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ABSTRACT

This thesis presents advancements to the area of magnetotelluric (MT)
modelling. There are three main aims to this work. The first aim is to
implement an inversion to model time-lapse MT data in a temporal di-
mension. The algorithm considers the entire dataset at once, with penali-
sations for model roughness in both the spatial and temporal dimensions.
The inversion is tested on synthetic data, as well as a case-study from a
coal-seam gas dewatering survey. Second is to explore the problem of non-
uniqueness in MT data inversion by implementing a 1D Bayesian inversion
using an efficient sampler. The implemented model includes a novel way
of regularising MT inversion by allowing the strength of smoothing to vary
between different models. The Bayesian inversion is tested on synthetic
and case-study datasets with results matching known data. The third
alm is to implement a proxy function for the 3D MT forward function
based on artificial neural networks. This allows for rapid evaluation of the
forward function and the use of evolutionary algorithms to invert for resis-
tivity structures. The evolutionary search algorithm is tested on synthetic
data sets and a case-study data set from the Curnamona Province, South
Australia. Together, these three novel algorithms and software implemen-
tations represent a contribution to the toolkit of MT modelling.

Thesis Supervisors: Graham Heinson, Stephan Thiel, Derrick Hasterock
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CHAPTER
ONE

INTRODUCTION

1.1 Introduction

The magnetotelluric method (MT) is a geophysical technique where pas-
sively sourced, time-varying magnetic field and induced electrical field data
are collected at the Earth’s surface. These data are sensitive to subsurface
conductivity. The ability to accurately produce images of the Earth’s sub-
surface based on these data, a process known as inversion, is an essential
step in the interpretation of MT data.

The interpretation of MT data is important for a number of applications,
and often the inversion processes will be tailored to the particular appli-
cation. For example, MT is used in hydrocarbon exploration, often to
complement seismic data (Constable, 1998; Mitsuhata et al., |1999; [Zhang
and Yan, 2015). As such, extensive research has been conducted into joint
inversions of seismic and magnetotelluric data (Yang et al., |2002; |Jegen
et al 2009; Ogaya et al., 2016; Lan et al., 2018). This has the ability
to combine the layer boundary sensitivity of a seismic technique with the
resistivity sensitivity of MT.

Other applications include exploration in the minerals industry, where MT
can be used to image ore-bodies with resistivity contrasts. Compared to
other methods, MT has the ability to image much deeper areas of the
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1.1. Introduction Introduction

crust, which may also be of interest in mineral exploration (Bedrosian and
Feucht, 2014)). For example, Heinson et al. (2006) have shown that the
Olympic Dam deposit in South Australia has large areas of conductivity
underneath the ore-body, which are interpreted as fluid pathways from
the mantle. The identification of similar structures elsewhere may lead to
the identification of new areas of prospectivity (Robertson et al. 2016)).
Inversions of these deep and complex structures, however, require 3D MT
inversion codes, which can be slow to run (Newman and Alumbaugh, 2000).

A relatively new application of MT data has been to monitor the temporal
development of dynamic systems. After the injection of 3.1 ML of saline
fluids into an enhanced geothermal system (EGS) reservoir in Paralana,
South Australia, Peacock et al. (2012) were able to record changes in the
magnetotelluric data which indicated a drop in the resistivity of the target
area. A similar experiment was undertaken at the Haberno EGS reservoir,
South Australia, where Didana et al. (2017) detected a slight change in
resistivity after the injection of 36.5 ML of fluid. Similar experiments have
successfully imaged resistivity changes during coal-seam gas dewatering
(Rees et al., 2016b), shale-gas hydraulic fracturing (Rees et al., 2016a)),
and carbon sequestration (Ogaya et al., 2013 Vilamajo et al., 2013).

With resistivity monitoring proving a new application for MT, there is the
need for new inversion algorithms that can produce dynamic Earth models.
Recent advancements include a probabilistic three-dimensional (3D) inver-
sion (Rosas-Carbajal et al.,[2015)) and a 1D layer-stripping approach which
has been applied to carbon sequestration (Ogaya et al., 2016)). Standard
MT inversions can also be adapted, for example Rees et al. (2016b)) use
cascading two-dimensional (2D) inversions to model a coal-seam gas de-
pressurisation, where the results from the pre-injection inversion are used
as a constraint for the post-injection inversion. Further research can draw
inspiration from other geophysical techniques, such as electrical resistivity
tomography (ERT), where time-lapse inversion has been extensively re-
searched due to the common environmental application of the technique
(Hayley et al., 2011).

Parallel to the development of inversion algorithms for particular applica-
tions, an increase in the computational power available has led to an in-
creasing interest in algorithms for Bayesian inversion. A typical inversion

2



Introduction 1.1. Introduction

will only resolve a single resistivity model, however a Bayesian inversion
will consider all models which are supported by the data, and rate how
well they fit the data.

Bayesian inversion of 1D MT data has been successfully applied using
MCMC algorithms, where the calculation of the forward algorithm is sim-
ple (e.g. (Grandis et al.; [1999; Guo et al| 2011; Mandolesi et al. 2018).
Several challenges exist which make 2D and 3D inversions computation-
ally difficult, however. One compromise is to reduce the number of pa-
rameters in the inversion using a reparameterisations (Chen et al., 2012;
Rosas-Carbajal et al., [2015]). The first full pixel-based inversion has been
implemented for 2D radio magnetotelluric data by |[Rosas-Carbajal et al.
(2013). The authors present a successful inversion of radio-magnetotelluric
data, with best results when combined with electrical resistivity tomogra-
phy in a joint inversion. For a pixel-based 3D MT inversion the process
becomes more difficult, with |Grandis (2006) concluding from preliminary
studies that a very coarse mesh would be required to keep computation
times feasible.

The process of MT inversion may also benefit from machine learning. Re-
cent advancements in deep-learning algorithms (e.g. Krizhevsky et al.
2012; Dahl et al., 2013} Srivastava et al., 2014} Silver et al., 2016) and
the use of highly efficient graphical processing units (GPUs) (see (Oh and
Jung, 2004) for model training has led to a wider application of machine
learning in many fields. Once trained, machine learning models have the
benefit of rapid evaluation.

For this reason, artificial neural networks (ANNs) has been suggested to
circumvent the computational burden of MT inversion in high dimensions.
Inversions of MT data using ANNs have been developed in 1D and 2D in
limited model ranges (Zhang and Paulson| [1997)); for simplified 3D models
(Spichak and Popoval, 2000); for a broader range of model classes in 2D
(Shimelevich et al., 2007); for azimuthally anisotropic resistivities (Monta-
haei and Oskooil, 2014); and for a limited class of 3D models representing
Kimberlite pipes (Shimelevich et al., [2017)).



1.2. Aims and Objectives Introduction

1.2 Aims and Objectives

The aim of this dissertation is to investigate new techniques which may
be applied to MT modelling and inversion. There are three main contri-
butions to this field which are presented. Firstly, in the developing field
of MT monitoring, there is a need for new algorithms to leverage the
new paradigm of inverting for a time-changing resistivity model. To this
end, an algorithm is presented which simultaneously inverts time-lapse M'T
data to produce a model which is smooth both spatially and temporally.
The efficacy of the algorithm is tested on both synthetic and case-study
datasets.

Secondly, in the growing field of probabilistic modelling of MT data, a new
approach to sampling from the probability distribution of likely resistivity
models is presented. Probabilistic modelling of MT data is a computa-
tionally difficult problem for 2D and 3D model spaces, made difficult by
the high covariance between model parameters and long evaluation times
of the MT forward function. To alleviate these problems a sampler is
implemented which utilises the gradient of the probability space to select
samples with maximum efficiency, thereby reducing computational cost.

Finally, the possibility of using machine learning techniques to bypass the
costly MT forward function altogether is investigated. A 3D resistivity
model is considered and an artificial neural network is trained to learn the
relationship between the model and the forward response. The trained
proxy function is simple to evaluate and would result in a drastic speed-up
in computation time.

1.3 Thesis outline

The thesis is presented in five chapters excluding this introductory chap-
ter. In Chapter 2, the theory of the MT method is introduced, as well as
geophysical inversion. A literature review of MT inversion is presented,
for both the deterministic and Bayesian cases. The chapter also includes
an introduction to machine learning and a literature review of its appli-
cations in the geosciences. Chapter 3 describes a deterministic inversion
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Introduction 1.3. Thesis outline

of time-lapse data using simultaneous inversion. It is has been published
in the journal Farth, Planets and Space. In Chapter 4 a new Bayesian
inversion is presented for the probabilistic modelling of 1D MT data. It
has been accepted for publication in the journal Pure and Applied Geo-
physics. Chapter 5 describes the use of ANNs to approximate the 3D MT
forward function. It has been submitted to Computers € Geosciences.
Finally, Chapter 6 provides an overview of the main contributions of the
dissertation, and discusses future avenues for research in MT inversion.






CHAPTER
TWO

BACKGROUND

2.1 Magnetotelluric theory

The magnetotelluric method (MT) is a plane-wave electromagnetic (EM)
technique used to investigate conductivity of the Earth (Tikhonov, |1986;
Cagniard, |1953). As with all EM methods, the physics governing the MT
method is described by Maxwell’s Equations:

D
aa_t +J=VxH Faraday’s Law,
0B
5 " -Vx E Ampeére’s Law, (2.1)
V-B=0 Gauss’ Law,
V-D=q. Coulomb’s Law,

where D is dielectric displacement, J is the electric current density due to
free charges, H is the magnetic field intensity, B is the magnetic induction,
FE is electric field intensity and g, is the electric charge density due to free
charges.

In addition, for isotropic, linear media, the following relationships are true:
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2.1. Magnetotelluric theory Background

B=uH, (2.2)
D=¢E, and (2.3)
J=0FE. (2.4)

For Earth resistivity studies, po and €y are used for 4 and €, as the varia-
tions in electrical permittivites and magnetic permeabilities are negligible
compared to those of bulk rock conductivities.

MT is a plane-wave EM method, which means that the source fields are suf-
ficiently distant that they can be approximated as uniform, plane-polarised
waves with vertical incidence to the Earth’s surface, and that displacement
currents are negligible.

These assumptions allow for the formation of the following relationship
between the horizontal electric (E) and horizontal source magnetic fields
(H) for a given angular frequency w at the Earth’s surface:

E(w) = Z(w)H(w), (2.5)

where Z is a 2 x 2 complex matrix known as the impedance tensor. The
impedance tensor is calculated from MT field data, and contains informa-
tion about the resistive and conductive parts of the Earth’s structure. The
complex components can be physically interpreted by their phase angle ¢
and scaled amplitude, commonly known as apparent resistivity, p,. These
are calculated as

1
paii(w) = —|Zj(w)|", and (2.6)
How
Im(Z;;)
¢i; = arctan WZ;)’ (2.7)

for each ij-th component of Z.



Background 2.2. Geophysical inversion

Typically an MT survey is conducted over range of frequencies, as dif-
ferent depths of the Earth structure can be investigated by different fre-
quencies. The depth at which the source signal has decayed to 1/e of its
original strength, known as the skin-depth ¢, can be used as a guide for
the penetration-depth of a survey. It is approximated at a given frequency

J by

§ = 500v/pT, (2.8)

where p is the volumetric apparent resistivity of the Earth through which
an EM wave is propogating and T is the period of the signal (inverse
frequency).

The magnetic source fields for MT are created from an array of natural
phenomena. At frequencies above 1 Hz, the dominant source is lightning
activity. Lightning strikes produce electromagnetic pulses known as sfer-
ics, which propagate within the waveguide formed between the ground
and ionosphere (Nagano et al., 2007). These pulses dominate the fre-
quency band from 3 Hz to 30 kHz. Source fields at lower frequencies are
predominantly formed by the interaction of solar winds on the Earth’s
magnetosphere. This is the source for frequencies 107! Hz to 10~* Hz. The
gap between these two sources, in the range of 0.1 Hz to 5 Hz, is known
as the "dead-band" due to the lack of a natural source field. Magnetotel-
luric data from this band is typically of a lower quality. Data quality
can be improved by using an active grounded dipole source in a technique
known as the controlled source audio magnetotelluric method (Goldstein
and Strangway, [1975)).

2.2 Geophysical inversion

Geophysical inversion is the process of modelling the Earth’s subsurface
using data typically collected at the Earth’s surface. The inversion is a
problem with two halves: finding an earth model which fits the data, and

finding all the models which fit the data (Backus|, [1988). These are known
as the existence problem and the uniqueness problem, respectively.

9



2.2. Geophysical inversion Background

Integral to both of these problems is the use of a forward function, F', which
produces a synthetic response for a given earth model m. For observed
geophysical data dyps With corresponding errors €, the inverse problem is
defined by solving for m such that

dops = F(m) + €. (2.9)

Usually the inverse of F' does not exist or is discontinuous, so some form
of regularisation is required to find m. The regularisation will depend on
the type of geophysical data and the goal of the inversion. This review
predominantly focuses on magnetotelluric inversion, a non-linear problem
which has been regularly used as an example for advances in geophysical
theory (Constable et al|, [1987; [Tarits et al., |1994; (Grandis et al., |1999;
Guo et al, 2011)), however the general methods are applicable to other
geophysical inverse problems as well.

2.2.1 Existence problem

The inversion of MT data to a single resistivity model is an under-determined
problem and requires some form of regularisation. This means that there
will be many models which can provide a equivalent misfit x? between the
model response F'(m) = z and the observed data z,s given data errors o
The data misfit over n frequencies is given by

2
Zy — Zopg,,
X>=) H H . (2.10)

The root-mean-square error, or RMS, is commonly used instead of x? to
describe the fit of models as it is not dependent on the size of the data. It
is given by

RMS, =\/x2/n. (2.11)

In a 1-D MT inversion, one approach to dealing with the under-determined
problem is to invert with the class of models known as simple layered mod-
els. In a simple layered model with a fixed number of layers the algorithm

10



Background 2.2. Geophysical inversion

will find the single layered model with the lowest x2. The concept has
also been extended to 2-D MT inversion by |deGroot Hedlin and Consta-
ble (2004), who created an inversion which inverts for a fixed number of
resistivities and their boundaries.

The main alternative to layered inversion is the many-layered smooth-
inversion of |Constable et al.| (1987), which is used in 1-D, 2-D and 3-D MT
inversions. In a smooth-inversion, an objective function o is constructed by
combining the misfit and a roughness term, R, weighted by a smoothness
parameter A. The resulting sum,

o(m) = x*(m) + \R(m), (2.12)

is minimised. This is known as Tikhonov regularisation (Tikhonov, [1963).
The model roughness is defined as either the first or second derivative
smoothness of the model parameters, i.e. for a 1-D earth with resistivity
varying in the z direction

Ri(m) = f (dm/dz)2dz, (2.13)

Ro(m) = f (&®m]d=?)%dz. (2.14)

For a 2-D or 3-D inversion the roughness is calculated in each dimension
and R is the summation of these roughnesses.

The user specifies either the smoothness parameter A or else a target RMS
is given and the optimal A is found by the inversion. A large value of A
results in more weight given to the roughness parameter and a smoother
model overall, and a small A would include more structure as the inver-
sion focuses on the data-misfit. Minimisation of the objective function is
achieved using Newton-type iterative methods.

The smooth-inversion principle has been applied to 2-D inversion (deGroot
Hedlin and Constable, [1990) and 3-D inversion (Mackie et al., [2001). In-
version of MT data in 3-D becomes very computationally intensive due to
the large number of model parameters. Various advancements have been
made to the inversions to improve efficiency, including an algorithm by

11



2.2. Geophysical inversion Background

Siripunvaraporn et al.| (2005) with that operates in the data-space. This
makes the inversion time largely dependent on the number of data points
instead of model parameters. More efficient algorithms can also decrease
inversion time, for example Avdeev and Avdeeva (2006) use a Limited
Memory Quasi-Newton technique which avoids costly calculations of sec-
ond derivatives.

2.2.2 Uniqueness problem

There are several methods which are used to explore parameter space and
solve the uniqueness problem of geophysical inversion. One example is
analysing the model covariance matrix (MCM), which allows for the direct
empirical analysis of spatial variation from a linear inversion (Alumbaugh
and Newman) 2000)). Care must be applied however in non-linear problems
such as MT inversion.

An alternative to MCM analysis is most-squares inversion (e.g. Meju and
Hutton| 1992; Jackson|, [1976). This inversion solves for the extremal cases
of models with low and high model resistivity which fit the observed data,
and these act as bounding models for the inversion. Another option is to
use bootstrap resampling of the data d, where data are inverted using a
set of data resamplings (e.g. Schnaidt and Heinson| 2015). In both cases
a qualitative uncertainty in model parameters may be made by anaylsing
the range of inversions.

In order to quantify our understanding of parameter uncertainty, Bayesian
methods are required. These methods stem from Bayes’ theorem

P(djm)P(m)
P(d)

In this equation, P(m/|d) is the posterior probability distribution function

(pdf) of the model conditional on the data, P(d|m) is the pdf of the data

conditional on the model (it is also called the likelihood function, L(m|d)),

and P(m) and P(d) are the probabilities of observing m and d without
taking each-other into account. P(m) is known as the prior.

P(m|d) = (2.15)

In the case of MT inversion, the likelihood function is given by how well
the responses from the proposed model fit the data compared with the

12



Background 2.2. Geophysical inversion

measured data and the Gaussian distribution of data errors over a range

of n frequencies:
1 Zn - Zo S ?
exp ( _l b | ), (2.16)

n
2
i1 2moy, 20

L(ml|d) =

where the data d are in the form of MT impedances Z,,; and associated
errors o. The quantity Z is obtained from a model m through the use of
the forward operator F'.

A prior distribution must be given on the inversion parameters, which acts
as regularisation for the inversion. Similar to deterministic inversion, the
regularisation may take different forms. Common techniques include re-
stricting the number of layers (e.g.|Guo et al., 2011)); calculating the rough-
ness and penalising rougher models with lower probabilities (e.g. |Grandis
et al., 1999; Rosas-Carbajal et al., [2013)); or having variable number of pa-
rameters and a prior which penalises more complex models (e.g. Mandolesi
et al.| 2018). In some probabilistic inversions, data uncertainty can also be
treated as probabilistic parameter (e.g. |Guo et al.; 2011; Rosas-Carbajal
et al., [2013).

Finding a direct solution to[2.15]is usually not possible. Instead the Markov
Chain Monte Carlo (MCMC) method is commonly used to find samples
from the posterior distribution. In MCMC, a Markov chain is constructed
which has its equilibrium distribution as the posterior distribution. This is
achieved in different ways by different MCMC samplers, the most common
of which is the Metropolis-Hastings (MH) algorithm.

In the MH algorithm, chains are arbitrarily initialised at zy, with a new
sample at each step ¢ drawn from a jumping distribution g(x.|z¢). The
jumping distribution is commonly a Gaussian distribution centred at xy,
but may be any symmetric probability density (that is any distribution g
where g(x+|1;) = g(xy|as+) is satisfied). An acceptance ratio « is calculated
for the new sample,

_ J (xt)

= )

f(@)
where f is a function proportional to the posterior distribution, in this
case f = bayes. If a > 1 then the new sample is automatically accepted,

(2.17)

otherwise it is accepted with probability «. If the sample is accepted then
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2.3. Machine learning Background

the chain moves to x;,1 = x4, if it is rejected then x4,1 = 2;. This eventually
leads to a Markov chain converged with a equilibrium distribution which

matches 2.151

The MH algorithm is commonly applied to Bayesian MT inversion (e.g.
Guo et al, 2011; Buland and Kolbjgrnsen|, [2012; [Liu et al., [2011)). Other
samplers include Gibbs sampling (e.g. |Grandis et al., [1999; (Cerv et al.,
2007), DREAM (e.g. Rosas-Carbajal et al.; 2015) and NUTS (e.g. Conway
et al., 2018)). It is also possible to sample using neighbourhood sampling,
however although efficient, this method leads to biased results (Guo et al.,
2011)).

Markov Chain Monte Carlo is traditionally applied to 1D-MT due to the
computational difficulties of 2D and 3D problems (Grandis, [2006). Re-
cently however a full pixel 2D-MT MCMC inversion has been implemented
by [Rosas-Carbajal et al.| (2013)), and the technique has also been used by
parameterised inversions, e.g. inverting for a resistivity change parame-
terised as a plume body (Rosas-Carbajal et al., [2015).

2.3 Machine learning

Machine learning is a field of computer science centred on algorithms which
are able to learn from experience. A program is said to be learning if it
improves its ability to perform a task with increasing exposure to new
data. Machine learning algorithms may be broadly grouped into three
categories: supervised learning, unsupervised learning and reinforcement
learning, however the latter is not prevalent in the geosciences.

In supervised learning an algorithm is tasked with finding a function f :
X ~ Y given a labelled set of data inputs x; and outputs y; = f(z;). If Y
may take only a finite number of values then the problem is called a classi-
fication problem, otherwise it is called regression. The algorithm will have
some measure of fitness, J, known as a loss-function or cost-function, which
is calculated on the misfit of f(z;) against ;. The algorithm will then seek
to minimise J. The representation of f will vary between machine learn-
ing techniques. Some of the most commonly algorithms are support vector
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Background 2.3. Machine learning

machines (SVMs), artificial neural networks (ANNs), decision trees, and
ensemble learning.

In contrast, an unsupervised learning algorithm is given only an input
dataset x;. There are various unsupervised problems, however the most
common in geosciences is clustering. A clustering algorithm seeks to find
a set of k clusters such that for each z; either belongs to a single cluster
or belongs to each cluster with some probability. These are called hard
clustering and soft clustering, respectively. These clusters can then be
analysed, or used to extract features from the data. Common clustering
algorithms include k-means clustering and hierarchical clustering.

2.3.1 Machine learning in geology and geophysics

Regression algorithms have been extensively used in bore-hole geophysics,
where general algorithms can replace simplified empirical models. Artificial
neural networks are commonly employed to functions mapping bore-hole
data to various parameters, including thermal conductivity (e.g. Goutorbe
et al.| 2006; Gasior and Przelaskowska, 2014), porosity in crystalline rock
(e.g. Konaté et al. 2015b), static formation temperatures (e.g. Bassam
et al., 2010), basalt characterisation (e.g. Asfahani and Ghani, 2012), and
petroleum reservoir characterisation (e.g. Mohaghegh et al., [1996; Saemi
et al., [2007; [ Karimpouli et al.| | 2010; |Aminian and Ameri, 2005}, Helle et al.,
2001} [Tatar et al., 2015; |(Gholami et al., 2012]).

Classification algorithms are widely used in geoscience to determine lithol-
ogy. It is common practice to use SVMs or ANNs to classify bore-hole
lithology based on down-hole parameters (e.g. Benaouda et al.,|{1999; Briqueu
et al.| 2002 Maiti et al., 2007; Wang and Zhang, 2008; Schmitt et al., [2012;
Moazzeni and Haffar, 2015; [Konaté et al. 2015a; Mahmoodi and Smith|,
2015} Karmakar et al., [2017; Deng et al., 2017). The same methods have
been used to create geological maps of lithologies based on a combination
of airborne geophysical data and satellite data (e.g. (Oommen et al.| 2008;
Leverington|, 2010; [Yu et al.| 2012). Other methods such as random forests,
naive Bayes, and k-Nearest neighbors have also been tested by |Cracknell
and Reading (2013), who identified random forests as the best tool for
lithological mapping.
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2.3. Machine learning Background

Unsupervised learning algorithms are an ideal tool for analysing geophys-
ical data where there is no prior knowledge, and hence no labelled data to
train on. Various clustering algorithms are used in geophysics. One of the
most popular, self-organising maps (SOMs), allows for the intuitive inter-
pretation of high-dimensional data. The technique has been applied to seis-
mic facies analysis (de Matos et al.; 2006), interpreting multidimensional
geophysical data (Klose, 2006), analysing seismic datasets with multiple
reflections (Essenreiter et al., 2001)), event detection in continuous seismic
records (Kohler et al.| 2010) and semi-automatic geological mapping from
airborne geophysics (de Carvalho Carneiro et al 2012). Other clustering
techniques have been variously used in fault zone imaging (Di Giuseppe
et al., [2014)), joint inversion (e.g. Paasche and Tronicke) 2007; Sun and Li,
2012; |Carter-McAuslan et al., 2014)) and geological mapping from gravity,
magnetic, and radiometric data (Paasche and Eberle, 2009).
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Time-lapse inversion 3.1. Introduction

Abstract

We present a new tool for modelling time-lapse magnetotelluric (MT) data,
an emerging technique for monitoring changes in subsurface electrical re-
sistivity. Time-lapse MT data have been acquired in various settings, in-
cluding sites of hydraulic fracturing, dewatering and sequestration. It has
been shown in other geophysical techniques that the most effective way to
model time-lapse data is with simultaneous inversion, which uses informa-
tion from all time-steps to produce models with higher accuracy and fewer
artefacts. We introduce this method to model time-lapse 1D MT data.
As with a standard MT inversion our routine penalises spatial roughness
at each time-step, however we also introduce temporal regularisation. The
inversion is simple to apply, requiring only the ratio between regularisation
parameters and the desired level of misfit from the user. The algorithm is
tested on both synthetic data, and a case study. We find that in the syn-
thetic example our inversion successfully retrieves the main characteristics
of the test model and introduces minimal artefacts, even in the presence
of significant noise. We also test the effect of changing the ratio of regular-
isation parameters. In the case-study we produce an easily interpretable
model that compares favourably with previous inversions of the synthetic
data. We conclude that time-lapse modelling of 1D MT data can be a
valuable tool for imaging subsurface change.

3.1 Introduction

In recent years the magnetotelluric method (MT) has been increasingly
used as a cost-effective technique for subsurface resistivity monitoring (see
Rees et al., 2016b|, for a general introduction). As this is a relatively new
application for MT, there are few modelling tools available. |Peacock et al.
(2012)) have used differences in MT phase tensors to qualitatively interpret
resistivity changes due to fluid injection in an enhanced geothermal system
(EGS) at Paralana, South Australia. This technique has also be used by
Didana et al.| (2017) interpreting change at the Habernero EGS. Recent
work includes parameterising resistivity changes as a three-dimensional
(3-D) plume structure and inverting using Markov Chain Monte Carlo
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3.2. Inversion Method Time-lapse inversion

(Rosas-Carbajal et al. [2015). Another approach has been to use 1D layer-
stripping, where the effect of overlying structures is removed to model
the time-varying magnetotelluric responses at depth (Ogaya et al.| 2016).
Standard MT modelling tools such as inversion can also be adapted, for
example Rees et al.| (2016b)) use cascading two-dimensional (2D) inver-
sions to model a coal-seam gas depressurisation, where the results from
the pre-injection inversion are used as a prior-model for the post-injection.
An improvement on cascaded inversion has been implemented by Rosas-
Carbajal et al.| (2012), where differenced 2D MT inversions have achieved
high accuracy by subtracting the prior-model response from all data and
reducing the data error. High accuracy simultaneous time-lapse 1D MT in-
versions have also been approximated using 2D MT codes (e.g. Rees et al.|
2016bj; Didana et al., [2017), however this approximation leads to small
errors in the calculation of the forward-model and hence inversion result.

The problem of inverting time-lapse data is fairly well researched in other
geophysical methods. Hayley et al.| (2011]) has compared the various tech-
niques used for inverting electrical resistivity tomography (ERT) time-lapse
data. They showed that a simultaneous inversion of time-lapse ERT data
gives a superior result compared to independent inversions, cascading in-
versions or differenced inversions. Their preferred technique was a special
case of the 4D algorithm of Kim et al| (2009), which has also success-
fully been applied to gravity (Karaoulis et al., 2013a)), induced polarisation
(Karaoulis et al., 2013b)), and seismic tomography (Karaoulis et al., 2015]).
This technique has not yet been presented for magnetotelluric inversion.

We present an implementation of a simple time-lapse algorithm to simul-
taneously invert 1D MT monitoring data. Firstly, we present the results
from synthetic inversions of 1D magnetotelluric data to test the validity of
the algorithm. We then present inversions from a case study of data from
a coal-seam gas production survey (Rees et al 2016b).

3.2 Inversion Method

The algorithm is an Occam style inversion (Constable et al., [1987), seeking
to find the model which fits the data to a desired level while introducing
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Time-lapse inversion 3.2. Inversion Method

the least amount of structure - in this case in both temporal and spatial
domains. We seek to find the model (m) which minimises the model
roughness (R(m)) subject to the constraint that the model misfit (y2(m))
is less than a desired target misfit (x7,,..;). That is,

minimize R(m)
m
subject to x?(m) < tharget'

x? misfit is given by the weighted differences of n 1D MT forward responses
(F(m)) with the data (d) and data errors (o):

i (F(m) d)*

(3.1)

[t is more convenient to express the misfit in terms of root-mean-square

error (RMS), given by

2
RMS =/ X (3.2)

n
The model roughness is the sum of regularisation in both spatial (S) and
temporal (T') directions, weighted by a factor f:

R(m) =S(m) + T (m). (3.3)

The temporal regularisation is given by the squared sum of the model
changes in time:

T(m) = Z (ml — mi_1)2, (34)

time=1
and the spatial regularisation by the sum of second derivatives at each
time slice:

S(m) = Z (mi_l — 2ml + mi+1)2. (35)

layer=1

The optimisation is performed using the Sequential Least SQuares Pro-
gramming (SLSQP) algorithm available in scipy (Jones et al| 2001),
which is based on the algorithm by Kraft and Schnepper (1989). The
algorithm does not require any tradeoff parameter between data misfit
and smoothing, as this is encapsulated in the target RMS. Data are read
into the program using the mtpy module (Krieger and Peacock, 2014)).
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3.3. Synthetic study Time-lapse inversion

Due to the efficiency of the 1D MT algorithm, which is calculated analyti-
cally, the model readily reaches an acceptable misfit within a few iterations.
Subsequent iterations reduce the roughness of the model.

3.3 Synthetic study

Numerical data are first used to study the results of the time-lapse MT
algorithm. The data are produced from a model of an idealised resistivity
change at a single site for a coal-seam gas pump into a shallow aquifer.
The initial resistivity is a 10 Qm halfspace. At survey day 4 a sharp change
occurs at a depth of 665 m - 958 m, with the resistivity dropping to 2 Qm.
The input model for the synthetic study is shown in Figure 1.

Time (day number) Time (day number)

0 1 2 3 4 5 6 7 80

500 1500

1000 11000

Depth (m)
Depth (m)

1500 11500

2000 2000

00 02 04 06 08 10 12 14 16 18 20 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
log o Resistivity (Qm) Proportion change in resistivity relative to t=0

Figure 3.1: The model used to generate input data for the synthetic test study. The first
layer is at 30 m depth and all subsequent layers are at a factor of 1.2 greater depths. The
model is broken into 10 equal time periods.

Magnetotelluric impedance data are produced at 17 frequencies ranging
from 0.14 Hz - 6.26 Hz. The data were computed using the standard
analytic 1D forward algorithm. The 1D assumption is valid if the resistivity
changes are sufficiently laterally continuous, which we would expect for
changes in a lateral coal-bed. The assumption is not perfect however,
as 3D effects would be present during the development of the resistivity
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Time-lapse inversion 3.3. Synthetic study

front. The data were then contaminated with 5% Gaussian random noise
on the impedance tensor, which is a reasonably high estimate of the errors
expected in field operations. The data errors were fixed at 5%.

The inversion was conducted with a RMSi,.ger of 1.0. Smaller target
RMS values result in overfitted models which mapped noise in the data
as temporal change, whilst larger target RM .S values underfit the change in
the data. The g value, which weights the relative importance of temporal
and spatial change, was varied between in three separate inversions with
values of 8 =100, § = 1000 and S = 10000 in order to show the effect of
this parameter.

For each inversion the target RM S was achieved within 5 iterations, how-
ever additional smoothing iterations were run, with a total of 100 iterations
for each inversion.

3.3.1 Results and Discussion

Figure 2 shows the resistivity for three synthetic inversions with varying
ratios of temporal smoothing to spatial smoothing. On the left panels
the absolute resistivity is shown, and on the right panels the change in
resistivity relative to the initial resistivity, is displayed.

The main feature in common to all three figures is the strong decrease
in conductivity from day 2-3 onwards. In each inversion the change is
diffusively spread out across multiple layers, with the amount of spread
dependent on the value for 8. The diffusive spreading is most evident with
the smallest S value in Figure 2a, and the largest value of § in Figure 2c
has the changes confined to almost a single layer.

Compared to the input model, each inversion model underestimates the
change in the data. The relative change in the input model is an 80% drop
over two layers, whereas the three inversion models have drops in the order
of 50% - 60%. The extent of the conductive change is overestimated by
the 8 =100 model and underestimated by the g = 10000 model, with the
middle 8 = 1000 model providing a fairly accurate image. With increasing
£ the models also become more rough spatially. In the § = 10000 rough, for
example, the model changes from 1 Qm to 100 Q2m between three layers.
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3.3. Synthetic study Time-lapse inversion

Figure 3.2: Inversion results for synthetic inversions using the parameters a) 8 = 100, b)
B =1000 and ¢) 5 =10000. The left panels show the final resistivity models for the inversions
at each day. The right panels show the proportional difference between the linear resistivities
of the models at ¢; and tg. Dotted lines show the extent of the resistivity changes in Figure 1.

Time (day number) Time (day number)
i]i:!t 1 2 3 4 5! 6 7 8 0 1 2 3 4 5 6 &
a) B= 100
500
fremmemcccmccemee -
L]
E ; £
‘E 1000 %
o 7]
[=1 o
1500 41500
==t Area of change in target model
2000 2000
0 1 2 3 4 5 6 7
0 - 3-:!
500 {500
E E
St St
-g 1000 41000 -ﬁ
a 8
1500 41500
== Area of change in target model
2000 2000
8 0 1 2 3 4 5 6 7 8,
500 500
- A
E IR ey ] Sy E
£ 1000 41000 S
[=% a
w [ 1]
[a} o
1500 1500
= = Area of change in target model
2000 2000

00; '02 04 06 OB 10" 12 14 I6 58 20 D2 O 06 08 10 LZ 14 16 I8
log g Resistivity (2m) Proportion change in resistivity relative to t=0

24



Time-lapse inversion 3.3. Synthetic study

Figure 3.3: Response curves showing the difference between the data fits at ¢y (blue) and the
final time slice of synthetic data, t19 (green). The data used for inversion are shown as points
with error bars attached, and then the smooth curves show the model responses obtained
from the inversion for 5 = 1000.

Example model fit curves from the first and final days are overlain in
Figure 3 for the # = 1000 inversion, plotted alongside the synthetic data
used in the tests. The curves show that a good fit to the data is achieved
at convergence. They also highlight the substantial change in the synthetic
data due to the resistivity changes.

The inversions were reasonably accurate in terms of the absolute resistiv-
ities and the relative changes in resistivity. The smaller [ value, however,
spread the changes out over a large spatial area. The algorithm will pref-
erence changes over as many layers as possible for two reasons. Firstly,
the temporal roughness is calculated on the square of the change in any
one layer, which means that it is preferable to spread changes over mul-
tiple layers if possible. Secondly, and more importantly, the entire model
is smoothed in the spatial dimension. The lowest § parameter resulted
in a less concentrated area of change, with smaller changes spread over
a greater area. The highest § weighting gave a stronger concentration of
change and a smaller overall change in resistivity. The model, however,
became rougher in the spatial dimension leading to improbable absolute
resistivities.

It is worth noting that the inverted models accurately pick the time when
the resistivity change occurs. There is a slight change in resistivity before
the inversion, however this is minimal and these changes unavoidable as
the small data misfit which it introduces is offset by the improved tem-
poral smoothing. If a priori information exists about the time ¢, when
a resistivity change occurs it can be included by restricting all temporal
change for t < t..
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3.4. Case study Time-lapse inversion

3.4 Case study

An example from a coal-seam gas field is used to further examine the
algorithm. A coal-seam gas monitoring experiment is ideal to test the 1D
time-lapse MT algorithm, as changes occur at shallow depths where the
MT response is better approximated by a 1D algorithm, and we expect
any changes to be laterally continuous through the coal seam.

We use time-lapse MT data from a 2013/2014 survey of a coal-seam gas
field in the Surat Basin, Queensland, Australia (Rees et al., 2016b). Data
for this survey were collected along two lines near several production wells.
The wells extracted both water and gas from depths of 400 m - 700 m,
and a resulting resistivity change was observed by [Rees et al. (2016b)) in
differenced MT inversions.

A schematic of the survey design is shown in Figure 4, which also features
production well locations. Site 105 was used for our inversion, which is
the same site used for the 1D inversions in Rees et al. (2016b)). Data were
used from 10 days between January 23, 2014 and February 19, 2014. The
site is the near to the most active production well and had reasonable data
quality during these days. MT data are taken from the YX mode as these
are of higher quality than the XY mode data.

Identical to the synthetic study, the data have 17 frequencies ranging from
0.14 Hz - 6.26 Hz. We invert these data using the presented time-lapse
algorithm. We use parameters RM Si,ger — 1.0, f = 1000 and an error
floor of 2%. The inversion is run for 100 iterations and completed within
20 minutes on a 4 core machine.

3.4.1 Results and Discussion

The inversion resistivity model is shown in Figure 5, with the resistivity
differences shown in the same figure. A slight reduction in resistivity be-
tween 500 m and 700 m begins on day 9 and slowly increase with time,
culminating with a drop of roughly 15 % in resistivity by the final day.
There is also a slight (~ 5%) increase in resistivity in the area between
100 m and 500 m. Finally, there is also a reduction in resistivity at depth,
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Figure 3.4: A schematic of the site used for inversion in the case-study. Site 105 (highlighted)
was one of the closest sites to the active pump well W4, and the most likely candidate for
resistivity change. Electric field data were collected at each e-logger site, and MT responses
calculated using the magnetic field data at the single b-logger site.
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Figure 3.5: a) The final resistivity model for the case-study inversion at each day. b) The
proportional difference between the model at ¢; and tg.

however this is smaller than the resistivity drop in the higher zone. No-
tably this would be near the penetration depth of the data and would
be less constrained than the other areas of the model. The entire model
resistivity is between 1.25 2.m and 16 2.m. When considering the com-
mencement date of pumping, shown as a dashed line in Figure 5, we see
that the resistivity changes occur slightly before the commencement of
dewatering. In the synthetic model, temporal changes were smoothed to
dates before the change in the target model, and we would suggest that
the same phenomenon is occurring here.

Looking at the fit of the response curves in Figure 6, we see that the model
slightly underfits some of the changes in the MT data. This is expected
as the algorithm introduces the minimum change required to fit the data.
This would place the estimations of 15% change as conservative, and shows
the importance of obtaining high quality data, as tighter error bars would
lead to stronger changes in resistivity. Notably there is a significant dip in
the model fit curves between the first (in blue) and final (in green) time
slices.

The most important area to consider for interpretation is the area of the
resistivity decrease between 500 m and 700 m, as the other resistivity
changes in the model are much smaller and should not be overinterpreted.
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Figure 3.6: Response curves showing the difference between the data fits on January 23,
2014 (blue) and the final day of inversion, February 19, 2014 (green). The data used for
inversion are shown as points with error bars attached, and then the smooth curves show the
model responses obtained from inversion.
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3.5. Conclusion Time-lapse inversion

There seems to be a strong link between the start of the resistivity change
and the dewatering event at W4. There is no gas extraction during this
time. Hence, our new model would agree with the interpretation in Rees
et al| (2016b)) that the changes are due to the increased permeability of
dewatered coal-seams, potentially due to the reduction of the coal matrix
due to the release of gas is released from the matrix.

Unlike the synthetic example, the changes in the model were slow, with a
build up to the maximum change in the final day included in the inversion.
This would lead us to believe that resistivity changes resulted from coal-
seam gas pumping are related not just to the rate of pumping, but also
the amount of material that has been removed from the pores.

3.5 Conclusion

We presented a simple time-lapse inversion of 1D MT data, which we tested
on synthetic data and case-study data. Both inversions resulted in defined
areas of resistivity change with few artefacts in the models. The synthetic
inversion obtained resistivity changes which slightly underestimated the
changes in the input model, however it accurately retrieved spatial and
temporal locations, as well as absolute resistivities. We investigated the
effect of the weighting parameter 5 between spatial and temporal smooth-
ing, and showed that there is a tradeoff between models which are overly
sharp spatially and models which overestimate the extent of the resis-
tivity change. We also showed results from applying the algorithm to a
case-study with coal-seam gas MT data. The inversion resulted in small
changes in the area of the coal-seams.

Compared to other modelling techniques our algorithm has several ad-
vantages. Full 3D modelling is highly computationally intensive. A 1D
approximation is simple to compute, which leads to rapidly converging
model. This allows the modeller to trial several parameters and select the
best model. It also allows a large amount of data to be inverted at once -
it is feasible to invert data from each day for several months, which would
result in an extremely large model space in 3D. Compared to independent
inversions, or time-lapse inversions using 2D MT codes as approximations,
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Time-lapse inversion 3.5. Conclusion

it has previously been shown that simultaneous inversion results in a model
with fewer artefacts and stronger constraints on areas of change.

One of the disadvantages of the technique is that it is unable to fit any
2D or 3D aspects of the data. Further work could expand the technique
into higher spatial dimensions, or to deal with anisotropy. It would be
useful to extend the inversion into 3D space and incorporate all data into
the inversion, however the long processing times of higher-dimensional M'T
forward codes would make the resulting code extremely computationally-
intensive.
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Probabilistic magnetotelluric inversion 4.1. Introduction

Abstract

We present the first inversion of magnetotelluric (MT) data using a Hamil-
tonian Monte Carlo algorithm. The inversion of MT data is an underde-
termined problem which leads to an ensemble of feasible models for a given
dataset. A standard approach in MT inversion is to perform a deterministic
search for the single solution which is maximally smooth for a given data-
fit threshold. An alternative approach is to use Markov Chain Monte Carlo
(MCMC) methods, which have been used in MT inversion to explore the
entire solution space and produce a suite of likely models. This approach
has the advantage of assigning confidence to resistivity models, leading to
better geological interpretations. Recent advances in MCMC techniques
include the No-U-Turns Sampler (NUTS), an efficient and rapidly con-
verging method which is based on Hamiltonian Monte Carlo. We have
implemented a 1D MT inversion which uses the NUTS algorithm. Our
model includes a fixed number of layers of variable thickness and resistiv-
ity, as well as probabilistic smoothing constraints which allow sharp and
smooth transitions. We present the results of a synthetic study and show
the accuracy of the technique, as well as the fast convergence, independence
of starting models, and sampling efficiency. Finally we test our technique
on MT data collected from a site in Boulia, Queensland, Australia to show
its utility in geological interpretation and ability to provide probabilistic
estimates of features such as depth to basement.

4.1 Introduction

The aim of magnetotelluric (MT) inversion is to model the subsurface
physical properties of the earth based on observations taken at the sur-
face. Geophysical inversion in general is a problem with two halves: an
existence problem, where the data are fit by a single earth model which
best fits the data, and a uniqueness problem, where all models which fit
the data are sought (Backus, [1988). In a Bayesian inversion, the second
side of this problem is explored with a model which treats each parameter
in the inversion probabilistically, and seeks to find their probability den-
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sity functions (PDFs) (Tarantola, 2005; Tarits et al., 1994). This task is
typically achieved with Markov Chain Monte Carlo (MCMC) methods.

The inversion of MT data is an under-determined problem and requires
some form of regularisation (Grandis et al., 1999; |Schott et al. [1999).
In Bayesian inversion a prior distribution is given for the inversion pa-
rameters, which acts to regularise the inversion. Similar to deterministic
inversion, the regularisation may take different forms. Common techniques
include restricting the number of layers (Guo et al., 2011)); calculating the
roughness and penalising rougher models with lower probabilities (Grandis
et al, |1999; [Rosas-Carbajal et al., 2013); or having a variable number of
parameters and a penalisation for more complex models (Minsley|, 2011}
Mandolesi et al.| 2018)).

Bayesian inversion of 1D MT data has been successfully applied using
MCMC algorithms, however several challenges exist which make 2D and
3D inversions computationally difficult. These include the reduced speed
of the forward algorithms, the slower convergence of the MCMC algorithm
with increased number of parameters, and the high covariance of parame-
ters. One solution is to reduce the number of parameters in inversion, e.g.
Chen et al.| (2012) who used sharp inversions in 2D with a fixed number of
nodes. A sharp inversion has the added advantage of avoiding model regu-
larisation through smoothness constraints, however lacks the expressivity
of a pixel-based inversion. The first full pixel-based inversion has been
implemented for 2D radio magnetotelluric data by |Rosas-Carbajal et al.
(2013) using the MT-DREAM(ZS) algorithm (Laloy and Vrugt, 2012).
The authors show that the algorithm can successfully invert the RMT
data, with particularly good results when combined with electrical resis-
tivity tomography in a joint inversion. The inversion is computationally
expensive however, requiring up to 130000 iterations to reach convergence
for 228 model cells, even with prior constraints on resistivity ranges and
model roughness. Bayesian inversion has also been used in reduced pa-
rameter 3D inversions by [Rosas-Carbajal et al. (2015) who used MCMC
to invert 7 parameters describing time-lapse changes in resistivity. For a
pixel-based 3D MT inversion the process becomes more difficult, as |Gran-
dis (2006) concludes from preliminary studies that a very coarse model
mesh would be required to keep computation times reasonable.
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One solution to these issues is the use of gradient-based MCMC algo-
rithms based on Hamiltonian mechanics, known as Hamiltonian Monte
Carlo (HMC) or Hydrid Monte Carlo. These methods operate by tak-
ing a series of steps informed by first-order gradient information (Hoffman
and Gelman| 2014). This makes them much more efficient than standard
MCMC sampling methods such as random-walk Metropolis (Metropolis
et al., 1953) and Gibbs sampling (Geman and Geman, [1984)), with the
cost per independent sample from a target distribution of dimensionality
D reduced from O(D?) to O(D?*) (Creutz, [1988). This is clearly advan-
tageous in the case of multi-dimensional MT MCMC inversion, where the
number of parameters can run into the thousands.

One of the main obstacles of the HMC algorithms has been the requirement
to specify at least two additional parameters to the algorithm, which can
have serious effects on sampling efficiency if poorly chosen, and require
additional runs to tune correctly. This problem has been solved by the
No-U-Turns algorithm (Hoffman and Gelman| 2014), an algorithm based
on HMC which eliminates the need for specifying tuning parameters. The
NUTS algorithm is under active development and has been successfully
used in a number of studies in various fields. Some examples include a
study of energy consumption from buildings (Chong et al., 2017)), ecologi-
cal studies investigating populations of various plants and animals (Mon-
nahan et al.| 2017) and a supernova study which modelled 9176 parameters
(Sanders et al., 2015)).

We present the first implementation of an MT inversion using the NUTS
algorithm. The inversion uses a novel adaptive regularisation scheme
which preferences models with smoothly changing resistivities while allow-
ing sharp changes. Firstly, we show the results of a 1D MCMC inversion
using NUTS on synthetic data, and highlight the sampling efficiency and
model accuracy. Secondly, we apply the same inversion to MT data ob-
tained from Boulia, Queensland, Australia and show the practical use of
the algorithm in geological interpretation. The results show a promising
Bayesian inversion which can be upscaled to 2D and 3D MT problems.
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4.2 Bayesian Model

4.2.1 Bayesian inversion and the NUTS sampler

The goal of a Bayesian geophysical inversion is to find the probability
distribution of model parameters (m) given fixed geophysical data (d),
known as the posterior probability distribution. Bayes’ theorem states that
this distribution, P(mld), is proportional to the likelihood of m given d,
L(m|d), multiplied by the prior probability of m, P(m). That is,

P(ml|d) o< L(m|d)P(m). (4.1)

Although we cannot tractably solve for the posterior probability distribu-
tion directly, the MCMC method allows us to sample P(ml|d). From these
samples we may build a probability distribution.

In MCMC, a Markov chain is constructed that has its equilibrium distribu-
tion as the posterior distribution. The way in which this is achieved varies
between sampling techniques. In Metropolis-Hastings sampling, a random
walk proposal generates new samples from a Gaussian distribution centred
on the current sample (Chib and Greenberg, 1995). The new sample is
accepted or rejected with probability proportional to the ratio of the new
probability density to the previous probability density. This method can
be inefficient for high dimensional spaces, where the number of directions
to explore increases exponentially, and many may yield low likelihoods.

An alternative approach is the Hamiltonian Monte Carlo method (HMC).
In HMC the state of the MCMC sampler is treated as a particle in a
Hamiltonian system, with an energy calculated from the potential energy
(calculated from the probability density of its position) and a randomised
momentum, or kinetic energy (Betancourt], 2017)). The system then evolves
according to Hamiltonian dynamics, leading to a preference to explore new
positions with lower potential energy and hence higher probability density.
This results in better convergence and more efficient exploration of the
posterior probability distribution.

To simulate the Hamiltonian dynamics in an HMC iteration, the Stérmer-
Verlet, or "leapfrog", integrator is used. Time in the system is discretely
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incremented by a step-size of € for a series of L steps, and the position
and momentum of the particle is updated at each time. The final position
and momentum of the particle can then be accepted or rejected as with
the Metropolis-Hasting algorithm. An HMC proposal, however, has the
dual advantages of typically higher acceptance ratios, and therefore more
efficient sampling, and also a greater distance from the previous location,
leading to better exploration of the model space.

The choice of L and e can be difficult in HMC. If € is too small then the
simulation will run slowly with unnecessary calculation, however if it is too
large then the Hamiltonian simulation will become inaccurate. A choice
of L which is too low will result in poor exploration and the sampler
will exhibit random-walk behaviour, however if L is too large then the
particle trajectory will begin to loop back around on itself, resulting in
both unnecessary calculation and poor exploration. Fortunately the issue
of tuning these parameters is solved by the No-U-Turns Sampler (NUTS)
(Hoffman and Gelman|,2014). The NUTS algorithm tunes L by preventing
the particle from doubling back on itself and tunes € using a dual averaging
schemed based on work by [Nesterov] (2009).

4.2.2 1D magnetotelluric model

We create a model m to probabilistically invert MT data consisting of
n frequencies of complex impedance data Zgs, and corresponding data
errors, .

The model consists of N layers of variable thicknesses ¢ € [10 m, 1500 m]
and logjp unconstrained resistivities p. The thicknesses have been con-
strained to prevent the sampler becoming stuck in regions with layer sizes
tending to infinity or zero. The layered resistivity model is then trans-
formed into n complex MT impedances Z,, using the Wait recursion for-

mula (Wait|, 1962).
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To calculate the likelihood function of m given d, we approximate the
distribution of Zgs, as two independent normal distributions with means
Re(Z,) and Im(Z,) and a shared standard deviation o,. That is,

n _ 2
L(ml|d) = L exp(— 1Zn = Zios | ) (4.2)

2
207

We also establish a constraint on the roughness of the model. For each
layer ¢ above the basement, we construct a prior on the resistivity p; such
that it is normally distributed with expected value p;_;. The standard
deviation is given by (;, which is a parameter of the prior distribution,
known as a hyper-parameter. It is useful to parameterise the model this
way so that the posterior distribution is not overly dependent on the choice
of prior. To summarise,

R e | (43

Notably this differs from a typical smooth inversion in that the degree of

roughness is adaptive for each layer. A sharp change between two layers
is allowed if supported by the data, otherwise consecutive layers must be
similar in resistivity. An exponential prior is given to (; in the form of

P(B;) = Aexp(=AB;), (4.4)

with A set by the user; we have found a value of 0.5 suitable for our models.

The final model is not heavily dependent on A and there is flexibility in
its choice. A good smoothness constraint will allow the model to accom-
modate sharp changes if they greatly improve the model likelihood, while
penalising complex models which do not improve the model likelihood.
Similarly the number of layers is not vital, as long as enough layers are
chosen to sufficiently express the model complexity. The resistivity of ad-
ditional layers will converge to the resistivity of the previous layer if they
do improve the model fit due to the smoothness constraint.

4.2.3 Sampling

We use Stan, a probabilistic programming language used for creating sta-
tistical models to implement our model (Carpenter et al.,[2016]). The model
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m = (t, p, 3), including the 1D MT forward function, is coded into a Stan
file, which is compiled and interfaced by the python module PyStan. Mag-
netotelluric data are read into the model using the mtpy python module
(Krieger and Peacockl, 2014)). The user supplies the number of layers N
and smoothness parameter A\. The model is compiled by Stan and run with
multiple chains using the NUTS algorithm. An initial warm-up phase is
run for tuning the NUTS parameters € and L and calculating the mass ma-
trix M, which is analogous to the covariance matrix in Metropolis-Hastings
samplers. After warm-up, samples are drawn from the posterior probabil-
ity distribution. The samples for each parameter are then analysed for
their convergence using the Gelman-Rubin R statistic, also known as the
potential scale reduction statistic (Gelman and Rubin, [1992). If the value
of Ris greater than 1.1 then the chains may not have adequately converged
(Kruschke, 2014). In this case it would be recommended to recommence
sampling with a longer warm-up phase.

4.3 Synthetic study

We conduct a synthetic study to test the effectiveness of our 1D MT inver-
sion model with adaptive regularisation. We produce synthetic data from
a 1D vertical resistivity profile shown in Figure 1. The profile is composed
of a 300 m top-layer of 10?2 Qm, a second 100 m layer of 10° Qm and then
a linear transition down to 10* Qm at 2000 m. Magnetotelluric impedance
data are generated at 32 logarithmically spaced frequencies from 0.01 Hz
to 100 Hz. Gaussian distributed noise is added to the complex-valued data
at each frequency to simulate errors, with a standard deviation of 5% of
the absolute value of the data. The data-errors o are also set at 5% of the
absolute value.

Four different inversion models are run. The first three investigate the
effect of varying the number of model layers. These use the NUTS sampler
with NV set to 3, 4, 5 for models A, B, and C, respectively. The final model,
D, is to test the efficiency of the NUTS algorithm. It has N set to 4 but
uses the MT-DREAM(ZS) sampler. In each model A is held constant
at 0.5. Each of the three NUTS models are run in three independent
chains with random initialisations. The 4 layer model was the easiest to
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sample from, and satisfactorily converged after 500 warm-up samples. The
3 and 5 layer models did not converge after 500 samples so were run for
15000 warm-up samples each to ensure convergence. After warm-up, 500
samples were drawn from each model. The total running time for the 4
layer model was 9 minutes running on 3 cores. Model D was sampled using
the PyDREAM implementation of MT-DREAM(ZS) with 10 chains run
in parallel (Shockley et al.| [2017). At each interval of 5000 samples the
second half of the samples were analysed using the Gelman-Rubin statistic
and convergence was declared once this measure was as good as, or better,
than achieved with the NUTS algorithm with the same number of layers.
This occurred after 50000 samples. Total run-time was 1 hour 57 minutes
running on 10 cores. A summary comparison between the Model B and
Model D inversions are shown in Table 1. Traces from the three chains in
Model B are shown in Figure 2 for the parameters p; and py4

The samples from each inversion are then transformed from layer thickness
and resistivity into samples of resistivity as a function of depth (Z), p(2),
by calculating the resistivity at one-metre intervals for each sample. A
kernel-density estimator is then used at each depth interval to find the
resistivity probability density (Scott, 1979). This is shown in Figure 1
alongside the original resistivity profile which we are inverting for.

A similar process is used to analyse the distribution of the MT data.
Impedance data Z from each sample are taken and transformed into ap-
parent resistivity (p,) and phase (¢) at each frequency f using the formulae
2

1Z]

Im(Z
pa:u—w’ and ¢:amtanf$§23’

(w=21f), (4.5)

where the magnetic permeability, u, is approximated by the permeability of
free space py. These samples are used to generate probability distributions

using a kernel-density estimator. The results are shown in Figure 3 for
Model B.

4.3.1 Results and discussion

We will focus our analysis on Model B, which appears to provide the best
fit to the data. Model A and Model C will be used to investigate the
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mean meang sd 25% 50% 97.5% ner R

NUTS sampler - Model B

p1 2.00 3.4e-3 007 1.89 1.99 2.16 421 1.00
P2 -0.11  0.02 0.27 -0.73 -0.06 0.29 255 1.00
03 3.57 0.11 1.40 0.58 3.71 6.54 170 1.02
n 3.96 3.2e-3 0.09 380 396 4.15 793  1.00
t 306 0.88 154 274 307 333 302 1.00
12 90.1  2.69 471 177 859 195 306 1.01
t3 682 17.6 448  34.0 635 1451 650 1.01
o5 2.65  0.05 1.55 091 227 7.003 1002 1.00
Ba 2.81  0.09 2.06 0.90 3.19 848 493  1.01
B3 1.69  0.08 1.67 0.06 1.19 6.32 403 1.01
DREAM sampler - Model D

p1 1.98 21e-3 0.09 1.96 1.98 2.00 2074 1.00
P2 -0.51 7.9e-3 0.22 -0.88 -0.50 -0.10 736 1.00
03 3.07  0.03 1.20 1.50 3.04 5.87 1940 1.00
N 3.68 593 035 334 366 4.10 3554 1.00
t 355 0.23 6.02 344 356 362 731 1.00
to 29.5  0.87 22.1 109 256 64.7 649  1.00
t3 822 7.60 442 524 866 1470 3201 1.00
o5 298 3.6e2 185 1.03 249 7.77 2602 1.00
B2 3.6 3.8e-2 190 1.16 3.12 8.53 2549 1.00
B3 1.75 3.1e-2 1.51 0.06 141 5.74 2311 1.00

Table 4.1: A comparison summary of the sampled parameters from the synthetic probabilis-
tic inversions of the 4 layer model with NUTS sampler (Model B) and 4 layer model with
MT-DREAM(ZS) sampler (Model D). Subscripts indicate increasing layer number. Sum-
maries included are the mean of the distribution; standard error of the mean; standard devi-
ation; percentiles at 2.5%, 50%, 97.5% (the median and the bounds for the 95% confidence
interval); effective sample size estimate; R, the potential scale reduction statistic.
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Figure 4.1: Probability densities generated from the four synthetic probabilistic inversions,
each generated using 1500 samples. Shown are four different models; A. NUTS sampler,
3 layers B. NUTS sampler, 4 layers, C. NUTS sampler, 5 layers and D. MT-DREAM(ZS)
sampler, 4 layers. The dotted red line shows the resistivity profile used to generate the
synthetic data. Probability densities are with respect to logyg resistivity. Densities have been
clipped at 0.1 Q7 'm™! to allow better visualisation of the lower density areas.

effect of changing the number of model layers, and Model D will provide
a reference for the efficiency of the NUTS algorithm.

The traces of MCMC samples in Figure 2 for the variables p; and p4 show
that the parameters have converged to similar distributions across the
three chains in Model B. If the chains were noticeably different it would
indicate poor convergence. This visual analysis is supported by the R
values in Table 1 which are very close to 1.00. The R value is a measure of
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Figure 4.2: Parameter traces from the synthetic inversion for Model B, showing the sampled
logyg resistivities of the top layer, p1, and bottom layer ps. The traces are split into their three
chains by colour. Each chain is independent and is given a different random initialisation.
Similar distributions between chains is a sign of convergence.

how similar the separate chains are, with an ideal value of 1.00 for chains
which have converged to the same distribution. The fact that several of
the variables have R values > 1.00 shows how difficult it is to sample a
non-linear MT inversion model, however the maximum value of R=1.02
is small enough that we can still be confident of convergence.

The p values for Model B have converged to distributions with means very
close to the actual resistivity profile. The resistivity values for p;, ps and
p4 have means and standard deviations of 10200£0-07 ) yp  10-0-1120-27 )
and 103-96+0-09 () m with target values of 1020 Q.m, 10° Q.m and 10* Q.m
respectively. The layer p3 is a smooth transition between ps and p4 in the
target profile, and as such has no fixed target value.
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Figure 4.3: Probability distributions for response curves from the synthetic probabilistic
inversion of Model B. Distributions are period independent; the top plot shows probability
per 1og10(papp), the bottom plot probability per phase angle (unit-less). Overlain in red are
the data points used for the inversion.

The t values given by Model B are also within the ranges of the target
model. t; and ¢y have distributions of 307 + 15 m and 88 + 45 m, with
target values of 300 m and 100 m respectively.

The B3 values in the model can serve as a proxy for the probability of a
sharp transition in resistivity. The values of 8; and [ are large enough
that they do not introduce much smoothing. This allows for sharp changes
between the layers p; and po, as well as between ps and ps3. Notably the
2.5 percentile values for #; and [y are 0.91 Q.m and 0.90 Q.m, which
indicates that there is a low probability that the layers p; and py have the
same resistivities. In contrast, the (83 2.5 percentile is 0.08 €2.m, which
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means that there exist models where p3 and p4 are very close, i.e. a three-
layer model. The reasonably high mean of 1.73 2.m indicate however that
there are 4-layer models which can better fit the data. The end distribution
is a continuous mixture of the two cases.

These results are shown graphically in Figure 1. The inversion accurately
maps the top two layers in the profile, with a strong degree of confidence
in the boundary location. The second layer is also mapped correctly in
thickness and resistivity. The inversion has a large degree of uncertainty
underneath the second layer. Here the model can either fit with the base-
ment resistivity immediately, or with a better fitting but more complex
model which smoothly changes. Once again, both possibilities have a
non-negligible probability, however the three-layer model has the higher
probability.

Figure 3 shows the distribution of apparent resistivity and phase for the
1500 samples. Although each data point is contaminated with an equal
magnitude of noise, the model clearly has more confidence in the apparent
resistivity and phase at certain periods. The apparent resistivity is most
tightly constrained near its minima between 0.1 s and 1 s, as well as at
100 s, and the phase has probability density peaks between 0.03 s and 0.1 s
as well as between 1 s and 3 s. These distributions could be used to export
new data values and error values as a form of 1D data smoothing.

Comparing Model B with Model A in Figure 1, we can see that the 3-layer
Model A does not have enough flexibility to model the smooth change
between the second layer and the basement. It still manages to provide
accurate resistivites for the top two layers and basement, however. It is
not surprising that a 3-layer model can provide a good fit to the model, as
the maximum a posteriori model from the 4-layered Model B is a 3-layered
model. The probability densities in Figure 1 from Model A however have a
negligible probability in the area where there is a smooth change from the
second layer to basement, so it is not as accurate as Model B for modelling
this dataset.

The 5-layer inversion in Model C however provides a resistivity probability
density in Figure 1 very similar to Model B. The top two layers are identical
between the two models, however there is a slight difference in the smooth
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transition area, with Model C favouring slightly more structure. Due to
the fact that the regularisation is applied on a layer by layer case rather
than looking at the overall structure, increasing the number of layers would
allow for slightly rougher models. This could be mitigated by increasing the
A parameter for models with more layers. The results from Model A and
Model D show that the final model is largely independent of the number
of layers in the model, as long as there are enough layers to introduce
sufficient structure into the model. If in doubt, it would be reasonable
to err on the side of too many layers, as doing so appears to have few
deleterious effects apart from a reduction in sampling efficiency. In 2D
and 3D smooth inversions the layer geometries are fixed throughout the
inversion, so choosing the number of layers is not an issue.

The results from Model D have a much greater contrast with those of
Model B. Despite the excellent R convergence statistics for Model D in
Table 1, we can see that the distributions are not as accurate as those in
Model B. The upper limit of the 95% confidence interval for p; is exactly
the true value of 1029 Q.m, however the true values of po, 1 and o all fall
outside of their 95% confidence intervals. The basement resistivity py is
more accurate, however. In the resistivity density plot for Model D shown
in Figure 1, we see probability densities in small areas for the top two
layers. This is characteristic of a poor exploration of the model a poste-
riori, which is common for models with highly correlated parameters. We
also see that in the smooth transition zone there appears to be a bimodal
distribution between a 3-layer model and a 4-layer model. This character-
istic is also present in Model B, however in there is a smooth reduction
is probability with increasing model complexity rather than two strong
modes. Coupled with the faster compute time of Model B, we would con-
clude from these results that NUTS is an excellent choice to sample MT
resistivity structures in our 1D model. We would further expect the NUTS
algorithm to perform well in 2D and 3D spaces, as the sampling efficiency
scales well with increased dimensionality. However, further investigation
is required to compare it with the MT-DREAM(ZS) algorithm in 2D and
3D, as the MT-DREAM(ZS) algorithm is designed particularly for higher
dimensional problems and is not expected to perform optimally when in-
verting fewer parameters. This may cause the relative efficiencies to change
with increased parameters.
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4.4 Case Study

To further test the 1D MT inversion model, we also apply it to a two MT
case-study datasets from near Boulia, Queensland, Australia. The first
site, IEA03242, has a known geology from nearby drilling: 0 - 14 m cal-
crete; 14 - 72 m weathered Eromanga Basin; 72 - 560 m banded limestone;
560 - 609 m interbedded limestone and sandstone; 609 - m basement. The
basement is a meta-dolerite with a tested resistivity of > 10* Q.m. The
second site, IEB1006A, also has an adjacent drill-hole with shows the fol-
lowing geology: 0 -16 m weathered material; 16 - 1115 m limestone of
various composition; 1115 - m basement.

For the inversion of data from IEA03242, a total of 41 frequencies are used
from 1 Hz to 10 kHz. After some trial and error the number of layers is
fixed at five, the parameter \ is set to 0.5 and error floors are set at 5%.
The model is run for 10000 iterations in warm-up and then 5000 sampling
iterations for each three chains.

The data from IEB1006A contain 20 frequencies from 10 Hz to 320 Hz.
Similarly, these are inverted with the number of layers fixed at five, the
parameter A is set to 0.5 and error floors are set at 5%. Once again,
the model is run for 10000 iterations in warm-up and then 5000 sampling
iterations for each three chains.

An overview of the results from the two sites tabulated in Table 2. As
with the synthetic example, the results are converted into resistivity-depth
probability distribution maps (Figure 4 and Figure 5).

Of particular interest in this dataset is locating the depth to basement. We
calculate this as the shallowest depth at which there is no greater depth
with a resistivity lower than a threshold pp.s.. For site IEA03242 we use
103 Q.m for ppese and for site IEB1006A we use 1026 Q.m. The choice of
these resistivities will depend on the resistivity of the basement rock in the
area of investigation and the range of basement resistivities encountered by
the MCMC sampling. The depth to basement is calculated for both sites
for each sample from the posterior distribution and a plot of the resulting
probability distribution and sample frequency is given in Figure 6 for site
IEA03242 and Figure 7 for site IEB1006A.
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mean meang sd 25% 50% 97.5% ne R
Site IEA03242

p1 1.56 1.6e-3 0.09 141 156 1.62 3593 1.00
P2 0.74  3.5e4 002 069 074 0.78 3830 1.00
P3 1.95 5.6e-3 026 148 194 240 2182 1.00
n 3.87  0.04 1.31 1.75 397 6.65 879  1.00
Ps5 4.70 8le-3 044 413 4.62 5.80 2974 1.00
ty 11.7  0.02 1.01 10.1 11.6 13.9 3267 1.00
ta 72.1  0.18 8.18 55.7 725 86.3 2171 1.00
i3 209 9.90 223 60.5 497 1010 1430 1.00
7 664 9.92 423 382 612 1450 1820 1.00
b1 1.73  0.04 1.38 040 1.32 5.50 1239 1.00
Ba 1.98  0.03 142 0.52 1.56 5.88 3140 1.00
B3 246  0.04 1.82 0.18 205 7.24 2340 1.00
Ba 1.85 0.04 1.66 0.07 145 6.18 1475 1.00
Site IEB1006A

p1 1.50 3.8e-3 0.16 1.11 1.53 1.72 1812 1.00
P2 223 0.01 0.40 2.04 211 341 1065 1.00
P3 3.49  0.06 1.94 148 3.04 8.9 938  1.00
P4 4.72  0.08 221 1.85 422 1095 852 1.00
Ps 5.18  0.09 251 337 434 1232 781 1.00
t 99.2  1.08 379 13.0 495 156.5 1224 1.00
ta 840 15.8 398  66.4 1050 1270 634 1.00
l3 602 7.57 398 387 540 1420 2755 1.00
17 707 5.31 434 373 681 1459 6684 1.00
b1 1.57  0.02 1.32 031 1.15 5.13 6269 1.00
Ba 215 0.04 1.89 0.07 166 7.12 2296 1.00
B3 2.06 0.04 1.81 0.08 1.58 6.80 2467 1.00
Ba 1.70  0.03 1.67 0.05 1.18 6.14 3649 1.00

Table 4.2: A summary of the sampled parameters from the case-study probabilistic inversions
for sites IEA03242 and IEB1006A. Subscripts indicate increasing layer number. Summaries
included are the mean of the distribution; standard error of the mean; standard deviation;
percentiles at 2.5%, 50%, 97.5% (the median, and bounds for 95% confidence interval); number
of effective samples from stan’s effective sample size estimator; R, the potential scale reduction
statistic (Gelman and Rubin, 1992).
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Figure 4.4: Probability densities generated from the site IEA03242 case-study probabilistic
inversion, using 15000 samples. Densities have been clipped at 0.1 Q7 'm™! to allow better
visualisation of the lower density areas.

4.4.1 Results and discussion

The R values in Table 2 show excellent convergence for both of the inverted
sites. An R value of 1.00 is achieved for each parameter in each sites.
This indicates that the distributions in the three independent chains are
indistinguishable and have converged to the same stationary distribution.
It is possible that it was easier to achieve convergence in the case-study
data compared to the synthetic study as error floors were enforced in the
case-study, which makes it easier to fit the data.
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Figure 4.5: Probability densities generated from the site IEB1006A case-study probabilistic
inversion, using 15000 samples. Densities have been clipped at 0.1 Q7 'm™! to allow better
visualisation of the lower density areas.

4.4.1.1 Case study one: site IEA03242

From the resistivity-depth profile in Figure 5, a geological interpretation
can be made. There is a thin 11.7 £ 1 m resistive layer at the surface,
which could represent a calcrete cap. Underneath is a conductive layer of
thickness 72 + 8 m, which corresponds well with the weathered rock layer
found in the drill-hole. Beneath this is a layer of resistivity 10146027 ©)
however a relatively unknown thickness. The layer extends until at least
450 m and after this the structure becomes ambiguous. There most likely
model is a straight jump to basement with a four layer model, however
there may also be a smooth change down to basement. The basement
has a resistivity of 1044#04 Q.m, which fits with the laboratory measured
resistivity of 10*7 Q.m for this formation.
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Figure 4.6: Probability distribution with overlain histogram for the estimated depth to
basement for site IEA03242. In this case basement is defined as the depth such that all
greater depths are more resistive than 10> Q.m. The site has a known depth to basement
of 609 m. The 15000 samples have a mean of 723 m, median 667 m, and the probability
distribution has a maximum probability at 590 m.

Due to the uncertain nature of the model at depth, it is useful to refer to the
depth to basement probability density graph in Figure 7. The probability
distribution peaks at 590 m, however the distribution is positively skewed
with a mean depth of 723 m. These figures agree well with the known
depth to basement of 609 m.

4.4.1.2 Case study two: site IEB1006A

Similarly, Figure 6 allows us to make geological interpretations of the sur-
vey area near site IEB1006A. Due to the narrower bandwidth of the data
from this site compared to [EA03242, the top segment is relatively un-
constrained. The 95% confidence interval for the thickness of the top
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Figure 4.7: Probability distribution with overlain histogram for the estimated depth to
basement for site IEB1006A. In this case basement is defined as the depth such that all
greater depths are more resistive than 107 Q.m. The site has a known depth to basement
of 1150 m. The 15000 samples have a mean of 1131 m, median 1156 m, and the probability
distribution has a maximum probability at 1195 m.

conductive layer is 13 - 157 m, and we expect a conductive layer of 16 m
thickness corresponding to the weathered sediment in the drill-hole. Mea-
surements of this precision are also hampered by the dipole length in the
original survey.

Below this weathered layer is a limestone layer which continues down until
basement. The inversion model shows this as most likely a single layer
with resistivity » 1029 ©.m, however there is also some probability that
there are two layers in here, with a more resistive layer up until 400 m
followed by a conductive layer.

Below this section is the basement, which has a relatively unconstrained
resistivity of 10%-18+251 Q) m. The high uncertainty of this measurement is
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likely due to a lack of penetration depth from the minimum frequency of
10 Hz.

The probability distribution for the depth to basement for site IEB1006A
is shown in Figure 8. Compared to the known drill-hole depth to basement
of 1150 m, the probabilistic model performs well, with a mean of 1131 m
and peak probability at 1195 m.

4.5 Conclusion

We have presented the first geophysical inversion using the NUTS algo-
rithm, implementing an MT inversion with adaptive regularisation. The
results of the synthetic probabilistic inversion show that the model can
accurately map abrupt jumps in resistivity as well as smooth changes. We
have shown that the model is robust to different numbers of layers, pro-
vided that enough layers are present to fit the data. Further, we have
provided a comparison with the MT-DREAM(ZS) algorithm and shown
the NUTS algorithm to be efficient both in speed and ability to explore
the parameter space.

The utility of the model has been shown in two case-study sites. For the
first site, the model was able to map three layers in the model with strong
confidence, and provided an accurate measure of the basement resistivity.
The model also gave a probability distribution for the depth to basement
which was compatible with the measured depth-to-basement. Similarly for
the second site the model was able to map the subsurface resistivity and
label the degree of confidence, as well as provide accurate intervals for the
depth to basement.

This algorithm is promising for future work in M'T probabilistic inversion,
where the rapid convergence and efficient exploration will be well suited
to dealing with the high number of dimensions involved in a 2D or 3D MT
inversion.
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Inverting magnetotelluric responses 5.1. Introduction

Abstract

The most computationally intensive step in 3D magnetotelluric (MT) in-
version is the calculation of the forward response. This fact makes any
modelling which requires many function evaluations, including genetic al-
gorithms and Markov Chain Monte Carlo inversion, extremely time con-
suming. Using Artificial Neural Networks (ANNSs) it is possible to approxi-
mate these expensive forward functions with rapidly evaluated alternatives.
We apply this technique to approximate the 3D MT forward function for
a limited subset of resistivity models created in a simple parameterisation.
The trained ANN is able to reproduce forward responses with accuracy
similar to the level of typical data errors. To evaluate the accuracy of the
models, we show that these forward responses may be used to successfully
invert MT data in an evolutionary framework. Examples are shown in
both synthetic and real-world scenarios, and results are compared with
those from traditional inversion algorithms. We conclude that the trained
ANN inversion has a fraction of the run-time of a traditional inversion,
and is successful at modelling the space of its limited parameterisation.

5.1 Introduction

Magnetotelluric inversion is the process of delineating subsurface resis-
tivities based on surface measurements of passively sourced electric and
magnetic fields (Chave and Jones, 2012)). This is an under-determined
problem, meaning that there are an arbitrary number of resistivity struc-
tures which can fit the MT data to equivalent level (Tikhonov, 1963). The
most common solution to limit the model space is to regularise the problem
using a smoothness constraint (Constable et al., [1987). This approach is
efficient, as Fréchet derivatives can be used to continually refine the model.
Other methods, such as evolutionary or genetic algorithms, have the advan-
tage of exploring non-differentiable model spaces (Gallagher et al. 1991}
Sambridge and Mosegaard, 2002). This approach has been shown to be
useful in, for example, Pareto-optimal joint inversions (Schnaidt et al.|
2018). Other methods seek to not just find a single model, but to ex-
plore the space of viable models using Markov Chain Monte Carlo meth-
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5.1. Introduction Inverting magnetotelluric responses

ods (Grandis et al., [1999; |Guo et al. 2011; Rosas-Carbajal et al. 2013).
The majority of these methods, however, have to date been applied only
to the 1D model space, where the MT forward algorithm is an analytic
calculation, and therefore the efficiency of gradient search methods is not
required. Only recently have these methods extended into 2D model space
(Rosas-Carbajal et al., 2013)), and 3D inversions are realistically imprac-
tical without a gradient-search algorithm (Grandis, 2006) or a simplified
parameterisation (Rosas-Carbajal et al., 2015)).

The use of artificial neural networks (ANNs) has been suggested to alle-
viate the computational burden of MT inversion (Raiche, 1991). ANNs
have the ability to learn complex functions and represent them in an ap-
proximate and compact form, which can be rapidly evaluated. Complete
MT inversions using ANNs have been developed variously by Zhang and
Paulson| (1997) in 1D and 2D in limited model ranges; Spichak and Popova,
(2000) for simplified 3D models; Shimelevich et al.| (2007) for a broader
range of model classes in 2D; (Montahaei and Oskooi, 2014)) for azimuthally
anisotropic resistivities; and [Shimelevich et al.| (2017)) for a limited class of
3D models representing Kimberlite pipes.

An alternative to modelling the entire inversion process with an ANN is to
model the computationally expensive forward function used by modelling
algorithms. This approach is more flexible than a direct inversion, as it
allows the user to easily vary the survey design and trial different inversion
schemes and regularisations. Learning forward models using ANNs have
been employed in various fields. Kello and Plaut| (2004) used ANNs to learn
the forward function for the relationship between the shape of the vocal
tract and the acoustic energy that it emits; Wang et al.| (1997) applied the
technique for eddy current forward modelling in finding the size and shape
of flaws in metal such as heat exchanger tubes in nuclear power plants; and
Campisi (2015) has approximated the analytical solution of the diffusion
equation using neural networks. There have also been applications within
the geosciences, with Krasnopolsky and Schiller| (2003)) using ANNs to
approximate forward operators used in remote sensing. More recently,
Hansen and Cordua; (2017) have used an ANN to approximate the forward
function for crosshole ground penetrating radar (GPR) travel time data.
This allowed them to probabilistically invert GPR data using Monte Carlo
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simulations, including for errors introduced by the use of an approximate
forward function.

This paper will demonstrate the use of an ANN to approximate the MT re-
sponse from a 3D Earth. We utilise a compact parameterisation described
by |Alexander and Lee (2018) to generate resistivity structures based on
nine parameters: 3D position in space (three parameters); 3D extent in
space (three parameters); background resistivity; anomaly resistivity; and
attenuation. The synthetic forward responses are then generated with ex-
isting forward codes. A regression ANN is then trained to map these pa-
rameters to their expected forward responses for the off-diagonal elements
of the MT tensor, at an arbitrary point on.

We show that the network is able to achieve a high level of accuracy in its
forward response. We additionally show that the ANNs forward response
can be used in an evolutionary search inversion with rapid convergence.
The inversion is tested on 3D MT synthetic data and on a case-study from
the Curnamona Province, South Australia. Both synthetic and real MT
data inversions are compared to gradient-based inversions, and are found
to have much faster convergence at the expense of model detail.

5.2 Background

In geophysical modelling, the forward function g, relates a given Earth
model m to geophysical data d via the equation

d=g(m). (5.1)

The process of inversion is then to find the model m which best describes
a set of observed data dgps With corresponding error ogps.

For the 3D MT case, we seek to model the function g using an ANN. An
ANN is composed of a network of elements known as neurons, which are
arranged into layers. This network can be thought of as a generalised func-
tion f which maps a set of inputs X to a set of outputs Y: f: X - Y.
Given at least three layers and sufficient neurons and training data, a neu-
ral network may be trained to approximate any given function. Artificial
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neural networks are trained by inputting corresponding sets of inputs x,
and outputs y originating from the function that is being modelled. During
training, the inputs x are continually evaluated by the ANN and network
weights are adjusted to reduce the misfit between the output of the ANN
and the target output y. When learning a geophysical forward model,
training data are generated by forward modelling a proposed model using
existing codes to find the forward response.

To constrain the training data to simpler 3D structures, we used the 3D
variant of the reduced-parameter representation described in Alexander
and Lee| (2018)). This paper introduced the parameterisation of a 3D images
space as a background value, b, combined with a set of overlapping diffuse
ellipse functions f;. The ellipse functions, referred to as "blobs", allow
smooth and simple overlapping large-scale structures to be approximated,
whilst having the flexibility to compactly express arbitrary shapes. Each
blob is described by a set of parameters: 9, the local resistivity; s, strength
(local dominance); o, attenuation; Zpes, Ypos and zpes, the position in 3D
Space; Trad, Yrad AN zq4, the radial size in each dimension; and optionally
rotational parameters z,., v, and z,.

For the training set we choose a simplified single ellipse model which re-
duces the complexity of the model space. The strength property, which
relates to the dominance of ellipses over each-other, can be ignored in this
case. For the single blob model, we also set rotational parameters to zero.

Fach blob parameter is in the range between [0.0,1.0], and the inter-
pretation of this value depends on the parameter being represented. For
parameters representing resistivity: b and 0, the interval [0.0,1.0] maps
on a log-scale to the range: p € [1072 Qm,10° Qm]. For spatial position
of blobs the range [0.0,1.0] spans the entirety of the given model space in
all three dimensions. For blob size a the parameter represents the radius
of the blob as a proportion of the model size in that dimension.

To illustrate the type of models that can be expressed under this scheme,
Figure [5.1] shows examples of three different models with the parameters

given in Table [5.1]
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Figure 5.1: Three different realisations of a resistivity structure using a single blob parame-
terisation and no rotation. The parameters used in the generation of each image are given in

Table @

a. b. c.
b |07 07 07
o [01 03 0.0
a |05 03 09

Tpos | 0.5 0.5 0.45

Ypos | 0.5 0.5 0.55

Traad | 0.1 0.3 0.5

Yraa | 0.1 0.2 0.6

Zpos | 0.1 0.05 0.3

Zad | 0.1 0.1 0.05

Table 5.1: Parameters used to generate images in Figure

63



5.3. Method Inverting magnetotelluric responses

b X~U(0.1, 0.9)

) X-~U(0, 1)

! X~U(0.02, 0.99)
Tpos X~U(0.4, 0.6)
Ypos X-~U(0.4, 0.6)
Trad X~U(0.05, 0.2)
Yrad X~U(0.05, 0.2)
Zpos | X~U(0, 1), 0.4X12
Zrad X~U(0.05, 0.2)

Table 5.2: Distributions used to generate training samples for the ANN for each variable X.
Ul(ai,as) refers to a uniform distribution bounded between a; and as. Note that the final
distribution for z,,s has been transformed and is bounded between 0 and 0.4. Distributions
have been chosen to focus resistivity structure into areas of interest given the mesh structure.

5.3 Method

To generate a set of MT responses for ANN training, blob parameters were
randomly generated by sampling the distributions shown in Table[5.2] The
blob resistivity model was discretised onto a hexahedral mesh compatible
with the WSINV3D MT forward algorithm (Siripunvaraporn et al., 2005)).
Mesh geometry was kept relatively simple in order to minimise the time
taken for forward evaluations. The mesh, shown in Figure 5.2, contains a
dense area of 50 km by 50 km by 100 km in the z, y and z directions, with
added padding of 100 km in the x and y directions, and 40 km in the z
direction. The dense grid is discretised into 16 by 16 blocks in the x and y
directions, giving a total of 256 synthetic site locations at the surface. In
the z direction, 20 blocks are used with a initial thickness of 420 m and
thicknesses increasing at a factor of ~ 1.3 per layer.

A total of 50000 sets of blob parameters were generated, converted into a
hexahedral mesh, and their corresponding MT responses evaluated using
the WSINV3D forward algorithm with an error tolerance of 10=7. MT
responses come in the form of the complex valued 2 x 2 MT tensor, Z,
which describe the relationship between the horizontal components of the
measured electric and magnetic fields at different periods. We calculated
the MT response at five periods: 0.5 s, 5s, 10 s, 100 s and 1000 s. These
frequencies were chosen to give a wide range of the MT response, with a
particular focus on the deep MT response which is more likely to be 3D
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in nature (Chave and Jones, 2012). The Z outputs were converted into
apparent resistivity p, and phase ¢. Responses were only included for
the off-diagonal elements, which are the simplest to model and the most
important during inversion. This gives a total of 20 responses for each
site location. The total time taken to generate the dataset was roughly
2-weeks using a 16 core machine.

The base-10 logarithm of the apparent resistivities were taken and their
values normalised to values bounded by [0, 1]. Similarly, the phases were
scaled to a [0,1] range. For each set of blob parameters, the MT tensor
responses were calculated for 256 site locations spaces evenly on the dense
50 km by 50 km grid at the centre of the mesh in Figure 2. This gives 256
training samples for each blob configuration, with the x and y grid locations
added to the 9 blob parameters to give a total of 11 input parameters.
Output parameters are the off-diagonal apparent resistivities and phases,
Pays Pyxs Puys @y for each of the periods calculated, which totals 20 outputs.
The size of the sample set is 1.28 million.

An ANN is trained using this set of blob parameters and MT responses,
using Keras (Chollet et al.| 2015), a python wrapper, with the Tensorflow
back-end (Abadi et al., 2016). The ANN has the following topology: an
input shape of 11 parameters; 7 sequential layers of 100 neurons with
rectified linear activation units; and an output layer of 20 neurons with
sigmoid activations. This gives a total number of trainable parameters as
63920. The network topology is summarised in Table 5.3. The ANN was
trained with a mean average error loss function, and optimised using the
Nadam gradient descent optimisation algorithm (Dozat, 2016). A split of
20% of the dataset was saved to use as validation, and the remaining 80%
was used during training. The ANN had fully converged after 100 epochs
(forward and backward passes of all training samples), with a training time
of » 5 minutes on a NVIDIA Quadro K5000 GPU. The final training loss
was (0.0274 and the validation loss was 0.0277.
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S

7

-100

Figure 5.2: Figure showing geometry of the mesh used to generate the forward functions.

Axes labels are shown in kilometres.

Activation function

Outputs

Inputs

Layer

rectified linear unit

00
0
0

1

11

rectified linear unit

10
1
1

1
1

100
100
100

rectified linear unit

0

rectified linear unit

00
0

0
20

rectified linear unit

0
0

100
100
100

rectified linear unit

sigmoid

Table 5.3: Network structure for the trained artificial neural network. All layers are fully

connected to the previous layer.
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b d « Lloc  Yioe Trad Yrad Zloc Zrad

0.82 0.206 0.510 0.5 0.5 0.065 0.069 0.09 0.069

Table 5.4: Blob parameters used to create forward responses

5.4 Results

5.4.1 Forward model

To illustrate the differences between the WSINV3D forward model and the
ANN proxy algorithm, a test example is shown. A set of blob parameters
shown in Table 5.4 were selected to showcase a synthetic example with a
strong conductivity contrast.

For the true response, the blob parameters were converted into a hexahe-
dral mesh. The resistivity structure was evaluated using the WSINV3D
forward function to give MT impedance responses, which were converted
to apparent resistivities and phases. The ANN proxy model was then used
to evaluate the same blob parameters, directly outputting the apparent
resistivities and phases for the off-diagonal elements. Results are plotted
in Figure 5.3, showing the xy responses for apparent resistivity and phase
at periods 0.5 s, 10 s and 1000 s. The differenced responses are shown
in Figure 5.4. In this relatively extreme example - featuring close to the
maximum conductivity contrast supported by the parameterisation - we
see that the error introduced by using the ANN is at most 5 degrees in
phase and roughly 30 % in apparent resistivity. These are considerable
errors, particularly in the apparent resistivity. There is a strong spatial
correlation to the errors in the ANN proxy function, for example in the 0.5 s
plot in apparent resistivity we see that the ANN overestimates the spatial
extent of the anomaly, resulting in a halo of reduced apparent resistivity
around the centre.

Importantly, the evaluation of the ANN forward algorithm, once trained, is
much faster than the WSINV3D forward function. On an NVIDIA Quadro
K5000 GPU and using a batch size of 2048 and random blob parameters,
the average time per function call was 6.84x107° s. Comparatively, aver-
aged over 1000 runs, the time per run for the WSINV3D forward model
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Figure 5.3: Cross sections of surface measured apparent resistivity and phase responses
in the zy-orientation at three different periods for each blob, with comparison to the true
response from WSINV3D.
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Figure 5.4: Cross sections of surface measured apparent resistivity and phase responses from

the ANN proxy minus the response from WSINV3D.
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with 6 frequencies was 8.17 s running on a single core of an Intel 17-2600
CPU. This is a speed-up of 5 orders of magnitude. Although it is not as

accurate as the WSINV3D forward function, the ANN model allows us to
use a wider range of inversion strategies due to its fast evaluation.

5.4.2 Synthetic inversion

5.4.2.1 Method

Using the same blob model in Section [5.4.1, we take the true response
from the WSINV3D forward function and apply 5 % Gaussian distributed
noise to the impedance tensor data to create a synthetic data-set for inver-
sion. Two inversions are undertaken: a gradient-based, regularised inver-
sion, WSINV3D (Siripunvaraporn et al., [2005)), and an optimisation using
the Covariance Matrix Adaption Evolution Strategy (CMA-ES) algorithm
(Hansen et al., |2003)). Both inversions use a chi-squared misfit to measure
the goodness of data-fit, which is normalised by number of data-points and
expressed as an RMS. An RMS of 1 means that the model is fitting the
data to the level of the noise.

The WSINV3D inversion was run with a target RMS of 1, and an initial
model of a 1000 Q.m half-space. The mesh geometry was the same as
used for training in Figure 5.2. The inversion converged after 6 iterations,
taking 8 hours to complete running on a single core, with a final RMS of
0.95. The inverted model is shown in Figure 5.5 alongside the true model
and ANN inversion.

The ANN inversion was run using the CMA-ES algorithm to find the set of
blob parameters which best fit the synthetic data. The CMA-ES algorithm
is a stochastic, derivative-free optimiser for continuous variables which is
well suited to non-linear or non-convex optimisation problems. At each
iteration of the CMA-ES algorithm, a population set of n; candidate blob
parameter solutions are evaluated using the ANN proxy forward function.

For this inversion, convergence was achieved after 400 iterations with a
population size of 50, and total running time was less than 10 minutes.
The final blob parameters from the best fitting candidate solution were
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converted to a hexahedral mesh, and plotted alongside the true model and
WSINV3D inversion in Figure 5.5.

In order to ascertain the accuracy of the ANN inversion, the best fitting
solution from each iteration was converted into a hexahedral mesh and
evaluated using WSINV3D to determine true RMS. A plot of the RMS
from the ANN inversion at each iteration is plotted alongside the true
RMS in Figure 5.6.

Finally, in order to investigate the generality of this approach, we repeated
the ANN inversion using 100 different sets of randomly generated blob
parameters. After convergence, the best fitting solution from each of these
inversions was then evaluated with the WSINV3D forward algorithm to
determine the true RMS. The true RMS was then plotted against the
ANN RMS in Figure 5.7.

5.4.2.2 Discussion

Figure 5.5 shows that the ANN inversion provides an excellent fit to the
synthetic data. The ANN inversion provides a model which is structurally
very similar to the true model. The background resistivity, blob resistivity,
blob location and blob x and y radii are all close to the true model. The
inversion does overestimate the vertical extent of the anomaly, however,
as a diffusive technique, MT in general is not so sensitive to structures
beneath conductors. The WSINV3D inversion does better at constrain-
ing the vertical extent of the anomaly, but it underestimates both spatial
extent and the conductivity. This is expected, as the WSINV3D is a mini-
mum structure inversion. In comparison, the ANN inversion includes much
more structure than the WSINV3D model, better recovering the resistivity
and extent of the anomaly. It should be noted that we would expect the
ANN model to perform well in these tests, as the inverted space for the
ANN is the same as the space used to produce the synthetic models.

In Figure 5.6, we test the legitimacy of using the evolutionary search pro-
cess with our ANN forward function. Plotted in the blue is the RMS given
by the ANN forward function on the current best model at each iteration,
which is then verified by checking the true RMS with WSINV3D, shown
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Figure 5.5: Depth slices of inversion results targetting a synthetic model (left) using the ANN
proxy function (middle) and the WSINV3D inversion package (right). Each cell represents a
station location used in the inversion.
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Figure 5.6: A plot of the RMS from the best solution in the population of the evolutionary
search at each step of the inversion process, as calculated by the ANN (blue) and the WS-
INV3D forward model (green). An RMS of 1 indicates that the model is fitting the data to
the noise.
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Figure 5.7: The results of 100 inversions of randomly generated blobs. The inversions are
undertaken using the ANN evolutionary search method, and then the RMS calculated with
both WSINV3D and the ANN.

74



Inverting magnetotelluric responses 5.5. Case-study inversion

in green. From the graph, it is clear that there is a strong relationship
between the RMS calculated from the proxy function and true RMS, with
both calculations in step up to convergence after 225 iterations. The graph
also shows that the ranking of models given by the ANN is very similar to
the true ranking. This means that as the CMA-ES inversion progresses,
the algorithm is progressively finding models which fit the data better.

The plot in Figure 5.7 allows us to further evaluate the effectiveness of
the ANN inversion using CMA-ES. It is clear that there is a strong linear
relationship between the RMS given by the ANN inversion and the RMS
given by WSINV3D, with very little deviation from the red line which
shows equivalence of WSINV3D and the proxy function. This shows that
the inversion using the ANN proxy function is providing trustworthy fits
to the data, which is important for rank based inversion techniques and
probabilistic inversions. Of the 100 models, only 11 have RMS values
greater than 1. This means that the inverted blob parameters were unable
to model the synthetic data according to the noise. A more expressive
model would be able to model these data. The majority of the data fits,
however, have RMS values less than 1. This means that the inversion is
fitting the data better than the error bars. As the blob parameters were
randomly generated, many of the models will have low resistivity contrasts.
These models will be easier to overfit, as only the background parameter
is required to fit the data.

5.5 Case-study inversion

5.5.1 Method

A case-study inversion using MT data collected from the Curnamona
Province, South Australia, was undertaken to showcase the utility of the
new ANN forward algorithm and CMA-ES inversion. The survey data
was originally collected as part of the AusLAMP program, with modelling
and interpretation made by Robertson et al,| (2017) using the ModEM in-
version code (Kelbert et al., 2014)). The survey included 74 sites with a
period range of 2 s to 17000 s. The sites are spaced roughly within 50 km
of each-other.
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Figure 5.8: Site locations are shown as circles with colouring proportional to the RMS
attained by the independent ANN inversion. Locations are expressed as longitudes and lati-
tudes.

Due to the large distance between the sites, we are unable to calculate
the forward model of multiple sites using the same blob parameters from
our ANN proxy function. Instead, we undertook 74 separate independent
inversions at each site location using the same technique as established
in Section [5.4.2] For this inversion, we only consider the periods of 10 s,
100 s and 1000 s, as these are the only points for which we have data at.
We enforce an error floor of 5% on the data errors. The 74 independent
inversions finished within 10 minutes, and the overall RMS for the inversion
was 3.76. The RMS values for each inversion is plotted in Figure 5.8,
showing the spatial distribution of the model fits.

The resultant inverted blob parameters are then converted to resistivities
on a hexahedral mesh. These resistivities are then interpolated onto the
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same mesh geometry used for the comparison inversion of [Robertson et al.
(2017)) by setting each point at © = (x,y, z) to an average of the resistivity
given by the closest point from each site i, located at x; = (x;,y;,0),
weighted by cube of the distance between the points and the and the
quality of fit attained by the inversion as follows:

3
r -l
p(T) RMSZ ?

where RMS; is the RMS error of the inversion at site 7. This allows the site
nearest to the interpolated cell to dominate the resistivity weights, while
giving a preference to the better fitting sites when the cell has multiple

w (5.2)

adjacent sites. Depth slices from this inversion are plotted in Figure 5.9.

For comparison, the inverted result from [Robertson et al| (2017) is also
plotted alongside the ANN inversion in Figure 5.9. This inversion was
run using the ModEM MT inversion software. It included full impedance
tensor data from 23 periods ranging from 2 s to 17000 s, and tipper data
from 21 periods from 1 s to 8000 s. The modellers used error floors of 5%
for the impedance tensor and 3% for the tipper error. The final RMS for
the inversion was 1.33.

5.5.2 Discussion

In Robertson et al.[(2017)) there are three main structural regions which are
imaged in the slice shown in Figure 5.9. The shallowest, the Curnamona
Conductor (CC) is present is most prevalent as the strong conductor in the
north-east section of the 7 km slice of the ModEM inversion in Figure 5.9.
This structure is first seen in the model at 5 km and continues through the
30 km slice to a final depth of roughly 40 km. The inversion also images
two other strong conductors, called the Western Nackara Arc Conductor
(WNAC) and the Eastern Nackara Arc Conductor (ENAC). These two
conductors are roughly parallel to each-other and follow the curve of the
Nackara Arc of the I[lkara-Flinders Ranges. The WNAC is present in the
model from 20 to 80 km and the ENAC from 20 to 60-70 km.

Robertson et al.| (2017) use these resistivity models to create interpreta-
tions of the major conductive structures by considering their structures
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Figure 5.9: Depth slices of the inversion from Robertson et al. (2017) using ModEM (top)
compared with the ANN evolutionary search (bottom). Site locations are shown as triangles.
Locations are expressed as longitudes and latitudes. The anomalies Western Nackara Arc
Conductor (WNAC), Eastern Nackara Arc Conductor (ENAC) and Curnamona Conductor
(CC) have been labelled in the figure.
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in conjunction with isotope analyses, seismicity studies, elemental com-
positions and previous geological studies. The Curnamona Conductor is
interpreted to support conclusions of the presence of crustal conduits for
fluids in the Curnamona Province. Similarly, the FEastern Nackara Arc
Conductor is interpreted as the result of fluids or partial-melts sourced
from the mantle forming alterations and depositing conductive phases.
Additionally, the authors argue that the Western Nackara Arc Conductor
could represent the preservation of an active rift conductor.

The results from the ANN inversion have some similarities with the Mo-
dEM inversion of Robertson et al| (2017). In the 3 km and 7 km slices
there is clear evidence of the Curnamona Conductor in the north-east sec-
tor. This is shallower than in the ModEM inversion, which does not have
clear evidence of the Curnamona Conductor in the 3 km slice. Struc-
turally, the 3 km and 7 km slices in the ANN inversion are very similar,
however in the ModEM inversion there are more regions of high resistivity
in the 7 km model. In the 7 km slice of the ANN inversion the majority
of the inversion area is roughly 1-10 Qm, whereas the ModEM inversion
features many regions of greater than 1000 2m. In the 30 km comparison,
the ANN inversion has very similar average resistivities to the ModEM
inversion, however the ANN inversion fails to delineate the same struc-
tures present in the ModEM inversion. In particular, the Western Nackara
Arc Conductor is less prevalent in the ANN inversion, which features a
much broader area of conductivity. Similarly, the Eastern Nackara Arc
Conductor is not a strong feature in the ANN inversion.

When considering the RMS errors shown in Figure 5.8, we can see that
there a relationship between how well the ANN inversion was able to fit
the MT data, and the agreement with the ModEM inversion. Particularly,
the north-west corner of the inversion features the highest density of well-
fitting sites, and these have a strong agreement with the ModEM inversion.
One of the most difficult locations for the ANN inversion was the north-
east corner, where the majority of data is unable to be fitted using a simple
one-blob model. Similarly, the south-east corner contains many sites with
a poor model fit. This area was modelled as a region of high conductivity
by the ANN inversion, which does not agree with the model provided by
ModEM.
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Although the ANN inversion is unable to provide the same level of re-
gional detail as the ModEM inversion, it is clear that there is still a strong
similarity between the two models. The ANN is able to resolve the key
conductive feature in the area, the Curnamona Conductor.

Further work is required to improve the ANN proxy function to a similar
level to standard 3D MT forward function codes. Multiple blobs can be
used in the same model to produce a wider range of resistivity structures
than just a single blob. Training could use the values of the hexahedral
mesh directly, allowing multiple models to easily be stitched together. This
would also give the forward function a more direct access to the spatial
layout of the resistivity structure below. Instead of responses with fixed
resistivities, randomly generated frequency responses could be evaluated
and treated as function inputs, allowing the user flexibility in frequency
evaluations. Additionally, it would be desirable to output the full MT
tensor, and potentially tipper responses, rather than just the off-diagonal
elements. This added complexity will however require a much larger train-
ing set compared to the simple case presented here, adding considerably
to the overall computation time to generate the forward responses used for
training. Some of the extra training complexity could be alleviated with
the use of 3D convolutional neural network layers to discern which parts
of a hexahedral mesh input are most important for forward response infer-
ence. We would suggest however that the current ANN inversion could be
used for the rapid inversion of simple 3D structures, as a more informative
starting model for a ModEM inversion, or for the efficient exploration of
model space using Monte Carlo sampling techniques.

5.6 Conclusion

In this study, we have demonstrated the use of an artificial neural network
(ANN) as proxy function for the MT forward response to facilitate rapid
inversion. We have successfully trained an ANN to take a compact param-
eterisation of the Earth’s resistivity and return the MT forward response
for the off-diagonal elements of the impedance tensor at five periods. Our
results show a good level of accuracy in forward response applied to simple
geologies within the compact parameterisation, and importantly a speedup
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of five orders of magnitude compared to the WSINV3D forward code. Ap-
plied to inversion using the CMA-ES optimisation algorithm, we were able
to utilise the ANN forward algorithm to achieve comparable inversion re-
sults to WSINV3D, with convergence achieved in 1/50th of the time. By
verifying a set of 100 inversions with the WSINV3D forward function, we
were also able to confirm that the ANN inversion consistently converges to
well-fitting models. The ANN proxy function was further tested by invert-
ing a case-study dataset from the Curnamona Province, Australia. The
ANN inversion resolved rapidly, converging in under 10 minutes, however
it lacked the same level of detail as the comparison ModEM inversion. The
ANN inversion did however delineate some of the key geological structures
present in the ModEM inversion.
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CHAPTER
SIX

DISCUSSION

6.1 Summary

This thesis presents new tools for the inversion of MT data to address ar-
eas where gaps in the modelling toolkit exist. There are three broad goals
to this work. Firstly is to implement an inversion to model time-lapse
MT data in a temporal dimension. Secondly is to explore the problem
of non-uniqueness in MT data inversion by implementing a 1D Bayesian
inversion using an efficient sampler which is readily extendable to 2D and
3D Bayesian inversion. The third aim is to explore the possibility of ap-
proximating the 3D MT forward function with a proxy function based on
artificial neural networks.

A time-lapse inversion of 1-D MT data is implemented in Chapter [3] The
algorithm considers the entire dataset at once, with penalisations for model
roughness in both the spatial and temporal dimensions. The inversion
is simple to apply, requiring only a desired level of misfit and the ratio
between the temporal and spatial regularisations. The model is tested on
synthetic MT data and it successfully retrieves the main characteristics of
the test model while introducing minimal artefacts, even in the presence of
significant noise in the data. A time-lapse inversion of data from an active
coal-seam gas field in the Surat Basin, Queensland, Australia is used as
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a case-study. The inversion images small changes in resistivity consistent
with the location of layers targetted by the dewatering. The results also
agree with previous inversions of the data.

In Chapter ] a Bayesian inversion of MT data is presented using the NUTS
MCMC sampler. The implemented model includes a novel way of regular-
ising MT inversion by allowing the strength of smoothing to vary between
different models. This allows for a model which can image sharp bound-
aries as well as smooth changes. The MCMC sampling shows extremely
good convergence and an independence of the final model on the initial
model. When tested on noisy synthetic data, the algorithm converges to
a model to a maximum a posterior: likelihood which is extremely close
to the target resistivity curve, and a reasonable approximation of the un-
certainty of model parameters. Compared to other sampling techniques,
the NUTS sampler provides a more accurate a posterior: probability dis-
tribution with a considerably shorter run-time. The effect of increasing
and decreasing the number of layer numbers is also investigated. It is
found that a less-than-sufficient number of model parameters leads to a
model which is unable to resolve detail in the model, however the effect
of too many layers is negligible. The inversion is then tested against two
datasets from Boulia, Queensland, where the inversion result is used to
infer the lithology of sedimentary units as well as the depth to basement.
The final results are highly consistent with drill hole data in the area, and
shows that the inversion is a viable tool for the probabilistic modelling of
depth-to-basement.

Finally, in Chapter [5] a proxy function is presented which approximates
the MT 3D forward function using ANNs. The function is trained on a
parameterised model space and the corresponding MT response from the
WSINV3D forward function. The network is able to achieve a reasonable
degree of accuracy, with results being within 5% of the correct response.
Due to the highly parallelisable nature of ANNs, the forward function is
able to evaluate 5 x 10° models per second, which is roughly six orders of
magnitude faster than the corresponding analytical model. This allows us
to use robust search algorithms which contain large numbers of function
calls, such as the evolutionary algorithm CMA-ES, to efficiently model 3D
MT datasets. Results from a synthetic inversion show comparable results
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between the ANN inversion and standard inversion codes for a simplified
3D model. Importantly, the RMS provided by the ANN proxy function
throughout the inversion closely mirrors the true RMS as calculated with
the WSINV3D forward function. This result is replicated with another
set of 100 inversions. Additionally, these inversions show that the ANN
consistently over-estimates the RMS of the model, which is preferable to
generating false positives. A case-study inversion is also presented from
the Curnamona Province, South Australia. These results show many of
the same broad features present in a published ModEM inversion from
the same dataset. The ANN inversion, however, is unable to resolve the
same level of detail as the ModEM inversion, and misses some of the con-
ductive features present in the ModEM inversion which are essential for
intepretation.

The advancements made in this thesis belong in a wider context of MT
modelling research. Here a brief overview is given for further development
in the work presented in this thesis.

In Chapter |3| an algorithm was presented to invert time-lapse magnetotel-
luric data in 1D space, motivated by the work of Kim et al.| (2009) in time-
lapse DC resistivity modelling. The obvious extension of this work would
be to extend this work to 2D and 3D model space. Concurrent research
has already provided this inversion in 3D space, with Nam et al.| (2017)
applying the same time-smoothing regularisation as Kim et al.| (2009) to
successfully invert for a dynamic geothermal reservoir. Other interesting
avenues include continuing the work of [Rosas-Carbajal et al. (2015]), who
used a parameterisation of a fluid injection utilising plume physics applied
to an injection in a geothermal reservoir. Other parameterisations could
include running joint magnetotelluric and hydrological models, for exam-
ple utilising the relationship between fracture permeability and electrical
properties explored by (Kirkby and Heinson, 2017).

Similarly, the 1D MCMC sampler in Chapter 4] can also be extended to
2D and 3D. One of the main advantages of using the NUTS sampler is
that it is extremely efficient at sampling in high-dimensional spaces. The
sampler is also well suited to correlated parameters. Unfortunately, the
stan programming language that the algorithm in Chapter [4]is coded in
does not support external functions, which would be required to pass the
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forward response from 2D and 3D forward models. One alternative is to
use the pyme3 package, which allows for "black-box" functions to be passed
along with their gradient (Salvatier et al., 2016)).

Finally, the approach in Chapter |5| provides a prelimenary study for much
future work using machine learning in geophysical inversion. As with many
machine learning problems, the accuracy of the ANN presented would im-
prove with a larger training set. A larger training set would enable features
such as variable frequency and responses from the diagonal elements of the
MT tensor to be learned. It would also give the possibility of running all re-
sistivity values of the hexahedral mesh as inputs to the ANN, which would
allow much more expressive models. This could be achieved by generating
random resistivity meshes using multiple randomly generated blobs, and
using 3D convolutional neural networks (CNNs) to learn the resistivity
features which lead to certain MT responses. The use of 3D CNNs is com-
mon in medical imaging for volumetric medical imaging (Kamnitsas et al.,
2015} [Kleesiek et al., 2016; Milletari et al., 2016) and generally for video
imaging (Ji et al., 2013; Molchanov et al| 2016). In a seperate develop-
ment, the CMA-ES inversion presented in Chapter [5| can be supplemented
by a MCMC inversion. As applied for (Hansen and Cordua 2017) for GPR
data, the combination of an ANN proxy function and MCMC allows the
modeller to make fast MCMC sampling and also directly account for the
error introduced by the proxy function by the introduction of an additional
error term into the likelihood function.

To conclude, this thesis presents three advancements in the field of MT
modelling. The three achievements are to implement conventional MT in-
version to the unconvential setting of time-lapse MT; to further advance
Bayesian inversion of MT data using new algorithms and a new model
conception; and finally, to create a fast proxy function for the 3D MT
forward function to facilitate rapid 3D inversion using evolutionary algo-
rithms. Each of these three areas represent the creation of a new tool for
the MT community to use in modelling, extending the quality of mod-
els available in the interpretation of MT data. This, in turn, can help
geoscientists make better decisions in the many applications of MT.
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Schnaidt, S., Conway, D., Krieger, L., & Heinson, G. (2018).
Pareto-Optimal Multi-objective Inversion of Geophysical Data.
Pure and Applied Geophysics, 1-16.

In this paper, further development is made to uncertainty analysis in
geophysical inversion. An algorithm is showcased which simultaneously
inverts multiple geophysical datasets and provides information regarding
the compatibility of the datasets and the probability distribution of the
parameters. Personal involvement in the paper included the synthesis of
previous work into a single manuscript, editing of figures and tables, and
acting as corresponding author for the submission of the manuscript.
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Pareto-Optimal Multi-objective Inversion of Geophysical Data
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Abstract—In the process of modelling geophysical properties,
jointly inverting different data sets can greatly improve model
results, provided that the data sets are compatible, i.e., sensitive to
similar features. Such a joint inversion requires a relationship
between the different data sets, which can either be analytic or
structural. Classically, the joint problem is expressed as a scalar
objective function that combines the misfit functions of multiple
data sets and a joint term which accounts for the assumed con-
nection between the data sets. This approach suffers from two
major disadvantages: first, it can be difficult to assess the com-
patibility of the data sets and second, the aggregation of misfit
terms introduces a weighting of the data sets. We present a pareto-
optimal multi-objective joint inversion approach based on an
existing genetic algorithm. The algorithm treats each data set as a
separate objective, avoiding forced weighting and generating
curves of the trade-off between the different objectives. These
curves are analysed by their shape and evolution to evaluate data
set compatibility. Furthermore, the statistical analysis of the gen-
erated solution population provides valuable estimates of model
uncertainty.

Key words: Multi-objective optimisation, joint-inversion,
data set compatibility, model uncertainty, magnetotellurics.

1. Introduction

Geophysical models can benefit greatly from the
combined inversion of multiple data sets. Different
methods are sensitive to different petrophysical
parameters and different parts of the subsurface, and
they usually have uncorrelated noise components.
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Even the use of multiple data sets from the same
method can be beneficial, as the noise components of
data sets collected at different times are also likely to
be uncorrelated. Thus, additional information avail-
able for inversion will improve the quality of the
resulting model by reducing solution non-uniqueness
(Munoz and Rath 2006). Standard joint inversion
approaches are generally used for data that are sen-
sitive to the same petrophysical parameter, such as
electrical and electromagnetic resistivity (Yang and
Tong 1988; Abubakar et al. 2011) and seismic
velocities (Julia et al. 2000), or methods that are
sensitive to different physical parameters, but have a
structural connection (Gallardo and Meju 2003, 2007;
Commer and Newman 2009; Jegen et al. 20009;
Moorkamp et al. 2011).

The classical approach to the joint inversion
problem is based on a scalar objective function that
combines misfit measures for all data sets and also
includes a joint term that connects the different data
sets (Haber and Oldenburg 1997; De Stefano et al.
2011). Weighting has to be employed to aggregate all
misfits into one objective function. Data sets may be
weighted equally (Dobrdka et al. 1991; de Nardis
et al. 2005), have individual weightings (Julia et al.
2000; Mota and Santos 2006), or use sophisticated
techniques such as fuzzy c-means coupling for the
joint inversion (Carter-McAuslan et al. 2014). The
choice of weights can vary between problems (Treitel
and Lines 1999), and the choice of inappropriate
weights can lead to bias in the results (De Stefano
et al. 2011). A set of guidelines for setting weights is
given by Marler and Arora (2010).

The use of a combined objective function also
makes it difficult to judge the compatibility of data
sets: it is important to determine whether data sets are
sensitive to similar features and if the assumed rela-
tionship between the data sets is valid. Forcing
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incompatible data sets into a joint model may yield a
model that is worse than the corresponding single
data set models, because an inversion algorithm will
produce unnecessary artefacts trying to compensate
for an underlying incompatibility.

One alternative to the conventional approaches is
the group of multi-objective evolutionary algorithms,
which mimic natural evolution processes (Holland
1975). Such algorithms treat each data set as a sep-
arate objective rather than aggregating them into a
single objective function, which circumvents forced
weighting. Calculating individual objective values
allows for detailed statistical analysis. For example, it
leads to the creation of trade-off surfaces, which
allow inference of data set compatibility. These
methods are direct search methods (Lewis et al.
2000), which do not require linearisation approxi-
mations or any gradient information. They create an
ensemble of solutions rather than a single best fit
result, which has the added advantage that the solu-
tion ensemble can be evaluated to infer qualitative
estimates of model uncertainty.

Multi-objective evolutionary algorithms
demonstrated potential to solve problems in engi-
neering, computer sciences, and finance (Coello et al.
2007; Zhou et al. 2011), but they have been sparsely
used in the geophysics community. Kozlovskaya

have

et al. (2007) compared conventional and multi-ob-
jective methods for seismic anisotropy investigations,
but used a neighbourhood algorithm (Sambridge
1999a, b) instead of an evolutionary algorithm. The
earliest applications of multi-objective evolutionary
algorithms in geophysics included (Moorkamp et al.
2007, 2010), to jointly invert teleseismic receiver
functions and magnetotelluric data, as well as recei-
ver functions, surface wave dispersion curves, and
magnetotelluric data. Other work has been done on
seismic data (Giancarlo 2010), magnetic resonance
and vertical electric soundings (Akca et al. 2014),
cross-borehole tomography (Paasche and Tronicke
2014), and reservoir modelling (Emami Niri and
Lumley 2015).

We present here a multi-objective joint optimi-
sation algorithm, which is based on the Borg multi-
objective evolutionary algorithm by Hadka and Reed
(2013). In this work, we focus on the application of
the algorithm to quantify data set compatibility and
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also produce a solution ensemble. We will first
explain the algorithm in detail and show how the
solution ensemble can be used to generate reliable
models. We will then demonstrate the functionality of
our data set compatibility measure in synthetic model
tests and evaluate influences of noise and data error
estimates. In our study, we focus on two sets of
magnetotelluric data; however, the concept may be
extended to any pair of geophysical data.

2. Theory

2.1. Definition of Multi-dimensional Pareto-
Optimality

When dealing with multiple conflicting objec-
tives, it is impossible to define a single best solution
without introducing weighting of the objectives. In
combination with solution non-uniqueness, this is the
reason that conventional approaches, which search
for a single best fit solution to a joint-inversion
problem, produce biased results.

To mitigate this problem, an alternative way to
define optimality has to be employed. In the field of
multi-objective optimisation, the most widely used
concept to rate solution quality is that of pareto-
optimality, which was first introduced by Edgeworth
(1881) and Pareto (1896). A solution is considered
pareto-optimal if there is no other feasible solution
that can improve an objective without deteriorating
any other objective, and the entirety of solutions
fulfilling this criterion is called the pareto-optimal
set. When the pareto-optimal set is projected onto a
surface, it is referred to as the pareto-front, which
comprises a trade-off surface between the different
objectives.

The objective value vectors of the pareto-optimal
solutions are pareto-non-dominated. For a minimisa-
tion problem with N objectives, the objective vector
X" = (Xj,X3,...,Xy), containing the N objective
function values for a given solution, is defined to
pareto-dominate another vector x = (Xg, X3, . . ., XN) if
and only if:

xi<x; Vie{l,2,.. ,N}AFe{l,2,... N} :x;<x,

(1)
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which is denoted by x* <, x (see, e.g., Coello et al.
2007, p. 10-11).

In a pareto sense, all non-dominated solutions are
rated as optimal and no non-dominated solution is
considered better than any of the others. In our case,
pareto-optimality is a minimal optimality condition
that will not always produce physically meaningful
results, but rating of the solutions using pareto-
efficiency allows for solving the optimation free of
weighting biases.

2.2. Multi-objective Evolutionary Algorithm
(MOEA)

The multi-objective joint optimisation algorithm
is a stochastic approach to yield an ensemble of
model solutions to an inversion problem. It is based
on the auto-adaptive Borg Multiobjective Evolution-
ary Algorithm (Hadka and Reed 2013).

The Borg algorithm was chosen as it is a state-of-
the-art multi-objective evolutionary algorithm cap-
able of adapting to various problems. Multi-objective
evolutionary algorithms generally deteriorate in per-
formance for more than three objectives (Ishibuchi
et al. 2008; Zhou et al. 2011); however, the Borg
algorithm performs well on problems with many
objectives (Hadka and Reed 2013). Other advantages
of the algorithm include good convergence and high
solution diversity of the solution ensemble, which is
necessary to infer model ranges and generate reliable
information on the compatibility of different
objectives.

Evolutionary algorithms are direct search methods
that do not require computation of Frechet deriva-
tives. Such methods require significantly more
function evaluations than conventional inversion
algorithms, but parallelisation of codes is often
possible and enhanced computing power is readily
available. The stochastic component inherent in
evolutionary algorithms makes them very robust
against local minima.

The workflow is illustrated in Fig. 1. A starting
population is initiated with random parameters inside
predetermined parameter thresholds. All member
solutions of the population are then evaluated against
the measured data sets and objective values

calculated for every objective. This is followed by
an evaluation of the domination status of each
solution. The objective values are usually expressed
as root mean square (RMS) deviations 9, the misfit of
the forward calculated response of a set of model
parameters m to a set of n observed data points d,
normalised by the errors of the observed data points
0q4.

i

The algorithm also allows the user to set misfit con-
straints, which effectively limits the feasible region of
objective space. Solutions outside the feasible region
are treated as invalid.

In addition to the misfit functions, a regularisation
measure has to be defined to stabilise the inversion.
This measure is treated as separate objective, result-
ing in pareto-fronts between the model misfits and
model complexity. This provides stability by making
solutions with lower model complexity outrank
solutions with higher complexity for an equal model
misfit. The calculation of the regularisation measure
is customisable and depends on the model parameters
and geometries. In a conventional inversion scheme,
the regularisation functional is part of the objective
function and its influence in comparison with the
misfit measure(s) is determined by a weighting factor,
which has to be determined appropriately. Treating
the regularisation functional separately from the
objective-functions eliminates the need to find this
weight factor.

New population members are created via recom-
bination operators after the solutions are evaluated
and their domination status is determined. The
solutions to be used for recombination are chosen
via tournament selection (Miller and Goldberg 1995).
There are a variety of different recombination
operators available, but usually, only one is imple-
mented in a given algorithm. Different kinds of
operators have different degrees of effectiveness,
depending on the type and nature of each individual
search problem. This led to the proposal of adaptive
operators (Vrugt and Robinson 2007; Vrugt et al.
2009). Hadka and Reed (2013) implemented the Borg
algorithm with the capability to auto-adaptively
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Figure 1
Flowchart of the algorithm’s functionality. A starting population is initiated with random parameters and objective values are calculated. After

the domination status for each solution is determined, new population members are created via recombination based on the current population.
The new population is then evaluated and the loop is repeated until a termination criterion is reached. After search termination, the results are
analysed statistically

select from six different recombination operators:
simulated binary crossover (Deb and Agarwal 1994),
differential evolution (Storn and Price 1997), parent-
centric recombination (Deb et al. 2002), unimodal
normal distribution crossover (Kita et al. 1999; Deb
et al. 2002), simplex crossover (Tsutsui et al. 1999;
Higuchi et al. 2000), and uniform mutation (Sys-
werda 1989). The algorithm adapts the probability of
a given operator to be used according to its success
rate in producing solutions in non-dominated solu-
tions. For a given problem, generally, one of the
operators will be dominant (Hadka and Reed 2013).
New solutions produced by all recombination oper-
ators, except for the uniform mutation operator, are
subjected to polynomial mutation (Deb and Goyal
1996). Mutation operators randomly mutate a given
parameter of a solution and add a stochastic compo-
nent to the search, ensuring better search space
exploration and robustness of the search against local
minima.

The new population produced by the recombina-
tion and mutation process is then evaluated and the
loop is repeated until a termination criterion—usually
a maximum number of solution evaluations—is
reached.

It is important to retain optimal solutions during
the search to ensure optimisation success and con-
vergence of the search (Zitzler 1999; Zitzler et al.
2000). Borg exercises this so-called elitism by
keeping an archive of the non-dominated solutions.
When using pareto-efficiency as the optimality

criterion for a multi-objective optimisation approach,
one has to ensure that the calculated pareto-front is as
complete and as close to the real pareto-front as
possible. As population and archive cannot be of
infinite size, a multi-objective evolutionary algorithm
will eventually eliminate solutions, even though they
might be non-dominated, known as deterioration of
the pareto-front (Hanne 1999). Preventing the pareto-
front from deteriorating requires active diversity
management (Purshouse and Fleming 2007). Borg
employs a modified version of &-dominance (Hanne
1999; Laumanns et al. 2002) to ensure solution
diversity.

The N-dimensional objective space is discretised
by dividing it into hyper-rectangles (Coxeter 1973)
with side lengths ¢ > 0 (Fig. 2). Using the notation
L’—F‘J = (L’%J, L’%J,, FTNJ) (|-] denotes the floor
function) for a e-box index vector for an N-objective
problem, dominance [Eq. (1)] is redefined as discrete

&-box dominance. An objective vector
X" = (X],X},...,Xy) is defined to &-box dominate a
vector X = (X1,Xa,...,Xn) if and only if one of the

following equivalent conditions holds:

ol e
= ) e o<l

which is denoted by x* <, x (after Hadka and Reed
2013). The algorithm also allows for individual

, (3b)
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Figure 2
Ilustration of ¢ dominance and ¢ progress for a hypothetical two
objective case. Filled circles mark existing archive members, open
circles mark solutions that are newly added to the archive, and grey
& boxes mark the area dominated by the existing archive members.
Solutions (a) and (c¢) will replace existing archive members,
solutions (b) and (c) also satisfy the conditions for & progress, and
the ¢ boxes marked with a chequerboard pattern are newly
dominated. Modified from Hadka and Reed (2013)

& >0 Vi,i={l,...,N} to be assigned for each
objective.

Only one solution per & box is added to the
archive. If a new solution is found that & box
dominates another solution in the same & box, the
former solution will be replaced with the new one.

The &-box criterion is also used to monitor search
progress. The so-called & progress is achieved if a
new-found solution not only ¢ dominates at least on
existing archive entry, but is also located in a
previously unoccupied ¢ box. ¢ progress is checked
sporadically and search restarts will be triggered if
search stagnation is detected. If a restart is triggered,
the size of the main population is adjusted in relation
with the current archive size, according to a prede-
termined population-to-archive ratio and the
population is purged and refilled with new solutions.
These new solutions are generally made up of
(mutated) archive entries, or new randomly initialised
solutions. Maintaining a constant population-to-
archive ratio can assist in the avoidance of local
minima (Tang et al. 2006). This constant ratio also
means that the ¢ values limit the archive and
population sizes and the ¢ values can be chosen to
control these.

We have adapted the Borg algorithm to jointly
invert multiple geophysical data sets, such as elec-
tromagnetic resistivity well-logs, and seismic. Each
data set is treated as a separate objective represented
by its own objective function (see Eq. 2). We have
added modules for the statistical evaluation of the
resulting solution ensembles of the final archive and
intermediate archives, to calculate model statistics
and uncertainties, and to determine data set
compatibilities.

2.3. Solution Ensemble Appraisal

The ny.ch. solutions contained in the final archive
represent the full range of pareto-optimal solutions
found by the algorithm before the termination
criterion was reached. A pareto-set exists whether
or not the data are compatible, but the shape of the
distribution of pareto-set members in conjunction
with the evolution of this distribution during the
optimisation process is dependent on the degree of
compatibility. This final solution ensemble can be
used to analyse the variability of the model param-
eters across all solutions to estimate parameter
uncertainties. An ideal point in objective space is
determined and the solutions close to the ideal point
are evaluated to determine the variability of these
solutions in parameter space, which indicates param-
eter uncertainties (Kozlovskaya et al. 2007). The
solution with the smallest Euclidean distance to the
ideal point is taken as the optimal solution found by
the algorithm. This point is chosen as the ideal point
under the assumption that with correctly estimated
data errors, the normalised misfit will reach a value of
5; = 1 for the optimal solution.

In our tests, we will consider the hypothetical
solution with a misfit of & = 1 in all objectives as the
ideal solution or ideal point for our tests, with

0= (31,02,...,0n)"
1=(1,1,...,1)"

Achieving a misfit of unity is reliant on correct error
estimation, and the ideal point will need to be chan-
ged if there is reason to believe that error estimates
are systematically higher or lower than the given
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values. Individual misfits are normalised relative to
their ideal point, such that

: 5
y-norm. - . 4
. = 5] )

Weighted means X and the corresponding variances

2 .
o; are calculated for all parameters {x;},_; ,

Narch.
D iST Wh - Xk

X = ZZMC? we (5a)
arc) 3 2 Ir'C|
(S -9 T
O-X - Rarch. 2 Parch. 2 ’
( k=1 Wk) — 2k=1 Wk

The weights {w;} are chosen as the distance of a
given solution k to the ideal solution in objective
space:

wi = |[(8 — D], (6)

to ensure that solutions closest to the ideal point have
the largest influence on the result. The regularisation
objective is not included in the computation of the
weights, as it is not calculated as a misfit-function.
The solution’s distance from the ideal point is also
used to assess the convergence of the population
during an inversion by calculating the median of the
distances of all analysed solutions.

2.4. Data Set Compatibility

The concept of data-set compatibility is closely
related to the concept of conflicting objectives and
tries to quantify the degree of conflict. Pareto-front
objective trade-off surfaces can be used to analyse
compatibility of the different conflicting objectives.

Identical data sets are considered maximally
compatible. Hence, for any solution, the misfits
{0}z, for perfectly compatible data sets would
be identical across all N objectives and would be
distributed in objective misfit space along
Ok = Ok = - -~ = OxnVk. Therefore, in two-objec-
tive misfit space, the ideal fit is equivalent to a line
with slope migeas = 1.

To assess the pairwise compatibility of any two
objectives, we calculate a linear fit for the solutions in
the 2-D plane of objective misfit space of the
objectives in question. The deviation of this fit from
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the ideal line with slope 1 gives information about the
degree of compatibility between the two data sets.
This scheme is illustrated in Fig. 3.

The standard linear least squares regression
(Lawson and Hanson 1974) is a non-robust measure
(McKean 2004). We choose the robust Theil-Sen
estimator (Theil 1950; Sen 1968) as a regression
method to avoid bias from outliers without needing to
analyse the data set for outliers and remove them.
This estimator for a set of Q 2-D points {(x;,y;)]i =
1...0Q} is calculated as the median m of the slopes

{mj;li,j = 1...0} calculated between every possible

two point combination:

mi :u l#], l>], nﬁzmedlan{m,d}
Xj—Xi

(7)

The opening angle y between the ideal line and the
fitted line is assessed to make the analysis indepen-
dent of objective misfit scale choice, and we assess

m — Mideal

tany = )

m—1
e ) (8)
1 + m - Migeal 1 +m

Representing the ideal line and fitted line graphically,
and using identically scaled axes, perfect compati-
bility results in a deviation angle from the ideal line
of y = 0°, and maximum incompatibility results in a
deviation angle of y =90°. Deviation angles of
y <45° indicate data compatibility, whereas deviation

== |deal line

- .
L]

2 iy
= 4 . 7
3 . »
= o Se a
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[ " q o]
{3 ," B Archive members
= o U
0 g-’f . = = = Theil-Sen regression
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! (minimal misfit)

; <t Ideal point

1

Misfit & - objective X

Figure 3
Conceptual misfit visualisation of two objectives for a hypothetical
archive of two compatible data sets. The archive members of the
pareto-optimal set are scattered around the ideal line with slope 1.
The optimal solution is defined as the archive member with the
smallest norm deviation from the point 1 in the space of normalised
misfits
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Figure 4
Conceptual misfit visualisations for two hypothetical pairs of data
sets: one pair of compatible data sets (blue) and one pair of
incompatible data sets (orange). The slopes of the Theil-Sen
regressions through both archives are indicated by the labelled
‘compatible’ and ‘incompatible’ regions

angles of y > 45° indicate incompatibility. Figure 4
demonstrates the conceptual differences between the
misfits of solutions for compatible and incompatible
data sets, respectively.

For real-world data sets, perfect compatibility can
never be achieved due to a variety of reasons, which
will have different manifestations in the way the
pareto-fronts deviate from the ideal line: different
methods can have different sensitivities and resolu-
tion, different depth of investigation, or data sets
might have different levels of data error. Different
sensitivities or different depth of investigation can
cause data sets to neither be fully compatible nor
incompatible, but rather partially compatible or
disconnected. The pareto-front surfaces for discon-
nected or partially compatible data sets will have
different characteristics than fronts of truly incom-
patible data sets.

3. Synthetic Tests

We demonstrate the functionality of our approach
using sets of synthetic data. We use simulated 1-D

magnetotellurics (MT) data sets and resistivity well-
logs, which will be inverted for isotropic resistivity
and layer thickness.

Using 1-D MT data, we ensure complete con-
trollability of the compatibility of the data sets,
while still being able to simulate a variety of dif-
ferent compatibility situations, such as partially
compatible data sets with different depths of sensi-
tivity (penetration depth is proportional to the root
of signal period). The choice of 1-D data sets also
enables easy implementation and greatly reduces the
runtime of the algorithm, allowing for intensive
testing.

The misfit for the vth frequency is calculated as

To assess partial compatibility, we analyse the misfits
for each individual recording frequency, in addition
to the standard misfits, calculated from the sum of all
individual misfits.

There are a variety of different regularisation
functionals with different characteristics (Pek and
Santos 2006, p. 144) of which we use the discretised
version (discretisation &) of the total variation func-
tional (Rudin et al. 1992)

Niayers

> ym-m P p [ m@la (10)

with a small regularisation constant f >0 for
numerical stabilisation. We chose the total variation
as it can conserve sharp contrast in the model. This is
advantageous, as sharp contrasts are often required in
layered models.

We created two different synthetic resistivity
models (Fig. 5). Model 1 is the reference model with a
low resistivity anomaly between 500 and 600 m and
Model II has been designed to generate data incom-
patible to the first set. Model II has higher
resisitivities than Model I in the top 1290 m of the
model and lower resisitivities below that depth.

3.1. Data Set Properties

For each of the models, two MT data sets with
different frequency ranges are created using Wait’s
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Figure 5
Synthetic 9-layer model Model I (blue) and the synthetic 7-layer
model Model II (red)

recursion formula (Wait 1954). This allows us to
assess how the compatibility measures behave for
data with different depths of sensitivity. The MT data
sets have 17 frequencies each, with a frequency range
of 6-1448 Hz [broadband (BB) data set], and
128-32768 Hz, respectively [audio-magnetotelluric
(AMT) data set]. Eight data points of each of the two
different types of MT data lie within the overlapping
frequency range of 128-1448 Hz. Everything deeper
than the penetration depth corresponding to a 128 Hz
signal can, therefore, only be detected by the
simulated BB MT measurements. In addition, a
resistivity well-log was built for each model, ranging
from a depth of 150-1000 m, with a 0.25 m sample
interval.

Gaussian noise with a standard deviation equiv-
alent to 3% of the impedance tensor amplitude is
added to both the MT data types. Accordingly, error
estimates equal to 3% of the impedance tensor
amplitudes are assigned. Gaussian noise of 5% is
added to the well-log data and error estimates equal
to 5% of the parameter values are assigned.

All tests were run for 250,000 solution evalua-
tions each. For the data set compatibility analysis,
intermediate solution archives are extracted after
1000, 10,000, and 100,000 solution evaluations in
addition to the final archive. As all non-dominated
solutions are retained during the processing, the same
solutions can be contained in multiple iterations of
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the archive. Hence, whenever solutions from multiple
archives are analysed together, only unique solutions
are considered to avoid skewing the statistical
analysis.

3.2. Resulting Model Distribution

During the model building, the layer thicknesses
are variable, but the number of layers nj,yer is held
constant across all models. The resulting ensemble of
models is evaluated with regard to the geometry and
the resistivity of the layers. To account for the
inherently different data sensitivities and resolutions
of different geophysical data, as well as to increase
comparability between the different archive solutions,
the depth interval between the surface and the deepest
overall estimate for the bottom of the last layer is
evenly divided into small discrete model segments of
constant thickness. A layer-interface can occur at the
top of each individual segment. For each solution, the
parameter values at a certain depth are mapped to the
corresponding segments for each solution, transfer-
ring all solutions into a unified segment space. For
example, for MT data, the sensitivity decreases with
depth dependent on the frequency range. By keeping
the segment thickness constant, it is guaranteed that
no information is lost when jointly working with data
sets from different methods, which have varying
sensitivities and resolution.

The segment resistivities are analysed by calcu-
lating weighted averages
solutions.

across all extracted

The layer geometry is evaluated by computing the
probability for an interface to be located in a specific
segment. This is calculated by using the number of
archive solutions that have an interface in a given
segment ¢; and the total number of final archive
solutions 7 :

. Ci .
p}merface:ﬁ’le {1,2,...,nseg,} (lla)
arch.
Nseg.
- Zp;nterface = Nlayers- (1 lb)
i

If all solutions have an interface in the same seg-
ment, the interface probability at that segment will be
1. Including the top interface of the first layer, which
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is assigned a probability of 1, the sum of all interface
probabilities over all segments equals the number of
model layers.

In addition to the standard misfit for all data
points as defined in Eq. 2, for the MT data sets, we
calculate the cumulative misfit over the eight over-
lapping frequencies 128-1448 Hz (Eq. 9), to allow
for a detailed comparison of the regions of equal
sensitivity for the different MT data types:

5CMOF _ ( 12)

4. Modelling

To demonstrate the feasibility of the approach, we
analyse the example data sets successively and in
detail to illustrate the influences of the various
parameters. First, we demonstrate the overall func-
tionality and present the algorithm’s outputs using
compatible data sets. Then, we characterise incom-
patible data sets, and extend the concepts from two to
multiple objectives. Finally, we discuss the negative
influence of ill posed problems and the lack of ade-
quate regularisation.

4.1. Two Objectives—Compatible Data Sets

We will first evaluate a simple case with two
compatible objectives to introduce the concepts of the
method. The objectives are built from AMT and BB
MT data sets, combined with regularisation. This
compatible data example uses the MT data sets that
both have been calculated from Model I.

Figure 6 shows the best solution and the average
result for the compatible case calculated from the
final solution archive. The optimal solution achieved
misfits of damr; = 1.3 and dgg; = 1.5 and was at a
distance of 0.5 from the ideal point. The average
model exhibits an average standard deviation of 21%
relative to the segment values. There is an overesti-
mation of the resistivity in the low resistivity zone,
which reaches values of 30Qm for the best solution
and 43Qm for the average model, as opposed to the
10Qm of the true model. There is also an

Interface probability [i]
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Figure 6
Model results from the two-objective case with 3% noise. The red
line shows the true synthetic model and the green line represents
the weighted average model based on the 1142 solutions of the final
archive, including the model uncertainties in grey. This are
calculated using Egs. (5a) and (5b). The optimal solution is
presented in blue. It achieved misfits of davrr = 1.3 and dgp; =
1.5 and was at a distance of 0.5 from the ideal point. The average
model exhibits an average standard deviation of 21% relative to the
segment values. The interface probabilities are presented in black
calculated from the final archive solutions

underestimation of the resistivities at greater depths,
with the best solution showing a closer fit than the
average solution. The locations of layer interfaces are
well determined at low depths, but are subject to
higher uncertainty at larger depths. The depth interval
of 700-800 m is jointly constrained by the two data
sets, resulting in well constrained layer boundaries.
Below this depth, the model is only constrained layer
boundaries. Below this depth, the model is only
sensitive to the broadband data, which relies on lower
frequencies and, therefore, has a lower resolution,
making it incapable of determining well constrained
interfaces.

The CMOF are shown in Fig. 7a. The solutions
are distributed along the ideal line. The linear fit
deviates from the ideal line by 3°.

Figure 7b displays the locations in objective space
of all the solutions extracted from the archives. The
different depths of investigation of the two data set
cause the solutions to be distributed in a cone shape,
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Figure 7
Archive solutions for AMT objective and the BB-objective in the compatible two-objective case with 3% noise. The 2440 unique solutions
combined from the archives after 1000, 10,000, 100,000, and 250,000 solutions evaluations are displayed, as well as the corresponding Theil—
Sen regression, the ideal line, and the ideal point. a Cumulative objective mists over the overlapping frequencies. b Objective mists over all
frequencies

shifted towards higher BB misfits. The main cluster
extends over a misfit of about 1.3-2.4 in the direction
of the AMT misfit and from about 1.5-6.8 in
direction of the BB misfit, with the optimal solution
found with misfits of dapmtr = 1.3 and dgg1 = 1.5, at
a distance of 1.9 from the ideal point. The deviation
from the ideal line of the linear fit is 23° (Table 1).
It should be noted that in Fig. 7b, a combination of
archive members after 1000, 10,000, 100,000, and
250,000 evaluations is plotted. Although each indi-
vidual archive does not contain dominated solutions,
earlier archive solutions are likely dominated by

Table 1

Analysis of the deviation from the ideal line and median distance
from the ideal point (1,1) for the compatible two-objective case
(with 3% noise). The analysis is performed for archives at different
stages of the inversion run, as well as for all extracted archive
members combined and the CMOF of the combined archive

members
Solution Deviation from Median distance from
evaluations ideal line ideal point
1000 27° 5.6
10,000 9° 2.3
100,000 26° 1.9
250,000 23° 1.9
Combined 23° -
CMOF 3° 0.8

members of later archives. The dominated solutions of
earlier archives are included to capture the evolution
of the solution distribution, which is a major indicator
of the objective compatibility. Therefore, all results
are included during the compatibility analysis; how-
ever, in the final consideration of a representative
model, dominated solutions should be discarded.

4.2. Two Objectives—Incompatible Data Sets

We have established how resulting model distri-
butions behave for compatible data. Now, we explore
the results of the algorithm for incompatible data. The
AMT data set is built from Model I and the BB data
set is calculated using Model II to simulate data
incompatibility.

The resulting pareto-fronts are shown in Fig. 8a.
The CMOF are distributed along a line with a
deviation of 65° from the ideal line and a median
distance from the ideal point of 20.64 (Table 2),
which contrasts the analysis of compatible data. The
main cluster of solutions covers AMT misfits of
4-350 and BB misfits of 5-170. These differences in
misfit ranges are caused by the fact that the models
for Model I and Model II exhibit greater similarity at
depth than close to the surface. Hence, the misfits of
the lower frequency BB data set are smaller.
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Table 2

Analysis of the deviation from the ideal line and median distance
from the ideal point (1,1) for the incompatible data two-objective
case with 3% Gaussian noise on the data. The analysis is
performed for archives at different stages of the inversion run, as
well as for all extracted archive members combined and the CMOF
of the combined archive members

Solution Deviation from Median distance from
evaluations ideal line ideal point

1000 69° 20.1

10,000 70° 17.8

100,000 71° 16.7

250,000 71° 16.4

Combined 71° -

CMOF 65° 20.64

The same pattern can be observed for the full
frequency range misfits (Fig. 8b). Compared to the
CMOF the line shows a higher degree of scatter, a
slight curvature, and exhibits a deviation from the
ideal line of 71°. This curvature is caused by the
different frequency ranges of the two data sets.

The distances from the ideal solution and the large
deviation from the ideal line illustrate that the
algorithm is able to find solutions with low misfits
for each of the objectives individually, but it is
impossible to find a solution that reaches accept-
able misfits for both objectives at the same time.

4.3. Multiple Objectives

We perform two test runs with three objectives to
investigate the behaviour of the compatibility mea-
sures for compatible and incompatible cases with
more objectives. Both tests use the AMT and the BB
data set based on Model I. The test simulating
compatible data sets uses the synthetic resistivity
well-log based on Model I and the test for incom-
patible data uses the Model II resistivity well-log.
Both well-logs cover depths of 150-1000 m.

Figure 9 shows the best and average results for the
compatible three-objective case. The added informa-
tion from the well-log helps to better define the
position and resistivity of the low resistivity anomaly
compared to the two-objective case (Fig. 6). The
anomaly is identified at the true location and has a
resistivity of 11.8 Qm for the best found solution and
24.5 Qm for the average solution. The benefit of the
constraints added by the well-log is also reflected in
the smaller error bars of the average solution, as
compared to the two-objective case, with the average
model exhibiting an average standard deviation of
18% relative to the segment values.

As there are three objectives competing in this
test, the compatibility analysis is performed pairwise
for each of the three possible two-objective combi-
nations. In the case of compatible data sets, the linear
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Figure 9
Model results from the multi-objective case. The red line shows the

true synthetic model and the green line represents the weighted
average model based on the 6771 solutions of the final archive,
including the model uncertainties in grey. The optimal solution is
presented in blue. It achieved misfits of damr = 1.3, o1 = 1.7,
and owgrL1 = 1.4 and was at a distance of 0.8 from the ideal point.
The average model exhibits an average standard deviation of 18%
relative to the segment values. The interface probabilities are
presented in black calculated from the final archive solutions

fits for extracted solutions exhibit deviations from the
ideal line of Yoy amT-BB = 5° Vcomp:aMT-WELL = 6°
and Ycomp:ge—weLL, = 15°, indicating good compati-
bility between all objectives (Table 3). The optimal
found solution has objective values of damtr = 1.3,
opp1 = 1.7 and dwgrLr = 1.4, and is at a distance of
0.8 from the ideal point. The median distance from
the ideal point achieved by the solutions from the
final archive is 4.85.

Good objective compatibility is also indicated for
the two MT objectives in the case of incompatible data,
with the linear fit for all solutions deviating by
Vincomp:AMT—BB — 3 - The two objective combinations
featuring the well-log data on the other hand show clear
signs of incompatibility. The linear fit of the solutions
projected onto the objective space plane of the AMT
misfit and the well-log misfit exhibits a deviation of
Vincomp:AMT-wELL = 83° from the ideal line, and for the
combination of BB MT data set and well-log the
deviation is jpcomp;z—weLL, = O7° (Table 3). This
smaller deviation for the BB-WELL projection com-
pared to the AMT-WELL combination is caused by the
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Table 3

Analysis of the deviation from the ideal line and median distance
from the ideal point (1,1,1) for the multi-objective case inversion
runs. The analysis is performed for archives at different stages of
the inversion run, as well as for all extracted archive members
combined and the CMOF of the combined archive members. The
three datasets are audiomagnetotelluric (A), broadband magne-
totelluric (BB), and well-log (W)

Solution Deviation from ideal line Median distance
evals. from ideal point
Compatible data Incompatible Comp. Incomp.
data
A- A- BB- A- A- BB-
BB W W BB W W
1000 28° 58° 64° 4°  49° 50° 11.6 11.1

10,000 1° 32° 23° 20° 56° 53° 53 12.6
100,00 2 1° 15° 22 86° 56° 5.0 9.8
250,000 9°  13° 13° 6° 80° 59° 49 9.1
Combined 5° 6° 15° 3° 83° 57° - -

larger penetration depth of the BB data that exceeds the
depth range constrained by the well-log, whereas most
of the depth range that the AMT data are sensitive to is
constrained by the well-log. The median distance from
the ideal point is 9.1, and as such significantly larger
than for the compatible data.

The clear separation into compatible and incompat-
ible data apparent from the analysis of the deviations of
the linear fits from the ideal line is less obvious from a
visual inspection of the solution distributions (Fig. 10).
The objective combinations including the well-log show
similar distributions for the compatible and the incom-
patible case. In each case, the main solution clusters
have a width of about 10 in direction of the well-log
objectives and a width of 40-90 in direction of the MT
objectives. This asymmetry is caused by the fact that the
well-log only constrains part of the model, so that
models fitting the well-log can still vary significantly in
the misfit of the MT data sets.

5. Discussion

The evaluation of jointly inverted or jointly
interpreted geophysical data is complicated, and it is
vital to assess if information from different data sets
can be jointly analysed in the first place. We have
demonstrated that the output of the algorithm can be
interpreted as a measure for the mutual compatibility
of multiple data sets.
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Figure 10
Pareto-fronts for pairwise AMT-BB objectives (blue triangles), A%VIT—WELL objectives (red squares), and BB-WELL objectives (green
diamonds) with the corresponding Theil-Sen regressions in the same colour for the multi-objective case for both the a compatible and
b incompatible cases. The ideal point is represented by a magenta star and the broken black line represents the ideal line. For both cases, the
objective misfits are shown over all frequencies. The calculated pareto-front is actually 3D, but here, we visualise the 2D components. Inset in
both cases are zoomed out versions of the graph showing the overall structure of the regressions

Using a linear regression allows us to make direct
meaningful analysis of the geometry of the solution
space. The chosen tool, Theil-Sen regression, is also
very robust with respect to outliers. The slope of the
Theil-Sen regression to the projection of the solution
distribution into 2-D objective space is a good indi-
cator for objective compatibility. Incompatible
objectives generally show deviations of y > 45° and
compatible objectives exhibit deviations of y <45°.

The results for the deviation angles are consistent
across individual archives, but cases can occur were
the deviation angle results based on different inter-
mediate archives vary significantly. Analysing only
individual archives could, therefore, lead to false
conclusions about the level of objective compatibil-
ity. Archives from the early stage of an inversion in
particular often contain only a small number of
solutions, yielding misleading results. Hence, a
maximal number of solutions should be extracted
during inversion runs to be analysed together.

The necessity for a statistical analysis of the solu-
tion distributions is illustrated by the multi-objective
tests. This case demonstrates that visual inspection can
be deceiving and Theil-Sen analysis is required.
Inspecting the solution distributions of the MT—well-
log projections, the distributions look very similar for
the compatible and the incompatible case, but the

Theil-Sen analysis detects major differences in the
distributions and correctly indicates the compatibility
in both cases. The close clustering of a large number of
solutions can especially lead to false interpretations, as
distribution patterns may be obscured.

The deviation angles show values just above the
compatibility threshold, whereas the distances from
the ideal point are very low and indicate that accept-
able misfits are reached for both objectives. Only the
analysis of the misfits for the coinciding frequencies
yields a deviation angle below the threshold, with
y = 25°. These are the kind of solution distributions
that also have been found to represent compatible
objectives by Moorkamp et al. (2007). In cases like this
a thorough visual and numerical analysis of the solu-
tion distributions has to be performed. This has to be
done carefully, as close clustering of many solutions
can give false impressions. In the test situation, the
linear fit is dominated by solutions that extend along
the Jggr-direction. This is caused by the BB MT data
sets fully constraining the AMT data set, as the BB data
have a higher penetration depth, which is expressed in
the solution distribution being shifted towards higher
BB data misfits. These types of shifted distribution can
also be observed in Moorkamp et al. (2010), especially
for the combination of Rayleigh wave dispersion data
and MT data.
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For the assessment of the balance of mutual data
constraint, it is important that the misfits of the
objectives are of comparable magnitude. The nor-
malisation of the data misfits by the data error
(Eq. (2)) ensures that the misfits become comparable
to some extend and also guarantees that fits below the
error level are expressed in misfits of 6 <1 regardless
of the type of data. Nevertheless, different data types
and/or varying error levels can influence the devia-
tion measure and may bias the assessment of the
mutual constraint balance.

In addition to assessing the compatibility of inverted
data sets, the generated solution ensembles can be used
to estimate average models and model errors. However,
in our case, these are of qualitative rather than objective
nature, as it is not statistically possible to extract robust
estimates of model covariance from a single solution
ensemble generated by a genetic algorithm. The trade-
off for fast convergence of genetic algorithms compared
to Monte Carlo methods is that the final ensemble is not
generated completely independently, but often depends
on good models from the early iterations. Robust sta-
tistical model averages and model errors can be
determined by performing several inversion runs (Stoffa
and Sen 1991) or resampling the final solution ensemble
(Sambridge 1999b).

The inversion runs for this study had run times of
1-20 min for 100,000-250,000 solution evaluations.
General run-time analysis for multi-objective evolu-
tionary algorithms has been performed (Laumanns
et al. 2004), but precise run-time predictions are
difficult as they are highly problem dependent. The
run times are dependent on the number of objectives
and the degree of compatibility between the objec-
tives, as compatible objectives make it easier to find
well fitting solutions and, therefore, show accelerated
convergence. The adaptive nature of the Borg algo-
rithm makes run-time predictions especially difficult,
as the variable population and archive sizes and the
search restarts performed to mitigate search stagna-
tion can not be projected.

6. Conclusions

Multiple approaches to joint inversion modelling
of geophysical data exist, but the application of
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evolutionary algorithms is not common in this field.
The ability to jointly invert a number of data sets
without the need for data weighting, while providing
model uncertainty and data set compatibility infor-
mation makes multi-objective approaches
advantageous over conventional linearised schemes.

We have developed and implemented a pareto-
optimal multi-objective inversion algorithm for the
analysis of geophysical data, the advantages of which
are as follows. The use of an evolutionary algorithm
allows the evaluation of a distribution of solution
models. This distribution can be analysed with regard
to the physical implications of the model parameters
and with respect to the quality of the data. Potential
contained ambiguities and resolution restrictions of
the data can be expressed in terms of data set com-
patibility. We have presented a scheme to effectively
assess this compatibility. This analysis can be applied
independent of the actual modelling part, and it can
be combined with other (multi-objective) inversion
and modelling software to independently assess data
set quality. This can improve the overall data and
model interpretation, and it, therefore, is a valuable
addition to the general toolbox for geophysical data
inversion modelling.

We have demonstrated the capabilities of this
algorithm by applying it to synthetic data. By defin-
ing different objective functions, the application of
the algorithm to other data sets, both synthetic and
real, is a straight forward process and does not require
major alterations of the code.
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Abstract

The telluric sounding (TS) method is introduced as a potential tool for monitoring hydraulic fracturing at depth. The
advantage of this technique is that it requires only the measurement of electric fields, which are cheap and easy when
compared with magnetotelluric measurements. Additionally, the transfer function between electric fields from two
locations is essentially the identity matrix for a 1D Earth no matter what the vertical structure. Therefore, changes in
the earth resulting from the introduction of conductive bodies underneath one of these sites can be associated with
deviations away from the identity matrix, with static shift appearing as a galvanic multiplier at all periods. Singular
value decomposition and eigenvalue analysis can reduce the complexity of the resulting telluric distortion matrix to
simpler parameters that can be visualised in the form of Mohr circles. This technique would be useful in constraining
the lateral extent of resistivity changes. We test the viability of utilising the TS method for monitoring on both a syn-
thetic dataset and for a hydraulic stimulation of an enhanced geothermal system case study conducted in Paralana,
South Australia. The synthetic data example shows small but consistent changes in the transfer functions associated
with hydraulic stimulation, with grids of Mohr circles introduced as a useful diagnostic tool for visualising the extent
of fluid movement. The Paralana electric field data were relatively noisy and affected by the dead band making the
analysis of transfer functions difficult. However, changes in the order of 5% were observed from 5 s to longer periods.
We conclude that deep monitoring using the TS method is marginal at depths in the order of 4 km and that in order
to have meaningful interpretations, electric field data need to be of a high quality with low levels of site noise.

Keywords: Telluric sounding, Hydraulic stimulation, Monitoring, Transfer functions

Introduction

The telluric sounding (TS) method was introduced in
the 1960s and involves simultaneously recording the
horizontal components of electric fields (E) at differ-
ent sites (Berdicevskij and Keller 1965; Yungul 1966).
The measured E can be affected by galvanic distortion,
which is caused by gradients in electrical conductivity
associated with near-surface heterogeneities (Chave and
Smith 1994). The accumulation of charge at conductivity
boundaries strongly alters E (Groom and Bailey 1989).
This local distortion of E can be described by a real-val-
ued second-rank tensor D that relates the electric field
measured at a local (E,s) and regional (Ep) site according
to (Chave and Jones 2012)
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and indicate if changes were made.

Ey = DEg @
where
Dy, D.
D= xx Dxy |
{Dyx Dyy} 2)

In this case, D is relative to axes X and Y, typically north
and east. Introducing a rotation matrix R(6),

R() = [ cos b sine},

— sinf cosf

©)

and the transpose RT(f), the value of D relative to axes
X’ and Y’ (which are rotated 6’ clockwise from north and
east) is given by the matrix D’ (Lilley 2015)

D;xD;] ,[D D}
= R(—6 XY R,
U pj,| =R p,, b, | R®) 4)
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For a 1D Earth, the distortion matrix will be the identity
matrix. The presence of galvanic distortion will be mani-
fest as an amplitude shift, and a twist and shear operation
(Lilley 2015). For 2D structures, the distortion matrix can
be rotated to reflect the changes in E along and across
strike.

Targets for hydraulic stimulation are generally in sedi-
mentary basins that are laterally extensive, and for most
of the bandwidth the responses are 1D. The injection of
conductive fluids into the subsurface will alter the tellu-
ric distortion matrix which can be mapped to show the
lateral constraints of fluid migration. Lilley (2015) pro-
posed the application of both eigenvalue analysis (EA)
and singular value decomposition (SVD) on the telluric
distortion matrix, with Mohr diagrams introduced as
a versatile way of visualising properties of the matrix.
These diagrams can be used to determine the extent to
which the matrix is diagnostic of 1D, 2D or 3D geological
structure as well as determining a strike direction (with
90° ambiguity) and a relative amplitude change. Grids
of Mohr circles can show where the greater amplitude
changes occur at depth and may be used to determine
the extent to which fluid has migrated from the injection
point.

Following from Lilley (2015), EA of the telluric distor-
tion matrix involves finding a direction of E;; for which
the change in Ep is in the same direction, with the eigen-
value of the direction giving the gain of the process.
When real eigenvectors exist, the characteristic equation
for D,

;2 - (Dxx + Dyy){ + Dxnyy - nyDyx =0, (5)

can be solved for the two eigenvalues ¢; and ¢ with
solutions

1
1,6 = E(Dxx +Dyy)

1
+5 \/(Dsx + Dyy)? + 4(Dyy Dy — DDy,
(6)
Eigenvectors can then be found corresponding to these

eigenvalues. The solutions to EA can be plotted on a
Mohr circle with centre [(Dyyx + Dyy)/2, (Dxy — Dyy)/2]

and radius 7 = \/ (Day + Dys)? + (Dyx — Dyy)2. Axes

for D), and D), can also be plotted to display the vari-
ation with axis rotation of all components of D’. Fig-
ure la shows an example of such a Mohr diagram, where
P represents the observed point, H and ] mark the EA
positions and C represents the centre of the circle. The
eigenvalues are the D), axis values of H and J.

The SVD of D produces a rotation for the axes at the
regional site B and a different rotation for the axes at

Page 2 of 12

local site M. Therefore, a change in E at rotated site B
produces a change in E along the corresponding but dif-
ferently rotated axis at site M, with the change generally
amplified or attenuated (Lilley 2015). This rotation of the
local and regional axes reduces the telluric distortion ten-
sor to an ideal 2D form. The results of SVD can also be
displayed on a Mohr diagram as shown in Fig. 1b. Here,
OG and OF represent the greater and lesser singular val-
ues, P is the observed point and C is the centre. Grids of
SVD Mohr circles can show the magnitudes and direc-
tions of the injected near surface anomaly. For a detailed
explanation on the theory of EA, SVD and Mohr dia-
grams related to the telluric distortion matrix, the reader
is referred to Lilley (1993, 2012, 2015).

The goal of this study is to test the viability of utilising
the TS method for monitoring hydraulic stimulation at
depth. Ideally we would like to be able to constrain the
spatial and temporal dimensions of resistivity changes.
Spatial changes can be constrained laterally from using
multiple sites, and depths can be estimated given resistiv-
ity data to map periods to depths. One advantage of the
TS method is that it is relatively easy to measure E with
many dipoles and multi-channel systems and therefore
E arrays could be deployed for continuous monitoring.
Additionally, hydraulic stimulation targets are generally
laterally extensive sedimentary basins where E transfer
functions are essentially the identity matrix. Therefore,
monitoring would involve plotting deviations relative to
the identity matrix, with static shift appearing as a gal-
vanic multiplier at all periods. The impedance on the
other hand has real and imaginary components that vary
with frequency. Finally, the TS method is relatively low
cost when compared with traditional magnetotelluric
measurements and may prove a simple and favourable
method for monitoring fluid movement.

3D feasibility study
A 3D feasibility study was conducted to test the viability
of the TS method for monitoring conductive change at
depth. The 3D forward modelling code of Mackie et al.
(1993) was used to create a baseline resistivity structure
as shown in Fig. 2. The baseline resistivity model con-
sisted of a 10 2m conductive layer down to 0.8 km, a 50
m layer from 0.8 to 2 km, a 100 2m layer from 2 to 4.5 km
and finally a 1000 Qm layer from 4.5 to 1200 km. The
stimulation model introduces a 1 2m conductive block
at 3.6 km depth, with volumetric dimensions of 3 x 1 x
0.4 km.

3D forward modelling for both base and stimulation
resistivity structures produced classical MT responses
(see Additional file 1). From the forward modelling code
and the following equation, we calculate D

Zy =DZp @)
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Fig. 1 a Example eigananalysis Mohr diagram adapted from Lilley (2015). Points H and J mark the eigenanalysis positions, and the eigenvalues are
the Dj, values of points H and J. b Example Mohr diagram for singular value decomposition adapted from Lilley (2015). OG and OF represent the

where Zy and Zp are the local and regional site imped-
ance tensors, respectively, and D is a 2 x 2 matrix. If we
multiply both sides by a regional and uniform B field (i.e.
Bg = By), then

ZyB = DZzB. ®)
AsE = ZB, Eq. 8 can be written as
Ey = DEg. 9

Therefore, the distortion matrix calculated from the
impedance tensors is the same as the impedance matrix
calculated from the electric fields.

Figures 3, 4, 5 and 6 show each component of the
resultant transfer functions (Dyy, Dyy, Dyy, Dyy; here the
first subscript represents the local site and the second the
reference site) between the Eg and Ej,; sites for the six
lines in the synthetic grid.

The baseline transfer functions represent the identity
matrix, where Dy, and Dy, are 1 and D,y and Dy, are 0
for all periods. The stimulation Dy, and D,y show changes
of between 1 and 2%, with these changes occurring from
about 5 s and continuing to longer periods. The changes
in Dy, are slightly larger when compared with D, and
the stations furthest away from the injection (e.g. station
59) show negligible changes. The changes in Dy, and Dy,
are generally less than 1%.

Changes in transfer functions (and hence telluric dis-
tortion matrices) can be analysed using SVD and EA
and plotted onto Mohr circles grids [see Lilley (2015)].
Such a grid is shown in Fig. 7, where SVD analysis was
performed on telluric distortion matrices comparing
Ep and Ej; along Line 3 during stimulation. The grey

vertical and horizontal lines represent the D, and
D, axes, respectively. The black radius interacts with
the red circle at the observed point. The Mohr circles
increase in diameter for stations surrounding the 1 ©
m conductive body (stations 32-34) at periods of 3 s
and greater. The size of the Mohr circles progressively
become smaller and approach the identity matrix mov-
ing further east from station 34. Similar grids can be
plotted using EA as shown in Fig. 8. Here the dashed
red lines are the D;y axis and the two black radii repre-
sent the eigenvalues. Notice that for the sites surround-
ing the conductive zone, the eigenvalues are real and
different and the eigenvectors are orthogonal which is
a representation of the 2D case [see Fig. 4 from Lilley
(2015) for a detailed explanation on Mohr diagram eige-
nanalysis using different matrices as examples].

Another interesting way of viewing telluric distortion
matrix changes is by mapping Mohr circles at specific
periods for each site in the array. Such a representation
is shown in Fig. 9, where SVD Mohr circles are drawn for
every site at a period of 5 s. The 1 @m conductive body
lies between Lines 3 and 4, and the Mohr circles sur-
rounding the body increase in size and amplitude. Line
6 is the furthest away from the conductive body, and all
Mohr circles on this line are the identity matrix. The
edge of the conductive body is horizontally well marked
along lines 2 and 3. However, the boundary is not as well
marked when you look vertically in Fig. 9, where the
effects of the conductive block are also seen on Lines 1
and 4. This is also noticeable in Fig. 6 where the trans-
fer functions show poorer cross-line constraints on the
lateral extent. Figure 3 shows slightly better cross-line
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Log;o[Resistivity(Qm)]
Fig. 2 Resistivity model used for the 3D synthetic forward modelling study. The red box shows a birds eye view of the six lines, with each black
square representing one site. The orange dashed box shows the respective base sites (Eg) used for each line, and the dashed purple box shows the
measured sites (Ey). The location of the red conductive block at 3.6 km depth is shown
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constraints, where Lines 1 and 4 show reduced maxi-
mums in transfer functions when compared with Lines 2
and 3.

This synthetic study demonstrates different techniques
for mapping changes in transfer functions resulting from
changes in electric fields caused by hydraulic stimulation.
The changes in transfer functions were observed to be
in the order of 1-2%, and occurred in Dy, and Dy,. The
changes in Dy, and Dy, were generally less than 1%. The
resultant telluric distortion matrix changes can be ana-
lysed using SVD and EA and mapped onto Mohr circle
grids. The Mohr circles were found to increase in diam-
eter at periods and areas associated with the conduc-
tive anomaly. In order to sufficiently monitor hydraulic
stimulation, surveys should be designed such that lines
of instruments extend sufficiently beyond the stimulation

zone in both horizontal and (especially) vertical direc-
tions. Interpretations regarding the extent of the stimu-
lation should be conservative and take into account the
lack of cross-line constraint. In general, changes in tel-
luric distortion resulting from hydraulic fracturing are
small and for a real survey it may be difficult to see such
changes due to noise in Eg and Ey.

Example from Paralana, South Australia

In July 2011, Peacock et al. (2013) conducted a magne-
totelluric (MT) survey in Paralana, South Australia,
with the aim of continuously monitoring changes in
MT responses associated with the introduction of saline
hydraulic fracturing fluids at depth. The test site was a
geothermal reservoir containing hot granites, with the
heat source coming from radiogenic elements within the
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Fig. 3 Synthetic transfer functions (Dy,) comparing base (orange dashed box in Fig. 2) and measured (purple dashed box in Fig. 2) sites for Lines
1-6.The x-axis is the period in seconds. The blue transfer functions represent the baseline model, and red transfer functions result from the
introduction of the 1 2m conductive body at 3.6 km depth (represented by the red shaded rectangle). Note that only the real components of the
transfer functions are plotted
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Fig. 4 Synthetic transfer functions (D) for the six lines
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Fig. 7 Synthetic SVD Mohr circles [see Lilley (2015)] for the Line 3 telluric distortion matrices. Grey vertical lines represent the Dj, axes, and grey
horizontal dashed lines represent D;y axes. The interaction of the black radius with the red circle marks the observed point

Paleoproterozoic to Mesoproterozoic gneiss, granites and
metasediments of the Mount Painter Domain that under-
lay the Flinders Rangers (McLaren et al. 2003; Brugger
et al. 2005). 3.1 million litres of saline water (resistivity of
0.3 2m) was injected at a depth of 3680 m, with the injec-
tion beginning on day 193 at 0400 universal time (UT)
and taking 4 days to complete (Peacock et al. 2012). The
survey layout is shown in Fig. 10, with the microseismic
cloud visible in the bottom right corner.

Phase tensor (PT) and resistivity tensor (RT) residuals
were used as a diagnostic tool for determining directional
fluid migration. The changes observed in residual PT
and RT were interpreted as fracturing fluids migrating
towards the northeast of the injection well along an exist-
ing fault system trending north-northeast. This section
attempts to analyse the impedance matrix D (calculated

from the electric fields) from the Paralana experiment to
determine whether electric fields alone can be used to
monitor hydraulic stimulation at depth.

For this study, station 04 is used as the measured electric
field (Eas) and stations 13 and 27 as the base electric fields
(Ep). Each station recorded responses during the hydrau-
lic stimulation from days 193-197 (see Additional File
1. Note that day 195 was excluded as the signal strength
was low and hence the responses are dominated by noise).
Transfer functions comparing stations 13 (Eg) and 04 (Er)
over the stimulation time interval are shown in Fig. 11.
The grey shaded area represents the MT dead band,
where signal power is naturally low, especially from 2009
to 2011 (Peacock et al. 2013). The blue horizontal lines
represent the theoretical baseline transfer functions, with
the pink shaded area representing a 1% noise uncertainty.
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Fig. 8 Synthetic EA Mohr circles [see Lilley (2015)] for the Line 3 telluric distortion matrices

Note that only the real components of the transfer func-
tions are plotted. Dy, shows similar behaviour to the fea-
sibility study, where increases of approximately 2% above
the noise window occur from 5 s and continue to longer
periods for all days. Dy, is mostly within the £1% noise
window for all days. D,y shows an almost 5% increase on
day 194, with the other days mostly within the noise win-
dow. Finally, D, decreases by < 1% on days 193 and 196.

Transfer functions comparing stations 27 (Ep) and 04
(Ear) over the same time interval are shown in Fig. 12.
Similar trends to Fig. 11 are observed, where an increase
in Dy, exists in the order of 5% from 5 s to longer periods
for all days. Dy, shows a 2% increase over a similar period
range to Dyy. Both D, and Dy, are within the noise win-
dows for most days.

SVD and EA is performed on the telluric distortion
matrices for the four days, with the results plotted onto
Mohr circle grids as shown in Figs. 13 and 14, respec-
tively. Although the site noise and dead band add com-
plexities to the analysis, the general trend shows the
Mohr circles increase in diameter for periods greater
than 5 s. When comparing stations 04 and 27, an inter-
esting trend exists for periods between 2 and 14 s, where
the Mohr circles progressively increase in diameter over
the length of the pumping interval. EA shows eigenval-
ues that are real and different, with eigenvectors trending
orthogonally indicating the telluric distortion matrix is
close to 2D. This differs when comparing stations 04 and
13 where the eigenvectors are real but not orthogonal,
which may be indicative of a general 3D structure.
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Fig. 10 Survey layout for the Paralana MT monitoring experiment
[adapted from Peacock et al. (2013)]. The black triangles are the MT
stations and the red triangles represent the stations used in our
study. The red circle represents the Paralana 2 wellbore. The rectangle
surrounding Paralana 2 is inflated in the bottom right, with the micro-
seismic events shown as small blue circles

Discussion and conclusion

We have designed and conducted a feasibility study to
determine the potential for using the TS method to mon-
itor changes in resistivity structure of the Earth resulting
from hydraulic stimulation. Three-dimensional forward
modelling of our base and stimulation resistivity struc-
tures showed changes in D of between 1 and 2% as a

Em(04) EB(13)
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0.95 %
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Dxx
Dxy
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1.05

Dyx
Dyy

A\
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Fig. 11 Transfer functions comparing stations 13 (Eg) and 04 (Ey)
between days 193 and 197. The x-axis shows the period in seconds,
and the grey shaded area represents the approximate dead band. The
blue horizontal lines represent the identity matrix transfer functions.

-0.05 0.95

The pink shaded region represents a noise window of + 19

result of introducing a 3 x 1 x 0.4 km conductive body at
3.6 km depth. The transfer functions were mapped onto a
grid by comparing each measured station to a reference
(or base) station. Eigenanalysis and singular value decom-
position were performed on the telluric distortion matri-
ces from each station at various periods, and plotted
onto Mohr circle grids. The resultant grids showed cir-
cles increasing in diameter at sites and periods associated
with the conductive body. Moving away from the con-
ductive body, the circles progressively approach the iden-
tity matrix indicating no telluric distortion had occurred.

The Paralana electric field data were relatively noisy and
affected by the dead band making interpretations difficult.
Dy and Dy, components showed little change from the
theoretical transfer functions. Dy, and D), were increas-
ing by 2-5% for periods greater than 5 s. Changes in the
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Fig. 12 Transfer functions comparing stations 27 (Eg) and 04 (E)
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Fig. 13 SVD Mobhr circles [see Lilley (2015)] for the telluric distortion matrices presented in Figs. 11 (left) and 12 (right)

y-direction are significant but in the x-direction are not,
suggesting the response is more complex and possibly
anisotropic (MacFarlane et al. 2014). Mohr circle grids
visualised these changes in transfer function, with the cir-
cle diameters increasing at periods greater than 5 s.

This study has shown some potential for utilising
the TS method for monitoring subsurface fluid move-
ment. The advantage of this technique is that electric
fields are relatively cheap and easy to measure when
compared with traditional magnetotelluric surveys.
Additionally, this technique can be used for near real-
time monitoring from a remote location. However,
electric fields are more complex and noisier than mag-
netics making interpretation more challenging. The

impedance matrix transfer functions are largely real
rather than being complex numbers and, in principal
for a 1D Earth, are the identity matrix at all periods
(£ static shift). Therefore changes in the earth result-
ing from the introduction of conductive bodies can
be associated with deviations away from the identity
matrix. SVD and EA can reduce the complexity of the
telluric distortion matrix to simpler parameters that
can be visualised in the form of Mohr circles. Grids of
Mohr circles may be a useful diagnostic tool for under-
standing the extent of fluid movement resulting from
hydraulic stimulation at depth. However, deep moni-
toring is always going to be marginal and for depths
in the order of 4 km, changes in transfer functions are
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Fig. 14 EA Mohr circles [see Lilley (2015)] for the telluric distortion matrices presented in Figs. 11 (left) and 12 (right)

small. Therefore, in order to have meaningful inter-  Authors’contributions

pretations, electric field data need to be of a high
quality with low levels of site noise. Additionally, the
dead band affects the transfer functions significantly
so a controlled source may be useful for monitoring
at depths incorporating dead band periods. Real data
examples from depths shallower than the dead band
may prove more suitable for determining distinguish-
able changes in the telluric distortion matrix resulting
from the introduction of conductive fluids.
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Magnetotelluric monitoring of coal-seam gas and
shale-gas resource development in Australia

Nigel Rees’, Simon Carter', Graham Heinson', Lars Krieger', Dennis Conway', Goran Boren', and Chris Matthews’

Abstract

Extraction of unconventional energy has become a major
global industry in the last decade and is driven by changes in
technology and increasing demand. One of the key factors for the
success of gas extraction is establishing sufficient permeability in
otherwise low-porosity and low-permeability formations. Perme-
ability can be established through hydraulic stimulation of deep
formations, either through existing fracture networks or by creating
new pathways for fluids to flow, and through depressurization of
coalbeds by extracting existing subsurface fluids. Geophysical
monitoring of hydraulic stimulation and depressurization can be
used to determine lateral and vertical constraints on fluid move-
ments in the target lithologies. Such constraints help to optimize
production and well placement. In addition, independent verifica-
tion is critical for social and environmental regulation, to ensure
that hydraulic stimulations and depressurization do not interact
with overlying aquifers. To date, the primary and most successful
geophysical technique has been microseismic, which measures
small seismic events associated with rock fractures from arrays
of surface and downhole geophones. The microseismic approach
has been used widely for many types of unconventional energy-
resource development. The magnetotelluric (MT) method is an
alternative approach to monitoring hydraulic stimulations and
depressurization. In contrast to microseismic, which delineates
the locations of rock fractures, MT is sensitive directly to the
presence of fluid as measured by the earth’s bulk electrical resistiv-
ity, which is dependent on permeability. MT is sensitive to the
direction of fluid connection, so it might yield important informa-
tion on how fluids migrate with time. Because subsurface fluids
conduct electrical current dependent on the porosity, connectivity,
and ionic saturation of the fluid, it follows that the introduction
or removal of fluids will change the electrical resistivity of the
formation. The physics of the approach is outlined, and the fea-
sibility of the M'T method for monitoring unconventional energy-
resource development is demonstrated. Two case studies are
conducted, one for a shallow (CSG) depressurization and the
second for a deep hydraulic stimulation of a shale-gas reservoir.

Introduction — Magnetotellurics

'The magnetotelluric (MT) method is a well-established tech-
nique that can determine information about earth’s electrical
resistivity in three dimensions (Chave and Jones, 2012). The
approach uses natural sources of external magnetic-field variations
that induce electrical currents in the subsurface. Sources of such
magnetic-field variations are frequency dependent. At frequencies
greater than 1 Hz, the sources are high-amplitude lightning strikes
around the globe that occur mainly at equatorial latitudes.

Variations in the magnetic field propagate around the globe
approximately at the speed of light. Close to the lightning strike,

the fields have curvature, but at greater distances (typically 1000
km or more), the fields can be approximated as a plane-wave
source. At lower frequencies of 107! to 10™* Hz, the source of
magnetic-field variations is the interaction of the solar wind with
earth’s magnetosphere, generating large flows in electrical current
in the conducting ionosphere approximately 100 km above ground.
Because the interaction of the solar wind is on a global scale,
again, the signals can be approximated as plane waves. In the
bandwidths of 1 to 10 Hz and 800 to 2000 Hz, there is a so-called
dead band at which there is little naturally occurring signal.

Denoting the magnetic-induction horizontal components as
B, and B, (with x being in a geographic north direction and y
being the orthogonal east direction) and the resulting electric
fields being E, and E , Figure 1 shows a small window of time-
series data sampled every 2 ms. Fields are shown with arbitrary
scaled units to illustrate the inductive coupling between orthogonal
components. In Figure 1a, which shows three minutes of data,
most of the abrupt changes are caused by distant lightning strikes
around the globe, known as sferics. It is evident that these events
have different amplitude and phase in the two orthogonal magnetic
inductions, depending on the source location and path of the
wavefront. The inset (Figure 1b) shows a 1 s window, highlighting
one particular event, with strong correlations between the or-
thogonal components of electric and magnetic fields.
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Figure 1. Example of a time series for orthogonal components of
magnetic and electric fields. The fields are scaled arbitrarily in ampli-
tude to illustrate the causal link between orthogonal components.
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Typically, time series of the orthogonal electric and magnetic
fields are recorded over intervals of hours to several days. Windows
of time-series data then are Fourier-transformed (Chave and
Thomson, 2004) to generate power spectral estimates over a range
of frequencies.

In the frequency domain, we can relate the magnetic fields
and electric fields through an electrical impedance tensor Z:

;)

These impedances have both amplitude and phase and thus
are represented by a complex number. From Maxwell’s equations,

7. Z

Z, Z,

B,

B,

xy

@)

the impedance tensor Z usually is dominated by its off-diagonal
elements Z, and Z , that relate orthogonal components of electric
and magnetic fields which are highly correlated, as shown in
Figure 1. This is particularly true for sedimentary geologic forma-
tions in which the geology is mostly horizontally continuous. The
impedance elements can be related to electrical resistivity through
the relationship

1
p=—1Z;. @)
U

Similarly, the phase of the complex impedance tensor is given

by
¢ =tan” (3. 3)

Equation 2 can be interpreted as a measure of the depth-
weighted electrical resistivity p, which is dependent on the depth
of propagation of the time-varying magnetic field, and equation
3 is the phase difference between the electric and magnetic fields.
In these equations, i, is the magnetic permeability of free space,
which has an SI value of 47 x 107 Hm™, and o is the angular
frequency (rad's™).

A measure of the depth of investigation, an electromagnetic

skin depth 0, can be defined as

- |- 205 [2 km. 4
S8(T) /Wf 0\/; @)

Skin depth is defined mathematically as the depth at which
the inducing magnetic field reduces to a factor of e (~ 37%) of
its surface amplitude in an earth of resistivity p for frequency £
From equation 4, it is evident that skin depth increases in more
electrically resistive materials and at lower frequencies. It is im-
portant to note, however, that unlike in seismic-reflection methods,
skin depth does not denote the depth at which the M'T method
is sensitive but rather the approximate depth above which ~ 63%
of the inductive effects occur.

The two off-diagonal components provide a measure of how
the earth’s impedance varies laterally. The impedance tensor in
equation 1 can be rotated mathematically to any arbitrary coordinate

Special Section: Australia

systems that can maximize the difference. If the substructure is
relatively laterally homogenous and varies only with depth, then
the two off-diagonal elements are approximately equal in magnitude
and phase.

On the other hand, a difference in the magnitudes and phases
of the impedance elements indicates that the subsurface varies
laterally. This might be on a macroscale (for example, the margins
of a sedimentary basin) or on a lithologic scale, which is evident
as an anisotropic property. Such anisotropy, for example, might
be caused by pervasive fracture networks with a dominant strike

from the regional stress field (Kirkby et al., 2015).

Electrical resistivity of unconventional-energy resources

The propagation of electromagnetic fields through the earth
is governed by diffusion, meaning that high resolution of particular
layers is intrinsically not possible. Most modeling approaches
involve generating smooth resistivity responses that reflect the
resolution of the MT method. However, the advantage of moni-
toring is that the zone of altered resistivity is well constrained,
given that we know the depth, volume, and timing of injected
fluid in an otherwise unchanging earth.

The electrical resistivity of subsurface lithologies is depen-
dent on the resistivity of the lithologic matrix and the resistivity
of pore fluids. For the matrix materials, silica-dominated clastic
sediments and basement formations are typically resistive
(> 1000 Om) and thus contribute little to the overall conduc-
tion. However, clay-rich lithology can have significantly lower
resistivity (1 to 10 Qm), with conduction dominated by surface
mobility of ions.

Interstitial fluids generally have a much more significant role.
Tonic conduction through dissolved salts can have low resistivity
(0.1 to 10 Om), depending on ionic concentration. For deep forma-
tions at depths of 3 km or more, high temperatures of > 100°C
will further reduce the fluid resistivity by about an order of mag-
nitude (Nesbitt, 1993).

The final factor in determining bulk resistivity is in how
fluids are connected. Such connectivity depends on porosity and
the way pores are interconnected, which is a function of perme-
ability. For primary porosity in clastic sediments, porosity and
permeability are relatively isotropic, meaning that the properties
do not vary in any specific orientation. However, secondary
porosity caused by fractures, faults, bedding planes, and solution
channels in carbonates might result in highly anisotropic perme-
ability and hence anisotropic resistivity properties (MacFarlane
et al., 2014; Kirkby et al., 2015).

'The effect of hydraulic stimulation on bulk resistivity at depth
depends on several factors. These include the resistivity of the
fluids used for the stimulation; total volume of fluid and rate of
pumping; temperature of the formation; the regional stress field
and presence of existing fracture networks; and the presence of
overpressured interstitial fluids. Peacock et al. (2012) and Peacock
et al. (2013) show a significant change of more than 5% in the
MT responses for a stimulation of a geothermal target with 3.1
million liters of fluid of resistivity of 0.3 QOm at 20°C injected at
3.8 km depth.

On the other hand, Y. L. Didana (personal communication,

2015) reports a much smaller MT response change for 36.5
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million liters of fluid of resistivity of 13
Qm at 20°C injected at 4 km depth. 0

Although the total volumes of stimula-
tion fluids are relatively small, opening
existing and new fracture networks might
connect significantly larger volumes of 1000
preexisting fluids. Didana (personal com-
munication, 2015) notes that naturally
occurring overpressured fluids in the gran-

ites had resistivities of < 0.3 QOm. Micro-

Depth (m)

2000
seismic events spanned a much larger
volume (approximately 1.25 km?) than
might be expected for 36.5 million liters
of injected fluid, suggesting that bulk re-
L . 3000
sistivity might be affected more by con-

necting existing fluids than by the stimula-
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To demonstrate the feasibility of MT
monitoring of a hydraulic stimulation of
a shale formation at a depth of 2900 m,
simple 1D forward-modeling studies were
generated. Although these are unrealistic

£, Qm)

in that only a finite volume is stimulated
rather than a layer of infinite extent, the
models indicate the magnitude and band-
width of the MT response change. Didana (personal communication,
2015) shows that a 3D volumetric model of stimulation also can be
detected, and moreover, the MT responses at the surface yield in-
formation on the extent and orientation of the stimulated region.

Wireline logs from a nearby well were used to generate a
background resistivity model over the length of the logs (869 to
2964 m). Resistivity was extrapolated for depths above and below
the well log, based on simple trends. An analytic 1D forward
model was used to generate M'T responses at 50 frequencies over
a range of 107 to 10? Hz. Two additional models then were
constructed to simulate the resistivity structure after hydraulic
stimulation. These models included a 100 m thick layer of 1 Om
or 10 Qm below 2900 m. Figure 2 shows the model and the MT
responses for these three scenarios.

For the 10 Qm layer, the MT responses change by less than
1%, but the 1 Qm layer yields an MT response change of as
much as 7%, which are detectable (Peacock et al., 2013). The
apparent-resistivity data show the most difference at frequencies
lower than 0.1 Hz, whereas the phase has maximum difference
between 1 and 0.1 Hz. We note that this is also the dead band
of low signal, which introduces some noise issues. However,
such problems generally can be reduced by using sufficiently
long time windows (two to three days in many cases) to improve
the signal-to-noise response.

MT monitoring survey layout

Because most M'T monitoring programs are over a relatively
small spatial extent (typically less than 5 km in any lateral dimen-
sion), the inducing magnetic fields can be considered to be spatially
uniform over the extent of the array. Any change in subsurface
resistivity is largely evident in a change in the induced electric
fields. Thus, our M'T monitoring arrays consist of a large number
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Figure 2. (a) Wireline-log resistivity plot that has been extrapolated to the surface and to greater
depth (dashed line). The green regions indicate two scenarios of injected fluid that reduces the
resistivity to 1 Om (dashed green) and 10 Qm (solid green). (b) Forward-modeled apparent resis-
tivity and phase for a typical bandwidth of period 1 to 1000 s (1 to 10~ Hz). The black curve shows
the response prior to stimulation, and the dashed green and solid green curves indicate the change
in response to the two scenarios.
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Figure 3. Schematic of the layout of (a) electric-field and (b) magnetic-
field loggers. For the electric-field loggers, two sets of dipoles are deployed
in a cross-formation with cable lengths of 15 to 50 m for each dipole. The
redundancy of dipole in each orientation is important to mitigate against
problems of animal interferences with cables and changing characteristics
of the electrodes. In practice, for deployments over several months, the
incidents of damage are high. Twenty-watt solar panels were used to
trickle-charge batteries during daylight hours.

of electric-field loggers (typically 50 or more), but with only three
to five sets of magnetic-field loggers (as shown in Figure 3).

'The advantage of deploying only electric-field loggers is one
of time efficiency (a crew of two people can deploy 10 instruments
per day) and the spatial logistics of equipment in the field. With
three to five sets of magnetic-field loggers, the magnetic-field
time series can be checked for consistency across the array and
can be used for various combinations of local and remote refer-
ence observations.

We record data at 651 Hz (sampling interval of 1536 us) with

GPS time synchronization at 1 s intervals to correct for clock
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drift. Electrodes used are typically lead-lead chloride, buried 30
cm below the surface, with wires generally left on the surface.
'The magnetic-induction coils used are broadband LEMI120 from
the Lviv Centre of the Institute for Space Research, Ukraine.
Such broadband sensors have an approximately flat response of 1
mV/nT in the bandwidth of 1000 to 1 Hz, with a 10 dB/decade
of frequency roll-off at lower frequencies. Data are recorded on
32-GB USB cards with storage of as long as four months. In
practice, instruments were checked every two months for repairs,
maintenance, and data transfer. The instrument pool was provided
by the AuScope National MT Facility, funded by the Australian
Government.

A major logistical benefit of natural-source MT is that data
loggers are passive receivers, and thus no active transmitting
source of electromagnetic (EM) signal is required. This allows
for long deployments with low maintenance requirements and
few safety issues other than manual handling. An additional
advantage of long deployments is that the instrument setup logistics
are the same for the whole experiment. Thus, continuous deploy-
ment ensures that an estimate of time-changing MT responses
can be made under the same conditions.

MT monitoring of coal-seam gas depressurization
Coal-seam gas (CSG), also known as coalbed methane (CBM),
is a form of natural gas with a predominantly methane component.
CSG exists in underground coal seams, where it is adsorbed into
the coal matrix and held in place by in situ fluid pressure. To
extract adsorbed gas, depressurization is undertaken. A well is
drilled into the coal-measure formations, and groundwater is
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» ag

Magnetic field data loggers

Figure 4. Field setup of 52 electric-field loggers (green) and three
magnetic-field loggers (red). Each survey line was 2.5 km long, and
the remote-reference station was in the northwest corner. W1 through
W6 represent locations of operational wells. Depressurization was
undertaken at different wells over the depth interval of 400 to 700 m.
Instruments were left in the field for four months of continuous moni-
toring. The red box represents the site used for temporal 1D inversions.
The orange box represents the sites used for time-lapse 2D modeling.

Special Section: Australia

extracted to reduce pore pressure within the coal measures, al-
lowing the trapped gas to desorb (Garthwaite et al., 2015).

One of the key questions surrounding the CSG industry is
whether one can effectively monitor the movement of fluids and
changes in the subsurface resulting from depressurization. CSG
monitoring bores are an expensive and ineflicient means of
monitoring fluctuations in groundwater level and quality. Moni-
toring bores provide information only at a single location and
are not capable of measuring hydraulic connectivity of subsurface
fluids. In this study, we demonstrate the utility of MT as a new
approach to provide a cost-effective alternative for monitoring
CSG depressurization.

From December 2013 to April 2014, an MT survey was
conducted at a GSG production testing site in the Surat Basin,
Queensland, Australia. Fifty-two electric-field loggers and three
magnetic-field loggers were deployed to produce MT responses
along two survey lines, each 2.5 km in extent and crossing several
producing wells (Figure 4). Depressurization was undertaken at
several wells at different times over the depth interval of 400 to
700 m.

Magnetotelluric response functions were generated from the
time-series data as a function of both time during the survey and
location in the array. For each site, a window of 72 hours of
downsampled 100-Hz data was extracted centered on each day
of the survey, and site-specific electric and magnetic fields were
extracted to obtain the impedance-tensor and error estimates in
the bandwidth of 10 to 0.01 Hz.

Line 1 of the test site crosses three production wells (Wells 3,
4, and 5). Unconstrained 2D inversions (Rodi and Mackie, 2001)
of line 1 were conducted using the M'T modeling software Winglink.
MT responses from 8 December 2013 and 21 March 2014 were
used for the pre- and postproduction models, respectively.

Figures 5a and 5b show results of pre- and postproduction
inversions, with a color scale ranging from 2 to 5 Qm. Approximate
depths of the dominant stratigraphic units are shown, taken from
Well 4 wireline logs. The location of Well 4 also is shown. That
well produced by far the most water and gas during this time
interval. Figure 5c shows the difference in resistivity between
pre- and postproduction inversions, represented as a percentage
change in resistivity.

Results from the 2D inversions suggest that the change in
resistivity is confined to the upper and lower coal measures, with
the larger effect west of Well 4. The change in resistivity to the
west of Well 4 is on the order of 8% to 10%, whereas to the east
of Well 4, it is 4% to 6%. This suggests greater permeability to
the west of Well 4 as the coal measures are depressurized and the
coal matrix shrinks (e.g., Palmer and Mansoori, 1996).

As an alternative to 2D time-lapse inversions that show spatial
variations in resistivity associated with production, it is possible to
undertake 1D inversions of data from a single site to show temporal
variations in subsurface resistivity. We present one such example
site from line 1 (site 1, 600 m to the west of Well 4). Water produc-
tion from Well 4 is an order of magnitude higher than at other
producing wells, and for the time interval shown in Figure 6, it
was the only well producing water. Results from the 2D inversions
suggest that sites to the west of this well should show the largest
change in resistivity.
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Figure 6 shows the time-lapse inversion from site 1 between
23 January 2014 and 3 March 2014 over the coal-seam interval.
Wiater production from depressurization began on 11 February
2014, and gas production began on 20 February 2014. There is a
decrease in resistivity in the coal measures (~ 350 to 650 m) ap-
proximately three days after water production began. The resistivity
is approximately 3 Qm from 23 January 2014 to 14 February 2014,
after which the coal measures become more conductive, dropping
to < 2.5 Qm. This drop in resistivity is on the order of 10% to 15%
and might be caused by enhanced permeability as the gas is released
from the coal formation and the coal matrix slightly reduces in
volume (Harpalani and Schraufnagel, 1990; Mirta et al., 2012).

MT monitoring of shale-gas hydraulic stimulation
Onshore shale-gas extraction has experienced a rapid increase
in the past decade, given newly developed techniques coupled with
the existence of large global reserves. One of the challenges of
shale-gas extraction is the typically low permeability of shale.
Hydraulic stimulation involves inducing geomechanical failure to
stimulate economic hydraulic-conductivity rates (Cipolla et al.,
2010). Although several related methods, loosely termed hydraulic
fracturing (“fracking”) are now commonplace, there are several
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Figure 5. (a) Inversion of preproduction along line 1 on 8 December
2013. (b) Inversion of postproduction along line 1 on 21 March 2014.
(¢) Percentage change of March profile relative to December profile.
The major change is in the upper and lower coal measures to the west
of Well 4 and is on the order of 8% to 10% difference.
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associated environmental concerns such as gas leakage and loss of
injection fluids into aquifer systems (Bierman et al., 2011).

A magnetotelluric survey was undertaken in the Cooper Basin,
South Australia, in conjunction with a hydraulic stimulation
conducted by Santos. A well was drilled vertically to a depth of
2900 m at the center of the profile (Figure 7) and then was devi-
ated to horizontal, extending 1000 m south. Fluid injections
began on 29 May 2014, with spatial and temporal sectioning of
fluid pumping lasting 12 days. Pumping was for 10 frack stages
beginning at the southernmost location and proceeding north.
Pumping ceased 12 days later, marking the beginning of the
fluid-flowback phase.

Hydraulic fracturing was monitored using 40 electric-field
loggers and three magnetic-field loggers to record MT responses
over a 65-day window — from day 120 (20 May 2014) until day
185 (22 June 2014). Electric-field loggers were deployed in a
cross-array, with 200 m site separation, as shown in Figure 7.

A key attribute of M'T monitoring is to identify how the
full-impedance tensor changes with time. Peacock et al. (2012),
Peacock et al. (2013), and Didana (personal communication,
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Figure 6. Time-lapse inversion showing temporal variation in the
target coal-seam resistivity beneath site 1 on line 1 from 23 January
2014 to 3 March 2014. The blue line represents the water-production
rate in barrels per day (bbl/d), and the red line represents the gas
production rate in million cubic feet per day (Mcf/d) from Well 4.

-28°01

W E-field logger (40)
B-field logger (2+1)
* 0ilf gas wells

Pipelines

-28°02 =

140°15*

140°13 140°14* 140716

Figure 7. Field setup of 40 electric-field loggers (green) and three
magnetic-field loggers (yellow). Each survey line was 4.4 km long, and
the remote reference station was at the end of two lines, with an addi-
tional remote 10 km away. Examples of data from sites 23, 31, and 39
are shown in this article.
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Figure 8. Differences in apparent-resistivity responses for a preproduction day (22 May 2014) and a postproduction day (6 June 2014). For site
31, two modes are shown, YX with the electric field perpendicular to line 3 and XY with the electric field parallel to line 3. For site 39, neither
mode exhibited a major difference in response. Only the YX component is shown; it has a slightly larger change than XY.

2015) demonstrate this with some success using difference in
phase tensors (Caldwell et al., 2004) across a large array. One
advantage of this approach is that the observed data can be
interpreted directly without the problems of nonunique
modeling.

Figure 8 shows the apparent-resistivity response curves for
site 31 (close to injection) and site 39 (at the end of the line and
distant from the injection) for a preinjection day (22 May 2014)
and postinjection day (6 June 2014). The impedance tensors were
rotated clockwise 45° so that the XY component had the electric
field parallel to line 3 and YX with the electric field perpendicular
to line 3. The phases are not shown because the bandwidth at
which a difference might be expected lies within the dead band.

Site 31 indicates that there is a clear difference for each of the
modes, slightly larger in effect for the YX component; this is
consistent with the feasibility study (Figure 2). Vector information
from the impedance tensor can be used to help determine the
areal extent of the injected fluids and/or preferential flow paths.
On the other hand, site 39 (Figure 8c) exhibits a much a smaller
change in both modes (only the YX is shown; the XY has a similarly
small difference). Thus, we demonstrate a quantitative difference
between proximal and distal sites that can be used to infer some
characteristics of the injection without having to model. We note
that similar response differences were observed along line 2,
indicating that the stimulation was relatively symmetrical around
the horizontal well.

In Figure 9, we show a 1D inversion from site 23 of the M'T
response rotated 45° from geographic coordinates with the electric
field orientated perpendicular to line 2. These 1D inversions have
a time-smoothing constraint to reduce modeling variations caused
by noise. In Figure 9, the models are normalized to the prestimula-
tion resistivity profile to show the magnitude of the modeled
resistivity change as a function of depth and time.

Without any temporal or spatial constraints, the resistivity
change caused by stimulation fluids injected at 2900 m is smoothed
over a much larger depth interval of 2500 to > 5000 m in the plot.
However, Figure 9 does show how resistivity changes over the
entire time interval, from initial stimulation to flowback.

Figure 10 shows the total electrical conductance (defined as
the sum of the thickness of each layer divided by its resistivity)
between 2500 and 5000 m as a function of time. Electrical con-
ductance is resolved better than electrical resistivity for 1D models
(Parker, 1980). The increase in conductance is small (on the order
of 1 S) and reflects the introduction of the stimulation fluid. Of
note is that the conductance reverts to the preinjection value after

Special Section: Australia

Difference in resistivity compared with 20 May 2014 (Qm decrease)

End injection (5tarlﬂcvw5&d}

Startinjection
y50 10 June 2014

29 May 2014

Figure 9. Temporal changes in 1D resistivity beneath site 23 for a
time window that spans the stimulation and flowback phases. Such
1D inversions with depth are smoothed with time to dampen temporal
changes in noise day by day. The resulting section is normalized with
respect to the preinjection profile so that the plot shows resistivity
differences.

flowback. This does not necessarily mean all the stimulation fluid
has been removed, but enhancements in fluid-filled permeability
are not maintained, and compressive stress reduces permeability
as soon as stimulation has been concluded.

Conclusion

The utility of magnetotelluric monitoring of unconven-
tional-resource development is at an early stage, with relatively
few projects to date. Results from surveys in this article dem-
onstrate that the M'T method has great promise, but it is a new
technology that will require some time to improve outcomes.
There is scope for great innovation in the design of field surveys,
potentially integrating the M'T and microseismic methods. In
particular, it is important to incorporate all known constraints
in space (such as resistivity logs as a priori background and
depth of fluid stimulation), time (commencement and rate of
fluid injection), and fluid characteristics (fluid resistivity, for-
mation temperature, and fluid volume). A significantly con-
strained model will be much more successful in defining regions
of fluid injection or depressurization than a smooth uncon-
strained model. HilE
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Variation in electrical conductance with time
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cating the movement of stimulating fluids into and out of the
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