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Abstract 

 

ABSTRACT 

The Walter-Outalpa shear zone is NW trending, and forms a conjugate structure to 

the more numerous and documented E-ENE and NE trending shear zones of the Olary 

Domain. The Walter-Outalpa shear zone is 10km long, and bounded to the west by a western 

margin thrust zone, and to the east by an unconformable contact with the Adelaidean 

Supergroup. 

The geometry of the Walter-Outalpa shear zone is confined to its Delamerian 

reactivation because of marked overprinting. During the Delamerian, the shear zone was 

reactivated as a southerly dipping dextral oblique system, with some reverse movement. The 

shear zone displays both ductile and brittle structures from this reactivation. Compression 

was approximately N-S, and retrogression of mineral assemblages to greenschist facies 

occurred. 

 Structures in the shear zone indicate dextral movement both pre-Adelaidean, and 

during Delamerian reactivation. Horizontal offset of the Willyama Supergroup units (eg. the 

Walter-Outalpa Granite) is up to 3,500m. This is much greater than offsets previously 

reported for the Olary Domain, and much greater than the offset seen at the basement-cover 

unconformity (between the Willyama and Adelaidean Supergroups). This indicates a long 

pre-Adelaidean history for the Walter-Outalpa shear zone. The basal conglomerate of the 

Adelaidean Supergroup however, does show evidence of shearing, and structures and fabrics 

within the shear zone also indicate reactivation during the Delamerian. 

The Walter-Outalpa retrograde shear zone, within the eastern Weekeroo inlier, 

truncates all Willyama Supergroup lithologies and structures. It does not, however, truncate 

Adelaidean Supergroup lithologies and is therefore interpreted as a post-Olarian Orogeny, 

but pre-Adelaidean structure. However, reactivation of the Walter-Outalpa shear zone 

occurred during the Delamerian deformation. Many fabrics and structures within the shear 

zone represent this Delamerian overprint, as indicated by Sm-Nd dating of a garnet-chlorite 

schist which only occurs within the shear zone. A four point isochron, including garnet, 

chlorite, muscovite, and biotite, gives an age of 509 ± 19 Ma. 

ENE trending shear zones show U and REE mineralisation (eg. Radium Hill, 

Crockers Well), and some shear zones act as structural traps for mineralisation (eg. White 

Dam deposit). No previous work has studied the geometry, kinematics, and interactions of 

retrograde shear zones within the Olary Domain. Understanding of the features related to 

retrograde shear zones may provide valuable information for major Olary Domain 

mineralisation exploration. The Walter-Outalpa shear zone provides a useful example for 

analogy with other shear zone studies within the Olary Domain.  
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 *  lens cap is 55mm in diameter; ‘Max’ is 30mm in width. 


