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ABSTRACT: Electrospray ionization (ESI) mass spectrometry
(MS) is a crucial method for rapidly determining the
interactions between small molecules and proteins with
ultrahigh sensitivity. However, nonvolatile molecules and salts
that are often necessary to stabilize the native structures of
protein−ligand complexes can readily adduct to protein ions,
broaden spectral peaks, and lower signal-to-noise ratios in
native MS. ESI emitters with narrow tip diameters (∼250 nm)
were used to significantly reduce the extent of adduction of salt
and nonvolatile molecules to protein complexes to more
accurately measure ligand−protein binding constants than by
use of conventional larger-bore emitters under these conditions.
As a result of decreased salt adduction, peaks corresponding to
protein−ligand complexes that differ in relative molecular weight by as low as 0.06% can be readily resolved. For low-molecular-
weight anion ligands formed from sodium salts, anion-bound and unbound protein ions that differ in relative mass by 0.2% were
completely baseline resolved using nanoscale emitters, which was not possible under these conditions using conventional
emitters. Owing to the improved spectral resolution obtained using narrow-bore emitters and an analytically derived equation,
Kd values were simultaneously obtained for at least six ligands to a single druggable protein target from one spectrum for the
first time. This research suggests that ligand−protein binding constants can be directly and accurately measured from solutions
with high concentrations of nonvolatile buffers and salts by native MS.

■ INTRODUCTION

The interactions between proteins and ligands are crucial to
proper cellular function.1,2 The structures, functions, and
interactions of protein−ligand complexes can be significantly
affected by salts.3−5 Specific metal ion cofactors can regulate
the bioactivity of proteins.5 In native mass spectrometry (MS),
ligand−protein interactions are normally stabilized using
volatile salts at high ionic strengths to rapidly and directly
measure the mass, binding stoichiometry, and relative ligand−
protein binding affinities with high sensitivity.6−15 However,
most biochemical approaches to probe protein−ligand
interactions, including nuclear magnetic resonance spectrosco-
py,16 circular dichroism spectroscopy,17 isothermal titration
calorimetry,18 and optical spectroscopy,19 use nonvolatile salts
that can more accurately reflect the in vivo environment of the
protein−ligand complex. However, nonvolatile salts and
common biological buffers readily adduct to proteins ions to
result in broad spectral peaks that have deleterious effects on

mass spectra by lowering the sensitivity and signal-to-noise
ratios and increasing background chemical noise.9 In addition,
the spectral resolution is readily degraded such that peaks
corresponding to bound ligand−protein complexes cannot be
resolved from the unbound protein using common buffers such
as tris(hydroxymethyl)aminomethane (Tris), which hinders
the measurement of ligand−protein binding affinities including
for more than a few ligands that are competing for a single
protein binding site.
Owing to the adverse effects of nonvolatile salts, protein

samples for native MS typically need to be desalted and buffer
exchanged into ammonium acetate solutions for compatibility
with electrospray ionization (ESI) mass spectrometry.9,12,20,21

However, some proteins and protein complexes require
biological buffers (e.g., Tris) and high metal salt concentrations
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for stabilization and noncovalent assembly.22,23 Moreover, by
use of volatile buffers in native MS, the direct measurement of
multiple ligands binding potently to a single protein in one
native MS spectrum is limited by the adduction of adventitious
nonvolatile salt (e.g., sodium ions), which can make it
challenging to resolve ligand−protein complexes that differ
by less than 1.0% in relative mass. For example, ESI-MS has
been used to probe the direct binding of four ligands
simultaneously in a single spectrum,24 in which the complexes
differed in relative mass by an average of 1.5%. Thus,
competitive ligand−protein binding assays in native MS to
obtain ligand−protein binding constants are rare and typically
limited to two ligands.25−29

An alternative to desalting protein samples prior to ESI-MS
is to use electrospray emitters with tips that have inner
diameters that are ∼1 μm or less.30−34 By reducing the emitter
tip size, the level of salt adduction to protein ions can be
significantly reduced. For example, Schmidt et al. have
reported that ESI emitters with tip diameters of ∼1 μm or
smaller can form ions that have less sodium adduction than
those formed with larger tips.30,31 Recently, Williams and co-
workers33,34 have reported that, by using ∼500 nm diameter
tips, the charge-state distributions of proteins and protein−
protein complexes formed from buffers with high salt
concentration can be resolved. The reduction of salt adduction
and salt cluster formation can be attributable to the small initial
droplet sizes produced by submicrometer ESI emitter tips,
which results in a lower concentration of nonvolatile
contaminants in ESI droplets prior to ion release.33,34 To
date, the binding affinities of noncovalent complexes have not
been measured in solutions containing nonvolatile molecules
and salts using ESI-MS. Thus, the effects of using nonvolatile
buffers and metal ion salts, including those that are commonly
employed to stabilize protein structure(s) on the measured
ligand−protein binding constants in native MS is unknown.
Here, narrow-bore nano-electrospray ionization emitters

with ∼250 nm tips were used to improve the accuracy of native
MS for measuring ligand−protein binding affinities. The use of
such emitters significantly reduces the adduction of salt to
protein−ligand complexes, which enables peaks corresponding
to ligand-bound and unbound proteins to be more readily
resolved, including in the presence of relatively high
concentrations of nonvolatile salts and buffers. As a proof of
concept, three classes of proteins with different structural
features, functions, and modes of ligand binding were chosen
(human carbonic anhydrases I and II, hCAs; lysozyme, Lys;
and cytochrome P450, CYP) that have well-characterized
binding sites (Figures S1−S3) and established ligand−protein
binding affinities. Carbonic anhydrases are ubiquitous enzymes
that catalyze the hydration of carbon dioxide, which is
important in regulating physiological pH and CO2 transport.

35

Sulfonamide inhibitors of hCAs are therapeutic compounds
that are applied to treat a range of conditions including
cancer.35 Lysozyme is an antimicrobial enzyme that catalyzes
the hydrolysis of β-1,4-glycosidic linkages in specific Gram-
positive bacterial walls,36 and lysozyme−ligand complexes have
been studied extensively by native MS6,7,37,38 and other
biophysical chemistry methods.19 The third protein is a
model cytochrome P450 enzyme, CYP199A4 from the
bacterium Rhodopseudomonas palustris strain HaA2.39 Cyto-
chrome P450s are ubiquitous heme-monooxygenases that
catalyze the insertion of an oxygen atom from dioxygen into
the carbon−hydrogen bonds of organic molecules and other

reactions40 involved in metabolism. These are of particular
relevance to xenobiotic detoxification and in biosynthetic
metabolic pathways.41 By use of narrow-bore ESI emitter tips
(∼250 nm) and an analytically derived general equation, the
binding affinities for six competitive inhibitors of single protein
enzyme can be simultaneously obtained from one mass
spectrum; i.e., six protein−ligand complexes that differ by an
average relative mass of 0.09% (and those that differ in relative
mass by as low as 0.06%) can now be nearly completely
baseline resolved. Moreover, ligand−protein binding constants
can be directly, and accurately, measured in solutions
containing nonvolatile buffers that are more relevant to those
used in many other biochemical assays.

■ RESULTS AND DISCUSSION
Effects of Emitter Tip Diameter on Ligand−Protein

Binding Affinities. The dimensions of nano-electrospray
ionization emitter tips can significantly affect the extent of salt
adduction to protein ions formed from aqueous buffered
solutions.34,42 To investigate if such salt adduction can also
impact the stability of protein−ligand complexes, nano-
electrospray ionization mass spectra of two functionally
different proteins with multiple ligands (Table S1) were
obtained from “nativelike” solutions using emitter tips that had
inner diameters of ∼250, ∼500, ∼850, and ∼2000 nm. Based
on scanning electron microscopy measurements, ESI emitters
were fabricated with inner tip diameters that were reproducible
to within a standard deviation of less than ±10% (at least five
fabrication replicates).

Human Carbonic Anhydrase I and Sulfonamide Ligands.
In Figure 1, representative nano-electrospray ionization mass
spectra of a buffered aqueous solution containing 5 μM human
carbonic anhydrase I (hCAI), 2 μM ethoxzolamide, and 70
mM ammonium acetate (pH 7.4) are shown for each tip size.
The charge-state distributions for both the protein−ligand
complex and the unbound protein were narrow and centered
near the 10+ and 9+ charge states (Figure 1), which is
characteristic for carbonic anhydrase ions formed from
aqueous solutions at near neutral pH.43,44 The extent of
charging and the widths of the charge-state distributions did
not depend significantly on the size of the ESI emitter tips
under these conditions (Figure 1). Using 2000 nm emitter tips,
the extent of sodium adduction to the unbound protein ion
(58 ± 3%) is about the same or slightly more than the ligand-
bound protein ion (49 ± 3%; Figure 1d). Adventitious ionic
sodium can originate from proteins purified from solutions
with high salt concentrations, the inner surfaces of borosilicate
nano-electrospray ionization capillaries, and impurities from
solid ammonium acetate (≥97%).45 For the peak correspond-
ing to the unbound protein ion, the acetate adducted protein
signal cannot be fully resolved from the sodium adducted
signal, which results in the extent of sodium adduction to the
unbound protein being slightly overestimated. Moreover, the
binding of ethoxzolamide results in the disappearance of the
peak corresponding to the acetate-bound protein ion, which is
consistent with sulfonamide-ligation to the Zn-active site of
hCAI preventing the binding of acetate. By reducing the inner
diameters of the tips from 2000 to 250 nm, the extent of
sodium ion adduction to the bound protein decreased from 49
± 3% to 14 ± 2% (Figure 1a−d); i.e., the use of small-bore
emitters resulted in a decrease in the extent of sodium ion
adduction by more than a factor of 3. The significant decrease
in the extent of sodium ion adduction by use of narrow-bore
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emitters is attributed to the initial formation of smaller ESI
droplets that contain fewer sodium ions than the larger
droplets that are initially formed from the same solution using
larger-bore emitters. As a result, fewer sodium ions are
enriched during the droplet desolvation of smaller initial
droplets than larger droplets, resulting in lower sodium ion
concentrations in “mature” ESI droplets prior to ion
release.32−34

The dissociation constants (Kd) for human carbonic
anhydrase I and ethoxzolamide, brinzolamide, furosemide,
and dichlorophenamide were measured in aqueous 70 mM
ammonium acetate solutions (pH 7.4) using emitter tips that
had inner diameters of ∼250, ∼500, ∼850, and ∼2000 nm. As
the tip diameter decreased, the Kd values of all four
sulfonamide ligands to human carbonic anhydrase I decreased
slightly (Table S2). For example, the Kd value of human
carbonic anhydrase I and ethoxzolamide decreased from 0.024
± 0.004 to 0.014 ± 0.002 μM as the tip diameter decreased
from 2000 to 250 nm. The Kd values obtained using a 250 nm

emitter tip are in excellent agreement with those determined
by the standard kinetic hydration inhibition assay (Figure S4)
and other literature values.46−50 The slightly enhanced binding
affinities obtained using narrow-bore nano-electrospray ioniza-
tion emitters is consistent with the formation of smaller initial
droplets in ESI preserving the original solution composition to
a greater extent than by formation of larger initial droplets.30,31

Lysozyme and Tri-N-acetylchitotriose. In Figure S5,
representative nano-electrospray ionization mass spectra of a
buffered aqueous solution containing 5 μM lysozyme, 7 μM
tri-N-acetylchitotriose, and 70 mM ammonium acetate (pH
7.4) are shown for each tip size. The +7 and +8 charge states
(Figure S5) for unbound and ligand-bound lysozyme were the
most abundant ions, which is consistent with the charge-state
distributions reported by native MS previously.6,7,38 By
reducing the tip diameter from 2000 to 250 nm, the Kd
value decreased from 9.4 ± 0.3 to 7.6 ± 0.1 μM (Table S2).
The Kd values obtained using the 850, 500, and 250 nm ESI
emitters (7.6−7.8 μM) are in excellent agreement with values
reported in the literature based on measurements using
ultraviolet spectroscopy (6.6 μM),36 fluorescence spectroscopy
(8.6 μM),51 ESI-MS (9.9 μM),7 and isothermal titration
calorimetry (11.1 μM).52

Binding Affinities of Low-Molecular-Weight Anions
to hCA. In addition to the sulfonamides, inorganic anions are
a major class of carbonic anhydrase inhibitors. Previous
research demonstrated that the activity of carbonic anhydrases
can be inhibited by inorganic anionic binding,36 which occurs
at the cationic zinc active site of carbonic anhydrases.53,54

However, owing to the low molecular weight of many anion
inhibitors, high-quality mass spectra with minimal salt
adduction are required to resolve peaks corresponding to the
unbound and ligand-bound protein ions. Thus, the binding
strength of anion inhibitors to human carbonic anhydrases
using native MS has not been reported in the literature.
To determine the binding affinity of anions to human

carbonic anhydrases, nano-electrospray ionization mass spectra
of a buffered aqueous solution containing human carbonic
anhydrases and relatively high concentrations of either sodium
thiocyanate or sodium acetate (1 mM) were obtained using
emitter tips with inner diameters of ∼2000 and ∼250 nm. By
use of the 2000 nm emitter tips, the resultant individual charge
states are broad from sodium ion adduction, and the baseline is
elevated (Figure 2a,b). Thus, it can be challenging to identify
overlapping peaks corresponding to the thiocyanate- and
acetate-bound protein ions from sodium adducted protein ions
without the anionic ligand bound. The use of 250 nm emitter
tips significantly reduced the extent of salt adduction, and the
unbound and ligand-bound protein signals were well-resolved
(Figure 2c,d). For the 250 nm tips, a Kd value for thiocyanate
to human carbonic anhydrase I of 0.9 ± 0.1 mM was obtained
from the native MS measurement, which is in reasonable
agreement with the value reported in the literature from a CO2
hydration assay (0.2 mM).53 Moreover, previous studies7,55

indicated that the acetate ions from ammonium acetate buffers
can interact with the catalytic Zn2+ ion of human carbonic
anhydrases and shield the binding site, thereby decreasing the
measured protein−ligand binding affinity. By use of the 250
nm emitters, a Kd value of acetate to human carbonic
anhydrase II of 1.5 ± 0.1 mM was obtained. These results
indicate that the buffer used to probe ligand−protein
interactions can potentially compete for the binding of other
ligands and should be chosen carefully.

Figure 1. Narrow-bore nano-electrospray ionization emitters with
inner tip diameters less than 1000 nm can be used to obtain Kd values
for carbonic anhydrase (P) inhibitors (L) that are slightly lower than
those obtained from conventional large-bore emitters. Nano-electro-
spray ionization mass spectra of aqueous solutions containing 5 μM
human carbonic anhydrase I, 2 μM ethoxzolamide, and 70 mM
ammonium acetate obtained using emitter tips with an inner diameter
of (a) ∼2000, (b) ∼850, (c) ∼500, and (d) ∼250 nm. (e) Kd values
measured using nano-electrospray ionization as a function of the
emitter tip diameter for the binding of ethoxzolamide (squares),
brinzolamide (circles), furosemide (triangles), and dichlorophena-
mide (diamonds) to human carbonic anhydrase I.
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Figure 2. Narrow-bore nano-electrospray ionization emitters can be used to identify binding between small anions from sodium salts and human
carbonic anhydrases. Nano-electrospray ionization mass spectra of aqueous solutions containing (a, c) 5 μM human carbonic anhydrase I and 1
mM sodium thiocyanate, and (b, d) 5 μM human carbonic anhydrase II and 1 mM sodium acetate obtained using emitters with inner tip diameters
of (a, b) ∼2000 nm, and (c, d) ∼ 250 nm. L corresponds to (c) thiocyanate and (d) acetate in the respective panels.

Figure 3. Ligand−protein binding constants can be directly measured in native mass spectrometry from aqueous solutions containing high
concentrations of salts and biological buffers. Nano-electrospray ionization mass spectra of (a, c, e) 5 μM human carbonic anhydrase I and 3 μM
brinzolamide, and (b, d, f) 5 μM human carbonic anhydrase II and 3 μM indapamide formed from (a, b) aqueous 70 mM ammonium acetate (pH
7.4), and (c−f) aqueous 50 mM NaCl and 20 mM Tris-HCl buffer (pH 7.4) using emitter tips with inner diameters of (c, d) ∼2000 nm, and (a, b,
e, f) ∼250 nm. L corresponds to (a, e) brinzolamide and (b, f) indapamide in the respective panels.
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Measuring Ligand−Protein Binding Constants in
Solutions with Nonvolatile Salts and Biochemical
Buffers. Human Carbonic Anhydrase I and Sulfonamide
Ligands. The effects of nonvolatile buffers on the binding
affinities of sulfonamide ligands to human carbonic anhydrases
measured using nanoscale ion emitters were investigated using
aqueous solutions containing high concentrations of salts and
nonvolatile buffers (i.e., 50 mM NaCl and 20 mM Tris-HCl,
pH 7.4; or 10 mM Na2SO4 and 10 mM 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid, HEPES, pH 7.4). The mass
spectra acquired using 2000 nm emitter tips from these
solutions resulted in broad, unresolved multimodal peaks
between m/z 2000 and 4000 (Figure 3c,d); i.e., essentially no
mass information regarding protein−ligand complexes could
be obtained from spectra acquired from solutions containing
high concentrations of nonvolatile buffers. For the aqueous
solution containing 10 mM Na2SO4 and 10 mM HEPES (pH
7.4), the individual charge states of protein ions can be
resolved but are very broad owing to the adduction of sodium
ions (Figure S6a,b). Thus, it was not possible to measure the
binding affinities of ligands to the proteins under these
conditions. In contrast, the use of the 250 nm tips resulted in
spectra in which the unbound and ligand-bound protein
charge-state distributions can be clearly resolved from each
other (Figure 3e,f and Figure S6c,d). Moreover, the adduction
of sodium ions and Tris (or HEPES) molecules to the protein
and protein−ligand complex ions can be clearly resolved in the
resultant mass spectra (Figure S7). For the 250 nm tips, the
narrow charge-state distribution corresponding primarily to +8,
+9, and +10 human carbonic anhydrase I bound to
brinzolamide (Figure 3a,e) is consistent with native mass
spectra of carbonic anhydrases reported previously.56 More-
over, in the case of human carbonic anhydrase II and
indapamide, the use of NaCl and Tris (or HEPES) resulted
in a reduction in the charge state in comparison to the ions
formed from the ammonium acetate solutions. That is, the
average charges of the complex ions shifted from 10.5 ± 0.2 for
the ammonium acetate solution (Figure 3b) to 9.1 ± 0.1 and
9.3 ± 0.1 for the NaCl−Tris and Na2SO4−HEPES solutions
(Figure 3f and Figure S6d), respectively, consistent with the
formation of slightly more compact ions.56 In addition, the use
of nonvolatile buffers and salts resulted in an increase in the
abundances of the ligand−protein complexes compared to the
use of ammonium acetate (Figure 3e,f, and Figures S6c,d and
S8), which resulted in lower ligand−protein Kd values (Table
1). For example, the dissociation constant for brinzolamide to
human carbonic anhydrase I that was obtained using the 250
nm tips decreased from 1.05 ± 0.05 μM for ammonium acetate
solutions to 0.60 ± 0.02 and 0.76 ± 0.04 μM for the respective
Tris and HEPES solutions (Table 1), which agreed well with
Kd values obtained by CA kinetic inhibition assay (0.73 μM).
Likewise, the dissociation constant obtained by use of the
nonvolatile buffers and 250 nm tips for indapamide and
carbonic anhydrase II were over 30% lower than that obtained
using ammonium acetate solutions (Table 1), and are in good
agreement with values reported in the literature that were
obtained by CA kinetic inhibition assay.48 These results
indicate that nanoscale ion emitters can be used to measure the
solution-phase binding equilibria of carbonic anhydrases and
ligands in relatively high concentrations of nonvolatile salts and
buffers that are commonly used in ligand−protein binding
assays.48 Nanoscale ion emitters can also be used to obtain
native mass spectra of human carbonic anhydrase II in aqueous

solutions containing higher concentrations of NaCl up to 150
mM (Figure S9).33 However, the peaks are broad, and the
signal corresponding to unbound protein cannot be readily
resolved from the protein−ligand complexes under these
conditions.

Lysozyme and Tri-N-acetylchitotriose. In Figure S10 native
mass spectra of 5 μM lysozyme (Lys) and 7 μM tri-N-
acetylchitotriose in an aqueous 50 mM NaCl and 20 mM Tris-
HCl buffer (pH 7.4) using a 2000 and 250 nm tip are shown.
With the 2000 nm emitter tips, the dominant ions (776, 950,
and 1298 m/z) in the spectra correspond to ionic salt clusters,
Na+(NaCl)n (n up to 23), and no signals corresponding to
proteins and protein−ligand complexes could be identified
(Figure S10b). In contrast, the charge-state distributions
corresponding to the +6, +7, and +8 charge states of the
protein and protein−ligand complex are well-resolved using
250 nm tips (Figure S10c). Smaller-molecular-weight clusters
are also observed that are lower than 1300 m/z. The
dissociation constant of tri-N-acetylchitotriose to lysozyme
obtained using the Tris and NaCl solution (6.2 ± 0.1 μM) is in
agreement with the literature values obtained using alternative
approaches (6.6−11.1 μM).7,36,51,52

CYP199A4 and 4-Methoxybenzoic Acid. In Figure 4, nano-
electrospray ionization mass spectra of 5 μM CYP199A4
(45008 Da) and 3 μM of the native substrate 4-
methoxybenzoic acid (152 Da) in 10 mM ammonium acetate
(pH 7.4) and 10 mM Tris-HCl (pH 7.4) that were obtained
using 2000 and 250 nm emitter tips are shown. For 2000 nm
tips and both buffers, the individual charge states of protein
ions can be resolved but are very broad, and the spectral
baselines are elevated owing to the adduction salt, nonvolatile
buffer molecules, and/or other impurities from the recombi-
nant protein purification process (Figure 4a,b). By use of the
250 nm tips, individual peaks corresponding to the unbound
protein and ligand-bound protein can be readily resolved
(Figure 4c,d). The dissociation constant of CYP199A4 and 4-
methoxy benzoic acid measured in 10 mM Tris-HCl (0.39 ±
0.02 μM) is significantly lower than that obtained in 10 mM
ammonium acetate (0.71 ± 0.03 μM), and the former value is
in excellent agreement with that reported in the literature (0.28
μM).41 The benzoate group in the active site binds through
salt bridges and ionic interactions with residues in the binding
pocket (Figure S11),57 which may be affected by changes in

Table 1. Kd (μM) Values Measured for Brinzolamide to
Human Carbonic Anhydrase I and Indapamide to Human
Carbonic Anhydrase II Using Nano-Electrospray Ionization
with Emitter Tips That Have an Inner Diameter of 250 nm
in Relatively High Concentrations of Non-Volatile Buffers
and Salts

buffers

human carbonic
anhydrase I−
brinzolamide

human carbonic
anhydrase II−
indapamide

70 mM ammonium
acetate pH 7.4

1.06 ± 0.05a 3.22 ± 0.20a

50 mM NaCl and 20 mM
Tris pH 7.4

0.60 ± 0.02b 1.85 ± 0.15b

10 mM Na2SO4 and
10 mM HEPES pH 7.4

0.76 ± 0.04b 2.05 ± 0.25b

literature 0.73c 2.5248

aSee Figure 1 for details. bKd values are obtained from the average of
triplicate measurements for two different ligand concentrations. cThis
work; measured using a CA kinetic inhibition assay.
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the ionic strength of the buffer (i.e., the 10 mM Tris-HCl
buffer has an ionic strength that is over 3 orders of magnitude
higher than that of 10 mM ammonium acetate). This result
provides additional evidence that solution-phase binding
affinities measured in native MS using nanometer emitter
tips and nonvolatile buffers can more accurately reproduce the
dissociation constants measured in biochemical assays using
similar buffers. Moreover, this approach can be used to
improve the spectra obtained for proteins that are purified in-
house from complex mixtures, such as E. coli cultures, utilizing
standard biological buffers.
Competition Experiments: Measuring Kd Values for

Multiple Ligands Simultaneously. In Figure 5, nano-
electrospray ionization mass spectra of aqueous solutions
containing 20 μM human carbonic anhydrases; 4 μM each of
ethoxzolamide (258 Da), brinzolamide (383 Da), furosemide
(330 Da), dichlorophenamide (305 Da), and acetazolamide
(222 Da);15 μM indapamide (365 Da) (Scheme S1); and 70
mM ammonium acetate (pH 7.4) that were obtained using
both nanoscale (250 nm) and microscale (2000 nm) emitter
tips are shown. By use of the 2000 nm emitter tip, the peaks
corresponding to each of the six individual protein−ligand
complexes cannot be resolved from one another; i.e., the peaks
corresponding to protein−ligand complexes could not be
assigned under these conditions (Figure 5a,b). In striking
contrast, the use of the 250 nm tip results in the baseline
resolution of each of the six protein−ligand complexes in the
single spectra for both human carbonic anhydrase I and II

(Figure 5c,d). These results indicate that nanoscale ion
emitters can be useful for probing the binding of more than
two ligands to a single protein target simultaneously, which is
normally not possible for many different types of other more
common biochemical assays.58

A general equation for obtaining the Kd values for more than
a few ligands to one protein from ESI mass spectra with
different ligand concentrations has not been reported in the
literature. For example, Bligh et al.28 reported an equation that
can be used to obtain Kd constants for a single protein target
with at most two ligands. Thus, we analytically derived a
general equation to obtain Kd values for a protein with one
ligand-binding site in the presence of multiple, competing
ligands that are each at different concentrations (see the SI for
derivation):
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where Kd,i corresponds to the dissociation constant of the ith
ligand (Li); P

n+ and PLi
n+ correspond, respectively, to the ion

abundances of the unbound protein and Li-bound complex;
and [Li]0 and [P]0 correspond to the initial concentrations of
the ligands and protein, respectively. An assumption used to
obtain this equation is that the ionization efficiencies of the
unbound protein and ligand−protein complex are essentially
the same, which should hold for low-molecular-weight

Figure 4. The Kd value of ligand−protein binding for a detoxification enzyme can be measured directly from nonvolatile buffer solutions using
narrow-bore emitters in native mass spectrometry, which is not possible using standard emitters under these conditions. Nano-electrospray
ionization mass spectra of 5 μM CYP199A4 and 3 μM 4-methoxybenzoic acid (L) in (a, c) 10 mM aqueous ammonium acetate (pH 7.4), and (b,
d) 10 mM Tris-HCl (pH 7.4) using emitter tips with inner diameters of (a, b) ∼2000 nm, and (c, d) ∼250 nm. Peaks corresponding to a truncated
form of CYP199A4 that is missing the first 5 and last 2 amino acids are denoted by (*) and (**) for the respective unbound protein and ligand−
protein complex.
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molecules binding to high-molecular-weight proteins. Using eq
1, a program was written (PLbinding) that can be used to
automatically integrate the abundances of peaks corresponding
to the unbound protein and ligand−protein complexes in mass
spectra, and obtain the Kd values based on the integrated
abundances, and the initial solution-phase concentrations of
the ligands and protein. This is a universal expression that can
be used for as many ligands as possible to the extent that the
ligand−protein complexes can be sufficiently resolved, and the
ligands target a single binding site.
There are five examples in the literature in which Kd values

for multiple ligands have been obtained by ESI-MS measure-
ments (Figure 6).25−29 Four of these involved the simulta-
neous measurement of two ligands to a single protein target,
and another obtained the Kd values from ESI-MS measure-
ments for three ligands all at the same initial solution-phase
concentration as that of the protein. Using nanoscale ion
emitters and eq 1, the Kd values for at least six ligands can be
simultaneously measured using different concentrations for
each ligand and the protein. This approach is useful for
measuring the dissociation constants for ligands that bind
relatively weakly (e.g., indapamide to hCAI, 9.5 ± 1.0 μM) in

the presence of ligands that bind more strongly (e.g.,
ethoxzolamide to hCAI; 0.016 ± 0.004 μM) in ESI-MS
(Figure 6a). In addition, carbonic anhydrase−ligand complexes
that differ by 18 Da (0.06%) or more in mass can be resolved
using the nanoscale ion emitters. Although the minimum
resolution required59 to resolve these protein ligand complexes
is a factor of 7 higher than reported previously to obtain Kd
values (Figure 6b), resolving such complexes for smaller
ligands with relative protein−ligand masses that differ by less
than 0.06% is anticipated to be challenging based on these
results.
By use of eq 1, Kd values can be readily obtained from a

competition experiment in native MS by sequentially
increasing the ligand concentration to ensure that protein−
ligand complex ions are sufficiently abundant to determine that
the ligands bind to the protein. The Kd values of six ligands to
both human carbonic anhydrase I and II that were obtained
from the native MS competition experiment are in excellent
agreement with both the literature values for each of the
ligands, and the Kd values that were obtained by measuring ESI
mass spectra of each ligand individually with each protein
(Figure 5, Figures S12−S15, and Table 2). These results

Figure 5. Narrow-bore nano-electrospray ionization emitters can be used to simultaneously measure six protein−ligand binding constants in native
MS. Mass spectra of (a, c) human carbonic anhydrase I in complex with ethoxzolamide (L1), brinzolamide (L2), furosemide (L3),
dichlorophenamide (L4), indapamide (L5), and acetazolamide (L6); (b, d) human carbonic anhydrase II, and six ligands (L1−L6) in 70 mM
ammonium acetate (pH 7.4) using emitter tips with inner diameters of (a, b) ∼2000 nm, and (c, d) ∼250 nm. (e,f) The measured Kd values of
each of the six ligands (L1−L6) to human carbonic anhydrase (e) I and (f) II obtained (i) simultaneously from each respective mass spectra
(circles) and (ii) from individual native MS experiments without competitive inhibition (triangles). Refer to Figure 1 and Figures S14 and S15 for
the native mass spectra of the individual ligands with each protein.
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indicate that nanoscale ion emitters in native MS can be used
to measure the binding affinities of six or more ligands to a
single protein from one mass spectrum to the extent that the
mass of the intact ligand−protein complexes can be resolved.

■ EXPERIMENTAL SECTION
Lysozyme (chicken egg white), human carbonic anhydrase I
and II (human erythrocytes), and all small molecules and salts
were obtained from Sigma-Aldrich and used without further
purification. CYP199A4 was produced recombinantly using
Escherichia coli and purified using standard biological buffers
and protein chromatography techniques as reported for

crystallographic studies with this enzyme (Table S3).60

Aqueous stock solutions of proteins (100 μM) were desalted
twice using a centrifugal filter with a 10 kDa cutoff (Amicon
Ultra 0.5 mL, Merck, Germany) in which 300 μL of the stock
solution was loaded and filtered, and rinsed again with 300 μL
of fresh deionized water. The protein concentrations in ESI
solutions were obtained using a microvolume spectropho-
tometer (DeNovix DS-11). Solutions for ESI were prepared by
diluting protein into the corresponding buffer at a concen-
tration of 5−20 μM. For the competition and the low-
molecular-weight anion binding experiments, Kd values were
obtained from the native mass spectra of a single solution,
which was measured in triplicate. For all other experiments, the
Kd values were obtained from the average of triplicate
measurements for at least two different ligand concentrations
(keeping the protein concentration constant at 5 μM). Refer to
the corresponding figures and tables for full details of the
solutions that were analyzed. Prior to mass spectrometric
analysis, the protein−ligand solution mixtures were centrifuged
at 3000 rpm for 3 min (Centrifuge Mini Spin, Eppendorf,
Germany) to prevent clogging of nano-electrospray emitters by
any particulate matter. Protein−ligand mixtures were incu-
bated at room temperature for at least 30 min to ensure
equilibration. For brinzolamide binding to human carbonic
anhydrase I, a stopped-flow instrument (Sx.18Mv-R Applied
Photophysics) was used to obtain the inhibition constant
(corresponds to Kd) of this sulfonamide using the CO2
hydration reaction.61 Full experimental details are in the SI.
Nano-electrospray ionization emitters were fabricated with

different inner tip diameters from borosilicate glass capillaries
(Harvard Apparatus, 1.2 mm o.d., 0,68 mm i.d.) using a
microcapillary puller (Model P-97, Sutter Instruments). The
inner diameters of the nano-electrospray ionization tips were
measured using scanning electron microscopy (FEI Nova
NanoSEM 450 FE-SEM, Thermo Fisher Scientific) (Figure
S16). Nano-electrospray ionization emitters were coated with a
mixture of gold and palladium (Scancoat Six, Edwards). All
mass spectrometry experiments were performed using a hybrid
linear trap quadrupole and Orbitrap mass spectrometer (LTQ
Orbitrap XL; Thermo Fisher Scientific). For ESI, a voltage of
+0.7−1.5 kV was applied to the nano-electrospray ionization
emitters relative to the heated capillary entrance to the mass
spectrometer (180 °C). A maximum ion injection time of 500
ms was used throughout. Mass spectra were acquired for 2−3
min in triplicate using three different nano-electrospray
ionization emitters. For each mass spectrum, peak areas

Figure 6. Nanoscale ion emitters can be used to significantly improve
the performance of ESI-MS for obtaining multiple ligand−protein
dissociation constants from single mass spectra in a competitive
binding experiment. (a) Number of Kd values obtained simulta-
neously from a single ESI mass spectrum in a competition experiment,
and (b) minimum resolution (R) required to resolve the two
protein−ligand complexes that were the closest in mass for each
study; i.e., R = M2/(M2 − M1) = (m/z)2/[(m/z)2 − (m/z)1], where
M1 and M2 are the average molecular weights of the protein−ligand
complexes that are closest in mass (M2 > M1),

59 and (m/z)2 and (m/
z)1 are m/z values of the respective complexes.

Table 2. Measured Kd (μM) Values of Ethoxzolamide, Brinzolamide, Furosemide, Dichlorophenamide, Indapamide, and
Acetazolamide to Human Carbonic Anhydrase I and II Using Nano-Electrospray Ionization Mass Spectrometry with Emitter
Tips That Have an Inner Diameter of 250 nm in Individual Ligand−Protein Binding Experiments (Single) and Simultaneously
in a Competition Experiment (Competition)

human carbonic anhydrase I human carbonic anhydrase II

singlea competitionb literature singlea competitionb literature

ethoxzolamide 0.014 ± 0.002 0.016 ± 0.004 0.009,46 0.02550 0.010 ± 0.001 0.014 ± 0.002 0.00850

brinzolamide 1.06 ± 0.05 1.12 ± 0.06 0.73 ± 0.04c 0.005 ± 0.001 0.007 ± 0.001 0.00348

furosemide 0.055 ± 0.005 0.048 ± 0.006 0.062,47 2.3844 0.098 ± 0.009 0.110 ± 0.010 0.06547

dichlorophenamide 1.3 ± 0.1 1.4 ± 0.1 1.248 0.027 ± 0.002 0.035 ± 0.002 0.03848

indapamide 9.2 ± 0.3 9.5 ± 1.0 51.962 3.22 ± 0.20 3.32 ± 0.31 2.5249

acetazolamide 0.24 ± 0.02 0.29 ± 0.03 0.25,50 0.4844 0.015 ± 0.001 0.022 ± 0.002 0.01250

aKd values obtained from triplicate measurements of solutions that contain different ligand concentrations (Table S1). bKd values obtained from
triplicate measurements of a single solution (see Figure 5). cThis work; measured using a CA kinetic inhibition assay.
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corresponding to the unbound and ligand-bound protein were
automatically integrated by an in-house software program
entitled PLbinding, which was written in MATLAB (2017a,
The MathWorks). This software was also used to calculate
ligand−protein dissociation constants, including for multiple
ligands competing for a single binding site of a given protein.
Full details of the ESI tip fabrication procedures (Table S4)
and the data analysis methods are in the SI.

■ CONCLUSIONS
We investigated the effects of nanoscale ESI emitter tips on the
binding affinity of protein−ligand interactions in native MS.
For three functionally different classes of proteins, the use of
nanoscale ion emitters with inner tip diameters as narrow as
250 nm can be used to measure the binding affinities of small
ligands to proteins with significantly higher resolution than by
use of conventional tips (2000 nm and larger). For example,
the binding of low-molecular-weight anions (formed from
sodium salts) to a 29 kDa protein can be directly probed using
narrow-bore emitters, unlike for the conventional emitters
under the same conditions. The use of nanoemitter tips can
significantly reduce the salt adduction in ESI, and thus, the
binding affinities of small molecules to proteins can be
measured in the presence of high concentrations of nonvolatile
salts and common biochemical buffers (e.g., 20 mM Tris-HCl
and 50 mM NaCl). By increasing the spectral resolution owing
to reduced salt adduction using nanoscale ion emitters, the
binding affinities of at least six ligands can be directly measured
simultaneously in a single mass spectrum for protein−ligand
complexes that differ in relative mass by as little as 0.06%,
which is a factor of 7 lower than that reported previously for
ESI-MS competition experiments. Although ligand−protein
binding constants cannot be measured in solutions with NaCl
concentrations that have ionic strengths near that of intra-
cellular matrices (150 mM) owing to significant peak
broadening, in the future it may be possible to use narrower
bore emitters that are surface functionalized with antifouling
monolayers to prevent clogging. Owing to the improved
resolution resulting from the use of nanoemitters, it is now
feasible that the cooperative effects of multiple different ligands
binding to a single protein target that are challenging to
investigate using traditional biochemical assays58 can be
quantified by native MS. Overall, it is anticipated that
nanoscale emitters in native MS will be beneficial in the
rapid screening of small-molecule libraries to accurately
identify ligands that bind potently to druggable protein targets
with high sensitivity.
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(9) Hernańdez, H.; Robinson, C. V. Determining the stoichiometry
and interactions of macromolecular assemblies from mass spectrom-
etry. Nat. Protoc. 2007, 2, 715.
(10) Pacholarz, K. J.; Garlish, R. A.; Taylor, R. J.; Barran, P. E. Mass
spectrometry based tools to investigate protein−ligand interactions
for drug discovery. Chem. Soc. Rev. 2012, 41 (11), 4335−4355.
(11) Zhou, M.; Morgner, N.; Barrera, N. P.; Politis, A.; Isaacson, S.
C.; Matak-Vinkovic,́ D.; Murata, T.; Bernal, R. A.; Stock, D.;
Robinson, C. V. Mass spectrometry of intact V-type ATPases reveals
bound lipids and the effects of nucleotide binding. Science 2011, 334
(6054), 380−385.
(12) Gault, J.; Donlan, J. A. C.; Liko, I.; Hopper, J. T. S.; Gupta, K.;
Housden, N. G.; Struwe, W. B.; Marty, M. T.; Mize, T.; Bechara, C.;
Zhu, Y.; Wu, B.; Kleanthous, C.; Belov, M.; Damoc, E.; Makarov, A.;
Robinson, C. V. High-resolution mass spectrometry of small
molecules bound to membrane proteins. Nat. Methods 2016, 13, 333.
(13) Chrysanthopoulos, P. K.; Mujumdar, P.; Woods, L. A.; Dolezal,
O.; Ren, B.; Peat, T. S.; Poulsen, S.-A. Identification of a new zinc

ACS Central Science Research Article

DOI: 10.1021/acscentsci.8b00787
ACS Cent. Sci. 2019, 5, 308−318

316

http://pubs.acs.org/doi/suppl/10.1021/acscentsci.8b00787/suppl_file/oc8b00787_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.8b00787/suppl_file/oc8b00787_si_001.pdf
http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acscentsci.8b00787
http://pubs.acs.org/doi/abs/10.1021/acscentsci.8b00787
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.8b00787/suppl_file/oc8b00787_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.8b00787/suppl_file/oc8b00787_si_002.pdf
mailto:w.donald@unsw.edu.au
http://orcid.org/0000-0001-5156-4904
http://orcid.org/0000-0002-7629-6878
http://orcid.org/0000-0003-3238-8735
http://orcid.org/0000-0002-7457-9727
http://orcid.org/0000-0003-4262-0323
http://orcid.org/0000-0002-6622-8193
http://dx.doi.org/10.1021/acscentsci.8b00787


binding chemotype by fragment screening. J. Med. Chem. 2017, 60
(17), 7333−7349.
(14) Teruya, K.; Rankin, G. M.; Chrysanthopoulos, P. K.; Tonissen,
K. F.; Poulsen, S.-A. Characterisation of photoaffinity-based chemical
probes by fluorescence imaging and native-state mass spectrometry.
ChemBioChem 2017, 18 (8), 739−754.
(15) Schermann, S. M.; Simmons, D. A.; Konermann, L. Mass
spectrometry-based approaches to protein−ligand interactions. Expert
Rev. Proteomics 2005, 2 (4), 475−485.
(16) Furukawa, A.; Konuma, T.; Yanaka, S.; Sugase, K. Quantitative
analysis of protein−ligand interactions by NMR. Prog. Nucl. Magn.
Reson. Spectrosc. 2016, 96, 47−57.
(17) Greenfield, N. J. Using circular dichroism collected as a
function of temperature to determine the thermodynamics of protein
unfolding and binding interactions. Nat. Protoc. 2007, 1, 2527.
(18) Velazquez-Campoy, A.; Freire, E. Isothermal titration
calorimetry to determine association constants for high-affinity
ligands. Nat. Protoc. 2006, 1, 186.
(19) Zhang, T.; Wei, T.; Han, Y.; Ma, H.; Samieegohar, M.; Chen,
P.-W.; Lian, I.; Lo, Y.-H. Protein−ligand interaction detection with a
novel method of transient induced molecular electronic spectroscopy
(TIMES): experimental and theoretical studies. ACS Cent. Sci. 2016, 2
(11), 834−842.
(20) Laganowsky, A.; Reading, E.; Hopper, J. T. S.; Robinson, C. V.
Mass spectrometry of intact membrane protein complexes. Nat.
Protoc. 2013, 8 (4), 639−651.
(21) Allison, T. M.; Reading, E.; Liko, I.; Baldwin, A. J.; Laganowsky,
A.; Robinson, C. V. Quantifying the stabilizing effects of protein−
ligand interactions in the gas phase. Nat. Commun. 2015, 6, 8551.
(22) Batchelor, J. D.; Sterling, H. J.; Hong, E.; Williams, E. R.;
Wemmer, D. E. Receiver domains control the active state
stoichiometry of Aquifex aeolicus sigma54 activator NtrC4, as
revealed by electrospray mass spectrometry. J. Mol. Biol. 2009, 393
(3), 634−643.
(23) Batchelor, J. D.; Doucleff, M.; Lee, C.-J.; Matsubara, K.; De
Carlo, S.; Heideker, J.; Lamers, M. H.; Pelton, J. G.; Wemmer, D. E.
Structure and regulatory mechanism of Aquifex aeolicus NtrC4:
Variability and evolution in bacterial transcriptional regulation. J. Mol.
Biol. 2008, 384 (5), 1058−1075.
(24) Loo, J. A.; Peifeng, H.; McConnell, P.; Tom Mueller, W.;
Sawyer, T. K.; Thanabal, V. A study of Src SH2 domain protein
phosphopeptide binding interactions by electrospray ionization mass
spectrometry. J. Am. Soc. Mass Spectrom. 1997, 8 (3), 234−243.
(25) Jen, C. H.; Leary, J. A. A competitive binding study of
chemokine, sulfated receptor, and glycosaminoglycan interactions by
nano-electrospray ionization mass spectrometry. Anal. Biochem. 2010,
407 (1), 134−140.
(26) Zhang, S.; Van Pelt, C. K.; Wilson, D. B. Quantitative
determination of noncovalent binding interactions using automated
nanoelectrospray mass spectrometry. Anal. Chem. 2003, 75 (13),
3010−3018.
(27) Jørgensen, T. J. D.; Roepstorff, P.; Heck, A. J. R. Direct
determination of solution binding constants for noncovalent
complexes between bacterial cell wall peptide analogues and
vancomycin group antibiotics by electrospray ionization mass
spectrometry. Anal. Chem. 1998, 70 (20), 4427−4432.
(28) Bligh, S. W. A.; Haley, T.; Lowe, P. N. Measurement of
dissociation constants of inhibitors binding to Src SH2 domain
protein by non covalent electrospray ionization mass spectrometry. J.
Mol. Recognit. 2003, 16 (3), 139−148.
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