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ABSTRACT

Thermal regenerators have been widely used in metal
reduction and glass furnace industries for well over past
150 years, With the renewed interest in gas turbine and
Stirling engines for land transport, it has become more
desirable and necessary to study regenerative heat

exchangers (i.e., therwmal regenerators),

In this thesis on Digital Simulation of Thermal
Regenerators; at first the basic principles and industrial
significance of thermal regenerators are reviewed, A
comparison between a recuperator and a regenerator is
presented and then an outline of the scope and purpose of
this work is presented. Here it is noted that early efforts
are directed towards determination of thermal efficiency

which is a useful parameter towards the convergence of

method of solution,

The second chaptcer presents the physical assumptions,
mathematical model and review of previous theories in
regenerators, In this connection at first the "Open"
methods of solutions are looked at, Then a number of
"Closed" methods arc reviewed and it is noted that Nahavandi
and Weinstein's (NW) closed method stands out to be the
most reliable of the closed methods, It is also noted

that open methods are in general very time consuming and



may not give as accurate results as closed methods, Hence
o closed method based on NW's work was required %o be

developed,

Therefore, the third chapter is devoted to development
of a new method of solving the regenerator problem, This
new method although based on NW's method however avoids
the use of quadrature formulae (used by W to evaluate
complicated forms of Bessel functions) and uses numerical
inversion of Laplace transforms, The method developed
considers a general, non-symmetric, unbalanced regenerator
whereas it is noted that NW's method was developed for a
balanced, symmetric thermal regenerator, This proposed
method is developed in terms of two normalized parameters
q and z-scales separately. This was required as in the
first case of g-scale the matrices to be inverted had terms
which could become very large for large values of g. SO
s-scale where zeg [0O,1] was esmployed thus avolding lack of
precision and other prbblems as reported, It should be
noted that full formulae for the various temperature
profiles and other required paraneters such as thermal

efficiency are derived in this chapter for the two scales

considered.

The fourth and final chapter describes the computcr
programs written and compares the results obtained, It

is found that the results obtained compare very favourably
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with those obtained by earlier workers such as Willmott and
some of the results concerning the limiting steady-state
profile are also found to be in agreement, After an
analysis of ill-conditioning it is observed that ill=-
conditioning experienced by Willmott through Iiliffe's
method does not occur with the proposed method for the same
parameters, fesults of computer programs for single and
double precisions using ¢ and z-gcale are compared and

it is concluded that the proposed method being relatively
superior than the existing methods reviewed will be useful
in calculation of temperature profiles, thermal efficiency,
etc, This work also includes a finite stage method which

was developed earlier and is presented in Appendix A4,
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NOMENCLATURE

regenerator heating surface area (m?)

specific heat of hcat storing solid matrix
(J/Kg, deg C)

heat transfer coefficient (W/m?, deg C)

bulk heat transfer coefficient (W/mz, deg C)

length of regenerator (m)

mass of heat storing solid matrix (¥g)

massof fluid resident in regenerator (Kg)

length of period of operation (sec)

specific heat of fluid (J/Kg, deg C)

temperature of solid matrix (deg C)

fluid temperature (deg C)

normalized solid temperature (dimensionless)

normalized fluid temperature (é¢imensionless)

stcady state fluid temperature (dzg C)

steady stabte solid temperature (deg C)

flowrate of fluid through regenerator (Kg/scc)

distance from regenerator entrance in direction
parallei to fluid flow (m)

time (sec)

normalizcd distance; z = %/L

normalized time; © = y(W/m)

the number of transfer units or reducead length

parameter; A = hA/(WS).
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) the period of a cycle

o the ratio of thermal capacitance of packing to
that of fluid held in regencratorj = MC/(mS).

=2z

= (2/a)e

thermal officiency

(= TR c I < B

thermal ratio

Superscripts

! refers to hot period

i refers to cold period

Subscripts

in refers to fluid entrance

out refers to fluid exit



CHAPTER 1: INTRODUCTION

The Regenerative Heat Exchanger was first proposed by
Stirling in 1816 in connection with his regenerative hot-
air engine. Since then, the thermal regenerator has been
widely used for the pre-heating of the blast for metal
reduction furnaces and for the pre-heating of the
combustion air for glass furﬁaces. With the possibility
of gas turbine engines and Stirling engines now being
explored as alternatives to the internal combustion engine
for land transport, there is a renewed interest in the
regenerative heat exchanger due to promise it shows in the

effecting of fuel economy.

In this chapter, we first review the basic principles
of Thermal Regenerators (Regenerative Heat Exchangers)
and their industrial significance. Then a comparison
between a regenerator and a recuperator is made. This is

followed by the scope and purpose of present work.

1.1 Basic principles and industrial significance of

thermal regenerators:

A thermal regenerator is a device which increases
the efficiency of an industrial operation by storing
'waste' heat produced at one stage of the process and
returning this heat to the system when required at a
later stage. It effects the transfer of heat hetween two

fluids, generally gases,



The simplest form of a thermal regenerator consists
of a heat retaining solid called a 'matrix' or 'chequer-
work', The method of operation of regenerators is
cyclic. A hot gas is passed through the heat absorbing
(and storing) matrix for a period of time, The hot gas
is then turned off at the end of this ‘hot period! with
the matrix now holding the heat transferred from the
hot gas.s This heat is then used to raise the tempe-
rature of a cold gas which is passed through the matrix
in the opposite direction to the flow of the hot gas
earlier, When the cold gas is turned off the end of the
'cold period! is reached. The total time thus involved
in the hot period and cold period is known as a 'Complete
Cycle' of the regenerator. These regenerators are termed
'Counterflow' since hot and cold gas flow in opposite

directions.

It must be noted here that it is possible to find
regenerators in which the two gases flow in the same
direction, called 'Parallel Flow' regenerators. Where
the gases flow at right angles to each other the regene-

rators are said to be 'Cross Flow'.

A complete cycle of operations consists of a pair
of successive hot and cold periods, and after a suffi-
ciently large number of such cycles, the temperature
behaviour of the solid matrix becomes periodic, the

period being the duration of the cycle. At this stage,



the regenerator is said to have reached ICyclic
equilibrium' which is independent of the initial tempe-

rature conditions within the regenerator.

Regenerators have remained significant in the steel
industry for sometime. They are used to pre-~-heat the air
for both open hearth and blast furnaces to improve the
efficiency of the steel and iron making processes. The
regenerators connected to a blast furnace are called
1Blast Heaters'. Two or more of these blast heaters
working in conjunction can heat hourly 200,000 cubic
metres of air, to approximately 1100°C cold gas (1500°C
hot gas) inlet temperature. These regenerators are
associated with high temperatures. For medium and low
temperature regenerators, the packings i.e., solid matrix
are very often metallic. They are designed to maximise
the area of surface available for heat transfer whilst
keeping the volume of the regenerator down to reasonable
proportions. Sheet metal strips and beds of spheres
arranged parallel to each other are two simple examples
of such packings. These metallic regenerators are very
efficient. In low temperature regenerators with a height
of only 4 metres, a heat exchange efficiency of 98 to 99
percent is attained whilst in blast furnace stoves the
efficiency is only about 80 to 85 percent. A Staggered
Parallel or a By-Pass-Main system is normally used in

blast furnace stoves in order to ensure a constant blast



temperature., Regenerators are also being used in
industries making use of large boilers, gas turbine

engines etc.

1.2. Regenerator vs. Recuperator:

In a recuperator i.e., an ordinary heat exchanger two
flulds of different temperatures flow continuously in spaces
separated by a wall, and they exchange heat by convect-
ion at and conduction through the wall., On the other hand, a
regenerator is built up of solids, which alternately
store internél energy taken from the warmer fluid and release
it to the colder fluid while the fluids pass, one at a time,
each being in contact with the solids during a certain
period of time. A diagrammatic representation of both

a regenerator and a recuperator is presented in Figure

(1.1).

The recuperator is operated continuously i.e., two
gases are passed continuously along their appropriate
channels and when the heat exchanger has been running
for a sufficient length of time the temperatures of the
separate output gases are constant. In contrast by the
very nature of its construction it is not easy to
provide even a continuous supply of heated gas using a
single regenerator., At the very least two regenerators
would be required to provide continuous heated gas.
Even then it is impossible to operate the regenerators

in order that the heated gas be constant in temperature.



In the recuperator, after operating for sufficient
time, the temperatures within the heat exchanger become
independent of time and are functions only of position
down the bed (or body) of the recuperator, measured from
the gas entrance. On the other hand, after the regene-

rator has been operating for a sufficient length of time
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Figure (1.1) Becuperator and Regenerator both in
counterflow




under constant conditions, the reversing flows of the
hot and cold gases through the same channels cause the
temperatures within the regenerator to become periodic.
The temperature of the gas or solid at any point in the
regenerator is thus a function not only of position but

also of time.

Thus, in the regenerator the heat is transferred
under unsteady state conditions, namely, in a cyclic
process, whereas the recuperator generally operates under

steady-state conditions.

In the design and control of regenerators in blast
furnace industry most work to date has been done assuming
constant flowrate of gases, in order to compute the
temperature distributions etc. when cyclic eguilibrium
has been reached. However, since heat transfer co-
efficients are strongly dependent on flowrate, the
parameters of the system change during a blow if the
flowrate is variable. In blast furnace stoves either
for Staggered Parallel or By-Pass-Main systems a variable
cold flowrate is necessary in order to ensure a constant
blast temperature, Hence it is of interest to look

into variable mass flow situations in regenerators.

1.3 Scope and purpose of present work:

Here we give a brief outline of present work, a

detailed treatment follows in later chapters.



a) Early efforts are concentrated towards the
determination of & real number the 'Thermal Efficiency'.
Thermal efficiency is useful to indicate whether or not

convergence has occurred,

'Open! methods such as those of Willmott [23,24]
require thé equations to be solved repeatedly for a zero
initial temperature distribution until the cyclic
equilibrium has been achieved or at least until the
computed thermal efficiency is constant for successive
cycles. Although the true criterion for cyclic equi-
librium is that temperature profiles at identical stages
of successive cold (or hot) blows should be the same to
a specified accuracy, the achievement of constant thermal
efficiency in successive cycles is also a good indication
that equilibrium has been achieved. The open methods
are in general very time consuming since many cycles may
be required for convergence to take place for which
computational time may be excessive. This is where
thermal efficiency calculation is useful as after solving
the equations only thermal efficiency is computed and
this is done for successive cycles without obtaining the
actual temperature profile and when thermal efficiency
remains constant for a number of cycles, only then the
temperature profiles are obtained. This thermal effici-
ency work has been employed mainly in obtaining solid
(chequerwork) temperature distributions and fluid exit

temperature time histories for use in control of blast



furnace stoves by Jeffreson [8]. We also note that
Jeffreson [8] method has been developed to allow constant
mass flow solutions to be transformed to variable mass
flow i.e., constant mass flow solutions have been used

to obtain the solutions for variable mass flow conditions.

b) More detailed review follows in next chapters,
but here we note that the main object of the present work
has been the investigation of and extensions to 'closed'
method of Nahavandi and Weinstein [17] which requires

simultaneous solution of (analytical) integral equations.

As noted above 'open' methods in general are very
time consuming and may not even converge sometimes and
although closed methods are 'difficult'! analytically,
once a solution is obtainable they may be considered to
be more efficient, hence the interest in the closed

method of NW (Nahavandi and Weinstein) [17].

The method developed here based upon NW method has

following main features:

(1) It extends NW method to general unbalanced non-
symmetric case, which is a more appropriate con-
sideration since NW method is only applied to a
'Balanced Symmetric! regenerator (to be defined in
next chapter). The need for this extension arises
from the fact that most industrial regenerators

are unbalanced and non-symmetric.



(ii) NW method relies upon computation of special
functions like Bessel's function whereas this
extended method avoids these calculations by
employing Numerical Laplace inversion. We note,

however that this method is also not totally

'trouble free!,

(iii) The proposed method extends NW method to permit
the generation of exit fluid temperatures at

cyclic eguilibrium.

In connection with NW method some computational

problems reported by Willmott [26] are also investigated.

¢) Finally, we mention that an earlier attempt was
made to obtain closed form solution using a finite stage

model; this is outlined in appendix.
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CHAPTER 2: PHYSICAL ASSUMPIIONS, MATHEMATICAL MCDEL AND

REVIEW OF PREVIQUS WORK

2,1, Physical assumptions and mathematical formulation

of model:

2.1.1. Assumptions:

In the mathematical treatment of the regenerator
problem, a number of simplifying assumpbions have been
made and used successfully e.g., Nusselt [18], Willmott

and Thomas [26], Heggs and Carpenter [4] etc.

Before going on to mathematical treatment of the

regenerator model we list the physical assumptlons used:

1) Fluid thermal cepacitance is zero at the end of each period,
2) The thermal conductivity of the solid is zero in the
direction parallel to the fluid flow.
3) The thermal conductivity of the solid is infinitely
large in the direction perpendicular to the fluid flow.
4) The thermal conductivity in the fluid is small in the

direction of fluid flow,

The first assumption is quite Jjustified because for
most practical regenerator work the thermal capacitance
of the solid is so large relative to that of the fluid
(the ratio being about 10% usually) that the rate of

accumulation of heat in the fluid may be ignored.

The last three assumptions are of great practical

significance as the regenerators employed these days are
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such that there is no appreciasble teumperaturc difference

in the cross section. So the thermal conductivity of

the solid is infinitely large in direction perpendicular

to the fluid which is our assumption 3). Jeffreson [32]
points out that Hauscn [1] and others ruport that internal
packing resistance plays ho part in the dynamics of the
system since heat has no time to penetrate into the packing
especially when psriod is small. This means that assumpt-~

ions 2) and 4) are well Jjustified,

2,1,2. Mathematical formulation:

We now derive the regenerator differential gquations
from first principles based on Jeffreson [14] using symbols
as defined in Nomenclature, Additional symbols are defined

as they occur.

For a thermal balance over f£luid phasc between lengths

x and x+Ax along the regensrator:

Rate of heat input at distance =x and time ¥ due

to convection is W.S.tl(x,y) J/sec or Watts
where t;(x,y) is temperature of fluid at distance x obtained
at btime y.
If fluid thermal conductivity is defined as:3

Ke 3/ (sec~-m2~C/m) or ke W/ (m~00C),
the rate of heat transfer at distance x due to fluid
conductivity will bes

2t

Ac kf ,:m;L Watts
OX

where & ig the arca avaeilable for fluid f1low normal
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to flow direction. [AC = m/(rf.L), where r. is the

density of fluid in the regenerator at any time].

Supposing the temperature gradient atl/ax is
positive, then heat transfer due to conduction will be
against the fluid flow i.e., Rate of heat in to volume

of gas between X and x +Ax due to conduction and con-

vection will he:

Wﬁt (x,5) - A kf 01 (x,5) Watts oo (2.1g2+€1))
6::

Similarly rate of heat flow ouui at x +4x will be:

ot
oKp 2 Y ) Watts
G x -
oo (2.1.2.(2))
or =
E o . ol i
if  tfx +Ax,y) T t{x,y) + — (X,7)
(AX X —E
dt1 . Ot !
and — (x +Ax,y)> (x,5) + —5 o (XGY)‘J- Ax
X Ox Sx° X

S NN

the net rate.of heat INPUT due to convection and

conduction is then approximately:

ws Ak %l [\IStl+ws \t,g Ak 3 %1
] —_— [ —_—AX - R
17 %er 3x Sx fax
2
t
- Ak, §-——-l£':~x]
dx2
2
oty 61
= -WS Eoa—— ﬂ)X + Ackf '%'—&X e (201.2.(4))

O x > %2
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where —3  and —  &gare evaluated at distance X.

2
A %y
X2 X

&

Besides this, heat will be transferred from the solid to

the fluid at the rate of:
A
h—&x (T - % Watts .. (2.1.2.(5))
L

The difference between the rate of heat input and the
rate of heat output must be the rate of accumulation of
heat in the fluid stored between x and x +HX, a Mass

of max/L Kg i.e.,

\ 2
a2t t A _
WS u—lé.x 4+ A kf o lAX + h —Ax(’l‘l— tj
Ox ¢ D x? L
' m T
= = AX S .a_..l
L by

multiplying this equation by L/&x, we obtain:

2
2% ot o1
A k - wsn Lt na(my - t) = WS —
CfLBx2 ox (- =) - Sy

oo (2.1.2.(6))

For solid phase a similar treatment of heat balance

over the solid between x and x +Ax gives:

2; '

2T !
- hA(ty- T,) = MC —

ox2 . Sy

Ask L
= X
as there is no convection term present.

.o (2.1.2.(7)),
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2.2, Vormallzdtlon of eguations

e

Define normalized distance z = x/L, x = L/z;

normalized time © = y(W/m); vy = (me/W);
denoting steady state teuwperatures with a -~ over them;
using! for hot blow and " for cold blow températures; and

by defining normalized fluid temperaturc ass:

.,....”

6(2,0) = [by€xey) = E .1/ 1 8 4 = & 5]
[i.¢.; O £ t(2,8) € 1.0]

where ti e represents the steady state normal (or design)
inlet temperature for hot blow, and ?1 ;p Cepresents the
steady state normal (or design) inle® temperature for cold
blow; alongwith similer normalization for solid temperature

asse

T[Z,e) = [T (Y,Y) - 1 ll’l] / |— —IL in fiy 3E‘;_ iIl]

and substituting into (2.1.2.(6)) we obtain

bk 32 5% 3%
S i WS ———= + ha(T = t) = WS —=
i oz Sz o X)
oL
1 2%t 3¢t __ 3t ‘
= 5 - +A(T - ) = e no (252 800)
Pf Dz Sz o6
where
1 Ak hA
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Pf is called the 'flu;d Peclet number' and A represents twice
the 'number of transfer units! (or 'reduced length
parameter'). Similarly substituting into (2.1.2.(7))

we obtain:

21 T
R KNG SR L e (2.2.02))
P, oz

where P_ is the 'solid Peclet number' and « = MC/(aS).

Note that A/a = (hA/MC)(m/W) is independent of fluid
specific heat. 8o although S —3 0, ¢ —> w0, A/«

can be kept finite.

Now for zero fluid conduction l/Pf = O, SQ_(2.2.(1))
becomes:
t 5t
?‘(T - t) = '_a_- + ~— P (2020(5))
20 Sz

Hence using normalization based upon Hausen's normaliz-

ation as follows:

A A
a =Az, r = =(0-32)% Lo
o «

t
because for time values of interest © »> z and ——
being very small is ignored.

Hence, we have for (2.2.(3)):
>t ~ X
AMT - t) = — i.e., A(T(q,r)~-t(q,r)) = —(q,r)
Az <z

as z and © are arbitrary.



16

So,
L o°F 7 t(g,r)
—ar— E;; (g,r) = T(q,r) - gq,r
but,
1 a‘b 1 ot o4
S as (W s X T @) 3o
1 At ob
= mp— — (qyr)e A = =— (q,r).
A Bgq dq
Hence,
at
i (ayr) = T(q,r) - t(g,r) .. (2.2.(4))
q

Similarly for the solid: Zero conduction implies that

1
—— =0 and (2.2.(2)) becomes:

s

AT
At -« T) = o =
Do
or
o b{D
—_— = - oo (2.2.(5))
A de
ioen,
a AT
> ag (@) = t(q,r) - T(g,r)
since g9 =2z, r=(A/a)0 and 2z, are arbitrary
as before, but
[v4 5(D( a m ( A
—_ r) = —— —— r
Y o q,r) ™ 9 o) >
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Hence

be

— (g,r) = t(q,r) - T(q,r) oo (2.2.(6))

Or

We notice that with normalized distance z, we have
0<£z&1 since z = x/L. Whereas Hausen's normaliz-

b

ation uses q = A z for the distance parameter i.e.,
0 £ q&*. The advantage in using q rather than =z
variable is that one obtains rather simpler set of
differential equations (2.2.(4)) and (2.2.(6)) to deal
with as compared to the equations (2.2.(1)) and
(2.2.(2)) where the second order terms in(2.2.(1)) and
(2.2.(2)) are not involved because of conduction being
zero. ©imilarly normalized time © has been utilised

to obtain Hausen's »r ©parameter in order to obtain

simpler equations (2.2.(4)) and (2.2.(6)).

2.3« Thermal efficiency and thermal ratio:

Define efficiency by

. Heat out in cold blow above datum (t;n)

Heat in during hot blow above same datum

Since the exit fluid temperature during cold blow tgut
varies with time, the mean exit temperature:
1 TC”
tgut i G g tgut dr must be used in
J
0
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calculating E; ie.e.y

H it ) H 1]
we (tout m tin)P

il

1 g1 1 _ M 1
w's (tin tin)P
where P" and P' are periods in seconds for cold and

hot blow respectively. So, in terms of normalized

parameters:

t“ - _t_“

h'A ‘N"S“ h"P“

out m in
5 Wwgt h'A n'Pr %! - Y
' in in
1] 7]
Sl m Sout m = Yin
= v " L (2-_5'(1))
{ 1 -
A T tin it

in

Willmott [25] defines a 'hot side thermal ratio' as:?

1 - 1
tin tout m
1 =
Rlog = T e (2.3.(2))
in in

and a 'cold side thermal ratio! as:

H i

5 out m in
RREG = i (4 (205'(3))
t! - t.
in in
Hence for N = A'"', n' = 1" thermal efficiency can be

compared with Willmott's cold side thermal ratio.

Efficiency in terms of solid temperature distributions:

We know that the heat removed from the packing

during the hot blow is equal to the difference between
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the total heat stored at the beginning of the cold blow

ioeo, 1

MC S 7 (z,0)dz Joules
0

and that left at the beginning of the hot blow. So,

1c 1o
o[ f1"(2,0002 - 1 (2,0)a3] (2.3.(4))
WISIR! (8], - bY,)

2.4, Single blow solutions of Anzelius and Nusselt:

The stage of infancy of the theory of regenerators
can be traced back to middle 1920's when consideration
was initially devoted to the 'Single Blow' problem.

Here the fluid is assumed to flow through a heat storing
solid matrix in one direction, the problem being to
determine how the solid and gas temperatures vary with

distance down the bed for the duration of the "Blow'.

Anzelius [1A] in 1926 and then Nusselt [18] were the

Pioneers who tackled this problemn.

Anzelius derived the 2-D equations governing the

heat transfer in the following form:

&
L7 op_g e (2.4.(1))
A9
T
é_ = t -7 . (2-4.(2))

dr )
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To solve these, a transformation was proposed:

+
Agyr) = eTF(t - 1)
and this resulted in the equation:
2
3 A
dqdr

The notation in use here is not that of Anzelius,

- A

but g and r are dimensionless parameters comparable

with those described earlier.

Assuming an initial solid temperature distribution

T(q,0)
t(0,r) = %

1

To and the entrance fluid temperature

in? the closed solution was derived as:

q
-1 )e" é e‘SJO(zi JBT )ds

.. (2.4.(3))

t(g,r) = 6. - (%

in in

and -
T(g,z) = T - (5, =T )e 3 g ™57 _(21 y5T )ds
ee (2.4.(4))

where JO(X) is the Bessel Function of order zero and

is real for a pure imaginary argument.

Nusselt extended Anzelius' work by first establish-

ing the simultaneous equations:

3T hA
E;; i - (t - T) .. (2.4.(5))
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2t ha
—— — S———— (T b t) LA (204-(6))
oq WSL

with the boundary conditions t(0,r) = t, and

T(q,0) = £(q).

In deriving above equations Nusselt did not take
into account the heat content of the fluid resident in
the regenerator packing i.e., solid. This is reasonable
when the period of operation of the regenerator is
measured in hours (i.e., large periods), however for
shorter periods (measured in minutes) a term must be
included in the equations to account for this resident
heat, The term to be included is mS/(WSL)(Dt/dr)
which becomes significant as P is such that m

approaches WP,

However, in solving (2.4.(5)) and (2.4.(6)) Nusselt
set hA/(MC) = p, HRA/(WSL) = n and eliminated T for
the equations (2.4.(5)) and (2.4.(6)) yielding:

2
ot atb O
+P_ +n-——— =] O ) (2.40(7))
dadr dq or

Using Riemann's method (2.4.(7)) was integrated to

obtain the solution:

g
t(q,r) = e3P [ J (21 yBGF ) + n g e"%t(s).
. —— r ps i
Jo(2l:J§nr(q—s))ds + pto,% e "J (21,/png(r-s)ds]

.o (2.4.(8))
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Differentiation of (2.4.(8)) with respect to y and
substitution into (2.4.(6)) yields the solid temperature

profile as follows:

T(qyr) = £(q)e™™ - e "I \prAuq) 10, (2iyBEAT) +

+ i ensf(s)dpnr/(qégj iJ1(2id£HEZE:E3)ds +

r e e e
+§) P® \fon(a=s)/q 13, (21/pna(r=s))ds]
.. (2.4.(9))

The solutions t(q,r), T(g,r) are heavily dependent
upon evaluation of Bessel functions Jo(x) and Jl(x).
They involve lengthy calculations which were not practic-

able in an era prior to that of the digital computer.

Once the digital computer was available, the speed
and length of calculations were no longer deterrents for
practical calculations. However, the methods of solution of
the regenerator problem incorporating the ‘reversal condition'

were developed before the advent of digital computers.,

2.5. Reversal conditions:

Basically the reversal condition is defined as
"the condition which specifies that the temperature
distribution at the beginning of a period is identical
to that at the conclusion of the previous period.!

More explicitly they can be defined as follows:
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For the 'hot! blow, the 8' = Q temperature
distributions in fluid and solid are the same as the
corresponding distributions at the end of the cold blow.
Similarly, for the 'cold' blow, the 6" = O temperature
distributions are the same as those at the end of the

hot blow.

It is advantageous to reverse distance coordinates
in describing hot and cold blows so that z' (or z")
increases in direction of the hot (or cold) blow. This

preserves the form of equations (2.2.(1)) and (2.2.(2)).

Now if P' and P" are assumed to be the period of
hot and cold blows respectively then coordinate reversal

implies that:
z" = 1 - gt .. (2.5.01))

and time starts again at the beginning of each blow so

that:
puw

.o (2.5.(2))

m'
assuming ©' to be zero at the beginning of an arbitrary

(repeating) hot blow,

Hence using Hausen's normalization (i.e., for
dimensionless time parameter r = AS6/a), we have 7 as
the normalized duration of a blow which is related to

P as follows:

A P
o= —— [ —
a m

-1 ] o (2.5.(3))
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So for time scale 6 of (2.2.(1)) and (2.2.(2)) we
multiply = by o/* and add 1.0 before substituting for

the reversal conditions.

The reversal conditions then become:

For the Solid:

T (z',6' =0) =™ - 2", " <" / 2a") .o (2.5.(4))
and
(z",6" = 0) = ' (L - z', w al/ A') -+ (2.5.05))

and similarly for the Fluid:

t'(z',68' = 0) =t"Q1 - 2", =" a"/ M) o (2.5.(6))
and _ _
t“(z",@" = O) = t'(l - Zl, ! (X'/ ;\l) . (2.5.(7))

where T!', T are solid temperatures for hot and cold
blow resbectively, and %!, t"  are fluid temperatures
for hot and cold blow respectively.

We note that the fluid temperatures at the end of the heat-
ing period do not have to equal those established at the beginn-
ing of the'next-because of assumption 1) in Sec,-2,1.1. Therefore
future behaviour of the bed depends at any time only on the solid
packing temperatures.

The methods of solutiqn of the regenerator problem incor-
porating the reversal boudary conditions fall into two distinct
classes: e : T

a) The "open" method and b) the '"closed" method.

We now review "open" methods,
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2.6. Review of "Open" methods:

The "open" methods are those in which some arbitrary,
but if possible well chosen distribution of temperature
is imposed upon the solid matrix. Subsequently, the
temperatures at the end of successive periods are evaluated
repeatedly until the mathematical model achieves cyclic

equilibrium,

The solving of equations (2.2.(4)) and (2.2.(6)) is
regarded as an initial value problem and typical of these

methods are those of Lambertson [16] and Willmott [23].

With the advent of digital computers, the calcu-
lations involved in continuous cycling of the model to
equilibrium no longer presented major practical diffi-
culties. It is interesting to note however,; that
immediately before digital computing machines became
generally available, open metheds of solution of the
differential equations were attempted using Analogue
computers. A review of the Analogue methods will not be
attempted here but Heindlhofer and Larsen [5), Tipler

[22) are eited as references.

2.0.1., Lambertson's method:

Just after digital computers became more readily
available, Lambertson [16] described his method for re-

presenting the regenerator. Although he analysed the



26

case for a 'Rotary' regenerator, the method of obtaining

the temperature profiles is of substance here and this is
why we review his method which is considered to be one

of the earliest schemes involving finite differences and

digital computing machines.

Lambertson did not solve the differential equations
in an explicit manner, he considered the temperature
behaviour of successive equally spaced sections of
regenerator packing. A step-by-step procedure suitable
for digital calculations was adopted instead of obtaining

the temperature variations in a continuous manner,

Lambertson [16] obtained a finite difference scheme
for the temperature distribution in a rotary regenerator
by expressing the heat balance equation directly in
differential form., This had the advantage of avoiding the
derivation of the controlling differential equations and
then subsequently discretising these to obtain a numerical
solution. He obtained the outlet temperatures in terms

of the inlet temperatures in the following forms:

T = I+ K2(t S ee (2.6.1(2))

out m in in

where m refers to the maximum heating fluid flow and on

the cold side we get:
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'y out = ®n in e K3(Tin -ty in) .o (2.6.1(3))

T oot = T4n = K4(Tin - 5, ip) e (2.6.1(4))

where the subscript n refers to the cold side of the

regenerator. The constants K i = 1,.0094 are

il
functions of maximum and minimum fluid capacity rates,
solid capacity rate, the number of subdivisions of these
capacity rates, regenerator heating surface area and bulk

heat transfer coefficient.

The £luid and solid temperatures can be obtained in
the order indicated by repetitive use of (2.6.1(1)) to

(2.6.1.(4)), given the starting values T, , T, 5,0 Ty jp°

In Lambertson's scheme the regenerator is represented
by a rectangle which is obtained if the 'rotary'
regenerator cylinder is opened out. The fluid and matrix
streams have been divided into three equal substreams to
form differential elements. The left edge is then
physically the same as the right edge. So the matrix
inlet temperature for a substream on the left must be
identical to the outlet temperature of that substream

on the right. This of course is the reversing cordition.

If the temperature distribution obtained on the
right is the same as at the left, then equilibrium has
been reached. If this is not the case then the resulting
temperature distribution is now used on the left and the

process repeated until the reversal condition is met,
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Lambertson [16] also calculated the efficiency of
the regenerator and tabulated his results for a variety
of ranges of parameters. These calculations were used
to determine the convergence of the iterative scheme.
Heo pointed out that the convergence depended on both the
physical conditions of the problem and the second law of
thermodynamics. It was observed by him that a greater
number of subdivisions will improve the accuracy and
enhance the convergence at the same time. But an increase
in number of subdivisions causes an increase in computing
time so some compromise must be reached, Lambertson
computed the efficiencies of several values of the sub-
division and then extrapolated the results to zero element

areae.

Whereas Lambertson considered the 2-D model of a
rotary regenerator, Willmott [23] used a similar
technique in modelling regenerators in 'conventional!

counterflow operation,

2.6.2. Willmott's [23] trapezoidal method:

In 1964, Willmott implemented a finite difference
method for Ferranti Pegasus digital computer. In his
method equations (2.2.(4)) and (2.2.(6)) are represented

in a difference form using the trapezoidal rule.

Equation (2.2.(4)) is integrated using:

AQ t 5
byt [( 2= + (&)
dq Js

Si41,k = Y4,x
oo (2.6.2(1')‘\
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and equation (2.2.(6)) is integrated as:

AT 2 1
[( _
2 Or j,k+l

T o

o7
3yl = Tk - P

o (2.6.2.(2))

where the subscripts j and k refer to distance and time
positions on a finite difference grid, Ag is the dist-
ance step length and A r the time step length. But from
(2.2.(4)) and (2.2.(6)) we have:

o b

o™ Cak by

(T - t)j’k oo (2.6.2.(3))

and

orT
( j;; )j,k - (tjsk i Tj’k)

(6 = T)y  »- (2.6.2.(4))

S0 (2.642.(1)) and (2.6.2.(2)) becomes

" Y Ad
J+1,k = tj,k + — [(T_t)j+l,k + (T-t)j,k]

2
ee (2.642.(5))

_ Ar
Tyt = Typ * D [<t“T)j,k+1 + (5-T) 5 4]

oo (2.642.(6))

‘Now setting a = Aqg/2, b =Ar/2, Willmott arrived at

the two equations:

l-a
. = m——— - + T- > ¢ o * L] )
o , ( 1-b b
- G T + b,
3, k+1 o S T (b4 * 54,5)
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So the fluid and solid temperature distributions through-

out the regenerator can be obtained via repetitive use of
(2.6.2.(7)) and (2.6.2.(8)).

As in the Lambertson's method the whole process is
repeated until the state of cequilibrium has been reached.
Willmott found the results of his method to be in
excellent agrecement with those obtained by the 'closed'
method of Illiffe [6]. He gave the truncation errors
associated with the difference equations (2.6.2.(5)) and
(2.6.2.(6)) ass

(Ag)” ( 5513

6q = - >3 Yy o oo (2.6.2.(9))
(ar)’ 1
er = - 12 ér5 )J,k | PRI .o (2-6.20(10))

These crrors decrease for decreasing values of
£ g and Ar so the errors depend upon the size of dist-
ance and time steps. On the other hand the size of the
derivatives ¢55t/(aq3) and e?T/(er) also matters.
If the variations of temperature with respect to q and r
are approximately linear then resulting truncation errors
will be low. This suggests that for these cascs larger

time and distance steps can be taken.

Willmott's method forms the basis of a more recently
developed open method by Jeffrcson [8]. This is reviewed

next.
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5.6.%, Jeffreson's [8] method:

This method simulates the dynamic behaviour of any
number of blast furnacc stoves simultancously. 1t
involves trapezoidal integratiom in the distance co-
ordinatc and subsequent integration of the resultant
lumped system forward in time. For integration a fourth
order Runge-Kutta time step is used. The method has
been used in developing a simulation package which has a
teletype plot facility and other features like forcing
of "hold"*statés from the simulation subroutine, ability
to resetb "integrators" during execution, provision for
changing of parameters whilc the systen is in a hold
state, etc. Bascd on equation (2.6.2.(7)) obtained on
application of tpapezoidal integration, the 'hot' blow

equation for fluid temperature at each tine node was

rewritten as:

tJ+l = Bta 5y C(TJ+1 + TJ) e (2.6.5.(1))

where B = (l-a)/(1+a), C = a/(1l+a) and & = I

Here for a bed of unit normalized length divided into
M intervals, j = O,1,...,M-1; a = A H/(2M%), H = n/h,
% is the rcference fluid flowrate through regenerator

(Kg/sec) and A = BA/(TS).

(2.6.3.(1)) has a truncation error of order (l/M)5

as defined in Section 2.6.2.

* "hold" state refers to the state during simulation on a
computer in which software itself asks for input of any new

(changed) parameters before executing further
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For a 'cold! blow, distance integration was performed

in the reverse direction yielding:

t = Bty + (T4 + Ty) oo (246.3.(2))

J~1
where B and C are as defined earlier (but for cold

bIOW) and tM = O; j = M+l,Mgcoc,li

Time derivatives of solid temperature for each blow
are also evaluated at every nodal point in the same order

as fluid temperatures in (2.6.3.(1)) and (2.6.3.(2)) from:

o Ty
Ar

where H is as defined above; H* 1is defined as the

HH*(6, = T)) oo (2.6.3.(3))

ratio h/R" where of course H* = 1 for a cold blow.

These time derivatives are then used by a Runge-Kutta
integration subroutine in forward integration to yield

the next array of solid temperatures.

For the cold blow integration, cold blow flowrate
is adjusted depending upon the-blow exit temperature,
appropriate heat transfer coefficients are applied in
order to obtain a, B and C as a function of the final
exit temperature tM+l’ which is obtained only when
integration is completed. ©So, each distance integration

should be an iterative process.

It was considered by Jeffreson that since fourth

order R-K integration in effect involves successive
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estimations of the derivatives and hence of tM+l’ the need
for iteration would be eliminated by reducing the mesh
spacing A r. In general, a maximum of thirty distance
steps (M = 29), with relatively low values of A‘9A“

were used., The time step increment Ar was selected to
be no more than smallest value of 1/(10,H.H*) where
1/(H.H*) 1is the "time constant” of equation (2.6.3(3)).
He found that the period converged towards zero as cold
blow fluid flowrate W' approached its analytical limit.
The question of computational efficiency of iteration was

not investigated by Jeffreson in his paper [8].

2.7. Analytical solutions U and V:

Starting withs:

Db
e = T - t L (207!(1))
o4
o7
—_— = £t =T o (2.7.(2))
or

we first Laplace transform these equations with respect

to the distance parameter to gct:

N ~ ~N
pt - tin(r) = T« t
or
~ A
(p+l)t = tin(r) + T
or
A 1 A
t = e [tin(r) + T] .o (207-(5))

p+l
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where g is the Laplace transformed variable resulting

in p. The Laplaced functions are denoted by N,

tin(r) = t(q = O,r); and for (2.7.(2)) we have:
> 1
(0 e s Ry e (2.7.04))
dr

Using (2.7.(3)) in (2.7.(4)) we obtain:

iy 1 1
0 s s

(r)
dr p+1 pHl ¢

]

1 ~
;:z [t, () - pT]

o
ks

=

d
dr

laN
= b t;,(r) +al vo (2.7.(5))

as only the variable r is involved in differentiation,

so can use full derivative instead of partials;

b = 1/(p+l) and a = =pb,

(2.7.(5)) has a complete solution in the form of a
homogeneous equation (depending only on the initial
s0lid temperature distribution) and a particular integral
or forced golution depending on the inlet temperature

function, tin(r):

r
‘%(p,r) = ear.g(p,O) + \g e(r-w) b tin(w)dw
0 ve (247.(6))
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Now defining Q(p,r) = &F AR ORANET)
where a = -p/(p+tl) and L[V(g,r)] ¥‘%(p,r), we have:
?{p,er) = ea(r-w) = 2T, e”3W
N A
= V(p,r).V(p,-w) .. (2.7.(8))

Thus transforming (2.7.(5)) again with respect to normalized
time variable r (resulting Laplace transform variable s)

A
and writing L[T(p r)] = T(p,s) T, we haves

i

N N A
sT - T(p,0) bEln(s) + al

N N
i.e., I(s-2) = bt (s) + T(p,0)

A 1 N
So, T = —— (T(p,;0) + bt. (s))
= ~in
s-a
Therefore,
"N - l . 4 +
T(pir) = L7H——) = & = o P/p¥)
S-a

Hence (2,7.(6)) implies:
A A ~ 2 ~ 1
T(p,r) = V(p,2)T(p,0) + § FCo,r-m) — &, (waw
0 p+1
oo (2.7.(9))

For zero initial conditions throughout the bed and for
tln(w) a unit step function the 'step response'! or

'breakthrough' or 'single blow response! results:

A
U(p,r)

]

L 1
jw V(p,r-w) — dw e (2.7.(10))
0 p+l

=i e-p/(p+l) (=) 5y

p+l
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where L[U(q,r)] = %(p,r); which may be inverted to
yield the distribution of temperature along the regenerator
ag a function of time. TFor tin(r) a Dirac or impulse
function 8(r), the 'impulse response function' (or 'Heat
Pole! function of Hausen) results:
~ 1 __
g(pyr) = V(pyr) — = (e P/ )y /(pi)

+1
P oo (2.7.(11))

Substituting (2.7.(10)) into (2.7.(9)) and inverting

(2.7.(9)) one can obtain solid temperature distributions

as:
q
T(g,r) = U(q,r) + ‘[ V(v,r).T(g-v,0)av oo (2.7.(12))
0

by making use of Convolution theorem,

From (2.7.(3)) we obtain the fluid temperatures as:

s = 7 | = (8 + b, ()]
e+ i

q q
= .f e“(q"v).T(v,r)dv + Ein“f e~ Vav
9 & S0 (o)

where Ein is either constant (step input) or zero

during hot or cold blows.

So, for hot blow (2.7.(12)) becomess
q|
T1(g'r') = U'(a'ye') + [V (v,r7).21(q"-v,0)av

Y o (2.7.(14))
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and for cold blow since tgn(r) = 0, (2.7.(12)) ylelds:

H

T“(q“,r“) _ !" V“(v,r“).’I‘“(q“-v,O)dv e (2.7.(15))
0

using Convolution theorem and noting the assumption that

V(g,r) = 0 for q{ 0, (2.7.(14)) and (2.7.(15)) can be

written as:

q
Tt(q'y,r') = U'(g',r') + Jr Vi(q'-vyr!).T'(v,0)dv
O o (2.7.(16))
and
q“
M (g",r") = { vi(g"-v, "y . " (v,0)av e (2.7.017))
0

Similarly for hot blow (2.7.(13)) becomes:

q q'
t1(q',r') = ( é_<q|~v).T'(v,r')dv + Ein , e Vav
' o : J
0 0
' * . (2.7.(18))
and for cold blow assuming E;n = 0, we haves:
"
% \
t“(q“,r“) = ( e-(q -V)uT”(V,r“)dV e (207.(19))
6

This analytical solution subject to reversal conditions
could be used to generate open solution by repeated cycling, but
it is envisaged that the closed form solution will be

potentially more efficient.,
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2.8. Review of "closed" methods:

In the "closed" methods, the reversal condition, which
specifies that the solid temperature distribution at the
beginning of a period is identical to that at the conclusion
of the previous period, is incorporated directly. By
embodying this condition for both hot and cold periods
simultaneously, within the mathematical method for the
solving of the differential equations, one specifies
implicitly the cyclic equilibrium condition that the solid
temperature distribution at the beginning of a complete
cycle of operation, a eycle consisting of a hot/cold period
followed by a cold/hot period, is identical to that at

the beginning of the previous cycle,

In chronological order the methods of Hausen [1],
Illiffe [6] and Nahavandi and Weinstein [17] stand out as
milestones on the path taken to obtain closed form solutions.

We review these now.

2.8.1. Hausen's [1] method:

Hausen proposed his "Heat Pole" method in 1931 to
determine the temperature distribution within the regene-
rator., This method, although not the most efficient of
its type, still deserves emphasis as it was the first
method of its type to be used on this problem and it

should be rated as a 'significant' contribution.



Hausen's method was based on the linearity of the
differential equations enabling him to add particular
solutions of the equations together, At first the initial
temperature distribution of the solid matrix is decomposed
into several parts, then the final temperature for each
of the parts is determined and finally the total tempe-
rature distribution is obtained as the sum of constituent

parts.

The regenerator length is divided up into N equal
strips each of width An, the mean values of the initial
excess temperatures of each strip above the constant inlet

temperature t,, are denoted by fl,f2,...,fN.

A "Heat Pole" is defined to be a single strip of
height 1 and of width An between the points q = n and
¢ =n+ An. The "Heat Pole function" denoted by V is
the temperature distribution established in the chequer-
work after a time r of passing a fluid which enters at
a temperature tin flowing through the regenerator with
& particular temperature distribution. As the fluid
passes from left to right the point with the heat pole
is gradually cooled while elements to the right are

warmed up by the passing fluid.

V depends on the width of the pole An, the position
in the regenerator q and on the time »r. Vl’vz"“’VN

are the mean values of this function in the strips 1 to N,
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The influence of each of the strips on the final

temperature distribution is obtained as follows:

A heat pole of height fl placed at strip 1 would
produce the strip temperatures: flvl’flvz""’flvN
because the mean initial temperature excess in strip 1
is fl.

Similarly the effect of the second strip on the
final temperature in the N-strips is: O,fZVl,f2V2,...,

£, V. The total final distribution is the sum of indi-

2 'N-1°
vidual contributions:

Strip 1: T, - &, = flVl

1 in
Strip 2: T_ - %, £,V + £V
2 b 12 2 .. (2.8.1(1))

Strip 3t Ty = 6y, = £1V5 + £,7, + £57)

1]

il

[

Strip N: T, « %

N 1°

It

So, once the heat pole function V 1is known it is
straightforward to obtain solid temperature distribution
T(qsr) where q is normalized distance (position 1 to
N here for N strips) at any given time r for any
arbitrary initial temperature distribution. The f1luid

temperatures can also be obtained using a similar approach,

So the problem was reduced to determining V. Hausen
applied two approaches. The first one was a graphical
method which used the curves obtained as a solution to

the single blow problem.
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The second approach which is much more interesting
was an analytical one in which the solution of Anzelius

was adopted. For calculation of V, evaluation of the

integral:
;[.
j‘e's J,(2i Jds )ds .. (2.8.1(2))
0]

is necessary, where 7 is a normalized period associated
with bulk heat and since Hausen proposed numerical
methods to evaluate this integral it is noticeable that

a direct application of numerical guadrature to the
governing integral equations will be more suitable thus

undermining the computational value of the Heat Pole

method.

The integral equation:

q

I

() ey seC o e @) J‘ f(w)K(gq~w)dw = t} - t;n

0 .o (2.8.1(3))

where K(g-w) = e (W) LUCoTw) . ig)(21/(g-w)r)

was obtained by Hausen as the governing equation for the

case of infinitely narrow heat poles. Hence the Heat

Pole method can be considered to be an approximation
method for solving the governing integral equation

(2.8.1.(3)).

Hausen refined his Heat Pole method in 1950. The

technique used was almost identical to that of Illiffe [6].
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Hausen acknowledged Illiffe's contribution which we review

next.

2.8.,2. I1liffe's [6] method:

In 1948 Il1liffe [6] published his method for solving
the differential equations (2.7.(1)) amd (2.7.(2)). This
method of stecady-state calculation was based on the solution
of these equations by Nusselt [18] (as described earlier for

a single blow problem).

The simplifying assumption used was that the cold fluid
entry temperature should be zero and the hot fluid entry
temperature unity. By introducing the concept of reduced
temperature he simplified Nusselt's solution from an equation
containing four terms, two of which contained indefinite
integrals, to two terms of which just one contained an

indefinite integral.

On the reduced temperature scale with £(q) in Nusselt's

method becoming F(q), the solution is given as:

For the cold blow:

' O N Y (CST
(g%, ") = =T B (q") -[ 23/ (q"-s)z")

1 L
5 qu"~s)r"

(ere [ =) g ()as L. (2.8.201))
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and for the hot blow:

21(g',r') = 1 - ¥ [1-F'(g")] +

S nlefa-onl | pgrese],
07 \/(Q_‘-S)I‘l
. [1-F'(s)]ds ee (26842.(2))

When the reversal conditions were applied, following

simultaneous equations were obtained for F' amd F':

"

3 " 4
Fr (o (L - ;‘.‘.")) = =% (") + Jr K“(q"-S)F"(S)dS
0

oo (2.8.2.(3))

and

f . ‘11
1-F' (AL - %.— ) = e""[l-F'(q'>]+J K'(q'-s)[1-F!(s)]as

0 e (2.8.2.(4))
where

K(q-s) = =

L Dfew/Geoml - ((g-s)ta]
Wa=-s)n

This pair of equations was solved by making use of
Simpson's rule to approximate the value of each of the

integrals. This produced a set of 2(n+l) simultaneous

equations of the form:

‘A‘Z = _‘b_ o (208-20(5))
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where

X = @ Pfae e B F, B, 0, ).

The solution of (2.8.2.(5)) is:
x = A1y oo (2.8.2.(6))

which exists if the matrix A is non-singular. The method
introduces significant errors in the components of x if
the determinant |A| of A Dbecomes very small i.e.,
approaches zero. The set of simultaneocus linear equations
(obtained as a result of discretisation of the integrals)
becomes increasingly ill-conditioned the larger the ratio
of the reduced length A to the reduced period m. In such
cases it is advisable to adopt an alternative approach,

perhaps the method of Nahavandi and Weinstein [17].

2.8.%, Nahavandi and Weinstein's [17] method:

A detailed review follows in the next section; here,
we review this method very briefly by virtue of its being

a close method.

Nahavandi and Weinstein (in short NW) in 1961 solved
equations (2.7.(1)) and (2.7.(2)) by a Laplace transform
technique, The equations thus evolved were similar to
those used by Illiffe, but NW approached the solution to
these latter equations in a different manner, by intro-

ducing infinite series representations for the initial
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matrix temperature distribution as follows:

For hot blow:
.7a)

fl(q') - E alﬁl q‘n e (208030(1))
n=0
and for cold blow:
o
f"(q") = /..:.._ a;t qllIl oo (2.843.(2))
n=

If an n-power series is assumed the 2(n+l) coeffi-
cients of q'™ and q"" are found by solving the set of
simultaneous integral equations arising from substitution
of (2.8.3.(1)) and (2.8.3.(2)). Then in a similar manner
to that of Illiffe [6], Newton-Coates formulae are used to
find approximate values of integrals involved such as in

(2.8.2.,(1)) and (2.8.2.(2)).

2¢9. Detailed review of Nahavandi and Weinstein's method:

Nahavandi and Weinstein (NW) [17] followed Anzelius

and Nusselt (see section 2.4) and derived the equation:

ST ¢
ogqdr

using the customary transformation:

ee (249.(2))

Equation (2.9.(1l)) was then solved using Laplace trans-

forms to obtain the following equations:
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For hot blow:

TV (q'yr!) = 1~ e ' [1~£1(q")] +
4 o= =T }' [1-£1(s)]e®i / J 1 (2ifr'(q'~s))ds

(2.9.(2))

t1(q',r')

1-g=4'=T' z‘[l-f'(s)]esJo(zijb'(q'-s))ds
eo (2.9.(3))

and for cold blow:

e m—

i | o
D", ") = e-r"fu(qu)_e-q'-r ;{f (S)eS l/q"-s .

{

. Jq(ei r'(g"-s))ds oo (2.9.(4))

q"
t"(q",r") — -q fop' ff"(s)e J (21 \/—”(q“ s))ds
L (2-/0(5))

where as usual J, and J{ are Bessel functions, £(q)
represents the initial matrix temperature distribution and

the temperature scale is chosen such that tin = t;n =0

(which are identical conditions to those of Illiffe).

The unknown functions f'(q') and £"(q") were
deternined by applying the reversal boundary conditions

from:
1 q

£1(q') R C £ (") + f £"(s)K"(q"-s)ds .. (2.9.(6))
-r! 0 q'
t'(q") =1-e °[1- £1(a! )] + [ [1-£'(s)]K'(q'-s)ds

0 ee (2.9.(7))
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where ré and rg are the known values of normalized time
variables r! and r"  when the matrix leaves the hot or cold

medium respectively,

ST e T m . s
- eo (2.9.(8))

and

K (q"<s) = -e i

I'“ |
o Jq(2i\Jry(q"-s))
-8

2 v (2.9.09))

It was assumed that £'(q') and £"(q") are represented by

their power series expansions:

g?L‘ @0
f'(q‘) - / a}lqln , f“(q“) L > a:lrll q“n
n=0 ' n=0

oo (249.(10))

where aﬁ and a; are coefficients of the power series.
These coefficients can be evaluated by writing each of the
equations (2.9.(6)) and (2.9.(7)) for a number of n points
chosen arbitrarily along the matrix. The result will be
on equations in 2n unknowns from which the coefficients

a! and ag and consequently £'(q') and £"(q") could be
computed, This then allowed the evaluation of hot and cold

period temperatures for solid and fluid through equations

(2.9.(2)) to (2.9.(5)).

The procedure adopted by NW was to initially f£it a quadratic
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(N = 2) for £' and f" and to increase the order of the
polynomial tiil convergence occurred i.e., till the tempe-
ratures calculated with a polynomial of degree N were
sufficiently close to those with the polynomial of degree
N+1l. For a range of parameters comparable with those used by
T,ambertson the results obtained by NW were in good agreement

with the ones reported by Lambertson.

It is noted that NW considered the rather simplified
case of a balanced, symmetric regenerator and their method
used evaluation of integrals through gquadrature which can be

classed as a problem within itself.

Willmott [26]_defines a 'balanced' regenerator as the
one where A/ A" = 7U'/7c" = k3 when k = 1 it is said to be
tsymmetrict and A = A'=A", 1 =q = 1" (where 0£ ¢ \(7\ )

o0r{ n); also the temperature behaviour of the solid
(chequerwork) in the hot period is exactly symmetrical with
that in the cold period at cyclic equilibrium. In these
particular circumstances, the reversal condition can be
rewritten as: f£'(q) = 1-f"(q), +thus reducing the problem

to a 'single period! boundary value problem.

2,10, An overview of closed methods using consistent

notations:

So far in the review of closed methods in order to
explain the methods more completely, the notations used by

the authors were 'tailored! and equations presented in forms
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similar to the ones given by the authors. However, a clearer
picture of the closed methods and their inter-relations can
only be obtained if consistent notations are used to

explain the various features, This is now done using the

notations of section 2.7.

Taking the hot blow conditions and considering the
solid temperatures (dropping the superscripts ') we

obtain for (2.7.(16)):
q

T(q,r) = U(gq,r) + fv(q-v,r).T(v,O)dv SRRyl
0

and for cold blow the solid temperatures (again dropping the

superscripts ") (2.7.(17)) becomes:

q

T(q,r) = j V(g=-v,r) .T(v,0)av es (210 (2))
0

The closed methods basically involve the evaluation

of a function T(q,0) which represents the solid tempe-
rature distribution at the beginning of a period and q 1is

reduced distance down the regenerator.

Hausen and Il1liffe replace the integrals in (2.10.(1))
and (2.10.(2)) by quadrature formulae so that the integral
equations are reduced to a set of simultaneous linear
equations which are solved for the values of To’Tl’TZ""
where, Ty = TEHRA G0N 5 G ="0, 0000 rre wa (200K
and AQq 1s the distance between the equally spaced

positions where T(g;0) is evaluated.
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The approach of Nahavandi and Weinstein (W) has been
to represent the initial temperature distribution T(q,0)

by a power series:

qQ+ ... +a q® oo (2,10.(4))

T(q,0) = a5 + a1 m

Here also, the integrals are replaced by numerical quad-
rature formulae, A set of simultaneous linear equations

is generated which is solved for the coefficients ao,al,...

In both approaches, it is required to solve a set of

linear algebraic equations of the general form:

Ax = b .o (2.10.(5))

This method breaks down if the determinant [A] of A
becomes very small, i.e., if the matrix becomes almost or

exactly singular.

In fact for the Illiffe's method the set of simul-
taneous equations represented by (2.10.(5)) become ill-
conditioned if the determinant | Al becomes very small. In
such circumstances, small perturbations in the elements of
A cause large perturbations in the solution x. In the
I1liffe's method, as the ratio of the reduced length to
the reduced period, A/n increases, Willmott and Thomas

[26] report that the determinant |A| decreases in size.

The matrix A 1is perturbed by the truncation errors

associated with the gquadrature representation of the
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integrals which give rise to errors in the computed values
of the elements of x. This 1ll-conditioning is relieved

by increasing the number of levels in the regenerator at
which the temperature T(g,0) is computed, The larger the
number of levels, shorter the step length between levels
resulting in smaller-truncation errors, But with an in-
crease in number of levels, the number of simultaneous
linear equations also increases thus creating problems of a
different nature which however can be controlled on a

digital computer.

The NW method does not suffer from this ill-condition-
ing, in fact the reverse effect occurs. As A /n increases
in value, the determinant {A] becomes large ard if

stretched to the limits may cause computational problems,

Summarising the three methods we note that Hausen in
his heat pole method adopted a form of finite difference
representation of the differential equations, whilc Illiffe
and Nahavandi and Weinstein considered the problem in its
integral equation form. All three methods divided the
length of the regenerator into strips but Qhero Hausen used
the mean temperature of the strips in his calculations,
Il1liffe and NW used the temperatures at the end points of
the strips. NW method wkich does not secm to suffer from
ill-conditioning can be classed as the most reliable of

the three closed methods, however, in their paper IW
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cover a symmetric balanced regenerator and do not give
explicit forms for general non-symmetric, unbalenced

case,

2.11. Qutline of a 'Finite Stage! method:

A 'finite stage'! model is an approximation to the
continuous model obtained by dividing a parameter range
into say N stages of length 1/N, where the distributions
are treated as uniform throughout each stage by the use
of finite difference approximations to the derivatives

with respect to the parameter being divided into 'stages'.

Razelos and Paschkis (RP) [19] utilised a finite
stage approach to solve for dimensionless temperatures
for each blow for solid as well as fluid. As they were
using a Blast Furnace Stove Regenerator, terms such as
'gas! for hot fluid and 'air' for cold fluid, along with
'wall' for solid 'brick' matrix were used. The method
itself is well documented in terms of 14 steps which can
be attempted manually with the help of plots and inter-
polations. However, once the values go outside the
ranges of plots or otherwise the number of calculations
increases, the need for a digital computer becomes

absolutely essential.

RP attempted to solve equations similar to (2.7.(1))
and (2.7.(2)) on the heat and mass flow analyzer but

found that the results were unsatisfactory due to equipment
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limitations., So the equations were then expanded into

a set of ordinary differential equations wherein the
space derivative was discretized but time kept continuous
i.e., bed length was divided into finite stages. The
resulting set of ordinary differential equations was
solved analytically, the constants of integration being
obtained from cyclic equilibrium conditions. This
resulted in a number of algebraic equations which was
twice the number of nodes used along the length (or the
bed) of the regenerator. This set of equations was

then solved on a digital computer. As many as 400 nodes
were used in this analysis. Then assuming an initial

'blast! temperature (dimensionless) along with an

s s 1 4
alr exit'! temperature tout’

1]
a new value of tout was
computed from a heat balance equation. In most cases
the resulting value was not found to be the assumed

value of tgu Only after several trials was an accept-

t.
able match achieved, The process was required to be
repeated if the 'blast' temperature did not 'converge!

eitherc

A similar method was developed, based on Jeffeson
[9] by the author of this thesis whereby a program
FISZEFC has been written to obtain profiles., It was
observed that the truncation error 1limits accuracy. v
However, the derivations, program and some results

are presented as an appendixe.
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2.12, Chapter Suumary:

This chapter has been called 'Physical assumnptions,
liathematical model and Review of previous work'! and so as
the title suggests at first in section 2,1 the physical
assumptions and mathzmatical formulation of regenerator
model are presented, The four basic assumptions made are
well justified as supported in the work done by authors
such as Nusselt [18], Willmott and Thomas [26], Heggs and

Carpenter [4], Jeffreson [8] and others.

The mathematical formulation is presented next and
here equations are derived from first principles., Note that
here subscript 1 refers to real (i.e., non-normalized)
parameters, ©So in this section most gencral form of heat
balance equations (2,1.2.(6)) and (2.1,2(7)) representing
a thermal regenerator are obtained., In section 2.2 at
first, the real parameters =x and Yy are normalized to
obtain normalized parameters 2z and 8. Then the fluid and
solid temperatures themselves are normalized and equations
(2.2.(1)), (2.2.(2)) arec obtained, This is followed by
application of physical assumptions and usage of Hausen's
[1] normalization to give us equations (2.2.(4)) and
(2.2.(6)) which are simpler than before., In section 2.3,
a description of Thermal efficiency and Thermal ratio is
given., This is followed by a treatige of single blow

solutions of Angelius and Husselt in section 2.4 in which
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solutions are obtained in the form of equations (2.4.(8))
and (2.4.(9)) which involve evaluation of Bessel functions
JO(X) and Jl(x). Section 2.5 describes the reversal
conditions. Then in section 2.6 @ review of “open" methods
of solution of regencrator problem is done, The methods
reviewed are due to Lambertson [5], Willmott's trapezoidal
method [23%] and Jeffreson's method [8]. Section 2.7 deals
with obtaining analytical solutions U and V where
equations (2.7.(1)) and (2.7.(2)) are Laplace transformed
with respect to the distance parameter ¢ and through
further analysis functions U and V are obtainzd which
are then used in deriving T' and T' through sguations
(2.7.(16)) and (2.7.(17)) followed by &' and t"  through
equations (2.7.(18)) and (2.7.(19)) respéctively. It is
noted that this analytical solution subject to reversal
conditions could be used to generate ”open” solutions by
repeated cycling but "closed" form solutions may be f ound

to be more efficient.

Therefore, section 2.8 reviews "elosezd" methods.
In particular, Hausen [1], Illiffe [6] and Nahavandi and
Weinstein [17] methods are looked at. In section 2.9,
s detailed reviewinz of Nahavandi and Weinstein (TW)
method is done. It is noted here that NW considered the
rather simplified case of a balanced symmetric regenerator
and their method used evaluatlon of integrals through

quadrature., This is followed by an overview of "cloged"
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methods using consistent notations and it is concluded
that NW method can be classed as the most relisble of the

closed methods reviewed.

Finally in section 2,11, a finite stage method dues to
Razelos and Paschkis [19] is outlined and it is noted that
s similar method is presented as an appendix, (See

Appendix A4).
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CHAPTER %: A NEW METHOD FOR SOLVING THD COUNTERFLOW

REGENERATOR PROBLEM

It was noted in section 2.10 of the previous chapter
that Nahavendi and Weinstein (WW) method [17] can be
classed as one of the most reliable methods for solving
the counterflow regenerator problem., However, NW only
considered a symmetric balanced regenerator and their
method depended on evaluation of Bessel functions .which
involve evaluatibnqof integrals such as:

VI !

J\e—2zn cos(s) cos(s)ds .o (3.(1))
0

iJl(2inz) =

|l

obtained by using a quadrature formula.

In this chapter we develop a method based on the
approach used by NW; however it avoids the use of
quadrature formulae by making use of numerical inversion
of Laplace transforms. A general nqnﬁsymmetric,
unbalanced regencrator is considered here as opposed to
NW's balanced symmetric treatment, In the later part
of this chapter we describe the particular numerical
Laplace inversion technique developed by Zakian Tl
However, for present the method assumes the existence
of a reliable numerical Laplace inversion scheme. We
shall describe the advantages of using a numerical

Laplace inversion technique as the analysis of the method
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continues. The proposed method has been developed for
the normalized distance parameters & and q separately
as in each case different matrix equations are solved,
nevertheless resulting in comparable final values. We

first deal with the analysis using variable q.

2,1. Proposed analytical closed method using parameter g:

In this section we first derive equilibriun solid

\
Y

femperature distribution in polynowmial form, this is
followed by derivation of equilibrium fluid temperatures.

Based on a personal communication with Jeffreson [10] we

solve the followings:

T

—_ = T o % e (5.1-(1))
dq .

aT
g — = t - T o (50]-0(2))
dr See sections 2.2 and 2.7.

where g = A 2z, i.e., O £g@¢ A since 0 32 < L
Now Laplace transforming the above equations with respect

to q (transform variable p) implies:

p.%(p,r) = t(g=0,r) + ‘f‘ - % A {5.1.;(5))
and
a
= o0 eo (3.1.(4))
dr

where A refers to the transformed function, t(q=0,r)

= tin(r) is temperaturc of fluid at bed inlet.
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Eliminating @‘ between equations (3.1.(3)) and (%3.1.(4))

we have:
N .. (r)
daT P in
+ @ - e ) (3.10(5))
dr pHl p+l

Solution of (3.1.(5)) is given by:

A A A r 5, (W)
T(p,r) = V(p,r).T(p,0) +‘S V(p,r-w) =—— aw
9 p+l
o0 (5.1.(6))
where,

N pr
V(p,r) = exp(~—— ).

p+l

For hot blow:

"0, r&O0
£(q'=0,r) = %, (r) =-{

p(r), the unit
1, r30 step function
and for cold blow:

t(q"=0,r) = O.

So, for hot blow (3.1.(6)) implies:

A A A P p(w)

Tt (pyr) = V(p,r)«T!'(p,0) + S (p,r
. p+l

N N ;.
= V(p,r).T'(p,0) + U(p,r) oo (Basla K7
where
A L F(pyw)
B1orr) = [ o aw
‘O p+l

and for cold blow (3.1.(6)) implies:

™ (p,r) = V(p,r).T(p,0) oo (3.1.(8))



Inverse transforming (3.1.(7)) and using convolution

theorem gives uss

V! (g!'=-v,r).Tt(v,0)dv
so (3e1.09))

during hot blow and inverse transforming (3.1.(8)) yields:

q“

™ (g",r) = j v (g"=v,r).T"(v,0)dv .. (3.1.(10))
0
during cold blow, where T(g,0) is the initial solid

Tt (q',r) = U'(dyr) +

Oty 10

temperature distribution. Application of reversal

conditions implies:

z' = 1-z" 0¢z'l
g =Xzt 0L aq'¢N
qu = 2N ; 0 5.q“5~ﬁ”

S0,
4 Wt s 1 TR
Q'/A =1-qg /A i.e., Q' =AN(1-q" /)
and  q" =2A'(1-q'/?")
Based on equations (2.5.(4)) and (2.5.(5)) the reversal

corditions for solid can be written as:

TT(q|’O) T“(q“’n") oo (3'1'(11))

Tu(qu,o) m T'(q’,n') o (3010(12))

So (3.1.(9)) and (3.1.(10)) imply:

T (N (1-¢"/A"),x1=0) = T"(g",n")

- %‘V"(q"-v,n").T“(v,O)dv e (341.(13))
0

T1(q',r'=0)
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and
T (q",r"=0) = T"(A(1-q'/A),r"=0) = T'(a',n')

Ut(q',=nt) +<:§ V1 (q'=vym') T (v,0)av
(%3.1.(14))

So, it can be seen that solid temperature profiles wmay

be obtained from arbitrary initial temperature distri-
butions via equations (3.1.(13)) and (3.1.(14))

We now employ the technigue used by NW and assume:
& i-1 TN o tyi=-1
T'(q',0) = Zla(q') , "(g%,0) = Z a; (a")
. a 1=

So, Laplace transforming (3.1.(13)) with respect to the

distance parameter we haves

L( jV"(q“-v,n")-T"(v,O)dV)

O i
4 .
- g: .a'.' L( J V"(q“—V’TI:“ .(V)l-ld'V)
i=1 3
N N /\?"(p l (1-1)!
= : ] | e
i=1 * pt
using convolution theorem:
t N
(L(f*g) = L(£)L(g)) where f*g = § f£(w)g(t-w)dw)
0
and SO,
N . X ~ (i-1)!
2. alla -l = 17l S &l V'(p,a")
i=1 i=1 * pr

eo (3.1.(15))
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Similarly from (3.1.(14)) we obtain:

N A - N .
-1 - L1 [] -1

1=

- ( 1[
G IICIP e ay ¥ (pynt) — )
Fzl pi

oo (3.1.(16))

So we now see that the problem of evaluating the integrals
(as in the case of NW) has been reduced to obtaining the
coefficients ai, ag. Using N terms in each series we
require N values of q: qi twice to obtain coefficients

a::-, al H i= 1,230005No

So, (3.1.(15)) and (3.1.(16)) imply:

N -1)!

z 1 1 - L—l( Z a“ V“(p,n“) ___I_'______ )] iy ,

i=1 1 i=1 pi Q=)(l-qs/“ )
. ee (3.1.(17))

N " o1
T e (A (1-gl/N )"

i=1
N .
-1)!
L L-l(ﬁy(p,nl) g z a:;. \'}1 (p,n!') ..(.j.._...?_.. ) ]
i=1 p* q=Q5
(3.1.(18))

3 d = 1525ee0a3N
Writing (3.1.(17)) and (3.1.(18)) in matrix form we have:

[B']a' = [c"]a" eo (3.1.(19))



63

and
[B"]a" = U + [C']a! oo (3.1.(20))
where, -
i i ERRCHEEREC v
al = Jay|, 2" =fay]s [B'] = |1 ap CTALIPICT
a‘f\T .-;1{1- ‘1 q_-f\-f (ql'\-[)zo-o (ql'\T)N—l.a
1 A (L-al/A ) el (R Qma) /0 T
1 A(-gy/ 2. (A gy
[B“]: . ’ [C_“] = (C;‘_J) ’
1 A Legly/ R ) e (N Qg X)L
[Cf] = (o'ij) and U = (U;)
where
’-{;llcp TC")
- -1 = Bk kg . (§=1)}
fh )c];. L N(Tmay/A)
T1 o,mt)
s T
oy, = 7t p; ] . (§=1)
2 pd q=q}
and
1] e T i [1 - exp( 2 )
1 yo) p+l

Q= qf
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since

N\
U(p,r) =

|
O e, 3

T (pyw) 1 8
o — f exp(-pw/(pHl) )aw
p+l p+l A

1 r
= - — [exp(-pw/(p+l))]
D w=0

[1 - exp(-pr/(p+1))].

ol I

We note that, Jeffreson [9 ] has already shown:

i

- {

lim U'(q'yr) = e Aq
r—>0

Now, initial value theorem for Laplace transforms says:

lim £(t) = 1lim sF(s)
t—=>0 s —>®
therefore,

1
L1 = [1 - exp(-pr'/(p+1))])]
p q=0

= lim [1 - exp(-pn'/(p+l))] =1 - exp(~n')

e .. (3.1.(21))
and
V(p,m) T(
_L b7 V(p,y7
Ll(—-——.-‘")] = 1im —-—E—n-l 5 3= lyeeesl

= 1im

exp(-pn/(p+1)) {e‘“ s §=1
p — o0 pj—l L0 5d=29 39 ¢ N
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Now equations (3.1.(19)) and (3.1.(20)) imply:

|

gll bl [Bll]-l [L]- + [C']E']

- [Bu]-l .[l + [B"]"l[C'}g'

Therefore,

[B']a’ = [C"I([8"]™ U + [B"17*[c']a")
or

([3'] - [c"1[B"]"Mc'Dya = [c"}[B"1™ U
Hence

at = [[B'] - ["1[B")72[ct 172 [¢"][B")™t ©

v @Za L. G220
and

a' = [B“]'l U + [B"]"l[C']g' .o (3.1.(23))

So having solved for coefficients a' and a, one can

easily obtain the solid temperatures as follows:

N
1 (q1,0) = Pa",w") = ¥ al@@) it .. Gel.(24)
i=1
and
N 03
T“(Q“,O) = T'(q’,n') = Z a;’-(q“)l-l ve (501.(25))
i=1

So, now the fluid temperatures can also be determined

using equation (3.1.(3)) as follows:

: 1
"E(p,r) = = [t(q=0,r) +7 - /1\:]
or .
1 1
S(pyr)[1 + =] = = [t(g=0,r) + T]

P P
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Therefore,

1
So,r) = — [6(q=0,r) + T(p,r)]
pt+l

So for hot blow:

1
fi(p,rt) = — [1 + T(p,r")] oo (3.14(26))
p+l

and for cold blows:s

1
(o) = — T(p,r" v (3.1.027))
p+l
Hence
1 1 N (i=1)!
£1(q',0) = L™ [ — (L + L al T
. pt+l i=1 P q=q'
eo (Bule(28))
and
1 N (i-1)1
£"(g",0) = L[ — afl —y=1
ptl i=l D Q=9
s (5.10(29))
since
N (1-1)¢
L(ql l) = —'__'i'_ 9 i = 192)00',N-
p
But,
1 1 9 i~1
1t — . — Ja) = S o=V £q v) -
S 4 (1-1)%

using convolution theorem, as
i-1
4

} 1 1
o+l (i-1)! D
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Hence,
N q' .
1 (q!,0) = e”d + P ai j e-v(q'-v)l'ldv o (3.1.(30))
i=1 %)
and
]
N .
t(q",0) = & al jve-v(q"-v)l'ldv ve (3:16(31))
=L g
Consider

q
I = !- e-v(q-v)ndv s, nd 0; n e set of Natural
I 0 4 numbers

S0, using integration by parts, we have:

4

q j — -
I = =(g=-v)% &™) - f n(g-v)*t eV av
n
v=0 0
= g.n = nIl’l-l 9 n = 132,0-.,N
where, q 3 .
_ -V =V " - e~
I, = f e”’ dv = =-e ]v=O l-e
0
Hence,
N
£1(q',0) = ¢"3+ ¥ al I, ee (3.1.(32))
=i
Where’
!
I'=1-¢% ,and IJ=(g")" -4il! ;5 1=1,2,..,N-1
and
t"(q",0) = 2 a1l (3.1.(33))
q. H i ]gl l i"'l e o odoe
where,

Ig = e—q , and Iq Y (qu)l -iI”

i i-1 3 i= 1’29..,N-l¢



Using reversal conditions we have
t'(qy0) = t"(g",n")

and
t"(q",0) = t'(q',7m').

So fluid temperatures have been derived in terms of the

coefficients a! and a;; i = 1,25e003N,

3,2, Thermal efficiency:

From equation (2.3.4)) we have thermal efficiency E

given by:

MC { i ™(z,0)dz - z‘m'(z,O)dz}

W'S'P'(tin - t;n)

1 - i - .
So for tin 0, tin 1 and using the ¢
normalisation (O £ qs‘x), we have:

L

NC n'aA L
B = ST“ " o0yag" -
RIAP!T WIS { A2 (a%,0)dq
al
1
LI
0
! a
x €1 N
3 “'T%*;F‘ S m(q",0)aq" - =+ | T'(q‘,O)dq{}
AN 0 0

oo (3.2.(1))
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oxr

'nl !l' O l—_—l l=l s
, 1 XN wyi i 1 N (q)y*
g N " (q ) A Z q A
= —— '-—?-\-;.- 2__ al[ ]” - a’.‘ ] ai[ ]
! 1 = i q =0 i=]1 1 q'=0
Therefore,
. N .
1{ 1 KE ) (At 1 ;’ (N)l}
E b — ——— a. - a!
N R AR S i
i i=1 1 i=1 2 -

oo (3.2.(2))

Here also it is noticeable that the integration has been
done analytically and there is no dependence on quad-

ratures as such for calculation of integrals.,

3.3, Steady state limiting temperature distributions:

For the purposes of comparisons with the transient
states it is advantageous to obtain the steady state
temperature distributions for limiting recuperator,

We obtain these now.

Differential equations prior to complete normalization:

For 'cold!' fluid (from(2.1.2.(6)) with z=x/L and zero conduction):

i . l
~whg" rge + h"A(T - t") = p"g" A oo (3.3.(1))

Z 53’
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For 'hot' fluid (from (2.1.2,(6)) with z=x/L and zero conduction):

db! d b
WISY —— + h'A(T - t!') = m!'S! —— eo (3.3.(2))
>z oy
Solid temperatures(from(2,1.2.(7)) with z=x/L, zero conduction):
bT 1) 1]
MC — = h' A (t' - T) +h" 4 (¢" - 1)
e 3N :

oo (3.3.03))

where 2z 1s normalized distance relative to bed length
(02K 1), ,y is real time, T and t arc non-

normalized solid and fluid temperatures.,

For 'steady state!, variables will be denoted Dby a

bar over them,

We know that for 'steady state! derivative with respect

to time is zero., Hence (3.3.(1)) to (%.3.(3)) become:

- ag" - .
B — 4+ RA(T - %") =0 oo (3.3.(4))
dz
T
W'S' —— 4+ h'A(T - £') =0 we (3.3.(5))
dz -
and
Bra(( = T) + B"AGE" = T) =0 oo (3.3.(6))
Defining
) ) hia ., h'a N N R"A
g =4 = A2z, 'Yl— m,’Yl)\ =|};;“E” since A = ':;;_;;Tg—“,
w's"  R'A w"8"
N tt
Y2 = ﬁ/?\ = Yl = = ‘ N



71

Therefore,
Y2 w" 5" : — i
-— = . 80 (3.3.(4)) implies on division by WS s
Y1 W g
at" n'a
L 4 e (- F") = O es (3.3.(7))

dz e B
and (3.3.(5)) gives on division by WS

l T bl t = O L3N 5. 5. 8

while (3.3.(6)) becomes after division by h As

h'a B

.ETK(E' -+ @' ~T) = 0
Therefore,

y(T-F)-F-T = 0 .o (3.3.09))
Now dgq = ' 4z
Therefore, dz = dg / N

So (3.3%.(7)) implies

e — + T . F = 0 .. (3.3.(10))



(%.%.(8)) gives

at! | =
o Yz(T - %)
aq

= 0
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ss (3.3.(11})

Hence the steady state equations to be solved are (3.3.(9)),
(3.3.(10)) and (3.3.(11)).

From (%.3%.(9)) we have:

5! L
T = -‘Y—:-L-'-—F + e ‘b"
Y+ Yl+l

Substituting (3.3.(12)) in (3.3.(10)) we have:

Y3 (A

B L e

y1+l

and (3.3%3.(12)) in (3.3.(11)) gives:

at! o ¢
—_— = % Yq =
dq 2
So,
aEe" - 1) Yo
dq ¥a.

Integrating yields

a
1n(F" - T:")]° =

Y1 Yo Y2

i) w me——

yl+l Yl+l
("_EII - t‘)

+ 1

Uiz 1 i

migeee—— Q.

2 (@ -

s (Fazs (1200

—

Vo
yl+1

s (3.3.615))
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llrl(tin . tout)

ice., 1n(¥'(q) - $'(q)) vq

Yo = Y3
+ 1

where v =
71

'(q) - t'(q)
or 1n & yq

= _ T
tin out

Therefore; ¥'(a) - ¥'(a) = (¥, - Fhyp) e'd .. (3.3.(14))

But in steady state:

Wﬂ gll ('.Ell (q) o, '_E‘Il )

out

1l

W S (%' (q) - B

11 - 11
So %"(q) - — %'(q) T, - — g .. (3.3.(15))
Yo Yo

Il

1e€as Egut = Ean + vvf;n - miféut .. (3.3.(16))

2 " M1
where W = €xXp §— A
. + L

(3.%3.(15)) means that at q = O, we have:

Y1

=n T ~ —— (E! - Et
tin tout y (tqut t1n)
2
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Y,
icesy, Tl =1 g (F, = Tous) ¥ Fin ] oo (303.(17))
1

Substituting (3%¢3,(17)) into (3.3.(16)) we have:

Y2 Y2
braa 1] —u | ot 1} bl 1] bl
Yout Ty W ¥ip = vl — %5y - — Foup T ¥a ]
11 11

Therefore,

ol 1l ~w : L Y2/Y1 =i

t = %) + W G

t in X in
o 1 -w y2/y1 1 -w yz/yl
G Goe5s (es)

and so (%.%.(16)) gives:

o ; Yz : - (1 - Y2/Y]_) ) w=-1 - ]

= - (1L - W S
in
Py Y1 H l-w 'Y2/Y1 1 -w 'Y2/'Y1
+ t:'i_n
Therefore,
Yo (1 - w) 1 - Yg/Yl il
jEc'nu.t i E;n i+ %
Y1 1 =W v/ 1 - v,/vp

oo (3:34(19))

Hence we can solve for T"(q) and ¥'(q) from (3.3.(14))
and (3.3.(15)) as follows:

Right hand side (3HS) of (3.3.(14))
Y2 (1 - w) 1= v/ 1y ,
= [ t" ""_ — -Elj’_n+ i 5.1'1)] © b
Yl 1l -w yz/yl 1 -w Y2/Y1
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1 - v/
> - (B - F1 ) ¥4
in in
1=-wyy/v

RHS (3.3.(15))

. Y1 1T - w . 1 "'YQ/Y]_ —
= ( - — ,, t) +w til’l
Y, l-wy/vp T 1=wy/n
1
= [ (L= vy/v,)8L, + w(l = vy/v7)¥5, ]
1 -w Yg/'Yl
¥ - T 82V ]
(1 = /v B, = BYy) €™
il
Let B =
l-~-w Y2/Yl
== b |
-(l = Yl/YQ)t:an + w(l - Y2/Y1)til.n

I

Hence At =B where § [ $'(a), _'B(Q)]T

and
1 -1
A = from (3.3.(14)) and (3.3.(15))
1 "Yl/ Yg_
. Y1/, 1
Now A_l = e
1 -1/, -1 1
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) /e ) [oe/m @Bt ]
Bom e [ |
- /v ~1 lJ (L=v1/7p)FL, + wll=vp/ v )%y |
1
1 -w Yg/Yl
So t"(q) = - [(e"? - W'IQ)EV + (1 - DT ]
1 -w YZ/Yl ‘ Y,/ in in
oo (303.(0207)
and
t'(q) = = [ (L - T2 e T+ (Zg—evq -w 12—)%".‘ ]
1= W v/1 Y1 ST Tl e
e oo (3.3.(21))
since .__.-.-...._.2_......-‘.Y.—]..'- = — -.Y-g
Hence (3.3%.(12)) implies:
5 : 1 — _
T(q) = [ vy 'Ca) +F(a) ]

yl-l—l

z e +1)(1-e"9) + (yp=v,)e" DT}
(v ) (Q~wy,/v7) H(Gr#)Q=e™ & (pmvp)e o

+ (Crh) (e Sy vy )= (v 1) D FY, ]

.. (3.3.(22))

So equations (3.3.(20)), (3.3.(21)) and (3.3,(22)) give the
steady state limiting tewmperatures in ternms of arbitrary

steady state inlet fluid temperatures €in and E;n ’
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For our regencrator, we choose to normalise the fluid

] o | —_ o 1} _
temperatures so that "fin =1, %, =0,
— 1 - evd (1 - vp)e™
So, T(q) = =— + o
1 - w Yz/Yl (y; + 1)1 =W Yo/Y1)
1 - ¢e'd v e’d Yo = Y1
= -~ — — as vV = ==
+
1L -w YZ/Y]_ (L -w YQ/Y].) Yi 1
1
= —— [ 1 - &' - ve¥d ]
l.,- w YZ/Yl
For limiting recuperator we must find 1lim T(q)
Yl’ Y2 '—% l
Yo = Y "
Now because v = £ 1 and w = e A
Yy + 1
as Y2~>Y1——>_1 we have v —> 0 and so w-->1 .
Therefore, lim T(q) ——=> 0/0
Y12 Yo ~» 1
8o lim T(q) = 1im T(q)
YisY, > 1 Y, 1
: Y, = 1
. 1 1-vq 1-vy
= lim [1 - exp( —— g)(1 + ——) ]
Y, 1 1- Y1+ LERE

. Y1
1 - enp('?l‘;i‘% )/Yl
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Now applying L'Bpital's rule we have

o gy
a7, P VG
lim T(q) = lim T
a . "Y1
Tys Yy L Yy L ﬁl[‘exp(?ﬁf X/ 1)
1wy ~(y,+L)=(1~-vy) 2
~exp( —= q)(—= 5 L q) — +
‘o] (yy+) 11
= 2
+ exp ( "1 ) 5
1 (v +l)
= lim
1 i l—Yl " -2 A
[‘eXP( ?') 2 )Yl +
Yl+1 (Yl 1)
L=y
exp ( —=a")1/v]
Yl+
-1.(~-2q/4)(2/2) + 2/4 1 +q
N “1[-2 A'/4] + 1 oAt 42

Hence the limiting solid temperature profile for steady

state is given by:

Lap @l

T(q) = - | L (5-5'(25))
xRl 2

where gq € [0, A"] .
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3.4 Proposed method using parameter z:

In section 3.1 the dimensionless distance parameter
was used where O £ Q ¢ A since g = Az and we have

0 £z £ 1.

~ ~

It is noticeable that for the g scale with large

values of A (240) and large N(2 20), terms such as

- . N
("1 in < a‘_{(q”)m—l become very large. Also

the last rows é;lmatrices [B'] and [B"] in section 3.1,
may overflow thus resulting iﬁ ill-conditioning and/or error
prone values for the coefficients a,' and a;". To avoid
this, parameter z can be used. As 0 £z £1 and

z ai(z)i"l for initial solid tewmperature distribution
:]'J:zllJ.sect1 lack of precision due to near overflow is not ﬂ'

likely to occur.

Hence, we now develop the proposed method for the

length scale O to 1 using the parameter =z

Required to solve:

G
2 . A(T - t)

&z

oo (3.4.(1))

o T
R R T

or
where O,,§z$l9 0frgk
and t(z =0, ) = t. . (r).
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Laplace transforming (3.4.(1)) along the distance coordinate,
with resulting varisble p, and transformed functions denoted

by A, we have:

p% (oye) = t (z=0, ) + 2T -%)
A
drT AA
and — = t - T
r
i€ /1?( r) A /T\+ l . (r) (3.4.(2))
leCos = g . P eTe
’ P P b+ A in
aT 1
b A
and S + - T = — t- (I‘ L ) ( -4.(5)
0 T S5 Uin ) 3 )

Solution of (3.4.(3)) is given bys

r t, (w)
Tp,yz) = T (2sr).D (2,0) +{ % (oyrow) s A
5 p+A

eo (3.4.€4))

~ ~p
where V (p,r) = exp [ r ] oo (3.4.(5))
p+A
Now for hot blow:
o, r{0 :
t(Z' = 0, I‘) = tm(I‘) ={ = p,(_r_‘)
1, r0
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and for cold blow, t(z" =0,r) = %, ,{(r) = O.

So for 'hot blow! (3.4.(4)) implies:

N . . L Nr(p,r-w)
T'(p,r) = V'(Psr)oT|(P,O) +'§ e (W) QW
: - : | P+ A
Therefore,
A A ~ ~
T (pyr) = V'(p,r).T'(p,0) + U'(p,r) .. (3.4.(6))

~
where U!'(p,r) is the transformed unit step response

given byé
A
~ y Vi(p,w) g o~ aw
Ut(p,r) = 5 e QW = g e AW
‘ 5 p + A o P+ A
P
where a = ~——=—— ;
p + A
~ ~1 p+ A . 1 =
Ul (pyr) = ( aw)]w_o = —[1-e ar]
i EREA P P
= - [l - eXp C o r)] oo (5-4'(7))

p p+2Al



82

and for "cold blow K (3.4.(4)) gives:
B(p,r) = V(p,r).T(p,0) ve (3.4.(8))

Now L7t (3.4.(6)) using convolution theorem and inter-
changing the order of terms yields for hot blows
ZI
T1(z',r) = U'(z'yr) + J' Vi(z! ~ vyr).T'(v,0)dv
I = oR =y e (3.4.09))

Similarly, it (3.,4.(8)) wusing convolution theorem
gives us for cold blow:

1

Z
™(z",r) = 5 W(z" - v,r).T"(v,0)av eo (3.4.(10))
O

Applying the reversal conditions, we obtains

i
Z

Tt(z',r=0) = J V(2" =v, 5" ). " (v,0)dv .o (3.4.(11))
and ’
2!
1(z",r=0) = U'(a'yn') + ‘f3 V! (2 -vym! )21 (v,0)av
© .o (3.4.(12))
Bmploying

N N
T1(z',0) = Z ai'(Z')i-l, T“(Z“,O) b z aiu(zn)l—l )
s i=1 i S
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we have after Laplace transforming RHS (3.,4.(11)) w.r.t.

distances

]

Z
L [j (2" =v,n"). 2" (v,0)dv ]
(o}

o

N
= 2: a;’ L[ S V“(z"—v,n”).(v)l-l av ]
i=1 o

|

A
= E;» a;" V' (p,n"). — using convolution theorem;
i=1 P
and so
N N ALt
. ~ l"-l).
z aj_' (! )l-l - L-l [ Z a‘i“ VII(P’nII -
i=1 sy i=1 P
oo (3.4.(13))
Similarly,
N I
We nyi=1 _ " yyi-1
2 ay (z") = Z ay (1 - z')
i=1 i-1 '
N .
I\ /\ (l—l)l
= 17 [ T'(p,m') + Z a;' V‘(p.ﬂ')——-p—{—*-]
: > i=ll . '

oo (3.4.(14))
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Using N terms in cach series, we require N values
of =z zj'; J = Loewas¥W twice to obtain coefficients

a.l, a-“ 3 i=l’.o|,No

S0 (3.4.(13)) and (3.4.(14)) imply:

N

N !
- - A (i-1)!
Z ail(z;j')l AN 1 [ i ain V“(p,'ll:“) — 13
i=1 ' ' i=1 P z:l-zi
and
N
" i=1
2 ey ) T s
i=1 )
N .y
N A 2 (i-1)!
= T7H [ Upyn') + Z a; 'V (pyn') —5— 1
= e A -z
i=1 Z ZJ.
Writing in mabrix notation, we haves
[st] at = [c"] & .o (3.4.(15))
and
"] 28 = U + [0'] & .o (3.4.Q16))
where
— - § - N_ -
al'T alm 1 zq! (zl')2 ¥ (zl') L
By ! a," 1zt (2,')° we (2 i
gl = .2. . 9.“: .2 , [B']-—-: ) .2‘ .2. ? .
[ ] L ] L] [ ] ) L \]-_
_aNi_ QN“ -l zy ' (zN'_)2 - (ZN')l 1;



o 1-z;" (Zl.-zl')2 .o (l-—zl')N"l"
1 lez,' (Lezy')? o -z )Y
= [ . , , ,
1 lez' (1-2g")% .o (L-zg')
[C“] = (Cl::_a)! [C'] = (C‘lJ) and U = (Ui)
where
“(Pn )
cljij vt ‘J"‘“"]] (-1
P z-l-zi“
V'( ) ‘)
iy = LM et 17 (3-1)!
iJ 0 L
i.
1 ~p
and Ui = L—l{—[l-exp(......-__. I)]]]
p - p ! e le

From initial value theorem of Laplace transforms:

1 —
L—l [ - [l t exp( )]]] = lim {l - e}{p(";“":;—;";)
= 1 - exp(~-n') , and

V(p,m) | W )

P,m P,T '
L—l [ 2 ]] = 1lim .__..___’,___, ; j = l,.,;,N

pJ z=0 P ~> pd~1

[ e"’ﬂ 3 J = 1
= lim [exP(m)]/al=§ ‘
p+ Lo 5 3 =25..0N
P —>o
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As in section 3.1, the solution of (3.4.(15)) and (3.4,(16))
is obtained ast

[[8'] - [C"1[B"17 e 13 e 3" I7iT .. (3.4.Q17))

ails=

1 __ uq-1 ua=1r '

a" = [B"]177U + [B"]77[C' ]2 .. (3.4.018))
Having found cocfficients ai and a; it is an ceasy step

to obtain solid temperatures at the beginning of the hot

and cold blow periods respectively from:

, N _
1(z,0) = Y al(z)*t o (3.4.(19))
i=1
and
. b _
T(z",0) = 3 ai(z)P7t e (3.4.(20))

which is equation (3.2.(1)) in a gecneral case.

Now as dz" = aq'/AR' , dz' = dq'/» , we haves:

1
™(z",0)az" - j T'(z',0)dz' ]
o]

O boromy 1

'
s o 2y
'ﬂ:'
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- N 1 _ N 1
E = --‘-[ X a':fL J (z")y11 az" - E a'i‘( (z'
T i=1 0 i=1 0
N " N !
= }l - a. . a .
) Y. i Z s ) .. (3.
! i i h i
=1 i=1

)i—ldz']

4,(21))

3,5 Derivation of exit fluid temperatures using z parameter:

Tt is evident from the section 3.4 that the solid

temperaturs distributions yileld the thermel efficiency of -

the system at cyclic equilibrium, The exit fluid tempe-

ratures are also required to be evaluated as they are

ugseful for two main purposes:

a) To allow prediction of the real period of cyclic
equilibrium operation for variable flow from the
constant flow periods =' and w''. This is dealt

in the next chapter,

b) To allow the maximum exit temperature during the
blow and the minimum exit tempcrature during the
blow. The first allows a designer to determine

whether maximunm allowable fluid temperature will

with

hot

cold

be

exceeded and the second determines the blast temperature

attainable for a given set A, N', n' and n" of

constant flow parameters.



(3.5.(6)) has a solution:

_ , z
@.(Z,S) = ?}(z,s).? (z=0,s) +-S G}(z-w,s) A -T(w,0)dw
4 s +1
oo (3.5.(7))
A E - AS
where Ve(z,s) = exp ( - z) .. (3.5.(8))
s +1

Hence, we neced to invert the following time Laplace

transformed equations:

For hot blows-

Z‘
T . , n
$1(zat,8) = Tz',8).81=0,8) + —2— [ Ti(z'-m,s).
f f
s +1
. T'(w,0)dw
.. (3.5.(9))
where
o 1-0 ;L t! ‘ a
t (Z = aS) = [ in(r)] = '; b
C ; n | As
T'(w,0) = EE a! w1 ang V%(z',s) = exp( ———— z') 3
. = s +1
i=1
and for cold blow:-
ZII
! 1 A
Bran ,s) = A f V;.(z"—w,s).T"(W,O)dW .. (3.5.(10))
s +1 -
)
where
" N A 1 aIUS
[1] 1 - i -
Mwo) = Y & i, Vi"s) = exp( o= 2"
i=1
since t? (r) = O.

in
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So, (3.5.(3)) implies:

. |
t'(ztyr') = L™t [ exp(- =206 z') / s ] +
s + 1 p=p!
' 2! Ve N A
+ L'l[-*a-—- S exp( 25 _ (w-z')) E: a; wi ™l gw ]
s +1 3 s +1 o1 pep!

oo (3.54(11))

Consider
z! N
) ] {] g e
r=k ik S exp( 25 (w-z')) Z a; wr L aw 7
s+l o s+l =1 r=p!
N , 7! ,
= 17t [ z a;_ ( =2 ) S exp( B3 (W-z‘))wi"ld’w )
" s+l s+1 r=r'
i=1 ‘
oo (3.5.(12))
Now let

| P .
exp(-iigw-(w - z')) w1l aw

H
I
Ol Y

s 4+ 1
z! . ‘
= e—az' j W wrl aw  where a = _As
g + 1
0
_a‘Z!
= @ I, 1 (say)
we have
z! 1
' 1
Iy = j & W' aw = - [&* (z")" - nIn-l]
(o] & ' o (5-50(15))

; n= 192,..-,N""l

from using integration by parts.
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1 - . 1 1 1
~[e®'zt = I] = = [e®'at - = e®F 4 -]
a 2 a a a
1 - 1 1
3 2 a a
1 2 21 1 21
" [eaz'(z')2 L T > ]
a a a a
i
. ! :

a ) a

- 82 ) ]

ad a?

1 k=2
Kk k! €22 (z')
- [eazl(z|)k ] eaZ|(Z|)k—'l 1 -
a a (k-2)!a2
k! \ k-3 w1 K
2 (z') 4+ ... + (=) "'E]
(k-3)!a3 a
. k‘ (“)J

E [eaz'(z‘)k (1 + k! Z

(__ ) k41

IR A

c (5.5.(14))
ey |GG o G

I ]

s k= 1,2y000,0=1
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So from (3.5.(12)):

N / ‘ ) &
. s 1
L e 2. ) j exp( —22— (w-z'))w L aw]
: s+ 1 s + 1 i |
i=1 o] r=r
N ; ]
] -1 \ N ~az! A'S
= L [ 4 a ( R ) I . ] 3 9 a = e
izzl 1 sn 1-1 pop s + 1

N
' X .
i 2 [ Z al( Lo ) Sy *—{eazt(z')l-l s
o tosH a

= )

[1 + (i-1)! z e ]

N ! i-1 J
. : (~) + 1 .
Ej\f& (z')™L (1 + (i-1)8 ——— (S' )Y+
=1 (i~1-3)! A'sz!

il Nez! ]
A'S I Ao coe ) ]f}
s +1 ¥ “p=p!

S

(-)3(1-1)1 ¢




So from (3.5.(11)) we obtains
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As , xS
T s+l a S+L
§1(1,0') = L“l{g L (G e ) +
s
S Mg+ S L Tl
—— 1- 4 ¥ - e——ae
K S = T'L"l"JTT s
i=2 J=1
s L
(-)T(-1) ( Jriig 3 ]} .o (3.5.(15))
5 TR
Using initial value theorem:
s A's
- £l - 5%
$'(1,0) = 1im [ e + Y (1«6 y +
s —2>00
N i-1 ]
(=) s+l .
S sl [ 1+ (1) >y )+
=7l j=1 (i-1-3)! Ms
1
: sl . s+l
()i~ (=)t e 1]

ns



-2 ' s
£1(1,0) = e +a (L-e)+5 a1+

i=2

1-1 3
il («1/ o )

(i-1)! > (l?-;— - -1/ (-1 e~
Jj=1 TR

.o (3.5.(16))

Gquation (3.5.(15)) reduces to:

XS
: . s+1
§1(L,r!) = a) + (1 - a) LT[ - R
S
»=r'!
N i-1 3
(-) N 1 s+l .
z a'i [ 1+ (1-1)! ok o T [ e
i=2 . J=al (l‘l"J)- S Ns r;__r’
s
. & s+1
+ (=)(-n T g ( )l~1 5 e =)
r=p!
Now
1 s+1 1 1 1
—(— 3 = (=) -G +- )
s Als fy S s
J 1
- — 3y . k
(g ) Z :

k=0

using Binomial Theorem
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1 +1 1 1 2 J 1
L"l[_(f_‘_._)J]=(37)3L‘1[»~2(k)(-—)k]
s As  opt S 10 s rp=r!
C (Pl ZJ o IC=REEST
» kéo k s r=p!
(= i SRE NN E T Ll
A o k s pr=r'
1 J J (21)*
( "if )J Z k ) !
k=0
Hence,
_ Ns
. STL
1 1 - K gy - s :
t'(1,r') = B + (1 al) L7 [ ]=r‘ =r
N i-1 (L1/ )9
Y el 1+ ¥ H-;--(--"é-,—)—-
i=2 = (i-1-3)¢
J ' iy
3« KpL) ;
F () - GRS
k=0 ki
e ° 41,
o G it SRS R (Gl

s S r=p!



gimilarly for cold blow (3.5.(10)) yields:

N
. T IDS
G = ot [ 2: ag (-jt— exp( 25 (w - 2")).
c Al s+1 0 s+l
wi ! aw ]
r=r!

oo (3.5.(18))

From which with similar analysis as in the case of hot

blow, we obtains

£"(1,0) = a; - a; e"x'-k jz; a; 1+
i=2
i"'l I J
(=1/ N . ",
(i-1)! > H-JQZLL—-(~1/ﬁ')1‘1(i—1)3 e
j=l (i"l“j)!
oo (3.5.(19))
and
_As
s+l
t“(l,r”) e a” = a" L"l [ _e_ ] +
1 1 S r=p!
N iel g
’ (=1/2")
D e [ 14 (L) Y =
i=2 J=1 (i=1-3)!
j . K )
3  {x") L
S ) - (=120 Y
k=0 ks

U
”‘é&% s+1

e .
1o - ez )"t 0 0 .. Ges. (R0

s <] r=r!



3.6 Proposeqﬁmethod_for a Symmetric Balanced Regenersator:

As noted earlier Nahavandi and Weinstein tl?] consider
the regenerator to be symmetric and balanced. Whersas the
proposed method outlined in previous sections treats the
general problem thus increasing the complexity of the
algorithm, We now develop the case for a symmetric,
balanced regenerator and thus show a comparatively simpler
algorithm as opposed to the general case which has already

been discussed.

We start off with equations (3.1.(13)) and (3.,1.(14)),
as upto this point the analysis 1is identical; so:

1]

q
T'(q',r'=0) = _f V(" =v,n"). T (v,0) av .. (3.6.(1))
) 0
and
. q!
T"(q“,r":O) = U'(Cl'a'n') + J V'(Q"‘V’W')oT'(VsO) dv
O .o (3.6.(2))

Now consider the symmetric,balanced case where
A=A =A", 7 =a'=7n" :-
Let T'(q",0) = F'(q"); T'(q',0) = F'(q').

So (3.6.,(1)) and Reversal Conditions imply:

t

. q
F1(A~-g") =1 ~F'(A-4q") = j 7' (q"=v,n).F'(v) dv

O .. (3.6.(3))



and (3.6,(2)) with 2,C, yield:

1-F(A-a) = F(A-a')
_ q'
= Ul(ql ,TC) = J V'(q' - V,‘]T,) F'(V) dv e (3060(4))
0

Therefore, from (3.6.(3)) we have:

N . N qu |
1 = Z ag (A=-g")9t = Z ag IV"(q"-V,n)VJ'l av
iy e ve (3.6.(5)
and (3.6.,(4)) implies:
N .
| : 51
.Z aj(?t-q') = U'(q',n) +
j=1
N q! ‘
2 8 (Vi@ -v,m)v?™t av .. (3.6.(6))
j=1 0
Hence

. N q i
1 = Z a:_; [ é V”(q"-v,n)va-l dv + (ﬁ—qn)a—l )
J=1

and

N
Ur(gt.m) = 2 ay [(A-a)P -
=1
q! ]
fv'(q'—v,n)va"l av ]
0
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These can be rewritten in maetrix form as:

o= ol A S5 (GGl
and U' = [P'] A .. (3.6.(8))
where
1 ; [lnl,---bl]T9 Al ; [aisaéso--saﬁ]T’ é" ; [3195f01@§
(P"] = (2}, [P'] = Cp}y) ens U' = (B 5
" e ("’ <+1)) T
= TR Gy o)L
pJ q=qi
exp{ - (p+L ]
p:‘la = —L-l [ - pn/ ° -)"'Z] ] (g=1)! + (A‘Q:L)J-l ’
PJ q=qi
1 -1 .
ul = L0 [ -~ (1= exp (-pn/(pH1))) )
p q=qi
! = (i-1)ag; gy = (W-i)Ag for 1=1,...,N

ard Aq = A/ (W-1).

Note, as before use of Initial Value Theorem yields:

pl g exp(-pn/(p+l))

(
Pj q___o iho 9 j =2,.-0,N

Ik
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and

G ,.

L™ [ = [1 ~ exp(~pn/(p+¥1))]] =1 - exp(-zn) .

p g=0

Hence, (3.6.(7)) can be solved for coefficients ai, a;
froms

Av = [P']7h 1 .. (3.6.(9))
ana A = [P]°1 W .. (3.6.(10))

From these, temperature profiles can easily be obtained.
It is noticeable that equations (3.6.(9)) and (3.6.(10))
re fairly simple and straight forward to implement on &
digital computer when compared with other closed methods

reviewed earlier,

3.7. Review of Zakian's inverse Laplace transform method:

From sections 3.1, 3.4, 3,5 and 3,6 it is quite
evident that an accurate method for inversion of Laplace
transforms is required. The following equations describe
the relationships between a function and its Laplace and

Inverse Laplace Transformss-

Laplace transform:

90
F(s) = L(2(z)) = § £(1) &7 ar v (3.7.(1))
0
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Inverse Laplace transform (Bromwich integral):

ct+joo
F(s) €7 a7 .. (3.7.(2))

£(z) = L°H(E(s)) = —-
_ 27 J % oo

where ¢ 1is such that =Re(s) 2 c.

Jeffreson and Chow [11,12] report that although there
exist a large number of different methods and approximation
formulae to (3.7.(2)), the numerical approximation of the
integration in (3.7.(2)) using Gaussian's quadrature

coefficients as used by Zakian [27] seems quite suitable,

Zakian [27] method requires that displaced impulse or
delta function 6(T-1) bé approximated by a finite sum
of exponentials either by least squares approximation or
by a Pade! approximation, Tor a delta function, we have:

e )]

£(t) F S f£(07).8(86 -~ 1) a6 e (3.7.03))
0

Approximating &(v-1l) by a weighted sun of exponential

functions, we can writes

N

5(t-1) = oy(t-1) = :E Ky exp(~a;7) ve (3.7.04))
A=

Substituting (3.7.(4)) into (3.7.(3)) and interchanging the

order of summation and integration givess:
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N o0
f(z) = £i(r) = Z Kij £(81) exp(-«;@) A8
i=1 0
or
N K. s
p(r) = 3 ~EF (=) S (o)
e, - 4

where as defined in (3.7.(1)), F(s) 1is the Laplace
transform of f(t) ;3 O &1 L%,

Bquation (3.7.(5)) is straight forward and simple to use,

besides coefficients K. once determined for a

i? a5

19
pairticular value of N, are independent of the function
F(s) being inverted, So for a given N, once an optimal

set of Ki’ @

53 i = 1,250..,8 are found, a large range

of functions can be inverted by using equation (3.7.(5)).

Jeffreson and Chow [11,12] have compared a number of
sets of the coefficients ay, Ki and concluded that,
for a given N, the Gaussian coefficients in general give

good approximations in (3.7.(5)).

Zakian and Bdwards [28,30] have obtained sets of “Pade'"

coefficients by approximating the rational fraction:

N
By(z) = L(o(s-1)) = Z —i- o (3.7.(6))

to the Taylor series expansion of the exponential function

exp{~2).
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Zakian and Gannon [29] earlier derived a set of
quasi-least-squares coefficients (Ki) for a chosen set
of (a;) which were used by Jeffreson and Chow (JC) [12]
in a comparison with Pade' coefficiemts. JC f12] report
that these quasi-least-square coefficients [29] are
generally unsuitable for (3,7.(5)) and can produce poor

approximations.

JC [12] have produced a set of what they term “true"
least-squares (LS) coefficients (a;,K;). These along with
Pade! coefficients were tested to invert five test
functions for N = 15 in arder to compare the two sets
of coefficients by them, They report that although the
delta function can be more accurately approximated using
least-squares approximants than Pade' approximants,
their corresponding coefficients, when used in Zakian's
Leplace inversion formula (3.7.(5)) do not necessarily
produce more accuratec approximations to f(t). In fact,
fairly accurate results can be obtained using the Pade'

coefficients as Integral Square Errors (ISE) defined by:

e=T _
IS8 = 9 A0 [f(6) - £(e) 1° o (3.7.07))
6=0
for N = 15 is found to be in the range of 1072 to 1072 by

J¢ [12] for the test functions used. They also found
that ISE using least-~squares coefficients was greater for

each function tested when compared with Pade' coefficients.
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Hence Pade' coefficients for N%15 as listed by JC [12]
were used in conjunction with (3.7.(5)) in order to obtain
the inverse of Laplace transform functions occurring in
sections %.1 and 3.4. They can be found in subroutines

7ACOFS in program CLOZAK listed in the appendices.,

7ekian's method using Pade! coeffic ients was
particularl& chosen because of its accuracy, reliability,
simplicity and ease in programming. The method 1is
computationally fast, although it requires at least [(N/2]
(; integzr part of N/2) evaluations of F(s) at every
value of T as reported by JC [12].

Drawbacks of Zakian's method seem to be:

a) It does not provide a ready estimate of the error of
an approximation of an unknown function,

b) It requires a NnuUOET of evaluations of F(s) at each
value of T, so may take up a 1ot of computer time
especially if F(s) happens %o bs a complicated
function.

c) The formula (%,7.(5)) cannot be used to comput e fN(T)
at T = 0. This is why one has to resort to the initial
value theorem in order to gvaluate fN(T ; 0).

d) The need for a long computer word length restricts

implementation on all machines.
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3,8 Chapter Summary:

This chapter describes a new method for solving the
counterflow regenerator problem, At first reasons for
developing this new method are outlined and it 1s noted
that although this method 1s based on Nahavandi and
Weinstein method tl?], it avoids the use of quadrature
formulae (used to obtain complicated forms of Bessel
functions) and utilizes numericel inversion of Laplace
transform, We also note that the proposed method considers
a general non-syumetric, unbalanced regenerator as compared
to NW method [17] which only took the balanced, symmetric

regenerator into account,

The proposed analytical closed method is developed in
section 3.1 and we note that equations (3.1.(24)) and
(3.1.(25)) can be utilized to obtain solid temperatures in

3]

terms of coefficients ai and aj respectively.,

Anzlysis in this section beyond equation (%3.,1.(25))
derives equations (3.1,(32)) and (3.1.(33)) which
determine fluid temperatures in terms of coefficients
a; and a;. We note that these equations are very easy
to program on a digital computer as they are simple

sums ance coefficients a are known.

In section 3.2, thermal efficiency has been derived

in terms of coefficients a and other parameters and
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once again we note that this 1is very easy to program,

Section 3.3 derives steady state 1imiting temperature
profile, this is required as the limiting case of period
becoming zero cannct be handled thr ough the Laplace inversion
method used. Thus a separate derivation for the limiting
case solid temperature profiles in steady state determines

equation (3.3.(23)).

Having developed the propos ed method for g~scale it
was noticed that for large values of A(240) and large

values of N ( 20), terms in the initial solid temperature
waN=1 ! " 1\ N=1
) in z a; (a) become Very
i=l
lapcge which may causs overflow in rows of [B'] and [B"]

profile such as (g

matrices in section 3,1, thus resulting in ill-conditioning
and/or error pronc rcsults. The re fore, normalized parametber
z, 2e[0,1] was used in S: B (z)l =1 for initial solid
temperature dlstribuulonlli order to avoid overflow and lack
of precision, This meant that the proposed method was to

be rederived using the -z-parameter and this is what 1is

done in section 3.4, and solid temperatures are obt ained
through equations (3.4.(19)) and (3.4.(20)). The thermal
efficiency is also derived once again (sece equation
(3.4.(21)). It is once again noticed that final equations
obtained in these sections are very easy to program on a

digital computer,
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Section 3.5 develops exit fluid temperature equations

(3.5.(19)) to (3.5.(20)) using the z-parameter.

In section 3.6 the case of a symmetric, balanced re-
generator is considered and equations (3,6.,(9)), (3.6.(10))
for the coefficients of proposed method are derived. It is
noted that these equations ere extremely simple when compared
with NW method [17] which was developed only for 2 symmetric,

balonced case,

This is followed by section 3.7 which is a review of
the inverse Laplace transform msthod used, the reasons why
this method was used along with its advantages and

disadvantages are also presented,
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CHAPTER 4: DETAILS ABOUT COMPUL &R PROGRAMS , RESULTS AND

S v St Y &

4,1, Description of Computer Programs:

Based on sections 3.1, 3.2, 3.4 and 3.5 computer programs
have been written in FORTRAN for the CDC 6000 Computer System
housed at the University of Adelaide, & listing of these

programs can be found in the apperndices.

Appendix Al lists the FORTRAN program which obtains
coefficients a' and a" as expressed in equations (3.1.(22))
and (3.,1.(23)) respectively for a specific set of parameters
N (number of terms in the finite series approximation of
initial solid temperature profile), =', =" (hot and cold
periods in normalized dimensionless time units) and i#, X
(hot and cold blow reduced dimensionless bed lengths)., The
coefficients a' and a" are output, Note that cach are N in
number . FolloWing this, on demand, temperature profiles
for solid are obtained through equations (3,1.(24)) and
(%.1.(25)) for hot and cold blow. This is followed by
calculation and printing of thermal efficiency E as defined
in equation (3.2.(1)), if required, The program is flexible
enough to allow a consecutive number of runs with different
parameters just by entering the new set each time as prompted

by the program, Alternatively resulte can be obtained from
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the program for different orders of polynomial approximation
of initial solid temperature profiles (i.e,, for different
values of N) while keeping the other parameters unchanged.
The program uses Zakian's coefficients for Pade'! approxi-
mation to obtain inverse Laplace tpansforms as required in
section 3.1 to determine metrices [C'], [¢"] and vector U.
A1l the arithmetic is in single precision and inversion of
matrices is done by using the Control Data Library MATRIX
routine. This program uses (as do sections 3.1 and 3,2) the

dimensionless distance parametsr g e [0, %1].

The FORTRAN program listed in appendix A2 evaluates
coefficients a' and a', but thie time double precision
arithmetic is used and distance parameter 2 € [0,1] scale
is utilized instead of q scale which was used in appendix Al
In this program, aftcr initial set of paramet.orss N, ' A'
x' and #" have been entered, evaluation of a' and a" is
undertaken and these are obtained via equations (3.4.(17)) and
(3.4.(18)). In these calculations the determinants of the
pmatrices inverted via Library MATRIX routine are output.

After calculation of each set of coefficients a' or a' the
valuesfor a' and/or a" are printed on demand. After this,
if required,'when number of bsd mesh points has been input
solid temperatuces are calculated and output on demand via
equations (3.4.(19)) ané (3.4.(20)), Then, if exit fluid

temperature profiles are required they are obtained by
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subroutine FLUTE which makes use of equations (3.5.(16) ),
(3.5.(17))s (3.5.(19)) and (3.5.(20)). Within the subroutine
FLUTS there is provision %o obtain variable time integral of
cold blow exit fluid temperature, Tf required, then this
value is obtained within FLUT by evaluating a function
ETASTAR which makes use of the derivations which follow in the
next section 4.2. As in the case of appendix A1, here also
flexibility has been built into the program so that a number
of consecutive runs can be made with changed parameter(s)

without having to execute the progran separately each time.

Appendix a3 comprises of the FORTARAN program which forms
the single precision count erpart of the progran in A2, In
fact this program was written before the one in A2, However,
it was felt that for greater accuracy douhle precision must
be used and so changes were made into A3 to incorporate
this feature which resulted in A2, The seguence of compu-
tations cescribed for A2 therefore holds good for the program

in Appendix A3 &s well,

4.9, Derivation of time scalg transformation for variable flow:

In chapter 1, the nsed for variable time integral of cold
blow exit fluid temperature was strecsed, We derive this now.

Starting with equation (3.5.(18)), we let:
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]

. NS R
" = j exp( Ak (W---z”))wl-l dw
0 s+l
: " g . '
= e Pz 5 W il s where b = A's/(s+l)
O
_ -bz" Tn .
= @€ Ii-l say.

So, from similar analysis as for hot blow in section 3.5,

we obtaint

. 1 1
Ion - = [ebz — l] e (4.2.(1))
b
k J
n 1l - " (=)
wo = PR G T

J=

k! -
(—)k—'-l _E ] ; k— = 1!29000,N"1

.. (4.2.(2))
Therefore, (3.5.(18)) implies:

gty = 1L Z R El D

So from (4.2.(1)) and (4.2.(2)) and substituting the value
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of b we have:

;{‘sz‘"

' - a s+l
t"(Z" 'rll) - L'-l [ ___]; (l - e ) +
S

=

-1 (Lyd shl

N
T ey ML @+ (-1

(s )Y
o = (i=1-3)! A'sz

: b
(=)t(i-1)! ( &

)i--l X )"SZ“/(S"‘l) 17
r=r

oo (4.2.(3))

But variable time integral of cold blow exit fluid temperature

n* is defined as

H

i
n* = _I t" (2" = 1,r) ar .o (4.2.(4))
0

obviously N* = O when =o"

1]
O

So, for r" g (0,n"), from (4.2.(3)) and (4.2.(4)) we have:

r . ) L e -X's/(s+1)
'n* = ' = L‘ — .
g [al aq ( - g=r -
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l I +1 . -“"{‘S/<s+1)

+ T ()2 o) aayn nob == )i o e
i=2 A's s r=r"
MRS | i-1 4l 1
Z ay (1 + (i-1)! Z ...._.E..__)....,_ -1 [ ~ LS—-— J] ]] dr
i=2 o5 (i-1-9)! s ;:'s

. . o~ A's/(s41)
N o= A's/(s41)
i n Al o
T e () R o
i=2 A's S r=r
N i=1 |
1 (- 1 . ’
a; [o" + (i~1)! e — )__.. (=:)9 "= (—=)9) ]
=2 j=1 ' -t A S S p=r
ee (4.2.(5))
Now

el g O ; J 1 iz

- (=) =-5§'_<k><—) -3 OHd

s s 8 1o =

S50,
1 s+l . . J j Crll)l{+l

sl R

il 1
S s r=pr k=0 (k+1)!
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Hence, (4.2.(5)) implies:

n* ay ¢ - ay L™t (eXP(~;fs/(s+l))/s2)'r” +
Ir=

N : a0, »

S ()t e G- T C T iRl gup(-Ats/(sH))/5°) |+
X A's p=r"
1=2

N i-1 J

E: a; (2" + (i-1)! EZ —

) . ( _n)j N
51 (i-1-3)} A

H
I
N

. Z (k)""

b !
k=0 (k+1)!

3 w4+l
- ) .. (4.2.(8))

This expression (4.2.(6)) can be utilized to obtain time scale

transformation for variable flow,

4,%,Comvarison of results: Because Willmott {251 has expanded on
work done by NW [171 and he reports results which compare
favourably with earlier authors, it seems fit to compare
results with those obtained by him.

Tn table 4-1, values for thermal efficiency obtained

using g and z~scalc programs are displayed along with the

values obtained by Willmott [25) in table 4 of that paper.

As noted in section 2.3, Willmot® [23,25] uses a thermal

noa ) . . WY
ratio Mgaa (denoted as Ry, in section 2.3). For N,

! = 1" thermal efficiency is comparable with Willmott's

cold side thermal ratio.
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Gfficiency & as defined in (2,3.(4)) has been utiliscd
to derive (3.2.(2)) from which values for b) i.e.,
efficiencies for g-scale single precision have been calculated
in the program, Similarly efficiencies ¢) for z-scale double-
precision have becn obtained through the use of equation
(3.4.(21)). The values a) have becn obtalnsd straight from
the table 4 of Willmott [25].

In table 4-1 it should be noted that only the smallest
and largest bed length used by Willmott, namely, 1 and 10
are used in comparison, Although other values can be
easily obtained and a number of tables produced, it is hoped

that the table 4-1 alone will sufficc,

From table 4~1 we can conclude that the proposed method
(both for q and z scales) is quite compatible with the

results reported by Willmott,

For bed length A =1 and period = = 3 agreement
with Willmott's values is very close, i.z., upto 4 decimal
digits for 3rd to 8th order of polynomial, We notice that
b) values oscillate starting from 5th order and so values
beyond 6th order were not obtained. Also ¢) values show
a similar trend and become steady at Tth and 8th order.

It is thus safc cnough to conclude that for these parameters

4th to 7th order polynomial can be used,
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For bed length A= 1 and period = % 2 also very
close agreement is found with Willmott's valuc, Here b)
values increase slightly as the order of the polynomial in-
crcases but there is a very slight drop (in the 9th decimal
place) when the thermal efficiency for the 6th order poly-
nomial is compared with that of the 5th order polynomial.
So it is assumed that for b) values this is where the stable
value of thermal efficiency has occurred and no further
b) values are calculated for these parameters. Whereas,
for ¢) values a similar trend is noticeable and values remain
constant for polynomial orders 6, 7, 8 and even 9. It is
thus concluded that for A =1, n = 2 the suitable order

of polynomial lics in the range 5 to 8,

Similar conclusions can be drawn about the therual
efficicncies for A= 1 and ©® = 1. Although it is clear that
b) values oscillate after 6th order and c) values after
remaining steady at 8th and 9th, start oscillating and
eventually achieve 4 decimal placc accuracy at 1l4th order,
the behaviour of ¢) valuecs beyond 9th order does not
represent the general trend, this is dus to ill-conditioning
setting in at 10th order of polynomial. So, we conclude
in general that for short bed lengths and periods of 1, 2 and
% very close agreement (at least upto 3 decimal places)
with Willmott's values takes place for small order of poly-

ponial apd any of 4, 5 or 6Gh order polynomial will be
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suitable for these short bed lengths,

However, for larger bed length A = 10 and period m = 3,
agreement with Willmott's value to 4th decimal place occurs
when the order of polynomial is 7 or 8, Both b) and c¢)
values show the same trend of reaching upto a stable value

and then degenerating,

We note that for bed length A= 10 and period m = 2
similar (upto 4th decimal place) agreement requires order
of polynomial to be 8, 9, 10, 11, 12 or 13 but thermal
efficiency for both b) and c¢) oscillates (in the 6th

decimal place) after 10th order of polynomial.

For bed length A= 10 and period = = 1, in order to
obtain very close agreement with Willmott's value the order
of polyncmial should be 11 or more but not greater than 13
as b) values decrsase after 12th order. However, c)
values increase upto 13th order and then come down for l4th
and 15th order of polynomial, So, any of 11, 12 or 13th
order of polynomial is quite appropriate for these para-
meters, Hence, it is concluded that for larger bed lengths
where periods are 1, 2 and 3, the order of polynomial should
be chosen from 8, 9, 10, 11, 12 or 13, 1In general, higher
orders must be chosen for shorter period and smaller orders

for larger period.
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Comparing b) values against c) valucs, 1f one does not
consider the 15th order polynomial (for which unsatisfactory
results occuir), then a fairly close agrecment at lecast upto
5th decimal place ig found, On average, most of the values
agree at least upto 6th decimal place and a fair few even

upto 8th decimal place,

This indicates that there is not much difference in
precision of the two methods despite the fact that c) values
have been obtained by using double precision calculations.
But, we notice that in general c¢) values show a more
"smooth and stable' trend than b) values which appear to
be more oscillatory =.8., 7; 8, @ and 10th order values
for = =1 in table 4-1. Thcrefore, the uethod involving
the z-scale double precision could be given a preference over
the single precision method although the rosults may not be
appreciably different., It is however important to note that
the preference may have to be exercised at the cost of run time.

4.4 Comparison of profiles:

Graphs I and II indicate the behaviour of Solid
Temperatures at the start of hot and c¢old blows respectively
along the whole length of the bed, The limiting steady

state profile is & linear graph represented by:

1l +g
N4 2

T(q) = .. (3.3.(23)) as derived in
section 3,3,

where q € [0, A'].
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In Graph I the reduced length X is 40, The curves below
the limiting steady state profile represent the temperatures
of solid matrix along the whole bed length at the start of
hot blow for periods =n' = 5 to =n' = 40, as indicated.

The curves above the limiting profile represent tempe-
ratures at the start of cold blow. As here a large

reduced length A = 40 was being used with periods vary-
ing from = = % to ® = 40, a fairly "average' value for

the order of the polynomial was to be chosen, hence

initial so0lid temperature was chosen to be of 5th order.

An off-line CALCOMNP plotter was used to obtain all
the curves except the limiting profile which was drawn
manually via equation (3.3,(2%)). The plotter routines
(not attached here) were written so that X-Y data from
the program could strailghtaway be taken and plotted.
Provision for drawing many curves on the same plot was
deliberately included so that many curves could be plotted
once the data had been taken up by the plotting routine
from the driving program and interactive terminal.

Graphs I and II are a draughtsman's true copy of the

original CALCOMF plotter output.

It is quite evident from Graph-I that for a fixed
reduced length the solid tempcrature profiles approach
the straight line limiting profile as the pericd is

decreased from ®m = 40 down to n = 5.
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A similar behaviour is noticeable in Graph~II where
the reduced length A = 10 is smaller and hence only a
3rd order polynomial was used., Here also curves below t he
limiting profile are those at start of hot blow and the
ones above represent temperatures at the start of cold

blow for the parameters indicated.

4,5 Discussion on ill-conditioning and other limitations:

The program CLOZAK (see appendices Al, A2 and A3)
uses CDC Library 'MATRIX' routines to invert matrices and
perform other matrix operations (see appendix M for full

details).

We shall discuss the inversion of matrices with
respect to g-scale, Discussion with respect to z-scale
will follow on parallel arguments so the arguments will

not be repecated for z-scale.

Now, with respect to g-scale the matrices to be

inverted are:

(B"] and [B'] - [¢"] [B"]7Y [C'] , see section 3.1 for

definitions.

' ! e t .
As q_l = 0. q2 = A /(l\l—l) and ql = (1-1)qé for
i = 3,4,4..,0 are ecvaluated in the program, it is impossible

to have two rows or two columns equal in [B"]. As we



« oRUN,F,F=C3
ENTER VALUE OF He=

450008  CM STORAGE USED .

2,449 CP SECDNDS CONMPILATION TIME

CM LWA+1 = 334658, LOADER USED 4730086
ENTER HOT AND THEN COLD LAMBDA==1,,1.
ENTER HOT AND THEN COLD PERIOD==1.,1,
DET= =,11325E=05
DET= ,37847E=06 o
ARE HOT BLOW COEFFTS.REQUIREDZYES OR NO==K
ARE COLD BLOW COEFFTS,REQUIREDZYES OR NOw=N
ARE TEMPERATURE PROFILES FOR SOLID REGUIREDZENTER YES DR NO==N
ARE EXIT FLUID TENPS.REQUIREDZYES OR NOmmy
INTERESTED IN THERWMAL EFFICIENCY? YES OR NOs ¥
THERMAL EFFICIENCY= ,322078227 ,
ANOTHER RUN WITH DIFFERENT PARAMETERS?
ENTER YES OR NO ==

ANOTHER RUN WITH SAME PARAMS, BUT DIFFERENT NRDER?
ENTER YES OR NOw=Y

ENTER VALUE QF Ne=7

DET= =,11343E=08 |

DET= ,32734E=09 _

ARE HOT BLOW CDEFFTS REQUIREDZYES UR NQM*N

ARE COLD BLOW COEFFTS.REQUIRED?YES OR N{w=}
ARE TEMPERATURE PROFILKES FOR SOQLID REdUIRED?ENTER YES DR MNO==d
ARE EXIT FLUID TEMPS.BEQUIRED?YES (IR MO=mi
INTERESTED IN THERMAL EFFICIENCY? YES OR NO: Y
THERMAL EFFICTIENCY= 322078230

ANOTHER RUN WITH DIFFERENT PARAVETERS?

ENTER YES R {0 ==i

ANDTHER RUN WITH SAME PARAMS, BUT DIFFEKENT ORDER?
ENTER YES UR 0=}

STOP

OUTPUT-T
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consider the case N> 2 only, it is expectcd that in
general linear dependence between rows or columns will not
occur as we are taking powers of each element of the second
column to obtain the rest of entries in a row. However,
ill-conditioning may occur if elements of the second column
of [B"] are small because then the rest of the elements

become smaller in columns 3 onwards.

Wie note (see output-I attached) for small 2\=?\‘=x'="
and period w = m' =n" =1, the determinants of [B"] and
[B'] - [C"] ['B”]"l [C'] respectively are of the order
lO"'5 and lO'6 for a 6th order polynomial, and 1078 and 10~
for a 7th order polynomial, yet coefficients are calculated
oand the value for thermal efficiency differs from Willumott's

[25] value in the 4th decimal place.

For greater values of A the values of these deter-

minants were found to have increased, so much so that for

A=A = A'= 10 and polynomial of 13th order the deter-
minants were of the order lO38 and 1056 respectively,
yet thermal efficiency was ocbtained and its value differed
in the 4th decimal place from the value reported by Willmott
[25], see table 4-l. At the same time 1t was observed that
for N = 15, determinants were extremely large (lO50 and
1047) and although the program itself did not stop executing,

the thermal efficisncy obtained was unsatisfactory.



CM
ENTER
ENTER
ENTER
DETs=

DET=
ETARE

LWA+1 = 336178, LUOADER USEDQ 4750CB
HOT AND THER COLL LAMBDA==2¢, 20,
HOT AND THEwW COLD PERIOD==1, 1,

N 5

»27466E=03

+17438E=06
G= ,905039055

ANOTHER RUN? YES=1 1

ENTER
DET=
DET=
ETARE
ANOTH

ENTER
DET=
DET=
ETARE
ANOTH

ENTER

DET= -,21024E~21

DET=
ETARE
ANOTH

ENTER
DETs=
DET=
ETARE
ANOTH

ENTER
DET=
DET=
ETARE
ANQOTH

N 6
=«11325E=05
230154E=09
G ,906859011
ER RUN? YES=1 1

N 8
2»27264E-12
223525E=16 )

GE .,908264406
ER RUNT YES=1 1

N 10

+B86702E=-26
Ge ,908654424
ER RUNZ YES=1 1

N 12
«49274E=33
«11571E=37
Gr ,908737527
ER RUNE YES=1 1

N 14
=,33%909E-47
+49621E=-52
Ge ,908964755
ER RUN2 YES=1 1

ENTER N 15

DET=
DET=

=,31346E=55
036973E”60

ETAREGe ,9086135536
ANOTHER RUNE YES=1 1

ENTER
DET=
DET=
ETARE
ANOTH

ENTER
DET=
DET=
ETARE
ANOTH

N 17
«32552E=73
«25933E=78
GRERKEFRRAKKE XX
ER RUNZ YES=1 1

N 16
+66972E~64
+64167E=69
GEARKKKARRKARNE
ER RUNR YES=1 9O

STOP
14,432 CP SECONDS EXECUTION TIME

TOUT PUT =L
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FHence it is concluded that as very large order poly-
nomial (beyond N = 14) will be used, ill-conditioning is

expected to creep in,

The above mentioned fact about ill-conditioning is also
borne out by the z~scale program, where, as expected, the
detcrminants become exceedingly smaller as the order of

polynomial is increased.

Referring to output-II (result of program written
for z-scale just for testing the convergence of thermal
efficiency), we notice that for A= A= 20 and
a! = n" = 1 the wTAREG (i.e., thermal officiency) converges
shoothly upto N = 14 (having started from N = 5), But,
as N =15 1isg used ill-conditioning takes over and beyond
ghis for N =16 and N = 17 BTAREG values become so
small that they are not oubtput ( asterisks are printed ).
We also note that determinants to the order of lO"73 and

10”78

are used in the inversion of matrices, yet the
programn does not stop by itself and further calculations

(if required) are carricd out.

As the inversion of [A] = [B'] - [C" ] (Y17t e
is mainly dependent upon [B“]"l, judging from the
definitions of [B'l, [C"] and [C'] (in chapter 3), it
is 'safe! to say tﬁét if [B"] céh.be inverted so can [Al.
Thié is also noticeable from ﬁhe proximity of the absolute‘

value of the determinants of these matrices (see Output-IIL).



So, we conclude that although illeconditioning is a
particularly disadvantageous and limiting but unavoidable
aspect of these programs, the programs themselves are
fairly “"flexible" and can be stretched to limits such as
10772 and 1077 in calculation of determinants for inversion

of matrices,.

We now turn to other limitations of these programs

(sce appendices Al, A2, A3 for listings etc,).

The programs have been written to accommodate an N
value of upto 20, if a higher order elementary distribution
is required, the dimengion statements will have to be changed.
It is worth a mention here that on CYBiR 6000 with dimension
statements of 50, the core space was used up and the program

would not work.

As the library routine MATRIX (see appendix M) is being
used to invert and to do other operations, if a matrix is
singular; the determinant is set to zero and no further
calculation is done, One should obtain "DiT = 0" (or woxds
to this effect) in the output, and further execution will

cause an 02 mode arithmetic error on the FORTRAN compiler.

As noted earlier,; N value entered should bhe greater
than 1 otherwise division by zero is likely to be attcumpted

and this would causc an 02 mode rosponse to be output.
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Number of hot and cold bed mesh points should be at

least 2, otheciwise division by zero would be attempted.

As such there is no restriction on the number of inter-
vals of hot and cold bed length, but obvliously greater the
nuaber of intervals, greater the execution time, So CP
(Central frocegssor) time limit could be exceeded if very

fine intervals are usecd,

4.6 Suymmary and concluding rcmarks:

In this chapter at first a description of the computer
programs presented in appendices Al, A2 and A3 is given.
This is followcd by derivatlon of time scale trans-
formation for varicble flow which allows constant mass

flow solutions to be transformed to variable mass flow,

When comparing results with those obtained by Willmott
[25] it was found that for shor® bed lengths ( A= 1) very
cloée agreement (to 4 decimal ¢igits) was obtained between
Willmott's 'thermal ratios" and the proposcd closed form
method with only % to 5 terms in the polynomial expansion

for reduced period values of 1, 2 and 3.

However, a longeir bed length A = 10 required a
greater number of terms (upto N = 15) for the same degres
of convergence., This result is senerally as predicted by

Willmott and Thomas [26].
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A couparison of solid tesuperature profiles with those
predicted by limiting "zero period" model by Jeffreson [8]
was made, The solid profiles are found to be converging to
the limiting profile., This comparison scxplains and supports
some of the results repocted by Willmott and Thomas [26],

which were found in agreement in the preceding paragraph.

An analysis of illeconditioning is then reported along-
with the limitations of the proposed method. It iz found
that illeconditioning experienced by Willmott through
I11iffe!s method does not occur with the proposed method
for the same parameters, However, it is reported that
jll-~conditioning is likely to take over if the order of

polynomial N becomes 15 or more.

In comparing Willmott's open trapezoidal method [25]
with the proposed method, it was found that for the same
parameters the proposed method is relatively more
efficient c¢.g., a typical run for a 6th order polynomial
of CLOZAK used 1.642 CP seconds compilation and ,906 CP
seconds execution time for A= 20, n = 5, whereas the
trapezoidal program (much simpler to write) for the same
parameters converged after 33 cycles and took .797 CP
seconds compilation and 4,602 CP seconds execubion time,
It is obvious that for such normal perameters there is a
tgood' (to the order of 3 CP seconds) saving of RUN time.

It is expected that for larger parameters the open
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Trapezoidal method will require more cycles to converge and
so will need more execution time, whereas the increase

in CLOZAK's execution will be comparatively smaller,

80, in conclusion we state that the proposed method,
being relatively superior than the existing methods, will
be useful in calculation of temperature profiles, thermal
efficiency and other results connected with a thermal

regenerator,

It is recommended that the z~scale double precision
program be utilized although single precision gescale

program is not very far in precision.
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APPENDIX M

ABOUT CDC LIBRARY OUTINE NAMsSD 'MATRIX!

The main external routines used in program CLOZAK
are used for finding inverses and mulbtiplication of
matrices, We will not discuss the multiplication routine
as it is quite straightforward and self explanatory in [31].
Here we describe the subroutine used for inversion as
explained on page 13 of [31]. The calling sequence is as

follows:
CALL MATRIX (10,m,n,kop,a,ka,b)

where 10 calls the inversion subroutine,

m is number of rows of A (the matrix to be inverted).

n is number of columns of A; n ) m,

kop determines how the search for pivot is made.

If kop = O, the entire matrix is searched each time.

If kop = 1, the first row is searched the first, the
second the second time, and so on,

If kop = 2, no search., The diagonal eslements, from
upper left to lower right are used in turn
as pivot elcments.,

a is Matrix A.

The first m columns contain the matrix of co-

efficients. If n > m, the rsmaining n-m columns
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contain the right-hand sides of the n-m sets
of linear equations to be solved.
(Note: for inversion only, we need have
n=nmn),

ka is column size of A; ka ;; m (as reserved in
the dimension statcment for A).

b is determinant (obtainsble on output).

The subroutine uses Gauss-Jordan elimination method employing
the pivoting option as requested by value of kop. For the
program CLOZAK kop is chosen to be zero because this is
envisaged to be the most efficient way of reducing a

matrix, If at any time the pivot is such that a division

by zero is likely to occur and/or determinant is zero,

exit from subroutine is made with b = 0.
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APPENDTX_ AL

This appendix has been basically written to incorpo-
rate the FORTRAN program CLOZAK attached herewith., For a
description of computer program section 4,1 of the last
chapter slhould be consulted, Here we outline the purpose
of this program. This program obtains coefficients a'
and a"' as given in equations (3.1.(22)) and (%.1.(23))
using single precision arithmetic and g-scale where
qe [0,2]. The parameters to be input to the program
ares N, n', n', a's; A'. The coefficlents a' amd a' are
output, Then if réquired,temperature profiles for solid
sre obtained and printed for hot and cold blow. This is
followed by calculation and printing of thermal efficiency
& on demand. The program is written in such a way as to
allow a congsecutive number of runs with different

parameters in the same execut ilon.

A typical output is also attached in this appendix

where the following sequence of events take places

When the program is 'RUN' at first the question
1 IS THIS YOUR S&COND {UN? GNTxR YES OrR NO -- ' is
brompted (along with compilation time and other system
details). An answer to this was given as NO (the last
characters on fifth line of output). Then as a reply
to 'UNTER VALUS OF N --' 5 is entered thereby defining
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N = 5. Then the values o' = 19.7254 and ?P ; L ESPE
alongwith =n'! = "' = 8.5 ére entered as required., This
is followed ﬁy printing of the Detecrminant values of
matrices to be inverted, here we note that dets are fairly
large(being of the oider of lOg)yet the program does not
report any ill-conditioning. Then the coefficients a' and
a" are printed, Note that thesec are N = 5 in number;
When the question whether solid profiles are required 1is
answeresd in qﬁfirmative, the number of bed mesh points
i.e., number of points on the g-scale are required to ve
input. This value is given here as 31, on which solid
temperature profiles arc output for hot and cold blow,
Then the thermal efficiency is output as it was asked for
and here it is noted that for the parametors it is a
fairly efficient thermal regenerator., After this programn
comes to a STOP as no more runs with different parameters

or different order were required,

It should be nobted here that outputs obtained from
CDC 6000 Computer System have been printed using DuC~10%0
system housed at Indiazn Institute of Science, Bangalorc,

India, with their kiné permission.



Igtedar Askari Abdi.

PLEASE NOTE:

The computer printout pages Al-1 to A4-4
have a line missing at the bottom of each
page.

An unsuccessful attempt was made to obtain

completed pages through the office of the
Assistant Registrar in September 1982.
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QUiI0G PROGRAM CLOZAK(THPUD, GUDPOT, XYDATA, TARPEAL=INRPUY, TARRZ=0QUTRIY,
00116 STARE3=XYDATA)

00120G COMPLEX ALFA,VK

00138 DIMENSTON Xl(?DJ,X?f)U),U'(EDJ,AH(?U) AC{20),C0(20,20),

00140 SCHOR20,20),BC020,20),BH(20,26),C1(26,20),C2020,20),CIN(20,20),
Q01548 SALFACLS),VR(1S)

00160 C THIS PROGRAH SOLVES FOR VECTORS AR AND AC WHICH ARE COEFICLENTS OF
00176 © THE FPI8ITH SERIES APPROXIMATION FOR INITIAL HAOT AND COLD BLUWS.

QOLRG WRITEC2,7240)

Q019G 720 FORMAT(LX,0 I8 7HIS YOUR SARCOMD RUR % ENTER YED UR Nme ')
Q200 READCL, 140)aAND -
G06210 600 WRIUTEC(2,1)

Q0220 1 FORMATCLX, 'EJTER VALUE OF Hem 1)

Q0230 READCL, %)

Q0240 WRITEC(Z,2)

Q0250 2 PHHMAT(iA VEETER HO® AND THEN COLD LAMBDA=="')
G0260 BADCYL , ®IHLANM , CLAY

002746 WnTTb(,,* .
00280 3 OFORMAYCLY, 'FHETER WD ARD THEN COLD PERION==!')
QU291 READCL,®IPIH,PIC

003G G0 Himp=j !

00313 XiCi)=d, & X2(L)=CLAM & XL(MISHLAM )
Q0320 X3 (2)=HhLAn/8M1 & X2(2)=CLAMRCL . »X1(R)/HUAND) 8 X2(N)=0,
00336 . DO 4 I=3,81

00340 KL (X)=(3m2 )% L (2)

Q0350 4 F2CTI=CLAMA(L =Xt (T)/HLAM)

00360 DO & =1,k

00374 BHCI,2)=X1(0)

0038¢ BCCT,2)=x2(1)

0390 5 AHCE)=TRACCY=1)

00400 DO 4G J=3,H

Q041 ¢ Jimge]

Q0425 DO 40 Tm=i, N

QD43 BHCL,i)=RC(T,1)=1,

00444 BUCL, J)=BHCT, 20 %%J)1

Q4% BCCT, )=BClr,2)xxjl

00468 40 CONTINUR

Q0470 CALL ZACOUS(ALFA,VK)

0048¢G . USC1 )=t , =X P (=)

00490 D 6 J=2 .5

Q050G 6 USCI)=ZRE (D, XA G, PIH, ALFA, VK)

00516 DO 7 I=i,.nl

QUH24 Fi=1+1

00530 DO 7 J=i,n

0054G CHCT1,0)=2AKC0, X1 CT2),PYH,ALFA, VE)YXAR(J) .
0085 CCUT,J)=AARCT ,X2CT1) ,PIC,ALITA, VKIFAHCLI)
065649 7 CONTT MR

G057 DO 20 J=2,h

Q0589 20 CHlCt,)=CC(H,J)=0,

00590 CHOL, )sEXP(=RIH)SCC(H,1)=EXR(=RPTC)

DO6DT CALL AATRIX(LG, ¥, 8,06,8C,20,DRT)

Q0615 WRITE(Z,30)08T

NO620 30 FORMAT(EX,'QET:',ElE.S)

DCG3O CALL MATZRIER(ZC,d,d,4,00,20,3C,20,C1,22)
0064G CALL MAPRTAC2G, 0,0 ,08,08 ,20,CH,26,C2,249)
0065¢ DO 1O I=i,N

PO66Y DO 1¢ J=i, N

00070 10 CINCI, )=, d)=C201,.J)

Q068¢ CALL MATRIX (LG, 8,8, 0,000,20,DET)

HD0OBYD WRITE(2,392)DEW

0070¢ DO 1L T=L, N

00714 C2(F,)=CL0L,)*USCL)

00726 DO 11 Jd=2,4

00730 CRO1,10=C205,1)+C1 (X, I)*UE(T)

0Q74w 11 Cw‘ml Ut



00760
D077
QO7HD
DOT90
00800
00B1Y
00820
00830
QOBAG
00BED
NOBAY
Q0870
gQBYG
QOBOY
HOVL0
00915
009206
00930
o0Yv4l
Q09KC
QD96
00976
098G
0099¢
01000
Q1010
01026
(310346
01040
0105¢C
01663
01076
G1084¢
0109¢
91106¢C
01311¢
01120
01139
01149
01150
01160
QLL7¢
01180
0119¢
01200
01210
01224
01230
01240
0125¢
01260
01270
g1280
01290
61300
01310
0132¢
0133¢
01340
01350
01360
01370
f138¢
01390
Q1400

S T A

12

13

185

16
17

18

98

110

45

T00

47

46

610

620

44

50

H30
640
49

200
201

R

ARCL)=CEHCYL,10xC201,1)

DG L2 J=2,10
AHCI)=AHCE)+CIN(Y, ) *C20d,1)
CORTTEUR

WRITE (f"‘, 13)

AN\~ L

FORMAT (LN, 'COEFFYCTRNYS (OF HOT BLOW=='/1X,28(1H=))

WRITEC(D,14) (AACTY,I=1,0)
FORAAT(3CR AN, E12,5)))

DU 1% Tmi,n
CIM(YL,10=a8CCT,1)408(1)

DO 15 J=2,4
CTROI,)=CTUCT, I)+BCCE, J)*05 ()
COMTLUURE

CALL HATRIX(20,0,0,0,B8C,20,CH,20,C2,290)

DO 46 I=l5 N

CIp T, 2)=020C1, LY®xAHCE)

DO 16 J=7,4
CIMCL,2)=CIM{1,2)+C2(1,J)%B5H )
CONTIHUE

po 17 I=1,n

AC(CI)= CEi(T LY4+CTHY,2)
WRITE(2,18)

tUHmA"L‘X,'(l SFFICTEEYS OF COLD BLOW==!'/1X,28(16=

WRITE(2,14)CACCI),T=1,N)
WRYTECZ,98)

READCL,110)AS

FORMAT (AL)

IFR(AMNS, BG, LHMIGOTO 20606
IRCAND R ("._Lh‘()GU‘T‘U TOG
WRITE(Z, 49)

FUR.A.(LX,'ﬂHTEH MUMHER OF BED MESH POIH

READ (4, %) Hi3

HM=HLAM/ (Mo=1, ) 2CH=CLAM/ (el ) 8XH50 , 35X

THEABCL)RBC=ACCL)

DO 47 Ix2,.N
TC=YCHACCIIAXCRKR (L=l )
WRITE(R,48)

FORMAT(LX, " SOLID TEUPERATURE PROFTLE!'/Z1X,
VHORMALISED DISTANCH! 40X, '60Y BLOW! , 10K, CuL

TRCAED JEU 1HY I GUYD hlv
WRITECI,*)XY,0H,TC
GOTO 620

WRITE(3,*)TiH,

WRITE(2, aaIAH TH,T
FORMAT(BE,F12,9,10X,F12,9,8%,F12,
DO 49 J=2, il

ACCE X, PARE TMEHPERATURE PROFILES FOR SOLLD
SVENTER YRS LR NO=«')

XHEXH+HHEXCEXC=CHETIH=AH (1) 8TCRACCL)

DD S8 I=2, M
THRTHEARCT) Xk x (I=1)
TC=TCHAC (T ) XX CER( =1 )
TFCAND ,EG L AIHY)IGOTO 630
WRITEC3, ®) X, TH,PC

G TR 4G

WRITE (R, *)TH,TC

WRITK (2, 48)KH,TH,TC

CanTInle

WRITE(2,201)

FORMATC(LX, PIHTERESTED IN THERMAL
READCL,L10)ANE

IF(AMS  BQ, LHNIGOTO 999
ETARBEGSACII)XCHAMSSUNSAH(L ) XYL AM
DO 90 T=2,d
SOMa=SUM+AHCTI) X CHLAM®XT) /T

BEFICTE]

L L P W BT e B S IR o S A B L W T A N A

Tguul)

1AM

MCY? YES

1)

n6(lH=Y /2%,
ALt 1)

Y

RinGUIRED?Y,

e t)
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0142¢ ETAREGZHLAMYETAREG/ (PIHXCLAM)~S3UM/PIH

01430 WRITE(Z,31)0FAREG

01440 91 FORMAT (4 X, ' THERMAL EPFICIENCY=',F12,.9)

01450 999 WRITE(2,300)

01460 30¢  FORMAPCLX, 'BNOTHER UG WITH DIFFERENT PARAMETERS?'/iX,

0147¢C SUEHTER YES UR NO =) ;
0148¢ READCY ,114)AND

01490C TF(AND,BEQAHYICUTD 600

01500 WRITE(2,301)

01510 301 FORMATCLX,'ANOTHER KON WITH SAME PARAMS, BUT DIFFERENT ORDBERE'/
01520 S1X,'EHTRR YES DR tlmemt)

01530 READ(L,L1G)ANS

0154¢ TF(ANS Q. LHN)STOP

0155¢ WRITEC(R, 1)

01560 READ(L, %)M

01570 GOTD S00 '

G158¢ [N ]

0159¢ SUBROUTINE ZACOFS(ALEA,VK) |
01600 ¢ THIS SUR EVALUATES THE ZAKLIAN'S COEFFICIEHNTS FOR PADEY APPROXIMATION,
01610 COMPLEX ALFS#, VK

01620 DIMENSTOR ALFACIS), VE(15)

(1630 ALFA(A)=CHPLX(L,958396510336323384+61,0,)

01640 A=) . 933570200604 148+01 & B=3,37939900085072348+00

01650 ALFR(Z2)SCHPLACA,BYSALFA(3)=SCHMPLX (A, =)

1660 A=l ,B714323268030498E4+01 5 BR=6,.T772981645000687K+00

016706 ALFACA)SCHPLYX (A, B)SALFRA(B)=CHPLY (A, =B)

01680 A1 .76445217T7T371T1E401 8 B=1,0197743916914888401

01690 ALFACE)=CHPLX(A,BYSALFACT)SCHPLX(A,=B) |
01700 A=1,6068031450337828+01 & B=1,367780303746658E401 i
01719 ALFA(SY=CHMPLE (A, B)SALEA(I)=CHPLYXCA,=B)

01720 A=A L3BE20TB2I8T750868+01 & =1 ,725343258836830E+01

01730 ALFACLO)SCHPLY (A, WISALFACIL)=CHPLYX (A, =B)

0174¢ A=1,0680652491390BA0E4+01 & R=2,100620730400388E+01

017506 ALFACL2)=CHPLX (A, DIBALFA(I)=CHPLECA, =B)

01760 A=6,3G1979854R06TOREFG0 § BR=2,51644726856H006R+01 |
0177¢ © ALFACLE)=CHPLY (A, 0)SALFACLIS)=CHPLX (A, =B) '
G1780 VECL)=CrPLX(L,04h0195094691018+38,8,) !
L 01790 A==l 266572985368 156E+06 5 Am=d4,T749121856114229E+4+07 {
016800 VKEZ2)=CHRLXCA, BISVR(3)=CHELYX (A, =) f
01818 A5 ,BTACYR4ABRAS366BE40T & P24 ,0090812394225393E+07

01820 VK(AYSCHPLX (A, BYSVK(B)ISCHMPLX(A,=R)

01830 Amml 13659328209 70024K+07 8 AE=2,450428931522289E4+07

01843 VKEg)=CHPLX (A, BYSVK(T)=CHPLX (A, =R)

018540 Ameml 694067331 423455E+08 5 856,009306354368069E+06

01860 VE(8)=CHPLX (A, B)SVK(9)=CHPLX(A,=B) ,
01874 A=4,1388R3037657413E+05 § Bz=mb ,184004276684025R+408 {
G18E¢C VEKC1GI=CHMPLXCA,BYSVK(11)=CHPLX(A,=B)

01890 A=ws CHRBASTREERE295TE+04 5 B=9,7Hh2029126666363F+03

01900 VK(A2)=CMPLXCA ,RISVKCI3)=CHMPLXCA,=8)

Q1910 A=3,8001h70835061704E+02 8§ B=5,088313306242982K+02 -
01920 VECLA)=CHPLX (A, BYISVEK(L8)SCHRLX (A, =8) '
01930 RETURN

01944 BnD

019590 IHTEGER FUNCTION IFACCI) ‘
01960 C THIS FUNCTION EVALUATES THE FACTORIAL VALUE OF T,

0197¢ IFAC=1 i
01980¢ IF(LLELAIRETURN

01990 DO 1 J=2,1

020060 i IFACRTIRACH]

02018 RETURH

02020 EHl

02030 COMPLEY FUNCTION ZAK(Y,T,PI,ALFA,VK) - ;
02040 COMELEX ALFA,VK,F1,F2,ZAC

02050 DINENSION ALFPACLS) ,VK{15) i

02060 ¢ THIS FURCTIUN FVALUATES 'THE THVYERER OF LAPLACED F AT TIME P USIKNG

P L T e T e L S I S B TR SR SR U SRR Y S PR W I UL WIS 188 oo SO (8 N MO VA T AR Al Tl Nk Zhd ThErLU & MR H'!‘



A=A

020860 TF(L.GT,0)GOTD 10
02099 ZAC=CHPLX(G, ,0,)

02100 PO 1 Jz=i,15

02119 1 . ZACEZACHVK(JI*FLCALFACD) /T ,PY)

02120 ZAK=CHPLX (REALCZAC) ,ATMAG(ZAC))

02130 ZAK=ZAK/T

021490 RETURN

02150 10 ZAK=VK (LI *F2(ALFACLY/T,RPT,T)

02160 DO 2 J=2,15

02170 2 ZAK=ZAK+VRCIIRXEQ2 CALFACI) /T ,PT,T)

02180 ZAK=ZAK/T

02190 RET RN

02200 END

02210 COMPLEX FUNCTION PFL(XI,PI)

02220 COMPLEX X1I

02230 C LAPLACHE TRANSFORM FUNCTION OQF US,

02240 Flzl ,~ChXpP(=XI*¥PT/(XT+1,))

0225¢ Fiz=Fi1/X1

02269 RETURN

02276 BaD

02280 COMPLEX FUNCTION F2(XI,PI,I)

02290 COMPLEX XI

02300 C LAPLACE TRANSFORM FUNCTION WHICH GIVES ELEMENTS DF C MATRICES, T
02310 C REPRESENTS THE POWER T0 WHICH THE DENOMINATOR I8 RAISED,
02320 F2=CEXP(=XI%¥PI/(XI1+1,))

02330 F2=F2/(XT*%T)

023490 RETURN

02356 END

02360 COMPLEX FUNCTION ZAP(T,RI,ALFA,VK)

0237¢ COMPLEX ALFA,VK

02380 DIMENSION ALFA(CL15),VK(15)

02396 c THYS FUNCTION EVALUATES THE HEAT RPOLE FUNCTIOQW BY USE OF ZAKIAN'S
02400 (o FORMULA OF LAPLACE IMVERAINN,

02410 ZAPEVK (L) ¥CEXP (~ALFA(L)*PI/ (ALFACLY+T))
02420 po 1 J=2,15

02430 1 ZAP=ZAP+VK(J)*CEXP(=ALFACJ) ¥R/ CALFACJII+T))
02440 ZAPRZAP/T

02450 RETURN

02460 END
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AA -

e o RUN I, F=CD

IS THIS YOUR SECOND RUONFEMTER YES (OR H(wmw=
450001 CHv STORAGE USiED
1,606 CP SECONDS COMPILATIGN WLIME
Cv LWwA+1l = 323341, LOADER USED 40200BR0
ENTER VALUE OF Ne=5
ENTER HUOT AND THEN CULD LARBDA==19,7254,17,3553

. ENTER HOT AND THEWN COLD PERIOQLm=H,5,8,5

DET= ,6H095E+4+09
DET= LB4490E+09
COEFFICIENTS OF HUY BLOW=-
@:\::::::a;:::::::::::::::::::
s 04601E+00 =,51787E=0G1 = ,7943%E=03 «13369E=03 =, 22553E=05

COEFFICIENTS OF CULD #LOW=m
O o el e e o e e e ety o o o i et
2 15090E+4+00 » 35453801 2143 1E=02 o 1233903 = ,1164YE=04

ARE

TEMPERATURE PRUFTLES

POR BOLEG

PULNT ==

ENTER NUMBER GF BED RLSH
SOLID TEMPERATURE PROFILE
PSSR ES IR SRR S IS REREES

¢,000000000
L657513333
1,315026667
1,972540000
2,630053333
3,287566667
3,945080000
4,602593333
5,260106667
5,917620000
6,575133333
74232646667
7890160000
8,547673333
9,205186667
9,862700060
10,520213333
11,177726667
11,835240000
12,492753333
13,150266667
13,407780600
14,465293333
15,122806667
15,780320000
16,437833333
17,095346667
17,752860000
18,410373333
19,067886667
19,725400000
INTERESTED IN THERMAL

THERMAL BFEFICIENCY=
ANOPHER RUN wWI'TH
ENTER YES OR N(] ==}
ANOTHER RN WITH SAFE
ENTER YES DR plw=i

DIFFERENT

HO'W BLOW
L0460 14972
LUl 1658727
W BTOB37723
e BALTHATYT
AT VLY
L ATIHB39H 2
437011126
L HU2E56563
n3093625149
CA3GER113Y
e 304854422
e 274314294
w2 ALEEIBAY
e 216TTHRLY
£ LYODRGHEY
e l64AQU3I5Y 3
L 141320844
JA1984U3657
SO 213404
LUHB0BUD1IAY
LUBA205695
LD49460421
LU36HE4A968
LUZRS8983R
CU1B4ATNALT
09231975
W B03839665
L HUNR263522

mL, GUL521530
- G0LS80703
LGGEO30703
ERFFICLENCYY YES UR W03
L935581809
PARAMETHEREY

PARAMS, BUT DIFFERENT

REQUIREDZENTIER YES

¥

OR

COLD BLOW
«H9Y92797H
1.008742666
La0099769211
1. U04385790
W H926810Y5
2275551266
22536514497
927605501
LHYHCORG1T
LH0H413913
2430359343
193340907
e 154825752
« 115249872
LBT7H017909
6345031489
594047728
« 5539872227
514526073
LATH5987341
438502794
«A0R437TRBQ
L367766733
«334672176
« 303245717
« 273547853
245600505
0219420323
e 194955083
172145747
L LBUBYAEDOE6

ORDERE



«435 CP SBECONDS EXECUTION TIME ,A/‘ = /é)
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APPENDIX A2

The FORTRAN piogram CLOZAK attached to this appendix
evaluates coefficients a' and a", but this time using
z parameter in double précision where z e [0,1] instead
of the gq-scale, This program besides obtalning the results

output by the program in Al also works out the following:

Fluid exit temperature profiles for hot and cold
blows and variable time integral of cold exit fluid
temperature,which are printed on demand, Here also
provisions exist for consecutive runs with changed para-

meters in the same execution.

A typical output 1s also attached here with sequence of

events as follows:

" After the run command, value of N entered is 5, this
ig followed by input of 7' = 19.7354, A" = 17.3553,
n' = 5" = 8,5, Then the first result output is TZ which
répresents %Ei Ki/ai which should be equal to 1 for
the given Zaki;n's coefficients obtainable from ZACOFS;
it should be notéd that here TZ = 1l,0exactly., Values
of dets of the inverted matrices are output, this time
they are found to be much smallesr (to the order of 10"5)
instead of 109 as was the case for q-scale, Coefficients

of hot and cold blow are then output but only on demand.



152

As temperature profiles for solid were regquired, the
number of bed mesh points were to be input; this is given
as 31, upon which solid temperature profiles for hot and
cold blow are obtained, It 1s noticeable that normalised
distance varies from C to 1 this time as opposed To
0 to %' which was the case with gq-scale, Following this
on demaﬁd exit fluid temperatures are output for hot and
cold situations respectively. Then, as required, varisble
time integral of cold exit fluid temperature is obtained
and printed. Thermal efficiency is also printed on demand.
Here also facility for consecutive runs within the same
execution are provided, It should be noted here that as
A' was "inadvertently" entered to be 19,7354 instead of
19,7254 the results although comparable with values
obtained in Al are not exactly the same and there is a
slight difference which 1s an indication towards stability
of the system (i.e., to say that slight disturbances in
input only produce slight changes in output)., It is also
noticeable that because of double precision arithmetic the

total execution time is 14.268 CP seconds,



00100
00116
0012¢
00130
¢0140
00150
00160
00170
00180
001930
00200
00216
00z22¢
006230
00246
00250
00260
00274
00280
Q029¢
0030¢
00310
0032¢
QG330
00340
003IBG
003690
00370
00380
00390
0044G0
Q0410
0042¢
DO430C
00440
00450
00460
006470
0048¢
00490
Q005G
0051G
Q052¢
053¢
¢054¢
Q055G
Q0BRO
00570
00580
00590
00600
00610
00620
00630
00640
DOBS5
Q066
D067¢
00680
QG690
00700
0071¢
00720
00730
00740

¢ THIS
C oF
C

600
1

3

500

¢ SET UP VECTORS OF DISTANCE COOBDIHATES AND SECOHD COL,OF

o,

C FILL

490

C OBRTALN ZAKIAN'S COEFPICIE

5000

5601

Az1

BRIUJGR L CU&/Au(TYl“’ GurReT, VyPX!I,TMEFl«JPVUJ,TﬂPh)”UUWPUW

TTAPEI=XYDATA
DOUBLE ALWH,VKR,ALFI,VFI,FH,PT
DIMERSTON X1 (2080 ,22020),U8020),AH(20),ACC20),C0(20,2

1CHC2L,20),BC (?',J(),nllf"o 200 ,C1020,20),02020,20),CTHC20,

2ALFRIB) ,VER(E) , ALFLCT7) ,VET (T

PRUOGRAM SOLYES FOR VECTORS Ab ANHG AC . HHICH ARE COEFRYCIENTS
THE FIRITE SERTES A
BLOWS, GENERAL UMRALAY

"J

ROXTMATLCH FOR INMITIAL SOT ARD
0 CASEH UEING o T0 1 SCALE.

WRITR(2,1)

FORMAPCLR, "Enpfl VALUE OF pes=!)

READCA , ¥)

WRLTE(Z,2)

FORMAT (AKX, 'EBLTEEE HOT ARG ThHEN COLD LAMBDAw")
READ (A, *¥)HLAW , CLAM

WRITE(Z,3)

FORMAT(ALX, "EaPER HOY AED THEN COLD PERICD==')
READ (S, ¥)PLE,PIC

Ml=ilm]

Xi(i)y=0, 2 XxX2€1)=1,
Xi(2)y=4,/n81 ¢ XK2(2)=]
DY 4 1=3,41
YEC(I)=(x=10%X1(2)
X2(1)=1,=X1(CT)

DO 5 I=i,H
BHIT,2)=X1(1)
BC(Y,2)=X20%)

: Xl(h):]'
mRLCRY 3 R2(M)=G,

FACTORIAL VALUES Iw A VECTUR

AHCTI)=IFAQ(T~1)

DO 49 J=3, 0

Jizd=1

00 4 IT=1,w

ERMATHDER OF i MATYRICRES
BHCIL,1)=00CY,1)=1,

PRI, u)woﬂ(a,Jljmxltl)
BC(T,J)=8CCL,J1)%X2(1)
COMTINLRE

NS

CARll ZACOFSCALFR, VER, ALFL,VKT)

TASYKRCI) /ZRALEIRCL)

DO BG00 Jul 7

NBENE )

CALL ARICHC4,1,00,0. 00, ALFR(IL) ,ALFICGI) ,FR,FT)
T?-@n+2.*(VKR(u1)*pusVAlcjj*P1)

CONTINUE

WRITE (2,5001)7%%

FURMAT(LX, "Tz=!

(E12.5)

C NATALN S8TEE RESPONSE VECTUR

US(1)=1 ,=EXP(=P1TH)

DO & J=2,N
USCII=Z8K0C0, X100) ,BTH ALEFR, YER, ALFT VAT, HlLAN)
D07 I=1,81

CIi=T41

DO 7T aml,u

C  ORYATIN ROTH HEAT POLE mATRICES, EBEC AMD BH
CHAlTL, ISZAR (S, XL CLLY , PR, ALER,, VAR, ALFL, VKT »H 1 l-'f”'.)*mifﬂ)

20

CC(I,d)=ZAKCI,A2(1),PIC ,ALFu,”(&,AIkT VKT , CLASYEAL (L
COMTITNGH

DO 28 J=2, 0

CHOL,J)=CC0N, )=0,

CHOL,11=8XP(=ETHY 5 CCOCN,1)=REXP(=PIC)

TuVERY BC AUD PRINT DETERMINANT

CALL MATRYIXKCIG, M, X,0,2C,26,DET)

WPI”F(‘,E )uPT

Ll U ERL . TR gy | L e R -

)),

COLD

B

MATS

203,



00760
POT778
06780
00790
00BOO
60816
00820
00836
00840
0085¢
Q0BG
00B7H
0088
00890
00900
00910
G0Y2¢
00930
Q0940
00950
00960
00970
Q098G
Q099¢
1004
01010
01020
01030
01040
01050
01066
01070
01080
010490
0110¢
01140
011290
01130
N1149
01156
01160
01170
01180
01190
01206
01210
01220
0123G
01249
01250
01260
01270
01280
01299
013046
01313
01329
01339
01340
01350
0L369
01379
01388
01399
01499

DA A A

C FIND
¢ FLIND

C FIND

CCRTRNY(RC) ApD STORE IN C1 HMATRIX AZ'_Z
CALT, MATRIX(20,8,#,8,0C,20,BC,20,C1,20)
CR=CCRTMVBC)#CH

CRLIT MhTRIXCQ%,N,ﬁ,N,CI,Zﬂ.CHpQU,CQ,ZU)

CIM=BH=C%Z

DO 12 I=1,n

DO o1e J=1,H

CIHCT,J)=AHC(I, J)=C2(T,d)

C IMVERT CIN AND FRINT DETERMINAMNT

11

12

CALL MATRYIXCLO,8,8,
WEITRCZ, 33)0BEY

D 31 I=1,H
C2(1,)=CaCL,1)*Lu8(C1)

DO 1L J=2, 0
C2(L,1)=C20Y,1)+CLCE,J)XUSCD)
CONTINUE

DO 12 I=1,4
AHCI)=CINCY,3)%¥C2(1,1)

DO 12 J=2,u
AHCIISAHCI)YACTR LT , J)*C200,1)
CONTTRUT

FpCLE, 20 ,DET)

C  SUPPRESS PRINTING OF COEFFICILENTS IF MOT KEGUIRED

1080

13

14
1055

16
17

1054

18
1060
98

110

45

477

46

WRYTHC(Z,1054)
READCL,110)CAN

CFORMATCLX, 'ARE RO BLOE CORFFIS8, REGUIRED? YHES UR NGe=!)

IPCCAM. A, AHE) GO PO 10585

WRITE(Z,13)

FUORMATCAX, "CORPFICEEETS QF HOT BLUOWe=/1X,28(1H=))
WRITEC(2,14) (AKCY) ,I=1,0)

FORMATCA(Z2C0X,E12,5)))

DooLs I=i,4

CINCY,1)=8CCT,1)¥05(1)

DO 15 J=2, K

CIE (T, 4)=CINCl, i )+B0C0T,J)®US0])

CONEYINUE

CALL mATRIXC20,8,8 ,08,80,206,CH,20,02,20)

DI 16 I=1,w

CINCI,2)SCR2CT,10%AHCL)

oo 16 J=2,058

CIBCTL,2)SCTa(T,2)+C2 0L, ) %A 00D

CONTIRUE

PG 37 I=1,0

ACCYI=CIRCT, A)+CTIHCT,2)

WRITE(2,105R8)

FORMATCLX, "ARE COLD ALDW COEFFTE, REQUIRRED? YES OF pOwe=!)
READCL,LLOXCAN '
TFICAN N AHKEIGHD TO 1060

WRITH(2,18) .

FORMAD(LX, 'CORFRPICIRNTS OF COLD BLOWe=t/1X,28(1M=))
WRITE(Z2,14)CACCEY,I=1,M)

WRITH(Z,9%)

FORMAT(LA, "ARE TEMPERATURE PROFILES FOR SOLLD RECGUIREDZ!,
LTTENTER YES (R HQ=w=!)

READCL, 1100 4NS

FORMBALIC(CAL)

IF(ANS 0,306 GO T 200

WRITE(2,45)

FORMATCLX, "ENTER NUMBER OF BEL MESH POINT&=m1)
READCL,*) B

Hiimd ./ Crifi=4,)

Ch=t,/(B=4,) 3 XH=s0, & XC=1. ¢ THseHO1) f0 TC=AC(1)
o 47 I=2,0 : '
TCRYCHAC(IIFXOR¥X(I=1)

WRITE(Z,406)

FORMAT(LX, "SOLID TEVMPERATURE PROFINE'/1X,26(1H=)/2X

A 0 LLMmithae AN TGN LT ORI A Aot 4 A Psicifh e satad 1Y LIFE o BTSN BFERTE B W



01420
01439
01449
01459
01460
01470
01480
01490
01500
01519
01520
01530
015490
015590
01560
01570
01580
015990
0160¢
01610
01620
01630
016490
01659
01664
01670
01680
01690
01700
01710
01720
01730
01740
0175¢
017690
01770
01789
017990
01800
018190
01820
01830
01840
01850
01860
01870
01880
01890
01900
01910
01920
01930
019446
01950
019690
01979
01980
01999
02000
02010
02020
02030
02040
020590
02060

R e

WRITE(Z2,42)XH,TH,TC /kél \25
AR FORMAT(BX,P12,9,10%X,F12.9,8%,F12,9)
DO 49 J=2,MB
XiA=Xli+HM l
XCEXC=CH TH=AHC(L) pTC=ACCT)
DD 50 1:213“}
TH=THHAB (L) RXHKE(T=1)

50 TCRTCHAC(T)HXCk% (Ted)
WRITEC(2,44)%XH,TH,TC
49 CoNfINLE
C EXIT FPLUID TEMPERATURES: |
200 WRITE(2,197) !
READC1,1149)CAM
1070 FORMAT (LK, 'ARE EXIT FLUID TEMPS. REQUIRED? YES OR N(m=w=') J

IF(CAN, EQ, THN)Y GO T0O 210
CALL FLUTECALFR,VKR,ALFI,VKI , AH,AC, HLAW CLAM, PIH RFIC,N)

210 WRITE(2,201)

201 FORMAL(1X,'INTERESTED IV THERMAL EFFICIENCYE YES OR NGO$!) ]
READCL,110)ANS
TR (ANSED,LHN) 6D T 999
ETAREG=ACCL) s 5U=AHCL)
DO 90 I=2,H . L
S0M=SUMFANCII /T - : -
99 ETAREG=ETAREGHAC(IN/I
ETAREGS (ETAREG=SUM)¥HLAM/PIH
WRITE(2,91)RETAREG

91 FORMATC(LX, ' THERMAL EFFICIENCY=',712,9)
999 WRITE(2,300) | :
300 CFORMATCLX, "ANOTHER RUN WITR DIFFERENT PARAMETERS?'/IX,

1PENTER YES OR WO==!)
READCL, $16)AND
IFCAND.EQ. 1HY)GO 0 600

WRITE(2,301) il |
301 FORMATCLX, 'ANDTHER RUN WITH SAME PARAHS, BUT DIFFERENT ORDER%!/ |

11X, 'EHTYER YES UR NO==!)
READCL,110)ANS
IF(ANS ,EQ, LHN)STOP |
WRITE(2,1) i
READCL,*) i !
GD 10 5990
END

€0 3% 3 ok o 3K i 3 e 3k o ok ot o K K KK R R ok o oK ok o R I Ak ok K R e ok RO R R R R R OR R Ak ok e R ok ok R K K ok

‘ SUBROUTINE ZACOFS(ALFR, VKR, ALFI,VKI)

C THIS SUB EVALUATES THE ZAKIAN'S CCEFFICIENTS FOR PADEY APPRDXIMAwlmw;
DOUBLE ALFR,VKR,ALFI,VKI,A,B
DIMENSTON ALFR(8), VKR(S) ALEI(7) VK(T7)
ALFR(1)=1, @53%05103383233D*01
A=1.,933875620860414D+015B=3, 119399388597234U4UO
ALFR(2)=AZALFICL)=H . |
A=1,871433205030498D+01;B=6,772981645C006570+00 ' !
ALFR(3I=AZALFI(2)=B
A=L1,764482177T7371710+01:8=1,0197743916914880401
ALFR(4)=APALFY(3)=b . _
A=l .606503145933702D401:8=1,3677803037466580+401
ALFR(B)I=AZALEFL(4)=8
A=1,3862078218750560+01:B=1,72%343258838830L+014
ALFR(G)=AZALFI(S5)=R
A=1,0B0K52 491%90869n+01 B=2, 1906207104063ﬂ80+91 _ '
ALFRCTI)®RAFALFEI(6)=
Az=4, 3019795%4@007u80+0 AR 516447268568606U+01
ALFR(B)=A;ALFI(T7)SH
VEKR(1)=1.645619599469101D+08
Am=],26857298536R156D+0B; R==4, 749121856114220b 47
VRR(2)=A4VKI(1)=H ,
~§.57449u4&84b36b8u+07nn 4. 999812394??3393h+0

HEAZL™S & " % N e LPXASY N e



02080
02090
02100
02110
023290
G2130
0214¢
02159
02160
021790
02189
02199
02200
02210
02220
0223¢
02240
02250
02260
02270
02289
02290
02300
02310
02320
02330
02340
02350
02360
02370
G2380
02390
02400
024190
02420
02430
02440
02450
02460
02470
02489
02494
02500
02510
02520
025390
- 02540
02554
02560
025790
02589
0259¢
Q2600
02610
02620
02639
02649
02650
2660
02670
Q2680
026990
027690
02710
02720

MR

CH ¥R KA K

C THIS

CH¥ ¥ %%k K

)=
=1 ,1308932829970624D+07 s B==2,4504289315222890+C7
VER(4)=APVKI(3)=H
==l ,694097331423655D+0578=6,00930A35436866%N+06
VKR(S)=AVKI(4)=R |
A=4,138883037657413D+C5:B==6,184004276684025D405 ‘ r
VKR(B)=AsVKI(S)=h
A~w4 05645765625 298TD+043R=9,7520291266663630+03
VER(7)=AVRI(6) =6
Am3 800167535061 764D+02B=8,408831330624298204+02
VKR(B)I=ARVKI(T)=B
RETURN
END |
e 6 2K 2K 3K 8 o 0Ol 3 o ok ok A oK 30k K K R 0 3 ok R R R K ok oK A K O o R o Ok AR R kK R %
INTEGER FUNCTION YIFACCI)
FUNCTION EVALUATES THE FACTORIAL VALUE QOF T. '
IFAC=1
IF(I.LE,1)RETURN
RO 1 J=2,1

IFACSIFACH]
RETURN
E4D !

*********#*****************m**#***v*****************
DOUBLE FUNCTEION ZAK(I,T,PL,ALFR, VKR, ALFI,VKI AL AM)
DOURLE ALFR,VKR,ALFI, VKI_Fi F2,FR,FT1,d1, NQ JR,wi
DIMENSTION ALFR(B),VKRCS),ALFI(7J,VKI(7J

C THIS FUKCTION EVALUATES THE IHVERSE OF LAPLACED F AT TIME T UHING

C DOUBLE VECTORS ALFA AND YK WHICH ARE THE COBEFFTS, OF ZAKIAN'!

C FOR

MUTLA .,

IF(T GT,0)GN TQ 40
ZAR=DBLE(TIXVERC(L)I* (1 DU DLXP(’AHER(l)*DHbFKP[)/(ALPR(lJWWBLE(T*
1ALAMI) D) /Z7ALEFR(L)

Dl) 1 klz::l,’,

JizJ+l

C OBTAIN ARGUMENE OF EXPONENTIAL:

C GET

C GET

C 0BTA

FA=ALFR(JIII/ZDBLE(TY F2=ALFPTICI)/DBLECT) !
CALL, ARITHC4,DBLE(RPIIX*FL , DRLE(PI)¥F2,DBLE(ALAN)I+FL,P2,VR, F1)
EXPORNENTIAL TEAMS ( {
CALL ARITH{G,=FR,=F1,F1,F2,WR,WT) ‘ !
FIMAL FUHCTION VALUES:

CARLL ARIPHCA, 1. D0=WR, =W ,Fl,F2,FR,FI1)

N SUM IN ZAK FOR IMVERSIOM:2
ZAKSZAK+2, . DO0¥ (VAKRLJLIEFR=VKI(JI*FT)

CONTIMUE

ZAK=ZAK/ZDRLE (T) P RETURMN
ZAK=(DBLE(T)IX*AL)RVER(L)¥DEXP(=ALFR(L)*DBLECPT) /ALPRCL ) +i4 LECT®
TALAM) ) )/ CALFRCL)%%T)

DO 2z J=1,7

Ji=Jd+1

C ARGUMENT OF EXPONENTIALS

C GET

C GET

C O0OBTA

C Rk Xk

FISALFRCJLI/ZDBLE(T) 2 F2=ALFI () /ZDBLECT) |
CALL ARITH(4,DRLECPI)*FL1,DBLE(PI)XEZ,DERLECALAMI+FL,F2, ‘,FI)
EXRPONENT AL

CALY, BARITH(H ,=FR,=FI,F1,F2,¥R,WY)

FUNCTION VALUESS

CALEL ARITLH(S,F1,F2,DBLECFLOATC(I)), 0,D0,W1 ,%2)

CALL ARITHC(4, ﬂR,WI Wl,42,FR,FI)

IN SUM Id ZAK:

ZAKZEZAK+2 ,DO¥ (VKR (JL)¥FR=VKT(J)I*FT)

CONTINURE

ZAK=ZAK/DBLE(T)

RETURN

D

********#*#***#***************#*******$*******#****#*#*ﬁa**#****
DOUBLE FUNCTIEON ZAPCT,PI,ALFR,VYKR,BLFI,VKI,ALAN) :

DOURLAE ALFR,VKR,ALFY,VKI,il,F2,FR,FI

WL s e AT el RLT AR £ O A nvﬁff)\..n.,l‘.l:“r!"?f\ LT "N o s B



A2-5

02740 C THIS FUWCTION RVALUATES THE HEAT POLE FONCITON BY USE OF ZAKIAN'S
02750 C FORMULA OF LAPLACE INVERSIOW,

02760 AAP*VKR(l)*urXP(«ALbR(l)*DBLE(PI)/(ALFR(13+UMLF(T*AhAM)J)

0277¢ po o4 a=1,7

02780 JizJd+l

Q2790 Fi=ALFRCILI/ZDBLE(T)Y s F2=ALFTCI) /DBLECT)

02800 CALY ARITH(4,DBLEC(PII¥*FL,DBLECPIIAFZ,DBLE (CALAMY+FL , 12,85 ,F1)
02816 CALY, ARITH(H,=FR,=FI,f1,F2,81,F2)

02620 ZAP=ZAP+2 DO (VER(JII*F1=VKI(J)*F2)

02839 1 CONTTNUR

02840 ZAP=ZAR/0BLECT) ‘

02850 RETURwN

02860 END |
02870 c**************m#*********#******$**********»*#******$********tw*# '
02886 FUNCTION TEMPOCAV,VLAM,N)

02890 DIMENSTON AV(2G)

02909 C THIS FUNCTION CALCULATES THE COMMON PART OF THE EXPREssIoON R

02910. C EXIT FLUID TEHRPERATURES FGOGR HOT CR COLD BLOW AT TINE ZERD

02920 C AV IS VECTOR 0OF CUOEFFTS,,VLAM I8 THE APPROPRIATE LAWBDA,

029306 C FOR HOT BLOW SEED 'TD ADD EXPUONENTIAL TER& In THE REF,

02946 C BLOCK TO THiE VALUR OF TEMPRO,

02950 C BLEEXP(=LAN) ,VLISL/LAM .
02960 EL=EXP(=VLAM) s VLI=1,/VLAN !
02974 C QOBTAIN THE TEREH DUTSIOE 'PHE SUMMATION FROM 2 T0 N FIRST, i
02980 C STORING IN TREAPO,

02990 TEMPOSAV(1)%(1,.=EL)

03000 C WNOW OBTAILN THE LOOR SUs ADDING TO TEMPQO,FINAL ANSWER Iy

030190 ¢ TEMPO, TEMPORARY VALUE OF SUMMATION ARGUMENT FOR CURRENT I

03020 C STORED IN TI¥AV(I),T1F I8 (I=1)FAC,SVLIMIs(=1/LAMI%¥((=1)

Q3030 IiF=4;8VLIMI=1,

03049 DO 10 I=2,N

03059 Tl=i=4;T1F=T4F*Y1; SVLIWI“-SVTIml*VLI

030860 C  FIRST ADD TERMS uUTbIDP JOLODE I TIs

03079 TI=) ~SVLIMI*TLF®EL |
03080 C FOR THE J LOOP YADILJE=(I=1)FAC/(Imi=Jd)FAC,SVLIJRC(=1/LAM) %% ] '
030990 SVLIJ=1,:T1iDTI4JFs]

03109 DO 2¢ J=1,I1

03110 TIDTLJFR=(I=) XTI DT1JF SVLIJ==SVLIJ* VLT

03129 20 TI=PT+IADI1JF®SVLI)

631340 C MULTIPLY TI BY COEFFT.AC1) AND TOTAL UP IN TEMPDS

03140 10 TEMPO=TEMPO+AY (L) *TX

03150 RETURN

03160 + END !
03170 COR e ok 0K K KON A R 0 HOK B R R KA HOK 3O8 s OR SICHOR 0K O XK F A OR KO BOOOK ) ok # }
03180 DOUBLE FUMCTION ZAFTCALFPR, VKR, ALFL,VKY,VLAM, BTl ,T1,FL) |
0319¢ DOUBLE ALFR,VKR,ALFI, VEKI,F1,F2,FR,FL, Wl W2,BR, W] |
03200 DIMENSION ALFRCH),VEKR(8),ALFY(T7),VKI(7) |
03210 C THIS FN, EVALUATES THE IHNVERSE OF AN APPROPRIATE LAEPLACED F I IN 1
03220 C CALCULATIUON OQF FTIETA(CI,E,.,EXIT FLULD TEMP, AT TIWE ETA),

0323¢ C VLAMSLAMBDA CHOT QR COLD),X4 IS AN INDEX REPRESENTING THE P L ER [=il |
03240 C Il EXPRESSION ESS((S+L)/8)%*%(T=1),1F I1 I& ZERQ,ES IS8 SET M 1,IF ;
03256 C NOT Ti>=1 I8 USED I ES,FL IS A FLAG INDICATING THE FORMULA 10 BE S
03260 C JIF FY N0T=1, WE USE FURMULAIESHEXP(=LAMXS/(S+1))/8 AnD IF Iu=1, i
03270 C THE FORMULA FOR USE IN VARIABLE TIME INTEGRAL ETA* IS USED:

03280 C ESYXEXP (=L AMX5/(85+1))/(8%8),

03290 IFPCI1,.GT.9)GO TO 50

03300 C CALCULATE FPIRST TERM InN THE SUMMATION FOR ZAK FORMULAG

033190 ZAFT=VKR (L) %¥DEXP (=VLAM¥ALFR (1) / (ALFRC1)+DBLECETA) ) ) ¥DRLE (ETA)/
03320 1ALFR(1) :

03339 C CALCULATING RDIFFERENTLY FOR ETA%, S0 GO TOQ 100 FUR THAT:

033490 IF(FL.EQ,1)GD TO 1Q0

0335¢ PO 1 J=1,7

03360 JisJ+1

0337¢ F1I=ALFRCJLI/DBLE(ETA) ;F2=ALFI(J)/DBLECETA)

03380 C ARQUMENT ng BXPUIFJTIALS

E A o O SRy BRA LAY E R BN AT I 24 Y YR P AT RN RAL BT Yy Av b T4 N



03400
Q3410
03420
03436
03449
03450
03469
034746
03480
03490
03500
03510
03520
03530
03549
03550
03560
03570
03580
035990
03600
03619
036290
3630
03640
03650
03660
03670
03I6EY
03699
03700
03716
0372¢
03730
03740
03750
03760
03770
03780
03790
03800
03816
03820
03830
03840
03850
03860
03870
0388¢
03890
03900
03914
(43920
03930
03940
03950
(3960
039790
03980
039940
040090
04010
04020
04030
04040

e -

T 02 0

140

C
C

']

¢ 8

3

150

1DBLECETA) ,ALFIC(J) , WR,WI)
GET EXPOREWTIALS

CALL ARITH(E,=WR,«wW),F1,F2,91l,42)
DIVIDE EXPL BY 52

CALL ARIVH(A,wWw1,W2,81,F2,FR,FI)
SuM UP I ZAFYs

ZAFI=ZAFTH+2,D0% (VEKR(JLI¥FR=VKI(J)*F1)

CONTINUE

ZAFT=ZAFT/DBLE (ETA)

RETURN

ZAFTmZAFRTHDELE (ETA)/ALFROL)
DO 2 J=1,7
JisJ+1

| Az—éj

F1=ALFROJL) /DBLECETA) ;F2SALFY (J)/DBLE(CETA)

ARGUMENT OF
CALL
14+DBLECETA) ,ALFICI) , WR,W]I)

GET EXPONENTIALS
CALL ARITH(6,«WR,=WY,1,F2,W1,W2)

GET THE DESOMINSATIRS
CALL ARITH(E,F1,F2,2.D00,0

DIVIDE DUT3

‘ CALL ARIYITH(A4,

SUM UP:

ZAERTRZAF T2 DOR(VER(JIIXFR=VEX(J)XF1)

EXPOREMTIAL:Z

DO, HR, W)

Wi, W2, WR,WI,FR,FI1)

CUNTInUE
ZAFT=ZAFT/DBLECETA)
RE TR

Wi=pALFRCLY ZCALFRCA)+DALE(ETA))

ZAFTSDBLE (ETA)YXVKRCLI#¥DEXP(=DHELECVLAM) %W 1) %(1, Dﬂ/le**T

IF(PL. EQ.1)G0 1)
Do 3 J=1,7
Jimdg+1

180

ARILTH (4, DBLE (VLAM)¥ALFRCJL1) ,DBLE(VLAR)Y¥ALFL(J) , ALFR(JL)

FA=ALFROJO)/DBLE(ETR) pF2=ALFT(I) Z7DBLECETA)

EXPONERNTIALS
CALL ARITH(4,
1ALFR(JL) ,ALFICI) ,wR,WT)
CALL ARITHC(H,=WR,=wWl,F1,F2,Wl,w2)
DIVIDE BY 83
CALL ARITHC4,41,
GET ((S+1)/8)%%Ii:
CALL ARLTH(4,FPi+1,D0,
CALL
MULTIPLY

W2, E1,E2,WR, W)
F2,F1,F2,9W1,42)

TGO GEYW FUNCTION VALUES:

CALL ARITHC31WRIWIIP1,FE’FRpFI)
UM up:
ZAFE=ZAFT+2 ,DO*¥ (VKR (J1)XFR=VKI(J)*FI)

CONYINUE
ZART=ZAFr T /DBLECETA)

RETURN
ZAFDYSZARTENBELE (ETA) /BALFRCL)
DO 4 J=1,7 :

JizJ+d

ARYTH(S , Wl , W2, PBLE(FLOAT(TL1)),0,00,

ALFRCJIL)*DBLECYLAM) ,ALET(J)¥DBLE(VLAN) , DELIY ETAY +

FL1,E2)

Fi=ALFR(JL)/DALE(ETA) pF2=ALFT(J) /DBLE(ETA)

EXPONENTIALS

CALL ARITH(4,DBLECVLAM)*ALFR(Jl),HHLE(VLAM)*ALFI(J),ALFRﬁJ1)+

1DBLE(ETA) , ALFICJ) ,FR,FI)

CALL ARITH(6,=FR,=FI,F1,F2,ul
DENOMINATOR?

CALL ARITH(S,F1,F2,
DIVIDE:
CALL ARITH(4,w1
((S+1)/8)%*T13
CALL ARITH(4,F1+1.00,F2,F1,F2,%L,42)

yW2)
2,D0,0,D0,FR,FI)

L2, FR,FT, R, W)
GET

CALL AhITH(b,wl,W? DE&&(FIOAT(IlJ) G, DO Fl P?)

ool e

Loy ALFRCL)



040606
04070
0408
040990
04100
04110
04124
04130
0414¢
04154
041693
04176
04180
0419¢
04200
04210
04220C
04230
042490
04250
04260
04270
042890
0429¢
04300
04310
0432¢
0433¢
04344
04350
04360
04374
04380
0439G
04400
04410
044240
04430
04440¢
D4450
04460
04470
04480
04490
04500
04510
04524
04530
04540
04550
04560
04570
04580
045990
04600
046110
04620
04630
04640
04650
04660
04670
04680
04690
04700

O e e & =
CALYL ARITH(3,WR,WY,F1,F2,FR,FT1) /%

¢ &UM UpP:
ZAFTSZARTH2 00X (VER(IL)RFR=VKI(JI*FL)
4 CONTINUE
ZAFT=200T/DBLECETA)
EETURN
END
30K A K ok ok 30 3 3ok 30K Ok JO3OR o OR A8 R AR 0 K K ROK R R K SRR o oK 3 K % R R R HOK R ok ok R R R Y %
SUBROUTING ARITHOKOLE , AR, AL,BR,BT,CR,CT)
C THIS IS8 A COMPLEX ARITHMETIC PACKAGE:
C KODE==]1 A48, 23A=F, 3J1A%¥B, 43A4/b, BIA%%B(REAL), H1RXEC(A)
C RESULT SWORED IN CRCREAL PART) AN CICIMAGINARY), ;
DOURLE AR, AL,BR,BT,CR,CY,R,THETA
GOTOCI0,20,30,40,50,60)K0DE

19 CR=EAR4HR CI=AT+RI
RETURY '
20 CREAR=ER;CI=ATI=BT ' .
RETURN 1
30 CREAR¥BR~AT*RI;CI=ARYBI+ATIXAR
BETURN
40 CE= (AR¥SR+AIXBI)/ (BR*¥BR+BI¥BT) !
CIS(AT*¥RR=ARXBI)/(BR¥BR+BI¥DT)
RETURRM
50 RE(CAR¥ARTAIXATINA*(BR/2,D0) r THETA=BRY¥DATAR2 (AT, 2R)
CR=R¥DCCS (THETA) pCI=RXDEIN(THETA)
RETURN
60 CREUEXP(AR)ADCOS(AT) CI=SDEXP(AR)I¥DSIN(AT)

RETURN N
O3 4 K 08 3 A ok ok 2 kot 8 ok ok o Sk e b ok ok ok R ok o ok e ok ol B ok ok R e o o sk R o RO K 8k o R K K R bk
SUBROUTINE GT(YLI, ETA,L,TES)
THIS SUBROUTING CALCULATES THAT PART OF THE SUAMATION ARGURERN !
FOR BEXI'YT FLULD TEMP, WHICH DOUES MNOT INCLUDE THE USE OF LAF.lSMﬂ.
VLI=1/VLAM BROUGHT DVER FRO® CALLIKG BLOCK,I 185 TRE THDEX N,
I USED IN SUMSATION FRUM XI=2 TC N IN BLOCK,Y1=I-1, :
THE VALUE FOR 2018 CALCULATIOR IS SAVED In 1I8S,
TIDILJF=(I=1)FAC/ (I=1=0)FAC, SVLIJ=(=1/LAM)%%] IN J LOUPR,
‘ Tl=I=12TE8=4 ,pTI1DX1JF=1 85V La=1, i
PO 18 J=1,11
TIDTIAF=TANTLdF R (Te ) s SVLIU==SVLIJRVLT
C  8UM 0OF K LLOP IS STORED I8 1TK,NERE JrKEI=J(Jd=1) .00 GicK+1)
C LKF=(K)PAC,JKBC=PIN0OMIAL COREFFICILENT QOF J ARD K,ARD ETAK=RTAXEK,
Tl , pJAKEi=1 ;K= s 0T AK=L,
DU 20 K=1,J
JMKﬁlzJMKml*(J-K+1):Kﬁ:KF*K;ETAK:ETAK#ETA:JKBCaJMKﬂi/KF
20 TRETK+JIKBCRETAK/KE
C MOWw TOTAL UP I TES:
TES=TES+TIDIIJF¥SYLITJXRTK
10 CONTIRIE
RETURK ZEND
38 3 sk o ok o oK 6 kA A SR e 3 3k o o ok i 3k 0K i ok o K 3 K sk ok oK ok o 3 ok ok R 3K ook ok ok AR ok Kok ok o jokoR Kk 8 ko
FUNCTION FTIETACAV,ETA, N, VLAV ,FLAG,ALER, VAR, ALF1,VKT) ‘
DOURLE ALFR,VKR,ALFI,VKI,ZAPY
DIMENSTON AV(20),ALFR(8), VKR (4) ,ALFTI(7),VKI(7) ,
THIS FN EVALUDATES THE FLUID EXIT TEMP FOR HOT OR COLD BLUOW AT 'PIME

ipNeNoNoNoNe!

G
C ETA LAV IS VECTOR OF CUEFFTS OBRTAIMED EARLIER, VLAW I8 LAMGBDA, PLAG
(G IS5 AN TuDICATGR TUWARDS THE TYPE DF FLULD TRME 0 BRE CALCULAIED,
C IF FPLAG=], WE ARE DEALING WITH A HOT BLOW AND FOUR CULD BLUw ¥LAG |
C BHOULD BE SET 90 SOCMETHING NOT EGUAL Y0 1,(5AY 0.2,
C ;
C LAPLACE INVERSIOH USING ZAKIAN'S FORMULA FOR THE FIRST TERMI
FLI=ZBAFTCALER, VKK, ALFL YR ,VLANM,ETA,0,0,)
C IF FLAG=1,USE (Ll=AH(L1))¥FL1 OTHERWISE OBTAIR =AC(1)#%FIL1,SAVE i§ FT1EY
FTIFETA=AV(L)* (1. =~FL1)
IF(FLAG.NEL1,)GD 't 10
FTIETA=FLLI+PTLETA i
- eamldsD elmain asids | mmisenw maThdaedl, R R L T I - RS U Y A 1" S SR : =1



04720
04730
04740
04750
04760
04770
04780
04799
048090
64810
04820
048390
04840
04850
04660
04870
04880
0489¢
04900
04910
04920
04939
04940
04950
04960
04974G
049890
04999
05000
05010
05020
05030
05040
050590
05060
05070
05080
05090
05100
05110
05120
05130
05140
0515¢
05160
05179
05180
05190
05200
05210
08220
05230
05240
05256
08260
08270
052890
05290
058309
05310
05326
05330
0534¢

‘ AL~ 8
ACI)*(1+(IT=1)FACXSUM OVER J=1 TG (Iwl) OF (=1/LAMY*¥¥J/(T=l=J) 800
XBUM QVER K=0 TO J OF JKBCYXETA*KK/KFAC=(=1/LANM)¥*([=1)FAC
RLAP (INV, CEXP(=LAXS/ (S+1)) /8% (S+1)/3)%%(I=1)).
VLI=A/VLAM, SVLIMLI=(=1/LAM)¥¥ (I=1) ,T1F=(I=1)FAC IN I LNOP,
0 VLEI=1,/VLAMp SYLIMI=] e T1F=1
DO 2¢ I=Z,n
Tis =l T = 141 SULIMNI=~SVLIMIKVL]
OBTAIN MON LAP, TERM STORED IN 7YES:
CALL GT(VLI,ETA,TL,TES) .
INVERY LoTa. SVALUATING AT ETA:
FLI=ZAFY(LLFR, VKR, ALFY, VKT, VLAN,ETA,11,0,)
OBTAIN THE ARGUMENT FOR SUMMATION, MULTIPLY BY ACY) AND |
TOTAL UP IN FTIETA:
FLIETA=FTIRTA+AV(I) ¥ (TES=SVLIMI*T{F*FL1)
20 CONTTHUR
RETURN &N
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FUHCTION ETASTARCALFR, VKR, ALFI, VKL, ETA,CLAM,N,AC)
DOUBLE ALFR,VKR,ALFI,VKI,ZAFT
DIMENSTON AC(N) ,ALFR(Y) ,VKK(8) ,ALFI(7),VKI(7)
C THIS FR CALCULAYES ETASTAR=INTEGRAL OVER ZERU TO ETA OF COLD LOW
C EXIT FLUID TENP FOR ANY ETA FROM O, TO PIC.ETASTARS)D IF ETAR),
IF(ETANE, 0,060 70 10
ETASTAR=0, s RETURN
CALCULATE THE FIRST TWO TERMS T,E,, THE ONES QUTSIDE THE SFRIES D
¢ STORE Iw ETASTAR:
10 ETASTARSAC (L)Y ¥ (RTA=YART CALER, VKR, ALFT , VKL ,CLAM,ETA, 0,140}
NOW OBTAIN THE REST AND ADD TU ETASTAR TU GET THE FINAL AHSWE § USING
THE I LOOP IN WHICH TIS STORES THE NON LAPLACE TERY FROM TH '
ARGUMENT OF SUMMATION (WHICH WILL HAVE TG BE MULTIPLIED BY ACHI) AT I
TIFE(I=1)FAC,SYLINI= (=) /CLAN)®% (LIm=1) :
SVLIMI=1,$I3F=1;CLI=Y,/CLAN
DO 26 12,0 -
TISSETAs LisT=g  TAF=TIF*T1 s SVLINMIS=8VLIML*CLL
¢ FOR J LEOP IM1DYLUFsS(I=l)FPAC/(I=1=0)FAC,SVLIJS(=1/CLAM) %]
TIDIAJFE=18VLIJ=1, i
DO 34 J=1,1) |
TADTIJF=TIDTIJF# (T=J) 2 SVLIJ=S=8VLIJ%*CLI
C SUM OF K LOOP I8 STURED IN TKS, HERE JHKEI=JI(JI=1).0.00=K+1),
C KF=RFAC,KI1F=(K+1)FAC,JKRC=BIN,COEFFT, OF J AND K, ETAK{=ETA%XCL,
TRESETA; JukM1=1KF=1ETAKI=ETA
DO 40 K=1,4
JMKHLI=IMKM1% (J=K+1) ;KFRKFPXKETRKL=ETAKL*XETA
JKRC=JHKML/KFK1F= (K4 1) %KF

~aonNoa

N o O

leEsReNp]

44 TKE=TKS+IJRBCHETARKL /K1E
€ TOTAL UF T® TIS YTHE BOW LAP, TERM:
30 TIS=TIS+THREXTIDILJEXSVLTY

C NOW OBYAIN L,X, TERM AND SUBTRACT FROM TIS, AHD GRT THE BFINAL

C ANSWER AFTER MULTIPLYIRG BY A(CI) AND SUMMING:
FLL=ZAFTP(ALFR, VER, ALFI,VKI,CLAM,ETA,T1,1.)
ELASTARSETASTARFACCII X (TIS=SVLIMLI*¥T1IF#FL1)

20 CONTINURE
RETUREEND )
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SUBROUTINGE PLUTECALFR, VKR, ALFY, VKT, AH,AC, HLANM, CLAM, PIH, P(C, M) |
DOUBLE ALFR,VER,ALFTY,VKI i
DIMENSION ALFR(B) ,VEEC(S) ,ALFIC(T7),VKICT) ,AHCN) ,AC(N)

C THIS Sup FINDS THE EXIT FLUID TEMPERATURES AT SPECIFIED POINTE OF :
C THE HOT OR CUOLD PERIGD,THESE POINTS ARE KGQUALLY SPACEN ACCUHRDING 'T0O |
C THE MESH SPACING DESIRED, = '
WRITE(Z,10)
READCL,*)nPH,RPC }
10 FORMATC(IX, 'ERTER TOPAL RUMBRERS OF POINTS(TsF., INTERTORY ¢ BHD

1PUIRTSIOR RAOT AND THEN COLD PERIOD AT WHICH PRUFILE REQITRED=)]
C  HOT BLOW FLUTO EXIY PROFILE, FIRST OBTAIN TEWP., AT TIWE Z2BER0 FHdEN L.

SPTITURR AT L 2B PR



08384
05390
05409
05416
05420
085430
054490
05450
05464
05470
0548
05499
08500
05510
05520
0553¢
08540
0856
05560
05570
05589
655990
05600
05610
05620
0h630
05640
05656
05660
05679
05680
D5693
05740
08710
05720
05730
057440
0875¢C
05760
057740
085780
05799
065800
0581¢
0BB20
056830
0584G
05850
05860

WRITE(2,11) /5(2/’9’

11 FORMATC(LX, 'HOT FLULD EXIYV TESPERATURE PROFILEL'/1X,35(1ks)/6X,
TVTIME, LOX, "TREPERATURE" )
EH=O, 2 8C=0,

¢ HOT TEMR AT YIME ZEROS
THLOCSEXP (=t AM)+TEMPQ (AN, HLAM , N)
WRITE (2, 12)EH, TH1G

12 FORMT(EX ,F12,9,2X,F12.9)

C  HOT TEMES AT QTHER TINES?2
HEzRIH/ (HPH=1)

DU 20 K=2,MiH :
EH=EH+EN

THICEFTIETA CAH, BH, N, HBLAM, 4, ,ALFR, VKR, ALFT ,VAT)
HRITW®(2,12)K0H, THLD

20 CONYTINUR

¢  COLD BLOw FLUlll PROFILES
WRITE(Z2,21) . ‘

21 FORMATCLX, 'COLD FLUID EXTT PEMPERATURE PROFILE:'/1X,36(35=)/6X,
LVTIME 10X, "TENPERATURE ) |

COLD TEMEFERATURE AT TIWME ZER0:

COLOSETEMPOCAC, CLAM, M)
WRITE(2,12)8C,TC10

COLD TEMPS AT OTHER TIMESS

CRNsPRPIC/ (HREC=1)

DO 3G K=2,dpc

BC=RC+CH
TC1O=FTIETACAC (BC, ., ClLAN, 0, , ALFR, VKR ,ALFI,VEY)
WRITR(2,12)8C,1CLY

30 CONTINUE

C VARIABLE TIME JHTEGRAL (FOR COLD BRLOW OMLY) ETASTARS
WRITTE(Z2,22)

READ (L, 41480Chw _

22 FORMAT(LX,'TS VARIABLE TIME INTEGRAL OF COLL EXIT FLUID S&@Pp,

UIREDF YRS OR (0==")

110 FORMAT(ALY
IFPCCAN BG . LIBIRETURN
WRITE(2,29)

25 FORMA' (AR, "VARIABLE TIWME COLD FLUXD PROFTILEIY/1X,33C1BR)GX,
PVPIME! , LOGX, "ETASTAR INTEGKAL'T)

BC=g, 2 ET8=0,
’ WRITE(Z,40)6C,6T8
40 FORMAT(S5X,F'12,9,2X,F15,9)
. DO 54 K=2,000
EC=EC+C !
EPS=FRTASTARCALER, VKR, ALFY VKT ,BEC,CLAM, N, AC)
WRITE(Z,40)EC,RTS

50 CUORTEINUE
RETURM@UE
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s RUN,F,F=T71

ENTER VALUE OF =
450008

CM LWA+1
ENTER HOT AND

ENTER HOT AND THEN COLD P

TZ=
DET=
DET=

ARE HOT BLOW COBEFFTS.REQ

«100008401
+27466E=03
n94TORE=04

COEFFICIENTS OF

L64561E+00
ARE COLD BLOW COEFFTS

CUEFFILI&NT; NF

e 1505 2E+00
ARE TEMPERANUKE

ENTER HUMBER OF BED

SULID

ARE EXIT FLUID TEMES,REQUIRED?YES OR

ENTER TUYTAL NUNBERE OF POINTS(I,

0,000000060
,033333333
L 066666667
L 100000000
.133333333
» 166666667
+200000000
«233333333
266666667
.300000000
.332333333
366666667
L400000000
,433333333
CABBE6666T
L500000000
.533333333

566666667
L600000000
,633333333
L666666667
L706000000
.733333333
WT166666667
LB800000000
.833333333
L 66666667
L900000600
.933333333
v 966666667

1,000000000

HOT AND THEN COLD

CM STORAGHE
3,872 CP Spcoups (0
371711k,

LUOADER USED

THEN COLD LAMBDA==19,

JIRED?YES (R

=, 102250+

FOR

TEMPRRATURE

M N ye WG e wOe PRR VEE I v TR et e b W men TN e wem v TR Wy e

NORMALISED DISTANC

Usan
IPTLATION TIHE
5312065

ERYOD==8,5,8,5

HUT BLOW==

=, 30BR1E+0O

L REQUTREDTYES R

COLD BLAY=-

-t e s
o T e . -

»814T73E4GD
RO

L 64215E+09

MESH POTNTS==31

HOT BLOW
645607319
£611223009
WSTHIRGHAT
« 541293275
LH06162613
«AT71181069
LA3BHRANERD
c 4023834558
< 36HG0115C
2330235602
3045248279
n 273910647
e 2AAB0U4167T
e 216419942
189759110
1646102648
2141061410
L1192176128
99517414
LOBOBE3BT54
L 064071520
e 149354549
36506167
LI2BB3BLT2
»1R441BA4
£ 209215936
S003837084
CLUU0274799

-, 001511531
e HGLIBT263T
wUNUN3CHR26

PERING AT WHICH PROFILE

M{) mom Y

10243E+01

2 B8BIFR+00
SOLID REQUIRENFRHTER YRS OR

B () rm e ¢

Be , THTERTOR + 2 EMD

REQUIRED=31,31

A2-10

7354,17,3553

COLD BLOW
.999927892
1.008762998
1,010000403
1,004392328
992659456
975491083
L953544815
LH2T44RRTL
8977919372
LJH05143169
L330039247
, 792959321
.754393@3u
LT14773539
674497453
.533947908
2593464508
.553358368
.513909084
D ATSE364T 46
L A37941936
LAD18257726
LI67169683
e 33404U5867
L302694813
« 273025877
.245115685
218961161
194526523
2171744776
L150517421

POINYS

- 3A162F 400

= 16634E+01
NEl==Y

JOF



HOT FLUID EXIT YTEMPERATURLE

1,133333333
1,416666667
1,700000000
1.,983333333
2.266666667
2,580000000
2,833333333
3,116666667
3,400000000
3,683333333
3,966666667
4,280000000
4,533333333
4,816666667
5,10000000¢
5,383333333
5,666666667
5,950000000
6,233333333
6,516666667
6,800000000
7,083333333
7.366666667
T.6500000060

b et i e e R
TIME TEMPERATHRE
0,000000000 LHGB2600G60

e 283333333 U641 449

« 566666667 »O0335T839

s B5000000G0 054392943
1.,133333333 07798136
1,416666667 «I0B22510
1,760000000 «D13882897
1.983333333 w16978B871
2,266666667 SU20709819
2,550000000 « 024774933
2,833333333 « 129173261
3,1186666667 2333963740
3,400000000 »IABYEH226
3.,683333333 » 4435683
3,966666667 L050076447
4,250000000 « 056123776
4,533333333 20082497345
4,.B816660667 2069196023
5,100000000 wD76218724
5,383333333 « 083564400
5.666666667 S URL232086
5,950000000 SNEVZEO6T 4
h,233333333 o 107529241
6.516666667 111568674
64,BO00D0GG0YD 125101792
7,083333333 2134363244
71366666667 « 143939463
7650000000 . 153828577
7.933333333 » 1640218357
84216666667 « 1745361281
8,500000000 » 1853480697

COLD FLUID EXIT TEMPERATURE PROFILE:

R e - R T
TIME TEHMPERATURE
0,000000000 1,001025980

«283333333 »FY5TRO329
266666667 IHO451013
« 8500000090 s BRLH3RT

«F7385041804
»HOAO06657
L IBABTRBOC0
«A43TTISE07
2232253605
s 929966154
21072065443
LH93951484
LHBODR2231 1
«BHB6TRNYR
<HBE09006506
~B3B8744490
e HR2U245801¢
e BUAAA3GA4D
£ 1TB8372864
$ 172070172
s 1555681848
« 738898517
122091222
«TOBLT4696
2688176748
WHTL122661
»H5403T2305
wH369441872

PROFYLIF 8

p2 -1



B,216666667
8,500000000

I8 VARIABLE TIME

VARIABLE

==

INTERESTED IN THERMAL

THERMAL EFFICIENCY=

p—p~g=-=1

TIME
0,0000006000
283333333
566666667
,850000000
1,133333333.
1,416666667
1,7000000600
1,983333333
2,266666667
2,550000000
2,833333333
3,116666667
3,400000000
3,683333333
3,966666667
4,250000000
4,533333333
4,816666667
5,100000000
5.,383333333
5,666666667
5,950000000
6.233333333
6,516666667
6,800000000
7,083333333
7,366666667
7,650000000
7,933333333
8,216666667
8,500000000

TIME COLD

EECZRSRTRRESREES

LH02823306
585837429
INTEGRAL OF COLD EXIT FLUID TEMPR,

FLUID PROFILE:
CEnSECCISERSESSE

RTASTAR INTEGRAL

0,000000000
.282907267
554173179
843500020

1,120608368

1,3952365%7

1.667140140

1,936091343

2,201878512

2,464305563

2.,723191420

2.978369458

3.229686941

3,477004465

3.720195463

3,959145354

4,193751604

4,4239272596

4,649577440

4,870645264

5,087065024

5.298784738

5,505761191

5,707959471

5.905352875

6,097921015

6.285652466

6.,468541424

6.64658R889

6.,8198062070

6.,988194105

EFFICIENCY? YES OR NOG

935782041

2L

ANOTHER RUN WITH DIFFERENT PARAMETERS®

ENTER YES OR NO ==N

ANOTHER RUN WITH SAME PARAMS,
ENTER YES OR NO=wmh

STOP

14,268 CP SECONDS EXECUTION TIME

Y

BUT NIFFERENT ORDER%

REQUIRED?YES OR NQm=m=Y
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APPENDIX A%

Attached to this appendix is a FORTRAN program again
named CLOZAK which is the single precision form of the
program in A2. Here =z e [0,1] scale is used but
arithmetic is all single precision. A typical output is
also attached. The sequence of events is exactly the same
here as that in Appendix A2, however T% value is not
calculated hers. S0 the paramsters inpubt hers are exactly
the same as in A2 but ' = 19,7254 instead of 19.7354.
The results obtained are‘quite compatible with those
obtained in Al (agreement in general abt least up bto gixth
decimal place). Obviously here normalised distance
2 ¢ [0,1] is utilised in printing solid temperature
profile which is certainly a more represcntative presentat-
ion than the case in Al where the normalised distance
g e [0, A'] represents the distance values for both hot
and cold blows especially when cold blow At £ A', The
results obtained in A3 are only slightly different from
those in A2 mainly becausc of slight difference in A
value between the two cases as noted earlier., However
here execution time is only 3.705 CP seconds which makes
the program in this Appendix A3 much faster than that
in A2 (as there the value is 14.268 CP seconds for
lvirtually' the same parameters), This can only be

explained in tecms of additional time taken in double
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precision arithmetic and calls made to subroutine ARITH

in Appendix A2 in order to achieve double precision complex

results,

We conclude that if fast runs are required the program
in this appendix is adequate enough but if more precision

is the aimgprogram in Appendix A2 should be used.



AB-

Noigne PROGRAD CLOZAKCTNPUT, DUTENT, XYDATA, TAREL2INFUT, TARR2=0UTRUT,
00116 TPARRI=XYLATH)

0012¢ COMPLEX ALFE, YR

00130 DIMENSTON X1(20),X2(20 ).H.Lgu1,AHcguJ ACC20),CC(2D,20),

00144 1ICH(20,20) ,00(20,20),588(20,206),C1020,20),C2020,26),CINC20,20),

00150 TALEACLS)Y , VE (15D

00160 C THIS PRGCRAK SULVES FOR VECTORS AH AND AC #WHICH ARE CORFFICIBNTS

0017¢ C OF THFR PIHITE SERIES ARPPROXIMATION FOR INITIAL BOT AMD COLD

00182 () BLOWS, GENERAL UNBALAMCELD CASE USTNG O TD 1 SCALE.
6
1

0019¢ - 00 WRITE(2,1)

Q0260 FORMAT (LA, 'ENTRER YALUR (OF Hew!)

00214 READCE %)

0G220 WRITEC(Z,2)

0023¢ 2 FORMATCLX, "ENTER NOT AND THEN COLD LAMPBDA==!)
G240 READ (L, ¥)HLAM ,CLAM

00256 WRITECZ,3)

00260 3 FORMATCAX, "FNTER HOT ARD THEN COLD PERI(D==')
0027 READ (L, ¥)RIH,PIC

00280 500 Hlmtiet
ge2%¢  C  SET UP V“WTUWS OF DISTARCE CODRDINATES AND SECORD COL,OF B MATS,
00359 X1(0=0, & X200)=1, ; XiNs=l,

00310 k'cz)mi./%l P X2(2)=l =Xt () 3 XR(N)=C,
Q0320 PO 4 §=3,51

0033¢ Xl(l):(l~j)*X1( 2)

00340 4 K2(1)=1,=X1(1)

0035¢ Do s ]m,,

Q0361 BHlL,2)= Xi(l)

0037¢ BCCL,2)=X201)
00366 ¢ PRACTORLAL VALUES IN A VECTLOR
06390 5 AHCY)=TFrAC(L=1)

064GQ 3 45 0=3,1

0041¢ Jizmd=1

Q0420 DO 49 I=1,n

Qu4a3as C FILL SESATHODER OF B BATRICES

0e4ac BH(T,1)=RBC(X,1)=1,

00450 BHCY,J)=8rH(Y,J 1 )0%X1(1)

00460 RC(T ,J)=BCCL, J1)%X2(T)

0G4 40 CONPTIMUE

DGARY C DOBTAIN ZAKIAN'ZS CORFFICIERTS

Q0495 CAll ZACOFSCALFA,VK)

QCBO0 C ORTAIR STEP ~351nws VECTOR

IR N E ISCi)=1, ‘(=P IH)

QOB20 DG &L J= Af,!'

005829 6 U () =ZAKCE, K1CJ) ,PIE,ALFA, VK, HLANM)
00540 Ly 7T 1=4 ., ‘

0055¢ Ti=1+1 .

006G DI 7 og=mi, N

GOB7¢ ¢ ORTALN EOYTH HEAY POLE BEATRICES, BC ABD BH
0e584 CHOI1,D)SZ2AK(J,X1C11) ,PYIH, ALFA, VK, BLAM) ERL()
QeH9y COCY,))=2 K0T, X2 (L), PLC,ALFA, VK, CLAMYKXAH(J)
QGO0 7 CUMDPTIHUE

Q061G D26 J=2,0H

DCO26 20 Ca(d,N)=sCC0n, d1=9,

QU6 3 CHOL,5)2EAP(=RpIH) § CC(A,1I=EXP(~PIC)
006640 C IWHVERY KRC AtD PRIGT DETEREINANT

00650 CALL MATRIX(LO,N,8,0,B8C,20,0ET)

[1R1] Y oX4] WETTPEC(Z,30)0ET

o671 30 FORMATC(LX, "DET=",8512,5)

Q068G C  FIND CO¥INVIHC) AND STURE I8 C1 MATRIX

QU696 CHLL MATRIX(20,8,6,8,0C,20,80,20,C1,20)
00700 C FIND Co=CC®YHVIBCY¥CH

Q0716 CALL FMATRIXCZ0,00,8,8,C1,20,CH,20,C2,20)
Qe72¢ C PFIND CIkhmpri=C%

00730 . DG 16 1=1,0

00746 RO 4G Jd=1,K



00760
Q077¢
00788
06790
00BOG
00810
0082¢
00830
0084¢
0085¢
DOB6Q
06870
00BEG
00BY0
00900
009106
0092¢
Q093¢
00940
00950
009690
00978
0098G
00990
01004
0101¢G
01020
010390
01040
01050
DL060
Q1676
010806
01090
01100
011140
01120
01130
01140
0115¢
011646
01176
01180
01190
01200
04210
01220
01236
01240
012590
012690
0127¢
N1280
01290
01300
0131¢
01320
01330
01340
0135¢
013690
0137¢
01380
013990
01400

C INVERT CIN AND PRINT DETERKMIMANT %%:5<;2'

11

12

CALL MATRIXC1O,N,N,0,CIN,20,DET)
WRITECZ,30)DET:

PO 11 I=1,M
C2(I,1)=CLCT,1)%USC1)

RO 11 J=2,H

C2(Y,1)=C2CL,1)+CL (X, J)*UECT)
COMTINUE

Do 12 I=1,K

AHCI)=CINCE, )*C2(1,1)

P 12 J=Z,H
AHCE)=AHCID4CYNCY, J)%C2(0J,1)
CONTINUE

C  SUPPRESS PRINTING OF COEFFICIENTS IF NOT REQUIRED

1050

13

14
1055

15

16

17

10658

10660
98

46

4

WRITE(Z,1050)

READCL, liu)cAw

FQRMAT(iX,?ARE HOT BLOW COEFFTS. REQUIREDE YES OR Hlj=m=!)
IF(CANLER, THR)Y GO TU 1085 8
WRITE(2,13)

FORMATCLX, '"COEFFPICIENTS OF HOT BLOW==!/1X,2B(1H=))
WRITE(Z2,14) CAHCI), I=1,N)

FORMAT(I(2(1X,E12,5)))

PO 185 Iwmi, N

CINCI,10=BC(I,1)%USC1)

DO 18 J=2,u

CINCI, )=SCINCY,1)+BCCYL,J)¥USCI)

CONTINUE

CAIAIJ MATRIX(ZG \‘ I" ,BC,:ZO,CH,'ZG,C?.;ZQ)

DD 16 I=1,u

CINCI,2)=C2(T,1)%AHC1)

DO 46 J=2,H : , .
CINCI,2)=CINCL,2)+C2CT,J)%AH(I)

CONTINUE

DY A7 I=1, N

AC(I)=CINCI,1)+CIN(T,2)

WRITE(Z,1058) e
FORMATCLX, " ARE COLD BLOW COEFFTS8, REQUIRED? YES 0OR NQ==!)
READ(Y,110)CAHN - .
IP(CAN,EQ.LHNIGO TO 1060

WRITEC(2,18)

FORMATCIX, 'CORFFICIENTS GF COLD BLOW=~d /1X,28(1Hs))
WRITE(Z2,14)CACCT),I=1,8)

WRITE(2,98) : »
FORMAT (41X, 'ARE TEMPERATURE PROFILES FOR SULID REQUIREDR!',
1'ENTER YES OR HQmw!)

READCL,110)ANS

FORMATC(AL)

IFCANS , EQ1HN) GO 710 200

WRITE(Z,45) ’ )
FORMATC1X, "ENTER MUMBER OF BED MESH POINTS==1)

READ (L, *)1B ' ,

HM=1,/(MB=1,)

CM=1,/(MB=1,) ; XH=0,  XC=i, ; TH=AH(1) 3 TC=AC(1)
DO 47 I=2,H

TC=TCHAC(YIRX ¥ (T=1)

WRITE(2,46) )

FORMATCLX, 'SOLID TEMPERATURE PROFILEY /1X,26(01H=)/2X

1, ' NORMALISED DISTANCE',10X%, 'HOT BLOWY ,10X,'COLD RLOW')
WRITRC(R,48)XH,TH,TC ‘
FORMAT(5X,F12,9,10X,F12,9,8X%X,F12,9)

DO 49 J=2,MB

XHZXH+HM

XC=XC=CH2TH=AH(L1) 3 YC= AC(iJ

DO 50 I=2,W

Tr= 1H+AHC1)*XH**(I-1)



01429 WRYTE (2 ,4B)XH,TH,¥C - /¥:5'\25

01430 49 CORTINUE

0144¢ ¢ EXIT FLUID TEMPERAPURESS

01450 200 WRITE(2,1070)

0146¢ READ (L ,110)CAH

01479 1070 FORMATCLX, "ARE EXIYT FLUID TEMPS. REGUIREDZ YES OR Ni=e')

01484 IF(CAN,TQ, LKN) GO 70O 2140

01496 CALL FLUTECALFA,VK,AH,AC, HLAM,CLAM, PTH,PIC,H)

01560 210 WRITERC(2,204)

0151¢ 201 FORMALCLX, 'TNTERESTED IN THERMAL EFFICIERCYY YES OR NMOs')

01526 READ(1,410)AN8

01530 IFCANS, B, 1H) GO 0O 999

01540 ETARFEG=AC(1);8UM=AR(L)

01550 DEoso I=2,H

01560 SUM=SUM+AH(TI) /T

¢157¢ 90 ETAREG=RTAREG+ACCI)/I

015860 ETAREG=(ETAREG=SUM)¥HLAM/PTH

01594 MRITE(R2,91)KETAREG

¢l600 91 FORMAT(LY, ' THERMAL FFFICIENCYS' ,F12,9)

016l 999 WRITREC2,300)

01620 300 FORMATCIX, "ANOTHER RUN WITH DIFFERENT PARAMBTERSR'/L1X,

0163 JVENTER YES OK NUm=!)

01640C READCL, 110)AHD

0165G TF(ARDLEQ.LHYIGD TO 6u0

01660 WRITECZ,301)

0167¢ 301 FORMATCIX, "ANOTHER RUN WITH SAME PARAMS, BUT DIFFERENT UGROERR!/
01680 LK, VEHTER YES OR RNQOw=m') ‘

01690 READCL,L10)ANG

01700 TICANS .0, LHN) STOF

01716 WRITE(?2,1)

01720 Reap(l,x)u

01730 GO TO 500

01748 END . i
017540 £ % e okok o 3 o ok kKK ok 0 Ak Sl s o oK A 8 ROk i 3k o K % o R K R sk o I e o i o AR o R R o e koK e o K 0K K o K
01766 C O SUBROUTINE ZACOFS(ALFA,VK)

01770 C THIS SUB EVALUATES THE ZAKIAN'S COEFFICIENTS FUR PADES APPROXTMATION,
017890 COMPLEX ALFA,VK !
017990 DIMEHSION ALEFACLS),VK(15)

01800 ALFACLI=CHAPLY(1,983965103383233F+401,0,)

01810 Am1,9233870620860414K401 & B=3,379399888597234L+01(

0182¢ ALFACZ)SCUPLXCA,BYSALFA(3I)I=CHPLX (A, =h)

01830 A=1,871433208CG30498E+01 § B=6,772981645000657E400

01840 ALFA(4)=CHPLX(A,B)SALEA(B)SCHPLX (A, =)

01850 A=1,7644521777137171E+01 § B=1,0197743916914R88E+61

01860 ALEACHI=CHPLX (A, BYSALFALT)ISCHPLX (A, =B)

01870 CA=L1L.606B03145933782E+01 & B=1,3677803037466550401

01880 ALFACB)=CHNPLXCA,B)SALFACS)=CHPLX (A, »B)

01890 A=1,386207821R7T8058K+01 & B=1,7283432588368300401

01900 ALFACIBI=CHPLYXCA, W) SALFACL V) SCHPLX (A, =B)

01916 A=l 0RO0652491390860F401 & B=2,100620730400386L+01

G1924¢ ALFACL2)=CHPLX (A, BISALFACL3)=CHPLE (A, =B) |
0193¢ A=6,3019796546806T0BFE+00 & B=2,816447260856HR06E+01 '
01940 ALFACLA)SCHPLX(A,B)SALFACLIS)SCHPLXCA,=B) i
0195¢ VK (1) =CHPLX(1,64561%599469501E+08,0,) '
01964 Azm=1,268572985360156E408 & B==d4,749121856314229E4+07

01970 VK(2)sSCHPLXCA,BISVK(3)=CHRPLX(A,=B)

Q1980 A=B 57409846 845366BE+07 § Br4,9998123942253493E+07 .
01998 VKC(4)=CHPLXCA,BYSVK(5)=CHPLX(A,=B)

02000 Amw] . 136893282997024R+07 & he=2 4504289315222898+07

02010 VE(0)=CHPLYX (A, M) EVK(TI)ZCHPLX (A, =R)

02020 A==l 69405T3I31423655F+085 & ©6=6,0093063543680669E+06 ” ,
02030 VEK(BIRCEPLX (A, BYSVK(Y)=CRPLXC(A,=B) ]
020490 4=d ,13BE830376574135405 § Brmm0,154004276684025E+05

02056 VK(10)SCMPLX Ca, BISVK(LL)SCAPLE(L,=R)

02060 A==4,05845TREB252957E+04 § B29,752029126666363E+023

SR = T
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Q208 A=3,800167535061704E+02 & B=5,0883133006242982k402

0209¢ VK(14)2CHPLXCA,BYSVR(1I5)=CEPLX(A,=B)

02109 RETURHN

0211¢ BHD

02420 €0k Ok K R o s g 0K 3 KRR KK R K 0K XK K KOK ok 3 o o 3k 8 KR K ok R K O 0K o ok KKK oK K KK
02130 INTEGER FUNCTEGN YFAC(X)

02144 ¢ THIS FUNCTION EVALUAYES THE FACTORIAL VALUE OF T.

0215¢ © IFACEL

02160 IF(I LE,1)RETURN

02174 ) Do 1 J=2,1

02184 1 IFAC=IFAC*J

0219¢ RETURN

022064 END

02210 (ot ke o 30O ol 3 AR R ROK R KK R OK R K R IOR K R R 3O 3K 3K oK K K ok ok B K K K K R KR Ok K

02220 COMPLEX FUNCTION ZAKCI,T,PI,ALFA,VK,ALAN)

02230 COGMPLEX ALFA,VK,F1,¥2,ZAC

02240 DIMANSTION ALFACLIS),VKC15)

02250 C  THIS FUNCYION EVALUATES THE INVERSE OF LAPLACED £ AT TIIE T USING
0226¢ C COMPLEX VECTORS ALFA AND VK WHICH ARE THE COEFFYS. UF FAKIAN'S
02279 C FORMULSA o :
02280 IF(T .67, 0)60 T0 16

0229¢ ZAC=CHMPLYTT, ,0,)

02360 D1 J=1,15

02310 . 1 ZRC=LACHVE () XFL CALFACI) /T ,PT,ALAN)

0232¢ ZAK=CHPLR (REAL(ZAC) , A ITHRAG(ZAC))

0233¢C ‘ LHUR=ZAKZT

02349 RETUR Y

0235¢ 10 ZAK=VE (L) #FS CALFACI) /9, PT,T,ALAM)

D236 DO .2 J=2,15

02370 Y ZAKSZAKFVE QI AF 2 (ALFACII /T, P, I, ALAM)

023890 ZAKSZAK/T

02396 RETUR

02408 COEND

0241¢ C ko ook R e KK R R K RO o AR KK oK 3 3KOR B o 3K ARk K R KRR K R O Ok

024290 COMPLEX FUNCTION FL1(XXI,PI,ALAM)

Q2430 COMPLEX XX

02440 C LAPLACE TRANSFORN FUNCTION OF US,

0245¢ Fl=i,=CEXP(=XI%PY/(XI+ALAM))

02460 Fl1=F1/X%1 '

024706 RETURY

02480 ' END

0249¢ € ORRORFOR R AHR AN K JOR KRR OK KKK K K KR IOK 330 3 IO R KK AR JOR R oK KKK K Ok
0Z500 COMPLEX FUNCTION F2(XI,PI,I,ALAM)

02510 COMPLEX XI

02520 C LAPLACE TRANSFORM FUNCTION WHICH GIVES ELEMENTS OF C MATRICES, T
02530 C HEPRESENTS THE POWER TO WHICH THE DENOMIMATOR IS RAISED,
025490 F2=CEXP(=XI*PT/ (XI+ALAM))

0255¢ F2sF2/(XI%%1)

02560 RETURN

02576 CEXD

02549 € ot AR R R R RO R 3 ok ok o 20K Ak ok R OK K e K 3 ok ok e okl oK ok ok i ol ol K 3 38 8 sk ok R o ok o e ok o O
02590 COMPLEY FUNCTION ZAPCT,PY,ALFA,VK,ALAM)

02600 COMPLEX ALPA,VK

026140 DIMENSTION ALFACLIS) ,,VK(15)

02620 C THIS FUNCTION EVALUATES THE HEAT POLE FUNCTION &Y USE QF ZAKIAN'S
02630 C FORMULA OF LAPLACE INVERSION,

02640 ZAPSVK (L) *CEXP(=ALFACLI¥PTI/(ALFACLIY+THALAN))

02650 DO i1 Jm2,15

02660 1 ZAP=ZAP+VK(J)RCEXP(=ALFACII¥PY/ (ALFACI)+TRALAM))

0267¢ h ZARPSZAP/T

02680 RETURY

02690C EaD

02700 (3K ok Aok R oK o B R ok o ok K K R ok K K ROk K K 3 oK 3 KR K f K oK o ok K o ok o 6 K 36 8ok Ak o o ok ROk oK
02719 FUNCTION TEMPOCAY,VLAN,N)

02720 DIMENSTON AV(20)

Y - — i RIS s b el L e el sl | - el v Lmmstise sl oIra _SMeasEbseiz: L LRI Y NI DAV asTml L DM
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02740 ¢ EXIT FLUID TESPERATURES FOR HOT GR COLD BLOW AT TILME  ZEAG,
§2750 C AV IS VACIOR OF CUEFFTS,,VLAM IS THE APPRORRIATE LAYHDA,
02760 C FOR HONW BLOW SEED Y0 ADD EXPONENTIAL TERM In THE REF,

027706 c BLOCK TO THE VALUE OF TEMPO,

Q2780 c EL=EXP(~LAW) , VLIS, /LAM

027990 EL=SEAR (=VLA®) 2 VLI=1,/VLAHM

0280G C OBTAIN THE TERM OUTSIDE THE SUMMATION FROM 2 TQ N EIRST,
0281C © STORING TN TEMPG,

02820 TEMPO=AV(1)* (1, ~EL)

G2831; C NOW OBPTAIN THE LOOP SUM ADDING TO TRHPO,FINAL ANSWRER Tw

D264¢ iy TEMPC, TEMPORARY VALUE OF SUMEATION ARGUMENT FOR CORRENT X

0285¢ C STORED IN TI¥AV(I),XIF IS8 (I=1)FAC,SVLTMI=(=l/LAN)*%(TI=1)

02860 JiF=1p8SVLIMI=1,

0287 DG 1¢ 1=2,R

2888 S, Ti=Twip TAFSLIFATL ) SVLIMNI==SVLIMNL*VLT

02894 ¢ FIRSY AR TERMS QUTSIDE J LOOP IN TIs

02500 MLzl =SVLIMIRLLF*E]L

0291¢ C FPFOR THE J LOGE IaRI1JF=(I=1)FAC/(I=1=J)FAC, SVLIJS (=1 /L 00%)%NT

(292G SVLIJ=1,711DT1JdF=1 i

0293¢ O 26 Jd=1,11

Q02946 TIDL1UF=(I=) % 0l JF 2 SVLE==8SYL T OXVLI !
0295¢ 20 TI=TT+TA0L1IF%SVL T

02960 C MULTIPLY Y1 RBRY CUEBFFT,ACL) AND TOTAL UP Ity TEMPOS

Q2970 10 TEMFO=TEMPO+AYV (LY XLT

02968 RETURY

02949G B

Q3006 3K oK ok ok KAk N Ak A e A R 3Rl N ROk R R R A SOJOR R OR AR R R e R ROk R AOK R R R R ok ok Ak ok B R K Rk
0301¢ COMPLEX FUNCYION FGUW(VLAM,I1,FL,S)

03020 COMPLEX 8,801

0303¢ C 1THIS Fy EVALUATES THE TRANSFORNMED FUNCTION(S) REQUIRED 0 B THVRRITELD
03040 C YN DREDER TO OBTALN YLUID TEMPERATURE PROFILE IN S DOMATN, \
0308¢ C VLAMSLAMADA, L1 I5 AN THDEX REPRESENTING THE POWEKRK I=1 IR ErPRESSION
03G60 C ES=((S+1)/8)%%(I=1),IF 11 I8 ZERDO ES I8 SET TO 1,0THERWISE Iil>=

0307¢ C 1 IS USED IN ES,FL IS A FLAG IWDICATING WHICH FURMULA IS8 T wE USED,
03080 ¢ IF FL #0%=1,WE USE THE FURMULAIES¥EXP(=LAMYS/(S5+1))/5 AND IF WhL=i,,
03094 ¢ VHE FOLLOWING FORMULA FOR VARIABLE TIME I[NTEGRAL ETA* IS5 EVALUATED ¢ .
03100 C LES¥EAP(=LAM¥S/(S+1))/(85%8),

G311¢ C EXPORENTIAL TERM ORTAINED FIRSY I
0312¢ SLIZVLAMXS/(S5+1) FFGTSCEXRP(=SL1)/S f
03130 C  SBHIFT TO STATEARDT 106 IF FL=1.,1.K,.,87TA% I8 BEING ORTATREDY

G314¢ IF(FL,.EQ,1,)G0T0 14 :

03150 C MULTIPLY EXPRESSION BY((S+1)/8)%%(I=1),RETURY IF T11l=03

0316y TEC(LL  BQ, IRETURN !
03170 C FGUeRGT# ((S+1)/8) %11 s RETURN

031840 C  FOR EXPRESSION L ETAX MULTIPLY BYC((S+1)/8)*¥*(L=1),RETUFN HF
0319¢ C Y1=0 AFTIR HECESSARY ADJUSTMENT,

032060 10 T (I B, S)GoYo 11

03210 FGIsPGI*((S5+1)/85)%%T1

03220 11 FGi=FGT/S )

03230 RETURN S BND !
0324¢ C ok RO O K%K 0k o A0 % R R KO K K 30K e ek s ok K ok 3 3K ok Ok ol o oK a5 6 o K okt S s skl g ot Y oK K ok i
03254 COMPLEX FUNCTION ZAFTCALFA,VK,VLAM,ETA,11,FL)

03260 COMPLEX ALFA,VK,FGT

032740 ) C DIMENSEON ALFPACLR) ,VK(15) :
03260 C WHIS PN EVALUATES THE INVERSE OF LAPLACED F AT PIMAE ETA USING COMPLEX .
032990 C VECTORS ALFA ANMD VK OF ZAKLaW'S FVORMULA, :
03306 ZAFY=VK (L) RFET(VLAM, T1,PL,ALFACLY/ETA)

03310 DO 19 L=2,15

03324 10 QART=ZAF TH VK (L) XEGT CVLAM, T4, FL, ALEACL)Y/BTA) -

03330 RETCORM s BND

03346 (5K K 3 3K ok A OF %O 3K 3 o A g 4 o 3 O % o o oK K oK g R s o e ok ki o8 oK sk R e R ek ok Tk ROk OR Ak ok 0K K

03350 SUBROUTYNE GT(VLI,ETA,I,TRE)

03360 C  THIS SUBROUTINE CALCULATES THAT PART OF THE SUMMATION A GUMENT
0337¢ e FOR EXTIC FLUILD PHHP, WHICH OORS WOT THCLUDE THE U3E OF LAP.IHVSN,
0338¢ © VRI=1/VLAM BROUGHY OVER FRO® CALLING BLUCK,I IS 'IH& INGEX BU,

LU R |
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Q3400 C THE VALUR FOR THIS CALCULATION IS SAVED IN TES,.
03410 € TADILIF= (1w 13PA(/f[~1“J)PQC,SVL WIE(=L/LAM)¥%) TN J LOOH,

03420¢ T1=sl=i i Essd, 2 10T =18V 0=,

03430 DG 19 J=1,148

03440 FIDILIFPRIIDIAIE¥(I=d) s SVLII==SYLIJ¥V LT

03450 C 8UM OF K LOOP I8 STORED I8 TK,HERE JMKMI=SJ(J=1).e. (J=K+1)

03460 € LSEF=S(K)FAC,JXKBOSBINONTAL COEFFICLENT OF J AND K,AND ETARIETANXK,
0347¢ TR=1,s3mKMl=1 s K=l ETAK=1,

034806 DG 20 R=1,d

03494 JEKRL=JMENLI % (JmK+2) e KFEEKFXKETAKSETAKRETA t URBCR MK S ] /KF
035040 20 TKsTK+IKBOCXETAK/KF

03510 C BOW TOTAL UP IN TES:

02520 TES=TES+IIDIIIF*SVLIJ*TK

03830 16 CONTINUE

63540 RETURNG END

0355G c#***********$**##*#*******$***********$***************#*r%********
03560 FUNCTEON FTIETACAY,ETA,N, VLAM,FIAP ALEA, YK)

0357¢ COMPLEX ALFA, VK

03580 DIMENSTION AV (20) ,ALFACIS),VK(158)

03590 C  THIS Fi gVALUAYES TdE FLUIC XIT TEMP FOR HOT OR COLD & ,0W AT TIHE
D3I6GH C ETA,AV T8 VECTUR OF COEFFTS OBTAINED BAKRLIER,VLAM 1S5 ! \MBDA,FLAG
03610 C I8 AN ISDICATOR TOWARDS THE TYPE OF FLULD TEmP T0 PE « BLCULATED,
03620 C IF FLAG=1, wWE ARE DRALING WITH A HOT ALOW AND FUR COLD | LOW FLAG
03630 C SHOULD BE SEY PO SOHETHING HOT EQAL TO0 1,(8AY 3,0, :

0364¢ C

03650 C  LAPLACE IBVERSION USING ZAKIAK'S FORMULA FUOR THE FIRST TtRMe
Q366¢C FlLlmZafP P (ALER VK, VLAY, ETA,C,0,) |
03676 C IF FLAG=1,U8E (1=AHC1))¥FL1 OQTHERWISE OBTAIN a&Cﬁl)*FL%,!AVE AS FT1EY
03680 FTIETA=AV(L)* (1. =FL1)

03694 IF(FLAG.NE.§,)GO TG 16

63706 FLTLETA=FLI+FTIETA

0371¢ C NOW OBTAIN ThHE REST I.F.,THE SUM OVER I=2 T0 ~N QF

03726¢ C ACILYR{A+(I=4dFACHSUM CQVER J=1 TU (I=1) OF (=1/LAR)Y¥¥J/{T=1~J)FAC
03730 C %*8UM DVER K= TG O OF JKECRETAXXK/KFACe (=1 /LANMIX*F(I=1)FAC

03746 C FLAP TNV, (EXE(=LAXS/(S+1)) /8% ((841)/8)%%(I=1)).

03750 C VLI=1/VLAR,SVLIMIS(=~1/LAN)X%(T=1),I1F=(1l=1)FAC I8 I L WP,

03760 10 VLI=1, /VLAMESYLIMI=) e L1F=]

03774 DO 20 I=2,:0

03780 T A=T=d s TAR=TAF*I L e SVLINLI==SYLIMIXYLT

Q37490 C DOBRTATIER MOM LAR, TERE KTORED IN TES:

038G06 CALL GTUVYLYI,ETA,T,TES) 8

D3810 C  TMVERT L.W. EVALUATLIHG AY ETAs

03820 FLASZANY CALIA, VK, VLAM,EYA,TL,0,)

0383y C GBYATN THE ARGUMENT FOR SUMMATION, MULTIPLY BY A(X) Aw

03849 C  WOTAL LR IM FPIETA:

03850 FULIRTA=FTIETA+AY (D) R (WES=SVLIHML¥TLF¥ELL)

P3860¢ 20 CONT TN

0387 RETURM s END

0368 C***************#*******m****************#*******#*****#ﬁ#*ﬁ**#******
03890 , FUNCTION BYASTARCALEA, VK, ETA,CLAN,N,AC)

039G COMPLEX ALFA, VK

G3910 DIVEWSTION AC(H) ,ALFACLY) ,VK(15)

03920 C  THIS Pl CALCULATES ‘mAqfhd ISTEGRAL OVER ZERQ 710 &T2 U COLD ALOY
03930 C EXIT FLIUTO TEMP F’% ARY ETA FROM O, TO PIC,RTASTAR=O IF FTA=0,

03946 TF(ETANE. 0 )GU T 149
0395¢ ETASTARRD , JRETURN

0396¢ CALCUOLATE THE FIRST TWO YERUS I.E,, THE ONES QUTSIDE THE CERYES AND
03970 C STORE I8 ETASTAR:

03980 1¢ ETASTARSACCLIX(ETA=ZAEY (ALFA, VK, CLAM,ETA,0,1,)) ;
MOW OBTAIN THE REST AND ADD TU ETASTAR 10O GET THE FIa i, AVSWER USING

03990 C

040G00 C THE I LOOP YA WHICH TIS STORES THE NON LAPLACE TERM ¥ WM IHE

0401¢ C  ARGUMENT OF SUMMATION (WHICH WILL HAVE Tu BE MULLTIPLLIID RY ACCI) AT
04024 C TAF=(I~L)FAC,SVLINI=(=1/CLAN)*¥ (I=~1)

04030 SVLIMLI=1 4 TIF=17CLI=L./CLAM

04040 DO 20 T=2,M
S ) 5 = e . PV " Aot em M Al YR A e PN N e e BT ATN_ X N3 A ety



04060
04070
V4080
04090
041906
04310
$41206
041306
04140
04150
041640
04170
0418¢
04196
04200
04210
04220
04230
042440
04250
04260
04270
04280
Q429G
04300
04310
0432¢
04330
04340
04350
04360
Q4376
64380
043990
04400
0441C
04420
04430
04445
04450
04460
04478
N4480
64490
04500
04510
04529
04530
04549
04550
04560
04570
04580
04590
046000
04610
04620
04630
04640
04650
04660
4676
04680
4694
04704

AS-
C FORrR J LOUP TIDL10F= (T-l)FAC/(levdJFAC,SVLlJ:(":;?LﬂML%*J
LlD]::leF:l[ﬂVLIil] 1’
DO 30 J=1,11
JIOTAUFR=TiDILJF(I=)) p SVLIJ=mSVLTIXCL Y
C SuUM OF K LOOP XS STORED I8 TKS, HERE JMEMLI=Jd(J=1),.,(i=K+1),
C KF=KFAC,KIF=(K+1)FAC,JKBC=81I8,CORFFYT, OF J AND K, ETAUL=E! A%*¥K1,
TKE=ETA; JMRMI=L s RKF=s1ETARL=ETA '
DO 4% K=1,
JMKH L IMKNLE ()= R4+ L) 2EFP=KEXK 2 ETAK LS PAK 1 ¥ETA
JEBCsJdMKML /Kt KIF=(K+1 ) ¥KP

40 TKS=TKS+JHRBCRETARKL/KLE
C  YOTAL UP In IS UHi WON LAP, TERM:
30 TIS=TYS+TRE*LIDILJF*SVLIJ

C NOW UBTAIN L.X. TERM AND SUBTRACT FROM TIS, AND GRT T4k FINAL
C  ANSWER AFTER MULYIPLYING BY ACI) AND SUMMING:
FLI=ZAFT(ALFA, VK, CLAM,ETA,X1,1.)
ETASTAR® “TA&TAR+AC(I)*(T S=SVLIMI*T1FXFL1)
20 CCDNTYMOE
RETURM g BN
3% 3 ok oo o 3 8 o e e ok i K K 30K R 3 3 e K R AOK R N RO KK R Ak Kk o o e ol ol o R R R R KOR K Ok B R O R ok &

SUBROUT LN FLU?E(ALFA VK, AH,AC, HLAM,CMAM,PIH FIC i)
COMPLAEX ALEA,V
DIMENSTMN ALFA(lS),VK(lﬁ),AH(N),ACQN)

C THIS SUB FIHDS ThE EXIT FLUID TEMPERATURES AT SPRCIFL L el IsTs op
¢ THE JOW 08 COLD PERIOD,THESE PUINTS ARE ©£QUALLY SPACKE I ACLORDING TO
C THE H4ESH SPACING DESIRED,
WhITR(2,108)
READ(L,*)5PH,NPC ‘ ‘
10 FORMAT(AIX, "ENTER TOTAL NUMBERS OF PGINTSII.E.,I&WER&GH+2 B
: IPOXWTEINE O™ ANMD THEN COLD PERYIOD AT WHICH PROMILE REQUIRED=1
C HOT BLOW FLUYD EXTT PROFILE, FIRSYT ORTAIN TEMP., AT TL W 21 RD THEN TN
C  LOOP AT POYETS FROM GREATER THAN ZERG T0O PIH:
WRITE(2,11) ;
11 FORMATCLX, *HOT FLUTD EXIT TEMPERATURE PROFIME:“/&H,B%(]H:)/&X,
PP TREY , LOX, "EMPRRATUORE")
EH=0, s EC=
C  HaT TEMP AT TINSE ZKRITS
THL2=EXP (»HLAD) +TENPOCAR , HLAM , W)
WRITF(2,12)EH,THILO
12 FORUMAT(BX,F12,.9,24,F12,.9)
C HOT TEMAPS AT QTHER TIMES:
RH=PTH/ (8PHA=1)
DO 20 K=2,8PH
F“mmH f‘” ’tl
THLIOZFPTLEVACAH, B, N, HLAN, 1., ALFA, VK)
WRIMYEC(2,12)EH,TALD
20 COMTYINDE
C oL BRLOW PLIID PROFILE:
WRICE(Z,21) _
21 FORMATCAX,'COLD FLUID EXIT TEMPERATURE PR&FILE:?/iX,36(1H=)/6X,g
L'TIME! 10X, "TEMPERATURE! )
COLD TEMPERATORY AT TIME ZRERO2
TCLO=TEMPOCAC, CLAN, M)
WRITE(2,12)EC,TCLO
COLHh TEMRS AT QTHER TIMES:
CH=RIC/(NPC=1)
DU 30 K=z, NP
EC=aECHCN
PCLO=FTIETACAC,EC, N, CLAM, 0, ,ALFA,VK)
WRITE(2,12)1EC,TCL0

30 CONTINUG

C VARIABLE 7TIms INTEGRAL (FOR COLD BLOW ONLY) BTASYAR:
WRITIE(Z,22) |
READCL,11D)CAN i

22 FUR%A;(iY,'IS VARLABLP TIME ISTEGRAL OF COLD EXIT FLUILD TEMP,

[N



047290
04730
Q4740
04750
04760
04770
047480
04794
04800
Q4810
04820
046830
04840
64850
D4d60

110

25

40

50

FORMAT(AL) f*&5’"§?

JE(CAN, EQ LHNIYRETURN

WRITE(2,25)

FORMATCLX, "VARTABLE TIME COLD FLUID PROFILEI /1K, 3301E=)/6X,
LY P UME! , 10X, VEPASTAR INTEGRALY)
RC=0,3ETS=0,

WRITE(Z2,40)EC ,ETS

FORMATCSX ,F12,9,2X,#15,9)

DO 850 Ke=2,0pC

RC=EC+CN
ETS=RTASTARCALPA , VK, EC,CLad, N AC)
WRITECZ2,40)EC,ETS .
COMNLINOE

RETURDN2EMD

(KK K A0 5 30 oK KA O R o 50K O R o 3 oo o 3 o ko oK ok o
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I

v o RUN,F,F=C3
450008 Cm
2,491 Cp

STORAGE USED

ENTER VALUE OF Nw=
CM LWA+1 = 3346%8, LOADER USED 47300RS

ENTER HOT AND THEN COLD

ENTER HOT AND THEW
DET= ,27466KE=03
DET= ,94743E=04
ARE HOT BLOW COEFFTS,

COEFFICIENTS OF HOT BLOW=m=

,102153+91
COEFFICIFNTQ OF CoLD BLUW=-
E:".-"'::.."::“::3::::33::;‘.:::::2::
2 15090E+00 015290450
ARE TEMPERATURE PROFILES FOR

ENTER NUMBER OF BED M0

COLD PERIOD==38,5,

REQUIRED?YES UOR

SECONDS COMPILAYION TIME

L309098+00

»HABS83E+0D
SOLTID

8 PUOYNTS==231

8.5

Q==Y

LUMBDA==19 7284 ,17,3553

102618401
ARE COLD Bh0¥ COEFFTS, RtOUIREﬂﬁYFS IR mn-my

645025400 _
REQUIREDFENTER YES OR NO==Y

A3-9

SOLID TEMPERATURE PROFILE
-t et ol i p e R e ]
NORMALISED DISTANCE HOT BLOW COLD BLOW
0,000000000 646014825 2999927975
0333333313 LH116DR569 1,308742654
W DOB6H6667T LHTHRB3TEEA 1,009978890
2100000000 WDALT64H19 1,0043857686
133333333 506642486 292681080
166666667 «ATLE63T60 975551226
2200000000 2370106928 » 953651411
2233333333 2402856362 2927605448
02666665667 369362317 . 898005857
« 300000000 « 336680931 865413844
»333333333 304954224 «B830359303
3066666667 .27431410@ £ 793340814
4000600000 « 244882348 7154825645
433333333 216770637 » 7185249749
+ 466666667 218008305821 «H75017769
500000000 1649033437 «H34503030
533333333 2141320706 « 5924047549
W D66666667 2119403530 « 553962027
«6000G00000 » 099212996 5145258582
«633333333 LGBOBOCGT 3 LAT5987100
«H6666H667 S0H642035616 «A38B62534
»7000G0G00 49460358 » 202437602
» 733333333 336584921 W 367766440
166666667 .i?% BOREs « 334671872
«B00O00000 LO16475369 0 303248407
833333333 09231969 0273547242
866666667 03839667 2 245606261
« 900000000 CB00268536 »2194203034
933333333 =L 001521525 194954819
206666667 -, 001550650 2172145559

LO00030703

2150695887

=, 341448+00

~, 10568E+01

1,000000000
ARE EXIT FLUID TEMPS,.RECGUIREDZYRS OR HD==Y
ENTER TOTAL NUNBERS OF
HOT AND THEN COLD

POTKTE(T B, , INTERTOR + 2 END POINTS)IOF
PERIOD AT WHICH PROFILE REOUIRED=31,31.



p-4- e o g i e
TIME TEMPERATURE
0,0000000600 »COGZBHES

»2B83333332 LU01644714

W D66666667 03366893

« 850000000 ~D0B4A25856
1,133333333 LO0TR22636
1,416666667 LNLOB88708
1,70060G0000 L013627117
1,983333333 217036642
2,266666667 2020785016
2,550000000 £024873603
2,833333333 229364732
3.,1166686667 LO34082080
3,400000000 039211165
3,683333333 044699763
3,966666667 LOBD5H8537
4,250000000 . wOBEBO1IRTY
4.533333333 163446969
4.,816666667 LQT0B1T7453
5.,100000000 W 0THGADY4Y
$,383333333 LOB6US1103
5,66h666667 2094587816
5.,950000G00 LAG369701 2
6,233333333 2143433984
6.516666667 « 123887591
6,800000000 »135036351
7.083333333 147045379

7,366666667
7.650000000
7,933333333
8,216666667
8,500000000

FLUID EXIT TEMPERATURE

s WS G TS (B @IV g T S TR WD e vas Y W b b s e W WU BN v gt (rom PO e e S e

0,0000060000
.283333333
+ 566666667
,850000000

1,133333333

1,416666667

1,700000000

1,983333333

2,266666667

2.550000000

2,833333333

3,116666667

3,400000000

3,683333333

3,966666667

4,250000000

4.533333333

4,816666667

5,100000000

5,363333333

5.666666667

5,950000000

6,233333333

6,516666667

6,800000000

7.083333333

7.366666667

74650000000

7,933333333

159966793
« 173889360
<188907999
.205123122
2 222639854

1,001023668
L9957R84919
,98G9472241
LOB2138071
L973852006
LI64672728
L9B5A659543
LO43H69T05
L932356004
L920169535
L 907357955
LB93965546
LBHO032975
L665597100
LB50690850
335343051
L819578495
LB03417983
REYTELYE
,769973636
L732713805
.735107086
LT17159674
L694877083
L6RO264849
.661329830
L642081460
.622533144
L6D2703770

PROFTLE 2



8,500000000 L5682314509
IS8 VARIABLE TIME INTEGRAL OF COLD EXIY FLUID
VARIABLE TIME COLD FLUID PROFILE:
R R R T T N e RES R E IS
TIME ETASTAR INTEGRAL
0,000000000 4,000000000
283333333 .282508116
e B66666667 e D64£1T78209
8500060000 «843513012
1,133333333 1.120633433
1,4160666667 1.,395277961
1,700000000 1.667262015
1,983333333 1.936177255
2,266666667 2.201990813
2,550000000 Z.464444458
2.833333333 2.723353678
3.116666667 2,978546684
3,400000000 3.229263328
3,683333333 3,477153953
3,966666667 3,72027417%
4,250000000 3.959103624
4,533333333 4.,193504654
4,816666667 4,423361063
5,100000000 4,648556044
5.,383333333 4,8669790086
5,666666667 5,084516509
5,950000000 8.295059356
6,233333333 5,5004978483
6,516666667 5,700722294
6.,800000000 5.895622492
7,083333333 6,085088253
7,366666667 6,269009779
7.650000000 6,447278676
7.933333333 6,619789405
B,216666667 6,786441225
8,500000000 6,947140666
INTERESTED IN THERMAL EPFICIENCY? YES OR NO:

THERMAL EFFICIENCY=

ANOTHER RUN WITH DIFFERENT PARAMETERS?

ENTER YES OR NO ==N

ANOTH

ER RUN

WITH SAME PARAMQ.

ENTER YES OR NO==N

STOP

935581748

3,705 Cp SECONDS EXECUTION

TIME

TEMP,

Y

BUT DIFFERENT ORDER?

AB- 11

REQUIREDRYES (R N(lmeY
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APPENDIX A4

A finitc stage mothod for regenerator problem:

Based on a finite stage model devcloped by Jeffreson
[1i) in 1975, here we develop a finitc stags method for the
thermal I sgenerator problei. This was the first attempt
by the author towards tackling the regenerator probleum.
Howiever, later on a much better mcthod, namely that of
Laplace inversion was developed which has been described

in Chapter 3.

We start off with following cquations which are
gqually applicable for hot or cold blow situations. As

obtained by Jeffreson i], for zero fluid ca acitancsz, Ve
b4

have:
o t
C e 4+ A -T) = O o (A4,(1))
o2z
T
R = a(t - T) s (A4-(2))
oy

where t is fluid temperature, T 4is solid temperature,

A is number of transfer units, 2 is the distance para-
meter along bed length, y is the time (in seconds),

and o = '%/Vﬁ where Vg 1s ratio of thermal capacitance

of solid (i.e., cheguerwork matrix) to that of fluid



1%6

in regenerator at any time., Now employing backward

difference formula on d%t/9 z end discretizing (with mesh

spacing

DT
oy

il

= 1/N), (44.(1)) and (A4,(2)) becomes

N A . "
— b A e T .. (A4,
— e M (A4.(3))
a(tj - TJ) H j = 19.-.9N ) (A4o(4'))

(44.(3)) can be directly written into matrix form as?

where

[c]

[c] T+DT, oo (84.(5))
ky
koky  Ey
= kzki kol Kk, 0 ;
N-1
wkz kl L ] [ ] [ BN ] k2 kl kz B

1 for hot blow

2 N-T
[kloklvklvo-o’klj ? TO(Y) =
0 for cold blow
N Y ;

and kl = l--k2 .
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Now substituting (A4,(3)) into (A4.(4)):

|

. TL)

a(kltj_l f k2TJ 5

h

a(k2 - l)Tj + akltj_l

which becomes in matrix form:

ar
2= - afe) -[I) T +aD T,
dy
= [AlZ+B T, .. (24.(6))
where [A] = o([C) - [I]) ;
[I] being the N x N identity matrix,
and B = al.

So the problem reduces to solving (A4.(6)) for the solid
temperature distribution T. From this, the fluid
temperature profile can be obtained via (A4.(5)).
‘ O for cold blow
As noted earlier, To(y) = 3
1 for hot blow
hence to solve for T in the two blows respectively (using

I for hot and " for cold blow) we have:

a o
= i [4'] D'+ B' T, .. (84.(7))

ed
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e [A“] 2:: - (A4.(8))

Pipes and Hovanessian [ii] give the solution of:

d x
— = [4] x + 2(@y)
dy
[Aly 7 -[Alu
as x(y) = e [z, + j e 2(u)au]
0
where x = x(0).
Hence solution of (44.(7)) is
Al J ~TA!
m(y) = LA [21(0) + | S B' au] .. (A4.(9))
O <
as T =1

Q

where y e (O,n'), =' being period of a hot blow.

A.“ -
- e[ J(y-n')

'y = =) .. (A4,(10))
where y e (n';, n'+x"), =" being period of a cold blow.

At cyclic equilibrium, T'(y=0) = T"(y=nt+").

[A']y [A"]y

Substituting [@'(y)] = e . and [9"(y)] = e

,n_'!
and defining N'(n') = [9'(n')] f‘[@'(-u)]é' du ;
e ppia D _



we have for (44.(%)) and (A4.(10)):
'(rt) = [9'(x")] 2'(0) +n'(n') .. (A4.(11))
(" + ') = [9"(=")] '(y = =) ..o (84.(12))

Using the reversal conditions, we notes

T'(r') = [Ig) 2'(x') ang I'(0) = [T] I'Gn" + ')
where 1
0 5
[Iz]= 1 i.e., the reverse diagonal
O identity.
L

So we have f;r (A4.(113), (A4,(12)):
T(n') = [9'(n)] [I] TG +wt) +00(n') .. (A4.(13))
2“(““ + n') al [@"(n")] [IR] El(nl) i (A4.(14))

Substituting (A4.(14)) into (A4.(13)) and separating

T'(n') out we obtains

Ef(nf) = [ [I] - [¢'<nf)] [Z5) [¢"(=")] [Z3] i n'(n')
oo (84.(15))
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and then resubstituting (A4.(15)) into (A4.(14)) we gstb

. Sy -1
W' +at) = [0"(")] [ [I)-[e' (=) [T] ["(n")ITTR]] .

«N¥(n') .. (a4,(16))

Jeffreson [1] has termed [®] matrices as 'transition'
matrices and in order to obtain these matrices he obtains

glements Pi, i=1lye..58 as follows:

k, = N/ (N +2), k, = A/ +2) .
e Ceitme B a A ® A P. . :
H H S 1

kR

1%2 =2 5 oL TU=2
P, = P. = k P,[1 + k,Pq] ;
2 2 9 3 1 2 ot 1 ’

(s +-§i)
J = 3!¢--9N

Using Binomial Theorem we have!

31 J-2 i &
P, = 2. 14 S Segl ITOEELNEG
I 5 N
! (s + %) g EHGm2-R) s
J = 3500l
kLR, Jf (o)t kL &S ]
= + ; =3 7~ H
(s +%p)° o1 KEG2-E)E (s 4 By e

j = BsotosN
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Hence
- . 1l 2
-1 j=1 0 -1
L™ (P.) = K e 1 G e ) ]+
J 1 2 s+ﬁl
J=2 (3-2)!
3-2)0 5.1 a(kHl) -1 Lk
> 2L L ) 17t (=) T
oy ki(j-2-k)! s+kq
j = 5,---!N
The use of formula
N
n 1 : 1 1 kY
i (— )] = T =1 o 1
s + ky (5 - 1)}

is made to calculate the inverse Laplace transform.

Once [9] is available Jeffreson [i] obtains n(y) simply
froms

N

. N
0Gg) = [1- 3 05 12 By e
i=l i=1

N

R S

i=1
where 945 are slements of transition matrix (o] .

Then T'(x') and ™ (x" + n') can be obtained from

(A4.(15)) and (A4.(16)) respectively.
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Attached with this appendix is a FORTRAN program named

FPISZEFC which has the following main steps:?

1. Calculate [@‘(n')] and store in [91l] (using PHIWAT)

2, Calculate [Cp“(n‘-Ht")J and store in [@21 (using PHIMAT)
3, Calculate [I]-[91][92] and store in [¢] (using MATMUL)
4. Caleulate [9]™% and stors in [92] (using LINV2F)

5. Calculate [¢2] .DELTA(n') and store in T (using MATVEC )

This gives I'(n') .

6. To calculate I (n") replace =' DY 1"  above except

in step 2.

Note: As IMSL subroutine T, INV2F is used for Matrix
inversion, the ALTLIB8, CY=30 library module is required to

be attached before execution of the prograi.

A sample output of the program is also attached,
where a mesh spacing N = 10, Al = A =10, ! = o = 5.0

and w' = ®" = 3.0 have been uscde

Tt is noted that matrix inversilon is carried out
successfully as the frror Parameter = 0, and number of
digits after improvement remain unchanged at 6. Although
here the transition matrices have been suppressed for
printing, they could have been printed just by answering

1Yt if required,
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Although the values obtained for temperature profiles
for solid and fluiéd are certainly within the proper range
of expected values, this method has been considered to be

inadequate because of the following main reasons:
1. Reversal conditions were not properly incorporated.

2. Calculation of n(y) 1is based more on physical situation
than mathematical derivation as it is "difficult” to

n
obtain the integral [ [¢(-u)]Bdu.
O =

3, Backward difference formula has been used to discretise
the system of equations originally considered, No
comparisons with other difference formulae were done and
no particular reason given why backward difference was
used., A thorough analysis was required involving
various difference formulae and the best scheme should

have been adopted,

4, With the above three disadvantages it is quite natural
that truncation error for the profiles even if obtained
will not be representative of its true value. It is
indicated by the results obtained that the truncation
error itself would be large. Hence the results are not

truly representative and therefore subject to suspicion,

It is cowcluded that although in the present form

this finite stage method is not very "reliable" but with
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further planned modifications it can be developed into a

useful simple scheme which works. Overall, the exercise

in itself was worthwhile,

Referencess

[1] Jeffreson, C.P.; "A finitc stage approach to a problem
in regenerator theory =~ a progress report”, Department
of Chemical &ngineering, Adelaide University, March
(1975).

[ii] Pipes, L.A. and Hovanessian, S.A.; "Matrix-Computer

Methods in Bogineering", [Chapter 4], Wiley (1969).



LTI REXS
0GIe
O03C0
Qo400
00500
QOOLDH
DOT0H
QoHsY
0G50
01000
| 01160
|

£

Dl1z208
013048
01460
01500
01600
{017@@
01865
019¢0
10200¢
0214640
Q22840
02300
024460
02548
2600
02709
02844
ND29¢8
03000
D3OG
N32048
03364
3400
0350¢
03600
PIT L0
3800

GIvig

040G0
41040
D470
D436
DA4GG
DASOD
046G
4700
4 8¢
D4GGG
2E060
V5166
)R2006
ENTE
)54

55

1 560(
5.7 ¢

1580
i{j‘: )

6001
61G
6200
6.3

a4 N

h o006

A4 -1
PROGRAY, FUSZERC(INPUT, OUTPUT, TAPEL=INPUT, TAPE2=0UTPUT)
DIMRNS T PHI(ZD,QO),PH11(2$.20).PH12(20,20),DELTA
1f29),TH(QO),TC(QG),TScho),Tsc(go)
THIS PRUOGKAM CALCULATES 'THE TEMPERATURE DISTRI=
RUTIGH OF FINITE STAGET MOPEL OF A THERMAL REGENERATOR
WITH ZERU FLUTD CAPACITANCE,
PRINT (2,30) ]
FURMATCZX, '"BATER MESH SPACING Ni=1)
OIS NUMBER OF HESH POINTS,
READCL, %)
CALE ‘L’”':'P’;ﬂ.[‘(PHIlPH—TlIPHIQIDELJTA,TH!T 3'TSH,TSC,I\3)

o NeoNe!

W

WD
SUBROUTIN® SUHMAIﬁ(PHI,PHIi,PHI?,DELTA,mH,TC,TSH,TSC,N)
 DT@ENSTON PHI(N,N),PHII(N,N),PHIZ(N,N),DELTACN)}TH(N),
LPCCH) , T8H(H) , TECIN) , WKAREA (460)
PRI®T (25 30) l

30 FORMAT(RX, "ERRER VAMUES:HLAM,CLAM,HLV,CLV,PIH,PIC:FF)

¢ VE I8 96E RATIC OF THE THERMAL CAPACITANCE OF THp .

C SOLID MATRIX TO TUAT OF FLULD CONTAINED IH THE REGENERATOR A%

C ARY TIME, WERE {% IS8 ASSUMED TO BE INFINITY FOR ZERO FLUID

C CAPACITANCEH, ' ‘

C HLAM T8 THE NMUMBER OF TRANSFER UNLITS OF HOT PLULD,
c CLAM IS THE NUNBER OF TRANSFER ENITS OF COLD FLUTD,
C nLY I8 FINITE VALUE OF HLAM/ZVH.

¢ CLY I8 PINTITR V LAY R 2 ) Y |..;’“'ff:.

¢ PIH I8 THE 'HOTY PERIOD.
C PIC I8 THE 'COLD' PERIOD,
REAL (L, ¥)HLAN, CLAM,BIV,CLV , PLH, PT(
BRE=0/ (L AR) -
HE2mi=~HKi
CLA=N/ CHACLBN)
(2=l =CK]
HE I DREK 1 %51,V
HK2D=HK2XHLY
: © CRID=CRI¥CLY ; CK2D®CK2%CLV
L CALCULATION OF HOT TRABSITION MATRIX :
CALL PHIMAR(PHIL,PIH, N, HKL,HK1D, HK2D)
WRLTE (2,31066) : , :
READ (1,102)Yau8 7
100 FORHBAT(IX, ' T8 IRANSITION MATRIX REQUIRED®'/1X,
IVENTER YRS OR HO=')
16% FORMAT(AL)
IF (ARE L,EG, 1HI)GOTO 104
PRINT(2,10)
10 FORPAT(2X, "HOY TRANSITION MATRIX:')
PRINT (2,2) CCPHILICT,J),Jd=1,0),I=1,N)
FORMAT(I0(ZX,B511.5)) ’
© QALCULATION DF DELTA VECTOR: :
RIRSY CALCHLATE MATRIX C FOR HOT BLOW (CH) STORED TN PHIZ:
04 CALL CMAT(PHIZ WKL, HK2,8)
C  COARLCULAYION DOF CH=Y(T,E,,VH/HLAK , MATRIX A) AND IT8 INVERSK?®
DO 6D Y=y, N
60 PHIZ(Y, T)=pHIR2(T, ) -1,
C  IAVERSIGH 0¥ (=1, STUHED IN PHT
THGY=6
CALY LIHVZFCPHI?,M,N,PHI,IDGT,WKAREA,IER)
BRINT (2,61)
651 FORMAT(2X, " INVERSION OF MATRIX A FOR HOT BLUE )
PRIMT (2,9)1D67, LER
C CALEULATION OF [ VECTOR (STORED IN TH):
CALL DVEC (TH,HEL, M)

=0y N

C PRUDUCT OF A4 ITWVERSE AND VECTOR BH (STORED IN TSH) (HLAM/VH CANCELS) ¢

CALL MATVIC(PHT, TH,T8H,N)
Di 62 Tm1,w \ ar .
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WHICH I8 TU BE INVERTED:

OF

DIGTTS

+T3,5X, "ERROR PARAMETER=',T3)

i

COLD(IN PHIZ)

067 ol (Y, J)=puli(cr,.J)
Of 62 FUICT,T)SPHT(L,T)=1
06 \ CALEL HATVEC (”NL,TJH,DELTA,N)
07« C CALCULATLGx OF COLD TRAMNSYTION MATRIX:
Ul ChAGL PRIMAD(PHIZ2,PIC,N,CK1,CK1D,CK2D)
072 WRITECR,100)
073 READCE, 1C2)A08
)74 ;F(f\f“"j.e D, 1HN)IGUTO 166
0761 BrInacz2,11) )
0761 11 PUH¢AE(2X,'PD'E TRANSTITIUN MATRIXg))
077 PRINTC2,2YC(PHI2CL,3),0=1,0),1=1,0)
078 C ﬁPPLICATIDn OF REVERSAL CONDITIDNS:
0679 106 Do 3 Tl N
a0 Doo3 a=t, ‘
01 3 FRICY . )=PHIL(T,J)
1082 By, 4=,
043 By 4 s,
004 Ml mie 41
085! 4 FATI Y, 0)=PRYI L, Nl
ORET PNs I=d, .
o7 By Ao dsmd,
0 ¢ 5 PUHYOT,J)=pHE208,d)
L& f=t, il
DO & =4,
fdlsae g+l
6 PHIZCE, J)=EHTCY,5J1)
C  CALCULATIUN OF THf MATRIX EXPRESSION
CARLL SATMULCPHYLL,PHI2,PHI,N)
w7 =,
B8 R,
P .[(["J)“"‘”“‘hI(I[‘J)
4] S U
TCI, Y=, 4+PHTCY, )
7 f LU
101 C DF THE TUVERSE:
101 [ JMb ]
103 AT LINV?F(PHI,M,m,Pﬁll,IDGT,WKAREA,IER)
10¢ i J(” Q)TTGW,[RR
108 g B TO2X, Iy CALCULATION OF THVERSELY',/2X,'NO,
1061 i U‘(Hhuu'ﬁ AfPTER YMPROVRME ATz
107014 ¢ CALCIHLATION OF HUT SULITD TENMP, DISTN,?
108 CALL 2ATYECCRHYIL,DELTA,TSH,N)
109 BRIAT (2,210
i1 21 FORMATCZX, ' 50LID TEMPERATURE DISTRIBUTION FUR HOT PERIOD:'
1,/1X,4701Hm)/ /)
HFRYMY (Z,2)YCTSHOTI) , I=1,8)
C  CALCHEATION OF COLD SOLID TEMPERATURE DISTRIRUTIUNGS
Calid hnTVFC(PHIQ,TSH,TSC,N)
PRRINT (2,22)
22 FORKATC2X,'800X0 TEMPERATDRE DISTRIBUTIDN FUR COLD PERIODS!
YT,/0K, 480 H=Y//)
PRINTCZ2,2)008CC1),I=1 )
C  CALCULATTION OF VECTOR D Y0 BE STYORED IN DELTAS
CALL DVECCDELTA,HKL , M)
ChRLI PWAT(P?Ti,ij, r', )
CAlil, O I’,\.‘()J”IL'\AK1 s M)
ULAEION gF i“l/“{'(‘,[("'fj(} € FOl M
PERIOUE' \ ‘
CALCHLALTON OF FLULD TFMPFRATUPF
! Chlis MATYEC(PHIL, T8H,TH,N)
| DO 35 I=1,n
| THOI) =THCD) ADELTACT)
| PRIMT(Z,40)
| FORMATCZX, "WLULG TREPERATURE
/ L/VR,47(4H=)//)
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134!

13500
1360t

137040
13804
113986
14G6 ¢
14166
14205
| 14360
14400
145¢¢
14600
14704
148490
14901
1500¢
15100
15£ £
1530

15400
1;.‘r)--

115641
157040
15800
15906
16000
16100
162G6G
la3ge
16466
16540
lobtg
16760
H6HOD
16900
17000
17190
17200
1739¢
17460
17506
176454
147706
17860
379048
1806
18105
18200
18300
184040
188500
LB6GH
18780
18860
L8900
19600
| 9104
L 9260
19300
19468
1 9500
[ 9600
| 9758

-

2y

C

(T

B Ne e

4

11
-1
C

20N

4

-

THIS

AL-3

CALL BRPVIRCCPNTR,PSC,TC, M)
PRI, 5

Zl‘uﬁuf;iL);;;1“ TEMPERATURE DISTRIKUTION FUR COLD PERTODY '/
PRINTCZ,2) (¢ (L)Y, f=1,M)

fITR

W
LT eGie FOncTIon O1RAC(Y)

FURMCTION  CALCULATRES THE VALUE OF (J=1) FACTORIAL WHERE d$=1.

JIFAC(U)=1 FOR J<=2,

THIE

JIFAS=]
LH (Ja B, ZIRAETIRY
J e

LRI R = P
JIFACEJIEACKT

R R
D)
SURBROUG
B XE
SURROLUTY

HE ILYSKI (I, PIME, STORE, £1T)
JERC
vECCALCULATES TNVERSE LAPLACE TRANSFORM OF 1/ (8+K1 ") %%,

(EVALURLELD AT TaPIAE), AND STORES THIS VALUE TN VARTIARLE STORE

[hd .‘v) 1 -
LIV

AN

THILS
£1Y

0y

Ex&(mwhSHﬂlkwIME)rlS HORKED OUT IN PHIMAT BEFORE CALL
TR (] ) ",
ST XL

'm'p SSTORINZA1FAC(Y)

RUTuM

e

SUBROVT(H PHIMAT (PHI, TIME, 1, RK1, DASHKL ,DASHK2)
EXTERENAL JIEAD

YU PHYON,N),8T(20)

”NTIQE CAl {uhATﬁs THE LOWER TRAINQULAR TRAN&ITIDN MATRYX
TASK AL BIMOMTAL EXPANSTION ,ST(L) STORRES THE INVERSKE

J

US T

LARPLACE THANSFURE O L/7CSHRIVI*%(I41),8T () IS USED AS A TENMP, VAR

£00PR

Lup

LA

)

FOPRE NP (=D ASHA LRI IME)

PHICYL, 1)=8iT

Hl=iimd

TG CALCULAYE MHE (PPER TRIANGLE OF ?HI:
o1 ey, el

Ti=TI+1i

Bd 15 a=11,u
?)H(T,J)r‘;‘.’u
1

PHTI(TS,
T CALCH
CAGH T
PUT(Z,1
U P
PHI(Y, I~ 1)wﬁn1(2,1,

LG CALCULATES INVERSE LAFLhCE TRANSFORMS UR 1/7C84K1 1 )%%(T+1)
; S oEEM TH OSTC(I) e

O3 f=2,u1 )

CALL XLASKACT+1,0INE, 8TC(L), DY)

COpwYL i

?u CALCULATE ''HE LEFT HAND LOWER TRIANGLE OF PHL:

D 4 TsR,

Timfe=d

I2=imy

WIzmf=T+1

EKITismRR %% ¢

ST SRELIIRDASHR2%¥ET (1)

DU B RH=1, L7 :

K=+ :

SU(H)=8T (0 )+uhjF1*DhuiKZ*#Ki*JlPAC(Il)*hT(Ki)/(JlFAC(Kl)*
LJIFAC(Ti=K) ) | '
COHPTGUR

1,)"Ph[('L,1)
LATE 'CHE LOWER OFF=DIAGONAL OF PHI:
310(2,1}n eSTCLY L EDT)

i
)= Ffl)*UASH}Z*hﬁi
3,

PHILY 1 )?-"%'!‘ ()



19909
290600
2010¢
2020¢
20300
204400
| 20506
20600
20700
209400
1 2190690
21100
21200
213695
21400
121506
2169¢
21790
21800
21900
22004
22164
22209
22308
22430
22500
22609
2274%¢
22800
22900
230404
23100
23200
23300
23400
23580
236060
23799
23804
2394099
D406

24410

24200
24304
244059
24500
246010
2470
24800
2490

25000

<5100
5209
DR300
R5404
25530
25080
25700
PRHGD
B TRt
P 6HO0
26100
6200
i
6400

@
C
Q)
G

N

0y

¢ N e

-0

PHIE

Ah-4

TECIL0Q HYG, w0 4

DO 6 Km2,61

J=Jg4 1

BHICT, ®)=PHX(T,1)

CONTT i

RET R Y

B

SUBRUGUTTNE CMAT(PHI,RKL,RK2,N)

DIRERSION PHUCN, W)

SUBRULTTAE CALCULATES THE ELEWMENTS OF A LOWER TRIANGULAR WATRIX

CCFOR HOT R COLL BLOW) DEPRENDING ON THE INPUT PARAME
s L WOW) DEPENDING ON THE ETERS RK
RK2, AKD STORES THEH I PHICOR INPUT MAVRIX NAME), RKL anD

THE

THE

THIS

Ao

LOOP TO CALCULATE 'THE UPPER TRIANG:

NEESER|
PHICL, L) =RK?
b 1 =1 ,0n]
TimT+ |
PO 2 J=11.N
PHECL,dY=0
PHICIL,T1)=PHICL, 1) .
LOOR 10 CALCULATE THE LOWER LEFT HAND TRIANGLES
no 3 1=2,0 : ]
PHICT , 1)=RELXPHI(I=~3,1)
NG5 IT=P, N
BN A
J:I
TFC), R MYGH 25 4
DO 5 K=2Z2,n1
NENRES
PHICT,KI=PHIC(T 1)
P(P"”iﬁbﬁi .
TR

DVEC(DELTA,RK1, 1)
] 'Vjﬂm DELTACR)

SUBROQOM LN FA!CJLATES THE I VECTOR AND STORE W C
L : D STORES IN DELTA,
noo1 x=2,0 : ‘
T)’*”I;‘ﬁ'l\(f)m%r’\}.*m: LTACI=1)

SUBROUT TNE MATHUL (PHIL,PHIZ2,PHT,N)
DIMENSTON PHIL(N,®), PHIZ(W,®),PHI(N,N)

THIS nU%RU”TINb CALCULATES THE PRODUCT OF MATRICES
PHIL1.PHIZ2 AND STORES RHE RESULT IN PHI,
DU I=1,4

DO 4 =L, 0

SuUM=Q D

Do 7 K=1,H |

BUM=SITRAPUTL (T, K)XPHIZ2(K,J)

COMTI NI

PHICT,J)=80Un

CONTT R

RETHRM

D

SUBROUTIwWE AATVEC(PHI, DELTA,T,N)

DAMENSTION PAXCH,0) ,DELTACH), T(N)

WHIS SHHhUNTTN’ CALCULATRES THE PhﬁNULFIPLIFAFIUN OF A VWCTUR BY

RIK,Tatl g, T=PHI OELTA,
DO I r=1,4
PCLY=0,5
IR J:i,ﬂ
TOII= (L) +PHYICT , J)¥DELTACY)
CORTIEUE
RET IR



A4-5

WRUN,F,F=F§
ENTER MESH SPACING Niw=
| 450008  CM STORAGE USED
1,221 CP SECONDS COMPILATION TIME
CM LWA+1 = 242048, LOADER USED 40000B10

ENTER VALUES sHLAM, CLAWM , HLYV ,CLV,PIH,FTIC2=10,,10,,54,5.,3,/,3%

S TRANSITION MATRIX REQUIRED?®

?TER YES OR NO~N

'INVERSION OF MATRIX A FOR HOT BLODW?

IN CALCULATION OF INVERSKES

NO, OF DIGITS UNCHANGED AFTER IMPROVEMENT= 6 ERROR
5 TRANSITION MATRIX REQUIRED?

NTER YES QR NO=N

IN CALCULATION OF INVERSE:

PARAMETER= 0

NO, OF DIGITS UNCHRANGED AFTER IMPROVEMENT= & ERROR PARAMETER= 0

SOLID TEMPERATURE DISTRIBUTION FOR HOT PERIDDS

N RS R R e MR B S 1R T B S A S A B B M R RS B S e e B e S B e e e e

2 99955E400 v 997 85E+00 «993T78E+00 «A8593E+00 2973075400

92BL7E+00 «BI9B0EE+0Q «BB49BE+00 «BO8B0E+00
SOLID TEMPERATURE DISTRIBUTION FUOR COLD PERIODS:

P R O DTV B SR U D W S 0D A R AR e U W O BB N G R SR RD G o B D S B W G G RS O N S D R B R W o

UL
T1831E=~-01 «10492E+00 o 14B02E400 «19150E+00

FLUID TEMPERATURE DISTRIBUTION FOR HOT PERIOD:

N TR R T e S P R RS S e A S S e S N G e S S e G R e G W R e e e

2 99978BE+00 998810400 cYUB2REA00 «99110E+00 « GHZ2OBE+00

54812E+00 2 92160E+00 WHABB29E+00 LH48395+00
FLULID TEMPERATURE DISTRIBUTION FOR COLD PERIOD:

' 42235H8E~=03 «11867HE=02 e 3718BE=02 +BRIGBE=()2 «17915KE=01
51878E=01 e 78399E=01 «11171LE400 «15161E+00
STOP
»245 CP SECONDS EXECUTION 'CIME

244717E=03 0 2149TE=(2 WH2509E=~02 «14078E=01 26934E=-01

«95406E+00

«45936K=01

«9BROGTE+0]

«315925E=01
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