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ABSTRACT 

Multiple myeloma (MM) is an incurable haematological malignancy of bone 

marrow plasma cells (PCs) that presents with symptoms such as increased bone 

marrow angiogenesis, osteolytic bone lesions, bone pain and hypercalcaemia. 

Once in the marrow, MM PCs localise to hypoxic niches and upregulate the 

Hypoxia Inducible Factors (HIF-1α and HIF-2α) to facilitate survival and disease 

pathogenesis. Whilst the HIFs have been shown to contribute to MM tumour growth, 

angiogenesis and osteolysis, the majority of data has focused on HIF-1α. As 

such, HIF-2α remains largely understudied and under-considered in current 

approaches to disease prognosis and treatment. 

 

In this study, a lentiviral all-in-one Tet-inducible vector system was used to 

overexpress either HIF-1α or HIF-2α in murine 5TGM1 MM cells. Initial 

experiments in vivo using these cell lines in the established 

5TGM1/C57BL/KaLwRij MM mouse model demonstrated comparable disease 

dissemination and tumour burden between uninduced stable 5TGM1 cells and 

control cells. Of particular interest, pilot experiments suggested there was a trend 

towards increased tumour burden in mice overexpressing HIF-1α or HIF-2α as 

detected by in vivo bioluminescence. Subsequent studies identified fundamental 

issues with transgene stability, showing a loss of expression over time in the 

stable cell lines, and demonstrated that they were unsuitable for use in the 4 week 

MM disease model.  

 

An alternative strategy was developed to knock out either HIF-1α or HIF-2α in the 

5TGM1 MM cells using CRISPR-Cas9 technology. With this strategy, MM cell 

lines lacking HIF-2α were successfully generated, characterised and used in in 

vivo experiments. C57BL/KaLwRij mice injected with 5TGM1 HIF-2α knockout 

cells showed a significant delay and overall reduction or, in some instances, a 

complete lack of tumour dissemination and disease development compared to wild 

type control 5TGM1 cells.  
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Together, the data presented in this dissertation demonstrate that HIF-2α is a 

critical contributing factor in MM disease progression in vivo, and suggest that 

HIF-2α has therapeutic potential in MM. This study has also generated valuable 

cell lines and methodologies for a more extensive comparative analysis of the 

specific roles of both HIF-1α and HIF-2α in MM.  
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1.1 Multiple Myeloma 

1.1.1 General description  

Multiple Myeloma (MM) is a haematological malignancy that accounts for 

approximately 1% of all cancers worldwide, and results in an estimated 80,000 deaths 

every year (Palumbo and Anderson 2011, Ferlay, Soerjomataram et al. 2015). Over 

the last 15 years, advancements in treatment have vastly improved management of 

the disease, providing patients with a range of therapeutic options to prolong and 

improve quality of life, however the disease remains incurable (Palumbo and Anderson 

2011, Pulte, Gondos et al. 2011, Bianchi and Anderson 2014). MM is characterised by 

the clonal expansion of malignant plasma cells within the bone marrow (BM) following 

migration from secondary lymphoid organs (Mundy 1998, Kyle and Rajkumar 2004). 

These cancerous plasma cells arise from an accumulation of cytogenetic abnormalities 

that, in combination with microenvironmental changes, contribute to disease 

pathogenesis (Palumbo and Anderson 2011).  

 

1.1.2 Pathogenesis and clinical manifestations 

The development of malignant MM is preceded by two pre-malignant stages of 

disease; first monoclonal gammopathy of undetermined significance (MGUS), followed 

by smouldering multiple myeloma (SMM), both of which are asymptomatic and do not 

require treatment. As disease progresses, the gradual accumulation of neoplastic 

plasma cells (PCs) within the BM disrupts normal haematopoiesis. The presence of 

these abnormal PCs can be detected at all stages of disease through the excessive 

secretion of a clonal antibody, known as paraprotein (Palumbo and Anderson 2011).  

 

Each of the three stages of disease can be identified and classified based on a defined 

set of clinical manifestations (Figure 1.1). In almost all instances, MM arises from 

MGUS, a benign condition primarily characterised by an excessive production of 

paraprotein with few additional features. Specifically, patients diagnosed with MGUS 

exhibit less than 3g/dL of paraprotein in their blood serum and less than 10% of their 

BM is comprised of PCs (Bianchi and Anderson 2014, Rajkumar, Dimopoulos et al. 
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2014). The incidence of MGUS is 3 - 4% in people over 50 years of age, where 0.5 – 

1% of these will progress to MM per annum (Rajkumar, Dimopoulos et al. 2014).  

 

The transition from MGUS to SMM is characterised by an increase in serum 

paraprotein, with patients exhibiting greater than 3g/dL and less than 60% of the BM 

consisting of PCs, but patients remain asymptomatic (Rajkumar, Dimopoulos et al. 

2014). Patients with SMM have a 10% chance of developing MM in the first 5 years, 

and 70% by 15 years post diagnosis (Kyle, Remstein et al. 2007, Bianchi and Anderson 

2014, Rajkumar, Dimopoulos et al. 2014). SMM broadly encompasses a range of 

patients, from those that display a very low rate of disease progression, to others that 

will rapidly develop malignant MM within 2 years of diagnosis, where the median age 

of diagnosis is 70 years of age (Palumbo and Anderson 2011, Rajkumar, Dimopoulos 

et al. 2014).  

 

The clinical features required to diagnose malignant MM include clonal PCs comprising 

greater than 10% of the BM, detectable paraprotein (in the serum and blood), and the 

presentation of any of four key symptoms resulting in end-organ damage (Figure 1.1) 

(Campo, Swerdlow et al. 2011, Palumbo and Anderson 2011, Rajkumar, Dimopoulos 

et al. 2014). The four symptoms used to classify malignant MM are hypercalcaemia, 

renal insufficiency, anaemia and bone lesions (known by the acronym CRAB), all of 

which severely affect quality of life (Palumbo and Anderson 2011). MM patients will 

display varying combinations of the CRAB clinical features, requiring the confirmation 

of at least one of these for diagnosis of malignant MM (Campo, Swerdlow et al. 2011, 

Palumbo and Anderson 2011, Rajkumar, Dimopoulos et al. 2014).  

 

The most common feature of MM is the bone lesions which are detected in more than 

80% of newly diagnosed individuals (Kyle, Gertz et al. 2003, Palumbo and Anderson 

2011). As the osteolytic bone damage progresses, patients can develop bone 

fractures, bone pain and spinal cord compression (Berenson 2005). Over time, the 

bone lesions can give rise to hypercalcaemia, although this is the least common of the 

CRAB symptoms amongst MM patients at diagnosis (Kyle, Gertz et al. 2003, 

Dimopoulos, Kastritis et al. 2008). At diagnosis of MM, 73% of cases present with 
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anaemia as a direct result of either MM PC expansion within the BM or renal 

impairment (Birgegard, Gascon et al. 2006). Comparatively, renal insufficiency is 

detected in 20-40% of newly diagnosed individuals’ due to excessive circulating 

monoclonal light-chain. This light chain aggregates and deposits within kidney tubules 

causing obstruction and resulting in kidney damage (Eleutherakis-Papaiakovou, 

Bamias et al. 2007, Dimopoulos, Kastritis et al. 2008). This process is exacerbated by 

dehydration, hypercalcaemia and the medication used to treat other symptoms of renal 

failure. The degree of renal insufficiency changes based on the specific monoclonal 

light chain produced, where increased renal damage correlates with an increase in 

mortality rate (Eleutherakis-Papaiakovou, Bamias et al. 2007, Dimopoulos, Kastritis et 

al. 2008). Although treatment can be tailored based on the symptoms presented, the 

long term damaging effects of these clinical features inevitably result in death (Campo, 

Swerdlow et al. 2011, Rajkumar, Dimopoulos et al. 2014).  
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Figure 1.1: Flow chart of the development and clinical manifestation of MM. The 

three stages of MM; MGUS, SMM and malignant MM. MGUS and SMM are both 

asymptomatic and require no treatment. Both conditions can be clinically diagnosed in 

patients that present with specified parameters of paraprotein in the serum or urine 

and PC infiltration of the BM. Malignant MM is symptomatic, where patients can 

present with any combination of the CRAB symptoms, and requires treatment to 

extend and improve quality of life. 
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1.1.3 Genetic mutations in disease pathogenesis 

The stages of MM disease are currently diagnosed based on the clinical features 

specified above, however, the development of MM is strongly driven by genetic 

mutations. Whilst cytogenetic criteria are not compulsory for diagnosis, they are 

required for MM patient classification in clinical trials and can be informative for staging 

diagnoses (Campo, Swerdlow et al. 2011). Although many genetic abnormalities have 

been identified, a number of the more prevalent mutations can be matched to MM 

progression and used as predictive hallmarks of disease stages (Morgan, Walker et al. 

2012, Manier, Salem et al. 2016). These include both primary and secondary mutations 

acquired over the course of disease. Approximately 50% of MM patients present with 

genetic hyperdiploidy, most commonly trisomy of chromosomes, acquired early in 

disease (Chng, Kumar et al. 2007, Morgan, Walker et al. 2012, Pawlyn, Melchor et al. 

2015, Manier, Salem et al. 2016). A broad range of secondary genetic abnormalities 

include further chromosomal translocations, insertions, deletions and epigenetic 

changes (Morgan, Walker et al. 2012, Manier, Salem et al. 2016). Importantly, these 

genetic abnormalities aid in disease pathogenesis by affecting pathways that control 

PC differentiation, cell cycle, DNA-damage repair and signalling pathways that 

contribute to specific disease symptoms.  

 

1.1.4 Differentiation of PCs   

Aberrant genetic expression in MM affects numerous pathways critical to MM cell 

formation and survival. Some of the earliest mutations that drive MM progression are 

acquired during the process of PC differentiation. Immature B cells are produced in the 

BM, becoming IgM-expressing naive B cells following genetic (VDJ) recombination 

(Shapiro-Shelef and Calame 2004). Upon entering the blood stream and reaching the 

periphery of secondary lymphoid organs, naive B cells that are exposed to antigen will 

differentiate into either short-lived PCs or memory B cells (LeBien and Tedder 2008). 

Antigen-stimulated cells that enter the germinal centre of secondary lymphoid organs 

undergo somatic hypermutation, resulting in isotype switching and affinity maturation 

(Arpin, Dechanet et al. 1995, Shapiro-Shelef and Calame 2004). These genetic 

changes produce the aforementioned memory B cells, and long-lived PCs that re-enter 

the peripheral blood and migrate back to the BM. 
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The cytogenetic mutations present in MM cells always include genes linked to somatic 

hypermutation, critical to the production of malignant differentiated PCs (Manier, Salem 

et al. 2016). These MM PCs then migrate from the germinal centres to the BM and 

proliferate (Zhan, Tian et al. 2003). Furthermore, analyses of the genetic pathways 

aberrantly affected in MM PCs show a great degree of overlap with those involved in 

non-malignant PC differentiation, proliferation and migration, emphasising the 

importance of these pathways for MM PC production and survival (Zhan, Tian et al. 

2003, Shapiro-Shelef and Calame 2004). 

 

1.1.5 Homing of PCs  

The movement of B cells between various tissues and locations in the body is driven 

by chemical signals known as chemokines. Soluble chemokines are bound and 

recognized by chemokine receptors found on the surface of lymphocytes. Specific 

receptors found on B cells include CXCR4, CXCR5 and CCR7 (Cyster 2003). Different 

stromal and endothelial cells express the chemokines that interact with these 

receptors, allowing for compartmental recruitment of B cells to various tissue sites. As 

an example, stromal cells expressing CXCL13 will recruit CXCR5 expressing B cells 

to lymph follicles in the B cell zone of lymph nodes (Ansel, Harris et al. 2002). Similarly, 

stromal cells expressing CCL19 and endothelial cells expressing CCL21 will result in 

migration of CCR7 expressing cells (B cells, T cells and dendritic cells) to T cell zones 

of the lymph node during an immune response (Luther, Bidgol et al. 2002).  

 

Newly differentiated long-lived PCs (both non-malignant PCs and MM PCs) emerge 

from germinal centres within the lymph follicle, and enter the peripheral blood to 

migrate to the BM. As observed in secondary lymphoid organs, the circulation of PCs 

to the BM and navigation of this microenvironment is mediated by chemokines and 

surface markers. Specifically, PCs express CXCR4 receptors which allow them to 

migrate towards the CXCL12 chemokine secreted into the environment by stromal 

cells. Directional migration towards the BM begins with a change in surface receptor 

expression, specifically higher levels of CXCR4 and comparatively lower levels of 

CXCR5 and CCR7 (Wehrli, Legler et al. 2001, Hauser, Debes et al. 2002). This lowers 

the response of PCs to environmental CXCL13, CCL19 and CCL21 chemokines in 
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secondary lymphoid organs, and results in movement out of the lymphoid tissues 

(Cyster 2003). 

 

Cellular survival and proliferation in the BM requires the cooperation of a number of 

cell types such as stromal cells, immune cells, endothelial cells, adipocytes, 

extracellular matrix (ECM), osteoblasts and osteoclasts to maintain and control 

homeostasis (Podar, Richardson et al. 2007). Chemokine signalling is also crucial for 

these cellular interactions, by allowing PCs to locate and make cell-to-cell contact 

within the BM (Noll, Williams et al. 2012). Specifically, exposure to new sources of 

CXCL12 alongside additional chemo-attractants such as MCP-1, laminin-1 and IGF-1 

promotes the migration of PCs to endothelial or stromal cell sites within the BM (Cyster 

2003, Menu, Asosingh et al. 2004).  

 

Following migration, cell-cell adhesion is mediated by a diverse array of cell surface 

receptors and signalling molecules such as VLA-4, VLA-5, ICAM-3, CD51, CD44, 

Syndecan-1 and CXCL12, which provide adhesive interactions between PCs, stromal 

cells and the ECM (Cyster 2003, Menu, Asosingh et al. 2004). These signalling 

molecules and receptors are crucial for supporting the growth of long-lived PC growth, 

as well as playing a crucial role in MM PC survival, proliferation and expansion (Noll, 

Williams et al. 2012). As such, the aberrant upregulation of specific factors by MM PCs, 

including CD44 and CXCL12, prolongs their survival in the BM (Zhan, Tian et al. 2003, 

Noll, Williams et al. 2012, Reijmers, Spaargaren et al. 2013).  

 

Once adhered at specific sites, expression of matrix metalloproteinase by PCs such 

as MMP9, MMP2 and MMP7 aids in tissue invasion by breaking down ECM to reach 

the desired niche (Menu, Asosingh et al. 2004). Whilst in the BM, PC survival is further 

aided by the increased expression of additional cytokines including TNFα, APRIL, 

BAFF and IL-6 (Reijmers, Spaargaren et al. 2013). MM PCs that have infiltrated the 

BM aberrantly regulate the expression of a number of cytokines including TNFα, BAFF, 

APRIL, IL-6, VEGF, WNT, TGFβ and IGF-1 to promote cancer cell survival, 

proliferation, migration, blood vessel formation and bone destruction (Shapiro-Shelef 

and Calame 2004, Reijmers, Spaargaren et al. 2013).  



 Chapter 1: Introduction 

 

18 
 

 

1.1.6 MM disease in the bone marrow 

The aberrant expression of cytokines and growth factors by MM PCs disrupts the 

normal BM microenvironment resulting in the aberrant elevation of specific biological 

processes, such as bone osteolysis and anaemia, which contribute to patient 

symptoms. Both in vitro and in vivo studies have linked the importance of secreted 

factors such as CXCL12 and MMP9 in MM PC homing and disease by directly 

correlating their expression with cell migration and tumour load (Menu, Asosingh et al. 

2006). It is well understood that the bone osteolysis observed in MM patients arises 

from an increase in bone resorption and a decrease in bone formation driven by 

changes to osteoclast (cells that break down bone) and osteoblast (cells that create 

new bone) homeostasis. Elevated levels of CXCL12 have been detected in MM patient 

samples and its role characterised using MM cell lines in in vitro and in vivo studies 

(Zannettino, Farrugia et al. 2005, Diamond, Labrinidis et al. 2009). To this end, 

CXCL12 expression was shown to positively correlate with increased osteolytic bone 

damage through osteoclast recruitment and activation.  

 

CXCL12 acts by inducing genes that activate osteoclasts such as RANKL, TRACP, 

carbonic anhydrase II and Cathespink (reviewed by (Edwards, Zhuang et al. 2008)). 

Osteoclasts express CXCR4 receptors that promote recruitment to sites of elevated 

expression of CXCL12, such as BM niches that contain proliferating MM PCs, 

advancing bone resorption (Zannettino, Farrugia et al. 2005). Osteoclasts also 

promote MM PC expansion through direct cell-to-cell contact which not only 

propagates bone destruction, but also contributes to a process known as angiogenesis 

(Ria, Catacchio et al. 2014).  

 

Angiogenesis is the production of new blood vessels from the existing vasculature in 

response to the upregulation of external stimuli such as vascular endothelial growth 

factors (VEGFs) (Shweiki, Itin et al. 1992, Liao, Corle et al. 2007). Angiogenesis is also 

commonly stimulated as a response to low oxygen (hypoxia) that subsequently 

increases vascularisation and provides a renewed supply of oxygen to the effected 

tissue. This process is critical to many cancers including MM, where BM aberrant 
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angiogenesis is a feature associated with disease progression (Vacca, Ribatti et al. 

1994). Notably, the BM contains hypoxic niches that are critical for processes such as 

haematopoiesis (Eliasson and Jonsson 2010). The naturally hypoxic 

microenvironments within the BM appear to also support the establishment of MM PCs, 

as shown in a murine model of MM (Asosingh, De Raeve et al. 2005). An independent 

study detected an increase in angiogenesis within MM infiltrated tissues compared to 

healthy BM (Asosingh, De Raeve et al. 2004). Importantly, this supported the 

expansion of CD45- murine MM PCs, a subpopulation that represents the majority of 

MM cells present at advanced stages of disease (Asosingh, De Raeve et al. 2003, 

Asosingh, De Raeve et al. 2004). The subsequent vascularisation of the BM promoted 

MM PC growth and expansion, resulting in the disruption of normal BM homeostasis 

(Asosingh, De Raeve et al. 2004). These studies have identified the pathways that 

control oxygen status in the BM as critical components to MM pathogenesis. The 

critical role of hypoxia in MM PC establishment and angiogenesis, has led to the 

investigation of hypoxic signalling pathways in MM disease progression.  
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1.2 Hypoxia and the Hypoxia Inducible Factors 

1.2.1 Hypoxia: General description 

A cell’s ability to maintain oxygen homeostasis is crucial for its survival. As oxygen 

supplies to cells are often variable, cells utilise oxygen sensors and regulatory 

processes to rapidly respond to changes in oxygen levels, specifically hypoxia when 

the supply of oxygen is too low to meet cellular demand (Aragones, Fraisl et al. 2009, 

Semenza 2011).  

 

States of hypoxia are found in many physiological and pathological situations, such as 

embryonic development, inflammation, ischemic stress and cancer pathogenesis 

(reviewed by (Semenza 2014)). The prolonged presence of hypoxia has detrimental 

effects, for example the hypoxia caused by a lack of blood supply (ischaemia) to the 

brain, if left unchecked, can result in stroke (Semenza 2003). In solid cancers, 

continued tumour growth results in the formation of highly dense and poorly 

vascularised regions that have limited oxygen supply, creating hypoxic regions and 

ultimately results in cell death. Cells in such poorly oxygenated microenvironments, 

including tumours, respond by upregulating factors to increase the oxygen supply, 

metabolically adapt, and prevent cellular apoptosis.  

 

1.2.2 Hypoxia and Hypoxia Inducible Factors 

The physiological and pathological changes that occur in response to hypoxia are 

controlled through the activation of a cascade of transcriptional programs. At the top 

of this cascade are a family of transcription factors known as the Hypoxia Inducible 

Factors (HIFs). Studies first discovered HIF as the factor that bound the enhancer 

element of erythropoietin, resulting in its transcriptional activation and the production 

of red blood cells in hypoxia (Semenza and Wang 1992, Wang and Semenza 1993).  

 

HIF is a member of the basic helix-loop-helix/PER-ARNT-Sim (bHLH/PAS) family of 

transcription factors, and exists as a heterodimer (Wang, Jiang et al. 1995, Wang and 

Semenza 1995). HIF is made up of a regulated HIFα subunit that dimerises with the 
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HIFβ subunit, also known as the Aryl Hydrocarbon Nuclear Translocator (ARNT), to 

form a functional HIF transcription factor (Hoffman, Reyes et al. 1991, Jiang, Rue et 

al. 1996). The bHLH domain enables DNA binding and dimerisation, whilst the PAS-A 

and PAS-B domains provide both stability and specificity for heterdimerisation (Jiang, 

Rue et al. 1996). 

 

There are three known HIFα isoforms; HIF-1α, HIF-2α and HIF-3α, all of which 

heterodimerise with HIFβ. HIF-1α and HIF-2α show a great degree of similarity in their 

conserved and functional domains, a feature that is not shared with HIF-3α (Figure 1.2) 

(Gu, Moran et al. 1998). HIF-1α and HIF-2α contain two transactivation domains, the 

N-TAD (N terminal transactivation domain) and the C-TAD (C-terminal transactivation 

domain) that are responsible for HIF transcriptional activity (Jiang, Rue et al. 1996, 

Jiang, Zheng et al. 1997, Pugh, O'Rourke et al. 1997). HIF-1α and HIF-2α also have a 

central ODDD (oxygen-dependent degradative domain), which is crucial for the 

oxygen-dependent regulation of HIF protein levels (Huang, Gu et al. 1998). While not 

as well studied as HIF-1α and HIF-2α, HIF-3α appears to play a more subtle and still 

poorly defined role in hypoxic gene induction (Heikkila, Pasanen et al. 2011). 
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Figure 1.2: Schematic diagram showing the functional domains of the Hypoxia 

Inducible Factor subunits. Each of the α subunits can heterodimerise with a 

constitutively expressed partner HIF-β to form the active HIF transcription factor. The 

basic helix-loop-helix (bHLH) is the DNA-binding domain involved in dimerisation and 

binding to the DNA consensus sequence G/ACGTG. The PAS (Per, Arnt, Sim 

homology) domain also promotes heterodimerisation. All three HIFα subunits share an 

N-TAD (N-terminal activation domain) found within an oxygen dependent degradation 

domain (ODDD), but only HIF-1α and HIF-2α contain a C-TAD (C-terminal activation 

domain).  
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The HIFα protein is highly sensitive to changes in oxygen levels, where exposure to 

normoxic conditions results in its rapid degradation (Wang, Jiang et al. 1995, Huang, 

Gu et al. 1998). Three enzymes known as the prolyl hydroxylase domain-containing 

enzymes (PHDs) regulate HIFα through oxygen-dependent hydroxylation of the 

ODDD, resulting in rapid protein degradation (Epstein, Gleadle et al. 2001, Ivan, Kondo 

et al. 2001, Jaakkola, Mole et al. 2001). These hydroxylases require oxygen and 2-

oxoglutarate as substrates along with iron and ascorbate as cofactors to function, 

resulting in the production of hydroxylated HIFα protein, succinate and carbon dioxide 

as products (Jaakkola, Mole et al. 2001). The PHD’s dependence on oxygen for HIFα 

protein regulation, demonstrates their crucial role in cellular oxygen sensing.  

 

In normoxia, the PHDs add hydroxyl groups to two proline residues located within the 

ODDD’s of both HIF-1α (P564 and P402 in human HIF-1α) and HIF-2α protein (P530 

and P405 in human HIF-2α) (Figure 1.3) (Huang, Arany et al. 1996, Huang, Gu et al. 

1998, Bruick and McKnight 2001, Epstein, Gleadle et al. 2001). Proline hydroxylation 

provides sites of interaction for the von Hippel-Lindau proteins which form part of an 

E3 ubiquitin-protein ligase complex. This interaction results in polyubiquitination of the 

HIFα protein in the cytoplasm and its subsequent rapid degradation in the proteasome 

(Huang, Gu et al. 1998, Maxwell, Wiesener et al. 1999).  

 

The three PHDs (PHD1-3) are known to hydroxylate the HIFα proteins in a non-

redundant manner. Although the three isoforms functionally regulate the HIFs, this is 

dependent on their relative expression levels which can vary across different cell types, 

and inherent specificity for different HIFα proteins (Appelhoff, Tian et al. 2004, Takeda, 

Aguila et al. 2008). Knock down studies of all three hydroxylases identified PHD2 as 

the main isoform responsible for HIFα degradation (Berra, Benizri et al. 2003).  

 

Whilst the PHDs play a key role in HIF degradation, they are not the only hydroxylases 

that regulate HIFα proteins. Factor Inhibiting HIF (FIH) is an asparaginyl hydroxylase 

whose oxygen-dependent modification of the HIFα C-TAD in normoxia ensures that 

any HIFα that has escaped degradation is not fully activated. This is achieved by the 

hydroxylation of a specific asparagine residue found within the C-TAD of HIF-1α (N803 
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in human HIF-1α) and HIF-2α (N851 in human HIF-2α), preventing recruitment of 

transcriptional co-activator CBP/p300 and formation of an active transcription complex 

(Hewitson, McNeill et al. 2002, Lando, Peet et al. 2002, Lando, Peet et al. 2002, 

Koivunen, Hirsila et al. 2004).  

 

In hypoxia, the oxygen-dependent hydroxylases lose activity and HIFα protein is less 

efficiently hydroxylated, avoids proteolysis and translocates to the nucleus (Figure 1.3). 

The hydroxylases are so sensitive to cytoplasmic oxygen levels that stabilisation of 

HIFα occurs within minutes of exposure to hypoxia (Salceda and Caro 1997, Jewell, 

Kvietikova et al. 2001). Following translocation of HIFα to the nucleus, 

heterodimerisation occurs with its partner factor HIFβ to form a functional HIF 

transcription factor capable of interacting with the transcriptional co-activators. The 

HIFs bind to a specific consensus sequence (G/ACGTG) on the DNA known as the 

Hypoxic Response Element (HRE) to regulate specific target genes (Semenza and 

Wang 1992).  
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Figure 1.3: HIF post-translational hydroxylase regulation showing the interactions 

between HIF-α protein and hydroxylases (PHD and FIH) under normoxic conditions 

and between the HIF-α protein and HIF response element on target genes under 

hypoxic conditions. Normoxia detail includes the hydroxylated residues and resulting 

degradation of HIF-α protein. Hypoxia detail shows the absence of hydroxylated 

residues, stabilisation of HIF-α protein and subsequent translocation into the nucleus 

where the HIF-α subunits can heterodimerise with HIF-β. 
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Functional experiments, gene profiling and expression arrays in numerous cell types 

have shown that the HIFs are central to regulating hundreds of different target genes 

(Semenza and Wang 1992, Wenger, Stiehl et al. 2005, Elvidge, Glenny et al. 2006, 

Hu, Iyer et al. 2006, Benita, Kikuchi et al. 2009, Mole, Blancher et al. 2009, Xia, 

Lemieux et al. 2009). Gene activation is not limited to direct target genes but also 

indirectly through the regulation of other key biochemical pathways. This results in a 

complicated network of target genes with far-reaching consequences in response to 

hypoxic stress (Ortiz-Barahona, Villar et al. 2010, Schodel, Mole et al. 2013). Specific 

pathway examples include vascular remodelling, erythropoiesis, glycolysis, cell 

proliferation, angiogenesis and epithelial to mesenchymal transition (EMT) (Dengler, 

Galbraith et al. 2014, Lee and Simon 2015).  

 

1.2.3 HIF-1 and HIF-2 

Despite the similarities in structure and hydroxylation-dependent regulation of HIF-1α 

and HIF-2α, studies have shown differences in their roles in embryonic development, 

cell-dependent expression patterns and selected target gene regulation (reviewed by 

(Hu, Wang et al. 2003, Sowter, Raval et al. 2003)). HIF-1α knockout mice are 

embryonically lethal at day E10.5 and HIF-2α knockout mice from E16.5, confirming 

the importance of the HIFs in embryonic development, and importantly, demonstrating 

that the two factors are non-redundant during mouse development (Iyer, Kotch et al. 

1998, Ryan, Lo et al. 1998, Tian, Hammer et al. 1998). Although both factors are 

essential for development, the morphological defects differed between HIF-1α and 

HIF-2α knockout mice and interestingly, differences were reported between three 

independently derived HIF-2α knockout mice (Tian, Hammer et al. 1998, Peng, Zhang 

et al. 2000, Compernolle, Brusselmans et al. 2002).  

 

HIF-1α knockout mice presented with abnormal cardiovascular formation in addition to 

aberrant vascularisation in other parts of the embryo that was linked to the 

dysregulated expression of hypoxic target genes such as Vegf-A (Iyer, Kotch et al. 

1998, Ryan, Lo et al. 1998). Comparatively, the first of three independent HIF-2α 

knockout studies showed the cause of death to be bradycardia as a result of a 

disruption in catecholamine homeostasis (Tian, Hammer et al. 1998). Interestingly, 



 Chapter 1: Introduction 

 

27 
 

HIF-2α knockout mice that could survive to adulthood were created by backcrossing 

heterozygous HIF-2α knockout mice from the original 129S6/SvEvTac strain 

generated by Tian et al with heterozygous C57BL/6J HIF-2α knockout mice, to create 

129S6/SvEvTac:C57BL6J HIF-2α knockout mice (Tian, Hammer et al. 1998, 

Scortegagna, Morris et al. 2003). These mice showed a number of physiological and 

molecular phenotypes including retinopathy, cardiac hypertrophy, skeletal myopathy, 

metabolic abnormalities, impaired homeostasis of reactive oxygen species, and 

pancytopenia as a result of deficient haematopoietic development (Scortegagna, Ding 

et al. 2003, Scortegagna, Ding et al. 2005). Importantly, these results support a role 

for HIF-2α in haematopoiesis, with important implications for a potential role in MM. 

 

A second independently derived HIF-2α null mouse study resulted in embryonic death 

between days E9.5 and E12.5 from haemorrhagic and severe vascular remodelling 

defects (Peng, Zhang et al. 2000).  Lastly, a third study produced HIF-2α knockout 

mice that presented with a fault in lung surfactant production alongside the previously 

observed vascular remodelling which ultimately lead to heart failure, lung collapse and 

respiratory failure at E13.5 (Compernolle, Brusselmans et al. 2002)  Whilst the different 

physiological deficiencies observed between the HIF-2α knockout experiments was 

likely attributed to variations in mouse genetic backgrounds, comparisons between the 

HIF-1α and HIF-2α knockout models demonstrate distinct phenotypes. These are not 

fully explained by their relative expression patterns (see below), and are likely to reflect 

inherent differences in function mediated by distinct target gene repertoires.  

 

In normal cells and tissues, HIF-1α mRNA is considered to be ubiquitously expressed 

whilst HIF-2α mRNA expression is specifically expressed in endothelial, epithelial, 

fibroblast, macrophage and neural cells as well as in the lung and carotid body (Tian, 

Hammer et al. 1998, Talks, Turley et al. 2000, Wiesener, Jurgensen et al. 2003). 

Conditional HIF-1α knockout studies identified a range of distinct roles for HIF-1α that 

was consistent with its ubiquitous expression, and supported the knockout experiment 

performed by Iyer et al and Ryan et al (Iyer, Kotch et al. 1998, Ryan, Lo et al. 1998). 

These functions included adaptation of the skin to hypoxia (Boutin, Weidemann et al. 

2008), metabolic control in skeletal muscle (Mason, Howlett et al. 2004), bactericidal 

activity of macrophages (Peyssonnaux, Datta et al. 2005), acute inflammatory 
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responses (Cramer, Yamanishi et al. 2003), brain development (Tomita, Ueno et al. 

2003, Milosevic, Maisel et al. 2007), and normal heart function (Huang, Hickey et al. 

2004). HIF-2α conditional knockout studies unveiled specialised functions, some of 

which overlapped with the complete knockout animal data discussed above. 

Specifically, mice containing endothelial cells with deficient HIF-2α expression 

displayed altered vessel permeability consistent with the vascular deficiencies 

observed by Peng et al (Peng, Zhang et al. 2000, Skuli, Liu et al. 2009). Other 

physiological effects of conditional HIF-2α knockout included anaemia (Gruber, Hu et 

al. 2007), iron deficiency (Mastrogiannaki, Matak et al. 2009) and erythropoietin 

dysregulation in both hepatocytes and astrocytes (Rankin, Biju et al. 2007, 

Weidemann, Kerdiles et al. 2009). These data reveal a highly context-dependent role 

for HIF-2α, consistent with its tissue specific expression and function. 

 

Comparative assessment of HIF expression in a cancer context showed that HIF-1α, 

HIF-2α or both factors could be upregulated (Zhong, De Marzo et al. 1999, Talks, 

Turley et al. 2000). HIF-1 and HIF-2 have been shown to share many of the same 

target genes, such as the angiogenic activator Vegf-A, and regulate some common 

pathways. These findings were not surprising given the similarity in sequence and 

structure between the two factors, and that both recognise and bind the same 

consensus HRE sequence for target gene regulation. Despite this, not all target genes 

are regulated by both HIFs, for example Bnip3 and Epo have been found to be HIF-1 

or HIF-2 preferential targets, respectively, in a context specific manner (Raval, Lau et 

al. 2005, Lee and Simon 2015). Hence the differential expression patterns of HIF-1α 

and HIF-2α in normal tissue only partially explain why the two factors regulate different 

target genes, and in cases where both HIFα proteins are expressed in the same cells, 

they clearly demonstrate target gene specificity.  

 

1.2.4 HIF-1 and HIF-2 in cancer  

Extensive research of the HIFαs in cancer survival has shown that their expression 

patterns can be just as critical to cancer survival as they are to non-malignant cells and 

tissues. Many human cancers have been shown to aberrantly upregulate both HIF-1α 

and HIF-2α from early stages of disease, an observation that correlated with more 
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aggressive disease and higher mortality rates (Talks, Turley et al. 2000, Semenza 

2014). Despite the differential expression patterns of HIF-1α and HIF-2α in normal 

tissues, the upregulation of both HIFs similarly promote a more aggressive phenotype 

in a broad range of cancers including lung, stomach, breast, brain, ovarian, skin, 

colorectal, bladder and bone malignancies (Talks, Turley et al. 2000). Whilst this this 

has been shown for the majority of cancers, there is evidence for the differential roles 

of HIF-1α compared to HIF-2α in specific cancers.  

 

Direct disruption of either HIFα isoform identified HIF-1α, but not HIF-2α, as a critical 

hypoxic regulator in breast cancers cells, whilst the same study identified HIF-2α as 

the critical factor driving the hypoxic response in renal carcinoma cells (Sowter, Raval 

et al. 2003). Subsequent studies in these cancer contexts showed that HIF-1α and 

HIF-2α had differential roles in target gene regulation, and ultimately in tumour growth 

(Raval, Lau et al. 2005). Specifically, HIF-1α but not HIF-2α targeted Bnip3 regulation, 

whilst HIF-2α primarily regulated cyclinD1, Tnfα and Vegf-A. Multiple studies have also 

shown that the two HIFs can have opposing roles. For example HIF-2α increases renal 

cell carcinoma (RCC) tumour growth, whilst HIF-1α reduces growth through the 

differential regulation of glycolytic and metabolic pathways (Raval, Lau et al. 2005, 

Biswas, Troy et al. 2010). In many cases, HIF-2α is associated with more aggressive 

disease and poorer patient prognosis (Lofstedt, Fredlund et al. 2007). From these data, 

it is evident that differential expression of HIF-1α and HIF-2α can result in significantly 

different disease outcomes.  

 

The differential expression patterns and roles of HIF-1α and HIF-2α allude to a 

difference in their regulation. A study by Bracken et al. compared the expression of 

HIF-1α and HIF-2α protein under various oxygen conditions and found a delayed 

induction of HIF-2α compared to HIF-1α in PC12 and HeLa cells under various oxygen 

conditions, but not in HEK293T, Cos-1, CACO2 and HepG2 cells (Bracken, Fedele et 

al. 2006). Interestingly, whilst HIF-1α protein was stabilised in PC12 and HeLa cells 

following treatment with the hypoxia mimetic 2,2-dipyridyl (DP), which inactivates the 

PHDs by chelating iron, HIF-2α protein expression was not affected, further supporting 

a differential mode of regulation between the two factors. Further evidence using a 

neuroblastoma cell line (SK-N-BE(2)C), showed similar delayed induction of HIF-2α 
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protein compared to HIF-1α (Holmquist-Mengelbier, Fredlund et al. 2006). A more 

recent study also using neuroblastoma cells found the same differential expression 

pattern and identified an upregulation in Hif2α mRNA to be responsible for the delayed 

hypoxic protein expression (Lin, Cong et al. 2011).  

 

These data identify an acute versus chronic induction of HIF-1α and HIF-2α protein, 

respectively, in some cancer cell types that could have significant implications on their 

roles in cancer progression, tumour growth and disease prognosis in vivo. 

Furthermore, the differential regulation together with differential expression and target 

gene selectivity, support distinct roles for the HIFα proteins in cancer.  
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1.3 Understanding the role of HIF-1 and HIF-2 in MM  

1.3.1 The use of animal models to study MM 

Animal models are very good tools to study the molecular and cellular mechanisms 

driving disease in an in vivo context and are often required as a prerequisite to clinical 

studies. Currently, a number of different mouse model systems are available to study 

MM, including the use of pristane injected BALB/c mice, SCID xenograft mice, SCID-

hu models and 5T murine models (5TMM) (Libouban 2015).  

 

The earliest model was created by injecting BALB/c mice with the mineral oil pristine 

into the peritoneum (Potter 1986). This treatment resulted in the formation of numerous 

plasmacytomas within the peritoneal cavity that could be retransplanted into pristine-

prepared mice. Whilst the cancerous plasma cells in this model closely resembled MM 

cells, these tumours differed significantly in that they were located in the peritoneum, 

were not spontaneous and contained different oncogenic rearrangements to the 

human disease (Potter 1986, van den Akker, Radl et al. 1996, Gado, Silva et al. 2001).  

 

Other models include the use of severe combined immunodeficiency (SCID) mice, 

specifically a SCID-xenograft model and a SCID-hu model. The SCID-xenograft mice 

were created from either the intravenous or intraperitoneal injection of cancer cells 

including primary human MM cells or MM cell lines (Asosingh, Radl et al. 2000, 

Libouban 2015). These mice displayed osteolysis, BM involvement and the presence 

of a paraprotein, symptoms like those observed in human MM. The SCID-hu mouse 

model involved taking human foetal bone fragments and engrafting these into mice 

(Urashima, Chen et al. 1997, Yaccoby, Barlogie et al. 1998). These mice were then 

injected with human MM cells, thus providing a microenvironment that better supported 

human MM cell homing and growth in the BM.  

 

Ageing C57Bl/KalwRij mice spontaneously develop MM at a frequency of 0.5% in mice 

greater than 2 years old (Radl, De Glopper et al. 1979, Radl, Croese et al. 1988, Radl 

1990). The cancerous cells were harvested from the BM of these mice and 

intravenously injected into young healthy mice, resulting in the development of MM. 
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The syngeneic cells isolated from these mice and then injected into healthy mice were 

referred to as the 5T series. Eight different cell lines were isolated from individual mice 

and tested using this model. (Vanderkerken, De Raeve et al. 1997, Radl 1999). Of 

these 8 characterised lines, the two most studied are the 5T2 and the 5T33 murine 

models. Tumour was first detected at 9 weeks using 5T2 murine model, with moderate 

tumour growth and bone lesions developing over 4 months. In contrast, the 5T33 

murine model showed detectable tumour at 2 weeks, displayed evidence of bone 

lesions and developed terminal disease at 4-5 weeks, making this the more aggressive 

model of MM. Characterisation of both models showed that the MM cells home to the 

BM, where they secrete abundant paraprotein which can be detected in the peripheral 

blood, thus creating a murine model with comparable symptoms to those observed in 

the human disease (Garrett, Dallas et al. 1997, Vanderkerken, De Raeve et al. 1997). 

 

Both the 5T2 and 5T33 murine models of MM represent excellent pre-clinical models, 

due to their successful use to both characterise the pathology of MM in mice, and test 

the efficacy of potential drug therapies such as bisphosphonates (Radl, Croese et al. 

1985, Manning, Chamberlain et al. 1995, Dallas, Garrett et al. 1999). However, both 

require taking MM cells from aged mice, and injecting these directly into young mice 

(Degrassi, Hilbert et al. 1993, Vanderkerken, De Raeve et al. 1997). A newer MM cell 

line known as the 5TGM1 line overcomes this limitation as it can be propagated in vitro 

without the need for supplementation, stromal cell support or conditioned media. As 

with the aforementioned 5T2 and 5T33 models, the 5TGM1/C57BL/KaLwRij model has 

also been successfully used for pre-clinical drug analysis (Edwards, Edwards et al. 

2008). The 5TGM1 cells are derived from the 5T33 cells, and as such, display a similar 

aggressive disease phenotype developing over 4 weeks (Dallas, Garrett et al. 1999). 

This model has been widely used in place of the 5T33 murine model to explore the 

molecular pathways and cellular interactions that drive disease from both an in vitro 

and an in vivo perspective.  

 

1.3.2 Angiogenesis, bone osteolysis and MM 

The rapid proliferation of cancer cells in solid tumours often compromises oxygen 

supply to the area and threatens cellular survival. In response, there is an increase in 
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angiogenic stimuli (such as hypoxia and expression of VEGFs) that subsequently 

upregulate angiogenesis to relieve hypoxic stress and support tumorigenesis (Maxwell, 

Dachs et al. 1997). In normal tissues, once the oxygen supply has been restored, the 

decreased expression of angiogenic factors and the increased expression of 

angiostatic factors halts angiogenesis (Klein, Roghani et al. 1997). In cancerous 

tissues however, an equilibrium between angiogenic and angiostatic factors is not 

reached and angiogenesis continues to be upregulated, thus sustaining tumour growth 

and expansion (Papetti and Herman 2002).  

 

Angiogenesis is not only critical to solid tumour formation, but also for the progression 

of haematological diseases. The earliest study of angiogenesis in MM analysed the 

BM microvessel density (MVD) as a measurement of angiogenesis between MGUS 

and MM patients (Vacca, Ribatti et al. 1994). This study discovered significantly 

increased BM MVD in patients with active MM, and was the first to identify a correlation 

between angiogenesis and disease prognosis in MM (Vacca, Ribatti et al. 1994). As 

was briefly mentioned in section 1.1.6, investigations by Asosingh et al further explored 

the role of angiogenesis in MM disease progression in vivo (Asosingh, De Raeve et al. 

2004). BM samples were isolated at weekly intervals from 5T2MM mice, and MVD 

analysed by staining for CD31 and counting the number of blood vessels present 

(Figure 1.4). BM MVD in the 5T2MM mouse model identified a pre-angiogenic stage 

with slow tumour growth that preceded an increase in MVD termed the ‘angiogenic 

switch’. The increase in angiogenesis was immediately followed by progressive tumour 

expansion until the end stage of disease was reached, demonstrating a link between 

angiogenesis and disease progression. Furthermore, this was the first study to show a 

pre-clinical assessment of angiogenesis through to terminal disease, considering that 

clinically diagnosed patients already present with established angiogenesis.  

 

In addition to the angiogenic response observed in the BM, the emergence of 

detectable bone lesions is commonly associated with progressive MM. Patients with 

symptomatic osteolysis display elevated levels of CXCL12 that act to increase 

osteoclast driven bone resorption (Zannettino, Farrugia et al. 2005). Further 

investigation using in vitro experimentation and patient samples showed that CXCL12 

directly promotes both osteolysis and angiogenesis in MM (Martin, Dewar et al. 2006). 
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The link between bone resorption and neovascularisation shows that both symptoms 

correlate with a poor disease prognosis.  
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Figure 1.4: Schematic of the 5T2MM mouse model system demonstrating the 

quiescent, intermediate and end stages of multiple myeloma disease. The progression 

of disease following the slow growing quiescent stage is driven by an upregulation in 

angiogenesis labelled the “angiogenic switch”. The upregulation of angiogenesis 

(MVD) correlates with an increase PC tumour load, accelerating until the end stage of 

disease. Figure adapted with permission (Asosingh, De Raeve et al. 2004).  
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1.3.3 Hypoxia, HIF and MM  

In solid tumours, the resulting hypoxic microenvironment contributes to cancer cell 

survival and metastasis, through processes such as angiogenesis, to advance disease 

(Harris 2002, Subarsky and Hill 2003). Comparatively, far less is known about the role 

of hypoxia in haematological diseases. Early studies using the 5T2MM murine model 

and the hypoxyprobe pimonidazole and HIF-1α to measure BM hypoxia, demonstrated 

that the BM of both normal and diseased mice were hypoxic (Asosingh, De Raeve et 

al. 2005). Interestingly, the CD45+ 5T2MM cell subpopulation present at early stages 

of disease were more resistant to apoptosis in hypoxia (Asosingh, De Raeve et al. 

2003, Asosingh, De Raeve et al. 2005). This resistance provided a critical advantage 

in the naturally hypoxic microenvironment of the BM, and was the first study to 

demonstrate that hypoxia is important for MM establishment in the BM.  

 

The upregulation of HIF in hypoxia results in transcriptional changes to numerous 

pathways that are critical to non-malignant and malignant cellular survival. The use of 

HIF-1α as a measure of hypoxia in 5T2MM mice therefore suggested that HIFα could 

be directly contributing to MM cell survival and expansion in the hypoxic BM 

microenvironment. Immunohistochemical analyses of BM specimens from both SCID-

hu and 5T33MM mice injected with MM cells, showed a correlation between tumour 

burden and HIF-1α expression (Azab, Hu et al. 2012). Hypoxia was also shown to 

influence MM cell homing by increasing the number of circulating cells in vivo. 

Furthermore, intravenous injection of mice with MM cells lacking HIF-1α expression 

(using siRNA knockdown) showed a loss of the hypoxia-dependent accelerated 

dissemination of cells to the BM, where the number of circulating cells was similar to 

normoxia experiments. Lastly, a decrease in adhesion of MM cells to BM stromal cells 

isolated from MM patients was observed in hypoxic conditions. This correlated with an 

increase in HIF-1α and HIF-2α expression and a decrease in E-cadherin expression, 

suggesting that hypoxia potentially influences migration of cells from the BM using the 

HIF pathway. The data from this study not only confirmed that HIF-1α plays a role in 

MM tumour growth in the BM, but suggested that HIF-1α is linked with MM cell homing 

and metastasis.  
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Investigations by Storti etal further explored the role of the HIF-1α, and the downstream 

pathways it regulates, on MM disease parameters in vitro and in vivo (Storti, Bolzoni 

et al. 2013). Short hairpin RNA knockdown of HIF-1α in human MM cells showed a 

loss of specific angiogenic target gene expression in hypoxia, including Vegf-A and 

MMP9. This directly linked the HIF-1α transcriptional pathway with MM angiogenesis. 

In addition, the expression of pro-osteoclastogenic target genes MIP1A and IL-7 were 

significantly decreased in HIF-1α knockdown MM cells. This data was supported by in 

vivo experiments where the HIF-1α knockdown MM cells were injected subcutaneously 

into SCID-NOD mice, resulting in a HIF-1α-dependent decrease in tumour size and 

angiogenesis (via CD34 and VEGF immunostaining). Furthermore, intratibial injection 

of the HIF-1α knock down MM cells into mice demonstrated a decrease in BM 

angiogenesis and bone resorption. These data supported previous findings, 

highlighting a hypoxia-dependent role for HIF-1α in MM tumour growth. Importantly, 

this study directly linked HIF-1α with angiogenesis, a critical symptom for MM disease 

progression.  

 

In recent times, HIF-1α has not only been associated with MM tumour growth, 

angiogenesis and metastasis, but also with cellular metabolism, BM-MM PC 

interactions, drug resistance, and MM relapse (Borsi, Perrone et al. 2014, Borsi, 

Perrone et al. 2014, Ria, Catacchio et al. 2014). Human MM cells treated with the HIF-

1α antagonist EZN-2968 resulted in a decrease in adhesion and downstream 

expression of IL-6 and VEGF, showing that HIF-1α is important for MM and BMSC 

interactions and the molecular expression profile that follows (Borsi, Perrone et al. 

2014). Furthermore, treatment of MM cells with EZN-2968 resulted in lowered cellular 

proliferation and significant changes to metabolism (Borsi, Perrone et al. 2014). This 

disruption to MM cell homeostasis highlighted the potential for HIF-1α as a therapeutic 

target. This was explored in MM patients, where HIF-1α was upregulated compared to 

MGUS, early MM and MM patients in remission (Ria, Catacchio et al. 2014). Inhibition 

of HIF-1α by siRNA or panobinostat treatment (an indirect HIF-1α inhibitor) in MM 

endothelial cells isolated from these patients, showed decreased angiogenesis and 

increased sensitivity to bortezomib and lenalidomide drug treatments. 
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These data link HIF-1α expression with MM establishment, metastasis and disease 

prognosis in vitro with the support of some in vivo experimentation, however they did 

not include an assessment of HIF-2α alongside HIF-1α in MM.  

  

1.3.4 HIF-1 and HIF-2 in MM 

To date, the majority of studies assessing the significance of HIF in MM have focused 

exclusively on HIF-1α, with a paucity of data on the contribution of HIF-2α. HIF-1α and 

HIF-2α are known to have differential roles in a cancer context, where HIF-2α has been 

shown to result in more aggressive disease and poorer disease prognosis in some 

cancers (Lofstedt, Fredlund et al. 2007). Whilst HIF-2α remains understudied, there 

are some key papers published prior to the commencement of this PhD and throughout 

my studies that have provided evidence of the importance of HIF-2α in MM. 

 

A study by Giatromanolaki et al showed that both HIF-1α and HIF-2α are upregulated 

in BM samples from MM patients, and this correlated with an upregulation in MVD 

(using CD31) (Giatromanolaki, Bai et al. 2010). Furthermore, there was an observed 

correlation between HIFα expression and VEGF. Approximately 40% of patients 

showed an induction of the HIF-VEGF pathway that was associated with an increase 

in BM angiogenesis. This correlation between BM MVD, VEGF expression and HIF-1α 

and HIF-2α expression suggested that both factors contribute to MM angiogenesis in 

a patient context. 

 

An extensive study by Martin et al, using both patient samples and cell lines, was the 

first to directly compare both HIFs and their contribution to MM disease (Martin, 

Diamond et al. 2009). Immunohistochemistry was used to stain for HIF-1α, HIF-2α and 

CXCL12 in patient BM biopsies and interestingly found that HIF-2α and CXCL12 were 

co-expressed in MM PCs. Further investigation showed that HIF-1α protein, HIF-2α 

protein and CXCL12 mRNA were upregulated in the LP-1 human MM cell line under 

hypoxic conditions. Given that CXCL12 is a key contributor to MM bone resorption 

(Diamond, Labrinidis et al. 2009) and that HIF-1α expression has also been linked to 

bone resorption (Storti, Bolzoni et al. 2013), the correlation between HIF-1α, HIF-2α 
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and CXCL12 expression supports a role for the HIFα pathway in supporting MM 

disease progression. 

 

Analyses of HIF-2α protein expression in LP-1 cells under hypoxic conditions (Figure 

1.5) showed a delayed response to hypoxia of approximately 6 hours when compared 

to HIF-1α, as has been observed in other cell lines (Bracken, Fedele et al. 2006, 

Holmquist-Mengelbier, Fredlund et al. 2006, Martin, Diamond et al. 2009). The delayed 

induction in HIF-2α protein correlated with the induction of CXCL12 mRNA observed 

following 24 hours of hypoxic treatment (Figure 1.5) (Martin, Diamond et al. 2009). The 

independent overexpression of HIF-1α and HIF-2α in LP-1 cells induced CXCL12 

mRNA expression, whilst conversely, knockdown of HIF-1α and HIF-2α decreased 

CXCL12 mRNA expression. In both experiments, HIF-2α had a greater effect on 

CXCL12 expression levels when compared to HIF-1α, where CXCL12 mRNA 

upregulation in hypoxia was lost in HIF-2α knockdown cells (Martin, Diamond et al. 

2009). Following these in vitro experiments, LP-1 cell lines overexpressing either HIF-

1α, HIF-2α or CXCL12 were subcutaneously injected into BALB/c nude mice, where 

all three cell lines showed increased tumour size and angiogenesis. These data 

implicated both HIFα isoforms in MM disease progression and was the first study to 

directly compare HIF-1α and HIF-2α in MM using both in vitro and in vivo 

experimentation. Importantly, the differential expression of HIF-1α and HIF-2α was 

observed and HIF-2α found to affect angiogenesis through the HIF-CXCL12 pathway.   

 

The CXCL12 chemokine not only influences angiogenesis and bone osteolysis in MM, 

but facilitates MM PC homing to, and retention within, the BM as discussed in section 

1.1.5. Furthermore, BM hypoxia correlated positively with MM PC dissemination 

through the HIFα pathway (Azab, Hu et al. 2012). Based on these data, a recent study 

by Vandyke et al explored the mechanistic role of the HIF-2α-CXCL12 pathway in MM 

PC dissemination (Vandyke, Zeissig et al. 2017). HIF-2α overexpression in the RPMI-

8226 human MM cell line resulted in decreased migration and adhesion to stromal cells 

whilst overcoming CXCL12 signalling from stromal cells, potentially allowing MM PCs 

to egress from the BM and recirculate. Further investigation found that HIF-2α may 

regulate MM PC dissemination through upregulation of the CCR1 chemokine receptor, 

where increased CCR1 expression was associated with MM PC circulation in the 
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peripheral blood of MM patients. Overall, the direct correlation of HIF-2α with increased 

angiogenesis and dissemination suggests a more prominent role for HIF-2α in MM 

disease severity and prognosis compared to HIF-1α.  
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Figure 1.5: Graph showing the mRNA levels of chemokine CXCL12 measured via 

qPCR (solid bars) compared to the HIF-1α and HIF-2α protein levels (dotted lines) 

measured via quantitative western blot of protein extracts from LP-1 cells in hypoxia. 

Data reproduced with permission (Martin, Diamond et al. 2009). 

 

  



 Chapter 1: Introduction 

 

42 
 

In summary, whilst both HIF-1α and HIF-2α contribute to disease as evidenced by 

Giatromanolaki et al (Giatromanolaki, Bai et al. 2010) and Martin et al (Martin, Diamond 

et al. 2009), their differential expression patterns support significantly different roles for 

these two factors in MM pathogenesis. HIF-1α has been directly correlated with various 

clinical aspects of MM including angiogenesis, tumour burden, homing, dissemination, 

BM hypoxia and bone resorption. Despite this, to date, no study has analysed the direct 

effect of HIF-1α on complete disease progression from tumour establishment through 

to end-stage disease using a systemic in vivo model of murine MM. 

 

Compared to HIF-1α, the contribution of HIF-2α to MM pathogenesis remains largely 

understudied and under-considered in current approaches to disease prognosis and 

treatment, despite recent findings. In addition to this paucity of data, no analysis of the 

direct role of HIF-2α on disease progression has been performed in vivo using murine 

models for MM. Furthermore, there has been no comparative analysis of both HIFα 

isoforms in MM disease progression and severity in vivo.  
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1.4 Project aims 

Aim 

Investigate the specific roles of HIF-2α compared to HIF-1α in multiple myeloma 

disease progression using the 5TGM1/C57BL/KaLwRij MM mouse model system. 

 

Hypothesis 

HIF-2α plays an important role in MM disease progression in vivo that is distinct from 

HIF-1α. 

 

Approach 

To investigate the direct role of HIF-1α and HIF-2α in vivo, the 5TGM1 cell line will be 

genetically modified to alter HIFα expression in vitro. The initial stratey will be to use 

the TetOn3G vector system to generate stable cell lines that inducibly overexpress 

HIFα following tetracycline treatment. This will provides temporal and reversible control 

of HIFα expression in vivo, allowing for the isolation of effects on disease progression 

from any confounding effects on cellular homing to the bone marrow. 

 

The HIF-1α and HIF-2α modified 5TGM1 cells will subsequently be used for in vivo 

studies with the C57BL/KaLwRij mouse strain to assess the differential roles of the two 

factors in MM disease. Specific disease parameters that will be assessed include 

systemic tumour burden using in vivo bioluminescence, serum paraprotein using 

electrophoresis and tumour homing, growth and dissemination using 

Immunohistochemical analyses of the bone marrow and spleen.  
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2.1 Materials 

2.1.1 Equipment 

ABI 7500 StepOnePlus Realtime PCR  Applied Biosystems 

Agarose Gel System BioRad 

Benchtop Centrifuge S415D Beckman Coulter 

Biophotometer Eppendorf 

ChemiDoc MP Imaging System Biorad 

DNA Engine Peltier Thermal cycler Bio-Rad 

Emax Precision Microplate Reader Molecular Devices 

Gallios  Beckman Coulter 

Imaging System BioDoc-it 

IVIS Lumina XRMSTM Perkin Elmer 

IVIS SpectrumTM Perkin Elmer 

IVIS XenogenTM Perkin Elmer 

Leica EG1150 H Paraffin Dispenser Leica Biosystems 

MoFlo Astrios High Speed Cell Sorter with 

CyCloneTM (Using Summit Software Version 6.2) 

Beckman Coulter 

Nanodrop 2000 Thermo Fisher 

NanoZoomer HT digital scanner Hamamatsu 

Nikon Eclipse TE300  

(using NIS-Elements AR software) 

Nikon 

SDS-PAGE mini gel system BioRad 

Shandon Excelsior ES Tissue Processor Thermo Fisher 

TC10 Automated Cell Counter Bio-Rad 

UV Transilluminator UVP 

Wet Transfer System BioRad 
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2.1.2 Consumables 

12 x 75 mm Polystyrene tubes 35mm cell strainer 

cap 

In vitro technologies 

12 x 75 mm Polystyrene tubes  In vitro technologies 

96-Well Reaction Plate (0.1mL) 

(MicroAmp Fast) 

Applied Biosystems  

(Life Technologies) 

AnaeroGen Hypoxia Sachet Oxoid (Australia) 

BD Falcon Tubes BD Biosciences 

Cell counting slides for TC10, Dual-Chamber Bio-Rad 

Cell Strainers (for Flow Cytometry) Falcon 

Corning 3603: 96 Well Assay Plate (Black sides, 

clear bottom) 

Sigma Aldrich 

Cuvettes Eppendorf 

EU Opti-seal Bioplastics 

FACS tubes BD Biosciences 

Microfuge Tubes Eppendorf 

Mini Collect Z Serum Seperator (gold cap) Greiner Bio-One 

(Interpath) 

Nitrocellulose Membrane PALL life sciences 

PAP Pen Sigma-Aldrich 

Tissue culture plasticware Sigma Aldrich 

 

2.1.3 General Chemicals and Reagents 

1kb DNA Plus Ladder Invitrogen 

40% Bis-Acrylamide Solution BioRad 

Agarose (molecular biology grade) Sigma-Aldrich 

Amido Black Staining Solution Sigma-Aldrich 

Ampicillin Sigma-Aldrich 

Big Dye Terminator Invitrogen 

DAB 3.3 3,3’-Diaminobenzidine Sigma 

Dako Target Retrieval Solution Agilent 
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Depex Mounting Medium VMR 

D-Luciferin Firefly, potassium salt Biosynth 

dNTPs Finnzymes 

Doxycycline Hyclate Sigma-Aldrich 

Glutamax Invitrogen 

HEPES Invitrogen 

HRP Substrate Millipore 

Kanamycin Sigma-Aldrich 

Lipofectamine 2000 Invitrogen 

Oligo-dTs Promega 

Polybrene Sigma-Aldrich 

Polyfect  Qiagen 

Ponceau Red Sigma Aldrich 

Precision Plus Dual Colour Standards BioRad 

Protein G-sepharose Sigma-Aldrich 

Puromycin Sigma Aldrich 

RNase Zap Amersham 

SYBR-Green Mastermix Roche 

TRI Reagent Sigma-Aldrich 

Tween 20 Sigma Aldrich 

 

2.1.4 Commercial Kits 

BCA Assay Pierce 

Big Dye Sequencing enzyme and buffer Applied Biosystems 

DNA Miniprep Kit (QIAprep Spin) Qiagen 

DNA Nucleobond Xtra Midi kit Macherey-Nagel 

DNase I treatment kit Invitrogen 

Gel Extraction Kit (QIAquick) Qiagen 

Hydragel Protein K20 Sebia 

LR Clonase II Invitrogen 

pGEMTeasy TA cloning system Promega 
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RNeasy Mini Kit Qiagen 

Superscript III cDNA synthesis kit Invitrogen 

 

2.1.5 Enzymes  

DNase I Invitrogen 

Gibson’s Isothermal Assembly Mix 

(Ligase, Polymerase, Exonuclease) 

New England Biolabs 

Klenow Fragment (DNA Polymerase) New England Biolabs 

Pfu turbo polymerase Stratagene 

Restriction Enzymes New England Biolabs 

Superscript III Invitrogen 

T4 DNA Ligase New England Biolabs 

Taq Polymerase New England Biolabs 

 

2.1.6 Antibodies 

Primary – Western Blot & Immunoprecipitation 

HIF-1α Novus Biologicals (NB100-449): purified rabbit polyclonal 

antibody raised against C-terminus (aa775-826) of HIF-1α 

protein (1:1000 in 5% skim milk in TBS-T, overnight at 4°C) 

HIF-2α Novus Biologicals (NB100-122): purified rabbit polyclonal 

antibody raised against C-terminus of mouse/human HIF-2α 

protein (1:1000 in 5% skim milk in TBS-T, overnight at 4°C) 

HIF-2α Origene (TA801746):  mouse monoclonal antibody raised 

against aa584-870 of HIF-2α  

α-Tubulin Novus Biologicals (NB600-506): purified rat monoclonal 

antibody (1:2000 in 5% skim milk in TBS-T, overnight at 4°C) 

SUMO-1 

(FL-101) 

Santa Cruz (sc-9060): rabbit polyclonal antibody  
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Primary – Immunohistochemistry 

GFP Rockland Immunochemicals (A600-401-215): purified rabbit 

polyclonal antibody (1:1000 in 3% normal horse serum in PBS) 

 

Secondary – Western Blot & Immunoprecipitation 

anti-rabbit IgG Pierce (31460): goat polyclonal, HRP conjugated (1:10000 

in 5% milk in TBS-T, for 1 hour at 4°C) 

anti-rat IgG Abcam (ab6845): goat polyclonal, HRP conjugated 

(1:10000 in 5% milk in TBS-T, for 1 hour at 4°C) 

 

Secondary – Immunohistochemistry 

anti-biotinylated 

rabbit IgG 

Vector Lab (H&L BA-1000): goat polyclonal, biotin-

conjugated (1:250 in 3% normal horse serum in PBS) 

 

Tertiary – Immunohistochemistry 

SAV-HRP Pierce (21130): Streptavidin Horseradish Peroxidase 

conjugate (1:100 in 3% normal horse serum in PBS) 

 

2.1.7 Plasmids  

2.1.7.1 Cloning plasmids 

pGem-T Easy 

A commercial plasmid (Promega) used to clone PCR amplified products. 

 

pCMV-Sport6-HIF-1α and pCMV-Sport6-HIF-2α 

pCMV-Sport6 is a Gateway mammalian expression vector. Two versions of the vector 

containing either HIF-1α or HIF-2α were provided by Prof Andrew Zannettino (A, 

Zannettino, University of Adelaide SAHMRI, Adelaide), who purchased the vectors 

commercially through Open Biosystems.  
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pENTR2B-IRESmCherry 

The pENTR2B plasmid is a Gateway Entry Vector. The IRES-mCherry cassette was 

subcloned from a pLenti4/TO/mCherry plasmid (constructed from previously 

characterised vector (Barrett, Parham et al. 2011)) into the pENTR2B vector (Thermo 

Fisher) MCS using XhoI and EcoRV restriction digestion by Dr Duncan Hewett (D, 

Hewett, University of Adelaide SAHMRI, Adelaide). 

 

pENTR2B-HIF-1α-IRESmCherry and pENTR2B-HIF-2α-IRESmCherry 

Both Hif1α and Hif2α were PCR amplified from the pCMV-Sport6 vectors with primers 

containing a KpnI site in the sense primer, and a NotI site in the antisense primer. The 

PCR product was then purified, A-tailed, ligated into pGem-T Easy and the sequence 

identity confirmed via Sanger sequencing (section 2.2.1). The Hifαs were then each 

digested from pGem-T Easy using KpnI and NotI. The pENTR2B-IRESmCherry vector 

was linearised using complete digestion with NotI and partial digestion with KpnI, as 

the IRES contained a KpnI site. The digested Hif1α and Hif2α cDNAs were then 

individually ligated into the linearised pENTR2B-IRESmCherry vector. Restriction 

digestion and Sanger sequencing confirmed that the IRESmCherry cassette was intact 

and located immediately downstream of HIFα in both vectors. 

 

pENTR2B-HIF-1α and pENTR2B-HIF-2α 

The IRESmCherry cassette of pENTR2B-HIFα-IRESmCherry was removed by 

digesting with EcoRV and XhoI. The XhoI 5’ overhang was removed using the 3’-5’ 

exonuclease activity of the DNA polymerase I Klenow fragment, producing a linearised 

plasmid with blunt ends. These ends were ligated and the resulting pENTR2B-HIFα 

plasmid confirmed using restriction digestion and Sanger sequencing.  

 

pENTR1A-dTomato 

A Gateway Entry vector with the dTomato sequence cloned into the MCS. This plasmid 

was provided by Dr David Bersten (University of Adelaide) (Bersten, Sullivan et al. 

2015). 
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2.1.7.2 Lentivirus packaging plasmids 

All vectors detailed below were obtained via commercial sources and were provided 

by Prof Murray Whitelaw (M, Whitelaw, University of Adelaide). 

 

pMD2.G 

A Vesicular Stomatitis Virus glycoprotein (VSV-G) expressing lentiviral plasmid 

compatible with second and third generation packaging lentiviral systems. The VSV-G 

creates an envelope that facilitates lentiviral entry into cells. 

 

pRSV-Rev 

A third generation packaging lentiviral plasmid expressing Human Immunodeficiency 

Virus (HIV-1) Rev cDNA from the RSV U3 promoter. The Rev regulatory gene is 

essential for lentiviral replication in vivo. 

 

pCMV-dR8.2 dvpr 

A lentiviral packaging vector used in combination with the pMD2.G envelope plasmid 

when producing the lentiviral particles for in vivo transduction. 

  

2.1.7.3 Mammalian expression plasmids 

pLV410 (empty) and pLV410-dsRed 

The lentiviral, Gateway compatible mammalian expression vectors were provided by 

Dr David Bersten (University of Adelaide) (Bersten, Sullivan et al. 2015), but were 

originally supplied by Prof Simon Barry (S, Barry, Robinson Research Institute, 

Adelaide). 

 

pLV410-HIF-1α and pLV410-HIF-2α 

Both Hif1α and Hif2α were subcloned from the pENTR2B-HIFα vector into the pLV410 

vector using Gateway cloning.  
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pLV410-TetOn3G 

A lentiviral vector constitutively expressing the TetOn3G transactivator protein 

(Bersten, Sullivan et al. 2015). This plasmid is co-transfected with a second plasmid 

containing a TRE3G promoter located upstream of a transgene. Upon cellular 

treatment with doxycycline, the TetOn3G transactivator protein will bind to the TRE3G 

promoter to drive expression of the transgene. 

 

pLV-TRE3G-PGK-TetOn3G-IRES-GFP (LVTPTG) 

A modified all-in-one TetOn3G vector system provided by Dr David Bersten (Bersten, 

Sullivan et al. 2015). This is a lentiviral vector expressing the TRE3G promoter that 

drives inducible expression of a transgene that can be cloned in using Gateway 

technology. Immediately 3’ of the TRE3G promoter is the TetOn3G transactivator and 

GFP under the control of a constitutive PGK promoter. Treatment with doxycycline will 

activate the TetOn3G to inducibly drive transgene expression from the TRE3G 

promoter. 

 

pLV-TRE3G-PGK-TetOn3G-IRES-puromycin (LVTPTP) 

A lentiviral vector identical to LVTPTP, but with a puromycin selection cassette 

replacing GFP (Bersten, Sullivan et al. 2015). 

 

pLVT-HIF-1α-PTP, pLVT-HIF-2α-PTP, pLVT-HIF-1α-PTG and pLVT-HIF-2α-PTG 

Hif1α and Hif2α were each subcloned from the pENTR2B-HIFα plasmids into the 

pLVTPTP (Figure 2.1) and pLVTPTG vectors using Gateway cloning, and functionally 

tested to confirm inducible expression of Hif1α or Hif2α mRNA. 
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Figure 2.1: Schematic of the Gateway cloning strategy used to create the LVT-

HIF-1α-PTP and LVT-HIF-2α-PTP mammalian expression vectors. The pENTR2B 

vectors contain either Hif1α or Hif2α flanked by L1 and L2 sites. An LR reaction was 

performed using LR Clonase to recombine the L-flanked Hif1α or Hif2α with the R1 

and R2 sites found on the pLVTPTP destination vector, to create the LVT-HIF-1α-PTP 

abd LVT-HIF-2α-PTP mammalian expression vectors. 
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pLV-TRE3G- EF1-TetOn3G-P2A-dTomato (LVTETPT)  

The Gibson’s isothermal assembly cloning strategy was used to create the LVTETPT 

vector (Gibson, Young et al. 2009). The pLVTPTG vector was digested with MluI and 

NheI to remove the PGK-TetOn3G-IRESGFP sequences of the plasmid. Two sets of 

primers were designed to produce PCR products that overlap with the linearised pLVT 

backbone to introduce the desired sequences (Figure 2.2). The first primer set 

specifically amplified the EF1α-TetOn3G cassette from the pLV410TetOn3G vector 

with the P2A cleavage peptide encoded into the reverse primer. The second primer set 

amplified the dTomato sequence from the pENTR1A-dTomato vector. The primer 

design included ends that sequentially complemented the digested ends of the pLVT 

backbone and the neighbouring PCR product. As a result, both PCR products 

contained overhangs that were complementary to each other and the digested 

backbone, ensuring efficient ligation using Gibson’s isothermal assembly. Successful 

assembly was confirmed by restriction digest and Sanger sequencing prior to 

functional testing. 

 

 

Figure 2.2: Schematic of the primer design used to create the LVTETPT 

mammalian expression vector. The blue primers produce a PCR product that 

contains a 5’ 40 bp overhang whose sequence is complementary to the digested pLVT 

backbone. The 3’ end of this PCR product is complementary to the PCR product 

resulting from amplification with the primers shown in red. This second PCR product 

(red primers) also shares 40 bp of complementary sequence with the opposing end of 

the linearised pLVT vector. These design specifications allow for the assembly of the 

pLVT backbone, EF1α-TetOn3G-P2A product and P2A-dTomato product to produce 

a functional plasmid. 
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pLVT-HIF-1α-ETPT and pLVT-HIF-2α-ETPT 

Hif1α and Hif2α were each subcloned from the pENTR2B-HIFα plasmids into the 

pLVTETPT vector using Gateway technology (Figure 2.3) 

 

 

 

Figure 2.3: Schematic of the cloning strategy used to create the LVT-HIF-1α-

ETPT and LVT-HIF-2α-ETPT mammalian expression vectors. A) The pLVTPTG 

vector was digest with Restriction Enzymes (R.E) MluI and NheI. This pLVTPTG 

backbone was then combined with the EF1α-TetOn3G-P2A product (PCR A) and the 

P2A-dTomato product (PCR B) as described in Figure 2.1, using Gibson’s isothermal 

assembly to create the pLVTETPT vector B) Gateways cloning using the pENTR2B-

HIF-1α or the pENTR2B-HIF-2α entry vectors and the pLVTETPT vector to create the 

pLVT-HIF-1α-ETPT and pLVT-HIF-2α-ETPT mammalian expression vectors.  

B A 



 Chapter 2: Materials and Methods 

 
 

56 
 

2.1.7.4 CRISPR-Cas9 plasmids 

pSpCas9(BB)-2A-GFP (PX458) 

Encodes the Cas9 endonuclease from S.pyogenes followed by a 2A-GFP resulting in 

the production of both Cas9 and GFP (Ran, Hsu et al. 2013). This vector contains a 

BbsI restriction enzyme site that enables the directional insertion of the single guide 

RNA (sgRNA) sequence of interest, resulting in targeted cleavage of genomic DNA 

(gDNA) using CRISPR-Cas9 Technology.  

 

pSpCas9-HIFα-2A-GFP  

Two sets of sgRNAs targeting different sequences were designed for both HIF-1α and 

HIF-2α using the Benchling CRISPR Design Tools (https://benchling.com/editor) by 

Yinan Ma as depicted in Figure 4.1. The two sgRNAs designed for HIF-1α and HIF-2α 

cut either side of exon 2, resulting in the complete loss of this exon to generate a 

knockout cell line. Two sets of each of these (A and B) were designed for both HIF-1 

and HIF-2 to generate two independent cell lines to mitigate against the possibility of 

“off target” effects of the sgRNAs. The sense and antisense sgRNA sequences were 

annealed and cloned into the BbsI-digested PX458 vector by Yinan Ma, generating the 

pSpCas9-HIF-1α-2A-GFP and pSpCas9-HIF-2α-2A-GFP plasmids, specifically the 

plasmids made were: 

 

Plasmid Position 

pSpCas9-HIF-1α sgRNA Intron 1A-GFP Chr12: 73925922 - 73925941 

pSpCas9-HIF-1α sgRNA Intron 2A-GFP Chr12: 73927054 - 73927073 

pSpCas9-HIF-1α sgRNA Intron 1B-GFP Chr12: 73925936 - 73925955 

pSpCas9-HIF-1α sgRNA Intron 2B-GFP Chr12: 73927055 - 73927074 

pSpCas9-HIF-2α sgRNA Intron 1A-GFP Chr17: 86796475 - 86796494 

pSpCas9-HIF-2α sgRNA Intron 2A-GFP Chr17: 86797774 - 86797793 

pSpCas9-HIF-2α sgRNA Intron 1B-GFP Chr17: 86796479 - 86796498 

pSpCas9-HIF-2α sgRNA Intron 2B-GFP Chr17: 86797766 - 86797785 
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2.1.8 Oligonucleotides 

2.1.8.1 Cloning and Screening Primers 

General 

T7 Terminator sequencing primer GGTTCTGGTTCTGGCCATT 

 

HIF primers to amplify from pCMV-Sport6 and sequence from pGEMT-easy 

mHIF-1α Primer 1: Sense GGTACCCACCGATTCGCCATGGAGGGC 

(KpnI – mHIF-1α) 

mHIF-1α Primer 1: Antisense GCGGCCGCTCAGTTAACTTGATCCAAAGCT

CTGAG (NotI - mHIF-1α) 

mHIF-1α Primer 2: Sense ATGGGTTATGAGCCGGAAG 

mHIF-1α Primer 2: Antisense GGGTAGAAGATGGAGATGC 

mHIF-2α Primer 1: Sense GGTACCCACGGCCACGGCGACAATGAC 

(KpnI – mHIF-2α) 

mHIF-2α Primer 1: Antisense GCGGCCGCTCAGGTGGCCTGGTCCAGAGC 

(NotI - mHIF-2α) 

mHIF-2α Primer 2: Sense CGAGGAGCTACTTGGACGCTC 

mHIF-2α Primer 2: Antisense GGCCAGTGCTCAGACTCTGTC 

 

Sequencing primers of 3’Hifα and IRES-mCherry from pENTR2B-IRESmCherry 

pENTR2B: Antisense  GTAACATCAGAGATTTTGAGACAC 

3’ mHIF-1α Seq: Sense CCACAGCTGACCAGTTACG 

3’ mHIF-2α Seq: Sense GACTGTGAGGTGAACGTGC 

 

Isothermal Assembly primers to create LVT-HIFα-EPTP vector 

LVTPT-EF1αTet: Sense TCGTTCAGCTTTCTTGTACAAAGTGGTTGATATC

ACGCGTACCGTCGACCTCGACGGATC 

EF1αTet-P2A: Antisense AGGCCCGGGGTTTTCTTCAACATCTCCTGCTTG

CTTCGTGGCCCCGGGGAGCATGTCAAGGT 

P2A-dnucTom: Sense CACGAAGCAAGCAGGAGATGTTGAAGAAAACCC

CGGGCCTATGGTGAGCAAGGGCGAGGAG 
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dnucTom-LVTPT: Antisense GGAAAGCCCTACGAACCACTGAACAAATGGCAC

TAGGCTAGCCGCTTAGCCGTGTACCTTTCTCTT

CTT 

 

TRE3G-Hifα-EF1α cassette primers for sequence confirmation from LVT-HIFα-

EPTP vector 

3’ TRE3G: Sense ACTTCCTACCCTCGTAAAGTC 

5’ EF1α Promoter: Antisense TCTTTGCAAAGCTCGGTC 

mHIF-1α 315aa: Sense  CTGGGTTGAAACTCAAGC 

mHIF-1α 12aa: Antisense CGACGTTCAGAACTCATC 

mHIF-2α 316aa: Sense  CGGAGGATATGTGTGGCTG 

mHIF-2α 14aa: Antisense CTCCTTCCTCAGCTCTGAG 

 

2.1.8.2 CRISPR Primers 

Hifα CRISPR sgRNA oligonucleotides  

mHIF-1α – Intron 1A: Sense CACCGATCCGCAGGTGGGCTAGTAA 

mHIF-1α – Intron 1A: Antisense AAACTTACTAGCCCACCTGCGGATC 

mHIF-1α – Intron 2A: Sense CACCGTTTTTAAAGAGCGGCGTTAT 

mHIF-1α – Intron 2A: Antisense AAACATAACGCCGCTCTTTAAAAAC 

mHIF-2α – Intron 1A: Sense CACCGACCCGTGTTAGTACGTGATA 

mHIF-2α – Intron 1A: Antisense AAACTATCACGTACTAACACGGGTC 

mHIF-2α – Intron 2A: Sense CACCGTGGAGCGGGACTCTCGCCAG 

mHIF-2α – Intron 2A: Antisense AAACCTGGCGAGAGTCCCGCTCCAC 

mHIF-1α – Intron 1B: Sense CACCGGAGTCAGAGTGCTGATCCGC 

mHIF-1α – Intron 1B: Antisense AAACGCGGATCAGCACTCTGACTCC 

mHIF-1α – Intron 2B: Sense CACCGTTTTTTAAAGAGCGGCGTTA 

mHIF-1α – Intron 2B: Antisense AAACTAACGCCGCTCTTTAAAAAAC 

mHIF-2α – Intron 1B: Sense CACCGTCCATATCACGTACTAACAC 

mHIF-2α – Intron 1B: Antisense AAACGTGTTAGTACGTGATATGGAC 

mHIF-2α – Intron 2B: Sense CACCGGACTCTCGCCAGAGGTCCAG 

mHIF-2α – Intron 2B: Antisense AAACCTGGACCTCTGGCGAGAGTCC 
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Hifα screening of CRISPR knockout cell lines 

mHIF-1α – Screening 1: Sense AGGAGGCTCAGCAAAGGAAGAC 

mHIF-1α – Screening 1: Antisense TGATCTTTCCGAGGACCTGGATTC 

mHIF-2α – Screening 1: Sense GATTGCCCTCTGTTGCGGATAG 

mHIF-2α – Screening 1: Antisense AAAGAAGAACGCATCGGCTGAG 

mHIF-2α – Screening 2: Sense GACCATCCATGTTATGTG 

mHIF-2α – Screening 2: Antisense CTTTCTGCCTGTCTTTG 

mHIF-2α – Screening 3: Sense CGAGCTCCCTAACTAAC 

mHIF-2α – Screening 3: Antisense TCAGCTACTCTTTCAGAC 

mHIF-2α – Screening 4: Sense CAGTCTTGTCAGACTTATC 

mHIF-2α – Screening 4: Antisense GTCTTTCCCATATATCCTTC 

mHIF-2α – Screening 5: Sense GCTAAGGACTTGTAAAGC 

mHIF-2α – Screening 5: Antisense CTTCACTTGGACATTGG 

 

2.1.8.3 qPCR Primers 

mHIF-1α: Sense: CGGCGAGAACGAGAAGAA 

mHIF-1α: Antisense: GAAGTGGCAACTGATGAGCA 

mHIF-2α: Sense: CATAAGCTCCTGTCCTCAGTCTGC 

mHIF-2α: Antisense: GCTGTGTCCTGTTAGTTCTACCTG 

mVegf: Sense: ATCCGCATGATCTGCATGG 

mVegf: Antisense: AGTCCCATGAAGTGATCAAGTTCA 

mBnip3: Sense: GTAGAACTGCACTTCAGCAATGG 

mBnip3: Antisense: GGGCTGTCACAGTGAGAACTC 

mGlut1: Sense: GGGCATGTGCTTCCAGTATGT 

mGlut1: Antisense: ACGAGGAGCACCGTGAAGA 

mPolr2a: Sense: GCACCATCAAGAGAGTGCAG 

mPolr2a: Antisense: GGGTATTTGATACCACCCTCTG 

mHprt: Sense: AGTCCCAGCGTCGTGATTAGC 

mHprt: Antisense: CCAAATCCTCGGCATAATG 

GFP: Sense: AGAAGAACGGCATCAAGGTG 

GFP: Antisense: GAACTCCAGCAGGACCATGT 

mCherry: Sense: CCCAGACCGCCAAGC 
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mCherry: Antisense: GTCACGGTCACCACGC 

Tomato: Sense: TCCCCGATTACAAGAAGCTG 

Tomato: Antisense: CCCATGGTCTTCTTCTGCAT 

 

2.1.9 Buffers and Solutions 

4x SDS Load Buffer: 0.5 M Tris pH 6.8, β-Mercaptoethanol, 0.05 M 

Bromophenol blue, 10% SDS, 10% Glycerol 

6x DNA Load Buffer: 50% Glycerol, 0.01% Bromophenol blue, 0.01% 

Xylene cyanol, 0.01mM EDTA pH 8.0 

Decalcification Solution: 744.4 g EDTA, 75 g NaOH in 1 L PBS 

 

D-Luciferin Feed: 200 mg doxycycline hyclate, 10 g sucrose in 1 L 

Water 

ECL: 100 mM Tris pH 8.5, 30%H2O2, 250 mM Luminol, 90 

mM p-coumaric acid 

General IP Buffer: 250 mM NaCl, 20 mM HEPES pH 8.0, 0.1% Igepal, 1 

mM EDTA 

gDNA Extraction Buffer: 100 mM NaCl, 20 mM Tris HCl pH 7.5, 0.5% SDS, 10 

mM EDTA 

SDS-PAGE  

Separating Gel: 

187 mM Tris pH 8.8/0.1% SDS, 10% polyacrylamide, 

10% APS, TEMED 

SDS-PAGE  

Stacking Gel: 

62.5 mM Tris pH 6.8/0.1% SDS, 5% polyacrylamide, 

10% APS, TEMED 

SDS-PAGE 

Running Buffer: 

25 mM Tris-Glycine pH 8.3/0.1% SDS 

Paraprotein Destain 10% Acetic Acid, 25% isoporanol 
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Phosphate Buffered Saline 

(PBS) 

137 mM NaCl, 10 mM Phosphate, 2.7 mM KCl, pH 

7.4 

RBS Lysis Buffer: 0.5 M NH4Cl in PBS 

Tris Buffered Saline (TBS) 50 mM Tris-Cl, pH 7.6, 150 mM NaCl 

TBS-T: TBS/0.1% Tween 20 

Wet Transfer Buffer: 30 mM Tris pH 7, 1.44% glycine, 20% MeOH 

Whole Cell Extract Buffer 

(IP): 

0.42 M NaCl, 20 mM HEPES pH 8.0, 0.5% Igepal, 

25% Glycerol, 0.2 mM EDTA, 1.5 mM MgCl2, 1 mM 

DTT (added immediately prior to use) 

Whole Cell Extract Buffer 

(Western Blot): 

0.5 M NaCl, 1 M Tris pH 7.9, 10% Igepal, 0.5 M EDTA 

in PBS 

 

2.1.10 Bacterial Strains  

DH5α cells: 

An E. coli bacterial strain used for plasmid preparation and cloning experiments. 

Genotype: FˉΦ80dlacZ∆M15, ∆(lacZYA-argF) U169, deoR, recA1, endA1, thi-1, 

gyrA96, supE44, hsdR17(rKˉmK
+), λˉ. 

DB3.1 cells: 

An E coli strain for Gateway cloning specifically containing a gyrase mutant that allows 

for the replication of plasmids expressing the ccdB protein that normally inhibits growth 

of most other E coli strains. Genotype: Fˉ, gyrA462, endA1, D(sr1-recA), mcrB, mrr, 

hsdS20(rBˉ, mBˉ), supE44, ara-14, galK2, lacY1, proA2, rpsL20(Smr), xyl-5, λˉ, leu, mtl-

1. 
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2.1.11 Eukaryotic Cell Lines 

HEK293T cells: 

Transformed human embryonic kidney cells cultured for transfection of mammalian 

expression plasmids. ATCC CRL-1573. 

 

5TGM1 cells: 

The murine 5TGM1 MM cell line is genetically modified to constitutively express the 

HSV1-tk/GFP/Luc (TGL) triple modality reporter gene used for non-invasive in vivo 

imaging and MM cell isolation (Noll, Hewett et al. 2014, Cheong, Chow et al. 2015). 

Integration of the TGL construct was achieved by transduction with SFG-NES-TGL 

retroviral particles, where the retroviral promoter present within the LTR (long terminal 

repeat) drives TGL expression (Mori, Shimizu et al. 2004, Ponomarev, Doubrovin et 

al. 2004, Oyajobi, Munoz et al. 2007, Labrinidis, Diamond et al. 2009). The HSV1-tk 

component is a Herpes Simplex Virus 1 – Thymidine Kinase reporter gene used to 

image cells in vivo via micro positron electron tomography, a feature that was not 

utilised in this dissertation. The GFP (green fluorescent protein) and Luc (firefly 

luciferase) components were used for both in vitro and in vivo experiments. The GFP 

was used to isolate 5TGM1 cells from the BM of diseased mice using flow cytometry. 

The firefly luciferase generates luminescence upon the addition of D-luciferin, and was 

used to detect progressive tumour development non-invasively using in vivo 

bioluminescence (Ponomarev, Doubrovin et al. 2004, Labrinidis, Diamond et al. 2009).  
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2.2 Methods 

2.2.1 Molecular Techniques 

PCR amplification from DNA 

The majority of PCR reactions were performed using Taq polymerase. Pfu Ultra was 

used to amplify the complete Hif-1α and Hif-2α genes, as both genes are large and 

required high fidelity synthesis and Pfu Ultra has a lower error rate than Taq. Secondly, 

the Phusion DNA polymerase was used to amplify products for Gibson’s isothermal 

assembly reaction. Some reactions also required 3% DMSO. 

Taq:  

A single reaction contained 0.25 µL of Taq polymerase, 2.5 µL of 10 Thermopol buffer, 

1 µL of 10 mM dNTPs, 1 µL each of forward and reverse primer (10 µM), 100 ng 

template DNA and MQ water to a final volume of 25 µL. Cycling parameters: 95°C for 

30 seconds, then [95°C for 20 seconds, 55-65°C depending on the primers for 30 

seconds, 68°C for 60 seconds per kb amplified] repeated for 40 cycles, 68°C for 5 

minutes and hold at 4°C. 

Pfu Ultra: 

A single reaction contained 0.5 µL of Pfu Ultra enzyme, 2.5 µL of 10x Pfu Ultra buffer, 

1 µL of 10 mM dNTPs, 1 µL each of forward and reverse primer (10 µM), 100 ng 

template DNA and MQ water to a final volume of 25 µL. Cycling parameters: 95°C for 

2 minutes, then [95°C for 30 seconds, 55-65°C depending on the primers for 30 

seconds, 72°C for 60 seconds per kb amplified] repeated for 40 cycles, 72°C for 10 

minutes and hold at 4°C. 

Phusion:  

A single reaction contained 0.5 µL of Phusion enzyme, 5 µL of 5x HF Phusion buffer, 

1 µL of 10 mM dNTPs, 1 µL 50 mM MgCl2, 1 µL each of forward and reverse primer 

(10 µM), 100 ng template DNA and MQ water to a final volume of 25 µL. Cycling 

parameters: 98°C for 30 seconds, then [98°C for 10 seconds, 60°C for 30 seconds, 

72°C for 60 seconds] repeated for 35 cycles, 72°C for 5 minutes and hold at 4°C. 
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Plasmid transformation 

Short transformations were performed by adding 0.5 µL of purified plasmid DNA to 50 

µL of chemically competent DH5α E. coli cells. The sample was then placed on ice for 

10 minutes, followed by a 90 seconds heat shock at 42°C before being placed on ice 

for a further 2 minutes. The DNA/bacterial cell mixture was then spread evenly onto 

LB/agar plates with the appropriate antibiotic selection and left at 37°C overnight.  

Long transformation were performed by adding 5 µL of ligation and Gateway reactions 

to 50 µL of chemically competent DH5α E. coli cells. The samples were placed on ice 

for 20 minutes, heat shocked at 42°C for 90 seconds and left on ice for 2 minutes. 250 

µL of SOC media was added and samples were gently agitated at 37°C for 1-2 hours. 

Samples were then centrifuged at 200 g to pellet cells and 250 µL of supernatant 

removed. The cell pellet was then gently resuspended and plated on LB/agar plates 

with the appropriate antibiotic selection and left at 37°C overnight. 

 

Plasmid mini preparation 

5 mL of LB cultures containing the appropriate antibiotic (100 µg/mL ampicillin and 50 

µg/mL kanamycin) inoculated from a single colony were grown overnight at 37°C. 

Samples were then processed according to the manufacturer’s instruction (MiniPrep, 

QIAPrep Spin Kit, Qiagen). 1 µL of purified sample was then quantified and assessed 

for quality with a Nanodrop spectrophotometer. 

 

Plasmid midi preparation 

100 mL of LB cultures containing the appropriate antibiotic (100 µg/mL ampicillin and 

50 µg/mL kanamycin) inoculated from a single colony were grown overnight at 37°C. 

Samples were then processed according to the manufacturer’s instruction 

(Nucleobond Xtra Midi, Macherey-Nagel). 1 µL of purified sample was then quantified 

and assessed for quality with a Nanodrop spectrophotometer. 
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Restriction enzyme digestion of DNA 

Restriction digest reactions were performed at 37°C using 0.5 µL of the NEB enzyme, 

1 µL of 10 x NEB buffer, 500 ng of DNA and MQ water to a final volume of 10 µL. 

 

Agarose gels and gel extractions 

DNA samples including PCR products, plasmids and restriction digests were analysed 

on agarose gels via gel electrophoresis. Depending on the expected size of the DNA 

sample, either 1% or 2% agarose gels were made using agarose powder dissolved in 

Tris-Borate-EDTA (TBE) buffer with ethidium bromide. Gels were run at 100-120 V for 

40 minutes and analysed on a UV transilluminator. Bands were excised and DNA 

purified from the gel using the QIAquick (QIAGEN) gel extraction kit as per 

manufacturer’s instructions and stored at -20°C. 

 

Ligation 

DNA ligation reactions were performed using 1 µL of T4 ligase (2 U/µL), 1 µL of 10x 

T4 ligase buffer, 1 µL of 10 mM ATP, a 3.5:1 molar ratio of insert DNA:vector DNA, 

and sterile water to a final volume of 10 µL. Reactions were left overnight at 16°C 

followed by a long transformation. Single colonies were selected for plasmid minipreps, 

DNA analysed by restriction digestion and gel electrophoresis.  

 

Gateway Cloning 

Gateway reactions were performed using 2 µL of LR Clonase II, 6 µL of TE, 1 µL of 

Entry vector (diluted to 300 ng/µL), 1 µL of Destination vector (diluted to 150 ng/µL). 

Reactions were incubated at room temperature for 1 hour before adding 2 µL of 

Proteinase K (2 µg/µL) and incubating at 37°C for 10 minutes. Samples were then used 

in a long transformation. Single colonies were selected for plasmid minipreps, and DNA 

analysed by restriction digestion and gel electrophoresis. 
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PCR product ligation into pGEM-Teasy 

PCR amplified products were prepared for pGEM-Teasy insertion by first A-tailing the 

product in 1 µL of Taq (5 U/µL), 1.5 µL of 10x Thermopol buffer, 0.5 µL of 10 mM dATP, 

0.5 µL of 50 mM MgCl2, 5 µL of PCR product and 6.5 µL of MQ water. The reaction 

was left at 70°C for 30 minutes before being ligated with pGEM-Teasy in a reaction 

including 1 µL of T4 Ligase (2 U/µL), 7.5 µL 2x Ligation buffer, 1 µL pGEM-Teasy and 

5.5 µL of A-tailed PCR product. This reaction was then left overnight at 16°C, followed 

by transformation in DH5α cells and plating on LB/Ampicillin agar spread with 20 µL of 

Xgal and 100 µL of 100 mM IPTG. Plates were incubated at 37°C overnight and only 

the white colonies were selected for plasmid minipreps. 

 

Gibson’s Isothermal Assembly 

PCR and Gibson’s isothermal assembly primer design were performed to the 

specifications outlined by Zhang etal (Gibson, Young et al. 2009). 

 

Sanger Sequencing 

A sequencing reaction was prepared by combining 1 µL of Big Dye Terminator, 3 µL 

of 5x commercial sequencing buffer, 0.5 µL of primer, 400 ng of DNA and MQ Water 

to a total of 15 µL. The sample then underwent the following cycling parameters: 95°C 

for 3 minutes, then [95°C for 30 seconds, 50°C for 15 seconds, 60°C for 4 minutes] 

repeated for 25 cycles, and hold at 4°C. The reaction was then placed into a 

microcentrifuge tube in addition to 80 µL of 75% isopropanol and 1 µL of glycogen. 

Following an incubation of 30 minutes at room temperature, the sample was 

centrifuged at 16,000 g for 20 minutes. The supernatant was removed, the pellet 

washed in 250 µL of 75% isopropanol and centrifuged again. Once the supernatant 

was removed, the pellet was air dried for 10 minutes at 42°C and the sample was sent 

to the Australian Genome Research Facility for analysis. 
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DNaseI treatment of RNA 

1 µg of RNA was added to 1 µL of DNase I (2 U/µL), 1 µL of 10x DNase I reaction 

buffer, and MQ water to a volume of 10 µL. The reaction was left at room temperature 

for 15 minutes and then 1 µL of 25 mM EDTA was added and the sample incubated at 

65°C for 10 minutes to inactivate the DNase I enzyme.  

 

cDNA synthesis 

DNase I treated or non-treated RNA samples were added to 1 µL of oligo DTs (500 

ng/µL), 1 µL of 10 mM dNTPs and MQ water to a final volume of 13 µL. The RNA was 

incubated at 65°C for 5 minutes and placed on ice for 1 minute. A mixture including 0.5 

µL of Superscript III (200 U/µL) reverse transcriptase (or water for noRT control), 4 µL 

5x First Strand buffer, 1 µL of 0.1 M DTT and 1 µL of MQ water was incubated at 50°C 

for 60-90 minutes followed by a heat inactivation at 70°C for 15 minutes.  

 

Quantitative PCR (qPCR) 

Quantitative PCR was performed in triplicate for each cDNA sample and a water 

control sample. Each triplicate sample reaction was performed for the target gene of 

interest and an endogenous control gene. The endogenous control genes were chosen 

based on their stable expression under various experimental treatments, and used to 

normalise target gene expression. A single reaction contained 10 µL of SYBR Green 

mastermix, 0.4 µL each of forward and reverse primers (10 µM), 1 µL of cDNA (or no 

RT) and 8.2 µL of MQ water. Samples were then pipetted into 96-well trays, sealed 

and centrifuged at 200 g. The trays were then placed into the StepOnePlus realtime 

thermocycler (Applied Biosystems) and cycled under the following conditions: 95°C for 

10 minutes, then [95°C for 10 seconds, 60°C for 30 seconds] repeated for 40 cycles. 

A melting curve was also performed on the products under the following conditions: 

95°C for 15 seconds, 60°C for 1 minute and ramping rise in temperature up to 95°C, 

with readings made every 0.5°C. Raw data was obtained from the StepOne v2.1 

software, exported and relative amounts of the targeted mRNA quantified using Q-

Gene software (Muller, Janovjak et al. 2002). 
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2.2.2 Cell Culture Techniques 

2.2.2.1 Maintenance of Cell Lines 

All cell lines were maintained at 37°C with 5% CO2 and humidified environmental 

conditions. Hypoxia treatment of cell cultures was achieved by placing cells within air-

tight containers with an anaerobic sachet (Oxoid, Australia), creating an atmospheric 

environment of <1% O2 as previously described (Vandyke, Zeissig et al. 2017). Where 

specified, some experiments were performed using a humidified hypoxia chamber with 

a controlled atmospheric environment of 1% O2 at 37°C with 5% CO2 as previously 

described (Vandyke, Zeissig et al. 2017). Cells were maintained in hypoxia for 16 – 72 

hours as specified.  

 

HEK293T cell line 

HEK293T cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) (Life 

Technologies, Cat 12430062) supplemented with 10% FCS. Cells were passaged 

every 2-3 days using trypsin. 

 

5TGM1 mouse multiple myeloma cell line 

The 5TGM1 murine myeloma cell line was kindly provided by Professor Andrew 

Zannettino (University of Adelaide, SAHMRI, Adelaide, Australia). These cells were 

maintained at a cellular density of 2 – 5 x 105 cells/mL cultured in Iscove’s Modified 

Dulbecco’s Medium (IMDM) (Sigma Aldrich, Cat I3390) supplemented with 20% FCS, 

100 mM sodium pyruvate, 200 mM L-glutamine and 1M HEPES buffer.  

 

Thawing cells 

Frozen vials of cells were placed into a 37°C water bath until thawed. Immediately 

upon thawing, 9 mL of pre-warmed media was added and the cells centrifuged at 200 

g for 5 minutes. The supernatant was aspirated and the cell pellet was then 

resuspended in 7 mL of fresh media and transferred to a 25 cm2 flask.  
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Freezing cells 

Cells were trypsinised (293T and P19 only) and centrifuged at 200 g for 5 minutes. Cell 

pellets were resuspended in media at a concentration of 1x107 cells/mL. An aliquot of 

500 µL of cells was placed into cryotubes containing 400 µL of FCS and 100 µL of 

DMSO. Cells were stored immediately at -80°C for 1 week before being stored in the 

vapour phase of a liquid nitrogen tank for long term storage. 

 

2.2.2.2 Cellular extraction methods and associated experiments 

gDNA isolation  

5TGM1 cells were grown in 24-well trays at a concentration of 5x105 cells/mL. A total 

of 500 µL of cells per sample was centrifuged at 200 g for 5 minutes, the supernatant 

removed and 250 µL of extraction buffer, freshly supplemented with 5 µL of Proteinase 

K (20 mg/ml) was added. This mixture was incubated at 37°C for 4 hours before 

transferring to a microcentrifuge tube and 125 µL of 6 M NaCl solution added. The 

sample was shaken vigorously, placed on ice and spun at 16,000 g for 10 minutes at 

4°C. The supernatant was transferred to a new tube and 1 mL of 100% ethanol added. 

The sample was gently mixed and centrifuged again at 16,000 g for 2 minutes at room 

temperature. The supernatant was removed, the pellet washed with 500 µL of 75% 

ethanol and centrifuged at 16,000 g for 2 minutes. The supernatant was removed, the 

pellet left to air dry then resuspended in 80 µL of 1x TE. gDNA quantity was measure 

using a Nanodrop spectrophotometer. 

 

RNA isolation  

RNA extractions were performed on 5TGM1 or HEK293T in a 6 cm dish. 5TGM1 cells 

were plated at a concentration of 2x105 cells/mL and grown for 16-72 hours with and 

without treatment as specified (Chapter 3 &4). RNA was extracted from HEK293T cells 

when at a confluency of 80-90%. Media was removed either by centrifugation at 1000 

g for 2 minutes and aspiration for 5TGM1 (non-adherent) cells, or by immediate 

aspiration for the HEK293T and P19 (adherent) cells. 500 µL of TRIzol reagent was 

added to the cells and homogenised using a pipette for 5TGM1 cells, or cells were 
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scraped then homogenised for HEK293T and P19 cells. The sample was transferred 

to a microcentrifuge tube, 200 µL of chloroform added and shaken vigorously for 15 

seconds. Samples were then centrifuged at 11,000 g for 15 seconds at 4°C, 350 µL of 

the top aqueous phase was transferred to a microcentrifuge tube and 350 µL of 70% 

ethanol added. The sample is then added to an RNeasy mini column (Qiagen) and the 

wash and extraction steps followed according to the manufacturer’s recommendations, 

with a final elution in 30 µL of RNA in RNase-free water. RNA quantity and purity was 

assessed using the Nanodrop spectrophotometer and gel electrophoresis. 

 

Protein extraction  

Protein extractions were performed on 5TGM1  or HEK293T cells grown in a 6 cm 

dish. 5TGM1 cells were plated at a concentration of 2x105 cells/mL and grown for 16-

72 hours with and without treatment as specified (Chapter 3). HEK293T or P19 cells 

were extracted at approximately 80-90% confluency. Media was removed by 

centrifugation at 1000 g for 1 minute followed by aspiration for 5TGM1 cells, or simply 

aspiration for the HEK293T cells. 5 mL of ice cold PBS was immediately added, gently 

swirled and aspirated for adherent cells, or gently mixed and then centrifuged at 1000 

g for 1 minute for 5TGM1 cells. WCE buffer (WB) was added (100 µL per dish, with 1 

µL of fresh Protease Inhibitor) and homogenised using a pipette for 5TGM1 cells, or 

cells were scraped then homogenised for HEK293T and P19 cells. Samples were left 

on ice for 20 minutes, centrifuged at 800 g for 5 minutes and the supernatant retained. 

Protein quantity was measured using a BCA protein assay (Pierce) as per the 

manufacturer’s instructions. 

 

Western blot 

Protein samples were aliquoted, 4x SDS Load Buffer added and the samples heated 

at 95°C for 10 minutes. The samples were subsequently loaded onto a 10% SDS-

PAGE gels and run in 1x GTS at 120 V for 80 minutes. Following separation, the 

proteins were transferred onto nitrocellulose in Wet Transfer Buffer at 0.35 mA at 4°C 

for 1 hour. The membrane was placed in Ponceau Red to visualise protein transfer and 

to facilitate cutting of the membrane in preparation for antibody incubation. The 
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membrane was then blocked in 10% skim milk diluted in TBS-T for 1 hour and then 

washed 3 x 5 minutes in TBS-T. Primary antibody (including target and control) diluted 

in 5% skim milk was applied and left rotating at 4°C overnight. Membrane washes were 

performed (3 x 5 minutes with TBS-T) prior to the application of an appropriate 

secondary antibody diluted in 5% skim milk. This was left for 1 hour before the 

membrane was washed (3 x 5 minutes with TBS-T). ECL was applied for 1 minute 

before visualising protein bands using the ChemiDoc (Bio-Rad). 

 

Immunoprecipitation 

Immunoprecipitation was performed on protein samples extracted from 5TGM1 cells 

using the method described above with WCE buffer (IP). 500 µg of protein was added 

to IP buffer to a final volume of 300 µL. The samples were incubated with 1 µg of 

primary antibody (including target and control), rocking overnight at 4°C. 500 µL of 

Protein G Sepharose (PGS) was diluted in 500 µL of IP buffer, centrifuged at 225 g for 

2 minutes at 4°C and the supernatant removed. The PGS was then blocked in 500 µl 

of 0.05 µg/µl BSA in IP buffer and incubated for 1 hour at 4°C and the wash step 

repeated. An aliquot of 40 µl of blocked PGS (per sample) was then added to the 

protein sample and incubate at 4°C, rocking for 1 hour. This was then centrifuged at 

225 g for 2 minutes at 4°C and the supernatant retained and stored at -20°C (unbound 

control). The pellet was then resuspended in 1 mL of IP buffer and rocked at 4°C for 5 

minutes. The sample was then washed 3 times and the supernatant removed. An 

aliquot of 10 µl of 4x SDS Load Buffer was added to the pellet and heated at 95°C for 

5 minutes and centrifuged at 800 g to pellet the resin. The supernatant was then loaded 

on an SDS-PAGE gel and a western blot analysis performed. 

 

2.2.2.3 Cellular modifications and analyses 

Transient transfections 

Transient transfections were performed on HEK293T cells using Lipofectamine 2000 

at 3:1 Lipofectamine 2000:Plasmid DNA as per the manufacturer’s instructions. Cells 

were plated in 6 cm dishes at 40-60% confluency, with cells not exceeding 95% 
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confluency at the end of the experiment. At 6 hours post transfection, fresh media was 

applied in addition to treatment such as hypoxia (sachet for 16-72 hours) or doxycycline 

hyclate (2 µg/mL for 16 hours). 

 

Lentivirus production 

A 75 cm2 flask was seeded with 3x106 HEK293T cells in 10 mL of media. After 24 

hours, 12.5 µg of the lentiviral plasmid of choice, 7.5 µg of pCMV-dvrp 8.2, 6.25 µg of 

pRSV-Rev and 3.75 µg of pMD2.G was added to 1 mL of media combined with 70 µL 

of Lipofectamine 2000. This mixture was incubated for 20 minutes and added to the 

HEK293T cells. After a 24 hours, the media was removed and 10 mL of fresh media 

applied to the flask. After a further 48 hours, the media was harvested, centrifuged at 

360 g for 10 minutes and filtered through a 0.45 µm filter. The virus was either stored 

at -80°C or immediately used for cellular transduction. 

 

Lentivirus transduction 

Lentiviral transduction of 5TGM1 cells was performed in a 24-well tray by adding 1 mL 

of lentivirus with 1µL of polybrene (8 µg/mL) to 500 µL of cells at 2x105 cells/mL. After 

24 hours, the media was replaced with fresh IMDM. After a further 24 hours the cells 

were either treated with puromycin to select for infected cells, or assessed for 

fluorescence using an inverted microscope.  For cells infected with lentiviral vectors 

expressing fluorophores, successful integrants were isolated using fluorescence-

activated cell sorting (FACS) (see section 2.2.2.4).    

 

Microscopy 

Cells expressing a fluorophore via transient transfection or lentiviral transduction were 

analysed using an inverted microscope (Nikon Eclipse TE300). GFP fluorescence was 

visualised using a FITC filter whilst dsRed, mCherry and dTomato fluorescence was 

visualised using a TxRed filter. Fluorescent cells were imaged at 10x and 20x 

magnification and at an exposure time of 1 milliseconds. 
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FACS 

All cell analyses and sorting using flow cytometry was performed at the Detmold facility 

(SA Pathology, Adelaide). Cell sorting was performed by Detmold staff using the 

Astrios (Beckman Coulter), with the addition of the CyCloneTM unit for experiments 

requiring single cell sorting into 96-well plates. Cell analyses for fluorescence were 

performed on the Gallios flow cytometer (Beckman Coulter). 

5TGM1 cells were sorted at a maximal concentration of 2x107 cells/mL. Immediately 

prior to FACS analysis, cells were centrifuged for 5 minutes at 200 g, resuspended in 

500 µL of IMDM supplemented with 2% FCS at the specified concentration and passed 

through a 30 µm filter. Sorted cells were collected into polystyrene tubes containing 2 

mL of IMDM + 2% FCS, spun for 5 minutes at 200 g and placed into fresh IMDM 

supplemented with 20% FCS, 100 mM sodium pyruvate, 200 mM L-glutamine and 1 

M HEPES buffer. For single cell sorting into 96-well plates, wells were pre-filled with 

100 µL of regular 5TGM1 growth media. Samples were prepared in the same manner 

for fluorescence analysis.  

 

2.2.2.4 CRISPR Cas9 knockout experiment 

All CRISPR Cas9 knockout experiments for the HIF-2α knockout 5TGM1 lines used in 

Chapter 4 were performed by Yinan Ma. These experiments were repeated by myself 

when attempting to generate more clone HIF-2α clones and create HIF-1α knockout 

cell lines.  

 

Transient transfection of 5TGM1 cells 

The pSpCas9-HIFα-2A-GFP vectors were created as described in section 2.1.7.4. 

5TGM1 cells were plated in 6-well plates in 4 mL of media at a concentration of 2x105 

cells/mL. These cells were transiently transfected with a combination of plasmids to 

create 4 different knockout cells lines as below: 

HIF-1α knockout A pSpCas9-HIF-1α sgRNA Intron 1A-GFP and 
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pSpCas9-HIF-1α sgRNA Intron 2A-GFP 

HIF-1α knockout B pSpCas9-HIF-1α sgRNA Intron 1B-GFP and 

pSpCas9-HIF-1α sgRNA Intron 2B-GFP 

HIF-2α knockout A pSpCas9-HIF-2α sgRNA Intron 1A-GFP and 

pSpCas9-HIF-2α sgRNA Intron 2A-GFP 

HIF-2α knockout B pSpCas9-HIF-2α sgRNA Intron 1B-GFP and 

pSpCas9-HIF-2α sgRNA Intron 2B-GFP 

All wells were also co-transfected with the pLV410-dsRed vector, allowing for selection 

of successfully transfected cells. Each transient transfection reaction was performed 

with a total of 4 µg of DNA (SpCas9-IntA, SpCas9-IntB and dsRed containing plasmids) 

and 20 µL of polyfect as per the manufacturer’s instructions.  

 

Identification and isolation of successfully transfected 5TGM1 cells 

At 24 hours post-transfection, cells were assessed for dsRed fluorescence using 

microscopy. FACS was performed (section 2.2.2.3) at 48 hours post initial transfection 

on 5TGM1 cells expressing both GFP and dsRed, to isolate successfully transfected 

cells (Detmold facility, SA pathology, Adelaide). The GFP and dsRed double positive 

cells underwent single cell sorting into 96-well trays and were cultured for 2-3 weeks 

to allow for cellular recovery and expansion. Once confluent, surviving clones were 

moved into a 24 well tray and expanded for 3 days. Following expansion, 80% of each 

well was taken to make gDNA (section 2.2.2.2). 

 

PCR screening and confirmation of 5TGM1 HIFα knockout cells 

PCR reactions were performed with Taq polymerase and Phusion enzyme as 

previously described (section 2.2.1). The gDNA extracted from the potential 5TGM1 

HIFα knockout clones, was used in a series of PCR reactions using CRISPR HIFα 

screening primers that flank exon 2, with the desired loss of exon 2 evident by a smaller 

PCR product in agarose gel electrophoresis. PCR products corresponding to 
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successful knockouts were subject to gel extraction, A-tailing, ligation into pGEM-

Teasy and analysis via Sanger sequencing. 

 

2.2.2.5 5TGM1 knockout cell line characterisation  

Luciferase Assay 

Prior to in vivo use, the luciferase activities of all newly modified 5TGM1 cell lines were 

analysed. 5TGM1 cells were aliquoted in triplicate in 96-well plates (black sides, clear 

bottom) at 1x106, 2x105, 4x104, 8x103 and 1.6x103 cells/well in a final volume of 100 

µL media per well, and incubated at 37ºC for 1 hour. D-Luciferin substrate at a stock 

concentration of 30 mg/mL was diluted 1/100 with PBS, 100 µL added to each well and 

the plate incubated at 37ºC for 20 minutes on the pre-warmed IVIS XenogenTM 

platform. Luminescence intensity was then detected using the IVIS XenogenTM system 

at 1 minute and 10 minute exposure intervals with the specific settings of small binning 

and field of view B (15cm). Analyses were performed for each well using the Living 

Image 2.50.1 software.  

 

Proliferation Assay 

Cell proliferation rates of monoclonal 5TGM1 HIF-2α CRISPR knockout cell lines were 

determined using luciferase expression as an indirect measure of cell number. 5TGM1 

cell lines were plated into 96-well plates (black sides, clear bottom) in triplicate at a 

concentration of 5x103 cells per well in a final volume of 100 µL and grown in hypoxic 

or normoxic conditions and analysed after both 3 days and 5 days. On the fifth day, a 

series of standards were plated for each cell line at concentrations of 5x105, 2x105, 

1x105, 5x104, 2x104, 1x104, 5x103 and 2x103 cells/well in a final volume of 100 µL 

media. D-Luciferin (30 mg/mL) was then diluted 1/100 with PBS, 100 µL added to each 

well and the plates incubated at 37ºC for 20 minutes on the pre-warmed IVIS Lumina 

XRMSTM platform. Luminescence intensity was then detected using the IVIS Lumina 

XRMSTM system using Auto Function, and analysed as described above. 
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2.2.3 In Vivo and Ex Vivo Techniques 

2.2.3.1 In vivo mouse experiments 

Mouse injections  

5TGM1 cell lines were injected into C57Bl/KalwRij mice between 6 and 8 weeks of 

age. 5TGM1 cell lines were thawed and cultured for approximately 3 days prior to 

injection. Where specified, LVTETPT cell lines were resorted immediately prior to 

injection. Cells were diluted to a concentration of 5x106 cells/mL in ice cold PBS, kept 

on ice and 100 µL of cells was injected into mice via tail vein injection (performed by 

Dr Jacqueline Noll). 

 

Mouse treatment  

Mice were routinely assessed and weighed 3 times weekly and monitored daily to 

assess their general health. The duration of the animal experiment was 4 weeks, 

unless stated otherwise. For mice injected with the LVTETPT cell lines, mice were fed 

with doxycycline hyclate supplemented water (1 mg/mL + 5% sucrose) and feed (600 

mg/kg) twice weekly.  

 

Monitoring disease progression 

Tumour growth was monitored in the 2nd, 3rd and 4th weeks post injection by 

intraperitoneal administration of 150 mg/kg of luciferin in sterile PBS. Mice were 

anaesthetised (3% constant isofluorane inhalation) and after 10 minutes, in vivo 

bioluminescence was measured using either the IVIS XenogenTM (Chapter 3) or the 

IVIS SpectrumTM (Chapter 4). When using the IVIS XenogenTM, mice were imaged at 

varying exposure times of 30 seconds, 1 minute and 5 minutes, where the highest 

bioluminescence reading for each mouse was selected for quantification purposes. 

When using the IVIS SpectrumTM, mice were imaged using the Bioluminescence 

function in the Imaging Wizard of the Living Image software, resulting in auto detection 

of tumour. As previous, the Living Image software was used to measure 

bioluminescence.  
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2.2.3.2 Ex vivo sample collection and processing  

Cardiac bleed  

At the end of the study, mice were anaesthetised with 2% isoflurane gas and cardiac 

bleeds (approximately 1 mL) performed and collected in Mini Collect Z Serum 

Seperator tubes and stored on ice. Cervical dislocation of mice was performed 

immediately after blood collection as per ethics approved protocols (University of 

Adelaide Ethics Approval M-2012-227)). Blood samples were centrifuged at 1200 g for 

10 minutes and the serum transferred into microcentrifuge tubes. 

 

Paraprotein analysis 

Mouse serum was analysed for presence of paraprotein, an indicator of disease 

burden, using the Hydragel Protein(E) K20 system (Sebia) as per the manufacturer’s 

instructions. The dried gel was immersed in Amido Black Staining Solution for 4 

minutes and destained three consecutive baths of paraprotein destain (section 2.1.9). 

The gel was then imaged using the ChemiDoc (Bio-Rad) and bands quantified using 

Image Lab software (Bio-Rad). 

 

Mouse dissection and processing 

Various cell and tissue samples were isolated from mice post mortem. The spleen and 

hind legs were dissected and immediately submerged in 10% formalin. Alternatively, 

BM cells were isolated from the hind legs (refer to Chapters 3 and 4 for when which 

procedure was used) by flushing the femur and tibia with 6 mL of ice-cold 10% FCS in 

PBS. The flushed cells were centrifuged at 110 g for 5 minutes, supernatant removed 

and the pellet resuspended in 500 µL of IMDM + 2% FCS. To these samples, 2 mL of 

RBC lysis buffer was added and left for 10 minutes before repeating the centrifugation 

step and resuspending again in 500 µL of IMDM + 2% FCS. These samples were 

analysed using FACS and the tumour cells isolated (section 2.2.2.3). mRNA was 

extracted from the 5TGM1 cells and qPCR analysis performed (section 2.2.2.2). 
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The hind legs that were placed in the fixative were stored at 4°C for 1 week. Legs were 

then placed in decalcification solution and rocked for approximately 2 weeks with fresh 

solution applied three times weekly. Complete decalcification was confirmed by x-ray 

using the IVIS Lumina XRMSTM before the legs were sliced in half longitudinally. The 

spleens and legs were then placed in the Shandon Excelsior ES Tissue Processor 

overnight through sequential changes of ethanol, xylene and paraffin. The tissue 

samples were then embedded in paraffin (Histology Services at SA Pathology), and 

5µm sections were cut and mounted on glass slides for microscopic analyses. 

 

H&E staining  

Tissue slides were submerged for 2 x 1 minute in xylene to remove wax. Then 3 x 30 

second ethanol washes were performed to remove xylene. Slides were rinsed in 

running water followed by distilled water for 10 second. This was followed by a 5 minute 

submersion in Mayer’s haematoxylin solution and rinse in running tap water. The slides 

were placed in bicarbonate solution for 10 seconds and the wash step repeated. 

Samples were then differentiated in 0.3% acid-alcohol for 5 seconds and immediately 

washed. Slides were then submerged in bicarbonate again for 10 seconds and 

washed. A final stain was applied by submerging slides in eosin for 2 minutes followed 

by 3 x 30 second ethanol incubations and a final two changes of xylene for 30 second 

each. Slides were then individually mount in Depex, dried and imaged using the 

Nanozoomer (SA Pathology, Adelaide). 

 

Immunohistochemistry staining 

Tissue slides were de-waxed in a consecutive series of baths in xylene (3 x 2 minutes) 

followed by ethanol (3 x 2 minutes). Subsequently, slides were washed in RO water (3 

x 5 minutes) and PBS (1 x 5 minute). Endogenous peroxidase activity was quenched 

by incubating slides in freshly made 30% H2O2 in methanol for 30 minutes at room 

temperature in the dark. Slides were washed (3 x 5 minutes in PBS) and circles drawn 

around the tissue using a PAP pen. Slides were blocked in 3% normal horse serum (in 

PBS) for 2 hours at room temperature. The blocking solution was then removed and 
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the tissue incubated in primary antibody overnight at 4°C. The primary antibody was 

removed and 3 x 5 PBS washes performed. Secondary antibody was applied to the 

tissue and incubated at room temperature for 30 minutes. This antibody was removed, 

tissue samples washed (3 x 5 minutes PBS) and tertiary antibody applied for 1 hour. 

During this time the DAB solution was made by first combining 13.6 mL 0.2M HCl, 12.4 

mL 0.2M Tris and 24 mL water and adjusting pH to 7.7 with NaOH. To this, 50 µL of 

30% H2O2 and 300 µL of DAB was added. The tertiary antibody rinsed with distilled 

water and DAB solution applied until a colour change was observed on the tissue (7-

10 minutes). The DAB solution was carefully removed and 3 x 5 minute PBS followed 

by 3 x 5 distilled water washes applied. The slides were then counterstained in Mayer’s 

haematoxylin for 1 minute, rinsed in RO water, submerged in 0.3% acid alcohol for 2 

seconds, rinsed in RO water, submerged in bicarbonate solution for 10 seconds, rinsed 

and dehydrated in ethanol (3 x 2 minutes) and xylene (2 x 2 minutes). Slides were then 

individually mount in Depex, dried and imaged using the Nanozoomer (SA Pathology, 

Adelaide). 

 

2.2.4 Statistical Analysis 

Data was presented as mean ± standard error of the mean (SEM). Significant 

differences between treatment groups were determined by either t-tests or ANOVA 

(Analysis of Variance) as appropriate. Paired student t-test was performed using 

Microsoft Excel where a null hypothesis was rejected when a significance of p ≤ 0.05 

was reached. Either one-way ANOVA with Dunnett’s post-test or two-way ANOVA with 

Sidak’s post-test was performed, as appropriate, using GraphPad Prism Version 7. 
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3.1 Introduction  

Aberrant upregulation of both HIF-1α and HIF-2α have been implicated in MM disease 

progression (Giatromanolaki, Bai et al. 2010). Importantly, HIF-1α and HIF-2α display 

differential expression patterns in MM, suggesting that each factor could play critically 

different roles in disease (Martin, Diamond et al. 2009). Despite this, there is a paucity 

of data in relation to the specific contributions made by HIF-1α and HIF-2α in the 

pathogenesis of MM.  

 

Genetic manipulation, both in vitro and in vivo, is routinely used to explore the complex 

roles of the products of specific genes in biology. Commonly used techniques include 

constitutive and inducible systems that enable the upregulation, downregulation or 

silencing of gene expression. As summarised in Chapter 1, the HIFs regulate hundreds 

of target genes and influence numerous pathways involved in processes such as 

cellular migration, adhesion and proliferation. With this in mind, the inducible TetOn3G 

vector system was chosen to modulate HIFα expression in mouse MM cells, for 

subsequent use in an animal model of disease. TetOn3G modified cells upregulate 

gene expression in the presence of doxycycline, making the system both inducible and 

reversible in cells. As such, the doxycycline-dependent activation of HIF-1α and HIF-

2α following disease establishment in mouse experiments would allow for the direct 

assessment of the role of each HIFα in disease progression, eliminating confounding 

effects on initial BM homing that may arise with constitutive expression.  

 

The use of mouse models to assess disease overcomes the need to infer 

pathophysiological contexts from in vitro experiments. The 5TGM1 mouse MM cell line 

can be easily propagated in vitro, and develops aggressive MM over 4 weeks when 

injected into C57BL/KaLwRij mice (Dallas, Garrett et al. 1999), making it an excellent 

model for manipulating HIFα expression and assessing the significance of these 

molecular pathways in vivo. The work in this chapter aimed to generate and 

characterise 5TGM1 cells engineered to inducibly overexpress either HIF-1α or HIF-
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2α for use in the 5TGM1/C57BL/KaLwRij MM mouse model of disease, and 

characterise the specific roles of each HIF on MM disease progression in vivo.  
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3.2 Results 

3.2.1 Profiling of 5TGM1 cells: assessment of expression of Hif1α, Hif2α and 

their target genes under hypoxic conditions.  

The expression profiles of Hif1α, Hif2α and their target genes in 5TGM1 cells is not 

known. As such, prior to genetically modifying HIFα in the 5TGM1 cells, the expression 

of endogenous Hif1α, Hif2α and a selection of target genes in normoxic and hypoxic 

culture conditions was characterised using quantitative PCR (qPCR). Previous studies 

have shown that the expression of a number of controls or “housekeeping” genes 

commonly used as normalisation controls for qPCR, such as β-actin and Gapdh, are 

affected by hypoxic treatment (Bakhashab, Lary et al. 2014). With this in mind, before 

the HIFs and downstream target genes could be analysed by qPCR, a suitable 

“housekeeping” gene was selected for normalisation. Initial experiments compared the 

effect of hypoxia (<1% O2) on the expression of commonly used control genes in 

5TGM1 cells, and found that hypoxanthine-guanine phosphoribosyltransferase (Hprt) 

and RNA polymerase II subunit A (Polr2a) showed no significant variation with hypoxic 

treatment (data not shown). As such, Hprt and Polr2a were used for normalisation in 

all subsequent qPCR experiments.  

 

To examine the expression of Hif1α, Hif2α and their target genes in hypoxia, 5TGM1 

cells were cultured under hypoxic (<1% O2) conditions for 16, 24, 48, and 72 hours, or 

in normoxia as a negative control (Figure 3.1). The relative Hif1α mRNA levels in 

5TGM1 cells showed no hypoxia induced changes in expression (Figure 3.1A). In 

contrast, Hif2α exhibited elevated expression in all hypoxic samples when compared 

to the normoxic control, with a peak of more than three times the control after 48 hours 

of hypoxic treatment (Figure 3.1B). Although hypoxic induction of Hif2α expression was 

consistently observed, with a peak at 48 hours of hypoxic treatment across all three 

independent experiments, when these data were averaged, statistical significance was 

not reached using a paired student t-test, most likely due to variation between the 

datasets (Data from representative single experiments are presented in Figure 3.1, 

and data for all three independent experiments presented in Appendices 1-4).  
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Three well characterised HIF-inducible target genes were chosen to assess HIF 

activity in the 5TGM1 cells under hypoxic conditions, specifically VegfA, Bnip3 and 

Glut1 (Figure 3.1C-E) (Choi, Oh et al. 2008, Benita, Kikuchi et al. 2009, Ria, Todoerti 

et al. 2009). A hypoxia-dependent upregulation of VegfA, Bnip3 and Glut1 mRNA was 

confirmed in 5TGM1 cells by qPCR. Specifically, mRNA induction was detected after 

16 hours of hypoxic treatment and remained elevated until 72 hours, with Bnip3 

showing the greatest fold induction as reported in other cell types (Choi, Oh et al. 

2008). These data are consistent with a HIF-dependent induction of typical target 

genes in hypoxia and thus are consistent with hypoxia-dependent HIF activity in 

5TGM1 cells. 

 

As the oxygen-dependent regulation of HIF-1α and HIF-2α is predominantly post-

translational, numerous attempts were made to detect the expression of endogenous 

HIFα proteins by western blotting. However, while the expression of these proteins 

could be detected in numerous human MM cell lines, they could not be consistently 

detected in the 5TGM1 cells, most likely due to the species-selectivity of the primary 

antibodies and expression levels in the 5TGM1 cells.  
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Figure 3.1: Characterisation of Hifα and target gene expression in response to 

hypoxia in 5TGM1 cells. 5TGM1 cells were cultured in normoxia (N) for 72 hours or 

hypoxia (H) for 16, 24, 48 and 72 hours. RNA was extracted and equivalent amounts 

were reverse transcribed and used for quantitative PCR analysis performed using 

primers targeting Hif1α (A), Hif2α (B), Vegf-A (C), Bnip3 (D) and Glut1 (E). Relative 

expression of each gene was normalised to the housekeeping gene Hprt. Data are 

graphed as the mean of triplicate samples +/- standard error of the mean from a single 

experiment, and are a representative of 3 independent experiments. 

  

E 
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3.2.2 Creation and characterisation of puromycin selectable Tet-inducible all-in-

one HIF overexpressing stable cells. 

To investigate the specific roles of HIF-1α and HIF-2α in MM, the lentiviral TRE3G-

PGK-TetOn3G-IRES-puromycin (or LVTPTP) all-in-one inducible vector system was 

chosen to inducibly overexpress each murine HIFα in 5TGM1 cells. One major 

advantage of the LVTPTP vector is its reported lack of background gene expression in 

the absence of doxycycline in vitro and in vivo (Bersten, Sullivan et al. 2015), making 

the system more robust than the original dual TetOn3G plasmid system. This lentiviral 

based system provides improved transduction efficiencies over traditional transfection 

methods. Additionally, both the constitutively expressed Tet-activator protein and 

doxycycline-inducible target gene are expressed by separate promoters from a single 

plasmid (LVTPTP) which further improves transfection efficiency (Figure 3.2). The 

LVTPTP all-in-one vector also constitutively expresses a puromycin resistance gene, 

enabling antibiotic selection of transduced cells. 

 

3.2.2.1 Subcloning and Transient transfections 

Hif1α and Hif2α were subcloned from a pENTR2B vector into both the LVTPT-

Puromycin (LVTPTP) and LVTPT-GFP (LVTPTG) plasmids (provided by Dr David 

Bersten (Bersten, Sullivan et al. 2015)) , as described in section 2.1.7, and sequence 

integrity was verified by Sanger sequencing. The GFP expressing version was used to 

determine transfection efficiency in HEK293T cells. To assess expression of the HIFα 

proteins from the LVT-HIF-1α-PTG and LVT-HIF-2α-PTP plasmids, both were 

transiently transfected into HEK293T cells and treated with doxycycline as described 

in section 2.2.2.3. Analysis of the LVTPTG and LVT-HIFα-PTG transfected cells by 

fluorescence microscopy showed high transfection efficiencies of 70-80%. Inducible 

overexpression of HIF-1α and HIF-2α protein was assessed by western blot following 

transient transfection of the LVT-HIFα-PTP vector.  

 

Untransfected cells (U) with and without doxycycline treatment (DOX) showed no 

detectable HIF-1α protein, as expected (Figure 3.3 A). A band corresponding to 
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endogenous human HIF-1α of approximately 110 kDa was observed in samples 

treated with the hypoxia mimetic 2,2-dipyridyl (DP). LVT-HIF-1α-PTP transfected 

samples also displayed high HIF-1α protein expression upon treatment with 

doxycycline. This HIF1-α protein induction was comparable to constitutively expressed 

mouse HIF-1α protein from the LV410-HIF-1α vector positive control (Figure 3.3 A, 

HIF1 Ctrl).  

 

As expected, the untransfected cells (U) with and without doxycycline treatment (DOX) 

also showed no detectable HIF-2α protein (Figure 3.3 B). In LVT-HIF-2α-PTP 

transfected cells, the HIF-2α protein detected in the absence of doxycycline was 

greatly enhanced following the addition of doxycycline, to levels comparable to the 

constitutively expressed control (Figure 3.3 B). Importantly, these data confirmed the 

doxycycline inducible expression of both of the HIFα proteins from the LVT-HIF-PTP 

vectors, and their suitability for the generation of stable cell lines.  
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Figure 3.2: Schematic of the LVT-HIFα-PTP mammalian expression vector. The 

lentiviral plasmid is an all-in-one vector system based on the Tet-On3G® system, 

combining the constitutive Tet-activator vector with the doxycycline inducible vector 

that drives expression of our gene of interest.  Expression of the target gene, in this 

case Hif1α or Hif2α, is controlled by a TRE3G promoter that is dependent on the 

presence of the constitutively expressed Tet-activator, and doxycycline treatment. The 

all-in-one vector constitutively expresses the Tet-Activator and a puromycin selection 

cassette from a PGK promoter. An IRES element allows for the independent translation 

of both the Tet-activator and the downstream puromycin selection cassette from a 

single transcript. The constitutive expression of the puromycin from the PGK promoter 

allows for specific selection of mammalian cells virally infected with the LVT-HIFα-PTP 

plasmid using puromycin.  
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Figure 3.3: Assessment of HIF-1α and HIF-2α protein induction from the LVT-

HIFα-PTP vector in transiently transfected HEK293T cells. HEK293T cells were 

transiently transfected with either the LVT-HIF-1α-PTP vector (A) or the LVT-HIF-2α-

PTP vector (B). Following transfection, cells were cultured for 16 hours in the presence 

of 2 µg/mL final concentration of doxycycline. Whole cell lysates were collected, 

denatured, run on a 10% SDS gel and HIFα protein levels detected via western blot. 

A) Western blot incubated with polyclonal HIF-1 specific antibody. Control samples 

include untransfected negative controls with and without doxycycline treatment (U and 

U+DOX), positive controls treated with hypoxia mimetic 2,2’-dipyridyl (U+DP) to detect 

endogenous HIF-1 protein, and HEK293T cells transiently transfected with pLV410-

HIF-1α that constitutively overexpresses HIF-1α (HIF1 Ctrl). The two experimental 

samples were the HEK293T cells transiently transfected with the LVT-HIF-1α-PTP 

vector and treated with or without doxycycline (HIF1 PURO and HIF1 PURO+DOX). 

An antibody specific to α-tubulin was used as a loading control. B) Western blot 

incubated with polyclonal HIF-2α specific antibody. Control samples include two 

untransfected negative controls (U and U+DOX) and a positive control from HEK293T 

cells transiently transfected with pLV410-HIF-2α that constitutively overexpresses HIF-

2α (HIF2 Ctrl). The two experimental samples include the HEK293T cells transiently 

transfected with the LVT-HIF-2α-PTP vector and treated with or without doxycycline 

(HIF2 PURO and HIF2 PURO+DOX). α-tubulin was used as a loading control. Data 

are representative of three independent experiments. 
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3.2.2.2 Puromycin kill curves and lentiviral titration 

To generate stable cell lines, two key components of the LVTPTP plasmids were 

required. The puromycin cassette was required for antibiotic selection whilst the long 

terminal repeats (LTR) allowed high efficiency lentiviral-mediated infection of the target 

cells and stable integration into the host genome.  

 

To assess puromycin sensitivity, uninfected 5TGM1 cells were cultured in the presence 

of 1, 2, 4 and 6 µg/mL of puromycin. Cell survival was measured daily by staining with 

Trypan blue and counting viable cells using a haemocytometer. The cells continued to 

proliferate with 1 µg/mL of puromycin, but 4 µg/mL and 2 µg/mL killed all 5TGM1 cells 

by days 4 and 8, respectively, and were used for subsequent selection experiments 

(Figure 3.4).  

 

To generate lentivirus, HEK293T cells were transiently co-transfected with the lentiviral 

packaging and envelope expressing vectors in combination with either LVTPTP empty 

control, LVT-HIF-1α-PTP, LVT-HIF-2α-PTP or LVT-dsRed-PTP vectors. The LVT-

dsRed-PTP lentivirus was included as a control to measure cellular transduction using 

the inducibly expressed fluorescent dsRed protein. Following viral production, the LVT-

dsRed-PTP lentivirus was titrated and tested on the 5TGM1 cells to assess the 

transduction efficiency of these cells. The titration data were used to identify the optimal 

volume of lentivirus that maximised transduction frequency in these cells. As such, the 

lentiviral volume that resulted in the best dsRed expression was selected for 

subsequent stable cell line production Three days following infection, 2 µg/mL 

doxycycline was added to the cells, incubated overnight and dsRed expression 

assessed for each titration point using a haemocytometer and fluorescence 

microscopy. The resulting transduction frequencies (i.e the number of dsRed positive 

cells/total number of GFP positive 5TGM1 cells) showed that the optimal volume of 

virus was 1 mL with a transduction rate of 20.4% (Table 3.1).  
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Figure 3.4: Puromycin kill-curve of 5TGM1 cells. A) 5TGM1 cells were treated with 

1 µg/mL, 2 µg/mL, 4 µg/mL or 6 µg/mL of puromycin. Cell survival was monitored daily 

by Trypan Blue staining and live cell number recorded for 10 days. 
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Table 3.1: Lentivirus titration to optimise transduction rate in 5TGM1 cells.  

 

 1 mL Lentivirus 0.5 mL Lentivirus 0.25 mL Lentivirus 0.1 mL Lentivirus 

GFP Positive 
(Number of cells) 

162 104 155 121 

dsRed Positive 
(Number of cells) 

33 12 6 0 

Transduction % 
(dsRed/GFP) 

20.4% 11.5% 3.9% 0% 

5TGM1 cells were infected with lentivirus containing the LVT-dsRed-PTP vector. 
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3.2.2.3 Virus optimisation to create a stable cell line 

To create stable cell lines, 5TGM1 cells were infected with 1 mL of LVTPTP, LVT-HIF-

1α-PTP, LVT-HIF-2α-PTP or LVT-dsRed-PTP containing lentivirus and treated with 

either 4 µg/mL or 2 µg/mL of puromycin. Cells treated with 4 µg/mL of puromycin in 

combination with viral infection did not survive, with no viable cells detected with trypan 

blue staining after 6 days of selection. Cells treated with 2 µg/mL of puromycin resulted 

in increasing cellular stress and death over time, where the low number of surviving 

cells expressed dsRed by fluorescent microscopy, but displayed slowed growth rates 

and abnormal morphology.  

 

Attempts were made to improve cell survival and morphology, including lowering 

puromycin concentrations to 1 µg/mL, the intermittent removal of puromycin for 1 week 

when increased cellular death was observed, and the addition of conditioned media 

from untreated 5TGM1 cells. Removal of puromycin increased cell survival, however, 

the percentage of dsRed positive cells in the culture rapidly decreased. Reduced 

puromycin concentrations in combination with the addition of conditioned media also 

increased cell survival, but the surviving cells grew slowly, never returned to a 

logarithmic growth phase, showed persistent irregular morphology and displayed 

unstable dsRed expression. Despite numerous attempts the cells did not recover a 

normal cellular growth rate or morphology and stable dsRed expressing cell lines could 

not be generated. These results indicated that the 5TGM1 cells are sensitive to 

puromycin at the concentrations required for selection. Hence, an alternative strategy 

for selection of transduced cells was required to generate 5TGM1 cell overexpressing 

HIF-1α and HIF-2α.  
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3.2.3 Designing and creating a modified lentiviral Tet-inducible all-in-one vector 

for overexpression of HIF-1α and HIF-2α 

3.2.3.1 Design, creation and testing of modified LVTETPT vector system 

To address the puromycin-associated cellular stress, a new TetOn3G vector system 

was designed based on the LVTPTG vector. In place of puromycin selection, the 

dTomato fluorophore was used to enable selection of successfully transduced 5TGM1 

cells using FACS. An advantage of this method was that FACS had successfully been 

used previously to create stable cell lines in 5TGM1 cells (Noll, Hewett et al. 2014, 

Cheong, Chow et al. 2015).  

 

The IRES element of the pLVTPTG vector was also replaced with a P2A (porcine 

teschovirus-1) self-cleaving peptide sequence. Previous studies have shown that the 

gene that follows an IRES sequence is frequently expressed at different levels to the 

preceding gene. The virally derived 2A small “self-cleaving” peptides enable the 

production of multiple proteins from a multicistronic cassette with minimal variation in 

protein expression from adjacent genes (Szymczak, Workman et al. 2004, Kim, Lee et 

al. 2011). These 2A peptides are 18-22 nucleotides long, function through ribosomal 

skipping, and have been used successfully in both cultured cell lines and whole animal 

experiments (Kim, Lee et al. 2011). The replacement of the IRES with the P2A 

sequence enables efficient constitutive expression of both the Tet-On3G transactivator 

and dTomato proteins from a single promoter.  

 

In addition to these changes, the PGK promoter driving constitutive expression of the 

Tet-On3G transactivator was replaced with the EF1α promoter which shows 

comparatively stronger promoter activity across multiple different mammalian cell 

types transduced with lentiviral vectors (Qin, Zhang et al. 2010).  
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Once the new Lentiviral-TRE3G-EF1α-TetOn3G-P2A-dTomato (LVTETPT) plasmid 

was generated and verified by Sanger sequencing, HIF-1α and HIF-2α were subcloned 

into the vector and also verified by sequencing. 
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Figure 3.5: Schematic of the LVT-HIFα-ETPT mammalian expression vector. This 

lentiviral plasmid is a modified version of the all-in-one TetOn3G vector system 

(LVTPTG). The Tet transactivator (TetOn3G) is constitutively expressed from the EF1α 

promoter, allowing for its continual expression in mammalian cells. The TetOn3G gene 

is immediately followed by a self-cleavage P2A peptide sequence and the gene 

encoding dTomato. The P2A component allows for the production of two separate 

proteins from a single mRNA transcript. The fluorescent dTomato protein produced is 

used for selection of infected cells and localises to the nucleus of the cell allowing for 

easy microscopic identification. The TRE3G promoter allows for the controllable 

expression of either HIF-1α or HIF-2α upon the treatment of cells with doxycycline. 
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3.2.3.2 Functional testing of the LVTETPT plasmid in cells  

The functionality of the LVTETPT, LVT-HIF-1α-ETPT and LVT-HIF-2α-ETPT plasmids 

were assessed using transient transfection of HEK293T cells. Fluorescence 

microscopy of the transfected HEK293T cells confirmed constitutive expression of 

dTomato and functionality of the P2A sequence from all three plasmids (Figure 3.6). 

The dTomato also appeared to be predominantly nuclear, which was expected given 

that this dTomato contained a nuclear localisation signal. The inducible expression of 

murine HIF-1α and HIF-2α protein was also assessed in HEK293T cells transiently 

transfected with 2 different preparations of either LVT-HIF-1α-ETPT or LVT-HIF-2α-

ETPT plasmids followed by western blot analysis (Figure 3.7). 

 

Untransfected HEK293T cells with and without doxycycline treatment showed no 

detectable HIF-1α protein (Figure 3.7 A). Comparatively, cells transfected with the 

LV410-HIF-1α constitutive expressing positive control showed clear expression of 

mouse HIF-1α protein. Cells transfected with the LVT-HIF-1α-ETPT vector showed no 

detectable HIF-1α protein without doxycycline treatment as expected, however, no 

HIF-1α protein was induced in response to doxycycline treatment despite high 

transfection efficiencies of approximately 75% (Figure 3.6).  

 

Untransfected HEK293T cells also showed no detectable HIF-2α protein, with or 

without doxycycline treatment, as expected (Figure 3.7 B). In contrast to HIF-1α, a 

band corresponding to mouse HIF-2α protein was detected from LVT-HIF-2α-ETPT 

transfected samples following doxycycline treatment, with levels comparable to the 

constitutively expressing LV410-HIF-2α control (Figure 3.7 B). This confirmed the 

doxycycline-dependent induction of HIF-2α protein from LVT-HIF-2α-ETPT transfected 

cells. 

 

The lack of HIF-1α protein observed with doxycycline treatment suggested that the 

induced HIF-1α protein may have been degraded by prolyl hydroxylation-mediated 

ubiquitylation. To address this, hypoxic treatment was included. Specifically, treatment 
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of cells with hypoxia should result in the inactivation of the PHDs and thus stop the 

degradation of HIF-1α protein. If the HIF-1α proteins were being over expressed in 

response to doxycycline, then the levels of induced HIF-1α expression should be 

considerably greater than the levels of endogenous HIF-1α protein observed in the 

absence of doxycycline treatment.  

 

Untransfected and LVT-HIF-1α-ETPT transfected HEK293T cells treated with and 

without doxycycline produced no detectable HIF-1α protein (Figure 3.8) as seen 

previously. Under hypoxia, endogenous human HIF-1α protein induction was observed 

in untransfected cells, as expected (U+H). Endogenous HIF1α protein was also 

observed in cells transfected with LVT-HIF-1α-ETPT and cultured under hypoxic 

conditions without doxycycline treatment (HIF1+H). Importantly, a further induction in 

HIF-1α protein was observed in the LVT-HIF-1α-ETPT sample treated with both 

doxycycline and hypoxia (HIF1+DOX+H) when compared to LVT-HIF-1α-ETPT cells 

without doxycycline (HIF1+H). As had been previously shown in Figure 3.3 A, the 

induced sample (HIF1+DOX+H) displayed a doublet of HIF-1α protein consistent with 

the band pattern observed in the constitutively expressed mouse HIF-1α positive 

control (Hif1 Ctrl) (Figure 3.8). From these data, the doxycycline-inducible 

overexpression of HIF-1α from the LVT-HIF-1α-ETPT vector was confirmed when 

treated with a combination of doxycycline and hypoxia. Importantly the doxycycline-

dependent induction of both HIF-1α and HIF-2α protein from LVTETPT transfected 

cells confirmed that the new vectors were both functional. Furthermore, these data 

showed that the P2A sequence was efficiently producing both the Tet Activator and 

dTomato proteins from a single transcript 
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Figure 3.6: Constitutive dTomato expression from LVT-HIF-1α-ETPT. HEK293T 

cells were transiently transfected with the LVT-HIF-1α-ETPT vector. After 24 hours, 

the cells were observed using microscopy and images taken at 10x magnification. The 

image on the left is a bright field view of the cells at a 1 ms (milli second) exposure, 

whilst the image on the right uses the TxRed filter at 100 ms exposure.  
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Figure 3.7: Assessment of HIF-1α and HIF-2α protein induction from the LVT-

HIFα-ETPT vector in transiently transfected HEK293T cells. HEK293T cells were 

transiently transfected with either the LVT-HIF-1α-ETPT (A) vector or the LVT-HIF-2α-

ETPT vector (B). Following transfection, cells were cultured overnight in the presence 

of 2 µg/mL of doxycycline. Whole cell lysates were separated by a 10% SDS gel and 

HIFα protein levels detected via western blot. Experimental control samples consisted 

of untransfected samples with and without doxycycline treatment (U and U+DOX), and 

pLV410-HIF-1α (HIF1 Ctrl) or pLV410-HIF-2α (HIF2 Ctrl) constitutively overexpressing 

vectors. Experimental samples were cells transfected with two different plasmid 

preparations of HIF-1α or HIF-2α inducible vectors (HIF1 P1, HIF1 P2, HIF2 P1, and 

HIF2 P2) with and without 16 hours doxycycline treatment (HIF1 P1+DOX, HIF1 

P2+DOX, HIF2 P1+DOX, HIF2 P2+DOX). Endogenous α-Tubulin protein was used as 

a loading control. Data are representative of three independent experiments.  

A 
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Figure 3.8: Western blot of HIF-1α protein induction from the LVT-HIFα-ETPT 

vector in transiently transfected HEK293T cells. HEK293T cells were transiently 

transfected with the LVT-HIF-1α-ETPT vector and, where specified, cultured for 16 

hours in either hypoxia (+H), with doxycycline at a final concentration of 2 µg/mL 

(+DOX) or both (+DOX+H). Whole cell lysates were collected, denatured, run on a 

10% SDS gel and HIFα protein levels detected via western blot. Experimental control 

samples consisted of untransfected samples (U) in various treatments and a pLV410-

HIF-1α constitutively overexpressing control (HIF1 Ctrl). Endogenous α-Tubulin protein 

was used as a loading control. Data representative of three independent experiments.  
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3.2.4 Creation and characterisation of 5TGM1 LVTETPT stable cells in vitro 

Lentivirus was made containing the LVTETPT (empty control), LVT-HIF-1α-ETPT or 

LVT-HIF-2α-ETPT constructs. Based on the previous experiment (see section 3.2.3.2), 

a volume of 1 mL of viral particle-containing conditioned media was used to infect 

5TGM1 cells and create the three stable cell lines. Cells expressing both GFP and 

dTomato were sorted 2 days after infection using FACS to isolate pools of cells in 

which the LVTETPT, LVT-HIF-1α-ETPT or LVT-HIF-2α-ETPT plasmids were stably 

integrated (Figure 3.9). In this initial sort, 6.0%, 7.5% and 3.7% of cells were 

transduced with the LVTETPT, LVT-HIF-1α-ETPT and LVT-HIF-2α-ETPT plasmid, 

respectively. Each stable pool of cells underwent a second round of sorting to obtain a 

pure population of GFP and dTomato expressing cells. The newly created LVTETPT 

stable cell lines were then assessed for the doxycycline-specific induction of each 

HIFα.  

 

3.2.4.1 Characterisation of HIF expression in 5TGM1 stable cell lines by 

qPCR  

The HIF-1α inducible (LVT-HIF-1α-EPTP), HIF-2α inducible (LVT-HIF-2α-EPTP) and 

empty vector control (LVTETPT) 5TGM1 cell lines were treated for 16 hours with 2 

µg/mL of doxycycline, hypoxia or a combination of hypoxia and doxycycline. 

Quantitative PCR analysis of Hif1α or Hif2α mRNA expression showed no hypoxia or 

doxycycline-dependent upregulation of either Hifα in the empty vector control cells 

(Figure 3.10 A & B). LVT-HIF-1α-EPTP and LVT-HIF-2α-EPTP infected 5TGM1 cells 

showed background levels of expression compared to the empty vector control, with a 

1.7 fold and 8.5 fold increase in Hif1α and Hif2α mRNA expression, respectively. 

Neither Hif1α nor Hif2α mRNA was induced following hypoxia treatment in the HIF-1α 

inducible or HIF-2α inducible cell lines. Importantly, following treatment with 

doxycycline, Hif1α mRNA levels were induced in the HIF-1α inducible line by 12 fold 

(Figure 3.10 A), and Hif2α mRNA levels were induced in the HIF-2α line greater than 

100-fold (Figure 3.10 B), both in the presence and absence of hypoxia. An increase in 

Hif1α and Hif2α mRNA expression following either doxycycline or the combined 

doxycycline and hypoxia treatment was consistently observed across all three 
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independent experiments (Figure 3.10 and Appendix 5-6). Despite this, when 

averaging the mean of all three experiments, statistical significance was not reached 

using a paired student t-test due to variation between datasets, therefore data from a 

representative replicate is included in this chapter (Figure 3.10).  

 

Overall, these data confirmed that the LVT-HIF-1α-EPTP and LVT-HIF-2α-EPTP 

5TGM1 stable cell lines overexpress HIF-1α and HIF-2α respectively in a doxycycline 

dependent manner, and could be used to assess the comparative roles of HIF-1α and 

HIF-2α in MM.  
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 LVTETPT % 
(dTom/GFP) 

LVT-HIF-1α-ETPT % 
(dTom/GFP) 

LVT-HIF-2α-ETPT % 
(dTom/GFP) 

First Sort 6.0 7.5 3.7 

Second Sort 86.1 74.0 81.3 

Purity Test  
(post second sort) 

99.7 99.3 99.2 

Purity Test: flow cytometry analysis of 5TGM1 cell lines expressing both GFP and 

dTomato following the second round of FACS, to confirm the creation of pure cell lines. 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: FACS of 5TGM1 cells lentivirally infected with LVTETPT, LVT-HIF-1α-

ETPT or LVT-HIF-2α-ETPT constructs. 5TGM1 cells at a concentration of 2x105 

cells/mL were infected with LVTETPT, LVT-HIF-1α-ETPT or LVT-HIF-2α-ETPT 

containing lentivirus. Cells displaying both GFP and dTomato fluorescence were sorted 

by FACS.  A) Table showing the percentage of infected cells sorted to create each 

stable cell line using FACS. Each pooled sample underwent two rounds of sorting 

followed by a purity test for double positive fluorescent cells in each newly made cell 

line. B) The percentage of cells expressing both dTomato and GFP from the total 

population of LVTETPT, LVT-HIF-1α-ETPT and LVT-HIF-2α-ETPT infected cells 

following the second round of FACS.  

B 
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Figure 3.10: Assessment of Hif1α and Hif2α mRNA induction in 5TGM1 cells 

integrated with the LVT-HIFα-ETPT vector. 5TGM1 cell lines were transduced with 

lentivirus particles containing either the LVTETPT, LVT-HIF-1α-EPTP, or LVT-HIF-2α-

EPTP vectors and where specified, cultured for 16 hours with no treatment, in hypoxia 

(+H ), with doxycycline at a final concentration of 2 µg/mL (+DOX) or both (+DOX+H). 

Cellular mRNA was extracted and cDNA produced for quantitative PCR analysis. 

Samples were then assessed for either Hif1α (A) or Hif2α (B) mRNA expression 

normalised to the housekeeping gene Polr2a. Data are representative of three 

independent experiments.   
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3.2.5 Characterisation of 5TGM1 LVTETPT stable cell lines for an in vivo 

mouse model of MM 

3.2.5.1 Luciferase expression in 5TGM1 LVTETPT stable cell lines 

The 5TGM1 cell line is used in conjunction with the C57Bl/KaLwRij mouse strain as a 

pre-clinical model of MM (Dallas, Garrett et al. 1999). To directly compare the role HIF-

1α and HIF-2α play in MM disease development and progression, the LVT-HIFα-ETPT 

stable cell lines were characterised prior to evaluation in the C57BL/KaLwRij mouse 

model. A crucial component of this model was the luciferase gene stably integrated 

within the 5TGM1 cells, which allowed for assessment of tumour burden using in vivo 

bioluminescence. It was important to determine whether the luciferase activity across 

each cell line was comparable, thus ensuring that any changes in tumour burden 

observed in vivo were attributed to changes in HIFα expression, not differences in 

luciferase expression. D-luciferin was added to each cell line and cellular luminescence 

quantified in photons/sec using the Xenogen IVIS imaging system, allowing for a 

comparative assessment of luciferase activity across all three cell lines. 

 

The LVTETPT, LVT-HIF-1α-ETPT and LVT-HIF-2α-ETPT stable lines were plated at 

concentrations of 1x106, 2x105, 4x104, 8x103 and 1.6x103 cells per well, D-luciferin 

added and luminescence measured. The LVTETPT empty vector control showed 

approximately half of the luciferase activity (photons/second) when compared to both 

the HIF-1α (p=0.0012) and HIF-2α (p=0.0109) overexpressing lines, which showed 

comparable levels of luciferase activity to each other (p=0.094) (Figure 3.11). 

Consequently, mice injected with the LVT-HIF-1α-ETPT and LVT-HIF-2α-ETPT cell 

lines could be directly comparable in vivo, whilst mice injected with LVTETPT control 

cells would expectedly show an underestimate amount of tumour burden. 
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Figure 3.11: Comparative analysis of luciferase activity between 5TGM1 

LVTETPT empty control, LVT-HIF-1α-ETPT and LVT-HIF-2α-ETPT stable cell 

lines. 5TGM1 LVTETPT empty control cells, LVT-HIF-1α-ETPT and LVT-HIF-2α-

ETPT stable cells were plated at 1/5 serial dilutions from 1x106 to 320 cells/well in 

triplicate in a 96-well tray. D-luciferin stock of 30 mg/mL diluted 1/100 was added to 

each well and left to incubate at 37ºC for 30 minutes. All cell lines constitutively express 

luciferase from a triple modality gene which cleaves the D-luciferin to produce light 

measured in photons/sec. Images were taken at an exposure time of 10 minutes, and 

light emission measured using the IVIS XenogenTM. Data are mean values +/- standard 

error of the mean of 3 independent experiments, each with triplicate samples, where 

significance was determined using paired student t-test (*p-value <0.05, ** p-value 

<0.01).   
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3.2.5.2 Homing and dissemination of stables cells in the 5TGM1/C57BL/ 

KaLwRij MM mouse model 

The LVTETPT stable cell lines were next tested in a small scale experiment within the 

5TGM1/C57BL/KaLwRij mouse model system to assess their ability to home to the BM 

and disseminate in mice over 4 weeks. Mice were injected with 5x105 cells in 100 µL 

of PBS, or an equivalent volume of PBS alone for control mice, via the tail vein. Mouse 

injection and treatment groups included PBS, Empty Vector (LVTETPT), HIF-1α (LVT-

HIF-1α-ETPT), HIF-1α+DOX (LVT-HIF-1α-ETPT plus doxycycline), HIF-2α (LVT-HIF-

2α-ETPT) and HIF-2α+DOX (LVT-HIF-2α-ETPT plus doxycycline) with 3 mice in each 

group (Figure 3.12). Mice were administered weekly with D-luciferin via intraperitoneal 

injection and tumour growth was assessed using in vivo bioluminescence. Specifically, 

greyscale images overlayed with pseudo-coloured images of mice were taken and 

used to quantifiably measure luminescence from injected tumour cells, where the 

intensity and size of the signal was proportional to tumour cell number (Figure 3.12). 

 

The spread of intramedullary tumours at multiple sites throughout the mice was 

minimal at 3 weeks post injection. Assessment of mice at 4 weeks post injection 

showed dissemination of tumour to multiple skeletal sites throughout the animal, most 

notably the hind leg long bones, in all three cell lines (EV, HIF-1α and HIF-2α) (Figure 

3.12 A & B). This BM localisation and dissemination was consistent with other studies 

using the parental 5TGM1 cell line (Garrett, Dallas et al. 1997, Alici, Konstantinidis et 

al. 2004, Libouban 2015). Quantification of tumour burden in each mouse group 

showed that the empty vector control cells produced comparatively less 

bioluminescence (Figure 3.12 C). This was consistent with findings from luciferase 

analyses of each cell line in vitro prior to injection (section 3.2.6.1). Importantly, tumour 

burden was established in most mice at 4 weeks confirming that all three 5TGM1 

LVTETPT cell lines were capable of homing to the BM. Interestingly, graphed data 

showed a trend towards a doxycycline-dependent increase in tumour burden in mice 

injected with both the LVT-HIF-1α-ETPT and LVT-HIF-2α-ETPT expressing 5TGM1 

cells (Figure 3.12 C), although these differences were not statistically significant, 
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possibly due to the low number of mice used in this preliminary experiment and the 

lowered luciferase expression from the empty vector control line.  
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Figure 3.12: LVTETPT, LVT-HIF-1α-ETPT and LVT-HIF-2α-ETPT cells home to the 

bone marrow and disseminate in a 4 week multiple myeloma mouse model as 

shown by in vivo bioluminescence. Tail vein injections of 5TGM1 LVTETPT, LVT-

HIF-1α-ETPT and LVT-HIF-2α-ETPT stable cell lines were performed on 

C57Bl/KaLwRij mice in a preliminary MM mouse experiment. Five mouse treatment 

groups were set up, specifically EV (LVTETPT empty control), HIF-1α (LVT-HIF-1α-

ETPT), HIFα plus doxycycline treatment (+ DOX), HIF-2α (LVT-HIF-2α-ETPT) and 

HIF-2α + DOX. A & B) The mice were analysed through intraperitoneal injection of D-

luciferin and imaging using in vivo bioluminescence four weeks following tail vein 

injection. C) The combined luciferase activity in each mouse group was quantified and 

graphed as a measure of tumour burden between the control and sample groups. 

Tumour was quantified in photons/second using the IVIS XenogenTM. Data for each 

mouse group (n=3) shown as mean +/- standard error of the mean, where significance 

was analysed using one-way ANOVA with Dunnett’s post-test.  

C 
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3.2.5.3 Assessment of 5TGM1 LVTETPT stable cells in vivo  

The 5TGM1 cell line expresses GFP, allowing for the isolation of the MM cells from 

mice ex vivo. The expression of dTomato from the LVTETPT construct allows for the 

specific selection of 5TGM1 LVTETPT expressing cells. Given the exciting trend 

towards elevated levels of tumour burden in LVT-HIFα-ETPT mice (Figure 3.12), the 

isolation of these cells could be used to examine the doxycycline-dependent 

upregulation of HIFα proteins and target genes from 5TGM1 LVT-HIFα-ETPT injected 

mice ex vivo.  

 

Following identification of cellular homing to mouse hind legs four weeks post injection, 

the mice were euthanised and the BM flushed from the femora. The mixed population 

of flushed BM cells were then treated to lyse red blood cells (RBCs) and FACS used 

to isolate the dual fluorescent GFP-dTomato expressing 5TGM1 LVTETPT cells. 

Unexpectedly, FACS analysis revealed that none of the cells displayed detectable 

dTomato expression. Furthermore, the proportion of BM cells that were expressing 

detectable GFP was very low, between 0-1.75%, whereas this was typically between 

20-40% in other similar experiments using 5TGM1 cells (A, Zannettino, personal 

communication). Due to this very low proportion of fluorescent cells, the 5TGM1 cells 

were not able to be effectively isolated and analysed by FACS. Instead, mRNA was 

extracted from the total population of BM cells for each mouse sample and GFP, Hif1α 

and Hif2α levels quantified by qPCR (Figure 3.13). These data confirmed the low levels 

of GFP expressed in the femoral BM population of all of the mice when compared to a 

5TGM1 GFP-expressing positive cell line grown in vitro. Consistent with these data, 

no HIFα induction was detected in mouse groups that were fed doxycycline compared 

to those that were not (data not shown).  
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Figure 3.13: Quantification of GFP mRNA expression in BM cell lysates isolated 

ex vivo from individual mice. 5TGM1 cells were isolated from the femoral BM of each 

mouse 4 weeks following injection of the tumour cells. Following red blood cell lysis, 

mRNA was extracted and used to make cDNA for qPCR analysis of GFP expression 

levels in each mouse. Relative GFP expression was assessed by normalising to the 

housekeeping gene Polr2a. GFP expression levels of a pure population of 5TGM1 cells 

is included as a control. Data are mean values +/- standard error of the mean for 

triplicate samples from one independent experiment.  
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3.2.6 Characterisation and optimisation of 5TGM1 LVTETPT in vivo mouse 

experiments 

3.2.6.1 Optimisation of the 5TGM1-LVTETPT/C57BL/KaLwRij animal 

model 

Given the promising trends of HIF-α doxycycline-dependent changes in tumour burden 

observed in the first in vivo experiment with a small number of mice, a second 

experiment was performed (Figure 3.14). However, due to the immediate availability 

of only 10 age-matched mice, this experiment was reduced to include the analysis of 

only one of the LVT-HIFα-ETPT lines with and without doxycycline treatment with 5 

mice in each group. As HIF-2α had been less studied than HIF-1α in MM but implicated 

as a major contributor to MM disease progression (Martin, Diamond et al. 2009), it was 

chosen as the cell line to assess in this next experiment.  

 

Due to the lack of dTomato expression in BM cells analysed by FACS from the first 

mouse experiment, it was postulated that HIF-2α overexpression may influence 

homing to the BM and dissemination, resulting in less tumour and therefore low 

numbers of 5TGM1 cells and dTomato expression. Therefore, a modified protocol was 

employed where doxycycline was administered only once MM disease had been 

established as assessed by in vivo bioluminescence.  

 

Ten mice were injected with 5TGM1 LVT-HIF-2α-ETPT cells and in vivo 

bioluminescence used to monitor disease progression weekly. Cellular dissemination 

and homing to the marrow was observed at three weeks post-injection by 

bioluminescence. At this time point, 5 mice were fed doxycycline-supplemented food 

and water from the third week for the remainder of the study. Four weeks post-injection, 

quantitative bioluminescence showed there was no significant change in tumour 

burden between the no doxycycline and doxycycline treated groups as determined by 

paired student t-test (Figure 3.14 B). The trend towards an increase in tumour burden 

with doxycycline treatment observed in Figure 3.11 was not seen in this experiment. 
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This may reflect either the use of the modified doxycycline treatment regime, or that 

the trend observed in the smaller experiment was not reproducible.  
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Figure 3.14: Second LVT-HIF-2α-TPT 5TGM1 MM mouse experiment. Ten 

C57Bl/KaLwRij mice were injected with 5TGM1 stably expressing LVT-HIF-2α-ETPT 

and divided into two treatment groups, no doxycycline (DOX) or plus DOX. Disease 

establishment within the BM was confirmed using in vivo bioluminescence prior to DOX 

treatment. A) Tumour burden images using in vivo bioluminescence following 

intraperitoneal injection of D-luciferin in mice four weeks post injection and after one 

week of DOX treatment. B) The combined luciferase activity in each mouse group was 

quantified and graphed as a measure of tumour burden between the no DOX and plus 

DOX groups. Data for each mouse group (n=5) shown as mean +/- standard error of 

the mean, where significance was analysed using paired student t-test.  
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To ascertain whether the modified doxycycline treatment protocol had improved the 

proportion of GFP and dTomato positive cells detected by flow cytometry, the femora 

of mouse 1 and mouse 4 in both treatment groups were flushed and BM cells analysed, 

as these showed the highest tumour burden by bioluminescence (Figure 3.14). The 

proportion of GFP positive cells in all mice, as shown by FACS, was between 2.4 and 

20%. However, the relative proportion of GFP cells that were dTomato positive was 

extremely low, between 0.06 and 0.12%, demonstrating that less than 1% of the GFP 

positive cells were dTomato positive (Figure 3.15 A). As a result, cells could only be 

sorted based on GFP expression alone and were subsequently analysed by qPCR. 

These results showed very low levels of dTomato mRNA compared to GFP, which was 

consistent with the FACS data (Figure 3.15 B). Furthermore, only very low levels of 

Hif2α mRNA could be detected via qPCR in the GFP sorted cells, with no difference 

between the doxycycline treated or untreated samples, consistent with the very low 

dTomato expression levels.  

 

The low levels of detectable dTomato expression in the FACS isolated 5TGM1 cells, 

raised concerns that dTomato and HIFα expression were being lost in the LVTETPT 

5TGM1 cell lines over time (ie. between thawing cells for injection and the analysis 4 

weeks later ex vivo). To investigate the stability of the dTomato and HIFα expression 

in the cell lines in vitro, some of the same cells that were thawed and used for mouse 

injection had been continually cultured and were analysed by flow cytometry 6 and 8 

weeks after thawing. After the final sort of these cells before the initial freezing, more 

than 99% of each line was comprised of GFP and dTomato positive cells. In contrast, 

after culturing for 6 weeks, between 26 and 50% were double positive and only 15 – 

44% after culturing for a further 2 weeks (Table 3.2). This showed that whilst most cells 

were GFP positive, the proportion of GFP cells that were also expressing dTomato 

decreased following prolonged growth in vitro. This revealed an issue with dTomato 

stability prior to mouse injection and confirmed the hypothesised instability of the 

LVTETPT cell lines in vitro. Furthermore, these data highlighted the importance of 

dTomato proportions in the 5TGM1 LVTETPT cell lines post thaw, and the value of a 

re-sort to maximise dTomato expression prior to animal injection. 
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GFP (% of total) GFP + dTomato (% of total) 

Mouse 1 no DOX 20 0.06 

Mouse 4 no DOX 8.8 0.05 

Mouse 1 + DOX 2.4 0.02 

Mouse 4 + DOX 8.9 0.12 

 

 

Figure 3.15: Detection of GFP and dTomato from 5TGM1 cells isolated ex vivo 

reveals low dTomato expression. FACS was used to assess GFP and dTomato 

expression in cells flushed from the BM of mice displaying the highest femoral and 

tibial tumour burden in Figure 3.14, specifically Mouse 1 and Mouse 4 from both the 

no DOX and plus DOX mouse groups. A) The percentage of cells expressing GFP and 

dTomato from the BM population in each mouse was assessed by FACS analysis 

(shown as a percentage of the total BM population). B) Analysis of GFP, dTomato and 

Hif2α mRNA by qPCR in GFP sorted mouse samples ex vivo. Data are mean values 

+/- standard error of the mean for triplicate samples.   

A 
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Table 3.2: Percentage of GFP and dTomato positive cells in cultured LVTETPT 

5TGM1 cells lines 

  6 Weeks 8 Weeks 

  EV HIF1 HIF2 EV HIF1 HIF2 

%GFP+dTomato 38.2 26.2 50.2 18.2 15.1 44.2 

The 5TGM1 LVTETPT, LVT-HIF-1α-ETPT and LVT-HIF-2αETPT stable cell lines were 

grown for 6 and 8 weeks in vitro, and the proportion of GFP and dTomato positive cells 

determined using flow cytometry. 
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3.2.7 Assessment and optimisation of 5TGM1 LVTETPT stability in vitro and in 

vivo 

3.2.7.1 Characterisation of dTomato stability in 5TGM1 LVTETPT cell lines 

To further examine the stability of dTomato in the 5TGM1 LVTETPT cell lines, two 

independent vials of each of the 5TGM1 LVTETPT, 5TGM1 LVT-HIF-1α-ETPT and 

5TGM1 LVT-HIF-2α-ETPT cell lines were thawed and assessed using flow cytometry. 

Analysis of two frozen stocks after recovery post-thaw (4 days) showed a low 

proportion (4-18%) of surviving cells expressing dTomato for all three LVTETPT cell 

lines, with significant differences in absolute percentages between the two 

independent vials which may have contributed to the low percentage of dTomato cells 

detected ex vivo. (Table 3.3).  

 

Each of the thawed cell lines were sorted for GFP and dTomato expression using 

FACS to isolate a pure population of dTomato expressing cells (approximately 98%, 

Table 3.3). The newly sorted cell lines were cultured in vitro and flow cytometry used 

to assess the percentage of dTomato positive cells weekly for four weeks. The purpose 

of assessing cells over four weeks was to match duration of the in vivo MM 

experiments. All of the cell lines displayed a gradual decrease in the proportion of 

dTomato positive expression over the course of the 4 weeks, with the LVT-HIF-1α-

ETPT showing the greatest decrease (Table 3.4). Specifically, the majority of the 

LVTETPT and LVT-HIF-2α-ETPT stable cells remained dTomato positive, but less 

than half of the LVT-HIF-1α-ETPT cells were positive for dTomato after 4 weeks. These 

data confirmed an inherent instability in dTomato expression in cells when cultured in 

vitro, and an explanation for the low level of dTomato positive cells isolated ex vivo.  

 

While these data showed the expression of dTomato in these cells was unstable, the 

loss of dTomato expression was gradual and the proportion of dTomato positive 

5TGM1 cells following 4 weeks of growth in vitro were greater than the approximate 

1% seen ex vivo (Figure 3.15 A). The low proportion of dTomato positive cells post-

thaw identified the requirement for cells to be re-sorted prior to injection into mice. As 
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such, a third animal experiment was performed to ascertain if the re-sorted cells remain 

stable enough to sort for GFP and dTomato ex vivo, and to compare the proportional 

loss of dTomato between in vitro culturing and the in vivo MM mouse model.  
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Table 3.3: Proportion of 5TGM1 LVTETPT stable cell lines expressing dTomato 

post thaw using FACS. 

 
dTomato percentages post-thaw 
 

Days Post 
Thaw 

Aliquot 1 dTomato (% of total) Aliquot 2 dTomato (% of total) 

  EV HIF1 HIF2 EV HIF1 HIF2 

D4 14.1 15.2 17.8 3.6 4.5 3.6 

S0 ~98.0 ~98.0 ~98.0 ~98.0 ~98.0 ~98.0 

FACS analysis of two different aliquots of newly thawed LVTETPT, LVT-HIF-1α-ETPT 

and LVT-HIF-2α-ETPT cell lines in two different frozen aliquots of each stable cell line 

4 days post thaw. Cells were then re-sorted using FACS to obtain a pure population of 

dTomato positive cells (S0). 

 

 

Table 3.4: Proportion of 5TGM1 LVTETPT stable cell lines expressing dTomato 

post sort using FACS. 

dTomato percentages post-sort 

 

Days Post 
Sort 

Aliquot 1 dTomato (% of total) Aliquot 2 dTomato (% of total) 

  EV HIF1 HIF2 EV HIF1 HIF2 

S7  94.1 79.0 90.3 89.2 84.1 93.5 

S14 88.4 53.0 88.6 83.7 68.3 85.0 

S21 91.9 34.0 89.0 80.6 56.8 85.4 

S28 92.5 18.3 68.2 88.8 49.3 84.9 

Assessment of dTomato stability in the newly sorted cell lines was assessed every 

week for 4 weeks using Flow Cytometry.  
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3.2.7.2 Investigating the stability of 5TGM1 LVTETPT cells in vivo 

The third animal experiment was performed using cell lines that had been thawed and 

then sorted by FACS 3 days prior to injection to ensure the highest proportion of 

dTomato positive cells. Mice were injected with LVTETPT empty vector control (4 

mice), LVT-HIF-1α-ETPT (5 mice) and LVT-HIF-2α-ETPT (4 mice) cell lines and fed 

doxycycline 3 weeks post injection. Surprisingly, in vivo bioluminescence showed 

significantly lower levels of tumour burden than previously observed at four weeks post 

injection, including for the LVTETPT control line (data not shown). Consequently, the 

study was extended to five weeks to allow disease to develop to levels more 

comparable to the 4-week end point of the previous experiments (Figure 3.16).  

 

After 5 weeks the BM cells were flushed for analysis. Given that the exact location of 

tumour within the hind legs was hard to discern, both the femora and tibiae of mice 

with the most detectable tumour were flushed. Five samples were taken in total and 

analysed for GFP and dTomato expression, specifically two from the empty vector 

control (mouse 3), two from the HIF-1α inducible mouse group (mouse 1 and mouse 

5) and one from the HIF-2α inducible mouse group (mouse 1) (Figure 3.16 A). Out of 

the five BM samples, only one had detectable GFP fluorescence by microscopy and 

FACS, the sample from mouse 5 from the HIF-1α inducible group. FACS showed that 

6.7% of cells within this sample were GFP positive (Figure 3.16 B), which was slightly 

higher than the 0.02 - 0.12% observed that seen in the previous animal experiment 

(Figure 3.15 A). None of the samples had any detectable dTomato expression, 

demonstrating that re-purifying the cells immediately prior to injection did not improve 

the percentage of GFP and dTomato expressing cells in mouse tumour sites after the 

development of MM. 

 

The continued low proportion dTomato expressing 5TGM1 LVTETPT cells, both in vitro 

and in vivo, identified a fundamental issue with the stability of expression over time 

with the LVTETPT cell system. Therefore, a new expression system was required to 

assess the comparative roles of HIF-1α and HIF-2α in MM.   
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Figure 3.16: Third mouse experiment incorporating optimised conditions from 

in vitro (FACS) experiments on dTomato stabilisation. C57Bl/KaLwRij mice were 

injected with 5TGM1 cells stably expressing LVTETPT, LVT-HIF-1α-ETPT and LVT-

HIF-2α-ETPT inducible constructs that were re-sorted using FACS 3 days prior to tail 

vein injection. Mice were fed doxycycline 3 weeks post injection and disease 

establishment shown at 5 weeks. A) Tumour burden images using in vivo 

bioluminescence following intraperitoneal injection of D-luciferin in mice five weeks 

post stable cell injection. B) Microscopic analysis of cells ex vivo assessing GFP 

expression compared to bright field images in a mixed cell sample isolated from the 

BM of HIF-1α Mouse 5. Images were taken at 20x magnification with exposures of 1ms 

for bright field view and 1000ms for FITC (GFP wavelength) view. C) FACS analysis 

was performed on the BM extract and showing the percentage of GFP positive cells 

within the population.  

B 

C 
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3.3 Discussion 

The 5TGM1/C57BL/KaLwRij MM animal model was chosen to assess the roles of HIF-

1α and HIF-2α on MM disease progression in vivo. 5TGM1 cells were shown to induce 

a typical hypoxia-dependent expression of genes (Figure 3.1), where specifically, the 

induction in Hif2α mRNA but not Hif1α mRNA observed in hypoxia, was consistent with 

studies using human multiple myeloma and neuroblastoma cells (Martin 2008, Lin, 

Cong et al. 2011).  

 

A modified TRE3G-PGK-TetOn3G-Puromycin (LVTPTP) ‘all-in-one’ vector was 

chosen to create the 5TGM1 stable cell lines that inducibly over-express HIF1-α and 

HIF-2α, thereby generating a tool for analysing the direct consequence of HIF-1α and 

HIF-2α modification in vivo. This LVTPTP vector had been used previously with great 

success to create stable lines using a number of different mammalian cell lines (Zhang, 

Wang et al. 2007, Bersten, Sullivan et al. 2015). An induction of both HIF-1α and HIF-

2α protein following doxycycline treatment of the transiently transfected plasmid was 

observed in the new LVT-HIFα-PTP system, confirming that the HIFα genes subcloned 

from the TRE3G-HIFα vector were functional (Figure 3.3). Whilst the expression levels 

of doxycycline-induced HIF-2α protein were similar to the constitutively expressed 

control (LV410-HIF-2α), low levels of HIF-2α protein were observed in LVT-HIF-2α-

PTP transfected cells without doxycycline. Research by David Bersten and others have 

documented protein expression from the TRE3G system in the absence of doxycycline 

treatment in cells that have been transiently transfected with the vector (Bersten, 

Sullivan et al. 2015). Importantly, this background expression was not observed in 

stable cells lines generated using the same vectors. As such, it would be expected that 

less HIF-2α protein would be detected in the LVT-HIF-2α-PTP stable 5TGM1 cells 

without doxycycline treatment. Comparatively, there was no ‘leaky’ expression of HIF-

1α protein from HEK293T cells transiently transfected with LVT-HIF-1α-PTP vector in 

the absence of doxycycline treatment. This may be attributed to a more efficient 

turnover of HIF-1α through post-translational regulation, which is consistent with the 

mRNA data (Figure 3.1) and previous studies (Martin 2008, Lin, Cong et al. 2011).  
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The generation of LVTPTP-expressing 5TGM1 stable cell lines was performed using 

the LVT-HIFα-PTP vectors alongside a LVT-dsRed-PTP control. In vitro analyses 

identified unstable dsRed expression from cells virally infected with the LVT-dsRed-

PTP vector and treated with puromycin. Furthermore, poor cellular survival under 

puromycin selection was observed in LVT-HIFα-PTP and LVT-dsRed-PTP infected 

5TGM1 cells, therefore stable cell lines could not be generated. Whilst it was possible 

to replace the puromycin resistance gene with a different antibiotic resistance gene, 

an alternate strategy using fluorescent selection to rapidly and efficiently sort cells 

using FACS was chosen based on the previously successful use of this strategy on 

MM cell lines, including 5TGM1 cells (Noll, Hewett et al. 2014, Cheong, Chow et al. 

2015). Importantly, FACS does not adversely affect cellular viability in vitro or in the in 

vivo animal model system. Taking into account these data, the new LVTETPT vector 

was made with a dTomato fluorophore for stable cell line selection (Figure 3.5).  

 

Functional analyses of the LVT-HIF-1α-ETPT vector showed the expected 

doxycycline-dependent upregulation of HIF-2α protein in transfected HEK293T cells, 

however, no inducible HIF-1α protein was detected in normoxia compared to a 

constitutively expressing positive control (Figure 3.7). This was likely due to the rapid 

degradation of HIF-1α protein via hydroxylation as previously discussed, resulting in 

levels of protein that were not easily detectable by western blot. This had been 

observed previously and hypoxia treatment successfully used to stabilise 

overexpressed HIF-1α protein (V. Bhakti, personal communication). Consistent with 

these data, the combined hypoxia and doxycycline treatment on LVT-HIF-1α-ETPT 

transfected cells produced detectable levels of HIF-1α protein above that observed in 

the hypoxia control samples, demonstrating that HIF-1α was inducibly overexpressed 

from the LVT-HIF-1α-ETPT vector (Figure 3.8).  

 

Lentivirus was made from the LVTETPT, LVT- HIF-1α-ETPT and LVT- HIF-2α-ETPT 

vectors and subsequently used to make 5TGM1 stable cell lines using FACS with 

transduction rates of 6.0%, 7.5% and 3.7% (Figure 3.9). This was lower than the 20.4% 

previously observed in Table 3.1. The composition of a plasmid, and each individual 
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lentivirus preparation can alter transduction efficiency. Given the maximal volume of 

lentivirus was used, there were enough cells transduced to sort for LVTETPT 

expressing cells, and these transduction efficiencies fell between the range of 1 – 30% 

at which integration of multiple transgene copies are minimised (White, Renda et al. 

1999, Sastry, Johnson et al. 2002), this discrepancy was not explored further.  

 

Inducible expression of both Hif1α and Hif2α mRNA was confirmed in the 5TGM1 LVT-

HIF-1α-ETPT and LVT-HIF-2α-ETPT sorted cell lines following treatment with either 

doxycycline alone, or a combination of doxycycline and hypoxia (Figure 3.10). This 

demonstrated that the combined hypoxia and doxycycline treatment was not required 

to induce Hif1α mRNA expression, despite being necessary for HIF-1α protein 

detection (Figure 3.8), as overexpressed mRNA would be unaffected by post-

translational regulation. Also noted in Figure 3.10, basal levels of Hif1α mRNA, but not 

Hif2α mRNA, were detected in the empty vector cell line. This was consistent with the 

requirement for 48 hours of hypoxic treatment to observe a maximal induction of Hif2α 

mRNA in earlier experiments (Figure 3.1). Furthermore, the lack of detectable Hif2α 

mRNA observed in the empty vector cell line treated in hypoxia (Figure 3.10) was not 

unexpected, given the detection of some Hif2α mRNA at 16 hours of hypoxic treatment 

in Figure 3.1 was not reproducibly observed across all replicates (Appendix 1). 

 

Attempts to confirm the doxycycline inducible expression of HIF-1α and HIF-2α protein 

failed from 5TGM1 LVT-HIF-1α-ETPT and LVT-HIF-2α-ETPT cells respectively, with 

neither endogenous nor overexpressed HIFα being detected by western blot. A lack of 

detectable endogenous murine HIFα protein expression by western blot has been 

observed previously for the 5TGM1 cell line, despite being able to detect protein in 

human MM cell lines such as LP-1 cells (Martin, Dewar et al. 2006). Given the low 

transduction efficiencies (approximately 3 - 8%) made it likely that the 5TGM1 stable 

cells contained single integrants of the transgenes, the lack of detectable protein from 

the stable cells compared to the transiently transfected cells (Figure 3.7) could have 

been due to hundreds of copies of the LVT-HIFα-ETPT plasmid producing higher 

detectable levels of protein. Despite this, both HIF-1α and HIF-2α were doxycycline 
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inducible from the LVTETPT vector by both transient transfection in HEK293T cells 

(protein expression) and in 5TGM1 LVTETPT cells at the mRNA level. As such, the 

LVT-HIF-1α-ETPT and LVT-HIF-2α-ETPT 5TGM1 cell lines were subsequently used 

in in vivo experiments to ascertain the importance of the HIFs in MM disease. 

 

Preliminary experiments identified tumour burden in 13 of the 15 mice using in vivo 

bioluminescence to measure luciferase activity (Figure 3.12). Femoral BM cells 

isolated ex vivo showed very low levels of GFP (0-1.75%) and no detectable dTomato 

expression by flow cytometry and qPCR (Figure 3.13). These poor GFP expression 

levels did not reflect the detected luciferase activity that clearly demonstrated good 

expression of luciferase from the same triple modality gene. Furthermore, in vitro 

analyses of GFP from the LVT-HIFα-ETPT stable cell lines using microscopy and 

FACS prior to animal injection did not show any obvious decrease compared to the 

original cell line. These observations made it unlikely that expression from the GFP 

gene was adversely affected by selection or experimental conditions. Conversely, the 

dTomato gene is controlled by a different promoter to GFP, and would be integrated 

at a different genomic site to the triple-modality reporter gene, which may have 

contributed to the complete lack of detectable dTomato expression observed 

compared to GFP. Human error during the dissection and flushing techniques 

combined with the low resolution and level of tissue penetration obtained when 

analysing tumour burden using the IVIS XenogenTM, could have adversely affected the 

efficient isolation of 5TGM1 cells from the bone marrow and thus contributed to the low 

detectable levels of GFP.  

 

In the second mouse experiment, a number of changes to the experimental protocol 

were made to improve the establishment and detection of tumour burden. Firstly, the 

5TGM1 LVT-HIF-2α-ETPT cells were monitored for homing to the BM and detectable 

tumour established prior to the addition of doxycycline treatment. This was done to 

ensure that the induction of the HIF-2α prior to BM establishment did not adversely 

affect tumour burden. Secondly, both the femora and tibiae were flushed for BM 
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isolation given the insufficient resolution of the IVIS XenogenTM to determine if tumour 

was located in the distal femur or the proximal tibia. 

 

A large improvement in the proportion of GFP positive cells detected by FACS of 2 - 

20% was observed, a result more comparable to the expected range of 20-40%, 

suggesting that the optimised protocol improved isolation of the 5TGM1 cells from the 

BM (Figure 3.15). However, this did not resolve the very low proportion of dTomato 

positive cells (0.02 – 0.12%) as measured by flow and qPCR. Despite efforts to 

maximise the proportion of dTomato positive cells prior to injection of the mice, no 

dTomato was detectable by FACS in cells isolated ex vivo from a third animal 

experiment (Figure 3.16). From these data, it is possible that there is an issue with 

survival of 5TGM1 cells containing the dTomato transgene in vivo, although this is not 

obvious with the cells grown in culture, or alternatively there is an issue with the 

continuous expression of dTomato stability in these stable lines. In conclusion, these 

data showed there was a fundamental issue with the stability of dTomato expression 

and as such, the LVTETPT system was not suitable as a tool for HIFα manipulation in 

the 5TGM1/C57BL/KaLwRij MM mouse model, and a new system would need to be 

employed for future experimentation. 

 

The work performed within this chapter identified that there were fundamental issues 

with transgene expression from the 5TGM1 LVTETPT system, even before the cells 

were injected into mice. It is known that transgene silencing can occur following 

retroviral and lentiviral infection (Ellis and Yao 2005). Epigenetic modifications such as 

methylation have been identified as contributors to transgene instability, particularly 

when the loss of expression is high and immediate as is seen in stem cells and 

following cellular differentiation (Niwa, Yokota et al. 1983, Ellis 2005). Although these 

severe transgenic instabilities were identified in primary cells, they can still occur in 

stable cell lines made using retroviral or lentiviral techniques, just at lower frequencies. 

Interestingly, transgene expression can not only be lost immediately, but also 

temporally, or within a particular subset in a cellular population (Niwa, Yokota et al. 

1983, Laker, Meyer et al. 1998, Vroemen, Weidner et al. 2005). Further 
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characterisation found that silencing of virally integrated genes can be complete, 

variegated or gradually lost over long-term growth in some instances (Yao, Sukonnik 

et al. 2004). Although epigenetic changes play a critical role, addressing these 

modifications does not completely alleviate these issues, further emphasising the 

complexity of transgene silencing in retroviral and lentiviral stable cell lines (Swindle 

and Klug 2002, Iba, Mizutani et al. 2003). 

 

Undesirable integration sites have been shown to result in genetic instability and 

shutdown or deletion of the inserted gene, leading to heterogeneous expression 

(Bersten, Sullivan et al. 2015). Specifically, it has been found that transgenes located 

near DNA repeats such as centromeric satellite DNA or flanking methylation sites, 

results in silencing of transgene expression through restricted transcriptional activation 

as mentioned above (Talarico, Peverali et al. 1988, Dobie, Lee et al. 1996, Zhou, 

Zhang et al. 2014). Studies integrating genes into a single, specific locus have been 

successful in creating long-term stable integrants, for example the use of the Col1A1 

locus in transgenic mouse experiments (Hochedlinger, Yamada et al. 2005, Beard, 

Hochedlinger et al. 2006, Wernig, Lengner et al. 2008, Carey, Markoulaki et al. 2010, 

Bersten, Sullivan et al. 2015).  

 

Given the high degree of complexity driving transgene instability, a more targeted 

approach was required. Experimental silencing of endogenous gene expression is 

often more informative on the molecular, cellular and pathophysiological roles that 

gene plays as it overcomes the artefactual effects that can arise from genetic 

overexpression. The recently developed CRISPR technology takes into account the 

advantages of site-specific genetic modification, in combination with gene silencing 

through the targeted knock-out of genes using quick and efficient methods (Ran, Hsu 

et al. 2013). This strategy would also remove the need for lentiviral integration or 

doxycycline treatment that both place selective stress on cells. This technology 

however is not without its limitations. Primer design as well as screening of clones that 

successfully have HIFα knocked out in all alleles can be complicated, but are routinely 

used with considerable success. One alternative would be to knock-down HIFα using 
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RNA interference (RNAi), however in the case of 5TGM1 cells this would require 

lentiviral integration which reintroduces the potential for stability issues like those 

reported in this chapter. Additionally, the low success rate of obtaining clones with 

complete HIFα knock-down makes this process less efficient compared to the reported 

highly efficient knockout achieved using CRISPR technology (Housden and Perrimon 

2016).  

 

Complete loss of HIF-1α and HIF-2α gene expression will directly address the 

involvement and role of each of the HIFs in tumour progression in vivo, without the 

complexity of variable HIFα expression observed using overexpression or knock-down 

techniques. In conclusion, the rapid and complete knockout of HIFα within the cell’s 

genome makes CRISPR an attractive tool in subsequent experiments to create stable 

cells lines for use in the 5TGM1/C57BL/KaLwRij animal model to identify the roles of 

HIF-1α compared to HIF-2α in MM. 
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4.1 Introduction 

The use of the 5TGM1 LVTETPT cells in the previous chapter identified an issue with 

dTomato expression both in vitro and in vivo, thereby preventing selection and stable 

transgene expression of HIFα. A new strategy was required to reliably modify HIFα 

expression in 5TGM1 cells for subsequent use in the 5TGM1/C57BL/KaLwRij MM 

mouse model, and to ultimately assess their roles in disease progression in vivo, with 

targeted gene disruption chosen. While this approach does not enable inducible and 

reversible modification of HIFα expression in 5TGM1 cells, this strategy will enable the 

role of HIFα in myeloma disease establishment and progression to be assessed. 

 

Since its discovery, CRISPR-Cas9 technology has fast replaced other methods of 

genetic engineering owing to its simplicity and efficiency. The Cas9 endonuclease 

cleaves DNA at a specific site determined by a single guided RNA (sgRNA), resulting 

in a doubled stranded break (DSB) (Jinek, East et al. 2013, Mali, Yang et al. 2013, 

Ran, Hsu et al. 2013). Importantly, this gene editing approach is highly customisable 

through the use of a 20-nucleotide guide sequence within the sgRNA that directs Cas9 

activity through base-pair recognition (Jinek, Chylinski et al. 2012). In its simplest form, 

the repair of the DSB by non-homologous end joining very frequently leads to small 

insertions or deletions of nucleotides, resulting in frame shifts or the introduction of 

nonsense mutations in the coding regions of the gene of interest. This method of 

generating gene knockouts using sgRNA-directed DSBs, is simpler than other targeted 

DNA cleavage techniques such as zinc finger nucleases (ZFNs) and Transcription 

Activator-Like Effector Nucleases (TALENs) that require new protein design, synthesis 

and validation for every DNA target (Kim, Cha et al. 1996, Christian, Cermak et al. 

2010). Moreover, this method is more efficient than more traditional methods of gene 

editing that rely on homologous recombination. 

 

An alternative to targeted gene deletion is to knock down expression using RNAi-based 

methods. RNAi has been widely used to knockdown gene expression through post 

transcriptional pathways, however, this technique does not result in the complete loss 
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of expression of the gene of interest. The cellular post transcriptional pathways 

employed to knockdown gene expression, such as Dicer and Argonaute, are also used 

by eukaryotic cells for endogenous gene silencing (Doudna and Charpentier 2014). 

The CRISPR-Cas9 system is used as part of a bacterial immune response, thus 

removing any endogenous competition that could generate complex side effects in 

mammalian cells. When compared to CRISPR-Cas9, RNAi is inefficient and often 

results in partial knockdown of gene expression (Shalem, Sanjana et al. 2014, 

Housden and Perrimon 2016). 

 

The comparatively simple, effective and efficient CRISPR-Cas9 system was chosen 

as the best available method to knockout Hifα gene expression in 5TGM1 cells. The 

knock out lines could then be used in the 5TGM1/C57BL/KaLwRij animal model to 

determine the specific roles of the HIFα transcription factors in myeloma disease 

establishment and progression.  
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4.2 Results 

4.2.1 Cloning and screening of HIFα CRISPR knockout 5TGM1 cell lines 

Murine Hif1α and Hif2α genes were targeted for cleavage by a Cas9 endonuclease 

using tailored sgRNAs. This knockout strategy employed pairs of sgRNAs targeting 

intron regions either side of a key exon. The simultaneous cleavage of the introns either 

side of the exon should result in its deletion as the two introns are joined in the process 

of repair (Figure 4.1) (Cong, Ran et al. 2013, Mali, Yang et al. 2013). Given that 

successful clones will result in the loss of an entire exon, this experimental design 

allowed for efficient characterisation of successful knockout clones by PCR using 

screening primers adjacent to the sgRNA sites (Figure 4.1 A) (Canver, Bauer et al. 

2014). This was advantageous over the use of a single guide RNA that produces small 

insertion/deletion mutations (indels) that require more rigorous sequencing 

approaches to detect and characterise successful knockouts (Ran, Hsu et al. 2013).  

 

Exon 2 was specifically selected for deletion in both HIFα genes, as it encodes the N-

terminal bHLH domain critical for DNA binding and dimerisation. Furthermore, the 

length of exon 2 for both HIF-1α and HIF-2α is 191 bp, so removal of the entire exon 

will result in both a loss of the essential bHLH domain, as well as a frameshift for the 

remaining coding region of the HIFα protein. The exon removal strategy used sgRNAs 

designed to function with the Streptococcus pyogenes Cas9 (SpCas9) endonuclease. 

As such, each sgRNA contained a Hifα-targeted sequence located directly upstream 

of the SpCas9-specific protospacer adjacent motif (PAM) sequence, 5’-NGG-3’ (Table 

4.1) (Jinek, Chylinski et al. 2012). Additionally, as insertion of the guide sequences into 

the Cas9-expressing pSpCas9 vector was performed using the BbsI restriction enzyme 

site, the sgRNA design included 5’ and 3’ complementary overhangs enabling it to be 

directly cloned into the digested vector (Table 4.1).  

 

Although CRISPR-Cas9 technology is more efficient than other methods of targeted 

gene disruption, DSBs at undesired locations of the genome can occur, through 

tolerated mismatches between the sgRNA and target DNA (Cong, Ran et al. 2013, Fu, 
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Foden et al. 2013). These off-target effects can be minimised through specific sgRNA 

design. Genomic sequences from Hif1α or Hif2α were analysed using the Benchling 

online CRISPR design tool to generate sgRNAs with low mismatches (off-target) and 

high activity (on-target) scores as specified in Table 4.1 (Hsu, Scott et al. 2013, Ran, 

Hsu et al. 2013, Doench, Hartenian et al. 2014). These scores were represented 

numerically from 0-100, where a higher score corresponded to higher activity (on-

target) and specificity (off-target) of the sgRNA-guided Cas9. Despite creating sgRNAs 

predicted to have high activity, some reports suggest that some variability between 

sgRNAs exists in relation to off-target effects and the genetic knockout produced (Fu, 

Foden et al. 2013, Jinek, East et al. 2013, Shalem, Sanjana et al. 2014).  Therefore, 

to control for potential off-target effects, two independent sets of sgRNAs (A and B) 

targeting each Hifα gene were designed (Figure 4.1 A).  

 

To generate the HIFα CRISPR knockout cell lines, the sgRNAs were first cloned into 

the pSpCas9 plasmids as described above and in section 2.1.7. These vectors encode 

and express the Cas9 endonuclease, the HIFα-targeting sgRNAs, and GFP. The GFP 

produced from the pSpCas9 vector could not be used to sort transfected cells due to 

the constitutive expression of GFP in the 5TGM1 cells, requiring the co-transfection of 

a LV410 plasmid that constitutively expresses dsRed (LV410-dsRed) (Figure 4.1 B). 

As such, 5TGM1 cells were transiently co-transfected with two sgRNA expressing 

plasmids, pSpCas9-HIFα-Int1 (either variant A or B) and pSpCas9-HIFα-Int2 (either 

variant A or B), together with LV410-dsRed (Figure 4.1 B). 48 hours after transient 

transfection, single cells expressing both GFP and dsRed were sorted into 96 well trays 

by FACS (Figure 4.1 B). Monoclonal control lines (Cas9 EV and Cas9 EV 2) were 

similarly created by transiently co-transfecting 5TGM1 cells with the empty pSpCas9 

(without sgRNA targeting HIFα) and the LV410-dsRed plasmids, and using FACS, 

single cells expressing both GFP and dsRed were isolated. The generation of 

monoclonal cell lines was favoured as it would eliminate confounding results from a 

pool of heterogeneously modified cells. Following 2-3 weeks of clonal cell expansion 

in vitro, gDNA from each clone was extracted and assessed by PCR for the loss of 

exon 2.  
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Note that all of the sgRNA design and cloning , and the generation and screening of 

5TGM1 HIFα knockout cell lines was performed by Yinan Ma, a Masters student in the 

laboratory. However, I created the EV Cas9 control lines independently, and also 

repeated the entire screening procedure independently with both sets of HIF-1α and 

HIF-2α sgRNAs.  
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Figure 4.1: CRISPR design strategy to create 5TGM1 HIF-1α and HIF-2α knockout 

stable cell lines. CRISPR-Cas9 technology was used to generate clonal HIFα 

knockout 5TGM1 cell lines. A) sgRNA sequences were designed to specifically target 

sites located within introns (labelled ‘int1’ and ‘int2’) either side of exon 2 in Hif1α or 

Hif2α (Yinan Ma, University of Adelaide). Two sets of sgRNAs with adjacent targeting 

sequences were designed (labelled ‘A’ and ‘B’) to control for off target effects. 

Simultaneous activity of both sgRNAs should result in the loss of exon 2, shown as 

CRISPR A and CRISPR B.  PCR primers (blue arrows) flanking the sgRNA targeted 

sequences were used for screening the loss of exon 2, allowing for the differentiation 

between wild type and knockout clones. B) Schematic representation of the 

methodology used to create the monoclonal knockout HIFα 5TGM1 cell lines. Cells 

were sorted by FACS for constitutive GFP expression of 5TGM1 cells and dsRed from 

transient transfection.  
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The aim of these experiments was to generate at least one knockout clone with each 

primer set (A and B) for in vivo experimentation. The expected PCR product sizes for 

gDNA extracted from successful HIF-1α (A and B) and HIF-2α (A and B) CRISPR 

clones are listed in Table 4.2. The first experiment by Yinan Ma generated 27 HIF-1α 

and 15 HIF-2α surviving monoclonal cell lines following FACS analysis, that were 

subsequently screened for deletion of exon 2 (Figure 4.3).  

 

PCR amplification of the HIF-1α clones (performed by Yinan Ma) failed to identify any 

heterozygous or knockout cell lines, where all of the gDNA samples amplified a band 

of approximately 1400 bp corresponding to the wild type allele containing an intact 

exon 2, with no products corresponding to loss of exon 2 evident (Table 4.2).  

 

The transient transfection and selection experiments were repeated by myself with the 

following modification; the alternative combinations of sgRNAs designed for targeted 

knockout of HIF-1α were used with 5TGM1 cells co-transfected with int1A and int2B, 

or int2A and int1B, to create HIF-1α AB and HIF-1α BA clones. Using this transfection 

approach, I generated a further 56 clones for HIF-1α monoclonal cell lines and 

analysed them by PCR for the loss of exon 2 (Table 4.3). Similar to the results obtained 

in the first experiment, all clones produced PCR products corresponding to the 

unmodified allele containing exon 2, indicating that all of the clones contained at least 

one functional allele of HIF-1α, with no HIF-1α knockout lines obtained. 

 

In summary, for HIF-1α, a total of 83 clones were analysed over 2 rounds of 

transfection, sorting and screening using 4 combinations of sgRNAs to target exon 2, 

but all clones retained at least one allele containing exon 2, demonstrating that this 

strategy to knockout HIF-1α was clearly deficient. Given all of the previous issues with 

generating inducible systems of expression, the relative success in generating HIF-2α 

knockout cell lines (discussed below), and the greater interest in deciphering the role 

of HIF-2α in MM, it was decided that analysis of the role of HIF-1α loss in 5TGM1 cells 

would not be pursued further in the context of this thesis.  
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PCR analysis of the 15 HIF-2α monoclonal cell lines identified 13 clones representing 

either wild type or heterozygous genotypes with respect to the presence of exon 2 

(Table 4.3). Wild type clones produced a single band of approximately 1830 bp, whilst 

heterozygous clones showed two bands of approximately 1830 bp and 550 bp for 

sgRNA pair A, or approximately 1830 bp and 560 bp for sgRNA pair B clones (Table 

4.2). Most importantly, 2 clones were identified as potential knockouts via PCR, one 

from each pair of sgRNAs targeting HIF-2α (A and B). One of these clones, HIF-2α 

CRISPR B1-1, produced a single band of approximately 560 bp, whereas the second 

clone, HIF-2α CRISPR A3-7, did not produce any PCR products (Figure 4.2 A).  

 

I repeated the transient transfection and selection experiments to create more 

monoclonal knockout HIF-2α (A and B) 5TGM1 cell lines. This second round of 

transfections produced an additional 44 HIF-2α clones that were subsequently 

analysed by PCR for the loss of exon 2 (Table 4.3). Unfortunately, all of these clones 

produced PCR products consistent with at least one wild type allele containing an intact 

exon 2. From these combined experiments, only 2 out of 59 HIF-2 CRISPR 5TGM1 

cell lines were knockout lines and further demonstrated a poor knockout efficiency in 

5TGM1 cells. As such, the HIF-2α CRISPR B1-1 and HIF-2α CRISPR A3-7 knockout 

cell lines were used for all subsequent experiments performed.  

 

The 560 bp band corresponding to the predicted loss of exon 2 that was amplified from 

HIF-2α CRISPR B1-1 gDNA and subcloned into the pGEM-T easy plasmid. A total of 

12 pGEM-Teasy clones containing the 560 bp HIF-2α CRISPR B1-1 PCR fragment 

were randomly selected and analysed by Sanger sequencing (Figure 4.2 B). The 

sequences from all 12 clones were identical, showing the deletion of a 1.284 kb 

fragment. This deletion included the region containing exon 2 and adjacent intron 

sequence from between the sgRNA int1B and int2B target sequences, as well as an 

additional 10 nucleotides. The loss of additional nucleotides is common in CRISPR-

Cas9 mediated cleavage and repair, where cut sites are often associated with the 

randomised loss or gain of a few nucleotides known as “scars”, although large 

deletions can also occur (Shin and Wang 2017). Given only one band was amplified 
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from all 12 clones, this was consistent with the second allele containing a larger 

deletion that prevented amplification by the PCR primers. 
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Table 4.1: Design of guide sequences targeting murine Hif1α and Hif2α intron 

regions to result in the deletion of exon 2 using CRISPR-Cas9 technology. 

PAM: 5’-NGG-3’ specific for SpCas9, CACCg: specific for BbsI ligation into PX458  

 

Table 4.2: Expected product size using PCR to differentiate between wildtype 

and HIFα knockout clones.  

 

  

 Target Oligo  
(sense strand) 

PAM On-target Off-target 

 
Group A 

 

HIF-1α int1 CACCgatccgcaggtgggctagtaa agg 49.7 92.6 

HIF-1α int2 CACCgtttttaaagagcggcgttat ggg 38.5 91.2 

HIF-2α int1 CACCgacccgtgttagtacgtgata tgg 43.2 93.3 

HIF-2α int2 CACCgtggagcgggactctcgccag agg 62.7 90.1 

 
Group B 

 

HIF-1α int1 CACCggagtcagagtgctgatccgc agg 53.7 84.8 

HIF-1α int2 CACCgttttttaaagagcggcgtta tgg 36.7 90.4 

HIF-2α int1 CACCgtccatatcacgtactaacac ggg 60.1 89.1 

HIF-2α int2 CACCggactctcgccagaggtccag agg 60.9 76.5 

 PCR Product Sizes (bp) 

Primer Target Wildtype Knockout A Knockout B 

HIF-1α 1417 305 319 

HIF-2α 1831 550 562 
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Figure 4.2: Analysis of 5TGM1 HIF-2α knockout cell lines. A) Characterisation of 

genomic DNA from 5TGM1 HIF-2α knockout cell lines by PCR using HIF-2α screening 

primers. Wildtype cells compared to HIF-2α CRISPR A3-7 and HIF-2α CRISPR B1-1 

clones. Bp, base pair B) Sequencing results from the HIF-2α CRISPR B1-1 560 bp 

band subcloned into pGem-T easy, showing the loss of exon2 and adjacent intron 

sequence.  

B 

A 
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Table 4.3: Number of wild type, heterozygous, and homozygous knockout 

5TGM1 HIFα clones following PCR screening.  

   Number clones 
screened 

Knockout  Wild type or 
Heterozygous 

First experiment1 HIF-1α 27 0 27 

HIF-2α 15 2 13 

Second 
experiment2 

HIF-1α 56 0 56 

HIF-2α 47 0 47 

1. Performed by Yinan Ma 
2. Performed by Natalia Martin 
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The HIF-2α CRISPR A3-7 clone produced no products from the PCR with HIF-2α 

primers, indicating that it either contained modified HIF-2α alleles that could not be 

amplified by the primers, or the genomic DNA was of poor quality. To ascertain the 

quality of the genomic DNA for the HIF-2α CRISPR A3-7 clone, a PCR reaction was 

performed using the HIF-1α screening primers (Figure 4.3 A). A band corresponding 

to the expected size of 1417 bp was amplified from 5TGM1 wildtype, HIF-2α CRISPR 

B1-1 and HIF-2α CRISPR A3-7 gDNA samples verifying that gDNA quality was not a 

contributing factor.  

 

These findings supported the presence of large deletions in both alleles of HIF-2α in 

the HIF-2α CRISPR A3-7 line, and previous results were consistent with a large 

deletion in one allele of the HIF-2α CRISPR B1-1 line. To further characterise the 

deletions in these lines, a series of primers targeting sequences upstream and 

downstream of the original screening primers (Figure 4.1 A) were designed (Figure 4.3 

B). Four primer sets (2-5) were designed to amplify 238, 223, 299 and 233 bp PCR 

products respectively (Table 4.4). These primers were located in regions flanking exon 

2 to map the predicted larger deletions produced by RNA-guided Cas9 activity. PCR 

reactions using the 4 primer sets were performed on gDNA extracted from 5TGM1 

wildtype, Cas9 EV controls, HIF-2α CRISPR A3-7 and HIF-2α CRISPR B1-1 cell lines.  

 

The results from the PCR reactions showed that all four cell lines, including the HIF-

2α CRISPR A3-7 and HIF-2α CRISPR B1-1 cell lines, produced bands corresponding 

to the expected size for all primer sets (Figure 4.4 A). This demonstrated that the target 

intron regions surrounding exon 2 spanned by these primers was intact. This was not 

surprising for the control lines or the HIF-2α CRISPR B1-1 cell line as the 

characterisation of one allele showed a deletion between the two sgRNA sites leaving 

the regions spanned by these PCR primers intact (Figure 4.2). However, it 

demonstrated that each of the regions spanned by these primers were present in at 

least one allele of HIF-2α in the HIF-2α CRISPR A3-7 cell line. 
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These findings were extended by rearranging the forward and reverse primer sets to 

PCR amplify through the deleted exon 2 (Figure 4.4 B). Specifically, the forward primer 

from set 3 was used in combination with the reverse primer from set 4 (3F & 4R), and 

the forward primer from set 2 was used in combination with the reverse primer from 

set 5 (2F & 5R). It was expected that products of 2632 bp (3F & 4R) and 3502 bp (2F 

& 5R) would be produced from 5TGM1 wildtype and Cas9 EV control cells. For the 

characterised allele in HIF-2α CRISPR B1-1, products of 1313 bp (3F & 4R) and 2183 

bp (2F & 5R) were expected. However, for the second uncharacterised allele in HIF-

2α CRISPR B1-1, and the two uncharacterised alleles in HIF-2α CRISPR A3-7, it was 

expected that either no products, or products smaller than 1313 bp (3F & 4R) and 2183 

bp (2F & 5R) would be produced, contingent upon the size of deletions (Table 4.5).  

 

The results showed that the predicted bands were observed with both primer sets for 

wildtype and Cas9 EV controls, and the smaller predicted bands for the characterised 

allele of HIF-2α CRISPR B1-1. However, no band was amplified from HIF-2α CRISPR 

A3-7 with either 3F/4R or 2F/5R primer sets, and there were no smaller products 

observed with HIF-2α CRISPR B1-1 (Figure 4.4 B).   
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Figure 4.3: Characterisation by PCR of the HIF-2α CRISPR A3-7 monoclonal cell 

line. A) PCR amplification of gDNA from 5TGM1 wildtype, HIF-2α CRISPR B1-1 and 

HIF-2α CRISPR A3-7 using HIF-1α screening primers. Expected band size was 1417 

bp. B) Schematic of screening strategy using a series of primers flanking exon 2 of 

HIF-2α to characterise CRISPR deletion in the HIF-2α allele of HIF-2α CRISPR A3-7 

cell line. 

  

B 

A 
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Table 4.4: PCR screening of 5TGM1 HIFα CRISPR A3-7 and B1-1 cell lines.  

  PCR Product Sizes (bp) 

Primer Set 2 238 

Primer Set 3 223 

Primer Set 4 299 

Primer Set 5 233 

 

Table 4.5: PCR screening of 5TGM1 HIFα CRISPR A3-7 and B1-1 cell lines using 

an alternative combination of screening primers.  

  PCR Product Sizes (bp) 
 

Wildtype Known B1-1 modified 
allele 

Other alleles 
containing deletions 

Primers 3F & 4R 2632 1313 <1313 

Primers 2F & 5R 3502 2183 <2183 
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Figure 4.4: PCR using a series of primers positioned within intron 1 and intron 2 

of HIF-2α to characterise deletions in HIF-2α CRISPR A3-7 and B1-1 cell lines. A) 

PCR amplification of gDNA extracts from 5TGM1 wildtype, Cas EV controls, HIF-2α 

CRISPR A3-7 and HIF-2α CRISPR B1-1 cell lines using screening primer sets 

described in Figure 4.3 B. The expected PCR products for sets 2, 3, 4 and 5 are 238, 

223, 299 and 223 bp, respectively B) PCR amplification using an alternative 

combination of forward and reverse primers from primer sets 2, 3, 4 and 5. The 

expected products these PCR reactions are 2632 (3F & 4R) and 3502 (2F & 5R) bp.   

B 

A 
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From these data, it was surmised that distinct deletions on each allele of the HIF-2α 

CRISPR A3-7 cell line was responsible for the results observed. Specifically, cleavage 

of one allele by Cas9 in intron 1 resulted in a large deletion encompassing exon 2 and 

a large part of intron 2, including the sites for primer sets 4 and 5 (Figure 4.5). This 

would allow for amplification of this allele using primer sets 2 and 3. In addition, 

cleavage of the second allele by Cas9 in intron 2 resulted in the loss of exon 2 and a 

large portion of intron 1, including the sites for primer sets 2 and 3. This would allow 

for amplification of this allele using primer sets 4 and 5. Together, these larger deletions 

account for the successful PCR amplification of smaller fragments adjacent to exon 2 

as shown in Figure 4.4 A, whilst PCR analysis of larger regions including exon 2 failed 

to amplify any products from HIF-2α CRISPR A3-7 gDNA (Figure 4.4 B). Similarly, a 

large deletion in intron 1 and/or intron 2 of the second allele in HIF-2α CRISPR B1-1 

would prevent amplification using the 3F/4R and 2F/5R primer sets. Together these 

data are consistent with the loss of both copies of exon 2 in these two cell lines, and 

consequently would be predicted to result in the loss of HIF-2α expression.  

 

To confirm that HIF-2α CRISPR A3-7 and HIF-2α CRISPR B1-1 were indeed HIF-2α 

knockout lines, Hif2α mRNA expression was assessed in cells cultured under normoxic 

or hypoxic conditions for 48 hours and compared with Cas9 EV control and wild type 

cell lines (Figure 4.6). Quantitative PCR analysis of Hif2α cDNA was performed using 

primers that span exon-exon junctions. Specifically, the forward primer spanned the 

exon 1/2 junction, whilst the reverse primer spanned exon 2/3.  

 

A significant 15-30 fold hypoxia-dependent induction of Hif2α mRNA was observed in 

Cas9 EV control cells (p=0.03) and for Cas9 EV2 control cells (p=0.04), with almost 

undetectable levels of mRNA detectable in normoxia as observed previously (Figure 

3.1). In contrast, both the HIF-2α CRISPR A3-7 and HIF-2α CRISPR B1-1 samples 

showed essentially no detectable Hif2α mRNA in normoxia or hypoxia, confirming the 

loss of Hif2α mRNA expression in both of these cell lines.  
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Next, numerous attempts were made to confirm the knockout of HIF-2α at the protein 

level in both the HIF-2α CRISPR A3-7 and HIF-2α CRISPR B1-1 cell lines. Firstly, total 

protein extracts were taken from 5TGM1 wildtype, Cas EV controls, HIF-2α CRISPR 

A3-7 and HIF-2α CRISPR B1-1 cell lines cultured in normoxic or hypoxic conditions for 

48 hours. Western blot analysis of these extracts failed to detect HIF-2α protein, as 

previously observed in Chapter 3. A HIF-2α antibody was also used to 

immunoprecipitate HIF-2α from these total protein extracts, before analysing these 

immunoprecipitates by western blot. Once again, no HIF-2α was observed in the 

immunoprecipitates from any of the cell lines in hypoxia or normoxia.  

 

In a final attempt to confirm loss of HIF-2α protein in these knockout lines, whole cell 

extracts were analysed proteomically. The 5TGM1 wildtype samples (both normoxic 

and hypoxic) were reduced, alkylated and tryptically digested prior to analysis by Nano 

liquid chromatography electrospray ionisation tandem mass spectrometry (Nano-LC-

ESI-MS/MS), but peptides corresponding to HIF-2α were not detected under any 

conditions. As transcription factors are commonly expressed at low levels and can be 

difficult to detect by proteomic analysis in whole cell extracts, the relative levels of HIF-

2α protein were concentrated by separating the samples by DSD-PAGE and excising 

the regions corresponding to an apparent molecular weight of 100 to 120 kD. These 

proteins were then tryptically digested, extracted and analysed by mass spectrometry, 

but once again peptides corresponding to HIF-2α were not consistently detected under 

any conditions. 

 

These experiments are consistent with HIF-2α being expressed at relatively low levels 

in the 5TGM1 cell line, a not uncommon issue with the detection of HIF-2α protein in 

mouse cell lines (Dan Peet, personal communication). However, while the consistent 

detection of HIF-2α protein in these 5TGM1 cell lines was not possible using the 

currently available commercial antibodies, the more sensitive mRNA expression 

results confirm the loss of HIF-2α expression in both of the HIF-2α CRISPR A3-7 and 

HIF-2α CRISPR B1-1 cell lines.   
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Figure 4.5: Schematic showing the hypothesised knockout genotype for 5TGM1 

HIF-2α CRISPR A3-7 cells. Diagram shows Cas9 cleavage sites and distinct large 

deletions on each allele that encompass exon 2 and 2 PCR primer sites.  
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Figure 4.6: Characterisation of 5TGM1 HIF-2α CRISPR monoclonal cell lines in 

normoxia versus hypoxia. Cas EV control, Cas9 EV2 control, HIF-2α CRISPR A3-7 

and HIF-2α CRISPR B1-1 cells were cultured for 48 hours in either normoxic or hypoxic 

conditions. RNA was extracted, reverse transcribed and quantitative PCR analysis 

performed using Hif2α primers. Relative expression of each gene was assessed by 

normalising to the housekeeping gene Hprt. Data is graphed as mean values of 3 

independent experiments, each performed in triplicate, +/- standard error of the mean, 

where significance was determined using paired student t-test (* p-value <0.05). 
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4.2.2 Characterisation of 5TGM1 HIF-2α CRISPR knockout cell lines 

4.2.2.3 Luciferase expression in 5TGM1 HIF-2α CRISPR knockout cells 

The expression of luciferase from the stably integrated triple modality gene was critical 

for assessing homing and expansion of tumour in the 5TGM1/C57BL/KaLwRij mouse 

model. Prior to the use of the 5TGM1 HIF-2α CRISPR knockout cell lines in vivo, their 

luciferase activity was assessed using bioluminescence imaging. To this end, Cas9 EV 

controls, HIF-2α CRISPR A3-7 and HIF-2α CRISPR B1-1 cells were plated at densities 

of 1x106, 2x105, 4x104, 8x103 and 1.6x103 cells per well in 96 well plates, D-luciferin 

was added and luminescence measured using the Xenogen IVIS imaging system. 

Whilst the HIF-2α CRISPR A3-7 and HIF-2α CRISPR B1-1 knockout lines showed 

significantly differing luciferase activity (approximately 2-fold, p=0.0008), two of the 

Cas9 EV control lines with activity that matched each of the knockout cells were 

identified (Figure 4.7). Specifically, the Cas9 EV control showed comparable luciferase 

activity to the HIF-2α CRISPR A3-7 cell line, whilst the Cas9 EV2 control matched the 

HIF-2α CRISPR B1-1 cell line. 
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Figure 4.7: Analysis of luciferase activity of 5TGM1 Cas9 control and HIF-2α 

knockout cell lines. Constitutive luciferase expression was determined for Cas9 EV 

and EV-2 controls and HIF-2α CRISPR A3-7 and HIF-2α CRISPR B1-1 monoclonal 

cell lines. Cells were plated at 1/5 serial dilutions from 1x106 to 320 cells/well in 

triplicate in a 96-well tray. D-luciferin was added to each well at a final concentration 

of 3 mg/mL and incubated at 37ºC for 30 minutes. Images were taken at an exposure 

time of 10 minutes, and light emission (photons/sec) measured using the IVIS 

XenogenTM. Data are mean values +/- standard error of the mean of 3 independent 

experiments, each with triplicate samples, where significance was determined using 

paired student t-test (*** p-value <0.001).  
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4.2.2.4 Proliferation of 5TGM1 HIF-2α CRISPR knockout cells 

The HIF-2α transcription factor regulates a number of target genes, some of which lead 

to changes in downstream pathways critical to cellular behaviour and survival (Biswas, 

Troy et al. 2010, Lee and Simon 2015). Any possible changes to cellular proliferation 

as a result of HIF-2α deletion, or other possible changes to the 5TGM1 cells, could 

influence disease progression in MM, hence cell proliferation rates were determined 

prior to animal studies. 5TGM1 Cas9 EV control, Cas9 EV2 control, HIF-2α CRISPR 

A3-7 and HIF-2α CRISPR B1-1 cell lines were seeded at 5x103 cells/100 µL in a 96-

well plate and cultured for 3 days in both normoxic and hypoxic conditions. 

Bioluminescence was measured and final cell number in each sample determined 

using a standard curve. 

 

Comparative analyses of the Cas9 control and HIF-2α CRISPR knock out lines showed 

no difference in proliferation rate following 3 days growth (Figure 4.8). While the 

proliferation rates of all cells were approximately 4-fold lower in hypoxia compared to 

normoxia, the proliferation rates of the HIF-2α CRISPR knockout lines were not 

significantly different to the Cas9 control lines under each condition (Figure 4.8 A and 

B respectively). Consequently, any differences observed in disease progression in the 

5TGM1/C57BL/KaLwRij MM model between mice injected with the Cas9 EV control 

cells and the HIF-2α knockout cells would be unlikely to be due to inherent differences 

in cellular proliferation.  
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Figure 4.8: Comparative analysis of proliferation rates between 5TGM1 Cas9 EV 

control, HIF-2α CRISPR A3-7, Cas9 EV2 control and HIF-2α CRISPR B1-1 cell 

lines. Cellular proliferation rates were comparatively assessed between 5TGM1 Cas9 

EV Ctrl, HIF-2α CRISPR A3-7, Cas9 EV2 Ctrl and HIF-2α CRISPR B1-1 monoclonal 

cell lines. Cells were plated at 5x103 cells/100 µL in triplicate in a 96-well plate, and 

cultured for 3 days in either normoxia (A) or hypoxia (B). Bioluminescence was 

assessed following 30 mg/mL D-luciferin treatment using the IVIS Lumina XRMSTM. 

Final cell numbers in each sample were determined using a standard curve of 2x103 - 

5x105 cells. Data are mean values +/- standard error of the mean for triplicate samples, 

and are representative of three independent experiments.  

A 

B 
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4.2.3 In vivo study of the role of HIF-2α in MM using 5TGM1 HIF-2α CRISPR 

knockout cell lines 

Given the successful generation and characterisation of the two HIF-2α knockout 

5TGM1 lines, and the generation and selection of appropriate matched control cell 

lines, the contribution of HIF-2α in the in vivo mouse model of MM was investigated. 

To this end, the Cas9 EV control, HIF-2α CRISPR A3-7, Cas9 EV2 control and HIF-2α 

CRISPR B1-1 5TGM1 cell lines were used in the well-established 4 week 

5TGM1/C57BL/KaLwRij mouse model described previously (Dallas, Garrett et al. 

1999). Frozen aliquots of each cell line, stored at the same passage, were thawed and 

grown for 3 days.  

 

Each of these cell lines constituted an independent treatment group which contained 

5 age and gender-matched C57BL/KaLwRij mice that were each inoculated with 5x105 

of cells in 100 µL of PBS via tail vein injection, consistent with previous studies (Noll, 

Hewett et al. 2014). Cas9 EV and HIF-2α CRISPR A3-7 injected mice were between 

7.5 and 8.5 weeks of age, and all female for direct comparative analyses. Injections 

for the HIF-2α CRISPR B1-1 and matched Cas9 EV2 control lines were performed on 

mice that were between 6.5 and 8 weeks of age, and all male for comparative analyses 

between these two treatment groups. 

 

Tumour establishment and progression in the bone was monitored 2 weeks, 3 weeks 

and 4 weeks post tail vein injection using in vivo bioluminescence. Mice were 

administered with D-luciferin via intraperitoneal injection, and imaged with the IVIS 

SpectrumTM. Intra medullary tumour was first detected in 3/5 Cas9 EV and 3/5 Cas9 

EV2 control mice by in vivo bioluminescence imaging at 3 weeks post injection (Figure 

4.9), as typically observed with control 5TGM1 cells in the C57BL/KaLwRij MM model. 

In contrast, intramedullary tumour was only detected in one HIF-2α CRISPR B1-1 

injected mouse, and not detected in any of the HIF-2α CRISPR A3-7 mice at 3 weeks 

post injection. 
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Bioluminescence analyses at the end of the experiment at 4 weeks post-injection 

demonstrated that mice injected with the Cas9 EV and Cas9 EV2 control cells 

developed disseminated tumour, most notably to the hind leg and spinal vertebrae, as 

observed in mouse 1, 2 and 4 in the Cas9 EV group and mouse 1, 3 and 4 in the Cas9 

EV2 group (Figure 4.10 A-D). In these control groups, Cas9 EV (mouse 1) and Cas9 

EV2 (mouse 2) did not develop any visible tumour at 4 weeks post injection using in 

vivo bioluminescence. At the same time point, mouse 1, 3, 4 and 5 from the HIF-2α 

CRISPR B1-1 group developed visible tumour. Whilst 4 out of 5 mice from the HIF-2α 

CRISPR B1-1 group developed tumour compared to 3 out of 5 in the matched Cas9 

EV2 control, bioluminescent measurements showed that the tumour burden was 

higher in the Cas9 EV2 mice (Figure 4.10 E).  

 

Whilst tumour was visible in the Cas9 EV controls and HIF-2α CRISPR B1-1 groups, 

none of the mice injected with the HIF-2α CRISPR A3-7 cells, developed any 

significant tumour (Figure 4.10 A-D). These observations were reflected in the 

quantification of tumour burden measured throughout the 4-week study and presented 

in Figure 4.10 E, where HIF-2α CRISPR A3-7 containing mice showed a significant 

lack of tumour development compared to the Cas9 EV control mice after 4 weeks post 

injection (p=0.0002) (Figure 4.10 E). Over the course of the experiment, HIF-2α 

CRISPR B1-1 injected mice showed a delayed increase in tumour burden over 4 weeks 

of tumour burden quantification compared to the Cas9 EV2 control mice (Figure 4.10 

E). Although the differences in tumour burden between Cas9 EV2 and HIF-2α CRISPR 

B1-1 injected mice data did not reach statistical significance, the observed delay in 

tumour development was consistent with the data for the Cas9 EV and HIF-2α CRISPR 

A3-7 comparative experiment. Together, these data demonstrate that the loss of HIF-

2α in 5TGM1 cells resulted in a delay or complete loss of tumour establishment and 

progression in vivo compared to matched control cell lines using the 

5TGM1/C57BL/KaLwRij 4 week disease model.  
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Figure 4.9: Analysis of early tumour development in mice injected with 5TGM1 

Cas9 EV controls, HIF-2α CRISPR A3-7 and HIF-2α CRISPR B1-1 cells. Tail vein 

injections of 5TGM1 Cas9 EV, HIF-2α CRISPR A3-7, Cas9 EV2 and HIF-2α CRISPR 

B1-1 cells were performed on C57Bl/KaLwRij mice. Cellular growth and dissemination 

at 3 weeks post injection was assessed by intraperitoneal injection of D-luciferin and 

in vivo bioluminescence captured from the front (A), back (B), left (C) and right (D) 

viewpoints using the IVIS Lumina XRMSTM .  
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Figure 4.10: 5TGM1 HIF-2α CRISPR A3-7 and HIF-2α CRISPR B1-1 cells display 

delayed expansion and dissemination compared to Cas9 EV and Cas9 EV2 

respectively in a 4 week mouse model of MM. Tail vein injections of 5TGM1 Cas9 

EV, HIF-2α CRISPR A3-7, Cas9 EV2 and HIF-2α CRISPR B1-1 cells were performed 

on C57Bl/KaLwRij mice. Cellular growth and dissemination at 4 weeks post injection 

was assessed by intraperitoneal injection of D-luciferin and in vivo bioluminescence 

captured from the front (A), back (B), left (C) and right (D) viewpoints using the IVIS 

Lumina XRMSTM . E) The luciferase activity of each mouse was quantified weekly (IVIS 

SpectrumTM) and graphed as a measure of tumour burden. The mean for each mouse 

group (n=5) +/- standard error of the mean shown for each week post injection, where 

significance was determined using two-way ANOVA with Sidak’s post-test (*** p-value 

<0.001)  
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Following 4 weeks of disease progression, all mice were humanely killed. As the spleen 

is a known site for disease involvement in animal models of MM (Asosingh, Radl et al. 

2000), the spleens were removed, placed into fixative, embedded in wax and sections 

prepared for microscopic analysis. In addition, the hind legs of mice were fixed, 

decalcified and similarly processed in preparation for staining. Sections from both the 

hind leg and the spleen were stained with an antibody to GFP to identify BM infiltration 

of the modified 5TGM1 cells to support in vivo bioluminescence findings (Figure 4.11). 

5TGM1 colonies (Figure 4.11 A and B) and dissemination (Figure 4.11 C) were 

observed within the femoral and tibial BM of mice displaying disease by in vivo 

bioluminescence, confirming establishment and expansion of MM.  

 

In human patients, MM is clinically diagnosed by a number of factors including the 

secretion of excessive clonal antibodies, called paraprotein (Rajkumar, Dimopoulos et 

al. 2014). To further characterise MM progression, paraprotein production was 

measured in the mouse model. To do this, cardiac bleeds were performed from all 

Cas9 EV and HIF-2α CRISPR injected mice following 4 weeks of disease development 

and the serum was analysed by gel electrophoresis in combination with Amido Black 

staining to both separate and visualise the serum proteins (Figure 4.12). Serum 

paraprotein was detected in 9 out of 10 mice injected with Cas9 EV control cells, 

whereas all 10 mice injected with HIF-2α CRISPR knockout cells showed 

comparatively low to no detectable paraprotein (Figure 4.12).  

 

The lack of detectable paraprotein in mice containing HIF-2α CRISPR A3-7 cells 

correlated with a complete lack of detectable tumour in the same mice using in vivo 

bioluminescence (Figure 4.10 A-D, 4.12 A). Plotting relative paraprotein levels against 

tumour burden, as measured by bioluminescence for both the Cas9EV control and 

HIF-2α CRISPR A3-7 mice, confirmed this correlation (R2: 0.8213, Figure 4.13 A). The 

detection of paraprotein in the HIF-2α CRISPR B1-1 injected mice was more variable, 

but overall an absence or low level of paraprotein was detected compared to the Cas9 

EV2 control mice (Figure 4.12 B). These paraprotein levels generally corresponded 

with the HIF-2α CRISPR B1-1 mouse in vivo bioluminescence data (Figure 4.10) 
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where, for example, mouse 2 showed almost no detectable tumour burden and the 

lowest paraprotein expression levels, whereas mouse 5 had the highest tumour burden 

and the highest level of paraprotein expression. However, due to the higher variability 

in these data the correlation between paraprotein and tumour burden in the Cas9 EV2 

and HIF-2α CRISPR B1-1 mice was not as clear as that observed in the data with the 

HIF-2α CRISPR A3-7 cells (Figure 4.13).  

 

Overall, these paraprotein data were consistent with the tumour burden observed via 

in vivo bioluminescence, and confirmed the delayed progression of MM as a result of 

HIF-2α knockout in 5TGM1 cells, supporting the original hypothesis that HIF-2α plays 

a critical role in MM disease progression in vivo.  
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Figure 4.11: Immunohistochemical staining of 5TGM1 cells verified tumour 

dissemination and establishment in mice. GFP staining of 5TGM1 cells (brown) in 

femoral, tibial and splenic sections from 5TGM1/C57BL/KaLwRij mice 4 weeks post 

injection. A) Femur section showing 5TGM1 colonies within the BM of a Cas9 EV 

injected mouse (scale bar, 1 mm). Inset showing an individual colony (scale bar, 200 

µm). GP, growth plate; BM, bone marrow; CB, cortical bone. B) Tibia section showing 

two 5TGM1 colonies in the BM of a Cas9 EV2 injected mouse (scale bar, 1 mm). Inset 

showing an individual colony (scale bar, 200 µm). C) Tibia section showing tumour 

expansion throughout the BM of a Cas9 EV2 injected mouse (top scale bar, 1 mm). 

Inset individual cells (scale bar, 100 µm). D) Splenic section of a Cas9 EV injected 

mouse showing single 5TGM1 (scale bar, 1 mm). Inset showing individual cells (scale 

bar, 100 µm). MZ, marginal zone (red pulp); T, T-cell parafollicular zone (white pulp). 
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Figure 4.12: Paraprotein detection and quantification in mouse serum samples. 

Blood serum was collected from each mouse at the end of the study (4 weeks post 

injection). Serum proteins were separated using electrophoresis, and paraprotein 

measured for A) Cas9 EV ctrl compared to HIF-2α CRISPR A3-7 injected mice and B) 

Cas9 EV2 ctrl compared to HIF-2α CRISPR B1-1 mice. Quantified paraprotein levels 

(bands marked with arrow) were normalised to albumin (band marked with asterisks), 

and represented graphically for all mouse samples (A and B).  
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Figure 4.13: Correlation between tumour burden and paraprotein in mice 

injected with 5TGM1 Cas9 EV controls, HIF-2α CRISPR A3-7 and HIF-2α CRISPR 

B1-1 cells. Tail vein injections of A) 5TGM1 Cas9 EV, HIF-2α CRISPR A3-7, B) Cas9 

EV2 and HIF-2α CRISPR B1-1 cells were performed on C57Bl/KaLwRij mice. The 

luciferase activity of each mouse was quantified as a measurement of tumour burden 

4 weeks post-injection (Figure 4.10 E), and directly correlated with quantified 

paraprotein (Figure 4.12). Correlation significance was determined using linear 

regression analyses for data in A) (R2 value of 0.8213) and B) (R2 value of 0.1851).  

A 

B 



 
 Chapter 5: Results 

 

177 
 

4.3 Discussion 

CRISPR-Cas9 gene editing, specifically targeting HIF-1α and HIF-2α, was used to 

modify HIFα expression in the murine 5TGM1 myeloma cell line, in order to ascertain 

their role in MM disease initiation and progression. In recent years, this technology has 

been commonly used for targeted gene disruption with considerable success (Hwang, 

Fu et al. 2013, Kim, Kim et al. 2014). As with many other technologies that alter gene 

expression, the success rate is dependent on the expression system used, specific 

targeting strategy and cell type targeted. The work within this chapter employed the 

use of two cut sites and subsequent DNA repair for the removal of a large fragment 

containing exon 2. This strategy had been employed to successfully delete large DNA 

fragments (between 0.35 and 1000 kb), with knockout frequencies of 1 – 15% in 

mammalian cells (Canver, Bauer et al. 2014, He, Proudfoot et al. 2015). Other studies 

using multiple sgRNAs to generate large deletions in animals have reported up to 25% 

disruption frequency (Zhang, Jia et al. 2015, Song, Yuan et al. 2016). 

 

The efficiency of Cas9 cleavage and repair in the 5TGM1 cells was low, with a 

generation frequency of 2 out of 59 clones for HIF-2α knockout and 0 out of 83 for HIF-

1α knockout lines (Table 4.3). Previous studies have significantly knocked-down HIF-

1α expression in MM cells and have not resulted in cellular death, making this an 

unlikely explanation for the lack of HIF-1α knockout clones (Martin, Diamond et al. 

2009, Storti, Bolzoni et al. 2013). The deletion of a large fragment using two sgRNAs, 

as opposed to generating small indels with a single sgRNA, is unlikely to be a 

contributing factor, given that large disruptions have been performed with great 

success and fragment size does not correlate with knockout frequency in cells (He, 

Proudfoot et al. 2015). Issues with the sgRNA design is also not likely to explain the 

low knockout frequency, as 8 different sets of guides were used in this chapter. Another 

possible contributing factor is the dose of Cas9 and sgRNA within the 5TGM1 cells. If 

the Cas9 and sgRNA expression were limited, this could be negatively effecting 

knockout efficiency as has been suggested previously (Canver, Bauer et al. 2014). 

Given the poor transfection efficiency of 5TGM1 cells, low cellular uptake of either or 
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both pSpCas9-HIFα-Int1A/B and pSpCas9-HIFα-Int2A/B plasmids could be limiting 

Cas9 nuclease and sgRNA expression.   

 

5TGM1 cells are known to have poor transfection efficiency as discussed in the 

previous chapter, where lentiviral transduction has been successfully used to improve 

plasmid delivery. Lentiviral delivery of Cas9 and sgRNA has previously been shown to 

efficiently generate knockout cell lines (Shalem, Sanjana et al. 2014, Zhou, Zhu et al. 

2014, Joung, Konermann et al. 2017). Future experiments using lentiviral transduction 

would increase the number of cells expressing the Cas9 nuclease and sgRNAs, 

providing more monoclonal lines to screen for successful HIF knockout from a single 

experiment. This method would also result in prolonged expression of Cas9 nuclease 

and the sgRNA from the integrated plasmid, and therefore improve knockout efficiency 

given the current transient transfection technique results in only sort term expression 

of Cas9 nuclease and sgRNAs. Hence this lentiviral-based CRISPR strategy should 

be used to generate HIF-1α and additional HIF-2α knockout 5TGM1 lines for 

subsequent experiments. It would, however, be important to assess the long-term 

effects of constitutive Cas9 expression from the stable cell lines both in vitro and in 

vivo.  

 

The low efficiency rates resulted in the creation of only two HIF-2α knockout clones, 

one from each sgRNA design (HIF-2α CRISPR A3-7 and HIF-2α CRISPR B1-1), and 

no HIF-1α clones despite multiple experimental attempts. Whilst both HIF-1α and HIF-

2α are important contributors to MM disease, HIF-2α has been implicated as a major 

contributor to MM disease severity (Martin, Diamond et al. 2009), but its specific role 

in vivo in MM remains poorly understudied. Hence, this project used the HIF-2α 

CRISPR A3-7 and HIF-2α CRISPR B1-1 cell lines to assess the specific contribution 

of HIF-2α to MM pathogenesis. Although these two cell lines show comparatively 

varied luciferase activity (Figure 4.7 and Figure 4.8), suitable luciferase-expression 

matched control lines were identified for each cell line.  
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Extensive PCR screening of the two HIF-2α CRISPR knockout lines identified the loss 

of exon 2 in both clones. Specifically, a 1269 bp loss was identified for at least one 

allele from the B1-1 clone (Figure 4.4).  Subsequent sequencing analyses of 12 B1-1 

clones indicated that either all alleles in the 5TGM1 HIF-2α CRISPR B1-1 cells 

contained the identical deletion, which is highly unlikely, or the more likely scenario 

that the second modified allele was not present in the single band amplified by PCR. 

Given that no other bands were amplified, this was consistent with the second allele 

containing a larger deletion that prevented amplification by the PCR primers. 

Comparatively, PCR screening identified a >3500 bp loss from the A3-7 clone for both 

alleles (Figure 4.4 and Figure 4.5). To further characterise the larger deletions in the 

HIF-2α CRISPR A3-7 alleles, primers amplifying from increasingly distal sites could be 

designed for PCR screening.  

 

The loss of HIF-2α mRNA expression from both the HIF-2α CRISPR A3-7 and HIF-2α 

CRISPR B1-1 5TGM1 cell lines was confirmed via qPCR (Figure 4.6). However, 

attempts to detect the hypoxic upregulation of HIF-2α protein in 5TGM1 cells by 

western blotting and immunoprecipitation proved unsuccessful. Although this differed 

from the hypoxic induction of HIF-2α observed in human MM cell lines (Martin, 

Diamond et al. 2009), this was not completely unexpected. Functionally important 

factors, including transcription factors, are, in general, expressed at relatively low 

levels, often making them difficult to quantify or detect in cells (Ghaemmaghami, Huh 

et al. 2003, Vaquerizas, Kummerfeld et al. 2009). In addition, using the best available 

commercial antibodies, numerous other laboratories in this field have experienced 

considerable difficulty in detecting mouse HIF-2α protein in cell lines or in vivo 

compared to human HIF-2α (Dan Peet, personal communication). Efforts to optimise 

immunoprecipitation experiments in future should include screening other 

commercially available HIF-2α antibodies or creating a new antibody raised against 

murine HIF-2α. Immunoprecipitation could also be combined with subsequent mass 

spectrometry to improve detection of HIF-2α protein. 
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The 5TGM1 Cas9 EV, Cas9 EV2, HIF-2α CRISPR A3-7 and HIF-2α CRISPR B1-1 cell 

lines were injected into C57BL/KaLwRij mice and MM development assessed in vivo. 

Both Cas9 EV and Cas9 EV2 control lines disseminated throughout mice over 4 weeks 

(Figure 4.10), demonstrating that the modification of the 5TGM1 cells did not adversely 

affect their ability to generate MM disease in vivo. This was further confirmed by the 

presence of paraprotein in mouse blood serum (Figure 4.12) and by the establishment 

and dissemination of Cas9 EV control cells to the BM and spleen (Figure 4.11). MM 

cell dissemination to the spleen is not commonly seen in humans, but is often observed 

in animal models of the disease (Asosingh, Radl et al. 2000, Simmons, Hildreth et al. 

2015).  

 

Cellular colony formation within endosteal niches found within the BM has been 

observed previously with the 5TGM1 cell line (Lawson, McDonald et al. 2015). 

Furthermore, localised growth of 5TGM1 colonies in areas such as the distal femoral 

BM (Figure 4.11 A) is consistent with previous studies (Asosingh, De Raeve et al. 2005, 

Nombela-Arrieta, Pivarnik et al. 2013, Wang, Benedito et al. 2013). Singular MM cells 

were also located within the spleen but no colonies were evident, (Figure 4.11 D) 

consistent with previous findings demonstrating that single MM cells can lie dormant 

within tissue microenvironments for future relapse, rather than immediately 

proliferating to form colonies (Lawson, McDonald et al. 2015). Cellular dormancy has 

previously been proposed as a contributing aspect to MM disease progression and an 

important factor in MM therapy resistance and relapse (Kellner, Liu et al. 2013, 

Lawson, McDonald et al. 2015). As such, I propose that the single cells found within 

the spleen are dormant and could contribute to tumour growth in mice beyond the 4 

week analysis time frame. 

 

The HIF-2α CRISPR A3-7 and HIF-2α CRISPR B1-1 cell lines showed reduced to no 

tumour dissemination and disease development following 4 weeks of in vivo growth 

compared to the Cas9 EV and Cas9 EV2 controls, respectively (Figure 4.10 and 4.12). 

Specifically, analysis of tumour burden in individual mice at week 2, week 3 and week 

4 post-injection with HIF-2α CRISPR B1-1 cells did not show a complete loss of tumour 
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compared to Cas9 EV2 mice, but rather a slower development of tumour expansion 

compared to Cas9 EV2 control injected mice (Figure 4.10 E). Despite this promising 

result, the comparative difference in tumour burden between Cas9 EV2 and HIF-2α 

CRISPR B1-1 injected mice did not reach significance. As only 3 out of 5 Cas9 EV2 

injected mice developed tumour, future animal experiments should incorporate more 

mice per treatment group to reach significance.  

 

Data for HIF-2α CRISPR A3-7 injected mice were more dramatic, showing no 

detectable tumour dissemination in vivo, even after 4 weeks (Figure 4.10). The 

complete lack of tumour growth was unlikely to be due to a general reduction in cellular 

proliferation, as these cells proliferated at a similar rate to the control cells when 

cultured Figure 4.8.  

 

The difference observed between the significant lack of tumour burden in the HIF-2 

CRISPR A3-7 mouse group and only a trend towards decreased tumour burden in the 

HIF-2α CRISPR B1-1 mouse group (Figure 4.10) could be due to a number of factors. 

The most likely contributing factors are experimental, specifically the gender 

differences between both groups, where the Cas9 EV and HIF-2α CRISPR A3-7 mice 

were female and the Cas9 EV2 and HIF-2α CRISPR B1-1 mice were male. It is known 

that there are gender-related differences in disease outcome in mouse studies (Trani, 

Moon et al. 2013, Amos-Landgraf, Heijmans et al. 2014). Furthermore, the staggered 

timing of animal injections between the HIF-2α CRISPR A3-7 and HIF-2α CRISPR B1-

1 groups could have introduced variability, making direct comparisons between the two 

groups impossible. These factors can be addressed in future experiments by repeating 

the animal experiments in both genders for both knockout cell lines.  

 

Additional factors, aside from those related to the animal experiment, include genetic 

variations between the two HIF-2α knockout cell lines, which is supported by the 

differential luciferase activity observed between the two cell lines (Figure 4.7). Further 

genetic characterisation of the cell lines, particularly the HIF-2α CRISPR A3-7 line, 

using PCR and sequencing would help clarify differences in Hif2α disruption between 
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the two lines that may be contributing to the in vivo data. Although there is considerable 

variation in tumour burden between the HIF-2α CRISPR A3-7 and HIF-2α CRISPR B1-

1 cell lines, the Cas9 EV control lines that had been through the same transfection and 

selection process do not show any major differences in tumour development despite 

their difference in luciferase activity (Figure 4.7 and Figure 4.10 E). This strongly 

supported the dependence on the loss of HIF-2α expression for the observed decrease 

in tumour burden in 5TGM1 HIF-2α CRISPR A3-7 and HIF-2α CRISPR B1-1 injected 

C57BL/KaLwRij mice.  

 

In conclusion, the work in this chapter showed that a loss of HIF-2α transcription factor 

expression in MM cells had a significant effect on MM disease, dramatically delaying 

progression. Furthermore, the loss of HIF-2α alone was sufficient to affect disease 

development, meaning that HIF-1α cannot compensate to maintain the normal rate of 

MM progression in vivo, confirming a non-redundant role for HIF-2α. These data 

demonstrate that HIF-2α is a critical contributing factor to MM disease and worthy of 

further investigation in terms of not only the spatial, temporal and mechanism of its 

function, but also as a potential therapeutic target for MM patients. 
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5.1 HIF-2α plays a critical role in MM disease progression 

The work in this thesis tested multiple vector systems for use in the 5TGM1 MM cell 

line, with the aim of altering HIFα gene expression to assessing their role in MM 

disease progression. HIF-2α expression was successfully knocked out using CRISPR-

Cas9 technology, therefore creating cell lines that were used to further characterise 

the role of HIF-2α in MM disease progression in vivo. Specifically, CRISPR-Cas9 knock 

out of HIF-2α in the 5TGM1 MM mouse model resulted in a delay in disease 

progression and an overall decrease in disease development.  

 

5.1.1 Immediate future experiments: refining and expanding HIF-2α knockout 

in 5TGM1/C57BL/KaLwRij mice 

Following the difficulties encountered in creating 5TGM1 cell lines stably 

overexpressing HIFα in Chapter 3, CRISPR-Cas9 technology was used to successfully 

generate HIF-2α knockout 5TGM1 lines suitable for the functional assessment of the 

role of HIF-2α in MM using the 5TGM1/C57BL/KaLwRij mouse model. Although the 

use of dual sgRNAs to generate HIF-1α knockout 5TGM1 cell lines was unsuccessful, 

alternative experimental techniques, such as those discussed in section 4.3, could be 

used to generate these cell lines. To this end, current studies in the laboratory are 

focused on generating HIF-1α knockout 5TGM1 lines that will enable head-to-head 

evaluation of the relative role of HIF-1α and HIF-2α in MM disease initiation and 

progression. 

 

Initial studies used the HIF-2 CRISPR A3-7 and HIF-2 CRISPR B1-1 5TGM1 cells in 

vivo, where mice injected with HIF-2 CRISPR A3-7 displayed a significantly reduced 

tumour burden compared to control mice, whilst HIF-2 CRISPR B1-1 injected mice 

displayed a trend towards delayed disease progression compared to control mice. As 

proposed in section 4.3, in future experiments, both female and male mice should be 

used to eliminate potential gender-bias that may contribute to the difference in overall 

disease progression observed between HIF-2 CRISPR A3-7 and HIF-2 CRISPR B1-1 

5TGM1 mouse groups compared to their Cas9 EV controls. Furthermore, repeating 
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the experiment in both genders would demonstrate that these data are reproducible 

and improve statistical significance. 

 

To confirm the significance of HIF-2α in MM disease progression, complementary 

experiments could be performed using known HIF-2α inhibitors. The novel HIF-2α 

antagonist, PT2399, functions by disrupting the dimerisation of human HIF-2α and 

HIFβ. PT2399 has been successfully used to reduce tumour burden in preclinical 

xenograft mouse models of clear cell renal cell carcinoma (Chen, Hill et al. 2016, Cho, 

Du et al. 2016). Based on previous studies (Martin, Diamond et al. 2009), similar 

experiments could be performed in a MM Matrigel-graft model experiment. Specifically, 

5TGM1 control or 5TGM1 HIF-2α knockout cells (generated as described in Chapter 

4) could be mixed with Matrigel and subcutaneously injected into nude mice and the 

PT2399 administered at doses similar to those previously described (Chen, Hill et al. 

2016, Cho, Du et al. 2016). Tumour development in response to PT2399 treatment 

could be assessed using bioluminescence imaging and tumour diameter 

measurements (Martin, Diamond et al. 2009). The inclusion of the 5TGM1 HIF-2α 

knockout cells would enable the anti-MM effects to be differentiated from any off-target 

effects the drug may have.  
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5.2 HIF-2α and MM PC homing and dissemination 

The loss of HIF-2α expression in 5TGM1 cells did not result in the complete elimination 

of disease, but resulted in a delay in the establishment and progression of disease in 

vivo (Figure 4.10). The data presented here, showed that the 5TGM1 HIF-2α knockout 

cells could home to the BM and disseminate, but at a much slower rate than control 

cells. This significant reduction in tumour burden could not be attributed to the 

marginally slower proliferation rate of the knockout cells (Figure 4.8). A possible 

explanation, as described above, is that HIF-2α may play a critical role in MM PC 

migration, specifically, through processes involved in egress from the BM, 

dissemination and homing to other skeletal and splenic sites.  

 

The homing of both non-malignant PCs and MM PCs is dependent on a number of 

ligand-cell surface receptor interactions including CD44 and HA (hyaluronan), CCR2 

and MCP-1, uPAR and MMP9, CXCR4 and CXCL12 (Cyster 2003, Menu, Asosingh et 

al. 2004, Menu, Asosingh et al. 2006). Comparatively, less is known about the 

molecular processes that drive MM PC dissemination. A study by Azab et al (Azab, Hu 

et al. 2012), identified a correlation between BM hypoxia and MM PC egress, re-

circulation and homing, with data suggesting a role for HIFα-regulated pathways. More 

recently, HIF-2α has been implicated as a potential regulator of MM PC dissemination 

through the CXCL12 and CCR1 pathways (Vandyke, Zeissig et al. 2017). MM PC 

homing and dissemination is critically important in MGUS to MM disease progression, 

and the re-population and growth of MM PCs in relapsed patients following treatment 

(Ghobrial 2012).  

 

Further characterisation is required to ascertain the role of HIF-2α in either MM PC 

homing or dissemination or both, where in vitro and in vivo experiments using HIF-2α 

knockout MM cells could help identify HIF-2α-dependent molecular and biological 

pathways involved in these processes. Specifically, these experiments would be 

performed using 5TGM1 HIF-2α knockout cell lines (generated in Chapter 4), HIF-1α 

knockout and Cas9 EV control 5TGM1 cells. MM PC surface receptors such as 
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CXCR4, CD44, CCR2 and uPAR could be assessed using qPCR and flow cytometry 

to identify if HIF-2α directly regulates pathways associated with BM homing (CXCR4, 

CD44, CCR2 and uPAR) and dissemination (CXCR4 and CCR1). This could be 

supported by in vitro adhesion experiments, where HIF-2α knockout, HIF-1α knockout 

and Cas9 EV control 5TGM1 cells are plated onto BM stromal cells isolated from the 

femora of C57BL/KaLwRij mice (as described by Menu et al and Azab et al (Menu, 

Asosingh et al. 2006, Azab, Runnels et al. 2009)) to assess the effects of HIFα 

expression on cellular adhesion. In parallel to the adhesion assays, in vitro trans-well 

migration assays could be performed, as described previously (Menu, Asosingh et al. 

2004, Menu, Asosingh et al. 2006, Azab, Hu et al. 2012, Vandyke, Zeissig et al. 2017), 

using MMP9 (MMP9 localises MM PCs to the extravascular compartment of the BM), 

MCP-1 (promotes migration to the BM endothelium) and CXCL12 as chemoattractants 

to assess the functional role of HIF-2α on these pathways.  

 

Previous studies have shown that HIF-1α regulates MMP9 (Storti, Bolzoni et al. 2013) 

and that both HIF-1α and HIF-2α upregulate CXCL12 (Martin, Diamond et al. 2009). 

Combined with the observed delay in MM PC homing and dissemination in vivo (Figure 

4.10), it is possible that functional HIF-1α could contribute to the delayed residual 

disease progression. As such, in the experiments proposed above, it would be 

expected that both 5TGM1 HIF-1α and HIF-2α knockout lines would display decreased 

adhesion and migration, with a greater decrease observed in the HIF-2α knockout cell 

lines. Furthermore, the assessment of cell surface receptors in HIF-1α and HIF-2α 

knockout cell lines may detect changes in some of the same factors, as previously 

demonstrated for the CXCL12/CXCR4 axis (Martin, Diamond et al. 2009, Azab, Hu et 

al. 2012). However, based on the data in chapter 4 and findings by Martin et al (Martin, 

Diamond et al. 2009), HIF-2α would be expected to have a greater effect on expression 

levels of some receptors such as CXCR4. Furthermore, as the knockout of HIF-2α 

appears to be non-redundant, it is also possible that unique factors displaying 

differential expression in HIF-2α and HIF-1α knockout cells may be identified. 
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To further characterise the potential contribution of HIF-2α to MM dissemination, the 

number of circulating MM cells in mice injected with HIF-2α knockout cells could be 

compared with mice injected with HIF-1α knockout and Cas9 EV control 5TGM1 cells 

using FACS. Whilst the in vivo bioluminescence imaging used in this dissertation 

allowed for the assessment of MM PC dissemination and tumour burden, recent 

developments in this methodology should be considered for future analyses of MM PC 

dissemination in vivo. A recent study by Iwano et al described the use of an evolved 

version of the luciferase/D-luciferin system called the AkaBLI system (Iwano, 

Sugiyama et al. 2018). These experiments utilised a composition of AkaLumine-HCL 

(substrate) and Akaluc (luciferase) and subsequent analysis in mice, allowing for the 

visualisation of single cells in deep tissues, in real time. The 5TGM1 HIF-2α CRISPR 

knockout lines, Cas9 EV control lines and HIF-1α knockout cell lines could be modified 

to express Akaluc, injected into C57BL/KaLwRij mice and used to analyse 5TGM1 

dissemination over the 4-week disease model with higher sensitivity and accuracy then 

shown previously.  

 

In addition to the experiments proposed above, detailed in vivo assessment of the 

effect of HIF-2α knockout in MM cells over time would be valuable to further 

characterise the role of HIF-2α in MM PC dissemination. Given the success of using 

CRISPR-Cas9 technology to knockout HIF-2α in the 5TGM1/C57BL/KaLwRij MM 

mouse model, an inducible CRISPR-Cas9 system could be advantageous. It is 

important to note that unlike the overexpression system generated in Chapter 3, which 

became unstable over time, the CRISPR-Cas9 knockout is permanent. Since the 

creation of the HIF-2α knockout lines and subsequent in vivo analyses described in 

this dissertation, inducible CRISPR-Cas9 experiments have been successfully 

performed on embryonic stem cell (ESC)-derived mice (Dow, Fisher et al. 2015). 

Specifically, this system would contain a plasmid encoding the sgRNA targeting HIF-

2α and the Cas9 endonuclease under the control of a TRE3G promoter. Similar to the 

system used in Chapter 3, the TRE3G promoter would allow for the temporal knockout 

of HIF-2α following exposure to doxycycline treatment. Doxycycline treatment would 

be administered to HIF-2α knockout 5TGM1/C57BL/KaLwRij at various time points 

post-injection and the effect on tumour growth and dissemination assessed using in 
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vivo bioluminescence and, MM PC dissemination, could be evaluated using the Akaluc 

in vivo approaches. However, it should be noted that the inducible knockout in vivo 

would invariably result in a mixture of homozygous and heterozygous HIF-2α knockout 

cells and could complicate data interpretation. 
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5.3 The role of HIF-2α-regulated pathways in MM homing 

and dissemination 

5.3.1 Candidate HIF-2α target genes potentially contributing to MM homing 

and dissemination 

CXCL12 is a known disease marker for MM due to its elevated expression in patients, 

and its role in mediating MM PC migration, angiogenesis and bone resorption 

(Zannettino, Farrugia et al. 2005, Menu, Asosingh et al. 2006, Diamond, Labrinidis et 

al. 2009). Importantly, CXCL12 is known to be directly upregulated by HIF-2α, and to 

a lesser extent HIF-1α, in hypoxia, resulting in the promotion of tumour growth and 

angiogenesis in a MM disease context (Martin, Diamond et al. 2009). A recent 

publication by Vandyke et al (Vandyke, Zeissig et al. 2017) further explored these 

findings by assessing the role of the HIF-2α-CXCL12 regulation pathway on disease 

dissemination.  

 

Homing of MM PCs to the BM is driven by a chemotactic response to CXCL12 

expression from BM stromal cells (Menu, Asosingh et al. 2006, Alsayed, Ngo et al. 

2007). The persistent expression of CXCL12 helps retain and expand the MM PCs 

within the BM, through CXCL12 and CXCR4 interactions. In order for cells to egress 

the BM and enter the circulation, a change in CXCL12-CXCR4 signalling between MM 

PCs and BM stromal cells is required, specifically through decreased expression of 

CXCR4 on MM PCs (Azab, Runnels et al. 2009, Bao, Lai et al. 2013, Stessman, 

Mansoor et al. 2013). Consistent with these findings, analyses of HIF-2α and CXCL12 

expression in MM PCs suggest that both play a crucial role in regulating MM 

dissemination by overcoming the cellular response to exogenous CXCL12 stimuli 

(Vandyke, Zeissig et al. 2017). Specifically, overexpression of either HIF-2α or 

CXCL12 in RPMI-8226 MM cells resulted in a decrease of CXCR4 expression, 

migration towards CXCL12 and adhesion to BM mesenchymal stromal cells. The 

observed correlation between HIF-2α and MM PC migration is consistent with previous 

findings showing that hypoxic conditions within the BM promote MM PC circulation and 

tumour progression (Azab, Hu et al. 2012). These data directly implicate HIF-2α in MM 
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PC migration through its target gene CXCL12, therefore linking the HIF-2α-CXCL12 

pathway with MM dissemination in vitro.  

 

Analyses of CXCL12 expression from 5TGM1 HIF-2α CRISPR knockout cells in vitro 

and isolated ex vivo, as described in section 5.2, would help characterise the role of 

the HIF-2α-CXCL12 axis in MM disease progression. Based on data in section 5.2 and 

the known role of HIF-1α in CXCL12 regulation, it would be expected that CXCL12 

expression will be reduced in HIF-1α knockout cells compared to the Cas9 EV controls. 

Importantly, CXCL12 expression would be further reduced in 5TGM1 HIF-2α knockout 

cells compared to 5TGM1 HIF-1α knockout and Cas9 EV control cells, but not 

completely abolished due to active HIF-1α. 

 

In addition to CXCL12, the chemokine receptor CCR1 was also identified as a new 

potential HIF-2α-regulated target gene in MM dissemination (Vandyke, Zeissig et al. 

2017). Whilst CCR1 has been previously identified as a HIF-1α target in hypoxia 

(Dong, Khalil et al. 2010, Copple, Bai et al. 2011), this was the first study to identify 

this chemokine as a HIF-2α target gene. CCR1 expression was upregulated following 

either hypoxia treatment or HIF-2α overexpression in the human LP-1 MM cell line. 

Additionally, the CCR1/CCL3 axis was found to promote MM PC migration 

independently of the CXCL12/CXCR4 axis, potentially nullifying the MM PC response 

to elevated BM CXCL12 expression. Furthermore, CCR1 upregulation was associated 

with elevated circulating MM PCs in patients that correlated with a poorer disease 

outcome.  While this was the first study to correlate CCR1 expression with MM 

dissemination, the associated ligand CCL3 has been shown to be elevated in 

circulating MM cells and linked to migration in vitro (Moller, Stromberg et al. 2003, 

Terpos, Politou et al. 2003). Outside of the MM disease context, CCR1 has been linked 

with cellular migration and cancer metastasis (Kitamura, Fujishita et al. 2010, Hirai, 

Fujishita et al. 2014, Schanz, Red-Horse et al. 2014).  
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The role of CCR1 in MM dissemination as a HIF-2α-dependent target remains to be 

confirmed in vivo, and as such I propose analysing CCR1 expression in HIF-2α 

CRISPR knockout cells in vitro and isolated ex vivo from the 5TGM1 MM mouse model. 

It is important to note that like CXCL12, CCR1 is a confirmed HIF-1α target gene and 

would still be regulated by HIF-1α in MM, although to a lesser extent than that observed 

with HIF-2α, which is consistent with the lowered tumour burden still observed by in 

vivo bioluminescence (Figure 4.10).  

 

5.3.2 Identification of novel HIF-2α target genes contributing to MM disease 

progression and confirmation of known targets 

While emerging evidence highlight a role for HIF-2α in MM disease progression, very 

few HIF-2α-specific targets have been identified. As discussed in Chapter 1, it is known 

that the HIFs regulate hundreds of target genes that are cell type and context 

dependent. As such, it is critical to profile which target genes are significantly regulated 

by HIF-2α in MM PCs, to both confirm the target genes characterised in section 5.2 

and 5.3.1, and to more broadly characterise the role of HIF-2α in MM PC disease 

progression. This could be achieved by performing RNAseq on 5TGM1 Cas9 EV 

control, HIF-1α and HIF-2α CRISPR knockout cell lines (section 5.1). Specifically, the 

Cas9 EV control, HIF-2α knockout and HIF-1α knockout cell lines would be cultured in 

normoxia and hypoxia for 48 hours to allow for the hypoxia-dependent upregulation of 

HIF-2α and HIF-1α-specific target genes.  

 

While the data from these in vitro experiments would provide a general map of the 

pathways regulated by HIF-2α in 5TGM1 cells, these studies would be limited by the 

use of static hypoxic conditions without reference to the stimuli provided by a BM 

microenvironment in vivo. As such, it would be beneficial to complement these 

experiments with in vivo analyses using the 5TGM1/C57BL/KaLwRij mouse model. 

Specifically, the 5TGM1 Cas9 EV control, HIF-1α and HIF-2α knockout cell lines could 

be injected into C57BL/KaLwRij mice as previously described, and the GFP-

expressing 5TGM1 cells isolated at various stages of disease progression using FACS. 

RNAseq could then be performed to assess the HIF-2α-dependent changes in gene 
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expression compared to control and 5TGM1 HIF-1α knockout injected mice. The genes 

identified from cell lines treated in hypoxia in vitro will be compared to the cells isolated 

ex vivo, providing valuable comparative analyses between an artificial hypoxic 

environment and the BM microenvironment. Furthermore, these data would 

characterise changes in gene expression at early versus late stages of disease that 

are directly affected by HIF-2α, providing novel insight with regard to the role of HIF-

2α-regulated pathways at different stages of MM disease progression in vivo. 

Importantly, the RNAseq data from both the in vitro and in vivo experiments will confirm 

HIF-2α dependent regulation of genes known to be critical to MM, as well as potentially 

identify unknown targets for future studies.  

 

  



 
 Chapter 3: Results 

 

194 
 

5.4 Significance in other blood diseases 

The findings detailed in this dissertation, showing that HIF-2α is critical for disease 

progression in MM, are in keeping with previous studies highlighting an association 

between HIFα expression and disease prognosis in other cancers (Lofstedt, Fredlund 

et al. 2007). HIFα activation has been explored in other blood diseases including acute 

myeloid leukemia (AML), acute promyelocytic leukemia (APL), acute lymphoblastic 

leukemia (ALL), chronic myeloblastic leukemia (CML) and chronic lymphoblastic 

leukemia (CLL) (Schito, Rey et al. 2017). In these cancers, upregulation of HIFα has 

been associated with malignant growth through a number of biological pathways 

including angiogenesis, metabolism, proliferation, homing, migration and metastasis. 

As has been observed in other diseases, the majority of data is centred around the role 

of HIF-1α, with a paucity of data on HIF-2α. Despite this, HIF-2α has still been 

implicated in a number of haematological diseases.  

 

One such haematological disease, is AML, where comparative analyses of HIF-1α and 

HIF-2α function have been performed in hematopoietic stem cells (HSCs) and AML 

(Rouault-Pierre, Lopez-Onieva et al. 2013). Knock down of HIF-2α and HIF-1α resulted 

in HSC apoptosis and decreased engraftment of human AML cells in mice. Similarly, 

using mouse models of AML, overexpression of HIF-2α was found to result in 

accelerated disease development in vivo (Forristal, Brown et al. 2015).  

 

Similarly, a comparative assessment of the role of HIF-1α and HIF-2α has been 

performed in the haematological disease APL. Genetic mutations are critical in APL 

pathogenesis, where in vitro and in vivo xenograft experiments demonstrated that HIF-

1α, and to a lesser extent, HIF-2α, regulated pathways were activated to promote 

disease through cellular migration and angiogenesis (Coltella, Percio et al. 2014). 

Consistent with these findings, HIF-1α has recently been shown to regulate CLL cell 

migration, preventing expansion within the BM and spleen in mouse xenograft models, 

ultimately prolonging survival (Valsecchi, Coltella et al. 2016). Specifically, loss of HIF-
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1α expression resulted in decreased chemotaxis and adhesion between CLL cells and 

BM stromal cells through the CXCL12/CXCR4 axis.  

 

These data highlight the importance of HIFα and its regulated genes in other 

haematological diseases, and demonstrate both similarities and differences in the roles 

of HIF-1α and HIF-2α, as has been observed in MM. However, there is a general 

paucity of comparative HIF-1α and HIF-2α analyses and, more importantly, of HIF-2α-

specific data in blood cancers. As such, the characterisation of HIF-2α in MM disease 

progression would provide significant findings that could inform other haematological 

diseases found to have abrogated HIF-2α expression in future. 
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5.5 HIF-2α as a therapeutic target 

Although MM is an incurable disease, current therapies including the proteasome 

inhibitor bortezomib (Richardson, Barlogie et al. 2003) and the immunomodulatory 

drugs thalidomide (Singhal, Mehta et al. 1999) and lenalidomide (Rajkumar, Hayman 

et al. 2005) have been used successfully to treat new and relapsed patients. Similarly, 

targeted drug treatment against specific oncogenes has shown to be effective for MM 

patients in clinical trials (Manier, Salem et al. 2016). Whilst complex combinations of 

mutations are acquired during the progression of MGUS to MM, many symptoms are 

common between patients. Identification and direct targeting of key contributors of 

disease would aid in the generation of new targeted treatments for MM. 

 

MM PC migration and dissemination is crucial to disease progression, and importantly, 

for MM PCs to migrate and establish in new BM sites (Ghobrial 2012). As such, the 

number of circulating cells in the peripheral blood of newly diagnosed patients is used 

as an indicator for survival prognosis (Witzig, Gertz et al. 1996, Nowakowski, Witzig et 

al. 2005). Consistent with this finding, MM cells treated with a CXCR4 inhibitor 

displayed sensitivity to treatment, consistent with the role of CXCL12/CXCR4 axis in 

cellular migration (Azab, Runnels et al. 2009). Given the promising role of HIF-2α in 

regulating MM dissemination (Vandyke, Zeissig et al. 2017), HIF-2α could be an 

effective therapeutic target in both newly diagnosed and relapsed patients. To this end, 

a phase I clinical trial using the HIF-2α antagonist PT2385 is currently underway on 

patients with various forms of RCC and kidney cancer in the U.S.A (Identifier: 

NCT02293980). The trial is due for completion by the end of 2018 and will be 

informative on the potential use of PT2385 in other clinical trials, including future MM 

patient studies. Furthermore, the characterisation of homing and dissemination 

pathways proposed in this chapter, will identify known and potentially novel genes 

directly regulated by HIF-2α in MM in vivo, thereby identifying new target genes for 

future treatment development.   
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5.6 Concluding remarks 

The research in this thesis has generated tools for the functional analysis of HIF-2α in 

a mouse model of MM. Preliminary experiments using CRISPR-Cas9 technology show 

that HIF-2α plays an important role in MM disease. The proposed future experiments 

will provide new insights into MM PC homing and dissemination and shed light on how 

HIF-2α regulates these crucial processes. The use of the HIF-2α knockout lines, 

alongside HIF-1α knockout lines generated in the future, will allow us to decipher the 

importance of HIF-2α and how it governs MM disease progression. As HIF-2α 

overexpression is likely to contribute to poor prognosis and relapse, therapies targeting 

HIF-2α may prove useful in the treatment in MM patients. Furthermore, by defining the 

contribution of HIF-2α-regulated pathways in MM, the cell lines created could also be 

used to help identify novel downstream therapeutic targets. 
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Appendix 1: Hif2α gene expression in response to hypoxia in 5TGM1 cells. 

5TGM1 cells were cultured in normoxia (N) for 72 hours or hypoxia (H) for 16, 24, 48 

and 72 hours. RNA was extracted and equivalent amounts were reverse transcribed 

and used for quantitative PCR analysis performed using Hif2α primers. Relative 

expression of each gene was normalised to the housekeeping gene Hprt. Data are 

graphed as the mean of triplicate samples +/- standard error of the mean from a single 

experiment (A and B), and are 2 representatives of 3 independent experiments.  

A 

B 
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Appendix 2: VegfA gene expression in response to hypoxia in 5TGM1 cells. 

5TGM1 cells were cultured in normoxia (N) for 72 hours or hypoxia (H) for 16, 24, 48 

and 72 hours. RNA was extracted and equivalent amounts were reverse transcribed 

and used for quantitative PCR analysis performed using VegfA primers. Relative 

expression of each gene was normalised to the housekeeping gene Hprt. Data are 

graphed as the mean of triplicate samples +/- standard error of the mean from a single 

experiment (A and B), and are 2 representatives of 3 independent experiments.  

A 

B 
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Appendix 3: Bnip3 gene expression in response to hypoxia in 5TGM1 cells. 

5TGM1 cells were cultured in normoxia (N) for 72 hours or hypoxia (H) for 16, 24, 48 

and 72 hours. RNA was extracted and equivalent amounts were reverse transcribed 

and used for quantitative PCR analysis performed using Bnip3 primers. Relative 

expression of each gene was normalised to the housekeeping gene Hprt. Data are 

graphed as the mean of triplicate samples +/- standard error of the mean from a single 

experiment (A and B), and are 2 representatives of 3 independent experiments.  

A 

B 
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Appendix 4: Glut1 gene expression in response to hypoxia in 5TGM1 cells. 

5TGM1 cells were cultured in normoxia (N) for 72 hours or hypoxia (H) for 16, 24, 48 

and 72 hours. RNA was extracted and equivalent amounts were reverse transcribed 

and used for quantitative PCR analysis performed using Glut1 primers. Relative 

expression of each gene was normalised to the housekeeping gene Hprt. Data are 

graphed as the mean of triplicate samples +/- standard error of the mean from a single 

experiment (A and B), and are 2 representatives of 3 independent experiments.  

A 

B 
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B 
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Appendix 5: Assessment of Hif1α and Hif2α mRNA induction in 5TGM1 cells 

integrated with the LVT-HIFα-ETPT vector. 5TGM1 cell lines were infected with 

lentivirus particles containing either the LVTETPT, LVT-HIF-1α-EPTP, or LVT-HIF-2α-

EPTP vectors and where specified, cultured for 16 hours with no treatment, in hypoxia 

(+H ), with doxycycline at a final concentration of 2 µg/mL (+DOX) or both (+DOX+H). 

Cellular mRNA was extracted and cDNA produced for quantitative PCR analysis. 

Samples were then assessed for either Hif1α (A) or Hif2α (B) mRNA expression 

normalised to the housekeeping gene Polr2a. Data are representative of three 

independent experiments.  
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Appendix 6: Assessment of Hif1α and Hif2α mRNA induction in 5TGM1 cells 

integrated with the LVT-HIFα-ETPT vector. 5TGM1 cell lines were infected with 

lentivirus particles containing either the LVTETPT, LVT-HIF-1α-EPTP, or LVT-HIF-2α-

EPTP vectors and where specified, cultured for 16 hours with no treatment, in hypoxia 

(+H ), with doxycycline at a final concentration of 2 µg/mL (+DOX) or both (+DOX+H). 

Cellular mRNA was extracted and cDNA produced for quantitative PCR analysis. 

Samples were then assessed for either Hif1α (A) or Hif2α (B) mRNA expression 

normalised to the housekeeping gene Polr2a. Data are representative of three 

independent experiments. 
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