. 

 

5.3.  Conclusion 

Herein, we demonstrate the feasibility of transparent conductive graphene films 

(TCGFs) formed by solution processing as alternatives to the conventional 

transparent conducting oxide (TCO) electrodes in PSC devices. The TCGFs were 

prepared by using a low-temperature annealing process as well as chemical post-

treatments. By using an optimal balance of Rs and transparency of the graphene 

films, a maximum PCE of 0.62% was obtained. By incorporating graphene structures 

into both compact TiO2 and mesoporous TiO2 layers of the PSCs, the PCE was 

further improved to 0.81%. Further PCE enhancement is expected in this class of 

solar cells by applying high-quality graphene films with improved electrical 

conductivity and high transparency. Finally, we anticipate that the current work will 

open new avenues for the development of graphene materials in perovskite based 

solar cells. 

 

5.4.  Experimental 

5.4.1.  Materials 

Unless otherwise specified, all chemicals were purchased from Sigma-Aldrich and 

used without further purification. Methylammonium iodide (CH3NH3I), TiO2 paste 

(18NR-T) and tris(1-(pyridin-2-yl)-1H-pyrazol)cobalt(III)tris(hexafluorophosphate) 

(FK102 Co (III) PF6) salt were purchased from Dyesol. (2,2′,7,7′-tetrakis-(N,N-di-p-

methoxyphenylamine)-9,9′-spirobifluorene) (Spiro-OMeTAD) was obtained from 

Solaronix. 

 

5.4.2.  Preparation of graphene films 

Graphite oxide was prepared via the oxidation of natural graphite according to an 

improved Hummers method.[34] In brief, a 9:1 (v:v) mixture of concentrated sulfuric 
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acid (95-98% H2SO4) and phosphoric acid (85% H3PO4) (240:27 mL) was kept in the 

cold room (3-5oC) until it was added to a mixture of graphite flakes (2 g) and 

potassium permanganate (99% KMnO4) (12 g). Then the oxidation process was 

carried out by stirring at 50oC for 12 h. Upon completion, the reaction was cooled 

down to room temperature and poured onto ice (approximately 300 mL) with 30% 

hydrogen peroxide (H2O2) (2 mL). The mixture was then washed with distilled (DI) 

water, 30% hydrochloric acid (HCl) and ethanol (2 times). For each sequential wash, 

the product was centrifuged at 4400 rpm for 3 h and the supernatant decanted away. 

The light brown sample obtained was then vacuum-dried overnight at room 

temperature. 

The as-prepared graphite oxide was exfoliated in water (1 mg mL–1) by bath 

ultrasonication (Elma, Germany) for 40 min in the presence of SDBS (1 wt% in the 

solution). The obtained homogenous dispersion was named “GO–SDBS solution”. 

The GO-SDBS colloidal dispersion (10 mL) was chemically reduced by hydrazine 

monohydrate solution (40 µL, 64-65% N2H4 · H2O) and ammonium hydroxide 

solution (120 µL, 30% NH3 · H2O).[44] The chemical reduction was performed in an 

oil bath at 100°C overnight. The resultant solution (named “CRGO-SDBS”) was then 

diluted with DI water to obtain the final concentration of CRGO-SDBS (0.16 mg L–

1). The diluted solution was further used to prepare the transparent films. For 

comparison, the chemical reduction of GO was performed in the absence of SDBS 

and the resultant solution was named CRGO-only. 

The glass substrates (25 mm × 25 mm) were cleaned by detergent (Pyroneg) 

followed by washing with acetone, ethanol and Milli-Q water under ultrasonication 

for 10 min each and subsequently dried with a stream of nitrogen gas. The cleaned 

glass substrates were pretreated with 3-aminopropyl-triethoxysilane (APTES) (3% in 

toluene) to improve the surface functionalities of the substrates.[24, 39, 56] Transparent 

graphene films were prepared on mixed cellulose ester (MCE) membranes (0.45 µm 

HAWP, Millipore) through the vacuum filtration of CRGO-SDBS solution.[44] The 

transparency of the films was controlled by varying the effective filtration volume of 

solutions. The filtered films (CRGO-SDBS/MCE membrane) were subsequently 

pressed against the APTES-modified glass surface with the graphene side in contact 

with the substrate. The substrates were then firmly clamped in place at room 

temperature for 2 days to completely adhere the CRGO-SDBS film to the substrate. 
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The MCE membranes were dissolved in an acetone bath to leave CRGO-SDBS film 

on the substrate. The obtained CRGO-SDBS films were then rinsed with methanol 

and dried by blowing nitrogen. To further improve the electrical conductivity of the 

films, the as-produced CRGO-SDBS films were thermally reduced in a tube furnace 

at low temperature (400oC) for 1 h. The annealing and cooling processes were 

performed under the protection of an Ar and H2 (20:1) atmosphere. The obtained 

films are named “RGO-SDBS”. To remove the residual SDBS surfactants from the 

films, the RGO-SDBS films were then immersed in concentrated nitric acid (HNO3, 

68%) solution for 3 h and rinsed thoroughly with DI water, and dried at 100oC for 1 

h in a hot oven. After the application of the HNO3-treatment, the samples are called 

“RGO films”. The AuNPs were then deposited onto the RGO films by dynamic spin 

coating of 0.5 mM HAuCl4 in nitromethane, and finally dried completely at 200oC 

overnight. The prepared films are named “AuNPs–RGO films” and have been used 

to fabricate the PSC devices. 

 

5.4.3.  Fabrication of PSC devices 

PSC devices with the structure of graphene anode/compact TiO2/mesoporous 

TiO2/CH3NH3PbI3-xClx/Spiro-OMeTAD/Au were fabricated according to the 

following procedure. The fabrication process of PSCs has been reported 

elsewhere.[12,14] A thin compact TiO2 layer was spin-coated onto the previously 

prepared graphene film and/or cleaned FTO electrode (~12 Ω/□, Solaronix TCO30-

8) substrate at a rotation speed of 2000 rpm for 20 s using 0.2 M titanium 

diisopropoxide bis(acetylacetonate) (75 wt% in isopropanol, Aldrich) in 1-butanol 

solution, followed by heating at 125oC for 5 min. The same process was repeated 

twice with the above solution, followed by drying at 125oC for 5 min and sintering at 

500oC for 1h. For the preparation of the graphene incorporated compact TiO2 layer, 

GO-ethanol solution (1 mg mL–1) was added into the titanium diisopropoxide 

bis(acetylacetonate) in 1-butanol solution. The concentration of the GO in the 

composite was calculated to be 0.6 wt%. After cooling to room temperature, a thick 

mesoporous TiO2 layer was deposited onto the compact TiO2 layer by spin coating a 

solution of TiO2 paste (Dyesol 18NR-T) in a 2:7 weight ratio to ethanol at 4000 rpm 

for 30 s. After drying at 125°C for 5 min, the films were sintered at 500°C for 1 h. 

The mesoporous TiO2 deposited films were then immersed in 40 mM aqueous TiCl4 
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(Aldrich) solution at 70oC for 30 min, which was again annealed at 500oC for 30 

min. Similarly, to prepare the graphene/mesoporous TiO2 layer, the GO-ethanol 

solution was also added into the diluted TiO2 paste solution and the concentration of 

the GO in the composite was controlled to be 0.2 wt%. The GO in the compact 

and/or mesoporous TiO2 layers can simply be converted to graphene during the 

annealing processes. Moreover, during the deposition of the compact and 

mesoporous layers on the transparent electrodes, Parafilm® M seal was rolled onto 

one side of the TCGFs to protect the graphene anode contact. After the completion of 

all annealing processes at 500oC, conductive adhesive tape was carefully applied 

onto the graphene anode to serve as electrical contact. Notably, we measured the Rs 

of the graphene films before and after annealing at 500oC for 1h as this thermal 

annealing process was done after the deposition of TiO2 layers and no significant 

changes in the Rs were observed. Particularly, the Rs of HNO3 and HAuCl4 treated 

RGO films before and after thermal treatment at 500oC were measured to be 4.08 ± 

0.04 kΩ/□ and 4.21 ± 0.12 kΩ/□, respectively. It should also be noted that for the 

fabrication of PSC devices with graphene structures, the thermal annealing processes 

at more than 400oC were carried out under the protection of Ar to protect graphene 

from the mild oxidation. 

For the preparation of CH3NH3PbI3-xClx perovskite, a 1:3 molar ratio of 

PbCl2:CH3NH3I was mixed in anhydrous N, N-Dimethylformamide (DMF) solution 

(99.8% Aldrich), with the concentration of 0.73M and 2.2M, respectively. The 

mixture was stirred at room temperature for at least 6 h before spin coating (100 µL 

of the solution) onto the mesoporous layers at 2500 rpm for 30s in air and then 

heated at 100oC for 1 h. The deposition process of the perovskite was carried out in 

controlled humidity under 35%. 

The HTM (120 µL of the prepared solution) was then deposited onto the perovskite 

layer by spin coating at 4000 rpm for 30 s in a nitrogen-filled glovebox. The HTM 

was prepared by dissolving 72.3 mg Spiro-OMeTAD, 28.8 µl 4-tert-butylpyridine 

(tBP), 17.5 µL of a stock solution of 520 mg mL–1 lithium 

bis(trifluoromethylsulphonyl)imide (Li-TFSI) in acetonitrile and 29 µL of a stock 

solution of 300 mg mL–1 FK102 Co(III) PF6 salt in acetonitrile, in 1 mL 

chlorobenzene. Finally, 60 nm gold electrodes were deposited on top of devices by 
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thermal evaporation at a rate of 1 Å s–1 under a high vacuum (~10–6 bar) through a 

shadow mask. 

 

5.4.4.  Measurement and characterization 

AFM images were acquired in air using a Bruker Dimension FastScan AFM with 

Nanoscope V controller, operating in tapping mode. Silicon cantilevers 

(MikroMasch) with a fundamental resonance frequency of between 300 and 400 kHz 

were used. Images were obtained using a scan rate of 1 Hz with the set point, 

amplitude, and feedback control parameters optimized manually for each sample. 

The images presented have been flattened using NanoScope Analysis v1.4 software. 

SEM images were obtained using an Inspect F50 SEM (FEI) with accelerating 

voltage of 20 kV. EDX analysis was completed on the same system with Team EDS 

Octane Pro (EDAX) attachment. ATR-FTIR spectra were acquired over a 

wavenumber range of 4000-650 cm–1 in transmission mode using a Frontier FTIR 

spectrometer (Perkin Elmer, USA) with a germanium crystal. The elemental 

compositions of the samples were characterized at binding energy ranging from 0 eV 

to 1200 eV using a XPS, Leybold Heraeus LHS-10 with a SPECS XR-50 dual anode 

source operating at 250W. The Mg-Kα source, which has energy of 1253.6 eV, was 

used for the XPS analysis. Curve fitting of the C1s in XPS spectra was done using 

peak fitting software "Fityk".[72] High resolution XPS of the C1s were collected with 

a step size of 0.1 eV and the presented spectra are an average of 5 collections. Raman 

spectroscopy was performed on LabRAM HR Evolution spectrometer (Horiba Jobin 

Yvon, Japan). Raman spectra were collected using a 532 nm laser (mpc 3000) as the 

excitation source. A 50x objective was used with a confocal hole size of 100 μm. 

Thermal decomposition of SDBS was performed using a thermal gravimetric 

analyser (TA Instruments TGA 2950 Thermogravimetric Analyzer, USA) under a 

flow of nitrogen at a rate of at 20.0 mL min-1. The transmittances of the films on 

glass slides were determined using a Varian Cary 50G UV-vis Spectrophotometer at 

wavelengths ranging from 400 to 1000 nm. Sheet resistance measurements were 

performed on the same films using a four point probe technique (KeithLink 

Technology Co., Ltd. Taiwan). The J–V curves were measured using a Keithley 

2400 SMU instrument and recorded using a custom LabView Virtual Instrument 

program. A standard silicon test cell with NIST-traceable certification was used to 
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calibrate the power density as 100 mW cm−2 at the sample plane of the collimated 

xenon-arc light source, which was passed through an AM 1.5G filter. The active area 

of each device was 0.075 cm2. The J-V curves were obtained in air in reverse-scan 

direction from 1 V to -1 V. EQE measurements as a function of wavelength ranging 

from 400 nm to 800 nm were taken by passing chopped light from a Xenon source 

through a monochromator and onto the devices. 
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Figure S5-1 shows the Raman spectra of graphene oxide (GO), chemically reduced 

graphene oxide (CRGO) without and with SDBS surfactant and reveals two typical 

peaks at 1350 cm–1 (D band) and 1592 cm–1 (G band). It is well known that the D and 

G bands indicate the structural defects and sp2 hybridization in carbon materials, 

respectively. As can be seen from Figure S5-1, the D band of CRGO is slightly broad 

and its intensity is relatively high compared to that of CRGO-SDBS, indicating more 

defects exist in the CRGO. Moreover, the intensity ratio (ID/IG) is usually used to 

determine the defects quantity.[1] Some defects (ID/IG=0.91) in the GO are expected 

and is known to be due to the strong oxidization process of graphite.[2] Indeed, the 

ID/IG value of the CRGO-SDBS is 1.04, which is lower than that (ID/IG=1.23) of 

CRGO produced without SDBS. This value confirms that the chemical (hydrazine) 

reduction on GO in the presence of SDBS surfactant creates less defect on the 

CRGO. 

 

 

Figure S5-1. Raman spectra of GO, CRGO without and with SDBS surfactant. 

 

Figure S5-2 illustrates curve fitting of the C1s peak in the X-ray photoelectron 

spectroscopy (XPS) spectra of the samples, namely GO, CRGO-SDBS and RGO-

SDBS. The GO spectra can be fit to three individual components, namely the C-C at 

284.8 eV, the C-O at 286 eV and the C=O and/or the COO at 287.5 eV. With 

chemical and thermal reduction the relative area of the C-C peak increased from 24 
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% for GO to 93 % and 81 %. This result agrees with the ATR-FTIR which showed 

that oxygen containing functional groups are removed with reduction. The shape of 

the C1s spectra may be broadened by the presence of SDBS. 

 

 

Figure S5-2. Curve fitting of the C1s peak in the XPS spectra of GO, CRGO-SDBS 

and RGO-SDBS samples. 

 

The thermal stability of SDBS surfactant was studied using thermo-gravimetric 

analysis (TGA) by (i) heating at 400°C and (ii) heating to 800oC at a rate of 20oC 

min–1 under an inert gas atmosphere. As shown in Figure S5-3, very little weight loss 

was observed for SDBS during heating at a temperature of 400oC for over 1h. This 

small change in the weight loss of SDBS is in very good agreement with our finding 

from ATR-FTIR and XPS where slight decrease in the peak intensities was observed. 

Notably, the main mass loss of SDBS surfactant occurs after annealing at a high 

temperature (> 500oC). However, our aim in this study was to use low-temperature 

based thermal process because high temperature annealing is undesired for the future 

development of flexible solar cells. Although the thermal treatment at 400oC didn’t 

remove the SDBS from the RGO film, the annealing process largely reduced the 

oxygen containing functional groups and significant improvement in the electrical 

conductivity of the films can be expected. 
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Figure S5-3. TGA analysis of SDBS surfactant. 

 

Several changes in the optical transmittance of the films have been observed in each 

treatment. Figure S5-4 depicts the light transmittance at wavelength ranging from 

400–1000 nm and sheet resistance (Rs) of the graphene films. Scheme 5-1d-g 

represents the schematic illustration of these films and is shown in Scheme 5-1. 

 

 

Figure S5-4. Optical and electrical characteristics of (a) CRGO-SDBS, (b) RGO-

SDBS (400oC), (c) RGO (HNO3-treated) and (d) AuNPs-RGO films. 
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A conventional PSC based on FTO electrode was also fabricated and its J-V 

characteristics are shown in Figure S5-5. The structure of the device is also 

illustrated in the inset of Figure S5-5. The FTO electrode based device exhibited Jsc 

of 17.49 mA cm–2, Voc of 0.71 V and FF of 0.63 and yielding a PCE of 7.82%. 

 

 

Figure S5-5. J–V curve of FTO-based PSC. The device structure is shown in the 

inset. 

 

The stability of PSCs fabricated with FTO-electrode and TCGF electrode was 

studied for 60 h. After the fabrication of the cells under controlled humidity (< 35%), 

the cells were stored in ambient conditions (in air and uncontrolled humidity) in the 

dark for the stability test. The J–V characteristics of the cells were measured in every 

12 h. No encapsulation was done for the devices. It can be observed from Figure 

S5-6 that the degradation rate of TCGF based cell was very similar to that of a FTO-

based device. This indicates that the use of TCGF did not alter the internal decay 

mechanism of the PSC. 

Section analysis of the AFM images reveals thickness of GO and CRGO-SDBS steps 

to be in the range of 1-5 nm. This value is typical for such samples when prepared by 

drop casting. The presented images have identical z-scale. 
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Figure S5-6. Stability of the PSCs fabricated based on FTO-electrode and TCGF 

(RGO electrode). The device structures are shown in the insets. Initial PCE for FTO-

based and TCGF-based cell was 7.41% and 0.77%, respectively. 

 

 

Figure S5-7. AFM image of CRGO (a) without and with (b) SDBS surfactant. Insets 

show the thickness measurement using a line profile. 
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Abstract 

One dimensional (1D) semiconducting oxides are unique structures that have been 

widely used for photovoltaic (PV) devices due to their capability to provide a direct 

pathway for charge transport. In addition, carbon nanotubes (CNTs) have played 

multifunctional roles in a range of PV cells because of their fascinating properties. 

Herein, the influence of CNTs on the PV performance of 1D titanium dioxide 

nanofiber (TiO2 NF) photoelectrode perovskite solar cells (PSCs) is systematically 

explored. Among the different types of CNTs, single-walled CNTs (SWCNTs) 

incorporated in the TiO2 NF photoelectrode PSCs showed a significant enhancement 

(~40%) in the power conversion efficiency (PCE) as compared to the control cell 

fabricated with TiO2 NFs-only. Highly conductive SWCNTs incorporated in TiO2 

NFs provided a fast electron transfer within the photoelectrode, resulting in an 

increase in the short-circuit current (Jsc) value. On the basis of our theoretical 

calculations, the improved open-circuit voltage (Voc) of the cells can be attributed to 

a shift in energy level of the photoelectrodes after the introduction of SWCNTs. 

Furthermore, we found that the incorporation of SWCNTs into TiO2 NFs reduces the 

hysteresis effect and improves the stability of the PSC devices both under light and 

during storage in ambient conditions (>60% humidity). In this study, the best 

performing device constructed with SWCNT structures achieved a PCE of 14.03%. 

 

Keywords: Photovoltaic, perovskite solar cells, photoelectrodes, TiO2 nanofibers, 

carbon nanotubes 
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6.1.  Introduction 

High performance photovoltaic (PV) cells that can convert the sun's energy directly 

into electricity through the PV effect are promising clean and renewable energy 

technologies and have great potential to address current energy related issues.[1] 

Organolead halide (CH3NH3PbX3, X = I, Cl or Br) implemented solar cells (known 

as perovskite solar cells (PSCs)) have received significant attention from both 

scientific and industrial communities and have become one of the most popular 

topics in scientific research in recent times.[2, 3] This increasing popularity of PSCs is 

due to the unprecedented rapid progress that has been made in their power 

conversion efficiencies (PCEs) over a short period of time.[4, 5] Since 2009, the PCEs 

of PSCs have increased from 3.8% to 22.1%, making them the fastest-advancing PV 

technology.[6-10] Recent successful fabrication of flexible and large-area PSC devices 

shows great promise for the commercialization of this cutting-edge technology.[11-16] 

The most commonly explored PSC architecture consists of a transparent conducting 

oxide (TCO) coated glass substrate, a compact titanium dioxide (TiO2) layer, 

mesoporous nanocrystalline TiO2 layer, perovskite layer, hole transporting layer and 

metal contact.[5, 17-21] The working principle of this class of PSCs can be expressed as 

follows: upon illumination, the perovskite is excited, producing an electron-hole pair. 

Then the electrons are injected into the conduction band of the n-type 

semiconducting oxide (generally TiO2), while the holes are transported to the p-type 

hole transporting materials (HTMs). Finally, the electrons and holes are collected at 

conductive electrodes such as TCO-based anodes and metal cathodes, 

respectively.[22] Fast charge-transfer processes in PSCs are of particular importance 

to maximize the device performance. The measured values for the injection times of 

electrons and holes in PSCs are 0.4 ns and 0.6 ns, respectively.[23] However, these 

values are three orders of magnitude longer than the hot carrier cooling time (~0.4 

ps), which leads to carrier trapping and a significant loss of the photon energy due to 

thermalization.[23] Moreover, a large number of grain boundaries in the 

nanocrystalline films leads to rapid charge recombination, resulting in reduced 

device performance. These issues have led to some recent efforts focused on 

developing strategies to enhance the charge transport properties in PSCs. 



173 
 

One promising strategy is to use a one dimensional (1D) nanostructure as a substitute 

for the nanoparticles in the photoelectrode to suppress the charge recombination and 

provide a direct pathway along the long axis of 1D nanostructures for electron 

transport.[24-28] In addition, the electron transport rate in 1D nanostructures such as 

nanofibers, nanowires, nanocolumns and nanorods have been considered to be 

several orders of magnitude faster than that of nanoparticles.[29-32] This is achieved by 

reducing the scattering of free electrons from the grain boundaries of the 

interconnected nanoparticles.[33] On the other hand, the incorporation of highly 

conductive carbon nanomaterials such as graphene and carbon nanotubes (CNTs) has 

also been proven as an effective method to facilitate the charge transport and extend 

the electron lifetime, thereby enhancing the efficiency of PV devices.[22, 34-37] 

Although graphene and its derivatives have been successfully utilized for improving 

the performance of PSCs,[38-43] there has been no effort in the application of CNTs 

for use in PSC photoelectrodes. It should be noted that due to their unique structure 

and outstanding properties including excellent conductivity and high optical 

transparency, CNTs have exhibited promising results when they are used as a HTM 

and cathode in PSCs.[44-49] Moreover, CNTs are promising candidates for fabricating 

flexible fiber-shaped PSCs.[50-53] Therefore, integrating highly conductive CNTs into 

1D structured TiO2 for use in the photoelectrode of PSCs is an alternative approach 

to provide an ultrafast electron transport pathway to enhance device performance. 

In the work presented here, the influence of CNTs on the performance of PSCs 

fabricated with 1D TiO2 nanofibers (NFs) is systematically examined. By using an 

optimal amount of single-walled CNT nanostructures (SWCNTs) in the TiO2 NFs, a 

significant enhancement (~40%) in the device performance is achieved as compared 

to the control cell fabricated without CNTs. Further PCE enhancement is obtained by 

incorporating SWCNTs into both compact and mesoporous TiO2 layers of the PSCs. 

Based on our experimental and theoretical analysis, we attribute the performance 

enhancement of PSCs obtained by employing SWCNTs to the introduction of 

suitable energy levels and reduced charge recombination due to the increased charge 

transport of the photoelectrodes. More importantly, PSCs fabricated with SWCNT-

TiO2 NFs exhibited reduced hysteresis and improved stability both under light and 

during storage under humid conditions with respect to the control devices without 

SWCNTs. We also demonstrate in this study that SWCNTs can be used as an 



174 
 

efficient HTM in PSCs. While previous work has shown TiO2 NF-based PSCs can 

achieve PCE values of up to 9.8 %,[25] and 13.4 % for atomic layer deposited 

nanorods,[54] in this work, our best performing PSC achieved a PCE of 14.03%. 

 

6.2.  Results and Discussion 

In order to fabricate PSCs with the device architecture displayed in Figure 6-1a, TiO2 

NFs were first prepared using an electrospinning method. CH3NH3PbI3 was used as a 

light absorbing perovskite material. A detailed description of the synthesis process 

can be found in the experimental section. Low and high resolution scanning electron 

microscopy (SEM) images of the prepared TiO2 NFs are shown in Figure 6-1b and c, 

respectively. The TiO2 NFs were several micrometres in length, while their diameter 

varied within a few hundreds of nanometres. In addition to the relatively uniform 

morphology, the prepared TiO2 NFs films showed an excellent porous network 

which can be beneficial for perovskite absorber loading (see Figure S6-1a-d, 

Supporting Information). The anatase phase of the TiO2 NFs on FTO was confirmed 

by X-ray diffraction as compared to the reference values (9853-ICSD)[55] and can be 

seen in Figure S6-1e. In our devices (Figure 6-1d), TiO2 NFs were used as electron 

transporting layer (ETL). 

 

 

Figure 6-1. (a) Schematic illustration of TiO2 NFs photoelectrode based PSC. (b) 

Low and (c) high resolution SEM image of TiO2 NFs. (d) Cross sectional SEM 

image of representative TiO2 NFs (400 nm thickness) photoelectrode based PSC. 
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The thickness of ETLs in the PSCs has a critical influence on the device 

performance.[10, 56] To investigate the effect of the thickness of TiO2 NFs films on the 

cell efficiency, five PSC devices were fabricated based on the TiO2 NF 

photoelectrodes with different thicknesses. The thickness of the TiO2 NF layer was 

controlled by dilution of the TiO2 NF paste. The diluted TiO2 solutions were spin 

coated onto the compact TiO2 (cp-TiO2) using identical conditions. Cross sectional 

SEM images of TiO2 NF films with different thicknesses (~285 nm to ~2200 nm) are 

depicted in Figure S6-2a–e. For comparison, a planar PSC device was fabricated 

without the TiO2 NF layer (Figure S6-2f and Figure S6-3). 

The PV characteristics of the fabricated devices were studied under an air mass (AM) 

1.5 illumination at 100 mW cm–2. The photocurrent density–voltage (J–V) 

characteristics of the PSCs fabricated with different TiO2 NF thicknesses are 

displayed in Figure 6-2a and the corresponding PV parameters such as short-circuit 

current (Jsc), open-circuit voltage (Voc), fill factor (FF) and PCE have been 

summarized in Table S6-1 (Supporting Information). As an optimal thickness of 

TiO2 NFs, the PSCs fabricated with ~400 nm TiO2 NFs exhibited the highest PCE 

(average efficiency of 8.21 ± 0.46%). The observed Jsc, Voc and FF values for the 

best device based on ~400 nm TiO2 NF photoelectrode PSCs were 15.91 mA cm–2, 

0.87 V and 0.62, respectively, yielding a PCE of 8.56%. 

As shown in Figure 6-2a and Table S6-1, both Jsc and Voc values of PSCs 

continuously decreased with the higher TiO2 NF film thicknesses (from ~400 nm to 

~2200 nm), resulting in lower cell efficiencies. Increasing the film thickness, which 

in turn lowers the PCE, is believed to be a result of the high charge recombination 

rate within the TiO2 NFs based devices.[10, 25, 57] In contrast, the devices fabricated 

without TiO2 NFs (called planar PSCs) or with thin TiO2 NF layers (~285 nm) 

showed high Voc, but their PCEs were low due to the decreased Jsc and FF values. 

This higher Voc value of planar devices can be associated with the lower probability 

of charge recombination as compared to the porous structured PSCs. These results 

are very consistent with recent studies on CH3NH3PbI3 based planar PSC devices.[25, 

58, 59] Considering the PCEs of the devices, the TiO2 NF (~400 nm) film was chosen 

for further investigations and device fabrication. 
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To understand the effect of CNT type on the performance of PSCs, three different 

types of CNTs, namely double-walled CNTs (DWCNTs), multi-walled CNTs 

(MWCNTs) and single-walled CNTs (SWCNTs) were incorporated into the TiO2 NF 

photoelectrodes based PSCs under the same experimental conditions. The J–V curves 

of these devices are plotted in Figure 6-2b. The concentration of CNTs in the TiO2 

NF-CNT hybrid was 0.02 wt%. The average PCEs of these PSCs were calculated 

based on five identical devices (see Table S6-2). It can be seen from Figure 6-2b and 

Table S6-2 that the incorporation of CNTs, regardless of their type increases the Jsc 

value compared to the TiO2 NF-only photoelectrodes, which can be associated with 

the high conductivity of CNTs.[36] In particular, the use of the SWCNTs in TiO2 NFs 

photoelectrodes was shown to considerably enhance the PCE of PSCs by improving 

the Jsc and Voc values despite the fact that a very small amount of SWCNTs was 

added and no optimization was undertaken at this point. Indeed, the addition of 

SWCNTs (0.02 wt%) into the TiO2 NFs photoelectrodes of PSCs increased the PCE 

from 8.56% to 9.91%. We hypothesize that this PCE enhancement is due to the 

excellent conductivity and mixture of metallic and semiconducting behaviour of 

SWCNTs. Therefore, the SWCNTs were chosen for further optimization of the 

devices to maximize the cell performance. 

 

 

Figure 6-2. J–V curves of PSCs fabricated based on (a) different thicknesses of TiO2 

NF films and (b) various types of CNTs incorporated TiO2 NF photoelectrodes. For 

the fabrication of TiO2 NF-CNT photoelectrodes ~400 nm TiO2 NFs was chosen. 
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Figure 6-3a displays the SEM image of SWCNTs incorporated TiO2 NFs. SWCNTs 

a few nanometers in diameter (highlighted by yellow arrows in Figure 6-3a) are 

observed and wrapped around the TiO2 NFs, indicating successful integration of the 

SWCNTs into the TiO2 NFs. It is worth noting that 1D TiO2 NFs can provide a direct 

electron transport pathway.[24] More importantly, in such hybrid structure (TiO2 NFs-

SWCNTs), the SWCNTs are expected to provide an extremely fast electron transport 

pathway with excellent conductivity (see Figure 6-3b). 

 

 

Figure 6-3. (a) SEM image and (b) schematic illustration of TiO2 NF-SWCNT 

hybrid. (c) Raman spectra of TiO2 NFs, SWCNTs and TiO2 NFs-SWCNTs. (d) 

Raman mapping image of TiO2 NFs (top, green) and SWCNTs (bottom, orange) in 

the hybrid sample. In both images, the “bright” regions represent the presence of the 

materials. 

 

To further confirm the presence of SWCNTs in the hybrid, the samples were 

characterized using Raman microspectroscopy. Figure 6-3c shows the Raman spectra 

of TiO2 NFs, SWCNTs and their hybrid structures. For the pure TiO2 NFs, four 

strong peaks at around 149, 397, 512 and 639 cm–1, which correspond to the Eg(1), 

B1g(1), A1g + B1g(2) and Eg(2) modes of anatase TiO2, respectively were observed.[41] On 
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the other hand, the SWCNTs showed two typical Raman feature peaks at around 

1346 and 1587 cm–1 which can be assigned to the “D” band (the disordered mode) 

and “G” band (tangential mode), in addition to the radial breathing mode (RBM) 

peak at around 172 cm–1.[44] For TiO2 NFs-SWCNTs hybrid, all the Raman bands of 

both TiO2 NFs and SWCNTs were observed, further confirming the successful 

incorporation of SWCNTs into the TiO2 NF system. Moreover, confocal Raman 

spectral mapping was carried out on a selected area of the TiO2 NFs-SWCNTs 

hybrid. Notably, the obtained maps in Figure 6-3d confirm the co-existence of TiO2 

NFs and SWCNTs throughout the imaged area indicating a relatively homogenous 

distribution of SWCNTs within the porous film. 

 

Table 6-1. PV parameters of best performing PSC devices fabricated based on TiO2 

NF photoelectrodes with different SWCNTs loadings (extracted from the J–V 

characteristics reported in Figure 6-4). The average PCEs were calculated based on at 

least five devices. PV parameters of the best devices are highlighted in bold. 

Device Jsc (mA cm–2) Voc (V) FF PCE (%) 

TiO
2
 NFs-

only 

15.91; 

15.44 ± 0.54 

0.87; 

0.87 ± 0.01 

0.62; 

0.61 ± 0.01 

8.56; 

8.21 ± 0.46 

0.02 wt% 

SWCNTs 

17.20; 

17.11 ± 0.20 

0.93; 

0.92 ± 0.01 

0.62; 

0.61 ± 0.01 

9.91; 

9.69 ± 0.23 

0.05 wt% 

SWCNTs 

19.34; 

19.04 ± 0.43 

0.93; 

0.93 ± 0.00 

0.61; 

0.61 ± 0.00 

11.05; 

10.81 ± 0.34 

0.10 wt% 

SWCNTs 

20.68; 

20.26 ± 0.37 

0.94; 

0.94 ± 0.01 

0.62; 

0.62 ± 0.01 

12.03; 

11.51 ± 0.40 

0.20 wt% 

SWCNTs 

19.24; 

19.16 ± 0.31 

0.92; 

0.91 ± 0.01 

0.60; 

0.59 ± 0.01 

10.54; 

10.16 ± 0.32 

0.40 wt% 

SWCNTs 

17.56; 

17.43 ± 0.37 

0.90; 

0.89 ± 0.01 

0.62; 

0.60 ± 0.02 

9.80; 

9.40 ± 0.39 

 

In order to optimize the devices, five PSCs were fabricated using different SWCNT 

content in the TiO2 NF photoelectrodes and their performances were compared with 

TiO2 NF-only photoelectrodes control cells. Figure 6-4 shows the typical J–V curves 
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of the TiO2 NF-SWCNT hybrid photoelectrodes based PSC devices. The 

corresponding PV parameters of these devices have been summarized in Table 6-1. 

Starting from the control devices constructed based on TiO2 NF-only 

photoelectrodes, the Jsc and Voc are 15.91 mA cm–2 and 0.87 V, respectively. With 

increasing SWCNT loading in the TiO2 NF photoelectrodes, both the Jsc and Voc 

values of the PSCs increased up to 20.68 mA cm–2 and 0.94 V, respectively, peaking 

at 0.10 wt%, followed by a decrease with further increases in SWCNTs content. The 

increase in the Jsc of the cells is probably due to the improved conductivity the films 

(see Figure S6-4) that can accelerate the electron transport process within the 

photoelectrode of PSCs. However, when the concentration of SWCNTs in the hybrid 

further increases to 0.20 wt% and 0.40 wt%, both Jsc and Voc values of the devices 

decreased despite the films having reduced sheet resistance (Rs). 

 

 

Figure 6-4. J–V curves of best performing PSC devices fabricated with different 

SWCNTs contents in the TiO2 NF photoelectrodes. The performance of the cells 

were measured under AM 1.5G illumination at 100 mW cm–2. 

 

A series of detailed investigations have been carried out to understand the origin of 

the decrease in PV performance at higher SWCNT loadings. We measured the 

optical transmittance of the TiO2 NF films (on a glass slide) with different SWCNT 

loadings (Figure S6-5a). A low optical transmittance of photoelectrode could 

elucidate the decreased Jsc value of the cells due to the less light being incident upon 
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the perovskite layer. However, not surprisingly given the small amounts of CNTs 

being added, the changes in the film transmittance by adding SWCNTs into the TiO2 

NFs were very small. For example, for the 0.20 wt% SWCNTs incorporated TiO2 NF 

film, the reduction of the transmittance was only ~4% as compared to that of the 

TiO2 NFs-only film. Therefore, the decreased Jsc of the device after adding 0.20 wt% 

and 0.40 wt% SWCNTs into the TiO2 NF photoelectrodes cannot be explained solely 

by the slightly reduced transmittance of the films. As with all other work that has 

incorporated nanocarbons in solar cells, we observed that there is an optimal loading 

which gives the maximum efficiency. At loading above the optimal, it is likely that 

the decreased PV performance is due to the fact that the CNTs provide extra 

junctions or sites where recombination of charge carriers is possible. It has been 

found that nanocarbons including CNTs are suitable candidates to replace the 

conventional HTMs in PSCs and/or improving the device efficiency owing to their 

fascinating properties.[44-48, 60] In order to confirm our hypothesis, we used SWCNTs 

as a HTM for the TiO2 NF-only photoelectrode based PSCs. For comparison, PSC 

devices with and without conventional HTM (Spiro-OMeTAD) were fabricated and 

compared (Figure S6-5). It is not surprising that the HTM-free device 

(Perovskite/Au) exhibited a very poor PCE (3.65%), while Spiro-OMeTAD (typical 

HTM) based PSC was able to achieve an average PCE of 8.21%. The poor 

performance of HTM-free PSC is known to be due to the significant charge 

recombination caused by direct contact between the perovskite and gold electrode.[44] 

Interestingly, when SWCNTs are used as a HTM in PSCs by inserting them between 

the perovskite and gold electrode, the fabricated device showed an improved PCE 

(6.01%) compared to the device without HTM, demonstrating that SWCNTs can act 

as an efficient HTL for PSCs. It is known that CNTs are ambipolar and can conduct 

both holes and electrons.[61] This ability in PSCs is confirmed in these experiments. 

Thus, in the TiO2 NF-SWCNTs based electrode, it is very likely that the presence of 

larger amounts of SWCNTs will prolong the lifetime of the hole charge carriers and 

this will lead to increased recombination rates in the ETL. This likely explains the 

decreased Jsc and Voc values of the PSC devices after adding high concentrations of 

SWCNTs into the TiO2 NFs photoelectrodes. 

As can be seen from Figure 6-4 and Table 6-1, the PSC devices fabricated based on 

the 0.10 wt% SWCNTs incorporated TiO2 NFs photoelectrodes showed the highest 
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PCE of 12.04% with an average efficiency of 11.51 ± 0.40%, whereas the control 

cells without SWCNTs displayed an average PCE of 8.21 ± 0.46%. The calculated 

PCE enhancement of PSCs loaded with 0.10 wt% SWCNTs (in comparison to the 

efficiency of the control cell) was 40.6%. In addition, the reproducibility of both 

control and SWCNTs incorporated devices was high and this is evident from the 

small standard deviation in the PV efficiency (Figure S6-6). This result confirms that 

the incorporation of SWCNTs in the TiO2 NFs photolectrodes does not alter the 

reproducibility of the devices. Indeed, the increased Jsc and Voc values were the 

major contributions to this efficiency enhancement. Therefore, the devices loaded 

with 0.10 wt% SWCNTs and the control cells were chosen for further investigation 

to fully understand the role of SWCNTs in the PSCs. 

To confirm the enhancement of the Jsc, the incident-photon-to-current conversion 

efficiency (IPCE) spectra of the PSCs fabricated with and without SWCNTs (0.10 

wt%) in the photoelectrodes were recorded and their results are plotted in Figure 

6-5a. Clearly, the IPCE value of TiO2 NF photoelectrodes containing SWCNTs is 

higher than that of the control cell without SWCNTs. The integrated photocurrent 

density of the TiO2 NFs-only and TiO2 NFs-SWCNTs photoelectrodes based PSCs 

was 15.20 mA cm-2 and 19.50 mA cm-2, respectively, which are in agreement with 

the measured Jsc from the J-V characteristics of the devices. The improved current is 

evident over the entire wavelength region, indicative of enhanced electron collection 

in the PSC loaded with SWCNTs. The improved Jsc value of the TiO2 NF-SWCNT 

photoelectrodes was further examined using electrochemical impedance 

spectroscopy (EIS).  

EIS measurement of full PSC devices in the dark can be used to distinguish the 

charge transfer at the perovskite/HTM/cathode interface and the charge 

recombination at the ETL (TiO2)/perovskite interface.[62] EIS of the PSCs fabricated 

with and without SWCNTs in the TiO2 NFs photoelectrodes was measured at a bias 

of 0.3 V in the dark and the extracted data with a simplified circuit model are 

illustrated in Figure 6-5b. In general, the high frequency arc is associated with the 

diffusion of holes through the HTM, while the lower frequency arc is related to the 

recombination resistance, Rrec, mainly due to the charge recombination between the 

electron transporting material and HTM.[62, 63] Clearly, the diameter of the semicircle 

at the lower frequency of SWCNTs incorporated TiO2 NFs photoelectrode based 
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PSC is larger than that of TiO2 NFs-only device, indicating higher Rrec (87.0 kΩ) for 

SWCNTs employed device as compared to the control device (58.3 kΩ). The high 

Rrec indicates an efficient blocking for possible recombination. This result clearly 

demonstrates that the SWCNTs significantly reduced the charge recombination and 

increased the charge transfer within the cell as expected. 

 

 

Figure 6-5. (a) IPCE and (b) EIS spectra of PSC fabricated with and without 

SWCNTs (0.10 wt%) in the TiO2 NFs photoelectrode. 

 

To further investigate the effect of SWCNTs on the charge transfer process of TiO2 

NF photoelectrodes based PSCs, dark J-V measurements were carried out (see Figure 

S6-7). The dark J-V measurement can provide important information about the 

recombination process in the devices.[42] From the dark J-V measurement, an ideality 

factor of each device can be calculated, and notably, low values of ideality factor 

represents less charge recombination. The ideality factor of the TiO2 NFs-SWCNTs 

photoelectrode based PSC device was 1.82 which was lower than that (2.41) of the 

control PSC, proving that the incorporation of SWCNTs in the TiO2 NFs 

significantly suppresses the recombination process in the devices. 

It should be noted that the previous studies have shown decreased and/or unchanged 

Voc values of PSC devices after the incorporation of various nanocarbon materials 

into the ETLs.[39, 40, 42] Interestingly, our study demonstrates that the addition of a 

small amount of SWCNTs into the ETL leads to a considerable enhancement in the 

Voc. In order to explain why the Voc value increased after adding SWCNTs into the 

TiO2 NFs, we investigated the interactions between SWCNTs and anatase TiO2 (101) 
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surface using a computational method method based on the first principles density 

functional theory (DFT). In theory, the Voc of PSCs is the difference between the 

conduction band minimum (CBM) of the TiO2 and the potential energy of the HTM. 

Based on the DFT results, the CBM level is 0.58 V vs. SHE (see Figure 6-6a). After 

the adsorption of SWCNT, the analysis of density of states (DOS) demonstrates that 

the system changes from a semiconductor to a metallic material (see Figure 6-6b), 

which supports that the improved electronic conductivity observed in EIS 

measurements. Moreover, the theoretical Voc can be calculated based on the 

difference between the work function of metallic SWCNT-TiO2 and the potential 

energy of the HTM. The theoretical results reveal that the work function of SWCNT-

TiO2 is 0.35 V vs SHE, which is 0.23 V higher than the CBM level of TiO2. Since 

the redox potential of the HTM is a constant, the theoretical Voc can, therefore, be 

enhanced by 0.23 V, which matches the experimental observations. 

 

 

Figure 6-6. (a) Atomic structure of pure anatase TiO2 (101) surface (upper panel) 

and its DOS plot vs the SHE in V (lower panel). (b) Atomic structure of SWCNT-

anatase TiO2 (101) surface (upper panel) and its DOS plot vs the SHE in V (lower 

panel). Inset in (b) is the atomic structure at the interface between the SWCNT and 

TiO2 (101). Blue, Ti; red, O; brown, C; pink, H. 
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One of the critical challenges in PSCs is hysteretic J−V behaviour. In general, the 

hysteresis effect in PSCs is observed from the forward scan (FS, from Jsc to Voc) and 

reverse scan (RS, from Voc to Jsc) of a J–V measurement.[64] Here, we studied the 

hysteresis behaviour of our PSCs fabricated with and without SWCNTs in the TiO2 

NFs photoelectrodes (see Figure 6-7). As illustrated in Figure 6-7a, the TiO2 NF-only 

based device exhibited a large hysteresis and distortion in the J–V curves. Such 

hysteresis behaviour causes an underestimation of the real J–V curves in the FS and 

overestimation in the RS. Interestingly, it can be seen from Figure 6-7b and Table 

S6-3 that the incorporation of SWCNTs into the photoelectrodes reduces the 

hysteresis behaviour of the cells. The exact mechanism of hysteresis phenomenon in 

PSCs is not well established, however several explanations have been suggested 

based on both experimental and theoretical investigations.[64] It has been suggested 

that an anomalous hysteresis in PSCs can be attributed to the charge recombination at 

the interface between perovskite and charge transporting layer.[42, 65] Clearly, 

SWCNTs suppressed the charge recombination in the PSC photoelectrodes and this 

may contribute to the reduced J–V curve hysteresis. 

 

 

Figure 6-7. J–V curves measured at FS and RS for the (a) TiO2 NFs-only and (b) 

TiO2 NFs-SWCNTs photoelectrodes based PSCs. Detailed PV parameters are given 

in Table S6-3. 

 

The stability of PSCs is an important factor for their potential commercialization on 

an industrial scale. The long-term storage stability of the PSC devices fabricated with 

and without SWCNTs in the TiO2 NF photoelectrodes was investigated over 12 days 
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(288 h). For the long-term storage stability test, the unencapsulated cells were stored 

in the dark and kept in ambient conditions (normal laboratory) at a relative humidity 

of at least 60%. Normalized PCEs of these 2 devices are plotted in Figure 6-8a and 

detailed PV parameters (Jsc, Voc, FF and PCE) are also shown in Figure S6-8a. It can 

be seen from Figure 6-8a that the PCE of the control PSC without SWCNTs in the 

photoelectrode dropped by ~90% after 288 h, while the TiO2 NF-SWCNT 

photoelectrodes exhibited ~66% degradation after the same period. Similar 

phenomena were also observed in several recent reports using graphene derivatives 

in the TiO2 photoelectrodes of PSCs.[42, 43] It is now accepted that in a humid 

environment, water molecules cause the decomposition of perovskite and results in 

severe morphological changes (such as pinholes, small grains and coarse surface).[66] 

Such morphological features are detrimental to the direct electron transfer between 

perovskite and TiO2. The presence of SWCNTs in the TiO2 photoelectrodes provides 

better connectivity with the perovskite, and hence provides extra charge carrying 

pathways, which may mitigate the changes in the perovskite structure. Undoubtedly 

this extends the electron lifetime in the cell helping to maintain efficiency over 

longer times. 

 

 

Figure 6-8. (a) Normalized PCE of PSCs fabricated with and without SWCNTs in 

the TiO2 NF photoelectrodes as a function of long-term storage time. The 

unencapsulated cells were kept in the dark in ambient conditions at a relative 

humidity of at least 60%. (b) Normalized PCE of the devices with and without 

SWCNTs in the TiO2 NF photoelectrodes as a function of time exposed to 

continuous light illumination (100 mW cm−2, xenon lamp) for 144 min. 
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In addition to the long-term storage stability in ambient conditions, the light-stability 

of the PSCs with and without SWCNTs was explored. This was achieved by 

exposing PSCs to continuous light illumination (100 mW cm−2, xenon lamp) for 144 

min. The data were collected in the reverse scan direction every 8 min in an ambient 

atmosphere. Detailed PV parameters are also shown in Figure S6-8b. It can be 

clearly observed from Figure 6-8b that the device fabricated with TiO2 NF-SWCNTs 

photoelectrodes showed better stability than the control cell based on TiO2 NFs-only 

photoelectrode. This improved light-stability of the device with SWCNTs in the 

photoelectrode may be attributed to the high thermal conductivity of SWCNTs. The 

highly conductive SWCNTs are expected to effectively remove the heat during cell 

operation (during light soaking) which will likely help stability of the devices during 

operation. 

It has been well established that the use of nanocarbons in the compact TiO2 (cp–

TiO2) layer of PSCs is an effective strategy to enhance the performance of PSC 

devices.[38, 40] Therefore, in this work, we also explored the influence of SWCNTs in 

the cp–TiO2 layer on the efficiency of TiO2 NFs-only photoelectrode based PSCs. As 

compared to the control device without any SWCNTs (Figure S6-9a), SWCNTs 

incorporated cp-TiO2 layer based TiO2 NFs photoelectrode based device exhibited a 

clear enhancement in the efficiency (see Figure S6-9b and Table S6-4). We postulate 

that this improvement in the efficiency of PSCs is due to the enhanced electron 

transport rate and thermodynamically favourable energy transfer path within the 

photoelectrode.[40] Furthermore, in order to maximize our device performance, we 

fabricated PSC devices with SWCNTs in both cp-TiO2 layer and TiO2 NF layer. The 

layered structure and PV characteristics of the device are illustrated in Figure 6-9. 

The observed Jsc, Voc and FF values for this device were 21.42 mA cm–2, 0.98 V and 

0.67, respectively, yielding a PCE of 14.03%. It should be pointed out that while this 

enhanced PCE is not over the 20% and higher being reported for the best cells,[8] the 

considerable improvement in PCE using CNTs in combination with a 1D 

nanomaterial does point to a promising research direction where other materials 

could be used for these systems, and as such, the improved PCE observed is an 

important result. 
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Figure 6-9. J–V curve of the best performing device in this study. Inset shows the 

device structure and detailed PV parameters. 

 

It should be noted that the Voc values of our devices were slightly lower than those 

reported in other studies,[24, 25] despite optimization. It was found that the aperture 

masking of the PSCs during the J–V analysis has some influence on the Voc of the 

devices, which leads to an underestimation and/or overestimation of cell 

performance.[67] We note that the aperture mask with an area of 0.081 cm2 was used 

for all J–V measurements in this work to provide an accurate comparison of PSC 

devices, while the active area (overlapped area of FTO electrode and gold electrode) 

of the devices was 0.14 cm2. In order to understand the effect of the aperture mask on 

the PV parameters of our devices, the control device based on TiO2 NFs-only 

photoelectrodes and the best performing PSC (device structure shown in the inset of 

Figure 6-9) were fabricated and their J–V characteristics are analysed with and 

without an aperture mask. It can be observed from Figure S6-10 that the Voc values 

of PSCs were increased by ~53 mV when measurement is carried out without an 

aperture mask, but no changes were observed in the Jsc and FF values. For example, 

the Voc of the TiO2 NF-only PSCs (control cell) increased from 0.87 V to 0.93 V 

when J–V characteristics are measured without a mask, and yielding an improved 

PCE (9.1%). These improved values (Voc and PCE) are comparable and similar to 

those reported in the literature,[24, 25] suggesting that in our study, the Voc values 
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measured with aperture mask were slightly underestimated and would be higher if no 

mask was applied during the J–V analysis. 

 

6.3.  Conclusion 

In this work, we have demonstrated the successful incorporation of highly 

conductive CNTs into 1D TiO2 NF photoelectrodes for highly efficient PSCs. We 

found that the use of SWCNTs is the most effective material among three different 

types of CNTs to obtain high PCEs from the devices. In comparison to the control 

device fabricated without CNTs, a significant enhancement (~40%) in the cell 

efficiency is achieved by incorporating an optimized amount of SWCNTs into the 

TiO2 NF PSCs. The improved Jsc and Voc values are the main contributions to this 

efficiency enhancement. The increased Jsc is due to the fact that hybrid structure of 

TiO2 NF-SWCNT provided a fast electron transport pathway with excellent 

conductivity and thus suppressed the charge recombination rate in the PSCs. Our 

theoretical calculation revealed that the energy levels of the photoelectrode are 

changed by introducing SWCNTs into the TiO2 NFs, and resulted in an increase in 

the Voc. Interestingly, we found that the use of SWCNTs in the TiO2 NFs 

photoelectrode reduced the hysteresis behaviour and improved the stability of the 

PSC devices both during operation under light and for long term storage in humid 

conditions. Importantly, our best performing PSC device fabricated with SWCNTs in 

both cp–TiO2 and TiO2 NFs layers achieved a PCE of 14.03%. Therefore, we believe 

that this work will open new research avenues for the development of nanocarbon 

and nanofiber materials in PSCs. 

 

6.4.  Experimental Section 

6.4.1.  Materials 

Unless otherwise stated, all chemicals and reagents were purchased from Sigma-

Aldrich. A fluorine-doped tin oxide (FTO) coated glass electrode, methylammonium 

iodide (CH3NH3I), tris(1-(pyridin-2-yl)-1H-pyrazol) cobalt(III) tris (hexafluoro 

phosphate) (FK102 Co(III) PF6) salt were obtained from Dyesol. (2,2′,7,7′-tetrakis-

(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene) (Spiro-OMeTAD) was 
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purchased from Solaronix. Arc-discharge SWCNTs (P3-SWNT) were purchased 

from Carbon Solution Inc., Riverside, CA, USA, while both DWCNTs (<5 nm in 

diameter) and MWCNTs (<10 nm in diameter) with a purity of 90% and a length of 

5–15 µm were obtained from Shenzhen Nanotech Port Co., Ltd, China. 

 

6.4.2.  Materials preparation 

TiO2 NFs were prepared by electrospinning a sol-gel solution consisting of titanium 

(IV) n-butoxide (TIB, 5.0 g), poly(vinyl pyrrolidone) (PVP, 1.0 g), and glacial acidic 

acid (1 mL) in an ethanol (10 mL). A detailed description of the TiO2 NFs synthesis 

process can be found in the literature.[37] The obtained TiO2 NFs were further used to 

prepare a viscous paste according to the established procedure.[37] The concentration 

of the TiO2 NFs in the paste was calculated to be ~15.14 wt%. To optimize the 

thickness of the TiO2 NFs layer in the photoelectrodes, the prepared viscous paste 

was diluted with various amounts of ethanol for various times, followed by spin 

coating at 2500 rpm for 30 s. Various dilution ratios of TiO2 NFs paste and ethanol 

were used, 1:1, 1:2, 1:4, 1:6 and 1:8 (weight ratio), to prepare films with thicknesses 

of 2200 nm, 1300 nm, 580 nm, 400 nm and 280 nm, respectively. On the basis of PV 

performance obtained using these diluted solutions, the dilution ratio of 1:6 

(paste/ethanol) was chosen. 

In order to prepare the stock solution of CNTs, an aqueous Triton X-100 solution 

with 1 vol% concentration was first prepared. Then, CNTs (10 mg) were dispersed in 

the previously prepared Triton X-100 solution (10 mL) using an ultrasonication 

(bath) for 1 h. The concentration of the CNTs stock solution was 1 mg mL–1. For the 

preparation of TiO2 NFs-CNTs hybrid based solutions, the desired concentration 

(wt%) of CNTs in the hybrid was obtained by adding an appropriate volume of the 

CNTs stock solution into 3.50 g of the diluted TiO2 NFs dispersion. 

 

6.4.3.  Device fabrication 

Firstly, FTO-coated glass substrates were etched using 2M HCl and Zn powder, 

followed by sequential cleaning with a detergent (Pyroneg) and washing with 

acetone, ethanol, and Milli-Q water under ultrasonication for 10 min each. After 

drying the cleaned FTO electrodes with a stream of nitrogen gas, a thin compact 
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layer of TiO2 was deposited onto the FTO substrate by spin coating 0.15 M and 0.25 

M titanium diisopropoxide bis(acetylacetonate) (75 wt% in isopropanol, Aldrich) in 

1-butanol solution. After each spin coating, the films were dried by heating at 150 oC 

for 15 min in air. For the fabrication of our best performing PSC (the device structure 

is shown in the inset of Figure 6-9), SWCNTs were added into the titanium 

diisopropoxide bis(acetylacetonate) in 1-butanol solution to prepare the precursor for 

the compact layer. The concentration of the SWCNTs in the composite was 0.02 

wt%. Then, a thick ETL was deposited onto the compact layer to prepare the 

photoelectrode by spin coating a solution of TiO2 NFs-only and/or TiO2 NFs-CNTs 

at 2500 rpm for 30 s. The films were heated gradually under an air flow at 125 oC for 

5 min, 325 oC for 5 min, 375 oC for 15 min, and 450 oC for 1 h, followed by cooling 

to room temperature. The photoelectrode films were immersed in 40 mM TiCl4 

aqueous solution at 70oC for 30 min and dried with nitrogen gas, which was again 

annealed at 450 oC for 1 h. After cooling to ~120 oC, the films were transferred into a 

nitrogen-filled glove box. 

The perovskite precursor solution was prepared by dissolving a stoichiometric 

amount (1:1 molar ratio) of PbI2 (0.507 g) and CH3NH3I (0.175 g) in an anhydrous 

dimethylsulfoxide (DMSO, 1 mL). The perovskite layer was deposited onto the 

photoelectrode films by spin coating as described in the literature.[68] The spin 

coating recipe includes two steps, first 1000 rpm for 10 s with a ramp of 250 rpm s–1, 

then 5000 rpm for 30 s with a ramp of 2000 rpm s–1. ~12 s before the end of the spin-

coating program, anhydrous chlorobenzene (120 µL) was gently dropped on the 

spinning substrate. The films were then heated at 95 oC for 1h in the glovebox. 

After drying the perovskite coated films completely, the HTM (70 µL) was deposited 

onto the perovskite layer by spin coating at 4000 rpm for 20 s. The HTM was 

prepared by dissolving 28.9 mg Spiro-OMeTAD, 11.5 µL 4-tert-butylpyridine (tBP), 

7.0 µL of a stock solution of 520 mg mL–1 lithium bis (trifluoromethylsulphonyl) 

imide (Li-TFSI) in acetonitrile and 9.0 µL of a stock solution of 100 mg mL–1 FK102 

Co(III) PF6 salt in acetonitrile, in 400 µL chlorobenzene. For the fabrication of 

SWCNTs–HTM based device, dispersion of SWCNTs in chlorobenzene (1 mg mL–1) 

was spin coated onto the perovskite layer at 4000 rpm for 20 s. After the HTMs 

deposition, the films were stored overnight in a dry air desiccator. Finally, 50 nm 
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gold electrodes were thermally evaporated at a rate of 1 Å s–1 under a high vacuum 

through a shadow mask. 

 

6.4.4.  Characterization 

Top-view and cross-sectional SEM images were obtained using an Inspect F50 SEM 

(FEI) with accelerating voltage of 20 kV. X-ray diffraction (XRD) of TiO2 NF films 

on FTO was carried out using a Bruker D8 diffractometer with Cu Kα source and 

parallel beam optics equipped with a PSD LynxEye silicon strip detector. The 

incident beam was kept at an angle of 1° and the angular range of diffraction patterns 

were collected at 10° < 2θ < 66° with a step size of 0.05° at 2 s/step. The anatase 

phase of TiO2 was confirmed by comparing the patterns from the Inorganic Crystal 

Structure Database (ICSD). Raman confocal spectroscopy and spectral mapping 

were completed using a Witec Alpha 300RS with a 40 x objective and 532 nm laser 

excitation. Raman single spectra were acquired with integration times of 5 s and 3 

accumulations. The Raman spectral image was obtained by collecting a series of 

100 x 100 single spectra (0.2 s integration per spectrum) over an area of 20 x 20 μm. 

The optical transmittances of the films on glass slides were analysed using a Varian 

Cary 50G UV-vis spectrophotometer at wavelengths ranging from 400 to 1000 nm. 

Sheet resistance measurements were performed on the same films using a four point 

probe technique (KeithLink Technology Co., Ltd. Taiwan). The electrochemical 

impedance spectroscopy was measured with an Autolab PGSTAT128N on the 

photoelectrodes using a half cell configuration in 0.1 M NaCl. Analysis was 

completed in the dark with 0 V bias with 10 mV modulation over the frequency 

range of 100000 – 0.1 Hz. 

The photocurrent–voltage (J–V) characteristics were analysed using a Keithley 2400 

SMU instrument and recorded using a custom LabView Virtual Instrument program. 

A standard silicon test cell with NIST-traceable certification was used to calibrate the 

power density as 100 mW cm–2 at the sample plane of the collimated a 150W xenon-

arc light source (Newport), which was passed through an AM 1.5G filter. The scan 

rate and delay time are 200 mV s–1 and 30 ms, respectively. The active area of the 

fabricated devices was 0.14 cm2. The devices were masked with an aperture mask 

(with area of 0.081 cm2) and tested in air atmosphere. The incident-photon-to-current 
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conversion efficiency (IPCE) spectra as a function of wavelength ranging from 300 

nm to 800 nm were taken by passing chopped light from a xenon source through a 

monochromator and onto the devices. The light intensity of the illumination source 

was adjusted using a photodiode detector (silicon calibrated detector, Newport). 

 

6.4.5.  Computational detail 

All density functional theory (DFT) computations were performed with the Vienna 

ab initio simulation package (VASP, version 5.4.1) using the projector-augmented 

wave (PAW) method.[69, 70] Electron-ion interactions were described using standard 

PAW potentials with valence configurations of 3s23p64s23d2 for Ti (Ti_sv_GW), 

2s22p2 for C (C_GW_new), 2s22p4 for O (O_GW_new), and 1s1 for H (H_GW). A 

plane-wave basis set was employed to expand the smooth part of wave functions 

with a cut-off kinetic energy of 520 eV. The electron-electron exchange and 

correlation interactions were parameterized by Perdew-Burke-Ernzerhhof (PBE),[71] 

a form of the general gradient approximation (GGA), was used throughout. 

To simulate the interaction between the SWCNT and anatase TiO2, the anatase TiO2 

(101) surface was employed since it is the most stable.[72] For structural relaxations 

of the anatase (101) surfaces, a 12-layer slab for the (22) surface cell with 144 

atoms was enclosed in a supercell with sufficiently large vacuum regions of 15 Å to 

ensure the periodic images to be well separated. During the geometry optimizations, 

all atoms were allowed to relax until the Hellmann-Feynman forces were smaller 

than 0.001 eV Å–1. The convergence criterion for the electronic self-consistent loop 

was set to 10-5 eV. We performed Brillouin-zone integrations using a gamma-

centered (1 × 3 × 1) k-point grid. The corresponding k-mesh densities and the cut-off 

kinetic energy have been justified in our previous studies.[73, 74] Since P3-SWCNT 

used in this study have 3-6% carboxylic acid groups, the adsorption of SWCNT was 

investigated through the interaction between on carboxylic acid group with the Ti 

and O atoms in the (101) surface. The detailed atomic structure at the interface of 

SWCNT and TiO2 can be found in Figure 6b. The energy level vs the SHE is 

calculated according to the Equation: 

U (vs SHE, V) = (Evac  Eb  ESHE)/e 
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where Evac, Eb and ESHE are vacuum energy, the energy of electronic bands, and the 

absolute energy of standard hydrogen electrode (SHE, which is 4.44 eV), 

respectively. And the e represents the electron charge here. 
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Figure S6-1. (a-d) SEM images of the electrospun TiO2 NFs. (e) XRD pattern of 

TiO2 NFs on FTO confirming the anatase phase with reference to 9853-ICSD. 

 

 

Figure S6-2. Cross sectional SEM images of TiO2 NF photoelectrodes with the 

thickness of (a) ~2200 nm, (b) ~1300 nm, (c) ~580 nm, (d) ~400 nm, (e) ~285 nm 

and (f) 0 nm (planar). 
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Table S6-1. PV parameters of best performing PSCs fabricated with different TiO2 

NF thicknesses based photoelectrodes (extracted from the J–V characteristics 

reported in Figure 6-2a). The thicknesses of TiO2 NF films for the fabrication of PSC 

devices are illustrated in Figure S6-2. The average PCEs of the cells were calculated 

based on at least five identical devices. 

TiO2 NFs 

thickness 

Jsc (mA cm–2) Voc (V) FF PCE (%) Average 

PCE (%) 

2200 nm 11.58 0.75 0.58 5.01 4.77 ± 0.27 

1300 nm 13.19 0.77 0.61 6.13 5.50 ± 0.47 

580 nm 15.55 0.84 0.58 7.54 7.21 ± 0.36 

400 nm 15.91 0.87 0.62 8.56 8.21 ± 0.46 

285 nm 14.86 0.87 0.62 8.07 7.74 ± 0.44 

0 nm (planar) 12.87 0.94 0.58 7.02 6.70 ± 0.44 

 

 

Table S6-2. PV parameters of best performing PSC devices fabricated with different 

types of CNTs incorporated TiO2 NF photoelectrodes (extracted from the J–V 

characteristics reported in Figure 6-2b). ~400 nm TiO2 NF films were chosen for 

these cells. The concentration of CNTs in the TiO2 NF-CNT hybrid was 0.02 wt%. 

The average PCEs were calculated based on at least five identical devices. 

Device Jsc  

(mA cm–2) 

Voc, 

(V) 

FF PCE, 

(%) 

Average, 

PCE (%) 

TiO2 NFs-only 15.91 0.87 0.62 8.56 8.21 ± 0.46 

TiO2 NFs-DWCNTs 16.71 0.88 0.62 9.04 8.81 ± 0.20 

TiO2 NFs-MWCNTs 17.07 0.86 0.62 9.08 8.97 ± 0.15 

TiO2 NFs-SWCNTs 17.20 0.93 0.62 9.91 9.69 ± 0.23 
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Figure S6-3. (a) Cross sectional SEM image and (b) schematic illustration of the 

planar PSC device structure. 

 

 

Figure S6-4. Rs of the TiO2 NF films with various SWCNT loadings. Error bars are 

calculated from five different measurements. 

 

 

Figure S6-5. (a) Optical transmittance of the TiO2 NF based films with different 

concentrations of SWCNTs. (b) J–V curves of TiO2 NF-only photoelectrodes based 

PSCs with different hole transporting materials (HTMs). 
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The measurement of sheet resistance (Rs) of the TiO2 NF-SWCNT thin films (on 

glass substrate) was carried out using a four point probe to investigate the mechanism 

of enhancement in the Jsc value of the devices. As shown in Figure S6-4, the Rs of 

TiO2 NF films decreased gradually with increasing concentration of SWCNTs. This 

decrease in the Rs of the films is attributed to the high conductivity of SWCNTs that 

decreases the interfacial resistance between TiO2 NFs. 

 

Table S6-3. PV parameters of PSCs with and without SWCNTs in the 

photoelectrodes measured at forward and reverse J–V scans. 

Device Scan direction Jsc (mA cm–2) Voc (V) FF PCE (%) 

TiO2 NFs-
only 

Forward 
 

Reverse 

14.96 
 

15.38 

0.87 
 

0.87 

0.52 
 

0.61 

6.78 
 

8.16 

TiO2 NFs-
SWCNTs 

Forward 
 

Reverse 

18.76 
 

18.89 

0.92 
 

0.93 

0.57 
 

0.64 

9.86 
 

11.44 
 

 

 

Figure S6-6. Histograms of PCE for the TiO2 NFs-only and TiO2 NF-SWCNT PSCs 

(measurement of 25 cells for each device structure). 
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Figure S6-7. Dark J-V curves of PSCs fabricated based on TiO2 NFs-only and TiO2 

NFs-SWCNTs photoelectrodes. 

 

 

Figure S6-8. (a) Long-term storage- and (b) light-stability of the PSCs fabricated 
with and without SWCNTs in the TiO2 NF photoelectrodes. In Y-axis (normalized 
PV parameters), PCE(in), Jsc(in), Voc(in) and FF(in) represents the initial (0 hr) PV 

values of the devices. 
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Figure S6-9. J–V curves of PSCs based on (a) compact (cp)-TiO2 and TiO2 NFs-

only photoeletrode without any SWCNTs, (b) SWCNTs incorporated cp-TiO2 layer 

and TiO2 NFs-only photoelectrode, (c) cp-TiO2 layer and SWCNTs incorporated 

TiO2 NFs photoelectrode, and (d) SWCNTs incorporated into both cp-TiO2 and TiO2 

NFs photoelectrode. An aperture mask was used during the J–V test. 

 

Table S6-4. Detailed PV parameters of PSCs based on (Structure A) cp-TiO2 and 

TiO2 NFs-only photoeletrode without any SWCNTs, (Structure B) SWCNTs 

incorporated cp-TiO2 layer and TiO2 NFs-only photoelectrode, (Structure C) cp-TiO2 

layer and SWCNTs incorporated TiO2 NFs photoelectrode, and (Structure D) 

SWCNTs incorporated into both cp-TiO2 and TiO2 NFs photoelectrode. The device 

structures are shown in the inset of Figure S6-9. 

Device Jsc (mA cm–2) Voc (V) FF PCE (%) Average PCE (%) 

Structure A 15.91 0.87 0.62 8.56 8.21 ± 0.46 

Structure B 18.02 0.89 0.64 10.38 9.88 ± 0.43 

Structure C 20.68 0.94 0.62 12.03 11.51 ± 0.40 

Structure D 21.51 0.93 0.65 13.04 12.75 ± 0.43 
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Figure S6-10. Effect of aperture masking on the J–V measurement of the PSC 

devices. The control cell is fabricated with the device structure shown in Figure 6-1a 

(without any SWCNT), while the best cell is made of structure such as that illustrated 

in the inset of Figure 6-9. The overlapped area of FTO electrode (anode) and gold 

electrode (cathode) was 0.14 cm2. The aperture mask with an area of 0.081 cm2 was 

used for the measurement with mask. 
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Abstract 

Carbon nanotubes are 1D nanocarbons with excellent properties and have been 

extensively used in various electronic and optoelectronic device applications 

including solar cells. Herein, we report a significant enhancement in the efficiency 

and stability of perovskite solar cells (PSCs) by employing single-walled carbon 

nanotubes (SWCNTs) in the mesoporous photoelectrode. It was found that SWCNTs 

provide both rapid electron transfer and advantageously shifts the conduction band 

minimum of the TiO2 photoelectrode and thus enhances all photovoltaic parameters 

of PSCs. The TiO2-SWCNTs photoelectrode based PSC device exhibited a power 

conversion efficiency (PCE) of up to 16.11%, while the device fabricated without 

SWCNTs displayed an efficiency of 13.53%. More importantly, we found that the 

SWCNTs in the TiO2 nanoparticles (TiO2 NPs) based photoelectrode suppress the 

hysteresis behavior and significantly enhance both the light and long-term storage-

stability of the PSC devices. The present work provides important guidance for 

future investigations in utilizing carbonaceous materials for solar cells.  

 

Keywords: Photovoltaic, perovskite solar cells, photoelectrode, mesoporous TiO2, 

carbon nanotubes 

 

TOC Figure 

 

 



214 
 

7.1.  Introduction 

Since the pioneering work on organometal halide perovskite (ABX3, A = organic 

cation, B = metal cation, and X = halide) based photovoltaic (PV) cells was reported 

in 2009,[1] perovskite solar cells (PSCs) have attracted significant attention and are 

now sitting in the spotlight as a promising technology for renewable energy 

production.[2-4] This emerging PV system, in comparison to traditional silicon solar 

cells, promises to be less expensive, lighter, more flexible and portable.[5-9] More 

importantly, the power conversion efficiency (PCE) of these PV devices has reached 

a certified value of 22.1% and is approaching that of the conventional silicon solar 

cells.[10-12] 

High PCEs have been mainly achieved using mesoscopic structured PSCs.[11, 13, 14] 

The heart of the mesoscopic PSC system is a semiconducting oxide electron 

transporting material (ETM) that collects photo-generated electrons from the 

perovskite light absorber and injects them into an external circuit. Typically, 

nanocrystalline TiO2 particles are used as the ETM.[15, 16] However, the electron 

transport in the disordered TiO2 nanocrystallite network involves a random transit 

path and numerous grain boundaries increasing the rate of charge recombination and 

thus limiting device efficiency.[17-19] Therefore, designing photoelectrodes with 

improved charge transport pathways is expected to enhance the efficiency of PSCs. 

A variety of strategies have been developed to improve the electron transport 

properties of PSC photoelectrodes.[20-23] In particular, graphene and its derivatives for 

use in the photoelectrodes of PSCs have recently attracted increasing attention due to 

graphene’s availability, high conductivity and suitable energy levels.[19, 24, 25] 

Although PSCs based on photoelectrodes with various graphene derivatives 

incorporated have shown enhancement in the performance compared to their control 

devices, the obtained efficiencies are still limited probably due to the structural 

defects of the graphene sheets created during the production process. In this regard, 

carbon nanotubes (CNTs), particularly single-walled (SWCNTs), are expected to 

exhibit significant enhancement in the PCE of PSCs because of their unique structure 

and excellent properties. It is worth noting that in dye-sensitized solar cell (DSSC) 

systems, CNTs have been shown to be more effective in enhancing the PCE than 
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other carbon materials.[26, 27] Despite this great promise, there has been no effort 

focused on employing CNTs in nanocrystalline TiO2 photoelectrodes for PSCs. 

Herein we introduce SWCNTs into the nanocrystalline TiO2 porous layers to 

fabricate PSC devices illustrated in Scheme 7-1. The incorporation of SWCNTs into 

the PSC photoelectrodes was found to be far more effective than the other types of 

nanocarbon materials including graphene and its derivatives. By finding an optimal 

loading of SWCNTs, the PSC device fabricated based on TiO2 NPs-SWCNTs hybrid 

photoelectrode achieved a maximum PCE of 16.11%, which was significantly higher 

than that (13.53%) of the TiO2 NPs based control cells. In addition to this impressive 

PCE, we found that the use of SWCNTs in the nanocrystalline TiO2 photoelectrodes 

reduces the anomalous hysteresis behavior and considerably enhances the light- and 

long-term storage-stability of the PSC devices. 

 

 

Scheme 7-1. (a) Schematic representation (left) and cross sectional SEM image 

(right) of the TiO2 NPs-SWCNTs photoelectrode based PSC device. (b) Schematic 

illustration of the improved charge transport process in the TiO2 NPs-SWCNTs 

nanocomposite. 

 

7.2.  Results and Discussion 

SWCNTs were incorporated into the TiO2 photoelectrode by mixing an aqueous 

solution of SWCNTs with the TiO2 paste prior to deposition (scanning electron 

microscopy (SEM) images of starting materials are provided in Figure S7-1, 

supporting information (SI)). Figure 7-1a shows the top view SEM image of the 

prepared TiO2 NPs-SWCNTs nanocomposites. It is difficult to directly observe the 

well dispersed SWCNTs within the TiO2 NP matrix. Given the low loading of the 

SWCNTs (0.10 % w/w), this was expected. Raman spectral microscopy was used to 

determine SWCNT homogeneity in the film. 
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Figure 7-1. (a) Top-view SEM image of TiO2 NPs-SWCNT nanocomposite. (b) 

Raman spectra of TiO2 NPs, SWCNTs and their nanocomposite. (c) Raman spectral 

mapping the same area (20 x 20 mm) showing distribution of TiO2 NPs (top, green) 

and SWCNTs (bottom, orange) in the composite. The colour scale represents the sum 

of the anatase TiO2 and CNT related signal, respectively. 

 

Raman spectroscopy is an important tool for analysing carbon nanomaterials and has 

frequently been used to confirm the presence of nanocarbons in composites or 

hybrids.[24, 26, 28] Therefore, Raman spectra of the samples were collected and are 

plotted in Figure 7-1b to further confirm the existence of SWCNTs in the 

nanocomposite. The Raman peaks located at around 150, 398, 518 and 641 cm–1 

correspond to the typical modes of the anatase TiO2.[24] The SWCNT spectra showed 

the feature peaks at 1357 and 1597 cm–1, which can be assigned to the disorder-

induced “D” band and the “G” band, in addition to the typical radial breathing mode 

(RBM) and “G′” band peaks. When analysing the composite film (blue series, Figure 

7-1b) Raman signals corresponding to both TiO2 NPs and CNTs throughout the 

sample were observed. Confocal Raman spectral microscopy maps of the TiO2 NPs-

SWCNTs nanocomposites shown in Figure 7-1c illustrate the distribution of 

SWCNTs throughout the TiO2 NP matrix, confirming that the existence of both TiO2 

and SWCNTs in the sample. 
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After confirming the presence of SWCNTs throughout the TiO2 NP film, the 

SWCNT content was varied to determine optimal content to maximize PSC PCE. 

Five photoelectrodes of different SWCNT concentrations in the composite were used 

from 0 wt% to 0.50 wt% to fabricate PSCs such as the representative cell illustrated 

in Figure S7-2. Our PSCs were fabricated based on CH3NH3PbI3 which was 

deposited on TiO2 NPs films with and without SWCNTs. The PV characteristics of 

these PSCs were evaluated using simulated AM1.5 sunlight with an output power of 

100 mW cm−2 and are shown in Figure S7-3. Detailed PV parameters of PSC devices 

with different SWCNT loadings have been summarized in Figure 7-2 and Table 7-1. 

 

 

Figure 7-2. Plots of (a) Jsc, (b) Voc, (c) FF and (d) PCE of the PSCs as a function of 

SWCNT concentration in the TiO2 films. 

 

Starting from the control PSCs fabricated based on TiO2 NPs-only photoelectrodes, 

the average short-circuit current (Jsc), open-circuit voltage (Voc) and fill factor (FF) 

are 19.03 mA cm–2, 0.986 V and 0.68, respectively. With increasing SWCNT loading 

in the TiO2 NPs photoelectrodes, both the Jsc and Voc values of the devices increased 

to 21.62 mA cm–2 and 1.022 V, respectively, peaking at 0.10 wt%, followed by a 
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decrease with further increases in the concentration of SWCNTs. The changes in the 

Jsc values can be traced to the conductivity of the CNTs and their ambipolar nature. 

The improved current must result from the improved conductivity of the films 

initially however the addition of large amounts of CNTs introduces many junctions 

which will act as recombination points. These two competing factors will see a 

peaked dependence of current as a function of CNT loading completely in line with 

other observations. It is important to note that CNTs can also transport holes which 

will increase their lifetime in the photoelectrode and this will, at higher CNT 

loadings, lead to increased recombination lowering the observed current. The 

increase in recombination rate in the photoelectrode at high loadings is also clear in 

the decrease in the FF at the highest loadings. There are some changes in the Voc with 

loading. Importantly, for the lower SWCNTs loadings, the Voc is higher than that 

observed for the electrode without the SWCNT which will be explained later. At the 

very highest loadings, the Voc is lower than that without SWCNT likely due to 

increased conduction pathways that are not part of the core circuit producing current.  

 

Table 7-1. PV parameters of PSCs fabricated based on TiO2 NP photoelectrodes 

with different SWCNTs loadings.  

Device Jsc (mA cm–2) Voc (V) FF PCE (%) 

TiO
2
 NPs-only 19.49; 

19.03 ± 0.56 

0.988; 

0.986 ± 0.008 

0.70; 

0.68 ± 0.02  

13.53; 

12.88 ± 0.56 

0.05 wt% 

SWCNTs 

20.87; 

20.42 ± 0.45 

1.010; 

1.002 ± 0.010 

0.69; 

0.68 ± 0.01 

14.50; 

14.10 ± 0.35 

0.10 wt% 

SWCNTs 

21.96; 

21.62 ± 0.58 

1.041; 

1.022 ± 0.014 

0.70; 

0.69 ± 0.02 

16.11; 

15.58 ± 0.47 

0.25 wt% 

SWCNTs 

20.43; 

19.86 ± 0.52 

1.035; 

1.031 ± 0.004 

0.70; 

0.68 ± 0.02 

14.72; 

14.27 ± 0.39 

0.50 wt% 

SWCNTs 

18.98; 

18.66 ± 0.41 

0.956; 

0.946 ± 0.020 

0.64; 

0.62 ± 0.02 

11.64; 

11.02 ± 0.59 

 

The average efficiency of the cells increased from 12.88% (without SWCNTs) to a 

maximum average of 15.58% (0.10 wt%), followed by a decrease at higher (0.25 and 
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0.50 wt%) SWCNT content. The optimum PV parameters for the PSCs were 

achieved for the 0.10 wt% SWCNTs incorporated TiO2 NP photoelectrode. The 

measured short-circuit current (Jsc), open-circuit voltage (Voc) and fill factor (FF) 

values for the best performing TiO2 NPs-SWCNTs photoelectrode based device were 

21.96 mA cm–2, 1.041V and 0.70, respectively, yielding a PCE of 16.11%, which 

was significantly higher than that (13.53%) of the best control PSCs fabricated 

without SWCNTs in the photoelectrodes (Figure 7-3a). Notably, this efficiency 

(16.11%) achieved using our SWCNTs incorporated TiO2 NP photoelectrode is 

higher than other reported values of the PSC devices based on photoelectrodes with 

carbonaceous content.[19, 23-25, 29, 30] Moreover, the reproducibility of PSCs based on 

both TiO2 NPs-only (control) and TiO2 NPs-SWCNTs photoelectrodes is displayed 

in Figure 7-3b, indicating that the performances of these highly efficient PSCs are 

highly reproducible. This result confirms that the addition of SWCNTs in the 

photolectrodes does not alter the reproducibility of the PSC devices. 

Of the major factors affecting PCE (FF, Voc, Jsc), the incorporation of SWCNTs 

increases Voc and Jsc but does not alter FF (see Figure 7-2). It is important to note that 

although the incorporation of carbon nanomaterials such as graphene and its 

derivatives into the PSC photoelectrodes was found to improve the cell efficiency in 

previous studies, the Vocs in these studies have remained unchanged or decreased.[19, 

25] In contrast, in the present work, the Voc values of the nanocrystalline TiO2 

photoelectrode based PSC devices increased by ~50 mV after adding SWCNTs. 

Density functional theory calculations have shown that SWCNT interaction with 

TiO2 (101) raises the conduction band minimum (CBM) in comparison to the TiO2 

semiconductor.[31] The Voc in PSC devices is determined by the energy difference 

between the CBM of the ETM and the valence band maximum of the hole 

transporting material (HTM).[32] This theoretical study supports our experimental 

observation of SWCNT incorporation into the TiO2 photoelectrode increasing the Voc 

of PSCs. It should be noted that despite this theoretical explanation, a considerable 

drop in the PV parameters of the PSCs was observed for the 0.50 wt% SWCNTs 

incorporated TiO2 photoelectrode. This is probably due to the fact that the SWCNTs 

are acting as a hole transporting material, which leads to a possible charge 

recombination within the device.[22] 
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Figure 7-3. (a) J–V curves of the best performing PSCs fabricated with and without 

SWCNTs (0.10 wt%) in the photoelectrodes measured under 100 mW cm−2 (AM 

1.5G) illumination. (b) Histogram of the PCE of devices based on TiO2 NPs-only and 

TiO2 NPs-SWCNTs photoelectrodes. (c) IPCE spectra and (d) Nyquist plots of EIS 

measurements of the devices measured under illumination at 0.3 V bias (Voc). 

 

With theoretical support to explain the observed increase in Voc after adding 

SWCNTs, we sought further experimental evidence to explain the increased Jsc. 

Incident-photon-to-current conversion efficiencies (IPCEs) of the devices were 

measured. Figure 7-3c displays the IPCE spectra of TiO2 NPs-only and TiO2 NPs-

SWCNTs photoelectrodes based PSCs. The device with SWCNT shows a clear 

improvement in IPCE across the entire wavelength range (from around 350 nm to 

760 nm). Since the Jsc of the device can be determined from the IPCE spectra, the 

higher IPCE value with SWCNTs was expected. The integrated Jsc values from the 

IPCE spectra for the PSCs fabricated with TiO2 NPs-only and TiO2 NPs-SWCNTs 

films were 17.30 and 19.20 mA cm–2, respectively, which are in agreement (within 

±10% error) with the measured Jsc from the J-V characteristics of the devices. More 

importantly, the Jsc difference (1.90 mA cm–2) obtained from the IPCE spectra of 

TiO2 NPs-only based device and TiO2 NPs-SWCNTs based cell was very close to 

that (2.30 mA cm–2) calculated from the J-V characteristics, confirming the 
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relationship of the J–V curves to the IPCE spectra. The wavelength independent 

improvement of IPCE suggests the SWCNT are passively improving charge transfer. 

Electrochemical impedance spectroscopy (EIS) was performed to investigate the 

interfacial charge transfer properties of the devices. The EIS measurements were 

carried out at an applied bias of 0.3V under illumination at 35 mW cm–2 in ambient 

atmosphere. Figure 7-3d shows the Nyquist plots derived from the results of EIS 

spectra of TiO2 NPs-only and TiO2 NPs-SWCNTs photoelectrode based PSC 

devices, in which two RC arcs were observed. It is well established that the first arc 

at the higher frequency (R1) is attributed to the charge-transfer resistance (Rct), while 

the second arc at the lower frequency (R2) is related to the recombination resistances 

of the fabricated PSC devices. The SWCNTs employed PSC device exhibited lower 

charge-transfer resistance (Rct, 320 Ω) as compared to the control cell (376 Ω), 

indicating improved electron transport properties. The combination of IPCE and EIS 

suggest the enhanced Jsc by incorporating SWCNT results from improved electron 

transfer through the photoelectrode. This improvement in the electron transport 

properties is expected to suppress the charge recombination of the PSCs. 

To further investigate the reduction of the charge recombination rate at the PSC 

photoelectrodes in the presence of SWCNTs, dark J-V measurements of the devices 

were carried out to study the diode properties (Figure 7-4a). From the dark J-V 

measurement, ideality factor and saturation-current (Jsat) values were obtained for 

both the TiO2 NPs-only and TiO2 NPs-SWCNTs photoelectrodes based PSC devices. 

As shown in Table S7-1, the Jsat values of the PSCs fabricated with SWCNTs in the 

photoelectrodes (1.05 (± 0.38) x 10-10 mA cm-2) were nearly five times lower than 

that (5.47 (± 0.21) x 10-10 mA cm-2) of the TiO2 NPs-only based cells. Interestingly, 

the average ideality factor of TiO2 NPs-SWCNTs photoelectrodes based PSCs is 

approximately 1.31 ± 0.14, while the control devices showed average ideality factor 

of 1.46 ± 0.14. We note that the ideality factors of our devices were considerably 

lower than those reported in a recent study using graphene derivatives incorporated 

mesoporous TiO2 NPs films based PSCs.[25] A lower Jsat value and an ideality value 

closer to 1 both indicate less charge recombination from reverse current and charge 

trapping is occurring in the diode.[25, 28, 33, 34] Moreover, the measurement of sheet 

resistance (Rs) of the thin films (on glass substrates) was carried out using a four 

point probe to explore the mechanism of Jsc enhancement of the devices. The Rs of 
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the TiO2 films with SWCNTs was 1.86 ± 0.01 x 106 Ω, which was nearly 2.5 times 

lower than that (4.51 ± 0.005 x 106 Ω) of the TiO2 NPs-only films. This reduction in 

the Rs of the films is due to the high conductivity of SWCNTs that decreases the 

interfacial resistance between TiO2 NPs. 

 

 

Figure 7-4. (a) Representative J–V curves of the PSCs fabricated with and without 

SWCNTs in the TiO2 NPs measured in dark condition. (b) UV-vis absorption spectra 

of the TiO2 NPs-only and TiO2 NPs-SWCNTs films coated with perovskite layer. 

 

These results indicate that the SWCNTs incorporated TiO2 NPs photoelectrodes 

based PSCs have reduced charge recombination as compared to the TiO2 NPs-only 

based devices. In addition, the device fabricated with SWCNTs exhibited reduced 

series resistance (Rseries, Table S7-1) (77.3 ± 7.96 Ω for the cells with SWCNTs and 

111 ± 10.5 Ω for the devices without SWCNTs), which further confirms the Rct of 

the cells obtained from the EIS analysis. Moreover, we note that no difference in 

light absorption including the intensity of the perovskite films was observed after 

adding 0.10 wt% SWCNTs into the TiO2 NPs films (Figure 7-4b). This indicates that 

the use of small amount of SWCNTs does not change the perovskite crystallization. 

Widespread commercial application of PSC will not become a reality without 

significant improvement to stability and reduction of J-V hysteresis. We have 

compared the hysteresis behavior and stability of PSCs with and without SWCNTs.  

Anomalous hysteresis behavior observed during the J-V analysis of PSCs limits their 

stabilized power output under working conditions and causes serious issues for the 

device stability and PCE accuracy.[35] J-V curves of the devices (at least 3 cells for 

each device structure) measured were recorded using different scan directions 
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(reverse and forward) and the representative results are plotted in Figure 7-5a and b. 

Detailed PV parameters have been summarized in Table 7-2. To provide a reasonable 

comparison, the PCE difference (known as the difference factor)[36] of the PSCs was 

calculated according to the following equation. 

 Eq. (1) 

From the Eq. (1), a high PCE difference means the cells show large hysteresis and 

distortion. For the control cell without SWCNTs, the calculated average PCE 

difference was 19.22 ± 1.63%, which was considerably higher than that (12.36 ± 

2.43%) of the TiO2 NPs-SWCNTs photoelectrode based PSC device. Therefore, it is 

clear that the use of SWCNTs in the nanostructured photoelectrodes significantly 

reduced the hysteresis behavior of the PSCs. Although the fundamental mechanism 

of hysteretic J-V behavior in the PSC devices is not well understood, recent 

theoretical and experimental studies put forward several explanations. It has been 

reported that an anomalous hysteresis in PSCs arises from the trap-assisted charge 

recombination at the interface between perovskite and ETM.[25, 37] Therefore, the 

reduced hysteresis of our PSC devices fabricated with TiO2 NPs-SWCNTs 

photoelectrodes may be explained by the decreased recombination at the perovskite 

and ETM interfaces. 

 

 

Figure 7-5. Representative J–V curves of the (a) TiO2 NPs-only and (b) TiO2 NPs-

SWCNTs photoelectrode based PSCs measured with reverse and forward scans. PCE 

differences are calculated using Eq. 1. Scan rate: 200 mV s–1. 
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Table 7-2. PV parameters of the PSCs fabricated with and without SWCNTs in the 

photoelectrodes measured reverse and forward scan directions. The average values 

and standard deviations are calculated based on at least 3 devices. 

 TiO2 NPs-only TiO2 NPs-SWCNTs 

 Forward Reverse Forward Reverse 

Jsc (mA cm–2) 19.05 ± 0.57 19.03 ± 0.56 21.52 ± 0.35 21.62 ± 0.58 

Voc (V) 0.939 ± 0.013 0.986 ± 0.008 0.978 ± 0.017 1.022 ± 0.014 

FF 0.58 ± 0.02 0.68 ± 0.02 0.64 ± 0.01 0.69 ± 0.02 

PCE (%) 10.46 ± 0.29 12.88 ± 0.56 13.62 ± 0.25 15.58 ± 0.47 

PCE difference 19.22 ± 1.63% 12.36 ± 2.43% 
 

Solar cell stability and lifetime is one of the most significant road blocks toward 

commercialization of PSCs in the quickly growing renewable electricity generation 

market. Here we investigated both the light- and long-term storage-stability of the 

PSCs with and without SWCNTs in the photoelectrodes (Figure 7-6). 

The light-stability of the unencapsulated PSCs fabricated with TiO2 NPs-only and 

TiO2 NPs-SWCNTs photoelectrodes, shown in Figure 7-6a, was evaluated and tested 

by exposing cells to continuous light illumination (100 mW cm−2, xenon lamp) under 

ambient conditions. It can be seen that the devices employing SWCNTs exhibited 

better stability than the TiO2 NPs-only photoelectrode based devices. For instance, 

the Jsc value of the control devices degraded by 41% after 40 min, whereas the cells 

fabricated with SWCNTs only degraded by ~26% of their initial Jsc. In our study, the 

PCE degradation of the devices under prolonged light soaking is mainly due to the 

photocurrent reduction, which is in good agreement with recent comprehensive 

investigations of PSC stability by Snaith’s group.[38, 39] It was reported that upon 

exposure of the TiO2 to light, the holes in valence band recombine with adsorbed 

molecular oxygen, causing desorption and leaving positively charged deep trap sites 

in the TiO2 surface. These deep trap sites then act as sinks for electrons, with 

recombination of the trapped electrons occurring directly with the holes in the 

perovskite or HTM.[39] In this regard, the SWCNTs with their excellent conductivity 

may suppress this recombination process by providing an alternative charge transport 

path and thus improving the device stability.  
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Figure 7-6. (a) Light and (b) long-term storage-stability of the devices fabricated 

with and without SWCNTs in the photoelectrodes. For the light-stability test, the 

cells were exposed to continuous light illumination (100 mW cm−2) in ambient 

conditions and the data were obtained in reverse scan direction at every 5 min. For 

the cell storage-stability in ambient environment, the fabricated devices were kept in 

the dark in ambient conditions for 500 h. The devices were not encapsulated for the 

stability test. In Y-axis (normalized PV parameters), PCE(in), Jsc(in), Voc(in) and FF(in) 

represents the initial (0 hr) PV values of the devices. 
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Additionally it is well known that SWCNTs adsorb molecular oxygen very 

strongly.[40] As such, it is very likely that in the structure reported here the SWCNTs 

will be a sink for some of the molecular oxygen adsorbed on TiO2 and hence 

decrease the production of the detrimental deep trap sites. Additionally, the high 

thermal conductivities of SWCNTs will more effectively remove heat during 

operation (during light soaking) which will also help stability. 

Figure 7-6b illustrates the normalized PV parameters (Jsc, Voc, FF and PCE) of the 

PSC devices fabricated with and without SWCNTs in the photoelectrodes over 500 h 

(3 weeks). For the stability test, the unencapsulated devices were stored in the dark in 

ambient conditions at a relative humidity of >60% and were tested every 100 hours. 

While both devices degraded, the device with SWCNTs exhibited improved stability. 

In particular, the devices based on TiO2 NPs-SWCNTs photoelectrodes preserved 

45.5% of the initial PCE after aging for 500 h under humid environment, whereas the 

PSC fabricated without SWCNTs retained only 27% of its initial performance. In 

order to confirm this stability improvement in the PSC performance with SWCNTs 

in the photoelectrode, dark J-V characteristics and EIS analysis of unencapsulated 

aged (~250 h stored in ambient conditions) devices with and without SWCNTs were 

investigated. It was observed from the dark J-V measurements that the ideality factor 

of the TiO2 NPs-SWCNTs photoelectrode based PSC is 1.94 which was lower than 

that (2.23) of the control cell. In addition, the Jsat values of the PSCs fabricated with 

and without SWCNTs photoelectrodes were 1.51 x 10-7 mA cm-2 and 1.37 x 10-6 mA 

cm-2, respectively. The Jsat difference between TiO2 NPs-only and TiO2 NPs-

SWCNTs films based 250 h-aged PSCs was nearly an order of magitude, while the 

difference in their fresh devices was around 5 times. This clearly confirms that the 

SWCNTs not only enhance the PV performances of the PSCs, but they also improve 

the stability of the devices in ambient conditions. This finding was further confirmed 

by EIS analysis of the aged PSCs. As shown in Figure S7-5, the SWCNTs employed 

PSC device showed a reduced Rct and an increased recombination resistance. In the 

aged devices, the Rct difference between the PSCs fabricated with and without 

SWCNTs was around 120 Ω, while the previously measured Rct difference for the 

freshly prepared PSC devices was only ~60 Ω (for both cases, SWCNTs based cells 

have lower Rct). The higher difference in the Rct of the PSCs with and without 

SWCNTs after aging is indicative of improved stability of the device with SWCNTs 
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in the photoelectrodes. Moreover, much higher SWCNT loading (0.50 wt%) in the 

TiO2 NPs film exhibited significantly enhanced cell stability under the same 

condition (RH >60%) (see Figure S7-4), which further confirms that the use of 

SWCNTs in the nanocrystalline TiO2 NPs photoelectrodes improves the long-term 

storage-stability of the PSC devices. We attribute this storage-stability enhancement 

of the SWCNTs incorporated devices to the wettability of the photoelectrode film 

(see Figure S7-6). Clearly, the hydrophilic nature (Figure S7-6a) of the TiO2 NPs-

only film could lead to significant absorption of moisture in a humid environment 

before the deposition of perovskite. The absorbed moisture further gradually 

degrades the perovskite films and thus reduces the device performance over a period 

of time. Since SWCNTs have greater hydrophobicity than the TiO2 NPs (Figure 

S7-6b), the partial coverage of SWCNTs on TiO2 NPs may decrease or slow 

moisture absorption resulting in an enhanced stability in humid environment. In 

addition, recently, Huang et al.[41] reported that the polar nature of the water 

molecules causes the decomposition of perovskite structures and results in severe 

morphological changes (formation of pinholes and coarsening of the crystalline 

surface) in humid conditions. It was revealed based on SEM analysis that densely 

packed large perovskite grains change into relatively small grains after long-term 

storage under ambient conditions. Such morphological features such as pinholes, 

small grains and coarse surface would be detrimental to the direct charge transfer 

between perovskite and TiO2. The TiO2/SWCNT interface provides better 

connectivity with the perovskite and hence provides extra charge carrying pathways 

which will somewhat mitigate the changes in the perovskite structure. Ultimately this 

should extend the electron lifetime in the device helping maintain performance over 

longer time. 

Although this study clearly demonstrates that the application of SWCNTs in the PSC 

photoelectrodes play significant role in improving the device stability, the exact 

mechanism of stability improvement still remains to be explored in the future with 

experimental and theoretical investigations. We anticipate that further improvement 

in the device performance will be achieved by using chirality specific SWCNTs as it 

allows the precise tuning of electronic energy levels in the electrode. 

 



228 
 

7.3.  Conclusion 

In summary, we have produced a nanocomposite material comprising nanocrystalline 

TiO2 NPs and conductive SWCNTs to prepare photoelectrodes for highly efficient 

PSCs. We found that the incorporation of SWCNTs into the nanocrystalline TiO2 

photoelectrodes significantly improves the electron transfer process and reduces the 

charge recombination rate, and thus results in the enhancement of Jsc. In addition, the 

Voc value of the PSCs was found to increase after introducing SWCNTs into the PSC 

photoelectrode due to the suitable band energy alignment. As a result, a remarkable 

PCE of 16.11% was achieved using the nanocomposite photoelectrode based PSC 

device. Importantly, we found that the use of SWCNTs in the PSC photoelectrodes 

reduces the anomalous hysteretic J-V behavior, while it also improves the light- and 

long-term storage-stability of the devices. Finally, our work provides clear guidance 

for future studies in incorporating nanocarbon materials in PV devices. 

 

7.4.  Experimental Section 

7.4.1.  Materials 

All chemicals and reagents were purchased from Sigma-Aldrich, unless otherwise 

specified. (2,2′,7,7′-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene) 

(Spiro-OMeTAD) was obtained from Solaronix, Switzerland. A fluorine-doped tin 

oxide (FTO) coated glass electrode, transparent titania (TiO2) paste (18NR-T), 

methylammonium iodide (CH3NH3I), tris(1-(pyridin-2-yl)-1H-pyrazol) 

cobalt(III)tris(hexafluorophosphate) (FK102 Co(III) PF6) salt were purchased from 

Dyesol, Australia. Arc-discharge SWCNTs (P3-SWNT) were purchased from 

Carbon Solution Inc., Riverside, CA, USA. 

 

7.4.2.  Preparation of TiO2 NPs-SWCNTs nanocomposite 

The stock solution (aqueous) of SWCNTs with 1 mg mL–1 concentration was 

prepared according to the previous reported method.[28] Briefly, SWCNTs (10 mg, 

P3-SWNT) were bath sonicated for 1 h in aqueous Triton-X 100 (10 mL, 1% v/v). 

On the other hand, the commercially available TiO2 paste (Dyesol, 18NR-T) was 

diluted in ethanol (1:5.5 w/w). In order to prepare the TiO2 NPs-SWCNTs, an 
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appropriate volume of the CNTs stock solution was added into the diluted TiO2 

dispersion. The concentration of SWCNTs in the nanocomposite was adjusted by 

changing the volume of CNT solution. 

 

7.4.3.  Device fabrication 

FTO-coated glass substrates were first etched using 2M HCl and Zn powder. Then 

the etched FTO substrates were cleaned with a detergent (Pyroneg) and washed with 

acetone, ethanol, and DI water using an ultrasonication for 10 min each. A 50 nm 

TiO2 compact layer was deposited onto the FTO substrate via spin coating 0.15 M 

titanium diisopropoxide bis(acetylacetonate) (75 wt% in isopropanol, Aldrich) in 1-

butanol solution twice. The spin coating was carried out for 25 s at 2000 rpm with a 

ramp of 1000 rpm s–1. After each spin coating, the electrodes were dried by heating 

at 150 oC for 15 min in air. Upon cooling to room temperature, the mesoporous TiO2 

layer without and/or with SWCNTs was deposited onto the compact TiO2 film by 

spin coating the previously prepared (diluted) TiO2 solution with different amounts 

of SWCNTs for 25 s at 4000 rpm with a ramp of 2000 rpm s–1. The photoelectrodes 

were then heated gradually in air at 125 oC for 5 min, 325 oC for 5 min, 375 oC for 15 

min, and 450 oC for 1 h. After cooling to room temperature, the films were immersed 

in a 20 mM aqueous TiCl4 solution at 90oC for 15 min and the resulting films were 

again annealed at 450 oC for 1 h. After cooling to ~120 oC, the films were transferred 

into a nitrogen-filled glove box for the deposition of perovskite layer, hole transport 

layer (HTL) and Au electrode. 

PbI2 (0.507 g) and CH3NH3I (0.175 g) were mixed in anhydrous dimethylsulfoxide 

(DMSO, 1 mL) to prepare the perovskite precursor solution. The deposition of the 

perovskite layer was performed according to a previously established spin coating 

method.[42, 43] The spin coating recipe includes two steps, first 1000 rpm for 10 s with 

a ramp of 250 rpm s–1, then 5000 rpm for 30 s with a ramp of 2000 rpm s–1. ~12 s 

before the end of the spin-coating program, anhydrous chlorobenzene (120 µL) was 

gently dropped on the centre of spinning substrate. The films were then heated at 100 
oC for 1h in a glovebox. 

After drying the perovskite coated films overnight in the glove box, the HTM (50 

µL) was deposited onto the perovskite layer by spin coating for 20 s at 4000 rpm 
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with a ramp of 2000 rpm s–1. The HTM was prepared by dissolving 28.9 mg Spiro-

OMeTAD, 11.5 µL 4-tert-butylpyridine (tBP), 7.0 µL of a stock solution of 520 mg 

mL–1 lithium bis(trifluoromethylsulphonyl)imide (Li-TFSI) in acetonitrile and 9.0 µL 

of a stock solution of 100 mg mL–1 FK102 Co(III) PF6 salt in acetonitrile, in 400 µL 

chlorobenzene. After the HTM deposition, the films were stored overnight in a dry 

air desiccator. Finally, 50 nm gold electrodes were thermally evaporated (Angstrom 

Engineering Covap) at a rate of 1 Å s–1 under high vacuum through a shadow mask. 

 

7.4.4.  Measurement and characterization 

SEM images were obtained using an Inspect F50 SEM (FEI) with accelerating 

voltage of 20 kV. Raman confocal spectroscopy and spectral mapping were 

completed using a Witec Alpha 300RS with a 40 x objective and 532 nm laser 

excitation. Raman single spectra were acquired with integration times of 5 s and 3 

accumulations. The Raman spectral image was obtained by collecting a series of 

100 x 100 single spectra (0.5 s integration per spectrum) over an area of 20 x 20 μm. 

Electrochemical impedance spectroscopy (EIS) was carried out with an Autolab 

PGSTAT128N on the fabricated PSC devices. Analysis was completed under light at 

0.3 V bias with 10 mV modulation over the frequency range of 100000 – 0.1 Hz. 

Measurements were taken under illumination from an optic fibre light source (Dolan-

Jenner Fiber-Lite 190-1) at ∼35 mW cm–2, which was measured with a light meter 

(Newport Power Meter, model 1815-C). Sheet resistance measurements were 

performed on the same films using a four point probe technique (KeithLink 

Technology Co., Ltd. Taiwan).   

The photocurrent–voltage (J–V) characteristics were analysed using a Keithley 2400 

SMU instrument and recorded using a custom LabView Virtual Instrument program. 

A standard silicon test cell with NIST-traceable certification was used to calibrate the 

power density at 100 mW cm–2 at the sample plane of the collimated a 150W xenon-

arc light source (Newport), which was passed through an AM 1.5G filter. The scan 

rate and delay time are 200 mV s–1 and 30 ms, respectively. The active area of the 

fabricated devices was 0.09 cm2. The devices were masked with a non-reflective 

mask of 0.1 cm2 and were tested in an air atmosphere without encapsulation. No 

device preconditioning, such as prolonged light soaking, forward voltage biasing, or 
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equilibration time was used. The IPCE spectra ranging from 300 nm to 800 nm were 

taken by passing chopped light from a xenon source through a monochromator and 

onto the devices. The light intensity of the illumination source was adjusted using a 

photodiode detector (silicon calibrated detector, Newport). 
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Figure S7-1. SEM image of (a) SWCNTs and (b) TiO2 NPs based film. 

 

 

Figure S7-2. Cross sectional SEM image of the TiO2 NPs-SWCNTs photoelectrode 

based PSC. 

 

Table S7-1. Diode characteristics for PSCs fabricated with TiO2 NPs-only and TiO2 

NPs-SWCNTs based photoelectrodes. 

Device Jsat (mA cm–2) Ideality 

Factor 

Rshunt (kΩ) Rseries (Ω) 

TiO
2
 NPs-only 5.47 (± 0.21) x 10-10 1.46 ± 0.14 13.8 ± 3.7 111 ± 10.5 

TiO2 NPs-

SWCNTs 

1.05 (± 0.38) x 10-10 1.31 ± 0.14 23.0 ± 5.2 77.3 ± 7.96 
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Figure S7-3. J–V curves of best-performing PSCs fabricated based on TiO2 NP 

photoelectrodes with different SWCNT content. 

 

 

Figure S7-4. Moisture-stability of the PSCs fabricated based on TiO2 NPs 

photoelectrodes employing different SWCNT concentrations (0 wt%, 0.10 wt% and 

0.50 wt%). Standard deviations are calculated based on at least 3 devices. 
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Figure S7-5. Nyquist plots of EIS measurements of the fresh and aged devices 

measured under illumination at 0.3 V bias (Voc). The unencapsulated devices were 

aged for around 250 h in ambient conditions. 

 

 

 

Figure S7-6. Wettability test of (a) TiO2 NPs-only film and (b) SWCNTs film. 
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8.1.  Conclusions 

High photovoltaic efficiency, excellent stability and low manufacturing cost are the 

main key factors to the commercialization of dye sensitized solar cells (DSSCs) and 

perovskite solar cells (PSCs) in the quickly growing renewable electricity generation 

market.[1] The properties of carbon nanomaterials such as carbon nanoparticles, 

carbon nanotubes (CNTs) and graphene have been shown to play important roles in 

achieving high efficiency, improving light and long-term stability and reducing the 

production cost of both DSSCs and PSCs.[2, 3] However, the progress of 

carbonaceous photoelectrodes based DSSCs is lacking due to the limited and unclear 

understanding of the exact role of carbon materials in the devices. Moreover, the 

development of alternative electrocatalysts that are low–cost and can exhibit higher 

or comparable performance to the conventional platinum (Pt) counter electrode (CE) 

in DSSCs is highly desired. On the other hand, research into the potential application 

of carbon nanomaterials in the state-of-the-art PSCs is still in its initial stages. As 

such, this Ph.D. thesis was focused on the utilization of carbon nanomaterials in 

different components of DSSCs and PSCs. The main objectives of this Ph.D. project 

were to investigate the effect of CNTs and graphene derivatives based photoelectrode 

and counter electrode (CE) on the efficiency and stability of DSSCs and PSCs. 

In this Ph.D. thesis, in order to provide a detailed understanding of the role of carbon 

nnaomaterials in DSSC photoelectrodes, recent advances that have been made in the 

use of carbon nanomaterials in the photoelectrode of DSSCs were reviewed and 

outlined. Then the influence of reduced graphene oxide on the dye adsorption kinetic 

and efficiency of SnO2 photoelectrode based DSSCs was experimentally 

investigated. The development of efficient electrocatalyst material as an alternative 

to the conventional Pt for DSSCs was also reported. Next, the suitability of 

transparent conductive graphene films as a substitute for the conventional electron 

collecting transparent conducting oxide electrode (TCO) in perovskite solar cells was 

examined. The influence of various types of CNTs and graphene derivatives on the 

photovoltaic efficiency, hysteresis behavior and stability of TiO2 photoelectrodes 

based perovskite solar cells was comprehensively and systematically explored. The 

main conclusions drawn from the results presented in chapters 2-7 can be 

summarized as follows: 
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Chapter 2 discussed the advanced research on the use of carbon materials in the 

photoelectrodes of DSSCs because the activity in this research field has been rapidly 

growing in the past few years. A brief overview of novel nanostructured material 

based photoelectrodes is also provided. Based on the results and findings of 

extensive research, it can be concluded that carbon nanotubes (CNTs) and graphene 

are very promising materials for high performance photoelectrodes for DSSCs. 

Chapter 3 presented the successful application of reduced graphene oxide (RGO) 

structures in 1D SnO2 micro-rod based photoanodes for DSSCs. We found that the 

use of RGO overcomes the major shortcoming of SnO2 when applied as a DSSC 

photoanode, namely poor dye adsorption. In addition, owing to its suitable energy 

levels and excellent conductivity, RGO significantly enhanced the electron transport 

rate in the cells. As compared to the control device, a ~91.5% enhancement in the 

efficiency was achieved by employing RGO in the SnO2 photoanode for DSSCs. 

Chapter 4 compared a series of heteroatom (I, P, B, N, S)–doped graphene 

electrocatalysts as CE materials for the iodine reduction reaction (IRR) in DSSCs. 

We found based on the electrochemical characterization and photovoltaic (PV) 

analysis that the S–doping on graphene is the most effective in improving the 

electrocatalytic activity among the other types of doping. Furthermore, we prepared 

highly efficient hybrid electrocatalysts by incorporating the excellent conductivity of 

S–doped graphene and high catalytic activity of FeS2 for use in DSSCs. The 

combination of high electrocatalytic activity, good electrical conductivity, and 

outstanding electrochemical stability led to impressive device performance (8.10%) 

of the S–doped graphene and FeS2 hybrid electrocatalyst making this material an 

ideal candidate for highly efficient and stable DSSCs. 

Chapter 5 demonstrated the applicability of transparent conductive graphene films 

(TCGFs) formed by solution processable techniques as alternatives to the 

conventional transparent conducting oxide (TCO) electrodes in perovskite solar cells 

(PSCs). A maximum efficiency of 0.62% was achieved. Furthermore, by 

incorporating graphene structures into both compact TiO2 and mesoporous TiO2 

layers of the PSCs, the efficiency was further improved to 0.81%. We anticipate that 

this work will open new avenues for the development of graphene materials in 

perovskite based solar cells. 
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Chapter 6 reported the successful incorporation of highly conductive carbon 

nanotubes (CNTs) into one-dimensional TiO2 nanofiber (1D TiO2 NF) 

photoelectrodes for highly efficient PSCs. We found that the use of single-walled 

CNTs (SWCNTs) is the most effective material among the three different types of 

CNTs to achieve high efficiencies from the devices. As compared to the TiO2 NF-

only photoelectrode based device, a significant enhancement (~40%) in the cell 

efficiency is achieved by incorporating an optimized amount of SWCNTs into the 

TiO2 NF PSCs. We also found that the use of SWCNTs in the TiO2 NFs 

photoelectrode reduces the hysteresis behaviour and improves the stability of the 

PSCs. More importantly, our best performing device fabricated with SWCNTs in 

both cp–TiO2 and TiO2 NFs layers achieved a PCE of 14.03%. 

Chapter 7 explored the production of a nanocomposite material comprising 

nanocrystalline TiO2 NPs and conductive SWCNTs to prepare photoelectrodes for 

highly efficient PSCs. We found that the use of SWCNTs in the nanocrystalline TiO2 

photoelectrodes significantly improves the electron transfer process and reduces the 

charge recombination rate in PSCs. As a result, a remarkable power conversion 

efficiency of 16.11% was obtained using the nanocomposite photoelectrode based 

device. We also found that the incorporation of SWCNTs in the PSC photoelectrodes 

reduces the anomalous hysteretic J-V behaviour, while it also helps to improve the 

light- and long-term storage-stability of the devices. 

 

8.2.  Future Directions and Recommendations 

8.2.1.  Nanocarbons in dye-sensitized solar cells (DSSCs) 

Although significant achievements have been made in this cutting-edge research 

(carbon nanomaterials based DSSCs), several challenges must be addressed to build 

up high–performance devices based on CNTs and graphene. Further optimizations of 

carbonaceous materials in DSSCs are still required. 

(1) The application of CNTs and graphene in semiconducting TiO2 layer for DSSCs 

is an effective strategy to improve DSSC performance. It has been suggested that the 

improvement in the efficiency of CNTs/TiO2 and/or graphene/TiO2 photoelectrodes 

based DSSCs is due to the increased electron transport, enhanced light harvesting 
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efficiency and/or high dye loading. However, it was found that the dye adsorption 

mechanism of CNTs and graphene materials based TiO2 films is very unclear, with 

some studies showing conflicting results. A clear understanding of the dye 

adsorption would be of great value. Our hypothesis was that the functional groups on 

CNTs and graphene play an important role in dye loading of the electrodes. If so, 

further optimization on the dye adsorption and conductivity of CNTs and graphene 

should be determined by adjusting the extent of functionalization. 

Semiconducting (s-SWCNTs) in the semiconducting TiO2 layer can enhance the 

efficiency of DSSCs. The conductivity of s-SWCNTs can be controlled by the 

amount of functionalization. Additionally, investigating the effect of the band 

structures of s–SWCNTs on the performance of DSSCs would be very valuable. 

(2) It was found that vertically aligned CNTs are promising counter electrode 

materials to achieve highly efficient Pt–free DSSCs due to its improved electrical 

conductivity and electrocatalytic activity.[4-6] It is reasonable to expect improved 

performance of DSSCs by applying vertically grown CNTs structure with the TiO2 

photoelectrode films. 

(3) Chemically functionalizing graphene is an established method to open the band 

gap of graphene and is critical to improvements in the cell characteristics. The band 

structure of graphene oxide or reduced graphene oxide can be tuned by the extent of 

functionalization.[8, 9] The electronic band structure of the functionalized graphene 

should be considered in the future studies of graphene materials based DSSCs. 

(4) Since the dye adsorption kinetics on graphene structures based DSSCs are not 

fully understood, the underlying fundamental driving forces of dye interactions 

should be explored in depth. According to the literature,[10-12] it seems reasonable that 

the reactive sites (functional groups) on graphene surfaces and edges would play a 

major roles in dye interactions and this will need to be investigated to better 

understand the dye loading characteristics. If the functional groups on graphene play 

a critical role in the dye adsorption, further optimization of the oxidation or reduction 

level of graphene may be required to achieve the highest possible performance of 

DSSCs. 

(5) It has been demonstrated that carbon materials exhibit excellent electrocatalytic 

activity for the reduction of liquid electrolyte.[13-15] However, the use of too high 
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concentration of the carbonaceous materials in the photoelectrode brings significant 

charge recombination at the interface of carbons and electrolyte by reducing tri-

iodide to iodide. Therefore, the electrocatalytic activity of carbonaceous materials 

should be taken into account when they are used in the photoelectrode. Graphene is 

known not to be penetrable by gases so a film of graphene on the photoelectrode may 

offer an ability to control molecular diffusion while still allowing efficient charge 

transport. Such diffusion control might extend the lifetime of the electrolyte. This 

work would likely require the construction of a complex hybrid electrode perhaps 

using CNTs to enhance conductivity or tune electronic states while using graphene to 

control levels of reactivity at the critical interfaces. We believe that the carbonaceous 

material will bring an important breakthrough when they are used in the 

photoelectrode of solid state DSSCs. 

(6) Since chemical doping is a powerful method to improve the CNTs properties 

including conductivity and catalytic activity,[16-18] the application of various chemical 

dopants as well as dual doping for CNTs presents an important opportunity to further 

improve Pt-free counter electrodes for DSSCs. 

Since hybrid materials based on CNTs exhibit unique electrocatalytic properties and 

high electrical conductivity, further improvement in the DSSC performance can be 

expected via the incorporation of CNTs with other materials (especially transition 

metallic compounds (TMCs)) to fabricate effective hybrid electrodes. 

 

8.2.2.  Nanocarbons in perovskite solar cells (PSCs) 

Although excellent achievements have been made in the use of carbon materials in 

PSCs, this cutting-edge research field is still in its initial stages. Therefore, we expect 

that the following points will be carefully investigated in the future efforts of using 

nanocarbons in PSCs. 

(1) Carbon nanomaterials have been proven to be ideal candidates to replace the 

precious metal in the cathode of PSCs. Nanocarbon films exhibit the added 

advantage that they can replace both the metal electrode and hole transporting 

materials (HTMs). We believe that further improvement in this class of solar cells 

could be made by upgrading the CNT properties. For instance, the use of pure 

metallic CNTs would bring critical improvements in the performance of PSCs. 
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Although carbon black and CNTs have been utilized as the PSC cathode, the use of 

graphene materials in this application is lacking despite graphene possessing higher 

electrical conductivity than the other forms of carbon. Therefore, reports on using 

highly conductive graphene as the conductive cathode of PSCs would be worthwhile. 

Moreover, chemically doped CNTs and graphene should exhibit very high charge 

transfer rates. So, applying chemically doped CNTs and graphene in the counter 

electrode of PSCs would be promising way to improve cell performance. 

Furthermore, we anticipate that composite materials based on carbon nanostructures 

(especially CNTs and graphene) will provide remarkable improvement in the 

performance of PSCs when they are used in the counter electrode. 

(2) It was found that the carbon materials play a critical role in improving the 

stability of PSCs. Therefore, additional treatments on CNTs and/or other types of 

carbon structures would bring significant enhancement. In addition to this, 

incorporating functionalised CNT structures with other polymers would be an 

important research direction for the long-term stability of PSCs especially in the 

hole-transporting layer. 

(3) Inserting graphene quantum dots (GQDs) between the perovskite and TiO2 layers 

of PSCs was found to be effective method to improve the efficiency of PSCs 

although the exact mechanism of this improvement is unclear. Therefore, it is clear 

that further improvements will be possible by adjusting the band gap of GQDs to 

optimise electron injection and transfer to the anode. 

(4) Application of graphene in the TiO2 blocking layer exhibited significant 

improvement in the cell performance. On the other hand, it is well known that 

chemical doping is an effective approach to enhance the conductivity of graphene. 

Based on this concept, improved performance by using chemically doped graphene 

in the TiO2 electron collection layers is very likely. In addition, graphene and CNT 

based composite materials exhibit unique electrical, chemical and physical properties 

as well as excellent synergetic effect. For this reason, the use of CNTs/graphene 

composite in the TiO2 blocking layer of PSCs would be very valuable for high-

performance device. 

(5) There is still valuable and important work to be done by exploring the 

incorporation of carbon materials and other novel materials such as phosphorene [19] 
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and MoS2
 [20] for the state-of-the-art PSCs. This research would have the potential to 

further improve the efficiency of the PSC system and provide a new research avenue. 
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