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Abstract

A key issue confronting petascale and exascale computing is the growth in probability of soft and hard faults with increasing

system size. A promising approach to this problem is the use of algorithms that are inherently fault tolerant. We introduce such

an algorithm for the solution of partial differential equations, based on the sparse grid approach. Here, the solution of multiple

component grids are efficiently combined to achieve a solution on a full grid. The technique also lends itself to a (modified)

MapReduce framework on a cluster of processors, with the map stage corresponding to allocating each component grid for

solution over a subset of the processors, and the reduce stage corresponding to their combination. We describe how the sparse

grid combination method can be modified to robustly solve partial differential equations in the presence of faults. This is based

on a modified combination formula that can accommodate the loss of one or two component grids. We also discuss accuracy

issues associated with this formula. We give details of a prototype implementation within a MapReduce framework using

the dynamic process features and asynchronous message passing facilities of MPI. Results on a two-dimensional advection

problem show that the errors after the loss of one or two sub-grids are within a factor of 3 of the sparse grid solution in the

presence of no faults. They also indicate that the sparse grid technique with four times the resolution has approximately the

same error as a full grid, while requiring (for a sufficiently high resolution) much lower computation and memory requirements.

We finally outline a MapReduce variant capable of responding to faults in ways other than re-scheduling of failed tasks. We

discuss the likely software requirements for such a flexible MapReduce framework, the requirements it will impose on users’

legacy codes, and the system’s runtime behavior.
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1. Introduction

The numerical solution of large-scale partial differential equations (PDEs) faces two fundamental scalability

challenges. Firstly, as the spatial dimensionality d of the PDE increases, the number of unknowns on a full
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isotropic grid is O(nd), where n is the grid resolution in each dimension. This situation—called the curse of
dimensionality—renders a high grid resolution on a full grid intractable as d increases. Secondly, even when the

number of unknowns is amenable to solution on state-of-the-art supercomputers, the likelihood of encountering

faults during a computation increases as the system size scales to petascale and beyond; the probability of errors

during the computation becomes proportional to both the number of hardware components used and the duration

of the computation. These errors include both hard faults, where components fail according to a given probability

per time unit, and soft errors, which arise from transient faults in the computation [1].

Methods such as checkpoint-restart can be employed to deal with hard errors [2]. While a general technique,

checkpointing may be problematic at exascale due to the high energy costs resulting from its inherent memory

and I/O intensiveness. Algorithm-based fault-tolerance (ABFT) techniques can provide a solution for both hard

and soft faults. While these are special-purpose, depending on particular properties of the computation needing to

be solved, they often provide a low-cost solution [3, 4].

MapReduce methods [5] have recently shown strong promise in the parallel solution of many large-scale

problems [6]. Provided the data is well-aligned with the constituent Map and Reduce tasks, these can scale

very well. Furthermore, the paradigm offers inherent fault-tolerance as the Map or Reduce tasks that fail can be

restarted on another node in the system.

In this paper, we present an ABFT solution to PDEs that can both reduce the curse of dimensionality in high-

dimensional problems and can be made robust in the presence of both hard and soft faults. It is based on the

sparse grid combination technique [7, 8], where the problem is solved on a number of anisotropic component

grids that have high resolution in some—but not all—dimensions, which are then combined to form a sparse grid

approximation to the full high-dimensional grid. This technique has a complexity of only O(n log(n)d−1) and has

been shown to parallelize efficiently [9].

The technique can also be formulated using a MapReduce paradigm, where, in the context of implementation

on a multicore cluster, the Map tasks corresponds to the distribution of component grids for solution across subsets

of cores in the system, and the Reduce tasks being their subsequent combination over the sparse grid.

While it thus offers the same scope for fault-tolerance as in general MapReduce formulations, the sparse grid

combination technique also offers fault-tolerance through the redundancy of the multiple component grids. Thus,

if any part or all of the solution on a component grid is missing, instead of restarting the corresponding task, we can

instead simply use information from the other grids to either reconstruct the missing component grid, or simply

use a modified combination of the remaining component grids to produce the overall solution, at the possible cost

of some loss in accuracy. This leads us to a modified MapReduce programming pattern under which the Reduce
task is dynamically formulated upon the degree of success (after a given time) of the spawned Map tasks.

The remainder of this paper is organized as follows. Related work is summarized in Section 2. An overview

of MapReduce is presented in Section 3. Section 4 describes the sparse grid technique and in particular the

combination technique with and without faults. A prototype implementation using the two-dimensional advection

equation is described in Section 5, including results of the errors in the sparse grid technique, again with and

without faults. Section 6 describes how such an implementation may be generalized in a modified map-reduce

context, with conclusions being given in Section 7.

2. Related Work

The development of fault-tolerant techniques (FTT) has been an active research area in High Performance

Computing (HPC) for nearly thirty years, following the first ABFT work of Huang and Abraham [3]. FTT can

be broadly categorized as either technological strategies or application-specific ABFT. Technological strategies

include checkpointing, replication, and fault-tolerant parallel infrastructure such as fault-tolerant extensions to

MPI. ABFT includes strategies such as task pools with reassignment of dropped tasks, such as in MapReduce, or

a variety of other techniques summarized later in this section. Our work is in the implementation of ABFT at the

application level.

Checkpointing entails periodically saving the state of a computation such that the computation can be restarted

from that point in the event of a failure. The computation state is usually saved on a parallel file system and is

sensitive to parallel I/O performance. Parallel I/O performance enhancements, however, usually cannot compete
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with corresponding improvements in processor speeds and memory bandwidth and latency. Thus, the parallel

I/O remains a bottleneck that makes checkpointing a time-consuming process. This problem can be partially

ameliorated by reducing the volume of state data stored to disk. Diskless checkpointing [10] obviates the need for

going to disk by saving checkpoint state data in memory on compute nodes, restarting the program from that state

in the event of a failure. Specifically, additional nodes are used to store a checksum of the memory checkpoints

so that the memory checkpoints of the faulty compute nodes can be reconstructed from this checksum. Although

diskless checkpointing offers superior performance comapred to disk-based checkpointing, it requires the use of

additional nodes to store only checksums of memory checkpoints and this impost grows in proportion to the size

of the global node pool used by the application. Diskless checkpointing’s advantages must be considered in light

of the communcation and computation costs associated with creating a diskless checkpoint[1]. A detailed survey

of the various checkpointing protocols that are currently in use is given in [11].

Replication involves storing the same data on multiple processes in a distributed system [12]. In the event of

process failure, these replicated data can be used to reconstruct the work of the failed process. Usually, this can

be done by spawning two processes that perform exactly the same computation. If one of these processes fail, the

results from the other one can be used to replace failed process. The main benefits of replication of data can be

classified as performance enhancement, reliability enhancement, better data locality, shared workload, increased

availability, and increased fault tolerance. The constraints are similarly classified as how to keep data consistent,

where to place replicas and how to propagate updates, and how these choices impact scalability. The drawbacks

to this approach is increased resource requirements and performance degradation stemming from replication com-

munications costs.

Task pools with reassignment is a strategy in which a “master” node coordinates the assignment of tasks

executed by a pool of “worker” nodes, reassigning tasks in the event of worker node failure. The best-known

example of this strategy is MapReduce and its variants, which will be discussed in Section 3. This approach is

robust with respect to worker node failure but remains vulnerable to master node failure.

The prevalance of MPI in HPC applications has driven considerable work in development of fault-tolerant

MPI implementations. Although MPI and MPI-2 functions can provide error codes, these standards do not pro-

vide strategies for continued execution after encountering such errors. The MPI-3 standards process included

a fault-tolerant techniques working group, but there is still no fault-tolerance specification in the MPI-3 stan-

dard [13]. Thus, researchers in FTT for MPI-based codes must work with an extension to the MPI standard, such

as the semantics described in [14], or with an MPI implementation that provides fault-tolerance through its own

checkpointing and/or replication mechanisms, such as MPICH-VCL [15] or openMPI [16].

ABFT techniques at the application level most frequently rely on some underlying checkpointing or replication

technology. A notable example is Ltaief et al. [17], who used a fault-tolerant MPI to implement a replication-

based robust scheme for heat transfer problems. Algorithms that are naturally fault-tolerant and require only

minimal parallel environment infrastructure support are less common. Srinivasan and Chandra [18] describe a

parareal—having a parallel domain decomposition in time as well as space—algorithm for molecular dynamics

simulation of nanomaterials that is inherently fault-tolerant in its ability to cope with lost portions of a solution by

re-computing them from successfully completed portions. The work we describe here pursues ABFT in a similar

vein. We propose algorithms in which a set of component computations are combined to calculate a solution. Each

component resides on a distinct pool of processors or cohort. If one or more processors in a given cohort fail, the

corresponding component calculation is dropped and not used in the combined solution, with the consequence of

reduced—but still acceptable—accuracy.

The Open Petascale Libraries project [19] is a global initiative established with the aim of assisting the de-

velopment of advanced applications software on the emerging generation of supercomputers by the provision of

libraries that extract high performance from and can be easily adapted to the underlying computer architecture.

The work presented here fits within this framework since it (a) increases application scalability by offering a so-

lution to the curse of dimensionality; and (b) provides an alternative solution to the problem of node failure —

which becomes more likely at scale — that does not suffer from the limitations — also more apparent at scale —

of checkpointing, replication or the use of task pools with reassignment.
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Fig. 1. A sparse grid with its components

3. MapReduce

MapReduce [5, 6] is a functional programming pattern popularized by Google, who have used it to compute

page rank and inverted indices of the Internet. In broadest terms, the MapReduce programming model is the

composition of one Map() and one Reduce()–sometimes called Fold()–function, with Reduce() operating on the

outputs of Map(). The discussion of sparse grid combination method in Section 4 and the 2D advection prototyped

described in Section 5 employ the MapReduce pattern in this purely functional sense.

Google’s MapReduce programming model defines the Map() and Reduce() functions as follows: the Map()
transforms input data into a list of output <key,value> pairs; the Reduce() phase transforms all values asso-

ciated with a given key into a final result for that key. Map outputs are routed to Reduce inputs by an inter-

mediate sorting facility provided by the MapReduce framework. Data input into the framework, intermediate

<key,value> pairs, and the framework’s output are stored on a proprietary distributed file system (DFS). The

<key,value> pairs are sorted, and grouped by key for subsequent routing to Reduce nodes. Fault-tolerance

is implemented using replication and task pools with reassignment. The Google MapReduce implementation is

proprietary. Yahoo! have developed the open-source Hadoop implementation [20] that imitates the functionality

and fault-tolerance of Google MapReduce. Hadoop is widely used in large-scale data analysis in the commercial

and research communities. The rapid uptake of MapReduce has spawned other implementations, including one

utilizing Python’s Pool class [21], and the message-passing-parallel MapReduce-MPI [22]. A review discussion

of MapReduce implementations, advantages and disadvantages of the MapReduce programming model, and its

variants and extensions is given by [23].

4. Sparse Grids and a Fault-tolerant Combination Technique

Sparse grids [24, 8] are computational grids that contain substantially fewer points than the usual regular

isotropic grids. They are particularly suited to higher-dimensional problems as they are less affected by the curse

of dimensionality. An example of a sparse grid is seen in Figure 1. The figure also shows that the sparse grid is

represented as the union of regular grids. In the following discussion we only consider 2-dimensional grids. Any

regular grid is assumed to have a grid spacing of 2−i in the x direction and 2− j in the y direction. Following [25],

we call any union of regular grids a sparse grid.

The sparse grid combination technique [7, 8] approximates sparse grid solutions to PDEs by linear combina-

tions of solutions on regular grids. Here we will consider a square domain in which the grid points of the regular

grids Gi, j are {( x
2i ,

y
2i )|x = 0, 1, . . . , 2i , y = 0, 1, . . . , 2 j}. For the example shown in Figure 1, five subgrids Gi, j with

2i + 1 by 2 j + 1 grid points are required. These include in addition to the three constitutive grids G3,1, G1,3 and

G2,2 the two intersection grids G2,1 and G1,2. The sparse grid itself may be defined using only the first three

GSG = G3,1 ∪G1,3 ∪G2,2

but for the combination technique approximation one requires the solutions ui, j on all the five grids Gi, j as the

approximation takes the form

uCT = u3,1 + u1,3 + u2,2 − u2,1 − u1,2.

The combination technique is a very general approach and has been used to obtain sparse grid approximations

to problems for which solutions are available on regular grids. An example is the determination of eigenvalues,
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see [26]. Here the GENE code [27] was used to obtain approximations of eigenvalues on regular grids. It was

demonstrated that combinations of these eigenvalues provided improved approximations to the eigenvalues of the

underlying system of PDEs. The combination technique could even adapt the strongly anisotropic grid sizes used

in GENE by using the dimension adaptivity explained in [25]. The sparse grid combination technique displays

parallelism at two levels: Firstly, all the problems on the regular subgrids can be computed independently in

parallel. Secondly, each regular grid solution can be determined in parallel using domain partitioning. A first

simple discussion of this is provided in [9].

In the most general case the combination technique takes the form

u =
∑

(i, j)∈I
ci, j ui, j, (1)

where I is a downset (or lower set), i.e. it satisfies the property that if (i, j) ∈ I, 0 ≤ i′ ≤ i and 0 ≤ j′ ≤ j
then (i′, j′) ∈ I. Clearly, the accuracy of the combination technique approximation depends on the choice of

the regular grids Gn,m and the combination coefficients. Effective choices of the combination coefficients are

discussed in [28, 25, 29]. It turns out that in 2-dimensions good choices of the coefficients are ±1. For example,

in the classical case we have for level l the set I = {(i, j)|i, j ≥ 0, i + j ≤ l} and the combination coefficients are

ci, j = 1 if i + j = l, ci, j = −1 if i + j = l − 1, and ci, j = 0 otherwise. This gives rise to the combination formula

u =
∑

i+ j=l

ui, j −
∑

i+ j=l−1

ui, j . (2)

This situation is depicted in Figure 2(a) where each square corresponds to a solution ui, j and the non-zero coeffi-

cients are 1 or −1 denoted by a plus or minus sign respectively.

The meaning of equation (1) is that any function value u(x) =
∑

(i, j)∈I ci, jui, j(x). This would require accessing

all the partial solutions (and there can be thousands in higher dimensions) for every function evaluation. More

effectively, one stores the values of u on the sparse grid G =
⋃

i, j Gi, j and uses sparse grid interpolation to recover

any other values. The determination of the values on the sparse grid is then the reduce step which will be discussed

later. The reduce step is closely related to the hierarchisation of sparse grids which is discussed in [30].

The sparse grid combination is mostly used to solve high-dimensional problems. But the pattern of equation (1)

make it also attractive for lower-dimensional cases. Indeed, it has been used for preconditioning [31] and here we

obtain a fault-tolerant method using the combination technique. Equation (1) is of a MapReduce form, which is a

widely applied pattern in parallel processing and the consequences of this is further discussed in Sections 3 and 5.

But this nice pattern comes at a price: First, the sparse grid approximation itself provides only an approximation

of a regular grid solution at the same level and furthermore the combination technique only is an approximant

of the sparse grid approximation. Thus in order to obtain the same accuracy with the sparse grid combination

technique as with a regular grid one requires a higher level. This can be seen in Figure 3. This error, however, is

not further discussed in the following – more information can be found in the review paper [8] if required.

Below we describe how the combination technique can be modified to implement ABFT.

Given I the problem is to determine a combination as in Equation (1) when one of the solutions ui′, j′ is missing

for some (i′, j′) ∈ I. We illustrate this in the case of the classical combination technique. We consider two different

approaches, one where we modify the set I and the second where we recover ui′, j′ from other solutions. In the first

approach we have two situations in 2D. Either i′ + j′ = l in which case we define I′ = I\{(i′, j′)}, or i′ + j′ = l − 1

in which case we may define I′ = I\{(i′ + 1, j′)} or I′ = I\{(i′, j′ + 1)}. Here the resulting I′ are downsets and the

coefficients ci, j for (i, j) ∈ I′ are assumed to be known [25]. The resulting combination formulas are illustrated in

Figure 2 (b) and (c) for a classical combination of level 5 where the failed solution is u1,4 and u2,2 respectively.

In the second approach we only consider the case i′ + j′ = l − 1. Here we recover ui′, j′ by sampling either

ui′+1, j′ or ui′, j′+1 on the grid Gi′, j′ . More details on this approach can be found in [32].

When faults affect multiple solutions, the same approach can be applied as long as there is no overlap in the

combination coefficients that need to be changed. In particular if faults only affect two solutions then this is true

except where failures affect two solutions ui′, j′ and ui′−1, j′−1 with i′ + j′ = l, in which case many coefficients must

be changed. This is also the only case of two failures in which coefficients with i + j < l − 2 become non-zero.
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Fig. 2. Sparse grid combination method: (a) classic sparse grid combination for l = 5, (b) combination in the event of a lost component

solution u1,4 and (c) combination in the event of a lost component solution u2,2.

This fact means that if there is an extremely low probability of having more than one failure, one may wish to only

compute the grids Gi, j with l − 2 ≤ i + j ≤ l instead of the entire downset.

Finally, we mention here the paper [30] where a very efficient new data structure is introduced to store a sparse

grid. This data structure is shown to lead to efficient new algorithms for hierarchisation – the determination of

the coefficients of the sparse grid hierarchical basis. This representation does allow for very fast evaluation of the

sparse grid approximation on a collection of grid points and thus effective post-processing.

5. Prototype Implementation for the 2D Advection Equation

Our test problem in the development of a framework is the scalar advection equation in 2–dimensions which

for u := u(t, x) is given by
∂u
∂t
+ ∇ · (au) = 0 . (3)

With a = (1, 1) we consider the solution for x ∈ [0, 1)2 with periodic boundary conditions and smooth initial

condition u(0, x) = sin(2πx1) sin(2πx2). In our numerical simulation we solve up to t = 0.5 for which the exact

solution is u(0.5, x) = u(0, x). Our implementation uses PETSc [33] with centred finite difference discretisation of

spatial derivatives and Runge–Kutta for the time–stepping. The code has been developed so that it can compute a

numerical solution to this problem on any regular grid whose dimensions can be set with command line arguments.

In this section Map() and Reduce() will refer to generic functional programming Map and Reduce operators

and not to the corresponding functions used in the Google MapReduce framework. We implement parallel versions

of these operators using Python and mpi4py [34].

We require two fundamental data structures in our implementation, one for the collection of component grids

and one for the sparse grid. The collection of component grids is represented by a downset I of level pairs (i, j)
as explained in Section 4. The (i, j) ∈ I are also used as keys to access the component solutions ui, j. The sparse

grid is implemented as a hash table (Python dictionary) with the keys (x, y) and values u( x
2l ,

y
2l ) where ( x

2l ,
y
2l ) are

the sparse grid nodes.

The Map stage computes the solution of the PDE for all of the component grids Gi, j. Note that these com-

putations are all independent and can therefore be computed simultaneously. They scheduled and managed by

several MPI processes. For each grid Gi, j MPI SPAWN is called and a new inter–communicator is generated for

communication between the child and parent processes. On completion the child process sends a message to the

parent process. This requires only a minor modification of the application code which computes the solution on

each component grid.

The Reduce stage computes the sparse grid function u from the componont grid functions ui, j using the

formula u =
∑

(i, j)∈I ci, jui, j. In the current version this reduction operation is done sequentially.
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Fig. 3. Comparison of errors after recovery when faults affect different component grids. The first plot is when one grid is affected by faults

and the second is when two grids are affected by faults. We recover from faults by deriving new combination coefficients which avoid faulty

grids. The combination solutions have been interpolated to the full grid for the calculation of error and comparison with the full grid.

The reduction step is where the algorithm based fault tolerance is implemented. This is different to Google’s

MapReduce where fault tolerance is implemented at the Map() stage. As discussed in the previous section we

have two basic approaches: either the combination coefficients are adapted so that the missing components ui, j

have no influence, or the missing ui, j are recovered from the other component solutions.

Each component grid is interpolated onto the sparse grid and stored in an array using the structures and

dictionaries previously described. Since interpolating to the sparse grid array as given by the dictionaries provides

a consistent layout of the data then the reduction step is as simple as applying the combination formula element-

wise to the sparse grid arrays.

We simulate the effect of faults in the Map() stage by either deleting component grids before reaching the Re-
duce() stage or by randomly removing a component grid from the list before starting the Map() stage. This allows

us to test the Reduce() stage’s ability to identify missing component grids and then reconfigure the combination.

We then compare the result with the exact solution and the approximate solution when no failures are simulated.

In Figure 3 we demonstrate the errors obtained when recovering from failures by obtaining new coefficients

from the expansion of the projection operator. The grids with dimensions 2i×2 j where l−2 ≤ i+ j ≤ l and i, j ≥ 2

have been computed for each level l. We simulate one fault for the first plot and two faults for the second. We note

that for the second plot we have excluded the cases of faults affecting two component grids ui, j and ui−1, j−1 where

i + j = l. The errors appear to be relatively small and decrease uniformly with increasing level. There are also

some cases where the error after a fault occurs is very close to the error when no faults occur. Where faults affect

two grids we note that the maximal error is a little larger but still appears to decrease uniformly with increasing

level. In all cases, the degree of error with faults is within a factor of 3 of the sparse grid error without faults.

Comparing with the full grid results, we observe that a full grid with level l has approximately the same error

of a sparse grid error at level l + 2 (i.e. the maximal resolution is four times that of the full grid), while requiring

less than l+2
2l−3 of the computational work and memory.

6. A Modified MapReduce Programming Pattern for Scalable Fault-Tolerant PDE Solvers

The 2D advection application described in Section 5 employs the MapReduce functional programming pat-

tern, but the interface between the Map and Reduce stages differ from the MapReduce application programming

interfaces offered by frameworks such as Google MapReduce, Hadoop, or the MapReduce-MPI library. Below we

describe how this prototype could be refactored to use popular MapReduce frameworks and discuss the limitations

of these frameworks with respect to our method. We then propose a modified MapReduce programming model

and the technical challenges and design questions we face in designing and developing infrastructure to support it.
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The sparse grid combination technique described in Section 4 can in principle be implemented within a stan-

dard framework such as Hadoop. The Map() function takes initial and boundary conditions and computes a

solution on each component grid, emitting <key,value> pairs. The key is the (x, y)-location on the full isotropic

grid, which can be used as a sparse grid index. The value is the tuple [(i, j),ui j(x, y)]. The Reduce() function

processes all data associated with each sparse grid index key (x, y), using the component grid ID (i, j) to determine

the coefficient of ui j(x, y) in the combination formula (1) to compute the solution on the sparse grid. Such an

implementation would be fault-tolerant because the framework will reschedule any failed Map or Reduce tasks.

We are not pursuing this approach using Hadoop because of its reported limited scalability to approximately

4000 nodes [35], reliance on disk I/O and ill-suitedness to the type of problem we are trying to solve. Hadoop’s

Java-based programming model creates language interoperability issues we wish to avoid imposing on scientific

programmers who work primarily in Fortran, C/C++, and Python. Additionally, Hadoop’s framework structure

does not offer a sufficiently expressive programming model for the algorithmic fault-tolerant schemes we are de-

veloping. These issues motivate a reexamination and extension of the MapReduce programming pattern and the

development of a software framework capable of supporting this approach. Below we discuss the requirements,

design, and runtime scenario for a flexible MapReduce system for grid combination technique solvers.

Our primary aim is to support scientific computation on cluster supercomputers that employ standard program-

ming models such as MPI and OpenMP running under job-queuing systems such as the Portable Batch System

(PBS). This differs dramatically from the standard MapReduce application to large-scale data analysis on a dedi-

cated system with a MapReduce-framework-specific queuing system and DFS. The volumes of data we anticipate

handling in our sparse grid solver schemes are amenable to storage in memory, obviating the requirement of an

application-specific DFS. We wish to avoid the single point of failure inherent in Hadoop’s master node. In place

of a single master node in MapReduce frameworks we propose a “manager” pool of PEs that creates and destroys

“worker” PE pools for execution of Map and Reduce tasks, monitors worker pools to detect faults, responds to

faults by modifying workloads or reassigning tasks, and arbitrates direct data transfer of Map outputs to Reduce
inputs. We also wish to avoid the global sorting scheme and barrier that exist within standard MapReduce frame-

works. In the place of disk storage and a large sorting scheme, we envision a system implementing distributed

data description and parallel transfer/transformation mechanisms commonly employed in parallel multiphysics

coupling [36]. This will entail storage of distributed state data in memory and an M × N [37] direct parallel

data transfer mechanism between Map and Reduce nodes. The M × N transfer connections and communications

schedules will be computed from user-supplied definitions of component grids and their associated domain de-

compositions. These parallel data transfers will likely be implemented using a peer communication scheme such

as that offered by the Model Coupling Toolkit [38].

Our grid combination method strategy is to use legacy code solvers as the individual Map tasks, associating

each task with a component grid. The programming model and framework must be minimally intrusive, requiring

only a small number of modifications to the legacy code to render it as a Map. The set of interfaces a legacy Map
code must call include a function for mapping component grid locations to sparse grid locations, description of

distributed data to be transferred from Map to Reduce, handshaking of M × N data transfers, and execution of

these parallel transfers. In addition to these code modifications the user must supply be a Task Cost Model (TCM)

that relates problem size/component grid resolution to wall-clock execution time. This requirement is optional in

the sense that not meeting it will limit the framework’s ability to perform effective load balancing, estimate task

progress, and detect task node failures. A final requirement imposed on the user is a solution quality of service

(QoS) model that defines acceptable combination formulae and relates them to error estimates. The framework

will supply a system for defining sparse grid combination formulae coefficients and their respective solution error

bound estimates. The QoS model determines how the Reduce phase proceeds in the face of lost Map tasks.

A MapReduce framework detects worker PE faults by requiring periodic progress reports from worker nodes

as they carry out their tasks. In Hadoop, this is implemented as a periodic “heartbeat,” and the master node

assumes a worker node has failed if no heartbeat is detected after a predefined waiting period. This approach

works well in Hadoop for up to 4000 nodes, but may need to be reexamined for petascale systems. A hierarchical

heartbeat monitoring system is one possibility. Another approach is to use the TCM to allow the manager nodes

in the framework to predict how long a given Map or Reduce task will take to execute, and to take corrective

action at some point after this TCM-predicted execution time interval has been exceeded. Responses to task

failures will depend on the type of task lost. The framework will be sufficiently flexible to allow dropping—as
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opposed to rescheduling—of failed Map tasks and selecting a best—in terms of lowest error estimate—available

alternative combination formula for the Reduce phase. Completion of Reduce tasks will be guaranteed either

through replication or re-scheduling.

The likely runtime narrative for the flexible MapReduce framework will be as follows: The framework will be

an application run on a cluster through a queuing system. The first prototype will use MPI and be invoked using

mpiexec. At startup the framework’s manager nodes occupies Nman PEs. The manager nodes load configuration

information defining the Map application(s), component grids, sparse grid, combination formulae with associated

error estimates, and—if supplied—TCM data. The manager nodes then spawn Map tasks, either invoking them as

functions on a portion of a statically-defined global PE pool, or invoking them with as separate executables using

MPI SPAWN(). The manager pool will then determine the ideal layout of the Reduce task pools and the mapping

of computations to them. This information will be combined with the layout of the Map tasks to compute the

communications schedule for the M × N Map-to-Reduce parallel data transfer. The manager pool will initiate

a set of Reduce tasks, advising them of their respective M × N transfer operations. The Map tasks will also be

advised of the M×N transfer operations they will execute once their calculations are completed. The Reduce tasks

will post nonblocking receives and await data from the Maps. During execution of the Map tasks the framework

will monitor them for failures, either through communication or by comparing the time elapsed with respect to

the execution time predicted by the TCM. Notice of Map task failures detected by the manager nodes will be

passed on to the Reduce task nodes to avoid waiting on data that will not arrive. This mechanism will also allow

the Reduce task nodes to pick the appropriate combination formula. Upon completion of the Reduce phase, its

output will be written and all remaining task PE pools will be terminated by the manager pool before it exits.

7. Conclusions and Future Work

Petascale and exascale computer systems will pose unprecedented scalability challenges to scientific software

developers. The vast number of hardware components on these systems, combined with finite probability of

failure for each component, will make fault-tolerance a core requirement for future HPC applications. Building

robust codes in such environments will likely require using multiple fault-tolerance techniques. We believe that

ABFT, though application-specific, will be a key technology in meeting these challenges. We have proposed an

ABFT technique for constructing robust PDE solvers based on the sparse grid combination technique. We have

outlined the theoretical basis of the technique, and demonstrated its potency in terms of reduction of computational

complexity and its inherent ABFT properties. We have applied the sparse grid combination method to a benchmark

problem—2D advection—in a framework based on the MapReduce functional programming pattern. We have

found that the method delivers acceptable errors, even in the presence of simulated faults.

The results presented here are sufficiently promising to merit further research and development of these al-

gorithms and of an ultrascale software framework capable of delivering the fault-tolerant MapReduce variant de-

scribed in Section 6. Areas of future investigation will include: extension of the sparse grid combination method

to other systems and in particular higher-dimensional systems; investigation of the feasibility of these techniques

on other spatial grid structures; a detailed requirements and design analysis for a flexible ultrascale MapReduce

framework; and implementation of a full working system.
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