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Abstract

Airfoil self noise is produced when an airfoil is immersed in an undisturbed flow.

Flow turbulence created in the boundary layer and wake of the airfoil generates

pressure fluctuations, which are scattered by the trailing edge (TE), radiating noise

to the far field. TE noise is one of the dominant mechanism of airfoil self noise in

low Mach number, high Reynolds Number flows. These conditions occur in many

applications such as wind turbines, aircraft, submarines, fans, air conditioning units

and turbomachinery in general.

The overall aim of this research is to investigate and develop a RANS-based Statis-

tical Noise Model (RSNM) for trailing edge noise. The method combines Reynolds-

averaged Navier-Stokes (RANS) turbulent flow solutions with statistical models of

the turbulent flow field, namely the turbulent velocity cross-spectrum.

Hot wire anemometry is used to investigate the flow in the boundary layer of

sharp edged struts with zero pressure gradient (ZPG) and adverse pressure gra-

dients (APG). Single-point and two-point statistics are presented, including mean

and RMS velocity profiles, probability density functions, third and fourth order mo-

ments, power spectral density, two-point correlations and coherence function. An

empirical model for the turbulent velocity cross-spectrum is developed, based on

the measured statistics. The cross-spectrum model is constructed by combining an

autospectrum model and a model for the spatial coherence function.

RANS computational fluid dynamics (CFD) simulations are performed for three

different two-dimensional airfoils (NACA 0012, DU-96-180 and the FP12 flat sharp-

edged strut) at a wide range of operating conditions. The simulation results are

validated against new experimental data, as well as data from the literature. The

CFD results are sampled in the region around the trailing edge and used as input

data to the noise prediction model.

Noise calculations are performed for all cases using different turbulent velocity cross-

spectrum models. The baseline model is an adaptation of the Gaussian formulation
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used in jet noise predictions by Morris and Farassat (2002), which is modified to

account for the presence of the sharp trailing edge. Modifications to the cross-

spectrum model are assembled by changing the auto-spectrum model and/or the

model for the spatial coherence function.

Noise predictions for the NACA 0012 and DU-96-10 airfoils using the baseline model

are in excellent agreement with experimental data. Noise predictions for the FP12

airfoil produced the correct slope, but underpredicted the noise levels by up to 15

dB.

The baseline model outperformed all the modifications investigated in this the-

sis.
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Chapter 1

Introduction

When an airfoil is immersed in an undisturbed flow, a boundary layer is created over

the surface of the airfoil and a wake is produced downstream. Flow turbulence is

produced in the boundary layer, which generates pressure fluctuations in the fluid.

When these pressure fluctuations reach the sharp trailing edge (TE), they encounter

an impedance discontinuity, which scatters them as sound waves, radiating noise

to the far field. This phenomenon is called trailing edge noise, and it occurs in

many engineering applications such as wind turbines, aircraft, submarines, fans and

turbo-machinery in general. All these applications generally operate in low Mach

number, high Reynolds Number flows. Under these conditions, TE noise is one of

the dominant mechanisms of airfoil self noise (Brooks et al. 1989).

A reduction in noise emissions is required by environmental regulations in the case of

wind turbines and aircraft, for commercial advantages in the case of air conditioning

units and other domestic appliances, and for tactical advantage in military applica-

tions such as submarines, helicopters and unmanned aerial vehicles (UAVs).

Wind turbine noise is one of the major hindrances for the widespread use of wind

energy (Oerlemans et al. 2008). TE noise has been identified as the main contributor

to wind turbine noise in the absence of inflow turbulence (Migliore and Oerlemans

2004).

TE noise is also a major concern for the aviation industry. Strict noise regulations

limit the operation hours of airports and the construction of new airfields, and NASA

has set a long term noise reduction goal of 20 dB for commercial aircraft (Lockard

and Lilley 2004). There is evidence on the association between exposure to road

traffic and aircraft noise and hypertension and ischaemic heart disease, and exposure
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to aircraft noise has been shown to increase the risk of high blood pressure (WHO

2011). The Advisory Council for Aeronautics research in Europe ACARE has set a

goal of reducing the perceived noise levels of flying aircraft by 65% relative to the

capabilities of typical new aircraft in 2000 by the year 2050 (Kallas et al. 2011). Since

the introduction of high bypass ratio jet engines in commercial aircraft, airframe

noise has become comparable to engine noise for aircraft on approach. Hence, any

further reduction in overall aircraft noise will require airframe noise to be addressed,

and if the long term 20 dB reduction set by NASA is to be achieved, TE noise in

particular will have to be reduced (Arguelles et al. 2001).

The aim of this research is to provide a method for predicting trailing edge noise

that can be used to design quiet airfoils. Reynolds-Averaged Navier Stokes (RANS)

simulations are routinely used for aerodynamic design and optimization, therefore,

a RANS-based TE-noise prediction method would be greatly beneficial, allowing

acoustic optimization of airfoils to be performed at the design stage. RANS is

better suited to this task than Large Eddy Simulation (LES), due to the large

computational demands of the latter, resulting in very long solution times. This

thesis presents a RANS-based Statistical Noise Model (RSNM), which combines a

statistical model of the turbulent velocity cross-spectrum with the mean flow data

obtained form a RANS flow solution. The noise radiated to the far field is calculated

by means of the acoustic analogy of Ffowcs Williams and Hall (1970). Various forms

of the turbulent velocity cross-spectrum are investigated and the method is applied

to a variety of airfoil shapes at a range of operating conditions, and validated against

experimental data from the literature.

1.1 Literature review

The introduction of the jet engine into the aviation industry created a need to mini-

mize the noise produced by aircraft. Lighthill (1952) was the first to provide a theory

for noise produced aerodynamically; that is, produced by the airflow itself, and not

by the action of vibrating solid bodies. He combined the Navier-Stokes equations

and the continuity equation to produce an inhomogeneous wave equation, where the

non-linear terms are grouped on one side of the equation and can be considered as

sound sources (Lighthill’s stress tensor). This is known as Lighthill’s acoustic anal-

ogy. The problem can be modelled as a volume distribution of quadrupole sources,

and dimensional analysis shows that the acoustic power output is proportional to

the eighth power of the flow velocity (Lighthill 1952). Curle (1955) provided an
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extension of Lighthill’s theory to account for the presence of solid boundaries, and

showed that sound radiation in the presence of solid boundaries in a turbulent flow

is equivalent to a distribution of dipoles, which at low Reynolds numbers radiate

much more intensely than Lighthill’s quadrupoles, with an intensity proportional to

the sixth power of the flow velocity.

Important contributions to Lighthill’s theory where made by Ffowcs Williams and

Hawkings (1969), who extended it to the presence of solid boundaries in arbitrary

motion, which results in an additional distribution of surface sources of a monopole

character.

Further extension of Lighthill’s theory was provided by Ffowcs Williams and Hall

(1970), who found an analytical solution to the diffraction problem of a scattering

half plane. Ffowcs Williams and Hall (1970) showed that in the presence of a sharp

edge, scattering and diffraction phenomena caused the sources to be made more

efficient again, radiating with an intensity proportional to the fifth power of the Mach

number. Thus TE noise is more efficient than Lighthill’s distribution of quadrupoles

or Curle’s dipole surface distribution.

Amiet (1976), Chandiramani (1974) and Chase (1972) provided further theoretical

developments, formulating the problem of trailing edge noise in terms of the scat-

tering of the surface pressure spectrum immediately upstream of the trailing edge.

Howe (1978) provided a unified view of the theory, incorporating the effect of mean

motion. Later, Roger and Moreau (2005) extended the theory of Amiet (1975) by

providing a correction for leading-edge back-scattering, as Amiet (1975) method

failed to obtain the correct directivity patter due to the truncation of the surface in-

tegral at the leading edge. Moreau and Roger (2009) validated the model presented

in Roger and Moreau (2005) by comparing the predicted noise spectra and direc-

tivity with analitical and experimental results, confirming that the model predicts

the correct directivity pattern, as well as the correct levels and spectral shape of

the radiated noise, provided that the model is fed with accurate correlation lengths

and wall-pressure statistics. Because wall pressure fluctuations are more amenable

to experimental measurements, this approach has been extensively researched and

used.

Trailing edge noise prediction methods can be classified in three broad categories: di-

rect, hybrid and empirical. Each of these approaches has advantages and drawbacks,

which will be discussed in the following sections.
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1.1.1 Empirical methods

Empirical methods are based on a detailed observation of airfoil flow and noise

experimental data, for a wide range of operating conditions . The sound field can

then be related to properties like free stream velocity, angle of attack and boundary

layer thickness. The most widely used empirical models were proposed by Schlinker

and Amiet (1981), developed for predicting helicopter rotor noise; and the BPM

(Brooks, Pope and Marcolini) model (Brooks et al. 1989), developed for the self-

generated noise of an airfoil blade encountering smooth flow.

Empirical models for the surface pressure spectrum for zero-pressure gradient tur-

bulent boundary layers have been developed by Chase (1972), Goody (2004) and

Smol’Yakov and Tkachenko (1991) which can be used to calculate the far field sound

spectrum by means of the theory of Amiet. Using these methods to calculate the

noise spectrum of sharp edged struts at low Reynolds numbers, Moreau et al. (2011)

found that they showed some agreement with experimental data above 2 kHz. Be-

low this frequency however, the predicted noise levels were significantly less than

the experimentally determined noise levels.

Empirical methods are attractive due to their simplicity and because they require

very few input parameters; however, their range of application is limited to flow

conditions similar to those of the original experiments used to develop them.

1.1.2 Direct methods

Direct methods are designed to calculate the fluid dynamics and acoustics in a sin-

gle step. They do so by solving the compressible Navier Stokes equations using

either Direct Numerical Simulation (DNS) or Large Eddy Simulation (LES). Both

of these Computational Fluid Dynamics (CFD) tools have large computational de-

mands, which are further complicated by the following particular features of TE

noise problems:

• Noise predictions are required for an observer located in the far field. This calls

for a large domain using high performance schemes with minimal numerical

dispersion and diffusion, and carefully designed boundary conditions that avoid

reflections as the acoustic waves reach the end of the finite domain.

• TE noise is broadband, which means very high spatial and temporal reso-

lution is required to resolve the higher frequency waves, which have short
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wavelengths.

• Acoustic waves have very small amplitudes compared with the mean flow,

often several orders of magnitude smaller. This requires high-order numerical

accuracy if both sound and flow are to be computed simultaneously (Wang

et al. 2006).

In spite of these difficulties, some researchers have used direct methods for TE

noise calculations. Because of its low Reynolds number limitation, DNS has mainly

been used for fundamental studies of the airfoil self noise mechanisms via the direct

calculation method;

Sandberg et al. (2008; 2009) conducted DNS on a NACA 0012 airfoil at a 5 degree

angle of attack, for a Reynolds number based on the chord length of Re = 50, 000,

to investigate the self noise mechanisms and the validity of the classical theory of

Amiet. They found a strong correlation between the surface pressure spectrum close

to the TE on the pressure side and the sound field for an observer below the airfoil

and a similar, but with opposite sign correlation for the suction side, suggesting a

significant portion of the noise emanates from the TE. Another important finding

was that the assumption of frozen turbulence (i.e. the rate of change of an eddy

is small compared to its convection velocity and can be neglected) should be used

with caution, as the turbulent boundary layer structure changes as it approaches

the trailing edge, particularly in the presence of an adverse pressure gradient.

Another fundamental study was performed by Jones and Sandberg (2009), who

conducted a DNS study for a NACA 0012 airfoil with a serrated trailing edge, finding

that the serrations diminish the spanwise correlation of the vortical structures, hence

reducing the associated tonal noise.

LES has been more widely used than DNS for direct noise calculations, due to its

less stringent computational demands. Marsden et al. (2008) conducted direct TE

noise calculations for a NACA 0012 airfoil at zero angle of attack for a Reynolds

number of Re = 500, 000. Good agreement with experimental data was observed.

The simulations also showed that acoustic waves emanate from the leading edge due

to the backscattering of waves generated at the TE.

Multi-time step multi-size mesh strategies (Gloerfelt and LeGarrec 2009) have made

it possible to perform TE noise calculations using LES for a Reynolds number of

up to 2.32 × 106 for a NACA 0012 at incidence angle of 2.5◦ with a truncated TE.

Some discrepancies have been observed between the simulations and experimental

results; particularly for the vortex shedding frequency, which was overestimated by

5



1. Introduction

the simulation.

An alternative to traditional CFD methods is the Lattice Boltzmann method (LBM),

which is an efficient and highly parallelizable approach for the simulation of fluid

flows. The LBM solves the discrete Boltzmann equations in combination with a

collision model to simulate a Newtonian fluid. The LBM is transient, and can

capture flow characteristics such as flow separation, vortex shedding, and sound

pressure waves from aeroacoustic sources. LBM has been successfully applied to

calculate trailing edge noise by van der Velden et al. (2016), who concluded that the

methodology was sufficiently accurate for trailing edge noise prediction, in particular

for broadband noise. The computational cost, although smaller than for DNS, is still

substantial, as van der Velden et al. (2016) reported a turn-around time of 730 CPU

hours for a simulation of 0.1 physical seconds.

While direct methods provide a powerful tool for fundamental research and can

provide great insight into airfoil self noise generating mechanisms, they are too

computationally demanding even for today’s high performance computers, making

their use in industrial applications or in airfoil shape optimization impractical. As

a result, hybrid methods have been designed to reduce the computational cost of

aeroacoustic simulations. These methods are described in the following section.

1.1.3 Hybrid methods

Hybrid methods decouple the flow calculation from the sound calculation, as the

latter can be done as a post processing step. This separation of generation and

propagation processes makes the hybrid approach more efficient than the direct

approach. A fundamental assumption needs to be made in order to make such a

separation; namely the one way coupling of the flow and the sound field. This

means that the flow is unaffected by the sound waves, an assumption that is valid

for low Mach number, high Reynolds number turbulent flow (Wang et al. 2006).

Hybrid methods make use CFD simulations to calculate the flow in the vicinity

of the aerodynamic source region; hence calculating the acoustic source terms that

are used as inputs in the aeroacoustic theory. Once the sound sources are known,

the far field sound can be computed by means of numerical or integral methods.

The difficulty lies in computing or modelling these sources accurately. When this

is achieved, hybrid methods have been proven to be as accurate as direct methods

(Khalighi et al. 2010) at only a fraction of the computational cost.

Time accurate flow solvers like DNS, LES or unsteady RANS (URANS) can com-
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pute the sources directly, while a time averaged solution (RANS) can provide mean

turbulent flow data to assemble the sources using stochastic or statistical modelling

techniques. This section provides a review of the previous work done using these

approaches.

1.1.3.1 Methods based on time accurate CFD

In theory, if the source terms in Lighthill based acoustic analogies are known, the

far field sound can be obtained. It is tempting to use DNS to directly calculate the

sound source terms, but the computational cost becomes prohibitive for Reynolds

numbers of engineering relevance. Therefore LES is typically used to calculate the

source terms (Terracol 2005, Marsden et al. 2007, Christophe et al. 2009). However,

LES evaluation times are generally large, and in many aeroacoustic applications

(such as TE noise) the presence of solid boundaries calls for very fine near-wall

grid resolution in order to resolve small but dynamically important eddies. This

stringent near wall grid resolution requirement limits the simulations to a very small

span of the airfoil, introducing further uncertainty in the TE noise predictions for

the full airfoil span, particularly at low frequencies, where the spanwise coherence

of the turbulent fluctuations can be larger than what is feasible to include in the

computational domain (Wang and Moin 2000, Christophe et al. 2009). Furthermore,

the smaller scales of turbulence, responsible for the high frequency content, are either

missing or inaccurate as a result of the subgrid-scale modelling (Wang et al. 2006).

Nonetheless, LES is likely to become the method of choice for TE noise prediction

as computer power increases. This is supported by the successful calculation of

TE noise performed by many researchers such as Wang et al. (2006) and Marsden

et al. (2007) using LES in combination with the Ffowcs Williams and Hall (1970).

Christophe et al. (2009) used LES in conjunction with the theory of Curle (1955)

to predict the noise generated by a segment of an automotive blade, showing good

agreement for frequencies below 1000 Hz, but over-predicting the sound for higher

frequencies.

LES has also been used to calculate the surface pressure spectrum near the TE,

which is used to calculate the far field noise by the theory of Amiet (1975). Some

examples of this approach include its application to airfoil self noise in the presence

of TE blowing (Winkler et al. 2009), where air is injected to the boundary layer to

modify its properties through a slot over the airfoil, and the previously mentioned

work of Christophe et al. (2009).
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Wolf et al. (2012) used compressible LES to obtain accurate wall-pressure data,

which were used in the FWH acoustic analogy formulation to calculate the noise

from a NACA 0012 airfoil at Rec = 408, 000 at angles of attack of 0 and 5 degrees.

He obtained excellent agreement with the experimental data of Brooks et al. (1989).

In an effort to lower the computational demands of LES, hybrid LES/RANS ap-

proaches have been pursued. Generally, LES is used only in a very small domain

about the source region, embedded in a larger domain treated with less expensive

RANS. The RANS simulations are used as inflow and boundary conditions for the

LES. This approach was successfully used by Terracol (2005) to calculate TE noise

for a flat plate and a NACA 0012 airfoil, both having a blunt trailing edge, and by

Wang and Moin (2000) for a bevelled edge flat strut at a chord Reynolds number of

2.15× 106.

Unsteady RANS (URANS) provides the least detailed simulations. However, it is

able to capture the larger flow structures and their associated sound, which makes it

suitable for narrow band noise applications such as tonal noise associated with blunt

trailing edge vortex shedding (Singer et al. 2000), but it is unsuitable for broadband

noise calculations of the type under consideration in this project, as it is unable

to capture the smaller structures responsible for the high frequency content of TE

noise.

1.1.3.2 RANS based methods

Since turbulence is a random process, statistical quantities can be used to describe

the flow without the excessive demands of instantaneous knowledge of all flow vari-

ables. These statistical quantities include temporal and spatial correlations, as well

as length and time scales. However, sound generation and propagation is an inher-

ently time-dependent phenomenon, so the time averaged information available from

a RANS simulation is not sufficient by itself to perform noise calculations. To cope

with this limitation, two different approaches based on statistical data provided by

RANS have been developed; namely Stochastic Noise Generation and Statistical

modelling of the turbulent sources.
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1.1.3.3 Stochastic Noise Generation and Radiation (SNGR)

Rather than obtaining the sources from time accurate data, which would require the

use of expensive DNS or LES, stochastic noise generation and radiation methods

generate their own turbulence sources based on prescribed statistical information

of the flow, which can be obtained by means of less expensive RANS simulations.

The turbulence data can be generated as a sum of random Fourier modes (Karweit

et al. 1991) or by spatially filtering white noise (Ewert 2008, Dieste and Gabard

2009). Both of these approaches assume homogeneous isotropic turbulence, but

the effects of non-homogeneity and anisotropy can be included by using a Smirnov

transformation (Smirnov et al. 2001). The pressure fluctuations generated by the

synthetic turbulence field can then be sampled on a permeable (Kirchhoff) surface

surrounding the turbulent region and propagated to the far field by solving the

Linearized Euler Equations (LEE) or the Acoustic Perturbation Equations (APE)

(Ewert et al. 2009).

The Stochastic Noise Generation and Radiation (SNGR) approach has been success-

fully applied to a variety of aerodynamic noise problems, such as TE noise (Bauer

and Zeibig 2006, Ewert 2008, Ewert et al. 2009, Dobrzynski et al. 2009, Casalino and

Barbarino 2011), landing gear noise (Dobrzynski et al. 2009), jet and cavity noise

(Mesbah 2006). This wide range of applicability makes SNGR very powerful, but

its disadvantage lies in the rather large computer resources required for generation

and storage of the turbulence time data, which are further increased when numerical

methods are used to propagate the sound to the far field.

1.1.3.4 Surface pressure approach

Most statistical methods require a model of the surface pressure spectrum, which

can be used to calculate the far field sound by means of the theory of Amiet (1975)

or (Chandiramani 1974). There are a number of ways to estimate the wall pressure

spectrum, and these are described in the following paragraphs.

Kamruzzaman et al. (2007) proposed a model for the wall pressure spectrum based

on a spectral solution to the Poisson equation and a Von Karman turbulent kinetic

energy spectrum. Of particular importance in this model is the accurate determi-

nation of the vertical integral length scale, which can be obtained from local flow

statistics provided by a RANS simulation by assuming isotropic turbulence. The

effects of anisotropy can be taken into account by means of an anisotropy factor,

9



1. Introduction

without the need for an anisotropic turbulence model (Kamruzzaman et al. 2008).

This method predicts the correct spectral shape, but has problems predicting the

correct sound pressure levels.

Another method for predicting surface pressure spectra was proposed by Lee et al.

(2005), which uses RANS to obtain the time-averaged flow field characteristics and

a spectral correlation model for the prediction of the frequency spectrum of the wall

pressure fluctuations. The model works well for equilibrium flows, but underpre-

dicts the middle and higher frequency range of the spectrum for non equilibrium

flows.

Another method used to predict the surface pressure spectrum via a RANS solution

was proposed by Peltier and Hambric (2007). The method requires a model for the

velocity cross correlation function based on a RANS solution and the selection of

an appropriate Green’s function. Comparison of the wall pressure spectra predicted

with this method and experimental data is favorable for the low frequency range,

but not good for intermediate and high frequencies.

The surface pressure spectrum can also be obtained from time-resolved Tomographic

Particle Image Velocimetry (PIV). Pröbsting et al. (2015) showed the feasibility of

this approach and obtained good agreement with experimental data for a limited

frequency range; however, they also note that hardware limitations, together with

the fine sampling interval required, limit the maximum accessible flow velocity and

measurement volume, hence limiting the application of the method to relatively low

Reynolds numbers.

The surface pressure spectrum can also be measured using an array of pinhole mi-

crophones distributed in the streamwise and spanwise direction on the surface of

the airfoil. This approach was used by Fischer et al. (2015) to calculate the far

field noise of a NACA64-618t airfoil in combination with the models of Roger and

Moreau (2005) and Howe (1978). The predictions showed excellent agreement with

experimental measurements in a frequency range of 500-2000 Hz. Using experimen-

tal surface pressure data as input for the noise prediction method is a significant

limitation, as these data will not be available for an airfoil at the design stage. An-

alytical or empirical models for the surface pressure spectrum can be used instead,

which can introduce additional errors and uncertainties.

Glegg et al. (2008) showed that the unsteady velocity fluctuations in a turbulent

boundary layer (TBL) flow can be related to vortex sheet strength as a function of

distance to the wall. The vortex sheet strength can be calculated by numerically
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inverting a turbulent kinetic energy (TKE) profile obtained from a RANS calcula-

tion. The surface pressure spectrum can be obtained from the vortex sheet strength;

hence the sound radiated from the TE can be computed.

Catlett et al. (2014) proposed a modified version of the Goody (2004) model for

adverse pressure gradient flows, based on experimental measurements of the pressure

spectrum. The model introduces eight additional empirical coefficients that were

tuned to fit the experimental data.

The previously discussed methods use the assumption of spanwise and chordwise

homogeneous turbulence in their derivation. This assumption is unlikely to hold in

many airfoil configurations, in particular when sinusoidal variations or serrations are

used in the trailing edge.

1.1.3.5 Methods based on statistical models for the two-point velocity

correlation

If the form of the two-point velocity correlation in the boundary layer close to the

trailing edge is known, an acoustic analogy can be used to calculate the noise radiated

to the far field. Surprisingly, this approach has not been pursued by many researchers

in the past. However, a similar approach has been applied to the prediction of jet

noise with some success.

A model for high speed jet fine scale (high frequency) noise, was developed by

Tam and Auriault (1999), using adjoint harmonic Greens functions to calculate the

intensity spectra in the far field by solving the linearized Euler equations. They used

a RANS solution (k − ε model) to provide information for the fine scale turbulence

model, which is based on a modelled cross correlation function of the noise sources.

Three empirical constants arise in the model, which are calculated from best fit to

experimental measurements. Tam and Auriault (1999) obtained good agreement

with experimental data, which makes this model a promising tool to apply to other

turbulent problems, such as TE noise predictions.

A similar approach to Tam and Auriault (1999) was taken by Morris and Farassat

(2002), who also used a RANS solution and a modelled correlation function with a

Gaussian form to calculate the far field sound for jet noise with some success. Their

approach was based on Lighthill’s analogy rather than Euler’s linearized equations.

The results of both approaches are shown to be equivalent at 90 degrees of the jet

axis if similar statistics for the turbulent sources are considered (Morris and Farassat
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2002); however, this equivalence does not hold at other angles to the jet axis.

1.1.4 Available models for the velocity two-point velocity

correlation

There have been numerous attempts to model the two-point correlation function

in jets. The models usually assume isotropic turbulence, such as those proposed

by Batchelor (1953) and Ribner (1969), or assume the turbulence is axisymmet-

ric (Goldstein and Rosenbaum 1973, Khavaran 1999). Axisymmetric models tend

to perform better than isotropic models for jet noise applications (Bridges and Pod-

boy 1999).

Considerable effort has also been made to measure the two-point correlation func-

tion in jets using a range of techniques such as hot wire anemometry (Morris and

Zaman 2010), simultaneous Particle Image Velocimetry (PIV) and Laser Doppler

Velocimetry (LDV) (Kerherv et al. 2010).

Measurements of the four-dimensional two-point correlation tensor of a fully devel-

oped airfoil wake of a NACA 0012 airfoil were performed by Devenport et al. (2001).

They also developed a simple technique for extrapolating the two-point correlation

tensor function from single-point Reynolds stress data, which captures many of the

gross features of the correlations.

Similarly, there have been programs to measure two-point statistics in wall bounded

flows, including channel flows (Quadrio and Luchini 2003, Ganapathisubramani et al.

2005) zero pressure gradient (ZPG) turbulent boundary layers (Favre et al. 1957,

Tritton 1967, Gavin 2002, Tutkun et al. 2009) and turbulent boundary layers sub-

jected to pressure gradients (Harun 2012).

However, there have not been many attempts to model the two-point space-time

correlation for boundary layers analytically. Phillips (2000) developed a model of

the velocity cross correlation based on channel flow DNS data of Kim et al. (1987).

The model is a function of spatial separation, a length scale, the Reynolds stresses

and mean flow velocity. They concluded that the model should be applicable to

turbulent boundary layers as well as for channel flow.

Gavin (2002) proposed another model for ZPG turbulent boundary layers based on

hot wire measurements. He modelled the correlation volume as an ellipsoid inclined

at an angle θ to the wall. He provided values for the inclination angle and stretching

ratio between the major and minor axes of the ellipsoid, based on best fit to his
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experimental data. The model requires a convection velocity and the specification

of a correlation length.

To the author’s best knowledge, there are no models of the two-point velocity cor-

relation for turbulent boundary layers subject to adverse pressure gradients.

The models proposed by Phillips (2000) and Gavin (2002) could potentially be linked

to a RANS-CFD solution in order to obtain the necessary flow data, and used with

the theory of FW-Hall to calculate the noise radiated to the far field. It remains to

be seen if these models are adequate in the presence of pressure gradients.

1.2 Summary

RANS-based TE noise prediction methods can provide a good balance between ac-

curacy and fast turn-over times. To date, RANS-based TE-noise prediction methods

have made use of the surface pressure spectrum approach, but no attempt has been

made to combine RANS-CFD with the FW-Hall diffraction theory. Such a method

would require a model of the velocity two-point correlation in the vicinity of the

trailing edge. Models of the velocity two-point correlation have been developed for

jet flows and ZPG boundary layers, but it is unclear if these models are suitable

in the presence of adverse pressure gradients. The literature on velocity two-point

correlations in APG boundary layers is scarce (Harun 2012), making it difficult to

validate these models or to develop new ones.

1.3 Aims and objectives

The overall aim of this research is to investigate and develop a trailing edge noise pre-

diction method that combines RANS turbulent flow solutions with statistical models

of the turbulent flow field. To achieve this aim, the following specific objectives will

be pursued:

1. To implement a RANS-based trailing edge noise prediction methodology.

2. To experimentally investigate the turbulent single and two-point statistics in

ZPG and APG boundary layers as well as the near wakes of airfoils.

3. To determine semi-empirical models of boundary layer and near wake turbulent

statistics that can be linked to the RANS numerical data.
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4. To validate the noise prediction methodology using the new turbulent statis-

tical models to predict noise from a variety of airfoil shapes for the available

flow data in the literature.

1.4 Contributions to the field

The main contributions arising from this research are:

1. A new, validated computationally efficient RANS-based TE-noise prediction

method, which includes an empirical model for the turbulent velocity cross-

spectrum in turbulent boundary layers that was developed from experimental

data obtained during this research.

2. A detailed investigation of single-point statistics and two-point statistics for

ZPG and APG turbulent boundary layers and the near wake of airfoils, in-

cluding mean and turbulent velocity profiles, probability density functions

(PDF’s) of turbulent velocity, turbulent velocity spectra and turbulent ve-

locity coherence function, that provides new insight into the flow physics and

noise production mechanisms.

Chapter 2 describes the equipment and configuration used in the experiments, in-

cluding the wind tunnel, airfoil models, traverse mechanism and CTA anemometer.

It provides a brief background on hot wire anemometry, and a detailed error analysis

of the experimental measurements.

Chapter 3 presents the results of the experimental investigation of the flow near the

trailing edge of two sharped edged struts. It compares the present results to the

literature, using a flat plate boundary layer as a validation case, and then compares

this case to two other cases at different adverse pressure gradients. Results are

presented for mean and RMS velocity profiles, probability density functions, third

and fourth order moments, spectral density, two-point correlations and coherence

functions.

Chapter 4 develops the noise prediction method RSNM and describes its RANS

implementation. It also presents various models for the velocity cross-spectrum,

which are incorporated into RSNM. It also develops a cross-spectrum model based

on the results of Chapter 3, which is used within the RSNM framework to perform

acoustic calculations in Chapter 6. The cross-spectrum is separated in a frequency

dependent function and a spatial separation function, and models for each function
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are developed and compared to experimental data. Further, this chapter presents a

methodology to correct the 2D simulations to account for the real finite span of the

airfoil.

Chapter 5 describes the computational approach used to generate the flow informa-

tion required to perform noise calculations. It includes a description of the Reynolds

Average Navier Stokes (RANS) equations and the SST k−ω turbulence model, fol-

lowed by a description of the numerical settings and grids used. It also presents a

grid refinement study for the three airfoil geometries used in this research, namely

a NACA-0012, a DU-96-180 and an FP-12.

Chapter 6 presents the acoustic predictions obtained from RSNM for a NACA 0012

airfoil,a DU-96-180 airfoil and the FP12 airfoil. It compares the predictions to

experimental data from the literature at a range of operating conditions. It also

presents the validation of the CFD simulations used as input for the noise prediction

model.

Finally, conclusions and future work are presented in Chapter 7.

1.5 Publications arising from this thesis

The publications arising from this thesis are as follows:

Doolan, C.J., Albarracin Gonzalez, C., Hansen, C.H. Statistical estimation of tur-

bulent trailing edge noise. In: Proceedings of the 20th International Congress on

Acoustics, 2327 August 2010, Sydney, Australia.

Albarracin, C., Doolan, C., Hansen, C., Brooks, L. Turbulent trailing edge noise

estimation using a RANS-based statistical noise model. In: Proceedings of Acoustics

2011, 2-4 November, Gold Coast, Australia.

Albarracin, C., Doolan, C., Jones, R., Hansen, C., Brooks, L., Teubner, M. A

RANS-based statistical noise model for trailing edge noise. In: Proceeding of the

18th AIAA/CEAS Aeroacoustics Conference, 4-6 June 2012, Colorado Springs, CO,

USA.

Albarracin, C.A and Doolan, C.J. Semi-empirical turbulence models suitable for

trailing edge noise predictions. Ninth International Symposium in Turbulence and

Shear Flow Phenomena (TSFP-9), June 30th-July 3rd, 2015, Melbourne, Aus-

tralia.
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Chapter 2

Experimental methods

This chapter presents the equipment and configuration used in the experiments,

including the wind tunnel, airfoil models, traverse mechanism and CTA anemometer.

It provides a brief background on hot wire anemometry, describing the limitations

of the method and the process of calibration. A detailed error analysis concludes

the chapter.

2.1 Experimental setup

Experiments were performed in an open-jet low-speed wind tunnel at the University

of Adelaide. The tunnel has a rectangular contraction outlet of dimensions 690 mm×
360 mm. The jet velocity was set at 6.4 m/s and the measured free stream turbulence

intensity was Ti = 0.65%.

The models were positioned such that the leading edge coincided with the exit plane

of the contraction outlet, and extension plates were fitted to the contraction outlet

to ensure the trailing edge of the model was well within the potential core of the jet

and measurements were not influenced by the nozzle lip shear layers. A diagram of

the experimental setup is shown in Figure 2.1, with a coordinate system centered at

the mid-span of the trailing edge and coinciding with the airfoil chord line. x, y, z

are the streamwise, wall-normal and spanwise directions respectively. U is the mean

velocity in the streamwise direction and u′ is its fluctuating component. A picture

of the experimental setup is shown in Figure 2.2. A pitot probe was positioned at

x = (−1200, 84, 0) mm. The pitot probe was connected to a 10 Torr. baratron unit,

which was in turn connected to the data acquisition system and sampled at 2 kHz
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to monitor the free stream velocity.

Two TSI 1210-T1.5 single wire probes with wire length of L = 1.27 mm and a wire

diameter of d = 3.81µm (L/d ≈ 400) were used, and were operated using an IFA

100 constant temperature anemometer, with an overheat ratio of 1.8. The reference

(“fixed”) hot wire probe was mounted on a manual traverse with an accuracy of

0.01 mm and was positioned at the center span (z = 0) and desired y location

before each measurement. The reference probe positions ranged from y/δ = 0 to

y/δ = 0.8, where δ is the boundary layer thickness at the TE. The moving hot wire

probe was mounted on a TSI 9400 2-axes traverse system, with a positional accuracy

of 0.01 mm. The TSI traverse was controlled using the TSI-9400 traverse controller,

which was connected to a computer via the RS-232 port. When the moving probe

was traversed in the wall-normal direction, the reference probe was always the one

closer to the wall. When the moving probe was traversed in the spanwise direction,

the reference probe was always located at the mid-span point.

Data were acquired using a 2 bit NI-PXI4472 data acquisition card, at a sample

rate of 20 kHz for 8 seconds. A low-pass filter with a cut-off frequency of 8 kHz was

applied to the data prior to digitization to avoid aliasing.

2.2 Airfoil models

The models used in the experiment (Figures 2.3(a) and 2.3(b)) were two 1.2 m chord

struts of 25 mm thickness. The first one, FP-12, has a circular leading edge and

a wedge-shaped trailing edge with an apex angle of 12 degrees. The second strut,

FP-12-B, has an elliptical leading edge with an aspect ratio of x/y = 3.2 and an

asymmetrical wedge-shaped trailing edge with an apex angle of 12 degrees. For both

models the trailing edge thickness is 1 mm, and the boundary layer was tripped on

both sides by a 0.5 mm thick turbulator strip placed at 10% chord. The Reynolds

number based on chord was Rec = U∞c/ν = 512, 000.

2.3 Aligning the traverse

The traverse was aligned to the trailing edge by attaching a laser pointer to the

probe holder, traversing it in all directions and measuring the drift of the laser from

the desired path. This involved an iterative process described below.
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Wall-normal alignment. To ensure the vertical alignment of the traverse, the

laser was placed at 100 mm above the airfoil and aimed directly at the flat surface

of the airfoil, ensuring that the reflected beam came back to the source. The fact

that the airfoil was made of clear perspex allowed an extra check of the alignment by

ensuring the refracted beam to be perpendicular to the surface (see Figures 2.4(a)

and 2.4(b)). Then a sheet of graph paper was fixed to the surface of the airfoil

and the laser pointer was traversed vertically 100 mm. If there was a shift in the

position of the beam on the graph paper, the traverse was adjusted accordingly

and the whole process was repeated until no drift was detectable (see Figures 2.4(c)

and 2.4(d)).

Spanwise alignment. The traverse was aligned to the trailing edge by aiming the

laser beam vertically to a position 1 mm upstream from the trailing edge. The laser

beam was then traversed 100 mm along the trailing edge and the displacement of the

beam from the edge was measured. If the distance from the edge drifted, the traverse

was realigned and the process was repeated until no drift was detectable.

Streamwise adjustment. When measurements involving different streamwise po-

sitions were required, the traverse had to be rotated 90 degrees and realigned. The

procedure used was similar to the spanwise alignment procedure.

Alignment error. Considering the width of the laser beam (0.5 mm approx.), the

accuracy of the graph paper (1 mm2 grid), and the fact that the alignment process

was performed using the naked eye, it is safe to assume that the minimum drift

one could detect would be 0.5 mm. Since the laser was traversed over 100 mm, the

resulting alignment error is e = 0.5%.

2.4 Hot wire anemometry

Hot wire anemometry makes use of the heat transfer between a heated element (the

wire) and the surrounding fluid. When the heated wire is placed in a moving fluid,

heat is transferred to the fluid. The magnitude of the heat transfer is dependent

on the flow velocity, due to convection. The constant temperature anemometer

(CTA) works by providing a variable current to the wire to keep its temperature

constant. By calibrating the anemometer against a set of known velocities, a transfer

function can be obtained between the flow velocity and the output voltage E (see

Figure 2.4).

To modulate the current through the probe, the CTA uses a feedback circuit based
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on the Wheatstone Bridge, as shown in Figure 2.4. As the flow conditions change,

the error voltage e2 − e1 is proportional to the change in wire resistance. These

voltages are the input to the amplifier G. The amplifier provides a current i, which

is inversely proportional to the change in resistance of the sensing element Rw. By

applying this current to the top of the bridge, the resistance of the sensing element is

brought back to its original value, and in turn the wire temperature is also restored

to its original value.

2.4.1 Frequency response of the anemometer

Before calibration, the frequency response of the anemometer was set by performing

a square wave test. The square wave test consists of applying a square wave voltage

signal (a perturbation) to the bridge and observing the time the feedback circuit

requires to balance the bridge (return to steady state). The probe must be exposed

to the highest velocity expected in the experiment during the test, to ensure the

response is sufficiently rapid to resolve the fastest fluctuations encountered in the

experiment. The signal is monitored with an oscilloscope and the cable trim (either

a capacitor or inductor in the bridge) can be adjusted until the correct wave form

is obtained in the oscilloscope. The correct wave form is shown in Figure 2.5. The

response must be a smooth curve with an undershoot of 15% of its peak ampli-

tude (Bruun 1995). The frequency response of the anemometer can be determined

by:

fc =
1

1.3tc
(2.1)

where tc is the time required for curve to decay to 3% of its peak amplitude. The

frequency response was adjusted before each set of measurements. The frequency

response varied for each set of measurements, but was never below 30 kHz, which is

sufficient to resolve the highest frequencies encountered in the current experiments,

as the signal reached the noise floor below 8 kHz.

2.4.2 Calibration

The probes were calibrated using a TSI calibrator, model 112700 . The calibrator

has a circular nozzle that produces a jet of known velocity and very low turbulence

intensity. The probes were placed in the potential core of the jet and exposed to a

set of known velocities ranging from zero to 10 m/s. A table was constructed with

the measured voltage and the known velocities, and a fifth degree polynomial was
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fitted through the points to obtain the calibration curve. The probes were calibrated

before and after each set of measurements and the calibration curves were compared

to each other. Figure 2.6 shows an example of the calibration curves before and

after the measurements. The points can be seen to lie on a single curve.

2.5 Error analysis

There are a number of uncertainties present in an experiment. In the case of hot

wire anemometry, errors can be introduced through a number of mechanisms, which

are discussed in the following paragraphs.

Spatial resolution errors are the result of spatial non-uniformity of the flow along

the wire length. This can occur due to a velocity gradient across the wire, such as

when the wire is placed perpendicular to the wall in a boundary layer flow, or when

the length of the wire is not small compared to the fine scales of the turbulence. For

the first case, errors have been estimated to be of the order of -4.3% for Ū and -5.8%

for u′ for a probe with a wire length-to-diameter ratio of `/d = 400 and an overheat

ratio of 1.8 (Gessner and Moller 1971). These conditions are similar to the present

experiments. These errors become negligible if the wire is placed parallel to the wall,

as the velocity gradient over the diameter of the wire (d = 5µm) is negligible. In the

present experiments, the wire was placed parallel to the wall for all measurements,

except for the spanwise two-point measurements.

A systematic study of the effect of spatial resolution effects was conducted by Ligrani

and Bradshaw (1987). They found that the error in u′ would be less than 4% for

a wire length normalized by the Kolmogorov scale of `/η < 10 and `/d > 200. If

η ≥ 100µm, which is the case for most turbulent flows, then these conditions are

satisfied for standard probes with ` = 1.25 mm and d = 4− 5µm, such as the ones

used in this work.

The limited spatial resolution has the effect of attenuating the measured spectrum.

This effect becomes more severe as η/` increases. Assuming η ≥ 100µm, then

for the probes used in the present experiments η/` ≈ 0.08. This implies that the

experiments will be affected by spatial averaging for κ1` ≥ 0.5, which corresponds

to frequencies above 40 Hz for the present experiments. These effects were studied

by Chin et al. (2011) by spatially filtering channel flow DNS data to mimic the

effect of increasing the wire length. They concluded that the attenuation in
√
ū2

was limited to the region near the wall (y+ < 300), and has the effect of attenuating
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the near wall peak located at y+ = 15. They proposed a model to account for the

”missing” energy, which can be added to the measured spectrum to obtain a ”true”

spectrum, which has also the effect of recovering the real magnitude of the turbulent

kinetic energy peak at y+ = 15.

Wire vibration. Regular vortex shedding from the hot wire filament can induce

vibration of the wire, however, these effects are only a problem for velocities over

100 m/s with standard probes. If the wire is bowed due to thermal expansion and

exposed to a periodic excitation, such as a Karman-vortex street, the wire can skip

into a circular orbit with the same frequency as the Karman-vortex street, which can

cause a decrease in the fluid velocity relative to the wire. In broadband turbulence

conditions, such as the ones encountered in this research, this effect is not expected

to be encountered.

Probe vibrations may also contaminate the results. When the pitch angle β

(the angle between the mean velocity vector and the probe stem) is in the range

60◦ ≤ β ≤ 120◦ the prongs may vibrate due to vortex shedding, causing a periodic

change in the wire resistance. Similarly, vortex shedding from the stem can also

induce probe vibrations and contaminate the signal. In the present experiments, the

pitch angle of the probes was always kept below 30◦, and the changes in sensitivity

due to pitch angle are taken into account through the calibration process, so these

effects can be neglected.

Disturbance of the flow field by the presence of the probe can be a problem

for measurements very close to the wall or when the pitch angle is large, which can

cause a deflection of the flow around the prongs. For small pitch angles the effects

are small and can be accounted for by the calibration process.

Reverse flow can cause errors in the velocity measurements, as the probe cannot

discriminate between positive or negative velocity. This will only affect a small

number of measurements obtained immediately behind the trailing edge, where some

flow recirculation could be present; hence these results are not used.

Calibration errors due to the blockage effect of the probe on the nozzle of the

calibrator. This causes a deflection of the flow around the probe. Errors of this type

were found by Khan et al. (1987) to be about 3%. It is difficult to obtain accurate

calibration at velocities below 3 m/s because the pressure differential across the

nozzle of the calibrator becomes very small. This was not a problem in this work,

as a high precision baratron was used to measure the pressure differential across the

nozzle.
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Insufficient sampling time can give rise to large statistical uncertainties. the cor-

rect selection of the sampling time and sampling frequency are crucial to obtain ac-

curate measurements. This is discussed in more detail in the following section.

2.5.1 Uncertainty specification for measured statistical quan-

tities

The following analysis follows those of Bruun (1995) and Bendat and Piersol (2011).

The basic assumption is made that the probability density function (pdf) of the mea-

sured signal is Gaussian. This assumption is reasonable in many physical processes,

but even when that is not the case, the analysis presented here can be used to obtain

an order of magnitude estimate of the experimental uncertainty. Consider a random

ergodic process. For a number of statistically independent samples x(k), then the

pdf(k) will be centred about the true ensemble average µx, and will have a standard

deviation σx. If the pdf is offset by a quantity b from µx, then there is a bias or fixed

error that must also be considered in addition to the random error.

The Gaussian pdf is given by:

p(z) =
1√
2π
exp(−z2/2) (2.2)

where :

z =
x− µx
σx

(2.3)

is the standardized variable. If x(k) is an estimate of µx, then the uncertainty can

be calculated as:

−zα/2 <
x(k)− µx

σx
< zα/2 (2.4)

where zα/2 is the value of z for which the probability P (zα/2) = 1 − α/2, which

means that x(k) will fall between the interval

µx − zα/2σx < x(k) < µx + zα/2σx (2.5)

with a probability of (1− α)%. For a confidence level of 98%, (1− α) = 98%, then

zα/2 = 2.33.
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2.5.2 Digital signals

When a continuous signal X(t), 0 ≤ t ≤ T is sampled and converted to a digital

signal X(n), n = 1, 2, ..., N , the resultant finite time-history record is a discrete

representation of the true signal. The number of samples N will be determined by

the total sampling time T and the sampling rate fs.

N = fs× T (2.6)

And the time interval between samples is

∆t = f−1s = T/N (2.7)

the mean value is then defined as:

ˆ̄X =
1

N

N∑
n=1

X(n) (2.8)

and ˆ̄X is an unbiased estimate of the true mean X̄. The uncertainty of ˆ̄X can be

estimated using the variance of ˆ̄X. For an unbiased estimate, the mean square error

is equal to the variance:

σ2[ ˆ̄X] = E[( ˆ̄X − X̄)2] ≈ 2TIσ
2
x

T
(2.9)

where σ2
x is the variance of the sample record, X(t), and TI is the integral time scale,

defined as:

TI =

∫ T

0

ρx(τ)dτ (2.10)

where ρx is the autocorrelation coefficient. The number of statistically independent

samples can be determined as:

NI =
T

2TI
(2.11)

2.5.3 Mean velocity

As was discussed in the previous section, the uncertainty for a given statistical

quantity can be estimated to a given accuracy if the number of independent samples

and the variance of the sample are known. Figure 2.8(b) shows the number of

independent samples as a function of wall normal distance, for a sample record of a
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2.5. Error analysis

single hot wire in the near wake of the FP-12 airfoil 1. The number of independent

samples decreases in the outer part of the boundary layer, due to the increase in

the integral time scale TI , which is shown in Figure 2.8(a). This is consistent with

the presence of larger flow structures in the outer part of the boundary layer, and

smaller structures close to the wall. The local turbulence intensity is given by:

Ti =
σu
ˆ̄u

(2.12)

and is shown in Figure 2.7. The local turbulence intensity is seen to increase as the

wall is approached, due to the decrease in the local mean velocity and the increase

in the turbulent kinetic energy. The uncertainty for the measured mean velocity is

calculated using

σ2[ˆ̄u] = E[(ˆ̄u− ū)2] ≈ 2TIσ
2
u

T
(2.13)

and is shown in Figure 2.9(a). The uncertainty is less than 3.5% across the boundary

layer.

2.5.4 RMS velocity

The procedure for calculating the uncertainty for ˆ̄u2 is the same as the one used for

the mean velocity. The uncertainty of ˆ̄u2 is given by its variance:

σ2[
ˆ̄
u2] = E[(

ˆ̄
u2 − ū2)2] ≈ 2TIσ

4
u

T
(2.14)

By substituting NI = T/2TI we obtain

σ2[
ˆ̄
u2] ≈ σ4

u

NI

(2.15)

The normalized RMS error is then

ε[
ˆ̄
u2] =

σ[ ˆ̄u2]

σ2
u

≈ 1√
NI

(2.16)

The uncertainty for the RMS velocity ( ˆ̄u2)1/2 can be calculated from

ε[(
ˆ̄
u2)1/2] ≈ ε[ ˆ̄u2]

2
(2.17)
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Figure 2.9(b) shows the calculated uncertainty for ( ˆ̄u2)1/2 with a 98% confidence

level, as a function of distance to the wall y/δ. The uncertainty does not exceed

2.3% across the boundary layer.

2.5.5 Higher order moments

The mth order moment of the fluctuating component of x(t) is defined as

x̄m = lim
T→∞

1

T

∫ T

0

xm(t)dt (2.18)

where m = 1, 2, 3, ... is a positive integer. The measured third order moment ˆ̄x3, is

defined as

ˆ̄
x3 =

1

T

N∑
n=1

(
X(n)− ˆ̄X

)3
(2.19)

When presented in normalized form it is called the skewness,

S =
ˆ̄x3

σ3
x

(2.20)

The skewness provides an indication of the lack of statistical symmetry of the sig-

nal.

The normalized fourth order moment ˆ̄x4 is called the kurtosis or flatness factor, and

is a measure of the size of the tails of the probability density function. The kurtosis

is defined as

K =
ˆ̄x4

σ4
x

(2.21)

The uncertainty estimates for the skewness and kurtosis are given by σ3
x(6/NI)

1/2

and σ4
x(96/NI)

1/2, respectively, and are shown in Figure 2.10. They peak at 4% for

the skewness and 12% for the kurtosis.

2.5.6 Autocorrelations

A conservative estimate for the variance of the autocorrelation function R̂x(τ) is

given by

var[R̂x(τ)] =
TIσ

4
x

T
[1 + ρ2x(τ)] (2.22)
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2.5. Error analysis

For τ = 0, the uncertainty in the autocorrelation is the same as for the mean square

value.

σ[R̂x(τ = 0)] ≈ σ[
ˆ̄
x2] (2.23)

2.5.7 Cross-correlation

Provided that ρx(τ) ≈ ρy(τ), a conservative estimate for the variance of the cross-

correlation R̂xy(τ) is given by

var[R̂xy(τ)] =
TIσ

2
xσ

2
y

T
[1 + ρ2xy(τ)] (2.24)

where ρ2xy(τ) = R̂xy(τ)/σ2
xσ

2
y is the cross-correlation coefficient. The error for the

cross-correlation will be similar to the error of the auto-correlation function.

2.5.8 Autospectrum

The one-sided autospectral density,Gx(f), can be estimated by

G̃x(f) =
2

T
|X(f, T )|2 (2.25)

However, this results in a high random error and spectral leakage. This can be mini-

mized by dividing the time-history record into segments (sub-records) and applying

a data window (typically Hanning) to each segment to eliminate discontinuities at

the ends of the segments. An estimate of the spectrum Ĝx(f) can then be calculated

by an ensemble of estimates from nd sub-records of length Td,

Ĝx(f) =
2

ndTd

nd∑
j=1

|X(f, T )|2 (2.26)

if the sub-records are statistically independent,then:

var[Ĝx(f)] =
var[G̃x(f)]

nd
=
G2
x(f)

nd
(2.27)

The uncertainty can then be estimated from

εr[Ĝx(f)] =
1
√
nd

(2.28)
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The uncertainty then depends on the type and number of windows, and on the over-

lap between windows. The more windows, the smaller the random error becomes,

and the smoother the resulting spectrum will be, at the cost of reduced frequency

resolution. In the present experiments, data were sampled at 20 kHz for 8 seconds.

The spectra were calculated using the Welch method, with a Hanning window of 625

points and a 50% overlap, resulting in a frequency resolution of 5 Hz and nd = 511

segments. Therefore the error is εr[Ĝx(f)] = 4.42%. A similar analysis applies to

the cross-spectrum, resulting in the same error estimate.

2.5.9 Probability density functions

An estimate of the probability density function is given by:

ˆ̄p(x) =
Nx

NW
(2.29)

where N is the total number of samples, and Nx is the number of points in the

interval x±W/2. The estimate is not unique, as it depends on the width W of the

amplitude intervals. The estimate ˆ̄p(x) is a biased estimate, so the total error is

given by:

E[(ˆ̄p(x)− p(x))2] = var[ˆ̄p(x)] + b2[ ˆ̄p(x)] (2.30)

where b is the bias of the estimate. it can be shown that

var[ˆ̄p(x)] ≈ p(x)

NIW
(2.31)

where N

b[ ˆ̄p(x)] ≈ W 2

24
p
′′
(x) (2.32)

where p
′′
(x) is the second derivative of p(x)with respect to x. The normalized mean

square error is then:

ε2[ ˆ̄p(x)] =
1

NIWp(x)
+
W 4

242

[
p
′′
(x)

p(x)

]2
(2.33)

a large value of W is desirable to reduce the random error, but it increases the bias

error. In practice, for W ≤ 0.2σx the normalized bias error is less than 1%. For the

current experiments, W is selected as corresponding to 321 intervals covering the
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2.6. Summary

amplitude range ±3σx, that is W = 0.1σx. Neglecting the bias error, then:

ε2[ ˆ̄p(x)] =
10

σxNIp(x)
(2.34)

If p(x) is a normalized Gaussian function, then p(0) = 1/(2π)2 ≈ 0.4, then the

normalized mean square error is:

ε2[ ˆ̄p(0)] =
10(2π)1/2

σxNI

(2.35)

The resulting error is shown in Figure 2.5.9, and can be seen to remain below 10%

in the interval −0.8 ≤ y/δ ≤ 0.8 and increases to approximately 30% at the edge of

the boundary layer.

2.6 Summary

In this chapter the experimental setup and methodology have been described. The

principles of operation of constant temperature hot wire anemometry have been

revised and the most significant error sources have been identified. Significant effort

has been made to minimize the uncertainty in the measurements, including carefully

aligning the traverse and frequent calibration of the hot wire probes. A thorough

error analysis has been carried out to estimate the experimental uncertainty of all

measured statistical quantities. The errors are generally small, but increase as the

probes approach the wall. An increase in the uncertainty is also observed at the

edge of the boundary layer, due to the larger time scale of the flow in that region,

which results in less statistically independent samples. The errors are summarized

in Table 2.1.

Table 2.1: Summary of experimental uncertainties.

Quantity ˆ̄U

√
ˆ̄u2 Su Ku pdf(u) Gx(f)

Maximum Error 3.5 % 2.5% 4% 12% 30% 4.42%
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800 mm

360 mm

690 mm

x

z

ycontraction

 U

1200 mm

extension plates

Figure 2.1: Schematic of the wind tunnel contraction with extension plates and
model used in the experiments. The coordinate system was centered at the trailing
edge of the model at the mid span point.

Figure 2.2: Experimental setup.
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12 deg

1200 mm

25 mm

(a) FP-12

1200 mm

12 deg
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25 mm

(b) FP-12-B

Figure 2.3: Test cases used in the experiments. The models have a trailing edge of
1 mm thickness.

laser pointer

laser beamreflected beam

(a) Correct alignment.

laser pointer

laser beamreflected beam

(b) Incorrect alignment.

(c) Correct alignment. (d) Incorrect alignment.
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Figure 2.4: The CT anemometer containing a Wheatstone bridge, a feedback am-
plifier, and an electronic testing subcircuit, adapted from Bruun (1995).
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Figure 2.5: Ideal response of the CT anemometer to the square wave test.
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Figure 2.6: Typical calibration curves for before (red) and after (blue) a set of
measurements.
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Figure 2.7: Local Turbulence Intensity as a function of normalized distance to the
wall.
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Figure 2.8: Integral time scale and number of statistically independent samples for
measurements in the near wake of the FP-12.
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Figure 2.9: Normalized error for the mean and RMS velocity.
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Figure 2.10: Normalized error for the skewness and kurtosis.
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Figure 2.11: Normalized error for the probability density function as a function of
normalized distance to the wall.
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Chapter 3

Experimental results

Understanding the flow in the vicinity of the trailing edge is crucial for the devel-

opment of trailing edge noise models, and boundary layer statistics are a means

to obtain this understanding. There is a large body of research on boundary lay-

ers over flat plates at zero pressure gradient (Osterlund 1999, Ganapathisubramani

et al. 2005, Favre et al. 1957), but much less research on boundary layers in the

pressence of adverse and favourable pressure gradients (Harun 2012, Cipolla and

Keith 2000). In particular, experimental data for turbulence statistics of boundary

layers over airfoils, especially near the trailing edge, are not widely available.

The main aim of this chapter is to investigate the flow near the trailing edge of two

sharped edged struts. The struts were described in chapter 2. The different trailing

edge configurations provide three different pressure gradients. In the remainder of

this chapter, they will be referred to as Case 1 (the flat side FP-12-B), Case 2 (FP-

12) and Case 3 (inclined side of FP-12-B). The effects of the pressure gradient on

the flow structure are investigated using hot wire anemometry. Case 1 provides a

canonical test case which allows the validation of the experimental results against

numerical and experimental data from the literature, and also provides a bench mark

to which the other cases can be compared.

The parameters investigated include the mean and RMS velocity profiles, probabil-

ity density functions, third and fourth order moments, spectral density, two-point

correlations and coherence function. The insights gained from these experiments

will be used to develop a model for the cross-spectrum of turbulent velocity, which

is required as an input to RSNM.
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3.1 Integral boundary layer parameters

The boundary layer displacement thickness δ∗ and momentum thickness θ were

calculated from the mean velocity profiles using:

δ∗ =

∫ δ

0

(
1− U

Ue

)
d|y − y0| (3.1)

θ =

∫ δ

0

U

U∞

(
1− U

Ue

)
d|y − y0| (3.2)

Where U is the mean flow velocity, Ue is the flow velocity at the edge of the boundary

layer and y0 is point of minimum free stream velocity if the measurements are taken

just downstream of the trailing edge, or the position of the airfoil surface if the mea-

surements are taken upstream from the trailing edge. The standard definition of δ as

the location where the mean velocity reaches 99% of the free stream velocity is trou-

blesome for flows whith significant streamline curvature, such as flow over airfoils.

In this work, δ is defined instead as the location where the turbulent kinetic energy

reaches 0.5% of its peak value, or k = 0.005kmax This value was chosen because it

produced the same value of δ as using the 99% of the free stream velocity for the

ZPG case (flat plate). In order to accurately calculate the boundary layer thickness,

the experimental data was interpolated by fitting a fifth degree polynomial in the

outer region of the boundary layer with a resolution of dy = 0.01 mm. Figure 3.1

shows the mean velocity profile and the curve fit used to calculate the boundary

layer thickness for Case 1. The calculated boundary layer parameters are shown in

Table 3.1. Case 1 presents a very mild pressure gradient, close to zero.

The pressure gradient paramenter β is defined as

β =
δ∗

τw

dP

dx
(3.3)

where τw = ρu2τ is wall shear stress. The pressure gradient was obtained from CFD

simulations by taking the pressure over the surface of the airfoil between 0.95 ≤

Table 3.1: Boundary layer parameters for all cases.
case δ/c δ∗/δ θ/δ H uτ β Rθ

Case 1 0.026 0.181 0.117 1.55 0.3019 0.13 1.67×103

Case 2 0.032 0.208 0.130 1.60 0.2513 0.83 2.21×103

Case 3 0.024 0.237 0.139 1.70 0.2458 1.18 1.84×103
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Figure 3.1: Mean Velocity and turbulent kinetic energy profiles and curve fits used
to calculate the boundary layer thickness δ,for the ZPG case. x/c = 1.0008

x/c ≤ 1 and calculating the slope by applying a linear fit to the data, as shown in

Figure 3.2.

The friction velocity uτ and the skin friction coefficient Cf were determined from

the mean velocity profiles using the Clauser method (Clauser 1954). When viewed

as a function of Reynolds number Reθ, the skin friction coefficient shows reason-

able agreement with the values obtained by Coles (1962), Purtell et al. (1981) and

Spalart (1988), for Case 1, as shown in Figure 3.3(a). For Cases 2 and 3, the agree-

ment deteriorates significantly. The discrepancies are likely due to the difficulty

of estimating the friction velocity from the Clauser method for boundary layers at

such low Reynolds numbers in the presence of stronger adverse pressure gradients

(APG).

The combined effects of the APG and low Reynolds number of the current test cases

make the logarithmic region of the boundary layer very small, in fact, one could

argue that there is no identifiable logarithmic region, making it difficult to obtain
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Figure 3.2: Pressure on the surface for all cases obtained from CFD.
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Figure 3.3: Skin friction coefficient and shape factor as a function of Reynolds
number. Current data in ascending Reθ: Case 1, Case 3, Case 2.

the friction velocity using the Clauser method. This confirms the results obtained by

Harun (2012), who also reported the lack of a logarithmic region in when an adverse

pressure gradient was present. Harun (2012) compared the results obtained with

the Clauser method to those obtained using oil film interferometry, and established

that estimating uτ with the Clauser method can result in significant errors in the

presence of adverse pressure gradients.

Figure 3.3(b) shows the shape factor H = δ∗/θ as a function of Reynolds numbers.

The values of H for the present data are higher than what is observed in the ex-

perimental data of Purtell et al. (1981), in the DNS data of Spalart (1988) and in

Coles’ law of the wall for similar Reynolds number. A shape factor of 1.3 ≤ H ≤ 1.5

corresponds to turbulent flow, and a value of H = 2.6 indicates laminar flow. There-

fore, the present results of 1.55 to 1.7 indicate that the flow is turbulent and well

developed.

3.1.1 Mean and RMS velocity profiles

The mean and RMS velocity profiles, normalized by viscous scales, are plotted in

figures 3.4(a) and 3.4(b), respectively, and compared to data from the literature.

It can be observed that the data for the ZPG case follows the law of the wall very

well between 30 < y+ < 100, and also compares well with the DNS data of Spalart

(1988) for a turbulent boundary layer of similar Reynolds number. The extent of

the log-region for the current data is much smaller than for the data of Klebanoff

(1954). This is a consequence of the Reynolds number being lower for the present

case (Reδ = 13, 300) than for Klebanoff’s data (Reδ = 152, 000).

As figure 3.4(b) shows, when plotted using viscous scaling, the RMS velocity profile
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for Case 1 agrees reasonably well with the experimental data of Purtell et al. (1981)

and with the DNS data of Spalart (1988), both corresponding to zero pressure

gradient boundary layers of Reθ = 1, 340 and Reθ = 1, 410, respectively. As the

pressure gradient is increased, the data show clear differences with the ZPG cases.

The stronger adverse pressure gradient causes a secondary peak at y+ = 100 in the

RMS velocity profile for Cases 2 and 3, its amplitude increasing with increased APG.

This secondary peak is consistent with the findings of Harun (2012), who obseved

that the magnitude of the secondary peak is related to energy associated with the

large-scale structures of the flow, which suggest that the dominant energetic motions

have shifted from the near-wall region to the outer part of the boundary layer.

3.1.2 Turbulence dissipation

The turbulence dissipation ε was calculated from the experimetal data using the

following relation (Saddoughi and Veeravalli 1994),

ε = 15ν

∫
E11(κ1)κ

2
1dκ1 (3.4)

where κ1 is the wavenumber, E11 is the measured wavenumber autospectrum of u′

and ν = 1.5 × 10−5 is the kinematic viscosity. The turbulence dissipation ε for

the three cases is shown in Figure 3.5. There is an almost perfect overlap between

Case 1 and Case 2 in the region 30 ≤ y+ ≤ 200, however, Case 3 shows significantly

higher levels of dissipation in this region. For y+ ≤ 30 the dissipation increases

sharply, as expected near the wall. The discrepancies between the three cases can

be attributed to the different turbulent kinetic energy levels in this region, as well

as the difficulty in obtaining an accurate value of uτ , which produces a shift in y+

that will be noticeable only for small y+ when plotted in log-scale.

3.1.3 Probability density functions

The probability density function provides a statistical characterization of the ve-

locity U . Figure 3.6(a) shows the probability density function of the streamwise

velocity fluctuations u′ normalized by the local convection velocity Uc at y+ ≈ 80.

The convection velocity is taken as the mean velocity at the position of the hot-

wire probe. It can be observed that the PDFs are nearly Gaussian in this region,

which corresponds to the logarithmic region of the boundary layer. Near Gaussian
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Figure 3.4: Mean and RMS velocity profiles in wall units. Measurements taken at
x/c = 1.0008. Circles in Figure 3.4(b) as in legend of Figure 3.4(a).
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distributions are expected in this region of the boundary layer, as shown by Lind-

gren and Johansson (2004). The PDFs are nearly identical for Cases 1 and 2, but

a wider PDF is observed for Case 3 , which indicates that stronger velocity fluctua-

tions are more likely in the presence of a stronger adverse pressure gradient, which

is consistent with the increased turbulence intensity levels for Case 3 case shown in

Figure 3.4(a). In the experiments of Moreau et al. (2011), there were no differences

in the noise spectra for the three different airfoils tested at Reθ = 500, 000 (signif-

icant differences were observed at lower Reθ). Each airfoil had a different trailing

edge bevel angle, which correspond to Cases 1, 2 and 3 in this research. Therefore,

the broadening of the PDF observed in the present experiments do not seem to have

an effect on the far field noise.

3.1.4 Higher order moments

The skewness is the nondimensional form of the third moment,

S = u3/σ3
u (3.5)

and it is an indicator of statistical symmetry in the signal. A value of S = 0 means

the signal is perfectly symmetrical.

Similarly, the kurtosis, or flatness factor, is the nondimensional form of the fourth

order moment,

K = u4/σ4
u (3.6)

and it provides an indication of the sharpness of the peak in a signal. A high value of

K indicates that much of the variance is the result of infrequent extreme deviations.

A value of K = 3 is typical of Gaussian distributions.

Figures 3.7 show the skewness and kurtosis as a function of y+ and y/δ for the three

test cases.

Examination of the skewness shows that the signal is slightly negatively skewed up to

y+ = 200, and becomes significantly more skewed towards the edge of the boundary

layer for all cases. Beyond y/δ = 1.2 the skewness returns to the Gaussian values.

This region corresponds to the potential core of the jet of the wind tunnel, where

turbulence is expected to be homogeneous.

Similarly, the kurtosis shows nearly Gaussian values between 31 ≤ y+ ≤ 200, and

increases rapidly towards the edge of the boundary layer. Beyond y/δ = 1.2 the
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Figure 3.6: Probability density functions of turbulent velocity. x/c = 1.0008.

kurtosis returns to the Gaussian values.

Examination of the higher order moments confirms a nearly Gaussian distribution

in the logarithmic region of the boundary layer, with the outer part of the boundary

layer departing from a Gaussian distribution, and being dominated by relatively

infrequent extreme events, which correspond to larger structures or eddies. The

large peaks in both the kurtosis and skewness for all cases at y/δ ≈ 0 is most likely

caused by vortex shedding from the trailing edge.

3.1.5 Integral length scale

The longitudinal integral lengthscale L11 can be obtained from the autocorrelation

coefficient f(x),which is in turn related to the wave number spectrum E11(κ1).

L11 =

∫ ∞
0

f(x)dx =
πE11(κ1 = 0)

2〈u21〉
(3.7)

The integral length scales obtained with this procedure are plotted in non-dimensional

form in Figure 3.8(a) as a function of distance from the wall normalized by the

boundary layer thickness. The length scale increases as a function of the distance

to the wall. The turbulence length scale can be defined in terms of the turbulent

kinetic energy k = 1.5u′2 and dissipation ε as

L =
k3/2

ε
(3.8)
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Figure 3.7: Third and fourth order moments of the streamwise velocity measured at
x/c = 1.0008.
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This length scale also increases with distance to the wall, but decreases again past

y/δ = 0.6. For Cases 1 and 2, it reaches a plateau between 0.2 ≤ y/δ ≤ 0.6, but

this is not observed for Case 3. The stronger adverse pressure gradient produces

larger length scales, which indicates the presence of larger structures. From the

experiments of Moreau et al. (2011) it would appear that the increased length scales

due to the greater pressure gradient had no effect on the resulting TE noise.

3.1.6 Autocorrelation function

The autocorrelation function was measured using a single wire and making use of

the frozen turbulence hypothesis, where ∆x = Uct and Uc is the convection velocity,

taken here as the local mean. Figures 3.9(a) to 3.9(c) show the autocorrelation as

a function of streamwise separation for Cases 1, 2 and 3, respectively. For Cases 1

and 2, the signals decorrelate well within ∆x = 2δ. The stronger pressure gradient

of Case 3 causes the signals to remain correlated for a longer distance, particularly

in the outer part of the boundary layer. This indicates the presence of larger flow

structures, which could be related to vortex shedding from the vertex created by the

tapered end of the airfoil, which has a steeper angle for Case 3 than for Case 2.

3.1.7 Turbulent velocity two-point correlation

The velocity two-point correlation contains information on the spatial structure of

the flow. It is defined as

Rij = 〈ui(x, t)uj(x + r, t)〉 (3.9)

where ui is the fluctuating component in the i direction, and r = (r1, r2, r3) is

the spatial separation between probe 1 (stationary) and probe 2 (moving). In these

experiments, only the streamwise component of velocity u1 was measured, and hence

all results shown are for

R11 = 〈u1(x, t)u1(x + r, t)〉 (3.10)

where r = 0 corresponds to the autocorrelation for probe 1, and all results are

normalized by R11(r = 0,x, t).

Two-point correlations in the wall normal direction as a function of probe separation

are shown in Figures 3.10(a) to 3.10(f), 3.12(a) to 3.12(f), and 3.14(a) to 3.14(f)
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for Cases 1, 2 and 3, respectively. Similarly, correlations in the spanwise direction

are shown in Figures 3.11(a) to 3.11(e),3.13(a) to 3.13(f) and 3.15(a) to 3.15(f) for

Cases 1, 2 and 3, respectively.

The correlation decays much faster closer to the wall than it does away from it,

which is consistent with the presence of larger flow structures in the boundary layer

as distance from the wall is increased, as shown by the longitudinal length scale plot

(Figure 3.8(a)). For the wall normal correlations, a shift in time (time delay) of the

peaks is observed, suggesting that the flow structures are inclined at an angle to the

wall. The time delay decreases as distance y/δ increases, as the velocity gradient

becomes less steep. The time delay is not present in the spanwise correlation, as

there is no mean velocity gradient in this direction to stretch the eddies. There is a

significant change in the tails of the correlations as the edge of the boundary layer

is approached. The Signals remain correlated for a larger distance, which confirms

the presence of larger flow structures in the outer part of the boundary layer.

Figures 3.16(a) to 3.16(f) show correlation contours in the x-y (wall normal) and x-z

(wall parallel) planes for all cases at y+ = 80. The frozen turbulence hypothesis has

been used here to account for the probe separation in the streamwise direction. The

correlation contours in the x-y plane are clearly inclined, confirming the inclination

of the turbulent structures observed in the two-point correlation plots. This incli-

nation is not present in the contours in the x-z plane. Similar results were observed

by Gavin (2002). In his experiments, he describes regions of correlated fluid dis-

playing elliptical iso-contours, elongated in the streamwise direction and with their

major axes inclided toward the wall. Figures 3.17(a) to 3.17(e) show the correlation

contours for y/δ = 0.3. A similar pattern is observed at this location in the boundary

layer, but the correlations are slightly wider and stronger than at y+ = 80, which is

consistent the presence of larger flow structures in this region of the boundary layer.

The signals remain correlated for larger distances in the wall-normal direction than

in the spanwise direction for all cases.

3.1.8 Turbulent velocity auto-spectrum

The autospectral density function, or wavenumber spectrum, E11(κ1,y1,y1) pro-

vides a measure of the energy distribution of a signal as a function of wavenumber κ1.

The Kolmogorov hypothesis states that the scaled spectrum E11(κ1,y1,y1)/(εν5)1/4

is a universal function of κ1η at sufficiently high Reynolds number, where η is the
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Figure 3.10: Two-point correlation for different probe separation values in the wall
normal direction Case 1. x/c = 1.0033.
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Figure 3.11: Two-point correlation for different probe separation values in the span-
wise direction for Case 1. x/c = 1.0033.
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(d) y=2.74 mm, y/δ = 0.072.
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(f) y=14.75 mm, y/δ = 0.387.

Figure 3.12: Two-point correlation for different probe separation values in the wall
normal direction for Case 2. x/c = 1.0033.
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(d) y=2.74 mm, y/δ = 0.072.
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(f) y=14.75 mm, y/δ = 0.387.

Figure 3.13: Two-point correlation for different probe separation values in the span-
wise direction for Case 2. x/c = 1.0033.
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(b) y=2 mm, y/δ = 0.0691.
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(c) y=4 mm, y/δ = 0.1381.
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(d) y=8 mm, y/δ = 0.2762.
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(e) y=16 mm, y/δ = 0.5525.
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(f) y=24 mm, y/δ = 0.8287.

Figure 3.14: Two-point correlation for different probe separation values in the wall
normal direction for Case 3. x/c = 1.0033.
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(a) y=1 mm, y/δ = 0.0345.
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(b) y=2 mm, y/δ = 0.0691.
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(c) y=4 mm, y/δ = 0.1381.
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(d) y=8 mm, y/δ = 0.2762.
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(e) y=16 mm, y/δ = 0.5525.
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Figure 3.15: Two-point correlation for different probe separation values in the span-
wise direction for Case 3. x/c = 1.0033.
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Figure 3.16: Two-point correlation contours at y+ ≈ 80. x/c = 1.0033.
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Figure 3.17: Two-point correlation contours at y/δ ≈ 0.3. x/c = 1.0033.
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Kolmogorov scale and ε is the turbulence dissipation,

η =

(
ν3

ε

)(1/4)

(3.11)

ε = 15ν

∫
E11(κ1,y1,y1)κ21dκ1 (3.12)

The one-dimensional longitudinal velocity spectra at various values of y+ are plotted

with Kolmogorov scaling in Figures 3.18(a) to 3.18(c) and compared to the DNS data

of Spalart (1988). When plotted in this manner, the data collapse very well in the

range κ1η ≥ 0.1, which is consistent with Kolmogorov’s hypothesis. A region of

power law behavior is observed between 0.03 ≤ κ1η ≤ 0.1, however, this region is

very small due to the low Reynolds number of the flow. The good collapse of the

spectra and the exponential decay observed for 0.1 ≤ κ1η ≤ 1 implies that the data

is well resolved down to wavelengths of the order of the Kolmogorov scale η, and

the good agreement with the DNS data of Spalart (1988) provides confidence on the

quality of the present data.

3.1.9 Turbulent velocity cross-spectrum

The cross-spectral density function E11(kappa1,y1,y2) is plotted with Kolmogorov

scaling in figure 3.1.9, for a distance to the wall of y/δ = 0.23. This figure is

representative of all values of y/δ investigated for both wall-normal and spanwise

directions for all test cases, and hence the other cases are omitted. It can be observed

that the signal becomes very noisy for κ1η ≥ 6×10−3, indicating that the signals are

only correlated in the low frequency range. This is because the structures responsible

for the higher frequencies are smaller than the probe separation, causing the signals

to decorrelate. The decorrelation begins at lower frequencies as the probe separation

increases. To obtain a clearer picture of the correlation of the signals as a function

of frequency, the coherence function is investigated.

3.1.10 Coherence function

The coherence function provides a measure of the correlation between signals u1(y1)

and u1(y2) as a function of frequency. It is defined as,

γ2xy =
|E11(f, u1(y1), u1(y2))|2

|E11(f, u1(y1), u1(y1))||E11(f, u1(y2), u1(y2))|
(3.13)
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Figure 3.18: One-dimensional longitudinal velocity autospectra normalized by Kol-
mogorov scales, at various positions in the boundary layer. x/c = 1.0008.
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and satisfies for all f ,

0 ≤ γ2xy(f) ≤ 1 (3.14)

where a value of 0 indicates no correlation and a value of 1 indicates the signals are

perfectly correlated.

Figures 3.20(a) and 3.20(b) show the coherence function at y/δ = 0.232 as a function

of κ1η for various probe separation in the wall-normal and spanwise direction, respec-

tively, for Case 2. The signals are nearly incoherent for a separation of ∆y ≥ 0.537,

which provides an indication of the size of the average eddy in the wall-normal di-

rection. This was also observed at all other values of y/δ for the two other test

cases.

In the spanwise direction, the signals become uncorrelated at smaller distances than

for the wall-normal direction, being completely incoherent for ∆y ≥ 0.275. This is

consistent with what was observed in the two-point correlation contours.

3.2 Summary

In this chapter, an experimental investigation of the flow over two sharp-edged struts

has been conducted using hot wire anemometry. Case 1 has been validated against

experimental and numerical data from the literature, providing confidence in the

experimental technique and equipment used and also providing a bench mark case

for comparison with the stronger APG cases.

The parameters investigated include the mean and RMS velocity profiles, probabil-

ity density functions, third and fourth order moments, spectral density, two-point

correlations and coherence function.

It was found that the velocity fluctuations have a Gaussian distribution in the log-

arithmic region of the boundary layer, but depart from Gaussian in the outer part

of the boundary layer.

The longitudinal length scales were found to increase as a function of y/δ, and

reach a value in the order of 0.2δ ≤ L11 ≤ 0.5δ at the edge of the boundary layer,

depending on the pressure gradient.

The two-point correlation is also a function of y/δ, with the correlation decreas-

ing faster with probe separation in the spanwise direction than in the wall-normal

direction. For all cases, the correlation drops below 0.1 well within one boundary
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Figure 3.20: Coherence function as a function of κ1η for Case 2 at y/δ = 0.232.
Measurements taken at x/c = 1.0033.

layer thickness. The correlations contours are inclined in the wall-normal direction,

but not in the spanwise direction, confirming the observations of Gavin (2002) and

supporting his model based on an inclined ellipsoid.

The autospectral density at various values of y/δ collapse into a single curve when

plotted with Kolmogorov scaling, and exhibit a power law behavior between 0.03 ≤
κ1η ≤ 0.1 and a region of exponential decay for 0.1 ≤ κ1η ≤ 1.

The cross-spectral density exhibits high levels of noise at high κ1η for all probe

separations ∆y/δ, which indicates that the signals become incoherent at this high

wave numbers. The coherence function confirms this, showing a steep decline for

κ1η ≥ 10−2 at all probe separations. The coherence function also confirms that the

correlation increases as a function of y/δ, and that the correlation decays faster in

the spanwise direction than in the wall normal direction.

The data and insight provided in this experimental investigation can be used as a

basis for the development of a cross-spectrum model, which can be used for trailing

edge noise prediction with the RSNM method.
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Chapter 4

Derivation of the Noise Prediction

Method

4.1 Introduction

In this chapter, the derivation of the new RANS-based Statistical Noise Model

(RSNM) will be presented. The method uses the theory of Ffowcs Williams and

Hall (1970), who used a Green’s function approach to calculate the sound intensity

in the far field created by a turbulent flow past a sharp trailing edge. The Green’s

function needs to be tailored to the specific geometry of the problem. For the case of

a sharp, straight trailing edge, the rigid half plane Green’s function is used. When a

tailored Green’s function is used, the far field pressure fluctuations can be obtained

by a convolution of the source terms with the Green’s function. However, the source

terms are not known and, as was discussed in Chapter 1, using DNS or LES is often

impractical due to the large computational resources required. A more practical

approach is to use a model for the source terms based on time averaged RANS data.

A derivation of the method is provided below.

4.2 Model derivation

? combined the momentum and continuity equations and rearranged them in a form

equivalent to a an inhomogeneous wave equation, that is, and equation that describes

the propagation of sound in a uniform medium due to externally applied fluctuating

stresses. This is known as Lighthill’s acoustic analogy. Lighthill’s equation is given
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4. Derivation of the Noise Prediction Method

Figure 4.1: The coordinate system, with the origin at the trailing edge, used by
Ffowcs Williams and Hall (1970).

by

∇2ρ− 1

c2
∂2ρ

∂t2
=

1

c2
∂2

∂xi∂xj
(ρuiuj + pij − c2ρδij), (4.1)

where ρ is the fluid density, (u1, u2, u3) is the velocity vector, pij is the compressive

stress tensor and c is the speed of sound in an undisturbed fluid. By neglecting

viscous effects (pij = pδij, where p is the isotropic pressure) and assuming that

the changes in p are exactly balanced by changes in c2ρ, Lighthill’s equation be-

comes

∇2p− 1

c2
∂2p

∂t2
= − ∂2

∂xi∂xj
(ρuiuj). (4.2)

Defining the Fourier transform f ∗ of f as

f ∗(ω) =
1

2π

∫ ∞
−∞

f(t)eiωtdt, (4.3)

Lighthill’s equation can be written in frequency space as the inhomogeneous Helmholz

equation,

∇2p∗ − k2ap∗ = −
[

∂2

∂xi∂xj
(ρuiuj)

]∗
, (4.4)

where ka = ω/c is the acoustic wavenumber, and ω is the angular frequency.

Ffowcs Williams and Hall (1970) showed that, in the presence of a rigid half-plane,
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4.2. Model derivation

the solution is given by

4πp∗(xo, ω) =

∫
(ρuiuj)

∗ ∂2G

∂ui∂uj
dV (y), (4.5)

where xo = (x1, x2, x3) is the location of the observer, y(r0, θ0, z) is the position

of the source, ui are the velocity components with i = 1, 2, 3, and G is a Green’s

function tailored to the boundary conditions of the problem. Changing to cylindrical

polar coordinates, Equation 4.5 becomes:

4πp∗(x, ω) =

∫ {
ρu2r

∂2G

∂r20
+ ρu2z

∂2G

∂z20
+ ρuruz

[
∂

∂r0

(
∂G

∂z0

)
+

∂

∂z0

(
∂G

∂r0

)]
+ ρuruθ

[
∂

∂r0

(
1

r0

∂G

∂z0

)
+

2

r0

∂

∂θ0

(
∂G

∂r0

)
− 1

r20

∂G

∂θ0

]
+ ρuruθ

[
∂

∂r0

(
1

r0

∂G

∂z0

)
+

2

r0

∂

∂θ0

(
∂G

∂r0

)
− 1

r20

∂G

∂θ0

]
+ ρuθ2

(
1

r20

∂2G

∂θ2
+

1

r0

∂G

∂r0

)}∗
dV0

(4.6)

where x = (r, θ, z) is the position of the observer, dV0 = r0dr0dθ0dz0, and r0, θ0

and z0 are the coordinates of the source point y in the cylindrical coordinate system

of figure 4.1. Ffowcs Williams and Hall (1970) used the Green’s function provided

by Macdonald (1915),

G(r, θ, ω) =
e−ikaR

R

{
1 +

2eiπ/4√
π

(2kar0 sinφ)
1
2 cos

1

2
θ +O(kar0)

}
(4.7)

where R is the distance between the source and the observer, O(kar0) is an error

term of the order of kar0, r0 is the distance from the edge to the source and (r, θ)

are the cylindrical coordinates of the observer, as shown in Figure 4.1. The angle φ

is defined as

sinφ =
r√

r2 + (z − z0)2
. (4.8)

Using the expression for G given by equation 4.7, Equation 4.6 becomes

−4πp∗(x, ω) = k2a
2eiπ/4√

π
(sin(φ))

1
2 cos(

1

2
θ)

×
∫
H × (2kar0)

− 3
2
e−ikaR

R
dV0,

(4.9)
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4. Derivation of the Noise Prediction Method

where

H =

{
ρu2r cos(

1

2
θ0)− ρu2θ cos(

1

2
θ0)− 2ρuruθ sin(

1

2
θ0)

}∗
, (4.10)

Following Ffowcs Williams and Hall (1970), the following approximations are made:

(u2r)
∗ ≈ 2Ūru

′∗
r

(u2θ)
∗ ≈ 2Ūθu

′∗
θ

(uruθ)
∗ ≈ Ūru

′∗
θ + Ūθu

′∗
r ,

(4.11)

where the overbar denotes the time average and the prime denotes the fluctuating

component as in a Reynolds decomposition (u = Ū + u′). A further simplification

is made by assuming the fluctuating velocity components are related to each other

by an anisotropy factor fa, so that

u′∗θ = fau
′∗
r . (4.12)

As a starting point, isotropic turbulence is assumed, resulting in fa = 1. All results

presented in this thesis use fa = 1. However, this assumption is not necessary

and can be relaxed. The contribution of source point y to the far field pressure

becomes

−4πp∗(x, ω) = k2a
2eiπ/4√

π
(sin(φ))

1
2 cos(

1

2
θ)

×
∫

2ρ0u
′∗
r (y)F (y)(2kar0)

− 3
2
e−ikaR

R
dV (y),

(4.13)

where

F (y) =

{
(Ūr − faŪθ) cos(

1

2
θ0)− (faŪr + Ūθ) sin(

1

2
θ0)

}
. (4.14)

By making the far field approximation, R(y1) ≈ R(y2) ≈ R, the power spectral

density of the far field pressure can be written as

S(x, ω) = 〈p∗(x, ω)p̂∗(x, ω)〉

=

∫ ∫
ΨErr

F (y1)

r0(y1)3/2
F (y2)

r0(y2)3/2
dV (y1)dV (y2),

(4.15)

where p̂∗ is the complex conjugate of p∗,

Ψ =
ρ20ω sinφ cos2 θ

2

8π3cR2
(4.16)
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4.2. Model derivation

and

Err(y1,y2, ω) = 〈u′∗r (y1)û′∗r (y2)〉 . (4.17)

The only unknown in the power spectral density is the cross-spectrum of the tur-

bulent velocity, Err(y1,y2, ω). A cross-spectrum model is required to estimate the

noise spectrum.

4.2.1 Cross-spectrum model

We begin by defining the turbulent velocity cross-correlation function in a fixed

reference frame as

Rrr(y1, ξ, τ) = 〈u′r(y1, t)u
′
r(y2, t+ τ)〉, (4.18)

where 〈〉 is the ensemble average and ξ = |y2 − y1|.

We use a Gaussian formulation originally developed for jet noise predictions by Mor-

ris and Farassat (2002),

Rrr(y1, ξ, τ) = A0u
2
s exp

(
−|ξ|

2

`2s
− ω2

sτ
2

)
, (4.19)

where `s is a characteristic length scale, ωs is a characteristic frequency, us is a

velocity scale that characterises the velocity fluctuations and A0 is an empirical

scalar value that determines the magnitude of the correlation. Converting to a

cross-spectrum we have,

Err(y1, ξ, ω) =

∫ ∞
−∞

A0u
2
s exp

(
−|ξ|

2

`2s
− ω2

sτ
2

)
exp(iωτ)dτ. (4.20)

Using the following property of exponential functions,∫ ∞
−∞

exp
[
−(aτ 2 + bτ + c)

]
dτ =

√
π

a
exp

[
b2 − 4ac

4a

]
, (4.21)

the turbulent velocity cross-spectrum becomes

Err(y1, ξ, ω) =
A0

√
π

ωs
u2s exp

(
−|ξ|

2

`2s

)
exp

(
− ω2

4ω2
s

)
. (4.22)

For the remainder of this thesis, 4.22 will be referred to as the baseline model. To

link this model to a CFD solution (i.e. RANS calculated turbulence data), the
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4. Derivation of the Noise Prediction Method

following relations are used (Morris and Farassat 2002):

us =
√

2k/3, ωs = 2π/τs, τs = cτk/ε, `s = c`k
3/2/ε, (4.23)

where k and ε are the turbulent kinetic energy and the turbulent dissipation, which

are calculated at each acoustic source location y, and cτ and c` are semi-empirical

parameters.

4.3 Alternative cross-spectrum models

As a starting point, consider a cross-spectrum of the form

Err(y1,y2, ω) = A0f1(y1,y2)f2(ω,y1,y2), (4.24)

When written in this form, it is possible to modify the functions f1 and f2 to arrive

at alternative models.

Consider the coherence function, which provides a measure of the correlation between

signals û′∗(y1, ω) and û′∗(y2, ω) as a function of frequency. It is defined as

γ2rr(y1,y2, ω) =
|Err(y1,y2, ω)|2

|Err(y1,y1, ω)||Err(y2,y2, ω)|
, (4.25)

The coherence function satisfies for all ω,

0 ≤ γ2rr(ω) ≤ 1. (4.26)

For modelling purposes, f1 can be thought of as the square root of the coherence

function at zero frequency,

f1(y1,y2) = γrr(y1,y2, ω = 0) (4.27)

while f2 can be considered as the square root of the product of the autospectra of

u′∗r (y1) and u′∗r (y2),

f2(y1,y2, ω) =
√
Err(y1,y1, ω)Err(y2,y2, ω). (4.28)

This results in a cross-spectrum model of the form

|Err(y1,y2)| ≈ γrr(y1,y2, ω = 0)
√
Err(y1,y1)Err(y2,y2) (4.29)
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4.4. Spatial coherence models

Neglecting the frequency dependency of the coherence function will introduce some

degree of error into the model. To test this assumption, equation 4.29 is com-

pared to the measured cross-spectrum for Case 2 at y/δ = 0.13. As shown in Fig-

ures 4.2(a)and 4.2(b), the assumption works well for small distances ξ = |y1 − y2|.
However, when ξ is increased, the assumption only works well for frequencies below

100 Hz, and the agreement deteriorates at higher frequencies, where equation 4.29

decays much more slowly than the experimental data. Since most of the energy is

contained in the lower frequencies, and the amplitude of the cross-spectrum decays

rapidly with increasing ξ, these discrepancies are not expected to have a large effect

in the noise prediction capabilities of the model. This assumption will be further

examined in Chapter ??.
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Figure 4.2: Measured cross-spectrum (circles) and cross-spectrum calculated using
equation 4.29 (solid lines) for Case 2 at y/δ = 0.13.

4.4 Spatial coherence models

In this section, two alternative models for the spatial coherence γ2rr(y1,y2, ω = 0)

are presented, namely, the simplified anisotropic model of Gavin (2002) and an

empirical model based on the experimental measurements conducted as part of this

research.
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4. Derivation of the Noise Prediction Method

4.4.1 Gavin’s Simplified Anisotropic Model (SAM)

Gavin’s measurements (Gavin 2002) show that a turbulence velocity correlation

volume can be modelled as an ellipsoid inclined at an angle θ to the wall. He then

proceeds to map the ellipsoid onto a sphere and applies isotropic turbulence theory

to close the model. First, the distance between two points in the boundary layer is

defined as

r =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2. (4.30)

Then the coordinate system is rotated into the major/minor-axis coordinate frame

of the ellipsoid by applying the following transformation matrix:

ζ =

cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1


(x2 − x1)

(y2 − y1)
(z2 − z1)

 . (4.31)

Then the major/minor coordinate axes are scaled onto the axes of a sphere by

r? =

√(
ζ1
Υ1

)2

+

(
ζ2
Υ2

)2

+

(
ζ3
Υ3

)2

. (4.32)

Using this radius, classical isotropic turbulence theory (Pope 2000) states that

γij(ζ1, ζ2, ζ3) =
r?i r

?
j

r?2
[f(r?)− g(r?)] + δijg(r?), (4.33)

where r? = e1r
? and

f(r?) = exp

(
−r?

Λf

)
g(r?) =

(
1− r?

2Λf

)
f(r?). (4.34)

The scalar Λf is the correlation length. Gavin defined this parameter as Λf = 0.35δ,

where δ is the boundary layer thickness. All SAM model parameters are shown

in Table 4.1. Gavin’s model is designed for the outer parts of the boundary layer.

RSNM requires the correlation function through the entire boundary layer, where

Gavin’s model does not apply. Peltier and Hambric (2007) extended the model

to the inner and intermediate parts of the boundary layer by replacing the global

correlation length Λf with a local correlation length scale ` = k(3/2)/ε obtained from

RANS.

Since we are only interested in one component of the velocity fluctuations(due to
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4.4. Spatial coherence models

our asumption of isotropic turbulence, fa = 1, equation 4.33 can be reduced to

γ11(ζ1, ζ2, ζ3) = f(r?). (4.35)

4.4.2 Proposed semi-empirical model

A semi-empirical model for γ11(y1,y2, ω = 0) is presented, based on the experimental

measurements conducted during this research.

The fundamental assumption is made that γ11(y1,y2, ω = 0) can be separated into

orthogonal components,

γ11(y1,y2, ω = 0) = γx(∆x)γy(∆y)γz(∆z), (4.36)

where the explicit dependency of γx, γy and γz on (y1,y2, ω = 0) has been omitted

to simplify the notation, and

∆x = (x2 − x1)

∆y = (y2 − y1)

∆z = (z2 − z1),

(4.37)

and x, y, z are the streamwise, wall normal and spanwise directions, respectively.

Based on this assumptions, a model for each component is presented,

Table 4.1: Gavin’s SAM model parameters
θ Υ1 Υ2 Υ3 Λf

20 1.000 0.700 0.520 0.35δ
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4. Derivation of the Noise Prediction Method

γ2x = exp

(
−∆x

2Lx

)
γ2y = exp

(
−∆y

2Ly

)
γ2z = exp

(
−∆z2

2L2
z

)
,

(4.38)

where

Lx = c`xk
3/2/ε

Ly = c`yk
3/2/ε

Lz = c`zk
3/2/ε.

(4.39)

The empirical coefficients c`x c`y and c`z are calculated and tabulated in the following

sections.

4.4.2.1 Dependency on spatial separation in the wall-normal direction.

Figure 4.3(a) shows γ2y(∆y) and an exponential curve fitted to the data by a least

squares approach for Case 2. The wall-normal distance of the reference probe is

y1/δ = 0.39. The same procedure was employed for a range of fixed probe positions

y1/δ. The data is well represented by:

γ2y = exp

(
−∆y

Ly

)
(4.40)

where the Ly = c`yk
3/2/ε is a length scale in the wall normal direction and c`y is an

empirical length scale coefficient. The length scale coefficient c`y is calculated for

each position in the boundary layer and shown in Figure 4.3(b), and a function of

the form

c`y = m
|∆y|
δ

+ n (4.41)

has been fitted to the data.

The same procedure was applied Cases 1 and 3, and the results for a similar value

of y/δ are shown in Figures 4.4(a) and 4.4(b) for Case 1, and 4.5(a) to 4.5(b) for
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4.4. Spatial coherence models

Case 3. The resulting empirical coefficients m and n for each case are summarized

in table 4.2.

Results at other y1/δ positions are provided in section A, Figures A.1(a) to A.1(k);

A.2(a) to A.2(e); and A.3(a) to A.3(e) for Cases 2, 1 and 3, respectively.

4.4.2.2 Dependency on spatial separation in the spanwise direction.

With a similar process as for the wall-normal case, the spanwise coherence was

measured at various distances from the wall, ranging from y/δ = 0 to y/δ = 0.8,

and a curve fitting procedure was employed to determine the functional dependency

of the coherence function on spatial separation. It was found that the data are well

represented by a Gaussian function of spatial separation, given by:

γ2z = exp

(
−∆z2

L2
z

)
(4.42)

where

Lz =
c`zk

3/2

ε
(4.43)

where c`z is an empirical parameter, which appears to be a function of distance to

the wall.

Figures 4.6(a), 4.7(a) and 4.8(a) show the measured spanwise coherence function and

the Gaussian curve fit at y/δ = 0.39 for Cases 2, 1 and 3, respectively. The Gaussian

behavior of the spanwise coherence function is evident. The empirical parameter c`z

is shown in Figures 4.6(b), 4.7(b) and 4.8(b). Similar results were obtained at other

positions in the boundary layer for all cases, and are shown in Appendix A.

4.4.2.3 Dependency on spatial separation in the streamwise direction.

Due to probe interference effects, γx(∆x) could not be measured directly, but it was

estimated from the autocorrelation function R11,

γx(y,∆x) ≈ R11(∆x) (4.44)

Taylor’s hypothesis of frozen turbulence is used here to estimate R11 as

R11(∆x) ≈ R11(Ucτ) (4.45)
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Figure 4.3: a)Wall-normal coherence at y/δ = 0.39. b) length scale coefficient c`y
as function of distance to the wall. Data taken at 1 mm downstream of the TE for
Case 2. Results for other values of y/δ, and their corresponding exponential fits are
shown in Figures A.1(a) to A.1(k).
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71



4. Derivation of the Noise Prediction Method

0 0.2 0.4 0.6

∆ z/ δ

0

0.2

0.4

0.6

0.8

1

γ
z2

(a) Spanwise coherence

0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

R
es

id
ua

ls

Linear: norm of residuals = 0.048853

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

y/δ

 

 

 
y = 0.2*x + 0.012

   c
lz

   linear fit  

(b) Empirical parameter c`z

Figure 4.7: a) Spanwise coherence for y/δ = 0.52. b) Empirical parameter c`z , linear
fit and residuals. Data taken at 1 mm downstream of the TE for Case 1.
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4.5. Autospectrum models

where Uc is the local mean velocity and τ is time.

Using the same curve fitting procedure as for the wall-normal and spanwise cases,

it was determined that the streamwise coherence data is well represented by an

exponential function of streamwise separation ∆x, with a decay rate that depends

on y/δ, given by

γ2x = exp

(
−∆x

Lx

)
(4.46)

where Lx = c`xk
3/2/ε is a length scale and c`x is an empirical coefficient, which is a

function of distance to the wall.

Figure 4.9(a) shows equation 4.46 and experimental data for Case 2 at y/δ = 0.39.

The agreement is good.

Figure 4.9(b) shows the empirical coefficient c`x and a linear curve fit applied for

data in the range 0.1 ≤ y/δ ≤ 0.7. In this range, the coefficient grows as a linear

function of distance to the wall. For points closer to the wall, c`x starts to deviate

from the linear trend, as well as for points above y/δ > 0.7.

For Case 1, c`x presents a plateau in the range 0.1 ≤ y/δ ≤ 0.7, with a value of

c`x = 0.12±0.01, as shown in Figure 4.10(b). The coefficient c`x decreases as distance

to the wall is decreased below y/δ ≤ /0.1, and increases rapidly for y/δ ≥ 0.7.

For Case 3, c`x also presents a plateau in the range 0.1 ≤ y/δ ≤ 0.3, with a value

of c`x = 0.11 ± 0.004, as shown in Figure 4.11(b). The coefficient c`x decreases

as distance to the wall is decreased below y/δ ≤ /0.1, and increases rapidly for

y/δ ≥ 0.4. The exponential fit given by equation 4.46 becomes poor outside the

range 0.1 ≤ y/δ ≤ 0.3, particularly in the outer part of the boundary layer.

4.5 Autospectrum models

In this section, alternative models for the function f2 are presented. As stated pre-

viously, the function f2 is related to the autospectra of the turbulent velocity at

Table 4.2: Curve fit parameters for spatial component of coherence function
c`x c`y c`z

m n m n m n
Case 1 0 0.12 0.14 0.0013 0.2 0.012
Case 2 0.067 0.11 0.083 0.12 0.13 0.056
Case 3 0 0.11 0.087 0.034 0.089 0.024
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Figure 4.9: a) Streamwise autocorrelation for Case 2, at y/δ = 0.39. Symbols:
experimental data, Solid line: curve fit. b) Empirical parameter c`x , linear fit and
residuals as a function of distance to the wall.
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experimental data, Solid line: curve fit. b) Empirical parameter c`x as a function of
distance to the wall.

points y1 and y2. In the literature, both models and measurements of the autospec-

trum are often presented in wavenumber space, and they are typically presented in

cartesian coordinates. For consistency with the literature, we will adhere to these

conventions. Because of the assumption of isotropic turbulence (fa = 1), Err is

related to E11 by a factor of (cos(θ) − sin(θ))2. We therefore switch our attention

to finding a model for E11(y1,y2, κ1), where κ1 = ω/Uc is the wavenumber in the

streamwise direction and Uc is the local convection velocity.

4.5.1 Gaussian spectrum

The Gaussian model proposed by Morris and Farassat (2002) can be written in terms

of wave number as

E11(κ1,y1) = A1

√
π

ωs
u2s exp

(
−κ

2
1U

2
c

4ω2
s

)
, (4.47)

where A1 is an empirical amplitude parameter. The coefficients A1 and cτ are

determined by enforcing the condition∫ ∞
0

E11(κ1,y1)dκ1 = 〈u′1
2
(y1)〉. (4.48)

or alternatively, the model longitudinal spectrum can be fitted to experimental longi-

tudinal spectrum data using a least squares approach. Since k and ε can be obtained
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for RANS CFD, the former approach is preferred and used here.

Figures 4.13(a) and 4.13(b) show the turbulent kinetic energy k and dissipation ε,

respectively. These figures compare the experimental values of k and ε for Case 2

and those obtained by integrating the model spectrum. The model is shown to

produce the correct values for both quantities. Similar results were obtained for

Cases 1 and 3 (see Appendix A).

Figure 4.12 shows the model longitudinal spectrum compared to the experimental

data for Case 2 at various distances to the wall. The agreement is good at low

wavenumbers, however, for κ ≥ 1000, the model spectrum decays too fast. Simi-

lar results were obtained for Cases 1 and 3 (see Appendix A). The effects of this

mismatch at high wavenumbers is not expected to have much impact on the noise

prediction capabilities of the model, since most of the energy is contained at the

lower wavenumbers. Furthermore, it was shown that neglecting the frequency com-

ponent of the coherence function in the cross spectrum model results in a decay

rate that is too slow. This could be compensated by the fast decay observed in the

autospectrum model. The effects on the final noise prediction will be investigated

in Chapter 6.

4.5.2 Pope’s model spectrum

A model energy spectrum function E(κ) proposed by Pope (2000) is

E(κ) = C1ε
2/3κ

−5/3
1 fL(κ1L)fη(κ1η), (4.49)

where C1 = 1.5 and L = k3/2/ε is a length scale. The non-dimensional functions

fL and fη determine the shape of the energy containing range and the dissipation

range, respectively. The function fL is given by

fL(κ1L) =

(
κ1L

[(κ1L)2 + CL]1/2

)5/3+p0

, (4.50)

where p0 is taken to be 2, and CL is a positive constant. The function fη is defined

as

fη(κ1η) = exp
(
−β
[
(κη)4 + C4

η

](1/4) − Cη) . (4.51)

To obtain the longitudinal spectrum we can integrate the energy spectrum us-

76



4.5. Autospectrum models

10
0

10
1

10
2

10
3

10
4

κ

10
-8

10
-6

10
-4

10
-2

E
1

1
(κ

)

y/ δ = 0.78
y/ δ = 0.47

y/ δ = 0.28
y/ δ = 0.17

Figure 4.12: Longitudinal autospectrum as a function of wavenumber at selected
points in the boundary layer for Case 2. Symbols: experimental data, dashed lines:
Morris and Farassat model, solid lines: Pope’s model.

-2 -1 0 1 2

y/ δ

0

0.2

0.4

0.6

0.8

1

1.2

k

Pope

Morris

Experiment

(a)

-2 -1 0 1 2

y/ δ

0

20

40

60

80

100

ǫ

Pope

Morris

Experiment

(b)

Figure 4.13: Turbulent kinetic energy and dissipation at selected points in the bound-
ary layer for Case 2. Symbols: experimental data, dashed lines: Morris and Farassat
model, solid lines: Pope’s model.

77



4. Derivation of the Noise Prediction Method

ing

E11(κ1) =

∫ ∞
κ1

E(κ)

κ

(
1− κ21

κ2

)
dκ. (4.52)

The coefficients CL and Cη are determined by the requirement that E(κ) and

2νκ2E(κ) integrate to k and ε, respectively. Alternatively, they can be determined

from the one-dimensional spectrum using equation 4.48.

The longitudinal autospectrum E11(κ1) calculated from Pope’s model spectrum is

shown in Figure 4.12 at selected locations in the boundary layer for Case 2 and

compared to the Gaussian model and experimental data. The model provides a very

good fit for y/δ = 0.78, but the agreement deteriorates as the wall is approached.

For y/δ ≤ 0.5, the model over predicts the spectra at κ ≤ 40, and under predicts

the spectra for 40κ ≤ y/δ ≤ 1000, but it follows the experimental data well for

1000 ≤ y/δ. The model predicts the correct values for k and ε, as is shown in

Figures 4.13(a) and 4.13(b).

4.6 RANS implementation

In order to calculate the power spectral density of the acoustic pressure in the far

field, the chosen cross-spectrum model is substituted into Eq. 4.15, and the double

integral is replaced by a double summation,

S(x, ω) =
∑∑

ΨΦ
F (y1)

r
3/2
o (y1)

F (y2)

r
3/2
o (y2)

dV (y1)dV (y2). (4.53)

This is a simple rectangle rule implementation to evaluate the double volume integral

in 4.15, which can handle the weak (integrable) singularity at the trailing edge.

Eq 4.53 can be evaluated on the same grid used to compute the RANS solution,

or interpolated onto a superimposed acoustic grid, with the required parameters

sampled at the cell centres. The power spectral density S(x, ω) is proportional to

the volume of the source elements dV (y1) and dV (y2). If a 3D RANS simulation is

performed, the volume of each source element can be determined by means of a grid

independence study, that is, refining the grid spacing until S(x, ω) converges.

However, it is often more practical to perform a 2D RANS simulation to evaluate a

new airfoil shape. In this case,

dA = r0dr0dθ0 = dV/dz. (4.54)
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4.6. RANS implementation

To obtain dV , a suitable spanwise cell length dz has to be chosen, and a correction

for the number of cells along the span must be applied.

4.6.1 Correction for finite span

Consider an airfoil of span L, as shown in Figure 4.14.
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Figure 4.14: Schematic of a long-span body divided by N subsections, adapted
from Seo and Moon (2007)

If the span is divided into strips of spanwise length Ls, and each strip is considered

an independent source (the spanwise coherence length `sz is less than the spanwise

length of the cell, or `sz ≤ Ls), such that

|p1|2 = |p2|2 = ... = |pN |2 = |ps|2, (4.55)

then the total acoustic pressure at a far field point due to the contribution of each

strip is given by

|pL|2 = |p1|2 + |p2|2 + ...+ |pN |2 = N |ps|2, (4.56)

where N = L/Ls. This results in a correction of SPLc = 10log(N) to be added

to the noise due to the simulated strip SPLs (Kato et al. 1993). If the coherence

length is greater than the span of the airfoil (`sz > L), then the correction factor is

SPLc = 20log(N). Although this two asymptotic values are correct, Seo and Moon

(2007) found this correction to be rather ad-hoc when Ls ≤ `sz ≤ L. Seo and Moon
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4. Derivation of the Noise Prediction Method

(2007) provide a more accurate correction factor for three possible cases:

SPLc =


10log(N) if `sz/Ls ≤ 1/

√
π,

10log(`sz/Ls) + 10log(
√
πN) if 1/

√
π < `sz/Ls < N/

√
π,

20log(N) if `sz/Ls > N/
√
π.

(4.57)

To apply this, |ps|2 must be accurately calculated, and an estimation of `sz is re-

quired.

4.6.1.1 Calculating the noise from a single strip

Equation 4.15 shows that the noise at the observer position is proportional to the

volume of the acoustic source elements, which can be (but need not be) assumed to

be uniform,

S(x, ω) ∝ dV1dV2 = dV 2. (4.58)

Using a Cartesian coordinate system with x,y,z being the streamwise, cross-flow and

spanwise directions, respectively, the cell volume becomes,

dV = dxdydz. (4.59)

dx and dy can be determined by a grid independence study while assuming dz = 1

to obtain a PSD per unit length, S1. This value has to be corrected to account for

the actual size of each cell in the spanwise direction. In the derivation of RSNM,

the assumption was made that points within a cell are perfectly correlated to each

other. This assumption holds only if the cells are small enough, that is,

dx << `sx

dy << `sy

dz << `sz,

(4.60)

where `sx, `sy, and `sz are the coherence lengths in the x, y and z directions, respec-

tively. An assumption regarding the value of dz = Ls has to be made in order to

calculate the noise radiated by a single strip Ss. In order to use equation 4.57, the

following assumption is made:
1

2
=
`sz
Ls
. (4.61)
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4.6. RANS implementation

There are two drawbacks that arise from this assumption. Firstly, `sz is assumed to

be constant, when in reality it is a function of frequency. For modelling purposes it is

desirable to have the spectral shape controlled by the shape of the autospectrum, and

not by the spatial coherence function. The effect on the noise predictions capabilities

of RSNM of neglecting the frequency dependence of `sz will be evaluated in Chapters

7, 8 and 9. Secondly, Equation 4.61 conflicts with dz << `sz. This requires a further

correction, for the fact that the points inside the cell will not be perfectly correlated.

A solution is to find the average coherence for points inside the cell.

Consider two points within a cell, z1 and z2, with z1 located at the centre of the cell,

and z2 located randomly within the cell. The cell has a spanwise extent of [0 Ls].

The probability density function of the location of z2 within the cell is given by

fz2 =

 1
Ls

if z2 ∈ [0 Ls]

0 if z2 /∈ [0 Ls].
(4.62)

Assuming a Gaussian form for for the spanwise coherence

γz1z2 = exp

(
−∆z2

`2sz

)
= exp

(
−

(Ls

2
− z2)2

`2sz

)
. (4.63)

The average correlation within the cell is then

〈γz1z2〉 =

∫ ∞
−∞

γz1z2fz2 dz2

=

∫ ∞
−∞

exp

(
−

(Ls

2
− z2)2

`2sz

)
1

Ls
dz2

=

∫ Ls

0

exp

(
−

(Ls

2
− z2)2

`2sz

)
1

Ls
dz2

=
`sz
√
π

Ls
erf

(
Ls/2

`sz

)
.

(4.64)

With our assumption of Ls = 2`sz, then

〈γz1z2〉 =

√
π

2
erf (1) = 0.7468. (4.65)
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Now the noise due to a single strip of span Ls = 2`sz can be calculated as

Ss(x, ω) = 0.7468× 2`sz × S1

= 0.7468× Ls × S1 (4.66)

where S1 is the power spectral density per unit span. This result allows us to use

the correction of Seo and Moon (2007) given in equation 4.57, so the total noise due

to the full span airfoil will be

SL(x, ω) = N × Ss

=
L

Ls
× 0.7468× Ls × S1

= L× 0.7468× S1.

(4.67)

The total noise is proportional to the span of the airfoil.

4.7 Summary

In this chapter, the derivation of a noise prediction method based on the theory

of Ffowcs Williams and Hall (1970) was presented. The method requires a model

for the cross-spectrum of the turbulent velocity fluctuations. A model for the cross-

spectrum was derived from a cross-correlation function based on the work of Morris

and Farassat (2002). The model can be separated into two functions, which are

related to the coherence function at zero frequency and the autospectrum, respec-

tively. Two alternative models for the coherence were provided, namely the SAS

model of Gavin (2002) and a semi-empirical model based on the experimental data

collected during this research. The semi-empirical coherence model neglects the

frequency dependency of the coherence by onsidering only the amplitude of the co-

herence function at zero frequency. It assumes that the coherence function can be

separated into orthogonal components. It was found that this function has an expo-

nential form in the streamwise and wall-normal directions, and a Gaussian form in

the spanwise direction. The decay rates are a function of distance to the wall, and
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are also affected by the pressure gradient. Empirical coefficients were found for the

decay rates in each direction, for each of the three cases studied.

Alternative models for the autospectrum were also provided, namely the Model

Spectrum of Pope, and a simplified Gaussian model. It was found that the Gaussian

model provides a good fit to the data at low and medium frequencies , but decays too

quickly at higher frequencies. Pope’s model provides excellent fit at high frequencies,

but overpredicts the spectrum at low frequency. Both models provide the correct

values of turbulent kinetic energy and dissipation.

The success of the models developed in this chapter will be determined by their abil-

ity to provide accurate noise predictions when implemented in the RSNM framework.

This is the subject of the following chapters.

Finally, a methodology to correct the 2D simulations to account for the real finite

span was presented.
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Chapter 5

Numerical investigation

This chapter describes the computational approach used to generate the flow in-

formation required to perform noise calculations. It includes a description of the

Reynolds Average Navier Stokes (RANS) equations and the SST k − ω turbulence

model, followed by a description of the numerical settings and grids used.

A grid refinement study is presented for three airfoil geometries (a NACA-0012,

a DU-96-180 and the custom FP-12), and the solutions present sufficient levels of

grid independence. The CFD results are also compared against experimental data

of Brooks et al. (1989), Devenport et al. (2010) and Moreau et al. (2011) as a

preliminary validation.

5.1 RANS

For incompressible flow in Cartesian coordinates, the continuity and Navier Stokes

equations are

∇ · u = 0 (5.1)

∂ui
∂t

+∇ · (uiu) = −1

ρ

∂p

∂xi
+ ν∇ · (∇ui) (5.2)

Using Reynolds decomposition, the velocity and pressure become u = U + u′ and

p = P + p′, where the upper case letters represent the mean value and the prime

represents the fluctuation about the mean.
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5. Numerical investigation

Replacing the decomposed variables in the equations and taking the time average

we obtain

∇ ·U = 0 (5.3)

∂Ui
∂t

+∇ · (UiU) +∇ · (u′iu′) = −1

ρ

∂P

∂xi
+ ν∇ · (∇Ui) (5.4)

Note that an extra term ∇ · (u′iu′) has arisen in the momentum equation due to the

time averaging process. It is customary to move this term to the right hand side of

the equation, in order to clarify its role as representing additional turbulent stresses

associated with the mean velocities. Expanding this term for clarity yields:

∂Ui
∂t

+∇ · (UiU) = −1

ρ

∂P

∂xi
+ ν∇ · (∇Ui) +

1

ρ

[
∂(−ρu′iu′)

∂xi

]
(5.5)

As a result of the Reynolds decomposition, six additional terms of the form ρ(u′iu
′)

have appeared, which are known as the Reynolds stresses, and they are of funda-

mental importance for aerodynamic noise calculations. As there are more unknowns

than equations, a turbulence model is required for closure. There are a number of

turbulence models described in the literature, ranging from the simple mixing length

model of Prandtl, to the more complex Reynolds stress model (RSM) (Launder et al.

1975). For a thorough review on the available turbulence models, the reader is re-

ferred to Versteeg and Malalasekera (2007). The choice of turbulence model depends

on the application and the computational resources available. For this research, the

SST k− ω model (Menter 1992a) has been chosen, as it has been shown to perform

well for boundary layers in both zero pressure gradients and in adverse pressure

gradients (Menter 1992b). Further,the SST k − ω model has been successfully used

to provide RANS flow data for trailing edge noise calculations using the fluctuating

surface pressure approach (Kamruzzaman et al. 2008).

5.2 The SST k − ω turbulence model

The SST k − ω turbulence model combines the k − ε and k − ω turbulence models

by means of a blending function, retaining the good near-wall performance of the

k−ω model, and the robustness of the k− ε model away from the wall. The model’s

equations are presented here as shown in Menter et al. (2003)
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∂(ρk)

∂t
+∇ · (ρkU) = ∇ ·

[(
µ+

µt
σk

)
∇k
]

+ Pk − β∗ρkω (5.6)

∂(ρω)

∂t
+∇ · (ρωU) = ∇ · [(µ+ σω1µt)∇ω] + α2ρS

2 − β2ρω2

+ 2(1− F1)ρσω2
1

ω

∂k

∂xi

∂ω

∂xi

(5.7)

where the blending function F1 is:

F1 = tanh


{
min

[
max

(√
(k)

β∗ωy
,
500ν

y2ω

)
,

4ρσω2k

CDkωy2

]}4
 (5.8)

with

CDkω = max

(
2ρσω2

1

ω

∂k

∂xi

∂ω

∂xi
, 10−10

)
(5.9)

and y is the distance to the wall. F1 = 0 away from the surface (k − ε model) and

changes to F1 = 1 inside the boundary layer (k − ω model). The eddy viscosity is

defined as:

νt =
a1k

max(a1ω, SF2)
(5.10)

Where S is the invariant of the strain rate and F2 is another blending function given

by:

F2 = tanh

[max( 2
√
k

β∗ωy
,
500ν

y2ω

)]2 (5.11)

to prevent the build-up of turbulence in stagnation regions, a production limiter is

used, given by:

Pk = µt
∂Ui
∂xj

(
∂Ui
∂xj

+
∂Uj
∂xi

)
→ P̃k = min(Pk, 10β∗ρkω) (5.12)

The model constants are computed by a blend of the k−ω and k−ε constants using

the blending functions, for example α = α1F +α2(1−F ). The model constants are

shown in table 5.1

5.3 Numerical schemes

All the RANS-CFD calculations were performed using the Semi-Implicit Method

for Pressure Linked Equations (SIMPLE) algorithm and the SST k − ω turbulence

model within the OpenFOAM CFD package. The discretization scheme for the
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Table 5.1: SST k − ω model constants
α1 α2 σk1 σk2 σω1 σω2 β1 β2 β∗

5/9 0.44 0.85 1 0.5 0.856 3/40 0,083 0.09

gradient, divergence and Laplacian terms was set to Gauss, which uses Gaussian

finite volume integration. Gaussian integration is based on summing values on cell

faces, which must be interpolated from cell centres. This was done using second order

central difference interpolation for all variables except k and ω, for which first order

upwind difference interpolation was used, as second order schemes caused numerical

instabilities. After the solution had reached a significant level of convergence (10−3

for pressure and 10−5 for all other variables), interpolation schemes for k and ω were

changed to second order central difference interpolation, and the simulation was run

until residuals reached values below 10−6 for pressure and 10−7 for k, ω, Ux, and Uy.

Therefore all numerical schemes were second order.

To aid the convergence process and avoid numerical instabilities, relaxation factors

were set to 0.7 for all variables except pressure, for which the relaxation factor was

set to 0.3, and an inviscid flow simulation was preformed using the potentialFoam

utility to provide a starting condition for the flow field.

5.4 Boundary conditions

To define the boundary conditions for the turbulent kinetic energy k and dissipation

ω, the following was used,

k =
3

2

(
U∞Ti

100

)
(5.13)

ω = Cµ
k

ν

(
µt
µ

)−1
(5.14)

where Ti is the turbulence intensity, U∞ is the free stream velocity, ν is the kine-

matic viscosity, µt is the eddy viscosity, µ is the dynamic molecular viscosity and

Cµ = 0.09. An eddy viscosity ratio of (µ/µt) = 1 is assumed. A sensitivity anal-

ysis to the value of the eddy viscosity ratio was performed, testing values between

0.1 ≤ (µ/µt) ≤ 1000. No changes were observed in the resulting boundary layer

properties, suggesting the domain boundaries were sufficiently distant from the air-

foil to converge to boundary-independent levels before reaching the airfoil. The inlet

turbulence intensity was set at Ti = 0.05%, to match the experimental conditions

of Brooks et al. (1989), and was used for all simulations, as k also seems to reach
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boundary-independent levels long before it reaches the airfoil. On the airfoil sur-

face, a continuous wall function was applied to the eddy viscosity µt, the turbulent

kinetic energy k and dissipation ω. A summary of the boundary conditions is shown

in Table 5.2.

5.5 Selected airfoils

Three airfoils were selected for this research, namely a NACA 0012, a DU-96-180

and the custom FP-12, which is a flat strut with a beveled trailing edge. These

airfoils were chosen because of the availability of flow and noise data that can be

used for validation. The NACA 0012 airfoil is the most commonly used airfoil in the

literature, and there is a large body of experimental and numerical data available

for comparison and validation at a wide range of Reynolds numbers.

The DU 96-180 is less common, but there is flow and noise data available fromDeven-

port et al. (2010) and from the BANCII workshop (Herr and Kamruzzaman 2013),

and it is also not a proprietary airfoil, so the exact geometry is readily available.

The FP-12 was chosen because of the availability of flow and noise data at the

school of Mechanical Engineering of the University of Adelaide, and because further

data could be obtained for this airfoil with the facilities and equipment available

at the University. The long and thin FP-12 allowed for a relatively high Reynolds

number (Rec = 500, 000) to be achieved at the wind tunnel maximum flow speed,

whereas most other airfoils would have caused significant blockage effects long before

reaching this Reynolds number. A more detailed description of the FP-12 is given

in Chapter 2

Table 5.2: Computational fluid dynamic boundary conditions.
Field Inlet Outlet Airfoil
U Fixed Value Zero Gradient Fixed Value
p Zero Gradient Fixed Value Zero Gradient
k Fixed Value Zero Gradient omegaWallFunction
ω Fixed Value Zero Gradient omegaWallFunction
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5.6 The computational grids

The computational grids were structured, multi-block C-type meshes. The CFD

domain boundaries were located ten chord-lengths upstream of the leading edge,

ten chord-lengths above and below the upper and lower surfaces and twenty chord-

lengths downstream of the trailing edge, as shown in Fig. 5.1. These mesh dimensions

were chosen so that the boundaries were sufficiently far away from the airfoil to

minimize the solution dependency on the chosen boundary conditions at the inlet,

and to allow the zero gradient boundary condition to be valid at the outlet.

In all meshes, cell grading was used to provide an adequate number of cells within

the boundary layer with a cell aspect ratio of one at the trailing edge. This resulted

in 798 cells on the surface of the DU-96 airfoil, 454 cells on the surface of the

FP12 airfoil, 679 cells on the surface of the NACA-0012 airfoil used in the cases

from Brooks et al. (1989), and 958 cells on the surface of the NACA-0012 used in

the cases from Devenport et al. (2010). The grid properties for the highest Reynolds

number cases for studied for each airfoil are shown in Table 5.3. It can be seen

that the maximum y+ values are well above the recommended values of y+ < 5 for

integration to the wall, so the use of wall functions is justified. Enlarged views of

the meshes used are show in Figures 5.2(a), 5.2(b) and 5.2(c). The justification for

choosing these meshes is given in Section 5.7.

5.7 Verification of CFD results

In this section, the quality of the CFD results is evaluated. This is done by per-

forming a grid refinement study and then by comparing the results to experimental

data from selected cases in the literature. A grid refinement study is a procedure to

quantify the discretization error for target quantities of interest in the flow, where

the aim is to achieve a reduction of discretization error in two or three successive

levels of grid refinement. The grid refinement study made use of the grid conver-

Table 5.3: Grid properties

Airfoil Surface cells Total cells min y+ max y+ av. y+
NACA-0012 (Brooks) 798 112,998 11.3 29.6 18.3
NACA-0012 (Devenport) 958 215,400 23.1 56.7 35.1
DU-96 798 346,580 3.9 38.6 14.6
FP12 454 187,850 0.0024 0.0702 0.0088
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Figure 5.1: Schematic of the CFD simulation domain, adapted from Jones (2013)

(a) NACA-0012 grid (b) DU-96-80 grid

(c) FP-12 grid

Figure 5.2: The computational grids used for all CFD calculations.
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gence index or GCI of Roache (1998). The GCI method requires the calculation of

an error term for the target quantity f

εi+1,i =
|fi+1 − fi|

fi
(5.15)

where i = 1, 2, 3, and i = 1 corresponds to the mesh with the highest resolution.

The grid convergence index is defined as

GCI(%) = 100× Fs εi+1,i

rp − 1
(5.16)

where Fs = 1.25 is a safety factor, r = hi/hi−1 is the ratio of cell size for mesh i

and mesh i− 1 and p is the order of convergence that can be calculated as

p = ln

(
|fi+2 − fi+1|
|fi+1 − fi|

)
/ ln(r) (5.17)

An estimate of the exact value fe (the asymptotic value for a grid of infinite resolu-

tion) can be calculated as

fe = fi +
(fi − fi+1)

rp − 1
(5.18)

The possible convergence conditions are

1. Monotonic Convergence, 0 < R < 1.

2. Oscillatory convergence, R < 0.

3. Divergence, R > 1.

Where R is the convergence ratio, defined as,

R =
fi+1 − fi
fi+2 − fi+1

(5.19)

Three different refinement levels were used for this study, as recommended by Wilcox

(2006), where each refinement step consisted in a doubling of the number of cells

(or halving of the cell area) of the previous step, which results in a refinement ratio

of r =
√

2. For the DU 96-180 case and the FP-12 case, this doubling of cells was

conducted in an inner block containing all cells within a distance of approximately

d = c/4 from the airfoil surface, and the mesh grading was adjusted in the outer

block to ensure a smooth transition between the blocks.

The target quantities for the grid refinement study where the boundary layer dis-

92



5.7. Verification of CFD results

placement thickness δ∗, the boundary layer momentum thickness θ, and the drag

coefficient Cd. In order to calculate δ∗ and θ, the boundary layer thickness is re-

quired. The standard definition of the boundary layer thickness is distance from the

solid surface at which the velocity reaches 99% of the free stream velocity, but this

definition results in artificially large values for the boundary layer thickness over

most airfoils, due to flow curvature effects (Devenport et al. 2010). Therefore, in

this work an alternative method is used to calculate the boundary layer thickness

based on the turbulence kinetic energy profiles. The edge of the boundary layer was

defined as the point where turbulence kinetic energy has a value of 0.5% of its peak

value, or k = 0.005kmax. Then the displacement thickness and momentum thickness

can be evaluated using the standard definitions,

δ∗ =

∫ δ

0

(
1− U

Ue

)
d|y − y0| (5.20)

θ =

∫ δ

0

U

U∞

(
1− U

Ue

)
d|y − y0| (5.21)

Where U is the mean flow velocity, Ue is the flow velocity at the edge of the boundary

layer and y0 is point of minimum free stream velocity if the measurements are taken

just downstream of the trailing edge, or the position of the airfoil surface if the

measurements are taken upstream from the trailing edge.

5.7.1 NACA-0012 airfoil

For the NACA-0012 airfoil, the grid refinement study was conducted for a chord of

c = 30.48 cm, at an angle of attack of AoA = 0 degrees and a Reynolds number based

on chord of Rec = 1, 5× 106. This was the highest Reynolds number of the Brooks

et al. (1989) cases studied, and would therefore require the highest mesh resolution

for this set of experimental data. The displacement thickness δ∗ and momentum

thickness θ were calculated at 1.3 mm downstream of the trailing edge to match

the measurements of Brooks et al. (1989). Table 5.7 shows the results of the grid

convergence study. Notice that an order of convergence of p > 2 would exceed the

order of the numerical schemes. If this occurred, a value of p = 2 was employed in

the GCI calculations. A GCI below 5% was obtained for all target quantities with

mesh 2, which is considered sufficiently accurate, therefore, this mesh was used to

perform all CFD calculations of the Brooks et al. (1989) cases.
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As a preliminary validation, the results are compared to experimental values. A

detailed validation of the CFD results is presented in Chapter 6.

5.7.2 Du-96-180 airfoil

For the DU 96-180 case, the grid refinement study was conducted for a 91.4 cm chord

airfoil, at an angle of attack of AoA = 7 degrees and a Reynolds number based on

chord of Rec = 3, 130, 000. The displacement thickness δ∗ and momentum thickness

θ were calculated at a location 1.9 mm downstream of the trailing edge to match the

measurement location reported in Devenport et al. (2010). The results of this study

are shown in Tables 5.9 and 5.10. Mesh 3 was selected for all CFD calculations of the

DU 96-180 airfoil, due to the very low GCI values obtained with this mesh for all

target quantities (all below 5%), and because the values for all target quantities were

very close to the asymptotic value, which indicates that any further increase in grid

resolution will produce negligible improvements in the accuracy of the results.

5.7.3 FP-12 airfoil

For the FP-12 airfoil, experimental data for fully turbulent boundary layer are

available only for a single case (Moreau et al. 2011). The airfoil has a chord of

c = 20.00 cm, the angle of attack was set at AoA = 0 and the free stream velocity

was U∞ = 38 m/s. Tables 5.11, 5.12 and 5.13 show the grid properties, boundary

layer properties and GCI results, respectively, for the FP-12 airfoil. All meshes show

very low values of y+. Meshes 2 and 3 show low GCI values for all target quantities,

and are therefore well resolved. Mesh 3 was used, due to its better grid statistics.

It should be noted that the predicted values for all boundary layer properties are

much smaller than those measured by Moreau et al. (2011). This could be caused

by the effect of the shear layers in the experimental data, as the measurements were

performed in an open jet wind tunnel.

Table 5.4: Grid properties or a NACA-0012 airfoil at Re = 1.5× 106

No. of cells TE y+ max y+ average y+
Mesh 1 215,400 9.4 22.5 13.8
Mesh 2 112,998 11.3 29.6 18.3
Mesh 3 53,850 13.9 42.4 26.1
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Table 5.5: Grid properties for a NACA-0012 airfoil at Re = 4× 106

No. of cells TE y+ max y+ average y+
Mesh 1 215,400 23.1 56.7033 35.1289
Mesh 2 112,998 24.0 74.8261 46.8289
Mesh 3 53,850 37.5 112.224 69.5361

Table 5.6: Numerical and experimental displacement thickness δ∗ and momentum
thickness θs, measured at the 1.3 mm downstream of the trailing edge, and drag
coefficient Cd, for the NACA-0012 airfoil with a chord based Reynolds number of
Rec = 1.5× 106 and angle of attack of AoA = 0. The symbols fe and fm stand for
exact value (asymptotic value) and measured value.

δ∗ (mm) θ (mm) Cd× 10−3

Mesh 3 2.1237 1.2697 11.6677
Mesh 2 2.0586 1.2211 11.2917
Mesh 1 2.0486 1.2131 11.2383
fe 2.1063 1.2050 11.1849
fm 2.96 1.62 –

Table 5.7: Order of accuracy and Grid Convergence Index (GCI) for the 30.48 cm
chord NACA-0012 airfoil at Re = 1.5× 106.

Variable |ε3,2| |ε2,1| R p GCI3,2 GCI2,1
δ∗ 0.0316 0.0049 0.1532 2, (5.4139) 3.9559% 0.6088 %
θ 0.0398 0.0066 0.1658 2, (5.1853) 4.9738% 0.8300%
Cd 0.0333 0.0048 0.1420 2, (5.6316) 4.1623% 0.5940%

Table 5.8: Grid properties DU-96-180
Mesh No. of cells TE y+ max y+ average y+
Mesh 1 346,580 3.9 38.6 14.6
Mesh 2 224,078 5.1 52.9 20.6
Mesh 3 123,716 7.0 73.1 29.1

Table 5.9: Numerical and experimental displacement thickness δ∗, momentum thick-
ness θs, recorded at 1.9 mm downstream of the trailing edge, and drag coefficient Cd,
for the DU 96-180 airfoil, with a chord based Reynolds number of Rec = 3, 13× 106

and angle of attack of AoA = 7. The symbols fe and fm stand for exact value
(asymptotic value) and measured value (Devenport et al. 2010). Subscripts s and p
denote suction side and pressure side, respectively.

δ∗s(mm) θs(mm) δ∗p(mm) θp(mm) Cd× 10−3

Mesh 3 17.3544 7.1158 1.0894 1.4625 16.2385
Mesh 2 17.0857 6.9449 1.5069 1.5523 15.6365
Mesh 1 17.0243 6.9141 1.4679 1.5853 15.5701
fe 16.9629 6.8833 1.4290 1.6183 15.5037
fm 19.7 6.1 3.3 1.6 –
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Table 5.10: Order of accuracy and Grid Convergence Index (GCI) for the Du96
airfoil. Subscripts s and p denote suction side and pressure side, respectively

Variable |ε3,2| |ε2,1| R p GCI2,1 GCI3,2
δ∗s 0.0157 0.0036 0.2286 2 (4.2588) 1.9654% 0.4508%
θs 0.0246 0.0045 0.1802 2 (4.9447) 3.0759% 0.5567%
δ∗p 0.2770 0.0265 -0.0933 2 (6.8443) 34.6300% 3.3164%
θp 0.0579 0.0208 0.3672 2 ( 2.8908) 7.2340% 2.6010%
Cd 0.0385 0.0043 0.1103 2, (6.3610) 4.8125% 0.5331%

Table 5.11: Grid properties for the FP-12 airfoil
No. of cells min y+ max y+ average y+

Mesh 3 64,600 0.0397 1.1714 0.1468
Mesh 2 106,675 0.0095 0.2851 0.0356
Mesh 1 187,850 0.0024 0.0702 0.0088

Table 5.12: Boundary layer parameters for the FP-12 airfoil at 0.7 mm downstream
of the trailing edge. The symbols fe and fm stand for exact value (asymptotic value)
and measured value (Moreau et al. 2011).

Mesh δ∗/c× 10−3 θ/c× 10−3 Cd× 10−3

Mesh 3 5.5373 3.3806 27.785
Mesh 2 5.6775 3.4685 28.734
Mesh 1 5.7115 3.4847 29.693
fe 5.7455 3.5008 30.652
fm 6.5 5.0 –

Table 5.13: Order of accuracy and Grid Convergence Index (GCI) for the FP-12
airfoil.

Variable |ε3,2| |ε2,1| R p GCI3,2 GCI2,1
δ∗ 0.0247 0.0059 0.2423 2, (4.0897) 3.0863% 0.7435%
θ 0.0254 0.0046 0.1839 2, (4.8857) 3.1688% 0.5801%
Cd 0.0330 0.0323 1.0105 2, (0.0151) 1.3761% 1.3457
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5.8 Summary

In this chapter the fundamentals of RANS and the SST k − ω model have been

explained, as well as the numerical settings, grids and boundary conditions used

for all the CFD calculations in this thesis. A grid refinement study has been con-

ducted, showing that the grids used are sufficiently resolved to provide a grid in-

dependent solution, and the CFD results for three different airfoils at a range of

operating conditions have been compared against experimental data of Brooks et al.

(1989), Devenport et al. (2010) and Moreau et al. (2011). The CFD results results

for boundary layer integral properties are generally smaller than the corresponding

experimental values; however, the agreement is considered sufficiently good as a pre-

liminary validation of the CFD data. A more detailed validation is provided in the

results chapters for each airfoil.
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Chapter 6

Results

6.1 Introduction

In this chapter, the RSNM method is applied to three different airfoil shapes,namely

a NACA 0012, a DU-96-180 and a FP-12 airfoil, for a range of operating conditions,

and the noise predictions resulting from the different cross-spectrum models are

compared with each other as well as with experimental data from the literature. The

required mean flow data is taken from RANS CFD, and results for mean velocity,

turbulent kinetic energy and turbulence dissipation are presented for selected cases

and related to the far field noise spectrum obtained from the simulations.

6.2 Sampling domain

All RSNM calculations were performed on an acoustic grid superimposed on the

RANS grid. The values at each cell on the acoustic grid are calculated from the

RANS grid by means of linear interpolation. A grid refinement study was conducted

in order to determine the resolution required to obtain grid independent acoustic

predictions. This was done using a 15.24 cm chord, NACA 0012 airfoil at 31.7 m/s

case (Rec = 3.33×105). The RANS data were sampled over a domain extending one

boundary layer thickness (δ) in both the upstream and downstream directions from

the trailing edge, and with a height of one boundary layer thickness. An initial grid

resolution of 50× 50 cells per δ2 was used for the noise calculation, which was then

increased to 100 × 100 and 200 × 200 per δ2. As Figure 6.2 shows, no discernible

change occurs when the resolution was increased beyond 100 × 100 cells per δ2;
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therefore this resolution was chosen for all noise calculations in this study.

In order to determine extent of the sampling domain required for converged results,

simulations were carried out extending the domain upstream and downstream of

the trailing edge. Three domain sizes were tested, namely a small, a medium and

a large domain. The sampling domain was defined by all the points (x,y) such

that TE − ∆i ≤ x ≤ TE + ∆i and TE − δ ≤ y ≤ TE + δ, where ∆ = i × δ,

i = (1, 2, 4) and δ is the boundary layer thickness at the trailing edge on the suction

side. The results of this domain size extension are shown in Figure 6.3. The noise

predictions are different between the small and medium domains, but they show no

change between the medium and large domains, confirming that the medium sized

domain is enough to achieve converged results. Therefore, all noise predictions in

this thesis were carried out using the medium size domain, extending a distance

of two boundary layer thickness (suction-side) upstream of the trailing edge to two

boundary layer thickness downstream of the trailing edge, and from one boundary

layer thickness above the trailing edge to one boundary layer thickness below the

trailing edge.

6.3 RANS CFD results for the NACA 0012 air-

foil

The selected test cases are shown in Table 6.3, with conditions matching the tripped

cases of Brooks et al. (1989). Table 6.3 also shows the wall shear stress τω and the

pressure gradient parameter β. The pressure gradient was obtained from the CFD

data by using a linear curve fit to the pressure for 0.95c ≤ x < c, and τω was chosen

as the wall shear stress at the trailing edge. Both the pressure gradient and the

wall shear stress vary significantly over the surface of the airfoil, so these results

are only valid near the trailing edge, and even there, they provide only a rough

Figure 6.1: Schematic of the sampling domain used for RSNM acoustic calculations.
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6.3. RANS CFD results for the NACA 0012 airfoil

Figure 6.2: Computed acoustic power spectral density of a 15.24 cm chord NACA
0012 airfoil at a free stream velocity of 31.7 m/s (Rec ≈ 333, 000), calculated with
RSNM using three different grid resolutions.

approximation. The values of β are about one order of magnitude bigger than those

of the experimental cases of Chapter 3.

6.3.1 Reynolds number effects

Figure 6.4 shows the normalized mean velocity, turbulence kinetic energy and tur-

bulence dissipation profiles for a NACA 0012 airfoil at zero angle of attack and at

Reynolds numbers ranging from 3× 105 ≤ Rec ≤ 1.5× 106. Increasing the Reynolds

number has the effect of decreasing the peak turbulence intensity, as well as decreas-

ing the peak dissipation. From the velocity profiles, it is clear that the displacement

thickness is also reduced when the Reynolds number is increased. This can be

corroborated by looking at Figure 6.5, which shows the boundary layer thickness,

displacement thickness and momentum thickness as a function of Reynolds number.

All these quantities decrease as the Reynolds number is increased.

6.3.2 Effect of angle of attack

Figure 6.6 shows the mean velocity, turbulent kinetic energy and turbulence dissi-

pation profiles for the suction side of a NACA 0012 with a chord length of 30.48 cm

(Rec = 1.5× 106) at four different angles of attack.

On the suction side, increasing the angle of attack increases the displacement thick-
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Figure 6.3: Sampling domain study for a NACA 0012 airfoil at α = 0 at Rec = 1.5e6.

ness. From the turbulent kinetic energy profiles, it is clear that increasing the angle

of attack has the effect of increasing the turbulence intensity in the boundary layer;

it also thickens the boundary layer. The peak dissipation decreases with angle of

attack, but the dissipation levels increase in the outer part of the boundary layer as

the angle of attack is increased.

The opposite effect is observed for the pressure side, as shown in Figure 6.7. Here

the velocity profiles show a decrease in the displacement thickness when the angle

of attack is increased. The turbulence kinetic energy profiles show lower levels and

the boundary layer is thinned as the angle of attack increases. The peak dissipation

levels also increase close to the wall, but decrease in the outer part of the boundary

layer.

The boundary layer thickness, displacement thickness and momentum thickness are

shown in Figures 6.8. There is an increase in δ, δ? and θ on the pressure side as the

angle of attack is increased, and the opposite is observed on the pressure side.
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6.4. Validation of RANS data for the NACA 0012 airfoil

Table 6.1: Boundary layer parameters for a NACA 0012 airfoil at various operating
conditions. τω obtained at the trailing edge from CFD. Pressure gradient obtained
between 0.95c ≤ x < c. Results for the suction side.

c, m α, deg U, m/s Rec 1000δ/c 1000δ?/c 1000θ/c τω, Pa β
0.3048 0.0 71.3 1.5e6 36.3635 7.1694 4.1230 2.3498 16.7393
0.3048 0.0 55.5 1.1e6 38.3839 7.6060 4.3155 1.4286 16.2278
0.3048 0.0 39.6 8.0e5 39.3940 8.2397 4.5644 0.6569 17.9687
0.3048 0.0 31.7 6.4e5 41.4140 8.7369 4.7637 0.3593 20.7548
0.2286 0.0 71.3 1.1e6 38.3839 7.6700 4.3398 2.3405 16.4810
0.2286 0.0 55.5 8.5e5 39.3939 8.1475 4.5296 1.3168 16.9731
0.2286 0.0 39.6 6.0e5 41.4141 8.8751 4.8135 0.5241 22.0665
0.2286 0.0 31.7 4.8e5 43.4343 9.3878 5.0203 0.2719 26.8366
0.3048 1.5 71.3 1.5e6 40.4042 8.3137 4.6569 2.3752 19.2033
0.3048 3.3 71.3 1.5e6 44.4446 9.7041 5.2689 2.4720 20.3413
0.3048 4.0 71.3 1.5e6 48.4849 10.8468 5.7572 2.5648 21.9135
0.2286 2.0 71.3 1.1e6 43.4343 9.3564 5.0847 2.4070 19.5498
0.2286 4.0 71.3 1.1e6 49.4948 11.5771 5.9966 2.6005 20.3544
0.2286 5.3 71.3 1.1e6 54.5455 13.4527 6.7178 2.7973 19.7884

6.4 Validation of RANS data for the NACA 0012

airfoil

For validation of the zero angle of attack cases, the CFD results for the displacement

thickness, normalized by chord, are compared to the empirical BPM models (Brooks

et al. 1989) and also with an XFOIL calculation setting turbulence transition to

occur at 10% of the chord. As can be seen in Figure 6.9, the CFD results fall

within the tripped and untripped experimental data of Brooks et al. (1989), and

also follow reasonably closely the results of the XFOIL calculation, showing the

same trends.

Figure 6.9 also shows the displacement thickness normalized by its value at zero

angle of attack δ∗/δ∗0, for the non-zero angle of attack cases. The CFD results are

in excellent agreement with the XFOIL calculation and follow the BPM empirical

curves reasonably well.

For further validation, CFD calculations of mean velocity, turbulent kinetic energy

and dissipation profiles are compared to experimental data of Herr and Kamruzza-

man (2013). The agreement between CFD results and experimental data is good

for the mean velocity profiles at all angles of attack shown in Figure 6.10(a). The

turbulent kinetic energy shows good agreement at zero angle of attack, but the CFD

underpredicts the turbulent kinetic energy at greater angles of attack, as shown in
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Figure 6.4: Normalized mean velocity, turbulence kinetic energy and turbulence
dissipation profiles for a NACA 0012 airfoil at α = 0 at various Reynolds numbers.
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mentum thickness for a 30.48 cm chord NACA 0012 airfoil at α = 0 at various
Reynolds numbers.

Figure 6.10(b). The turbulence dissipation is greatly overpredicted at all angles of

attack, in particular in the near wall region, where a large peak is observed in the

CFD data, which is not present in the experimental results. This is a well known

feature of two-equation RANS models (Kamruzzaman et al. 2012).
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6.5. RANS CFD results for the DU-96-180 airfoil
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Figure 6.6: Normalized mean velocity, turbulent kinetic energy and turbulence dissi-
pation profiles for the suction side of a 30.48 cm chord NACA 0012 airfoil at various
angles of attack and at a Reynolds number of Rec = 1.5× 106.

6.5 RANS CFD results for the DU-96-180 air-

foil

The selected test cases are shown in Table 6.5, with conditions matching the tripped

cases of Devenport et al. (2010). Table 6.5 also shows the wall shear stress τω and

the pressure gradient parameter β, both of them calculated with the same procedure

used for the NACA 0012 airfoil. The values of β are of similar magnitude to those

of the NACA 0012 cases described, and about one order of magnitude bigger than

those of the experimental cases of Chapter 3.

Table 6.2: Boundary layer parameters for the suction side of a DU-96-180 airfoil at
various operating conditions. τω obtained at the trailing edge from CFD. Pressure
gradient obtained between 0.95c ≤ x < c. Results for the suction side.

c, m α, deg U, m/s Rec 1000δ/c 1000δ?/c 1000θ/c τω, Pa β
0.914 3 28 1.7e6 39.3940 15.3084 6.6116 0.7435 12.3406
0.914 7 28 1.7e6 51.5151 23.9009 8.4225 0.5736 17.0759
0.914 3 40 2.4e6 36.3637 13.8914 6.2004 1.0242 18.5948
0.914 7 40 2.4e6 48.4849 21.6190 7.9751 1.3140 14.2862
0.914 3 58 3.5e6 35.3535 12.7644 5.8904 1.8436 21.5153
0.914 7 58 3.5e6 45.4546 19.5349 7.5551 2.4057 16.3283

105



6. Results

0 0.2 0.4 0.6 0.8 1

U/U
∞

0

0.01

0.02

0.03

0.04

0.05

y
/c

AoA = 0.0

AoA = 1.5

AoA = 3.0

AoA = 4.0

0 2 4 6

10
3
× k/U

∞

2

0

0.01

0.02

0.03

0.04

0.05

0 0.5 1 1.5

10
7
×ǫν/U

∞

4

0

0.01

0.02

0.03

0.04

0.05

Figure 6.7: Normalized mean velocity, turbulent kinetic energy and turbulence dissi-
pation profiles for the pressure side of a 30.48 cm chord NACA 0012 airfoil at various
angles of attack and at a Reynolds number of Rec = 1.5× 106. x/c = 1.
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6.5.1 Reynolds number effects for the Du-96-180 airfoil

Figure 6.11 shows the normalized mean velocity, turbulence kinetic energy and tur-

bulence dissipation profiles for the suction side of 0.914 m chord DU-96-180 airfoil
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at Reynolds numbers ranging from 1.7× 106 ≤ Rec ≤ 3.5× 106 at angles of attack

of α = 3◦ and α = 7◦. Increasing the Reynolds number has the effect of decreas-

ing the peak turbulence intensity, as well as decreasing the peak dissipation. From

the velocity profiles one can infer that the displacement thickness is also reduced

when the Reynolds number is increased. The turbulence intensity profiles also show

a reduction in the boundary layer thickness as the Reynolds number is increased.

This can be corroborated by looking at Figures 6.13(a) to 6.13(d), which show the

boundary layer thickness, displacement thickness and momentum thickness as a

function of Reynolds number. All these quantities decrease as the Reynolds number

is increased.

A similar behaviour is observed on the pressure side for both angles of attack, as

shown in Figure 6.12.

6.5.2 Effect of angle of attack for the Du-96-180 airfoil

For the suction side of the airfoil, increasing the angle of attack produces an increase

in turbulence intensity and dissipation, a thickening of the boundary layer and an

increase in displacement and momentum thickness, as shown in Figures 6.11, 6.13(a)

and 6.13(b).The opposite effect is observed on the pressure side, as shown in Fig-

ures 6.12, 6.13(c) and 6.13(d).
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(b) Turbulent kinetic energy, suction side.
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(c) Turbulence dissipation, suction side.

Figure 6.10: Mean velocity, turbulent kinetic and dissipation profiles for the suction
side of a 40 cm chord NACA 0012 airfoil at a Reynolds numbers of Re = 1.500.000.
Symbols are experimental data from Herr and Kamruzzaman (2013), solid lines are
RANS CFD data. Colors blue, red and green represent angles of attack of 0, 4 and
6 degrees, respectively. x/c = 1.0038.

6.6 Validation of RANS data for the Du-96-180

airfoil

For validation of the CFD results, the testcase at Rec = 3.5 × 106 and α = 7◦ was

selected, as it is the only tripped case in Devenport et al. (2010) for which inte-

gral boundary layer parameters and velocity measures were provided. The integral

boundary layer parameters are shown in Figures 6.13(b) and 6.13(d) for both exper-

imental and numerical results. The CFD results agree well with the experimental

data for both the pressure and suction sides. Further validation is provided by com-

paring the mean velocity and turbulence intensity profiles, shown in Figures 6.14(a)

and 6.14(b). The agreement is satisfactory for the velocity profiles, but the CFD

underpredicts the turbulence intensity on both the pressure and suction sides, par-
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Figure 6.11: Normalized mean velocity, turbulence kinetic energy and turbulence
dissipation profiles for the suction side of a DU 96-180 airfoil at various Reynolds
numbers. Solid lines: AoA=3. Dashed lines: AoA=7. x/c = 1.

ticularly the peaks. However, the curves follow the same trends as the experimental

data. The underprediction of the turbulence intensity is expected, as two equation

models have difficulty predicting the correct levels of turbulent kinetic energy at

non-zero angles of attack (Herr and Kamruzzaman 2013), and a similar behaviour

was observed for the NACA 0012 cases for α 6= 0.

6.7 RANS CFD results for the FP12 airfoil

The boundary layer parameters, δ, δ∗ and θ calculated from the mean velocity

and turbulent kinetic energy profiles provided by the CFD are compared to the

experimental results of Moreau et al. (2011) and to the experimental results from

Chapter 3 in Figure 6.15(a). The CFD results are in good agreement with the

experimental data for δ∗ and θ, but show some discrepancy for the boundary layer

thickness δ. The percentage error for all three parameters is shown in Figure 6.15(b).

In all cases, the error is significantly smaller when the CFD is compared to the

experimental data of Chapter 3, as opposed to the data of Moreau et al. (2011).

The error for δ is below 20% , less than 10% for δ∗, and the agreement for θ is very

good.

For further validation, the mean velocity, turbulent kinetic energy and dissipation

profiles are compared in Figures 6.16(a), 6.16(b) and 6.16(c), respectively. The mean
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Figure 6.12: Normalized mean velocity, turbulence kinetic energy and turbulence
dissipation profiles for the pressure side of a DU 96-180 airfoil at various Reynolds
numbers. Solid lines: AoA=3. Dashed lines: AoA=7. x/c = 1.

velocity profiles are very similar for both experimental data sets; however, the CFD

results follow the experimental data of Chapter 3 more closely. This is possibly due

to the better resolution achieved in the experimental measurements of Chapter 3,

where the chord of the airfoil was five times bigger than that of Moreau et al. (2011),

providing a much thicker boundary layer, and hence a much smaller probe diameter

to δ ratio. This difference is more pronounced in the kinetic energy profiles, where

the effects of spatial averaging are more evident, resulting in a smaller peak in the

inner boundary layer. It must also be noted that in the present experiments it

was possible to measure closer to the trailing edge; however, the effects of a small

difference in x/c are minor and only limited to the inner part of boundary layer or

near wake, as shown in Figures 6.16(a) to 6.16(c). The CFD severely underpredicts

the kinetic energy, also showing a more narrow profile, which results in a smaller

boundary layer. Figure 6.16(c) compares the dissipation obtained from CFD with

the experimental data of Chapter 3. The CFD overpredicts the dissipation, which

is consistent with the underprediction of kinetic energy. The peak dissipation is

reasonably well predicted.
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Figure 6.13: Integral boundary layer parameters for a DU 96-180 airfoil at various
Reynolds numbers. Blue: δ/c, red: δ∗/c, yellow: θ/c. Circles: suction side, squares:
pressure side. Experimental data suction side: +, experimental data pressure side:
∗. x/c = 0.0021. (Devenport et al. 2010).

6.8 Acoustic results fo the NACA 0012 airfoil

This section shows the acoustic predictions for the baseline RSNM and several mod-

ifications of RSNM. The baseline model uses a Gaussian autospectrum model and

a Gaussian coherence model with a length scale defined by `s = k/ε3/2, and em-

pirical coefficients cτ = 0.016 × U∞ + 0.8 and A1 = 1.9 × 10−6. These parameters

were determined by best fit to the data of Brooks et al. (1989). The modifications

are constructed by changing either the autospectrum model, the spatial coherence

model, or both. A detailed description of the autospectrum and coherence models

is given in Chapter 4. Table 6.14 shows the different configurations employed in all

noise predictions.
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Figure 6.14: Mean velocity and turbulence intensity profiles for a DU 96-180 airfoil
at Re = 3.14 × 106 at α = 7◦. Symbols: experimental data from (Devenport et al.
2010). Solid lines: CFD results. x/c = 0.0021.

The first modification (Mod 1) uses the same Gaussian coherence model and au-

tospectrum as the baseline model, but uses an iterative process to calculate the

coefficients cτ and A1 at each point in the sampling domain. The coefficients were

initially given a value of 1 and the turbulent kinetic energy k was calculated by

integrating the autospectrum over all wave numbers using Equation ??. An error

function was defined as:

error = 100(kRANS − kcalculated)/kRANS. (6.1)

A Matlab script then modified the coefficients and repeated the process. The it-

erating process was stopped when the error was below 0.1% or 800 iterations were

performed, whichever happened first. In order to incorporate the dissipation into

the optimization process, an alternative error function can be defined as:

error1 = 100(kRANS − kcalculated)/kRANS
error2 = 100(εRANS − εcalculated)/εRANS
error = error1 + error2.

(6.2)

This approach produced the same coefficients as the one defined by Equation 6.1,

and due to its simplicity, Equation 6.1 was preferred.

The second modification (Mod 2) uses an autospectrum model proposed by Pope

(2000). The empirical coefficients Cη and CL are found by the same process described

for mod 1.
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Figure 6.15: Boundary layer parameters for The FP12 airfoil at Re ≈ 5 × 105 at
α = 0◦ and percentage error. Experimental data taken from Moreau et al. (2011)
(x/c = 0.003) and Chapter 3 (x/c = 0.00083).

The third modification (Mod 3) combines Gavin’s spatial coherence model and the

baseline Gaussian autospectrum (fixed coefficients). The length scale is taken to

be a function of the boundary layer thickness, `s = 0.35δ. The fourth modification

(Mod 4) is the same as Mod 3, except that the length scale is now calculated for

each point in the boundary layer, and is a function of the turbulent kinetic energy

and dissipation, `s = k3/2/ε.

Modifications 5, 6 and 7 introduce an anisotropic coherence model described in

Chapter 4. The empirical coefficients c`x and c`y are shown in table 4.2. Modifica-

tions 5, 6 and 7 use the coefficients for Cases 2, 1 and 3, respectively.

For all modifications, the value of the amplitude coefficientA0 was found by adjusting

the amplitude to match the experimental data of the Brooks et al. (1989) case at

Rec = 1.5× 106. The values of A0 for each case can be found in Table 6.14.

6.8.1 Zero angle of attack

Figures 6.17(a) and 6.17(b) show the third octave band spectra predicted by the

baseline model, Mod 1 and Mod 2, compared to the experimental data of Brooks

et al. (1989) at U∞ = 71.3 m/s for chords of 30.48 cm and 22.86 cm, respectively.

The baseline model follows the experimental data closely, matching the location of

the peak, while Mod 1 and Mod 2 predict a peak at a higher frequency. Mod 1

predicts the correct spectral shape, but there is a shift of the spectra to higher
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Figure 6.16: Mean velocity, turbulence kinetic energy and dissipation profiles for the
FP12 airfoil at Re ≈ 5× 105 at α = 0◦. Blue: experimental data from Moreau et al.
(2011) at x/c = 0.0030. Red: experimental data from Chapter 3 at x/c = 0.0008.
Yellow: experimental data from Chapter 3 at x/c = 0.0042. Solid lines: CFD results
at x/c = 0.

frequencies. Mod 2 shows a much steeper decay after the peak, which does not

conform to the trend in the experimental data.

A similar behaviour is observed for all other test cases, as shown in Figures 6.17(c)

to 6.17(h). In all these cases, the baseline model provides an accurate representation

of the experimental data, with the amplitude scaling correctly as a function of free

stream velocity.

Mod 1 consistently shows a shift in frequency, and even though it predicts a lower

amplitude with smaller free stream velocity, it significantly overpredicts the sound

levels. Mod 2 predicts the correct peak levels for the different velocities, but it

incorrectly determines the frequency of the peak and produces the wrong spectral
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6.8. Acoustic results fo the NACA 0012 airfoil

shape. Both Mod 1 and Mod 2 rely on an iterative process to determine model

parameters which give the autospectrum its shape. This is done by integrating the

autospectrum over all frequencies to calculate the kinetic energy, and then minimiz-

ing the difference between this value and the kinetic energy obtained form RANS. It

is possible to obtain the same kinetic energy by integrating vastly different spectral

shapes, therefore it is possible that the optimization algorithm is finding a local min-

imum rather than the true global minimum, resulting in an incorrect prediction of

the peak frequency and the shape of the noise spectrum. Another source of error is

the inaccurate prediction of the dissipation (ε) by RANS, as shown in Figure 6.10(c).

This will affect the length scales, time scales and amplitude in both the Gaussian

autospectrum model and the Pope autospectrum model, leading to erroneous noise

predictions.

Due to the poor performance of these alternative autospectrum models, they will

not be used in combination with the rest of the spatial coherence models.
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6.8.1.1 Effect of changing the spatial coherence model

In this section, the effect of changing the spatial coherence model is investigated.

For this purpose, the baseline autospectrum model will be used in all calculations

in combination with the alternative spatial coherence models, and compared to the

baseline model and the experimental data of Brooks et al. (1989).

Figures 6.18(a) to 6.18(h) show the acoustic predictions for a NACA 0012 at zero an-

gle of attack and at various flow speeds compared to the experimental data of Brooks

et al. (1989).

Both Mod 3 and Mod 4 follow the shape of baseline model very closely, but with

slightly decreased amplitudes. All models scale appropriately with free stream ve-

locity.

Figures 6.19(g) to 6.19(h) show the predictions of Mods 5, 6 and 7 for a NACA 0012

at zero angle of attack for a range of flow speeds, and compare them to the baseline

model and the experimental data of Brooks et al. (1989).

Mod 5 and 7 are indistinguishable from the baseline model for frequencies up to 4

kHz. Above this frequency, both Mod 5 and Mod 6 predict higher levels than the

baseline model, showing a slower decay with frequency. This effect is much more

pronounced for Mod 7.

Mod 6 is indistinguishable from the baseline model for frequencies below 500 Hz.

Above this frequency, Mod 6 predicts a smaller amplitude, but a slower decay rate,

which results in higher levels above approximately 4 kHz.

6.8.2 Non-zero angle of attack

Figures 6.20(a) and 6.20(b) show the noise predicted by the baseline model for a

NACA 0012 airfoil in a free stream velocity of 71.3 m/s at various angles of attack, for

chords of 30.48 cm and 22.86 cm, respectively. The model shows little sensitivity to

a change in the angle of attack, and provides a good prediction for frequencies above

2 kHz. There is a slight increase in amplitude with angle of attack for frequencies

below 1 kHz and a slightly larger decrease in amplitude for frequencies above 1

kHz. The experimental data show a marked increase in low frequency noise as

the angle of attack increases, showing a distinct peak. This effect is not captured

by the model. It is hypothesised that the large broadband peak occurring in the

noise spectrum at higher angles of attack is caused by vortex shedding or other
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noise mechanisms of a different nature than broadband trailing edge noise. These

broadband peaks are not present in the experimental data of Devenport et al.(2010),

which was captured using beamforming techniques, focusing on the trailing edge and

excluding extraneous sources. Their results show almost no difference in the noise

generated at different angles of attack when the airfoil is tripped; however, they note

that for untripped conditions, thre was vortex shedding at all angles of attack tested,

and the acoustic results changed significantly with angle of attack. Devenport et al.

(2010) also found that in their data, the noise at low frequencies for high angle of

attack cases is dominated by vortex shedding for the untripped boundary layers.

They found that tripping the boundary layer reduces the vortex shedding, but does

not eliminate it, and for some frequencies, it barely affects it.

Figures 6.21(a) and 6.21(b) show the noise predictions for RSNM Mod 3. The

predictions follow a very similar pattern as the baseline model, showing low sensi-

tivity to angle of attack variations, except for a small increase at low frequencies

and a slightly larger decrease in amplitude for frequencies over 1 kHz. The same

features are observed in the predictions of RSNM Mod 4, shown in Figures 6.22(a)

and 6.22(b).

Mod 5, 6 and 7 shows a similar behaviour as the baseline model and Mods 3 and 4,

namely a small sensitivity to angle of attack and an inability to reproduce the low

frequency peaks. An important difference is an increase in amplitude with angle of

attack for frequencies over 8 kHz, as shown in Figures 6.23(a) to 6.25(b).

Mod 2 and 3 are not shown, as they suffer from the same problems discussed in the

zero angle of attack cases.

6.9 Acoustic results for the DU-96-180

Experimental data were sourced from Devenport et al. (2010), where the boundary

layer was tripped by a serrated tape. Two angles of attack are presented at three free

stream velocities. Devenport et al. (2010) plot both angles of attack and multiple

runs on the same figure, making it impossible to discern which curve corresponds

to which angle of attack; however, all the results follow the same trends. The data

are presented as three clouds of points, each corresponding to a different free stream

velocity, but including both angles of attack. The data are presented in 1/12 octave

bands.

Figure 6.26(a) shows the results for the baseline model. The model captures the
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shape of the spectra correctly, and also captures the increment in amplitude with

free stream velocity. There is a small underprediction of the velocity spectrum for

the 58 m/s case; however, Devenport et al. (2010) note that in many cases at the

higher speed, trailing edge noise was difficult to observe from the noise maps, so it is

possible that the discrepancies are caused by noise mechanisms other than trailing

edge noise. The angle of attack has a weak effect on the noise predictions, which

is within the spread shown in the experimental data. The effects become more

pronounced at higher frequencies, where there are no experimental data to compare

it with.

Figures 6.26(b) and 6.26(c) show the results for Modifications 3 and 4, respectively.

The results are almost indistinguishable from the baseline model and from each

other below 1 kHz, but Modification 3 follows the experimental data more closely

above 1 kHz, showing a steeper decline with frequency. There are more pronounced

differences between the models above 2 kHz, which increase with frequency.

Figures 6.26(d), 6.26(e) and 6.26(f) show the results for Modifications 5, 6 and 7,

respectively. All these modifications behave similarly for frequencies below 1 kHz,

producing adequate results, but departing from the experimental data much quicker

after 1 kHz, and showing large differences to each other as frequency increases.

Figure 6.27 compares the experimental data of Herr and Kamruzzaman (2013) with

the noise predictions of the baseline model and five model modifications in third-

octave bands. The baseline model shows excellent agreement with the experimental

data, staying within 3 dB from the experimental data for 1 kHz ≤ f ≤ 16 kHz.

Modification 4 shows the same shape as the baseline model, but with a decreased

amplitude of approximately 2 dB. Modification 3 is indistinguishable from Modifi-

cation 4 for f ≤ 4 kHz, but shows a more pronounced decay with frequency above 4

kHz, departing from the experimental data. This gives support to the idea of using

a local length scale `s = k3/2/ε in the coherence model, as opposed to the global

length scale `s = 0.35δ used in Modification 3.

Modification 5 agrees well with the experimental data up to f = 8 kHz, at which

point it predicts a slower decay with frequency, resulting in an overprediction of

the noise levels. A similar effect is observed for Modifications 6 and 7, but with

the slower decay starting at f = 4 kHz. This could be the result of neglecting the

frequency dependency of the coherence function, which was a core assumption of

the semi-empirical cross-spectrum model developed in this thesis. The coherence

decays rapidly as a function of frequency, and approximating it by its value at ω = 0

will inevitably cause errors, which are more pronounced as the frequency increases.
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This is consistent with the results observed in Figure 4.2(b), which displays the

measured cross-spectrum and the cross-spectrum calculated using the approximated

coherence.

6.10 Acoustic results for the FP12 airfoil

The acoustic predictions of the baseline model and several modifications are shown

in Figure 6.28 and compared to the experimental data of Moreau et al. (2011). All

the predictions are significantly lower than the experimental data; however, they

all show the correct slope for frequencies above 2 kHz, as shown by offsetting the

experimental data by -15 dB. All predictions show a peak between 1 kHz and 2

kHz, and a decay in amplitude as frequency is decreased below this point. The

experimental curve does not follow this trend, showing the highest levels close to

300 Hz, and decaying with increasing frequency.

All models used the offsets listed in Table 6.14.

It is worth noting that the peak in the spectrum at 1.5 kHz in the experimental

data is likely caused by noise mechanisms other than trailing edge noise, as it was

present at the same frequency for all cases tested by Moreau et al. (2011), which

ranged from 15 ms−1 to 38 ms−1, and the frequency of the peak was independent of

the flow velocity. The high levels of low frequency noise were attributed by Moreau

et al. (2011) to boundary layer instabilities and vortex shedding induced by the

strong adverse pressure gradient in the steep angled trailing edge region. These

noise mechanisms are not taken into account in the present noise prediction model,

which explains some of the discrepancies between the predictions and the experi-

mental data. However, this does not explain the 15 dB offset required to match

the data at high frequency. The underprediction of noise levels can be related to

the underprediction of turbulent kinetic energy by the RANS CFD, and an overpre-

diction of dissipation; however, this is unlikely to account for 15 dB. Other factors

contributing to the underprediction of the noise spectrum are an inaccurate predic-

tion of the turbulence length scales and an inaccurate modelling of the turbulence

spectrum. These factors are examined in the following sections.
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6.11 Effect of length scales on acoustic results

The length scales affect the amplitude of the velocity spectrum, and can therefore

affect the noise levels predicted by RSNM. Figure 6.29 shows the length scales mea-

sured for the experimental cases and compares them to the values calculated from

RANS as L = c`k
3/2/ε. The length scale parameter is c` = 1 for the baseline model,

which produces an underprediction of the length scales when compared with the

experimental data. Three values of c` are tested to match the experimental data

and investigate the effects of the length scale in the noise predictions. Increasing

c` produces a more accurate length scale for y/δ ≤ 1, but creates an artificial in-

crease of the length scale outside of the boundary layer; however, this effect is not

important for the noise calculations, as the data used in RSNM is sampled within

the boundary layer.

Figure 6.30 shows the effects of increasing the length scale coefficient in the noise

predictions. There is an increase in noise levels of up to 3 dB at 1 kHz, but this level

does not change when the coefficient is increased past a value of c` = 2.5. There

is a small decrease in levels for frequencies over 4 kHz when c` is increased, which

slightly changes the spectral shape.

Although an underprediction of the length scale has an effect on the noise predic-

tions, this effect can only account for up to 3 dB and does not account for the

large difference in low frequency noise between the experiment and the model pre-

dictions.

6.12 Effect of underpredicting turbulent kinetic

energy and dissipation.

To investigate the effects of the underprediction of turbulent kinetic energy and

overprediction of dissipation, experimental data for these quantities were used in

the noise calculations instead of the RANS CFD data. To accomplish this, it was

assumed that the data in the sampling domain was the same as the trailing edge

data. The calculations were performed using the same sampling points as for the

RANS based calculations, and the values for U , k and ε were interpolated from the

experimental data at the trailing edge. The noise calculations were performed using

the baseline model. The resulting noise predictions are compared to the experimental

data of Moreau et al. (2011) and to RANS based predictions in Figure 6.31. The

120



6.13. Effect of incorrectly modelling the turbulence spectrum

experimental flow data creates a different noise spectrum, with higher levels of low

frequency noise, and a steep decline in levels for 2000Hz < f < 5000Hz, followed

by a plateau for f > 5000Hz. The noise predictions are still 15 dB under the

experimental data of Moreau et al. (2011), which means the underprediction of k

and overprediction of ε by the RANS CFD cannot account for the underprediction

of the noise levels.

6.13 Effect of incorrectly modelling the turbulence

spectrum

The autospectrum model is not only responsible for the spectral shape of the noise

prediction, but also affects the amplitude significantly. Therefore, an accurate mod-

elling of the autospectrum is required to obtain accurate noise predictions. Fig-

ure 6.32 shows the baseline autospectrum model calculated using experimental data

(U , k and ε) as inputs and compares it with the autospectrum measured experi-

mentally. The spectra have been normalized as Es = E/(εν5)(1/4), and are plotted

in decibels as 10log10(Es) for selected points in the boundary layer. The model has

been offset by +50 dB for easier visualization. Not only are modelled spectra 50 dB

under the experimental values, they are also very different in shape, with the model

decaying much faster with frequency than the experimental data. This can explain

the underprediction of noise by RSNM, and also the different spectral shape between

the noise predictions and the experimental data. The 50 dB difference is probably

offset by other sources of error, such as errors in the coherence function, errors in the

length scale and inaccuracies in the flow data predicted by RANS, resulting in the 15

dB difference between the noise predictions and the experimental noise spectrum. It

is unclear at the moment how the RSNM can perform so badly for the FP12 airfoil,

yet so well for the DU-96-180 and the NACA 0012, when the same cross-spectrum

models are used. Experimental data on the velocity spectrum at various locations

in the boundary layer of both a DU-96-180 and the NACA 0012 airfoil would be a

valuable resource to improve and validate the autospectrum models, as well as to

elucidate the causes behind their extremely poor performance.
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6.14 Summary

In this chapter, several variations of the RSNM method were applied to a NACA

0012 airfoil at a range of operating conditions. The results for the NACA 0012 airfoil

show that the baseline model follows the experimental data accurately for zero angle

of attack cases. For non-zero angle of attack, the baseline model provides a good

prediction of the noise for frequencies above 2 kHz, but fails to predict the large low

frequency peaks present in the experimental data for angles of attack of four degrees

or more. It is argued that these peaks are due to vortex shedding, a noise generation

mechanism that is not included in the physics of the RSNM model.

Two modifications were tested for the autospectrum model, both of which used an

optimization algorithm to determine the empirical coefficients in the autospectrum

model. Both of these modifications showed a tendency to shift the energy to higher

frequencies, resulting in the incorrect spectral shape. It is hypothesised that this is

caused by the algorithm finding a local minimum which does not correspond to the

true solution.

Three alternative spatial coherence models were tested in combination with the

baseline autospectrum model. All of them produced very similar results, indicating

that the model is most sensitive to the autospectrum, as this is the part that controls

the frequency dependence and, to a large extent, it also controls the amplitude of the

predictions. Of the three coherence models tested, only the anisotropic exponential

model required an adjustment of the amplitude parameter A0.

The anisotropic exponential model showed an overprediction of high frequency levels,

which was most pronounced when using the coefficients obtained for Case 1. A better

fit was obtained when using the coefficients obtained for Case 2.

In conclusion, the baseline model produced accurate results, following the trends in

the experimental data and scaling correctly with free stream velocity. The model

does not capture the large low frequency peaks present in the experimental data for

angles of attack of four degrees or more. The different modifications tested did not

produce improvements to the acoustic predictions.

For the Du-96-180, experimental data sets were taken from Devenport et al. (2010)

and Herr and Kamruzzaman (2013) for comparison. The results show that the

baseline model follows the experimental data accurately for the 28 m/s and 40 m/s

cases of the Devenport et al. (2010) data for both angles of attack. The model

slightly underpredicts the levels for the 58 m/s case.

122



6.14. Summary

The use of Gavin’s coherence model (Modifications 3 and 4) also produced excellent

results, following the data of Devenport et al. (2010) very closely. Similarly to the

baseline model, there was a slight underprediction of the 58 m/s case.

The anisotropic exponential model (Modifications 5, 6 and 7) produced good pre-

dictions at lower frequencies, but departed form the experimental data above 1

kHz.

When compared to the experimental data of Herr and Kamruzzaman (2013), the

baseline model predicts the spectral shape and levels accurately. Modifications 3

and 4 slightly underpredict the levels, but produce a very similar spectral shape to

the baseline model. For frequencies above 4 kHz, Modification 3 decays too fast and

underpredicts the noise levels.

Modifications 5, 6 and 7 predict the correct levels below 4 kHz, but tend to over-

predict the noise for higher frequencies, particularly Modifications 6 and 7.

The results for the FP12 airfoil are very dissapointing. The model underpredicts the

noise levels by 15 dB, although it produces the correct spectral shape for frequencies

above 2 kHz. The underprediction of noise levels can be related to the underpredic-

tion of turbulent kinetic energy, an overprediction of dissipation by the RANS CFD,

an underprediction of the turbulent length scales, and mostly to the large difference

between the turbulence autospectrum model and the experimental autospectrum. It

is unclear at the moment why RSNM performs so badly for the FP12 airfoil, yet so

well for the DU-96-180 and the NACA 0012, when the same cross-spectrum models

are used. Experimental measurements of the velocity spectrum at in the boundary

layer of both a DU-96-180 and the NACA 0012 airfoil are needed to improve and

validate the autospectrum models, and to understand the reasons for their poor per-

formance. What is abundantly clear is that a more accurate turbulence spectrum

model is required to improve the performance of RSNM, and this requires significant

further research.

123



6. Results

T
ab

le
6.3:

R
S
N

M
variation

s
γ

E
`
s

em
p
irical

p
aram

eters
off

set
(d

B
)

b
aselin

e
G

au
ssian

G
au

ssian
k
3
/
2/ε

c
τ

=
0.016

×
U
∞

+
0.8

A
1

=
1.9
×

10
−
6

0

M
o
d

1
G

au
ssian

G
au

ssian
k
3
/
2/ε

fou
n
d

b
y ∫

E
(κ

)d
κ

=
k

-47.8

M
o
d

2
G

au
ssian

P
op

e
S
p

ectru
m

k
3
/
2/ε

fou
n
d

b
y ∫

E
(κ

)d
κ

=
k

-68

M
o
d

3
G

av
in

(E
x
p

on
en

tial)
G

au
ssian

0.35δ
c
τ

=
0.016

×
U
∞

+
0.8

A
1

=
1.9
×

10
−
6

0

M
o
d

4
G

av
in

(E
x
p

on
en

tial)
G

au
ssian

k
3
/
2/ε

c
τ

=
0.016

×
U
∞

+
0.8

A
1

=
1.9
×

10
−
6

0

M
o
d

5
A

n
isotrop

ic,
C

ase
2(E

x
p

on
en

tial)
G

au
ssian

k
3
/
2/ε

c
τ

=
0.016

×
U
∞

+
0.8

A
1

=
1.9
×

10
−
6

8

M
o
d

6
A

n
isotrop

ic,
C

ase
1(E

x
p

on
en

tial)
G

au
ssian

k
3
/
2/ε

c
τ

=
0.016

×
U
∞

+
0.8

A
1

=
1.9
×

10
−
6

12.73

M
o
d

7
A

n
isotrop

ic,
C

ase
3(E

x
p

on
en

tial)
G

au
ssian

k
3
/
2/ε

c
τ

=
0.016

×
U
∞

+
0.8

A
1

=
1.9
×

10
−
6

12.06

124



6.14. Summary

10
3

10
4

Freq. Hz

35

40

45

50

55

60

65

S
P

L
1

/3
, 

d
B

RSNM baseline

Brooks et al.(1989)

RSNM mod 1

RSNM mod 2

(a) Chord:30.48 cm, U∞ = 71.3m/s.
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(b) Chord:22.86 cm, U∞ = 71.3m/s.
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(c) Chord:30.48 cm, U∞ = 55.5m/s.
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(e) Chord:30.48 cm, U∞ = 39.6m/s.
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(g) Chord:30.48 cm, U∞ = 31.7m/s.
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Figure 6.17: Acoustic predictions (solid lines) and experimental data of Brooks et
al.(1989) for a NACA 0012 airfoil at α = o.
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(g) Chord:30.48 cm, U∞ = 31.7m/s.

10 3 10 4

Freq. Hz

15

20

25

30

35

40

45

50

S
P

L 1
/3

, 
d
B

Brooks et al.(1989)

RSNM baseline

RSNM mod 3

RSNM mod 4

(h) Chord:22.86 cm, U∞ = 31.7m/s.

Figure 6.18: Acoustic predictions (solid lines) and experimental data of Brooks et
al.(1989) for a NACA 0012 airfoil at α = o.
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(d) Chord:22.86 cm, U∞ = 55.5m/s.
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(e) Chord:30.48 cm, U∞ = 39.6m/s.
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(f) Chord:22.86 cm, U∞ = 39.6m/s.
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(g) Chord:30.48 cm, U∞ = 31.7m/s.
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(h) Chord:22.86 cm, U∞ = 31.7m/s.

Figure 6.19: Acoustic predictions (solid lines) and experimental data of Brooks et
al.(1989) for a NACA 0012 airfoil at α = o.
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Figure 6.20: Acoustic predictions for RSNM baseline (solid lines) and experimental
data of Brooks et al.(1989) for a NACA 0012 airfoil at various angles of attack.
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Figure 6.21: Acoustic predictions for RSNM Mod 3 (solid lines) and experimental
data of Brooks et al.(1989) for a NACA 0012 airfoil at various angles of attack.
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Figure 6.22: Acoustic predictions for RSNM Mod. 4 (solid lines) and experimental
data of Brooks et al.(1989) for a NACA 0012 airfoil at various angles of attack.
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Figure 6.23: Acoustic predictions for RSNM Mod. 5 (solid lines) and experimental
data of Brooks et al.(1989) for a NACA 0012 airfoil at various angles of attack.
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Figure 6.24: Acoustic predictions for RSNM Mod. 6 (solid lines) and experimental
data of Brooks et al.(1989) for a NACA 0012 airfoil at various angles of attack.
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Figure 6.25: Acoustic predictions for RSNM Mod. 7 (solid lines) and experimental
data of Brooks et al.(1989) for a NACA 0012 airfoil at various angles of attack.
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Figure 6.26: Acoustic results for a 91.40 cm chord DU-96-180 airfoil. Symbols:
Experimental data of Devenport et al. (2010). Solid lines: RSNM at α = 3◦. Dashed
lines: RSNM at α = 7◦. Red: 28 m/s. Blue: 42 m/s. Black: 58 m/s.
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Figure 6.27: Acoustic results for a 30 cm chord DU-96-180 airfoil at U∞ = 40m/s.
α = 4◦. Symbols: Experimental data of Herr and Kamruzzaman (2013). Solid lines:
RSNM predictions
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Figure 6.28: Acoustic power spectral density for the FP12 airfoil at Re ≈ 5× 105 at
α = 0◦. Symbols: experimental data from Moreau et al. (2011). Solid lines: RSNM
predictions.
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Figure 6.30: Effects of changing the length scale on the acoustic predictions of RSNM
for the FP12 airfoil at Re ≈ 5× 105 at α = 0◦. Symbols: experimental data. Solid
lines: RSNM.
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predictions for the FP12 airfoil at Re ≈ 5 × 105 at α = 0◦. Symbols: experimental
data. Solid lines: RSNM.
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Figure 6.32: Experimental spectrum compared to baseline Gaussian model using
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spectrum Es = E/(εν5)(1/4). Solid lines: experimental data. Dashed lines: Gaussian
spectrum+50 dB.
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Chapter 7

Conclusions and future work

The general aim of this thesis was to develop a trailing edge noise prediction method-

ology based on mean flow data obtained from RANS CFD. The methodology, called

RANS-based Statistical Noise Model (RSNM), combines the theory of Ffowcs Williams

and Hall (1970) and a statistical model of the turbulent velocity cross-spectrum.

To achieve this aim, a model for the cross-spectrum of the turbulent velocity was

developed by adapting a model proposed by Morris and Farassat (2002) for jet flow,

and modifying it to account for the presence of the trailing edge. The model was

reformulated as the product of two decaying Gaussian functions, one that depends

solely on spatial separation and one that depends only on frequency. The frequency

dependent part was modelled as the autospectrum of the turbulent velocity, and the

dependency on spatial separation was modelled as the coherence function at zero

frequency. The autospectrum model contained two empirical parameters, an ampli-

tude parameter and a length-scale parameter, which were determined by best fit to

the experimental data. This formulation was defined as the baseline model.

Seven alternative models were formulated by modifying either the spatial coherence

model, or the autospectrum model. They were labelled as Modifications 1 to 7 (see

Table 6.14).

Two modifications to the autospectrum model were investigated. The first mod-

ification replaced the global empirical parameters in the Gaussian model by local

parameters calculated at each point in the sampling domain. This was done by an

optimization routine in Matlab that followed the following steps: 1) The parameters

were set to their empirical values and the spectrum was integrated to obtain the

turbulent kinetic energy k. 2) A cost function was defined by the error between k
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obtained from integrating the spectrum and k obtained from RANS-CFD. 3) The

cost function was minimized by an iterative process.

The second modification consisted in replacing the Gaussian model by the model

spectrum of Pope (2000). This model also contained empirical parameters, which

were obtained with the same method described for Modification 1.

Two models for the spatial coherence were investigated, namely the Simplified

Anisotropic Model (SAM) of Gavin (2002), and a new empirical anisotropic model,

which was developed as part of this research.

The SAM models the coherence as an ellipsoid, which is inclined with respect to the

wall. The ellipsoid is then mapped onto a sphere and the coordinate system is rotated

on to the major/minor axes of the ellipsoid by means of a transformation matrix.

The model is closed by using isotropic turbulence theory and a set of empirical

parameters, including a global length scale based on the boundary layer thickness.

The combination of the SAM coherence model with the baseline autospectrum model

was labelled Modification 3. The SAM model was also modified by replacing the

global length-scale by a local length-scale based on the turbulent kinetic energy

and dissipation at each point in the sampling domain. The combination of the

modified SAM coherence model with the baseline autospectrum model was labelled

Modification 4.

The new empirical anisotropic model was based on the experimental investigation

of the flow in the vicinity of the trailing edge of sharp-edged struts. It models the

coherence function as the product of two decaying exponential functions (streamwise

and wall-normal directions) and a Gaussian function (spanwise direction). The decay

rate in each direction is controlled by a length-scale based on the turbulent kinetic

energy the turbulence dissipation, and an empirical parameter, which is different in

each direction. The empirical parameters were found by best fit to the experimental

data. Three sets of parameters were found, one for each of the experimental cases

investigated in this thesis. Modifications 5, 6 and 7 used the empirical parameters

determined for Cases 2, 1 and 3, respectively.

To validate the RSNM methodology, the noise predictions obtained from the baseline

model, as well as those obtained from the seven alternative models, were compared

with experimental data from the literature for three different airfoils, a NACA 0012,

a DU-96-180 and the FP12, at a range of operating conditions. The main conclusions

of this study are as follows:

1. The baseline model was able to match the experimental data very well for the
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NACA 0012 cases at zero angle of attack. At non zero angle of attack, the base-

line model predicts the correct levels and spectral shape for frequencies over 2

kHz; however, it does not capture the large peaks present in the experimental

data below 1 kHz for angles of attack of three degrees or more. It is argued

that these peaks are caused by noise mechanisms other than broadband trail-

ing edge noise, such as vortex shedding or separation. These mechanisms were

not included in the formulation of the model used in this thesis. The baseline

model also predicted the correct levels and spectral shape for the DU-96-180

cases, which included angles of attack of 3, 4 and 7 degrees.

2. The baseline model is not very sensitive to changes in angle of attack, showing

differences only for f ≥ 2 kHz with a spread of less than 3 dB for the NACA

0012 airfoil, which is consistent with the experimental data of Brooks et al.

(1989). The effect of angle of attack is more visible in the DU-96-180 results,

as the results are displayed in 12th octave bands. Here the model predicts a

decrease in amplitude with angle of attack for f ≤ 2 kHz, but the difference is

less than 3 dB, which is consistent with the spread in the experimental data of

Devenport et al. (2010). For f ≥ 2 kHz, the model predicts a slight increase

in amplitude with increased angle of attack, with the largest difference (4 dB)

occurring close to 10 kHz. There were no experimental data available over 2

kHz to assess the accuracy of this prediction.

3. Modifications 1 and 2 resulted in large overpredictions (up to 20 dB) of the

noise levels and an upward shift in the frequency of the peak (up to 3 kHz

shift). It is argued that these effects are caused by the optimization routine

being unable to find the correct values of the empirical coefficients, possibly

due to finding a local minimum of the error function.

4. Modifications 3 and 4 follow the same trends as the baseline model, but predict

slightly lower noise levels. The differences are less than 2 dB For the NACA

0012 airfoil. This is the case for both zero and non-zero angles of attack.

For the DU-96-180, Mod 4 follows the same shape as the baseline model, but

approximately 2 dB below. Modification 3 shows the same behaviour for f ≤ 1

kHz, but predicts a steeper decay with frequency above 1 kHz, which agrees

with the data of Devenport et al. (2010).

5. Modifications 5, 6 and 7 follow the same trends as the baseline model for the

NACA 0012 cases for frequencies below 5 kHz, but begin to depart from both

the baseline model and the experimental data for higher frequencies. This is

particularly severe for the higher angle of attack cases, where Modifications 6
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and 7 result in overpredictions of the noise levels and a flatter spectral shape.

For the DU-96 180 cases, Modifications 5, 6 and 7 begin to depart from the

baseline model and the experimental data as early as f = 1 kHz, predicting

a plateau in the spectral shape. This plateau is not present in the data of

Herr and Kamruzzaman (2013). The data of Devenport et al. (2010) do not go

above 2 kHz; however, the trends displayed by the experimental spectra do not

suggest the existence of a plateau, but a sharp decay in levels with increased

frequency. The predicted plateau could be a consequence of neglecting the

frequency dependency of the coherence function in the modelling process.

6. When applied to the FP12 airfoil, all the models tested produced the correct

slope for frequencies above 2 kHz; however, they did not produce the correct

absolute levels, requiring an offset of 15 dB to match the experimental data.

The underprediction of noise levels was attributed to the underprediction of

turbulent kinetic energy, an overprediction of dissipation by the RANS CFD,

an underprediction of the turbulent length scales, and most importantly, the

large difference between the turbulence autospectrum model and the experi-

mental autospectrum.

In summary, the main contribution of this thesis is a validated RANS-based Statisti-

cal Noise Model (RSNM), which was capable of accurately and efficiently predicting

the spectral shape and levels of a NACA 0012 airfoil and a DU-96-180 airfoil at a

range of operating conditions.

The baseline model produced more accurate predictions than all the modifications

tested, followed closely by Modifications 3 and 4, which used the SAM model for

the coherence function and produced nearly equivalent results to the baseline model,

except for a small offset of less than -2 dB. Other modifications to the model were

detrimental to the model’s performance, particularly the modifications to the au-

tospectrum model (Modifications 1 and 2).

The development of a new empirical cross-spectrum model for the turbulent velocity

in the vicinity of the trailing edge is also an important contribution of this thesis.

The formulation of RSNM makes the modification of the cross-spectrum model or the

incorporation of new models for the cross-spectrum relatively easy. Modifications to

the cross-spectrum model could be made by changing either the autospectrum model,

or by changing the model of the spatial coherence, for example by incorporating the

frequency dependence of the coherence function, which was neglected in the present

model.

138



7.1. Future work

7.1 Future work

As future work, the first step would be to apply RSNM to a range of different

airfoils to further validate the method and increase confidence in its noise predicting

capabilities. As a first test, the model could be applied to the S831 airfoil, developed

by the National Renewable Energy Laboratory (NREL). Both flow and noise data

are presented in Devenport et al. (2010) and the airfoil coordinates are available in

the NREL website.

Later, RSNM could be extended to three dimensional cases, such as wings with a

sweep angle or with sinusoidal trailing edges, by modifying the Green’s function, or

simply by dividing the airfoil into spanwise strips, applying the model to each one

of them and then adding the contributions as incoherent sources. This approach

would need to be validated.

The major difficulty in the RSNM approach is to provide an accurate cross-spectrum

model. Having access to DNS or LES data would have been of great help in develop-

ing a model for the cross-spectrum. A possible way forward would be to run a DNS

calculation of one of the NACA 0012 cases and extract cross-correlation data from

the source region to develop and validate a RANS-based cross-spectrum model

Alternatively, one could obtain the cross-spectrum directly from an LES solution.

The LES solution would provide the correlation function, which can then be used to

obtain the cross-spectrum by means of a Fourier transform. These cross-spectrum

data can then be used directly in the RSNM method to compute the noise in the

frequency domain.

As the noise sources are located in the boundary layer, only a small region around

the airfoil would need to be simulated using LES, and a RANS solution over the

entire domain can be used as a boundary condition to the LES simulation. This

would reduce the computational effort required to obtain the noise sources.

The assumptions made regarding the spanwise extent of the cells and their relation

to the spanwise coherence length require further investigation. Neglecting the fre-

quency dependency of the spanwise coherence length can be a significant source of

error. An alternative worth exploring would be to use a frequency dependent co-

herence length, as described in Appendix B. The spanwise length of the cell should

be set to Ls = δ/100, to be consistent with the cell dimensions chosen in x and

y directions. These assumptions would provide a frequency dependent correction

factor that would more accurately model the flow physics and hopefully improve the
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performance of RSNM.

Similarly, incorporating the frequency dependence of the spatial coherence function

in both the streamwise ad wall-normal directions, which was neglected in the present

model, could improve the performance of RSNM, albeit at the cost of more modelling

complexity.

Finally, there is a large spread in the experimental data available for TE noise,

particularly for moderately high Rec. This makes it very difficult to validate a

noise model. Also, more data at higher Rec are needed. These data should include

simultaneous flow and noise measurements, preferably using non-intrusive flow mea-

surement techniques such as PIV, and acoustic measurements using beamforming to

better identify the noise sources and to quantify the contribution of TE noise more

accurately.

Ideally, a variety of airfoil shapes should be tested at various angles of attack and

Reynolds numbers. This is an enormous undertaking, and requires a large wind

tunnel with a dedicated aeroacoustic test section and costly instrumentation.
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Appendix A

Two-point correlation curve fits at

various y/δ locations.

This appendix shows the measured spanwise and wall-normal coherence for Cases

1, 2 and 3, which were not included in the main body of the thesis in the interest of

brevity.
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A. Two-point correlation curve fits at various y/δ locations.
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Figure A.1: Wall-normal coherence at various wall normal distances for Case 2. Dots
are experimental data, solid line is a Gaussian curve fit. x/c = 1.0033.
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Figure A.2: WallNormal coherence at various wall normal distances for Case 1. Dots
are experimental data, solid line is an exponential curve fit. x/c = 1.0033.

0 0.2 0.4 0.6

∆ y/ δ

0

0.2

0.4

0.6

0.8

1

γ
y2

(a) y1/δ = 0.069

0 0.2 0.4 0.6

∆ y/ δ

0

0.2

0.4

0.6

0.8

1

γ
y2

(b) y1/δ = 0.138

0 0.2 0.4 0.6

∆ y/ δ

0

0.2

0.4

0.6

0.8

1

γ
y2

(c) y1/δ = 0.276

0 0.2 0.4 0.6

∆ y/ δ

0

0.2

0.4

0.6

0.8

1

γ
y2

(d) y1/δ = 0.553

0 0.2 0.4 0.6

∆ y/ δ

0

0.2

0.4

0.6

0.8

1

γ
y2

(e) y1/δ = 0.829

Figure A.3: WallNormal coherence at various wall normal distances for the Case 3.
Dots are experimental data, solid line is an exponential curve fit. x/c = 1.0033.
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A. Two-point correlation curve fits at various y/δ locations.
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Figure A.4: Spanwise coherence at various wall normal distances for Case 2. Dots
are experimental data, solid line is a Gaussian curve fit. x/c = 1.0033.
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Figure A.5: Spanwise coherence at various wall normal distances for Case 1. Dots
are experimental data, solid line is a Gaussian curve fit. x/c = 1.0033.
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Figure A.6: Spanwise coherence at various wall normal distances for Case 3. Dots
are experimental data, solid line is a Gaussian curve fit. x/c = 1.0033.
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A. Two-point correlation curve fits at various y/δ locations.
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Appendix B

Alternative correction for finite

span

B.1 RANS implementation

The power spectral density of the acoustic pressure in the far field was shown in

Chapter 2 to be

S(x, ω) =
∑
V (y1)

∑
V (y2)

ΨΦ
F (y1)

r
3/2
o (y1)

F (y2)

r
3/2
o (y2)

dV (y1)dV (y2). (B.1)

This expression can be evaluated on the same grid used to compute the RANS

solution, or interpolated onto a superimposed acoustic grid. S(x, ω) is proportional

to the volume of the source elements dV (y2) and dV (y2). Assuming uniform grid

spacing in a Cartesian coordinate system,

dV (y2) = dV (y2) = dx dy dz. (B.2)

Both dx = and dy were obtained from a grid refinement study. To obtain dV , a

suitable spanwise cell length dz has to be chosen. For consistency, the following

choice is made:

dz = dx = dy =
δ

100
. (B.3)

In oder to calculate the noise radiated by the full span o the airfoil, a correction for

the number of cells along the span must be applied.
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B. Alternative correction for finite span

B.1.1 Correction for finite span

Consider an airfoil of span L, as shown in Figure B.1.

1
2

L

N

Ls

P

S

S

i

j

T

r

i

j

P

P

Figure B.1: Schematic of a long-span body divided by N subsections, adapted
from Seo and Moon (2007)

Following Seo and Moon (2007), let the spectral acoustic pressure radiated from the

i-th subsection be |pi|2 , then the power spectral density of the acoustic pressure for

entire span can be written as

Ss = pLp̂L =
∑
i

∑
j

pip̂j. (B.4)

The power spectral density of the acoustic pressure radiated from each subsection

is assumed to be the same,

|p1|2 = |p2|2 = ... = |pN |2 = |ps|2, (B.5)

The acoustic pressure radiated from each subsection is lagged by a phase difference

given by the spanwise coherence function,

γij =
pip̂j√
|pi|2

√
|pj|2

. (B.6)

The coherence function is a function of ∆zij, which is the spanwise separation be-

tween two subsections given by

γij = γ(∆ij), ∆ij = |zi − zj| = |i− j|Ls. (B.7)
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B.1. RANS implementation

Then the power spectral density of the acoustic pressure emitted from the entire

span can be written as

|pL|2 =
∑
i

∑
j

γ(∆ij)|ps|2. (B.8)

Assuming a Gaussian form for the spanwise coherence,

γ(∆ij) = exp

(
−

∆2
ij

`2sz(ω)

)
. (B.9)

Then the power spectral density of the acoustic pressure for entire span becomes

Ss =
∑
i

∑
j

ps exp

(
−|i− j| L2

s

`2sz(ω)

)
. (B.10)

To evaluate this equation, we require both Ls and `sz. The following assumption

regarding the value of Ls was made:

Ls = dz =
δ

100
. (B.11)

Following Brooks and Hodgson (1981),

`sz =
Uc

0.714ω
. (B.12)

The convection velocity is modelled as Uc = 0.65U∞. The assumptions made re-

garding dz and `sz, and the resulting frequency dependent correction will require a

modification of the empirical parameters A and cτ , which will have to be re-tuned.

Due to time constraints, this will be done as future work.
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