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Abstract 
 
 

Traumatic brain injury (TBI) is seen as more than just a static insult but an injury with 

a disease like progression, in which it is deemed as a risk factor for neurodegenerative diseases 

later in life. Clinical studies have shown a severity dependent relationship between TBI and 

neurodegenerative diseases. However, there is still a lack of understanding on the timely 

progression of experimental diffuse TBI into long-term impairments as well as the brain 

mechanism accounting for these deficits. Furthermore, many preclinical studies have not 

investigated this progression in relation to the severity of the initiating insult. Therefore, this 

study investigated the timely change in functional outcomes through a behavioral battery 

assessing general motor activity, anxiety, depression and cognition as well as its associated 

neuropathology up to 12 months post injury following varied TBI severities.  

To investigate this aim, this study first use male Sprague Dawley rats (10-12 weeks) 

which were subjected to either sham surgery or Marmarou’s impact acceleration model of 

moderate to severe diffuse TBI, in determining the functional and neuropathological changes 

at early sub-chronic stages (1 and 3 months) post injury. Since the moderate to severe TBI 

animals in this study showed persistent depressive-like impairments up to 3 months coupled 

with subtle cognitive flexibility deficits (supported by prefrontal cortex neuropathology), the 

study continued in determining the progression of these functional impairments at later chronic 

stage (12 months) post injury while concurrently determine if injury severity (single mild, 

repetitive mild (3 mild diffuse injury at 5 day intervals) and moderate to severe TBI) may be a 

factor influencing them. Moderate to severe TBI continue to display significant cognitive 

flexibility impairments at 12 months that were not present in other severity groups when 

compared to shams. However, no other functional deficits were present at 12 months post injury 

regardless of injury severity. Thus, to explore further the cognitive deficits, the study delved 

deeper into determining the injury severity effect on the evolution of executive function using 

the touchscreen cognitive paradigm up to 12 months post injury. The effect of age, but not 



xvi 
 

injury severity on executive dysfunction was revealed. Lastly, this study sought out to 

determine the associated neuropathology to the functional impairments seen at 12 months post 

injury through molecular analysis of neurodegenerative disease related brain areas and spinal 

cord regions after different severities of TBI. Cytoplasmic mis-localization of TDP-43 proteins 

in the cervical spinal region with abnormal changes in NeuN and phosphorylated-TDP-43 

levels were found in motor cortex and spinal regions of the single and repetitive mild TBI 

animals only at 12 months post injury. No other neuropathology was seen in the other brain 

regions regardless of injury severity.  

Thus, overall this thesis suggest that injury severity and age play as important factors in 

predicting long term functional outcomes post injury, with cognitive impairments in moderate 

to severe TBI suggesting implication towards later dementia development, while mild diffuse 

TBI may have higher implications towards motor neurone diseases based on the 

neuropathological evidence. This thesis advocates the significance of understanding the 

temporal profile of functional deficits and accompanying neuropathological changes that occur 

in the months and years following TBI which is critical for improving the predictability of 

neurodegenerative disease risk following TBI.       
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Abstract: 

Traumatic brain injury (TBI) is a huge economic burden worldwide due to its high rate of 

mortality and morbidity. Additionally, it is also deemed a significant risk factor for 

neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease. Despite the growing 

body of evidence linking TBI with the later emergence of neurodegenerative disease, it is still 

unclear how the severity of the initial injury may affect this risk. Some recent work has 

hypothesised that different severities of injury may be linked with increased risk of different 

neurodegenerative disease, with repetitive mild injuries associated with chronic traumatic 

encephalopathy (CTE) and moderate/severe injuries leading to Alzheimer’s disease. The 

current review evaluates the evidence for this claim, by critically assessing the clinical and pre-

clinical body of research to date, relating to neurodegeneration as well as long-term behavioural 

outcomes post varied severities of TBI. While there is strong evidence on the TBI severity effect 

against later life impairments in later years, reflection of these studies in preclinical settings are 

scarce, majorly due to the limited number of late chronic (beyond 3 months) studies available. 

This number decreases even further when filtered for a varied TBI severity within a single 

cohort or for the more clinically-relevant diffuse TBI. Therefore, to shorten the gap between 

clinical and preclinical TBI research, particularly with neurodegeneration, understanding the 

severity-dependent late chronic behavioural outcomes post diffuse experimental TBI should be 

the focus of future preclinical studies.  
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1. Introduction 

   Traumatic brain injury (TBI) is a major cause of disability and mortality worldwide. 

The Centre of Disease Control and Prevention (CDC) stated that, in 2010 alone, there were 

approximately 2.5 million emergency department visits, hospitalisations and deaths due to TBI 

(Faul et al., 2010; Frieden et al., 2014). Although previous estimates have suggested that 10 

million people a year are affected by a new TBI event  (Hyder et al., 2007), a recent study by 

Feigin and colleagues (2013) argued that by extrapolating from estimates in a New Zealand 

population-based study, as many as 54-60 million people annually may be affected by a new 

TBI (Feigin et al., 2013). A 1993 review by McGregor et al estimated the acute care cost to be 

as high as $80,000 per moderate TBI case (McGregor and Pentland, 1997) while Ashley et al 

(1997) saw a projection towards $450, 000 of annual post-acute care cost (Ashley et al., 1997). 

In addition, in 2010, the economic cost from just disability and loss of productivity post TBI 

was set at $76.5 billion (Alali et al., 2015). This huge economic burden could be attributed to 

the fact that TBI may not be just a single event of insult (Masel and DeWitt, 2010a) but will 

lead into secondary insults which have been linked to the development of neurodegenerative 

outcomes chronically (Chen et al., 2007a; Faden and Loane, 2015; Gardner et al., 2015b; 

Nemetz et al., 1999b; Omalu et al., 2005; Plassman et al., 2000; Sundman et al., 2014b).  

Although most patients may regain full functionality after injury, in some cases 

functional deficits, especially in terms of cognition, motor and neuropsychiatric function, may 

persist for years following injury (Dikmen et al., 1995; Vincent et al., 2014a). Furthermore, TBI 

has also been recognized as a significant risk factor for the later development of Alzheimer’s 

disease (AD), Parkinson’s disease (PD) and even Amyotrophic Lateral Sclerosis (ALS) despite, 

physical recovery from the injury decades earlier (Guo et al., 2000; Lye and Shores, 2000; 

Mortimer et al., 1991; Sivanandam and Thakur, 2012; Vincent et al., 2014a). Current studies 

indicate that the risk may be dependent on the initial severity of the TBI (Barnes et al., 2018; 

Chen et al., 2007a; Raj et al., 2017; Tolppanen et al., 2017). While the risk of Parkinson’s 

disease may be indifferent to TBI severity with only slight elevations in risk with severity 
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increment (Bower et al., 2003; Gardner et al., 2015b), dementia and AD were found to be higher 

in moderate to severe TBI patients (Barnes et al., 2018; Nordstrom and Nordstrom, 2018; Raj 

et al., 2017; Tolppanen et al., 2017), but the risk of neurodegenerative diseases like ALS and 

chronic traumatic encephalopathy on the other hand may be more associated with repetitive 

mild TBI (Chen et al., 2007a; McKee et al., 2013b).  

In the current study, we will review the clinical and pre-clinical findings associated with 

the different severities (mild, moderate or severe) or nature (diffuse, focal) of TBI and their link 

to either neurodegeneration or its accompanying functional outcomes (cognition and motor 

performance). 

 

2. Brief overview of traumatic brain injury 

   TBI is a form of acquired brain injury where an external force to the head causes a direct 

or indirect injury to the brain (Finnie and Blumbergs, 2002). TBI can be classified by type of 

injury as either an open head injury (penetration) or a closed head injury (without penetration 

of the skull) (Smith et al., 2003). Closed head injury can result in different types of TBI, either 

a diffuse or focal brain injury, depending on the force and direction of the impact (Blumbergs, 

1997). A diffuse TBI, such as is commonly seen in road accident related TBI cases (Yattoo and 

Tabish, 2008), is the result of an act of sudden acceleration, deceleration or rotational force 

towards the head, causing certain parts of the brain to be compressed and axons to shear, thus 

resulting in diffuse axonal injury (Lv et al., 2014), oedema and vascular injury throughout the 

brain (Andriessen et al., 2010). Focal TBI, conversely, is caused by a direct force to the head, 

such as being hit with a blunt object or falling, resulting in damage to the soft gelatin-like brain 

on the inner side of the rigid skull in a coup-contrecoup manner (both site and opposite site of 

impact) and the formation of contusions and haemorrhages (Andriessen et al., 2010). At times, 

both a diffuse and focal injury can occur simultaneously at the point of impact (Andriessen et 

al., 2010). 
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In addition to categorising TBI based on the type/nature of injury, TBIs can also be 

classified based on their severity, mainly into three categories based on the immediate effects 

after the injury: mild, moderate or severe (Vincent et al., 2014a). The Glasgow Coma Scale 

(GCS), or a more recently proposed predictor known as Full Outline of UnResponsiveness 

(Fourgeaud et al., 2016), are used in hospitals to determine the severity of TBI in patients, with 

the score measuring the level of unconsciousness (Gajavelli et al., 2015) in the patient and 

predicting the possible outcome (Sadaka et al., 2012; Teasdale and Jennett, 1974) Mild TBI 

leads to unconsciousness of less than 30 minutes, GCS of 13 and above, headaches and 

swelling, while moderate and severe TBI may result in unconsciousness of more than 30 

minutes, GCS of 9-12 for moderate and below 8 for severe, comatose state and even disability 

(Teasdale and Jennett, 1974). In addition to the severities associated with a single injury,  there 

is also another subtype of mild TBI known as repetitive mild TBI. This type of TBI is usually 

seen in contact sports athletes. Despite protective gear such as helmets, this does not prevent 

rotational injuries, with evidence that even cumulative sub-concussive impacts may have long-

term consequences. 

 

3. Clinical studies 

Over the past 20 years, there have been several population-based studies that have investigated 

the risk between a history of TBI and later onset of neurogenerative disease, either through a 

prospective study (since the onset of TBI) or a retrospective study (reported history of TBI in 

neurodegenerative patients). The odds ratio (OR) for dementia development following  

unspecified TBI or head trauma reported in these studies was between 1.57-2.8 (Barnes et al., 

2014; Dams-O'Connor et al., 2013; Luukinen et al., 2005; van Duijn et al., 1992) with AD 

reporting an OR of 2.29 in males and 0.91 in females (Fleminger et al., 2003c) and the OR for 

frontotemporal dementia (FTD) following TBI was 1.67 (Deutsch et al., 2015b). Interestingly, 

some studies on AD showed no significant elevations in OR, suggesting that TBI may not be a 

risk factor, especially when coupled with loss of consciousness (LOC) (Crane et al., 2016; 
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Dams-O'Connor et al., 2013),  Some of the strongest evidence for a link between TBI and 

neurodegenerative disease has emerged for PD, with an OR of between 1.3-3.56 (Crane et al., 

2016; Harris et al., 2013; Lee et al., 2012; Taylor et al., 2016). In support of this, a recent meta-

analysis performed by Huang and colleagues (2018), which includes the studies above, found 

a pooled OR of 1.93 (95% CI 1.47–2.55, p < 0.001) for dementia, 4.44 (95% CI 3.86–5.10, 

p < 0.001) for PD, and 2.97 (95% CI 1.35–6.53, p < 0.001) for TDP-43 associated disease (FTD 

and ALS) in individuals who had experienced a TBI (Huang et al., 2018).   

In the general population, out of the three apolipoprotein alleles (E2, E3 and E4), the 

apolipoprotein E4 (APOE4) gene increases the OR for AD, PD and dementia (Guo et al., 2000; 

Jellinger et al., 2001; Luukinen et al., 2005), but Huang et al (2018) showed that there was no 

association between TBI and neurodegenerative disease when APOE4 genotype was accounted 

for, although this may be confounded due to only a handful of studies reporting APOE genotype 

(Huang et al., 2018). The APOE genotype is often discussed in studies investigating the link 

between TBI and dementia, as the presence of the APOE epsilon 4 gene is a significant 

contributor towards dementia development (Kivipelto et al., 2008). However, this genotype 

factor has not been investigated well in relation to a history of different severities of TBI. To 

our knowledge, only one study by Sundstrom (2007) concluded that those with both the APOE4 

genotype and a history of mild TBI had a 5-fold risk increase of dementia, while no increase in 

risk existed in the absence of the genotype in a 5 year follow up population-based study 

(Sundström et al., 2007). Thus, whether this genotype also plays a role in more severe TBI 

should be investigated.   

Interestingly, the OR tends to increase when the TBI is within 10 years from the onset 

of neurodegenerative disease (van Duijn et al., 1992) and when the age of TBI is younger, such 

as a study by Taylor et al (2016) suggesting that early life TBI increases the risk of PD, with 

OR increasing every 5 years with earlier TBI (Taylor et al., 2016). One study also stratified 

their data by gender and found a higher risk of neurodegenerative disease in men than in women 
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following a TBI, suggestive of potential neuroprotective effects of the hormone progesterone 

(van Duijn et al., 1992).  

Nevertheless, many studies conducted to date have only measured the differences in OR 

between TBI with loss of consciousness and without, with the former having a higher OR 

(Crane et al., 2016; Dams-O'Connor et al., 2013). Most of these studies have not specified the 

severity (mild, moderate, severe) or nature of the TBI (whether single or repetitive), which 

could be confounding the OR. Thus, going forward, this review will limit its findings to severity 

and nature specified TBI studies and risk of neurodegenerative disease.  

3.1 Dementia (general) 

Dementia is defined as a loss of cognitive function, particularly memory, to the extent of 

interfering daily life activities (American Psychiatric Association, 2000). It is often regarded as 

an age-related disease. While some cases of dementia are associated with explicit 

hereditary/familial causes, environmental factors seem to play a critical role in the development 

of dementia in most individuals. TBI is the most researched environmental link to dementia to 

date. For the purposes of this review, we have separated studies into those that did not specific 

dementia type, those looking at AD risk and those investigating CTE, in order to better elucidate 

the relationship between TBI and specific forms of dementia.  

 As mentioned earlier, the risk of developing dementia is relatively high, up to 4-fold, 

when there’s a history of TBI (Shively et al., 2012). However, could a simple bump to the head 

already increase this risk? Studies have found that a dose-response relationship exists between 

TBI and dementia; the higher the severity of TBI, the higher the risk factor, with single 

moderate-severe TBI displaying a hazard ratio (HR) between 1.35 to 3.77 (Barnes et al., 2018; 

Fann et al., 2018; Gardner et al., 2014a; Nordstrom and Nordstrom, 2018) compared to a hazard 

ratio between 1.11 and 2.51 following a single mild TBI (Barnes et al., 2018; Fann et al., 2018; 

Gardner et al., 2014a; Nordstrom and Nordstrom, 2018). Following repetitive mild TBI, there 

was a higher hazard ratio (2.81) than that seen with a single mild TBI (Nordstrom and 

Nordstrom, 2018), although it is important to note that this study did not adjust for other 
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covariates, such as LOC, gender, age, time since injury and APOE genotype. Interestingly, the 

risk is particularly increased for young onset dementia (dementia before 65 years old), but may 

still follow the dose-response relationship. For example, a 2014 study by Nordstorm et al 

showed that single mild TBI had a hazard ratio of 3.8 (95% CI: 2.8-5.2), repeated mild TBI (2 

single mild TBI) had a hazard ratio of 10.4 (95% CI: 6.3-17.2) and single moderate to severe 

TBI had a hazard ratio of 11.4 (95% CI: 7.4-17.5) for young onset dementia (Nordstrom et al., 

2014). However, when these values were adjusted for covariates (premorbid conditions 

affecting cognition, such as alcohol abuse), the hazard ratio for mild TBI (whether single or 

repeated) was 1.7 while the hazard ratio for a single moderate-severe was significantly reduced 

to 2.6, which, while it still validates the dose-response relationship, suggests that careful 

considerations should be taken regarding population based dementia studies, to avoid 

premorbid cognitive levels (covariates) confounding the hazard ratio. Surprisingly, when a 

similar study was repeated by the group in 2018, they found that the repeated mild TBI group 

had the highest hazard ratio of 2.8 (95% CI: 2.51-3.15) compared to severe TBI with a hazard 

ratio of 2.06 (95% CI: 1.95-2.19) and single mild TBI with a hazard ratio of 1.63 (95% CI: 

1.57-1.70) (Nordstrom and Nordstrom, 2018), suggesting that contact-sports athletes (who are 

the largest contributor to numbers of repetitive mild TBI patients) may need to be wary of this 

risk. Despite the weaker association of a single mild TBI with dementia, it can be argued that 

since mild TBI is more prevalent among TBI patients, this slight increase in risk of dementia is 

alarming nonetheless.     

Loss of consciousness (Gajavelli et al.) after TBI is regarded as a reflection of the 

severity of the original insult, thus it is used as an evaluation parameter in determining the GCS 

score post injury.The presence of LOC after TBI may also exacerbate the risk for dementia. A 

Multi Institutional Research of Alzheimer Genetic Epidemiology (MIRAGE) study by Guo et 

al (2000) observed a 2-fold increase risk in TBI patients with LOC compared to TBI patients 

without LOC (Guo et al., 2000). Similarly,  a recent study by Barnes et al (2018) observed that 

the hazard ratio for mild TBI with LOC (HR=2.51 (95% CI: 2.29-2.79)) was higher than 
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patients with mild TBI without LOC (HR=2.36 (95% CI: 2.10-2.66)) in a cohort of military 

veterans (Barnes et al., 2018). 

 Another example of a covariate that interacts differently with dementia risk depending 

on injury severity is the age at which it occurs. A study by Gardner et al (2014) observed that 

mild TBI increased the risk for dementia in an older age group (65-74) compared to a younger 

cohort (55-64), while the inverse was true for moderate to severe TBI, with the younger cohort 

having a higher risk factor of 1.72 compared to the older group with a risk factor of 1.46 

(Gardner et al., 2014a). Other covariates, such as time since injury and gender, may also play a 

role in dementia risk, however the latter covariate has not been investigated in the context of 

TBI severity and dementia. Investigations on the former suggest that older TBI patients (65 

years and above) have an increased the risk of dementia within 10 years of injury (Gilbert et al., 

2014). 

3.2 Alzheimer’s disease 

One of the most common forms of dementia is Alzheimer’s disease, accounting for 

approximately 75% of all dementia cases (Qiu et al., 2009). With improvements in modern 

medicine, the global aging population is increasing in number at an exponential rate (He et al., 

2016), along with the population of AD patients (Brookmeyer et al., 2007). Despite all efforts 

to find a cure, researchers are still a long way from eradicating this illness. However, aging may 

not be the sole cause of AD, especially sporadic AD, with environmental factors such as TBI 

increasing this risk, especially in males (Fleminger et al., 2003c; Mortimer et al., 1991). Thus, 

by understanding the relationship between TBI and AD, this may provide information about 

the pathophysiological mechanisms driving the development of sporadic AD.  In fact, one study 

showed the prevalence of TBI was significantly higher in the sporadic AD population than in a 

healthy age-matched population (Rasmusson et al., 1995) suggesting that TBI (even mild TBI) 

could be a great contributor to the disease progression.  

Similar to dementia overall, a dose response relationship also exists for TBI and AD, 

with severe TBI associated with a higher risk of AD than mild TBI, while repetitive mild TBI 



12 
 

(regardless of the number of repeats) was associated with a higher risk compared to mild TBI 

(Tolppanen et al., 2017). Comparisons of risk between severe TBI and repetitive TBI have yet 

to be made in a population study. Interestingly, out of the five studies that have investigated a 

specified severity of TBI against AD development, three have looked at repetitive mild TBI 

(Guskiewicz et al., 2005; Leung et al., 2006; Tolppanen et al., 2017), suggesting that a history 

of repetitive mild TBI is most common among AD patients. Therefore, accurate predictions of 

AD development after single mild or severe TBI may be difficult, especially with only 

Tolppanen’s paper comparing all three severities (Tolppanen et al., 2017).  

Nevertheless, severe TBI has been predicted to reduce the age of AD onset by at least 8 

years, with mild TBI also having an effect (Gedye et al., 1989). In contrast, a later study by 

Rasmusson (1995) suggests no significant difference in age of onset of AD between severity 

groups or between TBI and non-injured populations (Rasmusson et al., 1995). On the other 

hand, repetitive mild TBI in retired professional football players was found to decrease the age 

of AD onset while increasing its prevalence when compared to the age and sex matched control 

population, with onset of AD as early as the age of 52 in these retired athletes (Guskiewicz et 

al., 2005). This is a concerning notion with the high rates of participation in contact sports with 

the risk of repetitive mild TBI. 

Unlike dementia as a whole, covariates in AD have not been well studied, with gender 

showing no significant influence in AD outcome (Tolppanen et al., 2017). 

3.3 Chronic traumatic encephalopathy (CTE) 

The other subset of dementia which is increasingly gaining attention is CTE, ever since a variant 

of this disease known as dementia pugilistica was first documented in boxers after Martland’s 

observation of the ‘punch drunk’ phenomenon in them (Martland, 1928a). Despite the 

increasing number of CTE case studies among athletes (Caixeta et al., 2018; Mez et al., 2017; 

Omalu et al., 2010; Stein et al., 2015), studies on the risk of CTE post injury, particularly in 

regards to the severity of TBI, have been scarce. To our knowledge, only one population-based 

study has extensively studied the link between repetitive mild TBI and the development of CTE 



13 
 

(McKee et al., 2013b). This study by McKee and colleagues (2013) showed that 63% of a mixed 

population of athletes and military veterans (85 subjects in total) with a history of repetitive 

concussion developed CTE, with only 11% diagnosed with AD in comparison. Due to the 

current uncertainty of CTE diagnosis, other studies may be biased between CTE and AD, with 

the former only accurately diagnosed through post-mortem studies. Thus, the link between 

severity of TBI and CTE risk needs significantly more research.  

3.4 Motor Neurone Disease (MND) 

The paper by McKee et al (2013) also reported a 12% increase in motor neurone disease (MND) 

in their mixed population of athletes and military veterans (McKee et al., 2013b), which is 

slightly higher than AD, and yet, only a few studies have looked at this link between MND and 

TBI (Chen et al., 2007a; Raj et al., 2017). Motor neurone disease can be divided into many 

subtypes, with amyotrophic lateral sclerosis (Mar et al., 2013) being the most known. Thus far, 

studies on MND, especially ALS, have shown no known causal effect. Nevertheless, studies on 

TBI indicate that head injury may be a potential environmental cause for this rapidly 

progressive disease. Besides the 2013 Mckee study, one other earlier study in 2007 suggested 

a similar risk between single mild TBI and repetitive mild TBI (3 fold risk) (Chen et al., 2007a) 

and MND, but when time since TBI was taken into account, repetitive mild TBI within 10 years 

increased this risk factor to 11-fold in a New England ALS population. Conversely, Raj et al 

(2017) discovered no correlation between moderate to severe TBI and ALS in a 30 year long 

nationwide study involving hospitalised TBI patients in Finland (Raj et al., 2017). The scarcity 

of studies investigating the risk of ALS in the context of TBI severity, however, may skew the 

interpretation that repetitive mild TBI may be the largest contributor to the risk of motor 

neurone disease.  

3.5 Parkinson’s disease 

Despite the case of the legendary boxer Muhammad Ali developing Parkinson’s disease (PD) 

in his late forties, which was attributed to the sheer amount of repetitive concussion he endured 

throughout his boxing career, studies investigating PD risk in relation to TBI severity have been 
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contradictory. Some studies have shown no relationship between TBI and PD, with less than 

1% of the study population developing PD after TBI, regardless of TBI severity (Gardner et al., 

2018; Raj et al., 2017). Conversely,  others suggest that TBI increases the risk of PD up to 44% 

within 7 years, with repetitive mild TBI having the highest HR of 1.87 compared to moderate-

severe TBI with a HR of 1.50 and mild TBI with a HR of 1.24 (Gardner et al., 2015b). When 

further analysed, the former studies were done in a larger age range (above 18 years old), while 

the latter was conducted in individuals  55 years and above, suggesting that age may be a 

confound in PD risk prediction. Of note, a 2003 study by Bower et al suggest that LOC plays 

an important deciding factor in PD risk after TBI, where, regardless of injury severity, when 

combined with LOC, TBI increased the risk factor by 11 fold (Bower et al., 2003). This was 

supported by an earlier 1991 retrospective study, which suggested that 32% of PD patients had 

a history of mild TBI with LOC, despite a 37 year gap between TBI and PD onset (Factor and 

Weiner, 1991). Taken together, LOC after injury seem to be a crucial contributor to the risk of 

PD instead of TBI severity.  

3.6 Non/Pre-neurodegenerative functional outcomes 

Most neurodegenerative diseases in patients are diagnosed through post-mortem examination 

of their brains for the accumulation of disease-specific abnormal proteins (e.g. Alpha-synuclein 

for PD, tau for AD/CTE) (Aldag et al., 2017; Bosco et al.). While diseases like PD and ALS 

can be diagnosed through clinical examinations of symptomology (Postuma et al., 2015; Tao 

and Wu, 2017), some like CTE can only be confirmed and distinguished from AD through post-

mortem examinations (Aldag et al., 2017). Nevertheless, symptoms such as cognitive decline, 

motor impairments and neuropsychiatric deficits may be assessed as the first form of clinical 

diagnosis in patients. In fact, through the assessment of cognitive decline, nearly 10% of mild 

cognitive impairment (MCI) patients end up being diagnosed as dementia patients later in life 

(Mitchell and Shiri-Feshki, 2009). Thus, the role of TBI in promoting these functional deficits 

chronically post-TBI is also of interest. Functional outcomes post-TBI have been extensively 

studied in the TBI population, particularly in terms of cognition. While these functional 
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outcomes may not be neurodegenerative disease per se, they may still pave the pathway towards 

future neurodegeneration.  

Cognitive outcomes post injury are measured through many domains such as memory, 

learning, executive function and intellect, with memory deficits being the most common 

functional deficit post TBI (Barman et al., 2016; Rees et al., 2007). A few studies have looked 

at MCI in relation to TBI, with one study in 2005 reporting that repetitive mild TBI increases 

the risk of MCI diagnosis by 5 fold, while general memory impairment was associated with a 

three-fold increased risk after repeated concussion (Guskiewicz et al., 2005). Another study in 

2016 showed that the age of onset of cognitive impairment was greatly reduced with increasing 

severity of TBI, especially when combined with MCI diagnosis, where the cognitive decline in 

non-TBI MCI patients had a later age of onset compared to MCI patients with a history of mild 

TBI, by at least 4 years (Li et al., 2016). Taken together, a history of TBI, even of mild severity, 

is able to impair cognition. As previously mentioned, memory is greatly impaired after TBI, 

however, memory only seems to be impaired post repetitive mild TBI and severe TBI coupled 

with LOC (Esopenko et al., 2017; Gardner et al., 2017; Himanen et al., 2006; Kaup et al., 2017), 

with no significant impairment seen post mild TBI with or without LOC (Albrecht et al., 2016; 

Himanen et al., 2006; Kaup et al., 2017; Rapoport et al., 2008), suggesting that the severity of 

TBI affects memory outcome. Learning deficits, which have been less investigated in this 

context, displayed similar conditions as memory impairment, where the link was only 

significant in repetitive mild TBI and severe TBI (Himanen et al., 2006; McMillan et al., 2017).  

Executive function includes a range of cognitive parameters such as reaction speed, 

impulsivity, inhibition, motivation and flexibility. To date, a number of studies have looked at 

the link between a history of TBI and impairment in executive function (Alosco et al., 2017; 

Kaup et al., 2017; List et al., 2015; Palacios et al., 2013; Pedersen et al., 2014a; Rapoport et al., 

2008; Wilde et al., 2016). When executive function and intellect were studied in a population 

of retired hockey players, those who sustained a higher number of concussions showed a greater 

decline in response speed, visual processing and recall memory (Pedersen et al., 2014a). 
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Similarly, another study in military veterans showed that a lifetime history (5 years or more) of 

multiple mild TBI or moderate-severe TBI was linked to executive function deficits and 

reduced cognitive speed, while those with a single mild TBI performed equally to non-injured 

controls (Kaup et al., 2017). Interestingly, impulsiveness seems to decrease with a history of 

repetitive mild TBI, as seen in a professional fighter population (Banks et al., 2014). To 

conclude, while cognition is significantly impaired after TBI, this is only true in repetitive mild 

and severe forms of TBI, therefore supporting the higher risk of neurodegenerative disease seen 

in these more severe groups.  

Other functional outcomes, such as motor impairment and neuropsychiatric outcome 

(anxiety or depression), are less studied in conjunction with TBI severity. Higher rates of mood 

impairment, especially depression, is seen in national football league players who had sustained 

repetitive mild TBI (Alosco et al., 2017; Hart et al., 2013) compared to non-concussed players. 

However, there is a lack of studies on this outcome. Similarly, retired boxers with sustained 

repeated concussion display motor coordination impairments (Bang et al., 2016). While motor-

related neurodegenerative diseases, like PD and ALS, have been shown to be correlated with 

repetitive mild TBI only (De Beaumont et al., 2012), due to the lack of studies investigating 

other TBI severities, it is difficult to truly interpret these results.   

 

4. Pre-clinical studies 

The best approach towards any intervention for a clinical problem is through pre-clinical 

investigations (in vitro and in vivo). Understanding the pathology, the outcomes and the safety 

and efficacy of treatments that can interact and intervene the pathology have been carried out 

by researchers for decades by utilising experimental models, particularly murine models 

(rodents), with no functional outcomes yet reported in large animal models. Thus far, 

impairments in memory, learning and executive function, as well as deficits in motor activity 

and neuropsychiatric function, have been thoroughly investigated in pre-clinical studies of TBI, 

though the results of these investigations have been somewhat contradictory. The different 
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injury models (focal versus diffuse), age at TBI induction (young versus old) and animal species 

(Sprague Dawley versus B6 mice) have made translation across labs difficult. Furthermore, 

studies comparing the impairments post different severities of TBI are still scarce. Thus, could 

one severity of TBI result in a greater cognitive impairment than the other or could they work 

in opposite directions? Is there a severity threshold that defines the type or extent of the post 

injury impairment and long-term outcome? Satisfying these questions will be the best approach 

towards TBI intervention.          

4.1 Cognitive outcomes 

Following a parallel pattern to clinical studies, pre-clinical investigations on the functional 

outcomes post-different severities of TBI have largely focused on cognition and often been 

related to future dementia outcomes.  

Learning and memory, particularly spatial and working memory, are typically assessed 

through maze tasks such as the Morris water maze (MWM) and Barnes maze (Olivera et al., 

2015), which have a number of training days for learning and a probe day for memory (Harrison 

et al., 2009). Occasionally, these more complex maze tasks will be coupled with an easier, but 

cruder, measurement of spatial memory known as the Y-maze test. Using the Y-maze, decreases 

in spatial memory either through spontaneous alteration behaviour or novel preference have 

been observed post controlled cortical impact (CCI) (Tucker et al., 2016) and following weight 

drop injury (Heim et al., 2017), but not all studies have been consistent (e.g.(Rachmany et al., 

2013)), suggesting that cognitive outcomes post diffuse TBI may be subtle and require 

behavioural assessment with complex cognitive measurements.  

Previous literature suggests that there is an effect of TBI severity on cognitive outcomes, 

with repetitive mild TBI being more associated with worsened learning and memory 

performance than a single mild TBI (Gao et al., 2017; Mouzon et al., 2014). Following 

repetitive mild TBI, animals show slower learning during the training phase of the MWM/BM, 

as well as memory deficits in identifying the location of the hidden platform/hole in the maze 

on probe day, when compared against shams, regardless of the TBI model (Briggs et al., 2016; 
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Gao et al., 2017; Lynch et al., 2016; McAteer et al., 2016; Zhang et al., 2015) These deficits 

are chronic, persisting  up to 6 months in the Closed-Head Impact Model of Engineered 

Rotational Acceleration (CHIMERA) model (Chen et al., 2017a; Nolan et al., 2018b), up to 6 

months after CCI (Lynch et al., 2016; Petraglia et al., 2014; Zhang et al., 2015), up to 3 months 

post fluid percussion injury (FPI) (Shultz et al., 2012; Tan et al., 2016) and up to 25 days after 

weight-drop (Briggs et al., 2016). In the longest timepoint investigated to date, impairments 

were still detectable at 18 months post CCI injury (late adulthood in rodents) (Mouzon et al., 

2014), suggesting cognitive deficits may persist or re-emerge at later timepoints (18 months), 

which may have implications for dementia risk following repetitive mild TBI. However, not all 

studies have been consistent, with several showing no changes in cognitive outcome measured 

on the MWM acutely (7 days) or chronically (4- 6 months) post CCI (Laurer et al., 2001; Uryu 

et al., 2002; Yoshiyama et al., 2005). Upon closer inspection, these studies were conducted in 

mice of 9 to 12 month old of age. Since age of injury onset can influence the TBI outcome in 

humans, as discussed previously, it is reasonable to hypothesise that a similar effect may occur 

in rodents and that induction of repetitive mild TBI in later adulthood may effect cognitive 

function differently than one that occurs earlier in life. However, caution should be given when 

comparing repetitive mild TBI between clinical and preclinical models, mainly due to its 

heterogeneity in terms impact severity, frequency and recovery time between impacts that 

differs not only between the clinical and preclinical models but within them too.   

Nevertheless, when compared to repetitive mild TBI, the cognitive deficits observed 

following a single mild TBI have been less pronounced (Gao et al., 2017; Mouzon et al., 2014; 

Webster et al., 2015), but nonetheless observable, affecting both learning (Mouzon et al., 2014) 

and memory (Rachmany et al., 2013; Saber et al., 2017). These impairments have been weakly 

demonstrated at earlier stages (7 days to 1 month) (Rachmany et al., 2013) but more strongly 

displayed chronically (6-18 months) (Mouzon et al., 2014) post single mild injury when 

compared to sham counterparts, suggesting persistent cognitive deficits may develop even after 

single mild TBI. As for moderate to severe TBI, acute studies (less than 1 month) have shown 
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significant deficits in recognition memory on the novel object task as early as 24 hours post 

weight drop injury (Chen et al., 2016) as well as displayed impairments in retention memory 

on the barnes maze within a week post FPI (Krishna et al., 2017) and on the MWM up to 1 

month post CCI injury (Geddes et al., 2017). Additionally, Ouyang et al (2017) reported 

persistent learning and memory impairments acutely on the MWM were observable from day 

1 post FPI up to 13 days post injury (Ouyang et al., 2017). However, learning and memory 

measurements in acute studies may be influenced by early post surgery motor deficits (Ouyang 

et al., 2017) and therefore, chronic studies may be more informational regarding these cognitive 

impairments.  Unfortunately, chronic studies beyond 1 month post-injury have been scarce and 

inconsistent, with one study showing no changes in cognitive outcome on the MWM up to 6 

weeks post moderate to severe CCI injury (Tajiri et al., 2013) and, conversely, two others 

demonstrating the presence of spatial and working memory deficits as assessed through MWM 

up to 3 months after either CCI or FPI injury (Byrnes et al., 2012; Kokiko-Cochran et al., 2016). 

Although moderate to severe TBI may be speculated to be more damaging than mild TBI, based 

on the handful of studies conducted, it appears that repetitive mild TBI may be more detrimental 

for long-term cognitive outcomes. However, due to the scarcity of long-term studies on 

cognitive outcomes following moderate to severe TBI, particularly in different models of injury, 

it is not possible to come to a clear conclusion and future research is needed.  

Additionally, other aspects of cognitive function, such as executive function, is also 

known to be affected following TBI (Ozga et al., 2018). The term ‘executive function’ includes 

behaviours such as attention, impulsivity, flexibility and decision-making, that may be 

measured individually after TBI through rule shift assay (Chou et al., 2016b), attentional set 

shift task (AST) (Bondi et al., 2014), barnes maze (Taib et al., 2017) or pairwise visual-

discrimination task (Robinson et al., 2018), or otherwise collectively post injury in the 5 choice 

serial reaction time task (5CSRT) or go/no-go task (Hehar et al., 2015; Ozga et al., 2018). Mild 

TBI has displayed impairments in attention, inhibition, impulsivity and cognitive flexibility 

mainly acutely (13 days) (Hehar et al., 2015) and chronically (up to 3 months) (Taib et al., 2017; 
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Vonder Haar et al., 2016) post CCI injury, with one study showing executive impairments 

acutely (2 days) post weight drop injury on the go/no-go task (Mychasiuk et al., 2015), while 

moderate to severe TBI exhibited deficits in more facets of executive function such as 

impairments in discrimination, cognitive flexibility, attention, impulsivity and motivation as 

early as 13 days up to 3 months post CCI injury (Crane et al., 2012; Robinson et al., 2018; 

Vonder Haar et al., 2016). The injury severity study by Vonder Haar et al (2016) found that 

moderate to severe TBI animals displayed deficits in attention, impulsivity and motivation on 

the 5CSRT up to 14 weeks post CCI injury but only saw deficits in impulsivity in the mild CCI 

group (Vonder Haar et al., 2016), suggesting executive function impairments post injury has a 

dose-response relationship. This relationship is further supported by an earlier study showing 

severity-dependent attention and flexibility impairments on the AST a month post CCI injury 

(Bondi et al., 2014). Unlike memory and learning impairments, executive function post 

experimental repetitive mild TBI may not have been investigated thus far and requires further 

research, given the executive deficits seen in repetitively concussed athletes (Alosco et al., 2017; 

Esopenko et al., 2017). 

4.2 Motor outcomes 

A dose-response relationship may exist against motor outcomes chronically post injury in a 

rodent model. This was supported by Erturk and his colleagues (2016) in their 8-week 

investigation of TBI severity effects on the balance beam and open field after CCI injury in 

mice, in which they showed only the moderate TBI animals displayed persistent but recovering 

motor deficits with no changes seen in mild TBI at any timepoint post injury (Erturk et al., 

2016). While, Thomsen and his group also demonstrated a dose response relationship exist after 

repetitive mild CCI injury whereby the greater the number of hits, the more severe and 

persistent the motor impairment displayed; 5 weekly consecutive mild TBIs led to severe motor 

deficits on the rotarod that persisted up to 24 weeks (Thomsen et al., 2017).  Similarly, an earlier 

study concluded that a second mild TBI within 24 hours exacerbated the first mild injury, 

leading motor impairments to manifest in mice after repetitive mild CCI injury (Laurer et al., 



21 
 

2001) but Uryu and colleagues (2002) found no change in motor performance at 16 weeks  

following single mild or repetitive mild TBI in a similar CCI model (Uryu et al., 2002), further 

supporting a dose-response relationship in motor outcomes.  

         Additionally, Byrnes et al (2012) showed that vehicle treated mice with moderate TBI 

had persistent motor impairments up to 3 months post-CCI injury (Byrnes et al., 2012) which 

was supported by another study in 2016 that observed similar persistent motor deficits on the 

rotarod after moderate FPI injury (Kokiko-Cochran et al., 2016). A more recent study (2017) 

by the Shultz laboratory on Long Evans rats concluded motor impairments up to 12 weeks after 

moderate FPI-induced TBI, which was attributed to an increase in phosphorylated TDP-43 

protein, a hallmark pathology of MND (Wright et al., 2017a).  

Thus, underlying pathophysiological mechanisms relevant to neurodegenerative disease 

may drive the manifestation of motor impairments at these chronic timepoints. It remains to be 

investigated, however, whether these pathophysiological mechanisms differ as a function of the 

original injury severity. Additionally, characterising the temporal profile of these changes will 

be important, in order to assess whether these mechanisms worsen from time of injury or are a 

later result of the disease process.   

             To note, the contrasting motor outcomes between the repetitive mild CCI injury in 

Laurer’s study with Uryu’s study, despite a similar injury procedure to induce repetitive mild 

TBI (2 consecutive hits with 24 hours apart), could be attributed either to the strain of the animal 

(transgenic wild type littermates versus C57BL/6 standard mice) or the age of TBI induction (9 

months versus 10-week-old). The strain or age of the animal can greatly affect the results of the 

study due to the differences in the neuroprotective nature/ vulnerability of the brain (Reid et al., 

2010; Rowe et al., 2016). For example, at least in rats, Reid et al (2010) clearly showed a strain 

difference in injury susceptibility against functional and neuropathological outcomes between 

the Fisher 344 and SD rats post FPI injury, with the former displaying greater deficits and 

neuropathology overall (Reid et al., 2010). Likewise, Rowe et al (2016) suggest that age of 

injury may influence the outcome post injury, whereby SD rats injured (moderate FPI) at early 
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developmental age (postnatal day 17, 35 or 2 months of age) displayed motor and cognitive 

impairments which was not present in rats injured at adulthood (4 and 6 months) but the latter 

group displayed anxiety-like phenotype instead (Rowe et al., 2016), suggesting differences in 

vulnerability towards injury due to age in rats, a concept which may be extended to mice as 

well. Therefore, the results by Laurer and colleagues may be more informative, as they used a 

more standard strain and age of mice.  

    While further investigations are necessary, particularly at long-term follow up 

timepoints, taken together, these studies do seem to indicate a dose response relationship, with 

moderate TBI having the worse motor impairment outcome and single mild TBI displaying the 

least, regardless of strain and age of injury onset. 

4.3 Neuropsychiatric outcomes 

Anxiety and depression are the two most common types of neuropsychiatric outcomes 

displayed by TBI patients and neurodegenerative disease patients alike (Lyketsos et al., 2007). 

Depressive-like behaviour, even up to 3 months post-injury, has been consistently observed in 

preclinical studies of repetitive mild TBI, regardless of rodent species or type of TBI (Bajwa et 

al., 2016; Briggs et al., 2016; Petraglia et al., 2014; Shultz et al., 2012; Tan et al., 2016), similar 

to reports from contact-sport athletes (Hart et al., 2013; Vargas et al., 2015a). Even single mild 

TBI has been shown to be associated with depressive-like behaviour up to 3 months post-injury 

(Bajwa et al., 2016; Milman et al., 2005). Mice demonstrated elevated levels of depressive-like 

behaviour on the tail suspension test at 90 days following a single mild closed head injury 

(Bajwa et al., 2016). Interestingly, repetitive mild TBI was not associated with more severe 

depressive-like behaviour at this timepoint. In contrast, moderate TBI has not been shown to 

be associated with increased depressive-like behaviour at long-term timepoints. While studies 

show increased immobility on both the tail suspension test and forced swim test following 

moderate to severe TBI at less than 7 days post injury, this effect was not seen at later timepoints 

(Fenn et al., 2014; Kuo et al., 2013). Similarly, Bajwa et al (2016) showed that there was no 

increase in immobility in animals who had experienced a moderate TBI inflicted by CCI 
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compared to sham animals on the tail suspension test at 90 days. Thus, while both mild and 

mild repetitive TBI may be associated with long-term depression following TBI, more severe 

TBI may play a role in more acute, but not chronic, timepoints.  

On the other hand, anxiety-like behaviour has been quite contradictory between studies 

(Nolan et al., 2018b; Petraglia et al., 2014; Shultz et al., 2012). In multiples studies, animals 

have shown significant anxiety (measured as shorter time spent in open arms of elevated plus 

maze) up to 8 weeks following repetitive mild TBI (Broussard et al., 2018; Shultz et al., 2012) 

with McAteer et al (2016) showing a trend towards decrease time spent in inner portion of the 

open field test (OFT) at 12 weeks post repetitive mild TBI (McAteer et al., 2016), but studies 

by Petraglia (2014) and Nolan (2018) showed a shift towards increased risk taking behaviour 

(more time spent in open arms of elevated plus maze (EPM) at 1 month post injury (Nolan et 

al., 2018b; Petraglia et al., 2014). In the Petraglia et al study, this behavioural phenotype 

persisted for up to 6 months post injury. When compared against Petraglia’s study, the 

differences in rodent species; mice versus rats in Shultz’s study, the amount of repetitive hits; 

6 impacts daily for a week versus 3 or 5 hits with 5 day intervals in Shultz’s study and the TBI 

model; CCI versus FPI used in the study by Shultz et al (2012) may influence the persistent 

anxiety (decreased time and entries in the open arms of EPM) seen in their study (Shultz et al., 

2012), suggesting that a greater cortical damage (represented by amount of hits) is needed for 

the shift in anxiety behaviour. In support, at 1 month post injury, Nolan’s study utilising mice 

with daily hits for 5 days on the CHIMERA model also created this shift in anxiety (Nolan et 

al., 2018b) while mice with a single mild TBI induced by the weight drop model showed 

increased anxiety (Rachmany et al., 2013), suggesting that even diffuse injury may cause this 

shift towards risk-taking behaviour in mice when the severity of the TBI is increased. However, 

when the severity was kept constant but the type of TBI model used differed, again there is a 

shift in anxiety; at 1 month post injury, animals who had undergone mild TBI induced by FPI 

exhibited risk taking behaviour, with TBI animals spending more time in the open arms of the 

EPM post injury compared to shams (Saber et al., 2017) , thus suggesting a significant influence 
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of TBI model on anxiety outcome post-mild TBI but a significant influence of TBI severity 

within a single TBI model used.  

Thus far, studies on neuropsychiatric outcome post moderate to severe TBI have been 

scarcely investigated in preclinical models and this remains an urgent area for future research. 

One study showed that moderate to severe diffuse TBI (weight drop) in SD rats have persistent 

(up to 42 days) depressive-like phenotype post injury (Fromm et al., 2004), while another study 

indicated this persistence in depression and even anxiety to last up to 3 months post severe FPI 

(Jones et al., 2008). However, a study in mice suggest that moderate to severe TBI after weight 

drop may display no changes in depression or anxiety acutely post injury (Schwarzbold et al., 

2010), suggesting a probable species-dependent susceptibility to diffuse TBI, therefore, when 

moderate to severe CCI injury is subjected to mice, deficits in forced swim test (depression) 

and EPM become evident at 21 days post injury (Washington et al., 2012).  

Taken together, neuropsychiatric outcomes post injury may be more sensitive to the 

variation in experimental TBI conditions across studies compared to cognition or motor 

outcomes. This reflects the neuropsychiatric contradictions in the human population after TBI 

that is dependent more than just the TBI severity or type of injury, but is influenced by a range 

of other environmental factors such as substance abuse, alcoholism, premorbid 

behaviour/disorder and social support (Ahmed et al., 2017). This suggest that a dose response 

relationship should be cautiously implied for depression and anxiety measures post injury in 

both clinical and preclinical models.   

 

5. Conclusion and Future studies 

Based on review of the current literature, a significant gap in TBI knowledge still exists, 

particularly in preclinical research. The scarcity of research regarding long-term functional 

outcomes in experimental models of moderate/severe TBI may underrepresent/downplay its 

cruciality in clinical studies, therefore preventing intervention studies to successfully proceed. 

Additionally, while there are multiple preclinical studies of long-term outcomes following both 
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repetitive mild TBI and single mild TBI, there is still a lack of studies comparing the TBI 

severity effect within a single cohort. This is particularly important, given that this review has 

shown that multiple factors, such as rodent species, TBI induction model, age of TBI onset and 

amount of repetitive hits, may all influence the long-term functional changes seen. Finally, only 

a small number of studies have actually looked at truly chronic timepoints (beyond the 1 month 

timepoint) of functional deficits in any model of TBI, which may obscure the effects of age 

seen in humans, and fewer studies still have investigated underlying pathophysiological 

mechanisms such as tauopathy in dementia, alpha-synuclein in PD and TDP-43 abnormalities 

in MND at these timepoints. Therefore, future studies should investigate both functional deficits 

and neuropathological change at chronic timepoints (beyond 6 months at least) in preclinical 

models of TBI. Only then can we begin our journey towards effectively treating TBI patients 

to improve long term functional outcomes post injury and potentially even lower the risk of 

neurodegenerative disease following injury. 
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Abstract 

TBI is a significant risk factor for the development of dementia, with the interaction between 

structural damage from TBI and neuroinflammation potentially driving this relationship. This 

study investigated the early chronic post-TBI neuroinflammatory response and its relationship 

to both neurodegenerative pathology and functional impairment up to 3 months post-injury. 

Sprague-Dawley rats underwent either sham surgery or the Marmarou model of diffuse 

moderate-severe TBI. At 1-month and 3-months post-injury, a functional battery encompassing 

motor function, depressive-like behaviour, anxiety and cognition was performed. Western blot 

and immunohistochemical analysis assessed a range of inflammatory, neurodegenerative and 

oxidative stress markers. At both 1 and 3-months post injury, depressive-like behaviour was 

significantly increased in TBI animals, with TBI animals also exhibiting impaired cognitive 

flexibility at 3 months, although learning and memory remained intact.  This was accompanied 

by a significant decrease in markers of synaptic integrity and astrocytic and microglia number 

within the pre-frontal cortex at 1-month post-injury, although this resolved by 3-months post-

injury.  In contrast, minimal pathology was evident within the hippocampus at 1 month, with 

only a decrease in neurofilament-light seen at 3 months post-injury.  Thus, following a 

moderate-severe diffuse injury, the pre-frontal cortex is most vulnerable to early neuro-

structural changes, which may re-emerge or progress to other areas such as the hippocampus at 

more chronic stages, which could predispose individuals to early dementia.  

 

Key words: neurodegeneration, cognition, depression, head injury, dementia 
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1. Introduction: 

 Traumatic brain injury (TBI) represents one of the leading causes of mortality and disability 

worldwide. The Centre of Disease Control and Prevention stated that, in 2010 alone, there were 

approximately 2.5 million emergency department visits, hospitalisations and deaths due to TBI 

(Faul et al., 2010; Frieden et al., 2014).  There is increasing evidence to suggest that neuronal 

injury is ongoing following a TBI (Carron et al., 2016; Gao and Chen, 2011; Sato et al., 2001), 

and that moderate-severe TBI may lead to progressive neurodegeneration, such as dementia 

and associated cognitive and behavioural deficits. Population based studies following patients 

with moderate-severe TBI showed these functional deficits persisting years later, even after 

motor function recovery (Dikmen et al., 2003; Gupta and Taly, 2012; Stocchetti and Zanier, 

2016). An Australian health survey of TBI cases reported an overall decrease in mental health 

quality and elevated depression levels when compared to a matched non-TBI cohort, even up 

to 15 years after injury (Hawthorne et al., 2009).   

Indeed, following a focal injury, lesion volume was found to increase nearly 5 fold over one-

year post-injury (Loane et al., 2014), whereas, following a mixed focal/diffuse injury induced 

by lateral fluid percussion, cortical and hippocampal tissue loss increased significantly from 

one week to one year post-injury (Smith et al., 1997).  This is supported by clinical imaging 

studies, which have shown progressive white matter damage, particularly within the frontal and 

temporal regions, as well as loss of cortical grey matter, up to a year post-injury (Bendlin et al., 

2008), in line with reports of progressive reductions in brain volume as assessed up to 14 

months post-TBI  (Trivedi et al., 2007).   

The exact mechanisms that drive this ongoing neuronal injury are yet to be fully elucidated, 

with the development of an aberrant persistent chronic neuroinflammatory response thought to 

be one key mechanism (Corrigan et al., 2016a). Indeed, multiple studies have demonstrated that 

a neuroinflammatory response may persist following resolution of the acute effects of a TBI, 

with inflammatory markers present in the brain parenchyma, serum and cerebrospinal fluid of 

TBI patients at chronic time points (months to years later) (Juengst et al., 2014; Kumar et al., 
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2015b; Ramlackhansingh et al., 2011; Smith et al., 2013).  In rodents, microglial activation has 

been demonstrated up to one-year following a focal TBI, with associated progressive lesion 

expansion, hippocampal degeneration, myelin loss and oxidative stress (Loane et al., 2014).   

Although a number of studies have shown progressive neuronal loss up to one year post-injury, 

a more detailed examination of the events that occur in the sub-acute and early chronic stages 

post-TBI that may promote this ongoing neuronal injury have received less attention. 

Furthermore, these studies have been predominantly conducted utilising focal (Loane et al., 

2014) or mixed focal models (Smith et al., 1997), rather than a purely diffuse injury. As such, 

this study sought to investigate the effects of a moderate-severe diffuse TBI at 1 and 3 months 

post-injury on synaptic and axonal integrity and neuroinflammation, as well as on functional 

outcome.  

2. Results: 

2.1 Motor outcome 

Motor outcome was assessed weekly up to 3 months (Fig. 1A) on the rotarod.  Sham and TBI 

animals showed no significant differences in their pre-training rotarod scores but a significant 

injury effect on the scores was seen in the weeks following the injury (F1,19 = 5.146, p=0.035). 

TBI animals showed a significantly impaired rotarod scores when compared to shams 

(67.8±13.47 secs vs 114.3±4.23 secs in sham animals, p<0.0001) at 24 hours post injury 

(indicated by week 1 on Fig 1A). However, by the third week (day 15) post-injury, TBI animals 

had returned to sham levels, (112.7±4.46 secs vs 117±2.09 secs, p>0.9999) and maintained this 

for the rest of the testing period.  

2.2 Locomotor activity  

General locomotor activity was assessed as the distance travelled in the open field test (OFT).  

At 1 month post-injury (Fig. 1B(i)), TBI animals showed no difference in locomotor activity 

compared to shams (39.36±1.6m vs 42.35±2.3m in shams; t(32) = 1.089, p=0.2843), but at 3 

months post-injury (Fig. 1C(i)), there was a significant decrease in locomotor activity in the 

TBI animals when compared to shams (23.6±4.0m vs 35.5±2.4m; t(23) = 2.479, p=0.0209). 
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2.3 Anxiety-like behaviour 

Anxiety-like behaviour was measured as time spent in centre of OFT and time spent in the open 

arms of the elevated plus maze (EPM). No significant differences in time spent in centre of 

OFT and open arms of EPM were seen between the TBI animals and sham animals at 1 month 

(17.9±2.9 secs vs 15.9±2.8 secs in shams; t(32) = 0.485, p=0.6314) and (95.0±10.8 secs vs 

86.7±7.9 secs in shams; t(32) = 0.591, p=0.5587) respectively (Fig. 1B (ii) and (iii)). Similarly, 

at 3 months post-injury, no significant differences were seen between groups in time spent in 

centre of OFT (5.9±2.1 secs vs 7.5±3.3 secs in shams; t(23) = 0.427, p=0.6735) (Fig. 1 C(ii)) 

as well as time spent in open arms of EPM (64.8±14.7 secs vs 80.0±11.7 secs in shams; t(23) = 

0.798, p=0.4329) (Fig. 1C(iii)). 

 

Figure 1: Functional outcomes measured post injury. A) Motor outcome as measured on the 

rotarod, weekly for 3 months. Locomotor activity as measured on the open field at B(i)) 1 month 

and C(i)) 3 months. Anxiety-like behaviour as measured in the open field at B(ii)) 1 month and 

C(ii)) 3 months and on the elevated plus maze at B(iii)) 1 month and C(iii)) 3 months. Graphs 

represent the mean ± SEM, (n= 13-19 per group; ****p<0.0001,*p<0.05 compared to shams). 
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2.4 Depressive- like behaviour  

Depressive-like phenotype was assessed based on the immobility time in the forced swim test 

(FST). TBI animals spent more time immobile than shams at 1 month post-injury (125.8±7 secs 

vs 99.2±9.4 sec in shams; t(32)= 2.32, p= 0.0269) (Fig. 2A), with this persisting at 3 months 

post-injury (185.6±6.8 secs vs 151.2±8.4 secs in shams; t(23)= 3.217, p=0.0038) (Fig. 2B).  

     

Figure 2: Depressive-like behaviour as measured in forced swim test at A) 1 month and B) 3 

months. Graphs represent the mean ± SEM, (n= 13-19 per group; **p<0.01, *p<0.05 compared 

to shams). 

       

2.5 Cognition 

Cognitive outcome was assessed using the Y-Maze for spatial memory and Barnes maze for 

learning, memory and cognitive flexibility (ability to reprogram previously learned task)  (Fig. 

3).  Y-Maze was performed at 1 month and 3 months post-injury, while the Barnes maze was 

only performed on the 3 month animals. Spatial working memory in the Y-Maze showed no 

significant changes in novel preference between the TBI group and the sham control group at 

any of the time points post-injury; 1 month (0.37±0.03 vs 0.42±0.03 in shams, t(32) = 1.009, 

p=0.3205), 3 month (0.37±0.04 vs 0.39±0.03 in shams, t(23) = 0.326, p=0.7475) (Fig. 3A-B). 

On the Barnes Maze, no significant differences were noted in time taken to locate the escape 

box on any of the training days during the acquisition phase (F1,23 = 0.049, p=0.8276)(Fig. 3C). 

Nor was there any difference in ability to locate the old escape box on the probe day (shams 
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27.8±12.6 vs TBI 14.0±4.2 secs; t(23) = 1.076, p= 0.293) (Fig. 3D). In terms of learning the 

location of the new escape box on probe day, there was a trend of injury effect (F1,23 = 3.979, 

p=0.0581). The sham animals showed greater cognitive flexibility taking a significantly shorter 

time on Trial 1 compared to TBI animals (63.0±16.3 secs vs 24.0±4.6 secs in shams, p=0.014), 

although both groups had similar times on trial 2 (24.0±7.7 secs vs 15.24±3.1 secs in shams, 

p=0.528) (Fig. 3E). 

 

Figure 3: Cognition assessed through Y-maze for spatial working memory at A) 1 month and 

B) 3 months post-injury and the Barnes maze at 3 month post-injury (C-E). For the Barnes 

Maze, C) learning ability in the acquisition phase, D) recollection memory during the probe 

trial and E) cognitive flexibility on probe day are shown. All graphs show mean ± SEM, (n= 

13-19 per group; *p<0.05 compared to shams). 

 

2.6 Acute neuroinflammatory changes in prefrontal cortex (PFC) post-TBI   

Levels of inflammation were assessed by counting the number of cells that were 

immunopositive for GFAP (glial fibrillary acidic protein) (Fig. 4), a structural protein in 

astrocytes and IBA1 (ionized calcium binding adaptor molecule 1) (Fig. 5), a calcium binding 

protein seen in microglia within the PFC and hippocampus. At 1 month post injury, GFAP 

immunopositive staining (GFAP+ve) was decreased within the PFC in TBI animals 
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(135.8±14.39 cells/mm2) compared to shams (193.4±13.48 cells/mm2) (t(7)=2.92, p=0.019) 

(Fig. 4C). However, the number of GFAP+ve cells in the hippocampus of TBI animals 

(193.0±22.9 cells/mm2) and shams (207.5±5.91  cells/mm2) did not differ significantly between 

groups (t(7)=0.55, p=0.601) (Fig. 4D). At 3 months post injury, the number of GFAP+ve cells 

did not significantly differ between the shams and TBI in either the PFC (62.19±5.67 cells/mm2 

vs 61.61±11.58 cells/mm2 in shams, t(6)=0.052, p=0.96) or the hippocampus (453.5±29.01 

cells/mm2 vs 461.6±22.11 cells/mm2 in shams, t(7)=0.214, p=0.84) (Fig. 4G-H). 

 

Figure 4: Representative images of GFAP staining within the A,E) PFC and B,F) hippocampus 

at A-B) 1 month and E-F) 3 months post-injury, as well as their respective cell counts at C-D) 

1 month and G-H) 3 months. Graphs represent the mean ± SEM, (n= 4-5 per group; *p<0.05 

compared to shams). 

 

Similarly, the number of IBA1+ve cells in the PFC of TBI animals (73.84±5.48 cells/mm2) was 

significantly decreased compared to shams (94.45 ±6.70 cells/mm2) (t(7)=2.33, p=0.049) at 1 

month post-injury (Fig 5C). In contrast, the hippocampus showed no significant differences in 

IBA1+ve staining in the TBI animals (66.78±5.03 cells/mm2) compared to shams (86.99±12.2 
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cells/mm2) (t(7)=1.54, p=0.176). By 3 months post-injury, there was no significance difference 

in IBA1+ve staining in the PFC (38.54±4.72 cells/mm2 vs 32.39±3.96 cells/mm2 in shams, 

t(6)=0.89, p=0.409) or the hippocampus (254.9±17.28 cells/mm2 vs 235.9±18.5 cells/mm2 in 

shams, t(7)=0.75, p=0.478) between the groups (Fig. 5G-H).  

 

Figure 5: Representative images of IBA1 staining in the A,E) PFC and B,F) hippocampus at A-

B) 1 month and E-F) 3 months, as well as their respective cell counts at C-D) 1 month and G-

H) 3 months. Graphs represent the mean ± SEM, (n= 4-5 per group; *p<0.05 compared to 

shams). 

 

2.7 Evaluation of neuronal and synaptic integrity  

Neuronal and synaptic structural damage post injury was assessed using a variety of markers; 

PSD-95 (postsynaptic density protein 95) and synaptophysin for assessing synaptic integrity, 

NF-L (neurofilament light chain) and NF-H (neurofilament heavy chain) for assessing 

neurofilament structure and axonal stability and MBP (myelin basic protein) for assessing 

neuronal myelination stability. In the PFC, at 1 month post injury, the relative density of PSD-

95 and synaptophysin were significantly reduced in the TBI animals compared to shams 
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(0.964±0.214 vs 1.721±0.041, t(6)= 2.64, p=0.039 and 2.103±0.469 vs 3.623±0.229, t(5)= 2.59, 

p=0.049, respectively) (Fig. 6). This had resolved by 3 months post-injury, with similar values 

reported in TBI and sham animals; PSD-95 (1.717±0.322 vs 1.738±0.031 in shams, t(6)=0.049, 

p=0.962), synaptophysin (1.77±0.268 vs 1.72±0.192 in shams, t(8)=0.144, p=0.889). In 

comparison, in the hippocampus, there were no significant differences in the relative density of 

PSD-95 and synaptophysin at either 1 month; PSD-95 (0.474±0.056 vs 0.369±0.037 in shams, 

t(8)=1.57, p=0.154), synaptophysin (0.786±0.085 vs 0.973±0.107 in shams, t(6)=1.363, 

p=0.222) or 3 months; PSD-95 (0.239±0.028 vs 0.272±0.024 in shams, t(7)=0.877, p=0.41), 

synaptophysin (0.519±0.085 vs 0.515±0.123 in shams, t(8)=0.022, p=0.983) post-injury (Fig. 

6E-H). 
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Figure 6: Synaptic structural damage was assessed by post-synaptic density 95 (PSD-95) and 

synaptophysin markers. Western blot images of PSD-95 and synaptophysin markers as well as 

GAPDH (housekeeper protein) at the A-D) PFC and E-H) hippocampus for each of the time 

point. The graphs illustrate the relative density of A,C,E,G) PSD-95 and B,D,F,H) 

synaptophysin in TBI animals when compared to sham in the PFC at A-B) 1 month and C-D) 

3 months post-injury, and in the hippocampus at E-F) 1 month and G-H) 3 months post-injury. 

Graph represent the mean ± SEM, (n=5 per group; *p<0.05 compared to shams). 

 

Assessment of axonal integrity with NF-L found no significant differences within the PFC 

(1.393±0.082 vs 1.405±0.059 in shams, t(8)=0.123, p=0.905) or the hippocampus (1.009±0.076 

vs 1.113±0.069 in shams, t(8)=1.019, p=0.338) at 1 month-post-injury; however, a trend 

towards a decrease in the hippocampus at 3 months post-injury was observed (0.88±0.107 vs 

1.184±0.071 in shams; t(6)= 2.38, p=0.06) (Fig. 7D).  In contrast, a significant increase in levels 

of NF-H was seen at 1 month post-injury within the PFC (1.398±0.11 vs 0.922±0.138 in shams; 
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t(8)= 2.70, p=0.027), which had resolved by 3 months post-injury (0.838±0.148 vs 1.216±0.234 

in shams, t(8)=1.365, p=0.209). No changes in NF-H were noted within the hippocampus at 1 

month (1.459±0.213 vs 1.5±0.101 in shams, t(8)=0.177, p=0.864) or at 3 months (2.352±0.427 

vs 2.642±0.204 in shams, t(7)=0.561, p=0.593) post injury. Integrity of myelin was evaluated 

with MBP, with a trend towards an increase in the PFC at 1 month post-injury (0.635±0.068 vs 

0.404±0.074; t(7)= 2.304, p=0.055) which had resolved by 3 months post-injury (1.006±0.018 

vs 0.966±0.07 in shams, t(8)=0.54, p=0.604) (Fig. 7I & K). No differences in MBP were seen 

at 1 month (1.121±0.151 vs 0.915±0.109 in shams, t(6)=1.102, p=0.313) or 3 months 

(0.494±0.062 vs 0.571±0.103 in shams, t(7)=0.595, p=0.571) post-injury in the hippocampus. 

            

Figure 7: Neuronal structural damage was assessed by neurofilament-light chain (NF-L), 

neurofilament-heavy chain (NF-H) and myelin basic protein (MBP) markers. Western blot 

images of NF-L, NF-H and MBP markers as well as GAPDH (housekeeper protein) in the A-

F) PFC and G-L) hippocampus for each of the time point. The graphs illustrate the relative 

density of NF-L, NF-H and MBP in TBI animals when compared to sham in the PFC at A-C) 

1 month and D-F) 3 months post-injury, and in the hippocampus at G-I) 1 month and J-L) 3 

months post-injury. Graph represent the mean ± SEM, (n=5; *p<0.05 compared to shams). 
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2.8 Oxidative stress 

Oxidative stress was assessed by evaluating levels of the antioxidant, SOD-1 (superoxide 

dismutase 1) (Fig. 8). In the PFC, there was a significant increase in the relative density of 

SOD-1 at 1 month post-injury (1.082±0.033 vs 0.85±0.032 in shams, t(6)= 5.074, p=0.002), 

which had resolved by 3 months (0.67±0.102 vs 0.602±0.049 in shams, t(7)=0.547, p=0.602) 

post-injury. In the hippocampus, no changes in SOD-1 were noted at either time-point; 1 month 

(0.934±0.043 vs 0.881±0.052 in shams, t(8)=0.787, p=0.454), 3 months (0.679±0.056 vs 

1.09±0.203 in shams, t(7)=1.764, p=0.121). 

              

Figure 8: Oxidative stress was assessed by superoxide-dismutase 1 (SOD-1) marker. Western 

blot images of SOD-1 and GAPDH (housekeeper protein) in the A,C) PFC and B,D) 

hippocampus for each of the time points. The graphs illustrate the relative density of SOD-1 in 

TBI animals when compared to sham in the PFC at A) 1 month and C) 3 months post-injury, 

and in the hippocampus at B) 1 month and D) 3 months post-injury. Graphs represent the mean 

± SEM, (n=5 per group; **p<0.01 compared to shams). 
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Table 1. Summary of behavioural results; changes in TBI when compared to shams at 1 

month and 3 months post injury. 

Test 

Paradigm 

Behaviour 

measurement 

1 month 3 month 

Open 

Field Test 

(OFT) 

Distance 

Travelled (m) 

(∆= -2.99) ↓ (∆= -11.83)* 

p= 0.021 

Time in Center 

(s) 

(∆= 1.97) (∆= -1.64) 

Elevated 

Plus Maze 

(EPM) 

Time in open 

arms (s) 

(∆= 8.29) (∆= -15.17) 

Forced 

Swim Test 

(FST) 

Time Immobile 

(s) 
↑(∆=26.57)* 

p= 0.027 

↑(∆= 34.45)** 

p= 0.004 

Y-Maze Novel 

Preference 

(∆= -0.045) (∆= -0.018) 

Barnes 

Maze 

Escape Latency 

to box on 

Acquisition 

Training (s) 

NA Day 1: (∆= -0.523) 

Day 2: (∆= -15.80) 

Day 3: (∆= 3.697) 

Escape Latency 

to Old box (s) 

NA (∆= -13.78) 

Escape Latency 

to New Box (s) 

NA Trial 1: (∆= -38.95)*  

p= 0.014 

Trial 2: (∆= -8.781)  

 

Note: *p<0.05, **p<0.01, ↓= decrease in value when compared to shams, ↑= increase in 

value when compared to shams, ∆= (mean of TBI – mean of sham) 
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Table 2. Summary of histopathological results; changes in TBI when compared to shams at 1 

month and 3 months post injury, at the prefrontal cortex and hippocampus region. 

Markers Prefrontal Cortex Hippocampus 

1 month 3 month 1 month 3 month 

GFAP  

(glial fibrillary 

acidic protein) 

↓ (∆= -57.60)* 

p= 0.019 

 (∆= 0.59)  (∆= -14.50)  (∆= -8.17) 

IBA1  

(ionized 

calcium 

binding 

adaptor 

molecule 1) 

↓ (∆= -20.70)* 

p= 0.049 

(∆= 6.15) (∆= -20.20) (∆= 19.06) 

PSD-95 

(postsynaptic 

density protein 

95) 

↓ (∆= -0.76)* 

p= 0.039 

(∆= -0.02) (∆= 0.11) (∆= -0.03) 

Synaptophysin ↓ (∆= -1.52)* 

p= 0.049 

(∆= 0.05) (∆= -0.19) (∆= 0.003) 

NF-L 

(neurofilament 

light chain) 

(∆= -0.01) (∆= -0.09) (∆= -0.10) ↓ (∆= -0.30) 

p= 0.06 

NF-H 

(neurofilament 

heavy chain) 

↑ (∆= 0.48)* 

p= 0.027) 

(∆= -0.38) (∆= -0.04) (∆= -0.29) 

MBP  

(myelin basic 

protein) 

↑ (∆= 0.23)        

p=0.055  

(∆= 0.04) (∆= 0.21) (∆= -0.08) 

SOD-1 

(superoxide 

dismutase 1) 

↑ (∆= 0.23)** 

p=0.002 

(∆= 0.07) (∆= 0.05) (∆= -0.42) 

Note: *p<0.05, **p<0.01, ↓= decrease in value when compared to shams, ↑= increase in 

value when compared to shams, ∆= (mean of TBI – mean of sham) 
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3. Discussion 

    The current study investigated the effect of moderate-severe TBI on chronic changes in 

axonal and synaptic integrity, neuroinflammation and persistent functional deficits at 1 and 3 

months post-injury. It was found that, following TBI, animals showed persistent depressive-

like behaviour with increased time spent immobile in the FST at 1 and 3 months post-injury. A 

decrease in cognitive flexibility on the Barnes Maze was seen at 3 months post-injury, but no 

impairment was noted in learning and memory during the acquisition phase of the task nor in 

recognition memory on the Y-Maze (Table 1).  Within the PFC, synaptic loss was noted at 1 

month post-injury, as indicated by decreased levels of synaptophysin and PSD-95, which 

corresponded to a concomitant decrease in the number of astrocytes and microglia. Furthermore, 

other neuronal changes such as increases in NF-H and MBP, were also observed at this early 

timepoint in the PFC. These changes were resolved by 3 months post-injury.  In contrast, within 

the hippocampus, no changes in the number of inflammatory cells was noted at either time-

point nor any effect on synaptic integrity, with the main finding a decrease in relative expression 

of NF-L at 3 months post-injury.   

The most notable functional finding was that TBI led to the development of persistent 

depressive-like behaviour that had not resolved by 3 months post-injury (Table 1). Although no 

ongoing motor impairment was noted on the rotarod, with performance at sham level at 3 weeks 

post-injury, there was a decrease in locomotor activity at 3 months post-injury on the open field. 

This may relate to lack of motivation to explore the open field (Correia et al., 2017), but further 

studies will be needed to confirm this theory.  Nonetheless, it appears that the increase in 

immobility time in the FST reflects a behavioural response, rather than gross motor impairment.  

This increase in immobility time is thought to be indicative of behavioural despair and, given 

that it decreases with administration of antidepressants (Castagné V et al., 2009), is thought to 

provide an indicator of depressive-like behaviour. The observations in this study are in line with 

clinical studies, which have reported the prevalence of depression in TBI patients to be as high 

as 77% (Osborn et al., 2014b), with 30-40% of individuals suffering from major depressive 
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disorder within a year post-injury (Jorge et al., 2004).  In contrast, pre-clinical studies have had 

mixed results, with reports of no difference in behaviour on the FST at 1 month post moderate 

controlled cortical impact (Geppetti et al.; Tucker et al., 2017; Wang et al., 2011) or 6 months 

post-lateral fluid percussion injury (Jones et al., 2008). Conversely, Milman et al and Taylor et 

al found increased immobility at 2-3 months post-injury utilising a diffuse weight drop model 

and a more severe CCI model, respectively (Milman et al., 2005; Taylor et al., 2006). This 

suggests that, in order for depressive-like behaviour to be present at sub-acute-chronic time-

points post-injury, a wider spread injury may be required, like the diffuse model of injury 

employed here.  

Indeed, within this study, the profile of deficits, in depressive-like behaviour and reduced 

cognitive flexibility, align with structural changes that were mostly noted within the PFC and 

not the hippocampus (Table 2). The PFC plays a central role in emotional regulation, with 

reductions in PFC volume following TBI associated with the development of depressive 

symptoms post-TBI (Hudak et al., 2011; Jorge et al., 2004; Rao et al., 2010).  In regards to 

cognitive flexibility, lesions within the PFC lead to an impairment in the ability to modify a 

response in relation to new information of a learned task (Bizon et al., 2012; Rabinowitz and 

Levin, 2014), similar to the deficit seen here, with post-TBI animals taking longer to locate the 

escape box when it was moved during the probe trial. These deficits were associated with 

decreased levels of PSD-95 and synaptophysin within the PFC, suggesting synaptic dysfunction.  

Few studies have examined the effect of TBI on synaptic morphology in the PFC region post-

TBI, with Hoskinson et al finding alterations in dendritic spine density at 4 months following 

a parietal CCI injury (Hoskison et al., 2009) and Zhao et al finding a significant reduction of 

dendritic spine density in layer II/III pyramidal neurons of the medial PFC at two weeks post-

FPI (Zhao et al., 2017).  This supports the idea that TBI can cause significant disruption to the 

PFC region. Notably, although PSD-95 and synaptophysin had returned to sham levels by 3 

months post-injury, functional deficits persisted, suggesting that there may have been persistent 

alterations in the circuitry (ex: serotonin circuitry, receptor expression) of the PFC. Specific 
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examination of synaptic morphology within different layers and specific regions of the PFC 

may provide further insight into these alterations. It might also be beneficial to investigate total 

neuron number in future studies, for a more precise measurement of synapse loss.  

As well as evidence of synaptic disruption, levels of NF-H were also significantly increased at 

1 month post-injury within the PFC, before returning to baseline at 3 months, although no 

changes were noted in levels of NF-L.  Neurofilaments are the dominant intermediate filament 

of axons (Siedler et al., 2014; Yuan et al., 2012) and are thought to be a key contributor to axon 

strength and resilience to mechanical stretch (Hill et al., 2016). Immediately following diffuse 

impact acceleration and fluid percussion injuries, neurofilament compaction due to side-arm 

phosphorylation or proteolysis is known to be a key indicator of axonal integrity (Okonkwo et 

al., 1998; Povlishock et al., 1997). Activation of neuronal proteases is also associated with an 

acute reduction in levels of neurofilament as measured via western blot encompassing the light, 

medium and heavy subtypes (Posmantur et al., 1994; Serbest et al., 2007).  The increase in NF-

H at one month post-injury may therefore reflect a rebound reparative response following this 

acute injury phase involving disruption and loss of these proteins. Another potential explanation 

for the increase seen in NF-H in the current study is as a protective mechanism against toxic 

oxygen radical species. Wataya et al  found that NF-H may act to sequester toxic lipid 

peroxidation byproducts in aldehydes, in order to protect critical active sites on proteins from 

oxidative attack (Wataya et al., 2002). NF-H is thought to preferentially perform this task as it 

is a lysine-rich protein, the component providing the buffering mechanism (Bogdanova et al., 

2013). Unfortunately, within our study, we did not investigate oxidative stress markers directly, 

but instead used a measurement of superoxide dismutase 1 (SOD1), an antioxidant enzyme 

against superoxide radicals (Ansari et al., 2008).  Levels of SOD1 were elevated, like those of 

NF-H, at 1 month post-injury within the PFC, suggesting that this could be a similar protective 

mechanism against elevated levels of reactive oxygen species (ROS). Indeed, overexpression 

of SOD1 is known to be neuroprotective in a number of models of brain injury (Endo et al., 

2007; Sugawara et al., 2002). Previous studies have shown ongoing oxidative stress within the 
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injured parietal cortex at 1 month following FPI injury, as indicated by an increase in levels of 

oxidative damaged lipids and proteins (Lima et al., 2008; Silva et al., 2011). Future studies 

should confirm whether there is evidence of ongoing oxidative stress within the PFC following 

a purely diffuse weight drop injury.  

Surprisingly, despite the pattern of behavioural deficits seen here and the evidence of synaptic 

dysfunction, increased neuroinflammation was not seen in the PFC at either 1 or 3 months post-

injury.  In fact, a reduction in the number of microglia and astrocytes was noted in this region 

at 1 month post-injury. Given that these cells have a number of beneficial functions, including 

release of neurotrophic factors, such as BDNF (Gomes et al., 2013; Toyomoto et al., 2005), 

modulation of neurotransmitter levels within the synapse (von Blankenfeld and Kettenmann, 

1991) and supply of energy to neurons (Belanger and Magistretti, 2009), this decrease may not 

be beneficial.  Indeed, previous reports have found a decrease in levels of GFAP, a cytoskeletal 

protein expressed by many astrocytes, in the PFC of depressed patients (Johnston-Wilson et al., 

2000; Miguel-Hidalgo, 2005; Turner et al., 2004). It has been proposed that this alteration in 

astrocytes may influence glutamatergic signalling, thereby contributing to pathology (Chung et 

al., 2015; Medina et al., 2016).  The mechanism driving this decrease in resident immune cell 

numbers within the PFC at 1 month post-injury is not known, but it is possible that these cells 

may have migrated to other sites, such as the corpus callosum (Plummer et al., 2018), with 

restoration of numbers by 3 months post-injury.  Further studies are needed to confirm this 

result. Furthermore, as only total number of microglia were assessed, it is important to also 

confirm whether they are resting or reactive to provide a clearer picture of the 

neuroinflammatory reaction after injury. Besides glial cells, neuroinflammation can also be 

evaluated by neurochemical changes as Lozano et al. has shown the mobilization of chemokines 

and cytokines to the site of injury post-TBI which may be neuroprotective or neuro-damaging 

depending on time after injury (Lozano et al., 2015). The relationship between TBI and 

neurochemical changes should be investigated in future studies to provide a more complete 

neuroinflammatory role post-TBI. 
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In contrast to the evidence of structural changes within the PFC at subacute time points post-

injury, this study found minimal pathology within the hippocampus. This lack of hippocampal 

pathology is supported by the lack of deficits in the learning phase of the Barnes Maze or in 

recognition memory as assessed by the Y-Maze.  These tasks preferentially assess hippocampal 

dependent learning with Conrad et al demonstrating that bilateral damage to the CA3, CA4 or 

dentate gyrus led to a decrease in spatial memory on the Y Maze (Conrad et al., 1996). In 

regards to the lack of hippocampal mediated cognitive impairment seen in this study, previous 

studies, contrastingly, have shown persistent cognitive deficits post-TBI, with, for example, 

Pearce et al observing significant deficits in spatial learning ability in the MWM beginning at 

two months and lasting up to one year following lateral FP brain injury (Pierce et al., 1998), 

with similar reports of cognitive deficits from one month to one year following CCI injury 

(Shear et al., 2004).   This most likely relates to the more significant hippocampal damage 

associated with these injury models, with CCI associated with a 60% loss of hippocampal 

synapses acutely, that had still not recovered to pre-injury levels by day 60 (Scheff et al., 2005). 

Similar levels of significant hippocampal cell death have been reported following FPI (Royo et 

al., 2006), unlike the lack of synaptic damage seen here at either one or three months post-

injury.  Previous studies utilising the diffuse impact-acceleration model have similarly reported 

a lack of hippocampal dependent cognitive deficits on the MWM or radial arm maze (Hallam 

et al., 2004; Maughan et al., 2000), with a corresponding lack of neuronal loss within this area 

(Hallam et al., 2004).   

In conclusion, this study found that the PFC is significantly affected at one month following a 

diffuse TBI. There was evidence suggestive of both synaptic and axonal disruption that were 

associated with a decrease in the number of astrocytes and microglia. These alterations within 

the PFC also coincide with the impairments on the FST and decreased cognitive flexibility seen 

after injury. In contrast, the hippocampus was relatively spared at 1 and 3 months post-injury, 

with future studies needing to examine later time-points to determine if hippocampal damage 

remerges. Nevertheless, our study provides evidence of early structural changes in the 
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prefrontal cortex after moderate-severe diffuse TBI, which, although resolved at sub-chronic 

stages, may contribute to long-term deficits as a result of neuropathological re-emergence or 

progression at chronic stages in other brain areas and thus may be linked to early 

neurodegeneration. 

 

4. Experimental Procedure: 

4.1 Animals 

Adult male Sprague-Dawley rats (10-12 weeks) (were used under approval of the University of 

Adelaide Animal Ethics Committee (M-2015-027). Animals were housed under conventional 

laboratory conditions, with a 12-hour light-dark cycle and access to food and water ad libitum. 

Animals were randomly allocated to receive either sham surgery or moderate, diffuse TBI, with 

one subset subject to a functional assessment battery at 1 month post-injury (shams n=14; TBI 

n=19) and another at 3 months post-injury (shams n=13, TBI n=14). Following completion of 

functional assessment, animals were perfused and the brains collected for either histological or 

molecular analysis.  

4.2 Injury Model 

The Marmarou impact-acceleration model (Marmarou et al., 1994) was utilized, as it has been 

extensively validated as a model of diffuse injury (Xiong et al., 2013b). Animal weights ranged 

from 350-380g at the time of TBI induction. Animals underwent anaesthetic induction via 

inhalation of 5% isoflurane under normoxic conditions. They were subsequently intubated, 

mechanically ventilated and maintained on 2% isoflurane throughout. A midline incision was 

made to facilitate the placement of a metal disc centrally between lambda and bregma. Animals 

assigned to undergo TBI were then transiently taken off ventilation, strapped onto a foam, with 

injury induced by releasing a 450g weight from a height of 2 metres down a clear tube onto the 

centre of the metal helmet. Contact was observed to ensure single, direct impact without a 

rebound hit. Animals were then subject to hypoxic conditions (2L/min nitrogen; 0.2L/min 

oxygen) for 10 minutes, to replicate the clinical effects seen following this injury model without 
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ventilation, as this hypoxic condition is known to exacerbate the severity of the injury 

(Hellewell et al., 2010; Ishige et al., 1987a). Hypoxia alone had similar levels of cytoskeletal 

structure and neuroinflammation as shams under normoxic ventilation (as in this study) as 

reported by Hellewell et al. previously (Hellewell et al., 2010). Wound closure was performed 

with surgical staples. Successful induction of moderate to severe TBI was assessed 24 hours 

later by rotarod scores of below 100, weight reduction of 5-10% and clinical signs (paresis and 

hunched posture). Animals in the moderate to severe TBI group that were not meeting the above 

criteria were excluded from the study. Shams assessed at the same timepoint (24 hours) 

exhibited none of the clinical signs and had rotarod scores of more than 100.    

4.3 Functional studies 

Functional tests assessing cognition, anxiety, depression and motor function were performed at 

1 month and 3 months post-injury. All functional data was recorded using the ANY-maze Video 

Tracking System version 4.99m (Stoelting Co.). The functional tests were done in order from 

least to most aversive (stress inducing) except the rotarod test which was done at specific 

timepoints throughout the experiment regardless of other tests. 

4.3.1 Rotarod 

The rotarod is used as a standard motor coordination evaluation test for rodents (Deacon, 2013). 

Animals were placed on an elevated horizontal rod that rotates along the longitudinal axis. 

Animals were first habituated on the stationary rod for 10 secs. Then, for every 10 sec thereafter, 

the rotation of the rod was accelerated at a constant rate of 3rpm until the 100 sec mark 

(maximum acceleration speed of 30rpm). Animals were kept on the rotarod at the maximum 

speed for a further 20 secs before decelerating the speed and removing the animal from the test. 

The rotarod score was measured by the latency of the animal to fall off the rod. Animals were 

trained for 3 consecutive days or until a score of 120 (baseline) was achieved. Following injury, 

animals were tested on the rotarod at 24 hours then every 7 days following, i.e., day 8, day 15 

and so on till the endpoint of the study.  

4.3.2 Open Field Test 
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The open field test (OFT) is a common tests of locomotor activity (Malkesman et al., 2013). 

Animals were placed in the centre of a large square box (95cm x 95 cm) with walls at height 

44.5cm and the total distance travelled over a 5 minute period was recorded.  

4.3.3 Elevated Plus Maze 

The elevated plus maze (EPM) is widely used in anxiety research (Malkesman et al., 2013). 

Animals were placed in the centre of an elevated (50cm in height) cross-shaped maze consisting 

of two open and two closed (walls of height 40cm) maze arms (each of length 50cm), facing 

the open arms, for 5 minutes. Time spent in the closed arms versus open arms was recorded, 

with increased time spent in the closed arms thought to represent anxiety-like behaviour. 

4.3.4 Y-Maze 

The Y-Maze is used to test cognition in terms of spatial recognition memory (Wright and 

Conrad, 2005). In the Y-Maze, animals are placed in an equal angled Y-shaped arena, with each 

arm of the maze identical in size and shape but visually distinct (due to cues on the wall) from 

the others. The test involves two 3-minute trials separated by 1 hour. In the first trial, one arm 

was closed off with a clear wall (novel arm) to enable the animal to visually recognise its 

presence; in the second trial, this novel arm became accessible (wall removed). In cases of 

reduced spatial reference memory, the animal spends less time within the novel arm.  

4.3.5 Barnes Maze 

The Barnes maze evaluates spatial learning and memory in rats (Sunyer et al., 2007). The maze 

is an elevated, open circular black platform with 18 holes evenly distributed along its edges. 

One of the holes is pre-determined as the escape hole with a black escape box placed below the 

hole. The Barnes maze test was preformed over the course of five days; three days of acquisition 

trials, a rest day (no interaction with the animals) and a probe day. During the acquisition days, 

animals were subject to two trials spaced 15 mins apart. They were placed in the centre of the 

Barnes maze in a brightly lit room with the time taken for the animal to find and enter the escape 

box recorded. On day 5, the escape box was relocated to a new hole and two trials conducted 1 

hr apart. In trial 1, the time taken for the animal to reach the old position of the escape hole was 
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recorded.  In both trials, the time taken to locate and enter the newly relocated escape box was 

recorded as a measure of cognitive flexibility. 

4.3.6 Forced Swim Test 

The forced swim test (FST) is widely utilised to assess depressive-like behaviour (Bogdanova 

et al., 2013). The animal was placed within an inescapable glass cylinder filled halfway with 

25 °C water, adjusted for the animal’s length so that the hind legs does not touch the bottom of 

the cylinder, for 5 minutes. The time spent immobile was recorded as a measure of behavioural 

despair. 

4.4 Tissue Collection and Processing 

Animals were randomly assigned for further processing, either by molecular analysis or 

immunohistochemistry, during euthanasia. Animals that were to be used for molecular analysis 

were transcardially perfused with 0.9% saline and the brain dissected with the prefrontal cortex 

(PFC) and hippocampus taken (n=5 per group). Samples were snap-frozen in liquid nitrogen 

before being stored at -80°C. The samples were then homogenised via sonication in freshly 

prepared buffer (20mM Tris-HCl pH 7.5, 2mM EDTA, 0.5mM EGTA, 140mM 2-

mercaptoethanol) with protease inhibitor cocktail (Sigma), 10uL/mL aprotinin, leupeptin, 

pepstatin A and 10mM PMSF. Each sample underwent 3 bursts of 10 seconds duration under a 

sonicator probe. Homogenised samples were centrifuged for 30 minutes at 14000 rpm and 4°C, 

before supernatant was collected. Protein concentration was estimated with Pierce BCA Protein 

Assay (ThermoScientific) at 750nm absorbance. 

Animals that were to be used for immunohistochemical analysis were transcardially perfused 

with 0.2mL heparin + 10% formalin. Brains were removed and post-fixed in 10% formalin for 

24 hours, then blocked into 2mm coronal sections and embedded in paraffin-wax. To examine 

the PFC, three consecutive 5μm coronal slices were taken beginning at +4.20mm from Bregma 

for each animal. For hippocampal sections, three serial 5μm coronal slices per animal were 

taken starting at -1.60mm representing anterior hippocampus, -2.80mm representing mid 
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hippocampus and at -3.80mm representing posterior hippocampus. Tissue mounted slides were 

allowed to dry at 37°C overnight. 

 

 

4.5 Western Blot 

Gel electrophoresis was performed using Bolt 4-12% Bis-Tris Plus gels (Life Technologies) 

with 50ug of protein loaded per well. Gels were run at 150V for 30-45 minutes, depending on 

the molecular weight of the protein of interest, and transferred to a PVDF membrane using the 

iBlot 2 Dry Blotting System (Life Technologies). Membranes were washed in 1X tris-buffered 

saline with tween (TBST) (3 washes x 5 minutes), stained with Ponceau S red solution (Fluka 

Analytical) (5 minutes) for protein visualisation, and washed with distilled water until removal 

of Ponceau had been achieved. 

Membranes were incubated for 2.5 hours with primary and secondary antibodies in 1X iBind 

solution using the iBind Western System (Life Technologies). Primary antibodies were used at 

individually optimised concentrations: mouse anti-post-synaptic density protein 95 (PSD-95) 

(1:1000, ab2723 or ab18258, Abcam), rabbit anti-synaptophysin (1:1000, ab32127, Abcam), 

mouse anti-myelin basic protein (MBP) (1:250, ab62631, Abcam), mouse anti-neurofilament 

(1:300, ab24574, Abcam), rabbit anti-superoxide dismutase 1 (SOD1) (1:1000, ab13498, 

Abcam), and the primary housekeeping antibody chicken anti-GAPDH (1:4000, ab83956, 

Abcam). Secondary antibodies to the respective primary antibodies (donkey anti-rabbit, donkey 

anti-mouse and donkey anti-chicken, IRDye 800CW; LI-COR, Inc.) were used at 1:3000. 

Western blots were imaged using an Odyssey Infrared Imaging System (model 9120; software 

version 3.0.21) (LI-COR, Inc.) at a resolution of 169μm. Semi-quantitative analysis of band 

signals was performed using ImageJ version 1.49 and Image Studio Lite version 5.2. 

Normalization of blot runs at 1 month and 3 month were performed using a single control 

sample of the respective time points. Thus, relative density of the samples were calculated based 

on the adjusted density for each blot, as below: 
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Adjusted density = 
𝑏𝑎𝑛𝑑 𝑠𝑖𝑔𝑛𝑎𝑙 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛/ℎ𝑜𝑢𝑠𝑒𝑘𝑒𝑒𝑝𝑒𝑟

𝑏𝑎𝑛𝑑 𝑠𝑖𝑔𝑛𝑎𝑙 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑟𝑜𝑡𝑒𝑖𝑛/ℎ𝑜𝑢𝑠𝑒𝑘𝑒𝑒𝑝𝑒𝑟
  

Relative density = 
𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑝𝑟𝑜𝑡𝑒𝑖𝑛

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 ℎ𝑜𝑢𝑠𝑒𝑘𝑒𝑒𝑝𝑒𝑟
 

 

 

4.6 Immunohistochemistry 

Immunohistochemistry (IHC) was performed as per standard procedure. In brief, slides were 

oven-dried, de-waxed in xylene, rehydrated in ethanol and then placed into methanol with 0.5% 

hydrogen peroxide to block endogenous peroxidases. Then the slides were washed twice in 

phosphate buffered saline (PBS) and were blocked in normal horse serum (NHS) (1:30) for 30 

minutes before incubation overnight with primary antibody (Table 3). The following day, slides 

were washed twice in PBS before application of secondary antibody (DAKO, 1:250, 30 

minutes). Slides were once again washed twice with PBS, and then incubated with streptavidin 

peroxidase conjugate (SPC) (1:1000, 60 minutes). Slides were given a final wash in PBS, then 

incubated with 3,3’-Diaminobenzidinetetrahydrochloride (Njoku et al.) (1:50, 7 minutes) for 

antigen retrieval. Lastly, slides were counterstained with haematoxylin, placed in ethanol and 

subsequently in xylene, before mounting on cover slips. 

Following staining, sections were scanned with Nanozoomer slide-scanner (Hamamatsu, Japan) 

and images viewed on NDPview (version 2). GFAP Iba1 immunoreactivity was assessed 

quantitatively by counting the reactive and immunopositive cells per mm2 within the 

hippocampus (CA1+ CA3+DG region) and PFC (prelimbic region). The experimenter was 

blinded to the experimental group during cell counting and counts were performed twice.  

 

Table 3. Primary antibodies investigated using immunohistochemistry. 

Primary 

Antibody 

Analysis Target Antigen 

Retrieval 

Host 

animal and 

Dilution 

Manufacturer 

GFAP Astrocyte reactivity Citrate Rabbit 

1: 40,000 

DAKO 

Iba1 Microglial reactivity Citrate Rabbit 

1: 20,000 

Wako 

[GFAP: Glial Fibrillary Acidic Protein, Iba1: Ionized calcium Binding Adaptor molecule 1] 
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4.7 Statistics 

Except where outlined below, all data was analysed via two-tailed unpaired t-test using 

GraphPad Prism software. A repeated two-way analysis of variance was performed on the 

rotarod scores and on the acquisition days of the Barnes maze test. P values <0.05 were 

considered statistically significant. 
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Abstract 

Traumatic brain injury (TBI) is a common risk factor for later neurodegeneration, which can 

manifest as dementia.  Despite this, little is known about the time-course of development of 

functional deficits, particularly cognitive and neuropsychiatric impairments, and whether these 

differ depending on the nature of the initiating insult. Therefore, this study investigated long 

term functional impairment at 12 months post-injury following diffuse TBI of different 

severities. Male Sprague-Dawley rats (420-480g; 10-12 weeks) were either given a sham 

surgery (n=14) or subjected to Marmarou’s impact acceleration model of diffuse TBI for a 

single mild TBI (n=12), repetitive mild TBI (3 mild diffuse injuries at 5 day intervals) (n=14) 

or moderate to severe TBI (n=14). At 12 months after injury, they were tested on a functional 

battery encompassing motor, neuropsychiatric (anxiety and depressive-like) and cognitive 

function. Our results showed that moderate to severe TBI animals exhibited significant 

impairments in cognitive flexibility (p=0.009) on the Barnes maze when compared to age-

matched sham animals. Neither repetitive mild TBI nor single mild TBI animals showed 

significant functional impairments when compared to shams. Thus, this study provides the first 

insight into chronic functional impairments associated with different severities of diffuse TBI, 

with moderate to severe TBI being a higher risk factor for impaired cognitive function at 12 

months post-injury. Taken together, this may have implications for risk of dementia 

development following different severities of injury. 

Keywords: cognition, anxiety, diffuse injury, injury severity, chronic outcomes 
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1. Introduction 

 

Traumatic brain injury (TBI) covers a broad spectrum of disease, ranging from milder 

concussive insults to severe injuries. Since the first documentation of TBI leading to the 

development of parkinsonian-like symptoms in professional boxers (Martland, 1928b), the 

research community has regarded TBI as not just a single insult, but as an injury that has 

ongoing functional consequences (Masel and DeWitt, 2010b). Repetitive mild (rmTBI) is 

linked with the later incidence of depression (Jorge et al., 2004; Vargas et al., 2015a), anxiety 

(Max et al., 2011) and impairments in learning and memory (Guskiewicz et al., 2005; 

McAllister et al., 2012). Studies on contact-sport athletes have associated a history of multiple 

concussions to a range of behavioural abnormalities, memory deficits and even parkinsonism 

(McKee et al., 2009) in later years. Conversely, following a single severe injury, cognitive 

impairments are most notable, with emergence of deficits in different cognitive domains over 

time, even in the subacute phase (Till et al., 2008). For example, serial neuropsychological 

testing over 5 years following injury found that 30% of patients who had experienced a 

moderate/severe TBI had clinically significant decline in two or more domains of cognitive 

functioning (Till et al., 2008). Higher rates of anxiety and depression are also reported 

chronically following a single moderate/severe injury, with reports of clinically significant 

depression in 46% of individuals at 10 years post-injury (Draper et al., 2007), compared to ~20% 

in the general population (Bromet et al., 2011). 

Experimental models of TBI also support the persistence of functional deficits following 

injury (McAteer et al., 2016; Mouzon et al., 2018; Petraglia et al., 2014). Animals subjected to 

a focal TBI induced by the controlled cortical impact model demonstrated persistent subtle 

cognitive deficits on the Morris Water Maze at 12 months post injury (Dixon et al., 1999). 

Similarly, animals injured via fluid percussion (FPI), which produces a mixed focal and diffuse 

injury, also had persistent cognitive deficits at 12 months post-injury (Hausser et al., 2018; Sell 

et al., 2017).  Following purely diffuse axonal injury (Lv et al.), cognitive deficits, evidenced 
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by impaired spatial and recognition memory on the Barnes Maze, as well as increased anxiety, 

have been reported at 3 months post-rmTBI (McAteer et al., 2016), while  impaired spatial 

learning and cognitive flexibility and increased depressive-like behaviour were observed at 3 

months following a single moderate/severe diffuse TBI (Arulsamy et al., 2018b). To date, 

however, the behavioural effects of a purely diffuse injury have not been investigated pre-

clinically beyond this 3 month time-point. This represents a significant gap in the existing 

literature, as “pure” forms of focal injury occur in only 28% of moderate-severe TBI cases, 

while diffuse axonal injury is seen in 72% of individuals, with “pure” diffuse axonal associated 

with significantly lower scores on the Glasgow Coma Scale (Skandsen et al., 2010). 

These persistent functional impairments seen following injury may set the stage for later 

pathology, including a significantly increased risk for the development of neurodegenerative 

diseases, such as AD (Fleminger et al., 2003a; Nemetz et al., 1999a; Plassman et al., 2000), 

Parkinson’s (PD) (Bower et al., 2003; Gardner et al., 2015a; Goldman et al., 2006), chronic 

traumatic encephalopathy (CTE) (McKee et al., 2009; Omalu et al., 2011; Omalu et al., 2005), 

fronto-temporal dementia (FTD) (Deutsch et al., 2015a; Rosso et al., 2003) and motor neurone 

disease (MND) (Chen et al., 2007b; Chio et al., 2005), as reviewed in (Faden and Loane, 2015; 

Li et al., 2017; McKee and Daneshvar, 2015; Sundman et al., 2014a).  Of these, the link between 

TBI and the later emergence of dementia has received the most attention to date. A dose-

response relationship is thought to exist in terms of the risk of developing neurodegenerative 

disease (Plassman et al., 2000), with more severe injury associated with greater risk, but even 

a single mild TBI may be linked to an increased risk of dementia (Lee et al., 2013). A 

retrospective study utilizing health data from emergency department visits showed an increased 

risk of dementia with a minimum hazard ratio of 1.46 in moderate to severe TBI patients and a 

minimum hazard ratio of 1.1 in mild TBI patients, over a 5-7 year follow-up period (Gardner 

et al., 2014b). A similar risk was reported in a Taiwan-based retrospective cohort study, in 

which individuals who had experienced a moderate to severe TBI showed a 1.68 fold higher 

risk of dementia than non-TBI patients (Wang et al., 2012).   
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Interestingly, the type of dementia that develops may differ depending on the nature of 

the initiating insult. For example, it is hypothesised based on case studies that a single 

moderate/severe TBI may be more strongly associated with accelerating age-related dementia, 

such as AD (Fleminger et al., 2003a; Mortimer et al., 1991), while rm TBI may be more strongly 

linked to CTE (McKee et al., 2009). However, the neuropathology following both single injury 

and rmTBI shares similarities, including the accumulation of hyperphosphorylated tau in the 

form of neurofibrillary tangles (NFTs) at the base of the sulci (McKee et al., 2013a; Stein et al., 

2014) and the development of a persistent inflammatory response post-injury (Aungst et al., 

2014; McKee and Daneshvar, 2015; Turner et al., 2016). Indeed, it has been suggested that TBI 

induced neurodegeneration may be its own unique entity, with further research needed into this 

question.  Thus, this study aimed to document the range of chronic functional impairments, 

including in motor function, neuropsychiatric function and cognition, that may be associated 

with the different TBI severities (mild TBI, rmTBI TBI and moderate/severe TBI) at 12-months 

post injury in an experimental model of DAI. Furthermore, the study assessed whether 

functional changes at 12-months post-injury were associated with alterations in either neuronal 

number or integrity in the prefrontal cortex (PFC), a key region for cognitive function. 

2. Results 

 

2.1. Locomotion assessment 

General locomotor activity was assessed as distance travelled (m) in the OFT. A one-way 

ANOVA showed a significant main group effect in the distance travelled in the OFT (F3,50 = 

3.234, p=0.030). However, post-hoc analysis showed no significant changes (p>0.05) in 

distance travelled when the TBI groups were compared to shams at 12 months post-injury in 

the OFT. Nevertheless, the single mild TBI group did show significantly higher locomotor 

activity when compared to repetitive mild TBI animals (29.45m ±3.07 vs 18.68m ±2.09, p= 

0.021) (Fig 1A). This was confirmed by the generation of a heat-map showing activity within 

the OFT (Fig 1B), which shows much greater coverage of the apparatus in the single mild TBI 
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animals. A similar pattern in locomotor activity was seen in the distance travelled in the elevated 

plus maze, with a significant main group effect (F3,50 = 4.963, p= 0.004) driven by the single 

mild TBI group having a significantly higher distance travelled when compared to both the 

repetitive mild TBI group (6.14m ±0.60 vs 3.69m ±0.32, p=0.006) and the moderate/severe TBI 

animals (6.14m ±0.60 vs 3.82m ±0.62, p=0.01) after post-hoc analysis (Fig 1C). Locomotor 

assessment in the Y-maze showed a non-significant main group effect (F3,50 = 2.114, p= 0.110) 

(Fig 1D).   

                                  

Figure 1: Distance travelled (m) as a measure of locomotion on A) open field maze, C) 

elevated plus maze and D) Y-maze post injury. B) Heat map analysis on open field maze 

indicating location and exploratory time within the open field post injury. Graphs 

represent the mean ± SEM, (n= 12-14per group; aa p<0.01,a p<0.05 compared between 

injury groups).Heat maps are from group composites. 

 

2.2. Anxiety-like behaviour 

Anxiety-like behaviour was assessed through various parameters in the open field and elevated 

plus mazes. Both assess different anxiety stimuli in the animal, with the open field assessing 

anxiety over open spaces and the elevated plus maze assessing anxiety over open spaces and 

height (Walf and Frye, 2007). In the open field, animals showed no significant main group 
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effect either in time spent rearing (F3,50 = 2.17, p= 0.103) or time spent in the centre of the field 

(F3,50 = 0.716, p= 0.547) (Fig 2A and 2B). 

 However, in the elevated plus maze, there was a significant main group effect in the time spent 

in the open arms (F3,48 = 3.984, p= 0.013), as well as the number of open arm entries (H= 14.48, 

p= 0.002) and the number of crossings (H= 12.14, p= 0.007). The mild TBI group showed the 

least anxiety-like behaviour, with the most time spent in the open arms (95.3 secs ±17.44) and 

the highest number of both open arm entries 7.5 (5-14) and crossings 14 (9-28), when compared 

to other groups. These were not significant when compared to shams; time in open arm (95.3 

secs ±17.44 vs 61.24 ±10.66 in shams, p= 0.248), number of open arm entries (7.5 (5-14) vs 6 

(1-17) in shams, p= 0.944) and number of crossings (14 (9-28) vs 12 (2-31) in shams, p= 0.786), 

but was significant only when compared to moderate-severe TBI; time in open arms (95.3 secs 

±17.44 vs 31.01 secs ±7.6, p=0.007) (Fig 2C), number of open arm entries (7.5 (5-14) vs 3 (0-

10), p= 0.001) (Fig 2D) and number of crossings (14 (9-28) vs 6.5 (0-20), p= 0.006) (Fig 2E). 

Indeed this pattern can be seen in the heat-map, which shows the average amount of time spent 

in each part of the elevated plus maze across the injury groups, with the single mild TBI animals 

showing the highest amount of time in the open arms (Fig 2F).  
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Figure 2: Anxiety-like phenotype as measured by A) time spent rearing(s) and B) time 

spent in the centre(s)of the open field as well as measured by C) time in the open arms(s), 

D) number of entries into the open arms and E) number of crossings in the elevated plus 

maze post injury. F) Heat map analysis on elevated plus maze indicating location and 

exploratory time within the arms of the elevated plus maze post injury. Graphs represent 

the A-C) mean ± SEM and D-E) median with interquartile range, (n= 12-14 per group; 

aa p<0.01 compared between injury groups).Heat maps are from group composites. 

 

 

2.3. Depressive-like behaviour 

Depressive-like behaviour was assessed through the forced swim test. Animals showed no 

significant main group effect in immobility time (F3,50 = 1.434, p= 0.244) (Fig 3A), latency to 

first immobility (F3,50 = 0.443, p= 0.723) (Fig 3B) or number of immobility episodes (H=2.104, 

p= 0.551) (Fig 3C) at 12 months post injury. 
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Figure 3: Depressive-like behaviour as measured in forced swim test by A) time spent 

immobile (s), B) latency to first immobility (s) and C) number of immobility episodes post 

injury. Graphs represent the A-B) mean ± SEM and C) median with interquartile range, 

(n= 12-14 per group). 

 

2.4. Cognition 

Cognitive outcome was assessed using the Y-Maze for spatial memory and Barnes maze for 

learning, memory (reference and working memory) and cognitive flexibility (ability to 

reprogram previously learned task) (Darcet et al., 2014). Our results showed no significant main 

effect in any of the Y-maze parameters between the TBI groups and shams at 12 months post 

injury; novel preference (F3,50 = 1.234, p= 0.307) (Fig 4A), number of novel arm entries (H= 

4.848, p= 0.183) (Fig 4B) and latency to 1st novel arm entry (F3,48 = 0.0703, p= 0.976) (Fig 4C), 

as confirmed via heat-map analysis, with all animals showing greater intensity of staining in 

the novel arm, indicating higher occupancy of this arm (Fig 4D).  
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Figure 4: Cognition assessed through Y-maze for spatial working memory measured by 

A) novel preference, B) number of entries into the novel arm and C) latency to first novel 

arm entry post-injury. D)Heat map analysis on Y-maze indicating location and 

exploratory time within the arms of the Y-maze post injury. Graphs represent the A & C) 

mean ± SEM and B) median with interquartile range, (n= 12-14 per group). Heat maps 

are from group composites. 

 As for the Barnes maze, learning acquisition showed neither a significant group effect within 

the three days of trial acquisition (F3,50 = 2.208, p= 0.099) nor a significant interaction effect 

(F6,100 = 1.036, p=0.407), but, as would be expected, showed a significant main effect of time 

(trial days) (F2,100 = 64.57, p<0.0001) (Fig 5A).  Indeed, all groups showed a significant 

improvement in escape latency from day 1 to day 2 (p<0.05), with no significant differences 

noted between day 2 to 3 (Fig 5A). On the heat-map, this can be seen as the more targeted time 

spent near the escape box on Days 2 and 3, compared to the more exploratory pattern on Day 1 

(Fig 6). There was also no significant main effect of group in latency to the old escape box 

location in trial 1 on probe day (F3,38 = 0.346, p= 0.792) (Fig 5B). However, there was a 

significant group effect on cognitive flexibility, as indicated by time to find the new escape box, 

on probe day (F3,38 = 4.343, p= 0.01). In trial 1 on probe day, the moderate/ severe TBI group 

had a significantly longer latency to reach the new escape box location when compared to shams 

(90.2 ±13.44 secs vs 48.08 ±6.96 secs, p= 0.009) (Fig 5C), which was also seen in trial 2 on 

probe day, but which did not reach statistical significance (57.5 ± 12.25 secs vs 28.5 ± 5.07 
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secs, p= 0.121). This is illustrated by the construction of a heat-map showing the average time 

spent in each part of the Barnes Maze across the two trials, with the moderate/severe TBI 

animals spending more time in the old escape box location (Fig 7). Similar to the acquisition 

trial, there was no significant interaction effect on the probe day (F3,38 = 0.724, p= 0.544) but 

there was a significant main effect on time (difference between trials) (F1,38 = 27.93, p<0.0001), 

with all animals improving their escape latency from trial 1 to trial 2 (p<0.05). Revisits to the 

old escape box location in trial 2 on probe day only showed a trend towards significance in 

effect between groups (H= 7.403, p =0.06) (Fig 5D). There was also no significant main effect 

seen between the groups in terms of reference memory error (F3,38 = 0.932, p= 0.435) (Fig 5E) 

or working memory error (F3,35 = 0.492, p= 0.69) (Fig 5F) on the probe day. Repetitive mild 

TBI and mild TBI groups showed no significant cognitive impairment when compared to shams 

on any of the cognition parameters (p > 0.05).   
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Figure 5: Cognition post-injury assessed through Barnes Maze for learning measured by 

A) latency to escape (s) on acquisition day, for memory measured by B) latency to old box 

location (s) on trial 1 probe day, D) number of revisits, E) reference memory error and 

F)working memory error on trial 2 on probe day, as well as for cognitive flexibility 

measured by C) latency to escape to the new box (s) on probe day. Graphs represent the 

A-C, E-F) mean ± SEM and D) median with interquartile range, (n= 12-14 per group).a 

p<0.05 compared between injury groups, *p<0.05 compared to shams). 

 

 

Figure 6: Heat map analysis on Barnes maze indicating location and exploratory time 

within the Barnes maze on acquisition days post injury. Heat maps are from group 

composites. 
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Figure 7: Heat map analysis on Barnes maze indicating location and exploratory time 

within the Barnes maze on probe day post injury. Heat maps are from group composites. 

 

2.5. Molecular Analysis 

NeuN was used to assess whether TBI led to loss of neurons at 12-months post-injury in the 

PFC. There were no significant changes in the total number of neurons observed in the PFC 

(F3,21=2.329, p=0.104) (Fig 8A). This was further probed using several markers, including 

synaptophysin for assessing synaptic integrity, neurofilament light chain (NF-L) for assessing 

neurofilament structure and axonal stability and myelin basic protein (MBP) for assessing 

neuronal myelination stability. There were no alterations in synaptophysin levels in the PFC 

(F3,21=0.244, p=0.865) (Fig 8B). Similarly, neither levels of NF-L (F3,21=0.762, p=0.528) (Fig 

8C) nor MBP (F3,21=0.473, p=0.705) (Fig 8D) differed as a function of injury at 12 months post 

injury. 
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Figure 8: Molecular analysis on the prefrontal cortex at 12 months was measured using 

semi-quantitative western blotting to analyse A) neuronal survival (total neurons, NeuN 

marker), B) integrity (synaptophysin marker) and C-D) structure damage (NF-L and 

MBP markers). GAPDH was used as a housekeeper protein for all analysis. Graphs 

represent the mean± SEM. Representative images of the western blots were extracted 

from Image Studio Lite. 

 

3. Discussion 

 

The current study investigated the presence of functional impairments at 12 months post- 

TBI of different severities; mild TBI, mild repetitive TBI and moderate/severe TBI. At 12 

months post-DAI, when compared to age-matched sham animals, neither impairments in 

general locomotor activity, the expression of depressive-like behavior nor impairments in 

cognition in terms of spatial learning, working memory or recognition memory were evident, 

regardless of TBI severity. However, the moderate/ severe TBI animals exhibited significant 

subtle impairments in cognitive flexibility when compared to shams.  There was also a trend 

towards reduced anxiety, as evidenced by more time spent in the open arm of the EPM, in the 

single mild TBI group, with significant differences between this group and both the repeated 

mild and single moderate-severe TBI animals, although no differences were seen in comparison 
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to sham-injured animals. This was further reflected in locomotor activity, with mild TBI 

animals having higher levels of activity compared to both repetitive mild TBI and 

moderate/severe TBI animals. Given the subtle alterations in cognitive flexibility at 12-months 

post-moderate/severe TBI, we used Western blot to analyse whether these were associated with 

changes in neuronal number or morphology in the PFC. Interestingly, no changes in either 

neuronal number or neuronal/synaptic integrity were found in the PFC at 12-months post-injury 

in any of the experimental groups. Taken together, the results of the current study seem to 

suggest that brain injury during early life has minimal effect on mid-life motor, cognitive or 

neuropsychiatric function, although subtle impairments in cognitive flexibility may still set the 

stage for the later emergence of more significant behavioural impairment. 

The most notable finding in this study was that moderate-severe TBI led to a subtle 

impairment in cognitive flexibility at 12 months post-injury, with no effect seen on either spatial 

or recognition memory. This may indicate preferential disruption of prefrontal cortex function, 

as this region is critical for executive function, which governs cognitive flexibility (Bizon et al., 

2012; Kim et al., 2011).  Indeed, TBI has been consistently identified as a risk factor for higher-

order cognitive deficits involving the frontal and prefrontal cortices (Nolan et al., 2018a). In 

healthy adults, tasks like the Trail Making Test-B, which require cognitive flexibility and 

switching attention, lead to activation of the dorsolateral prefrontal (DLPFC) and medial 

prefrontal regions of the brain (Zakzanis et al., 2005). Following TBI, performance on Trail 

Making Test-B, as well as other measures of cognitive flexibility, attention and working 

memory, such as the Hayling, Selective Attention Task, n-back and Symbol Digit Modalities 

Test, is slowed (Owens et al., 2018). This slowed information processing speed post-TBI is 

associated with lower fractional anisotropy (FA) and higher mean diffusivity (Bamdad et al.) 

scores, indicating white matter abnormality, in the majority of tracts assessed (Owens et al., 

2018). Consistent with this, Ware and colleagues (2018) recently demonstrated that veterans 

who have suffered blast-induced TBI display elevated quantitative anisotropy (QA) and 

reduced right hemisphere volume in all subcortical-DLPFC tracts assessed, with decreased fibre 
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count in the right-DLPFC-putamen tract and increased generalized FA in the right DLPFC-

thalamus tract specifically (Ware et al., 2018).  

Similar effects on cognitive flexibility and prefrontal cortex function following a single 

moderate/severe TBI have also been reported preclinically (Robinson et al., 2018). In a model 

of lateral fluid percussion, working memory, as assessed by a T-maze task, was significantly 

impaired up to one week post-TBI, an effect that was accompanied by alterations in prefrontal 

cortex function (Smith et al., 2015a). Similarly, previous work from our group has shown 

impairments in cognitive flexibility at 3 months following a DAI (Arulsamy et al., 2018b). 

More chronically, in a CCI model that produced frontal contusions, impairments in reversal 

learning were observed at 12 months post-injury in a rule shift assay, a measure of cognitive 

flexibility (Chou et al., 2016b). It is not known, however, whether this deficit persisted from 

the time of injury or emerged at some later time-point prior to testing at 12 months, with further 

studies needed to incorporate a temporal time-course of behavioural changes required.  

Despite the subtle alterations in cognitive flexibility observed in this study, there were no 

changes in the PFC in either total neuronal number, as measured by NeuN, or neuronal 

morphology, as measured by levels of synaptophysin, NF-L or MBP, at 12 months post-

moderate/severe injury. This is consistent with earlier findings from our group, which showed 

no changes in neuronal morphology in the PFC at 3 months following moderate/severe TBI in 

the same experimental model of DAI (Arulsamy et al., 2018b). However, it is important to note 

that we conducted only a gross characterisation of neuronal morphology changes using WB 

analysis of total level of protein for each marker of interest. It is possible that a more in-depth 

analysis using IHC or neuroimaging techniques would have detected subtle changes in neuronal 

morphology or circuit connectivity, which are more likely to be present than gross alterations. 

For example, previous work in the lateral cortical impact model has demonstrated working 

memory dysfunction without the presence of neuronal cell death in the prelimbic region of the 

medial PFC [55], suggesting that more subtle alterations may drive these changes in PFC-
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mediated cognition. In support of this, Hoskison et al found significant shortening of layer V/VI 

basal dendritic arbours and an increase in the density of both basal and apical dendritic spines 

in the prelimbic region of the medial PFC of rodents at 4 months following a lateral cortical 

impact injury (Hoskison et al., 2009). These subtle dendritic changes were accompanied by 

persistent alterations in working memory function on both delayed match-to-place and delayed 

alternation t-maze tasks (Hoskison et al., 2009). Thus, future studies should investigate subtle 

alterations in neuronal morphology within different cortical layers and specific subregions of 

the PFC, as well as the connectivity of the PFC with downstream structures. 

Interestingly, in contrast to the findings of the current study, impairments in cognitive 

flexibility and alterations in PFC function have also previously been reported following rmTBI 

(Nolan et al., 2018a). In the CHIMERA (Closed-Head Impact Model of Engineered Rotational 

Acceleration) model, a newly developed model of injury allowing precise control of injury 

direction and impact velocity, mice showed impaired in several PFC dependent functions, 

including social memory (27-28 days post-injury) and impaired spatial working memory (32-

35 days post-injury) following five repeated mild hits (Nolan et al., 2018a). These behavioural 

impairments were accompanied by a slight decrease in the adaptation rate of layer V pyramidal 

neurons in the mPFC (Nolan et al., 2018a). Similarly, work from our own group has 

demonstrated mild cognitive impairments up to 3 months post-injury in a model of rmTBI 

(McAteer et al., 2016). However, it is important to note that neither of these studies investigated 

the long-term time point (i.e. 12 months) being investigated in this study. It is possible that 

impairments in executive function following rmTBI may steadily improve over time, 

normalizing by 12 months, and may worsen again later with ageing. Consistent with this theory, 

in individuals who have suffered a moderate/severe TBI, measures of executive control function 

improve over time in the first year post-injury, only to decline again from this point (Vasquez 

et al., 2018). 
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In contrast to the subtle alterations in cognitive flexibility demonstrated in the current study, 

other types of cognitive function, such as novel arm recognition in the Y-maze and learning the 

escape location in the Barnes Maze, known to be dependent on hippocampal functioning, were 

intact at 12 months post-injury in this model of DAI.  Previous studies have shown that damage 

to the hippocampus through administration of kainic acid impairs performance on the Y Maze, 

with no preference seen for the novel arm (Conrad et al., 1996), and that greater degrees of 

hippocampal loss following focal TBI are associated with worsening performance on the 

Barnes Maze (Corrigan et al., 2012). Thus, the lack of impairment in these tasks seen in the 

current study would suggest an intact hippocampus. Indeed, previous studies of diffuse 

moderate-severe TBI have shown a lack of hippocampal cell loss (Hallam et al., 2004) and 

preservation of hippocampal synaptic proteins (Arulsamy et al., 2018b), with a concomitant 

lack of hippocampal dependent cognitive deficits on either the MWM or radial arm maze 

following impact-acceleration TBI (Hallam et al., 2004; Maughan et al., 2000). This is in 

contrast, however, to focal injury models, with cognitive impairment on the Morris Water Maze 

seen at 12 months post-CCI (Dixon et al., 1999) and FPI (Pierce et al., 1998), in line with the 

significant hippocampal damage induced following these injury types (Broadbent et al., 2004; 

Conrad et al., 1996). More recently, these hippocampal-dependent cognitive deficits have been 

shown to persist in mice up to 6.5 months post-injury following 3 impacts over 3 days in the 

CHIMERA model (Chen et al., 2017b). Given that TBI is associated with the later development 

of dementia, it may be that the 12 month time-point is insufficient to detect hippocampal deficits 

in a DAI model.   Indeed, given that the animals are 14-15 months old at the conclusion of this 

study, this represents only later middle-age in humans, with perhaps more time needed to 

develop hippocampal pathology sufficient to lead to detectable cognitive deficits. Thus, future 

studies are needed to investigate whether subtle changes in neuronal morphology or 

connectivity may be present in the hippocampus at this chronic timepoint, even in the absence 

of overt behavioral change.  
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In the current study, no alterations in depressive-like behaviour were noted following any 

injury type, despite evidence to suggest that both rmTBI and moderate/severe TBI can increase 

the risk for depression (Petraglia et al., 2014; Washington et al., 2012). Clinical studies show 

that there is a 40% prevalence of depression manifesting within a year post single moderate-

severe TBI (Hudak et al., 2011; Jorge et al., 2004; Osborn et al., 2014a) and a three-fold increase 

risk of developing depression following repeated mild injuries (Guskiewicz et al., 2007).  Pre-

clinical studies have also reported increased immobility time in the forced swim test up to 3 

months following both a single moderate diffuse TBI (Arulsamy et al., 2018b; Milman et al., 

2005) and rmTBI (3 injuries in 10 days) (Corrigan et al., 2017b; McAteer et al., 2016), which 

suggests that this is a subacute deficit that has resolved by 12 months post-injury.  Indeed, this 

is in line with other studies, with Jones et al (2008) reporting no behavioural despair (measured 

by FST) in their FPI animals at 6 months post injury (Jones et al., 2008). Alternatively, the FST 

may not be an appropriate test to investigate depressive-like behavior at this time point, as the 

large size of the animals impedes swimming behaviour. Use of other measurements, such as 

the saccharin preference test or other test of depressive-like behaviours in rodents, may be 

needed to confirm the lack of depressive-like phenotype at chronic time-points.  

Our study also demonstrated a lack of anxiety-like effect on both the OFT and EPM in the 

single moderate severe TBI animals and repeated mild TBI animals.  Intriguingly, there was a 

trend towards decreased anxiety in the single mild TBI group in open arm time in the EPM, 

with significant differences between this group and both the repeated mild and single moderate-

severe groups. This increased time in the EPM may be seen as decreased anxiety (Walf and 

Frye), or may reflect disinhibition or increased impulsivity (Lindemann et al., 2007). Indeed, 

similar findings have previously been reported acutely following mTBI (Nolan et al., 2018a; 

Shultz et al., 2011), suggesting that this may be a particular behavioural consequence of this 

type of insult that can persist to the chronic phase. The interpretation of these results as 

disinhibition or increased impulsivity may be supported by the increased locomotor activity 

noted in the single mild TBI animals, as they had a significantly greater distance travelled than 
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the repetitive mild TBI animals in the OFT and had a significantly longer distance travelled 

than both of the other TBI groups in the EPM.  This increased locomotor activity can be seen 

as hyperactivity (Budinich et al., 2013; Tucker et al., 2016; Yu et al., 2012), which is related to 

lesions in the cerebral cortex, mainly at the axis connecting the olfactory bulb and enthorhinal 

cortex within the pre-frontal cortex (Viggiano, 2008). This hyperactive behaviour (increased 

distance travelled) on the open field has been reported previously after mild CCI in mice 

(Budinich et al., 2013; Tucker et al., 2016), supporting our findings. It is unclear why this 

phenotype was present in the single mild TBI and not the other injury groups, with the 

possibility that the difference could also reflect slight locomotor deficits in the repetitive mild 

TBI and moderate/severe TBI group. Nevertheless, since this behaviour was only present in the 

single mild TBI group and was not significantly different than shams, one must be careful to 

not over-interpret this result and future studies will be necessary to further investigate specific 

neuropsychiatric impairments  at chronic timepoints post-TBI.   

In conclusion, our study shows that a moderate/ severe diffuse TBI may lead to significant 

impairments in cognitive flexibility at 12- months post-injury, suggestive of potential subtle 

alterations in either the structure or connectivity of the PFC that must be confirmed with future 

studies. In contrast, hippocampal dependent tasks that rely on spatial recognition memory were 

unaffected in all injured animals, indicating potential preservation of this region at 12 months 

post-injury. Surprisingly, no long-term meaningful behavioural effects of either single or 

repetitive mild injuries were noted at 12 months post-injury. It is important to note, however, 

that the current study used all male rodents. Given the growing body of literature indicating 

differences in injury outcomes in males versus females, additional work is needed to determine 

whether the behavioural changes seen chronically following TBI present differently as a 

function of sex. Furthermore, future studies should investigate the extent to which the ageing 

process itself contributes to the emergence of cognitive change following TBI. 
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Taken together, the results of this study provide the first systematic comparison of the 

functional effects following different severities of diffuse TBI in a preclinical model of DAI at 

one year post injury. While behavioural effects were subtle at this timepoint, indicating that 

DAI in early life has minimal effect on mid-life function, regardless of initial injury severity, 

differences observed between injury severity groups may still provide meaningful information. 

The risk for impaired cognitive function may be greater following moderate/severe TBI than 

more mild forms of injury, which may have important implications for risk of dementia 

development following different severities of injury.  This is particularly important given that 

it is still impossible to predict which individuals will go on to develop dementia following TBI. 

Thus, understanding the temporal profile of even subtle alterations in behaviour following 

different severities of TBI may have clinical utility in helping to determine risk profiles. 

4. Materials and Method 

 

4.1.  Animals 

Male Sprague-Dawley rats (10-12 weeks) were used under the approval of the University of 

Adelaide Animal Ethics Committee (M-2015-243A) and (M-2015-187). Animals were housed 

under conventional laboratory conditions, with a 12-hour light-dark cycle and access to food 

and water ad libitum. Animals were randomly allocated to receive either sham surgery (n=7), 

repetitive sham surgery (3 incisions at 5 day intervals) (n=7), a single mild diffuse TBI (n=12), 

repetitive mild diffuse TBI (3 mild diffuse injuries at 5 day intervals) (n=14), or 

moderate/severe diffuse TBI (n=14). Animals underwent a comprehensive functional battery 

assessing motor, neuropsychiatric and cognitive function at 12 months post injury.  

4.2. Injury Model 

The Marmarou impact-acceleration model (Marmarou et al., 1994) was utilized, as it 

has been extensively validated as a model of diffuse injury (Xiong et al., 2013b). Animal 

weights ranged from 420-480g at the time of TBI induction. Animals underwent anaesthetic 

induction via inhalation of 5% isoflurane under normoxic conditions. Animals in the sham, 
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repetitive sham, mild diffuse TBI and repetitive mild diffuse TBI groups were maintained on 

2% isoflurane via nose cone throughout, while animals in the moderate/severe diffuse TBI 

group were subsequently intubated, mechanically ventilated and maintained on 2% isoflurane 

throughout (Marmarou et al., 1994; McColl et al., 2018). A midline incision on the scalp was 

made to facilitate the placement of a metal disc centrally between lambda and bregma on the 

skull. Animals in the sham and repetitive sham groups received the incision only, with repetitive 

sham animals receiving the incision three times, with 5 day intervals between each incision.  

Animals in the repetitive mild diffuse TBI and mild diffuse TBI group were removed 

from the nose cone and strapped onto a foam, with injury induced by releasing a 450g weight 

from a height of 0.75 metres down a clear tube onto the centre of the metal helmet; mild diffuse 

TBI animals receive this procedure only once, while repetitive mild diffuse TBI animals receive 

this injury three times, with 5 day intervals between each injury (Table 1). Conversely, animals 

in the moderate to severe diffuse TBI group were transiently taken off ventilation after incision, 

strapped onto a foam, with injury induced by releasing a 450g weight from a height of 2 metres 

(Table 1). Contact was observed to ensure a single, direct impact without a rebound hit in all 

animals. Only animals in the moderate/severe diffuse TBI group were then subjected to hypoxic 

conditions (2L/min nitrogen; 0.2L/min oxygen) for 10 minutes, to replicate the clinical effects 

seen following this injury model without ventilation, as this hypoxic condition is known to 

exacerbate the severity of the injury (Hellewell et al., 2010; Ishige et al., 1987a). Hypoxia alone 

had similar levels of cytoskeletal structure and neuroinflammation as shams under normoxic 

ventilation, as reported  previously by Hellewell et al. (Hellewell et al., 2010). Saline treatment 

(5mL of 0.9% (w/v) saline solution) was administered subcutaneously to prevent dehydration 

(Eakin et al., 2015a) in the moderate/severe diffuse TBI group after wound closure, as well as 

if there was continuous weight loss post injury. 
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  Table 1. Injury model and specifications 

 

Injury 

Type 

Weight of 

metal  

Height of 

drop 

Days of 

injury 

Mechanically 

ventilated 

Hypoxia 

Treatment 

Saline 

Treatment 

Repetitive 

Mild TBI 

450g 0.75 m 3 days (at 

5 day 

intervals) 

No No No 

Mild TBI 450g 0.75 m 1 day No No No 

Moderate 

to Severe 

TBI 

450g 2.00 m 1 day Yes Yes Yes 

 

 

Wound closure was performed with surgical staples. Successful induction of 

moderate/severe TBI was assessed 24 hours later by rotarod scores of below 100, weight 

reduction of 5-10% and clinical signs (paresis and hunched posture). Animals in the 

moderate/severe TBI group that did not meet the above criteria were excluded from the study. 

Moderate/severe TBI was associated with a 20% mortality rate due to brainstem haemorrhage, 

which is similar to other weight-drop model studies of moderate to severe TBI (Hsieh et al., 

2017). Shams, repetitive shams, mild diffuse TBI and repetitive mild diffuse TBI animals 

assessed at the same timepoint (24 hours) exhibited none of the clinical signs outlined above 

and had rotarod scores of more than 100s. Over the 12-month time period of the study, an 

additional 4 animals were lost due to age-related health complications.  

4.3. Functional studies 

Functional tests assessing cognition, anxiety, depression and motor function were performed at 

12 months post-injury. All functional data was recorded using the ANY-maze Video Tracking 

System version 4.99m (Stoelting Co.). The functional tests were done in order from least to 

most aversive (stress inducing) to the animals. The experimenter was blinded to the 

experimental groups of each animal throughout the duration of the study, with unblinding only 

occurring during analysis of the results.  

4.3.1 Open Field Test 
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The open field test (OFT) is a common test of locomotor activity (Malkesman et al., 2013). 

Animals were placed in the centre of a large square box (95cm x 95 cm) with walls at height 

44.5cm and the total distance travelled over a 5 minute period was recorded. Time in centre of 

the field and rearing time were also measured for anxiety-like behaviour. 

4.3.2 Elevated Plus Maze 

The elevated plus maze (EPM) is widely used in anxiety research (Malkesman et al., 2013). 

Animals were placed in the centre of an elevated (50cm in height) cross-shaped maze consisting 

of two open and two closed maze arms (walls of height 40cm, each of length 50cm), facing the 

open arms, for 5 minutes. Time spent in the closed arms versus open arms as measured by the 

centre point of the animal’s body was recorded, with increased time spent in the closed arms 

thought to represent anxiety-like behaviour (Malkesman et al., 2013). Other anxiety-like 

behaviour parameters measured in the EPM include number of centre crossings and number of 

open arm entries as measured by the centre point of the animal’s body.  

4.3.3 Y-Maze 

The Y-Maze is used to test cognition in terms of spatial recognition memory (Wright and 

Conrad, 2005). In the Y-Maze, animals are placed in an equal angled Y-shaped arena, with each 

arm of the maze identical in size and shape, but visually distinct (due to cues on the wall), from 

the others. The test involves two 3-minute trials separated by 1 hour. In the first trial, one arm 

was closed off with a clear wall (novel arm) to enable the animal to visually recognise its 

location; in the second trial, this novel arm became accessible (wall removed). In cases of 

reduced spatial reference memory, the animal spends less time within the novel arm (Wolf et 

al., 2016).  

4.3.4 Barnes Maze 

The Barnes maze evaluates spatial learning and memory in rats (Sunyer et al., 2007). The maze 

is an elevated, open circular black platform of 1.2m in diameter with 18 holes evenly distributed 
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along its edges. One of the holes is pre-determined as the escape hole, with a black escape box 

placed below the hole. The Barnes maze test was preformed over the course of five days; three 

days of acquisition trials, a rest day (no interaction with the animals) and a probe day. During 

the acquisition days, animals were subject to two trials spaced 15 mins apart. They were placed 

in the centre of the Barnes maze in a brightly lit room, with the time taken for the animal to find 

and enter the escape box recorded. On day 5, the escape box was relocated to a new hole and 

two trials were conducted 1 hr apart. In trial 1, the time taken for the animal to reach the old 

position of the escape hole was recorded.  In both trials, the time taken to locate and enter the 

newly relocated escape box was recorded as a measure of cognitive flexibility. Number of 

revisits to the old box location on trial 2 of probe day, working memory error (measured as the 

number of revisits to the same hole after exploration of less than 3 different holes) and reference 

memory error (measured as the number of visits to any of the holes that was not the escape hole) 

were recorded as additional cognitive parameters.  

4.3.5 Forced Swim Test 

The forced swim test (FST) is widely utilised to assess depressive-like behaviour (Bogdanova 

et al., 2013). The animal was placed within an inescapable glass cylinder filled halfway with 

25 °C water, adjusted for the animal’s length so that the hind legs do not touch the bottom of 

the cylinder, for 5 minutes. The time spent immobile, number of immobile episodes and latency 

to first immobile episode were recorded as a measure of behavioural despair. 

4.4 Tissue Collection and Processing 

Animals were transcardially perfused with 0.9% saline and the brain was removed. The 

prefrontal cortex (n=5-7 per group) was dissected and snap-frozen in liquid nitrogen before 

being stored at -80°C.  

The samples were taken out and homogenised in freshly prepared RIPA lysis buffer (150mM 

sodium chloride, 50mM Tris-hydrochloride acid of pH 7.5-8, 1% of NP-40 IGEPAL CA-630, 
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0.5% sodium deoxycholate, 0.1% of sodium dodecyl sulfate (SDS) and distilled water) with 1X 

cOmpleteTM EDTA-free protease inhibitor cocktail (Sigma). After homogenisation, each 

sample underwent 3 bursts of 10 seconds duration under a sonicator probe with a cooling period 

between each burst. Then the samples were centrifuged for 30 minutes at 14000 rpm and 4°C, 

before the supernatant were collected. Protein concentration was estimated with Pierce BCA 

Protein Assay Kit (ThermoScientific) with the absorbance read at 540nm. All supernatant were 

stored at -80°C until further usage. 

4.5 Western Blot 

Gel electrophoresis was performed using Bolt 4-12% Bis-Tris Plus gels (Life Technologies) 

with 30µg of protein loaded per well. Gels were run at 150V for 1 hour. After the run, blots 

were transferred to a PVDF membrane using the iBlot 2 Dry Blotting System (Life 

Technologies). Membranes were washed in 1X tris-buffered saline with tween (TBST) (3 

washes x 5 minutes), stained with Ponceau S red solution (Fluka Analytical) (5 minutes) for 

protein visualisation, and washed with distilled water until sufficient removal of the Ponceau 

stain had been achieved. 

Membranes were then incubated for 5 minutes with the 1X iBind solution before proceeding 

with the final step of simultaneous incubation with primary and secondary antibodies in 1X 

iBind solution for 2.5 hours using the iBind Western System (Life Technologies). Primary 

antibodies were used at individually optimised concentrations; synaptophysin (1:4000, Abcam, 

ab32127), neurofilament light-chain (1:2000, Abcam, ab72997), myelin basic protein (1:750, 

Abcam, ab62631) and NeuN (1:750, Abcam, ab177487) with housekeeper antibody GAPDH 

(1:1000, Abcam, ab83957 and 1:1000, Abcam, ab9485). Secondary antibodies to the respective 

primary antibodies (donkey anti-rabbit, donkey anti-mouse and donkey anti-chicken, IRDye 

800CW; LI-COR, Inc.) were used at 1:3000. The blots were imaged using an Odyssey CLx 

Infrared Imaging System (model 9140) (LI-COR, Inc.) set at auto resolution for optimum 

visualisation. Semi-quantitative analysis of band signals were performed using Image Studio 
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Lite version 5.2. Normalization of blot runs were performed using a single control sample 

(Rapoport et al.) across blots of the same protein of interest. Thus, relative density of the 

samples was calculated based on the adjusted density for each blot, as below: 

Adjusted density = 
𝑏𝑎𝑛𝑑 𝑠𝑖𝑔𝑛𝑎𝑙 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛/ℎ𝑜𝑢𝑠𝑒𝑘𝑒𝑒𝑝𝑒𝑟

𝑏𝑎𝑛𝑑 𝑠𝑖𝑔𝑛𝑎𝑙 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑟𝑜𝑡𝑒𝑖𝑛/ℎ𝑜𝑢𝑠𝑒𝑘𝑒𝑒𝑝𝑒𝑟
  

Relative density = 
𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑝𝑟𝑜𝑡𝑒𝑖𝑛

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 ℎ𝑜𝑢𝑠𝑒𝑘𝑒𝑒𝑝𝑒𝑟
 

 

4.6. Statistics 

All data, with the exception of Barnes maze data, was analysed via one-way ANOVA 

(Analysis of Variance) with injury severity as the between subjects factor using IBM SPSS 

statistics 24 and GraphPad Prism software. A repeated two-way analysis of variance was 

performed on the acquisition days and latency to new escape box on probe day of the Barnes 

maze test, with trial as the within subjects factor and injury severity as the between subjects 

factor. Post hoc testing was conducted using Tukey’s method. The Kruskal Wallis test was 

used for non-parametric measurements. For all tests, p values < 0.05 were considered 

statistically significant. Shams and repetitive shams were combined together as a single sham 

group, as there were no statistically significant differences in any parameters of behavioural 

and molecular data.  
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Abstract:  

Increasingly, traumatic brain injury (TBI) is recognised as not just an acute event but instead 

results in ongoing neuronal injury that may lead to chronic impairments in multiple cognitive 

domains. Of these, executive dysfunctions are one of the more common changes reported 

following TBI. To fully understand the relationship between TBI and executive dysfunction, 

experimental models are needed. However, to date, there have been a lack of preclinical studies 

systematically comparing the effect of injury severity on executive function, particularly at 

long-term timepoints. Furthermore, many previous studies have not used behavioural measures 

that are sensitive to the full range of executive dysfunction that may manifest after injury, 

particularly in models of diffuse axonal injury. The current study aimed to investigate the 

temporal profile, up to 12 months post-injury, of the evolution of executive dysfunction 

following different severities of injury in a diffuse axonal injury (DAI) model. We utilised a 

rodent touchscreen paradigm to administer the 5 Choice- Continuous Performance Task (5C-

CPT), an extension of the 5-choice serial reaction time task (5CSRT). Interestingly, there were 

no differences in learning, motivation, attention, response time or impulsivity at 1, 6 or 12 

months post-injury in any of the TBI groups compared to sham. Instead, most of the effects on 

executive function seen at the 12 month timepoint appeared to be a result of ageing, not injury. 

As even the 12-month timepoint represents middle age in the rat, future studies will be needed 

to determine whether DAI may influence the presentation of executive dysfunction in older age. 
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1. Introduction: 

       Traumatic brain injury represents one of the leading causes of death and disability 

worldwide. Approximately 2.5 million TBI-related emergency department visits, 

hospitalisations and deaths were reported by the Centre of Disease Control and Prevention in 

just 2010 alone (Faul et al., 2010; Frieden et al., 2014). Annually, 54-60 million people 

worldwide suffer from TBI either through falls, motor vehicle accidents or sports related 

concussion, with mild TBI accounting for at least 70% of TBI (Khan et al., 2003). Moreover, 

increasing evidence suggests that TBI is not just an acute event but instead results in ongoing 

neuronal injury (Carron et al., 2016; Gao and Chen, 2011; Sato et al., 2001) that may lead to 

chronic impairments in cognitive function (McKee et al., 2009; Mouzon et al., 2018; Till et al., 

2008). In a Norwegian multicentre cohort study, at one year post-injury, cognitive impairment 

was still present in 67% of individuals who had experienced a severe TBI (Sigurdardottir et al., 

2015). These impairments can manifest in multiple cognitive domains, including slowed 

information processing and impairments in attention, working memory, social cognition, long-

term memory, self-awareness and executive function (Azouvi et al., 2017).  

Of these, worsened executive function is one of the more common cognitive 

impairments reported following TBI (Bamdad et al., 2003). Executive function is comprised of 

a variety of components, including realistic goal-setting, goal-directed behavioural planning, 

cognitive flexibility, attentional switching, problem solving, behavioural inhibition, self-

initiation, self-monitoring, self-awareness and strategic behaviour (Ylvisaker, 1998). Such 

functions are largely mediated by the pre-frontal cortex (PFC), an area of the brain particularly 

vulnerable to injury in TBI (McAllister, 2008). Using the Behaviour Rating Inventory of 

Executive Function (BRIEF), post-TBI impairments were noted by knowledgeable informants 

in five subtypes of executive function, with elevations on the Shift, Plan/Organise, Task 

Monitor, Organisation of Materials and, most severely, Working Memory clinical scales 

(Matheson, 2010). Similarly, neuropsychological studies have noted impairments in 

performance on multiple measures of cognitive flexibility, attention and working memory, 
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including the Trail Making Test-B, Hayling, Selective Attention Task, n-back and Symbol Digit 

Modalities Test, following TBI (Draper and Ponsford, 2008; Lange et al., 2005; Owens et al., 

2016; Pearce et al., 2016). Such impairments are a major predictor of well-being, social function 

and quality of life in individuals with a history of TBI (Muscara et al., 2008b; Ubukata et al., 

2017) as they make it particularly difficult for individuals to adapt their behaviour to changing 

situations and circumstances. In support of this, executive dysfunction was associated with 

lower community integration following injury in individuals with a history of TBI (Reid-Arndt 

et al., 2007). Executive dysfunction has also been shown to be a major predictor of 

employability post-injury (Weber et al., 2018). 

Interestingly, executive function deficits may display a “dose response”- like pattern, 

with more severe injury associated with a greater risk of impairment (Fujiwara et al., 2008). In 

support of this, following moderate-severe injury, persistent cognitive deficits are noted in 

~65% of patients (1999),  while just 15% of patients report persistent impairment following 

mild TBI (Bigler et al., 2013), although a history of repeated concussive impacts has been linked 

to increased risk of executive dysfunction in later life (Montenigro et al., 2017). Within a group 

of blast-related mild TBI, severity of injury was also a significant predictor of dysfunction, with 

more severe injury associated with worsened integration of regions important for visual sensory 

input with frontal cortical regions important for executive function (Gilmore et al., 2016). 

However, not all literature has been consistent. In a study comparing decision making ability, 

as measured by performance on the Iowa Gambling Task, while differences were observed 

between individuals with TBI and control participants, these were not a function of injury 

severity (that is, performance did not differ between individuals with mild and severe TBI) 

(Cotrena et al., 2014). Similarly, despite the strong association between measures of executive 

function and life satisfaction, injury severity does not significantly correlate with quality of life 

assessment (Dijkers, 2004; Johnston and Miklos, 2002)  

In order to fully understand the relationship between injury severity and the evolution 

of executive dysfunction over time post-TBI, including brain mechanisms that may account for 
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this, experimental models of injury are clearly needed. However, to date, there have been a lack 

of preclinical studies systematically comparing the effect of injury severity on executive 

function, particularly at long-term timepoints post-injury. Recently, our group reported 

persistent deficits in cognitive flexibility at both 3 months (Arulsamy et al., 2018b) and 12 

months (Arulsamy et al., 2019) post-TBI in a model of moderate-severe diffuse axonal injury 

(Lv et al., 2014). Interestingly, while mild deficits in cognitive flexibility have previously been 

noted at 3 months following repetitive mild TBI (rmTBI; (McAteer et al., 2016), these deficits 

were not present at 12-months post-injury following either mild DAI or rmTBI (Arulsamy et 

al., 2019), further supporting the idea of a differential risk profile for impaired executive 

function based on the severity of the original insult. However, it is important to note that, even 

following moderate-severe injury, the deficits in cognitive flexibility observed at 12-months 

post-injury were fairly mild. Thus, it is possible that more subtle alterations in executive 

function may not have been picked up by the Barnes maze task utilised in this study and that 

more sensitive measures of executive function may be needed.  

Despite the prevalence of executive dysfunction deficits in TBI, however, there have 

been relatively few investigations utilising sensitive measures of executive function in 

experimental models of TBI, as many studies to date have instead focused on characterising 

deficits in spatial learning (Bondi et al., 2014; Ozga et al., 2018). Previous studies in the 

controlled cortical impact (CCI) model have used a novel complex cognitive behavioural task, 

the attentional set-shifting task, analogous to the Wisconsin Card Sorting Test, to detect deficits 

in executive function and  behavioural flexibility that increased as a function of injury severity 

at 4 weeks post-TBI (Bondi et al., 2014; Njoku et al., 2019). Similarly, in a CCI model that 

produced moderate-severe frontal contusions, a rule shift assay task has been used to 

demonstrate persistent deficits in cognitive flexibility, as measured by impairments in reversal 

learning, up to 5.5 months following injury (Chou et al., 2016a). Also in the CCI model, the 

Rodent Gambling Task, an analogue of the Iowa Gambling task, identified reductions in 

optimal decision-making, with a bias towards both riskier and safer, sub-optimal choices, 
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chronically (up to 12 weeks) following injury (Shaver et al., 2019a). Interestingly, chronic 

increases in impulsive decision making, as measured by performance on the Delay Discounting 

Task, did not vary as a function of the initial CCI injury severity (Vonder Haar et al., 2017). 

This is consistent with previous work in the 5-choice serial reaction time task (5CSRT) 

reporting persistent (up to 14 weeks post-injury) deficits in impulse control following even mild 

CCI, although it is worth noting that, while only this domain was impaired following mild 

injury, all cognitive domains were impaired following moderate- or severe-CCI injury (Vonder 

Haar et al., 2016). To date, however, sensitive measures of executive function have not been 

used to assess the behavioural effects of a purely diffuse injury. This is particularly significant, 

given that “pure” forms of focal injury occur in only 28% of moderate-severe TBI cases, while 

diffuse axonal injury is seen in 72% of individuals, with “pure” diffuse axonal associated with 

significantly lower scores on the Glasgow Coma Scale (Skandsen et al., 2010).  

Thus, the aim of the current study was to investigate the temporal profile, up to 12 

months post-injury, of the evolution of executive dysfunction following different severities of 

injury in an experimental model of DAI. In order to do so, we utilised a rodent touchscreen 

paradigm to administer the 5 Choice- Continuous Performance Task (5C-CPT), an extension 

of the 5CSRT. A number of executive functions can be assessed using this task, including 

attention (response accuracy), inhibitory control (premature responses) and processing speed 

(response and reward collection latency) (Carli et al., 1983) and inhibitory control (Young et 

al., 2009). Although these touchscreen tasks paradigms have been utilised to investigate 

cognitive dysfunction in other disease models, such as AD (Bharmal et al., 2015; Romberg et 

al., 2011; Romberg et al., 2013a; Young et al., 2009), to our knowledge, this study is the first 

to use the 5CSRT/5C-CPT touchscreen paradigm to investigate alterations in executive function 

in an experimental model of TBI. Given the prevalence, persistence and significance of 

executive dysfunction following TBI, developing sensitive tasks to better investigate the 

evolution of this impairment following different severities of injury is critically important. 
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2. Materials and Method: 

2.1. Animals  

Adult male Sprague-Dawley rats (10-12 weeks) were used under approval of the University of 

Adelaide Animal Ethics Committee (M-2015-187 and M-2015-243A). Animals were housed 

(2-3 animals per cage) under conventional laboratory conditions, with a 12-hour light-dark 

cycle (lights on at 7am and off at 7pm) and had access to water ad libitum. All experiments 

were performed in the light cycle. Food was restricted at 85-90% of free-feeding body weight 

throughout the experiment. Animals were randomly allocated to either sham or repetitive sham 

(rshams) surgery or to one of the diffuse TBI groups:  mild single (mTBI), mild repetitive (3 

mild single TBIs, with 5 days between injuries, rmTBI) or moderate-severe single (msTBI). 

Animals were then allocated to one of three timepoints for post-injury follow-up:  1 month post-

injury (shams/rshams n=6 shams+6 rshams; mTBI n=10; rmTBI n=10; msTBI n=12), 6 months 

post-injury (shams/rshams n=7 shams+7 rshams; mTBI n=14; rmTBI n=13; msTBI n=14) or 

12 months post injury (shams/rshams n=7 shams+7 rshams; mTBI n=12; rmTBI n=14; msTBI 

n=14).  

 2.2. Injury Model 

The Marmarou impact-acceleration model (Marmarou et al., 1994) was utilized, as it has been 

extensively validated as a model of diffuse injury (Xiong et al., 2013a) (Figure 1). Animal 

weights ranged from 420-480g at the time of TBI induction. Animals underwent anaesthetic 

induction via inhalation of 5% isoflurane under normoxic conditions. Animals in the sham, 

repetitive sham, mTBI and rmTBI groups were maintained on 2% isoflurane via nose cone 

throughout (Collins-Praino et al., 2018; Corrigan et al., 2017a; McAteer et al., 2016), while 

animals in the moderate/severe diffuse TBI group were subsequently intubated, mechanically 

ventilated and maintained on 2% isoflurane throughout (Arulsamy et al., 2018b; Arulsamy et 

al., 2019; Plummer et al., 2018). Once the animal was unresponsive to paw pinch, a midline 

incision was made to facilitate the placement of a metal disc centrally between lambda and 

bregma. Animals in the sham and repetitive sham groups received the incision only, with 
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repetitive sham animals receiving the incision three times, with 5 day intervals between each 

incision.  

Animals assigned to undergo TBI were then transiently taken off ventilation (msTBI 

group) or removed from the nose cone (mTBI and rmTBI) and strapped onto a foam, with injury 

induced by releasing a 450g weight from a height of either 0.75m (mTBI and rmTBI) or 2m 

(msTBI) down a clear tube onto the centre of the metal helmet. Contact was observed to ensure 

single, direct impact without a rebound hit. While animals in the mTBI and msTBI groups 

received this procedure only once, animals in the rmTBI group received the injury three times, 

with 5 day intervals between each injury (Table 1). In addition to the injury procedure, animals 

receiving msTBI were also subjected to hypoxic conditions (2L/min nitrogen; 0.2L/min 

oxygen) for 10 minutes, in order to more closely model the clinical effects seen following this 

type of injury, as hypoxic conditions have been shown to worsen injury severity   (Hellewell et 

al., 2010; Ishige et al., 1987b). Hypoxia itself is unlikely to be responsible for any differences 

seen between the TBI groups, as animals undergoing hypoxia alone have been shown to display 

similar cytoskeletal structure and levels of neuroinflammation to shams under normoxic 

ventilation (Hellewell et al., 2010). All other groups (sham, mTBI and rmTBI) received 

normoxic ventilation after injury.  

Wound closure was performed with surgical staples. Saline treatment (5mL of 0.9% 

(w/v) saline solution) was administered subcutaneously to prevent dehydration in the msTBI 

group after wound closure, as well as if there was continuous weight loss post injury (Eakin et 

al., 2015b). Successful induction of moderate-severe TBI was assessed 24 hours post-injury by 

rotarod scores of below 100, weight reduction of 5-10% and clinical signs (paresis and hunched 

posture). Animals in the msTBI group that did not meet the above criteria were excluded from 

the study. Moderate/severe TBI was associated with a 20% mortality rate due to brainstem 

haemorrhage, which is similar to other weight-drop model studies of moderate to severe TBI 

(Hsieh et al., 2017). Shams, repetitive shams, mTBI and rmTBI animals assessed at the same 

timepoint (24 hours) exhibited none of the clinical signs and had rotarod scores of more than 
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100s. Over the 12-month time period of the study, an additional 4 animals were lost due to age-

related health complications.  

 

Table 1. Injury model and specifications  

Injury Type  Weight of 

metal   

Height of 

drop  

Days of 

injury  

Mechanically 

ventilated  

Hypoxia 

Treatment  

Saline 

Treatment  

Repetitive 

Mild TBI  

450g  0.75 m  3 days (at 5 

day 

intervals)  

No  No  No  

Mild TBI  450g  0.75 m  1 day  No  No  No  

Moderate to 

Severe TBI  

450g  2.00 m  1 day  Yes  Yes  Yes  

 

 

Figure 1: Marmarou’s impact acceleration model of diffuse axonal injury. (Image adapted from 

Xiong et al, 2013) 

 

2.3.  5-Choice Serial Reaction Time Task (5CSRT)/5 Choice- Continuous Performance Task 

(5C-CPT) 

Once achieving a reduction to 85-90% of free-feeding weight, animals were habituated, pre-

trained, trained and finally probe tested on the touchscreen cognitive chamber apparatus at their 

respective follow-up timepoint (i.e. either 1, 6 or 12 months). Animals were only subjected to 

a gradual food restriction two weeks prior to their pre-training and were maintained at 85-90% 

of free feeding weight throughout the testing period. Pre-training and training sessions were 
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performed according to a set number of days (total of 25 days), in order to avoid overtraining 

in some groups/ subsets of animals. Probe testing was done on the 26th day. All stages of the 

experiment were performed between 9am and 2pm daily, with supplementary food given as 

needed one hour after completion of the experiment. All chambers were thoroughly cleaned 

with 75% alcohol after each use. Each animal was placed in the same assigned chamber 

throughout the experiment to avoid re-habituation.  

2.3.1. Testing Apparatus 

Behavioural testing was conducted in the Bussey-Saksida Touchscreen operant chamber 

(Campden Instruments Ltd.,U.K.) based on methodology described in previous reports using 

this task (Horner et al., 2013; Kim et al., 2015; Mar et al., 2013b; Young et al., 2009). The 

model (80604-20) consist of 4 identical chambers fixed in a (2 x 2) grid. Each chamber consists 

of a fan (for ventilation and prevention of noises from outside the chamber), a touchscreen 

monitor (15inch, screen resolution of 1024 x 768) on one side, a light equipped magazine unit 

and a pellet dispenser on the opposite side, a tone generator and a houselight (Brettschneider et 

al.) on the ceiling. The chambers are composed of three black plastic walls arranged in a 

trapezoidal shape (30cm height x 33cm length x 13cm width at magazine end x 25cm width at 

monitor end), with a perforated stainless steel floor raised above a collection tray. The shape of 

the chamber allows the animal to focus its attention on the touchscreen monitor for the stimulus 

light. A black mask with five response windows (3cm x 3cm) equally spaced at 1.5cm apart 

and positioned centrally at 2cm from the floor was fitted in front of the touchscreen to allow 

fixated response from the animal when a white solid square (of the same dimensions as the 

window) illuminates (known as the stimulus light). The apparatus was connected to a computer 

which uses the software “Whisker Server” to control and operate all the chambers 

simultaneously. ABETII program software that is equipped with pre-set task programs was used 

to run and measure the 5CSRT/5C-CPT task in the chambers.    
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2.3.2. Pre-training 

Once acclimatized to the experiment room, the animals were weighed for three consecutive 

days with ad libitum food and water, in order to determine free-feeding weight. Food restriction 

according to animal ethics guidelines was performed, where the animal had to reach a goal 

weight of 85-90% of free-feeding body weight (~4g of food per 100g of body weight daily). 

Once goal weight was reached, sugar pellets (Dustless Precision Sugar Pellets, ASF0042, 

45mg, Able Scientific, Australia), which serve as reward for the 5CSRT/5C-CPT task, were 

introduced in the home cage of the animal, as a means of habituating them to the pellets. The 

next day (Day 1), 10 pellets were placed in the magazine of each chamber, and the animals 

were allowed to habituate to their respective chamber for 30 minutes, with the houselight and 

stimuli kept on throughout. After 30 minutes, the animal was placed back into its respective 

home cage and the magazine was checked for complete consumption of food pellets. If 

complete consumption was achieved, the animal was allowed to move on to the next task. 

Otherwise, habituation was repeated. 

After habituation was achieved, the animals were subjected to the pre-training tasks; 

initial touch and must touch, according to the settings outlined in Table 2. These settings were 

input into the 5CSRT task on the ABETII software and the task was run once the animals were 

all placed into their respective chambers. Number of food pellets, stimulus presentation, 

houselight, tone generation and outcome measurements were automatically controlled and 

recorded by the ABETII software. The criterion to pass the initial touch task on day 2 was 

finishing 30 trials in 30 minutes; then, on day 3, the must touch task was run. The criterion to 

pass the must touch task was to finish 20 trials in 30 minutes for two consecutive days, but due 

to the difficulty of the task for animals following TBI, animals took an average of 3-5 days to 

achieve this criterion. Once achieved, the animal was moved onto the training phase.  
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Table 2. Pre-training session variables (adapted from Rat Touch 5C-CPT ABETII Manual 

V1.2) 

Session Initial Touch Must Touch 

Session length 

(min) 

30 30 

Trials 30 20 

ITI (Cotrena et 

al.) 

0 5 

Time out 

(Cotrena et al.) 

0 0 

Stimulus duration 

(Cotrena et al.) 

30 - 

Limited hold - - 

Day 2 ~3-7 

ITI: inter-trial interval 

 

2.3.3. Training 

The training period was divided into two sections; the 5CSRT training and the 5C-CPT training 

(Table 3). The first section was the 5CSRT training period, which consists of the stimulus light 

being presented pseudo-randomly in any one of the windows for a decreasing duration of time 

(60, 30, 20, 10, 5, 2.5 secs) from session 1 to session 6, respectively (Table 3), in order to 

facilitate a good learning curve. On average, animals spent 20 days in total to go through the 

5CSRT training period successfully, with animals that achieved success earlier (~15 days) 

allowed to rest until the 5C-CPT training phase. Only one session was run per day, in order to 

avoid overtraining. Criteria to pass each session was achieving at least 80% in accuracy and 

less than 20% in omissions.  
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Table 3. Training and probe session variables (adapted from Rat Touch 5C-CPT ABETII 

Manual V1.2) 

Session 1 2 3 4 5 6 5C-CPT Probe 

Session 

length 

(min) 

30 30 30 30 30 30 30 30 

Trials 60 60 60 60 60 60 100 120 

 (80 go trials 

+ 40 no-go 

trials) 

ITI 

(Cotrena 

et al.) 

5 5 5 5 5 5 5 5 

Time out 

(Cotrena 

et al.) 

5 5 5 5 5 5 5 5 

Stimulus 

duration 

(Cotrena 

et al.) 

60 30 20 10 5 2.5 2.5 0.5, 1, 2, 3, 4 

secs 

randomly 

presented, 

equally 

Limited 

hold 

60 30 20 10 5 5 Go trial (5 

sec) 

No-Go trial 

(3 sec) 

Go trial (5 

sec) 

No-Go trial 

(3 sec) 

Day ~8 ~9 ~10 ~11-

12 

~13-

16 

~17-

20 

21-25 26 

ITI: inter-trial interval, 5C-CPT: 5 Choice-Continuous Performance Task 

 

Each session began with a sugar pellet being released and the magazine light being 

switched on. When the animal retrieved the pellet, the magazine light was switched off. This 

was then followed by a 5 sec inter-trial interval and subsequent presentation of the stimulus 

light (with duration dependent on the session number; 60, 30, 20, 10, 5, 2.5 secs for sessions 1-

6, respectively) in any one of the 5 windows. If the animal made a response during the 5 sec 

ITI (premature response), the houselights remained on, but no pellet was rewarded. Following 

the ITI, the animal either had to nose poke the right window when the stimulus was presented 

or within the specified limited hold time after the stimulus light had disappeared (Table 3). If 

the right window was nose poked (correct response), a tone was generated, a sugar pellet was 

released and the magazine light turned on. Conversely, if the wrong window was nose poked 
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(incorrect response), the houselights turned off for 5 secs (timeout) and no pellet was 

rewarded. If the animal did not make a response within the limited hold time (omission), there 

was a 5 sec timeout period, with the houselights turned off and no food pellet rewarded. 

Following a 5 sec ITI, the next trial would begin. Each training session was completed at the 

end of 60 trials or at 30 minutes, whichever came first.  

After 20 days, animals that did not achieve a successful training phase (that is, where 

they did not pass the criteria for session 5 with a 5 sec stimulus duration) were excluded both 

from the 5C-CPT training phase and the probe test. In this study, 1 animal in the 1-month 

follow-up group (1 rmTBI), 6 animals in the 6-month follow-up group (1 sham, 2 mTBI and 3 

msTBI) and 10 animals in the 12-month follow-up (3 sham, 4 rmTBI and 3 msTBI) failed to 

pass the criteria for session 5 and were excluded from 5C-CPT training, as well as from the 

overall analysis of this study. 

The second section of the training phase, for the 5C-CPT task, began on the 21st day and 

was conducted for 5 consecutive days (day 21 to day 25). During this section of the training, 

the stimulus presentation duration was kept constant (2.5 sec) (Table 3). The session began 

similarly to the previous 5CSRT training, but consisted of two types of trials; Go trials and No-

Go trials. The presentation of the stimulus light in all five windows is known as a No-Go trial, 

while the presentation of the stimulus light in only one window at a time is known as a Go-trial 

(Figure 2). When a No-Go trial was presented, the animal had to refrain from responding to any 

of the lighted windows during the 3 sec limited hold time (correct rejection). If the animal 

refrained from responding when all 5 windows were lit up for the entire 3 sec, then a tone was 

generated, the sugar pellet was rewarded and the magazine light switched on. Conversely, if the 

animal failed to inhibit its response (false alarm), the houselight switched off for a timeout 

period of 5 sec and no pellet was released. No-Go trials were pseudo-randomly interspersed 

with Go-trials, accounting for 1/3 of the total number of trials. The total number of trials for 

this section of the training phase was 100 trials in 30 minutes: 30 No-Go trials and 70 Go trials. 
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There were no achievement criteria for this section of the training phase, with all animals 

moving onto the probe test on the 26th day.  

 

Figure 2: Touchscreen cognitive chamber utilizing the 5-Choice Continuous Performance task 

(5C-CPT). Go trials; light stimulus presented in one of the five windows and animal has to 

nose-poke the presented window, No-Go trials; all five windows are presented with light 

stimulus and animal has to inhibit from nose-poke response. 

 

2.3.4. Probe test 

On day 26th of behaviour testing, the 5C-CPT probe test was performed. The probe test consists 

of 120 trials, 80 Go trials and 40 No-Go trials, over 30 minutes. The stimulus duration varied 

between each trial pseudo-randomly (0.5sec, 1 sec, 2 sec, 3 sec or 4 sec). All settings, except 

the stimulus duration and trial number, were similar to the settings of the 5C-CPT training 

phase; that is, the houselight was always on, unless an omission, false alarm or inaccurate 

response was made; there was a 5 sec ITI; there was a timeout period of 5 sec; and following 

either an accurate response or a correct rejection, a tone was generated, a sugar pellet was 

released and the magazine light was switched on. 

 

2.4. Outcome measurement 

Response outcomes recorded by the ABETII were extracted and saved as a Microsoft Excel 

file.  Outcome measurements on the probe test included: (1) motivation (number of trials 

completed out of 80 trials), (2) attention (accuracy percentage (# of correct responses/ (# of 
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correct + incorrect responses) *100) and hit probability (# of correct responses/ (# of correct+ 

incorrect+ omission responses) *100), (3) reaction time (correct response latency and latency 

to collect reward), (4) impulsivity (premature response percentage; # of premature response in 

go trials out of total completed trial *100), (5) learning (time taken to achieve each training 

session) and (6) cognitive flexibility (ability to maintain accuracy/hit probability despite 

varying stimulus duration).  

Unfortunately, upon analysis, the sensitivity index (SI) and bias index (RI), as calculated 

according to (Young et al., 2009), of the 5C-CPT training phase revealed that animals did not 

learn the response inhibition portion of the task effectively enough to allow meaningful 

interpretation of the results. 

Formula for SI and RI are as below: 

  , 

  , 

with p (Hit) as hit probability, p (FA) as false alarm probability (a response in the no-go trial). 

SI provides a non-parametric assessment of sensitivity of the test (ranging from +1 to -1) with 

a value of 0 indicating an equally likely chance of animals to distinguish between a go trial and 

a no-go trial. The RI index, on the other hand, assesses animals’ response bias or tendency to 

respond towards a signal stimulus versus a non-signal stimulus, with higher values (above 0) 

indicating a conservative response bias and lower values (below 0) a liberal response bias. 

 Although RI index analysis suggested an injury severity effect in the tendency to 

response to the stimulus at 1 month (rmTBI liberal bias response) and 12 months (msTBI 

conservative bias response) post injury (Figure 3), since our results showed that SI were not 

sensitive (values closer to 0, suggesting an equal probability of distinguishing signal and non-

signal response; inhibition of non-signal response not achieved, as values are distant from +1) 

(Figure 3), the effect seen in the RI index becomes insignificant. Thus, data from the 5C-CPT 
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portion of the probe test (i.e. the No-Go trials) were omitted and only data from the 5CSRT 

portion of the probe test (i.e. the Go trials) results were included in the final data analysis.  

 

Figure 3: Sensitivity index (SI) and Response index (RI) as measured on the 5-Choice 

Continuous Performance task (5C-CPT), at A&D) 1 month, B&E) 6 months and C&F) 12 

months post injury. Graphs represent mean ± SEM, (n=12-14; *p<0.05 compared to shams). 

 

2.5. Statistics 

Except where outlined, all data were analysed using IBM SPSS Statistics 24 and outliers were 

removed at 2 standard deviations from the mean value. A one-way analysis of variance 

(Bogdanova et al.) with group as the between subjects factor was performed at each follow-up 

timepoint to compare the effect of severity of injury on overall outcomes (i.e. accuracy 

percentage, hit probability, correct response latency, reward collection latency and premature 

response percentage) (Figure 6-8). A two-way repeated measures ANOVA with injury group 

and pre-/training sessions as between subject factors was performed for task repetition analysis 

in the pre-training and training phase (Figure 4). A two-way analysis of variance (Bogdanova 

et al.) was performed within each session of the training phase with injury group as one of the 

between subjects factor and follow-up timepoint as the other factor (Figure 4). A mixed effects 
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model was performed for each outcome (i.e. total trials, accuracy percentage, hit probability, 

correct response latency, reward collection latency and premature response percentage) with 

injury group and follow-up timepoint both as between groups factors (Figure 9). Additionally, 

a two-way ANOVA was also performed for the outcome hit probability, accuracy probability 

and omission probability, with injury group as one of the between subjects factor and stimulus 

duration as the other factor at each follow-up timepoint (Figure 10). Kruskal-Wallis test was 

performed for analysis of total trials completed (Figure 5) to compare injury severity effect on 

motivation at each timepoint. P values <0.05 were considered statistically significant. 

 

3. Results: 

3.1. Learning during the training phase is dependent upon age of the animals, but not upon 

injury severity 

Learning was assessed based on the number of days required to reach criterion (80% in 

accuracy and 20% in omission out of 60 trials) at each stage of the training phase of 5CSRT. 

There was no significant effect of injury severity on days needed to reach criterion at any of the 

timepoints post-injury assessed (Figure 4A-C); 1 month (F3,39=2.263, p=0.096), 6 months 

(F3,42=0.155, p=0.926) and 12 months (F3,37=1.504, p=0.229). However, we did observe a 

significant effect of training session number at each timepoint; 1 month (F7,312=60.6, p<0.0001), 

6 months (F7,336=26.63, p<0.0001) and 12 months (F7, 296=23.7, p<0.0001). A test of the 

interaction effect between injury severity and session number was insignificant at all timepoints 

(1 month (F21,273=1.182, p=0.266), 6 months (F21,294=0.768, p=0.758) and 12 months 

(F21,259=0.614, p=0.907), indicating that animal performance within a given session did not vary 

as a function of initial severity of injury. As seen in Figure 4A-C, all follow-up timepoints post-

injury show a similar pattern, where both the “must touch” task and session 6 pose a significant 

challenge to all groups, regardless of TBI severity, with more days required to pass criterion at 

these points compared to other sessions.  
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At 1 month post-injury, the “must touch” task required approximately 2 to 3 days more 

to acquire than the other tasks/sessions, with the exception of session 6. While in session 6, on 

the other hand, animals needed about 3-4 days more to pass criterion compared to other pre-

/training session, excluding  the “must touch” task. At 6 months, animals needed an additional 

2 to 3 days to complete the “must touch” and session 6 tasks compared to other pre-/training 

sessions, with msTBI requiring up to 5 days to complete the session 6 task. However, at 12 

months, only sham and rmTBI animals required 2 to 3 days of extra time to reach criterion at 

the “must touch” task compared to other sessions, excluding session 5 and 6.  

Interestingly, we noticed that, while all animals acquired the task with relative ease up 

to session 4 (i.e. up to a 10 sec stimulus presentation duration), taking less than 2 days on 

average to reach criterion (Figure 4D-I), beginning at session 5, it took animals at later follow-

up timepoints (12 months post-injury) longer to reach adequate levels of performance, 

regardless of injury group. In fact, within session 5 (Figure 4J), there were significant timepoint 

dependent learning difficulties (F2,120=26.22, p<0.0001) in all groups at 12 months, especially 

when compared against 1 month animals (shams, p=0.012; rmTBI, p<0.0001; mTBI, p=0.0006 

and msTBI, p=0.005).  This suggests that age of the animal may affect learning capabilities in 

the later training sessions of the 5CSRT, as the stimulus duration becomes shorter (i.e. 5 sec 

duration or less). While significant differences between follow-up time points were not seen for 

any of the injury groups in session 6 (Figure 4K); (F2,124=1.942, p=0.148), this may be a 

reflection of the difficulty of learning the task with a 2.5 sec stimulus duration. 
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Figure 4: Number of days to complete the pre-training and training sessions by each injury 

groups at A) 1 month, B) 6 months and C) 12 months post injury. D-K) Number of days needed 

for completion separated by each pre-/training sessions with injury severity and follow-up 

timepoints as variable functions. Graphs represent A-C) mean ± SEM and D-K) median with 

interquartile range, (n=12-14, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 compared 

between follow-up timepoints). 
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3.2. Motivation and executive function on probe day are not negatively impacted by TBI, 

regardless of the severity of the initiating injury  

Motivation and executive functions, including attention, reaction time and impulsivity, were 

tested through the 5CSRT on probe day. There was no significant effect of  injury severity on  

motivation, as analysed by the total number of trials completed out of the 80 potential ̀ go’ trials 

(Figure 5), at any timepoint post-injury (1 month (median (range) of 77 (22-80) in sham, 71.5 

(64-80) in rmTBI, 79.5 (40-80) in mTBI and 68 (51-80) in msTBI, H4,42=3.569, p=0.312); 6 

months (median (range) of 67 (38-80) in shams, 68 (42-80) in rmTBI, 53.5 (14-80) in mTBI 

and 60 (11-80) in msTBI, H4,49=6.332, p=0.097); 12 months (median (range) of 66 (43-80) in 

shams, 62.5 (40-71) in rmTBI, 67.5 (37-80) in mTBI and 52 (22-80) in msTBI, H4,44=6.301, 

p=0.098)).  

 

Figure 5: Motivation measured by total trials completed on probe test of the 5-choice serial 

reaction time task (5CSRT) at A) 1 month, B) 6 months and C) 12 months post injury. Graphs 

represent median with interquartile range and individual points, (n=12-14). 

 

Attention was assessed by examining both hit probability (# of correct/ (# of correct+ 

incorrect+ omission responses) *100) and accuracy percentage (correct response/ (correct + 

incorrect response) *100). There was no effect of initial injury severity on hit probability at the 

1 month (54.5%±5.91 in shams, 43.68%±7.43 in rmTBI, 54.51%±3.58 in mTBI and 

48.44%±3.97 in msTBI, F3,39=0.905, p=0.447), 6 months (46.47%±5.73 in shams, 

40.54%±5.12 in rmTBI, 34.88%±8.21 in mTBI and 42.38%±8.32 in msTBI, F3,45=0.502, 

p=0.683) or 12 months (32.96%±7.19 in shams, 27.79%±4.4 in rmTBI, 31.76%±4.31 in mTBI 
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and 19.15%±3.62 in msTBI, F3,40=1.533, p=0.221) follow-up timepoints (Figure 6Ai-iii). 

Similarly, there were no significant differences in accuracy percentage (Figure 6Bi-iii) between 

any of the injury groups  at 1 month (81%±2.15 in shams, 81.36%±3.29 in rmTBI, 77.34%±2.12 

in mTBI and 73.63%±3.92 in msTBI, F3,39=1.504, p=0.229), 6 months (82.44%±2.15 in shams, 

78.65%±2.93 in rmTBI, 73.02%±7.62 in mTBI and 75.47%±5.62 in msTBI, F3,45=0.705, 

p=0.554) or 12 months (78.84%±3.98 in shams, 79.49%±4.04 in rmTBI, 81.03%±3.67 in mTBI 

and 80.7%±3.63 in msTBI, F3,40=0.073, p=0.974) post-TBI.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Attention assessed by Ai-Aiii) hit probability and Bi-Biii) accuracy probability at 1 

month, 6 months and 12 months post injury on probe test of the 5-choice serial reaction time 

task (5CSRT). Graphs represent mean ± SEM, (n=12-14). 

 

Reaction time was measured by both correct response latency (Figure 7Ai-iii) and 

reward collection latency (Figure 7Bi-iii). Neither of these variables showed any significant 

differences based on the initial TBI severity at 1 month (correct response latency: (1.24s±0.12 

in shams, 1.07s±0.07 in rmTBI, 1.30s±0.1 in mTBI and 1.38s±0.07 in msTBI, F3,37=1.686, 

p=0.187); reward collection latency: (1.31s±0.07 in shams, 1.35s±0.11 in rmTBI, 1.36s±0.09 
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in mTBI and 1.24s±0.05 in msTBI, F3,38=0.458, p=0.714)), 6 months (correct response latency: 

(1.31s±0.07 in shams, 1.43s±0.09 in rmTBI, 1.74s±0.21 in mTBI and 1.65s±0.21 in msTBI, 

F3,44=1.706, p=0.18); reward collection latency: (1.68s±0.09 in shams, 1.51s±0.08 in rmTBI, 

2.03s±0.58 in mTBI and 1.83s±0.15 in msTBI, F3,42=0.763, p=0.521)) or 12 months (correct 

response latency: (1.66s±0.18 in shams, 1.69s±0.13 in rmTBI, 1.69s±0.11 in mTBI and 

1.97s±0.18 in msTBI, F3,40=0.931, p=0.435); reward collection latency: (1.73s±0.17 in shams, 

1.88s±0.11 in rmTBI, 1.82s±0.09 in mTBI and 2.12s±0.12 in msTBI, F3,39=1.756, p=0.172)) 

post-injury. 

   

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Reaction time assessed by Ai-Aiii) latency to make a correct response and Bi-Biii) 

latency to collect reward on probe test of the 5-choice serial reaction time task (5CSRT) at 1 

month, 6 months and 12 months post injury. Graphs represent mean ± SEM, (n=12-14). 

 

Impulsivity was assessed by looking at the percentage of premature responses in the go 

trial out of the total number of go trials completed. A premature response was defined as a 

response that occurred during the 5 sec ITI.  There were no significant differences in percentage 
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of premature responses based on initial injury severity (Figure 8) at 1 month (11.31%±2.65 in 

shams, 18.44%±5.67 in rmTBI, 22.7%±10.28 in mTBI and 23.78%±6.68 in msTBI, 

F3,39=0.783, p=0.511), 6 months (11.73%±2.64 in shams, 10.01%±2.15 in rmTBI , 

15.17%±4.52 in mTBI and 7.92%±2.18 in msTBI, F3,43=0.939, p=0.43) or 12 months post 

injury (11.68%±2.2 in shams, 8.47%±2.01 in rmTBI, 9.63%±2.51 in mTBI and 4.42%±1.57 in 

msTBI, F3.40=2.067, p=0.12).  

 

 

 

 

 

 

Figure 8: Impulsivity assessed by percentage of premature response made on probe test of the 

5-choice serial reaction time task (5CSRT) at Ai) 1 month, Aii) 6 months and Aiii) 12 months 

post injury. Graphs represent mean ± SEM, (n=12-14). 

 

3.3. Motivation, attention and reaction time are negatively affected by age on probe day, while 

impulsivity may improve over time 

While there were no effects of TBI on motivation or executive function as measured by task 

performance at 1 month, 6 months or 12 months post-injury, there was a significant effect of 

the age of the animal at testing on many of these variables (Figure 9), with the exception of 

accuracy probability (F1.914,118.7=0.426, p=0.646; Figure 9C). Motivation (F1.891,115.4=8.882, 

p=0.0003), hit probability (F1.807,112=13.86, p<0.0001) and reaction time (as measured by both 

correct response latency; F1.776,108.4=10.29, p=0.0002 and reward collection latency; 

F1.431,53.67=10.61, p=0.0006) all showed significant impairment with age, while impulsivity 

appeared to improve (F1.379,52.41=6.577, p=0.0072);  
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Interestingly, the same pattern of effects was not seen in all injury groups. Despite this, 

a significant interaction between injury severity and follow-up timepoint was not seen for any 

of the outcome variables: hit probability (F6,124=0.701, p=0.649), accuracy percentage 

(F6,124=0.56, p=0.761), premature response (F6,123=1.081, p=0.378), reward collection latency 

(F6,121=0.725, p=0.631) or correct response latency (F6,122=0.89, p=0.505), although there was 

a trend towards significance for motivation (F6,122=2.11, p=0.06). This indicates that age-related 

changes in executive function did not differ as a function of original injury severity.  

Post hoc analysis of the number of trials completed at each timepoint showed that sham 

and rmTBI animals had a significant decrease in the number of trials completed at 12 months 

post injury when compared to 1 month post injury (median of 66 trials in shams and 62.5 trials 

in rmTBI at 12 months vs median of 77 trials in shams and 71.5 trials in rmTBI at 1 month, 

p=0.04 in shams and p=0.02) (Figure 9A). For hit probability, there were decreases in the shams 

(32.96% ±7.19 vs 54.5%±5.91, p=0.056), mTBI (31.76%±4.31 vs 54.51%±3.58, p=0.011) and 

msTBI (19.15%±3.62 vs 48.44%±3.97, p=0.002) groups at 12 months when compared against 

1 month post injury (Figure 9B). A significant difference in hit probability between these 

timepoints was not seen in the rmTBI group (27.79%±4.40 vs 43.68%±7.43 at 1 month, p 

=0.301). In regards to reaction time, msTBI animals showed significantly longer latency at 12 

months when compared to 1 month post injury for reward collection (2.12secs ±0.118 vs 

1.24secs ±0.054, p<0.0001; Figure 9E), with a trend of increased response latency to correctly 

respond to the stimulus (1.97secs ±0.183 vs 1.38secs ±0.072, p=0.06; Figure 9F). In contrast, 

in comparison to animals at 1 month post-injury, at 12 months following injury, mTBI animals 

only showed increases in reaction time to collect the reward (1.82secs ±0.093 vs 1.36secs 

±0.087, p=0.003), while rmTBI animals had significantly increased correct response latency 

(1.69secs ±0.13 vs 1.07secs ±0.074, p=0.024) as well as reward collection latency (1.88s ±0.11 

vs 1.35s ±0.11, p=0.035). Changes in reaction time for either variable were not seen in sham 

animals at these timepoints. For impulsivity, while there was a significant main effect test of 

follow-up time on impulsivity,  post hoc analysis only revealed a trend of decreased impulsivity 
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in msTBI animals over time (23.78%±6.68 at 1 month vs 7.92%±2.18 at 6 months (p=0.059) 

and 4.42%±1.57 at 12 months (p=0.06)). 

     

Figure 9: Facets of executive function, A) Motivation, B-C) Attention, D) Impulsivity and E-

F) Reaction time, measured on probe test of the 5-choice serial reaction time task (5CSRT) with 

injury severity and follow-up timepoints (age) as variable functions. Graphs represent mean ± 

SEM, (n=12-14, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 compared between follow-up 

timepoints). 

      

3.4. Cognitive flexibility might be affected by injury severity at chronic stages post-injury  

Cognitive flexibility was measured on probe day using hit and accuracy probability for varied 

stimulus presentation durations within the 80 trials. After achieving 80% hit probability and 

accuracy during the training phase, with a stimulus presentation duration of 2.5 secs, on probe 

day, animals had to switch their attention between the varying stimulus presentation durations 

(i.e. 0.5, 1, 2 ,3 and 4 secs) in each trial, in order to achieve similar hit and accuracy probability.  

As expected, there was an effect of stimulus duration at all follow-up timepoints on both hit 

probability (1 month (F4,152=63.79, p<0.0001), 6 months (F4,180= 41.2, p<0.0001) and 12 
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months (F4,160= 35.58, p<0.0001)) and accuracy probability (1 month (F4.152=33.4, p<0.0001), 

6 months (F4,180=18.15, p<0.0001) and 12 months (F4,160=12.28, p<0.0001)),  with both 

probabilities decreasing significantly with reducing stimulus duration. There was no significant 

interaction at any follow-up timepoint between stimulus duration and injury group for either hit 

probability (1 month (F12,152=0.844, p=0.606), 6 months (F12,180=0.597, p=0.843) and 12 months 

(F12,160=0.823, p=0.627)) or accuracy probability (1 month (F12,152=0.633, p=0.811), 6 months 

(F12,180=0.234, p=0.996) and 12 months (F12,160=0.972, p=0.478)), indicating that impairments 

in performance seen with reduced stimulus duration did not vary as a function of the initiating 

injury.   

Our results also showed no significant effect of injury on hit probability at any stimulus 

duration (Figure 10A-C) at 1 month (F3,38=1.789, p=0.166), 6 months (F3,45=0.464, p=0.709) or 

12 months (F3,40=1.476, p=0.236) post-injury. Similarly, there was no effect of injury on 

accuracy probability, when measured at varying stimulus durations, at either 1 month 

(F3,38=1.248, p=0.306; Figure 10D) or 6 months (F3,45=1.962, p=0.133; Figure 10E) post-injury. 

There was, however, a significant effect of injury at 12 months post injury (F3,40=3.221, 

p=0.033; Figure 10F). Post-hoc analysis indicated an effect for the 2 sec duration only, with 

moderate-severe TBI animals exhibiting less accuracy than shams (52.07% ±15.22 vs 84.34% 

±8.91, p=0.083), rmTBI (52.07% ±15.22 vs 87.78% ±6.51, p=0.052) and mTBI (52.07% 

±15.22 vs 90.09% ±4.43, p=0.023) animals.  

Finally, we investigated omission percentage (that is, the percentage of trials in which 

the animal did not make a response either immediately after stimulus presentation or during the 

limited hold time) at the various stimulus durations. While the number of omissions did decline 

significantly with increasing stimulus duration at all follow-up time points assessed (1 month 

(F4,152=23.61, p<0.0001), 6 months (F4,180=21.09, p<0.0001) and 12 months (F4,160=27.96, 

p<0.0001)), there was no effect of injury at any of these points (1 month (F3,38= 1.335, p=0.277), 

6 months (F3,45= 0.418, p=0.741) and 12 months (F3,40= 1.188, p=0.327) (Figure 10G-I). 

Similarly, there was not a significant interaction between injury severity and stimulus duration 
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at any follow-up timepoint, indicating that the reduction in omission errors seen with longer 

stimulus durations was not dependent on the initial severity of injury (1 month (F12,152=0.678, 

p=0.771), 6 months (F12,180=0.399, p=0.963) and 12 months (F12,160=0.829, p=0.620)).    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Attention with injury severity and stimulus duration as variable functions were 

assessed by A-C) hit probability, D-F) accuracy probability and G-I) omission probability, at 1 

month, 6 months and 12 months post injury, on probe test of the 5-choice serial reaction time 

task (5CSRT). Graphs represent mean ± SEM, (n=12-14, *p<0.05 compared to shams). 

 

 

4. Discussion: 

This study aimed to investigate the temporal profile, up to 12 months post-injury, of the 

evolution of executive dysfunction following different severities of injury in an experimental 

model of DAI. In order to do so, we utilised a rodent touchscreen paradigm to administer the 

5C-CPT, an extension of the 5CSRT. The touchscreen 5CSRT task functions similarly to the 

non-computerised 5CSRT model, first developed for use with rodents in the 1980s (Carli et al., 
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1983), which requires animals to nose-poke into one out of five apertures when a stimulus light 

is presented pseudo-randomly above it.  A number of executive functions can be assessed using 

this task, including attention (response accuracy), inhibitory control (premature responses) and 

processing speed (response and reward collection latency). Going even further, the 5C-CPT 

increases the difficulty of the task by requiring animals to be vigilant and discriminate between 

signal and non-signal (noise) stimuli (Young et al., 2009), with animals rewarded both for 

responding to certain pre-set stimuli and for not responding to other pre-set stimuli,  providing 

further insight into inhibitory control (Mar et al., 2013b).  Interestingly, our results indicate that, 

while there was a significant effect of age at follow-up on many of the variables investigated, 

there was minimal effect of initial injury severity on learning, motivation or any of the 

components of executive function evaluated, including attention, reaction time or impulsivity.  

Within our study, the largest effect on task performance was due to age. Up to session 

4 (i.e. up to a 10 sec stimulus presentation duration), all animals were able to learn the task, 

regardless of age post-injury, with relative ease, taking less than 2 days on average to reach 

criterion. As the stimulus duration became shorter, however, it took older animals (i.e. those at 

6 months and 12 months post-injury) longer to reach adequate levels of performance, regardless 

of injury group, when compared to younger animals. This is consistent with literature showing 

age-related changes in visual processing, with older adults performing significantly slower than 

younger adults on both face and location matching tasks (Grady et al., 1994). In fact, one of the 

leading theories of cognitive ageing is the processing speed hypothesis, which states that 

declines in the ability to process information rapidly due to increased age lead to impairments 

in the ability to perform higher-order cognitive tasks (Salthouse, 1996). During the 5CSRT task, 

as stimulus duration decreased, the perceptual signal was weakened, thereby increasing 

cognitive load and requiring more cognitive resources to interpret the signal, compromising 

cognitive performance for the older animals (Schneider and Pichora-Fuller, 2000; Zekveld et 

al., 2011).  
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Such declines in performance are most prominent from the age of 45 (Hoyer et al., 

2004), which is consistent with the middle-age of the rodents used in the current study. In 

support of this, in a cohort with a mean age of just under 54 years, a lower accuracy hit rate was 

observed on the Rapid Visual Information Processing task compared to those reported in earlier 

studies utilising this task in younger cohorts, suggesting detectable declines in visual processing 

that may impact performance even from middle age (Neale et al., 2015). Similarly, in a previous 

study utilising the standard 5CSRT task in rats, middle-aged (i.e. 15 month old) animals were 

significantly slower to learn the task than young (i.e. 3 month old) rats, an effect that was 

exacerbated in aged (i.e. 22 month old rats), a subset of whom could not reach criterion at a 0.5 

sec stimulus duration (Jones et al., 1995). This suggests that age of the animal may affect 

learning capabilities in the later training sessions of the 5CSRT, as the stimulus duration 

becomes shorter (i.e. 5 sec duration or less). While significant differences between follow-up 

time points were not seen for any of the injury groups in session 6, this may be a reflection of 

the difficulty of the task with a 2.5 sec stimulus duration, a conclusion which is further 

supported by the significant variability seen in the acquisition of this task.  

Age also appeared to have a significant effect on 5CSRT performance on probe day, 

following task acquisition. Rats showed significant impairment on measures of motivation 

(number of trials completed), attention (hit probability) and reaction time, as well as possible 

(trend) decrease in impulsivity (number of premature responses). Interestingly, however, 

variables appeared to be differentially affected based on the initial severity of injury.  Most 

consistently, as might be expected in a test that is particularly sensitive for detecting attentional 

differences in rodents (Bhandari et al., 2016; Fizet et al., 2016; Higgins and Silenieks, 2017) 

attention was affected in both the mTBI and msTBI groups, with hit probability lower in 

animals at 12month follow-up compared to 1 month follow-up. While not significant, animals 

in the rmTBI also showed a decline in hit probability between groups at the 1 month and 12 

month follow-up timepoints. Such impairment is consistent with the extensive literature on 

declines in attention that occur even in healthy ageing (for review, see (Kallus et al., 2005)). 
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These declines are often attributed to deficits in inhibitory control that occur with increased 

age, leading older adults to have an impaired ability to inhibit the processing of task-irrelevant, 

distracting information (Lustig et al., 2007).  

Attentional impairments may be detectable even from middle-age, with studies 

indicating that age-related change in the executive attention network may be detectable from 

the fourth decade of life (Zhou et al., 2011). This is consistent with results from a study in rats 

by Guidi and colleagues (2015), using the 5CSRT, which demonstrated deficits in attention and 

executive function, as measured by a decrease in choice accuracy, an increase in the number of 

omissions and an increased response latency, in middle-age animals (10-14 months of age) 

compared to young animals (3-6 months of age) (Guidi et al., 2015). Similarly, in another study, 

both middle aged (15 months) and aged rats (22 months) were slower to make a correct 

response, but not to collect the reward, compared to young animals (3 months) (Jones et al., 

1995). In contrast, in our study, increases in time to make a correct response were increased 

between 1 and 12-months post-injury in the rmTBI, mTBI and msTBI groups; conversely, 

increases in time to collect a reward was only seen in rmTBI groups. Sham animals were 

unaffected on both variables, although this may be a reflection of strength of acquisition of the 

task, with hit probabilities of less than 60% in all groups in the 1-month follow-up group, 

dropping to less than 40% in the 12-month follow-up group. It is possible that with an altered 

training paradigm, leading to stronger task acquisition, we may be better equipped to detect 

alterations in task performance.  

Surprisingly, in the current study, there were no differences between injury groups for task 

acquisition, motivation, or any of the executive function variables examined, including 

attention, reaction time or impulsivity. The only detectable difference dependent on injury 

severity was a significant effect of injury on accuracy probability at 12 months post injury, with 

msTBI animals exhibiting reduced accuracy compared to all other groups, but only for the 2 

sec stimulus duration. This appears to be a measure of the lower limit of threshold detection, 

with animals at the 12 month follow-up timepoint not able to perform the task at either the 0.5 
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sec or 1 sec stimulus presentations, as evidenced by the low hit probability (less than 20%) and 

the high omission probability (approximately 80%) at these durations. While animals in the 

other groups appear better able to perform the task at the 2 sec stimulus duration (as evidenced 

by an increased hit probability and reduced omission probability), as might be expected given 

the similarity of this stimulus duration to the 2.5 sec stimulus used in session 6 of the training 

paradigm, msTBI animals remain unable to perform the task until a longer stimulus duration 

(i.e. 3 sec or longer) is given, at which point their performance approaches the level of the other 

groups. This may suggest that age exacerbates the subtle injury impairments seen following 

moderate-severe TBI, although additional studies, using older animals, will be needed in order 

to more fully probe this effect. 

The lack of injury effect was particularly surprising given that previous studies in the 

CCI model have detected changes in executive function at sub-chronic timepoints ranging from 

4 weeks to 11 months injury (Bondi et al., 2014; Chou et al., 2016a; Njoku et al., 2019; Shaver 

et al., 2019a; Vonder Haar et al., 2016; Vonder Haar et al., 2017) for review, see (Ozga et al., 

2018). For example, using the attentional set-shifting task, which is analogous to the Wisconsin 

Card Sorting Test, deficits in executive function and  behavioural flexibility were found up to 

4 weeks post-TBI and were more pronounced as a function of  injury severity (Bondi et al., 

2014; Njoku et al., 2019). Similarly, using the Rodent Gambling Task, an analogue of the Iowa 

Gambling task, impairments in decision-making ability were detected up to 12 weeks after 

moderate-severe injury (Shaver et al., 2019a). Deficits in executive function, as indicated by 

impairments in reversal learning on a rule shift assay, have been observed up to 5.5 months 

post-injury in a CCI model that produced moderate-severe frontal contusions (Chou et al., 

2016a). At an even longer follow-up timepoint, performance on a differential reinforcement of 

low-rate responding schedule of reinforcement was impaired up to 11 months following a 

severe bilateral focal injury to the frontal cortex (Lindner et al., 1998). Interestingly, such 

executive function deficits may not be “dose-dependent”, as neither impulsive decision making 
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(Vonder Haar et al., 2017) nor response inhibition deficits (Vonder Haar et al., 2016) differed 

as a function of initial injury severity.   

It is important to note, however, that almost all of the previous studies of long-term 

executive function alterations following TBI in rodents have used models of injury that produce 

a focal injury.  Such “pure” forms of focal injury occur in only 28% of moderate-severe TBI 

cases, while diffuse axonal injury is seen in 72% of individuals, with “pure” diffuse axonal 

injury associated with significantly lower scores on the Glasgow Coma Scale (Skandsen et al., 

2010). Acutely, animals injured via fluid percussion (FPI), which produces a mixed focal and 

diffuse injury, have been shown to display working memory deficits, as assessed by a T-maze 

task, up to one week post-TBI, an effect that was accompanied by alterations in prefrontal 

cortex function (Smith et al., 2015b). More chronically, while animals injured via FPI have 

been shown to have persistent cognitive deficits at 12 months post-injury (Hausser et al., 2018; 

Sell et al., 2017), executive function has not been specifically assessed in this model. Similarly, 

while recent work from our lab in the same model of DAI used in the current study has found 

subtle deficits in cognitive flexibility at both 3 months (Arulsamy et al., 2018b) and 12 months 

(Arulsamy et al., 2019) following msTBI, the evolution of change in executive function had not 

previously been assessed following diffuse axonal injury. While the assessment of several key 

executive function variables, such as attention and impulsivity, was therefore a significant step 

forward in the current study, we were still unable to assess response inhibition, as rats failed to 

meet criteria, as measured by either the SI or RI (Young et al., 2009), for having learned the 

5C-CPT task sufficiently to allow for meaningful interpretation of the results. Thus, we were 

unable to assess data from No-Go trials of the 5C-CPT, which would have allowed us to 

evaluate this important component of executive function. Future studies should increase the 

length of training on the 5C-CPT in order to improve the likelihood of animals acquiring the 

task. Such adjustments may be particularly important for older animals, or for animals who 

have suffered a significant brain injury.  
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       Despite the lack of significant injury effect, this is still the first study to investigate 

executive function change using the rodent touchscreen platform in an experimental model of 

TBI. In fact, to date, to the best of our knowledge, only one other study has conducted cognitive 

testing using the touchscreen platform following TBI (Robinson et al., 2018). That study used 

the platform to assess visual discrimination at 90 days following an early life CCI at postnatal 

day 12, but did not assess executive function (Robinson et al., 2018). Given the older age of 

our rats (i.e. 14-15 months), it is important that future studies take the age of the animal into 

consideration when optimising the touchscreen platform for long-term studies in rats, due to 

the decrease in reaction speed as the animal ages, which may mask important cognitive effects, 

such as impulsivity. Therefore, in studies with older cohorts of animals, the limited hold (time 

held for a response to be made) after stimulus presentation and ITI (time between trials) may 

need to be increased, so that all executive function variables may be measured consistently 

across different ages of animals. Additionally, it may be important to take into account the strain 

of rat used for studies. Sprague Dawley (SD) rats are albino and have much lower visual acuity 

than non-albino strains (Prusky et al., 2002). Kumar and colleagues (2015) suggested that low 

visual acuity in albino SD rats may prevent them from performing effectively on the 

touchscreen platform (Kumar et al., 2015a). Conversely, previous work from Tim Bussey’s 

group (2008) has shown that SD rats perform as well as Lister Hooded rats, with no difference 

between strains either on percent of correct responses or on number of sessions required to meet 

criterion (Bussey et al.). Despite this, he does acknowledge that sensitive rats, which may be 

the case with older SD rats, may be more responsive towards aversive stimuli rather than 

appetitive. Thus, significant future work is needed in order to optimise the touchscreen platform 

for sophisticated cognitive testing in models of ageing and experimental TBI, particularly those 

requiring long-term follow-up timepoints. 

Taken together, data from the current study suggest that, while age at follow-up 

significantly impacts upon several facets of executive function, TBI does not, regardless of 

initial injury severity. However, there are a number of caveats, including potential insufficient 
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length of follow-up and limitations to the behavioural training protocol used, that must be taken 

into account when evaluating these results. Despite the limitations, we believe that, with further 

optimisation, the touchscreen cognitive chamber could be a sensitive, sophisticated and reliable 

testing paradigm for assessing alterations in executive function following TBI. Given the 

prevalence, persistence and significance of executive function impairments following TBI, the 

development and optimisation of such a task to better investigate the evolution of this 

impairment following different severities of injury is critically important. 
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Abstract 

 

Traumatic brain injury (TBI) is more than just an acute injury but a risk factor for later 

development of neurodegenerative diseases. Secondary injury mechanisms after the initial 

insult may cause neurodegenerative-like abnormal protein accumulations such as tauopathy, 

alpha-synuclein inclusions and TDP-43 mis-localization and phosphorylation within the brain.  

While these pathological proteins are usually evident in post-mortem TBI patients, depending 

on the nature and severity of TBI, the neuropathological link between experimental TBI and 

neurodegeneration is still debatable as very few preclinical studies have investigated this 

relationship chronically (beyond 6 months). Thus, this study aimed to determine the 

neuropathological changes at a molecular level, particularly in neurodegenerative markers, at 

12 months post diffuse TBI of varied severity. Male Sprague Dawleys (10-12 weeks old) of 

420-450g were either subjected to sham surgery (n=6) or the Marmarou’s impact acceleration 

model of diffuse injury for a single mild TBI (n=6), repetitive mild TBI (n=7) or moderate to 

severe TBI (n=7). At 12 months following injury, animals were perfused, and molecular 

analysis were performed on their brain and spinal cord samples. Our results showed increases 

in cytoplasmic mis-localization of TDP-43 proteins in the cervical spinal region of the single 

and repetitive mild TBI groups. Moreover, abnormal changes in NeuN and phosphorylated-

TDP-43 levels were also found in motor cortex and spinal regions of the single and repetitive 

mild TBI animals at 12 months post injury. There was a lack of neuropathological changes in 

the prefrontal cortex, hippocampus, substantia nigra and striatum of all groups. Thus, our study 

suggest mild diffuse TBI may have higher implications towards motor neurone diseases such 

as ALS compared to other neurodegenerative diseases at 12 months post injury. Further 

timepoint studies (18 months) may ensure the progression of this neuropathology into muscle 

atrophy post injury and possibly the emergence of other neurodegenerative disease pathology 

as well.       
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5. Introduction 

Annually 50 to 60 million people are hospitalised for traumatic brain injury (TBI) 

worldwide. Billions of dollars are spent yearly on TBI associated cases, creating a huge 

economic burden in countries like the United State of America ((US), 2003) and Australia 

(Helps et al., 2008). Moreover, this economic burden is set to double in the future, as TBI is not 

just an acute injury (Masel and DeWitt, 2010b), but can increase the risk of later developing 

neurodegenerative diseases like Parkinson’s Disease (PD), Alzheimer’s Disease and 

Amyotrophic Lateral Sclerosis (ALS) (Chen et al., 2007b; Faden and Loane, 2015; Gardner et 

al., 2015a; Nemetz et al., 1999a; Omalu et al., 2005; Plassman et al., 2000; Sundman et al., 

2014a). Indeed, population-based studies have found hazard risk ratios of 1.1-1.7 for dementia 

(Fleminger et al., 2003b; Gardner et al., 2014b; Wang et al., 2012), 1.57 for PD (Jafari et al., 

2013) and 1.7-3.2 for ALS (Chen et al., 2007b) following TBI, which increases with the severity 

of the injury (Nordstrom and Nordstrom, 2018; Tolppanen et al., 2017). 

 A cascade of secondary insults which include a range of biochemical and cellular changes such 

as neuroinflammation, oxidative stress, mitochondrial dysfunction and other pathological 

changes, may persist or emerge years later post TBI (Corrigan et al., 2016b; Sivanandam and 

Thakur, 2012). These secondary pathologies may stem from the primary insult of axonal tearing 

and shearing that occurs following a purely diffuse TBI (Corrigan et al., 2016b), creating 

widespread neuronal damage within multiple vulnerable areas of the brain.  This is thought to 

promote the development of intracellular aberrant protein aggregates, a neuropathological 

feature of neurodegenerative disease. These aggregates are thought to drive neurodegeneration 

leading to the onset of disease. Cytoplasmic proteins including tau in Alzheimer’s disease, 

TDP-43 in ALS and α-synuclein in PD form insoluble inclusions within neurons. These proteins 

are typically abnormally hyperphosphorylated facilitating their aggregation. Indeed post 

mortem and imaging studies have found tauopathy (Johnson et al., 2012b; Tagge et al., 2018), 

amyloid plaques (Johnson et al., 2012b; Scott et al., 2016), TDP-43 proteinopathy (Johnson et 
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al., 2011a; Yang et al., 2014) as well as alpha-synuclein inclusions (Mondello et al., 2013; Uryu 

et al., 2007) in TBI patients, where imaging studies revealed these neuropathology to be evident 

as early as 24 hours post injury and may persist up to 6 months post injury (Mondello et al., 

2013; Tagge et al., 2018).  

The presence of these abnormal proteins associated with neurodegenerative disease have 

also been observed in pre-clinical models of TBI. Tan et al (2018) and Wright et al (2017) 

witnessed that rodents had increased phosphorylation and cytoplasmic mis-localisation of TDP-

43 proteins as early as 24 hours post TBI (Tan et al., 2018) which persisted and exacerbated 

into motor neuronal damage at 12 weeks post injury (Wright et al., 2017b). In addition, Wright 

et al (2017) showed that TDP-43 abnormalities may precede and drive motor neuronal changes, 

particularly neuronal loss and atrophy which attributes to the motor impairment following fluid 

percussion injury (Wright et al., 2017b). This is also true for other neurodegenerative markers 

such as alpha-synuclein which is found overexpressed in the substantia nigra (Gilbert et al., 

2014) of rodents at 60 days post controlled cortical impact injury, elucidating the link towards 

Parkinson’s disease in a preclinical TBI model (Acosta et al., 2015b).  

However, only a handful of these pre-clinical studies have examined protein accumulation 

post-TBI chronically after diffuse injury (Arulsamy et al., 2018a; Chen et al., 2004). 

Furthermore, chronic studies to date often concludes at 1 to 6 months post injury (Bramlett et 

al., 1997; Chen et al., 2004; Gao et al., 2017; Laurer et al., 2001; Shultz et al., 2015), rarely 

investigating further timepoints (Mouzon et al., 2014; Pierce et al., 1998). This may not 

accurately translate to human studies as neurodegeneration in TBI patients only becomes 

evident at late stages of life. Moreover, with more studies opting for focal injury model 

(Bramlett et al., 1997; Pierce et al., 1998; Shultz et al., 2015), there is a need for studies to 

investigate the more clinically relevant diffuse injury model (Marmarou et al., 1994), as seen 

with the progressive degeneration of white matter in TBI patients (Bendlin et al., 2008), 

therefore providing better translation.   
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In addition, it’s worth noting that although population-based studies have looked at the 

dose-response relationship between TBI and its risk towards neurodegenerative outcomes 

(Chen et al., 2007b; Fleminger et al., 2003b; Gardner et al., 2014b; Plassman et al., 2000; Wang 

et al., 2012), pre-clinical studies investigating this relationship of the TBI nature and severity 

on neuropathological outcomes are still scarce (Bramlett et al., 1997; Mouzon et al., 2014). This 

is crucial for intervention studies to cater specifically for the nature and severity of TBI, thus 

providing a more accurate and efficient treatment strategies in clinical studies. 

Therefore, this study aimed to determine the neuropathological changes especially those 

associated with early signs of neurodegeneration at one year post diffuse traumatic brain injury 

of varied severity, in hopes to elucidate the link between TBI and neurodegenerative diseases 

at a molecular level. 

   

    2. Results  

2.1. Severity of TBI influences NeuN expression 

Cytoplasmic neuronal levels were measured using NeuN marker in all regions of the brain and 

spinal cord investigated in this study, to determine TBI-related neuronal damage. There were 

no significant changes in NeuN observed in the striatum (F3,21=1.4, p=0.271) (Figure 1B) and 

substantia nigra (F3,20=0.144, p=0.932) (Figure 1C) with only a trend towards significance in 

the hippocampus (F3,21=2.809, p=0.065) (Figure 1A) when compared against groups at 12 

months post TBI. However, significant injury effect on NeuN expression was uncovered in the 

motor cortex (F3,16=31.07, p<0.0001) (Figure 1D) and all spinal cord regions; cervical 

(F3,15=13.14, p=0.0002) (Figure 1E), middle thoracic (F3,15=16.22, p<0.0001) (Figure 1F) 

and lumbar region (F3,16=4.072, p=0.025) (Figure 1G). Post hoc analysis revealed that mild 

TBI, both single and repetitive nature, had significant elevated levels of NeuN in the motor 

cortex; mTBI (1.25 ±0.07 vs 0.63 ±0.10, p<0.0001 against shams and vs 0.48 ±0.03, p<0.0001 

against msTBI) and rmTBI (1.12 ±0.04 vs 0.63 ±0.10, p=0.0005 against shams and vs 0.48 

±0.03, p<0.0001 against msTBI) at 12 months post TBI. Similar elevated levels of NeuN in the 
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mTBI and rmTBI group were also found in the cervical spinal region; mTBI (2.25 ±0.25 vs 

1.50 ±0.12, p=0.035 against shams and vs 1.22 ±0.03, p=0.006 against msTBI) and rmTBI (2.62 

±0.18 vs 1.50 ±0.12, p=0.002 against shams and vs 1.22 ±0.03, p=0.0004 against msTBI) as 

well as in the middle thoracic spinal region; mTBI (1.77 ±0.15 vs 1.13 ±0.04, p=0.018 against 

shams and vs 0.91 ±0.12, p=0.001 against msTBI) and rmTBI (1.99 ±0.14 vs 1.13 ±0.04, 

p=0.002 against shams and vs 0.91 ±0.12, p=0.0001 against msTBI). However, in the lumbar 

spinal region, only the rmTBI showed elevated levels of NeuN when compared against shams 

(1.17 ±0.21 vs 0.52 ±0.11, p=0.024 against shams) at 12 months post injury. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Cytoplasmic neuronal levels were measured by NeuN marker in the A) hippocampus, 

B) striatum C) substantia nigra, D) motor cortex, E) cervical, F) middle thoracic and G) lumbar 

of all animal groups at 12 months post injury. GAPDH was used as a housekeeper protein for 

all analysis. Graphs represent the mean± SEM. (n=5-7), ****p<0.0001, ***p<0.001, **p<0.01, 

*p<0.05 compared to shams. Representative images of the western blots were extracted from 

Image Studio Lite. 
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2.2. Synaptic and neuronal structural changes only visible in the motor cortex of mild TBI  

Synaptic and neuronal structural damage post injury was assessed using a variety of markers; 

Synaptophysin for assessing synaptic integrity, NF-L (neurofilament light chain) for assessing 

neurofilament structure and axonal stability and MBP (myelin basic protein) for assessing 

neuronal myelination stability.  

Synaptophysin expression was unaltered in all brain regions (Figure 2 A-D); hippocampus 

(F3,21=0.217, p=0.884), striatum (F3,21=0.316, p=0.814) and substantia nigra (F3,20=0.45, 

p=0.72) at 12 months post injury, with only a trend towards significant change seen in the motor 

cortex (F3,16=2.548, p=0.092) (Figure 2D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Synaptic changes were measured by synaptophysin in the A) hippocampus, B) 

striatum, C) substantia nigra and D) motor cortex of all animal groups at 12 months post injury. 

GAPDH was used as a housekeeper protein for all analysis. Graphs represent the mean± SEM. 

(n=5-7). Representative images of the western blots were extracted from Image Studio Lite.  
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As for neuronal structure assessed through neurofilament changes (NF-L), there was a 

significant injury effect observed in the motor cortex region at 12 months post injury 

(F3,16=3.288, p=0.048) (Figure 3D). However, post hoc analysis showed no significant 

changes between injury groups and sham or among the injury groups as well, with only a trend 

towards a decrease in NF-L in the msTBI when compared against the rmTBI (0.883 ±0.075 vs 

1.15 ±0.046, p=0.061). Other brain regions showed no significant effect in NF-L at 12 months 

post injury; hippocampus (F3,21=1.271, p=0.310) (Figure 3A), striatum (F3,21=1.336, p=0.290) 

(Figure 3B), with only a trend towards significance in the substantia nigra (F3,19=2.485, 

p=0.092) (Figure 3C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Neuronal integrity was measured by neurofilament light chain (NF-L) in the A) 

hippocampus, B) striatum, C) substantia nigra and D) motor cortex of all animal groups at 12 

months post injury. GAPDH was used as a housekeeper protein for all analysis. Graphs 

represent the mean± SEM. (n=5-7). Representative images of the western blots were extracted 

from Image Studio Lite. 
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Myelin integrity assessed through myelin basic protein (MBP), once again only revealed a 

significant effect in the motor cortex at 12 months post injury (F3,16=32.45, p<0.0001) where 

the rmTBI and mTBI animals had MBP levels that were significantly elevated when compared 

against sham and msTBI (Figure 4D); rmTBI (2.354 ±0.162 vs 0.825 ±0.121, p<0.0001 against 

shams and vs 0.871 ±0.13, p<0.0001 against msTBI) and mTBI (2.211 ±0.165 vs 0.825 ±0.121, 

p<0.0001 against shams and vs 0.871 ±0.13, p<0.0001 against msTBI). There were no 

significant MBP alterations seen in the hippocampus (F3,21=1.212, p=0.33) (Figure 4A), 

striatum (F3,21=0.965, p=0.428) (Figure 4B) and substantia nigra (F3,20=0.870, p=0.473) 

(Figure 4C) at 12 months post injury. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Myelination was measured by myelin basic protein (MBP) in the A) hippocampus, B) 

striatum, C) substantia nigra and D) motor cortex of all animal groups at 12 months post injury. 

GAPDH was used as a housekeeper protein for all analysis. Graphs represent the mean± SEM. 

(n=5-7). Representative images of the western blots were extracted from Image Studio Lite. 
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2.3. Neurodegenerative marker changes  

Early changes in proteins association with neurodegenerative diseases were assessed at 12 

months post injury in the brain regions relevant for each disease. Tau markers associated with 

AD (total tau, phosphorylated tau 231 and oligomeric tau) were assessed in the prefrontal cortex 

and hippocampus, whilst PD was evaluated with levels of alpha-synuclein in the striatum and 

substantia nigra. Hallmark markers (TDP-43 and phosphorylated TDP-43) as well as an indirect 

measure of oxidative stress marker (superoxide dismutase-1, SOD-1) were used to investigate 

ALS pathology in the motor cortex and spinal cord regions post TBI.  

 

2.3.1. Lack of tauopathy after TBI   

There was no indication of tauopathy in the prefrontal cortex or in the hippocampus at 12 

months post injury. Total tau levels showed no changes in the prefrontal cortex (F3,21=1.223, 

p=0.326) (Figure 5A) and in the hippocampus (F3,21=0.733, p=0.544) (Figure 5E) post injury. 

Similarly, phosphorylated tau 231 also displayed no changes in the prefrontal cortex 

(F3,21=0.144, p=0.932) (Figure 5B) and in the hippocampus (F3,21=1.95, p=0.153) (Figure 

5F). Thus, when evaluating the ratio of phosphorylated tau 231 with the total tau, as expected, 

no significant differences were found in the prefrontal cortex (F3,21=1.301, p=0.300) (Figure 

5C) or in the hippocampus (F3,21=1.392, p=0.273) (Figure 5G). Oligomeric tau analysis also 

revealed insignificant tau pathology in the prefrontal cortex (F3,21=0.054, p=0.983) (Figure 

5D) and in the hippocampus (F3,21=0.468, p=0.708) (Figure 5H) at 12 months post injury.  
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Figure 5. Tauopathy was measured by total tau (TAU-5), tau phosphorylation (Tau231), ratio 

of phosphorylated tau and oligomeric tau levels (Tau22) in the A-D) prefrontal cortex and E-

H) hippocampus of all animal groups at 12 months post injury. GAPDH was used as a 

housekeeper protein for TAU-5 and Tau231 analysis while beta-actin was used as a 

housekeeper protein for Tau22 analysis. Graphs represent the mean± SEM. (n=5-7). 

Representative images of the western blots were extracted from Image Studio Lite. 
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2.3.2. Alpha-synuclein levels unchanged post injury 

Our analysis indicated that TBI, regardless of severity did not affect alpha-synuclein levels in 

the striatum (F3,21=0.315, p=0.815) (Figure 6A) or in the substantia nigra (F3,20=0.440, 

p=0.727) (Figure 6B) at 12 months post injury. 

 

 

 

 

 

 

 

Figure 6. Alpha-synuclein was measured in the A) striatum and B) substantia nigra of all animal 

groups at 12 months post injury. GAPDH was used as a housekeeper protein for all analysis. 

Graphs represent the mean± SEM. (n=5-7). Representative images of the western blots were 

extracted from Image Studio Lite. 

 

2.3.3. TDP-43 and phosphorylated TDP-43 changes were seen in motor cortex and spinal 

cord regions of mild TBI animals 

Significant changes in TDP-43 levels were found in the cervical spinal region (F3,16=8.085, 

p=0.002) (Figure 7A) and in the motor cortex (F3,16=4.698, p=0.016) (Figure 7J) at 12 months 

post injury. Further analysis in the cervical spinal region showed significantly elevated levels 

of TDP-43 in the rmTBI (2.245 ±0.222 vs 0.921 ±0.062, p=0.005) and mTBI (1.877 ±0.382 vs 

0.921 ±0.062, p=0.046) when compared to shams, with the former also found significantly 

elevated against msTBI (2.245 ±0.222 vs 0.97 ±0.134, p=0.007). However, in the motor cortex, 

elevation in TDP-43 levels in the rmTBI (1.748 ±0.162 vs 1.117 ±0.092, p=0.041) and mTBI 

(1.773 ±0.191 vs 1.117 ±0.092, p=0.032) were only significant against msTBI at 12 months 

post injury. TDP-43 levels were not different between groups in the middle thoracic spinal 
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region (F3,16=1.285, p=0.314) (Figure 7D) and lumbar spinal region (F3,16=0.702, p=0.565) 

(Figure 7G) post injury. 

On the other hand, significant changes in phosphorylated TDP-43 (pTDP-43) levels were 

observed in the cervical spinal region (F3,16=13.85, p=0.0001) (Figure 7B) and in the lumbar 

spinal region (F3,15=9.369, p=0.001) (Figure 7H) post injury instead. Phosphorylated TDP-43 

was found significantly decreased in the cervical spinal region of the rmTBI group (1.035 

±0.027 vs 1.796 ±0.172, p=0.0009) when compared against the cervical spinal region of the 

sham animals. These pTDP-43 levels of the rmTBI animals were also found to be significantly 

lower than the cervical spinal region of the msTBI group (1.035 ±0.027 vs  1.679 ±0.091, 

p=0.004). Similarly, pTDP-43 levels in the cervical spinal region of the mTBI animals were 

also reduced when compared against shams animals (1.022 ±0.103 vs 1.796 ±0.172, p=0.0008) 

as well as when compared against msTBI animals (1.022 ±0.103 vs 1.679 ±0.091, p=0.004). 

Interestingly, the lumbar spinal region also showed a significant decrease in phosphorylated 

TDP-43 levels in the rmTBI (0.723 ±0.067 vs 1.038 ±0.041, p=0.003) and mTBI (0.718 ±0.057 

vs 1.038 ±0.041, p=0.002) when compared against shams at 12 months post injury. Neither the 

middle thoracic spinal region (F3,15=0.33, p=0.804) (Figure 7E) nor the motor cortex 

(F3,16=1.978, p=0.158) (Figure 7K) showed any changes in the phosphorylated TDP-43 

marker chronically post injury.  

To determine if the phosphorylated TDP-43 levels were changing in relation to the total TDP-

43 levels, a ratio of these markers were analysed. Significant changes in the phosphorylated 

TDP-43 to TDP-43 ratio were noted in the cervical spinal region (F3,16=17.19, p<0.0001) 

(Figure 7C) and in the motor cortex (F3,16=9.676, p=0.0007) (Figure 7L) at 12 months post 

injury. Post hoc analysis of the cervical spinal region revealed a significant decrease in this ratio 

seen in the rmTBI group (0.476 ±0.039 vs 1.959 ±0.16, p=0.0002) when compared against 

shams as well as when compared against the cervical spinal region of the msTBI animals (0.476 

±0.039 vs 1.855 ±0.248, p=0.0004). This ratio was also found reduced in the cervical spinal 

region of mTBI animals (0.687 ±0.223 vs 1.959 ±0.16, p=0.0009) when compared against 
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shams and msTBI (0.687 ±0.223 vs 1.855 ±0.248, p=0.002). Similar post hoc results were also 

seen in the motor cortex of the rmTBI group which showed a lower ratio when compared against 

shams (0.697 ±0.04 vs 1.246 ±0.162, p=0.009) and msTBI (0.697 ±0.04 vs 1.305 ±0.108, 

p=0.004), with mTBI also showing decreased motor cortex ratio levels when compared against 

shams (0.733 ±0.064 vs 1.246 ±0.162, p=0.015) as well as msTBI (0.733 ±0.064 vs 1.305 

±0.108, p=0.007). Despite the lumbar spinal region showing changes in phosphorylated TDP-

43, there was insignificant difference when taken in relation to total TDP-43 levels 

(F3,16=1.764, p=0.195) (Figure 7I). The middle thoracic spinal region also showed no changes 

in this phosphorylated TDP-43 to TDP-43 ratio (F3,15=1.335, p=0.300) (Figure 7F). 
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Figure 7. Markers of ALS (TDP-43, pTDP-43 and phosphorylated ratio) were measured in the 

A-C) cervical, D-F) middle thoracic, G-I) lumbar and J-L) motor cortex of all animal groups at 

12 months post injury. GAPDH was used as a housekeeper protein for all analysis. Graphs 

represent the mean± SEM. (n=5-7), **p<0.01, *p<0.05 compared to shams. Representative 

images of the western blots were extracted from Image Studio Lite. 

 

An oxidative stress marker (SOD-1) was measured as an indirect assessment of reactive oxygen 

species which may influence TDP-43 and phosphorylated TDP-43 levels in the motor cortex 

and spinal cord regions post injury. Despite the changes in the ALS hallmark markers, oxidative 

stress was not evident in the motor cortex (F3,16=0.936, p=0.446) (Figure 8D) and in any of 

the spinal cord regions; cervical spinal region (F3,16=0.573, p=0.641) (Figure 8A), middle 
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thoracic spinal region (F3,16=1.981, p=0.158) (Figure 8B) and lumbar spinal region (F3,16=2.1, 

p=0.140) (Figure 8C) at 12 months post injury. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Oxidative stress was measured by superoxide dismutase-1 (SOD1) in the A) cervical, 

B) middle thoracic, C) lumbar and D) motor cortex of all animal groups at 12 months post 

injury. GAPDH was used as a housekeeper protein for all analysis. Graphs represent the mean± 

SEM. (n=5-7). Representative images of the western blots were extracted from Image Studio 

Lite. 
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     3.    Discussion  

 This study set out to investigate the neuropathological link between TBI and 

neurodegenerative diseases by examining accumulation of abnormal proteins at 12 months 

following TBI of differing severity. Our results suggest that there may be a link between TBI 

and ALS due to the subtle cytoplasmic neuropathological changes, particularly in the 

dysregulation of TDP-43 and phosphorylated TDP-43 proteins, in the motor cortex and spinal 

cord regions of mild single and mild repetitive TBI. However, this study failed to find 

pathological markers associated with AD and PD at this time-point post-injury.  

ALS is the most known form of motor neurone disease that results in progressive 

degeneration of both upper (motor cortex and corticospinal tract) and lower (spinal cord) motor 

neurons leading to muscle atrophy over time (Perry et al., 2010). Thus, one of the key 

pathological features of ALS is the gradual loss of motor neurons (total number and 

functionality) in the central nervous system (Perry et al., 2010), attributed to neuronal 

pathological changes such as the inclusion, overexpression, cytoplasmic mis-localisation and 

hyperphosphorylation of the TDP-43 protein, creating a toxic environment within neurons 

(Coan and Mitchell, 2015; Saberi et al., 2015). Briefly, nuclear TDP-43 protein regulation is 

important for cellular and protein replication and autoregulation, respectively, while low-levels 

of cytoplasmic TDP-43 protein is mainly found during the shuttling of nuclear RNA/mRNA 

into the cytoplasm (Barmada et al., 2010; Saberi et al., 2015). Nevertheless, when this tightly 

regulated protein undergoes upregulation, abnormal cleavage, hyperphosphorylation and high 

rates of mis-localization into the cytoplasm (Barmada et al., 2010; Johnson et al., 2011b; Lu et 

al., 2016; Sun et al., 2018), which environmental stressors such as the shearing of axons in TBI 

may initiate (Johnson et al., 2011b), it causes neurotoxicity and eventual degeneration of 

neurons. Although abnormal TDP-43 protein and its dysregulation can be found in neurons of 

any brain regions; in fact it have been implicated in Alzheimer’s disease brain pathology as 

well (McAleese et al., 2017), this TDP-43 pathology is more commonly found in motor neurons, 

therefore establishing it (TDP-43 and phosphorylated TDP-43) as markers of ALS (Dickson et 
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al., 2007). Barmada et al (2010) discovered that mis-localisation of TDP-43 proteins into the 

cytoplasmic region of neurons are the main cause for neuronal toxicity and eventual 

degeneration in ALS which may be due to the TDP-43 loss of function within the nuclear region 

for DNA replication or the sequestration of mRNA transcripts and inability of mRNA 

translation cause by the cytoplasmic TDP-43 binding (Barmada et al., 2010). In contrast, 

another study suggests oxidative stress within the motor neurons; increases in reactive oxygen 

species and decreases in antioxidant such as SOD-1 (Strong et al., 2005), may be a key 

contributor to ALS pathology. However, the major finding from this study coincides with the 

study by Barmada et al (2010), in that cytoplasmic TDP-43 were found increased in the cervical 

spinal region but no changes in SOD-1 were observed post mild TBI, thus providing possible 

implications towards ALS development at chronic stages post TBI.  

Since both the single and repetitive form of mild TBI showed similar elevations of 

cytoplasmic TDP-43 in the cervical spinal region at 12 months post injury when compared to 

shams, a dose response relationship may not be established, more so with the lack of this 

pathology in the moderate to severe TBI group. Past literature on studies involving contact sport 

athletes supports our results regarding the link between TBI and motor-related outcomes with 

some studies predicting a high risk factor of motor neurone disease in athletes even after 

sustaining mild TBI (Belli and Vanacore, 2005; Chio et al., 2005; Lehman et al., 2012; Manley 

et al., 2017; Peters et al., 2013; Sundman et al., 2014a). Furthermore, similar to our results, 

moderate to severe TBI patients rarely report long term motor impairments or motor-related 

pathology (Thomsen et al., 2015) with some suggesting that injury to motor cortex may not 

result in motor dysfunction but injury induced oxidative damage down the spinal cord have 

been found to correlate with motor deficits post moderate to severe TBI (Evans et al., 2015). 

Regardless, in our study, only mild TBI seem to cause motor related cervical pathology, with 

no evidence of motor cortex or spinal cord pathology in the moderate to severe TBI group, thus, 

suggesting that TBI severity effect may not affect motor-related outcomes or its associated 

pathology post injury. Besides that, some studies have reported bulbar onset of ALS pathology 
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post TBI (Brettschneider et al., 2014; Nair et al., 2010) and therefore could potentially be a 

region for future studies to investigate especially in regards to moderate to severe TBI. 

Since this study only found TDP-43 elevations in the cytoplasm of the cervical spinal 

region post injury, we believe that there may be spinal cord regional differences in ALS 

pathology, as supported by Brettschneider et al (2014) whose study suggest ALS pathology 

were confined mainly within the cervical and lumbar spinal region in their patient cohort and 

indicated these regions as focal points in ALS pathology which will project to other areas of 

the spinal cord and cortical region as the disease progress (Brettschneider et al., 2014). 

Moreover, some studies have suggested the cervical spinal region as the key pathological region 

for ALS; Nair et al (2010) showed higher radial diffusivity in the cervical white matter of ALS 

patients compared to age matched controls with no changes in any diffuse tensor imaging (DTI) 

measures in the brainstem (Nair et al., 2010), suggesting ALS pathology stems from the cervical 

spinal region, while Agosta et al (2008) also agrees that imaging the cervical spinal cord may 

provide a useful diagnostic tool for ALS progression (Agosta et al., 2009). Thus far, this ALS 

progression have not been well studied in the context of TBI and may halt the knowledge of 

stressors like TBI as initiator of sporadic ALS pathology beginning in the cervical spinal region. 

In preclinical TBI studies, ALS disease pathology are mainly seen in the cortex region with 

Wright et al (2017) showing motor neurone disease pathology (increases in cytoplasmic TDP-

43 and pTDP43) in the motor cortex but not in the lumbar region post 3 months after FPI (Wright 

et al., 2017b) and Yang et al (2014) observing the mis-localization of TDP-43 from the nucleus 

to cytoplasm in both CCI injury and blast injury (Yang et al., 2014). However, since these 

studies did not look at the cervical spinal region, it could be speculated that the ALS pathology 

witness in their study may have stemmed from earlier pathological changes in the cervical 

region.       

Interestingly, some of the changes seen in the motor cortex and the regions of spinal 

cord in this study negatively correlates with previous experimental TBI-MND research (Wright 

et al., 2017b), particularly the increases in total neurons (in the motor cortex, cervical and middle 
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thoracic spinal region) and myelination (in motor cortex) and the decrease in phosphorylated 

form of TDP-43 (pTDP-43) (in cervical and lumbar spinal region) seen in our post mild and 

repetitive mild diffuse TBI at 12 months post injury. In addition the ratio of pTDP-43 to the 

total TDP-43 were observed to be down-regulated in the motor cortex and cervical spinal region 

of these animals, suggesting that phosphorylation of TDP-43 protein may not be occurring at 

12 months post injury, despite the upregulation of TDP-43 proteins. Phosphorylation of TDP-

43 have been recognised as an ALS severity marker (Brettschneider et al., 2014), however, 

phosphorylation of TDP-43 is mediate by protein kinases such as casein kinases (CKI and II) 

or cell division cycle 7-related kinase (CDC7) (Yamashita et al., 2016). Thus, a dysregulation 

of these kinases; CKI inhibition may be upregulated by TBI (Dash et al., 2011), may explain 

the reduction in pTDP-43 levels in the mild TBI groups. Since molecular analysis was not 

performed for protein kinases levels, the kinase change in these motor neurons could not be 

determined, thus serving as a limitation of this study.   

As for increases in cytoplasmic neuronal levels in the motor cortex and spinal regions 

post mild and repetitive TBI, one study suggest that increases in cytoplasmic NeuN levels (as 

seen in this study) in ALS transgenic pigs is due to interactions with cytoplasmic TDP-43 

causing mis-localisation of NeuN, which is predominately found in the nuclear region of 

neurons, into the cytoplasm, thus preventing RNA splicing to continue in the nuclear region of 

neurons (neurite growth halted) (Wang et al., 2015). Although this may explain the increases 

in cytoplasmic NeuN in the cervical region of the mild TBI groups, increases in the motor cortex 

and middle thoracic requires further exploration to determine the reason for this phenomenon 

in spite of TDP-43 pathology within these motor neurone regions. 

Similar to increases in NeuN marker, the MBP marker (used in measuring neuronal 

myelination) was also found increased in the motor cortex of the mild TBI groups, which may 

further support the motor neurone disease pathology and may indicate possible ALS 

development at 12 months in the upper motor neuron network as well. Ajao et al (2012) 

observed that increases in MBP marker in cortical regions of rats correlated with white matter 
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morphological changes at 2 months post injury which they believe attributed to the motor 

deficits seen on the rotarod at this timepoint (Ajao et al., 2012). Although they did not relate 

this findings to possible ALS pathology at 2 months post injury, given the additional NeuN 

increases and the pTDP-43/TDP-43 ratio decrease (which have been related to ALS pathology), 

the MBP increase in the motor cortex of the mild TBI groups may suggest the development of 

upper motor neurone disease (Agosta et al., 2009) post injury.      

On the other hand, given the lack of abnormal protein aggregation, regardless of TBI 

severity, in other brain regions studied such as the striatum, substantia nigra, hippocampus and 

prefrontal cortex, we suggest that without other exogenous factors, TBI alone may not be 

sufficient to precipitate later neurodegeneration. Alternatively, the time-point chosen may be 

too early to detect these changes, given that it equates to late middle age, while tau pathology 

and alpha-synuclein aggregates are typically seen post mortem-ly in AD/CTE (Castellani and 

Perry, 2019) and PD patients (Goldman et al., 2012), respectively, years after TBI. However, 

in preclinical studies, these neurodegenerative pathologies are usually evident acutely (within 

weeks) post TBI in rodents with its disappearance as the animal ages. For example, Hawkins et 

al (2013), detected oligomeric and phosphorylated tau proteins up to 2 weeks post FPI 

(Hawkins et al., 2013) with a couple of other studies suggesting earlier detection (less than 7 

days for most types of TBI, even of mild severity) (Arun et al., 2015; Gabbita et al., 2005; Liu 

et al., 2011; Lv et al., 2014a; Shultz et al., 2015), while Acosta et al (2015) found alpha-

synuclein increases in the substantia nigra at 60 days post CCI injury (Acosta et al., 2015b). 

Nevertheless, since rarely do these studies investigate these pathologies chronically post 

experimental TBI, with Mouzon et al (2014) and Mannix et al (2013) showing no tau pathology 

at 6 and 12 months post mild TBI (Mannix et al., 2013; Mouzon et al., 2014) and Uryu et al 

(2003) exhibiting recovery of alpha-synuclein pathology at 16 weeks post CCI injury (Uryu et 

al., 2003), supporting our findings, the possibility of re-emergence of these pathologies at 

further timepoints (more than 12 months) may still be questionable given the clinical evidence.  
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In conclusion, this study suggests that at 12 months post injury there may only be 

evidence of motor-related neurodegeneration such as ALS, which may affect both upper and 

lower motor neurons, post mild diffuse TBI, regardless of severity. This provides a significant 

insight to the increase risk of neurodegeneration post experimental TBI, mimicking the clinical 

evidence. Future studies should investigate the neuropathology at later timepoints (18 months) 

to ensure that the motor-related neuropathology seen in this study at 12 months in the motor 

cortex and spinal cord regions of the mild TBI animals, may progress further into widespread 

motor neuronal loss leading to muscle atrophy in these animals. This study shows that the motor 

cortex and spinal cord regions are most sensitive towards mild injuries and should be focused 

more in future studies.  

 

4. Experimental Procedure: 

4.1 Animals 

Male Sprague-Dawley rats (10-12 weeks) were used under the approval of the University of 

Adelaide Animal Ethics Committee (M-2015-243A) and (M-2015-187). Animals were housed 

under conventional laboratory conditions, with a 12-hour light-dark cycle and access to food 

and water ad libitum. Animals were randomly allocated to receive either sham surgery (n=3), 

repetitive sham surgery (3 incisions at 5 day intervals) (n=3), a single mild diffuse TBI, mTBI 

(n=6), repetitive mild diffuse TBI, rmTBI (3 mild diffuse injuries at 5 day intervals) (n=7), or 

moderate to severe diffuse TBI, msTBI (n=7). Following behavioural testing (as described in 

chapter 3 and chapter 4 previously), animals (12 month cohort only) were saline perfused at 12 

months post injury and the brains and spinal cords were collected for molecular analysis.  

4.2 Injury Model 

The Marmarou impact-acceleration model (Marmarou et al., 1994) was utilized, as it has been 

extensively validated as a model of diffuse injury (Xiong et al., 2013b). Animal weights ranged 

from 420-480g at the time of TBI induction. Animals underwent anaesthetic induction via 

inhalation of 5% isoflurane under normoxic conditions. Animals in the sham, repetitive sham, 
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mild diffuse TBI and repetitive mild diffuse TBI groups were maintained on 2% isoflurane via 

nose cone throughout, while animals in the moderate/severe diffuse TBI group were 

subsequently intubated, mechanically ventilated and maintained on 2% isoflurane throughout 

(Marmarou et al., 1994; McColl et al., 2018). A midline incision on the scalp was made to 

facilitate the placement of a metal disc centrally between lambda and bregma on the skull. 

Animals in the sham and repetitive sham groups receive the incision only, with repetitive sham 

animals receiving the incision three times at 5 days intervals between each incision.  

Animals in the repetitive mild diffuse TBI and mild diffuse TBI group were removed from the 

nose cone and strapped onto a foam, with injury induced by releasing a 450g weight from a 

height of 0.75 metres down a clear tube onto the centre of the metal helmet; mild diffuse TBI 

animals receive this procedure only once, while repetitive mild diffuse TBI animals receive this 

injury three times at 5 days intervals between each injury (Table 1). Conversely, animals in the 

moderate to severe diffuse TBI group were transiently taken off ventilation after incision, 

strapped onto a foam, with injury induced by releasing a 450g weight from a height of 2 metres 

(Table 1). Contact was observed to ensure a single, direct impact without a rebound hit in all 

animals. Only animals in the moderate/severe diffuse TBI group were then subjected to hypoxic 

conditions (2L/min nitrogen; 0.2L/min oxygen) for 10 minutes, to replicate the clinical effects 

seen following this injury model without ventilation, as this hypoxic condition is known to 

exacerbate the severity of the injury (Hellewell et al., 2010; Ishige et al., 1987a). Hypoxia alone 

had similar levels of cytoskeletal structure and neuroinflammation as shams under normoxic 

ventilation  as reported by Hellewell et al. previously (Hellewell et al., 2010). Saline treatment 

(5mL of 0.9% (w/v) saline solution) was administered subcutaneously to prevent dehydration 

(Eakin et al., 2015a) in the moderate/severe diffuse TBI group after wound closure and if there 

was continuous weight loss post injury. 

Wound closure was performed with surgical staples. Successful induction of moderate/severe 

TBI was assessed 24 hours later by rotarod scores of below 100, weight reduction of 5-10% 

and clinical signs (paresis and hunched posture). Animals in the moderate/severe TBI group 
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that did not meet the above criteria were excluded from the study. Shams, repetitive shams, 

mild diffuse TBI and repetitive mild diffuse TBI animals assessed at the same timepoint (24 

hours) exhibited none of the clinical signs and had rotarod scores of more than 100s.    

 

Table 1. Injury model and specifications 

 

Injury 

Type 

Weight of 

metal  

Height of 

drop 

Days of 

injury 

Mechanically 

ventilated 

Hypoxia 

Treatment 

Saline 

Treatment 

Repetitive 

Mild TBI 

450g 0.75 m 3 days (at 

5 day 

intervals) 

No No No 

Mild TBI 450g 0.75 m 1 day No No No 

Moderate 

to Severe 

TBI 

450g 2.00 m 1 day Yes Yes Yes 

 

 

4.3 Tissue Collection and Processing 

Animals were transcardially perfused with 0.9% saline and the brain and spinal cord were 

removed. The brain was further dissected into the prefrontal cortex, motor cortex, striatum, 

substantia nigra and hippocampus (n=5-7 per group) while the spinal cord was further dissected 

into cervical, thoracic and lumbar regions (n=5-7 per group). All tissue samples were snap-

frozen in liquid nitrogen before being stored at -80°C.  

The samples were taken out and homogenised in freshly prepared RIPA lysis buffer (150mM 

sodium chloride, 50mM Tris-hydrochloride acid of pH 7.5-8, 1% of NP-40 IGEPAL CA-630, 

0.5% sodium deoxycholate, 0.1% of sodium dodecyl sulfate (SDS) and distilled water) with 1X 

cOmpleteTM EDTA-free protease inhibitor cocktail (Sigma). After homogenisation, each 

sample underwent 3 bursts of 10 seconds duration under a sonicator probe with a cooling period 

between each burst. Then the samples were centrifuged for 30 minutes at 14000 rpm and 4°C, 

before the supernatant were collected. Protein concentration was estimated with Pierce BCA 

Protein Assay Kit (ThermoScientific) with the absorbance read at 540nm. All supernatant were 

stored at -80°C until further usage. 
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4.4 Western Blot 

Gel electrophoresis was performed using Bolt 4-12% Bis-Tris Plus gels (Life Technologies) 

with 30ug of protein loaded per well. Gels were run at 150V for 1 hour except for oligomeric 

tau that was run at 100V for 1hour 45 minutes. After the run, blots were transferred to a PVDF 

membrane using the iBlot 2 Dry Blotting System (Life Technologies). Membranes were washed 

in 1X tris-buffered saline with tween (TBST) (3 washes x 5 minutes), stained with Ponceau S 

red solution (Fluka Analytical) (5 minutes) for protein visualisation, and washed with distilled 

water until sufficient removal of the Ponceau stain had been achieved. 

Membranes were then incubated for 5 minutes with the 1X iBind solution before proceeding 

with the final step of simultaneous incubation with primary and secondary antibodies in 1X 

iBind solution for 2.5 hours using the iBind Western System (Life Technologies). Primary 

antibodies were used at individually optimised concentrations for specific tissue regions as 

specified in Table 2. Secondary antibodies to the respective primary antibodies (donkey anti-

rabbit, donkey anti-mouse and donkey anti-chicken, IRDye 800CW; LI-COR, Inc.) were used 

at 1:3000. The blots were imaged using an Odyssey CLx Infrared Imaging System (model 9140) 

(LI-COR, Inc.) set at auto resolution for optimum visualisation. Semi-quantitative analysis of 

band signals were performed using Image Studio Lite version 5.2. Normalization of blot runs 

were performed using a single control sample (Rapoport et al.) across blots of the same protein 

of interest. Thus, relative density of the samples was calculated based on the adjusted density 

for each blot, as below: 

Adjusted density = 
𝑏𝑎𝑛𝑑 𝑠𝑖𝑔𝑛𝑎𝑙 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛/ℎ𝑜𝑢𝑠𝑒𝑘𝑒𝑒𝑝𝑒𝑟

𝑏𝑎𝑛𝑑 𝑠𝑖𝑔𝑛𝑎𝑙 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑟𝑜𝑡𝑒𝑖𝑛/ℎ𝑜𝑢𝑠𝑒𝑘𝑒𝑒𝑝𝑒𝑟
  

Relative density = 
𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑝𝑟𝑜𝑡𝑒𝑖𝑛

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 ℎ𝑜𝑢𝑠𝑒𝑘𝑒𝑒𝑝𝑒𝑟
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Table 2. Molecular markers 

Molecular Markers Company Dilution Molecular 

Weight 

(kDa) 

Function 

Oligomeric Tau, T22 Merck 

(ABN454) 

1:250 78, 110 Markers of 

neurodegenerative 

disease  Hyperphosphorylated tau, 

T231 

Abcam 

(ab151559) 

1:500 50-70 

Total tau, TAU5 Merck  

(577801) 

1:500 45-68 

Alpha synuclein Abcam 

(ab212184) 

1:500 18 

TDP-43 Abcam 

(ab109535) 

1:500 43 

Phosphorylated TDP-43 

(Ser403/404) 

Cosmo Bio 

(TIP-PTD-P05) 

1:500 43 

Superoxide dismutase 

(SOD-1) 

Abcam  

(ab13498) 

1:1000 18 Oxidative Stress 

Myelin basic protein 

(MBP) 

Abcam  

(ab62631) 

1:750 21 Myelin structural 

damage 

Neurofilament Light chain 

(68kDa) (NFL) 

Abcam 

(ab72997) 

1:2000 68 Axon structural 

damage 

Synaptophysin Abcam 

(ab32127) 

1:4000 38 Synapse structural 

damage 

NeuN Abcam 

(ab177487) 

1:750 38-52 Total neurons 

GAPDH Abcam 

(ab83957) 

Abcam 

(ab9485) 

1:1000 36 Housekeeper 

protein 

Β-actin Sigma-Aldrich 

(SAB3500350) 

1:1000 42 Housekeeper 

protein 

 

 

4.5 Statistics 

All data was analysed via two-way ANOVA (Analysis of Variance) using IBM SPSS statistics 

24 and GraphPad Prism software. P values < 0.05 were considered statistically significant. 

Shams and repetitive shams were combined together as a single sham group, as they did not 

differ with statistically significance in any molecular analysis. 
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Traumatic brain injury (TBI) is a major and common debilitating disorder of the 21st 

century (Khoury and Benavides, 2018). Although the advancement of science, medicine and 

technology has increased survival post-TBI, sadly, despite initial recovery, a percentage of 

these survivors go on to suffer persistent deficits (Dikmen et al., 1995; Vincent et al., 2014b). 

Furthermore, increasing evidence suggests that a history of TBI increases the risk for the later 

development of neurodegenerative disease. Population and clinical studies have shown a dose 

dependent relationship between TBI and neurodegenerative diseases, whereby mild TBI (either 

single or repetitive) is associated with a wider range of neurodegenerative disease, such as 

motor neurone disease (Chen et al., 2007a; Raj et al., 2017), Parkinson’s disease (Bower et al., 

2003; Factor and Weiner, 1991) and, specifically for repetitive mild TBI, chronic traumatic 

encephalopathy (McKee et al., 2013b), while moderate to severe TBI is more often linked with 

dementia (Gardner et al., 2014a; Raj et al., 2017; Salib and Hillier, 1997).  

Based on the literature review presented in the first chapter of this thesis, it was found 

that most preclinical studies investigating the relationship between TBI and its long-term 

functional outcomes, particularly neurodegeneration, may not accurately model clinical 

findings, which may contribute to why treatment strategies for the prevention of long-term 

impairments post TBI have been ineffective to date. This is because most preclinical studies 

were focused on focal injuries (Kokiko-Cochran et al., 2016; Shultz et al., 2012; Tan et al., 

2016; Wright et al., 2017a) or mixed injury models (Byrnes et al., 2012; Gao et al., 2017; Laurer 

et al., 2001; Thomsen et al., 2016; Zhang et al., 2015), with only a couple carried out in a purely 

diffuse model, such as the weight drop model (Rachmany et al., 2013) or CHIMERA (Chen et 

al., 2017a; Nolan et al., 2018b). The clinically relevant ‘purely’ diffuse injury results in a lower 

GSC score (greater unfavourable outcome post injury) and has a higher prevalence among TBI 

patients compared to focal TBI, with 72% of moderate-severe TBI patients categorised as 

sustaining diffuse TBI on admittance (Skandsen et al., 2010).  
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Additionally, a majority of the research conducted to date focused on timepoints in the 

acute to early chronic (1 to 6 months) phase post-injury (Chen et al., 2017a; Lynch et al., 2016; 

Petraglia et al., 2014; Saber et al., 2017) and, therefore, may not account for the aging effect in 

relation to functional outcomes post injury. A recent review by Wood R.L. (2017) concluded 

that the literature to date suggest TBI to accelerate age-related cognitive decline and may lead 

to premature aging, therefore having possible implications towards early dementia development 

post injury (Wood, 2017). One study from that literature included showed significantly worse 

cognitive outcomes, in terms of attention, processing speed, working memory and overall 

executive function, in long time survivors of TBI compared to acutely injured TBI patients, 

which was irrespective of age at injury (Senathi-Raja et al., 2010). This suggest that time since 

injury (aging) may play an important role in determining the functional outcomes post injury 

and therefore preclinical studies should account for this effect, especially if the relationship 

between TBI and age-associated diseases like dementia is of concern.  

Finally, only a handful of studies have tried to determine the effect of TBI severity on 

long-term functional outcomes post-injury (Gao et al., 2017; Laurer et al., 2001; Mouzon et al., 

2014; Petraglia et al., 2014), with only one study thus far that has investigated all three types of 

TBI severity (single mild TBI, repetitive mild TBI and moderate to severe TBI) within a single 

study (Thomsen et al., 2017). This is significant as trying to compare severity effects across 

studies may introduce confounding variables, such as animal species, TBI models and age at 

induction of injury. Thus, when all these gaps and limitations in the current literature are taken 

together, the overarching aim of this thesis was to investigate long-term functional and 

neuropathological outcomes following different severities of TBI in a diffuse axonal injury 

model, up to 12 months post injury. 

As preclinical investigations on outcomes following moderate to severe diffuse TBI are 

scarce within the literature (Byrnes et al., 2012; Erturk et al., 2016; Thomsen et al., 2017), this 

thesis first sought to determine the early chronic functional and neuropathological changes up 
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to 3 months post-injury in a model of moderate/severe ’purely’ diffuse TBI. The functional 

outcomes from this study suggest that neuropsychiatric impairments, mainly a depressive-like 

phenotype, are the first to develop at 1 month post injury and remained persistent up to 3 months, 

followed by subtle cognitive changes in flexibility that developed at 3 months post moderate to 

severe diffuse TBI, which is consistent with the clinical outcomes following an injury of similar 

severity (Draper et al., 2007; Himanen et al., 2006; Kaup et al., 2017; Palacios et al., 2013), 

with some preclinical studies observing persistent elevations of immobility at early chronic time 

points (2-3 months) post moderate to severe diffuse TBI in the weight drop model (Milman et 

al., 2005) as well as in a focal and more severe CCI model (Taylor et al., 2006). Depression has 

also been associated with repetitive mild TBI, clinically (Hart et al., 2013; Vargas et al., 2015b) 

and pre-clinically (Briggs et al., 2016; Petraglia et al., 2014; Shultz et al., 2012; Tan et al., 2016), 

where the higher number of hits (severity of repetitive TBI) increased the likelihood of 

depressive-like behaviour on the forced swim test; 95g weight drop (Briggs et al., 2016) or 5 

mild FPI (Shultz et al., 2012) displayed longer immobility time than 75g weight drop or 3 mild 

FPI, respectively. However, whether moderate to severe TBI was more associated with a higher 

risk and persistence of depression post injury compared to repetitive mild TBI, was only 

investigated in chapter 3, which showed no depressive-like phenotype at 12 months regardless 

of TBI severity. 

On the other hand, cognitive flexibility impairment witness at 3 months post injury in 

the moderate to severe TBI in this chapter 2 was found to persist up to 12 months (chapter 3 

and chapter 4) in this severity group, thus suggesting persistent executive function impairment 

beginning as early as 3 months post moderate to severe TBI but not in milder forms, supporting 

clinical findings (Maillard-Wermelinger et al., 2009; Muscara et al., 2008a). Since the 

impairment in cognitive flexibility at 3 months was in spite of learning and memory deficits, 

together with the depressive-like phenotype witness, the study believes that the diffuse 

moderate to severe TBI may have created a greater damage in the prefrontal cortex (PFC) region, 

as executive function and emotion are PFC-dependent behaviour (Bizon et al., 2012; Rao et al., 
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2010) while learning and memory are more hippocampal-dependent (Conrad et al., 1996; Epp 

et al., 2013). Thus, the neuropathology to support these behavioural impairments was further 

investigated.  

While it is still unclear what brain mechanisms may account for these early chronic 

functional changes, previous research has suggested that neuroinflammation may be driving 

these impairments (Cherry et al., 2016; Erturk et al., 2016; Johnson et al., 2013; Kokiko-

Cochran et al., 2016; Webster et al., 2015). However, in our study, we failed to show any 

elevation in either the total number of microglia or astrocytes at 3 months post injury, when the 

majority of the functional outcomes were displayed. Thus, the study concluded that 

neuroinflammation and oxidative stress present in the prefrontal cortex at 1 month may initiate 

an as yet unexplored downstream pathology (for example: synaptic and receptor dysfunction) 

that may lead to the deficits observed at 3 months. Interestingly, this neuropathology was only 

evident in the prefrontal cortex, and not in the hippocampus. The prefrontal cortex is critical 

for  neuropsychiatric and executive function (Chou et al., 2016b; Nolan et al., 2018b; Stuss, 

2011) while the hippocampus is more associated with learning and memory (Bird and Burgess, 

2008). Given the findings (behavioural and neuropathology) from this study, the PFC may be 

suggested as being particularly vulnerable to moderate/severe diffuse axonal injury sub-acutely 

(1 month) post injury. It is imperative to note, however, that our study only examined the total 

number of microglia, and therefore confirming the differences in the levels between the resting 

state and reactive state of the microglia may provide a better understanding of the 

neuroinflammation link chronically post TBI (Cherry et al., 2016; Johnson et al., 2013). 

Additionally, due to the complexity of neuroinflammatory pathways, future studies should also 

determine the changes in the levels of chemokines and cytokines, which play a significant role 

in the pathway between neuroinflammation and neuronal damage (Kokiko-Cochran et al., 2016; 

Webster et al., 2015).  This will allow for a more in-depth analysis of long-term changes in the 

neuroinflammatory response following TBI. 
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        Given that changes in depressive-like behaviour and cognitive flexibility were present up 

to 3 months post-injury in our model of moderate/severe TBI, we next wanted to characterise 

whether these changes were still present at a much more chronic time point (12 months post-

injury) and whether the initial severity of the injury impacted functional outcomes. We had 

hypothesised that functional deficits would worsen over time and would show a dose-dependent 

effect, with more severe injury associated with greater long-term impairment, consistent with 

the clinical literature.  Surprisingly, at 12 months post injury, there were no major behavioural 

deficits noted, irrespective of TBI severity, with only subtle cognitive deficits and anxiety-like 

behaviour observed in the moderate to severe TBI animals. These results  seem to indicate that 

there is behavioural recovery in rodents at this time point, which corresponds to “middle age” 

in humans. It may be that deficits re-emerge with age, so a longer time-course post-injury is 

needed to fully explore this. This would be consistent with the clinical literature, since, in 

humans, the risk of neurodegenerative disease in those with a history of TBI increases with age, 

with most individuals not showing symptoms until above 55 years old (Breteler et al., 1995; 

Chen et al., 2007a; Gardner et al., 2014a; Gardner et al., 2015b; McKee et al., 2013b; Mehta et 

al., 1999; Nordstrom and Nordstrom, 2018; Salib and Hillier, 1997; Tolppanen et al., 2017).  

Since neurodegenerative disease risk also increases with the severity of the TBI, 

whereby individuals with a history of moderate to severe TBI may present with symptoms 

earlier (higher risk) than those with a history of mild TBI (Fann et al., 2018; Gardner et al., 

2015b; Kaup et al., 2017; Nordstrom et al., 2014; Tolppanen et al., 2017), it may be that the 

subtle behavioural impairments observed at 12 months in the moderate to severe TBI animals 

would worsen over time, setting the stage for the development of neurodegenerative disease. 

Typically, however, if this were the case, we would anticipate that we would be able to detect 

the beginnings of neuropathological change in relevant brain areas. As demonstrated in the final 

chapter, this was not the case, with the majority of markers assessed showing no alteration. It 

is important to note, however, that this was a fairly preliminary analysis of the neuropathology, 

using only Western blot to investigate total protein levels of markers of interest. A more in-
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depth investigation, expanding the marker panel to include measures of neuroinflammation and 

cellular stress or probing alterations in connectivity using neuroimaging, may reveal the 

beginning of more subtle changes, but was outside the scope of the current thesis.  

While the cognitive changes seen following moderate/severe TBI at 12 months were 

similar to those noted at 3 months in our earlier study, the neuropsychiatric changes were 

different, with no increase in depressive-like behaviour seen at 12 months post-injury. This may 

be due to several factors. First, there were significant differences in body weight of the two 

cohorts, with rodents at 12 months weighing approximately 900g (~900g) and rodents in the 3 

month group significantly smaller at around 500g. Given that the forced swim test is dependent 

on the rodent fitting into a cylinder with a specific diameter, it may be that the larger size in the 

12 month animals affected the immobility time measured.  Thus, this test may not be an 

appropriate measure of depressive-like behaviour in older animals, and future studies, utilising 

alternate tasks, will be needed to fully assess the relationship between TBI and chronic 

depression.  

Additionally, our rodent cohort (i.e. differences in breeding colonies) may be a 

confounding variable between the two studies. Despite the fact that Sprague-Dawley rats were 

used for both studies, the breeding population differed between cohorts of animals utilised in 

the studies and these two cohorts may have differed in their response to the diffuse injury. 

Previous work from our lab (i.e. Stephanie Plummer’s unpublished 2018 thesis) showed that 

rodents from the two breeding populations displayed differences in gross morphology of the 

skull, as well as the severity of the clinical signs, such as paresis and mortality rate within 24 

hours post injury. While the starting weight of the animals used in the 12 month study was 

rectified in order to result in a similar severity of clinical signs following injury as that seen in 

the 3 month study (at least for the moderate to severe TBI group, as clinical signs in the model 

of mTBI may be unnoticeable), it may be that differences still existed which could affect the 

depth or extent of the injury. It is also possible that the sample size of the study is 
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underestimated. Given that even in the human population, there is not a 1:1 relationship between 

TBI and neurodegeneration (i.e. not all individuals who have experienced a  TBI will go on to 

develop neurodegenerative diseases; often less than 10%) (Barnes et al., 2018; Breteler et al., 

1995; Nordstrom and Nordstrom, 2018; Raj et al., 2017; Spangenberg et al., 2009), the same 

probability may also be present in our preclinical model. Therefore, the small sample size of 14 

animals per TBI severity may be masking functional impairments seen in animals that are more 

susceptible towards long term deficits post injury. Thus, future studies should account for this 

probability and raise the sample size accordingly. 

            Given that we saw subtle changes in cognitive flexibility at 12-months post-injury in 

the moderate to severe TBI animals, we next explored these effect more fully by delving deeper 

into the temporal profile of changes in executive functioning using a touchscreen cognitive 

chamber to perform the 5-choice serial reaction time task (5CSRTT). Executive function 

deterioration is commonly reported in TBI clinical studies (Alosco et al., 2017; Azouvi et al., 

2004; Esopenko et al., 2017; Kaup et al., 2017; McDonald et al., 2002; Rochat et al., 2013), and 

changes in executive function are often the first signs/symptoms of cognitive deficits in 

dementia patients (Clark et al., 2012). The 5CSRT task utilising the touchscreen chamber has 

previously been used to measure cognitive impairments in models of Alzheimer’s disease 

(Romberg et al., 2013b) and psychiatric disorders (Nithianantharajah et al., 2013), but has not 

previously been used following TBI.  

Since this was the first time that this task had been used both following TBI and in an 

aged cohort, first optimisation of the task needed to be performed. Previous studies have set the 

number of months needed for the training phase, established a paradigm of one hour or 100 

trials per testing time and have trained animals up to 0.6s of stimulus presentation (Barnes et 

al., 2012; Romberg et al., 2013b), whereas in this study, due to behaviour timeline constraints 

and the age of the animals, the training phase was shortened to 25 days, with 30 minutes or 60 

trials per testing time and with animals only trained to 2.5 secs of stimulus presentation. 
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Animals in the 12 month cohort were bigger in size than the other timepoint cohorts (1 and 6 

months) and thus their agility and motivation in the study was less (Amancio-Belmont et al., 

2017) compared to the 1 month and 6 month animal cohorts.  However, to avoid potential 

confounders, all testing parameters were kept constant for all animal cohorts, which resulted in 

a higher number of animal drop outs (unable to achieve criterion) in the 12 month cohort; 1 

animal in the 1 month cohort, 6 animals in the 6 month cohort and 10 animals in the 12 month 

cohort, were excluded from the study. Moreover, due to the shortened training phase, this 

study’s initial objective in conducting the 5CPT (5 choice continuous performance task), which 

provides a better insight into vigilance and inhibition impairments (Mar et al., 2013a; Young et 

al., 2009), was halted, as the animals failed to learn the go/no-go task within the short timeframe, 

and the 5CSRT task was completed instead.  

  Using the 5CSRT task, the strongest effect seen was that of age, where motivation, 

attention and reaction time all decreased with age. This was most apparent in the moderate-

severe TBI group, where a significant but subtle cognitive flexibility impairment was also 

observed at 12 months post-injury, consistent with our earlier findings in the Barnes maze at 

this time point. Moreover, the study found injury severity as a factor that influenced the age-

related cognitive changes where different severities affected different domains of executive 

function over time; single mild TBI in attention, motivation and reaction time, repetitive mild 

TBI in reaction time only while moderate to severe TBI in attention, reaction time and 

impulsivity. This is also consistent with the clinical literature, which demonstrates that the 

severity of TBI affects the age-related decline in executive function; with moderate to severe 

TBI resulting in greater executive dysfunction in flexibility, speed and attention compared to 

milder TBI even after 10 years post injury, but that even mild TBI is able to show this deficits 

post injury (Maillard-Wermelinger et al., 2009; Muscara et al., 2008a). Clinical studies in 

athletes with repeated concussion also support the decrease in reaction speed seen in this study 

with Pederson et al (2014) suggesting that visual-motor speed decreased significantly after the 

second concussion in ice-hockey players (Pedersen et al., 2014b). To note, this study saw a 
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contradicting impulsivity finding, where the literature suggest impulsivity to increase with time 

since injury (Shaver et al., 2019b) and injury severity (Vonder Haar et al., 2017), however, the 

moderate to severe TBI in this study showed a decrease in impulsivity over time which was not 

evident in other severity groups. Dalley et al (2002) and Pattij and Vanderschuren (2008) 

suggest that impulsivity in rodents can decrease if the 5HT system is dysregulated such as 

increases in noradrenaline (Dalley et al., 2002; Pattij and Vanderschuren, 2008). Thus, the 

moderate to severe diffuse TBI may have impaired this system (Kobori et al., 2006) causing a 

gradual decrease in impulsivity over time. In addition, impulsivity decreases as a function of 

age where studies show adult animals to be less impulsive than those in adolescence (Doremus-

Fitzwater et al., 2012; Sasamori et al., 2018) concurrent with population studies (Chamorro et 

al., 2012; Romer, 2010). This suggest moderate to severe TBI may have increased the 

vulnerability of the rodents towards age-related decline in impulsivity.  

Setting age aside, injury severity itself may have a huge burden on executive function 

post injury; moderate and severe CCI injury animals displayed significant executive function 

impairments across all facets tested (attention, impulsivity and motivation) up to 14 weeks post 

injury while mild CCI only showed persistent impulse control (Vonder Haar et al., 2016). 

Although this study only showed significant cognitive flexibility impairment against sham 

animals at 12 months post injury, this study believes that diffuse TBI, which creates widespread 

axonal damage, may take a longer time to show impairments in other executive function 

domains compared to CCI (as early as 2 weeks post injury), which precisely targets the PFC 

area responsible for executive function (Vonder Haar et al., 2016). Taken together, this supports 

the moderate to severe TBI cognitive outcome in this study of diffuse TBI at 12 months 

especially in terms of cognitive flexibility impairments compared to other groups over time, 

and suggest that moderate to severe diffuse TBI may have the strongest impact on the axons of 

the frontal lobe area which governs these cognitive processes (Bizon et al., 2012) compared to 

milder diffuse TBI at 12 months post injury. Thus, alterations in executive dysfunction over 



160 
 

time may show a dose dependent relationship, with more severe injury associated with steeper 

patterns of decline.  

Additionally, our results indicate that with more effective optimisation of the 5CSRT or 

5CPT (longer training periods to ensure animals have appropriately learned the task), the 

touchscreen cognitive chamber may become a very useful and informative cognitive tool for 

assessing the subtle temporal profile of cognitive change post-TBI. A more complete 

characterisation of these changes is a critical first step in predicting which individuals may be 

at increased risk for the later development of dementia. 

         As discussed above, we were interested in whether there were neuropathological changes 

present at 12 months, specifically an accumulation of proteins associated with 

neurodegenerative diseases, despite the lack of significant functional impairments at this time 

point. Such a finding would have supported the idea that there were changes occurring cellularly 

at this time point that could drive the later re-emergence of neurodegenerative-like functional 

deficits. Despite this, in our study, which only used Western blot to measure levels of the most 

common neurodegeneration-associated proteins in brain areas relevant to each disease, we 

found that TBI was not associated with accumulation of either hyperphosphorylated tau (ptau), 

or α-synuclein, which are associated with dementia and Parkinson’s disease, respectively. This 

is inconsistent with previous clinical literature, which suggests that there are increases in both 

tauopathy (Johnson et al., 2012a; Yang et al., 2017) and in alpha-synuclein inclusions 

(Mondello et al., 2013; Shahaduzzaman et al., 2013) in TBI patients over time. Preclinical 

studies have also found similar findings in both ptau (Cheng et al., 2014; Hawkins et al., 2013; 

Huber et al., 2013; McKee et al., 2015) and alpha synuclein (Acosta et al., 2015a; Impellizzeri 

et al., 2016; Uryu et al., 2003) within the weeks after injury. The lack of ptau findings in this 

study could be attributed to a lack of neuropathology-causing severity; Yang et al (2017) 

suggested that only severe and extremely severe TBI may result in phosphorylation of tau (Yang 

et al., 2017), thus the severities of TBI used in this study may not be sufficient to cause tau 
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phosphorylation. The lack of alpha-synuclein findings may be attributed to a possible recovery 

stage at 12 months post injury; Uryu et al (2003) suggested that alpha-synuclein levels returned 

to sham levels by 16 weeks post moderate CCI injury (Uryu et al., 2003), therefore suggesting 

these levels may still remain at sham levels at 12 months post injury; possibly no implications 

of TBI towards PD.    

Furthermore, no differences in markers of neuronal integrity between groups were noted 

within the PFC, hippocampus, striatum or SN.  However, alterations in TDP-43 were seen 

within the motor cortex and cervical and lumbar spinal regions of mild TBI animals. This may 

provide preliminary evidence for a relationship between mild TBI and the early stages of ALS.  

Interestingly, while both the levels of phosphorylated TDP-43 (a neuropathological hallmark 

of ALS), as well as the ratio of phosphorylated TDP-43 against total TDP-43, were decreased 

in these areas, there an increase in total TDP-43 levels. As the study did not investigate kinase 

protein levels such as casein kinases (CKI and II) or cell division cycle-7 related protein kinase 

(CDC7), where a down-regulation of these kinases may reduce the phosphorylation of TDP-43 

(Yamashita et al., 2016), it could be suggested that mild TBI may have affected the translation 

and regulation of these kinases (Dash et al., 2011), thus causing the decrease in pTDP-43 levels. 

While a decrease in pTDP-43 levels contradicts the levels associated with ALS, dysregulation 

of CKI may defend neuronal cells from apoptosis (Dash et al., 2011); thus may also explain the 

lack of severe motor impairments at this timepoint (no neuronal loss). However, since kinase 

levels were not investigated and motor function was not robustly assessed in the current study 

(just open field for general locomotion), future studies should incorporated kinase activity 

analysis and utilise motor function test that evaluates fine motor impairments, to better relate 

TBI to motor neurone disease.  

As the neuropathology at only one timepoint (i.e, 12 months post-injury) was assessed, 

the possibility of earlier pathology driving the deficits seen at 12 months remains to be 

investigated. This is based on the results from the 3 month study, described in chapter 2, that 
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showed significant neuropathology at 1 month, months before cognitive deficits were observed 

at 3 months, which had seemingly resolved at 3 months instead. Therefore, a similar pattern 

may be displayed at 12 months as well, with earlier neuropathological change initiating a 

downstream cascade that was not investigated in this study, such as neurochemical changes, 

receptor dysfunction or functional connectivity.   As discussed earlier, due to the scope of the 

current thesis, the neuropathological analysis conducted to date is fairly primitive. Thus, a more 

in-depth investigation, with an expanded marker panel, may be needed to fully understand the 

cascade and temporal profile of neuropathological change. Additionally, white matter tract or 

connectivity damage is often associated with a purely diffuse injury, such as in this study, as 

axonal shearing is a hallmark of weight drop TBI model (Braun et al., 2017; Narayana, 2017; 

Xiong et al., 2013a). However, in the current study, only molecular analysis was done, which 

may not paint the full picture of the brain changes seen at chronic time points following TBI. 

Thus, future studies should include neuroimaging techniques, such as diffuse tensor imaging 

(DTI) and magnetic resonance imaging (MRI), to investigate white matter connectivity and 

volume alterations.   

         Taken together, this thesis provides some evidence of subtle functional impairments, 

particularly in cognitive and neuropsychiatric function, at both early chronic and later time 

points following diffuse TBI. These changes appeared to be dependent on the severity of the 

initial injury, with moderate to severe TBI having the most impact on long-term functionality. 

These changes may be indicative of increased risk for future neurodegenerative disease with 

older age, but a large body of work remains to be done to adequately address this question. This 

is particularly true given that only a single neurodegenerative marker (TDP43) and no markers 

of neuronal morphology were altered at 12 months post injury, making it difficult to speculate 

about a conclusive relationship between TBI and future neurodegeneration. Future studies 

should pursue further timepoints (at least 18 months post-injury), assess a wider range of 

neurodegenerative markers and expand investigations beyond changes in neurodegenerative 

disease related proteins and structural markers to investigate variables such as white matter 
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changes, neuroinflammation and neuronal network integrity (receptors and neurotransmitters). 

Nevertheless, this thesis provides significant insight into the long-term outcomes post diffuse 

injury in a preclinical model that is dependent on the nature of the initiating insult. Although 

subtle, understanding the temporal profile of functional deficits and accompanying 

neuropathological changes that occur in the months and years following TBI is critical for 

improving the predictability of neurodegenerative disease risk following TBI. 
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A B S T R A C T

TBI is a significant risk factor for the development of dementia, with the interaction between structural damage
from TBI and neuroinflammation potentially driving this relationship. This study investigated the early chronic
post-TBI neuroinflammatory response and its relationship to both neurodegenerative pathology and functional
impairment up to 3 months post-injury. Sprague-Dawley rats underwent either sham surgery or the Marmarou
model of diffuse moderate-severe TBI. At 1-month and 3-months post-injury, a functional battery encompassing
motor function, depressive-like behaviour, anxiety and cognition was performed. Western blot and im-
munohistochemical analysis assessed a range of inflammatory, neurodegenerative and oxidative stress markers.
At both 1 and 3-months post injury, depressive-like behaviour was significantly increased in TBI animals, with
TBI animals also exhibiting impaired cognitive flexibility at 3 months, although learning and memory remained
intact. This was accompanied by a significant decrease in markers of synaptic integrity and astrocytic and mi-
croglia number within the pre-frontal cortex at 1-month post-injury, although this resolved by 3-months post-
injury. In contrast, minimal pathology was evident within the hippocampus at 1 month, with only a decrease in
neurofilament-light seen at 3 months post-injury. Thus, following a moderate-severe diffuse injury, the pre-
frontal cortex is most vulnerable to early neuro-structural changes. While these changes are resolved at 3 months
post-injury, future studies should investigate whether they re-emerge or progress to other areas, such as the
hippocampus, at later time points, which could predispose individuals to the development of dementia.

1. Introduction

Traumatic brain injury (TBI) represents one of the leading causes of
mortality and disability worldwide. The Centre of Disease Control and
Prevention stated that, in 2010 alone, there were approximately 2.5
million emergency department visits, hospitalisations and deaths due to
TBI [1,2]. There is increasing evidence to suggest that neuronal injury is
ongoing following a TBI [3–5], and that moderate-severe TBI may lead
to progressive neurodegeneration, such as dementia and associated
cognitive and behavioural deficits. Population based studies following
patients with moderate-severe TBI showed these functional deficits
persisting years later, even after motor function recovery [6–8]. An
Australian health survey of TBI cases reported an overall decrease in
mental health quality and elevated depression levels when compared to
a matched non-TBI cohort, even up to 15 years after injury [9].

Indeed, following a focal injury, lesion volume was found to in-
crease nearly 5 fold over one-year post-injury [10], whereas, following
a mixed focal/diffuse injury induced by lateral fluid percussion, cortical

and hippocampal tissue loss increased significantly from one week to
one year post-injury [11]. This is supported by clinical imaging studies,
which have shown progressive white matter damage, particularly
within the frontal and temporal regions, as well as loss of cortical grey
matter, up to a year post-injury [12], in line with reports of progressive
reductions in brain volume as assessed up to 14 months post-TBI [13].

The exact mechanisms that drive this ongoing neuronal injury are
yet to be fully elucidated, with the development of an aberrant per-
sistent chronic neuroinflammatory response thought to be one key
mechanism [14]. Indeed, multiple studies have demonstrated that a
neuroinflammatory response may persist following resolution of the
acute effects of a TBI, with inflammatory markers present in the brain
parenchyma, serum and cerebrospinal fluid of TBI patients at chronic
time points (months to years later) [15–18]. In rodents, microglial ac-
tivation has been demonstrated up to one-year following a focal TBI,
with associated progressive lesion expansion, hippocampal degenera-
tion, myelin loss and oxidative stress [10].

Although a number of studies have shown progressive neuronal loss
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up to one year post-injury, a more detailed examination of the events
that occur in the sub-acute and early chronic stages post-TBI that may
promote this ongoing neuronal injury have received less attention.
Furthermore, these studies have been predominantly conducted uti-
lising focal [10] or mixed focal models [11], rather than a purely dif-
fuse injury. A diffuse injury model would be clinically more relevant as
it mimics the hallmarks seen in majority of the human TBI cases (motor
vehicle accidents) such as unconsciousness post injury and widespread
diffuse axonal injury [19,20]. As such, this study sought to investigate
the effects of a moderate-severe diffuse TBI at 1 and 3 months post-
injury on synaptic and axonal integrity and neuroinflammation, as well
as on functional outcome.

2. Results

2.1. Motor outcome

Motor outcome was assessed weekly up to 3 months (Fig. 1A) on the
rotarod. Sham and TBI animals showed no significant differences in
their pre-training rotarod scores but a significant injury effect on the
scores was seen in the weeks following the injury (F1,19= 5.146,
p=0.035). TBI animals showed a significantly impaired rotarod scores
when compared to shams (67.8 ± 13.47 s vs 114.3 ± 4.23 s in sham
animals, p < 0.0001) at 24 h post injury (indicated by week 1 on
Fig. 1A). However, by the third week (day 15) post-injury, TBI animals
had returned to sham levels, (112.7 ± 4.46 s vs 117 ± 2.09 s,
p > 0.9999) and maintained this for the rest of the testing period.

2.2. Locomotor activity

General locomotor activity was assessed as the distance travelled in
the open field test (OFT). At 1 month post-injury (Fig. 1B(i)), TBI ani-
mals showed no difference in locomotor activity compared to shams
(39.36 ± 1.6m vs 42.35 ± 2.3m in shams; t(32)= 1.089,
p=0.2843), but at 3 months post-injury (Fig. 1C(i)), there was a sig-
nificant decrease in locomotor activity in the TBI animals when com-
pared to shams (23.6 ± 4.0m vs 35.5 ± 2.4m; t(23)= 2.479,
p=0.0209).

2.3. Anxiety-like behaviour

Anxiety-like behaviour was measured as time spent in centre of OFT
and time spent in the open arms of the elevated plus maze (EPM). No
significant differences in time spent in centre of OFT and open arms of
EPM were seen between the TBI animals and sham animals at 1 month
(17.9 ± 2.9 s vs 15.9 ± 2.8 s in shams; t(32)= 0.485, p= 0.6314)
and (95.0 ± 10.8 s vs 86.7 ± 7.9 s in shams; t(32)= 0.591,
p=0.5587) respectively (Fig. 1B (ii) and (iii)). Similarly, at 3 months
post-injury, no significant differences were seen between groups in time
spent in centre of OFT (5.9 ± 2.1 s vs 7.5 ± 3.3 s in shams; t
(23)= 0.427, p= 0.6735) (Fig. 1C(ii)) as well as time spent in open
arms of EPM (64.8 ± 14.7 s vs 80.0 ± 11.7 s in shams; t(23)= 0.798,
p=0.4329) (Fig. 1C(iii)).

Fig. 1. Functional outcomes measured post injury. A) Motor outcome as measured on the rotarod, weekly for 3 months. Locomotor activity as measured on the open
field at B(i)) 1 month and C(i)) 3 months. Anxiety-like behaviour as measured in the open field at B(ii)) 1 month and C(ii)) 3 months and on the elevated plus maze at
B(iii)) 1 month and C(iii)) 3 months. Graphs represent the mean ± SEM, (n=13–19 per group; ****p < 0.0001,*p < 0.05 compared to shams).
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2.4. Depressive- like behaviour

Depressive-like phenotype was assessed based on the immobility
time in the forced swim test (FST). TBI animals spent more time im-
mobile than shams at 1 month post-injury (125.8 ± 7 s vs
99.2 ± 9.4 s in shams; t(32)= 2.32, p=0.0269) (Fig. 2A), with this
persisting at 3 months post-injury (185.6 ± 6.8 s vs 151.2 ± 8.4 ss in
shams; t(23)= 3.217, p= 0.0038) (Fig. 2B).

2.5. Cognition

Cognitive outcome was assessed using the Y-Maze for spatial
memory and Barnes maze for learning, memory and cognitive flexibility
(ability to reprogram previously learned task) (Fig. 3). Y-Maze was
performed at 1 month and 3 months post-injury, while the Barnes maze
was only performed on the 3 month animals. Spatial working memory
in the Y-Maze showed no significant changes in novel preference be-
tween the TBI group and the sham control group at any of the time
points post-injury; 1 month (0.37 ± 0.03 vs 0.42 ± 0.03 in shams, t
(32)= 1.009, p= 0.3205), 3 month (0.37 ± 0.04 vs 0.39 ± 0.03 in
shams, t(23)= 0.326, p= 0.7475) (Fig. 3A–B). On the Barnes Maze, no
significant differences were noted in time taken to locate the escape box
on any of the training days during the acquisition phase (F1,23 = 0.049,
p=0.8276)(Fig. 3C). Nor was there any difference in ability to locate

the old escape box on the probe day (shams 27.8 ± 12.6 vs TBI
14.0 ± 4.2 s; t(23)= 1.076, p= 0.293) (Fig. 3D). In terms of learning
the location of the new escape box on probe day, there was a trend of
injury effect (F1,23= 3.979, p= 0.0581). The sham animals showed
greater cognitive flexibility taking a significantly shorter time on Trial 1
compared to TBI animals (63.0 ± 16.3 s vs 24.0 ± 4.6 s in shams,
p=0.014), although both groups had similar times on trial 2
(24.0 ± 7.7 s vs 15.24 ± 3.1 s in shams, p=0.528) (Fig. 3E).

2.6. Early chronic neuroinflammatory changes in prefrontal cortex (PFC)
post-TBI

Levels of inflammation were assessed by counting the number of
cells that were immunopositive for GFAP (glial fibrillary acidic protein)
(Fig. 4), a structural protein in astrocytes and IBA1 (ionized calcium
binding adaptor molecule 1) (Fig. 5), a calcium binding protein seen in
microglia within the PFC and hippocampus. At 1 month post injury,
GFAP immunopositive staining (GFAP+ve) was decreased within the
PFC in TBI animals (135.8 ± 14.39 cells/mm2) compared to shams
(193.4 ± 13.48 cells/mm2) (t(7)= 2.92, p= 0.019) (Fig. 4C). How-
ever, the number of GFAP+ve cells in the hippocampus of TBI animals
(193.0 ± 22.9 cells/mm2) and shams (207.5 ± 5.91 cells/mm2) did
not differ significantly between groups (t(7)= 0.55, p= 0.601)
(Fig. 4D). At 3 months post injury, the number of GFAP+ve cells did

Fig. 2. Depressive-like behaviour as measured in forced swim test at A) 1 month and B) 3 months. Graphs represent the mean ± SEM, (n= 13–19 per group;
**p < 0.01, *p < 0.05 compared to shams).

Fig. 3. Cognition assessed through Y-maze for spatial working memory at A) 1 month and B) 3 months post-injury and the Barnes maze at 3 month post-injury (C–E).
For the Barnes Maze, C) learning ability in the acquisition phase, D) recollection memory during the probe trial and E) cognitive flexibility on probe day are shown.
All graphs show mean ± SEM, (n= 13–19 per group; *p< 0.05 compared to shams).
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Fig. 4. Representative images of GFAP staining within the A,E) PFC and B,F) hippocampus at A–B) 1 month and E–F) 3 months post-injury, as well as their respective
cell counts at C–D) 1 month and G–H) 3 months. Graphs represent the mean ± SEM, (n=4–5 per group; *p< 0.05 compared to shams).

Fig. 5. Representative images of IBA1 staining in the A,E) PFC and B,F) hippocampus at A–B) 1 month and E–F) 3 months, as well as their respective cell counts at
C–D) 1 month and G–H) 3 months. Graphs represent the mean ± SEM, (n= 4–5 per group; *p < 0.05 compared to shams).
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not significantly differ between the shams and TBI in either the PFC
(62.19 ± 5.67 cells/mm2 vs 61.61 ± 11.58 cells/mm2 in shams, t
(6)= 0.052, p=0.96) or the hippocampus (453.5 ± 29.01 cells/mm2

vs 461.6 ± 22.11 cells/mm2 in shams, t(7)= 0.214, p=0.84)
(Fig. 4G–H).

Similarly, the number of IBA1+ ve cells in the PFC of TBI animals
(73.84 ± 5.48 cells/mm2) was significantly decreased compared to
shams (94.45 ± 6.70 cells/mm2) (t(7)= 2.33, p=0.049) at 1 month
post-injury (Fig. 5C). In contrast, the hippocampus showed no sig-
nificant differences in IBA1+ve staining in the TBI animals
(66.78 ± 5.03 cells/mm2) compared to shams (86.99 ± 12.2 cells/
mm2) (t(7)= 1.54, p=0.176). By 3 months post-injury, there was no
significance difference in IBA1+ve staining in the PFC (38.54 ± 4.72
cells/mm2 vs 32.39 ± 3.96 cells/mm2 in shams, t(6)= 0.89,
p=0.409) or the hippocampus (254.9 ± 17.28 cells/mm2 vs
235.9 ± 18.5 cells/mm2 in shams, t(7)= 0.75, p=0.478) between
the groups (Fig. 5G–H).

2.7. Evaluation of neuronal and synaptic integrity

Neuronal and synaptic structural damage post injury was assessed
using a variety of markers; PSD-95 (postsynaptic density protein 95)
and synaptophysin for assessing synaptic integrity, NF-L (neurofilament
light chain) and NF-H (neurofilament heavy chain) for assessing neu-
rofilament structure and axonal stability and MBP (myelin basic pro-
tein) for assessing neuronal myelination stability. In the PFC, at 1
month post injury, the relative density of PSD-95 and synaptophysin
were significantly reduced in the TBI animals compared to shams
(0.964 ± 0.214 vs 1.721 ± 0.041, t(6)= 2.64, p= 0.039 and
2.103 ± 0.469 vs 3.623 ± 0.229, t(5)= 2.59, p= 0.049, respec-
tively) (Fig. 6). This had resolved by 3 months post-injury, with similar
values reported in TBI and sham animals; PSD-95 (1.717 ± 0.322 vs
1.738 ± 0.031 in shams, t(6)= 0.049, p= 0.962), synaptophysin
(1.77 ± 0.268 vs 1.72 ± 0.192 in shams, t(8)= 0.144, p=0.889). In
comparison, in the hippocampus, there were no significant differences
in the relative density of PSD-95 and synaptophysin at either 1 month;
PSD-95 (0.474 ± 0.056 vs 0.369 ± 0.037 in shams, t(8)= 1.57,
p=0.154), synaptophysin (0.786 ± 0.085 vs 0.973 ± 0.107 in
shams, t(6)= 1.363, p=0.222) or 3 months; PSD-95 (0.239 ± 0.028
vs 0.272 ± 0.024 in shams, t(7)= 0.877, p= 0.41), synaptophysin
(0.519 ± 0.085 vs 0.515 ± 0.123 in shams, t(8)= 0.022, p=0.983)
post-injury (Fig. 6E–H).

Assessment of axonal integrity with NF-L found no significant dif-
ferences within the PFC (1.393 ± 0.082 vs 1.405 ± 0.059 in shams, t
(8)= 0.123, p=0.905) or the hippocampus (1.009 ± 0.076 vs
1.113 ± 0.069 in shams, t(8)= 1.019, p=0.338) at 1 month-post-
injury; however, a trend towards a decrease in the hippocampus at 3
months post-injury was observed (0.88 ± 0.107 vs 1.184 ± 0.071 in
shams; t(6)= 2.38, p=0.06) (Fig. 7D). In contrast, a significant in-
crease in levels of NF-H was seen at 1 month post-injury within the PFC
(1.398 ± 0.11 vs 0.922 ± 0.138 in shams; t(8)= 2.70, p= 0.027),
which had resolved by 3 months post-injury (0.838 ± 0.148 vs
1.216 ± 0.234 in shams, t(8)= 1.365, p=0.209). No changes in NF-
H were noted within the hippocampus at 1 month (1.459 ± 0.213 vs
1.5 ± 0.101 in shams, t(8)= 0.177, p=0.864) or at 3 months
(2.352 ± 0.427 vs 2.642 ± 0.204 in shams, t(7)= 0.561, p=0.593)
post injury. Integrity of myelin was evaluated with MBP, with a trend
towards an increase in the PFC at 1 month post-injury (0.635 ± 0.068
vs 0.404 ± 0.074; t(7)= 2.304, p=0.055) which had resolved by 3
months post-injury (1.006 ± 0.018 vs 0.966 ± 0.07 in shams, t
(8)= 0.54, p=0.604) (Fig. 7I & K). No differences in MBP were seen at
1 month (1.121 ± 0.151 vs 0.915 ± 0.109 in shams, t(6)= 1.102,
p=0.313) or 3 months (0.494 ± 0.062 vs 0.571 ± 0.103 in shams, t
(7)= 0.595, p=0.571) post-injury in the hippocampus.

2.8. Oxidative stress

Oxidative stress was assessed by evaluating levels of the anti-
oxidant, SOD-1 (superoxide dismutase 1) (Fig. 8). In the PFC, there was
a significant increase in the relative density of SOD-1 at 1 month post-
injury (1.082 ± 0.033 vs 0.85 ± 0.032 in shams, t(6)= 5.074,
p=0.002), which had resolved by 3 months (0.67 ± 0.102 vs
0.602 ± 0.049 in shams, t(7)= 0.547, p=0.602) post-injury. In the
hippocampus, no changes in SOD-1 were noted at either time-point; 1
month (0.934 ± 0.043 vs 0.881 ± 0.052 in shams, t(8)= 0.787,
p=0.454), 3 months (0.679 ± 0.056 vs 1.09 ± 0.203 in shams, t
(7)= 1.764, p=0.121).

3. Discussion

The current study investigated the effect of moderate-severe TBI on
chronic changes in axonal and synaptic integrity, neuroinflammation
and persistent functional deficits at 1 and 3 months post-injury. It was
found that, following TBI, animals showed persistent depressive-like
behaviour with increased time spent immobile in the FST at 1 and 3
months post-injury. A decrease in cognitive flexibility on the Barnes
Maze was seen at 3 months post-injury, but no impairment was noted in
learning and memory during the acquisition phase of the task nor in
recognition memory on the Y-Maze (Table 1). Within the PFC, synaptic
loss was noted at 1 month post-injury, as indicated by decreased levels
of synaptophysin and PSD-95, which corresponded to a concomitant
decrease in the number of astrocytes and microglia. Furthermore, other
neuronal changes such as increases in NF-H and MBP, were also ob-
served at this early timepoint in the PFC. These changes were resolved
by 3 months post-injury. In contrast, within the hippocampus, no
changes in the number of inflammatory cells was noted at either time-
point nor any effect on synaptic integrity, with the main finding a de-
crease in relative expression of NF-L at 3 months post-injury.

The most notable functional finding was that TBI led to the devel-
opment of persistent depressive-like behaviour that had not resolved by
3 months post-injury (Table 1). Although no ongoing motor impairment
was noted on the rotarod, with performance at sham level at 3 weeks
post-injury, there was a decrease in locomotor activity at 3 months post-
injury on the open field. This may relate to lack of motivation to explore
the open field [21], but further studies will be needed to confirm this
theory. Nonetheless, it appears that the increase in immobility time in
the FST reflects a behavioural response, rather than gross motor im-
pairment. This increase in immobility time is thought to be indicative of
behavioural despair and, given that it decreases with administration of
antidepressants [22], is thought to provide an indicator of depressive-
like behaviour. The observations in this study are in line with clinical
studies, which have reported the prevalence of depression in TBI pa-
tients to be as high as 77% [23], with 30–40% of individuals suffering
from major depressive disorder within a year post-injury [24]. In con-
trast, pre-clinical studies have had mixed results, with reports of no
difference in behaviour on the FST at 1 month post moderate controlled
cortical impact [25–27] or 6 months post-lateral fluid percussion injury
[28]. Conversely, Milman et al and Taylor et al found increased im-
mobility at 2–3 months post-injury utilising a diffuse weight drop
model and a more severe CCI model, respectively [29,30]. This suggests
that, in order for depressive-like behaviour to be present at sub-acute-
chronic time-points post-injury, a wider spread injury may be required,
like the diffuse model of injury employed here.

Indeed, within this study, the profile of deficits, in depressive-like
behaviour and reduced cognitive flexibility, align with structural
changes that were mostly noted within the PFC and not the hippo-
campus (Table 2). The PFC plays a central role in emotional regulation,
with reductions in PFC volume following TBI associated with the de-
velopment of depressive symptoms post-TBI [24,31,32]. In regards to
cognitive flexibility, lesions within the PFC lead to an impairment in the
ability to modify a response in relation to new information of a learned
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task [33,34], similar to the deficit seen here, with post-TBI animals
taking longer to locate the escape box when it was moved during the
probe trial. These deficits were associated with decreased levels of PSD-
95 and synaptophysin within the PFC, suggesting synaptic dysfunction.
Few studies have examined the effect of TBI on synaptic morphology in
the PFC region post-TBI, with Hoskinson et al finding alterations in
dendritic spine density at 4 months following a parietal CCI injury [35]
and Zhao et al finding a significant reduction of dendritic spine density
in layer II/III pyramidal neurons of the medial PFC at two weeks post-
FPI [36]. This supports the idea that TBI can cause significant disrup-
tion to the PFC region. Notably, although PSD-95 and synaptophysin
had returned to sham levels by 3 months post-injury, functional deficits
persisted, suggesting that there may have been persistent alterations in

the circuitry (ex: serotonin circuitry) or changes in the functionality of
the neurons (ex: receptor expression) of the PFC post-TBI. Interestingly
a study by Park and Friston suggest that some functional outcome such
as task-orientated cognition may be resulted from a divergence in
structural and functional networks in the brain [37]. This implies that
although structural networks may be recovered from injury (as seen in
our study at 3 months), impairment in the functional networks (not
investigated) may drive the persistent impairment seen. Further studies
on the dynamics of these two networks in relation to cognition may
provide better insight to post-TBI studies as well as neurodegeneration
studies. Besides that, specific examination of synaptic morphology
within different layers and specific regions of the PFC may provide
further insight into circuitry alterations. It might also be beneficial to

Fig. 6. Synaptic structural damage was assessed by post-synaptic density 95 (PSD-95) and synaptophysin markers. Western blot images of PSD-95 and synaptophysin
markers as well as GAPDH (housekeeper protein) at the A–D) PFC and E–H) hippocampus for each of the time point. The graphs illustrate the relative density of
A,C,E,G) PSD-95 and B,D,F,H) synaptophysin in TBI animals when compared to sham in the PFC at A–B) 1 month and C–D) 3 months post-injury, and in the
hippocampus at E–F) 1 month and G–H) 3 months post-injury. Graph represent the mean ± SEM, (n=5 per group; *p < 0.05 compared to shams).
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investigate total neuron number in future studies, for a more precise
measurement of synapse loss. Since persistent functional impairments
were seen at 3 months, this could suggest there may be on-going neu-
ronal network damage resulted from TBI (that may have branch from
the structural damage seen at 1 month) which may drive early dementia
or neurodegeneration.

As well as evidence of synaptic disruption, levels of NF-H were also
significantly increased at 1 month post-injury within the PFC, before
returning to baseline at 3 months, although no changes were noted in
levels of NF-L. Neurofilaments are the dominant intermediate filament
of axons [38,39] and are thought to be a key contributor to axon
strength and resilience to mechanical stretch [40]. Immediately fol-
lowing diffuse impact acceleration and fluid percussion injuries, neu-
rofilament compaction due to side-arm phosphorylation or proteolysis
is known to be a key indicator of axonal integrity [41,42]. Activation of
neuronal proteases is also associated with an acute reduction in levels
of neurofilament as measured via western blot encompassing the light,
medium and heavy subtypes [43,44]. The increase in NF-H at one
month post-injury may therefore reflect a rebound reparative response
following this acute injury phase involving disruption and loss of these
proteins. Another potential explanation for the increase seen in NF-H in
the current study is as a protective mechanism against toxic oxygen
radical species. Wataya et al found that NF-H may act to sequester toxic
lipid peroxidation byproducts in aldehydes, in order to protect critical
active sites on proteins from oxidative attack [45]. NF-H is thought to

preferentially perform this task as it is a lysine-rich protein, the com-
ponent providing the buffering mechanism [46]. Unfortunately, within
our study, we did not investigate oxidative stress markers directly, but
instead used a measurement of superoxide dismutase 1 (SOD1), an
antioxidant enzyme against superoxide radicals [47]. Although it can
be argued that changes in SOD1 levels might be affected by the hypoxia
insult during TBI induction, which was showed to be true in the hip-
pocampus by Ramanathan et al., the study also showed that certain
areas of the brain such as the cortex are resistant to hypoxia and
therefore unaffecting the SOD1 levels [48]. Moreover, a recent study by
Coimbra-Costa, showed that reoxygenation after acute hypoxia, as in
our study, returned oxidative stress parameters and antioxidant en-
zymes to control or sham values suggesting the hypoxia treatment post-
TBI may not affect the SOD1 levels in the brain [49]. Interestingly, our
study found the levels of SOD1 were elevated, like those of NF-H, at 1
month post-injury within the PFC only, suggesting that this could be a
similar protective mechanism against elevated levels of reactive oxygen
species (ROS) resulted from the TBI. Indeed, overexpression of SOD1 is
known to be neuroprotective in a number of models of brain injury
[50,51]. Previous studies have shown ongoing oxidative stress within
the injured parietal cortex at 1 month following FPI injury, as indicated
by an increase in levels of oxidative damaged lipids and proteins
[52,53]. Future studies should confirm whether there is evidence of
ongoing oxidative stress within the PFC following a purely diffuse
weight drop injury.

Fig. 7. Neuronal structural damage was assessed by neurofilament-light chain (NF-L), neurofilament-heavy chain (NF-H) and myelin basic protein (MBP) markers.
Western blot images of NF-L, NF-H and MBP markers as well as GAPDH (housekeeper protein) in the A–F) PFC and G–L) hippocampus for each of the time point. The
graphs illustrate the relative density of NF-L, NF-H and MBP in TBI animals when compared to sham in the PFC at A–C) 1 month and D–F) 3 months post-injury, and
in the hippocampus at G–I) 1 month and J–L) 3 months post-injury. Graph represent the mean ± SEM, (n=5; *p < 0.05 compared to shams).
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Surprisingly, despite the pattern of behavioural deficits seen here
and the evidence of synaptic dysfunction, increased neuroinflammation
was not seen in the PFC at either 1 or 3 months post-injury. In fact, a
reduction in the number of microglia and astrocytes was noted in this
region at 1 month post-injury. Given that these cells have a number of
beneficial functions, including release of neurotrophic factors, such as
BDNF [54,55], modulation of neurotransmitter levels within the sy-
napse [56] and supply of energy to neurons [57], this decrease may not
be beneficial. Indeed, previous reports have found a decrease in levels
of GFAP, a cytoskeletal protein expressed by many astrocytes, in the
PFC of depressed patients [58–60]. It has been proposed that this al-
teration in astrocytes may influence glutamatergic signalling, thereby

contributing to pathology [61,62]. The mechanism driving this de-
crease in resident immune cell numbers within the PFC at 1 month post-
injury is not known, but it is possible that these cells may have migrated
to other sites, such as the corpus callosum [63], with restoration of
numbers by 3 months post-injury. Further studies are needed to confirm
this result, as well as to assess if other anatomical regions are affected at
these time points and later time points. Furthermore, as only total
number of microglia were assessed, it is important to also confirm
whether they are resting or reactive to provide a clearer picture of the
neuroinflammatory reaction after injury. Neuroinflammation is sig-
nificantly more complex than microglia or astrocytes alone. While this
was beyond the scope of the current study, it is also important to assess

Fig. 8. Oxidative stress was assessed by superoxide-dismutase 1 (SOD-1) marker. Western blot images of SOD-1 and GAPDH (housekeeper protein) in the A,C) PFC
and B,D) hippocampus for each of the time points. The graphs illustrate the relative density of SOD-1 in TBI animals when compared to sham in the PFC at A) 1 month
and C) 3 months post-injury, and in the hippocampus at B) 1 month and D) 3 months post-injury. Graphs represent the mean ± SEM, (n=5 per group; **p < 0.01
compared to shams).

Table 1
Summary of behavioural results; changes in TBI when compared to shams at 1 month and 3 months post injury.

Test Paradigm Behaviour measurement 1 month 3 month

Open Field Test (OFT) Distance Travelled (m) (Δ=− 2.99) ↓ (Δ=− 11.83)* p=0.021
Time in Center (s) (Δ=1.97) (Δ=− 1.64)

Elevated Plus Maze (EPM) Time in open arms (s) (Δ=8.29) (Δ=− 15.17)
Forced Swim Test (FST) Time Immobile (s) ↑(Δ=26.57)* p=0.027 ↑(Δ=34.45)** p=0.004
Y-Maze Novel Preference (Δ=− 0.045) (Δ=− 0.018)
Barnes Maze Escape Latency to box on Acquisition Training (s) NA Day 1: (Δ=− 0.523)

Day 2: (Δ=− 15.80)
Day 3: (Δ=3.697)

Escape Latency to Old box (s) NA (Δ=− 13.78)
Escape Latency to New Box (s) NA Trial 1: (Δ=− 38.95)*

p= 0.014
Trial 2: (Δ=− 8.781)

Note: *p < 0.05, **p < 0.01, ↓= decrease in value when compared to shams, ↑= increase in value when compared to shams, Δ=(mean of TBI – mean of sham).
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levels of markers such as chemokines and cytokines in order to fully
evaluate the effect of TBI on neuroinflammation [64]. Additionally, TBI
has the capacity to lead to long-term alterations in neurochemical sig-
nalling, which may be significant contributors to persistent behavioural
deficits following injury, so future studies should also investigate levels
of key neurotransmitters, including dopamine and serotonin.

In contrast to the evidence of structural changes within the PFC at
subacute time points post-injury, this study found minimal pathology
within the hippocampus. This lack of hippocampal pathology is sup-
ported by the lack of deficits in the learning phase of the Barnes Maze or
in recognition memory as assessed by the Y-Maze. These tasks pre-
ferentially assess hippocampal dependent learning with Conrad et al
demonstrating that bilateral damage to the CA3, CA4 or dentate gyrus
led to a decrease in spatial memory on the Y Maze [65]. In regards to
the lack of hippocampal mediated cognitive impairment seen in this
study, previous studies, contrastingly, have shown persistent cognitive
deficits post-TBI, with, for example, Pearce et al observing significant
deficits in spatial learning ability in the MWM beginning at two months
and lasting up to one year following lateral FP brain injury [66], with
similar reports of cognitive deficits from one month to one year fol-
lowing CCI injury [67]. This most likely relates to the more significant
hippocampal damage associated with these injury models, with CCI
associated with a 60% loss of hippocampal synapses acutely, that had
still not recovered to pre-injury levels by day 60 [68]. Similar levels of
significant hippocampal cell death have been reported following FPI
[69], unlike the lack of synaptic damage seen here at either one or three
months post-injury. Previous studies utilising the diffuse impact-accel-
eration model have similarly reported a lack of hippocampal dependent
cognitive deficits on the MWM or radial arm maze [70,71], with a
corresponding lack of neuronal loss within this area [70].

In conclusion, this study found that the PFC is significantly affected
at one month following a diffuse TBI. There was evidence suggestive of
both synaptic and axonal disruption that were associated with a de-
crease in the number of astrocytes and microglia. These alterations
within the PFC also coincide with the impairments on the FST and
decreased cognitive flexibility seen after injury. In contrast, the hip-
pocampus was relatively spared at 1 and 3 months post-injury, with
future studies needing to examine later time-points to determine if
hippocampal damage emerges. Nevertheless, our study provides evi-
dence of early structural changes in the prefrontal cortex after mod-
erate-severe diffuse TBI. While these changes are resolved at 3 months
post-injury, future studies should investigate whether they re-emerge or
progress to other areas, such as the hippocampus, at later time points,
which may contribute to long-term deficits or even predispose in-
dividuals to the development of dementia and other neurodegenerative
conditions known to be linked to TBI.

4. Experimental procedure

4.1. Animals

Adult male Sprague-Dawley rats (10–12 weeks) (were used under
approval of the University of Adelaide Animal Ethics Committee (M-
2015-027). Animals were housed under conventional laboratory con-
ditions, with a 12-hour light-dark cycle and access to food and water ad
libitum. Animals were randomly allocated to receive either sham sur-
gery or moderate, diffuse TBI, with one subset subject to a functional
assessment battery at 1 month post-injury (shams n=14; TBI n=19)
and another at 3 months post-injury (shams n=13, TBI n=14).
Following completion of functional assessment, animals were perfused
and the brains collected for either histological or molecular analysis.

4.2. Injury model

The Marmarou impact-acceleration model [72] was utilized, as it
has been extensively validated as a model of diffuse injury [19]. Animal
weights ranged from 350 to 380 g at the time of TBI induction. Animals
underwent anaesthetic induction via inhalation of 5% isoflurane under
normoxic conditions. They were subsequently intubated, mechanically
ventilated and maintained on 2% isoflurane throughout. A midline in-
cision was made to facilitate the placement of a metal disc centrally
between lambda and bregma. Animals assigned to undergo TBI were
then transiently taken off ventilation, strapped onto a foam, with injury
induced by releasing a 450 g weight from a height of 2m down a clear
tube onto the centre of the metal helmet. Contact was observed to en-
sure single, direct impact without a rebound hit. Animals were then
subject to hypoxic conditions (2 L/min nitrogen; 0.2 L/min oxygen) as
previously described [63]. This is because this model of TBI leads to a
period of apnea in unventilated animals which can lead to high mor-
tality rates [73]. In order to regulate this animals are ventilated and
then subjected to a hypoxic period to allow standardisation across the
cohort, whilst still replicating the natural history of this injury type.
Wound closure was performed with surgical staples. Successful induc-
tion of moderate to severe TBI was assessed 24 h later by rotarod scores
of below 100, weight reduction of 5–10% and clinical signs (paresis and
hunched posture). Any animal not falling within these parameters at
24 h post-injury was excluded from further behavioural and histo-
pathological assessment. Based upon clinical record sheets, four ani-
mals were excluded from the study cohort after the TBI induction, from
the moderate to severe TBI group as they did not meet the criteria of
successful TBI induction. No additional distinctions were made between
severity of injury. Shams assessed at the same timepoint (24 h) ex-
hibited none of the clinical signs and had rotarod scores of more than
100. A previous study from our group has assessed motor performance
for the first 7 days post-injury in this model [63]. In comparison to
sham animals, TBI animals exhibited significant deficits in rotarod
performance on days 1–3 post-injury, but this performance no longer

Table 2
Summary of histopathological results; changes in TBI when compared to shams at 1 month and 3 months post injury, at the prefrontal cortex and hippocampus
region.

Markers Prefrontal Cortex Hippocampus

1 month 3 month 1 month 3 month

GFAP (glial fibrillary acidic protein) ↓ (Δ=− 57.60)* p=0.019 (Δ=0.59) (Δ=− 14.50) (Δ=− 8.17)
IBA1 (ionized calcium binding adaptor molecule 1) ↓ (Δ=− 20.70)* p=0.049 (Δ=6.15) (Δ=− 20.20) (Δ=19.06)
PSD-95 (postsynaptic density protein 95) ↓ (Δ=− 0.76)* p=0.039 (Δ=− 0.02) (Δ=0.11) (Δ=− 0.03)
Synaptophysin ↓ (Δ=− 1.52)* p=0.049 (Δ=0.05) (Δ=− 0.19) (Δ=0.003)
NF-L (neurofilament light chain) (Δ=− 0.01) (Δ=− 0.09) (Δ=− 0.10) ↓ (Δ=− 0.30) p= 0.06
NF-H (neurofilament heavy chain) ↑ (Δ=0.48)* p=0.027) (Δ=− 0.38) (Δ=− 0.04) (Δ=− 0.29)
MBP (myelin basic protein) ↑ (Δ=0.23) p=0.055 (Δ=0.04) (Δ=0.21) (Δ=− 0.08)
SOD-1 (superoxide dismutase 1) ↑ (Δ=0.23)** p= 0.002 (Δ=0.07) (Δ=0.05) (Δ=− 0.42)

Note: *p < 0.05, **p < 0.01, ↓= decrease in value when compared to shams, ↑= increase in value when compared to shams, Δ=(mean of TBI – mean of sham).
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significantly differed from shams by 4 days post-injury.

4.3. Functional studies

Functional tests assessing cognition, anxiety, depression and motor
function were performed at 1 month and 3 months post-injury. All
functional data was recorded using the ANY-maze Video Tracking
System version 4.99m (Stoelting Co.). The functional tests were done in
order from least to most aversive (stress inducing) except the rotarod
test which was done at specific timepoints throughout the experiment
regardless of other tests. All behavioural tests were conducted with the
observer blinded to injury/sham status.

4.3.1. Rotarod
The rotarod is used as a standard motor coordination evaluation test

for rodents [74]. Animals were placed on an elevated horizontal rod
that rotates along the longitudinal axis. Animals were first habituated
on the stationary rod for 10 ss. Then, for every 10 s thereafter, the ro-
tation of the rod was accelerated at a constant rate of 3 rpm until the
100 s mark (maximum acceleration speed of 30 rpm). Animals were
kept on the rotarod at the maximum speed for a further 20 s before
decelerating the speed and removing the animal from the test. The
rotarod score was measured by the latency of the animal to fall off the
rod. Animals were trained for 3 consecutive days or until a score of 120
(baseline) was achieved. Following injury, animals were tested on the
rotarod at 24 h then every 7 days following, i.e., day 8, day 15 and so on
till the endpoint of the study.

4.3.2. Open field test
The open field test (OFT) is a common tests of locomotor activity

[75]. Animals were placed in the centre of a large square box
(95 cm×95 cm) with walls at height 44.5 cm and the total distance
travelled over a 5min period was recorded.

4.3.3. Elevated plus maze
The elevated plus maze (EPM) is widely used in anxiety research

[75]. Animals were placed in the centre of an elevated (50 cm in height)
cross-shaped maze consisting of two open and two closed (walls of
height 40 cm) maze arms (each of length 50 cm), facing the open arms,
for 5min. Time spent in the closed arms versus open arms was re-
corded, with increased time spent in the closed arms thought to re-
present anxiety-like behaviour.

4.3.4. Y-maze
The Y-Maze is used to test cognition in terms of spatial recognition

memory [76]. In the Y-Maze, animals are placed in an equal angled Y-
shaped arena, with each arm of the maze identical in size and shape but
visually distinct (due to cues on the wall) from the others. The test
involves two 3-minute trials separated by 1 h. In the first trial, one arm
was closed off with a clear wall (novel arm) to enable the animal to
visually recognise its presence; in the second trial, this novel arm be-
came accessible (wall removed). In cases of reduced spatial reference
memory, the animal spends less time within the novel arm.

4.3.5. Barnes maze
The Barnes maze evaluates spatial learning and memory in rats

[77]. The maze is an elevated, open circular black platform with 18
holes evenly distributed along its edges. One of the holes is pre-de-
termined as the escape hole with a black escape box placed below the
hole. The Barnes maze test was preformed over the course of five days;
three days of acquisition trials, a rest day (no interaction with the an-
imals) and a probe day. During the acquisition days, animals were
subject to two trials spaced 15min apart. They were placed in the
centre of the Barnes maze in a brightly lit room with the time taken for
the animal to find and enter the escape box recorded. On day 5, the
escape box was relocated to a new hole and two trials conducted 1 h

apart. In trial 1, the time taken for the animal to reach the old position
of the escape hole was recorded. In both trials, the time taken to locate
and enter the newly relocated escape box was recorded as a measure of
cognitive flexibility.

4.3.6. Forced swim test
The forced swim test (FST) is widely utilised to assess depressive-

like behaviour [46]. The animal was placed within an inescapable glass
cylinder filled halfway with 25 °C water, adjusted for the animal’s
length so that the hind legs does not touch the bottom of the cylinder,
for 5min. The time spent immobile was recorded as a measure of be-
havioural despair.

4.4. Tissue collection and processing

Animals were randomly assigned for further processing, either by
molecular analysis or immunohistochemistry, during euthanasia.
Animals that were to be used for molecular analysis were transcardially
perfused with 0.9% saline and the brain dissected with the prefrontal
cortex (PFC) and hippocampus taken (n= 5 per group). Samples were
snap-frozen in liquid nitrogen before being stored at −80 °C. The
samples were then homogenised via sonication in freshly prepared
buffer (20mM Tris-HCl pH 7.5, 2 mM EDTA, 0.5 mM EGTA, 140mM 2-
mercaptoethanol) with protease inhibitor cocktail (Sigma), 10 u L/mL
aprotinin, leupeptin, pepstatin A and 10mM PMSF. Each sample un-
derwent 3 bursts of 10 s duration under a sonicator probe.
Homogenised samples were centrifuged for 30min at 14,000 rpm and
4 °C, before supernatant was collected. Protein concentration was esti-
mated with Pierce BCA Protein Assay (ThermoScientific) at 750 nm
absorbance.

Animals that were to be used for immunohistochemical analysis
were transcardially perfused with 0.2m L heparin+ 10% formalin.
Brains were removed and post-fixed in 10% formalin for 24 h, then
blocked into 2mm coronal sections and embedded in paraffin-wax. To
examine the PFC, three consecutive 5 μm coronal slices were taken
beginning at + 4.20mm from Bregma for each animal. For hippo-
campal sections, three serial 5 μm coronal slices per animal were taken
starting at -1.60 mm representing anterior hippocampus, −2.80mm
representing mid hippocampus and at −3.80mm representing pos-
terior hippocampus. Tissue mounted slides were allowed to dry at 37 °C
overnight.

4.5. Western blot

Gel electrophoresis was performed using Bolt 4–12% Bis–Tris Plus
gels (Life Technologies) with 50ug of protein loaded per well. Gels were
run at 150 V for 30–45min, depending on the molecular weight of the
protein of interest, and transferred to a PVDF membrane using the iBlot
2 Dry Blotting System (Life Technologies). Membranes were washed in
1X tris-buffered saline with tween (TBST) (3 washes× 5min), stained
with Ponceau S red solution (Fluka Analytical) (5 min) for protein vi-
sualisation, and washed with distilled water until removal of Ponceau
had been achieved.

Membranes were incubated for 2.5 h with primary and secondary
antibodies in 1X iBind solution using the iBind Western System (Life
Technologies). Primary antibodies were used at individually optimised
concentrations: mouse anti-post-synaptic density protein 95 (PSD-95)
(1:1000, ab2723 or ab18258, Abcam), rabbit anti-synaptophysin
(1:1000, ab32127, Abcam), mouse anti-myelin basic protein (MBP)
(1:250, ab62631, Abcam), mouse anti-neurofilament (1:300, ab24574,
Abcam), rabbit anti-superoxide dismutase 1 (SOD1) (1:1000, ab13498,
Abcam), and the primary housekeeping antibody chicken anti-GAPDH
(1:4000, ab83956, Abcam). Secondary antibodies to the respective
primary antibodies (donkey anti-rabbit, donkey anti-mouse and donkey
anti-chicken, IRDye 800CW; LI-COR, Inc.) were used at 1:3000.
Western blots were imaged using an Odyssey Infrared Imaging System
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(model 9120; software version 3.0.21) (LI-COR, Inc.) at a resolution of
169 μm. Semi-quantitative analysis of band signals was performed using
ImageJ version 1.49 and Image Studio Lite version 5.2. Normalization
of blot runs at 1 month and 3 month were performed using a single
control sample of the respective time points. Thus, relative density of
the samples were calculated based on the adjusted density for each blot,
as below:

=

band signal of sample protein housekeeper
band signal of control protein housekeeper

Adjusted density
/
/

=

adjusted density of protein
adjusted density of housekeeper

Relative density

4.6. Immunohistochemistry

Immunohistochemistry (IHC) was performed as per standard pro-
cedure. In brief, slides were oven-dried, de-waxed in xylene, rehydrated
in ethanol and then placed into methanol with 0.5% hydrogen peroxide
to block endogenous peroxidases. Then the slides were washed twice in
phosphate buffered saline (PBS) and were blocked in normal horse
serum (NHS) (1:30) for 30min before incubation overnight with pri-
mary antibody (Table 3). The following day, slides were washed twice
in PBS before application of secondary antibody (DAKO, 1:250,
30min). Slides were once again washed twice with PBS, and then in-
cubated with streptavidin peroxidase conjugate (SPC) (1:1000, 60min).
Slides were given a final wash in PBS, then incubated with 3,3′-Dia-
minobenzidinetetrahydrochloride (DAB) (1:50, 7min) for antigen re-
trieval. Lastly, slides were counterstained with haematoxylin, placed in
ethanol and subsequently in xylene, before mounting on cover slips.

Following staining, sections were scanned with Nanozoomer slide-
scanner (Hamamatsu, Japan) and images viewed on NDPview (version
2). GFAP and Iba1 immunoreactivity was assessed quantitatively by
counting the reactive and immunopositive cells per mm2 within the
hippocampus (CA1+CA3+DG region) and PFC (prelimbic region).
The experimenter was blinded to the experimental group during cell
counting and counts were performed twice Numbers obtained for each
of the two counts were correlated to assess inter-attempt variability.
This resulted in an r-value of 0.771.

4.7. Statistics

Except where outlined below, all data was analysed via two-tailed
unpaired t-test using GraphPad Prism software. A repeated two-way
analysis of variance was performed on the rotarod scores and on the
acquisition days of the Barnes maze test. P values < 0.05 were con-
sidered statistically significant.
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A B S T R A C T

Traumatic brain injury (TBI) is a common risk factor for later neurodegeneration, which can manifest as de-
mentia. Despite this, little is known about the time-course of development of functional deficits, particularly
cognitive and neuropsychiatric impairments, and whether these differ depending on the nature of the initiating
insult. Therefore, this study investigated long term functional impairment at 12 months post-injury following
diffuse TBI of different severities. Male Sprague-Dawley rats (420–480 g; 10–12 weeks) were either given a sham
surgery (n=14) or subjected to Marmarou’s impact acceleration model of diffuse TBI for a single mild TBI
(n=12), repetitive mild TBI (3 mild diffuse injuries at 5 day intervals) (n= 14) or moderate to severe TBI
(n=14). At 12 months after injury, they were tested on a functional battery encompassing motor, neu-
ropsychiatric (anxiety and depressive-like) and cognitive function. Our results showed that moderate to severe
TBI animals exhibited significant impairments in cognitive flexibility (p= 0.009) on the Barnes maze when
compared to age-matched sham animals. Neither repetitive mild TBI nor single mild TBI animals showed sig-
nificant functional impairments when compared to shams. Thus, this study provides the first insight into chronic
functional impairments associated with different severities of diffuse TBI, with moderate to severe TBI being a
higher risk factor for impaired cognitive function at 12 months post-injury. Taken together, this may have
implications for risk of dementia development following different severities of injury.

1. Introduction

Traumatic brain injury (TBI) covers a broad spectrum of disease,
ranging from milder concussive insults to severe injuries. Since the first
documentation of TBI leading to the development of parkinsonian-like
symptoms in professional boxers [1], the research community has re-
garded TBI as not just a single insult, but as an injury that has ongoing
functional consequences [2]. Repetitive mild (rmTBI) is linked with the
later incidence of depression [3,4], anxiety [5] and impairments in
learning and memory [6,7]. Studies on contact-sport athletes have as-
sociated a history of multiple concussions to a range of behavioural
abnormalities, memory deficits and even parkinsonism [8] in later
years. Conversely, following a single severe injury, cognitive impair-
ments are most notable, with emergence of deficits in different cogni-
tive domains over time, even in the subacute phase [9]. For example,
serial neuropsychological testing over 5 years following injury found
that 30% of patients who had experienced a moderate/severe TBI had

clinically significant decline in two or more domains of cognitive
functioning [9]. Higher rates of anxiety and depression are also re-
ported chronically following a single moderate/severe injury, with re-
ports of clinically significant depression in 46% of individuals at 10
years post-injury [10], compared to ˜20% in the general population
[11].

Experimental models of TBI also support the persistence of func-
tional deficits following injury [12–14]. Animals subjected to a focal
TBI induced by the controlled cortical impact model demonstrated
persistent subtle cognitive deficits on the Morris Water Maze at 12
months post injury [15]. Similarly, animals injured via fluid percussion
(FPI), which produces a mixed focal and diffuse injury, also had per-
sistent cognitive deficits at 12 months post-injury [16,17]. Following
purely diffuse axonal injury (DAI), cognitive deficits, evidenced by
impaired spatial and recognition memory on the Barnes Maze, as well
as increased anxiety, have been reported at 3 months post-rmTBI [13],
while impaired spatial learning and cognitive flexibility and increased
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depressive-like behaviour were observed at 3 months following a single
moderate/severe diffuse TBI [18]. To date, however, the behavioural
effects of a purely diffuse injury have not been investigated pre-clini-
cally beyond this 3 month time-point. This represents a significant gap
in the existing literature, as “pure” forms of focal injury occur in only
28% of moderate-severe TBI cases, while diffuse axonal injury is seen in
72% of individuals, with “pure” diffuse axonal associated with sig-
nificantly lower scores on the Glasgow Coma Scale [19].

These persistent functional impairments seen following injury may
set the stage for later pathology, including a significantly increased risk
for the development of neurodegenerative diseases, such as Alzheimer’s
(AD) [20–22], Parkinson’s (PD) [23–25], chronic traumatic en-
cephalopathy (CTE) [8,26,27], fronto-temporal dementia (FTD)
[28,29] and motor neuron disease (MND) [30,31], as reviewed in
[32–35]. Of these, the link between TBI and the later emergence of
dementia has received the most attention to date. A dose-response re-
lationship is thought to exist in terms of the risk of developing neuro-
degenerative disease [21], with more severe injury associated with
greater risk, but even a single mild TBI may be linked to an increased
risk of dementia [36]. A retrospective study utilizing health data from
emergency department visits showed an increased risk of dementia with
a minimum hazard ratio of 1.46 in moderate to severe TBI patients and
a minimum hazard ratio of 1.1 in mild TBI patients, over a 5–7 year
follow-up period [37]. A similar risk was reported in a Taiwan-based
retrospective cohort study, in which individuals who had experienced a
moderate to severe TBI showed a 1.68 fold higher risk of dementia than
non-TBI patients [38].

Interestingly, the type of dementia that develops may differ de-
pending on the nature of the initiating insult. For example, it is hy-
pothesised based on case studies that a single moderate/severe TBI may
be more strongly associated with accelerating age-related dementia,
such as AD [20,39], while rm TBI may be more strongly linked to CTE
[8]. However, the neuropathology following both single injury and
rmTBI shares similarities, including the accumulation of hyperpho-
sphorylated tau in the form of neurofibrillary tangles (NFTs) at the base
of the sulci [40,41] and the development of a persistent inflammatory
response post-injury [32,42,43]. Indeed, it has been suggested that TBI
induced neurodegeneration may be its own unique entity, with further
research needed into this question. Thus, this study aimed to document
the range of chronic functional impairments, including in motor func-
tion, neuropsychiatric function and cognition, that may be associated
with the different TBI severities (mild TBI, rmTBI TBI and moderate/
severe TBI) at 12-months post injury in an experimental model of DAI.
Furthermore, the study assessed whether functional changes at 12-
months post-injury were associated with alterations in either neuronal
number or integrity in the prefrontal cortex (PFC), a key region for
cognitive function.

2. Results

2.1. Locomotion assessment

General locomotor activity was assessed as distance travelled (m) in
the OFT. A one-way ANOVA showed a significant main group effect in
the distance travelled in the OFT (F3,50= 3.234, p= 0.030). However,
post-hoc analysis showed no significant changes (p > 0.05) in distance
travelled when the TBI groups were compared to shams at 12 months
post-injury in the OFT. Nevertheless, the single mild TBI group did
show significantly higher locomotor activity when compared to re-
petitive mild TBI animals (29.45m ± 3.07 vs 18.68m ± 2.09,
p=0.021) (Fig. 1A). This was confirmed by the generation of a heat-
map showing activity within the OFT (Fig. 1B), which shows much
greater coverage of the apparatus in the single mild TBI animals. A
similar pattern in locomotor activity was seen in the distance travelled
in the elevated plus maze, with a significant main group effect
(F3,50= 4.963, p=0.004) driven by the single mild TBI group having a

significantly higher distance travelled when compared to both the re-
petitive mild TBI group (6.14m ± 0.60 vs 3.69m ± 0.32, p= 0.006)
and the moderate/severe TBI animals (6.14 m ± 0.60 vs
3.82m ± 0.62, p=0.01) after post-hoc analysis (Fig. 1C). Locomotor
assessment in the Y-maze showed a non-significant main group effect
(F3,50= 2.114, p= 0.110) (Fig. 1D).

2.2. Anxiety-like behaviour

Anxiety-like behaviour was assessed through various parameters in
the open field and elevated plus mazes. Both assess different anxiety
stimuli in the animal, with the open field assessing anxiety over open
spaces and the elevated plus maze assessing anxiety over open spaces
and height [44]. In the open field, animals showed no significant main
group effect either in time spent rearing (F3,50= 2.17, p=0.103) or
time spent in the centre of the field (F3,50= 0.716, p=0.547) (Fig. 2A
and B).

However, in the elevated plus maze, there was a significant main
group effect in the time spent in the open arms (F3,48= 3.984,
p=0.013), as well as the number of open arm entries (H=14.48,
p=0.002) and the number of crossings (H=12.14, p= 0.007). The
mild TBI group showed the least anxiety-like behaviour, with the most
time spent in the open arms (95.3 s ± 17.44) and the highest number
of both open arm entries 7.5 (5–14) and crossings 14 (9–28), when
compared to other groups. These were not significant when compared
to shams; time in open arm (95.3 s ± 17.44 vs 61.24 ± 10.66 in
shams, p=0.248), number of open arm entries (7.5 (5–14) vs 6 (1–17)
in shams, p=0.944) and number of crossings (14 (9–28) vs 12 (2–31)
in shams, p= 0.786), but was significant only when compared to
moderate-severe TBI; time in open arms (95.3 s ± 17.44 vs
31.01 s ± 7.6, p=0.007) (Fig. 2C), number of open arm entries (7.5
(5–14) vs 3 (0–10), p= 0.001) (Fig. 2D) and number of crossings (14
(9–28) vs 6.5 (0–20), p= 0.006) (Fig. 2E). Indeed this pattern can be
seen in the heat-map, which shows the average amount of time spent in
each part of the elevated plus maze across the injury groups, with the
single mild TBI animals showing the highest amount of time in the open
arms (Fig. 2F).

2.3. Depressive-like behaviour

Depressive-like behaviour was assessed through the forced swim
test. Animals showed no significant main group effect in immobility
time (F3,50= 1.434, p=0.244) (Fig. 3A), latency to first immobility
(F3,50= 0.443, p=0.723) (Fig. 3B) or number of immobility episodes
(H=2.104, p= 0.551) (Fig. 3C) at 12 months post injury.

2.4. Cognition

Cognitive outcome was assessed using the Y-Maze for spatial
memory and Barnes maze for learning, memory (reference and working
memory) and cognitive flexibility (ability to reprogram previously
learned task) [45]. Our results showed no significant main effect in any
of the Y-maze parameters between the TBI groups and shams at 12
months post injury; novel preference (F3,50= 1.234, p= 0.307)
(Fig. 4A), number of novel arm entries (H= 4.848, p=0.183) (Fig. 4B)
and latency to 1st novel arm entry (F3,48= 0.0703, p= 0.976)
(Fig. 4C), as confirmed via heat-map analysis, with all animals showing
greater intensity of staining in the novel arm, indicating higher occu-
pancy of this arm (Fig. 4D).

As for the Barnes maze, learning acquisition showed neither a sig-
nificant group effect within the three days of trial acquisition
(F3,50= 2.208, p=0.099) nor a significant interaction effect
(F6,100= 1.036, p= 0.407), but, as would be expected, showed a sig-
nificant main effect of time (trial days) (F2,100= 64.57, p < 0.0001)
(Fig. 5A). Indeed, all groups showed a significant improvement in es-
cape latency from day 1 to day 2 (p < 0.05), with no significant
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differences noted between day 2 to 3 (Fig. 5A). On the heat-map, this
can be seen as the more targeted time spent near the escape box on Days
2 and 3, compared to the more exploratory pattern on Day 1 (Fig. 6).
There was also no significant main effect of group in latency to the old
escape box location in trial 1 on probe day (F3,38= 0.346, p=0.792)
(Fig. 5B). However, there was a significant group effect on cognitive
flexibility, as indicated by time to find the new escape box, on probe
day (F3,38= 4.343, p= 0.01). In trial 1 on probe day, the moderate/
severe TBI group had a significantly longer latency to reach the new
escape box location when compared to shams (90.2 ± 13.44 s vs
48.08 ± 6.96 s, p= 0.009) (Fig. 5C), which was also seen in trial 2 on
probe day, but which did not reach statistical significance
(57.5 ± 12.25 s vs 28.5 ± 5.07 s, p= 0.121). This is illustrated by the
construction of a heat-map showing the average time spent in each part
of the Barnes Maze across the two trials, with the moderate/severe TBI
animals spending more time in the old escape box location (Fig. 7).
Similar to the acquisition trial, there was no significant interaction ef-
fect on the probe day (F3,38 = 0.724, p= 0.544) but there was a sig-
nificant main effect on time (difference between trials) (F1,38= 27.93,
p < 0.0001), with all animals improving their escape latency from trial
1 to trial 2 (p < 0.05). Revisits to the old escape box location in trial 2
on probe day only showed a trend towards significance in effect be-
tween groups (H=7.403, p=0.06) (Fig. 5D). There was also no

significant main effect seen between the groups in terms of reference
memory error (F3,38= 0.932, p=0.435) (Fig. 5E) or working memory
error (F3,35= 0.492, p=0.69) (Fig. 5F) on the probe day. Repetitive
mild TBI and mild TBI groups showed no significant cognitive impair-
ment when compared to shams on any of the cognition parameters
(p > 0.05).

2.5. Molecular analysis

NeuN was used to assess whether TBI led to loss of neurons at 12-
months post-injury in the PFC. There were no significant changes in the
total number of neurons observed in the PFC (F3,21= 2.329, p= 0.104)
(Fig. 8A). This was further probed using several markers, including
synaptophysin for assessing synaptic integrity, neurofilament light
chain (NF-L) for assessing neurofilament structure and axonal stability
and myelin basic protein (MBP) for assessing neuronal myelination
stability. There were no alterations in synaptophysin levels in the PFC
(F3,21= 0.244, p=0.865) (Fig. 8B). Similarly, neither levels of NF-L
(F3,21= 0.762, p=0.528) (Fig. 8C) nor MBP (F3,21= 0.473,
p=0.705) (Fig. 8D) differed as a function of injury at 12 months post
injury.

Fig. 1. Distance travelled (m) as a measure of locomotion on A) open field maze, C) elevated plus maze and D) Y-maze post injury. B) Heat map analysis on open field
maze indicating location and exploratory time within the open field post injury. Graphs represent the mean± SEM, (n= 12–14 per group; aa p<0.01, a p<0.05
compared between injury groups). Heat maps are from group composites.
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3. Discussion

The current study investigated the presence of functional impair-
ments at 12 months post- TBI of different severities; mild TBI, mild
repetitive TBI and moderate/severe TBI. At 12 months post-DAI, when
compared to age-matched sham animals, neither impairments in gen-
eral locomotor activity, the expression of depressive-like behavior nor
impairments in cognition in terms of spatial learning, working memory
or recognition memory were evident, regardless of TBI severity.
However, the moderate/ severe TBI animals exhibited significant subtle
impairments in cognitive flexibility when compared to shams. There
was also a trend towards reduced anxiety, as evidenced by more time
spent in the open arm of the EPM, in the single mild TBI group, with
significant differences between this group and both the repeated mild
and single moderate-severe TBI animals, although no differences were
seen in comparison to sham-injured animals. This was further reflected
in locomotor activity, with mild TBI animals having higher levels of
activity compared to both repetitive mild TBI and moderate/severe TBI
animals. Given the subtle alterations in cognitive flexibility at 12-
months post-moderate/severe TBI, we used Western blot to analyse
whether these were associated with changes in neuronal number or

morphology in the PFC. Interestingly, no changes in either neuronal
number or neuronal/synaptic integrity were found in the PFC at 12-
months post-injury in any of the experimental groups. Taken together,
the results of the current study seem to suggest that brain injury during
early life has minimal effect on mid-life motor, cognitive or neu-
ropsychiatric function, although subtle impairments in cognitive flex-
ibility may still set the stage for the later emergence of more significant
behavioural impairment.

The most notable finding in this study was that moderate-severe TBI
led to a subtle impairment in cognitive flexibility at 12 months post-
injury, with no effect seen on either spatial or recognition memory. This
may indicate preferential disruption of prefrontal cortex function, as
this region is critical for executive function, which governs cognitive
flexibility [46,47]. Indeed, TBI has been consistently identified as a risk
factor for higher-order cognitive deficits involving the frontal and
prefrontal cortices [48]. In healthy adults, tasks like the Trail Making
Test-B, which require cognitive flexibility and switching attention, lead
to activation of the dorsolateral prefrontal (DLPFC) and medial pre-
frontal regions of the brain [49]. Following TBI, performance on Trail
Making Test-B, as well as other measures of cognitive flexibility, at-
tention and working memory, such as the Hayling, Selective Attention

Fig. 2. Anxiety-like phenotype as measured by A) time spent rearing (s) and B) time spent in the centre (s) of the open field as well as measured by C) time in the open
arms (s), D) number of entries into the open arms and E) number of crossings in the elevated plus maze post injury. F) Heat map analysis on elevated plus maze
indicating location and exploratory time within the arms of the elevated plus maze post injury. Graphs represent the A-C) mean± SEM and D-E) median with
interquartile range, (n= 12–14 per group; aa p< 0.01 compared between injury groups). Heat maps are from group composites.

Fig. 3. Depressive-like behaviour as measured in forced swim test by A) time spent immobile (s), B) latency to first immobility (s) and C) number of immobility
episodes post injury. Graphs represent the A-B) mean± SEM and C) median with interquartile range, (n= 12–14 per group).
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Fig. 4. Cognition assessed through Y-maze for spatial working memory measured by A) novel preference, B) number of entries into the novel arm and C) latency to
first novel arm entry post-injury. D) Heat map analysis on Y-maze indicating location and exploratory time within the arms of the Y-maze post injury. Graphs
represent the A & C) mean± SEM and B) median with interquartile range, (n= 12-14 per group). Heat maps are from group composites.

Fig. 5. Cognition post-injury assessed through Barnes Maze for learning measured by A) latency to escape (s) on acquisition day, for memory measured by B) latency
to old box location (s) on trial 1 probe day, D) number of revisits, E) reference memory error and F) working memory error on trial 2 on probe day, as well as for
cognitive flexibility measured by C) latency to escape to the new box (s) on probe day. Graphs represent the A-C, E-F) mean± SEM and D) median with interquartile
range, (n= 12–14 per group). a p<0.05 compared between injury groups, *p< 0.05 compared to shams).
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Task, n-back and Symbol Digit Modalities Test, is slowed [50]. This
slowed information processing speed post-TBI is associated with lower
fractional anisotropy (FA) and higher mean diffusivity (MD) scores,
indicating white matter abnormality, in the majority of tracts assessed
[50]. Consistent with this, Ware and colleagues (2018) recently de-
monstrated that veterans who have suffered blast-induced TBI display
elevated quantitative anisotropy (QA) and reduced right hemisphere
volume in all subcortical-DLPFC tracts assessed, with decreased fibre
count in the right-DLPFC-putamen tract and increased generalized FA
in the right DLPFC-thalamus tract specifically [51].

Similar effects on cognitive flexibility and prefrontal cortex function
following a single moderate/severe TBI have also been reported pre-
clinically [52]. In a model of lateral fluid percussion, working memory,
as assessed by a T-maze task, was significantly impaired up to one week
post-TBI, an effect that was accompanied by alterations in prefrontal
cortex function [53]. Similarly, previous work from our group has
shown impairments in cognitive flexibility at 3 months following a DAI
[18]. More chronically, in a CCI model that produced frontal contu-
sions, impairments in reversal learning were observed at 12 months
post-injury in a rule shift assay, a measure of cognitive flexibility [54].
It is not known, however, whether this deficit persisted from the time of
injury or emerged at some later time-point prior to testing at 12
months, with further studies needed to incorporate a temporal time-
course of behavioural changes required.

Despite the subtle alterations in cognitive flexibility observed in this
study, there were no changes in the PFC in either total neuronal

number, as measured by NeuN, or neuronal morphology, as measured
by levels of synaptophysin, NF-L or MBP, at 12 months post-moderate/
severe injury. This is consistent with earlier findings from our group,
which showed no changes in neuronal morphology in the PFC at 3
months following moderate/severe TBI in the same experimental model
of DAI [18]. However, it is important to note that we conducted only a
gross characterisation of neuronal morphology changes using WB
analysis of total level of protein for each marker of interest. It is possible
that a more in-depth analysis using IHC or neuroimaging techniques
would have detected subtle changes in neuronal morphology or circuit
connectivity, which are more likely to be present than gross alterations.
For example, previous work in the lateral cortical impact model has
demonstrated working memory dysfunction without the presence of
neuronal cell death in the prelimbic region of the medial PFC [55],
suggesting that more subtle alterations may drive these changes in PFC-
mediated cognition. In support of this, Hoskison et al found significant
shortening of layer V/VI basal dendritic arbours and an increase in the
density of both basal and apical dendritic spines in the prelimbic region
of the medial PFC of rodents at 4 months following a lateral cortical
impact injury [56]. These subtle dendritic changes were accompanied
by persistent alterations in working memory function on both delayed
match-to-place and delayed alternation t-maze tasks [56]. Thus, future
studies should investigate subtle alterations in neuronal morphology
within different cortical layers and specific subregions of the PFC, as
well as the connectivity of the PFC with downstream structures.

Interestingly, in contrast to the findings of the current study,

Fig. 6. Heat map analysis on Barnes maze indicating location and exploratory time within the Barnes maze on acquisition days post injury. Heat maps are from group
composites.

Fig. 7. Heat map analysis on Barnes maze indicating location and exploratory time within the Barnes maze on probe day post injury. Heat maps are from group
composites.
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impairments in cognitive flexibility and alterations in PFC function
have also previously been reported following rmTBI [48]. In the CHI-
MERA (Closed-Head Impact Model of Engineered Rotational Accelera-
tion) model, a newly developed model of injury allowing precise con-
trol of injury direction and impact velocity, mice showed impaired in
several PFC dependent functions, including social memory (27–28 days
post-injury) and impaired spatial working memory (32–35 days post-
injury) following five repeated mild hits [48]. These behavioural im-
pairments were accompanied by a slight decrease in the adaptation rate
of layer V pyramidal neurons in the mPFC [48]. Similarly, work from
our own group has demonstrated mild cognitive impairments up to 3
months post-injury in a model of rmTBI [13]. However, it is important
to note that neither of these studies investigated the long-term time
point (i.e. 12 months) being investigated in this study. It is possible that
impairments in executive function following rmTBI may steadily im-
prove over time, normalizing by 12 months, and may worsen again
later with ageing. Consistent with this theory, in individuals who have
suffered a moderate/severe TBI, measures of executive control function
improve over time in the first year post-injury, only to decline again
from this point [57].

In contrast to the subtle alterations in cognitive flexibility demon-
strated in the current study, other types of cognitive function, such as
novel arm recognition in the Y-maze and learning the escape location in
the Barnes Maze, known to be dependent on hippocampal functioning,
were intact at 12 months post-injury in this model of DAI. Previous
studies have shown that damage to the hippocampus through admin-
istration of kainic acid impairs performance on the Y Maze, with no
preference seen for the novel arm [58], and that greater degrees of
hippocampal loss following focal TBI are associated with worsening
performance on the Barnes Maze [59]. Thus, the lack of impairment in

these tasks seen in the current study would suggest an intact hippo-
campus. Indeed, previous studies of diffuse moderate-severe TBI have
shown a lack of hippocampal cell loss [60] and preservation of hippo-
campal synaptic proteins [18], with a concomitant lack of hippocampal
dependent cognitive deficits on either the MWM or radial arm maze
following impact-acceleration TBI [60,61]. This is in contrast, however,
to focal injury models, with cognitive impairment on the Morris Water
Maze seen at 12 months post-CCI [15] and FPI [62], in line with the
significant hippocampal damage induced following these injury types
[58,63]. More recently, these hippocampal-dependent cognitive deficits
have been shown to persist in mice up to 6.5 months post-injury fol-
lowing 3 impacts over 3 days in the CHIMERA model [64]. Given that
TBI is associated with the later development of dementia, it may be that
the 12 month time-point is insufficient to detect hippocampal deficits in
a DAI model. Indeed, given that the animals are 14–15 months old at
the conclusion of this study, this represents only later middle-age in
humans, with perhaps more time needed to develop hippocampal pa-
thology sufficient to lead to detectable cognitive deficits. Thus, future
studies are needed to investigate whether subtle changes in neuronal
morphology or connectivity may be present in the hippocampus at this
chronic timepoint, even in the absence of overt behavioral change.

In the current study, no alterations in depressive-like behaviour
were noted following any injury type, despite evidence to suggest that
both rmTBI and moderate/severe TBI can increase the risk for depres-
sion [14,65]. Clinical studies show that there is a 40% prevalence of
depression manifesting within a year post single moderate-severe TBI
[4,66,67] and a three-fold increase risk of developing depression fol-
lowing repeated mild injuries [68]. Pre-clinical studies have also re-
ported increased immobility time in the forced swim test up to 3
months following both a single moderate diffuse TBI [18,69] and rmTBI

Fig. 8. Molecular analysis on the prefrontal cortex at 12 months was measured using semi-quantitative western blotting to analyse A) neuronal survival (total
neurons, NeuN marker), B) integrity (synaptophysin marker) and C-D) structure damage (NF-L and MBP markers). GAPDH was used as a housekeeper protein for all
analysis. Graphs represent the mean± SEM. Representative images of the western blots were extracted from Image Studio Lite.
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(3 injuries in 10 days) [13,70], which suggests that this is a subacute
deficit that has resolved by 12 months post-injury. Indeed, this is in line
with other studies, with Jones et al (2008) reporting no behavioural
despair (measured by FST) in their FPI animals at 6 months post injury
[71]. Alternatively, the FST may not be an appropriate test to in-
vestigate depressive-like behavior at this time point, as the large size of
the animals impedes swimming behaviour. Use of other measurements,
such as the saccharin preference test or other test of depressive-like
behaviours in rodents, may be needed to confirm the lack of depressive-
like phenotype at chronic time-points.

Our study also demonstrated a lack of anxiety-like effect on both the
OFT and EPM in the single moderate severe TBI animals and repeated
mild TBI animals. Intriguingly, there was a trend towards decreased
anxiety in the single mild TBI group in open arm time in the EPM, with
significant differences between this group and both the repeated mild
and single moderate-severe groups. This increased time in the EPM may
be seen as decreased anxiety [44], or may reflect disinhibition or in-
creased impulsivity [72]. Indeed, similar findings have previously been
reported acutely following mTBI [48,73], suggesting that this may be a
particular behavioural consequence of this type of insult that can persist
to the chronic phase. The interpretation of these results as disinhibition
or increased impulsivity may be supported by the increased locomotor
activity noted in the single mild TBI animals, as they had a significantly
greater distance travelled than the repetitive mild TBI animals in the
OFT and had a significantly longer distance travelled than both of the
other TBI groups in the EPM. This increased locomotor activity can be
seen as hyperactivity [74–76], which is related to lesions in the cerebral
cortex, mainly at the axis connecting the olfactory bulb and enthorhinal
cortex within the pre-frontal cortex [77]. This hyperactive behaviour
(increased distance travelled) on the open field has been reported
previously after mild CCI in mice [75,76], supporting our findings. It is
unclear why this phenotype was present in the single mild TBI and not
the other injury groups, with the possibility that the difference could
also reflect slight locomotor deficits in the repetitive mild TBI and
moderate/severe TBI group. Nevertheless, since this behaviour was
only present in the single mild TBI group and was not significantly
different than shams, one must be careful to not over-interpret this
result and future studies will be necessary to further investigate specific
neuropsychiatric impairments at chronic timepoints post-TBI.

In conclusion, our study shows that a moderate/ severe diffuse TBI
may lead to significant impairments in cognitive flexibility at 12-
months post-injury, suggestive of potential subtle alterations in either
the structure or connectivity of the PFC that must be confirmed with
future studies. In contrast, hippocampal dependent tasks that rely on
spatial recognition memory were unaffected in all injured animals, in-
dicating potential preservation of this region at 12 months post-injury.
Surprisingly, no long-term meaningful behavioural effects of either
single or repetitive mild injuries were noted at 12 months post-injury. It
is important to note, however, that the current study used all male
rodents. Given the growing body of literature indicating differences in
injury outcomes in males versus females, additional work is needed to
determine whether the behavioural changes seen chronically following
TBI present differently as a function of sex. Furthermore, future studies
should investigate the extent to which the ageing process itself con-
tributes to the emergence of cognitive change following TBI.

Taken together, the results of this study provide the first systematic
comparison of the functional effects following different severities of

diffuse TBI in a preclinical model of DAI at one year post injury. While
behavioural effects were subtle at this timepoint, indicating that DAI in
early life has minimal effect on mid-life function, regardless of initial
injury severity, differences observed between injury severity groups
may still provide meaningful information. The risk for impaired cog-
nitive function may be greater following moderate/severe TBI than
more mild forms of injury, which may have important implications for
risk of dementia development following different severities of injury.
This is particularly important given that it is still impossible to predict
which individuals will go on to develop dementia following TBI. Thus,
understanding the temporal profile of even subtle alterations in beha-
viour following different severities of TBI may have clinical utility in
helping to determine risk profiles.

4. Materials and method

4.1. Animals

Male Sprague-Dawley rats (10–12 weeks) were used under the ap-
proval of the University of Adelaide Animal Ethics Committee (M-2015-
243A) and (M-2015-187). Animals were housed under conventional
laboratory conditions, with a 12-hour light-dark cycle and access to
food and water ad libitum. Animals were randomly allocated to receive
either sham surgery (n=7), repetitive sham surgery (3 incisions at 5
day intervals) (n= 7), a single mild diffuse TBI (n=12), repetitive
mild diffuse TBI (3 mild diffuse injuries at 5 day intervals) (n= 14), or
moderate/severe diffuse TBI (n=14). Animals underwent a compre-
hensive functional battery assessing motor, neuropsychiatric and cog-
nitive function at 12 months post injury.

4.2. Injury model

The Marmarou impact-acceleration model [78] was utilized, as it
has been extensively validated as a model of diffuse injury [79]. Animal
weights ranged from 420 to 480 g at the time of TBI induction. Animals
underwent anaesthetic induction via inhalation of 5% isoflurane under
normoxic conditions. Animals in the sham, repetitive sham, mild diffuse
TBI and repetitive mild diffuse TBI groups were maintained on 2%
isoflurane via nose cone throughout, while animals in the moderate/
severe diffuse TBI group were subsequently intubated, mechanically
ventilated and maintained on 2% isoflurane throughout [78,80]. A
midline incision on the scalp was made to facilitate the placement of a
metal disc centrally between lambda and bregma on the skull. Animals
in the sham and repetitive sham groups received the incision only, with
repetitive sham animals receiving the incision three times, with 5 day
intervals between each incision.

Animals in the repetitive mild diffuse TBI and mild diffuse TBI
group were removed from the nose cone and strapped onto a foam, with
injury induced by releasing a 450 g weight from a height of 0.75m
down a clear tube onto the centre of the metal helmet; mild diffuse TBI
animals receive this procedure only once, while repetitive mild diffuse
TBI animals receive this injury three times, with 5 day intervals be-
tween each injury (Table 1). Conversely, animals in the moderate to
severe diffuse TBI group were transiently taken off ventilation after
incision, strapped onto a foam, with injury induced by releasing a 450 g
weight from a height of 2m (Table 1). Contact was observed to ensure a
single, direct impact without a rebound hit in all animals. Only animals

Table 1
Injury model and specifications.

Injury Type Weight of metal Height of drop Days of injury Mechanically ventilated Hypoxia Treatment Saline Treatment

Repetitive Mild TBI 450 g 0.75 m 3 days (at 5 day intervals) No No No
Mild TBI 450 g 0.75 m 1 day No No No
Moderate to Severe TBI 450 g 2.00 m 1 day Yes Yes Yes
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in the moderate/severe diffuse TBI group were then subjected to hy-
poxic conditions (2 L/min nitrogen; 0.2 L/min oxygen) for 10min, to
replicate the clinical effects seen following this injury model without
ventilation, as this hypoxic condition is known to exacerbate the se-
verity of the injury [81,82]. Hypoxia alone had similar levels of cy-
toskeletal structure and neuroinflammation as shams under normoxic
ventilation, as reported previously by Hellewell et al. [81]. Saline
treatment (5 mL of 0.9% (w/v) saline solution) was administered sub-
cutaneously to prevent dehydration [83] in the moderate/severe diffuse
TBI group after wound closure, as well as if there was continuous
weight loss post injury.

Wound closure was performed with surgical staples. Successful in-
duction of moderate/severe TBI was assessed 24 h later by rotarod
scores of below 100, weight reduction of 5–10% and clinical signs
(paresis and hunched posture). Animals in the moderate/severe TBI
group that did not meet the above criteria were excluded from the
study. Moderate/severe TBI was associated with a 20% mortality rate
due to brainstem haemorrhage, which is similar to other weight-drop
model studies of moderate to severe TBI [84]. Shams, repetitive shams,
mild diffuse TBI and repetitive mild diffuse TBI animals assessed at the
same timepoint (24 h) exhibited none of the clinical signs outlined
above and had rotarod scores of more than 100 s. Over the 12-month
time period of the study, an additional 4 animals were lost due to age-
related health complications.

4.3. Functional studies

Functional tests assessing cognition, anxiety, depression and motor
function were performed at 12 months post-injury. All functional data
was recorded using the ANY-maze Video Tracking System version
4.99m (Stoelting Co.). The functional tests were done in order from
least to most aversive (stress inducing) to the animals. The experi-
menter was blinded to the experimental groups of each animal
throughout the duration of the study, with unblinding only occurring
during analysis of the results.

4.3.1. Open field test
The open field test (OFT) is a common test of locomotor activity

[85]. Animals were placed in the centre of a large square box
(95 cm×95 cm) with walls at height 44.5 cm and the total distance
travelled over a 5min period was recorded. Time in centre of the field
and rearing time were also measured for anxiety-like behaviour.

4.3.2. Elevated plus maze
The elevated plus maze (EPM) is widely used in anxiety research

[85]. Animals were placed in the centre of an elevated (50 cm in height)
cross-shaped maze consisting of two open and two closed maze arms
(walls of height 40 cm, each of length 50 cm), facing the open arms, for
5min. Time spent in the closed arms versus open arms as measured by
the centre point of the animal’s body was recorded, with increased time
spent in the closed arms thought to represent anxiety-like behaviour
[85]. Other anxiety-like behaviour parameters measured in the EPM
include number of centre crossings and number of open arm entries as
measured by the centre point of the animal’s body.

4.3.3. Y-Maze
The Y-Maze is used to test cognition in terms of spatial recognition

memory [86]. In the Y-Maze, animals are placed in an equal angled Y-
shaped arena, with each arm of the maze identical in size and shape,
but visually distinct (due to cues on the wall), from the others. The test
involves two 3-minute trials separated by 1 h. In the first trial, one arm
was closed off with a clear wall (novel arm) to enable the animal to
visually recognise its location; in the second trial, this novel arm be-
came accessible (wall removed). In cases of reduced spatial reference
memory, the animal spends less time within the novel arm [87].

4.3.4. Barnes maze
The Barnes maze evaluates spatial learning and memory in rats

[88]. The maze is an elevated, open circular black platform of 1.2 m in
diameter with 18 holes evenly distributed along its edges. One of the
holes is pre-determined as the escape hole, with a black escape box
placed below the hole. The Barnes maze test was preformed over the
course of five days; three days of acquisition trials, a rest day (no in-
teraction with the animals) and a probe day. During the acquisition
days, animals were subject to two trials spaced 15min. apart. They
were placed in the centre of the Barnes maze in a brightly lit room, with
the time taken for the animal to find and enter the escape box recorded.
On day 5, the escape box was relocated to a new hole and two trials
were conducted 1 h apart. In trial 1, the time taken for the animal to
reach the old position of the escape hole was recorded. In both trials,
the time taken to locate and enter the newly relocated escape box was
recorded as a measure of cognitive flexibility. Number of revisits to the
old box location on trial 2 of probe day, working memory error (mea-
sured as the number of revisits to the same hole after exploration of less
than 3 different holes) and reference memory error (measured as the
number of visits to any of the holes that was not the escape hole) were
recorded as additional cognitive parameters.

4.3.5. Forced swim test
The forced swim test (FST) is widely utilised to assess depressive-

like behaviour [89]. The animal was placed within an inescapable glass
cylinder filled halfway with 25 °C water, adjusted for the animal’s
length so that the hind legs do not touch the bottom of the cylinder, for
5min. The time spent immobile, number of immobile episodes and
latency to first immobile episode were recorded as a measure of be-
havioural despair.

4.4. Tissue collection and processing

Animals were transcardially perfused with 0.9% saline and the brain
was removed. The prefrontal cortex (n=5–7 per group) was dissected
and snap-frozen in liquid nitrogen before being stored at −80 °C.

The samples were taken out and homogenised in freshly prepared
RIPA lysis buffer (150mM sodium chloride, 50mM Tris-hydrochloride
acid of pH 7.5–8, 1% of NP-40 IGEPAL CA-630, 0.5% sodium deox-
ycholate, 0.1% of sodium dodecyl sulfate (SDS) and distilled water)
with 1X cOmplete™ EDTA-free protease inhibitor cocktail (Sigma). After
homogenisation, each sample underwent 3 bursts of 10 s duration
under a sonicator probe with a cooling period between each burst. Then
the samples were centrifuged for 30min at 14,000 rpm and 4 °C, before
the supernatant were collected. Protein concentration was estimated
with Pierce BCA Protein Assay Kit (ThermoScientific) with the absor-
bance read at 540 nm. All supernatant were stored at −80 °C until
further usage.

4.5. Western blot

Gel electrophoresis was performed using Bolt 4–12% Bis-Tris Plus
gels (Life Technologies) with 30 μg of protein loaded per well. Gels
were run at 150 V for 1 h. After the run, blots were transferred to a
PVDF membrane using the iBlot 2 Dry Blotting System (Life
Technologies). Membranes were washed in 1X tris-buffered saline with
tween (TBST) (3 washes× 5min), stained with Ponceau S red solution
(Fluka Analytical) (5 min) for protein visualisation, and washed with
distilled water until sufficient removal of the Ponceau stain had been
achieved.

Membranes were then incubated for 5min with the 1X iBind solu-
tion before proceeding with the final step of simultaneous incubation
with primary and secondary antibodies in 1X iBind solution for 2.5 h
using the iBind Western System (Life Technologies). Primary antibodies
were used at individually optimised concentrations; synaptophysin
(1:4000, Abcam, ab32127), neurofilament light-chain (1:2000, Abcam,
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ab72997), myelin basic protein (1:750, Abcam, ab62631) and NeuN
(1:750, Abcam, ab177487) with housekeeper antibody GAPDH
(1:1000, Abcam, ab83957 and 1:1000, Abcam, ab9485). Secondary
antibodies to the respective primary antibodies (donkey anti-rabbit,
donkey anti-mouse and donkey anti-chicken, IRDye 800CW; LI-COR,
Inc.) were used at 1:3000. The blots were imaged using an Odyssey CLx
Infrared Imaging System (model 9140) (LI-COR, Inc.) set at auto re-
solution for optimum visualisation. Semi-quantitative analysis of band
signals were performed using Image Studio Lite version 5.2.
Normalization of blot runs were performed using a single control
sample (sham) across blots of the same protein of interest. Thus, re-
lative density of the samples was calculated based on the adjusted
density for each blot, as below:

=

band signal of sample protein housekeeper
band signal of control protein housekeeper

Adjusted density
/
/

=

adjusted density of protein
adjusted density of housekeeper

Relative density

4.6. Statistics

All data, with the exception of Barnes maze data, was analysed via
one-way ANOVA (Analysis of Variance) with injury severity as the
between subjects factor using IBM SPSS statistics 24 and GraphPad
Prism software. A repeated two-way analysis of variance was performed
on the acquisition days and latency to new escape box on probe day of
the Barnes maze test, with trial as the within subjects factor and injury
severity as the between subjects factor. Post hoc testing was conducted
using Tukey’s method. The Kruskal Wallis test was used for non-para-
metric measurements. For all tests, p values< 0.05 were considered
statistically significant. Shams and repetitive shams were combined
together as a single sham group, as there were no statistically sig-
nificant differences in any parameters of behavioural and molecular
data.
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