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Abstract

Recognising objects according to a pre-defined fixed
set of class labels has been well studied in the Computer
Vision. There are a great many practical applications
where the subjects that may be of interest are not known
beforehand, or so easily delineated, however. In many
of these cases natural language dialog is a natural way
to specify the subject of interest, and the task achiev-
ing this capability (a.k.a, Referring Expression Com-
prehension) has recently attracted attention. To this
end we propose a unified framework, the ParalleL At-
tentioN (PLAN) network, to discover the object in an
image that is being referred to in variable length nat-
ural expression descriptions, from short phrases query
to long multi-round dialogs. The PLAN network has
two attention mechanisms that relate parts of the ex-
pressions to both the global visual content and also di-
rectly to object candidates. Furthermore, the attention
mechanisms are recurrent, making the referring process
visualizable and explainable. The attended information
from these dual sources are combined to reason about
the referred object. These two attention mechanisms
can be trained in parallel and we find the combined
system outperforms the state-of-art on several bench-
marked datasets with different length language input,
such as RefCOCO, RefCOCO+ and GuessWhat?!.

1. Introduction

Despite the fact that Object Detection has become
a figurehead challenge in Computer Vision, the number
of applications of the technology is limited by the fact
that it demands a pre-defined set of class labels and
large number of pre-prepared training images for each.
This means not only that the list of objects of interest
is fixed, and determined long in advance, but also that
their appearance must remain fixed. The limitations
of this approach are visible in the rise of mediation
strategies such as Domain Adaptation [8,23], Transfer
Learning [29,33], Zero-Shot learning [32,47], and a sub-
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Figure 1: One-step reasoning vs. our proposed region-
wise&step-wise reasoning framework for the task of re-
ferring expression. In conventional frameworks (a), vi-
sual and language features are embedded into a joint
space for one-step reasoning. However, in our approach
(b), we propose to recurrently discover the target with
a parallel attention mechanism, with region and step-
wised query.

set of the Meta-Learning approaches [35]. More funda-
mentally, the traditional Machine Learning approach
whereby the problem and training data are specified
before the solution is devised, and then trained, inher-
ently implies that every instance of the target class is
of interest, in every image it processes.

A more flexible, and practically applicable approach
is to define the subject of interest at test time, not least
because it allows instance-level detection. It also sup-
ports the specification of subjects of interest that were
unimaginable at training time. Better even than a sys-
tem that allows test-time specification of the subject



of interest, however, is one that will interactively co-
operate towards an accurate detection, particularly in
the presence of ambiguity. This is the challenge we
consider here.

Referring expressions are used frequently by people
to identify or indicate particular objects within their
physical environment [45]. The length of the expres-
sions can range from a very short phase (2-3 words) to
a multi-round dialog (such as the GuessWhat?! game).
The longer the expression is, the more information is
provided, however, the harder the problem is because
more details need to be analysed and more steps of rea-
soning are required. Previous works [6,44,45] have pri-
marily appled a CNN-RNN pipeline that uses a CNN to
encode the image content and an LSTM to encode the
expression. The encoded features are then jointly em-
bedded and used to to locate the object that is related
to the expression, as shown in the Figure 1 (a). This
mechanism works well when the expression is short and
the number of the proposed objects is limited. How-
ever, when the expression is too long, in dialog form,
or there are too many potential objects in the image,
using the global representation to encode the expres-
sion and image into a single vector fails because such a
one-step process does not have the flexibility required
to relate multiple parts of the expression to multiple
parts of the image.

Instead, we argue that the representation of expres-
sion should be stepwise and the representation of im-
age should be region-wise. More significantly, we ar-
gue that the referring process should be also carried
out stepwise, i.e. after a stepwise representation (such
as a word in a sentence or a question-answer pair in a
dialog) is given, it should first focus on some potential
regions, with the expression or dialog being ‘listened to’
continually, the number of potential regions decreases
and the area of potential interest becomes smaller, un-
til it converges to a single region, as shown in the figure
1 (b). For example, given an expression ‘the woman in
the middle wearing brown jacket’, regions correspond-
ing to all of the women in the image are considered first.
After reading ‘in the middle’, regions of ‘woman’ at the
border of the image are eliminated. Finally, once the
input ‘wearing brown jacket’ is given, only one region
is left.

On the basis of the above we propose a unified
framework, the Parallel. AttentioN (PLAN) network,
which is the main contribution of this paper, to recur-
rently discover the object in an image that is being
referred to natural language descriptions, from short
phrases query to long multi-round dialogs. Specifically,
a two-way attention mechanism is applied to localize
the referred-to region in the global contextual features

from the whole image (i.e., image-level attention) and
to select the referred-to proposal region (i.e., proposal-
level attention) from a set of such region proposals.
The ‘image-level” attention can help identify referring
expressions that are related to the contextual informa-
tion, such as ‘the girl outside the cinema’. The ‘cin-
ema’ here is then the global scene context we need to
consider in the reasoning process. The ‘proposal-level’
attention learns to weight different candidate object
proposals, when the referring expression is associated
with multiple objects, such as ‘the girl at the left side
of the fire hydrant’, then the model will learn to fo-
cus on the object proposal of ‘girl’ and the ‘fire hy-
drant’, but not the global scene. The attention mech-
anism proposed here allows the model to sequentially
‘listen to’ the referring expression so that a step-wise
reasoning process is achieved. We evaluate our PLAN
model on what is currently the largest referring ex-
pression dataset, the ReferCOCO, ReferCOCO+ and
ReferCOCOg [14], which has a different length of the
input expression. Our model outperforms the previous
state-of-art by a large margin, for example, our single
model even outperforms an ensemble model (and with
Reinforcement Learning) on a test split on the Refer-
COCO. We further evaluate our model on the recently
released GuessWhat?! [6] dataset, which requires an
agent to point out the object in an image that is being
discussed by a ‘Questioner’ and an ‘Oracle’ via multi-
ple rounds of dialog. Here our model also outperforms
the previous state-of-art significantly.

As a side contribution, because our model uses a re-
current process to discover the object, we can display
the referring updating process along with the input ex-
pression query and the dialog, which makes the mul-
tiple steps of reasoning in the Refer Expression Com-
prehension visualizable and explainable. Qualitative
results (see Figure 3) show that we can produce excel-
lent visualization performance.

2. Related work

Referring Expressions The are two distinct chal-
lenges relating to Referring Expressions: generation
and comprehension. The generation task requires a
model to generate a language expression for the given
region, which is very similar to the dense image cap-
tioning task [14]. Referring expression comprehension
aims to localize the regions being described by a given
referring expression [12,13,27,28,44]. Given a set of
extracted candidate regions, each region is scored by
the model with respect to the referring expression and
the region with the highest score is selected as the final
grounding result. In this paper, we mainly focus on
improving the referring expression comprehension task



rather than the generation task.

Several works [13,27] propose to use local visual fea-
tures or global image features as the feature represen-
tation. To better employ the structural information
between different candidates, some works [12, 28, 44]
further explicitly incorporating modeling context be-
tween objects into referring expression. In [12,28], the
models are proposed to handle inter-object relation-
ships for grounding a referential expression into a pair
of regions. Yu et al. [44] argues that visual appear-
ance comparison can help localize the referred object
by looking into other surrounding candidates. Luo et
al. [26] propose to utilize models trained for compre-
hension task to generate better expressions. Different
from these methods, we propose to incorporate both
contextual image features and local visual features in
a unified framework, the both features are weighted by
a parallel attention mechanism, which make us recur-
rently discover the object that referred by the expres-
sion.

Phrase grounding Phrase grounding aims to local-
ize the objects described in the phrase. The main prob-
lem is to learn the correlation between visual and lan-
guage descriptions. To solve this problem, Karpathy et
al. [17] propose to align the objects and the fragments
of language into the embedding space with a structured
max-margin objective and [16] further replace the de-
pendency tree of the language parser with a bidirec-
tional RNN. Some approaches [31, 38] use a Canon-
ical Correlation Analysis [10] based method to learn
the correlation between visual and language modali-
ties. Recently, Hu et al. [13] proposed an SCRC model
to integrate spatial configuration and global scene-level
contextual information into the network.

The Attention Mechanism An attention mecha-
nism was first successfully introduced within the image
captioning task by [41]. Based on this, Lu et al. [25]
further proposed a co-attention model for VQA that
jointly reasons about language and the image. Then

in [24], an adaptive attention model with a visual sen-
tinel was applied to decide when to attend. You et
al. [43] run a set of attribute detectors to get a list of

visual attributes and fuse them into the RNN hidden
state. Rather than statically attending to the image
using the given expressions, we instead propose to re-
currently update the attention weight with the step-
wise expression query or the dialog. Also we propose a
parallel attention mechanism for embedding global and
local features in a unified framework.

Vision and Language Our work is part of a group
of recent methods combining vision and language. Re-
cent work in this area includes a variety of approaches
to image captioning [9,14,19,20,22,30,37,39,41,42] and

visual question answering (VQA) [2,7,11,15,25,40,46,

]. Image captioning seeks to generate a natural lan-
guage description for the whole given image, while the
VQA requires the agent to answer previously unseen
visual questions about an image. Most recently, a new
vision-and-language task, Visual Dialog [1—(], demands
that an agent participate intelligently in a dialog about
an image. In our work, we extend the phase/sentence
based referring expression task to dialogs, i.e., extend-
ing the dialog task proposed in [(] to the problem of
identifying a specific object in an image.

3. The PLAN Model

In this section, we describe our unified model that
takes as input an image and a set of natural language
expressions and outputs a bounding box that contains
the object that is referred by the expressions. For-
mally, we denote an input image as I containing a
set of N object proposals O = {O1,04,...,On}. For
the GuessWhat benchark only, each object candidate
is assigned an object category ¢; € {1,...,C} where C
is the number of object categories. The set of refer-
ring expressions is D = {dy,...dp}, where d; is either
a question-answer pair or a single word, depending on
whether the input is dialog or a sentence description,
and L is total number of expressions. The output of
the proposed model is a probability distribution over
the object proposals and the region with the highest
probability is selected as the grounding result.

The core of our proposed model relies on a Paral-
leL AttentioN (PLAN) model, which takes the encoded
image features, language expressions features and the
candidate proposal object features as input. On one
side, we use word level (for phase and sentence input)
or question-answer pair level (for dialog input) features
to guide the image attention, i.e., to attend to the re-
gions that are correlated with the expression. At the
other side, we use the language features to recurrently
weight the object proposasl until all the expressions
have been ‘listened to’. The parallel attended features
are combined to reason about the target object.

In the following sections, we first describe the fea-
ture encoding for the different inputs in Sec. 3.1 and
explain how to recurrently discover the target object
with parallel attention mechanism in Sec. 3.2. The im-
plementation details are described in Sec. 3.3 and the
whole framework is illustrated in Figure 2.

3.1. Feature encoding

The global visual feature To encode the full im-
age while maintaining the spatial information therein,
we first rescale the image to 224x224 and then pass it
through a VGG-16 network [36] pre-trained on Ima-
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Figure 2: The proposed Parallel, AttentioN (PLAN) framework for recurrent object discovery. The left-side is the
image-level framework that is used to encode the entire image information and the referring language descriptions

by recurrently attending on different image regions.

The right side is the proposal-level framework with the

proposal regions and referring expressions as input. It is designed to recurrently attend on proposals based on the
language information and mutually encode both visual and textual representations. The both side representations
are further combined to effectively localize the referring target. An additional LSTM encoder (orange arrow) is
added if the expression unit d; is a Question-Answer pair, otherwise, we directly input the word into a MLP,

followed by an LSTM.

geNet to obtain its Conv5_3 feature, denoted as V =
{vi,..., Vi }, where K = 49.

Object proposal features For each candidate ob-
ject proposal O;, the corresponding feature is com-
posed of two parts, the first is the CNN feature w;
extracted as described for the global visual features,
the Convb_3 feature from the VGG-16 for each ob-
ject proposal. To further increase the expressive power,
similar to [0, 12, 13,27,44,45], we also embed the spa-
tial representations of the proposal regions. Follow-
ing [0, 45], the spatial information of the bounding
box of each object is encoded as the an 8-d vector:
S; = [xmina Ymin, Tmax; Ymaxs Lcenters Ycenter, Whox s hbow]a
where wpo; and hpe, are width and height of the bound-
ing box. The image height and width are normalized
to the range [—1, 1] and the center of the image is set as
the origin. For the experiments on the GuessWhat?! [0]
dataset, the additional object category information for
each candidate is also used, for a fair comparison with
the previous state-off-the-art. We denote the feature
representation as P = {pi,...,py}, where N is the
number of object proposals and each p; = [u;; s;; ¢,
where ¢; is the object category label for the i-th ob-
ject!.

1¢; is only used in GuessWhat?! experiment for a fair com-

parison. We additionally evaluate the model without this object
category information.

Referring expression features Since we argue
that the representation of the expression should be
processed stepwise, in contrast to previous work that
encodes the whole expression into a single vector, we
represent each expression unit d; separately. Each d;,
is first tokenized by the word tokenizer from the nltk
toolkit [3]. Each word is represented as an one-hot
vector in a pre-constructed dictionary ID. Then we con-
vert each one-hot vector into a dense embedding with
a learnable MLP layer. If the expression is a dialog
(multiple rounds of question-answer pairs), we pass the
expression unit d; (a QA pair as a whole) to an LSTM
encoder and take the last hidden state as the represen-
tation (as shown in Figure 2 by the orange arrow). If
the expression is a single sentence, the output of the
MLP for each word will be directly used as the repre-
sentation for the expression unit d; (as shown in the
Figure 2 by the blue arrow). For simplicity, we define
M = {m;y,...,mp} as the encoded representation for
the expression unit d;, for either case.

3.2. Recurrent parallel attention mechanism

Given the encoded visual feature representations
and a sequence of encoded language descriptions, the
next step is to utilize these effectively to identify the
correct target object. Omne naive approach is to con-
catenate all the features as a vector representation and
then dot-product with the features of candidate objects



one-by-one, followed by a softmax to obtain a distri-
bution over the objects. The object with the high-
est probability will be treated as the referring target.
However, in this approach, the language and the visual
features are encoded separately without learning from
each other. Ideally, the regions that are concentrated
on should be updated along with the referring expres-
sion being ‘listened to’. To solve this problem, we pro-
pose to recurrently discover the object by sequentially
‘listening to’ the referring expressions. What’s more, a
parallel attention mechanism is applied to localize the
referring region within the global contextual features
from the whole image (i.e. image-level) and to select
the referring proposal (i.e. proposal-level).

3.2.1 Image-level attention

Image-level attention corresponds to the left portion
of Figure 2, within which we use expression features
to attend over the global image. We use an LSTM
to encode the visual feature and the language feature
simultaneously. We define h; as the hidden state at
time ¢ as:

ht = LSTM(mt,zt,ht_l) (1)

where m; is the feature representation of the t-th ex-
pression unit (that is m; above, where ¢ = t), z; is the
attended image features at time ¢. Note that the in-
dex of the language description corresponds to the time
step in LSTM encoding. We compute z; with an atten-
tion mechanism, with the convolutional image feature
V = {vy,...,vk} and h;_1, which is the hidden state of
the LSTM at time ¢t —1. We feed them through a MLP
layer separately followed by a softmax function to get
the attention distribution over the spatial location on
V:

€t = tanh (vai —+ Whht—l)a

ay; = softmazx(ey;),

(2)

where W,, and W, are the embedding matrices and ay;
is the attention weights over the convolutional feature
v; at time step t. Then the attended image feature can
be obtained by:

K
Zi = Z oV (3)
i=1

We thus use the previously encoded language and im-
age information h;_; as context to attend on the image.
And, in return, we utilize the attended image feature
z; as context together with the language representation
m; to predict the next hidden state of the LSTM. With
this strategy, we can recurrently encode different image
information given different referring language descrip-
tions, and the last hidden state (h;—y) of the LSTM

is taken as the final representation of the image-level
attention, which will be used in the final referring step.

3.2.2 Proposal-level attention

The proposal-level attention corresponds to the right-
hand side of Figure 2. In contrast to the image-level
attention that applies over the densely divided regions,
the proposal-level attention model focuses on only the
proposal regions that contain the candidate objects.
The input is thus a set of proposal regions and a se-
quence of language descriptions, and the model should
learn to recurrently attend to different candidates with
varying language description input. Similar to the
image-level attention, the hidden state at time t can
be represented as:

h; = LSTM (my, z,, h;_,) (4)

where z; is the summation of the attended proposal
features. Given the last hidden state h; ; of the LSTM
and the proposal container P = {p, ..., py }, we derive
the attention score for each proposal as follows:

e;i = tanh (W,p; + W;Lhéfl),

B = softmax(e;i),

()

where 3,, is the attention score for proposal p; at time
t, and z, is computed by:

/ N
Zy = Zﬁtipi (6)
i=1

In contrast to the image-level attention that uses the
final hidden state to represent the information, for the
proposal-level attention, we use the learned proposal
attention weights at the last time step (when the last
expression dy, is ‘listened to’) B, to weight each of the
proposal candidate objects features p;, to obtain the
attended features for each object proposal:

Pi = Bpi (7)

The output of the proposal-level attention is thus the
P ={p1, - ,Pn}, where N is the number of propos-
als.

3.2.3 Referring process

After obtaining the final representations of the two-
level attentions, we then need to fuse them to local-
ize the final target. Intuitively, given the same refer-
ring language descriptions, the model should encode
the similar visual information and the language repre-
sentation. Thus, we just use a simple dot-product fol-
lowed by a softmax function to obtain the prediction



distribution over the proposals:
P, = softmax(hi—1, ® p;) (8)

where P; is the probability that expression D is refer-
ring to object O;, and ® is the dot product. Finally,
we use the cross-entropy loss as the objective.

3.3. Implementation details

We optimize our model using Adam [18] in Pytorch.
The learning rate is initialized to 0.001 and divided by
10 after 15 epochs with batch size of 32. The hidden
state size of the LSTM is set to 512. We also set the
embedding dimension for each MLP layer to 512. To
avoid over-fitting, we add dropout with a ratio of 0.4
after each linear transformation in the MLP layers.

4. Experiments

To demonstrate the benefits of each module, we
analyse the effect of the recurrent encoding baseline,
image-level attention, proposal-level attention and the
full model. Four methods are implemented and com-
pared:

1. “Baseline”: Different from the full model, the
second-level LSTM only takes the embeddings of
the language descriptions M as input without any
attention mechanism. We then concatenate the
last hidden state hy and the extracted image fea-
ture V to obtain the image-level representation.
For the proposal-level representation, we concate-
nate the visual representations for proposals and
their corresponding spatial feature together. We
still use dot-product to calculate the final scores
over the objects.

2. “Image-level attention”: Based on the baseline
model, we further add the recurrent image-level
attention as described in Sec 3.2.1.

3. “Proposal-level attention”: Based on the base-
line model, we further add the recurrent proposal-
level attention as described in Sec 3.2.2, but with-
out using the image-level attention.

4. “Parallel attention”: We implement our full
PLAN model based on Sec 3.

In addition, we also compare the performance of our
methods against those reported in the related litera-
ture.

4.1. Datasets

We evaluate the performance on four referring ex-
pression datasets, including RefCOCO, RefCOCO+,
RefCOCOg [14] and GuessWhat?! [6]. All of the
datasets are collected on MS-COCO images [21].

Overall, RefCOCO has 142,210 expressions for
50,000 objects in 19,994 images. Compared to Ref-
COCO, RefCOCO+ removes absolute location words
in referring expressions and contains 141,565 expres-
sions for 49,856 objects in 19,992 images. More-
over, RefCOCOg has longer expressions and includes
104,560 expressions for 54,822 objects in 26,711 images.
What’s more, we use the “unc” standard splits for Ref-
COCO and RefCOCO+ datasets while using “google”
split for RefCOCOg for evaluation. RefCOCO and Re-
fCOCO+ provide person vs. object splits for evalu-
ation. Images containing multiple people are in the
‘Test A’ while images containing multiple objects are
in the ‘TestB’. The GuessWhat?! dataset [0] is a two-
player guessing game where the questioner asks a se-
ries of questions and gives answers while the guesser
predicts the correct object given the questioner’s infor-
mation. The dataset is composed of 155,280 dialogues
containing 821,889 questions/answer pairs on 66,537
unique images and 134,073 unique objects. In this pa-
per, our method deals with the guesser task proposed
in the GuessWhat dataset. Given an image and a se-
quence of questions and answers, the task is to predict
the correct object from the set of all object candidates.

4.2. Evaluation on RefCOCO, RefCOCO+ and Re-
fCOCOg datasets

The object candidates can be obtained through a
pre-trained object detection model like Faster-RCNN
[34], or an object proposal model such as Edgebox [19],
Objectness [1] and so on. However, for a fair compari-
son with previous methods, we follow [44,45] use all the
annotated entities in the image as the proposal bound-
ing boxes at both training and test.

The results are reported in Table 1. Compared to
previous state-of-the-art methods, our methods have
steadily improvements on all the three datasets. In-
terestingly, our simple baseline model is still compet-
itive. It proves that by calculating the similarity be-
tween the local visual features and the encoded image
and language features is a reasonable framework for
grounding the referring target. It can be seen that
by adding the image-level attention and the proposal-
level attention separately, we further observe the per-
formance increase. This shows that recurrently attend-
ing to the informative image regions/proposals accord-
ing to the language descriptions can effectively filter
the noise from unrelated regions/proposals for better
encoding. The effect of the proposal-level attention is
more obvious.

For our full model, the two-level attention models
are jointly optimized and the results are further im-
proved. It can be attributed to that the reasonable



Method RefCOCO RefCOCO+ RefCOCOg
val TestA TestB val TestA TestB val
MMI [28] - 71.72%  71.09% - 58.42% 51.23% 62.14%
visdif [11] - 67.57%  71.19% - 52.44% 47.51% 59.25%
visdif+ MMI [11] - 73.98%  76.59% - 59.17% 55.62% 64.02%
Neg Bag [25] . 75.60%  78.00% - - - 68.40%
Luo et al. [20] . 74.14%  T1.46% - 59.87%  54.35% | 63.39%
Luo et al. (w2v) [20] ; 74.04%  73.43% - 60.26%  55.03% | 65.36%
listener [15] 77.48%  76.58%  78.94% | 60.50% 61.39% 58.11% 71.12%
speaker+listener [15] 77.84%  77.50%  79.31% | 60.97% 62.85% 58.58% 72.25%
speaker+listener+reinforcer [15] 78.14%  76.91%  80.10% | 61.34%  63.34% 58.42% 71.72%
speaker + listener + reinforcer (ensemble) [15] | 78.88%  78.01%  80.65% | 61.90%  64.02% 59.19% 72.43%
Baseline 78.16%  77.45%  79.54% | 62.41% 63.48% 59.30% 66.05%
Image-level attention 79.20%  78.29% 80.11 % | 63.27 %  64.16% 60.13% 67.89%
Proposal-level attention 81.09%  80.13%  80.84% | 63.57%  65.53% 60.52% 68.54%
ParalleL. AttentioN (PLAN) 81.67% 80.81% 81.32% | 64.18% 66.31 % 61.46 % 69.47%

Table 1: Accuracies on RefCOCO, RefCOCO+ and RefCOCOg datasets. Note that for RefCOCOg, we use the

standard google split for testing while [15] divide the dataset by randomly partitioning objects into training and

validation splits, which is not comparable.

Methods val test

Human 9.2% 9.2%
Random 82.9%  82.9%
LSTM [(] 37.9%  38.1%
HRED [(] 38.2%  39.0%
LSTM+VGG [0] 38.5%  39.5%
HRED+VGG [0] 38.4%  39.6%
Baseline 37.9%  39.0%
Image-level attention 37.4%  382%
Proposal-level attention | 36.9%  37.1%
Parallel attention 36.2% 36.6%

Table 3: Classification error rate for the guesser on
validation and test set without using category features.

Methods val test

LSTM [0] 50.9%  51.4%
Baseline 48.5%  46.4%
Parallel attention | 44.3% 40.3%

4.3. Evaluation on the GuessWhat?! dataset

The results on the GuessWhat?!

dataset are re-

Table 2: Classification errors for the guesser on valida-
tion and test set.

image-level attended region is consistent with the at-
tended proposals, which further promotes the ground-
ing of the target object. Note that the proposed
method only focus on improving the model that is sim-
ilar to the listener in the latest state-of-the-art [15].
In [45], the speaker is a generative model that aims to
produce referring expressions. The listener learns to
embed the visual information and referring expression
into a joint embedding space for comprehension and
the reinforcer introduces a reward function to guide
sampling of more discriminative expressions. By com-
paring our full model with the listener model of [45],
for instance, we outperform it by nearly 5% on TestA
setting of RefCOCO+-. Our final single model is even
better than a ensemble model in [45].

On the RefCOCOg, we outperforms the MMI [28]
and other state-of-the-art on the same split. [45] di-
vide the dataset by randomly partitioning objects into
training and validation splits while we use the standard
‘google’ split for evaluation, which is not comparable.

ported in Table 2 and Table 3. We only compare our
methods with the guesser model proposed in [6] since
we share the same task. In Table 2, we concatenate the
object category feature with the final representation of
the proposal-way framework for a fair comparison. As
for the object category, we convert its one-hot class
vector into a dense 512-dimensional category embed-
ding using a learned look-up table. We can see steady
improvement by comparing our approach with baseline
methods in [6]. From the results, we can observe that
the similar trend as shown in Sec 4.2. First, the image-
level and proposal-level parallel frameworks perform as
a robust baseline in grounding referential expressions.
Additionally, the attention mechanism on both sides
contribute a lot to the final performance increase.

During experiments, we find that the category fea-
ture has significant impact to the results. To eliminate
its effect, we remove the category feature and sepa-
rately report the results in Table 3. From the table, we
can see that the performance gap becomes much larger
compared to Table 2, which further proves the effective-
ness of the proposed methods. Especially, the LSTM
model (the best model in [6]) considers the dialogue
as one flat sequence to encode it into an embedding
vector. By comparing our recurrent encoding baseline
model with it, we observe obvious performance increase
(e.g. 5.0% relative increase on the test set).



4.4. Recurrent parallel attention visualization

We also qualitatively illustrate the attention evo-
lution process along with the input expression query
and dialog. The results are shown in Figure 3. From
the results, we can observe that the image-attention
and proposal-way attention both change reasonably ac-
cording to the input expression or dialog for reasoning
correct target object. For example, in Figure 3, when
the questioner speaks a dialog ”Is it a bowl? No”, the
guesser is confusing with which object is the questioner
referring because of the limited information. However,
when the guesser model listens to more clues, we can
see the image-level attention scores on the target turns
to be quite high finally while the proposal-level atten-
tion also select the first proposal as the target object.
It explicitly shows that the guesser model progressively
feel more confident to localize the first proposal as the
referring target. And we also show a failure case which
corresponds to the last row in Figure 3. We can see
that the attention score on the target proposal becomes
smaller during steps going. Even though the image-
way attention and the final result is right, the trend of
proposal-way attention fails.

5. Conclusion

In this paper, we have proposed to solve the re-
ferring expression comprehension task using a novel
parallel attention network. We have proposed to re-
currently discover the object with variable-length lan-
guage descriptions, from phrases to dialogs. To achieve
this goal, we employ a two-way attention mechanism
to localize the referring object on the global contex-
tual features from the whole image and to select the
referring proposal simultaneously. Since we use a re-
current style to discover the object, we make a step
towards the model interpretability. With extensive ex-
periments, we validate the advantage of our proposed
methods and produce the state-of-the-art performance
on several benchmarked datasets.
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Figure 3: Qualitative results. We explicitly show the recurrent parallel attention change during inference to make
the referring process explainable and visible. The referring queries are shown above the image-level attention maps.
The histograms indicate the proposal-level attention on the top-5 proposals. The ground truth answer is marked.
Notice the last row is a fail case.
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