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In this paper, the effect of a large pre-stress on the propagation of small amplitude Lamb waves

in an incompressible elastic plate is investigated. Using the theory of incremental elasticity, the dis-

persion equations, which give the phase velocity of the symmetric and anti-symmetric wave modes

as a function of the wavenumber, plate thickness, and pre-stress state, are derived for a general

strain energy function. By considering the fourth-order strain energy function of incompressible

isotropic elasticity, the correction to the phase velocity due to the pre-stress is obtained implicitly

to the second order in the pre-strain/stress, and depends on the second, third, and fourth-order

elastic constants. Numerical results are presented to show the dependence of the phase velocity of

the Lamb wave modes upon the applied stress. These are compared to the first-order correction,

and agree well with the limiting and asymptotic values obtained previously. It is envisaged that the

present results may well find important practical applications in various guided wave based

ultrasonic techniques utilising gels and rubber-like materials. VC 2019 Acoustical Society of America.

https://doi.org/10.1121/1.5092604

[MD] Pages: 1221–1229

I. INTRODUCTION

In recent years, there has been an increased interest in

the acoustics of rubber-like solids, as well as soft biological

tissues, with the ultimate objective of mastering all aspects

of ultrasonic wave techniques. In particular, much research

has been directed toward the investigation of the acoustoe-

lastic effect associated with bulk waves (Destrade and

Ogden, 2010; Destrade et al., 2010a). Another type of wave

motion, which is of great importance in practical applica-

tions, is represented by guided waves. Lamb waves, which

are guided waves in plate-like structures, are widely utilised

in the imaging of defects (Ng, 2015; Aryan et al., 2017) and

have many advantages as compared to bulk waves, including

a longer propagation range, higher sensitivity to damage,

and a lower energy requirement for excitation and sensing

(Su and Ye, 2009; Rose, 2014). These advantages are yet to

be utilised for soft materials and rubber-like solids. Such

materials often exhibit nearly incompressible behaviour and

are constrained to undergo essentially volume preserving

deformations. At the same time, the strain conditions may

reach up to hundreds of percent (Destrade et al., 2010a).

Therefore, it is important to understand the effect of these

conditions on the wave propagation characteristics; the latter

is the focus of the current paper.

The problem of wave propagation in pre-stressed plates

has been an active research topic over the past decades. Two

approaches have been established for treating this problem,

namely, the theory of exact nonlinear elasticity and the the-

ory of weakly nonlinear elasticity. The first approach is ame-

nable to large deformations and has been used to study the

behaviour of elastomers and soft solids (Destrade et al.,
2010a). In this framework, the strain energy function is writ-

ten in a general form as a function of the first three principal

invariants of the right Cauchy-Green strain tensor (Destrade

et al., 2010b). A comprehensive treatment of the foundations

of this framework can be found in the pioneering paper

by Ogden and Roxburgh (1993). These authors derived

dispersion relations for wave propagation in a pre-stressed

incompressible finite plate and investigated the vibration and

stability phenomena. Since then, there has been a number of

contributions on the dynamics of incompressible (Rogerson

and Fu, 1995; Rogerson, 1997; Rogerson and Sandiford,

1999; Kaplunov et al., 2000, 2002a,b; Pichugin and

Rogerson, 2001, 2002a,b) and compressible (Nolde et al.,
2004; Rogerson and Prikazchikova, 2009; Kayestha et al.,
2011) pre-stressed plates, focusing on the asymptotic analy-

sis of the dispersion relations.

The second approach, the theory of weakly nonlinear

elasticity, is often used in the study of small but not neces-

sarily infinitesimal deformations. In this approach, the strain

energy function is generally expanded in terms of the invari-

ants of the Green-Lagrange strain tensor or some other mea-

sure of strain (Destrade et al., 2010c). This framework has

been employed to describe the acoustoelastic effect, which

explains the change in the wave speed with the applied

stress. Whilst the theory of acoustoelasticity is well estab-

lished for bulk waves (Pao et al., 1984; Pao and Gamer,

1985; Guz and Makhort, 2000; Kim and Sachse, 2001),a)Electronic mail: munawwar.mohabuth@adelaide.edu.au
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comparatively little attention has been given to Lamb waves.

An extensive analytical framework was established by

Gandhi et al. (2012) to analyse the effect of biaxial loading

in an initially isotropic compressible plate. Pau and Lanza di

Scalea (2015) also developed a nonlinear model to investi-

gate wave propagation in pre-stressed plates. Their model

recovers the results of Gandhi et al. (2012) in the linearised

case but in the nonlinear case, it gives the variation of the

amplitude of the second harmonic component as a function

of the pre-stress. Other related studies within the weakly

nonlinear elasticity framework include Kubrusly et al.
(2016), Mohabuth et al. (2016), Mohabuth et al. (2018), Pei

and Bond (2016, 2017), Peddeti and Santhanam (2018), and

Dubuc et al. (2017, 2018).

In all of the abovementioned research set within the the-

ory of weakly nonlinear elasticity, the strain energy function

was expanded to the third order in the strain and higher order

terms were neglected. The tacit assumption was that the pre-

deformation is small, and the correction to the wave speed

was obtained implicitly to the first order in the strain and

involves second- as well as third-order elastic constants.

Motivated by the simplicity of the fourth-order strain energy

function of incompressible isotropic elasticity (Hamilton

et al., 2004), Destrade et al. (2010a) obtained the secular

equations for shear wave and surface wave speeds to the sec-

ond order in the strain for an incompressible solid subjected

to a uniaxial pre-stress. Subsequently, Abiza et al. (2012)

determined the second-order correction to the longitudinal

and shear wave speeds for compressible solids in the case of

hydrostatic pre-stress and uniaxial pre-stress. These equa-

tions involve a combination of the second-, third-, and

fourth-order constants and describe the so-called large

acoustoelastic effect, which couples the speed of a small

amplitude wave to a small-but-finite pre-deformation. These

relationships provide a theoretical framework for the experi-

mental determination of third- and fourth-order constants.

The objective of this work is to investigate the large

acoustoelastic effect associated with the propagation of

Lamb waves in an isotropic incompressible elastic plate. The

paper is organised as follows. In Sec. II, the equations

governing the propagation of small-amplitude waves in pre-

stressed media are briefly reviewed. The dispersion relations

for Lamb waves propagating in a pre-stressed plate along a

principal direction are then derived in Sec. III for a general

form of the strain energy function. The latter is specialised

to weakly nonlinear elasticity in Sec. IV by considering the

fourth-order strain energy function of incompressible isotro-

pic elasticity, which is applicable to rubber-like materials

with large elastic strain limits. It is noted here that the dis-

persion relations depend on the strain energy function and

the pre-stress through the components of the elasticity ten-

sor. In Sec. V, the pre-stress is specialised to the case of a

small-but-finite uniaxial pre-deformation along the direction

of wave propagation, and the components of the elasticity

tensor are expanded up to the second order in the pre-strain.

In Sec. VI, the dispersion relations are solved numerically to

obtain, implicitly, the second-order correction to the phase

velocity due to the pre-stress, i.e., the large acoustoelastic

effect. The results are compared to the classical acoustoelastic

effect with particular attention to the limiting behaviour of the

fundamental and higher order modes in the long and short

wave regions.

II. GOVERNING EQUATIONS

In this section, the equations governing the propagation

of small amplitude waves in pre-stressed incompressible

media are briefly reviewed. These equations are derived

based on the theory of incremental motions superimposed a

finite deformation. For a comprehensive discussion of the

latter theory, the reader is referred to Ogden (1984, 2007).

This framework is used in the derivation of dispersion rela-

tions for waves propagating in a pre-stressed incompressible

plate.

Consider an isotropic hyperelastic incompressible body

in some stress-free reference configuration. Suppose the body

is subjected to a pure homogeneous finite static deformation

such that a material point X in the reference configuration

takes up the position x in the deformed configuration. If X

and x are referred to the same fixed rectangular Cartesian

system of axes, the deformation can be expressed as

xi ¼ kiXi; i 2 f1; 2; 3g; (1)

where the constants ki are the principal stretches of the

deformation, and the principal axes of the deformation are

taken to coincide with the Cartesian coordinate directions.

The principal Cauchy stresses required to maintain the body

in the static state of deformation are given by

ri ¼ ki
@W

@ki
� p; i 2 1; 2; 3f g; (2)

where W is the strain energy function per unit volume and p
is a Lagrange multiplier associated with the incompressibil-

ity constraint, k1k2k3 ¼ 1. The usual summation convention

does not apply to Eqs. (1) and (2).

A small-amplitude time dependent motion, given by the

mechanical displacement u ¼ uðx; tÞ where t is time, is then

superimposed on the static finite deformation. The mechani-

cal response is described by the incremental constitutive

equations (Dowaikh and Ogden, 1990)

Ŝij ¼ Aijklul;k þ pui;j � p�dij; i; j 2 f1; 2; 3g; (3)

where Ŝij is the incremental nominal stress tensor, Aijkl is the

fourth-order elasticity tensor of instantaneous elastic moduli,

p� is the incremental form of p, and a comma indicates par-

tial differentiation with respect to the current coordinates

x � xi. The corresponding incremental equations of motion

then read

Aijkl ul;ik � p�;j ¼ q€uj; i; j 2 f1; 2; 3g; (4)

where q is the density of the material and a superposed dot

indicates partial differentiation with respect to time. The

coupled incremental incompressibility constraint has the

form
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ui;i ¼ 0; i 2 f1; 2; 3g: (5)

It is worth noting for later reference that relative to the

principal axes of the deformation, the non-zero components

of the elasticity tensor are given by

Aiijj ¼ kikjWij ;

Aijij ¼ ðkiWi � kjWjÞ k2
i =ðk2

i � k2
j Þ; i 6¼ j; ki 6¼ kj

Aijij ¼ ðAiiii �Aiijj þ kiWiÞ =2; i 6¼ j; ki ¼ kj

Aijji ¼ Ajiij ¼ Aijij � kiWi; i 6¼ j; (6)

where Wij ¼ @W=@ki; Wij ¼ @2W=@ki@kj; i; j 2 f1; 2; 3g,
and there is no sum on repeated indices.

III. DISPERSION RELATIONS

The framework described in Sec. II allows the acoustoe-

lastic effect to be investigated by considering the propaga-

tion of small-amplitude homogeneous plane waves in a

deformed body. This framework is here extended to study

the propagation of Lamb waves in a pre-stressed incompress-

ible plate.

Consider the unstressed body to correspond to a plate of

thickness h0 and infinite lateral extent. Suppose the plate is

subjected to a pure homogeneous strain such that its thickness

changes to h in the deformed configuration. The Cartesian

coordinate system is chosen to be coaxial with the principal

axes of the deformation with the origin in the mid-plane of

the plate and the x2 axis normal to the plane of the plate.

In this paper, the analysis is restricted to wave propagation

along an in-plane principal direction. For simplicity, the princi-

pal direction is taken to be along the x1 axis, and the analysis

is confined to plane incremental motions in the x1 � x2 plane,

with u3 ¼ 0 and u1 and u2 taken as independent of x3. The

incremental equations of motion (4) and the incompressibility

constraint (5) then reduce to

q€u1 ¼ A1111 u1;11 þ ðA1122 þA2112Þu2;12

þA2121 u1;22 � p�;1;

q€u2 ¼ A1212 u2;11 þ ðA1122 þA2112Þu1;12

þA2222 u2;22 � p�;2; (7)

and

u1;1 þ u2;2 ¼ 0: (8)

The corresponding incremental surface tractions are obtain-

able from Eq. (3) and can be written explicitly as

Ŝ22 ¼ A2211u1;1 þ ðA2222 þ pÞu2;2 � p�;

Ŝ21 ¼ ðA2112 þ pÞu2;1 þA2121u1;2: (9)

The propagation of acoustoelastic Lamb waves requires

the incremental equations of motion to be solved in conjunc-

tion with the incompressibility constraint and incremental

traction free boundary conditions at the surfaces of the plate,

i.e., Ŝ22 ¼ Ŝ21 ¼ 0 at x2 ¼ 6k2h0=2 ¼ 6h=2. The detailed

solution process is rather lengthy and only the final charac-

teristic equations are presented here. These are given by

D11D23cotðca1Þ � D13D21cotðca3Þ ¼ 0;

D11D23 tan ðca1Þ � D13D21 tanðca3Þ ¼ 0; (10)

corresponding to the symmetric and anti-symmetric Lamb

wave modes, respectively, with c ¼ kh=2. These equations

form the secular dispersion relations, which provide an

implicit relationship between the phase velocity and wave-

number. The definition of the various terms used in the

above equations are provided in the Appendix of this paper.

It is worth noting that similar dispersion relations have

been derived by Ogden and Roxburgh (1993), albeit their

efforts were focused on the effect of the pre-stress on the

modes of vibrations of an incompressible finite plate and

stability of the underlying deformed configuration.

IV. WEAKLY NONLINEAR ELASTICITY

In the theory of incremental elasticity, the amplitude of

the wave motion is assumed to be infinitesimal but no restric-

tion is imposed on the magnitude of the pre-deformation. For

small pre-deformations, the strain energy function is often

prescribed using the theory of weakly nonlinear elasticity. In

this theory, the strain energy function is usually expressed as

a power series in terms of the invariants of the Green-

Lagrange strain tensor, E (Destrade and Ogden, 2010)

I1 ¼ tr E; I2 ¼ tr E2; I3 ¼ tr E3: (11)

In classical acoustoelasticity, the aim is to determine the

first-order corrections to the wave speeds for an infinitesimal

pre-strain and thus, the strain energy function is expanded to

the third order in the strain. For an incompressible isotropic

material, the general weakly nonlinear third-order expansion

is given by

W ¼ lI2 þ
A

3
I3; (12)

where l and A are the second- and third-order elasticity con-

stants. In order to study the large acoustoelastic effect for

small-but-finite pre-deformations, the strain energy function is

truncated at the fourth-order term, and the corrections to the

wave speeds are then obtained to the second order in the strain.

The general strain energy function of fourth-order incompress-

ible elasticity was recently established by Hamilton et al.
(2004) and has the form

W ¼ lI2 þ
A

3
I3 þ DI2

2; (13)

where D is the so-called fourth-order elastic constant.

The implications of the fourth-order expansion on the

acoustoelasticity of shear waves and surface waves was con-

sidered by Destrade et al. (2010a). These authors derived

explicit expressions for the second-order corrections to the

wave speeds in the case of a uniaxial pre-stress. Their results

show that for “soft” solids it is sufficient to elongate the
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material by a few percent to perceive the large acoustoelastic

effect. In passing, it should be noted that a fourth-order

expansion of the strain energy can also be obtained for com-

pressible isotropic materials, and similar explicit expressions

for the corrections to the wave speeds can be derived (see,

for example, Abiza et al., 2012). However, fourth-order con-

stants are not readily available for metals and other stiff sol-

ids due to yielding and plasticity.

In the present work, a particular form of Hamilton’s

expansion cast in terms of the principal stretches of the

deformation shall be employed

W ¼ l
4

k2
1 � 1

� �2 þ k2
2 � 1

� �2 þ k2
3 � 1

� �2
� �

þ A

24
k2

1 � 1
� �3 þ k2

2 � 1
� �3 þ k2

3 � 1
� �3

� �

þ D

16
k2

1 � 1
� �2 þ k2

2 � 1
� �2 þ k2

3 � 1
� �2

� �2

; (14)

in which the connection between the eigenvalues Ei of the

Green-Lagrange strain tensor and the principal stretches

given by Ei ¼ ðk2
i � 1Þ=2 has been utilised. It should be

noted here that the principal stretches are not independent but

are related by the incompressibility condition, k1k2k3 ¼ 1.

V. UNIAXIAL PRE-DEFORMATION

In this section, the pre-deformation is specialised to a

uniaxial tension in the plane of the plate. It is assumed

that the plate has been pre-stressed by the application of a

Cauchy stress r1 along the x1 direction such that it is finitely

deformed. The elongation in this direction is denoted by

e1 ¼ k1 � 1, where k1 is the corresponding axial stretch.

Because of symmetry, the lateral stretches in the x2 and x3

directions are equal to each other, indicating that the defor-

mation is equi-biaxial. It follows from the incompressibility

constraint that the stretch ratios are related by

k3 ¼ k2 ¼ k�1=2
1 : (15)

For the specified form of the strain energy function in Eq.

(14), the Cauchy stress r1 can be computed using Eqs. (2) and

(15). The pre-stress can then be expanded in terms of the pre-

strain e1, up to the second order, as (Destrade et al., 2010a)

r1 ¼ 3le1 þ 3 lþ A

4

� 	
e2

1: (16)

Alternatively, the pre-strain can be expressed in terms of the

pre-stress as (Destrade et al., 2010a)

e1 ¼
1

3l
r1 �

1

9l3
lþ A

4

� 	
r2

1: (17)

In deriving Eqs. (16) and (17), use has been made of the fact

that p ¼ k2W2, which is obtained from the condition that the

lateral faces are traction free ðr3 ¼ r2 ¼ 0Þ.
The components of the elasticity tensor can similarly be

expanded up to the second order in the pre-strain using Eqs.

(6), (14), and (15). For brevity, only the non-zero

components of the elasticity tensor used in the derivation of

the dispersion relations in Eq. (10) are listed here

A1111 ¼ 2lþð10lþ 2AÞe1þð17lþ 10Aþ 14DÞe2
1;

A2222 ¼ 2l�ð5lþAÞe1þð8lþ 13A=4þ 8DÞe2
1;

A1122 ¼�4De2
1;

A1221 ¼ lþðlþA=4Þe1þð3A=4þ 3DÞe2
1;

A2121 ¼ lþðA=4Þe1þð2lþAþ 3DÞe2
1;

A1212 ¼ lþð3lþA=4Þe1þð5lþ 7A=4þ 3DÞe2
1: (18)

It is worth noting that the expressions for A1111, A1212,

A2222, and A2121 were first obtained by Abiza et al. (2012).

For a given uniaxial stress field defined by r1 (with

r3 ¼ r2 ¼ 0), the elongation e1 can be evaluated using Eq.

(17) and the components of the elasticity tensor, Aijkl, can

then be determined using Eq. (18). Using the latter compo-

nents, the dispersion relations in Eq. (10) can be solved to

obtain, implicitly, the second-order correction to the phase

velocity due to the pre-stress.

VI. NUMERICAL RESULTS

The dispersion relations (10) provide an implicit rela-

tionship between the phase velocity, wavenumber, plate

thickness, and applied stress. These relations can only be

solved numerically, and the results are typically presented in

the form of dispersion curves, showing the variation of the

phase velocity of the Lamb wave modes as a function of the

wavenumber-thickness product for different magnitudes of

the applied stress. The material considered in this study is

silicone rubber, which was selected due to its large elastic

strain limit. The elastic properties of this material were

obtained from the experimental data of Abiza et al. (2012)

and are summarised in Table I.

Figure 1 shows the dispersion curves associated with the

first three modes of symmetric and anti-symmetric motion for

a plate subjected to a uniaxial tension of �r1 ¼ r1=l ¼ 1:37.

The results are here presented in terms of the non-dimensional

squared phase velocity �v ¼ qv2=l as a function of the non-

dimensional wavenumber k�h0. It is emphasised that the thick-

ness of the undeformed plate, h0, is used here rather than

the deformed plate thickness, h, in order to take into account

the effect of the applied stress on the phase velocity due to the

change in the plate thickness. A semi-log scale is used here to

clearly show the behaviour of the different modes in the low

and high wavenumber limits. In the long wave region as

k�h0 ! 0, it can be seen that the fundamental symmetric (S0)

and anti-symmetric (A0) modes have distinct squared phase

velocity limits but in the short wave region as k�h0 !1, they

both approach the same squared phase velocity limit. On the

TABLE I. Elastic properties for silicone rubber.

Parameter Value (kPa)

l 109:35

A �454:18

D 109:27
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other hand, the higher order modes of both the symmetric and

anti-symmetric motion have infinite squared phase velocity

limits as k�h0 ! 0 but they all tend to the same squared phase

velocity limit (distinct from that of the fundamental modes) as

k�h0 !1. These limiting behaviours have been investigated

by several researchers who derived appropriate asymptotic

expansions (see, for example, Rogerson, 1997). These expan-

sions were used as a means to verify the current approach and

numerical results.

The effect of applied stress on the propagation of the

different Lamb wave modes is analysed in Fig. 2. The left

column shows the variation of the squared phase velocity as

a function of the wavenumber-thickness product for different

magnitudes of the applied stress. The right column shows

the variation of the squared phase velocity as a function of

the applied stress for selected values of the wavenumber-

thickness product. In both cases, the solid and dashed lines

correspond to the large and classical acoustoelastic effects,

respectively. The former is concerned with the second-order

correction to the squared phase velocity while the latter is

concerned with the first-order correction. To obtain the first-

order correction, it suffices to keep the linear terms in the

expansions (16)–(18) of the stress-strain relation and the

components of the elasticity tensor.

The dependence of the fundamental anti-symmetric (A0)

mode on the applied stress is shown in Fig. 2(a). It is evident

that the squared phase velocity increases monotonically with

the magnitude of the applied stress. It can also be seen that for

compressive stresses the A0 mode seems to have specific

cutoff values of k�h0 below which the wave no longer propa-

gates but are instead growing standing waves (Rogerson and

Fu, 1995). These cutoff values depend on the magnitude of �r1

and correspond to the points at which the curves intersect the

axis �v ¼ 0. Below these cutoff values, the phase velocity

becomes negative and the underlying deformation becomes

unstable for the A0 mode (Ogden and Roxburgh, 1993;

Rogerson and Fu, 1995). It is also interesting to find that at a

pre-stress of �r1 ¼ �1:37, the classical acoustoelastic formula-

tion predicts that the A0 mode does not propagate, whereas the

large acoustoelastic formulation predicts otherwise.

In the long wave region as k�h0 ! 0, the A0 mode is

non-dispersive and it can be seen that the curves for both the

large and classical acoustoelastic effects tend to the same

squared phase velocity limit, equal to the magnitude of the

applied stress. This limiting behaviour is found to agree with

the asymptotic expansion (63) of Rogerson (1997), which

can be shown to reduce, in the present notation, to

�v ¼ A1212 �A2121ð Þ
l

¼ �r1; (19)

in the case when r2 ¼ 0. In the moderate wavenumber regime

ð0:1 < k�h0 < 10Þ, it can be seen that the solid and dashed

lines start to deviate from each other. The deviation is rela-

tively small for lower values of �r1 but increases at higher val-

ues of �r1, as illustrated in Fig. 2(b). This is not surprising as

the contribution of the second-order terms in the expansions

(16)–(18) of the stress-strain relation and the components of

the elasticity tensor becomes significant at higher values of

�r1. It is worth noting that the A0 mode is dispersive in this

moderate wavenumber regime and, thus, the squared phase

velocity is also dependent on the wavenumber-thickness prod-

uct. The deviation is found to be relatively small at lower val-

ues of k�h0 but increases at higher values of k�h0, as shown in

Fig. 2(b). The variation of �v with �r1 is approximately qua-

dratic in the case of the large acoustoelastic effect while an

approximately linear trend is observed in the case of the clas-

sical acoustoelastic effect. In the short wave region as

k�h0 !1, the curves for the large and classical acoustoelas-

tic effects converge to different constant values of �v, except at

low magnitudes of �r1 where the solid and dashed lines effec-

tively overlap each other. The limiting squared phase veloci-

ties correspond to the squared phase velocities of the

associated Rayleigh surface waves (Rogerson, 1997). The sec-

ular equation for the surface wave limit was obtained in terms

of the elongation by Destrade et al. (2010a)

�v ¼ 0:9126lþ 3lþ 0:9126A=4ð Þe1 þ 5:642lþ 2:071Aþ 3:554Dð Þe2
1

l
; (20)

in the case when r2 ¼ 0. As the A0 mode is largely non-

dispersive in the high wavenumber regime, the difference in

�v is attributed to the contribution of the second-order terms

in the expansions (16)–(18). The latter contribution also

helps to explain the quadratic variation of �v with �r1 in the

case of the large acoustoelastic effect as opposed to the

FIG. 1. (Color online) Dispersion curves for the first three symmetric and

anti-symmetric modes propagating in an incompressible plate of silicone

rubber subjected to a uniaxial tension of �r1 ¼ 1:37.
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FIG. 2. (Color online) Effect of the

applied uniaxial stress on the propagation

of Lamb waves in an incompressible

layer of silicone rubber. (Left column)

Variation of the squared phase velocity

as a function of the wavenumber-

thickness product for different magni-

tudes of the applied stress �r1 ¼
f�1:37; �0:91; �0:46; 0; 0:46; 0:91;
1:37g. (Right column) Variation of the

squared phase velocity as a function of

the applied stress for selected values of

the wavenumber-thickness product.

(a),(b) A0 mode; (c),(d) S0 mode; (e),(f)

A1 mode; (g),(h) S1 mode; (i),(j) A2

mode; and (k),(l) S2 mode. The solid

(dashed) lines correspond to the large

(small) acoustoelastic effects.
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linear variation of �v with �r1 in the case of the classical

acoustoelastic effect.
Figure 2(c) shows the variation of the squared phase

velocity of the fundamental symmetric (S0) mode with the

applied stress. It can be seen that at large values of compres-

sive stress ð�r1 < �1:37Þ, the S0 mode seems to have a cut-

off value of k�h0 above which the wave does not propagate.

Similar to the behaviour of the A0 mode, the cutoff value of

k�h0 corresponds to the point at which the deformation

becomes unstable for this particular mode. It is also interest-

ing to find that at a pre-stress of �r1 ¼ �1:37, the classical

acoustoelastic formulation predicts that the S0 mode ceases

to propagate above k�h0 � 10, whereas the large acoustoe-

lastic formulation shows that the S0 mode propagates across

the whole spectrum.

In the long wave region as k�h0 ! 0, it can be seen that

�v decreases linearly with �r1 in the case of the classical

acoustoelastic effect. However, a nonlinear (quadratic) trend

is observed in the case of the large acoustoelastic effect,

with �v decreasing at lower magnitudes of �r1 but increasing

at higher magnitudes of �r1, as shown in Fig. 2(d). This non-

linear behaviour is found to be in good agreement with the

asymptotic expansion (45) obtained by Rogerson (1997),

which can be shown to reduce, in the present notation, to

�v ¼ 4lþ 3lþ Að Þe1 þ 29lþ 55A=4þ 30Dð Þe2
1

l
; (21)

in the case when r2 ¼ 0. The latter equation indicates that the

nonlinear behaviour is due to the second-order terms in the

expansions (16)–(18), which is not surprising as the S0 mode

is largely non-dispersive in the low wavenumber regime. In

the moderate wavenumber regime ð0:1 < k�h0 < 10Þ, the S0

mode is highly dispersive and, thus, the squared phase velocity

is not only dependent on the applied stress but is also a

function of the wavenumber-thickness product. As a result, the

variation of �v with �r1 is nonlinear for both the large (approxi-

mately cubic) and classical (approximately quadratic) acous-

toelastic effects, as shown in Fig. 2(d). In the short wave

region as k�h0 !1, the behaviour of the S0 mode is the same

as that of the A0 mode with the limiting squared phase veloci-

ties equal to the associated Rayleigh surface wave velocities.

The applied stress causes an increase in the squared phase

velocity with �v varying linearly with �r1 in the case of the clas-

sical acoustoelastic effect as compared to a quadratic increase

in the case of the large acoustoelastic effect. The quadratic

variation is, as discussed earlier, due to the contribution of

second-order terms in the expansions (16)–(18) as the S0 mode

is largely non-dispersive in the high wavenumber regime.

In Figs. 2(e)–2(l), the first two higher order modes of

symmetric and anti-symmetric motion are presented. It can

be seen that these modes behave in a similar way and have

infinite squared phase velocity limits in the long wave region

as k�h0 ! 0. The higher order modes are all highly disper-

sive in the low and moderate wavenumber regimes and,

hence, the squared phase velocity is dependent on the

applied stress as well as on the wavenumber-thickness prod-

uct. In the moderate wavenumber regime, the squared phase

velocity is found to increase monotonically with the applied

stress. The variation of �v with �r1 is approximately linear for

the large acoustoelastic effect, whereas an approximately

quadratic variation is observed for the classical acoustoelas-

tic effect. However, the opposite trend is seen in the high

wavenumber regime; the large acoustoelastic effect predicts

a quadratic dependence of �v on �r1 while the classical acous-

toelastic effect predicts a linear dependence. This behaviour

is expected as in the short wave region as k�h0 ! 1, the

higher order modes are largely non-dispersive and converge

to the same squared phase velocity limit corresponding to

that of a shear wave propagating along the x1 direction

(Rogerson, 1997). The squared phase velocity limit is given

by �v ¼ A1212=l, where the expression for A1212 is obtained

from the expansions in Eq. (18). At low magnitudes of the

applied stress, the curves for the large and classical acoustoe-

lastic effects overlap as the contribution of the second-order

terms is relatively small. However, at higher magnitudes of

the applied stress, the contribution of the second-order terms

is significant, leading to a quadratic increase in the squared

phase velocity.

Overall, the wavenumber-thickness range of k�h0 > 20

and the applied stress range of �r1 > 0:5 represent a region

of practical interest with respect to the experimental determi-

nation of the fourth-order constants using guided waves. In

general, fourth-order constants cannot be evaluated using

these results for metals and other ordinary elastic solids

because of yielding and plasticity. However, for soft solids

such as silicone rubber, an elongation of about 15% (corre-

sponding to �r1 ¼ 0:5) seems to be sufficient to reveal the

large acoustoelastic effect. This behaviour is in good agree-

ment with the results of Abiza et al. (2012) who showed that

an elongation of about 20% is sufficient to evaluate the

fourth-order constants experimentally using bulk shear

waves.

It is also interesting to compare the results presented

here for silicone rubber to those obtained for metals. Several

studies have shown that, in the case of aluminum, tensile

stresses cause a decrease in the phase velocity of the differ-

ent Lamb wave modes for wave propagation along the direc-

tion of the applied load (Pau and Lanza di Scalea, 2015; Pei

and Bond, 2017), which is consistent with the results of bulk

wave acoustoelasticity (Hughes and Kelly, 1953). In con-

trast, the results obtained for silicone rubber show that ten-

sile stresses lead to an increase in the phase velocity of the

different modes, apart from the S0 mode in the long wave

region. This opposing behaviour is a consequence of the val-

ues of the higher order elastic constants, which are of the

same order of magnitude as the second-order constants for

silicone rubber.

VII. CONCLUSION

The classical acoustoelastic theory allows the determi-

nation of third-order elastic constants and the evaluation of

applied stresses in ordinary elastic materials using bulk

waves. However, this theory can produce large discrepancies

in the case of relatively soft tissues and rubber-like materi-

als, which are often subjected to high strains. These discrep-

ancies can become quite pronounced in the case of guided
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waves as the phase velocities of the different wave modes

are dependent on the applied stress as well as the

wavenumber-thickness product.

This paper aimed at uncovering the acoustoelastic effect

associated with the propagation of small-amplitude Lamb

waves in incompressible plate-like structures subjected to a

large pre-stress. A new acoustoelastic formulation based on

a fourth-order strain energy function was developed to study

the effect of a large applied uniaxial stress on the squared

phase velocity of the different Lamb wave modes.

Dispersion results were presented for a silicone rubber plate

and compared with the results obtained using the classical

acoustoelastic formulation. At lower magnitudes of the

applied stress, the deviation between the large and classical

acoustoelastic formulations was found to be relatively small.

However, the difference was found to be quite significant at

higher magnitudes of the applied stress, showing that the

large acoustoelastic formulation should be considered when

evaluating the stress in rubber-like materials subjected to

high strains.

In general, this paper provides useful analytical bench-

marks for experimental studies and the development of

guided wave based ultrasonic techniques for soft tissues and

rubber-like materials. The presented results can also be eas-

ily generalised, for example, to torsional or interfacial

waves. Although the framework developed can be extended

to compressible materials, the lack of fourth-order elastic

constants coupled with the low elastic strain limit of ordinary

stiff materials makes this option less attractive.
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APPENDIX

Following the work of Mohabuth et al. (2016), the prop-

agation of homogeneous plane waves in the form

fuj; p�g ¼ fUj; kPgeikðx1þax2�ctÞ; j 2 f1; 2g (A1)

is considered, where Uj is the amplitude of the displacement,

P is a scalar, k is the wavenumber along the x1 direction, a is

the ratio of the wavenumbers in the x2 direction to that in the

x1 direction, and c is the phase velocity in the x1 direction.

Substituting solutions of this form into Eqs. (7) and (8)

yields

qU1c2 �A1111 U1 � ðA1122 þA2112ÞU2a

�A2121 U1a
2 � iP ¼ 0;

qU2c2 �A1212 U2 � ðA1122 þA2112ÞU1a

�A2222 U2a
2 � iaP ¼ 0; (A2)

and

U1 þ U2a ¼ 0: (A3)

Using the incompressibility constraint (A3) to eliminate

U2 in favour of U1 in the equations of motion (A2), two

homogeneous equations are obtained

U1ðqc2 �A1111 þA1122 þA2112 �A2121 a2Þ � iP ¼ 0;

U1ð�qc2 þA1212 þ ðA2222 �A1122 �A2112Þa2Þ
� ia2P ¼ 0: (A4)

These can be shown to have a non-trivial solution provided

that

K4 a4 þ K2 a2 þ K0 ¼ 0 ; (A5)

where

K4 ¼ A2121;

K2 ¼ A1111 þA2222 � 2A1122 � 2A2112 � qc2;

K0 ¼ A1212 � qc2: (A6)

The lack of odd power coefficients in Eq. (A5) means

that the fourth-order equation can be reduced to a quadratic

equation in a2. This simplification yields four solutions for

a, which are denoted by aq, q 2 f1; 2; 3; 4g, with the follow-

ing properties:

a2 ¼ �a1; a4 ¼ �a3: (A7)

The general solution for uj and p� may be expressed as a lin-

ear combination of the four linearly independent solutions

fu1; u2; p�g ¼
X4

q¼1

f1;Vq; kWqgU1q eikðx1þaqx2�ctÞ; (A8)

where Vq ¼ U2q=U1q and Wq ¼ Pq=U1q. These ratios are

given by

Vq ¼ �1=aq;

Wq ¼ �iðqc2 �A1111 þA1122 þA2112 �A2121 a2
qÞ;

(A9)

which are obtained using the relations in Eqs. (A3) and (A4),

respectively.

Explicit expressions for the incremental surface trac-

tions may then be found by substituting Eq. (A8) into Eq. (9)

Ŝ22 ¼
X4

q¼1

ikD1qU1q eikðx1þaqx2�ctÞ;

Ŝ21 ¼
X4

q¼1

ikD2qU1q eikðx1þaqx2�ctÞ; (A10)

where

D1q ¼ qc2 �A1111 �A2222 þ 2A2112 þ 2A1122

�A2121 �A2121a
2
q þ r2;

D2q ¼ A2121aq �A2121=aq þ r2=aq: (A11)
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It is noted that in deriving the above expressions, use has been

made of the fact that p ¼ A2121 �A2112 � r2 (Ogden, 1984).

The dispersion relations are obtained by imposing incre-

mental traction free boundary conditions on the upper and

lower free surfaces of the plate, namely, Ŝ22 ¼ Ŝ21 ¼ 0 at

x2 ¼ 6k2h0=2 ¼ 6h=2. This yields a homogeneous system

of four equations, which can be expressed as

in

D11E1 D12E2 D13E3 D14E4

D21E1 D22E2 D23E3 D24E4

D11E1 D12E2 D13E3 D14E4

D21E1 D22E2 D23E3 D24E4

0
BBBB@

1
CCCCA

�

U11

U12

U13

U14

0
BBBB@

1
CCCCAeikðx1�ctÞ ¼

0

0

0

0

8>>>><
>>>>:

9>>>>=
>>>>;
; (A12)

where Eq ¼ eikaqh=2 and Eq ¼ e�ikaqh=2. For non-trivial solu-

tions, the determinant of the coefficient matrix in Eq. (A12)

is set to zero. After some algebra, the determinant can be

reduced to two characteristic equations

D11D23cotðca1Þ � D13D21cotðca3Þ ¼ 0;

D11D23 tan ðca1Þ � D13D21 tanðca3Þ ¼ 0; (A13)

corresponding to the symmetric and anti-symmetric Lamb

wave modes, respectively, with c ¼ k�h=2.
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