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ABSTRACT

The field of palaeomicrobiology—the study of ancient microorganisms—is rapidly
growing due to recent methodological and technological advancements. It is now
possible to obtain vast quantities of DNA data from ancient specimens in a
high-throughput manner and use this information to investigate the dynamics and
evolution of past microbial communities. However, we still know very little

about how the characteristics of ancient DNA influence our ability to accurately
assign microbial taxonomies (i.e. identify species) within ancient metagenomic
samples. Here, we use both simulated and published metagenomic data sets

to investigate how ancient DNA characteristics affect alignment-based taxonomic
classification. We find that nucleotide-to-nucleotide, rather than nucleotide-to-
protein, alignments are preferable when assigning taxonomies to short DNA
fragment lengths routinely identified within ancient specimens (<60 bp). We
determine that deamination (a form of ancient DNA damage) and random
sequence substitutions corresponding to ~100,000 years of genomic divergence
minimally impact alignment-based classification. We also test four different
reference databases and find that database choice can significantly bias the results
of alignment-based taxonomic classification in ancient metagenomic studies.
Finally, we perform a reanalysis of previously published ancient dental calculus
data, increasing the number of microbial DNA sequences assigned taxonomically
by an average of 64.2-fold and identifying microbial species previously unidentified
in the original study. Overall, this study enhances our understanding of how
ancient DNA characteristics influence alignment-based taxonomic classification
of ancient microorganisms and provides recommendations for future
palaecomicrobiological studies.

Subjects Bioinformatics, Evolutionary Studies, Microbiology
Keywords Microbiome, Palacomicrobiology, Ancient DNA, Bioinformatics, Alignment,
Taxonomic classification, Shotgun metagenomics, Microbiology

INTRODUCTION

Palaecomicrobiology—the study of ancient microorganisms—is a rapidly growing field of
research. As with modern microbiology (Caporaso et al., 2012; The Human Microbiome
Project Consortium et al., 2012), palaeomicrobiology has witnessed a renaissance with
the development of high-throughput sequencing technology (Warinner, Speller ¢» Collins,
2014; Weyrich, Dobney ¢ Cooper, 2015). The study of ancient microorganisms has the
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potential to shed light on a range of topics, such as the evolution of the human microbiota
(Adler et al., 2013; Weyrich et al., 2017), adaptation and spread of ancient pathogens
(Bos et al., 2011, 2014; Warinner et al., 2014), the reconstruction of human migrations and
interactions (Dominguez-Bello & Blaser, 2011; Maixner et al., 2016; Eisenhofer et al., 2017),
and climate change (Frisia et al., 2017).

Palaeomicrobiology is especially challenging because ancient DNA is typically
fragmented, contains damage-induced substitutions, and is mixed with the DNA of
ancient and modern contaminant microorganisms. DNA fragmentation occurs due to
the post-mortem cessation of DNA repair, resulting in short fragment lengths that are
typically shorter than 100 bp (Allentoft et al., 2012; Dabney, Meyer ¢ Pdbo, 2013).
These short fragments are also subjected to chemical modifications (e.g. deamination),
which yield an increased rate of observed cytosine to thymine and guanine to adenine
substitutions at the 5" and 3’ ends of the sequenced DNA molecules, respectively
(Dabney, Meyer & Pddibo, 2013). Finally, contamination of ancient DNA with modern
microbial DNA is a serious issue that must be mitigated with expensive ultra-clean
laboratories, rigorous decontamination, and the extensive use of extraction blank
and no-template negative controls (Salter et al., 2014; Eisenhofer, Cooper & Weyrich, 2017;
Llamas et al., 2017; Eisenhofer & Weyrich, 2018; Eisenhofer et al., 2019). Collectively,
these factors influence the choice of molecular techniques (Ziesemer et al., 2015)
and bioinformatic tools used for taxonomic classification of ancient microbial DNA
(Weyrich et al., 2017; Velsko et al., 2018).

Identifying the microbial species present within an ancient sample, that is, taxonomic
classification, is a standard first step in palacomicrobiology studies (Weyrich et al., 2017).
Initially, targeted amplification of the 16S ribosomal RNA encoding gene was used
to discover which microbes were present in ancient samples (Adler et al., 2013), as is
routinely done in modern microbiota studies seeking to characterize microbial
communities (Caporaso et al., 2012; Gilbert, Jansson ¢ Knight, 2014). However, these
targeted regions are often longer than the typical fragment length of ancient DNA and can
contain polymorphisms that bias the taxonomic reconstruction of ancient metagenomes
(Ziesemer et al., 2015). Considering these findings, the palacomicrobiology field has
converged on shotgun sequencing as the best-practice approach to reproducibly
identify microbial species within ancient samples. While currently more expensive than
the targeted PCR approaches, shotgun sequencing also provides genomic and functional
information that can be used to reconstruct ancient microbial genomes, observe functional
changes through time, and identify non-prokaryotic information within samples
(Warinner et al., 2014; Weyrich et al., 2017).

Methods for analysing shotgun sequencing data broadly fall into three categories:
assembly-based, alignment-free, and alignment-based. Assembly-based techniques involve
merging overlapping DNA fragments into longer sequences with the goal of
assembling whole genomes. Such techniques have been successful in generating new
genomes from modern metagenomic samples (Imelfort et al., 2014; Parks et al., 2017).
However, the short, damaged nature of ancient DNA renders assembly-based techniques
currently intractable for palacomicrobiology. Alignment-free methods use features of
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the DNA sequences themselves, such as matches of k-mers between reference genomes
and the DNA sequences from a sample (Wood & Salzberg, 2014; Ounit ¢» Lonardi, 2016).
To our knowledge, there has been minimal testing of alignment-free methods for

the taxonomic classification of ancient microbial DNA. In their assessment of taxonomic
classifiers for ancient DNA, Velsko et al. (2018) tested the alignment-free method
CLARK-S and found that while it had no false-negatives on their simulated metagenome,
it had the highest number of misclassifications and false-positives. Alignment-based
techniques involve the alignment of DNA fragments to previously characterized reference
sequences using alignment algorithms, such as Bowtie2 or the Burrows—Wheeler Aligner
(Li & Durbin, 2009; Langmead ¢ Salzberg, 2012), and include MetaPhlAn (Truong

et al., 2015), MG-RAST (Meyer et al., 2008), DIAMOND (Buchfink, Xie ¢» Huson, 2015),
and MALT (MEGAN alignment tool) (Vigene et al., 2018). A recent study benchmarked
these alignment based tools and found that MALT performed better for short,
fragmented DNA (Weyrich et al., 2017). MALT is an alignment-based tool that allows
researchers to query DNA sequences against reference databases using a method similar to
Basic Local Alignment Search Tool (BLAST) (Altschul et al., 1990), albeit >100 times
faster (Vigene et al., 2018). MALT can either align nucleotide sequences to nucleotide
databases (MALTn) or nucleotide to amino acid databases by translating the

DNA prior to alignments (MALTXx). A potential advantage to using amino acid alignments
for palaeomicrobiology is the greater sequence conservation of peptides due to

codon redundancy. This property may help smooth over small changes occurring in
DNA sequence over time, allowing ancient sequences to be more easily aligned to modern
references. However, the already short nature of ancient DNA yields even shorter
amino acid sequences (e.g. 60 bp DNA translated = 20 amino acid sequence), which may
not provide a sufficiently high alignment score for taxonomic classification (Huson et al.,
2007; Pearson, 2013). Additionally, DNA damage can result in alignment errors,

further lowering alignment scores. To date, there has been no formal testing of nucleotide
vs. amino acid alignments for taxonomically classifying short sequences typical of
ancient DNA.

Here, we test how characteristics of ancient DNA influence alignment-based taxonomic
classification using both simulated and published ancient DNA data sets. We demonstrate
that the MALTn (nucleotide-to-nucleotide alignment) approach can improve
taxonomic identifications over MALTx (nucleotide-to-protein). We also corroborate
previous findings that deamination minimally impacts alignment-based taxonomic
classification and that reference database choice is an important consideration
when attempting to reconstruct ancient microbial communities (Warinner et al., 2017,
Velsko et al., 2018). Finally, we perform an extensive reanalysis of previously published
shotgun DNA sequences from ancient dental calculus with these factors in mind.

METHODS

Simulated and published metagenomes
We downloaded 6,897 complete bacterial genomes from the NCBI Assembly (17th May
2017). A total of 29 oral and environmental genomes were used as input for
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Figure 1 General overview of simulated data construction and analysis.
Full-size K& DOTI: 10.7717/peerj.6594/fig-1

Gargammel (Renaud et al., 2017) to generate simulated ancient metagenomes of

1.5 million fragmented sequences each. Briefly, selected bacterial genomic sequences were
assigned abundances representative of a typical dental plaque community (Table S1)
and then fragmented into metagenomes containing either strict 30, 50, 70, 90 bp

(base pair) fragments, or an empirical ancient DNA fragment length distribution that
mimicked commonly observed ancient DNA fragmentation (-loc 4, —scale 0.3 in
Gargammel) (Fig. S1; Fig. 1) (Renaud et al., 2017). To benchmark the influence

of deamination on taxonomic classification, the simulated metagenomes of different
fragment lengths were then deaminated using Gargammel with the following
parameters: nick frequency = 0.03, length of overhanging ends (geometric parameter) =
0.25, probability of deamination in double-stranded parts = 0.01, along with three
different probabilities of deamination in single-stranded parts: zero for 0% d; 0.1

for light deamination (10% 9;); and 0.5 for heavy deamination (50% d) (Briggs et al.,
2007). Additionally, a real mapDamage profile from the LaBrana sample (Renaud et al.,
2017) was simulated using Gargammel for the ‘empirical’ deamination (~20% ;).
Overall, this resulted in a total of 20 different simulated metagenomes: (five different
fragment lengths, 30, 50, 70, 90, and empirical) multiplied by four different deamination
magnitudes (0%, 10%, 20%, and 50% &) = 20 (Metagenome 1-20; Table S2).
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Simulated metagenomes and the genomes used to build the metagenomes are available
via Figshare: https://doi.org/10.25909/5b84c9¢c196£54, https://doi.org/10.4225/55/
5b0caf73b7247, https://doi.org/10.4225/55/5b0ca9b2cd6dc. The collapsed (merged)
DNA sequences for 22 published ancient dental calculus samples were downloaded from
Online Ancient Genome Repository (https://www.oagr.org.au/experiment/view/65/)
(Weyrich et al., 2017). Two ancient dental calculus samples from Warinner et al. (2014)
were also downloaded from the SRA (SRR957739 and SRR957743).

Reference databases

For the analysis of simulated metagenomes, we created databases that contained the exact
same bacterial genomes present in the 20 simulated data sets. We downloaded 6,897
complete bacterial genomes from the NCBI Assembly (17th May 2017), along with their
coding sequences (CDS) and translated CDS. These three sources of sequences were
used to construct different MALT databases: MALTn-genome (complete genomes);
MALTn-CDS (nucleotide coding sequencing from these genomes); and MALTx
(translated CDS from these genomes).

For the analysis of previously published dental calculus data, we used sequences from the
four following databases: (1) 2014nr (NCBI non redundant protein BLAST database,
downloaded 11th November 2014; (Weyrich et al., 2017)); 2017nt (NCBI nucleotide
BLAST database, downloaded 6th June 2017); (3) HOMD (all human oral microbial
genomes (1,362) from the Human Oral Microbiome Database, downloaded July 2017);
and (4) RefSeqGCS (47,713 Complete-, Chromosome-, and Scaffold-level assemblies
downloaded from NCBI RefSeq database (366 archaeal; 47,347 bacterial)). Genome
accessions used for the RefSeqGCS and HOMD databases are available from Figshare
(https://doi.org/10.25909/5b84ddf58ac49, https://doi.org/10.25909/5b84d19aaff2a).

Generation of divergent sequences

Nucleotide substitution rates are known to differ between different species of bacteria,
making accurate modelling of bacterial genome evolution is a difficult task. Here, we apply
a simplified approach that ignores insertions and deletions, and instead creates a
worst-case scenario for benchmarking the effects of nucleotide substitutions on taxonomic
classification. We chose a rate of 1077 substitutions per site per year, representing the
mean of known evolutionary rates for bacterial genomes (Duchéne et al., 2016).

We assumed an average bacterial genome size of three million bp, thus 10~ x 3,000,000 =
0.3 substitutions per genome per year. Scaling for multiple years yielded the following
number of substitutions introduced per genome: 10,000 years = 3,000 substitutions
(0.1% of genome); 30,000 substitutions (1% of genome); and 300,000 substitutions (10% of
genome). We used these numbers to randomly mutate (substitutions only) the bacterial
genomes using EMBOSS msbar (Rice, Longden ¢ Bleasby, 2000). These ‘mutated’
genomes were then used as input for Gargammel, fragmented to the empirical ancient
DNA fragment length distribution (Fig. S1), and deaminated using the heavy deamination
magnitude (50% J;) (Metagenome 21-23, Table S2).
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Data analysis

MALT-build v 0.3.8 was used on the reference sequences mentioned above with the default
parameters. MALT-run v 0.3.8 was used to align the simulated and real data against

the different databases using default settings and outputting BLAST text files (-a).

The resulting BLAST text files were converted to RMAG files using the MEGAN tool
blast2rma, as this allows least common ancestor (LCA) parameter adjustment across
multiple files. All RMAG6 files were then imported and analysed in MEGAN6 CE V6.8.13
(Huson et al., 2016). We used the weighted LCA algorithm (80% LCA percentage: -alg
weighted -lcp 80) (Huson et al., 2016); the minimum support percent filter was set to
0.1% (-supp 0.1) for the published ancient dataset to remove poorly supported assignments
(i.e. taxonomic assignments require at least 0.1% of a percent of the total sequences to be
considered), and 0.01% for the simulated metagenomes; the minimum expected value
(E-value) was set to 0.01 (—e 0.01); and all other values were left at default. Analysis of the
simulated data found that a minimum support percent of 0.1% removed false positive
taxonomic assignments for nucleotide-to-nucleotide alignments (Fig. S15), justifying this
threshold for the reanalysis of the previous published data. Little research has been done
regarding the effect of LCA parameters on taxonomic classification, and such research
deserves its own study. Regardless, the parameters chosen for this study represent a
conservative approach implemented to reduce noise within the data set.

For the UPGMA tree comparison, species found in extraction blank controls (Table S9),
but not environmental controls, were removed (filtered) from the ancient dental calculus
samples (Weyrich et al., 2017). This filtering approach can be conservative and does not
eliminate issues of cross-contamination between samples and controls occurs (Eisenhofer
et al., 2019). However, the lack of oral taxa classified in the extraction controls makes it
unlikely to have affected the downstream analyses. (Table S9). The UPGMA tree was then
constructed by exporting the Bray—Curtis distance matrices constructed at the species level
from MEGANG into SplitsTree4 (Huson ¢ Bryant, 2006). The divergences between
predicted and simulated abundances were calculated using log-odds scores: log odds = log,
(predicted abundance/simulated abundance) and the Pearson correlation coefficient.

RESULTS

MALTN classifies shorter DNA sequences than MALTx

We assessed the alignment performance of nucleotide-to-nucleotide (MALTn) and
nucleotide-to-protein (MALTx) alignments using simulated metagenomes that mimic the
characteristics of ancient DNA (Fig. S1). When comparing the differences between
nucleotide or protein alignments on the empirical fragment length distribution simulated
metagenome, MALTn-CDS (CDS only) classified 5.55-fold more total sequences than
MALTx (protein translation of CDS only) (Fig. 2). We investigated this phenomenon
further by assessing nucleotide and protein alignments using simulated metagenomes with
strict fragment lengths (30, 50, 70, and 90 bp). MALTx analysis was unable to align
sequences from the 30 to 50 bp simulated metagenomes and only aligned 33% of sequences
from the 70 bp simulated metagenome (Table 1). In contrast, MALTn-CDS aligned
86% of sequences at 30 bp (Table 1). As nucleotide alignments additionally provide the
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Figure 2 Percentage of reads assigned taxonomy using simulated metagenomes of empirical ancient
DNA fragment length against different MALT databases. Full-size K&l DOI: 10.7717/peerj.6594/fig-2

Table 1 Percentages of total reads assigned at different taxonomic levels with different read length

cut-offs.
Fragment length Reads assigned Reads assigned Reads assigned
total genus species

30 bp_MALTn-Genome 100 100 97

30 bp_MALTn-CDS 86 86 83

30 bp_MALTx 0 0 0

50 bp_MALTn-Genome 100 100 98

50 bp_MALTn-CDS 88 88 86

50 bp_MALTx 0 0 0

70 bp_MALTn-Genome 100 100 98

70 bp_MALTn-CDS 90 90 88

70 bp_MALTx 33 31 25

90 bp_MALTn-Genome 100 100 98

90 bp_MALTn-CDS 91 91 89

90 bp_MALTx 82 75 55
Empirical MALTn-Genome 99 98 97
Empirical MALTn-CDS 87 87 86
Empirical MALTx 16 14 10

additional opportunity to identify non-coding sequences, we also compared nucleotide
alignments to full genomes, rather than CDS. Nucleotide alignments including non-coding
sequences (MALTn-genome) were able to classify 6.19-fold more total sequences
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Full-size K& DOI: 10.7717/peerj.6594/fig-3

than MALTx for the empirical fragment length distribution (sevenfold and 9.7-fold more
sequences at the genus and species level, respectively) (Fig. 2; Table 1).

MALTnN taxonomic classifications are more accurate than MALTX
While MALTn can classify more sequences than MALTX, the accuracy of these
assignments has not yet been examined. We tested the accuracy of these assignments by
comparing them to the ‘ground truth’ (i.e. the actual composition of the simulated
metagenomes). Overall, MALTn more accurately reconstructed the simulated, empirical
length metagenome composition than MALTx (0.998; Pearson correlation; —0.48 sum of
log-odds scores between MALTn-CDS and actual metagenome) (Fig. 3). Even though
sequences below 50 bp were not classified, MALTx was able to faithfully reconstruct the
simulated metagenome, albeit with poorer abundance predictions compared to nucleotide
classifications (0.943; Pearson correlation and —6.66 sum of log-odds scores between
MALTXx and actual metagenome) (Fig. 3). MALTx misclassified more sequences, resulting
in 24 taxa being falsely predicted, whereas only 11 taxa were misclassified using nucleotide

Eisenhofer and Weyrich (2019), PeerdJ, DOI 10.7717/peerj.6594

| 8/24


http://dx.doi.org/10.7717/peerj.6594/fig-3
http://dx.doi.org/10.7717/peerj.6594
https://peerj.com/

Peer/

Table 2 Effects of deamination on taxonomic classification of empirical ancient DNA read-length

distribution.
Fragment length Reads assigned Reads assigned Reads assigned
total (%) genus (%) species (%)
MALTn-genome_03s 98.6 98.4 96.6
MALTn-genome_103s 98.4 98.2 96.5
MALTn-genome_203s 98.5 98.3 96.5
MALTn-genome_503s 97.7 97.5 95.7
MALTn-CDS_03s 87.4 87.1 85.5
MALTn-CDS_103s 87.2 86.9 85.3
MALTn-CDS_203s 87.2 86.9 85.3
MALTn-CDS_5008s 86.5 86.2 84.6
MALTx_03s 15.8 14.2 9.7
MALTx_103s 15.2 13.7 9.4
MALTx_2093s 15.0 13.6 9.2
MALTx_508s 14.5 13.1 8.9

(MALTn-CDS) (Table S3). By increasing the minimum support percent from 0.01 to 0.1,
these false predictions were eliminated for MALTn-genome and MALTn-CDS and
reduced to 3 for MALTx (Fig. S15). Additionally, classification accuracy with nucleotide
alignments was not impacted by fragment length, as MALTn accurately classified
sequences as short as 30 bp (Figs. S2 and S3).

We also tested how non-coding sequences can impact the accuracy of taxonomic
identifications. The addition of non-coding sequences to the reference database had a
limited effect on the accuracy of taxonomic classifications, as the MALTn-genome
classifications were almost identical to MALTn-CDS (0.999; Pearson correlation between
MALTn-genome and MALTn-CDS) (Fig. 3); however, fewer misclassifications at the
species level were identified using MALTn-genome (11 species for MALTn-CDS vs.
two species for MALTn-genome). Overall, these results suggest that MALTn classifications
are more accurate than MALTx both in providing fewer misclassifications and by
providing more accurate abundance predictions. Additionally, it appears that including
non-coding information in reference databases (e.g. MALTn-genome) may also reduce
misclassifications.

Deamination minimally affects alignment-based classification

We next tested the effects of deamination (a commonly observed form of ancient DNA
damage) on alignment-based taxonomic classification. We tested three scenarios of
deamination: light (10% 9), moderate (~20% ), and heavy (50% d;) (Table 2). Using the
empirical fragment length distribution, heavy deamination did not substantially impact
the number of sequences using MALTn (0.9% loss of sequences assigned at the species
level for and MALTn-genome; 1.3% for MALTn-CDS; and 9.2% for MALTx) (Table 2).
As expected, lower magnitudes of deamination had an even smaller impact (Table 2).
We also assessed the impacts of heavy deamination on the assignment of DNA sequences
of different lengths. Shorter (30 bp) sequences were more affected for nucleotide
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Figure 4 Percentage of reads assigned taxonomy using divergent and deaminated simulated
metagenomes of typical ancient DNA fragment length.  Full-size K&l DOI: 10.7717/peerj.6594/fig-4

alignments (9.53% loss of sequences assigned at the species level for MALTn-genome,
8.41% for MALTn-CDS; no alignments for MALTXx), but this effect was not observed for
sequences longer than 50 bp (Tables S4-56). Regarding taxonomic composition of

the empirical read length metagenomes, heavy deamination did not substantially increase
the percentage of misclassifications at the species level (0.06-0.07% for MALTn-genome,
0.29-0.30% for MALTn-CDS, and 2.42-2.48% MALTX). Deamination also did not
substantially affect taxonomic composition (Figs. S4-56). Overall, these results corroborate
previous findings that deamination minimally affects alignment-based taxonomic
classification (Velsko et al., 2018).

The influence of sequence divergence on taxonomic classification
The effects of sequence divergence on alignment-based taxonomic classification have
not yet been explored. To this end, we created divergent simulated metagenomes by
introducing random substitution mutations into the same reference genomes used in the
above experiments. We chose three different divergence magnitudes: 0.1% sequence
divergence (equating to roughly 10ky (1,000 years) of evolution), 1% (100ky),

and 10% (1,000ky), and added heavy (50% ;) deamination, allowing us to examine the
worst-case impacts of sequence divergence on taxonomic classification. Overall,
MALTn-genome, MALTn-CDS, and MALTx were able to effectively assign taxonomy
with minimal loss of alignments (<1% of sequences were unable to be aligned) at 0.1%
and 1% sequence divergence (Fig. 4). At 10% divergence (1,000ky), the influence of
divergence was more pronounced, as the percentage of sequences not assigned
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taxonomically (i.e. sequences with no alignments) increased from 2.28% to 25.1% for
MALTn-genome, 13.48% to 35.7% for MALTn-CDS, and 85.45% to 95.4% for MALTx.
Even with the loss of sequences assigned with 10% divergence, the taxonomic
classifications and abundances remained relatively stable (Figs. S7 and $8), although
protein alignments were more affected (0.944 Pearson correlation coefficient between
1,000ky composition and actual simulated metagenome composition for MALTn-genome;
0.944 for MALTn-CDS; and 0.825 for MALTX). As expected, shorter sequences were
more affected by sequence divergence and deamination (Fig. S9). Overall, our
simulations suggest that random sequence divergence of less than 1% minimally

affects alignment-based taxonomic classifications.

Reference database choice strongly influences taxonomic
classification

Because alignment-based methods are highly reliant on reference sequences available in
databases, we next sought to test the influence of database choice on taxonomic
classification of ancient microbial DNA. To this end, we constructed four different
reference databases from different sources: 2014nr, 2017nt, HOMD, and RefSeqGCS.
The 2014nr database contains the 2014 non-redundant protein BLAST database,
which was used in a recent palaeomicrobiology publication (Weyrich et al., 2017) and
represents the example of a database used with the MALTx method. The 2017nt
databased contains all sequences within the 2017 NCBI nucleotide BLAST database;
this is the default for BLAST searches on the NCBI website and does not include
chromosome-, scaffold-, or contig-level genome assemblies. The HOMD database
contains genomic sequences from the HOMD, which is a curated nucleotide database
comprised of oral-associated microbial species and includes all genome assembly levels
(complete genomes, chromosomes, scaffolds, and contigs). Lastly, the RefSeqGCS
possesses complete, chromosome, and scaffold level genome assembly levels from
bacterial and archaeal assemblies within the NCBI RefSeq. The RefSeqGCS database
also contains substantially more entries than the HOMD database (e.g. 47,713 vs. 1,362
microbial genomes for HOMD) with a broader diversity of entries (i.e. not primarily
oral taxa).

We first tested these different databases on the empirical read length simulated
metagenome with and without moderate deamination (~20% 9). The 2014nr performed
the worst, with skewed abundances, four false positives, and six false negatives (Fig. S10).
In contrast, the 2017nt, HOMD, and RefSeqGCS more accurately recapitulated the
simulated metagenome, with the exception of the HOMD, which could not assign reads to
Sphingomonas sp. MM1 (Fig. S10).

To test the effects of these different databases on the taxonomic classification of real
paleomicrobiological data, we aligned the sequences from four published dental calculus
samples (three ancient, one modern) (Weyrich et al., 2017) against the four databases
mentioned above. As expected, the MALTx approach using the 2014nr database assigned
the least number of sequences taxonomically, while the MALTn approach using the
RefSeqGCS database assigned the most sequences (Fig. 5). In addition, the highest
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Figure 5 Percentage of reads assigned taxonomy to different taxonomic ranks for deeply sequenced
published data. Clustered columns represent samples analysed using different reference databases.
Colours indicate specificity of assignments. Full-size K&l DOT: 10.7717/peerj.6594/fig-5

percentage of sequences assigned taxonomic classification was observed with the modern
sample when using nucleotide alignments with the RefSeqGCS database (80.8% sequences
assigned; Fig. 5); this was in stark contrast to average percentage of reads assigned to
three ancient oral metagenomes, where on average only 38.3% of sequences were classified.
In the ancient samples, the highest number of classified species was observed when
ancient sequences were aligned to the HOMD (Table 3), rather than the RefSeqGCS.
The higher number of species observed when mapping to the HOMD could be due to
either cross-mapping from environmental taxa (as it contains few soil/environmental
genomes) or a higher diversity of oral-specific assemblies. Taxonomic compositions

in the analysis were also markedly impacted by the database used (Figs. S11-S14;
Table S7). Several oral taxa within the HOMD and RefSeqGCS databases are not present
within the 2017nt database, such as Actinomyces dentalis, Bacteriodetes sp. oral taxon
274, Capnocytophaga granulosa, Corynebacterium matruchotii, Methanobrevibacter
oralis, Prevotella sp. oral taxon 317, and Pseudoramibacter alactolyticus. This is a
likely reason for the 2017nt assigning taxonomy to a smaller percentage of total
sequences across all samples (24.3%) when compared to the HOMD (33.4%)

and RefSeqGCS (38.3%). Overall, the RefSeqGCS database assigned the most sequences
taxonomically and contained the most diverse selection of reference genomes,
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Table 3 Number of genera and species identified in each MALT database.

Genus-level

Database: 2014nr 2017nt HOMD RefSeqGCS
CHIMP 46 57 35 52
ELSIDRON1 49 50 42 48
MODERN 23 32 28 29
SPYII 64 64 54 62
Average 46 51 40 48

Species-level

Database: 2014nr 2017nt HOMD RefSeqGCS
CHIMP 39 59 57 52
ELSIDRON1 42 53 73 69
MODERN 34 58 73 63
SPYII 87 86 74 77
Average 51 64 69 65

allowing for more efficient detection of both oral species and potential environmental
contaminants. Therefore, we chose the RefSeqGCS for subsequent reanalysis of
published dental calculus samples.

Reanalysis of published dental calculus data with nucleotide
alignment

To further test the performance of the RefSeqGCS database, we reanalyzed several
published ancient dental calculus samples (total of n = 24) (Weyrich et al., 2017), including
samples from an additional study (n = 2) (Warinner et al., 2014). We found that
MALTn with the RefSeqGCS database substantially increased the number of sequences
assigned taxonomically compared to published results (average of 64.2-fold increase with
MALTn against the RefSeqGCS vs. MALTx against the 2014nr; Table S8). Despite

the increase in sequences assigned using MALTn, the average percentage of unassigned
sequences remained relatively high (58.2%), although this was substantially lower than
MALTx (94.2%). The MALTn-RefSeqGCS analysis also identified new species in
ancient dental calculus specimens, including A. dentalis, Bacteroidetes sp. oral taxon 274,
Capnocytophaga granulosa, Corynebacterium matruchotii, Eikenella corrodens, Lautropia
mirabilis, M. oralis, numerous Prevotella species, Pseudoramibacter alactolyticus,

Slackia exigua, and Treponema socranskii. When a UPGMA tree was constructed using
Bray-Curtis distances, ancient agriculturalists were still generally found to cluster
independently from hunter-gatherers, with the exception of a single ancient agriculturalist
(LBK 1) (Fig. 6). However, the separation between the different types of hunter-gatherers
was less pronounced than previously reported (Weyrich et al., 2017), and several
samples with low oral signals did not fall within either cluster (e.g. Chimpanzee, Spy II,
and Afr SF1). Overall, these findings highlight how different analytical strategies can alter
the findings of ancient DNA studies and suggest that it will be important to revisit
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previously published datasets as reference databases become larger and analytical
techniques are improved.

DISCUSSION

Using both simulated and real data, this study demonstrated that nucleotide-to-protein
alignments currently struggle to assign taxonomy to the short DNA fragments typical
of ancient DNA. We found that nucleotide-to-nucleotide alignments using MALTn
can faithfully recapitulate simulated metagenomes with high accuracy even when
sequences are extremely short (30 bp), contain high levels of deamination, and possess
random sequence divergence corresponding to 100,000 years of evolution. We also tested
four different reference databases and find that database choice is an important factor
to consider for alignment-based taxonomic classification in ancient metagenomic
studies; however, we also find that reliable, whole genome information incorporated
into database usage drastically improves sequence mappability. Finally, we performed
an in-depth reanalysis of a previously published paleomicrobiome study, increasing
the number of sequences assigned taxonomically by an average of 64.2-fold and
identifying taxa previously unidentified in the original study. We hope that the findings
and suggestions provided in this paper will help inform future palaeomicrobiological
researchers.

We evaluated the performance of both nucleotide-to-nucleotide and nucleotide-to-
protein alignments for taxonomic classification and found that sequences shorter

than ~60 bp could not be aligned using a nucleotide-to-protein approach. This can limit
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the feasibility of nucleotide-to-protein alignments for some palaeomicrobiological studies
given that ancient DNA sequences can be typically shorter than 60 bp. Nucleotide-to-
protein alignments are limited by nucleotide translation, shortening the alignment length
by a third (e.g. a 60 bp nucleotide sequence = a 20 aa protein sequence) and yielding a
lower alignment score (bit-score). Given that the default bit-score threshold for

MALT is 50, most short sequences would struggle to obtain a sufficient score to pass
filtering. Additionally, amino acid scoring matrices can also influence the final score of the
alignment; the default MALTx scoring matrix is BLOSUM62, which optimized for
longer sequences (Pearson, 2013). The inability to align short sequences may also bias
taxonomic composition towards modern environmental and laboratory contaminant taxa,
whose sequences are typically longer.

Despite the 5.55-fold loss of sequences assigned using nucleotide-to-protein alignments,
the taxonomic classifications were relatively similar to the nucleotide alignments for
the simulated data set. However, nucleotide-to-nucleotide alignments lowered the rate of
misclassifications. These misclassifications primarily resulted from the lack of non-coding
sequences in the protein and CDS nucleotide databases, with misclassifications being
supported by sequences that were derived from non-coding genes in the simulated inputs
(e.g. tRNA, rRNA, etc.). Recent estimates from 2,671 complete bacterial genomes place the
average percentage of non-coding DNA at 12% (Land et al., 2015); this represents a
non-trivial amount of information that should be harnessed when using reference-based
taxonomic alignment. Finally, we also demonstrated nucleotide-to-nucleotide alignments
using MALT can faithfully recapitulate simulated taxonomic composition using
sequences as short as 30 bp, highlighting the applicability of nucleotide-to-nucleotide
alignments for ultra-short fragments typical of palaeomicrobiological studies. Pending
further optimization to nucleotide-to-protein alignment methods, we currently recommend
using a nucleotide-to-nucleotide alignment approach for taxonomic classification of
short length ancient DNA and the inclusion of non-coding information in reference
databases to reduce potential misclassification and to increase the amount of information
used in alignments.

In this study, we tested the impacts of deamination on shotgun metagenomic taxonomic
classifications. Velsko et al. (2018) previously found that deamination (~25% &s) minimally
affected taxonomic classification, and our results corroborate their finding using
three different deamination rates (10%, 20%, and 50% ds). We demonstrated that even
high levels of cytosine deamination (50% 0s) did not substantially impact taxonomic
classification in longer sequences; however, we observed a loss of ~15% of the species level
classifications when analysing 30 bp DNA sequences with this level of deamination.
This suggests that the use of uracil-DNA-glycosylase (UDG) (Briggs et al., 2010)—an
enzyme that cleaves deaminated cytosines to reduce the rate of ancient DNA errors—may
not be required for microbial taxonomic classification of ancient remains, as this also
reduces the total number of sequences that can be analysed. Additionally, treatment with
UDG—either full or partial (Rohland et al., 2015)—substantially reduces a key source
of ancient DNA authentication, which is critical in palaeomicrobiological studies to verify
ancient taxa from modern contamination. The lack of such authentication in
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palaeomicrobiological research has already led to contentious claims (Austin et al., 1997,
Weyrich, Llamas & Cooper, 2014; Eisenhofer, Cooper ¢ Weyrich, 2017; Eisenhofer ¢
Weyrich, 2018). Given the minimal impact of deamination on alignment-based taxonomic
classification, and the importance of deamination as a measure of ancient DNA
authenticity, we recommend against the use of UDG for future palaeomicrobiological
studies that focus on alignment-based classification.

Sequence divergence is another characteristic of ancient DNA that can render
taxonomic classification difficult. We tested three substitution-based sequence divergence
simulations and found that rates of random sequence divergence corresponding to
<100,000 years unlikely to alter palaeomicrobiological classifications. A substantial
reduction in the number of identified sequences was observed for samples with sequence
divergence simulated at one million years (~20% loss of sequences assigned
taxonomically). However, this is at the theoretical limit of DNA preservation (Allentoft
et al., 2012) and is thus unlikely to hamper most palaeomicrobiological studies. We also
found that the shorter sequences were, the more they were affected by sequence
divergence and deamination, and this can intuitively be explained by the reduction in
raw alignment score due to mismatches to the reference. As such, the use of new molecular
techniques to obtain even shorter DNA fragments (e.g. <25 bp (Glocke ¢ Meyer, 2017))
may prove especially difficult to classify taxonomically given the combined effects of
sequence divergence and deamination. Overall, we found that alignment-based taxonomic
classification appears robust against magnitudes of random nucleotide substitution that
could be observed in ancient DNA <100,000 years old. Despite this, we did not test
the impacts of insertions, deletions, and recombination on taxonomic classifications;
all would likely further hinder taxonomic classifications. Future simulations accounting for
differences in synonymous/non-synonymous mutations may give amino acid alignments
an advantage, given the excess synonymous mutations observed due to purifying
selection (Ochman, 2003), although amino acid alignment scoring would still have to be
optimized to deal with short DNA fragments. Additionally, future studies simulating
the effects of insertions, deletions, and recombination on taxonomic classification
are warranted.

We found that database choice had a major impact on both the number of sequences
that were assigned taxonomically and the taxa classified by MALT. Velsko et al. (2018)
previously observed biases in databases used between different taxonomic classifiers,
and our study sought to test the impact of different databases within a single taxonomic
classifier, MALT. The 2017nt BLAST database performed poorly compared to the HOMD
and RefSeqGCS, assigning on average 33% fewer sequences taxonomically and lacking
numerous key oral taxa. This is likely because the 2017nt BLAST database does not contain
draft, unfinished bacterial genomes assemblies, which is a major limitation for ancient
dental calculus research given that some important oral taxa currently have only
chromosome or scaffold-level assemblies, such as A. dentalis, Bacteroidetes sp. oral taxon
274, Capnocytophaga granulosa, Corynebacterium matruchotii, E. corrodens, L. mirabilis,
M. oralis, numerous Prevotella species, Pseudoramibacter alactolyticus, S. exigua, and
T. socranskii. While the HOMD database contained substantially fewer reference
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sequences compared to the RefSeqGCS (1,362 vs. 47,713, respectively), it performed
comparably regarding the number of sequences assigned from ancient dental calculus
samples. However, using the HOMD database alone for taxonomic classification of ancient
dental calculus can be problematic, as it does not contain many environmental or
laboratory contaminant taxa that are typically present in ancient samples, such as
Sphingomonas sp. MM1, which could not be assigned from the simulated metagenome.
These environmental and laboratory contaminant taxa allow for the quantification of
contamination and competitive alignment, which can prevent false positive assignments
(Key et al., 2017). Overall, the larger diversity of the RefSeqGCS database increases its
ability to classify the most sequences taxonomically, so we would recommend it over the
others tested for future palacomicrobiological studies. An important caveat to using RefSeq
references is that some uncultured organisms can be underrepresented. For example,
searching ‘Saccharibacteria’—an important oral phylum (formerly TM7)—in the NCBI
Assembly yielded 153 GenBank entries, and only two RefSeq entries (October 2018).
While greater diversity is typically desirable in a reference database, further work is needed
to assess and curate the quality of reference assemblies, especially of scaffold- and
contig-level, to ensure reliable and accurate alignment-based taxonomic classification
(Parks et al., 2015). There is also scope for a concerted effort by palacomicrobiological
researchers to work together in constructing a curated, regularly updated reference
database. This could help foster reproducibility and set a standard for future work in the
field, similar to what has been accomplished by the HOMD for oral microbiome
studies (Chen et al., 2010).

We also performed a reanalysis of previously published ancient dental calculus
data from (Weyrich et al., 2017) to test if our in-silico findings were true for real data,
explore the proportion of sequences currently classifiable, and see whether the
relationships between samples changed when using the RefSeqGCS database. Nucleotide
alignment against the RefSeqGCS database performed considerably better compared to
protein alignment against the 2014nr, with an average 64.2-fold increase in the
number of sequences assigned taxonomically. As expected, this increase was higher
for samples with shorter mean fragment lengths and highlights the importance of using
nucleotide-to-nucleotide alignments to more accurately reconstruct ancient samples.
Despite the substantial increase in the number of sequences aligned, the average number of
sequences that did not have any alignment was still 58.2%. When compared to the
latest extension to the human microbiome project where the average number of sequences
without alignment was ~25% for 265 supragingival plaque samples (Lloyd-Price et al.,
2017), this suggests that substantial reference bias exists for ancient calculus samples.
This is not likely due to methodological differences between studies, as the
modern calculus sample we analysed in this study (European descent) had a similar
percentage of its sequences without alignment (19.4%) compared to ~25% for the
(Lloyd-Price et al., 2017) study. One hypothesis for this finding is that modern reference
databases are missing many oral microorganisms that were present in historical and
ancient humans. Additionally, given that most modern microbiome studies and microbial
genomes assembled are from European/American individuals (Consortium, 2012;
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Lloyd-Price et al., 2017), current reference databases are likely missing oral microbial
diversity from non-Industrial, non-Caucasian, or ancient human populations.
Another possibility is that DNA contamination of dental calculus samples is from ancient
or modern soil microorganisms that do not currently have reference sequences. Regardless
of the cause, additional steps could be taken to improve the number of ancient DNA
sequences that can be taxonomically identified. For example, de novo assembled genomes
from these ancient samples could be used as reference sequences for further alignment-
based taxonomic classification. Such tools currently exist (Imelfort et al., 2014), but their
performance on short and degraded ancient DNA is yet to be determined. An alternative
and complementary approach is to obtain a greater diversity of high-quality reference
genomes from modern samples, including from non-Caucasian individuals. Until we can
comfortably assign a higher proportion of ancient DNA sequences taxonomically, we
recommend that palacomicrobiological researchers report the percentage of unassigned
sequences when classifying taxonomy and are aware of the fact that missing references can
increase the rate of misclassifications (Warinner et al., 2017; Velsko et al., 2018).
Database sizes are a limitation for the currently implemented algorithms in MALT,
as MALT uses large amounts of memory (e.g. >1 TB of RAM) when aligning sequences
to the 2017nt and RefSeqGCS databases, and these requirements will increase as more
genomes are added to databases. We were not able to investigate eukaryotic or viral
classification in ancient metagenomes due to memory constraints, and instead focused on
prokaryotes, which account for >99% of DNA in ancient dental calculus (Warinner,
Speller & Collins, 2014; Weyrich et al., 2017). A possible solution may be better database
curation, for example, through deduplication of the same strain with multiple
entries, which could be accomplished using a sequence similarity clustering-based
approach. Additionally, future algorithmic refinements in database compression may
alleviate this issue. Ultimately, database choice is an essential facet of alignment-based
taxonomic classification, and we urge researchers to carefully consider the pros and
cons of different databases and how they can affect their findings. Additionally, database
utilisation is a fluid issue; as more reference sequences are generated, reanalysis of
palaeomicrobiological datasets will be important to reassess past interpretations and
findings.

CONCLUSIONS

Using both simulated and real data, this study demonstrated that nucleotide-to-protein
alignments currently struggle to assign taxonomy to the short DNA fragments typical
of ancient DNA. We found that nucleotide-to-nucleotide alignments using MALTn

can faithfully recapitulate simulated metagenomes with high accuracy, even when reads
are extremely short (30 bp) and contain high levels of deamination and random
sequence divergence corresponding to 100,000 years of evolution. We also tested four
different reference databases and find that database choice is an important factor to
consider for alignment-based taxonomic classification in ancient metagenomic studies and
that the application of full microbial references genomes within nucleotide alignment
strategies currently produces the most robust results. Finally, we performed an in-depth
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reanalysis of previously published paleomicrobiome studies, increasing the number of
reads assigned taxonomy by an average of 64.2-fold and identifying taxa previously
unidentified in the original study. We hope that the findings and suggestions provided in
this paper will help inform future palaeomicrobiological researchers.
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