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Abstract 
What is the relationship between the mind and the brain? Cognitive science 
is a unique discipline of inquiry that explores this question. Its uniqueness 
results from a commitment to investigating and understanding cognitive 
systems as information processing systems. Traditionally, the commitment to 
information processing has entailed two further positions regarding the 
nature of “information”, and how exactly it is “processed” in a medium like 
the brain: representationalism, and computationalism. Taken jointly, these 
commitments have equipped cognitive science to understand the biological 
mechanisms by which organisms identify and adapt to variations in their 
environment. That is, cognitive science is in the business of naturalistically 
explaining intelligence as the leveraging of internal representations in 
computational operations towards some goal. 

Much debate has surrounded the exact manner in which notions like 
representation and computation are to be cashed out. This debate has mostly 
centred around two competing accounts: classicism and connectionism. The 
present thesis is motivated by a desire to fully separate these two competing 
frameworks, because there is much confusion about whether this is possible. 
I take an affirmative position on that issue: connectionism is indeed an 
independent and unique computational framework.  

Both classicism and connectionism are representational and computational 
accounts. What separates them is the kind of representations they appeal to, 
and thus the species of computation they perform over those representations. 
Connectionism appeals to structural representations, defined over the 
intrinsic physical properties of the representing medium. Connectionism is 
thus an analog computational framework: structural representations sustain 
physical analogies with their task domain. 

The now ubiquitous ‘classical’ framework, on the other hand, operates over 
symbolic representations, and is thus a digital computational framework. 
Much ink has been spilled in assessing the theoretical differences and 
advantages/disadvantages of the two rival accounts. The present work is, 
instead, a more hands-on comparative analysis — using an illustrative case 
study to demonstrate the practical differences in the application of these 
accounts.  

A contemporary and influential cognitive scientist of the classical stripe, C. 
R. Gallistel, has criticised connectionism by (putatively) showing how it 
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can’t explain the rudimentary cognitive phenomenon of Desert Ant path 
integration and dead reckoning behaviour. I take up this challenge, by 1) 
showing how Gallistel has misrepresented connectionism as a symbolic 
computational framework, and then 2) demonstrating exactly how a “true” 
connectionist account can interpret and model the neurobiology involved in 
path integration.  

Using the case study of Desert Ant behaviour, the true appeal and 
independence of the connectionist framework can be seen, separating it from 
its classical, symbolic rival. Abandoning symbolic computation, in favour of 
a structural and analog approach, secondarily shines new light on many 
theoretical issues that are nested within the modelling and understanding of 
animal navigation tasks. These have further implications for how we think of 
animal behaviour, computation, and intelligence more generally. 

Structural representations and analog computation can handle the 
explanatory load of the rudimentary example of animal intelligence in the 
Desert Ant. They also offer up robust and promising lines of inquiry for a 
naturalistic cognitive science to pursue.



!6

Declaration 
I certify that this work contains no material which has been accepted for the 
award of any other degree or diploma in my name, in any university or other 
tertiary institution and, to the best of my knowledge and belief, contains no 
material previously published or written by another person, except where due 
reference has been made in the text. In addition, I certify that no part of this 
work will, in the future, be used in a submission in my name, for any other 
degree or diploma in any university or other tertiary institution without the 
prior approval of the University of Adelaide and where applicable, any 
partner institution responsible for the joint-award of this degree. 

I give permission for the digital version of my thesis to be made available on 
the web, via the University’s digital research repository, the Library Search 
and also through web search engines, unless permission has been granted by 
the University to restrict access for a period of time. 

I acknowledge the support I have received for my research through the 
provision of an Australian Government Research Training Program 
Scholarship. 

Robert P. Farquharson  

Signature:  

Date: 



!7

Acknowledgements 
Thank you to everyone involved with the University of Adelaide Philosophy 
Department, from faculty to fellow students and administrative staff. The 
pedigree and diverse range of expertise of faculty members provides a 
philosophical hotbed of ideas, and an outstanding learning environment, that 
I’m grateful to have been able to experience.  

Of course, in particular, thank you to Jon Opie and Gerard O’Brien. Their 
superb guidance of my keen, but perhaps unsophisticated enthusiasm for 
philosophy was instrumental in devising and completing this research. Their 
professional work was so impactful on my own philosophical beliefs as an 
undergraduate, and they just happened to be teaching in my city of birth. I’m 
grateful for such geographical luck, and I thank Jon and Gerard for their 
patience and invaluable contributions. You guys are the best! 

The collegial atmosphere among postgraduate students at Adelaide is 
second-to-none. It was a major contributor to my growth as a philosopher (if 
I’ve made any at all!) and also to my enjoyment of philosophy as a 
discipline. In particular, thanks to Laura Ruggles, Matt Nestor, Chris 
Letheby, Victoria Troitiño, Michael Lazarou, Patrick Keeley, Andy 
McKilliam, Dook Shepherd, and Michael Lopresto, for all of the 
conversations, all of the ideas, and all of the late nights.  

Thank you to Charlie Golin, Max Malacari, Michael Dello-Iacovo, and 
especially Luke Keating Hughes, for all the mathematical help and 
discussions. You somehow helped an innumerate philosopher tackle some 
heavy topics. Thanks Tom, Declan, and Charlie, for keeping me sane, and for 
putting up with me even in my most upturned states. 

Ultimately, this wouldn’t have been possible without the unconditional love 
and support—material and emotional—of my parents and sister. Thank you 
for never asking, “what do you do with philosophy?”, and instead always 
being interested in my ideas. Thank you for encouraging and enabling me to 
pursue my interests for their own sake. It wasn’t always easy, but we got 
there! Mum, Dad, and Amy, thank you so much.



!8

Chapter 1 

Introduction 
A Philosophical Survey of Minds in a Material 
World 

“[If] it isn’t literally true that my wanting is causally 
responsible for my reaching, and my itching is 
causally responsible for my scratching, and my 
believing is causally responsible for my saying… if 
none of that is literally true, then practically 
everything I believe about anything is false and it’s 
the end of the world.”  
- Jerry Fodor 
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1.1 Between Democritus & Descartes 

All good philosophy begins with two opposing intuitions. Both seem equally convincing and true, and 
yet appear to be mutually exclusive. Consider the following: 

1) The universe is exhaustively composed of physical matter, e.g. atoms and their purposeless 
causal interactions.  

2) Mental states have an ostensibly non-physical character, e.g. they preside over purpose-driven 
causal interactions — in accordance with their individual contents.  

Call the first intuition the Naturalist Constraint. The Naturalist Constraint is an expression of current 
scientific knowledge, its success, and its undeniable progress. It encompasses both an ontological 
picture of the universe, and an epistemic commitment regarding how we can fill in that picture. We’re 
committed to poking and prodding the universe in a certain way whenever we build upon our old 
theories, or when we launch new investigative pathways. A definitive encyclopaedia of the objective 
universe, according to naturalism, will include only those things made of physical parts. This includes 
things which may result from a specific organisation or interaction of such physical parts, but at 
bottom can be said to supervene on their physical parts. Anything not discoverable by systematic 
physical interaction, and thereby not describable using the language of the scientific point of view, will 
be eliminated. Colloquially, naturalism is often defined in contrast with its opposite: no spooky stuff — 
nothing supernatural. 

Call the second intuition the Cognitivist Constraint. The Cognitivist Constraint is an expression of the 
intimate and undeniable knowledge we all have of our own subjective realities. We experience the 
world as being a certain way, and interact with it in ways that, at least to us, are reasonable given the 
way we perceive it as being. Mental states act as the nexus between us and the world precisely because 
they are “intentional” in this way: they are about certain things. Any discrete mental state, and its 
causal powers, can therefore be individuated by its contents — the particular way that some thing is 
rendered as being. Everyday life is littered with evidence of this reality. Our beliefs, desires, and 
perceptions all causally mediate our behaviours in different ways. They’re an air gap between input 
from the world and the output we give back, but notice that they perform this function specifically with 
respect to what they are individually about.  

The tension between 1) and 2) has been famously difficult to resolve. Naturalism explicitly endorses a 
thorough-going materialism, but there are no molecules of meaning, no atomic units of aboutness to 
straightforwardly import from the material sciences to explain our intuitions of intentional realism — 
that the contents of mental states (beliefs, desires, attitudes, etc.) are real and  drive reasonable 
behaviour. Two extreme responses to this problem are to jettison one or the other constraint.  

Some generic brand of eliminativism cautiously falls on the side of the naturalist. It suggests that 
whatever “mental states” may end up being, they’re not what we think they are. At best, current talk of 
purposive action driven by contentful mental states is a useful heuristic, but these categories should not 
enjoy a real place in our scientific image of the world. All of the causal and explanatory work will 
ultimately be described by sole reference to the material substrate of our brains, making mentalistic 
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ascriptions irrelevant. Democritus is perhaps the earliest exponent of an ardent and eliminative 
naturalism, captured by his pithy claim that there are only “atoms and the void”. On the other hand, 
some generic brand of dualism rejects the Naturalist Constraint, invoking a non-physical, mental 
substance to explain the reality of mental states. Science may not have the appropriate language for 
explaining mentality, but that’s because we need an entirely new language. Descartes is the most 
influential progenitor of this kind of radical “substance dualism”, where the mind, and its mentalistic 
properties, is in every way separate from the body.  

Both these extremes have been well critiqued over the years, one for leaving something critical out, the 
other for adding too much. Eliminating mentality, or at least deflating it to some illusory status, is 
unpalatably narrow because it runs counter to our subjective experience. Throwing away notions like 
‘meaning’ or ‘aboutness’ wholesale would seem to leave us powerless to carve out a privileged place in 
the world for intelligent behaviours — those purposive actions performed by creatures such as 
ourselves, non-human animals, and perhaps to a lesser extent even plants. We undoubtably want to 
separate intelligent behaviour from the merely brute-causal world of inanimate objects, but we want a 
theory that explains how that is possible, without just hand-waving about increased scale or 
complexity; it must be fundamentally special in some way.  

The dualist position is conversely unpalatable because it is too broad. We have no idea how a non-
physical, mental substance could causally interact with the physical substance that makes up the rest of 
the universe. If mental states mediate our behaviour, and they do this via our brains, then it must still 
interact with the physical substrate of our bodies. Without some theory for explaining how this works, 
then the mental substance seems to be a difference that makes no difference at all. A bias for 
parsimony would dictate that we should simply leave it out of our world view.  

As a matter of methodology, we should be aiming somewhere in the middle of these polar extremes. 
To rehabilitate the notions of meaning or intentionality, perhaps for now we can start by rescuing 
intelligence from the naturalist’s razor. All mental states must be intentional; definitionally, they are 
about something. However, not all intentional states need be mental, i.e. conscious. Exonerating some 
core features of mental states from their guilt-by-association with consciousness can allow us to keep 
studies of intelligence within the naturalistic domain, without flatly denying the reality of something 
that seems plain for all to see; that we behave in certain ways because of the manner in which the 
world is rendered to us. We can demote the ‘Hard Problem’ (see Chalmers, 1995) — why some 
intentional states are also conscious, mental states— to a lower position on our scientific to-do list, and 
concentrate on how it is that all mental states get to be intentional states. ‘Cognitive’ can then be 
synonymous with ‘intelligent’, without necessarily bringing the additional metaphysical baggage of 
‘conscious’ along with it. The history of scientific progress, after all, has some promising precedents in 
carving out such middle paths.  

The élan vital that was once thought to impel living organisms forward was eventually replaced by a 
purely naturalistic account of self-organisation, heredity, and complexity. As we understand more and 
more about the material substrates that make up the mechanisms of life, e.g. organic chemistry and 
biology, an extra supernatural category becomes irrelevant. There is indeed something special about 
living things that the old theory recognised, e.g. self-propagation, reproduction, familial resemblance, 
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and so on. The modern theory that superseded it, however, brought those special features into the fold 
of natural science without deflating their specialness. Indeed, I’m inclined to say they were made more 
special by a deeper understanding of their underlying mechanisms. Similar demystification projects 
have occurred across the board in the natural sciences. The invisible forces that govern the universe at 
its largest and smallest scales have all been elucidated by modern scientific frameworks like classical 
mechanics, quantum mechanics, cosmology, and so on.  

In this tradition, somewhere between Democritus’ “atoms and the void”, and Descartes’ non-physical 
substance, a modern cognitive science should endeavour to naturalise the study of intelligent action, 
and explain how meaning-rich mental states can guide it. However, it must do so without throwing the 
cognitive baby out with the supernatural bathwater.  

1.2  Reasons & Representations 

The task for a modern cognitive science is to fill the explanatory gap between Democritus and 
Descartes: to naturalise notions like meaning, aboutness, and reasons, without doing undue violence to 
their seemingly special character. To narrow the problem, we must first wade through some 
philosophical marshes. Just like the manner in which the naturalisation of life occurred, we should set 
up a theoretical landscape within which we can sharpen up what we think is so special and different 
about mental states and their causal influence on behaviour. With a clearer image of what to search for, 
we can then begin probing for potential mechanisms. Consider a typical morning in my head: 

What time/day is it? What time does my tram leave? What’s my contingency plan if I miss my 
tram? 

The relative success with which I navigate my morning’s obligations will firstly depend on what I 
believe to be the answers to those thoughts. Secondly, it will depend on how well those beliefs match 
up with the external state of affairs around me. This is where the first flag needs to be planted, in 
recognising and emphasising that the primary manner in which the causal influence of mental states 
seems to be so distinctly special is that they aid in solving problems. 

Depending on the day, I need to be at particular places at particular times. Accordingly, I have to link 
up with my transport at an appropriate time, given that I desire to meet those particular demands. This 
problem involves the use of mental states with distinct contents, that depict the world as being in 
particular ways. For example: the belief that it is Friday is different to the belief that it is Saturday; that 
a tram that leaves at 8:15am has different consequences to another that leaves at 8:45am; that arriving 
late has different consequences to arriving on time. All of these beliefs are distinct, discrete, and 
different to one another. The interactions among these distinct beliefs are what cause me to navigate 
the world in a distinct way, to bring about a particular state of affairs. I catch the 8:15am tram, and I 
arrive on time (mostly).  

Importantly, if something goes wrong, I am equally able to adjust my behaviour in the face of the 
unexpected. If I wake up late, I may drive to uni instead. If I’ve been absent minded and turned up to 
class only to realise it’s Saturday, I won’t simply stand there and teach to an empty room. I’m able to 
take in new information and act accordingly. If I’m late, I update my beliefs about time and transport, 
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but only when I am late. When I’m in error about what day it is, I slink home lamenting that I could 
have slept in, but only when I’m in error. The way my mental states can change and operate together, 
internally affecting one another in my head, are ultimately what render my behaviour flexible and 
appropriate (or not) given the state of affairs in the world around me.  

It has been standard in the philosophical literature to think of this kind of behaviour that I exhibit as 
special, and as intelligent, because it is reason-driven. I commit to particular actions for the reason that 
they will, by my lights, allow me to reach my ends. But reasons don’t exist in the world, because 
reasons are just descriptions that map some states with other covariables. However, to act because of, 
or for a reason, just requires the capacity to possess some internal goal-state; a belief about the way the 
world is or should be. Reason-driven action involves engaging in a behaviour because you have a 
secondary belief that the behaviour will bring about that goal-state; you are privy to the mapping 
between the behaviour and its outcomes because the mapping is part of your subjective perspective of 
the world. If I take it to be the case that A brings about B, and I desire B, then I’ll perform A.  

This is a standard hallmark of intelligence: the selective response to certain aspects of the environment 
in the service of some some goal-state(s), i.e. problem solving, in its broadest construal. Approaching 
the study of intelligence through the lens of internal reason-driven action also pays enormous 
explanatory dividends. To paraphrase Fodor (1987: p. 6), to find out where I will be on any given 
morning simply ask me. One thereby discovers what my subjective world-view is like. One could 
probably give a highly detailed physical explanation of where my body will be at some future time by 
appealing to physical mechanics and so on, but not without considerable effort (if at all). In this way, 
“our best science of middle-sized objects” (ibid.) loses out, in terms of explanatory frugality and 
power, to the simple appeal to internal states and their contents. I can solve problems, and order my 
behaviour, in ways that more “simple” creatures or inanimate objects can’t, because of the particular 
qualities of my subjective world-view. 

It’s not enough that my behaviour merely accord with some reason-based interpretation from the 
“outside” though. We want a theory that can illuminate the subjective reasons that are doing causal 
work on the inside. The upshot, it seems to me, is that in order to accurately individuate these 
subjective reasons we can’t simply look at behaviour in the world. We have to look inside the head.  

On Saturdays, if you see that I’m awake early, you could still interpret my behaviour as being 
reasonable, given that there are a number of objective mappings available to choose from in order to fit 
my actions to their inevitable outcomes. For example, one reasonable mapping is that I simply want to 
go to work on a Saturday. However, this is manifestly not my reason of choice. Such an ‘interpretivist’ 
programme goes about things precisely in the reverse order.  

Philosophers of varied stripes have committed themselves to an interpretivist approach over the years 
because it is in accordance with the Naturalist Constraint (e.g. Dennett, 1987), but it does seem to 
violate the Cognitivist Constraint. The story, very briefly, is something like: we can’t look inside the 
head for meaning because all we find are neurons and brute causal conditions, so look to what these 
neurons regularly and reliably cause instead (e.g. Davidson, 1975; Dretske, 1988). To act for a reason 
is just to act in accord with their behavioural outcomes.  
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On the face of it, this begs the very question we started with. We all know the commonsense causal 
relationships between mental states and their outcomes from our first-person experience. What we 
actually want is a theory that explains this, a theory that can predict what will happen in virtue of what 
a subjective reason truly is. Mere conformity to a reason’s outcomes doesn’t allow us to accurately 
retrofit that reason’s contents into our heads. For example, my erroneous behaviour of waking up early 
on Saturday is in accordance with (at least) two different reasons’ interpretations, because their 
functions are identical — they both result in going to work on a Saturday: 1) ‘I want to go to work on 
Friday and I believe it is Friday’, and 2) ‘I want to go to work on Saturday and I believe it is Saturday’. 

But one can’t perform act-Y for reason-X if X is in fact not a reason for Y. If I know that it is Saturday, 
then my going to work cannot be because I desire to go to work on Friday. Something in our theory 
needs to adjudicate this problem, to say something about when and why I’m in error. By focusing on 
function, i.e. the fact that I am going to work on a Saturday, we instead resort to retrofitting the 
contents to fit the function it rationalises. Such a move deflates the specialness of reason-driven 
behaviour by time-travelling reasons backwards, after the fact. Reasons are supposedly special because 
they cause actions in virtue of how they make rational those actions. If we instead rationalise reasons 
in virtue of the actions they cause then we’ve given up the cognitivist constraint: all the causal work 
gets done prior, and without necessary appeal, to the reason-based interpretation of those causal states. 
Thus, any such appeal to reasons is rendered superfluous to explanation.  

Now we’ve emphasised what we don’t want, we can keep looking for an account that captures what 
we do want. The now pervasive account has been to assert that mental states and their brain-based 
vehicles must be information bearing in some sense. They carry information about the world in a form 
that I can store, process, retrieve, compare, update, and act upon. According to this notion, possessing 
such states is precisely what makes my behaviour seem purpose-driven and intelligent in a way that the 
behaviour of a rock or a planet is not. Rocks don’t tumble down hills because they desire to be at rest, 
and planets don’t orbit stars because they intend to follow the laws of gravity. They just do it. On the 
other hand, I do intend to get to work on time, and I follow the appropriate behavioural chain on 
purpose to reach that end. I do this because the intentions and beliefs about causal consequences of 
behaviour are information states circulating in my cognitive economy. Intelligent action is therefore 
special when considered as the lone class of causal process that results from information processing.  

Appealing to information processing separates the intelligent from the brute physical world of rocks 
and planets in a neat way, by giving us some conceptual grip on the internal economies of behaving 
systems. Orbiting a star is quite complex, but we don’t attribute merit to the planet for intentionally 
fulfilling that function; its orbit is subject to gravitational laws, not sensitive to them. Conversely, 
showing up to university early on a Saturday morning is quite stupid, but how and why I got there is 
still presumably (hopefully) worthy of attributions of intelligence. The causal mediation of the 
information bearing states in my head are what rocks and planets are missing. If this is the case, then 
what we mean by “intelligence” picks out something in the world regarding causal etiology more so 
than outcomes, and the notion of information processing gives us some explanatory purchase on that 
etiology.  
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Causal etiology and outcomes go hand-in-hand most of the time; one expects smart processes to 
produce smart outcomes. However, when it really comes down to adjudicating between the intelligent 
and the non-intelligent, it’s the ability to do information processing that really counts. From the point 
of view of evolutionary science, successful outcomes may be what matter, but from the point of view 
of cognitive science, what goes on between your ears is what’s special. There are “reasons” for the way 
the rock tumbles down the hill, and “reasons” for why the planet orbits the star, but they definitely 
aren’t the rock’s or the planet’s reasons. In contrast, I definitely do act for reasons because I am not 
merely subject to the causal winds blowing about in the world. I am actually sensitive to them — 
because I have the appropriate information states circulating in my head. To paraphrase Fodor (2008), 
my conformity to certain reasons is partly explained by the fact that the intention to conform to them is 
an informational state in my head. I act for reason-X only when reason-X is the information state being 
currently processed/implemented (ibid. p. 38).  

Information processing can thus give us a foothold in understanding the specialness of cognition, 
intelligence, and mental states, and do so in a naturalistic way. It putatively accounts for the causal 
etiology that is unique to intelligent systems by pinning down the reasonable way inputs can be 
mapped to a system’s behavioural outputs. Prima facie, this also gets the individuation of reasons and 
how they're mapped to outcomes the right way ‘round. It does this by appealing to the information 
contained within the system, and how that information is used. Changes to either the input, or the 
internal state that processes the input, will result in different outputs. The difference in outputs is 
reasonable though in virtue of the changes in informational contents therein. 

This still requires more unpacking to satisfy the naturalists, but we’re narrowing down the search: 
intelligent action is reason-driven, and acting for reasons can be plausibly naturalised using the 
concept of information processing. Specific inputs and outputs can be purely physical elements of the 
world, and the internal organisation of things like brains (or their non-neural equivalents) that mediate 
the transition from input to output can also be purely physical. But we need to flesh out those transition 
stages, whereby ‘information’ can be ascribed to the mediating states of interest. So, what is it that 
makes some arrangements of physical states, and not others, carry information content about other 
physical states? How can they be implemented in things like brains in a way that can be causally 
relevant and efficacious? The notion of ‘representation’ is popularly wheeled out here to do the heavy 
lifting.  

Representations are familiar objects to us. Portraits, sculptures, scale models, road signs, and words 
and sentences are all examples of public representations available to us. They “represent” because they 
bring us into relation with something else, which is to say that they stand-in, or act as proxies, for other 
things. According to one influential story, with origins dating back to Charles Peirce (see Hardwick, 
1977), this involves participating in a three-part relationship. The representing vehicle (the road sign, 
word, model, etc.) is some physical object, and the represented object is just whatever the representing 
vehicle is standing-in for. For example, the red and octagonal ‘stop’ sign is a representing vehicle 
whose represented object is the command to stop your car: the vehicle “carries” the object to you. The 
third spoke in the representing wheel is the effect of the representing vehicle on some user of that 
vehicle, with regard to the represented object. For example, I indeed stop my car when I’m confronted 
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with the stop sign. This representational effect has been variably termed the interpretation or 
interpretant . On this triadic account (see Von Eckardt, 1993; O’Brien, 2015), ‘representation’ should 1

be considered as a verb, rather than a noun; it is process that is only completed when all three spokes 
come into contact with one another. The “back end” of representation, so to speak, is the effect of 
interpretation, where the user of a representing vehicle comes into some contact with a represented 
object by way of that representing vehicle. The “front end” of representation explains why that is 
possible, and why that is useful, by implicating the vehicle’s physical properties in certain relations 
with its represented object.  

There are some important consequences of this approach, but first a possible regress must be 
confronted. In the case of public representations, the interpretation results in the production in the user 
of a representing vehicle about the represented object. Presumably, this is a mental representation in 
our heads that is then causally operative in how we selectively react to the original representing 
vehicle. But what is the interpretant of that mental representation? This requires some refinement if it 
is to pass the naturalist constraint unscathed, to avoid appealing to an infinite regress of mental 
representations. We can’t simply invoke the antecedently representational if we are to explain in only 
material terms how it is that something becomes representational in the first place. 

The focus must be placed on the representational effect involved with interpretation. Public 
representations are useful because they coordinate and regulate our behaviours with respect to their 
represented objects. The same can be said of internal mental representations, if we unpack the third 
spoke in the triad as the modification of behavioural dispositions towards the world (O’Brien, 2015; 
O’Brien & Opie, 2004). The infinite regress of representations is halted by bottoming out in the 
ultimate use of a mental representation towards some behavioural end. The capacity to use the 
properties by which a representing vehicle is in relation to its represented object, in a selective 
behaviour towards that object, requires no further appeals to representation. The naturalist constraint is 
also satisfied, because all three spokes in the triad can be cashed out in material terms. The represented 
objects are, presumably, some physical aspects of the world, presented to us in the physical form of 
sensory data, e.g. light hitting the retina. The representing vehicles are based in the neural substrate 
that make up our brains, and behavioural dispositions that result from our nervous systems are par for 
the course in the biological and neurosciences. To boot, this brings some precision to our concept of 
information processing, the special kind of causal etiology implicated in driving intelligent behaviours. 
Representation puts the ‘inform’ in ‘information’, by giving an account of what kind of role a physical 
state must play in order to carry information about something else — it endows the user of that state 
with some relevant and selective alterations in behavioural dispositions.  

There is a lot still to say about the way that different representing vehicles relate to their represented 
objects, e.g. the differences in how road maps and road signs relate to their represented objects. That 
discussion has flow on effects for understanding how different kinds of representing vehicle can be 
used to regulate behavioural dispositions (more on this in Chapter 2). For now, we at least have a broad 
outline of a theoretical hierarchy that captures our desired intuitions, wherein a modern cognitive 

 I use these variations merely as a result of pedagogical bias, and I don’t see that anything much turns on this. See Von 1

Eckardt (1993) for one authoritative treatment that has slightly different nomenclature.
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science can fill in the mechanistic blanks. To take stock, representation is a notion familiar to us, and 
on a triadic account is easy enough to transpose onto the domain of brain-based mental representations. 
Moreover, this account of representation lends rigour to the broad notion of information processing, 
where some meaningful criteria are laid out for what genuinely counts as an information bearing 
system. Information processing, in turn, gives us a theoretical grasp on the special kind of causal 
etiology that we think is fundamental to separating intelligent behaviour from other kinds of “crude-
causal”, or “brute-physical” processes. All of this, prima facie, keeps a privileged position in our 
world-view for intelligent behaviour and the explanatory frugality that comes along with it, without 
harming its specialness, and without harming our unity of naturalistic knowledge. All to the good, so 
far.  

There remains one last piece to fit in to this theoretical landscape though, regarding the ordered 
transition of these representational states. The same physical properties that make them 1) useful 
proxies for objects in the world, must 2) ultimately shape their causal interactions, to truly fulfil the 
conceptual role required of intelligent processes. That is, we’ve sketched how representation makes 
sense of the notion of information bearing. But what about information processing? 

1.3 Computation & the Mechanisms of Mind 

The Computational Theory of Mind (CTM) was the coup de grâce that shepherded in our modern 
research enterprise called ‘cognitive science’. The rise of CTM was the culmination of several lines of 
thought from distinct research areas, such as linguistics, neuroscience, computer science, and of 
course, philosophy. At its core is a methodological commitment to understanding the brain as a kind of 
computing device, and thus to studying the mind as in some computational relation to the 
representational states in the brain. In this way, CTM understands ‘thought’, or cognitive processing, 
as the sensibly ordered sequencing of such computational relations to representational states. For 
example, in one pathway of brain-computing medium, the rendering of a particular set of spatial 
representations in a particular order (among others) will be part of computing the function ‘current 
visual scene’. The computational sequencing directs the representational states towards some problem 
domain because of what those representational states are about, i.e. how their content is related to that 
particular problem. It is in this way that computation can aid in the intelligent navigation of the 
environment: computation is a causal process shaped, in some respect, by the contents of the 
representational vehicles implicated therein (O’Brien & Opie, 2005). 

The added appeal to computation over representational states is what separates cognitive science from 
the merely biological, physical, or neurological sciences. That is to say, the computational level offered 
an appropriate theoretical middle ground — in between the brute physical, and the vague mental — to 
postulate the material substrates of cognition and intelligence. The idea of computation finally gave 
some rich and physically tangible ground for cognitive scientists to begin probing for the mechanisms 
of mind and cognition, the culmination of centuries of philosophical refinement of the relevant 
theoretical landscape.  

So far, this abstract idea of ordering representational states has been described in a way that is neutral 
on what kind of representational states are to be used. Computation is just a higher-order relation, a 
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causal sequence defined over — and driven by — the content of some type of representational states 
towards some task. However, that is not the way things have traditionally proceeded when defining 
computation. Fodor (1992) remarks that the ‘big idea’ that set CTM off and running was the 
remarkable work of mathematician, Alan Turing. Turing developed a framework for the automation of 
symbol processing. As far as Fodor is concerned, this big idea of a symbol processor is the only good 
idea about the naturalisation of mind anybody has ever had (ibid. p. 6).  

All one needs is a machine capable of discerning some discrete material properties of a physical 
symbol, such as weight, shape, or perhaps electrical conductance. The intrinsic properties of the 
symbol don’t much matter, they can be any arbitrarily designated material, so long as the machine is 
capable of detecting at least two discrete states in that material. In recognising a true symbol, this 
discerning machine then proceeds to change its state according to a set of well-defined rules, 
embedded in its physical architecture, that dictate which specific changes to make in response to which 
specific symbols. By organising a particularly clever set of rules into the architecture of this device, 
and then feeding it a well formed string of symbols that it can discern, one can endow this device with 
a semantically evaluable capability: it can perform a computation over those symbols such that the 
resulting output is interpretable as respecting whatever that symbol string is intended to be about. The 
symbols are representational vehicles that bring their user, the device, into contact with some 
represented object(s), their contents, via their computational sequencing.  

People are fond of remarking at this point that “the rest” is, apparently, “history”. Digital computation 
was born, and the devices that recognise symbols—using high or low electrical conductances—got 
smaller, faster, more complex in their sets of rules and organisation, and became ubiquitous. It’s no 
wonder that ‘digital computation’ became synonymous with ‘computation’ simpliciter. However, this 
clearly shoehorns one specific kind of physical implementation of a computing device into the very 
notion of computation itself. We shouldn’t conflate the engineering sense with the philosophical sense: 
what it takes to actually build a type of computer does not tell you why what you have built is, in fact, 
a computer.  

The consequences for cognitive science have been to similarly shoehorn digital computation as 
definitional into its theorising about computational explanations of mental processes: the mind subsists 
on cognitive processes realised as neurally-based symbol manipulations. The end result is a framework 
that understands the mind as exploiting a kind of “language of thought”, an approach developed to 
apogee in the eponymous book, Fodor’s (1975) ‘The Language of Thought’. According to the 
Language of Thought (LOT) hypothesis, cognition requires language-like symbolic vehicles of 
representation that are discernible and transformed by digital computational brains. They are 
transformed solely based on their material, or syntactical, properties, and the neural rules that 
constitute the syntax for transforming these mental symbols have been developed over evolutionary 
time. In this way, we have a naturalised notion for how mental states can be about something else, and 
cause behaviours because of those specific contents: their semantically evaluable content (which 
satisfies the cognitivist constraint) is respected by their syntactic causal liaisons (which satisfies the 
naturalist constraint).  
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Declaring that “the rest is history” inclines one to ignore the rest of history, however. Pre-dating 
Turing’s automated symbol processor is a slew of remarkable devices used by our forebears to solve 
problems. These devices get completely overshadowed in contemporary discussions of computation, 
dwarfed by the omnipotence of Turing computation. Computation as an idea precedes the development 
of a symbolic, digital implementation of a computer by a long margin though. Although they were 
perhaps not titled as such, early problem-solving devices are computational devices too — especially 
when considered under the more fundamental, and implementationally neutral definition offered 
initially. These old devices use not only a different physical medium, but an alternative medium of 
representation. If they can do the work that computational systems were originally invoked to do, then 
there is no principled reason to ignore them in contemporary discussions of information processing, 
and in particular biological information processing. In modern computational terms, we’d call some of 
these devices analog computers.  

Analog computers rely on measurable physical quantities whose intrinsic causal dynamics are 
governed by natural laws that are mathematically the same (or sufficiently similar) to those in the 
target domain being explored (Smith & Wood, 1959: cited in O’Brien & Opie, 2008: p. 60). In other 
words, the basic parts of analog computers relate to each other in ways that are comparable to the 
interactions and relations between the parts of the system they’re being used to describe or model. The 
relations between the parts in an analog computer therefore resemble those of their problem domain, 
making it a literal analog of that domain. Our ancestors were ingenious developers of such devices.  

A sundial, for example, exploits the similarity of the relationships between 1) time and the passing of 
the sun across the sky, and 2) the passing of the sun across the sky with the casting of shadows onto a 
circular plate. The physical mechanics that constrain the varying i) length and ii) position of the 
shadow cast on the circular dial’s face are such that variations in the shadow length and position are 
sensitive to the linear ordering of moments in time. This is because the linear passing of time has a 
very obvious relationship to the cyclical movements of the sun across the sky. Even if a particular 
sundial is rather unsophisticated, and is a poor indicator of more modern and formalised units of time, 
e.g. minutes, the length and position of the shadow are nonetheless sensitive to important periods or 
moments of the day/night cycle. For example, midday corresponds to the shortest shadows cast, and 
dawn/dusk with the longest shadows cast, so it is  nevertheless possible to see roughly where in the 
day/night cycle you currently are.  

Exploiting physically comparable and covarying features of the world inevitably became more refined. 
Astrolabes and sextants, for example, were developed by pioneering navigators and astronomers to 
determine directions, times, and swathes of other celestially-derived information. These devices also 
work by exploiting specific geometrical relationships that hold between 1) three-dimensional spaces 
and objects in the world, and 2) some conserved counterpart relations that exist between the various 
parts of the devices. For example, the astrolabe exploits various features of geometry, like distance and 
angular deviation, and how they (or their ratios) can be combined and conserved across scales with 
fewer dimensions. For now, an easier example of this kind of conservation of geometrical properties is 
the orrery.  
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An orrery is a functioning mechanical model of celestial bodies, demonstrating their positions and 
movements relative to each other. Typically, they are models of our solar system, either with the sun at 
its centre (heliocentric), or with the earth at its centre (geocentric). Orreries usually use spheres to 
represent the planets or sun, naturally. These spheres are then attached to arms of various length that 
connect ultimately to a central pillar, and are distributed about the central sphere in their correct 
relative order. The arms are, in turn, attached via the central pillar to sets of cleverly organised gears 
which govern their rotational behaviour about the central sphere. The design of the interlocking gears 
is such that the spheres’ orbits about the central sphere, relative to one other, accurately represent the 
orbits of the planets around our sun. 

It should be obvious that these early mechanical devices, like sundials or orreries, are not symbol 
processors, because symbols are arbitrarily related to their targets, and do not get their contents 
through a similarity relation. Symbols only become semantically evaluable after being disciplined by 
the causal infrastructure of the computing device they’re fed into. Yet the varying shadows on a 
sundial, and the rotating spheres in an orrery, certainly fit the broader and more theoretically 
fundamental definition of computers that was set out above: they are a set of representing vehicles 
which can be exploited by some user-system in order to come into some contact with another domain. 
As a result of that contact, they facilitate the solution of some problem(s) with regard to that domain, 
in virtue of their specific representational contents. The representing vehicles in an orrery are 
superficially the spheres, but in some important sense the gears that drive the spheres must also be 
given consideration . In virtue of the spheres’ relative positions and orbits about the central sphere, 2

they depict the solar system as being a certain way: their representational contents. The spheres can 
then bring some user into contact with a separate domain of represented objects: the positions and 
motions of the actual planets in our solar system. However, an orrery’s spheres do this in a non-
arbitrary way, because their positions and movements in the model orrery — relative to one another — 
resemble those same relations between the real planets. There exists a similarity relation between the 
representing and represented domains.  

If the orrery is designed well, it can then be used to compute a number of problems. First, it can tell 
you superficial things like the planets’ order of distribution, ranging from closest to farthest from the 
sun, and their directions of orbit (calibrated from some astronomical vantage point). More interestingly 
though, it can aid in the solution of problems to do with prediction. For example, if the orrery is set up 
to accurately show the current positions of the planets, and conserve their relative speeds, it can be 
then used to predict where the planets will be relative to each other at some future time, by simply 
cranking the model forward. Instead of having to merely wait, one can look forward to a distant time, 
but only so long as the model preserves all of the planets’ motions well enough. The positions of the 
planets can then be used to make predictions. For example, an orrery can assist in predicting which 
planets will be visible at some time from some point on the earth (which is useful for navigation), the 
moon cycles (for calendar keeping), planetary alignments, eclipses, and so on. However, why it is 
possible for an orrery to be used accurately for prediction is illustrative of a vital difference between 

 The spheres are essentially cosmetic aids — any other marker placed on the rotating gear could be used, to a greater or 2

lesser cosmetic effect. But, at any snapshot in time, the relative positions of the markers (whatever they may be) on the 
gears are usually doing most of the representational work in an orrery — depending on the specific task at hand. 
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the two species of representational vehicles: sundials and orreries are not symbol processors. But if 
they are analog computers, what are these non-arbitrary representational vehicles they in fact implicate 
in their processing, in order to resemble their target?  

The sets of gears in an orrery are made to scale in such a way as to preserve the relative positions of 
planets during their orbits, according to the idiosyncratic spacing of the planets in any given model 
orrery. All of the arms, and therefore all of the proxy planets, are moved by a common crankshaft (or 
automated equivalent), and so move at a common time interval. However, all of the real planets’ orbits 
are vastly different in size, and completed at vastly different rates. If an orrery were to conserve the 
accurate ratios of distances between the planets, and therefore the relatively enormous circumference 
of some of the outer planets’ orbits, it would quickly become unfeasible as a practical model — 
because the model itself would become enormous. To adjust for this problem, the distance between the 
orbiting arms of the orrery must be reduced, and a typical orrery has roughly uniform spacings 
between each orbit. This makes the entire model much easier to sight, and thus to use. However, the 
speeds of the outer arms must be radically lowered in that case, specifically in proportion to the total 
reduction in the size of their orbits. If you don’t adjust their speeds their orbits will become useless as 
models of their respective planets’ orbits, as they would be orbiting much too fast, and the model 
would no longer preserve the proper positions of the planets with respect to each other and the sun. 
Naturally, this would render the model useless for prediction. This is why the geometric properties of 
ratio or scale are central to the computational properties of the orrery.  

Ratios or scales are not absolute or immutable quantities, because they don’t relate to “first-order” 
properties of objects. First-order properties are superficial things like shape, colour, or weight. Rather, 
ratio and scale are “second-order” properties that arise from the relations between objects (see O’Brien 
& Opie, 2004; 2005). These second-order relations can therefore be conserved across radically 
different sets of objects, with radically different first-order properties; planets and brass spheres could 
hardly be more different in their first-order properties like material substance, size, and weight. 
However, while the absolute distances between the planets, and their actual speeds of orbit obviously 
cannot be preserved by the model, their relative distances and relative speeds can — by preserving 
their ratios at some set scale.  

Imagine all of an orrery’s planetary spheres aligned perfectly and in their correct order, but uniformly 
spaced. The ratios of their relative speeds could be shown by how much they all moved away from 
their original position of alignment after some chosen time interval, e.g. one model-Earth day. The 
Mars-proxy would move less than Earth’s, as its orbit is 1.8x the size of Earth’s. Venus and Mercury 
would move much more, on the other hand, as their orbits have much smaller circumferences and thus 
can be completed in a few Earth-months. In this way, the real planets’ orbital speeds and positions 
relative to each other (a second-order relation) can be preserved by the orbiting spheres in an orrery: 
their relations resemble those of their target domain. 

Preserving the relative movements of the larger planets’ spheres accurately is dependent on the clever 
design of the gears though. The gears transfer movement at different rates from the central shaft out to 
the assorted compounds of planetary gears. They reduce or amplify the rotation depending on their 
comparative circumferences, and thus the ratios of teeth they have to each other. Doing this for an 
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inner planet is relatively easy; just make the gear smaller so it orbits faster than its neighbours, and the 
circumference of the gear will resemble (roughly) the elliptical shape of the real planet’s relative orbit. 
But given that the outer spheres’ orbits are drastically reduced, their larger gears must be turned even 
slower than their mere size would dictate. That is, some computational relations must be made 
different here, in how one gear causally relates to another; a reduction of speed must be computed to fit 
the new ratio of movement required for an outer sphere’s smaller orbit, with respect to the inner 
spheres. Suffice to say that by placing an intermediating set of coupled gears together, into a ‘double 
reduction gear’, this can can be easily achieved . The relative size of the two gears in this coupled set, 3

with respect to each other, ultimately determines the exact amount of change in the transfer of 
movement between the initial gear and the desired end gear. In some important respect then, this 
coupled reduction gear also resembles the necessary change in ratio that it is being implicated in 
computing. It physically embodies that ratio change in its physical size because physical size and teeth 
ratios determine the reduction or amplification factor. Thus, the amount it changes the rate of rotation 
that it receives into the rate which it passes on to its adjacent gear is intrinsic to the geometric, and thus 
very much physical-causal properties of the gear.  

The way that the spheres and gears in an orrery resemble their target domain’s relational, second-order 
properties are therefore directly determined by the geometric properties instantiated by some aspects of 
their physical structure. It is important to note that all of the causal work inside an orrery is being done 
by that same structure. The elements in the system that are being used to stand-in for something else 
are doing double-duty here: the representational properties are one and the same with the 
computational properties of the system as well.  

In a digital computer, there is a fundamental division of labour between the hardware that instantiates 
the most basic kind of “machine rules”, and the symbolic representations to be acted upon by that 
hardware. This distinction is collapsed in the case of the orrery and its planetary proxies. The 
representing vehicles to be sequenced computationally are also doing the computational sequencing 
themselves. Indeed, this is because they are the hardware. The second-order resemblance relation 
between an orrery and the planets only holds because of the very real, very physical, structural 
properties of the relevant elements within the systems. However, it’s not just the mere size of the gear 
that determines what it represents and how it computes. What matters is the gear’s size with respect to 
its complementary place in a set of variably sized gears, and the geometric relations they manifest as a 
result. Exploiting non-arbitrary resemblance relations, where some of these geometrical properties of a 
represented domain are replicated in some representing system, has been called ‘structural 
representation’ (see O’Brien & Opie, 2004; 2005).  

This is a crucial distinction between digital and analog computers. They use fundamentally different 
species of representations that physically encode information in a very different way — one symbolic, 
the other distinctly non-symbolic. This has significant consequences for how the representations are to 
be processed in a physically implemented computing device, a distinction that is often ignored. 
Symbol processors are different mechanisms altogether, and thus require fundamentally different 
physical infrastructure to their analog counterparts that exploit structural representations. We are 

 See https://en.wikipedia.org/wiki/Gear_train#/media/File:AnimatedGears.gif 3

https://en.wikipedia.org/wiki/Gear_train#/media/File:AnimatedGears.gif


!22

therefore presented with a fork in the road: which account of computation is the better theory to 
explain intelligence, and the relationship between the mind and the brain? Is the brain a digital 
computer, shuffling arbitrary symbols according to formal rules embedded in its architecture? 
Alternatively, is it an analog computer, where its causal cogs structurally resemble some relations and 
properties of their target domain, much like an orrery? These are fundamentally different 
computational mechanisms, and something needs to arbitrate between them. One attempt at arbitrating 
between these varied approaches is the focus of the rest of this discussion.  

In the following chapters, we’ll depart from our theoretical landscape that we have been refining (see 
Fig. 1) and dive headlong into some empirical investigations of the world. This shift in approach is so 
that we can discover something about the real mechanisms that ostensibly underpin the minds and the 
kind of intelligence we’re most familiar with — biological intelligence. The problems being discussed, 
until now, have been distinctly philosophical in nature. We have considered some concepts, and the 
conditions for what we think it would take to be an intelligent system: what makes it possible for some 
system to act reasonably according to the way that it takes the world to be? But these philosophical 
considerations have motivated more practical questions, as we have begun to encounter problems to do 
with different physical implementations of those concepts and conditions. Of course, this is not a new 
dilemma.  

C. Randy Gallistel is one contemporary and influential cognitive scientist who has argued exhaustively 
in favour of the digital computational theory. Gallistel is a staunch computationalist when it comes to 
cognitive science (see Gallistel & King, 2010). As such, I think it is fair to guess that Gallistel would 
agree on the philosophical landscape, and the motivations, I’ve set out above.  

We disagree, however, on the questions regarding engineering. It is my view that Gallistel falls victim 
to the problem of shoehorning digital computation into the primitive notion of computation itself. This 
is not a trivial error, as much turns on this. As a result, his computationalism, i.e. a philosophical 
position with regard to the role of information processing in explaining minds and intelligence, 
becomes a parochial kind of digitalism, i.e. an empirical position on the engineering and physical 
implementation of a computationalist philosophy.  

Gallistel argues that mental representations must be symbolic expressions, composed of atomic 
symbols with semantic and syntactic properties, just like the symbol strings fed into a digital Turing 
computer. These symbolic expressions are manipulated by the formal rules embodied in the 
computational hardware of the brain. One of the most illustrative examples Gallistel uses to 
substantiate his arguments is by analysing the curious case of the Desert Ant and its foraging 
behaviour. The Desert Ant demonstrates a remarkable ability to navigate a harsh environment that is 
absent of landmarks during foraging behaviour. From a theoretical perspective, their navigational 
aptitude is so illustrative because it epitomises the phenomenon that we’re interested in: what does it 
take for a system to act reasonably and flexibly given the way it must take the world to be?  

The ants must hold some kind of internal representational states regarding their movements and their 
changing position relative to their nest, and be able to do computational work on those representations 
in order to integrate their outbound paths and return home once they have found a food source. They 
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Intelligence / Cognition 
Special causal etiology that allows behavioural flexibility & 

appropriateness etc…based on a subjective world-view

Information Processing 
Internal states contribute something over & above what is merely 

present in the input

Representation 
Encoding of information into physical states that are implicated in 

processes that causally shape behaviour

Philosophical Problem
s

Computation 
Mechanism designed to exploit representational states towards 

some goal-state(s)

Analog Computation 
Exploits resemblance-based vehicles of representation

Digital Computation 
Exploits symbolic vehicles of representation

Fig. 1: The theoretical hierarchy at the heart of cognitive science, and of this discussion. 
Each box represents a stage of conceptual refinement in the philosophical landscape, and 
the core postulate or discovery that cemented its place there. Each lower postulate is 
necessary to theoretically substantiate, or physically implement, its predecessor. The chain 
of reasoning is further sub-divided into two different categories of problems: the 
philosophical, and the engineering.

Engineering Problem
s
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therefore take the world to be a certain way, and that rendering of the world includes something about 
their geographical position in it.  

From an engineering perspective, Desert Ant navigation is a great case study because ants are  
relatively simple creatures with small and comparatively easy-to-analyse brains. Secondly, the 
computational task under examination is very circumscribed and thus easy to define clearly: “path 
integration”, the process of navigating without landmarks, is both felicitous to mathematical 
formalisation and very well understood. By Gallistel’s lights, the kind of environmental variables 
available for the ant to integrate with, and the kind of computational operations they must perform 
over data extracted from those variables in order to return home, necessarily requires symbolic 
representations of those variables and thus a digital computational apparatus in their brains.  

Thus, the Desert Ant presents a perfect encapsulation of the problems at the heart of the philosophy of 
cognitive science. It has philosophical importance for understanding intelligence, representations, and 
computationalism. It also offers up a boots-on-the-ground test case for our various accounts of 
computational devices that require different engineering altogether, so we can test our theoretical 
commitments against the worldly data. I share Gallistel’s broad concerns regarding the philosophical 
commitments of representation and computationalism underlying biological intelligence and 
behaviour. In the case of Desert Ant navigation, however, I will argue that Gallistel’s analysis of this 
phenomenon is incomplete in two respects which lead his  conclusions astray.  

Firstly, Gallistel does not consider the possibility of analog computers, with their concomitant 
structural representations, as physically implementable information processors. This is because 
Gallistel (Gallistel & King, 2010: p. viii) is wedded to the idea that, “…there must be an addressable 
read/write memory mechanism in brains that encodes information received by the brain into symbols 
(writes), locates the information when needed (addresses), and transports it to computational 
machinery that makes productive use of the information (reads)”.  

This narrow focus on digital computation necessarily affects the way his theoretical analysis of Desert 
Ant navigation bleeds into his beliefs about how to engineer a solution to the problem. As a 
consequence, Gallistel naturally makes parochial demands of any potential explanation of the 
phenomenon, i.e. that any explanation of Desert Ant navigation necessarily requires a symbol 
processing mechanism at its core. However, as introduced above, information processing is not only 
achievable digitally, over symbolic expressions. There is a different framework that is at least worthy 
of consideration.  

Analog computers, such as orreries, can be used to carry and operate over representations, and thus 
compute information, but can do so without the need for symbolic representations. One theoretical 
framework of analog computation that is neurobiologically-inspired has been called ‘connectionism’. 
In the course of arguing that the Desert Ant brain needs to instantiate a symbolic processor of a 
particular kind, Gallistel takes aim at, and mischaracterises (according to me), the connectionist 
framework. Gallistel considers connectionism as just one way of physically implementing a digital 
computing device, thus construing connectionism as a symbol processing framework. When he 
analyses the practical application of “connectionist models” (under his characterisation) to the problem 
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of Desert Ant navigation, he subsequently finds that they lack the power to implement the particular 
kind of symbolic processor that he thinks is necessary to complete the task: a read/write memory. 
Connectionism, therefore, cannot even explain simple cognitive tasks, according to Gallistel, and 
should be relegated to the rubbish heap of theories of cognition.  

However, there exists a respectable tradition that considers connectionism as a fundamentally distinct 
computational paradigm, not as a subset of digital computational theory (Rumelhart & McClelland, 
1986; O’Brien & Opie, 2005; 2008). Much debate has surrounded this issue of the theoretical 
commitments of connectionism, and whether it indeed differs from the ‘classical’ digital computational 
story (see Fodor & Pylyshyn, 1988; Churchland & Sejnowski, 1990; Horgan, 1997; Horgan & 
Tienson, 1992; Churchland, 1998; Bechtel & Abrahamsen, 2002) . Without getting too lost in that 4

debate, I take the position that the strongest and most reasonable interpretation of connectionism is an 
analog computational one. Consequently, by my lights, Gallistel constructs a straw-man of 
connectionism by assessing connectionism’s explanatory credentials, with specific regard to the 
problem of Desert Ant navigation, with measures that are actually the special preserve of digital 
computers. In virtue of this mistake, i.e. mismeasuring connectionism’s capacities, the way in which 
Gallistel dismisses connectionism’s explanatory credentials as a research paradigm in the cognitive 
sciences tout court can be considered premature, to say the least. 

Secondly, Gallistel’s empirical analysis of the navigational task to be solved by ants does not 
appreciate the phenomenon in enough empirical detail. In particular, Gallistel fails to attend to the 
neurobiology of the ant and how their neurobiology relates to the geophysics of their environmental 
circumstance properly. I will argue that, after looking more rigorously at the empirical data and the 
nitty-gritty of the relevant environmental variables, it becomes apparent that Gallistel’s depiction of the 
problem to be solved by the Desert Ant is in fact incorrect. Combine this with his narrow framing of 
how any computational mechanism capable of solving navigation problems are to be engineered, and 
Gallistel makes demands that are therefore both unnecessarily computationally parochial as well as 
incompatible with the relevant empirical data. I ultimately will argue that the alternative account of 
computation that is on offer, i.e. analog computation and the structural representations that come with 
it, can mesh perfectly with the fuller depiction of the ant neurobiology and the environmental task it is 
implicated in solving. 

Fodor (1987, p. 97) writes: “I want a naturalized theory of meaning; a theory that articulates, in 
nonsemantic and nonintentional terms, sufficient conditions for one bit of the world to be about... 
another bit”. Gallistel has answered this call in one way, but I prefer another. Using the illustrative 
example of Desert Ant navigation, the primary argumentative burden of this thesis is to untangle and 
explain the differences in our accounts. Ultimately, I will argue that an analog computational 
framework fits the data regarding Desert Ant navigation more closely than its digital competitor. It 
does so while retaining all of the philosophical commitments that are necessary for a system to be a 
representing, information processing, and intelligent system. 

 This debate is, in fact, enjoying somewhat of a renaissance, with renewed interest in the viability of structural 4

representation and its explanatory credentials being tangible in the literature (see Bartels, 2006; Isaac, 2013; Beck, 2014; 
Morgan, 2014; Azhar, 2016; Boone & Piccinini, 2016; Nestor, 2016; Maley, 2017; Williams, 2017; Williams & Colling, 
2017; Thomson & Piccinini, 2018). The “representation wars” (see Clark, 2015), it seems, are as violent as ever.
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1.4 The Project & Path Ahead 

The remainder of the discussion will contain two arguments running in parallel; one argument is 
between analog (connectionist) and digital (classical) computation, the other between myself and 
cognitive scientist, C. R. Gallistel. My dialogue with Gallistel over the explanatory credentials of 
connectionism, via the case study of the Desert Ant, is a fine-grained proxy for the larger philosophical 
debate regarding the theoretical foundations of cognitive science, and cognitive explanations in 
general. I will argue that several mischaracterisations permeate Gallistel’s arguments against 
connectionism. They follow a similar structure to the outline above, where one component is an 
abstract analysis of theoretical or philosophical commitments, and the other component concerns the 
practical implications of those philosophical analyses. 

So, there will be some interwoven threads of argumentation to keep track of. The debate between 
classicism and connectionism in the philosophy of cognitive science is the broadest and overarching 
theme: what is the “true” relationship between the mind and brain, and of information processing and 
intelligence? Is the mind/brain much like a digital computer, shuffling symbols according to their 
syntactic properties? Alternatively, is it more like an analog computer, exploiting certain physical 
similarities that exist between its architecture and that of the external world? Chapter 2 will bring out 
the philosophical and engineering differences between these two accounts in some more detail, 
focusing on the independence and uniqueness of the analog computational framework. 

The significance of how we ultimately answer the above questions for our understanding of the natural 
world, and our place in it, hardly needs repeating. The difficulty in adjudicating between different 
answers to these profound questions, however, does need repeating — many people are unaware that 
there even is an issue to be adjudicated. The proof of the pudding, I say, will be in the eating. It’s my 
view that, at least in mainstream cognitive and neuroscience circles, the connectionist option isn’t even 
on the menu. If it is, it usually has the wrong ingredients listed.  

By going through a particular case study in Chapter 3, i.e. examining how the humble Desert Ant and 
its morphological cousins navigate, these knotted arguments to do with understanding cognitive and 
computational systems can be untangled. It so happens that this is one example where I believe a 
prominent theorist has done connectionism an injustice, and so represents a perfect point of contact 
between the competing theories. If our theories can survive collision with empirical data, the epistemic 
gold-standard under naturalism, then we can continue scaffolding up from there. So we will start small, 
and Gallistel and I agree at least on this point: if we can’t explain some of the “simplest” cases of 
cognitive phenomena with the theoretical tools at hand then we may need to fashion ourselves some 
new ones. Before we invent some radical new tools, as Gallistel (among others) has turned to doing 
with “molecular computation” (see Gallistel & King, 2010), we should first give the standard 
framework a fair go.  

The Desert Ant case study involves some technically detailed empirical puzzle-pieces that will be very 
much in the foreground for the core of the discussion. There’ll be crash courses on concepts from 
astronomy, geometry, and neurobiology. All for good reason though. I hope to convince the reader that 
it is only by looking in detail at how the mechanisms that mediate ostensibly intelligent behaviour 
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relate to their environment, warts and all, that we can find clues for naturalising cognition — and thus 
understand the philosophical and mechanistic foundations of intelligence. Most importantly, my 
central thesis is that the independence and true attraction of connectionism as a theoretical framework 
can be demonstrated and fully appreciated as a result of such a rigorous analysis. The devil really is in 
the details. 

Connectionism can approach and explain cognitive phenomena in a unique manner. This uniqueness 
and independence is lost under other more common interpretations of connectionism, i.e. the 
‘implementationalist’ interpretation of connectionism, which sees no real philosophical daylight 
between it and classical computation. Gestures will be made towards the added explanatory purchase 
that cognitive science can gain in adopting the “proper” connectionist framework, and how future 
avenues of research open up in light of doing so. However, these will just be gestures, and are not the 
central point. The reader may maintain that, after all, the classical approach to computational cognitive 
science is still superior. I’m under no illusion that I will settle the debate once and for all . 5

Connectionism is due a fair hearing though, and it is my position here that the strongest possible form 
of connectionism is commonly elided, the argumentative space filled by a straw-man instead. I accuse 
Gallistel of doing just this, and Chapter 4 will outline why I believe so. Thus, my main intent is to 
provide an illustrative defence of the unique approach that connectionism offers to our investigations 
of cognition and its place in the natural world, when connectionism is properly understood as an 
analog computational explanatory framework. 

In Chapters 5 and 6 I argue that analog computation is in the driver’s seat of the brains of Desert Ants. 
Which is to say: I believe that the underlying computational hardware that guides their path integrating 
behaviour is best understood as being analog. However, why such analog computational mechanisms 
are so successful at guiding this behaviour, by my lights, is the interesting philosophical point to take 
home: the analog computational framework can offer a representationally rich, causally efficacious, 
and entirely naturalisable metaphysics of mind, cognition, and intelligence. To boot, the mathematical 
elegance and simplicity in how an analog computational explanation sheds new light on this particular 
problem is aesthetically pleasing. Ultimately, the weakest conclusion to take home is that I at least 
intend to show that the demise of connectionism is not a foregone conclusion. Contra the claims made 
by Gallistel, I will argue that connectionism remains a viable and robust research programme in the 
cognitive sciences.  

 You can bring a horse to water…5



!28

Chapter 2 

Computation & the Philosophical 
Foundations of Cognitive Science 
Rival Approaches to the ‘Big Idea’ 

“[It] is beneath the dignity of excellent men to waste 
their time in calculation, when any peasant could do 
the work just as accurately with the aid of a 
machine.”  
- Gottfried Leibniz 
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2.1 Cognitive Science: The Big Idea 

The notion of information processing is the lodestone of cognitive science. It is the conceptual 
distinction that cleaved cognitive science apart from its related fields of inquiry, like behavioural 
neuroscience or biophysics. It forms the basis of a fully independent research methodology with a 
unique domain of inquiry. Packed into information processing is traditionally, under the guiding light 
of naturalism, a commitment to both the representational and computational theory of mind. Taken 
jointly, these commitments are widely recognised as the means by which organisms identify and adapt 
to changes in their circumstances. Via the computational theory of cognition, we’re equipped to 
understand mechanistic explanations of these capacities.   

The added explanatory power of a computational level of analysis bridges the gap between the 
undoubtedly relevant, but merely causal explanations of behavioral neuroscience, and the intentional 
(i.e. intelligent) explanations we seek to naturalise. Chapter 1 discussed why, historically and 
philosophically, this bridge is widely accepted as necessary to make (see Fig. 1). This chapter will turn 
to looking at differences in the kinds of computational accounts on offer in more detail. This involves 
demonstrating how these accounts posit different physical mechanisms that can be engineering 
solutions, the physical bridges, to the kinds of philosophical gaps we think need to be crossed in order 
to naturalistically account for cognition and intelligent behaviour. The argumentative burden of this 
chapter will be to demonstrate that the way we conceive of ‘representations’, and how they get to be 
information bearing, will have significant consequences for how we then apply that representational 
theorising in a physically implemented computing device.  

To briefly reformulate the problem as set out in Chapter 1, the way that the cognitive science literature 
sees ‘computation’ as the nexus between the engineering and the philosophy of intelligent systems is 
that it offers a physically implementable solution to the content causation problem. O’Brien (2015: p. 
2) gives one formulation of the content causation problem, which I’ve modified below: 

1) Intelligent processes are causally efficacious of behaviour in virtue of the representational 
contents implicated therein.  

2) The representational contents of intelligent processes are determined by the intrinsic 
properties of the brain.  

3) The brain is causally efficacious of behaviour in virtue of its intrinsic properties.  

The first statement encapsulates the first three steps in the theoretical hierarchy from Chapter 1 (see 
Fig. 1), i.e. that intelligent and cognitive processes are fundamentally different from other physical 
processes in the universe. It reiterates the Cognitivist Constraint — that the way in which intelligence 
is different from other physical processes is that it is a matter of selective identification and response to 
variables in one’s environmental circumstance. This is enabled by the rendering of a subjective world-
view, i.e. the contents of an internal, representational model.  
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The third statement encapsulates all that we know about standard behavioural neuroscience, and 
reiterates the naturalist constraint. We know that the brain is the arbiter of our behavioural responses, 
and, for example, how circumscribed losses to modules of brain-matter bring only circumscribed 
deficits in cognitive capacities. The intrinsic properties of the brain are therefore determining the 
complex set of causal relations we enter into with the world.  

The second statement is the all-important nexus between the first and third, wherein their apparent 
insolubility, and the over-determination of behaviour can be addressed. It is the prosaic yet 
controversial thesis that, at least some of the time, the intrinsic properties of the brain are both content 
determining and behaviour determining. Thus, intelligent processes can be metaphysically robust in 
the sense that they can truly be information bearing, while the naturalist and cognitivist constraint can 
also be reconciled: representational content can be a naturalisable property of brain states, as well as 
causally efficacious of behaviour.  

The next sections will bring out just what properties of the brain we need to pick out, and exactly what 
kinds of relations they need to enter into in order to be content determining. This will demonstrate why 
it is known as the content causation problem, and why the second statement is seen in some corners as 
controversial, because much turns on this simple proposition: not all types of representations are equal. 
Different representations require altogether different content determining relations. These content 
determining relations, in turn, require different properties of their representing medium to subsist on. 
Hence, what kinds of representations we posit as the brain-based medium for computation will 
determine how we go about solving the content causation problem. By implication, this will determine 
just what kind of “cognitive science” we end up with.  

These are consequential differences that will be emphasised in distinguishing between the two 
computational theories on offer in the discussion to follow. It will be central to the arbitration process, 
to assess which theory (if either) can survive collision with both our philosophical commitments and 
empirical findings. In sum, the major task of the rest of Chapter 2 is to answer this question: is there 
more than one way to make rigorous and precise the notions of representation and computation — in 
order that they may play a robust explanatory role in modern cognitive science? 

2.2 Rival Approaches I: Classicism 

The next sections will plot the general forms and a potted history of the competing computational 
theories on offer: digital vs. analog. In later sections the details of their specific theoretical 
commitments, and engineering consequences—with specific regards to the problem of navigation—
will be filled in. To begin, the ‘classical’ approach to computational theorising will be outlined. 

Jerry Fodor (1975: p. 175) begins his book by quoting President Lyndon B. Johnson’s line that, “I’m 
the only President you’ve got”. What he is alluding to in his introductory chapter is, of course, that he 
believes that some form of the Language of Thought Hypothesis is the “only game in town” when it 
comes to solving the content causation problem (ibid.). The LOT hypothesis posits one particular 
representational medium for brain-based computation: a language-like symbolic medium which is 
composed of atomic units that can be permuted into cognitive “sentences” — a kind of “mentalese”. 
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The LOT asserts a parallelism between the power and flexibility of linguistic expressions, and those of 
cognitive operations. We learn a language by acquiring some atomic vocabulary, along with sets of 
instructions. The instructions inform how we concatenate atoms into well-formed strings of atoms, 
molecular constructions, according to that language. The sentences that emerge from this piecemeal 
process then mean — i.e. represent — whatever the contents of the individual atomic units mean 
together with their specific relational structure; their ordering in a sentence. For example, ‘Dog loves 
Cat’ means something different to ‘Cat loves Dog’ even though their atomic units are identical, 
because the subject-verb-object ordering of the English language makes it so. Such representing 
systems allow for indefinite growth in complexity, and limitless representational flexibility in their 
constructions. An example for the cognitive domain may look like: 

 (LIFT) x = ((MOVE) x) + ((MOVE) up) 

The complex concept of ‘lifting’ some object x is a function of much “simpler” concepts like ‘causing 
movement’, plus the particular ‘direction of movement’ that is desired (adapted from Piantadosi, 2016: 
p. 4).  

As a contemporary and influential theorist of the Fodorian-stripe, C. R. Gallistel calls this capacity for 
virtually endless concatenation of atomic symbol structures into molecular symbol structures the 
“essence of compositionality” (Campbell, 2015). Compositionality is a notion taken from Fodor and 
Pylyshyn (1988), and, according to Gallistel, compositionality is at the core of computation. In order to 
demonstrate this point and really get a grasp on these fundamental principles, Gallistel strips the LOT 
hypothesis down to a less abstract level than that of cognitive concepts, and applies the same 
fundamental logic to a more “basic” class of problem: simple arithmetic.  

To physically realise simple arithmetical operations there are two requirements: 1) physically realised 
symbols to represent real-values, i.e. numerals to represent “numbers”, and 2) physically realised 
machinery that is capable of combining the symbols to produce arithmetically respectable outputs. 
This is no different to the fundamental principles of the LOT, or to the learning of a natural language 
— there must be some atomic units of meaning, and then some rules according to which molecular 
units can be constructed out of those atomic units and then manipulated.  

Computer science has a standard approach to engineering such symbol processing systems capable of 
performing arithmetic. A symbol can be anything, as long as it has an adequate margin of error in its 
discernible syntactic properties. This is important so that one symbol can’t be confused for another 
symbol, and reduces the effects of noise in the signal. High and low voltage states perform this 
function perfectly, as once a voltage state reaches a certain threshold it can be considered “high” 
enough to “open” a respective electronic “gate”. The gate is thus entered into its active “1” state, where 
its output can now be used by other gates down the line. Anything below the voltage threshold and the 
voltage gate will remain quiescent and closed, thus representing a “0” state. From these two clearly 
distinguishable binary symbols, some more abstract machinery can be built.   

The binary nature of truth (in classical logic, at least) makes it possible to exploit a system of logical 
argument concerned with binary values, true or false, in operating over a system of binary arithmetic, 
and this system is called “Boolean Logic” or “Boolean Algebra”. The logic gates under discussion are 
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therefore usually called “Boolean Logic Gates”. Boolean logic can be used to analyse and link together 
simple logic gates to implement more complex logical operations . The simple voltage gate described 6

above merely indicates whether or not its input is present — “1” for true, “0” for false. The inverse of 
this gate is called the NOT-gate. The NOT-gate output is “1” or true so long as its input is “0” or false, 
and vice versa. This is equivalent to the operation of logical negation. Not much can be done with 
these two operations, however.  

Building from these single-input fundamentals, more sophisticated electronic circuitry can be designed 
so that, for example, a logic-gate is opened only if all separate input lines into the gate are all 
simultaneously activating above threshold. The logical function such a gate implements is the AND-
function in Boolean logic. This function is formally equivalent to a logical conjunction: a conjunction 
is true if and only if all operands in the conjunction are true. A simple 2-input AND-gate is commonly 
represented as in Fig. 2. 

If we construct a truth-table for the above AND-gate, the overlap between the binary nature of logical 
truths and binary arithmetic truths becomes more apparent (see Fig. 3). The table shows the output the 
AND-gate gives in response to any one of its four possible combinations of input. Note how the above 
table would be identical to a table representing the basic arithmetic operations of multiplying 1 and 0.  

The same four combinations of variables are possible, and they produce the same column of output 
variables. Zero multiplied by zero is zero; one multiplied by zero is zero; and so on. Another of the 
fundamental Boolean-gates is the XOR-gate, otherwise known as the “exclusive-or”. The formal 
equivalent that the XOR-gate implements is an “exclusive disjunction” (see Fig. 4). Note again how 
the truth-table for XOR-gates (Fig. 5) looks (mostly) like what a truth-table for adding one and zero 
together would look like .  7

Using this system, one can encode any number using a N-bit binary string, and then perform any 
number of logical operations over them with enough of the right kinds of Boolean-gates. As a result, it 
is possible to show something true of their arithmetic interpretation using only formal, Boolean 
operations. For example, ‘0001’ and ‘1011’ encode the numbers ‘1’ and ‘11’ respectively in 4-bit 
binary code. With some clever circuitry using the Boolean-gates above, one can perform any of the 
arithmetic operations over those 4-bit strings. Forgetting some unnecessary details for the moment, a 
“half-adder” circuit (see Fig. 6) completes half of the process of addition. A half-adder does this with 
only a single AND-gate together with a single XOR-gate. Naturally, putting two half-adder circuits 
together into one complete unit of abstraction then gives one a “full-adder” circuit.  

Now we can return to Gallistel’s point about compositionality being at the heart of computation. Using 
this classical approach that combines binary encoding for representation with logic-gates for the 
engineering, one can create a holistic piece of arithmetical/logical machinery, which is creatively 
called in computer science circles the “Arithmetic / Logic Unit”, or ALU. The ALU is just a 

 Mathematicians and computer scientists may hate that I’ve given such short shrift to Boolean logic. There is much more 6

to be said about why and how this is the case, and the equivalence/similarities between arithmetic and formal logic as 
axiomatic formal systems, but only the basics of Boolean logic-gates are relevant for the discussion that follows. 

 See “long addition” and the use of “carry” columns in binary arithmetic for details on why one added to one seemingly 7

equals zero (it doesn’t). The details are surplus to demand here.
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Input-A Input-B Output / Q

Combination 1 0 0 0

Combination 2 1 0 0

Combination 3 0 1 0

Combination 4 1 1 1

Fig. 3: Truth-table for the simplified Boolean AND-gate in Fig. 2. 

Fig. 4: Graphical representation of a simplified Boolean XOR-gate. A and B again 
represent two distinct input channels leading into the XOR-gate. Q represents the 
gate’s output, which only takes a true value, 1, when one of the input channels is true 
and the other is simultaneously false. 

Fig. 2: Graphical representation of a simplified Boolean AND-gate. A and B 
represent two distinct input channels leading into the AND-gate. Q represents the 
gate’s output, which only takes a true value, 1, in the case that both input channels are 
similarly true. 

Input-A Input-B Output / Q

Combination 1 0 0 0

Combination 2 1 0 1

Combination 3 0 1 1

Combination 4 1 1 0

Fig. 5: Truth-table for the simplified Boolean XOR-gate in Fig. 4. 
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conglomerate of different logic-gates, like the two shown above (plus some others omitted here). The 
entire unit can selectively produce an output that respects an arithmetic interpretation of any given 
arithmetic operation one desires to perform over any given set of N-bit strings representing real 
numbers. The fundamental single-input gates scaffold together to make something more complex, like 
an AND- or XOR-gate, and groups of these gates can be further scaffolded together to make a full-
adder, and these units can be joined to scaffold up to a complete ALU. Such is the “essence of 
compositionality” — from atoms to molecules, from some formal rules which govern their ordering.  

To complete this story, given that digital computing machines require that the physical realisation of 
the symbols be separate and distinct from the physical machinery that is capable of using those 
symbols, there must be a memory register for siloing away symbols in a stable and long-term fashion. 
Memory registers are again simply made up of groups of logic-gates. The logic-gates that comprise 
memory registers are just wired together so that they can form a self-persistent value at their output 
rather than a merely transient one that is dependent on input. The distinct computing core can then 
withdraw the symbols when necessary in order to operate over them, using its ALU, for example. This 
is a general dictate of the design of digital computing machines if they are to be of any complexity and 
power, according to Gallistel (Campbell, 2015; Gallistel & King, 2010). The computing core can then 
return the results back to their relevant memory register for storage once again, or ship them off to 
their relevant destination for use. 

Flexible and malleable data structures can then be built out of these memory silos. A toy-example 
would be a group of memory registers that store the “history of arithmetic outputs” performed by an 
ALU of the kind described above. Each “location” in this memory register has an address in binary 
code giving it a unique address (‘0000’ to ‘1111’, for example). The first 4-bit output the ALU 
produces, whatever it may be, can then be written down in the first address, ‘0000’, in the memory 
register by turning on the relevant gates in that register. As the ALU completes a new operation, the 
first output can be read and withdrawn from the first address, replaced into the second address, ‘0001’, 
thus freeing up the original address. Now the new output from the ALU can be written into the first 
address once more. This process can iterate indefinitely as the ALU completes more operations, 
reading and writing 4-bit strings into the memory registers. When the memory is “full” it can simply 

Fig. 6: Graphical representation of a simplified “half-adder” circuit. A and B 
represent separate input channels, but note how the wiring of the circuits includes 
sending input to the bottom AND-gate before also reaching the top XOR-gate. In 
virtue of this wiring, the joint operations make the XOR-gate a “sum” channel, S, and 
the AND-gate a “carry” channel, C, for subsequent units to use down the line. 
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erase the 4-bit data stored in the sixteenth and final address as it moves all the existing data down one 
address, ready to put the new input into the cleared first address. This toy-example would represent a 
functioning data structure that represents and stores the latest sixteen outputs from a toy-ALU, as in 
Fig. 7. 

The above highlights another important distinction in classical computing: the address and the data 
stored at that address. The address can be thought of as a ‘variable’, whereas the data itself represents 
the ‘value’. In the toy-example above, the variables are categories like ‘most recent output form ALU’, 
and so on. The values within are then self-explanatory. This is incredibly important because, according 
to Gallistel, “The distinction between a variable (an address) and the value of that variable (the 
information to be found at that address) mediates the intercourse between past and present, between 
then and now. It is what makes it possible to bring the information gained then to bear on the problem 
one is solving now” (Gallistel & King, 2010: p. 154, emphasis in original). The addresses or variables 
stay the same, but the information within can be used or adjusted when necessary. Moreover, the 
addresses can become variables for effectively anything, depending on the particular system at hand 
and its idiosyncratic causal connections.  

The above example demonstrates the core of how classical computation gets content, i.e. the values 
that represent and encode data regarding the variable, to be causally efficacious. The way in which the 
N-bit strings of symbols are manipulated by an ALU and memory registers respect an arithmetic 
interpretation. This is the first and a tried-and-trusted approach to making rigorous the concept of 
computation. And, while this may just appear to be computer science, rather than brain science, 
according to Gallistel, these design parameters are ineluctable constraints on cognitive science 
(Gallistel & King, 2010). That is, by Gallistel’s lights, if we want cognitive science to remain a 
cognitive and computational domain of inquiry, we must locate the brain-based counterparts to the 
memory and processing mechanisms discussed above.    

Address/Variable Value/Information

0000 {Newest ALU output}

0001 {Last ALU output}

0011 {…}

0101 {…}

Fig. 7: Representation of part of an idealised 4-bit memory group storing outputs 
from an ALU (see text above). The left column shows the unique 4-bit address for 
individual memory registers in the group. Each register itself can store one 4-bit 
string.  
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2.3 Rival Approaches II: Connectionism 

Since the publication of the parallel distributed processing (PDP) “bibles” (Rumelhart & McClelland, 
1986; McClelland & Rumelhart, 1986), there have been two computational games in town, despite any 
Fodorian rhetoric to the contrary. As discussed in Chapter 1, analog computation has of course been 
around for much longer, longer even than digitial computation. However, the contemporary incarnation 
of analog computation in artificial neural networks, and the PDP/connectionist framework that came 
along with it, is the most relevant to the discussion at hand regarding neurobiological computation in 
animals and its role in intelligent behaviour.  

The classical approach to understanding information, representation, and computation, owes a heavy 
debt to notions and lessons learned from computer science and engineering. In contrast,  
connectionism’s development was heavily influenced by developments in neurobiology. While there is 
considerable diversity among connectionist models, the building blocks always remain the same: 
nodes and weights. The nodes are the fundamental processing elements in connectionism, representing 
heavily simplified neurons. The weights are the connective tissue between the nodes, representing 
simplified axons and dendrites. Hence, we call groups of these nodes and their weights artificial 
neural networks (see Fig. 8). 

The dynamics of such models are relatively simple. Each node receives input, either from external 
sources (the “input” to a model) or from other nodes. Depending on the type of network, nodes will  
usually compare a running total of this input to an internal “activation threshold”. This represents a 
simplified version of the intraneural processes of de- and hyperpolarisation — the biological processes 
that dictate when a spiking-neuron will fire or be inhibited. If the activation threshold is met, the node 

Fig. 8: Graphical representations of various artificial neural network types. A shows 
a completely recurrent network, where the nodes’ activations also feedback into their 
own future behaviour. B shows the most common variation, the three-layer 
feedforward network. C shows a complex network containing several distinct 
networks operating modularly together. Black circles represent nodes. The arrows 
indicate connections and their direction of flow of the activation or inhibition from 
one node to the next. (Image from Elman et. al., 1996: p. 51)   
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will activate and pass on its activation down through its respective connections. Other types of 
networks employ nodes that model graded-response neurons. These nodes react in an effectively linear 
monotonic fashion to their input. Rather than employing a threshold, after which activation is uniform 
(i.e. an all-or-nothing ‘on’ or ‘off’), graded-responses constantly change in value to reflect the changing 
total input they’re receiving, either up or down.  

The weights act as malleable communication channels between these processing nodes. They modulate 
the input from one node to another by multiplying the activation value by the value of the weight. If 
node-A has an activation value of 1, and its connection to node-B is weighted at 0.5, the total activation 
received at node-B will be 0.5. If the weight value was 1, then all of the activation would be received 
at node-B. Weights can also extend into the negative spectrum. If the weight was -0.5, then node-B 
would receive an inhibitory input of -0.5. The weights thereby act as a complementary and 
intermediary processing phase in artificial neural networks. Weights are a simplified model of the 
neurobiological mechanisms that involve real synapses.    

The behaviour of an artificial neural network can therefore be adjusted in two ways: change the input 
to the network, or change the weights in the network. The more interesting of the two is, of course, the 
changing of the malleable weights. A network can adjust its behaviour in future responses to the same 
input by altering the totality of its weight values, or the “weight matrices” between layers of nodes. 
The adjustment of weights between nodes represents an idealised version of the Hebbian (1949) thesis 
of synaptic plasticity: “When an axon of cell A is near enough to excite a cell B and repeatedly or 
persistently takes part in firing it, some growth process or metabolic change takes place in one or both 
cells such that A’s efficiency, as one of the cells firing B, is increased” (ibid., p. 62). This has been 
affectionately repackaged as the maxim, “neurons that fire together, wire together”. The weights in an 
artificial neural network idealise away the substantial mechanistic and metabolic changes that occur in 
real synapses, and merely instantiate the change in an altered weight value. An important side note is 
to remember that we model the weights using symbolic values, but they are modelling a real, physical/
structural property of a synapse. Think of the connection weight as a cylindrical channel which 
mitigates or permits the free-flow of activation down its length according to how open or closed it is. 
The symbolic value used to mark the strength of any given connection weight is therefore a 
representation of how hollow and open, or solid and closed, that cylinder is. 

Computing with these fundamental nodes and weights takes myriad forms. Interestingly, the earliest 
forms also took to implementing Boolean logic, in parallel with the classical tradition. McCulloch and 
Pitts (1943) showed in a seminal paper how to wire together simple artificial neurons into networks 
that compute any finite Boolean expression. In some sense, the simple neurons with fixed weights can 
just be considered dressed-up logic-gates, functionally the same as the basic units in digital computing. 
Indeed, “McCulloch-Pitts neurons essentially just are the logic gates in conventional 
computers” (Morgan, 2014: p. 84, emphasis in original).  

However, the important developments came when the introduction of intermediate layers of more 
complex nodes, with nonlinear activation functions and rules for adjusting malleable weights, began in 
earnest. These changes in complexity added temporally dynamic behaviours to the networks, but the 
most important change was one in interpretive logic. Rather than considering the nodes as atomic and 
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neurobiologically inspired logic-gates outputting symbols, the distributed processing that occurs in 
parallel across all nodes in a given layer of a network became the focal point. Consider Fig. 9. 

The primary vehicle of representation and computation under consideration here is the overall pattern 
of activation at the intermediating layer of three nodes (X, Y, and Z in Fig. 9). Each node will give 
some value of activation, varying usually from 0 to +1. Visualising this activity as an undulating 
histogram of values makes it easier to see it as a collective “pattern” of activity. Alternatively, they can 
be characterised as an activation “vector”: an n-tuple of values where n is equal to the number of nodes 
in the layer.  

Adopting the mathematical language of vectors allows a further interesting development: the creation 
of an abstract geometry with which to analyse these patterns of activation. If we take each node as a 
dimension, an axis across which values can vary, a space can be created within which all possible 
combinations of values can exist: the activation space (see bottom-right, Fig. 9). Each unique 
combination of activation values, each pattern, can then be plotted to its accompanying point in this 
space. The values of the nodes become coordinates in space under this description, “physically 
described” rather than formally described as some n-tuple (Churchland, 1998).  

This way of analysing patterns of activation is special as it allows a spatial metric of analysis: 
distances between locations in activation space. Each point in activation space acquires its 
computational salience in virtue of its place relative to all other contentful points in that same space, 
not merely by its position relative to the constitutive dimensions of that space (Churchland, 1998). 
Consider Churchland’s (ibid., p. 9) example of two identical, but imagined three-layer feedforward 
networks that discriminate faces from a set of photos of faces (Fig. 10).  

Fig. 9: Three ways of visualising the concurrent activity of a population of artificial 
nodes. The total activation at the middle layer (left) can be conceived as a histogram 
or pattern of activation levels (top right), an activation vector (middle right), or as a 
point in activation space. (Image from Churchland, 1998: p. 6)
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Fig. 10: The activation spaces of two identical imaginary networks trained to 
recognise faces. The networks are trained to identify any given input, a photo of an 
individual face, and output which family of faces it belongs to. The points marked in 
the activation spaces represent “prototype points”, around which any given photo of a 
single family member will cluster. Note the same essential geometric structure that is 
created by and between the four prototype points. See text for details. (Image from 
Churchland, 1998: p. 9)
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The networks are given as input one photo out of one-hundred possible photos of faces. Each face 
belongs to one unique member of one of four families. In total, there are twenty-five Hatfields, twenty-
five McCoys, twenty-five Wilsons, and twenty-five Andersons in the input set. Some details regarding 
training aside (see Churchland, 1998: p. 9), by altering the weights in the networks they can be trained 
to recognise each photo and output which of the four families the member belongs to. The output is 
defined as the highest of the activation levels across the four output nodes.  

One can easily imagine that faces can be broken down into several dimensions, like nose length, eye 
size, jaw width, and so on. Given that families share heritable phenotypical traits, any given Hatfield 
member will, across the facial dimensions chosen, score closer on average to the other Hatfields than a 
McCoy or a Wilson. If we averaged all the Hatfield’s scores, for example, we could create a non-
existent “prototype Hatfield”, and this would differ from the averaged prototypes of the other families. 
When actual artificial neural networks are trained to perform such tasks as the above, they produce 
exactly the kinds of results as displayed in Fig. 10.  

To reach the desired performance at the task, networks are given small “nudges” across trials, 
fractional adjustments of the initially random set-up of connection weights between nodes. This a kind 
of “supervised learning”, and each iteration of adjustments gets them closer to the goal. This process 
carves up the structure of the network into distinct spaces. Once the network reaches some desired 
accuracy level when completing the task, the activity histograms of the middle “hidden” layer of nodes 
in response to each of the 25 family members can be plotted into an activation space. Furthermore, 
these responses could then be averaged. The resulting averaged coordinates create exactly the kind of 
“prototype” of one family’s faces discussed above. Performing this analysis on all the families reveals 
how the network’s activation space is partitioned into familial zones.  

The two imagined networks ended up with different encoding strategies in solving their common 
problem, due to their differences in random initial set-up. This is demonstrable by the unique positions 
the prototype points take in each network (see bottom Fig. 10). However, the relative positions of the 
prototype points—with respect to one another—are geometrically similar. Indeed, in this toy-example 
they’re identical. The points form an irregular tetrahedron in both networks, just rotated and translated 
relative to each other.  

This demonstrates the point about relative distances between locations in activation space as the salient 
principle in artificial neural network computation. The relative differences and similarities in facial 
dimensions, between and across family members, is being mirrored in the abstract structure of the 
networks. The latter is a physical analog of the former. The process of nudging the networks 
connective tissue forces the bottom section of the networks to convert those facial dimensions into a 
much leaner amount of information across just three dimensions, the middle three nodes. Each middle 
node takes a variable amount of modulated activity from the input nodes, according to the final set-up 
of the connection weights. The top half of the networks then decode that condensed information into 
the relevant familial pigeon holes, exploiting the difference/similarity relations created within the 
bottom section. No individual node carries “information” by itself, barring the arbitrarily defined 
output nodes (for simplicity in modelling). The collective activity between input and output distributes 
that load instead, in parallel. Each image of a face is encoded into a triplet of activity, and the 
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collective group of triplets form a relational structure whose geometry is sufficiently similar to (at least 
some of) the relational structure of the real faces under examination. Like the orrery from Chapter 1, 
by leveraging similarity and difference relations in their structure, the networks thereby form and 
exploit a structural resemblance relation with the task domain.  

In sum, we can identify a prototype point in a network by its causal connection to the input, e.g. we 
can just observe the standard averaged response to any particular family. This is easy enough. 
However, “What matters is not [a group of prototype points’] accidental location or orientation within 
any given space; what matters is its internal geometry, and the causal connections of its various 
vertices to objective features of the sensory environment” (Churchland, 1998: p. 12). This is why we 
call such artificial neural network models connectionist models. The interpretive logic is a shift away 
from classical thinking, regarding symbols and logical functions, to distributed patterns and connective 
structures.  

This is the second game in town, computationally speaking. Over the last few decades, it has also 
become a tried-and-trusted approach to completing myriad computational tasks. The next section will 
turn to analysing how these different approaches to computational hardware can be said to be 
deploying “representations” in more detail. 

2.4 Symbols, Structures, & Homomorphisms: Philosophical Problems 

This subsection will analyse the different content determining relations that are required to separate the 
competing computational theories described above. It will be a story of two different kinds of 
homomorphism: functional homomorphism and structural homomorphism, respectively.  

Gallistel (1998) writes: 

A mental representation is a functioning isomorphism between a set of processes in the brain 
and a behaviorally important aspect of the world. This way of defining a representation is 
taken directly from the mathematical definition of a representation. To establish a 
representation in mathematics is to establish an isomorphism (formal correspondence) between 
two systems of mathematical investigation (for example, between geometry and algebra) that 
permits one to use one system to establish truths about the other (as in analytic geometry, 
where algebraic methods are used to prove geometric theorems). 

Homo- and isomorphisms are, as Gallistel highlights, a notion recruited from mathematics. These are 
sometimes used interchangeably, depending on how strict an author wants to be, and isomorphism is 
the stricter of the two relations. I take an ambivalent stance towards the difference here, and will use 
them interchangeably. The core concept is that ‘homo’ and ‘iso’ both mean ‘same’, and ‘morph’ means 
‘form’ or ‘structure’. So, a homo- or isomorphism is a structure preserving mapping from one structure 
to another. 

An easy example to visualise a “structure preserving mapping” is between geometry and algebra, as 
Gallistel suggests. The Pythagorean theorem—that A2 plus B2 is equal to C2—is perhaps one of the 
easiest examples to picture. The formal theorem says true things about the geometric domain. By 
manipulating algebraic structures, we can thus reason about geometric structures, because the way that 
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A2, B2, and C2 relate to each other sequentially in the theorem (their formal structure), and then 
causally relate to each other during the manipulation process (their causal structure), preserves 
something about the way that the real sides in a right-triangle relate to each other physically. 

As discussed in sections 1.2 and 1.3, using one system of elements to examine and come into contact 
with another domain is the core of representationalism. However, Gallistel emphasises a functioning 
homomorphism, between “a set of processes” and some relevant aspect of a task domain, as the 
underlying principle that permits a representational interpretation of such processes and their 
constitutive elements. This requires that:  

i) there is a homomorphism between A and B. 

ii) the homomorphism between A and B is sustained by causal relations between them, such that 
variations in A are sensitive to and mirror the variations in B. 

iii) A is exploitable by some user-system to guide its behaviour with respect to B, in a way that 
reflects the relevance of B to the user’s behavioural milieu.  

We can map the variables in Pythagoras’ theorem to the relevant sides of a real right-triangle, so i) is 
satisfied.  Condition ii) is satisfied by virtue of the rules of arithmetic, i.e. the order and type of causal 
manipulation performed on the values of the variables. We can put the rules of arithmetic into some 
computational hardware, e.g. using a combination of an ALU plus memory registers as shown in 2.2. 
As a result, the transformations of the values in that hardware can guarantee some user-system an 
output that can be interpreted as respecting the geometry being computed over. Condition iii) is 
therefore satisfied too. One can use the theorem to solve for the length of a hypotenuse of a right-
triangle because these three conditions are satisfied in the homomorphism between algebra and 
geometry.  

It becomes clear from this picture that what Gallistel really means by a ‘functioning homomorphism’ is 
a functional homomorphism: a structure preserving mapping established and sustained by the causal 
function of the elements within the representing system. This is not surprising, as this is how symbols 
get their content. Symbols represent only in virtue of their functional role, because symbols qua 
physical tokens only arbitrarily relate to their represented objects. However, symbols can be 
manipulated by formal operations in a holistic system of symbols, whereby the causal liaisons of those 
symbols can be made to be homomorphic with certain patterns of causal liaisons present in the task 
domain. For example, it’s not that any one symbolic encoding of a value intrinsically stands in for one 
individual side of a right-triangle. Rather, the system of symbolic encodings can be made to respect a 
trigonometric interpretation if their causal relations are disciplined in a certain way. The way that the 
values encoding A2 and B2 causally function within the system preserves the formal relations between 
the geometric structures that they’re mapped to. This is par for the course in classical computer 
science, and by Gallistel’s lights, so it is for cognitive science: representing systems are symbolic 
systems, necessarily, as only symbol systems can sustain functional homomorphisms — and only 
functional homomorphisms count as genuine content determining relations. 



!43

However, this is not the only way to reason about geometry. There are physical magnitudes that can be 
manipulated in order to perform the same work. That is, geometry can be used to reason about 
geometry. Take a right-triangle you’re faced with, duplicate it three more times, and arrange these so 
that the hypotenuse from each triangle constitutes one side of a square (Fig. 11). One can see what the 
process of “squaring” literally means: it’s the area of the square formed by using the length of that 
side. Move the triangles together so that you are left with two squares of empty space now, formed 
individually by the lengths of the sides you know the values for (see bottom Fig. 11). Given that the 
overall space hasn’t changed, one can reason that this area, A2 plus B2, is equivalent in area to C2. 
Thus, one has reasoned about geometry, i.e. a line (the hypotenuse), by manipulating other geometrical 
structures. 

This may seem a bit trivial, using geometry to reason about geometry. Consider though what sustains 
the usefulness of the shapes created and manipulated in Fig. 11: it is the real and intrinsic physical 
properties of the shapes, not their function. What fixes the content of the representations of geometric 
features in this example are their own intrinsic geometrical features. 

So, remember again that our toy networks did not use elements that function homomorphically to the 
elements in their task domain. The networks successfully pigeon-holed faces by having their 
underlying connective structure, and thereby their activation patterns, partitioned in such a way that 
their intrinsic abstract geometrical structure resembled some relevant counterpart structure in the task 
domain. In the above conditions for a homomorphic relation, i) and iii) remain the same. However, the 
condition in ii) that the homomorphism be sustained by causal relations can be substituted with the 
condition that: 

ii*) the homomorphism between A and B is sustained by structural relations between them, 
such that variations in A are sensitive to and mirror the variations in B.  

The structural relations that constitute the irregular tetrahedrons in the toy-networks’ activation spaces 
are sensitive to and mirror the variations in structural relations between their input. This kind of 
‘structure’ is a real physical structure created by the differences and similarities of the activation 
patterns, analysed synchronically as their positions and distance relations in activation space. This is a 
kind of second-order resemblance: the physical relations in the representing system resemble the 
physical relations in the represented system. The activation patterns don’t individually resemble the 
faces’ first-order properties. However, the relative differences and similarities of the activation patterns 
resemble the relative differences and similarities of faces and families.  

A homomorphism can thus still be mapped between each activation pattern and each individual face 
from the input. However, the meaningfulness of this homomorphism is not sustained by the causal or 
functional relations between the activation patterns, as there are none to speak of. The homomorphism 
is sustained by the physical geometry of the irregular tetrahedrons in the networks’ activation spaces: 
the distances between points, relative to one another. Leveraging second-order resemblance relations, 
i.e. physical analogies in a structural homomorphism, is the underlying principle of ‘structural 
representation’ (see O’Brien & Opie, 2004; 2005).  
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Fig. 11: One geometric proof of the Pythagorean theorem. This example 
demonstrates how the intrinsic geometry of shapes can be manipulated and exploited 
to reason about certain tasks. In this case, one can see that reproducing a triangle 
three more times can allow one to visualise the hypotenuse “squared”, literally. 
Subsequently, moving the triangles, top-left down to bottom-right and top-right down 
to bottom-left, forms different shapes and areas that allows one to reason about the 
relationship between the lengths of the sides to the hypotenuse. See text for details. 



!45

This gives us a picture of connectionism as a non-symbolic mode of computation. Instead, the nodes in 
a network, their activity patterns and their weighted connective tissue, are understood as sustaining a 
structural homomorphism with their task domain. Connectionist networks leverage these structural 
representations because their causal/computational elements are one and the same with the elements 
that sustain the structural homomorphism.  

Connectionist networks are thus analog computational systems. In analog computers, “…it is the 
existence of a relation-preserving mapping between physical properties of the representing vehicles 
and the modelled system that grounds the content of those vehicles” (O’Brien & Opie, 2008: p. 9, 
emphasis added). We have now seen several examples of what a relation preserving mapping sustained 
in physical properties would look like, from orreries to face-recognising networks to moving 
geometrical shapes. Connectionist networks are therefore using geometry to reason about other 
geometries, and formal algebraic reasoning gives way to the exploitation of physical analogies that 
exist between the relational characteristics of physical structures. This is an altogether different 
approach to representation and computation from the digital, classical, symbolic approach. 

In sum, symbols must be made to behave in a homomorphic fashion to their task domains in order to 
be reasonably interpreted as representing that domain. Structural representations, on the other hand, 
exploit an intrinsic structural homomorphism that exists between their own relational/geometrical 
structures, and that of their task domains. A functional homomorphism is a different relation to a 
structural homomorphism, but either could exist between elements of a representing set and the 
elements of a represented set. Gallistel has clearly shoe-horned one kind of homomorphism into his 
general conception of homomorphisms, and how they relate to representation. This is unsurprising 
given that he favours the classical, digital, symbolic approach to computation. If you shoe-horn 
symbolic computation into your general notion of computation, you consequently arrive at functional 
homomorphisms in the same way: at the expense of other approaches. However, we have seen that 
there is a separate approach to homomorphism that can be at least as robust a representational relation 
as the other, and how it can be leveraged in a computational system. The difference in which 
homomorphic relation is being appealed to, and thus which kind of representation is being invoked, is 
the difference between classical and connectionist computation. 

2.5 Computational Tasks & Logical Framing: Engineering Problems 

This subsection will sketch some engineering consequences that result from applying the different 
representing media illustrated above. Given that they require different content determining relations, 
they will depend on different properties of their underlying substrate: either structural or functional 
properties. As a result of this, the two approaches will, at least some of the time, require different 
“framings” of the same tasks, to properly leverage their respective representational media towards 
completing that task.  

This section’s discussion is about task dependence: how you go about completing a task depends, in 
some measure, on the intricacies of the task itself. For example, we saw how reasoning about the 
relations between sides in a triangle using different representing media resulted in different approaches 
to operating over those media. One approach used arithmetic in solving an algebraic formalisation, the 
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other manipulated physical structures in space. However, given the task itself, not just any physical 
structures would fulfil that task. We need to put this notion more concretely into a biological and 
behavioural context though.  

There is universal acceptance that extracting information from the environment informs our later 
behaviours. However, any given aspect of behaviour is informed by elements of past experience that 
may have happened at very different times, and may have been collected from different sources. All of 
these encoded pieces of information must be brought together at the relevant moment for the relevant 
task. What kind of information you collect will trivially constrain what kind of work you’ll be able to 
do with that information. That is, which aspects of your environment your sensory apparatus is actually 
sensitive to will constrain your logical framing of the problem at hand, because it constrains what kind 
of structures you have available to play with. 

Take the problem of navigation. This is a ubiquitous problem for moving animals who venture from 
home to search for and retrieve food, for example. Within this task is the sub-task of location. There 
are many ways to represent one’s own location in space. Humans solve this problem of pinpointing 
location using one of two common systems: ‘Cartesian’ or ‘polar’ coordinates (see Fig. 12).  

Cartesian coordinates define a point in space by its distance across some fixed perpendicular 
dimensions. Take two-dimensional movement for now, just across the X and Y axes. The reference 
point, or origin, is represented as (0, 0), the point at which the two axes meet. If I started there, and 
moved five units across, and ten units up, my location is now the point defined by (5, 10) in the 
Cartesian plane. These units could be anything; metres, centimetres, or natural strides even, just so 
long as they’re both the same.  

On the other hand, polar coordinates define a point in space by its distance, r, from a reference point 
(the pole), and its angle, 𝛳, away from a reference angle. Polar coordinates, therefore, define a line 

between the reference point and your location. These are different representations of the same problem, 

Fig. 12: Graphic representation of two coordinate systems, Cartesian (left) and polar 
(right). Both can be used to represent the location of a point in space, relative to some 
axes that define the dimensions of that space. Details in text.
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but the same kinds of information need to be collected to solve it. However, different types of data 
structures can be built depending on how that information is represented. 

Both coordinate systems require a sensitivity to orientation, and a sensitivity to magnitudes for 
distances. In the Cartesian case, I must keep track of which axis I am travelling in, and how many units 
I’m travelling in that axis, in order to update my coordinates (x, y). For example, if I move diagonally 
north-east for one unit, this can be represented as (1, 1) in the cartesian plane. Moving diagonally 
north-west for one unit would be (-1, 1). I can then keep a running two-column tally to update my 
coordinates. If I’m moving across the east-west axis, I add or subtract units to the x column, and if I’m 
moving across the north-south axis, I add or subtract units to the y column. This method exploits the 
functional homomorphism between algebra and arithmetic with the underlying geometry I want to 
compute over. Take an ALU and memory registers from 2.2 (see Fig. 7), and one can build a flexible 
symbolic data structure to track and compute the changes in my location using simple arithmetic.  

For polar coordinates, I similarly need to track a length of travel, and the angle of that travel, to update 
my coordinates (r, 𝛳). However, consider if I instead used lines on a grid to represent these pieces of 

information. Rather than taking in data regarding my strides, and representing it symbolically, I can 
represent it using another physical magnitude: the length of a line drawn. Similarly, I can take in data 
regarding the angle at which I was travelling, and rather than representing that as a symbolic value (in 
degrees or radians), the angle at which the line is drawn — outwardly from the pole and relative to all 
other possible angles — signifies this information. Iterate this process for each path I walk, and what 
accumulates are groups of lines on the grid. This method exploits a structural homomorphism between 
the geometry of lines on a grid, and the paths taken in actual space. Note that, in contrast to the 
Cartesian case, this is a non-symbolic, non-arithmetical way of computing my location(s) in space. It is 
a different system altogether, and is manipulated in a different manner. 

How exactly I represent values for these variables of distance and orientation thus ultimately determine 
what kind of representing system is better to build and operate over. Perhaps I can only count my 
discrete strides, in which case I may turn to using a symbolic data structure as in a two-column 
Cartesian coordinate system. On the other hand, perhaps I use a stop-watch to time each section of 
travel, in which case I may exploit a polar coordinate system to build lines on a map, such that the 
lines’ lengths are proportionate to some set amount of time. For orientation, if I have a compass that 
shows me where in the cardinal directions I am facing, I may build a Cartesian system. In contrast, 
perhaps I’m in an unfamiliar place, but there are distinct features in one particular direction that can be 
used as landmarks. I may leverage this feature to then estimate my directions of travel calibrated as 
angles of deviation away from the direction of those landmarks, as in a polar coordinate system.  

All of these considerations have non-trivial effects on how we logically frame, interpret, and build 
systems to solve problems. This is the case whether they are automated systems, or systems we build 
with pen and paper. The kinds of variables required to compute over can take various representational 
forms. Those representational forms affect the kinds of systems we build, and those different systems 
come with different methods of manipulation. The rest of the thesis will now analyse one such 
biological example where all of these philosophical commitments and their engineering consequences 
dovetail, in a striking case of animal navigation.  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Chapter 3 

Path Integration & Polarisation-
Sensitive Vision in the Desert Ant 
A Case Study in Basic Cognitive Phenomena 

“Ants are so much like human beings as to be an 
embarrassment. They farm fungi, raise aphids as 
livestock, launch armies into war, use chemical 
sprays to alarm and confuse enemies, capture slaves, 
engage in child labour, and exchange information 
ceaselessly. They do everything but watch 
television.” 
- Lewis Thomas 
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3.1 The Evolutionary Niche of the Desert Ant 

The intriguing foraging behaviour of Desert Ants, in particular the various species of the genus 
Cataglyphis, has been used by C. Randy Gallistel as a paradigmatic example of simple cognitive 
phenomena in animals. Gallistel has gone so far as to say that Desert Ant foraging behaviour is, “…the 
central behavioural phenomenon that people should focus on if they’re interested in the neurobiology 
of computation” (Campbell, 2015). It is intriguing because it is “simple”, in that the ants possess very 
few neurons, especially when compared to humans — the cognitive animal par excellence. 
Nonetheless, their behaviour seems to require a sophisticated computational explanation. We can 
understand why it is so sophisticated by first looking at how the evolutionary niche these ants inhabit, 
i.e. the Saharan Desert floor, imposes several unforgiving constraints on their behaviour. Looking at 
these factors will motivate and make clear why theorists, like Gallistel, believe Desert Ant foraging 
behaviour is an intriguing case study to test the explanatory power of our theories of cognition against 
the world.  

The most important of these environmental conditions is the remarkable temperature range of the 
desert. The extreme heat, by a confluence of factors, ultimately sets a time constraint on the ant’s 
behaviour. Firstly, the surface temperatures on the desert floor reach up to 70°c. This forces the Desert 
Ant to be a carnivore, because not a lot of plant-life can grow in such conditions. It must therefore 
leave the proximity and security of its nest, braving the extreme temperatures, as a solitary hunter 
searching for other dead animals for food. Typically, they eat other arthropods that have died while 
attempting a similar venture. However, the absence of plant material naturally also makes other species 
who share the habitat carnivorous. The Desert Ant must be able to avoid such predation.  

To avoid predation from any larger carnivorous creatures, Cataglyphis bombycina, for example, only 
ventures from its underground nest in search of carrion in a short time frame around noon. At this time 
of day, when the temperature is highest, all the other predatory species retreat to avoid the blistering 
sun. The desert floor is thus only clear for the ant to hunt in solitude and relative safety around noon, 
exactly when it is at its most inhospitable temperatures. The ant’s behavioural adaptation  for surviving 8

these extreme temperatures is to restrict its search time — outward and homeward inclusive — to 
around ten minutes. If the trip lasts much longer, the ant inevitably dies of heat exhaustion, just like its 
intended food source.  

The upshot of all of these heat related constraints is this: the ant needs a fast method of navigating, one 
that provides adequate search time, but also minimises the homeward trajectory. It needs a method that 
allows it to maximise its chances of finding food without incurring extra risk, where an additional unit 
of outward search time does not necessarily add a unit of homeward travel time.  

Two other constraints limit the possible types of fast navigation available to the ant. The desert plains 
are windy, which makes the dropping and retracing of sensory trails useless; and the desert floor is 

 Many genera of ants have developed various other biological adaptations that aid in surviving the heat. These include 8

protective coats to disperse or reflect sun radiation, and specialised proteins that support cellular function above the normal 
critical thermal maximum for short periods of time. Of course, only the behavioural adaptations are important for our 
analysis of their cognitive capacities.
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effectively featureless, which makes any form of long-range landmark navigation unviable. All that is 
left to navigate with is the most predominant feature in the environment; the sun. 

3.2 Path Integration & Celestial Navigation 

If Desert Ants don’t use “landmark navigation”, they must use another technique, called “path 
integration” or “dead reckoning”. The former strategy is an example of allothetic navigation, the use of 
relationships between external cues, whereas the latter is idiothetic navigation, the use of cues that are 
internally generated (Whishaw & Brooks, 1999; Wehner & Srinivasan, 2003). These require distinct 
computational strategies. The goal is the same, i.e. to integrate one’s final position and then reach 
home. However, the information that is available to be processed is radically different.  

Path integration is a technique familiar to human seafarers. This is because the open ocean is 
analogous to the desert floor: it is a featureless and homogeneous expanse, and the movements of the 
water are analogous to the effect that the wind in the desert has in preventing the use of trails as 
information cues. “Path integration” is the use of some effectively stationary features of the sky to 
overcome this poverty of terrestrial (or nautical) information cues.  

Celestial bodies are essentially at infinite distances for observers on Earth. This means that any 
translational movement by a terrestrial navigator —movement in the standard three dimensions— will 
not affect their observed positions in the sky. Only rotational movement —spinning around a centre 
point which does not change — will affect their observed positions. Of course, some of these 
navigationally useful celestial bodies, e.g. the sun, trace variable trajectories across the sky over the 
course of a day and year. This means that any sufficiently long journey that uses the sun’s position in 
the sky must take into account that positional change. So, by matching for specific times, one can use 
these regular and/or fixed positions/trajectories of celestial bodies to determine one’s direction of 
travel at any time.  

This is making use of celestial ephemerides; functions that describe the positions which naturally 
occurring celestial bodies will take in the sky at particular times of day and/or year. Historically, these 
were printed and tabulated into almanacs, a look-up table, in essence. This highlights the etymology of 
the term; ‘ephemeris’ is both Latin and Greek for ‘diary’ or ‘journal’. After keeping track of how far 
(distance) or how long (time) you travel in particular directions using the celestial bodies as compass 
markers, you can sum this information to compute your net displacement relative to point of departure. 
Travelling home is now fast and easy. Rather than retracing all of the parts of your outbound journey, 
which could be numerous and lengthy, just travel in as straight a line as possible from your final 
destination point to home. 

This kind of navigation is exactly what is observed in Desert Ants (see Fig. 13). Upon finding a source 
of food during a foraging trip, the ant will take a more or less straight-line path back to its nest, 
regardless of the complex or seemingly random search trajectory it has taken. Given that it doesn’t 
retrace its outbound path, evidently it doesn’t follow any sensory trails left on the way out, avoiding 
the problem of wind. However, neither is it using proximate environmental features as periodic cues 
with which to pilot its way home. The Saharan Desert floor is, after all, barren of any suitable such 
features. So what information are they using to perform such a sophisticated computation? 
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Experiment demonstrates that Desert Ants will systematically misrepresent the location of their nest if 
they are displaced by experimenters at the moment they find a source of food (Wehner & Wehner, 
1986). Moving them will cause the ant to miss their target by a distance and angle that corresponds to 
the distance and angle of displacement. For example, if their final destination was north east of their 
nest, and they are displaced to the south west of their nest, they will continue to walk south west, 
farther away from their intended destination, instead of correcting their path by heading north east. 
This is a very systematic and proportionate way of committing errors.  

They will also stop and visibly demonstrate “confusion” at having not found their nest by changing 
their straight-line pathing behaviour back into a systematic search procedure. This indicates that they 
hold an internal representation of a homeward path, i.e. something that has a finite length as well as 
direction, and are aware of when that path has been travelled (Wehner & Wehner, 1986). If they were 
using external cues, one would expect the ant simply to recognise how their final position had been 
altered by the experimenters, and adjust for this accordingly by piloting for as long as necessary. 
Instead, they simply walk to where their nest should have been, had they not been interfered with. 

On their very first foraging trip, the terrain they cross on the path home could be entirely novel 
territory that wasn’t covered on their outbound trip, further reinforcing the notion that they are not 
using chemical signposts or landmarks to reflexively navigate with. This instead favours the 
hypothesis that they use some form of path integration and dead reckoning, at least part of the time. 

Fig. 13: Graphical representation of the foraging journey of an individual ant, Cataglyphis 
fortis. The foraging path is represented by the solid black line, the return path is represented 
by the dotted line. N, nest; F, feeder location where the ant found food, marking the 
beginning of the return path. Small solid circles represent time marks, given every 60 
seconds. (Figure from Müller & Wehner, 1988: p. 5288)
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We now have some initial broad strokes of what informational states the ants are exploiting. The 
proportional way they misrepresent in the experimental conditions described, combined with their 
distinct “halting” of path-making behaviour, strongly suggests that they are internally representing and 
computing over vectors  specifically, not any other absolute and external spatial relations. The ants are, 9

therefore, performing some biological approximation of vector addition . Vectors are quantities that 10

possess both direction and magnitude information. We commonly represent vectors graphically as an 
arrow, as arrows concisely capture the notions of directionality and length. For example, ‘velocity’ is a 
vector, in that it represents the rate and direction of displacement, i.e. how fast an object is travelling, 
and in what direction.  

For navigation purposes, there is an obvious and natural relationship between one’s velocity and one’s 
path-making, because the latter can be derived from information about the former. More time spent 
travelling in a particular direction overall, or travelling at a greater speed, entails a greater distance 
covered in that direction. That is, it leaves a longer path laid down in one’s wake. Straight-line paths, 
once laid down, are also describable as vectors: they begin at a point A and persist to some point B, 
giving them a natural ‘directedness’ and length. At some suitable scale, each small subsection of the 
outbound journey of the Desert Ant (see Fig. 14) can be described (or approximated) as a short linear 
path. The overall computational task involved in computing net displacement is therefore one well 
suited to the mathematical language of vectors and vector addition.  

A wealth of empirical evidence supports the model of Desert Ant navigation by path integration and 
vector addition. Most of this data is informative because of the systematic way that animals who 
exploit this navigational method make navigational errors. These systematic errors are manipulated 
and observed when the creatures are artificially exposed to redacted, or otherwise suboptimal 
information that would normally not occur in the regular and natural conditions of their foraging 
behaviours.  

For example, the method that ants use to gauge and keep track of distance (the magnitude component 
to path integration) was experimentally tested by artificially lengthening or shortening their legs as 
they were beginning their homeward journeys (Wittlinger, Wehner & Wolf, 2006). When the legs of a 
foraging ant are surgically shortened they systematically undershoot their target. The opposite result is 
found when their legs are lengthened. This suggests that proprioceptive signals called ‘efferent copies’, 
that fire whenever movement of the legs is initiated are being used as an idiothetic measure of 
distance. This makes use of the natural relationship between velocity and path-making; taking longer 
strides or more frequently engaging movement of the legs entails a greater distance travelled. Shorter 
legs require more time to travel the same distance than longer legs, assuming the same speed of 
engagement. Efferent signals are thus an accurate and accessible proxy for measuring distance, at least 
in natural conditions where leg-length remains constant. The use of efferent signals in ants has been 

 Throughout this discussion I use the term vector in this sense of a physical vector, or the mathematical quantities used to 9

describe them. Connectionist literature, as in 2.3, sometimes refers to activation patterns across a given layer of artificial 
nodes as ‘activation vectors’, and this is not to be confused with the sense used here. While these uses do indeed share 
some similarities, to avoid confusion I strictly refer to vectors from now on as only those quantities that possess direction 
and magnitude in the physical sense.

 Path integration or dead reckoning is also referred to as ‘vector navigation’ in some corners, which reflects the 10

underlying mathematics involved. 
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affectionately (but very loosely) referred to as “step counting”. A more accurate metaphor would 
perhaps describe it as the laying down of a thread, rather than the numerically loaded term 
“counting” (see Wehner & Wehner, 1990). Wittlinger et. al. (2006) dubbed the precise mechanism as 
the “stride integration hypothesis”.  

The method of gauging and tracking direction information in ants has been illuminated by two similar 
types of experimental designs. Both introduce a kind of suboptimal or “poverty of the stimulus” 
condition, where elements of the relevant stimuli are redacted. One type removes temporal 
information, the other removes spatial information. The way the creatures reliably react to the 
systematic variation in these conditions sheds more light on their representational apparatus, and 
therefore, the specific computational strategy they employ. These experiments, and the relevant 
underlying neurobiology involved, however, are much more complicated than the method for gauging 
distance, both in a biological and computational sense. But they are are vital to the discussion. So, the 
next sections will begin looking at these finer empirical details, in order to get a better grip on just how 
the ants successfully navigate their difficult environment via path integration and vector addition.  

Understanding the evolutionary context of the Desert Ant, and the cursory behavioural data above, is 
thus useful in narrowing the problem domain down to a certain extent. At the broadest level of 
analysis , this confluence led us to the conclusion that path integration must be their overarching 11

navigational method. Similarly, a more detailed understanding of the neurobiology involved in the 
determination of directions of travel using celestial information will help us narrow the problem down 
even further: what specifically are they representing about their paths, directions, or locations? These 

 I use Marr’s (1982) levels as a heuristic for what I mean by “levels of analysis”. I don't specifically endorse Marr’s 11

account, however.

V1 = 150°, 1m

V2 = 50°, 2m

(GV) V3 = V1 + V2

Fig. 14: A simplified example of path integration, showing the relevance of mathematical 
concepts such as vectors, and trigonometry. If a creature were to traverse an idealised path 
describable as following the vectors V1 and V2, it could derive its net displacement by 
summing these two quantities together to form a third, ‘global’ vector, represented by the 
broken line V3. Inverting the global vector represents the straight path required to get home. 
The nest, or point of departure, is represented by the grey circle.
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are the practical questions that sit parallel to the ultimate points of contact between connectionism and 
classicism, and between my position and Gallistel’s: how does something neurobiological instantiate 
something representational? However, this will require a somewhat detailed understanding of the 
features in the environment available for the ant to compute with in the first place, i.e. the way in 
which the sun and sky relate to abstract variables like ‘direction’ or ‘time’. Only then can the 
discussion move on in subsequent chapters to modelling how such a celestial compass system can be 
integrated with idiothetic signals for distance, and ultimately exploited to compute a global home-
vector. That is where the rubber really meets the road for the connectionist framework, and some 
arbitration can begin between Gallistel’s criticisms of connectionism’s computational credentials and 
the defence to be put forward below. But first, we need to look at the sky. 

3.3 Problem Subdomain: Mechanics & Features of the Polarised Sky 

Since the pioneering work of Karl von Frisch on the peculiar “dance” of honeybees early in the 20th 
century, it is well established that many creatures use polarised light in the sky as a navigational cue. 
Polarisation is caused by scattering of photons from the sun as they collide with particles in Earth’s 
atmosphere. As a result of this scattering, sunlight can become linearly polarised in certain planar 
orientations. The specific plane in which light is polarised is called the ‘e-vector direction’. 
Polarisation also occurs to various extents, i.e. how much of the light gets linearly polarised in this 
way. Light is, under one description of course, a transverse wave consisting of electric and magnetic 
components oscillating orthogonally to one another (see Fig. 15). The term ‘e-vector’ reflects how the 
electric component is the component of light which is being linearly polarised, which means that it is 
restricted to oscillating within just one plane. Unpolarised light will oscillate in all planes (roughly 
speaking). It is still a transverse wave, however, and so the oscillating electric component moves up 
and down in a specific linear plane while also propagating forwards.   

As a function of the sun’s altitude and azimuthal position (see Fig. 16), this scattering of polarised 
light produces distinctive spatiotemporal patterns of ‘e-vectors’ arranged in concentric circles across 
the sky (see Fig. 17). This pattern will naturally rotate and change its spatial pattern and distribution 
according to the celestial position of the sun, but at any one time a given patch of sky will have one 
direction of e-vector predominating. The rotation and resultant change in the idiosyncratic distribution 
of any e-vector pattern occurs as a function of time of day, time of year (season), and an observer’s 
position on the Earth. That is, it changes with the local solar ephemeris function. For example, the arc 
the sun will trace across the sky at summer solstice is very different from the arc it will trace at winter 
solstice. Similarly, the arcs observed at locations near the equator will be different to arcs observed 
near the poles. The e-vector distribution is therefore highly dynamic and locally idiosyncratic. 
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Fig. 15: Top: graphical representation of light as an oscillating transverse wave. The blue 
line indicates the electric field oscillating in one plane, the red line indicates the magnetic 
field oscillating perpendicular plane. Bottom: representations of unpolarised light, A, and 
linearly polarised light, B, from front on. 

Fig. 16: Schematic representing notions salient to coordinate systems and navigation. The 
altitude, or elevation, is the vertical angle away from the horizon of the celestial body in 
question. Azimuth is the horizontal angle away from a given reference point, in the figure 
this is shown as north. The zenith defines the point directly above the observer.
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Fig. 17: A The distribution of polarised e-vectors in the sky, with the sun (open white circle) 
represented at a solar elevation of 60°. The directions that predominate in any patch of sky are 
arranged in concentric circles around the sun (or anti-sun). The plane of linear polarisation of a given 
e-vector is represented by the rotation of the black bars. The degree of polarisation is represented by 
the thickness of the bars, with the band of maximal polarisation occurring 90° away from the sun (open 
white bars), and the band of minimal polarisation occurring within ~30° of the sun (dotted line). AM, 
anti-solar meridian. B The polarisation patterns for solar elevations of 30° (upper band) and 60° (lower 
band) placed in a horizontal coordinate system. The sun remains depicted at an elevation of 60°. The 
<10% polarised e-vectors are omitted, reflecting their functional absence to the creatures. AM, anti-
solar meridian. (see text for discussion on meridians) (Figure from Rossel & Wehner, 1984: p. 608)
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However, there are two spatial properties of the polarisation pattern that are importantly stable. Any 
idiosyncratic polarisation pattern always maintains two prominent planes of hemispheric symmetry: 1) 
a ‘vertical’ plane formed by the great circle of the solar and anti-solar meridians , and 2) a ‘horizontal’ 12

plane formed by the great circle of maximal polarisation that occurs 90° away from the sun (see Fig. 
17a). E-vectors are always horizontally polarised along the solar/anti-solar meridians, marking a 
division between the left/right hemispheres of the sky. The distribution patterns in both ‘vertical 
hemispheres’ then mirror each other. Similarly, the hemispheres carved out by the band of maximal 
polarisation that cuts across the earth, orthogonally to the solar/anti-solar meridians, mirror each other 
too. However, they do so to a lesser extent for one important reason.  

Within a ~30° band around the sun, light is less than 10% polarised, which is below the sensory 
threshold for biological polarisation detectors. This creates a navigationally salient asymmetry, as e-
vectors are effectively absent in the patch of sky that contains and surrounds the sun. The left/right 
hemispheres still mirror each other in that case, but the solar/anti-solar hemispheres do not. Maximally 
polarised horizontal e-vectors, therefore, always “point” towards the anti-solar meridian; the azimuthal 
position that is 180° away from the sun. Performing experiments on the ants either before sunrise or 
after sunset, or with the sun occluded, demonstrates that they can indeed navigate using polarised light 
in the absence of the sun (Duelli & Wehner, 1973). However, it is the asymmetry in the distribution of 
e-vectors due to the sun’s position, and the relevant mechanics of polarisation, that is important for 
navigation, not the sun’s position (or absence) itself. 

3.4 The Neurobiology of Polarisation Detection & Analysis 

Determining just how the creatures capture and use some relevant aspects of polarised skylight was 
done by experimentally withholding particular spatial or temporal properties of the distribution of e-
vectors across the celestial dome. Observing the systematic navigational errors that accrue when 
animals are artificially exposed to the redacted stimuli then give clues to the computational tasks they 
perform (Wehner & Rossel, 1985; Rossel & Wehner, 1982; Rossel & Wehner, 1984; Wehner & Müller, 
1993). The first kind of behavioural experiment removes spatial components of the pattern of polarised 
skylight (Wehner & Rossel, 1985; Rossel & Wehner, 1982; Rossel & Wehner, 1984). Ants  were first 13

trained to forage at a set feeder location under optimal conditions, i.e. a full blue sky with a complete 
polarisation pattern available. Once trained to forage at this location, they were then made to recall and 
internally reproduce the direction of the feeder location. This was operationalised by forcing the 

 There are various ways to define celestial meridians, and much of the literature cited throughout this discussion fails to 12

delineate which is being used, and can be ambiguous across research groups or papers. Given that this literature uses 
terminology such as, “pointing towards”, or “indicating” the solar or anti-solar meridians, it may be helpful to just think of 
the solar meridian as the half-circle that begins with and includes the sun, and ends 90° away on both sides at the line of 
maximal polarisation. The anti-solar meridian, which can then be thought of as including the anti-solar section or 
hemisphere of the sky, is now something that can be properly “pointed” towards, as its azimuthal position will effectively 
always be asymmetrical. If the anti-solar meridian merely began at horizontal north and south, with the solar meridian 
being the observable hemisphere of the sky, its azimuthal position would always be ambiguous, and “pointing” towards it 
would not make much sense at all. 

 Many of the experiments cited are done on bees, ants, or other insects. Sufficiently similar experiments have also been 13

repeated across many of these species. The navigational behaviour and the underlying neurobiology is sufficiently similar 
that no particular care will be taken to highlight which experiments correspond to which species, unless directly relevant. 
Many of the implications are transferable given the conserved morphology, especially between genera within the family of 
Hymenoptera. Locating sufficient biological precedents, in the more general discussion of the theoretical tools available to 
connectionism, is where the burden of this discussion lies. 
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trained ants to navigate to that location with only one patch of light containing one e-vector direction 
presented, with the rest of the distribution filtered out.  

The ants make regular and systematic mistakes under these conditions, missing the feeder location by a 
specific angular amount. Interestingly, the specific amount of angular deviation depended on which 
specific e-vector direction was presented to them. Experimenters systematically varied the particular e-
vector direction presented to the ant to navigate with and noted the error angle they subsequently make 
for that e-vector. It became clear that the error angle is the same as the angular difference between the 
azimuthal position the ant must expect that particular e-vector direction to occur in (relative to an 
internally produced, fictive line of symmetry), and that e-vector’s real azimuthal position in the sky 
(relative to the actual solar meridian) (see Fig. 18).  

The natural inference is that the ants must produce some internal “map” of vectors, distributed in a 
generalised and symmetrical pattern (see Fig. 19). While any actual distribution of e-vectors changes 
with time of day and year, this static map of vectors demonstrates that the ants assume particular e-
vector directions to occur at fixed azimuthal positions, relative to some discernible symmetry plane 
(e.g., their longitudinal bodily axis). This seems disadvantageous at first, but such a fixed pattern of 
symmetrically distributed vectors can actually capture some important properties of polarised light. 

The neurobiological details underlying this celestial map are also well established, providing a 
confluence between mechanistic and behavioural data (Wehner & Rossel, 1985; Wehner, 1987; 
Labhart, 1988; Sakura, Lambrinos, & Labhart, 2008; Labhart & Meyer, 1999). Beginning at the retina, 
Hymenoptera possess what has been referred to as a “matched filter” in their compound eyes (Wehner, 
1987). A compound eye is a honeycombed structure, made up of many individual hexagonal lenses, 
called ommatidia, functioning in concert. Contrast this with the human eye, for example, which is a 
single lens. In the uppermost dorsal rim area (DRA) of the Hymenopteran compound eye is a 
functionally specialised group of ommatidia, used solely for the detection of polarised light. This 
functionally narrow DRA has been shown to be both necessary and sufficient for polarisation 
navigation (Wehner, 1989b). Within each individual ommatidium of the DRA, two hair-like 
‘microvillar’ UV-photoreceptors are arranged in a cross, perpendicular to each other. UV-
photoreceptors are used because they are highly sensitive to light that is linearly polarised parallel to 
their microvillar direction, and so they activate maximally when exposed to such a stimulus. As the 
angle between the microvilli directions and the orientation of the polarised light stimulus increases, 
their firing rate correspondingly decreases, up to angular differences of 90°. After this point, their 
firing rate begins rising again, as their angle of difference begins to decrease once more.  

These first-order detectors thereby exhibit “polarisation-opponent” properties, in that their respective 
response profiles are sinusoidal functions of the e-vector orientation they are exposed to (Wehner, 
2003). Given that at any moment in time each pair will be exposed to the same stimulus, if the ‘type-I’ 
microvillar receptor is activating maximally, the opposing ‘type-II’ receptor will necessarily be 
activating minimally. The stimulus is necessarily orthogonal to the type-II detector direction if it is 
parallel with the type-I detector. They are, therefore, polarisation opponents. 
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Fig. 18: The experimental design from which the Hymenopteran internal e-vector 
representations were derived. Bees and ants were trained to forage in direction αtr under 
normal conditions with a full e-vector pattern available. During testing, they were 
presented with only an individual e-vector, χ (solid black bar), to navigate back to αtr with. 
In the real sky, χ occurred at azimuthal distance, φ, from the solar meridian, SM (outer 
circle). However, under these experimental conditions the insects navigated towards αt 
instead, deviating by error angle ε, demonstrating that the insects incorrectly assume χ to 
occur at azimuthal distance φ* (inner circle). φ* is the same as φ minus ε (open white bar). 
(Figure from Wehner, 1989a: p. 355)

Fig. 19: A geometric representation of the generalised Hymenopteran e-vector map, as 
inferred from behavioural experiment. It shows the fixed azimuthal position they assume a 
given direction of e-vector will occupy relative to a fixed plane of symmetry. The azimuthal 
position hypothesised for each e-vector was inferred by the way the creatures regularly and 
reliably misrepresent their target location when exposed to only that e-vector. L and R 
indicate the left and right halves of the visual field, respectively. (Figure from Wehner, 
1989a: p. 355)



!60

Having polarisation-opponent receptors creates a greater level of contrast, and thus a greater level of 
polarisation sensitivity one layer back at a second-order interneuron, or “crossed-analyser” (Labhart, 
1988; Wehner, 1989a; 1989b). The second-order interneuron receives antagonistic inputs from the 
perpendicularly opposed first-order detectors. It receives excitatory input from type-I and inhibitory 
input from type-II. The integration of those competing orthogonal signals (hence “crossed-analyser”) 
ultimately shapes the second-order interneuron’s response profile to be highly sensitive to changes in 
e-vector direction. It also becomes more finely tuned to the specific angle of orientation that 
corresponds to the microvillar orientation of the type-I receptors it is connected with (see Fig. 20). The 
enhanced and refined sensitivity at the second-order neuron also aids in filtering out navigationally 
irrelevant noise in the signal, e.g. light intensity, that could otherwise disrupt subsequent processing 
(Wehner, 1989b).  

The DRA of the Cataglyphis has around 70 of these UV-detecting ommatidia, with their respective 
type-I receptors oriented and distributed in a fan-like manner (see Wehner, 1987: p. 523). This begins 
to show why Wehner’s description of this sensory system as a “matched filter” is apt: the retinal 

Fig. 20: Wehner’s hypothetical schematic of the successive layers of polarisation detection 
and analysis in the DRA of the Hymenopteran. Upper most figures show the respective 
microvillar directions of perpendicularly opposed photoreceptors, A and B, and their 
response profiles plotted against e-vector direction. Middle figures depict the response 
shaping effects the antagonistic interaction has one layer back at the ‘crossed-analyser’ 
integrating neuron. Bottom figures depict the totality of these neurons functioning as one 
unified third-order compound filter. SM, solar meridian. (Figure from Wehner, 1989b: p. 71)
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distribution, and overall rate of rotation between these detectors, constitutes what can be thought of as 
a vector field, one that partially matches the vector field that is the celestial distribution of polarised e-
vectors (Wehner, 1987: p. 522). The preferred directions of the retinal detectors in the DRA generally 
change with the same nonlinear rate of rotation as the static e-vector map that was hypothesised, 
lending further weight to the claim that the physical geometry of the system is important to the internal 
vector map.  

The matching is a non-arbitrary result of having second-order ‘crossed-analysers’ each receive inputs 
from separate populations of the first-order photoreceptors. Pooling information from different groups 
of these detectors increases their differential sensitivity to particular orientations of e-vector stimuli. As 
a result of selective pooling, they become “tuned” to more generalised e-vector directions, as in Fig. 
21 (Wehner, 1987: p. 523; Wehner, 1989a: p. 356; Labhart, 1988). Moreover, a bilateral antagonism 
between posterior and anterior sections of the DRA’s supports the proper differentiation and projection 
of e-vector directions. If imagining the functional properties of the creatures’ second-order integrators 
as a “circular” and symmetrical map of e-vectors (as in Fig. 19), identical e-vector orientations occur 
antipodal to each other. By having anterior sections of the DRA send excitatory signals and posterior 
sections sending inhibitory signals, as the creature sweeps around clockwise it can differentiate 

Fig. 21: A Representation of the response profile of a POL-1 large-field integrative neuron 
when separate areas of the DRA are stimulated by a blue-light stimulus. Stimulated areas of 
the DRA shown on the left, their respective spike trains on the right, and the rotation of the 
stimulus is represented by ascending and descending lines beneath. The neuron responds to 
all areas of stimulation, maximally firing at the same angle of rotation in all cases, marked 
by the vertical grey lines. B Representation of the interpretative logic of integration in 
POL-neurons. Three types of large-field integrators and their preferred e-vector orientations 
are shown by the circles with corresponding double-headed arrows. Each one receives 
input from many ommatidia across the whole DRA area, but from different kinds 
depending on their rotation or location (see coloured T symbols). T symbols represent the 
spatial distribution and orientation of excitatory receptors within the ommatidia, an 
enlarged cross-section of which is shown inset. (Figure from Labhart, Petzold & Helbling, 
2001: p. 2428)
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between “front” or “back” projections of identically aligned e-vectors. The same e-vector will 
necessarily activate each eye in opposite sections (see Wehner, 2003).  

The crossed-analysers may also have a complex and pyramidal hierarchy of their own, where many 
narrow-field integrators pass information to a more limited subset of large-field integrators, and so on. 
Nonetheless, the spatial distribution and connection profiles of these second-order ‘crossed-analysers’ 
forms a neurobiological basis for the symmetrical e-vector map hypothesised by the initial behavioural 
experiments, as set out in Fig. 19 (Wehner, 1989a; Fent, 1986; Rossel & Wehner, 1984). Indeed, 
Wehner goes as far as saying that, “…the array of second-order analysers is the insect’s e-vector 
map” (1989b: p. 73, emphasis in original). Whatever hierarchical idiosyncrasies may exist, e.g. across 
species and/or genera, a small number of large field integrators, with axes-of-tuning adequately 
spaced, appears mathematically sufficient to perform satisfactory analyses of celestial polarisation 
patterns . These large-field integrators are called POL-neurons due to their more specific and refined 14

polarisation sensitivity. 

To sum all this up, the ant has built in to its sensory apparatus a ‘matched-filter’. A matched-filter is a 
sensory apparatus, “…in which the spatial layout of a population of receptors is matched to a certain 
spatial aspect of the navigational problem to be solved” (Wehner, 1987: p. 512). However, the 
matched-filter must be exploited in some manner in order to determine compass directions for 
orientation. To do this work, Wehner (1989a) postulates the ‘scanning hypothesis’ .  15

While navigating, the Desert Ant, “…stops every now and then and performs what looks like a 
graceful little minuet, a partial or full turn about its vertical body axis” (Wehner & Wehner, 1990: p. 
41). The function that this rotatory movement fulfils is locating the symmetry plane carved out by the 
solar/anti-solar meridians . It achieves this by “sweeping” the matched filter of the DRA across the 16

polarisation pattern in the sky (Dacke, Nordström & Scholtz, 2003). Given the geometric and 
neurobiological details of the retinal filter discussed above, as the ant completes a rotation, it will 
produce a wave of summed receptor responses across the second-order interneurons. The sum of the 
responses from the retinal receptors will reach a maximum value whenever the ant’s retina is optimally 
matched with the current celestial e-vector pattern. That is, best fit is achieved whenever the ant’s 
longitudinal body axis is aligned with the solar/anti-solar meridians. The ant can then use this 
information as a natural cue: the symmetry plane is a reference angle or calibration point that can be 
found in any pattern of polarised skylight, at any time. Mechanistically, it will do this by registering 
the neuron(s) associated with the peak of the time-modulated responses across the second-order 
analysers. Under normal conditions, this will allow it to align itself with the solar/anti-solar meridian 
(see Fig. 22). 

However, given that the more polarised part of the sky is farthest away from the sun, any horizontally 
oriented e-vector will necessarily be indicative of the anti-solar meridian (or anti-solar part of the sky), 
not the entire meridian line. This ensures that even in the absence of the sun, because of cloud-cover or 

 More explanation on why this is the case in Chapter 5. 14

 The scanning hypothesis has been supported by other experimental results, the details of which are beyond the scope of 15

discussion here (see Rossel & Wehner, 1986).

 See 3.3 & Fig. 17 for a recap on meridians.16
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experimental intervention, maximal activation will occur when the ant is aligned towards the anti-solar 
section of the sky specifically, and can use that as its calibration point. With a necessary bias towards 
seeking out the anti-solar meridian, and setting that as the reference angle, it can be used to define the 
azimuthal positions of all other directions. This exploits the unique spatial asymmetry of polarisation 
scattering. Namely, it exploits the effective lack of any such scattering within a ~30° band around the 
sun  (Rossel & Wehner, 1982).  17

This completes the story as to why we observe the navigational errors that initially led to the internal 
“vector map” hypothesis, and the subsequent postulation of the scanning hypothesis: when only one e-
vector direction is available for the ant to process, the relevant neural dynamics during rotatory 

 How the creatures discriminate between the solar and anti-solar meridians is thought to also involve parallel processes 17

that analyse differences in spectral information as well as degrees of polarisation that arise at those points (Wehner, 1989a: 
p. 356; Wehner, 1989b: p. 77; Fent, 1986; Rossel & Wehner, 1984). For example, the ratio between light of long 
wavelengths (460–700 nm) and light of short wavelengths (300–460 nm) is higher in the solar hemisphere than in the anti-
solar hemisphere of the daytime sky (el Jundi, Pfeiffer & Hoffberg, 2011: p. 9). Cataglyphis ants have been demonstrated to 
univocally orient towards a 90° (horizontal) vector as if it were indicative of the anti-solar meridian, and successfully 
navigate even at times near sunset or sunrise, when the polarisation pattern is ambiguous, but the spectral and intensity 
gradients are not. Spectral gradients are thus operating as an effective redundancy when the preferred source of 
navigational information is unsatisfactory or unavailable (Fent, 1986). 

Fig. 22: Idealised representation of the mechanics involved in scanning the polarisation 
filter across the sky. Upper figures show the celestial dome, with full polarisation pattern 
available (A) or a single e-vector in one patch of sky (B), for one given latitude. The black 
bars represent the direction of e-vector. Lower figures show the Hymenopteran vector map/
polarisation filter in the DRA, with microvillar/tuning directions shown by the open white 
bars. Solid black lines represent the symmetry plane of the skylight (upper) and 
longitudinal body axis of the creature (lower). In A best fit is achieved when both planes of 
symmetry coincide. In B, best fit is only achieved after the animals deviate from the actual 
symmetry plane of the sky. In this case, deviating by 30° to the left is required, 
demonstrating how the subsequent navigational errors accrue from initial inaccuracies in 
calibration. (Figure from Wehner, 1987: p. 522)
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scanning movements are interrupted, such that the maximal value of summed receptor responses is 
shifted towards where that e-vector direction is located within the spatial schema of the internal vector 
map. The ant ends up aligning itself incorrectly in the world, towards where that single e-vector 
direction is in relation to its own internal, ‘fictive’ anti-solar meridian, rather than where that e-vector 
is positioned relative to the veridical anti-solar meridian. The error angle displayed is commensurate 
with the neurobiological details of the celestial map, and the behavioural evidence for the scanning 
hypothesis (Fig. 18 & 22). Note that it is not the case that the presentation of single e-vectors only 
activate those detectors which match its orientation perfectly. All the detectors get activated to some 
extent during scanning movements (unless and until they are orthogonal to the e-vector stimulus). It is 
their variable activation rates taken together — caused by their greater or lesser directional match with 
the e-vectors in the sky, in concert with clever wiring and distribution — that determines how the 
creature eventually aligns itself in the world.  

Other insects similarly perform spinning movements, and are hypothesised to do so for the same 
calibration reasons, e.g. dung beetles (Dacke, Nordström & Scholtz, 2003: p. 1540). The scanning 
hypothesis is thus well supported empirically, with verification coming from various related species. 

3.5 Tracking the Moving Sun 

While a confluence of neurobiological and behavioural evidence for both the scanning hypothesis and 
the matched filter is very compelling, such an elegant but economical mechanism naturally has its 
disadvantages. It inevitably leads to some error rate, even under normal conditions. An important gap 
in the discussion so far has been a focus on deriving compass information synchronically from a static 
pattern of polarised skylight. However, the azimuthal position of the sun obviously moves as time 
passes. By implication, the calibration point the ant uses, the anti-solar meridian, changes with it. At 
first glance, this may not be so disastrous, as not much time actually passes between the foraging and 
return legs of the ant’s navigational task. This is particularly true in the case of Cataglyphis 
bombycina, for example. As discussed earlier, the heat based time constraints limit foraging to around 
ten minutes, and even at local noon when the sun’s azimuthal rate of change is highest, it doesn’t move 
all that far. This minimises navigational error, making the matched filter sufficiently adapted to the 
creatures’ environment. 

However, ants do seem to possess some “knowledge” of the long term movements, and even more 
interestingly, that changing rates of movement, of the sun across the sky. That is, not only do they 
display some knowledge of how the morning and evening polarisation patterns are 180° mirror images 
of each other, but also that the sun’s azimuthal rate of change is nonlinear: the higher the elevation of 
the sun, the smaller the circle its trajectory traces around the Earth. The sun thus completes more 
rotational change in the same increments of time when at higher angles of elevation.  

This leads to the second type of experimental setup, which omits temporal aspects of the polarisation 
pattern in the sky. Several experiments took Cataglyphis ants and restricted them to only seeing the 
sun and sky for a set period of time. This was done just as they were beginning their foraging lives  18

 Forager ants come in identifiable cohorts, with rapid replacement and turnover rates, and a foraging lifespan of around 5 18

days (Wehner,1993). 
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(Wehner & Lanfranconi, 1981; Wehner & Müller, 1993). Some were restricted to seeing the sky only 
for a few hours in the early morning, around dawn to 9:30am solar time (Wehner & Müller, 1993). 
Other groups were restricted to only viewing the sky around local noon  (Wehner & Lanfranconi. 19

1981). Both experimental groups were allowed to forage under these conditions normally, but then 
caught and kept in the dark at the close of the experimental window. They were then reintroduced to 
their colony after sunset by the experimenters. Thus, any knowledge the ants could derive directly 
from experience about the sun’s azimuthal positions and rates of movement across the sky was 
severely limited. This procedure was repeated for several days, until on the final day they were again 
caught and kept in the dark, but released into a testing area at various later times to navigate back to 
the colony by themselves. Having had no prior experience navigating at these times, this procedure 
allowed for clear demonstrations of what the ants knew about the sun’s movement, and how accurately 
they inferred such movement from very limited experience, if at all.  

The results are staggering given the relative paucity of information available during the training phase. 
Ants that were allowed to forage in the morning and then tested in the afternoon clearly expected the 
sun to have moved ~180° from where it was when they had been exposed to it (Fig. 23). Similarly, 
ants that were trained and exposed at around noon accounted correctly for the slowing rate of 
azimuthal change when released and tested in the evening (see Figure 2 in Wehner & Lanfranconi, 
1981: p. 732). A similar but slightly adjusted procedure that tested ants only an hour after their training 
phases produced a more fine-grained result, giving us a combined picture that the ants’ internal 
representation of the azimuthal rate of change of the sun is a loose generalisation of the real sun-
azimuth curve (Fig. 24). These effects were cancelled out in the longer procedures where 
underestimations were roughly counterbalanced by overestimations across trials, and vice versa.  

Even though they may overestimate the lowest rates of movement of the sun’s azimuthal position and 
underestimate the highest rates, we can clearly see that their expectations resemble the general 
relationship between time and azimuthal rate of change. It picks up rapidly and peaks with local noon, 
then drops off markedly at first, with a slowing rate of decline after that, thus approximating the 
nonlinear rate of change of the real sun-azimuth curve. 

Two hypotheses can be dismissed in light of these data: the ‘interpolation’ and ‘extrapolation’ 
hypotheses (see Fig. 23) (Wehner & Müller, 1993). The former assumes the ant linearly interpolates 
between the prior positions of the sun that it was exposed to and then extends that interpolated function 
into the periods when it was isolated in the dark. The latter assumes a linear extrapolation from the 
most recently observed rate of movement of the sun to its estimated current position. As in Fig. 23 
(lines B and C), the predictions of these hypotheses are demonstrably inconsistent with the behavioural 
data. Moreover, they would be poorly adapted functions for approximating the actual local solar 
ephemeris function, were the ants to use either of them. Wehner and Müller (1993: p. 333), on the basis 
of these results, conclude that, “…Cataglyphis is informed innately about one general spatiotemporal 
aspect of the sun’s 24-h course, namely, that the angular position of the solar meridian at sunrise and 
sunset lie opposite to each other”.  

 Local noon is whenever the sun is at its highest, which may obviously differ from 12:00pm local time.19
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Fig. 23: Azimuthal positions of the sun in the afternoon as assumed by ants, Cataglyphis 
fortis, who only had prior experience of its location and movements in the early morning 
(lightly shaded area). The black bar indicates the training time, during which they were 
trained to forage at a particular location (~9am). Data points show the positions separate 
groups assumed the sun to have moved to, as deduced from their homing behaviour during 
testing (groups were kept in the dark for ~4:32, ~5:54, and ~7:22 hours, respectively). A, 

Fig. 24: Errors made by ants, Cataglyphis bicolor, while trying to compensate for the daily 
azimuthal movement of the sun. Solid lines represent the actual sun-azimuth curve for the 
times and location of experiment. ω, change in azimuth position per hour (deg h-1). LST, 
local solar time. Broken line, local noon. The data points indicate the ants’ estimates of the 
rate of change in the sun’s azimuthal position during the time that they were caught and 
restricted by experimenters, as deduced from their subsequent homeward courses. Details 
in text. (Figure from Wehner & Lanfranconi, 1981: p. 733)
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However, perhaps the ant’s representation of the solar ephemeris function is filled in with more detail 
on the basis of local experience. This is tentatively supported by experimental data where ants that 
were tested at local noon failed to accurately predict the sign of the ephemeris function. That is, they 
estimated that the sun would move west-to-east, rather than east-to-west, over the course of a day 
(Müller, 1987: cited in Wehner & Müller, 1993). The ants that guessed wrongly subsequently 
navigated in the complete opposite direction than required. More recent work has added to this 
hypothesis that learning through experience can play an integral role in path integrating animals. In 
particular, an effect has been observed for more junior members of foraging cohorts (Grob, 
Fleischmann, Grübel, Wehner, & Rössler, 2017).  

Central place foragers, like Desert Ants, use other cues like smell, and panoramic view snapshots, to 
locate their nest when coming into close proximity to it at the end-stages of their return trip. As ants 
transition from interior colony worker to exterior hunter, they perform practice runs to learn these cues 
by performing looping walks around their nest over the course of three days (Grob et. al., 2017). 
During these learning walks, they periodically make sharp turns back in the direction of their nest. This 
behaviour is presumed to be part of forming snapshot memories to calibrate with their external, 
celestial reference system. Experimental tests systematically altered or removed elements of celestial 
information for some groups of ants performing these learning walks, and yet these groups were still 
able to accurately pirouette to the location of their nest (Grob et. al., 2017). The initial reference 
system that aligns their backwards gazing to the nest entrance is therefore independent of the 
polarisation pattern and celestial compass system.  

However, neuroanatomical analyses showed that only the learners who were exposed fully to a 
naturally rotating polarisation pattern had significant volumetric increases to a number of centrally 
located brain regions that receive projections from the DRA and other visual-sensory arrays. These 
brain regions, e.g. the central complex and mushroom bodies, are highly correlated with long-term 
memory formation, learning, and sensory integration. So, while polarised light can’t be the reference 
system used for their learning walks, the moving polarisation pattern is necessary to trigger 
neuroplastic events in regions correlated with integration of the celestial navigation system.  

Ultimately, an innate general template that lets the ant estimate how the morning and evening positions 
of the sun are roughly mirrored says nothing about the important stages in-between. As mentioned 
earlier, the specific trajectory the sun takes across the sky is locally unique to geographical location as 
well as time of year. The sun takes a low and short arc at winter solstice, a higher and longer arc at 
summer solstice, and a roughly identical one all year round if you’re located at the equator. Given that 
Cataglyphis bombycina only forages at a time of day when the sun’s rate of azimuthal change is 
highest, and is not located at the equator, it seems reasonable that there would be some selection 
pressure to become informed, or capable of learning about these local details. Moreover, as the Grob 
et. al. study suggests, only the naturally moving polarisation pattern engages a number of neuroplastic 
changes to brain areas related to learning and memory. There is something being learnt about time, or 
about something that is itself sensitive to time. 

The upshot of this final section is that the data at hand suggest three conclusions. First, there is a gap in 
the built-in knowledge of Desert Ants, where the creatures need to learn some specific details about the 
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local ephemeris function through experience. Secondly, it suggests that there can, at least some of the 
time, be a lack of such information that can negatively impact navigational success (e.g. guessing the 
sun’s movement will be west-to-east). Finally, and importantly, any process of refinement of the 
general template to more closely fit the local ephemeris function must be reconciled with how they are 
innately informed about those more general properties of solar ephemerides and polarisation patterns.  

To boil it down, we must go on to ask: what aspects of the local solar ephemeris function do the ants 
actually learn, if any, and by what mechanism? However, as forewarned in 2.5, how we first 
understand and interpret the manner in which Desert Ants collect and represent their sensory data, the 
data that can inform a computational mechanism that performs path integration, will significantly 
affect how we theorists go on to frame this problem regarding the Desert Ant navigational system, and 
its system for learning and adapting to time. Before we can tackle the problem of learning, we must 
fully understand their representational schema, and computational framing, first.  
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Chapter 4 

The Explanatory Demands of 
Desert Ant Navigation 
Conceptual Limits & Practical Challenges 

“How could one encode a number using changes in 
synaptic conductances?”  
- C. Randy Gallistel & Adam King  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4.1 Gallistel on the Constraints of Computation 

Learning the local ephemeris function represents a distinct challenge. Even though any natural 
foraging excursion by a member of the Cataglyphis family is short enough that such knowledge of the 
ephemeris function seems superfluous, they nonetheless demonstrate an amazing ability to account for 
it when artificially forced to. The challenge is: 

Thus in order for the ant to use polarized skylight as a reliable source of directionality 
information, it must in some sense ‘know’ how patterns of skylight polarization correlate 
with time of day in the local environment; that is, it must know the local ephemeris 
function. […] 

To register such correlations, the insect brain clearly must have some way of matching 
information about skylight polarization patterns with information about time of day.
(Morgan, 2014: p. 69, emphasis added) 

The idea that computation is the driving force behind successful navigation returns to the fore here, as 
a conceptually rich explanatory framework for understanding just how the ants could correlate 
particular polarisation patterns with particular times of day. Put another way, the ants could use bread-
and-butter computational processes to encode, link together, and recall values for polarisation patterns 
and time. In doing so, they would be building a familiar kind of malleable but faithful data structure, as 
in 2.2, that informs them about the local ephemeris.  

However, this computational approach has a couple of obvious implications. First, organisms must be 
sensitive to the kinds of information required to perform that computation. Second, such information 
must be preserved over time with adequate fidelity. If information storage is leaky, noisy, or otherwise 
"lo-fi”, computation will produce misleading results. Only an organism that reliably registers and 
stores information is capable of performing those tasks that fall under the cognitive umbrella. In other 
words, cognition requires the ability to learn and to memorise — two distinct but necessary capacities: 
“learning is the extraction from experience of behaviorally useful information, while memory is the 
mechanism by which information is carried forward in time in a computationally accessible 
form” (Gallistel & King, 2010, p.279). For the Desert Ant, it must learn and memorise the local 
ephemeris function. 

Gallistel argues that, “[all] of this presupposes a symbolic memory, a memory capable of encoding 
information about the world and the animal’s relation to it and carrying that information forward in 
time in a computationally accessible form” (2008: p, 234; cited in Morgan, 2014: p. 71). Moreover, 
Gallistel believes that having a classical symbolic read/write mechanism is, “…essential to 
computation and representation” (Gallistel & King, 2010: p. 230, emphasis added). Gallistel believes 
that there can be no real-valued representations of environmental variables without a symbolic read/
write head. By implication, only an organism with a symbolic read/write mechanism is capable of 
completing a task such as path integration and dead reckoning.  

So, for Gallistel, successful dead reckoning relies on the ability to store symbolic representations of  
values for relevant variables, e.g. ‘distance’ and ‘direction’ of travel. Subsequently, there must be a 
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mechanism to retrieve and manipulate those symbols to compute a return path. In short, dead 
reckoning requires a system capable of calculating with numbers. This is where connectionism runs 
into trouble, says Gallistel. He claims that connectionist networks have no reliable means of storing 
numbers (Gallistel & King, 2010: p. 279), and given how computation allegedly works, this implies 
that connectionist networks are powerless to compute the trigonometric functions required for dead 
reckoning. 

The problem for connectionism is distilled neatly into a single piercing question, “[how] could one 
encode a number using changes in synaptic conductances?” (Gallistel & King, 2010: 279, emphasis 
added). In this quote, Gallistel is referring to the orthodox Hebbian (Hebb, 1949) framework of 
learning and memory formation in the cognitive and neurosciences, i.e. the “neurons that fire together, 
wire together” principle. Gallistel is right in asserting that connectionist learning and representation 
relies heavily on the Hebbian model of synaptic strength adjustment (see 2.3).  

However, if connectionism’s primary conceptual tool cannot sustain symbolic representations with 
which to learn and store the relevant information, then it can’t compute the requisite trigonometric 
functions to achieve path integration. Gallistel and King (2010) make these arguments concrete by 
demonstrating how they apply to a neural network model of path integration developed by 
Samsonovich and McNaughton (SMc) (1997: p. 5902) (Fig. 25).  

First, the SMc model is computationally expensive, to the point of biological implausibility. It works 
by using a rectangular array of neurons to constantly integrate various pieces of information, like 
‘speed’ and ‘direction’. The integration process creates a localised “bump” of activity within that array, 

Fig. 25: Samsonovich and McNaughton (1997: 5902) Attractor Network Model of path 
integration in the rodent hippocampus. A ‘bump’ of reverberating neural activity in the P-
array of neurons is understood as a self-sustaining attractor. The bump and its movements 
estimate absolute position across the planar environment. The bump is created by 
integrating information about heading from H, with efferent signals from some motor 
pathways, M. 
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sustained by reverberatory loops. The movements of the bump of activity across the planar array of 
neurons represents the absolute position of the animal traversing the two-dimensional floor of its 
environment (Samsonovich & McNaughton, 1997). This central array alone, however, has more than 
two billion synaptic connections, and the entire SMc model has around one million model-neurons. 
Unfortunately, the ant brain has somewhere between a quarter of a million and a million neurons. Even 
with a million neurons, presumably the ant brain does much more than just path integration. The SMc 
model costs more in computational resources than biology can afford for the Desert Ant. 

The second issue is the SMc model’s use of reverberatory attractor dynamics to sustain the ‘bump’ of 
activity. The problem here is that while Gallistel and King concede that a reverberatory loop is the only 
mechanism in the SMc model that could plausibly implement a symbolic read/write function, they 
don’t think it makes for a very good one (see Morgan, 2014: p. 195-197 for review).  

Information contained in a dynamic, reverberating loop is highly volatile. It takes an extremely 
specific set of target conditions to get the attractor bump going in the first place, and when it is up and 
running, the level of noise present in the recurrent connections will affect how long it will remain 
stable. Each time the loop goes around you need only lose a small amount of fidelity in the signal due 
to biophysical noise for it to rapidly amplify into massive amounts of information corruption in 
subsequent passes.  

For the representational strategy of the SMc model, this is disastrous. The SMc model uses an entire 
array of neurons to encode a single variable, i.e. the animal’s integrated location. The symbolic value 
for that encoded variable is given by the position of the reverberatory bump in the central planar array. 
This is a ‘place coding’, and therefore any noise induced corruptions in the shape and position of the 
bump will lead to misrepresentations of location.   

As it happens, the SMc model puts in place a number of idealisations, one of which serves to 
effectively eliminate the presence of noise (Morgan, 2014: p. 187-188). Even with this idealisation in 
place, the SMc model only reports stable activations over 6 seconds of simulation. Gallistel and King 
(2010: p. 262) duly point out that Desert Ant expeditions can last into the tens of minutes.  

Gallistel and King see this as demonstrating the conceptual problems inherent in connectionism. All 
connectionist networks are burdened by the lack of a faithful symbolic read/write mechanism, which is 
necessary to store and compute over the values required for intelligent action. Connectionist networks 
pay the computational price by requiring implausible amounts of complexity, as demonstrated through 
the SMc model. Even with exorbitant resources, the stability and resilience to noise of reverberating 
loops remains unproven over the lengths of time required. Connectionism is therefore doomed as an 
explanatory programme in cognitive science, as it can’t even handle a rudimentary example of 
intelligent action like that of the Desert Ant. If we call the brain a computational device, and our model 
of the brain’s computational hardware lacks the central and defining feature of computing machines, 
then that model can be discarded. 
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4.2 The Straw-Man & Synapse Adjustment Reconsidered 

The problem with the above criticism from Gallistel is that it 1) makes no reference to the analog 
framework for understanding connectionism, and 2) is an incomplete analysis of the task domain. The 
way the problem is pitched is, naturally, a consequence of Gallistel’s theoretical commitments. 
Gallistel believes only symbols, disciplined by a read/write mechanism, can be made to sustain a 
functioning homomorphism with some relevant quantities in the ant’s environment. And only 
functional homomorphisms can underwrite knowledge structures rich and flexible enough to inform 
behaviours such as path integration.  

First, this is a straw-man of connectionism. Analog computers are distinct machines with a distinct, 
non-symbolic representational medium (see 1.3 & 2.3). They use structural representations, and thus 
don’t create symbolic data structures. So, when Gallistel criticises the SMc model for not instantiating 
a faithful read/write mechanism with which to create a symbolic data structure that matches times of 
day with patterns of skylight, this completely misses the point of connectionism. Moreover, the SMc 
model is decades old. Even if it is “representative of a large class of models” (Gallistel & King, 2010: 
p. 265), it is not the only class of connectionist models that tackle the problem of integrating location.  

Gallistel may want to argue that symbolic representations are superior to structural representations. 
However, that argument is never made. Symbolic representations, functional homomorphisms, and 
classical computational mechanisms like read/write heads are all taken as the only possible options on 
the menu. Gallistel puts a lot of theoretical work into substantiating the usefulness of these classical 
concepts, of course, they’re not merely asserted without justification. Using these concepts to measure 
connectionism’s theoretical viability is still a straw-man though if connectionism fundamentally 
eschews these notions for some alternatives. The alternatives must be met on their own merit, as the 
usefulness of these alternatives is also substantiated in a vast body of literature. Ignorance of this 
literature and how it places the notions of structural representation, structural homomorphism, and 
analog computation in an independent framework cannot save Gallistel from being hoist by his own 
argumentative-petard. The strong and explicit claims that 1) the behavioural data on Desert Ant 
navigation “presupposes a symbolic memory”, and 2) that symbolic read/write mechanisms are 
“essential” to computation, are both false. Symbolic read/write mechanisms are essential to digital 
computation only. The assertion that the data necessarily presupposes a symbolic representational 
strategy, and that the SMc model is representative of how all connectionist networks could ever tackle 
problems of location and navigation, leads to the second problem. 

The second problem is that Gallistel makes a parochial analysis of the problem domain. Parochial 
analyses of a problem result in parochial framings of the possible engineering solutions therein. As 
introduced in 2.5, different methods are available for representing values for the same kinds of 
environmental variables. These various representational strategies affect the framing of the problem at 
higher resolutions as a function of their own idiosyncrasies. You create different systems altogether, 
like Cartesian vs Polar coordinate systems, depending on the particular representational medium — 
and they require different methods of manipulation.  
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Gallistel is wedded to one particular strategy, i.e. that, “…there must be an addressable read/write 
memory mechanism in brains that encodes information received by the brain into symbols…and 
transports it to computational machinery that makes productive use of the information” (Gallistel & 
King, 2010: p. viii). As a result, he is actively looking to frame the problem of Desert Ant navigation in 
a symbolic fashion. That is, he is working on the assumption that the only sensible way to 
computationally frame the problem is that the Desert Ant must be explicitly representing 1) 
idiosyncratic patterns of polarised skylight, and 2) times of day. This is because the skylight patterns 
change with time. If the ant is using the skylight pattern for orientation, the ant must update and take 
into account its dynamic nature. The ant therefore must cross-check a stored almanac that matches 
values from 1) with values from 2) when faced with some real pattern of skylight during navigation. 
Thus, the only way to make values of a polarisation pattern reliable for navigation is to have them 
time-matched: 

…the ant’s brain must record specific registrations between polarization patterns and 
times, and carry these forward in time, so that they may be integrated into a running 
estimate of the ephemeris. (Morgan, 2014: p. 71) 

The only sensible way to represent and match variables like ‘times of day’ and ‘patterns of skylight’ in 
an addressable almanac is to have them represented symbolically. These time-matched patterns, 
tabulated symbolically, thus explicitly represent the ant’s learned estimate of the local solar ephemeris 
function. Such a symbolic data-structure can be stored and updated, then withdrawn and operated over 
when necessary in order to successfully dead reckon.  

However, section 2.3 showed that there is an independent representational medium available for 
cognitive scientists to appeal to, which can in turn suggest a different computational logic for solving 
the problem. First, what if the ant is not using polarisation patterns for orientation in the explicit 
manner that Gallistel suggests? Second, if it isn’t, we must reconsider the theoretical significance of 
synapses and their malleable weights as the method of updating any knowledge-structure the ant in 
fact possesses. This is because representation is, in an important respect, prior to learning. One’s theory 
of representation will inform one’s notions of learning, because different representations require 
different methods of changing or updating their contents. And what is learning, if not changing or 
updating the contents of one’s representations of the outside world? 

There is universal acceptance that information extraction from experience is mediated by synapse 
adjustment. But what is the theoretical significance of this biological process? Gallistel says changes in 
synaptic connectivity cannot be interpreted as the store of information extracted from experience 
which informs later behaviour. This is because synapse adjustment cannot instantiate and store 
symbols. He writes, “[Synapse adjustment] may explain reflex modification phenomena, but it does 
not explain the learning of behaviorally important facts and the formation of data structures” (Gallistel 
& Matzel, 2013: p.172). Using a structural representational interpretation, this can be rehashed.  

‘Connection weight representation’ has been postulated as the second and complementary form of 
structural representation in connectionist models, next to activation patterns and their abstract 
geometry (O’Brien & Opie, 2005). The overall pattern of weights modulating input between layers of 
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nodes can themselves be interpreted as sustaining a resemblance relation with some aspect of their task 
domains. Think of the orrery from Chapter 1 once more. The internal geometry created by the spheres’ 
positions, at any snapshot in time, sustains a structural resemblance relation with the real planets, 
which makes the orrery useful as a model of their relative orbits. What sustains that geometry though 
is the set of variously sized gears, i.e. the “connection weights” between the representing spheres.  

In virtue of the gears having their own appropriate geometrical structure, their causal interactions 
which govern the rotations of the spheres resemble the gravitational interactions between the celestial 
bodies and how they create variously sized elliptical orbits. Analogicity is at work then in the 
connective tissue of the orrery. We are licensed in interpreting the gears as representational vehicles, 
and interpreting them as structural representations specifically, because it is their relational geometry 
that sustains a physical analogy via structural homomorphism with an aspect of their task domain.  

So, when Gallistel asks how a “number” could be encoded in a synapse, the connectionist can reply, 
“why would I need to?”. Connection weights, under a proper connectionist interpretation, should be 
considered as elements in a representing set of physical magnitudes, whereby some physical relations 
between these elements track, and can be mapped onto, some physical relations between elements in 
the environment, the represented set. Moreover, this mapping of relations between sets of elements is 
useful and productive to some user of the representing set of elements, insofar as the user is brought 
into some contact with the represented set of elements in the world as a result. They are structurally 
homomorphic, not functionally homomorphic, to their represented domain. 

Reinterpreting neural firings and their connection weights as non-symbolic thus refreshes the way we 
can interpret how the Desert Ant is representing and making use of the polarised skylight patterns. 
Chapter 3 demonstrated that they must know something about time and its relation to the sun’s variable 
arc across the sky. However, if they’re not creating a symbolic almanac, exactly what kind of 
knowledge structure are they building and then leveraging towards the task of path integration and 
dead reckoning?  

The next chapter will look in detail at how a connectionist can invoke structural representations 
towards an analog computational model of Desert Ant navigation and path integration. It will do so in 
a way that respects and draws on the neurobiological and behavioural data analysed in Chapter 3. It 
will also involve reframing the problem away from the “obvious” (and perhaps anthropocentric) 
representational strategy of explicitly representing real idiosyncratic patterns of skylight and time-
matching them in an almanac. Instead, it will look at how assemblies of neurons, and the connective 
structures that modulate their interactions, can sustain physical analogies with certain geometrical 
aspects of patterns of skylight and traversed paths.  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Chapter 5 

Defending the Representational & 
Computational Credentials of 
Connectionism 
Seeing & Solving: Through an Analog Lens 

“[The ant’s] trick is to incorporate the fundamental 
spatial properties of the navigational problem into the 
very periphery of its nervous system, into the spatial 
design of its sensory surface… and there, algebra 
gives way to geometry…”  
- Rüdiger Wehner  
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5.1 Preliminaries: Vectors & Trigonometry in Path Integration 

The relevance of vectors and their relation to various trigonometric functions, and of trigonometry in 
general to the problem of path integration, must be understood properly before we dive headlong into a 
discussion of neural analogs of these concepts in the connectionist tradition. I will demonstrate this 
using the simplified example from Fig. 14. 

We’re given two vectors, representing two outbound paths taken: V1 at 150° with a length of 1m, and 
V2 at 50° with length 2m. The dotted line in Fig. 14 is the unknown global vector we need to solve for. 
The digital, algebraic method through which we humans attack this is “component analysis” in a 
Cartesian plane. This method exploits the fact that any one vector is describable by two other vectors, 
i.e. its components. By breaking each individual local vector down into its X and Y components, 
depicted in Fig. 26a, we can perform some simple arithmetic (Eq. 1) to get a new set of summed X and 
Y components that relate to the global vector. These components complete two-thirds of a right 
triangle, depicted in Fig. 26b. 

By following the formulae depicted in Eq.1, the total displacement across the two axes is summed. 
Here we begin to see the relevance of trigonometric operations to the target behaviour. The sine 
function gives the vertical Y value, with positive values in the upper quadrants, negative values below. 
The cosine gives the horizontal X value, positive values being in the right quadrants, negative in the 
left.  

x3

𝛳

A B

Fig. 26: An illustration of component analysis of two given vectors (A), and the 
subsequent right angle triangle the summed components complete (B) with the 
global vector, side h at angle 𝛳, still needing to be solved for. The values of the 
components, and formulae for deriving them, are depicted in Eq. 1.

V1 = 150°, 1m
V2 = 50°, 2m

(GV) V3 = V1 + V2

x1 x2

y2y1 y3

h



!78

What these functions tell you is the extent to which the angles of the vectors under analysis point in the 
same direction as the angles they are being compared to. In the algebraic case, only two absolute 
dimensions are used, X and Y, so all the vectors being analysed are being compared to 0° (cosine) and 
90° (sine) respectively.  

The first vector points at 150°, so it has a negative value for shared direction with the X-axis (as in Eq. 
1a). Plainly, it’s facing in almost the complete opposite direction. However, it enjoys a positive value 
for the Y-axis, as it’s still pointing upwards to some extent. By modulating the magnitude of V1 (its 
length) by the amount in which V1 points in the same direction as 90° (the sine function) and 0° (the 
cosine function), you learn how much distance V1 also covers in those directions; you learn its 
component vectors.  

Therefore, by walking 1m at 150°, V1 effectively walks a total of 0.5m at 90°, and -0.86m at 0°. 
Mathematically, this sharing of direction is called the projection. The cosine gives you the projection 
of the X-component onto the given vector, and the sine the projection of the Y-component onto the 
given vector. 

The global vector is now just the unsolved hypotenuse of a right angled triangle (side h in Fig. 26b). 
Thanks to Pythagoras, this is a tractable problem. We know two sides of this triangle already from the 
algebraic component analysis performed above (Eq. 1b). The adjacent side X3 is .42m, and the 
opposite side Y3 is 2.02m. To solve for theta first, which is the angle that the global vector is pointing 
in, the appropriate trigonometric function is an inverse tangent of the two known sides, depicted in Eq. 
2a. The length of the hypotenuse, i.e. the distance of the global vector, is then obviously given by the 

Eq. 1: Formulae for algebraic component analysis on two given vectors (A), to 
derive values for the summed components which compose the global vector 
needing to be solved for (B). 

Eq. 2: Formulae for deriving the angle (A) and length (B) of the hypotenuse, 
side h in Fig. 13b . 
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Pythagorean maxim, as in Eq. 2b. We have now integrated our path, deriving a global vector, V3, 
which points in the direction of 78°, with a length of 2.06m. 

5.2 Encoding, Decoding, & Storing Local Vectors in a Neural Network: A Model of 
Path Integration 

With a preferred depiction of analog computation in the foreground (see 2.3, 4.2), and a crash course in 
the mathematics involved with path integration, it is now possible to begin the connectionist response. 
The Bernardet et. al. (2008) artificial neural network model represents a biologically inspired neural 
architecture for path integration in Desert Ants. It models the use of proxies for direction and distance 
information, their integrated encoding and storage, and finally their decoding into a global vector. An 
overview of its operation is as follows (see model architecture in Fig. 27).  

At each moment, the model takes input from the Heading and Velocity units, and integrates them to 
signal the direction in which the creature is travelling, and how fast it is doing so, in the Gater system. 
This is achieved through each of the 36 neurons in the Heading system representing a compass 
direction, and the firing rate of the single Velocity  neuron representing speed of travel. This 20

integrated signal represents both direction and speed of travel. It is, therefore, a representation of the 
ant’s velocity. 

The Gater’s velocity signal will subsequently activate a directionally matched column in the Memory 
system, comprised of 36 columns, each containing 100 neurons. Each of the 36 neurons in the Gater 
system is stochastically connected to all 100 of its corresponding neurons in the directionally matched 
Memory column. In virtue of this probabilistic distribution of connections between Gater and Memory 
columns, the Gater signal has a 5% chance of activating any one of the 100 cells in the column 
corresponding to the current direction of travel. Once activated, the cells in the memory columns 
remain active until the final integration process begins. 

Keeping the cells in each Memory column persistently firing enables the system to stably encode 
information about the path the ant has taken. This is done by exploiting the relationship that exists 
between velocity and displacement. Information about changes in velocity, from Gater, can be used to 
form different, but related, vectorial representations about static paths taken. Again, a path is a distance 
(i.e. a magnitude) travelled in a particular direction. Greater speed of travel (the magnitude of a 
velocity vector) naturally implies that a greater distance will be covered in that direction. So, as a 
particular Gater neuron gets activated more frequently and at higher rates, it will activate more neurons 
in its matching Memory column. This represents a longer distance travelled in that particular direction. 
The Memory columns thereby utilise a population code to encode distance, i.e. the lengths of paths, 
and a topographic coding for their directions, divided into 36 bins of direction. The systems 
downstream can use those 36 individual representations of paths with varying lengths when the walk is 
over by summing them together. 

 This is somewhat confusing, as velocity is already a vector quantity containing heading and speed 20

information. It would more accurately be called the ‘Speed’ neuron, to convey its proper function in the model 
as a simple speedometer.



!80

Fig. 27: The Bernardet et. al. (2008: p. 166) neural network model’s modular 
architecture. See text for details.
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Summation of the vectors is achieved first by each Memory column activating a corresponding 
Memory Sum neuron at a rate that is proportional to the number of persistently active neurons the 
Memory column has. The magnitudinal information about static paths is thereby converted from a 
population code into a rate code. Each of the 36 neurons in Memory Sum are then connected to all 36 
neurons in the Vector Decode layer. However, the synaptic connections these layers are excitatory as 
well as inhibitory. This is so that a Decode cell is maximally activated by its directionally-matched 
Sum cell, activated to a lesser extent by less proximal cells, neither inhibited nor activated by cells less 
proximal again, and finally inhibited by the cells that are farthest away from it. 

This process of squeezing the path information in Memory Sum through the particular distribution of 
inhibitory and excitatory connection weights is what approximates the requisite trigonometric 
operations. The result is that the most active neuron in the Vector Decode layer represents the global 
vector, i.e. the total displacement relative to point of departure. Finally, the ‘winner-takes-all’ (WTA) 
module determines which of these Vector Decode cells is in fact the most active. This cell, 
representing a direction and a distance, then merely needs to be inverted to represent the home vector. 
When tested, the margin of error exhibited by the model was around 20°, which is the margin of error 
observed in actual ants (Mole, 2014). 

5.3 Analogicity & the Structural Representation of Vectors 

It’s clear why a connectionist would want to use this in reply to Gallistel’s worries (4.1). It addresses 
the first problem of computational complexity by only needing 5,187 synaptic connections, in a model 
that has a mere 5,151 neurons in total (Bernardet et. al., 2008). Clearly, this model demonstrates that 
connectionists networks need not always be computationally extravagant, like the SMc model. The 
Bernardet et. al. model is well within the biological range of the Desert Ant. The second, deeper 
problem concerning information corruption is solved by not utilising reverberating loops at all. It 
doesn’t use a place-code representational strategy like the SMc model to represent and track absolute 
position across a two-dimensional plane. The representational and computational strategy is entirely 
different; it uses groups of neurons that resemble vector quantities to store information about local 
outbound paths, and then decodes them to indicate a single path of particular length and particular 
direction, a global vector. 

The first instance where a structural resemblance relation can be seen is in the model’s representations 
of velocity in the Gater system. Vectors have both a direction and a magnitude. Graphically, we often 
imagine vectors as arrows with various lengths, as this illustratively captures their properties. A longer 
velocity arrow represents a faster rate of displacement in the direction in which it points. The model, 
rather than using symbolic encodings, represents these mathematical properties of vectors using 
systems of neurons that share these same properties. 

The integrated signal of the Gater system inherits direction information natively from the initial 
direction-dependent tuning of the 36 Heading neurons, giving the signal its ‘directional’ component . 21

The arrow ‘lengths’ in Gater are then given by their variable activation rates inherited from the 
speedometer, the Velocity neuron. Having both speed and directional information makes the Gater 

 More on inheriting direction information in sections 5.5 & 5.6.21
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signal a physical analog of the mathematical relation it is being used to represent. It is not an ‘analog 
signal’, in the sense of being continuous rather than discrete, but an analog simpliciter; it possesses the 
same mathematical properties. Moreover, the relations between the units in Gater preserve the physical 
relations between the simulated ant’s actual changes in velocity. As the activation passes from neuron 
to neuron, the Gater system tracks shifts in direction topographically, and changing activation rates 
track changes in travel speed. Crucially, the physical relations that obtain between the ant’s actual 
velocity are preserved in the diachronic patterns of activation realised in the Gater module — an 
intrinsic, second-order property sharing (see Fig. 28). 

Secondly, the Memory columns can be similarly understood as structural representations of paths. The 
transient information regarding velocity from Gater is used to encode long-term information about 
paths in the Memory columns. The lengths of these path-vectors are given using a population code 
though instead of a rate code. As above, the thing in the world needing to be tracked, i.e. the path being 
traversed, has a direction and a length. The vehicle being used to represent the path has both direction 
and length information. The physical relations between the units in the Memory columns preserve the 
relations between paths being taken. As the ant walks farther in a certain direction, the matching 
column has its active population increased accordingly. The active population of the column gives the 
length, and the columns are again directionally-matched and arranged topographically, where nearby 
directions are encoded by nearby columns . One can neatly reimagine Fig. 28 as a depiction of the 22

Memory columns, where the length of the arrows correspond to the proportion of nodes currently 
active, rather than a single activation rate. Thus, the Memory columns are preserving physical relations 
between paths walked with their own intrinsic physical properties which correspond to direction and to 
length. 

 Again, more on how these nodes inherit direction information in 5.5.22

Fig. 28: Illustration of a group of neurons, where each neuron represents a vector that 
has length proportional to the firing rate and angle given natively by the neuron’s 
direction-dependent tuning, arranged topographically like a compass. (Figure from 
Bernardet et. al., 2008: p. 165)
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Lastly, the path vectors in the Memory columns are converted back into a rate code in Memory Sum 
for computational tractability. The population code is used as a stable, long-term store of path 
information, but once the walk is done the information needs to be decoded somehow. Rather than 
computing over the structural representations realised over 3600 neurons in the columns, it can reshape 
the vectors into a more manageable form over a mere 36 neurons. The Sum layer again keeps the 
direction information natively, with each Memory column is matched to one specific Sum node, but 
the length of the vectors is preserved by reverting back to a rate code. The firing rate is proportional to 
the number of neurons active in each column: if all one-hundred neurons in Memory were active by 
the end of the outbound task, this would correlate to a maximal firing rate at Sum. The pattern of firing 
rates across a single layer of 36 neurons is much easier to operate over, but it still preserves the 
information about actual paths taken by utilising the same kind of structural resemblance relation: each 
path is again represented by a node with direction and magnitude information.  

5.4 Analog Trigonometry & Vector Addition 

While possessing structural representations realised as activation patterns is the beginning of an analog 
account, these are essentially derivative. Possessing groups of neurons that represent velocities (in the 
Gater module) and paths (in the Memory and Sum modules) is not the same as computing over those 
representations. The model can possess as many structural representations of vectors as it wants, but 
behaviourally, the all-important computational task is deriving the global vector out of the 36 local 
vectors cached in its memory.  

The structural representations of vectors within this network architecture don’t themselves determine 
how they are to be transformed. They only affect the processing in the sense that they “determine” 
what is available to be transformed. The maximally active cell in Vector Decode, which putatively is to 
correspond to the global vector, is a product of computational work. As discussed previously, analog 
computation requires that the processing itself be governed by, or actively exploit, mathematically 
comparable laws as those in the task domain. That is, a robust connectionist account requires an 
intrinsic analogy to exist between the causal dynamics that drive the elements within both systems. 
What are the underlying gears to this model? 

The distribution of connection weights between Sum and Decode is what performs this computational 
labour, and ultimately determines the success of the model. Path integration by vector addition is the 
crucial lynch pin, so it is here that the connectionist must find analogicity at work. The model’s authors 
write, “[Our] model is biologically plausible in that it does not rely on neurons that perform 
trigonometric functions. Instead the required trigonometric operations are approximated in the specific 
connectivity between neurons, and the weights of the connections” (Bernardet et. al., 2008: p. 171). 
That is, rather than putting in trigonometric activation functions into each neuron, which would be 
entirely biologically unrealistic, the model puts the trigonometric operations into the overall pattern of 
connection weights. A graphic depiction of the weights is given in Fig. 29. The trigonometric 
operations are only approximated using a “Gaussian” distribution of weights for biological plausibility 
(Bernardet et. al., 2008). A cosine distribution would be mathematically ideal, but Gaussians are the 
observed biological norm (Mole, 2014).  



!84

Given that the distribution approximates a cosine function, what it effectively achieves are 36 
individual X-component analyses (as in Eq. 1a) for each and every neuron in Memory Sum. The 
magnitude is given by the firing rate, and the cosine function that it is to be modulated by is given, or 
approximated, by the specific connection weight. Each neuron in Memory Sum essentially takes itself 
as an X-axis. Compare this with the algebraic method in 5.1 where two absolute dimensions were used 
to compare everything else against in a Cartesian plane. So, the connection weight distribution 
modulates each Memory Sum neuron’s activation level 36 times. Each modulation is proportionate to 
the approximate cosine of the difference in angle between it and the particular neuron in Decode it is 
connected to. This cosine of their difference in angle is a measure of the degree to which they both 
point in the same direction, or how directionally similar they are. The Gaussian connection distribution 
is thus computing the projection of all of the stored local-vectors in Sum onto all of the Decode 
neurons, which act as basis-vectors. These geometrical relations, concerning orthogonality, or 
measures of shared directionality and angular sensitivity, are of great significance and will be 
pervasive throughout the discussion to follow.  

The resulting flow of activation through the Gaussian connection matrix, all summed, produces a new 
set of activation rates in Decode, where one neuron will, under normal circumstances, be more active 
than all the others. This neuron represents a vector which receives the most modulated activation from 
all of the neurons in Sum. This maximally-active neuron thus shares the most activation—modulated  
according to angular similarity—with all of the outbound local-vectors. This is functionally equivalent 
to the digital component analysis achieved above in section 5.1. This is a hard concept to express, 
however. To get a tangible grasp on how this works using the idealised example from Fig. 26 again, if 
the connection matrix embodied an ideal cosine function, rather than an approximate, it would operate 
as shown in Fig. 30. 

One can visually observe the 36 individual X-component analyses here, and why the weights are 
distributed as they are. Neuron-15 in Fig. 30b receives all of the activation from neuron-15 in Fig. 
30a, representing the stored data regarding path V1. These neurons are directionally matched, both are 
pointing at 150°, so the amount of angular difference between them is 0. Each neuron takes itself as the 

Fig. 29: An illustration of the connection matrix between Memory Sum & Vector 
Decode. Excitatory connections are in red, inhibitory connections in blue. Top panel 
shows the weights graphically in their “Gaussian” distribution, which approximates a 
cosine function. In the bottom panel, strength of connection is represented by width. 
The “Projection neuron” is one of 36 in Vector Decode. (Figure from Bernardet et. al.,
2008: p. 167)
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Fig. 30: An illustration of an imagined network with the structure of the Bernardet et. al. model performing 
vector addition. Using a connection weight matrix that has a perfect cosine distribution, two given vectors 
(A), with length given by activation value and angle by direction-dependent neuron, are modulated (B) to 
derive a summed, global vector (C). The depiction in B represents the input each Decode neuron would 
receive individually from the Sum layer (A). C depicts what the final activation pattern would actually 
appear as in Decode. Note how the activation levels take on the shape of a cosine wave, a result of 
spreading out initial activation from only two neurons through the idiosyncratic connection matrix. The 
two “cosine waves” of activation are then linearly summed at Decode.
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“X-axis”, so the cosine of 0° is 1. Therefore, these two neurons will have a connection weight that 
modulates activation from Sum (30a) to Decode (30b) by a value of 1. That is, it won’t modulate it at 
all, instead letting all of the activation pass through freely. As you move one neuron either side of 
neuron-15 in Decode, you get 10° of angular difference between them and the initial neuron-15 in 
Sum. The cosine of 10° is 0.98, and so almost all of the activation from neuron-15 in Sum gets 
transferred to neurons 14 and 16 in Decode, because they almost point in exactly the same direction. 

The same neuron-15 in Decode, however, is receiving negative activation from neuron-5 in Sum (Fig. 
30b), because neuron-5 represents the vector V2 that points at 50°. There are 100° of angular 
difference between these two neurons, and because they take themselves as the X-axis, are again 
connected according to the cosine of that angular difference. The cosine of 100° is -0.17, and so the 
connection between these two neurons modulates the activation value of V2 in Sum by -0.17, giving a 
result in Decode of -0.34. The result is negative as the extent to which they point in the same direction 
is negative. They directionally oppose each other, and the precise extent to which they oppose each 
other is given by the cosine of the difference in angle between them.  

The model of course sums all of these incoming activation values at Decode simultaneously. This 
summation gives the actual value for each neuron in Decode, as depicted in Fig. 30c. The most active 
neuron is neuron-8. This is where most of the activity is accumulating; it is the vector with the most 
similarity-weighted activation from all the others. It is therefore the most similar vector to the sum of 
all local vectors taken, i.e. the global vector. It is also firing at a rate of 2.07. This analog example, 
albeit contrived, is telling us that the global vector, V3, is pointing at 80° with a length of 2.07m.  

Even with a much coarser mathematical and computational grain, this analog approach gets you an 
answer within 2° and 0.01m of the algebraic method performed in section 5.1. The model generates the 
final output because its materials share the relevant fundamental mathematics present in the process it 
is being used to represent. First, the intrinsic physical properties of the representing vehicles storing 
path-information preserve a structural resemblance relation with their target domain. Second, the way 
that the connection weights resemble the required mathematical domain, their varying strengths being 
distributed like a cosine function, drives the computations involved in deriving the global vector from 
the local vectors cached in memory (see Fig. 31).  

Of course, the Bernardet et. al. model uses an approximation of a cosine distribution, so the connection 
weight values, and therefore their computational results, will not be as exact as depicted in Fig. 30 & 
31. Evidently, this doesn’t have a significantly deleterious effect on its computational success. The 
Bernardet et. al. model with its non-ideal, approximated distribution still performs within the observed 
range of real ants. Critically, we must also remember that the real process being modelled performs 
this entirely absent of numerical or symbolic representations. Synaptic signs and strengths are real 
physical/structural features, i.e. physical magnitudes, not symbolic values. An approximation of a 
cosine function is still deeply analogous to the process it is being used to represent, so it is 
mathematically comparable and sufficient, not identical or ideal. The relations between the connection 
weights preserve the relations between an actual cosine distribution, warranting their interpretation as 
representing vehicles for use by the system in deriving a global vector from its stored cache of local 
vectors. If this model of the neurobiology involved with path integration withstands further empirical 
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testing, it would suggest that Desert Ants are indeed able to exploit a biological analog of trigonometry 
and vector addiction in order to perform dead reckoning. The analog model performs this entirely 
absent of symbolic read/write mechanisms, yet carries the representational and computational burden 
we think constrains any account of intelligent action.  

5.5 Encoding & Decoding E-Vector Directions: A Model of Polarisation-Sensitive 
Orientation  

This section will put forward an account of how the translation of spatial information (concerning the 
distribution of polarised light in the sky) into compass/heading information can be achieved in a neural 
network architecture. This is to offer a complementary explanation to the path integration system 
described above, which took a “heading” module as assumed. Sakura, Lambrinos, and Labhart (2008) 
present an artificial neural network model of the neurophysiology involved in the coding and 
transformation of e-vectors for compass orientation and course control in insects  (Fig. 32).  23

The model begins by abstracting away from the initial detection layer of the Dorsal Retinal Area 
(DRA) and begins with the more finely tuned and polarisation-sensitive second-order or integrative 
neurons (see 3.4 to recap). All of the initial e-vector analysis at the DRA is necessarily filtered through 
and summed by these POL-neurons, which makes them well suited to be simplified input nodes in an 
artificial network model of e-vector coding. In this model, three finely tuned POL-neurons are used, 
representing one eye and its respective hemisphere of the visual circuitry. They are tuned to fire 
maximally at e-vector directions of 0, 60, and 120°, respectively . Biological precedents are well 24

documented for such POL-neurons with these approximate tunings, and are present across species 
(Sakura, Lambrinos, & Labhart, 2008: p. 676; Lambrinos, 2000). 

The activation profile of the input neurons are sinusoidal functions of the presented e-vector stimulus’ 
orientation, with maximal and minimal levels of activity 90° apart. All the celestial input processed by 
an individual eye (received via scanning behaviour in real conditions) is therefore idealised and 
simulated using a “triplet code” across the three input neurons. The activation of each of these model 
POL-neurons represents what would be a continuous weighted total of all of the directional 
information in its tuning axis received from the photoreceptors at the DRA. This is an important 
idealisation to take note of, as it is a difference between the model, and that which is being modelled: 
in the model, their tuning is arbitrarily set, because the DRA is idealised away, and the integrating 
POL-neurons become the first layer of detection and analysis. However, the real POL-neurons’ tunings 
would result intrinsically from their idiosyncratic connection profiles from the DRA (see Fig. 21b). A 
single POL-neuron, integrating information from certain specific populations of detectors, with a 
variety of preferred angles of orientation and antagonistic inputs from anterior/posterior sections, will 
naturally have upper and lower limits on its response profile set structurally in advance. The specific 
orientation to which a POL-neuron will be ‘tuned’ is similarly set by this structural feature. This 
explains why the preferred orientations of real POL-neurons are clustered in a less precise manner. 

 This model makes particular reference to crickets, a type of Orthopteran. While their neurobiology is again similar to 23

Hymenoptera, the relevant emphasis is on biological precedents and the conceptual tools available to connectionism. 

 Directions are always relative to the longitudinal axis of the creature’s head. So, 0° and 90° represent vertical and 24

horizontal e-vectors, respectively.
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Fig. 32: Artificial neural network architecture for decoding e-vector signals, presented as triplet codes at input 
layer, into a population coding of direction of orientation as output, in “compass” neurons. A, Representation of 
network architecture. Activity from the input layer (model POL-neurons) propagates to the output layer in a  
simple feed-forward antagonistic manner. Black arrowheads represent excitatory connections, white arrowheads 
inhibitory. Degree values represent the orientational axis of tuning of the respective neurons. B, sinusoidal 
response profiles of the respective layers of model neurons. Dottted points represent the triplet code values taken 
by the POL-neurons (top) when presented with those particular e-vector orientations. These correspond to the 
values taken by compass neurons (bottom) at the same orientations. C, activity levels of the compass neurons for 
the same e-vector orientations highlighted in B. Compass neuron number corresponds to their arrangement, left to 
right, in A. E.g., compass neuron number nine in C (bottom graph) corresponds to the compass neuron for 120° in 
A. (Figures from Sakura, Lambrinos, & Labhart, 2008: p. 669)

A B

C
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They cluster around the approximate angles of preferred orientation in a looser manner than is being 
modelled here, but this is for purposes of model clarity (Labhart, 1986; 2000). It is nonetheless another 
non-arbitrary result of the geometrical properties of the DRA receptors, and their specific connection 
patterns, that real POL-neurons obtain their unique preferred orientations of tuning. The model system 
at hand removes the unnecessary complexity of the DRA, and sets the POL-neurons’ axes of tuning 
accordingly to account for that absence. 

The simulated input, represented to the network as various triplet codes, represents a single artificial e-
vector, which is then gradually rotated. We can imagine the triplet as representing magnitudes for the 
axes of tuning of the POL-neurons, and their combination representing the axis of orientation produced 
by weighing their various magnitudes together. In other terms, the magnitude for any POL-neuron 
represents the weighted sum of directional information present in its preferred angle of orientation. 
Note that the triplet-code input pattern does not contain any canonical information about the azimuthal 
position of that e-vector in the sky. Rather, this input represents the processed average of direction 
information filtered through the DRA after sweeping it across the sky. Scaling this up to real world 
examples, where much more than a single e-vector is available to process, is relatively straight 
forward. The addition of more e-vectors will just change the activation pattern present at the DRA, and 
its modulations across time. This will ultimately manifest as an adjustment in the condensed encoding 
of that activation, i.e. as a different triplet-code at the layer of POL-neurons.  

The input POL-neurons then follow simple arithmetic activation and threshold functions, but feed 
antagonistically into a second layer, which consists of six model neurons. Each of these six neurons 
receives two connections from the input layer, one inhibitory and one excitatory. However, the tunings 
of these neurons are non-arbitrary, because the mapping of their connections is non-arbitrary. The 
tuning axes of the intermediate neurons are created in situ, by selectively combining the sign and 
rotational axis of the signals they receive from the input layer. 

The result is an expanded set of tuned intermediate neurons, again with sinusoidal activation functions, 
but with tunings set at 15, 45, 75, 105, 135, and 165°. These intermediate neurons in turn send signals 
via a mixture of inhibitory and excitatory channels to a third, output layer containing 12 model 
neurons. Their connections follow the same kind of non-arbitrary mapping of connections as above. 
This final output layer represents the “compass” neuron layer, where the neurons are now finely tuned 
to be active when the model creature is facing in a tight wedge of direction, remaining quiescent 
otherwise. In this case, the compass neurons are 15° apart, spanning 0° - 180°. 

The model demonstrates that tunings of 0, 60, and 120° at the input layer can condense and encode 
what would be a ~180° range of messy e-vector information received by one hemisphere of the visual 
field, just by altering the amount of magnitude each POL-neuron has and how it projects to subsequent 
layers. Following from this, it only requires a small amount of neurons, performing simple addition or 
subtraction with simple connection profiles, to expand that condensed information from a triplet-code 
back out into a specific heading, using an array of compass neurons that cover 180° of direction 
information. Of course, in virtue of having a rotational period of 180°, any POL-neuron will therefore 
fire maximally for two symmetrical angles of orientation. Effectively, this makes them unable to 
distinguish between a heading of 0° and 180°, or between a heading of 90° and 270°, for example. 
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However, this problem is solved in natural settings by the scanning behaviour, in conjunction with 
having two of these systems running in parallel, one for each eye. Each eye’s bilateral antagonism  
between anterior and posterior sections of the DRA (see 3.4) can kick in and thus affect the output 
array of compass neurons.  

The Sakura, Lambrinos and Labhart (2008) model has the e-vector stimulus being simulated in the 
same position, but gradually rotating around. A natural setting would have the ant rotate instead, while 
the stimuli remain static in the sky. The natural setting permits the antagonism between anterior and 
posterior sections of the DRA to function properly, and consequently makes the POL-neurons that are 
sensitive to both “antipodal” orientations of polarised light to affect one another. As a result, each eye’s 
DRA and POL-pathway becomes sensitive to only one of those orientations, and a complete compass 
can then be formed inside more integrative neural structures within the insect’s central complex, where 
the DRA from both hemispheres eventually ramify (Sakura, Lambrinos, & Labhart 2008: p. 673). 

The model performance is evaluated by analysing the groups of neurons active at the compass output 
layer. In Fig. 32, the authors represent the activation profiles for each layer, and output histograms for 
various orientations of e-vector given as input to the system. As the bottom diagram shows (Fig. 32c), 
the output activation patterns cluster around a group of neurons. During simulation, the way in which 
the cluster of active neurons shifts is linearly correlated to the way the e-vector input itself is rotated 
around (Sakura, Lambrinos, & Labhart, 2008: p. 678). The population median of the active neurons is 
thus useful as a continuous representation of the e-vector direction given as input. Combined with an 
initial calibration mechanism for aligning with the anti-solar meridian (see 3.4), the model as a whole 
demonstrates how to successfully track, encode, decode, and exploit spatial information regarding e-
vectors in the sky into a compass or heading cue. Moreover, this model of e-vector coding and 
translation is biologically realistic, parsimonious, and computationally tractable — and absent 
symbolic mechanisms. 

5.6 Analogicity in the Celestial Compass 

The model at hand, and the underlying neurobiology being modelled, is now ripe for connectionist 
interpretation. This section will argue that the success of the polarisation vision pathway can be 
reasonably understood as a result of how the neural assemblies involved match, track, and exploit 
some of the spatial and geometric features of polarised skylight in virtue of their own spatial and 
geometric features. That is, by way of a resemblance relation.  

The first plausible example of analogicity driving this system is the manner in which the microvillar 
UV-receptors inside each ommatidium are arranged perpendicular to one another. The physical fact of 
having two sets of receptors arranged like a cross allows each ommatidium to capture an important 
geometrical relationship; orthogonality. As they both face any given stimulus simultaneously, they 
become, in effect, biological trigonometricians in virtue of their intrinsic orthogonal alignment. When 
the e-vector stimulus is perfectly aligned with one of the receptors, that receptor will fire at maximal 
value, “+1”. When the stimulus is orthogonal to one of the receptors, that receptor will fire minimally 
(i.e. it will be inhibited maximally), “-1”. However, by looking at their response curves (see Fig. 20), 
we can interpret what they’re achieving as sending signals that are a continuous measure of “shared 
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direction” or orientation; a trigonometric projection just like in 5.1. As the stimulus begins to deviate 
from the receptor’s angle of alignment, the receptor response drops off, i.e. they are signalling that they 
are facing in the same direction as the stimulus to a lesser and lesser extent, until they reach 
orthogonality. Orthogonality is the point at which they share no directional properties at all.  

As in 5.1, if two vectors being compared have the same directionality, the cosine of 0 (the amount of 
angular difference between them) is 1, which means they are “completely similar” in their directional 
properties. Hence, the responses of the neurons involved are maximal, “+1”, when both receptor and e-
vector stimulus are perfectly aligned. If the two vectors are 45° apart, the cosine of 45 (in degrees) is 
0.70. They are therefore “somewhat similar” in directional information. Hence, a reduced response rate 
in the UV detecting neurons, e.g. “+0.7”, respects the precise manner in which the e-vector stimulus’ 
direction deviates away from the receptor’s microvillar alignment.  

As in Fig. 20, having orthogonal receptors doesn’t achieve a perfect mapping between their responses 
to variously oriented stimuli according to what a real cosine function would dictate. Expecting a neural 
response profile to perfectly match an abstract mathematical function, however, is probably an 
unrealistic standard to set. The overall relationship between angular deviation and response strength is 
still being preserved in the rough-and-ready way exhibited by the receptors though. The orthogonal 
crossed-receptors are not merely indicating that their stimulus is present, they are giving some graded-
response that tracks the extent to which their stimulus is rotationally similar to themselves.  

The more profound effect is observed at the shared integrating neuron(s) they project to. The response 
curve of the integrating ‘crossed-analyser’ becomes much closer to being sinusoidal, or perhaps more 
accurately, to being a cosine wave , due to the interaction of the antagonistic signals it receives. It is in 25

this way that we see a resemblance relation holding between the physical structure of the receptors and 
the target domain. Linearly polarised light has directionality built into it, hence the term “linearly” 
polarised light (see Fig. 15). The DRA receptors are sensitive to that directionality of polarised light 
because of their own inherent directionality; their polarisation-sensitive microvillar arrangement.  

The joint functioning of each set of crossed-receptors then allows the integrating crossed-analysers to 
measure shared direction more sensitively, analysing the orientational match that exists between e-
vector stimuli and the angle of orientation of the receptors’ microvilli. They thereby perform another 
biological approximation of a trigonometric operation, a non-symbolic analog of calculating the same 
kind of result that algebraic component analysis would achieve. One microvillar plane acts as the X-
axis, the orthogonal counterpart as a Y-axis. Each microvilli sends a signal about how similar the e-
vector stimulus is to its own axis. Together, their integrated signals amount to computing a “global” 
vector, the result of summing the two vectorial signals received from the microvilli. Rather than being 
a measure of net displacement or distance though, as in 5.1, it is a measure of something like ‘net 
orientational information’. It is a weighted sum that indicates the predominating angle of orientation 
present in the stimulus. It is in virtue of the orthogonal structure and subsequent integration that the 
second-order analyser response profiles more closely track a cosine function when presented with 
various orientations of e-vector stimuli (Fig. 20).  

 The difference being that a sine wave begins at 0 (sine(0) = 0), whereas a cosine begins at 1 (cos(0) = 1). 25
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The second and perhaps most obvious example of analogicity is the total distribution and arrangement 
of the polarisation-opponent photoreceptors across the DRA, i.e. the “matched filter”. As in Fig. 21, 
they are spread out across the DRA in a fan shape. The rate of rotation that the fan shape has, i.e. the 
changing angular relation between the detectors, tracks the angular relation between e-vectors in the 
sky. Each eye then resembles one hemisphere of the averaged celestial pattern of e-vectors. If the DRA 
detectors were not aligned in this manner (see 3.3) they would not be able to exploit the spatial 
information latent in the pattern of polarised skylight in order to navigate. The matched-filter works 
only because its structure is a physical analog of some of the target domain’s own structure.  

The rest of the discussion will explore analogicity further “down” the polarisation vision pathway, in 
layers that the Sakura, Lambrinos and Labhart (2008) network model represents, as described in 5.5. 
The model POL input neurons condense and average the information from the DRA and subsequent 
integrators into three wide-field axes of orientation, “axial vectors” of sorts . As highlighted above, in 26

a natural setting their preferred axes would be tuned in situ, rather than set arbitrarily, in virtue of 
receiving and thus condensing only particular signs and strengths of signal. I argue that these POL-
neurons are inheriting the directional properties from their lower-order counterparts, identical to the 
way in which the second-order integrators inherit their directionality or tuned axis of orientation from 
the crossed-receptors at the DRA. The maximum possible response of a POL-neuron, i.e. its preferred 
axis of tuning, is a direct function of the sections of the DRA which project to it. Each POL-neuron 
then responds to its stimulus approximately according to a sinusoidal wave, an analog of performing a 
cosine function. The relation between the responses that all of the POL-neurons exhibit synchronically, 
in response to variously oriented e-vector stimuli, thereby tracks a geometrical property in the 
environmental stimulus: they track an averaged sum of the orientational information that exists in the 
pattern of e-vectors currently present in the sky in each of their preferred axes.  

The second and third layers of the network similarly inherit their directional properties as a function of 
their connection profiles. Consider the neuron farthest to the left in the second layer of Fig. 32a. In 
virtue of having only two connections, an excitatory from the 0°/180° POL neuron and an inhibitory 
from the 120°/300° POL neuron, this neuron thereby becomes tuned to the 0°/180° axis. Why? The 
maximum possible response it can exhibit is the maximum possible response of its excitatory 
predecessor, minus the maximum possible response from its inhibitory predecessor. The two POL 
predecessors can never be maximally active at the same time, because they’re orthogonal to each other. 
In virtue of the intrinsic angular relation between their two axes of orientation, and the signs of their 
respective connections, the 0°/180° axis wins out. This process is what is meant when one neuron is 
said to “inherit” direction information natively from its predecessors, and it applies for the other 
neurons in this layer as well as neurons in the Bernardet et. al. model in 5.2 (see Fig. 31). Their 
preferred axes of orientation are all determined non-arbitrarily in situ by the particular signs and 
rotations of signal they receive. This process approximates the appropriate trigonometric function for 
determining a global vector for net orientation information. The same mathematics of vector addition 

 All that is meant by “axial” vector is that these neurons are not, strictly speaking, representing “vectorial” information, as 26

they are sensitive to an entire axis of orientation. A vector has one direction, but that is only a diachronic feature. These 
neurons are sensitive to two directions: a vector and its antipode/inverse. This is functionally appropriate given that a 
transverse wave of polarised light, the e-vector, has both a down- and up-stroke while it propagates forward in its plane of 
polarisation (Fig. 15). The microvilli detectors are obviously not capable of distinguishing between these motions.
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applies, because the same underlying geometrical properties are being detected and analysed: direction 
and magnitude. 

The above process is repeated between the second and final layers. The combination of directionally 
similar neurons sending excitatory signals, and directionally divergent neurons sending inhibitory 
signals, integrate to shape the preferred axes of activation for the “compass” neurons. The whole 
feedforward process maintains the sinusoidal response profiles of all the neurons at every layer, as the 
initial triplet-code is gradually decoded out into select compass neurons at the output layer. This 
maintains a smooth angular-tracking relationship between the variously tuned neurons’ responses to 
the orientation of the presented stimulus.  

The authors note that the second layer is in some sense computationally redundant, but 
electrophysiological recordings demonstrate that neurons with those profiles do exist in Orthopterans 
(Sakura, Lambrinos & Labhart, 2008: p. 678). The authors propose that the second and third layers 
could be combined by merging their connection matrices, but that such a merged matrix would have 
variable weights, and become “…difficult to comprehend and to express graphically” (Sakura, 
Lambrinos & Labhart, 2008: p. 678). However, we’ve already seen what this merged matrix could 
look like in Fig. 30 & 31, inspired by the Bernardet et. al. (2008) model. Putting in a connection 
matrix that approximates a cosine function would perform the same computational task: passing 
vectorial signals forward, modulated according to the cosine of the angular difference between the two 
neurons involved.  

This model deals with essentially the same problem through slightly different means. It still needs to 
measure the degree of similarity between vectors, but it needs to calculate a global vector that concerns 
which orientation of e-vector stimulus is predominating over the others, rather than to compute net 
displacement. In virtue of the underlying mathematics of vector addition being the same, however, 
using neural structures that share the same kind of vectorial and trigonometric properties operates just 
as well. The Sakura, Lambrinos & Labhart model just uses simplified connection weights to more 
gradually decode the relevant vectorial information out. However, the connections’ integral role in the 
overall computational logic is the same: neurons with shared direction receive excitatory input via 
excitatory connection weights, neurons that are directionally divergent receive inhibitory input via 
inhibitory connection weights, thus physically embodying the relevant trigonometry underlying the 
comparison and analysis of vectors. A symbolic read/write mechanism is never appealed to during this 
processing, nor is it required in order for the neural architecture to compute over its relevant data. We 
can appeal to, and sensibly understand, how these neural assemblies structurally represent certain 
geometric-relational aspects of their target domain instead.  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Chapter 6 

Conclusion 
Embracing the Analog Alternative  

“Je n'avais pas besoin de cette hypothèse-là.”  
(I had no need of that hypothesis.) 
- Pierre-Simon Laplace 



!96

6.1 Preliminary Conclusions: Matched-Filter vs. Ephemeris-Almanac 

The argumentative burden of the prior sections was to demonstrate an alternative to conceiving of 
Desert Ants (and similar creatures) as navigating by storing strings of symbolic values for variables 
like “solar azimuth/elevation”, and “e-vector azimuth”. Such an anthropocentric conceptualisation of 
the problem domain is biologically unrealistic — at best. As far as my survey of the literature 
indicates, there is no neurobiological process whereby an ephemeris-almanac could be filled-in using 
such symbolic values. Therefore, it is uncontroversial to reject the hypothesis that they are representing 
the celestial positions of e-vectors in a stored and symbolically tabulated format. The polarisation 
vision pathway simply does not record and update real-values for such variables and carry them 
forward in time through a symbolic memory store, as hypothesised by Gallistel. Indeed, most of the 
polarisation and other celestial information detected by the creature is destroyed once it passes through 
the very first layer of sensory apparatus. Evidently, Gallistel’s challenges do not set appropriate top-
down constraints for how the problem is to be solved, and there are alternative ways to frame the 
computational logic of path integration. Similarly, the reasons that Gallistel believes connectionism is 
unable to begin solving this problem, and approach explanations for cognition in general, are therefore 
entirely unfair. Based on the relevant data, the creatures themselves do not approach the computational 
task in the manner depicted by Gallistel. So, why should a connectionist theorist? Moreover, the 
connectionist has an alternative framing and interpretation of the problem that is in fact perfectly 
amenable with the relevant data.  

The neural pathways for polarisation vision that were analysed above never match any of the specific 
and idiosyncratic patterns of polarised skylight to times of day. This is because the relevant sensory 
apparatus is not actually sensitive to specific idiosyncratic patterns of polarised skylight. It is a 
“nonimaging” subsystem of the visual modality, where the only kind of information it detects and 
processes is some average of e-vector orientations in the sky (Sakura, Lambrinos, & Labhart, 2008: p. 
680). This is a kind of spatial/geometrical relational property which is latent within the skylight 
pattern, but it is not related to the canonical azimuthal locations at which any given orientation of e-
vector is found in the sky at any given time. Orientations and azimuthal locations of e-vectors are 
never matched together in this sensory modality.  

Instead, polarisation vision in insects like ants involves deploying a generalised template, a fan-like 
pattern of e-vector detectors, through which polarised skylight is filtered. While this filtering process is 
insensitive to and indeed destroys information regarding the azimuthal positions of specific e-vector 
directions at any given time, the ‘matched-filter’ template is sensitive to those latent and navigationally 
useful geometrical relations that exist in the e-vector patterns. In virtue of the physical relations that 
obtain between the representing elements of the matched-filter, the polarisation-vision pathway 
resembles and tracks second-order relational properties in the environment, such as hemispheric 
(a)symmetries in spatial arrangements, and angular (dis)similarities. The filter is then exploited for 
local calibration and orientation purposes because it matches those relational features of e-vector 
patterns in the sky: the internal geometry created by a given e-vector pattern in the sky is 
approximately matched by the internal geometry of the sensory apparatus. One author summates, “…
the e-vector positions assumed by the ant do not coincide with the e-vector positions actually realized 
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in the sky. From this it is concluded that Cataglyphis has no detailed knowledge of the actual 
azimuthal positions of the e-vectors.” (Fent, 1986: p. 145: emphasis added).  

The computational framing that Gallistel has postulated, the stored and “time-matched” pattern 
hypothesis, also cannot explain experimental results where ants orient and guide themselves when 
tested with a single, artificially produced e-vector with an orientation that has not occurred in any 
natural skylight pattern that they have been exposed to (Fent, 1986). Even more reason to suggest that 
their navigation is independent of stored time-matched pattern “stamps” is that all of the polarisation 
detection and analysis occurs at the very periphery of the nervous system. The information that 
survives to more central neural assemblies (where information can be bused to, and used by, motor 
systems or integrative knowledge-stores, for example) has already been processed and repurposed. The 
matched-filter immediately changes information received from the e-vector pattern in the sky into 
bodily-orientation information at the very initial stages of perception, calibrated to the symmetry plane 
marked by the anti-solar meridian. Thus, after the filtering process, there are no internal 
representations about the celestial dome and its “veridical” contents. Therefore, the Desert Ant 
emphatically can not be navigating using time-matched idiosyncratic patterns of such contents by 
registering local correlations between their changes over time. The information regarding any given 
polarisation pattern’s idiosyncratic and canonical distribution is processed and exploited early on in 
this unique vision pathway, and subsequently filtered out. Wehner concludes that: 

[The] large-field integrators sample the outputs of analyser populations looking at 
different areas of the celestial hemisphere. The array of compass neurons would then 
encode particular headings of the ant relative to a celestial system of reference rather 
than particular e-vectors. Seen in this light, there would be no stage along the 
polarization vision pathway at which information about the orientation of individual e-
vectors is represented. (2003: p. 582, emphasis added) 

[The] insect does not…solve the problem by performing a number of abstract 
computations in some kind of central processing unit. Its trick is to incorporate the 
fundamental spatial properties of the navigational problem into the very periphery of its 
nervous system, into the spatial design of its sensory surface. (1989b: p. 81-82, emphasis 
added) 

[In] the cataglyphid ants it was possible to show that the navigational errors occurred 
only when the animals were trained under a restricted skylight pattern and tested under 
the full sky, or vice versa. They disappeared completely when the same restricted 
skylight pattern was present in both the training and the test situation… These 
behavioural analyses show that desert ants—as well as honey bees—are not informed 
exactly about where, within a sun-based system of coordinates, any particular e-vector 
occurs at any particular time of day. Nevertheless, their compass system can 
successfully deal with any partial skylight pattern, as long as the foraging insect can 
experience the same partial pattern during its entire round-trip. (2003: p. 580, emphasis 
added) 
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It is clear that the ethological and neurobiological data on polarisation-vision are at odds with 
Gallistel’s framing of the computational problem to be solved: the local solar ephemeris function—
conceptualised literally as a formal function that is inferred from a symbolically tabulated almanac—is 
not learned or memorised by the Desert Ant. Moreover, the hypothesis that is actually postulated in the 
relevant empirical literature is entirely amenable to a connectionist interpretation. That is, of course, 
once connectionism is properly understood as an analog computational framework. A ‘matched-filter’ 
is just ‘structural resemblance’ by another name: it is a sensory apparatus with intrinsic physical-
relational properties that resemble some counterpart properties in the problem domain of interest. The 
polarisation-vision pathway is, I argue, best understood as an example of an analog computational 
system.  

The previous chapters have set out a detailed model of how connectionism and analog computation is, 
to say the very least, a viable framework for understanding the detection and analysis of the 
polarisation pattern, and the integration of outbound paths for homeward navigation. Sections 5.5 and 
5.6 detailed how connectionism would explain the method by which polarisation information is 
exploited and converted into usable compass cues using the ‘matched-filter’ and ‘scanning hypothesis’. 
Sections 5.3 and 5.4 demonstrated how a connectionist framework can explain the manner in which 
those compass cues are integrated with a proxy for speed, in order to store and compute over local 
vectors. Ultimately, the discussion in 5.4 also showed us how to compute a global vector that 
represents the path back home — all without using a symbolic read/write mechanism. These models 
were interpreted as leveraging structural representations of their relevant environmental variables, and 
demonstrated how these computational tasks can be performed non-symbolically. However, the 
celestial compass and path integrator models discussed so far are silent on the behavioural evidence 
showing that Desert Ants appropriately adjust their homeward navigation to account for the long term 
movements of the sun across the sky.  

The second type of restriction experiments (see 3.5) demonstrated that generalised knowledge about 
the overall relationship between time and solar-azimuth change clearly isn’t learnt, but that some 
training behaviours do indicate a local learning phase (Wehner & Muller, 1993; Wehner & 
Lanfranconi, 1981; Grob et. al, 2017). Given the differences in connectionist and classical computation 
highlighted previously, the process of learning can be conceptualised in a different manner. With a 
connectionist framework, synaptic weights can be representationally and computationally rich, as 
introduced in 4.2 and then demonstrated throughout Chapter 5. Connection weights played a robust 
representational and explanatory role in the processing of the neural network models in Chapter 5. 
Thus, contra Gallistel, synaptic weight matrices, and therefore any changes therein, can be appropriate 
theoretical constructs in a computational and representational framework regarding learning and 
memory, because they can play a pivotal contentful role in the formation of some relevant knowledge-
structures. This was only possible by moving away from a symbolic representational framework, and 
using the unique analog computational approach that connectionism can offer. Moreover, given that 
the ants are not representing the local solar ephemeris function in the manner hypothesised by 
Gallistel, connectionism can go on in future research to postulate, in its own way, how the ant’s innate 
knowledge about sun-azimuth curves in general can be refined via experience to more accurately fit 
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the local sun-azimuth curve. Whatever that mechanism may be, it won’t be the kind of mechanism 
Gallistel has been looking for. 

6.2 Broader Conclusions: Modelling Navigation Tasks & the Future 

The data from Chapter 3, with the alternative framing of the problem and its solution in Chapter 5, in 
concert have significant implications for how we can conceptualise and model animal navigation tasks. 
If taken seriously, these implications can redirect and guide new avenues of research in the topic, as 
well as cast new light on old problems. First, let’s take stock of the alternative framing of the problem 
of Desert Ant path integration set out so far.  

The overall conceptual model of the polarisation-vision pathway that has emerged from this discussion 
looks something like Fig. 33. The DRA of the Desert Ant compound eye has a fixed template of 
polarised-light detectors and analysers, distributed in a fan-like shape. These detectors, while 
insensitive to the azimuthal locations of their stimuli in the sky, are excellent at detecting the average   
peaks of orientational information present in the overall pattern of stimuli in the sky. Because of this 

Fig. 33: Schematic representation of the hypothesised modular, hierarchical structure of the polarisation-vision 
pathway in the Desert Ant. Top figure represents an idealised set and distribution of polarisation detectors from the 
initial layer of the DRA in the compound eye of the ant. Middle figure represents the large-field integrators which 
pool and condense information from specific populations of the DRA analysers. Bottom layer represents the 
hypothesised compass neurons, each activating maximally only when the creature is facing in a specific angle —
with reference to the calibration angle after scanning movements. This visual pathway can then provide orientation 
or heading information to a subsequent path integrating system. (Figure from Wehner, 2003: p. 582)
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capacity to detect the relational geometry latent in their stimuli, the analysers endow the ant with the 
ability to find and register a local reference angle: the symmetry plane marked by the solar/anti-solar 
meridian. With a unique reference angle fixed at the beginning of each foraging journey, rotational 
movements performed by the ant will inform them of their angular deviation from that reference angle. 
This work is performed by the large-field integrator neurons. By pooling information from specific 
populations of the DRA detectors, the integrators condense the vast amount of orientation information 
into just a few dimensions of analysis. With some clever wiring, the condensed information is decoded 
back out into an array of compass neurons that each have their own unique directional tuning, firing 
whenever the ant is facing in that specific angle.  

This final layer of compass neurons, freshly calibrated for each foraging trip, can now be attached to 
the path integrating circuit. The ‘Heading’ module of the Bernardet et. al. model (see Fig. 27) is 
exactly the nexus for these two systems. Simply imagine that the ‘Heading’ module is comprised of the 
final output layer of compass neurons from the Sakura, Lambrinos and Labhart model (see Fig. 32). 
We now have a holistic model of Desert Ant path integration, from the detection and calibration of 
angles of orientation all the way to the decoding of cached local vectors into a global vector for use in 
piloting home. All of the modules involved, their neurons and connection matrices, have well 
substantiated biological precedents, and should satisfy any resource constraints set on real ants due to 
their computational parsimony. The operations of these modules were ultimately interpreted as using 
structural representations, the currency of analog computational systems. What does all of this do to 
our general conceptualisation and logical framing of Desert Ant navigation, and their neurobiological 
solution to this problem?  

Thinking back to the discussion in 2.5, we can now piece together the philosophical and engineering 
consequences of this model. The ants determine a locally-unique reference angle at the beginning of 
each foraging journey, and define all other angles of orientation relative to that point. The use of 
efferent signals from their legs as a proxy for speed information is a kind of time-based unit of distance 
measurement. Taken together, the ways in which those pieces of information are being detected and 
represented suggest one conclusion over others: the ants are more sensibly understood as using a kind 
of polar coordinate system (see Fig. 12). The compass neurons are used to define the angle, 𝛳, and the 

amount of time spent walking in that angle defines the distance, r, of each local vector of their 
outbound journey. As depicted in the Bernardet et. al. model, what accrues in the ant’s memory are 
columns of neurons that represent a selection of angles of orientation with various lengths. The empty 
memory columns are filled in by transforming velocity information into pathing information as they 
complete an outbound journey. The accumulated vectors representing paths in memory are then added 
up to determine the global vector indicating the final position relative to the point of departure. This 
mundane sounding conclusion is actually rather radical, because it goes against the standard wisdom of 
modelling navigation tasks in animals in several ways.  

Cheung and Vickerstaff (2010: p. 5) present a broad unified taxonomy of navigation models, which 
vary across two dimensions: the coordinate system, and the reference frame (see Fig. 34). We’ve 
already seen the differences between the two standard coordinate systems in Fig. 12. The reference 
frame indicates whether the coordinates are centred around the creature itself (ego/auto-centric) or 
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some external feature (exo/allo/geo-centric). Thus, there are four different ways of representing the 
same spatial relationship between an animal and its nest. Each has its own advantages and 
disadvantages regarding variables like resilience to noise and biological realism, and each has its own 
mathematical assumptions and justifications. The two most important assumptions for our discussion 
here is the exact manner in which the coordinates are being represented (symbolically vs non-
symbolically) and the exact nature of the global or homing vector (HV). It is generally considered that: 

…current theoretical analysis favours a geocentric and Cartesian or static vectorial HV 
when an allothetic compass cue is available. (Vickerstaff & Cheung, 2010: p. 257) 

…geocentric Cartesian-like systems…appear the most robust solution for implementing 
a full [path integrating] system (in the sense of modelling the way in which an animal’s 
nervous system needs to process and update information), particularly when an allothetic 
compass is available. (Vickerstaff & Cheung, 2010: p. 243) 

However, such conclusions are drawn because the analysis of the various classes of models were done  
presuming a symbolic medium of representation, and thus a classical mode of computation. That is, 
formal mathematical equations for the various coordinate systems were analysed for their general 

Fig. 34: Taxonomy of the broad classes of models for representing location in 2D space for navigation tasks in 
animals. The models vary across two dimensions: the type of coordinate system used (polar vs. Cartesian) and 
where the reference frame is centred (egocentric vs allocentric). DVR: dynamic vector representation. SVR: static 
vector representation. See text for details. (Figure from Cheung & Vickerstaff, 2010: p. 5)
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mathematical simplicity and robustness for the task. This is all under the presumption that the neural 
substrates which have to implement these navigational models in the ant brains would be ultimately 
performing the same species of computation. If the arithmetic involved gets too unwieldy, produces 
noise, or otherwise fails to stay within task parameters, then models of neural systems instantiating 
symbolic functional homomorphisms with such arithmetical operations are dismissed as unviable.  

We’ve seen that this doesn’t need to be the case though. Neural assemblies don’t have to be interpreted 
as digital computing systems, and so they don’t have to be doing “arithmetic” by pushing symbols 
around. The neural network models analysed in Chapter 5 lead to an alternative conclusion. The ants 
are sensibly understood as holding structural representations, not symbolic representations, of their 
target variables like ‘heading’ and ‘distance’. The problems with the mathematics of polar coordinates 
must be rethought in light of this fact. The symbolic arithmetic involved with polar coordinates is 
considered ill-suited for a simple cognitive system, but the structural, geometrical interpretation of 
performing the same kind of mathematics has never been analysed. The use of connection matrices 
that physically resemble cosine functions, for example, is a completely new interpretative framework 
for implementing the mathematics required of coordinate systems and navigation.  

Second to this shift in representational media, the nature of the global or homing vector must be 
reconsidered. As far as I can glean from the literature, the homing vector is without exception 
considered to be a continually updated, ‘live’ or ‘online’ and explicit representation maintained 
throughout foraging behaviour. That is, as soon as the ant takes a few steps away from the nest, they 
are thought to have begun integration processes already, and thus have a short, directed homing vector 
connecting their position to the nest. As they venture further, the integration process continuously 
updates that vector accordingly. For example: 

Path integration means that the animal is able to continuously compute its present 
location from its past trajectory and, as a consequence, to return to the starting point by 
choosing the direct route rather than retracing its outbound trajectory. (Müller & Wehner, 
1988: p. 5287, emphasis added) 

Wherever it goes, the state of its path integrator connects the ant with its home or a place 
within its foraging area. (Wehner, 2003: p. 583) 

…for directionality and distance information to be behaviourally efficacious, it must be 
combined so as to calculate the vectors corresponding to each sub-section of the ant’s 
foraging path, and these vectors must be continually integrated into a running estimate 
of the global vector from the ant’s nest to its current location. (Morgan, 2014: p. 71, 
emphasis added) 

[Desert Ants perform path integration] by integrating courses steered and the distances 
travelled into a continually updated home vector. (Wohlgemuth, Ronacher, & Wehner, 
2001: p.  795, emphasis added) 

The Desert Ant homing vector is demonstrably thought of like a rope, attached to and linking the ant 
with its home from the very moment it leaves. However, the Bernardet et. al. model anaylsed in 
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Chapter 5 instead frames the path integration process as a two-stage process. First, it accumulates local 
vectors while foraging. Second, it decodes them once foraging has finished and only when the 
homeward journey is about to begin. The paths accumulated in the Memory columns of the Bernardet 
et. al. model have implicitly within them a global vector, of course. But it is not until those columns 
are decoded that the process of vector summation actually begins. If such a model withstands further 
neurobiological inquiry, this will necessitate a radical change from conventional wisdom: the global, 
homing vector is not a continuously updated ‘live’ representation. 

Changing the global vector from a continuously updated, online representation to a representation that 
is only created at a final stage has drastic consequences for the mathematical analyses of navigational 
models. The details are beyond us here, but a quick example is the ‘approach scale’ problem. Imagine 
that the ant is only one metre away from its nest, and then walks a perfect circle around it. Now 
imagine the ant is fifty metres away from it nest and walks a perfect circle around it. The amount of 
linear movement that is required to complete the same amount of angular change is different across 
these two circles, as a mere fact of circular geometry: the fifty-metre orbit around its nest is a larger 
circle. Thus, theorists have considered that in order to update a polar coordinate system that 
continually links the creature with its home will have to take into account this fact: as the ant reaches 
distances farther and farther from home, it will have to down-weight angular change by linear 
movement. It must then perform the inverse on its way home: as it approaches its nest, the scale 
increases where smaller units of movement equate to larger changes in angular relation to the nest. 
This is not only considered computationally complicated in terms of “doing the math” symbolically, 
but it is an unrealistically burdensome amount of mathematical knowledge to demand that the ant 
possess.  

This problem can be revisited in light of the unique model of navigation given above. The two-stage 
process has one static homing vector that is used to pilot with, and thus avoids the scale approach 
problem. It also demonstrates that a polar coordinate system need not be considered a ‘dynamic vector’ 
representation. The reference system used by the ant is the external polarisation pattern which is 
effectively infinitely far away from it, so any movements by the ant across the floor do not change its 
heading. They are static vectors, which are considered to be the ideal. And yet, this reference system is 
centred around the creature itself, and calibrated locally for each trip. It is an egocentric reference 
frame, informed by exocentric cues. I don’t pretend to understand the full implications of this (yet), but 
the standard taxonomy of navigation systems in animals seems to be ill-suited to describe the 
connectionist model given above. The connectionist approach can thus equip future endeavours with 
new theoretical tools to revisit and reassess the way we conceptualise navigation tasks in animals. 

6.3 Embracing the Analog Alternative 

How is information represented and computed over in the brain? Can we conceive of notions like 
representation and computation in a rigorous, naturalistic way that nonetheless satisfies the founding 
assumptions of cognitive science? Answering these questions has been the underlying motivation of 
the present discussion. 
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As things stand, there are at least two ways to make rigorous and precise the notions of representation 
and computation. However, one is given short shrift more often than the other. Connectionism can be 
and is best understood as an independent computational framework, wholly distinct from its 
competitor, classicism. Connectionism exploits non-symbolic representational structures, and thus 
does not constitute a digital implementation of a computational device — the kind we’re most familiar 
with, and the kind that connectionism often gets conflated with. The independent connectionist 
framework posits the use of structural representations instead, and thus an analog model of 
computation (see O’Brien & Opie, 2004; 2005; 2008).  

When connectionism is understood in this way, it is possible to grant one of the central criticisms 
levelled against connectionism: malleable synaptic conductances are incapable of instantiating 
symbolic representational data structures as part of a classical read/write mechanism. However, such 
criticisms are entirely beside the point: connectionism does not claim to instantiate classical symbolic 
mechanisms. Instead, synaptic weights can and should be understood as structural representations, like 
the activation pattern representations that are standard-fare in connectionist theory. That is, synaptic 
strengths can be elements in a representing set of physical magnitudes, wherein some physical 
relations between these elements track, and can be mapped onto, some physical relations between 
elements in the environment, a represented set. Groups of connections, with varying strengths, can 
instantiate structural homomorphisms with elements of their task domain in the same way that 
activation patterns are commonly considered to do so. Structural homomorphism is the content 
determining relationship that underpins structural representations. The structural homomorphism 
between sets of elements is useful and productive to some user of the representing set of elements, 
insofar as the user is brought into some contact with a represented set of elements in the world as a 
result of leveraging that structural homomorphism. So, when Gallistel criticises connectionism, and 
asks of it, “where are the symbols?”, the connectionist simply replies: “I have no need of that 
hypothesis”. There is more to representation than symbols and functions. 

The structural and analog framework for understanding connectionism was set out in Chapters 2 and 4, 
but the cash value of this framework was demonstrated throughout Chapter 5. Desert Ant navigation, 
and animal navigation tasks more generally, is an old problem. While the relevant sciences of animal 
navigation have made significant developments over the decades, there have remained gaps in our 
holistic understanding of the task. The connectionist approach threw new light on these issues.  

For some theorists, for example Gallistel, there is a fundamental tension between the mechanisms that 
have been discovered by the relevant sciences that underwrite Desert Ant navigation, and how we 
piece those engineering puzzle-pieces together with our philosophical understanding of computation 
and intelligence. One small change completely reopened this dialogue, to clear (I hope) the tension: 
there is another way to understand biological computation.  

A close look in Chapter 3 at the geophysics, geometry, and astronomy of celestial navigation cues 
revealed that there are useful yet unusual ways to leverage the contents of the sky for orientation: the 
relational structure of polarised skylight, rather than their explicit patterns, possess some stable and  
some asymmetric features with which to calibrate one’s orientation. With the proper connectionist 
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framework of computation in hand, it was then possible to see how some of that relational structure 
produced by environmental stimuli can be mirrored in the neurobiology of an evolved creature.  

The artificial neural network models analysed in Chapter 5 are where the rubber meets the road for the 
connectionist approach. By looking at some simplified but realistic models, inspired by the 
neurobiology analysed in Chapter 3, the physical differences were made clear between the 
connectionist and classical approach. There are plenty of theoretical differences to be drawn out 
between the two approaches, but I hope to have shown that by holding them up against real biology, 
and real tasks, the engineering consequences that differ between them really become apparent.  

The neurobiology of path integration looks nothing like a classical mechanism. Theorists like Gallistel, 
as well as the ant scientist-in-chief, Rudiger Wehner, would seem to agree with me on this point. 
Gallistel simply pursues this conclusion to a different end. He asserts if that we can’t find the classical 
mechanisms he believes are ineluctable constraints on cognitive phenomena with the theoretical tools 
at hand, tools like patterns of activation or synapse strengths, then we need new tools. Wehner, on the 
other hand, marvels at how evolution stumbled upon a ‘matched-filter’ to complete the task of path 
integration. Rather than using classical mechanisms which perform, “…a number of abstract 
computations in some kind of central processing unit” (Wehner, 1989b: p. 81-82), the matched-filter 
incorporates the structure of the task domain into the structure of the sensory apparatus itself. I take 
Wehner’s conclusion, and simply take it one step further in order to integrate it with the philosophical, 
computational foundations of cognitive science: a ‘matched-filter’ is a quintessential analog, 
connectionist computational mechanism. Achieving conciliation between the empirical data and a 
philosophically robust interpretation then gives us a well-rounded cognitive explanation of Desert Ant 
navigation.  

It was possible to make sense of the information encoding strategy in the ant’s neurobiology using 
structural representations. We thereby gained insight into the ant’s perspective — the way the ant takes 
the world as being. More precisely, it became possible to make sense of the rational way the ant 
behaves given the way it represents its own relation to the world. Connectionism can, therefore, 
illuminate reason-based interpretations required of cognitive, intelligent systems. At the very least, it 
can explain basic cognitive phenomena like path integration in insects, contra the claims made by 
Gallistel. 

Scaling these efforts up, to include total explanations of brain functioning (more than just highly 
circumscribed navigation mechanisms using only a few modules) will be a long slog for the 
connectionist programme. I hope to have taken some small steps in the present discussion to show, at 
the very least, that such a programme is possible. My more extravagant hope is that I’ve shown how 
such a programme is theoretically promising. Connectionism is a viable research programme in the 
cognitive sciences, and the way that it unpacks notions like representation and computation are 
radically different to the standard conceptions. These radical differences in turn have consequences for 
the way we think about cognition, and can reshape and revitalise the way we investigate and model 
cognitive systems. To follow through on this promise, and see where the connectionist framework can 
take us, we need to relieve ourselves of a parochial focus on symbolic, digital computation, and 
embrace the analog alternative.  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