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Abstract

Thelowest-lyingodd-parity stateof the Λbaryon lies surprisingly low inmass. Even though
it contains a heavier valence strange quark and has odd parity, with an energy of 1405MeV
it lies lower than any other excited spin-1/2 baryon. In the almost 50 years since its discov-
ery there has been significant effort expended to describe the structure of the Λ(1405),
however there has been no convincing resolution. It is very difficult to reconcile this low
mass with the quark model interpretation for this state, and lattice QCD studies have con-
sistently failed to reproduce it.

In this work, we use the PACS-CS (2+1)-flavour full-QCDensembles together with a
variational analysis using source and sink smearing in an attempt to isolate this otherwise-
elusive state using lattice QCD. For the first time, we report masses for the lowest-lying
states consistent with those in nature – including the Λ(1405). We then build on this
result by investigating their electromagnetic properties, and show that the strange quark
contribution to the magnetic form factor for the Λ(1405) near-vanishes in the physical
limit.

Together with a Hamiltonian effective field theory model analysis of the lattice QCD
energy levels, this strongly suggests that the structure of the Λ(1405) is dominated by a
molecule-like, bound antikaon-nucleon component. That is, we report evidence for the
existence of molecular meson-baryon bound states in QCD.
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One

An Introduction

Originally predicted in 1959 by Dahlitz and Yuan [1, 2] from an analysis of the unitar-
ity condition relating the πΣ and KN amplitudes, the Λ(1405) resonance presents as a
negative-parity baryon resonance with spin J = 1/2, isospin I = 0, and strangeness S = −1.
Sitting just below the KN threshold, experimental evidence of this resonance was reported
from1960 [3–5]. The latest ParticleDataGroup report [6] lists the Λ(1405) as a four-star
resonance with a mass of 1405.1+1.3−1.0 MeV/c2 and a width of 50.5 ± 2.0MeV/c2.

The introduction of the quarkmodel revolutionised the field of particle physics, where
the Λ(1405) was interpreted as a three-quark state consisting of an up, a down, and a
strange quark [7–9]. However, it is very difficult to reconcile such a statewith the unexpec-
tedly lowmass that is observed experimentally. Since strange quarks are heavier than both
up and down quarks, a naïve constituent quark model would naturally place the Λ(1405)
above its strangeness-0 nucleon counterpart, the N(1535) – completely counter to exper-
imental results, where the N(1535) lies over 100MeV/c2 above the Λ(1405)! Moreover,
the splitting between the JP = 1/2− Λ(1405) and its spin-orbit partner, the JP = 3/2−

Λ(1520), is substantially larger than the equivalent splitting in the nucleon sector.
Alternatively, one can describe the Λ(1405) resonance as a molecule-like state of an

antikaon bound to a nucleon. This interpretation has been explored through various theor-
etical and phenomenological formalisms, including reaction matrix analysis [1, 2], vector
meson exchange [10], the SU(3) cloudy bagmodel [11, 12], and chiral dynamics [13, 14].
Many of these studies find that the Λ(1405) resonance overlaps with both the three-quark
andmolecular bound-state pictures, and indeed one would expect all possibilities with the
correct quantum numbers to contribute to some degree in nature. The question then be-
comes – which of these provides the dominant contribution?

With this inmind, in thismanuscriptwe investigate the Λ(1405)using lattice quantum
chromodynamics (lattice QCD), a non-perturbative, first-principles method for probing
the strong interaction. While previous lattice QCD studies of the Λ(1405) have failed
to conclusively identify and describe this unusual state [15–17], here we extend the vari-
ational analysis techniques developed by the CSSM Lattice collaboration. Since these
techniques proved successful in identifying the low-lying, odd-parity nucleon resonances
N∗(1535) and N∗(1650) [18], it is only natural to consider their extension to resolving

1



1. An Introduction

the structure of the Λ(1405) resonance.
InChapter 2, weprovide somehistorical notes surrounding this fieldof particle physics

alongwith an introduction to quantum chromodynamics, the theory describing the strong
interaction. InChapters 3 and 4, we provide the necessary formalism addressing the lattice
QCD methods needed for this investigation, and then in Chapters 5 and 6 we present our
calculations, their results, and an analysis. Finally, in Chapter 7 we summarise our con-
clusions from this study – that of evidence for the existence of molecular meson-baryon
bound states in QCD.

2



Two

Ἄτομος: A Brief History
of Particle Physics

Ἄτομον. Derived from ἄτομος, meaning “indivisible”, this was the name given to the funda-
mental units of matter by the ancient Greek philosophers. The concept of atomism, that
all matter is composed of fundamental, indivisible particles, has existed for over two thou-
sand years. References to this concept date as far back as the times of ancient India (with
the Jain, Ājīvika, andCārvāka philosophical schools) and ancientGreece (with thework of
Leucippus and Democritus), and although these ideas were mostly philosophical or reli-
gious rather than empirical, modern science has retained the ancient Greek name for these
particles: atoms.

Of course, wenowknow that the atomsarenot indivisible – instead, they are composed
of a nucleus and electrons. Moreover, the nucleus is itself composed of smaller protons and
neutrons, and these are composed of even smaller quarks. Particle physics is the study of
these objects, and how they interact to form matter as we observe it.

2.1 History
The stoichiometric work of John Dalton in the late 18th and early 19th centuries led him
to conclude that each element was composed of a single, unique type of particle. Believing
these to be the fundamental units of matter, he named them atoms, but by the end of the
19th century J. J. Thompson had discovered the electron, overturning this belief by con-
cluding that they were a component of every atom. Rutherford’s discovery of the atomic
nucleus in 1909 further demonstrated the composite nature of the atom.

Rutherford and his students went on to show that the positive charge associated with
any nucleus was always an integer multiple of the hydrogen nucleus. Together with the
knowledge that the atomic masses of many elements were also approximately integer mul-
tiples of the hydrogenmass, this led him to propose that the hydrogen nucleuswas a funda-
mental particle, of which all other atomic nuclei were composed; he named these particles
“protons”.

3



2. Ἄτομος: A Brief History of Particle Physics

n p

Σ−
Λ

Σ0

Σ+

Ξ− Ξ0

S = 0

S = −1

S = −2

q = −1 q = 0 q = 1

Figure 2.1: The baryon octet. Particles lying on the same horizontal line have the same
strangeness quantum number, while those on the same diagonal have the same electric
charge. If we were to draw vertical lines, then particles sharing these would have the same
third isospin quantum number.

In 1932, JamesChadwick discovered the neutron [19], originally predicted byRuther-
ford to explain the disparity between the atomic number of an atomand its atomicmass. In
1947, the pion and kaon were found, the first of the mesons to be discovered, and in 1950
the Λ baryon was discovered by Hopper and Biswas of the University of Melbourne [20].
Both the Λ and the kaon were found to have lifetimes orders of magnitude longer than ex-
pected, and so this was explained by a new quantum number, “strangeness”, conserved by
strong interactions but not weak.

By the late 1960s, an enormous number of these particles had been discovered, all be-
lieved to be elementary particles. This situation was dubbed the “particle zoo” – surely,
not all of these hundreds of particles could be elementary? Significant effort was dedic-
ated to classifying these particles, and in 1961 both Murray Gell-Mann [21, 22] and Yuval
Ne’eman [23] independently proposed the so-called “Eightfold Way”. This classification
scheme works by arranging the particles based on their isospin and strangeness quantum
numbers; we then recognise the resulting spin-1/2 baryon “octet” (shown in Figure 2.1)
as the adjoint representation of SU(3), the Lie group of 3 × 3 unitary matrices with unit
determinant.

The same principles could also be applied to the spin-3/2 baryons, organising them
into a decuplet (as in Figure 2.2) but in order for this to make sense it required a then-
undiscoveredparticle [24–26]. Themodel, however, didmakepredictions for this particle,
and such a particle—the Ω−—was found in 1964 [27].
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2.2. The Quark Model

Δ− Δ0 Δ+ Δ++

Σ∗− Σ∗0 Σ∗+

Ξ∗− Ξ∗0

Ω−

S = 0

S = −1

S = −2

S = −3
q = −1 q = 0 q = 1 q = 2

Figure 2.2: Thebaryondecuplet. Particles are arranged in the same fashion as in Figure 2.1.

2.2 TheQuarkModel
Shortly after the postulation of the EightfoldWay, bothGell-Mann [28] andGeorgeZweig
[29] independently posited a newmodel to explain its success: the quark model. In it, the
known baryons and mesons are not the elementary particles as previously thought, but
instead are composed of combinations ofmore-fundamental quarks and antiquarks. There
are three flavours of quarks, up (u), down (d), and strange (s), and these form a triplet
that belongs to the fundamental representation 3 of SU(3). The corresponding antiquark
triplet then naturally belongs to the conjugate representation 3.

If we give the quarks a baryon number of 1/3, then we can consider the baryons as
being constructed from three quarks, while the mesons from a quark and an antiquark.
Moreover, such a construction naturally reproduces the multiplet structures seen in the
hadronic spectra. The pseudoscalar (Figure 2.3) and vector (Figure 2.4) meson nonets
decompose into the trivial representation 1 and the adjoint representation 8

3⊗ 3 = 1⊕ 8. (2.1)

Similarly, the spin-1/2 baryon octet and spin-3/2 decuplet arrangements can be seen
through

3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10. (2.2)

If the SU(3)-flavour symmetry were exact, all particles in each representation would have
the same masses; the small mass differences between the members of each representation
comes from the explicit symmetry breaking of this symmetry group.

Since the quarks are spin-1/2, they can be either spin-up or spin-down. If we combine
this togetherwith the flavour symmetry, our quark vector nowhas 6 elements, correspond-
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K0 K+

π−
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π0

η′
π+

K− K0

S = 1

S = 0

S = −1

q = −1 q = 0 q = 1

Figure 2.3: The pseudoscalar meson nonet. Particles are arranged in the same fashion as
in Figure 2.1. The η′ belongs to the singlet 1 representation, while the rest to the octet 8
representation.

K∗0 K∗+

ρ−
ω

ρ0

φ
ρ+

K∗− K∗0

S = 1

S = 0

S = −1

q = −1 q = 0 q = 1

Figure 2.4: The vector meson nonet. Particles are arranged in the same fashion as in Fig-
ure 2.1.

ing to the three flavours with two spins per flavour, and our SU(3)-flavour symmetry has
been promoted to a SU(6)–spin-flavour symmetry. This model then naturally represents
all of the ground-state particles through

6⊗ 6 = 1⊕ 35 (2.3)
6⊗ 6⊗ 6 = 20⊕ 56⊕ 70⊕ 70. (2.4)

In the case of the ground-state baryons, with spatially-symmetricwave functions, only56 is
permitted – so that the baryons can satisfy Fermi-Dirac statistics, we need a wave function
that is fully symmetric in spin-flavour, and only this term provides this. Moreover, we can
split this into the spin-flavour components through

56 = (8, 2)⊕ (10, 4), (2.5)
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2.3. Quantum Chromodynamics

where we immediately see the octet and decuplet structures. For the mesons, splitting the
terms into the spin-flavour components gives us

1 = (1, 1) and 35 = (1, 3)⊕ (8, 3)⊕ (8, 1), (2.6)

and we identify the pseudoscalar meson nonet with (8, 1)⊕ (1, 1) and the vector meson
nonet with (8, 3) ⊕ (1, 3). In the pseudoscalar sector, the symmetry is respected and the
η′ meson is the (1, 1). However, flavour symmetry is broken in the vector sector with the
φ dominated by ss.

2.3 QuantumChromodynamics
While the quarkmodel gives us an effectivemethod for describing the lowest-lyingmeson
and baryon multiplets, it is clearly not the whole story. The model cannot reproduce the
mass—or even relative position—of the lightest positive- (N∗(1440)) or negative-parity
(Λ∗(1405)) excitations [30, 31]. Moreover, recent discoveries of exotic states such as the
tetraquark Z−(4430) [32] and pentaquark P+c (4380) and P+c (4450) [33] are well beyond
the scope of the quark model.

In addition to these, there are two major issues with the quark model as it stood dur-
ing the mid-1960s. The spin-3/2 Δ++ would be required to contain three up quarks with
parallel spin but zero orbital angular momentum. The same is true for the Ω−, except with
three strange, insteadof up, quarks. Since quarks are fermions, such an arrangement should
not be possible due to the Pauli exclusion principle, unless the quarks carry an additional,
hidden quantum number.

There were two initial explanations to allow the quark model to describe the Δ++ and
Ω−. Firstly, in [34], itwas proposed that the quarks obeyedorder-3 parafermionic statistics
instead of order-1 (the traditional Fermi-Dirac statistics), and [35] extended this with an
internal SU(3) symmetry that did not commute with the SU(3) flavour symmetry of the
quark model.

The internal SU(3) symmetry picture was redeveloped using ordinary Fermi-Dirac
statistics for the quarks in [36]. Here, this internal symmetry is independent of the quark
flavour (i.e. it commutes with SU(3)-flavour). Since there are three values for the cor-
responding charge, it became known as the “colour” charge, and the values “red”, “green”,
“blue”; thus, quantum chromodynamics was born.

Quantum chromodynamics (QCD) is now believed to be the correct theory for de-
scribing the strong interaction. It is formulated as a Yang-Mills gauge theory [37] based
on the SU(3) group, and we provide a brief introduction to the theory in this section. For
more detailed references see, for example, [38–40].

7



2. Ἄτομος: A Brief History of Particle Physics

2.3.1 Local Gauge Invariance
Consider some free, fermionic, field ψ:M4 → V of massmmapping theMinkowski space-
timeM4 to some n-dimensional complex vector space V = Cn. We can immediately write
down the Lagrangian density associated with this field by

Lfree(x) = ψ(x)(iγμ∂μ +m)ψ(x). (2.7)

Suppose now that in addition to the space-time degrees of freedom, the universe has
some additional, internal degrees of freedom that correspond to some matrix Lie group
G ⊆ GL(n,C). Our Lagrangian density should be invariant under the action of G on the
vector space V – that is,Lfree ↦ Lfree for all h ∈ G.

If we pick a basis for V, we can—without loss of generality—associate a matrix Mh ∈
M(n,C) to each element h ∈ G such that the action of h on V is ordinary matrix multiplic-
ation: ψ(x) ↦ Mh ψ(x). Clearly, the Lagrangian density is already invariant under this
transformation:

Lfree(x)↦ ψ(x)M†
h(iγμ∂μ +m)Mh ψ(x)

= ψ(x)M†
hMh(iγμ∂μ +m) ψ(x)

= ψ(x)(iγμ∂μ +m)ψ(x)
= Lfree(x). (2.8)

Furthermore, it should notmatter if we apply a different transformation fromG at each
location in space-time. Again, we canwithout loss of generality represent the action of h on
V throughmatrixmultiplication, but this time the associatedmatrixMh depends (differen-
tiably) on x. Consequently, the derivative ∂ acts non-trivially onMh, and so the Lagrangian
density is not invariant:

Lfree(x)↦ ψ(x)Mh(x)†(iγμ∂μ +m)Mh(x) ψ(x)
= ψ(x)Mh(x)† Mh(x) (iγμ∂μ +m) ψ(x) + i ψ(x)Mh(x)†γμ(∂μMh)(x) ψ(x)
= Lfree(x) + i ψ(x)Mh(x)†γμ(∂μMh)(x) ψ(x)
≠ Lfree(x). (2.9)

That this should happen becomes obvious whenwe remember that the derivative is, in
effect, comparing the value of the field at two (infinitesimally-separated) locations:

∂φ
∂x
∶= lim

ε→0

φ(x + ε) − φ(x)
ε

. (2.10)

Not only do we get a term from the change in the field itself, but we also see the change in
the applied gauge transformation; if we want to apply the derivative operator in a gauge-
covariant fashion, we need to take this into account.

8



2.3. Quantum Chromodynamics

With this in mind, let us consider a covariant derivative construction of the form

Dμ = ∂μ − i gAμ(x), (2.11)

where we have introduced a new vector field Aμ(x) ∶= Aμ(x) ⋅ λ, where Aμ(x) =
(A1

μ(x),…,Am
μ (x)), and λ = (λ1,…, λm) are the generators of the gauge group; let us call

this field the “gauge field”. We then require that Dμψ transforms like ψ so that the Lag-
rangian is invariant:

h(Dμψ(x)) =Mh(x)Dμψ(x). (2.12)

Substituting in our definition forDμ, on the left-hand side we have

h(Dμψ(x)) = (∂μ − i g h(Aμ(x))) h(ψ(x))
= ∂μ(Mh(x) ψ(x)) − i g h(Aμ(x))Mh(x) ψ(x)
= (∂μMh(x)) ψ(x) +Mh(x)∂μψ(x) − i g h(Aμ(x))Mh(x) ψ(x), (2.13)

while on the right we have

Mh(x)Dμψ(x) =Mh(x)(∂μ − i gAμ(x)) ψ(x)
=Mh(x)∂μψ(x) − i gMh(x)Aμ(x) ψ(x). (2.14)

Setting these equal to each other again and rearranging, we have

h(Aμ(x))Mh(x) ψ(x) =Mh(x)Aμ(x) ψ(x) −
i
g
(∂μMh(x)) ψ(x), (2.15)

or equivalently,

h(Aμ(x)) =Mh(x)Aμ(x)Mh(x)−1 −
i
g
(∂μMh(x))Mh(x)−1. (2.16)

The first term is the gauge transformation if the gauge field transforms under the adjoint
representation, while the second term encodes how the gauge transformation changes
around x. In terms of differential geometry, the gauge field forms a connection form.

To complete our gauge-invariant Lagrangian density, we need to include a kinematic
term for the gauge field. Such a term would need to be gauge invariant in its own right
yet only depend on the gauge field itself – the appropriate quantity to include is the field-
strength form,

Fμν =
i
g
[Dμ,Dν]. (2.17)

While this is not gauge invariant, its square is, and so we write

Lgf(x) = −
1
2
trF2 = −1

4
Fμν ⋅ Fμν, (2.18)

9



2. Ἄτομος: A Brief History of Particle Physics

where Fμν = (F1
μν,…,Fmμν) for the gauge field component of the Lagrangian density. We

now have everything we need to write down the full, locally–gauge-invariant Lagrangian
for our theory:

L(x) = ψ(x)(iγμDμ +m)ψ(x) −
1
2
trF2. (2.19)

2.4 Properties of QuantumChromodynamics

The Lagrangian density of Equation (2.19) is quite unremarkable. Written thus, it looks
like that of quantum electrodynamics (QED), the gauge field theory formed from G =
U(1) (the trace operation in the kinematic term for the gauge field does nothing in the
case ofQED, since there is only a single gauge degree of freedom, and sowe generally leave
it off). Since QED is a relatively simple, well-understood theory, can the same be said for
QCD?

It turns out that the answer to this question is an emphatic no. To see this, we expand
out the definition of the curvature form to get

Fμν =
i
g
[∂μ − i gAμ,∂ν − i gAν]

= i
g
[∂μ,∂ν] + [∂μ,Aν] + [Aμ,∂ν] − i g [Aμ,Aν]

= ∂μAν − ∂νAμ − i g [Aμ ⋅ λ,Aμ ⋅ λ]
= ∂μAν − ∂νAμ − i gAa

μ Ab
μ [λa, λb]

= ∂μAν − ∂νAμ + g f abc Aa
μ Ab

μ λc, (2.20)

where f abc are the structure constants for the associated Lie algebra, Lie(G). The first two
terms here are standard kinematic terms for a massless vector boson, while the last allows
the vector boson to self-interact. If the associated Lie algebra is Abelian, the structure con-
stants are all zero, and so this last term is zero and there are no self-interactions between
the vector bosons. This is the case forG = U(1) – that is, QED.

On the other hand, if the gauge group is non-Abelian, then we permit three- and four-
point interactions involving only the gauge fields, and this is the case for QCD. Feynman
diagrams for the interactions permitted byAbelian (QED) and non-Abelian (QCD) gauge
field theories are presented in Figure 2.5. Moreover, these gauge field self-interactions nat-
urally generate a significantly richer (andmore complicated) theory, with perhaps the two
most famous emergent properties being colour confinement and asymptotic freedom.

10



2.4. Properties of Quantum Chromodynamics

(a)

(b) (c) (d)

Figure 2.5: Feynman diagrams describing interaction vertices permitted by (top) quantum
electrodynamics and (bottom) quantum chromodynamics. (a) Fermion-photon interac-
tion. (b) Fermion-gluon interaction. (c) Three-gluon interaction. (d) Four-gluon interac-
tion.

2.4.1 Asymptotic Freedom

A key feature of quantum field theories is the spontaneous and continuous creation and
destruction of virtual fermion-antifermion pairs, with “empty space” being anything but
empty. In the vicinity of a charge, these virtual fermion-antifermion pairs becomenaturally
alignedwith the field lines of the charge: the opposite-charged fermions are attracted to the
charge while the like-charged fermions are repelled. The net effect is to partially cancel out
or “screen” the field, and as onemoves closer to the charge (or equivalently, probes at higher
energies), this screening naturally decreases resulting in an increase to the effective charge.

In the case of QED, where the fermions are the only charged particles, this is the only
consideration. However in QCD, the situation is different: the fermion-antifermion pairs
still provide the same screening effect to the colour charge, however we now also have to
consider the virtual gluon-gluon pairs – these produce the opposite effect and result in a
decrease to the effective charge.

Which of these two effects is dominant depends on the number of flavours of quarks:
if there are less than 16 flavours, the gluon “anti-screening” is dominant, while if there are
more than this, the fermion screening is dominant. Since there are only 6 known flavours
of quarks, we are in the first category. Thus, the effective colour charge decreases at higher
energies and so we say that QCD is “asymptotically free”.
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2. Ἄτομος: A Brief History of Particle Physics

Figure 2.6: An attempt to separate and isolate a pair of quarks. As one continues to apply
energy while separating the quarks, eventually the gluon field flux tube linking the quarks
snaps to form a quark-antiquark pair.

2.4.2 Confinement

In the case of QED, the electric field between charged particles decreases as they are separ-
ated, with a natural result that you can effectively and practically isolate the fermions (for
example, an electron). However, in the case of QCD, since the gluons also carry colour
charge, the gluon field does not decrease with the distance; instead, a narrow flux tube
forms between the fermions, and the strong force between them remains approximately
constant regardless of their separation.

If one were to attempt to separate a pair of quarks, the energy in the flux tube connect-
ing the quarks increases linearly with the separation. As a result, eventually it will become
energetically favourable to create a quark-antiquark pair, and “snap” the flux tube into two
separate flux tubes, as depicted in Figure 2.6. Thus, it is not possible to isolate the fermions
in QCD – they can only exist in bound states, such as the quark-antiquark mesons and the
quark-quark-quark baryons.

2.5 Path Integral Formulation

As a generalisation of the principle of least action from classical mechanics, we can repres-
ent a quantum process as a sum over all possible field configurations with an appropriate
weighting phase for each field configuration. This represents an alternative approach to the
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2.5. Path Integral Formulation

canonical quantization method, and is a valuable tool for working with field theories. For
a given field φ, we write the generating function as

Z ∶= ∫ Dφ exp(i S[φ]), (2.21)

where the action functional S is obtained from the Lagrangian density through

S[φ] ∶= ∫ L(φ; x)d4x, (2.22)

and the integration measure defined by

Dφ ∶=∏
x

dφ(x). (2.23)

To calculate vacuum expectation values for an observable, we need only include the asso-
ciated operator in the integral and normalise by the partition function:

⟨O⟩ = 1
Z ∫

DφO[φ] exp(i S[φ])

= ∫
DφO[φ] exp(i S[φ])
∫ Dφ exp(i S[φ])

. (2.24)

If we recall the equivalent quantities from statisticalmechanics, this formula looks very
similar, and indeed Z is often referred to as the “partition function”. The only difference
is that factor of i in the exponent; as a consequence, the integrands oscillate instead of de-
caying as in the classical case. Unfortunately, this minor change means that in general we
cannot directly evaluate them. However, by applying the Wick rotation t → −itE and for-
mulating the theory in Euclidean time, the generating function takes the form

Z = ∫ Dφ exp(−SE[φ]); (2.25)

this now has the correct form to be labelled a partition function.
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Three

Lattice Quantum
Chromodynamics

Lattice quantum chromodynamics (lattice QCD) is a first-principles, non-perturbative
method for studying low-energy quantum chromodynamics (QCD) [41]. The method
involves the formulation of QCD on a finite space-time lattice (and so is a lattice gauge
theory) such that, in the limit of the lattice extent going to infinity and the lattice spacing
going to zero, continuum QCD is recovered.

Since its initial presentation in 1974 [41], lattice QCD has demonstrated remarkable
success [42]. Lattice QCD can reproduce the hadronic ground-state spectrum to within a
fewpercent of the physical values, and, in some cases, has even correctly predicted themass
of some states to higher accuracy and precision than the then-experimentally-measured
values – for example, the pseudoscalar and vector charmed B mesons [43, 44]. Moreover,
in recent years, lattice QCD has been used to demonstrate a connection between SU(3)
centre vortices and the two main features of QCD: the confinenent of quarks within had-
rons, and dynamical mass generation and chiral symmetry breaking [45–47].

In this chapter we present an introduction to lattice QCD, and outline the basic con-
cepts andmethods used. For amore detailed overview, we defer to texts such as [48] (from
whichmuch of the treatment here has been derived) and [49]. For more detailed descrip-
tions of the lattice actions used in this chapter, see the references cited therein.

3.1 QCDon a Lattice: TheWilson Actions

3.1.1 Defining a Space-Time Lattice
Perhaps the simplest discretisation of space-time is that of a hypercubic grid of regularly-
spaced points. If a is the spacing between these points, then we can naturally describe the
(now countably-infinite) locations of our new space-time as x = an, where n ∈ Z4 is the
(multi-dimensional) index of the site. Let L denote the set of all lattice sites. The formu-
lation of QCD onto the lattice of space-time points is, in essence, a choice of appropriate
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3. Lattice Quantum Chromodynamics

gauge and quark actions, and as long as we reproduce the physical theory in the continuum
limit, a→ 0, we have quite a lot of flexibility in this regard. Perhaps the most natural start-
ing point is to consider actions with the same form as continuum QCD.

Integration over all space-time points has a natural analogue in a sum over the lattice
sites,

∫ d4x→ a4∑
n∈L

, (3.1)

however discretising the derivative is less obvious. Let us first consider the definition of
the derivative,

∂μφ(x) ∶= lim
h→0

φ(x + hμ̂) − φ(x)
h

, (3.2)

where μ̂ is a unit vector in the xμ direction. It is tempting to just remove the limit and seth to
a – this is the forward difference operator, δ+μ – however such a choice almost immediately
runs into problems: its determinant is, in general, complex. The same thing happens if
we use the backward difference operator, δ−μ , so instead let us use the central difference
operator,

∂μφ(x)→ δμφ(an) ∶=
φ(an + aμ̂) − φ(an − aμ̂)

2a
. (3.3)

3.1.2 TheWilsonGauge Action
In the continuum, the gauge fields naturally arise as a means of ensuring the local gauge
invariance of the derivative operator. Indeed, the same process is needed here, since our
derivative operator is not locally gauge invariant. However, insteadofworkingdirectlywith
the gauge fields, we work with the matrices they generate:

Uμ(an) ∶= P exp( ig
2 ∫

an+aμ̂

an
Aμ(z) ⋅ λ dz)

≃ exp(iagAμ(an)), (3.4)

The approximation in the second line is valid for small a and comes from treating the gauge
field as constant across the integration region. Using this, we can define a discretised co-
variant derivative in the covariant central difference operator:

∇μφ(an) =
Uμ(an)φ(an + aμ̂) −U†

μ(an − aμ̂)φ(an − aμ̂)
2a

. (3.5)

In keepingwith their role as parallel transporters, since they carry dependence on both
location and direction we can associate them with “links” joining one lattice site to an-
other. If we think of local gauge transformations as changing the basis for the vector space
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at each location on the lattice, then the gauge matrices associated with a lattice site simply
describe the basis transformations needed to bring vectors at neighbouring sites into the
vector space of this site: if ψ(an) ∈ V(an), thenUμ(an)ψ(an+aμ̂) ∈ V(an) ≅ V(an+aμ̂).
The adjoint of the gauge field does exactly the opposite, transforming a vector from the cur-
rent site’s vector space basis to that of the neighbouring sites: U†

μ(an)ψ(an) ∈ V(an+aμ̂) ≅
V(an).

The gauge fields transform in the adjoint representation of the gauge group, and so we
can immediately write down the action of a gauge transformation G(x) ∈ SU(3) on the
gauge field:

Uμ(an)↦ G(an)Uμ(an)G−1(an + aμ̂). (3.6)

With this, we can see that the only gauge-invariant field combinations are where we either
start and end at the same location, or start and end with a fermion. Some example gauge-
invariant paths are shown in Figure 3.1. Thus, the simplest combination involving only the
gauge field is the 1 × 1 “plaquette” loop:

Pμν(an) = Uμ(an)Uν(an + aμ̂)U†
μ(an + aν̂)U†

ν(na). (3.7)

Using the approximation in Equation (3.4) together with the Baker-Campbell-
Hausdorff formula, we can express this in terms of the the gauge field’s curvature form,
with

Pμν(an) ≃ exp (i(a2gFμν(an) +O(a3))) . (3.8)

From this, we can obtain an identity of the same form as the kinetic term for the continuum
gauge field by Taylor expanding this:

I3 −
Pμν + P†

μν

2
= a4g2

2
FμνFμν +O(a6). (3.9)

Thus, the simplest discretisation of the gluon action is

SG[U] =
2a4

g2 ∑n
∑
μ>ν

tr(I3 −
Pμν(an) + P†

μν(an)
2

) , (3.10)

where the constant 2/g2 is chosen to ensure we get the correct normalisation in the con-
tinuum limit. Recognising that X + X† = 2ReX, it is common to write this in the form

SW
G [U] = βa4∑

n
∑
μ>ν
(1 −

Re trPμν(an)
3

) , (3.11)

where β = 6/g2, and this is known as the Wilson gauge action.
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3. Lattice Quantum Chromodynamics

(a) (b) (c)

(d)

aν̂
aμ̂

Figure 3.1: Examples of gauge-invariant combinations of discretised fields. For simplicity,
we have only drawn this in two space-time dimensions. The gray points represent the lat-
tice sites, the blue lines the gauge field links joining the lattice sites, and the green points
the fermion source and sink operators. (a) The 1 × 1 rectange, R1×1

μν , also known as the
“plaquette”, Pμν; this is the simplest gauge-invariant quantity that can be constructed using
only gauge field links. (b) The 1 × 2 rectange, R1×2

μν ; this combination is employed in the
Iwasaki gauge action used to construct the ensembles used in this work, and is discussed in
Section 3.2.1. (c)The clover operatorCμν; this is commonly used to evaluate the curvature
formFμν on the lattice and is discussed in Section 3.2.2. (d)Apath starting and endingwith
a fermion source and sink, respectively.

3.1.3 Fermions on the Lattice: ANaïve Approach

If we consider the fermionic part of the continuum action,

SF[Aμ, ψ] = ∫ LF(Aμ, ψ, x)d4x = ∫ ψ(x)(γμDμ +m)ψ(x)d4x, (3.12)

we can immediately write down a discretised version:

SF[Uμ, ψ] = a4∑
n
ψ(an)(γμ∇μ +m)ψ(an). (3.13)
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3.1. QCD on a Lattice: The Wilson Actions

Using the definition of the discretised covariant derivative, this becomes

SF[Uμ, ψ] = a4∑
n
(
ψ(an)γμUμ(an)ψ(an + aμ̂)

2a

−
ψ(an)γμU†

μ(an − aμ̂)ψ(an − aμ̂)
2a

+mψ(an)ψ(an)) (3.14)

While this takes the correct form in the continuum limit, it unfortunately does not
describe the same quantum theory. To see this, we begin by writing down themomentum
space Feynman propagator in the continuum:

S(p) = γ ⋅ p −m
p2 −m2 . (3.15)

For a massless particle, this clearly has a single pole at p = 0. This pole comes from the
Fourier transformation of the continuumderivative operator, and so to see themomentum
structure of the discretised form, we need only consider the Fourier transform of the dis-
cretised derivative operator, the central difference operator:

F(δμψ)(p) =
F(δ+μ ψ)(p) −F(δ−μ ψ)(p)

2

=
exp(iapμ) ψ̂(pμ) − exp(−iapμ) ψ̂(pμ)

2a

= i
a
sin(apμ) ψ̂(pμ), (3.16)

where ψ̂ is the Fourier transform of ψ. This has zeros at pμ ∈ { 0, π/a}. The zero at the
origin corresponds to the zero in the continuum theory, but the extra 15 zeros will also
produce momentum distributions of that of a single particle propagator – that is, we are
actually describing a theorywith 16 species of fermion! This is the infamous fermiondoub-
ling problem, so-named because the number of fermion species goes as 2d where d is the
number of space-time dimensions, and essentially makes this lattice formulation useless
for our studies.

3.1.4 Wilson Fermions
Previously we discussed that we have quite some flexibility in choosing our lattice formu-
lation, so the question now is, can we use that flexibility to solve the fermion doubling
problem? It turns out that this is not strictly possible – in [50], it is shown that it is im-
possible to solve the fermion doubling problem without violating one of the properties of

19
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the original continuum theory, such as chiral symmetry or translational invariance. But as
long as we can make this sacrifice without changing the physics we are interested in, we
have hope.

In [41], Wilson proposed a modification of the fermion action to include a term that
vanishes in the continuum limit, but raises themass of the extra species of fermions; in the
continuum limit, the extra fermions then become infinitely heavy and so decouple from
the theory. The extra term makes use of the Wilson operator,

Δψ(an) = 1
a2∑

μ
(2ψ(an) −Uμ(an)ψ(an + aμ̂) −U†

μ(an − aμ̂)ψ(an − aμ̂)), (3.17)

and produces the fermion action

SF[Uμ, ψ] = a4∑
n
ψ(an) (γμ∇μ +

ra
2

Δ +m) ψ(an), (3.18)

where r is the Wilson parameter, usually set to 1.
To see how this resolves the issue of the extra fermion species, we take the Fourier

transform of the Wilson operator:

F(Δψ)(p) = 1
a2∑

μ
(2ψ̂(p) −F(δ+μ ψ)(p) −F(δ−μ ψ)(p))

= 1
a2∑

μ
(2 −

exp(iapμ) + exp(−iapμ)
2a

) ψ̂(pμ)

= 2
a2∑

μ
(1 − cos(apμ)) ψ̂(pμ). (3.19)

This still contains a zero at p = 0, however it is non-zero at all the other zeros of Equa-
tion (3.16). As a result, the overall Fourier transform has only a single zero, and so we end
with a single species of fermion in the continuum limit. Unfortunately, the addition of this
term explicitly breaks the chiral symmetry, but since we are working away from the chiral
limit, it does not present a problem in this work. Standard renormalisation techniques al-
low the identification of a base mass parameter that ensures mπ → 0 as mq → 0. The
Wilson term also introducesO(a) discretisation errors, but we can improve upon this as
demonstrated in Section 3.2.2.

If we rescale the fermion fields by a factor of
√
ma + 4r, we can write the action as

SW
F [Uμ, ψ] = a4 ∑

n,m∈L
ψ(an)M(an, am)ψ(am), (3.20)

where the Wilson fermion matrix is defined by

aM(x, y) = δx,y − κ∑
μ
((r − γμ)Uμ(x)δx+aμ̂,y + (r + γμ)U†

μ(x − aμ̂)δx−aμ̂,y), (3.21)
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where
κ = 1

2ma + 8r
. (3.22)

The parameter κ essentially describes the strength of the coupling between the fermion
field at a given site to that at its neighbours, and so it is often known as the hopping para-
meter.

3.2 Improvements to the Lattice Actions
As noted previously, our choice of lattice actions is quite arbitrary, as long as we reproduce
the correct continuum theory in the continuum limit. We used this feature in Section 3.1.4
to solve the fermion doubling problem. Our current actions have discretisation errors of
O(a2) for the gauge component and O(a) for the fermion component; can we use this
flexibility to reduce these errors? The general approach to these methods is to add extra,
higher-dimensional, so-called “irrelevant” operators that vanish in the continuum limit. In
this section we specify the improved gauge and fermion actions that are used in this work,
but leave detailed descriptions for the references listed therein.

3.2.1 The Iwasaki Gauge Action
One approach to improving the gauge action is to formulate the renormalisation group
equations onto the lattice and use these to estimate, non-pertubatively, the coefficients of
various irrelevant operators in an effort to move as close as possible to the renormalised
trajectory. The PACS-CS configurations that we use in this work ([51], with a description
in Section 3.4) were constructed using the Iwasaki gauge action [52] of the form

SIwasaki
G [U] = β∑

n
∑
μ>ν
(c0 Re trR1×1

μν (an) + c1 Re trR1×2
μν (an)) , (3.23)

where R1×1
μν = Pμν is the 1× 1 plaquette discussed previously and R1×2

μν is the 1× 2 rectangle
(see Figure 3.1 for a pictorial representation), and the coefficients are c0 = 3.648 and c1 =
−0.331.

3.2.2 TheWilson Clover Action
TheO(a) errors introduced by the Wilson term in removing the fermion doubling prob-
lem are particularly troubling. Being at such a low order in a, we would need to use a very
fine lattice in order to prevent these becoming a significant contribution to our results. To
keep the lattice volume constant and avoid finite volume effects, we would therefore need
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3. Lattice Quantum Chromodynamics

to use very large lattices, and this would naturally lead to an enormous increase on compu-
tational effort.

In [53], the inclusion of dimension-5 operators is proposed with coefficients selec-
ted to cancel the O(a) errors of the original Wilson fermion action. This produces the
Sheikholeslami-Wohlert action,

SSW
F [U, ψ] ∶= SW

F −
iga5cSWr

4 ∑
n
ψ(an)σμνFμν(an)ψ(na), (3.24)

where the parameter cSW can be tuned to remove theO(a) errors. In [54], the value of this
parameter was tuned non-pertubatively using the renormalisation-group improved gauge
action of the proceeding section to give cSW = 1.715.

This action is often known as the “clover” action due to the usual choice for evaluating
the curvature form on the lattice:

ga2Fμν(x) =
Cμν(x) − C†

μν(x)
2i

, (3.25)

where the clover operator is

Cμν(x) ∶=
Pμ,ν(x) + Pν,−μ(x) + P−μ,−ν(x) + P−ν,−ν(x)

4
(3.26)

and is depicted in Figure 3.1(c).

3.3 CalculatingObservables on the Lattice

3.3.1 Path Integrals on the Lattice
Building on the path integral formulation discussed in Section 2.5, we consider its applic-
ation to our discretisation of QCD. Combining the gauge and fermion action together to
produce the full QCD action, we can write

SQCD[U, ψ] = SF[U, ψ] + SG[U], (3.27)

and
Z = ∫ DUDψDψ exp(−SQCD[U, ψ]). (3.28)

But, since the fermions fields must be Grassmann-number valued, we can immediately in-
tegrate themout using the properties of Grassmann integration, and this results in amuch-
simplified partition function:

Z = ∫ DUdetM[U] exp(−SG[U])

= ∫ DU exp(−Seff[U]), (3.29)
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where we have defined an effective action by

Seff[U] ∶= SG[U] − ln detM[U]. (3.30)

Thedeterminant termencapsulates all of the sea quark loop interactions. By setting the
detM equal to a constant we arrive at the “quenched” approximation, in which all these
interactions are neglected. While substantially reducing the computational complexity,
one neglects a lot of physics. In particular, we lose any virtual quark-antiquark pairs, which
may be important for investigating the structure of the Λ(1405) (especially if there are any
meson-baryon bound state components, since we only consider 3-quark baryon creation
and annihilation operators). As such, we avoid this approximation in this work.

We do however make use of partial quenching for the strange quark, in which the
valence quarks have a different mass to the sea quarks. This is needed because the inputs
for the generation of the ensembles we use in this work have a strange sea quark with a
mass that is slightly too high. As long as the mass difference between the sea and valence
versions of the quark is small enough, the impact of this on the results is expected to be
minimal. More details on this can be found in Section 3.4.

In exactly the same fashion as for the action in the partition function, for a given oper-
atorO we can construct an effective version by integrating out the fermion fields, and this
allows us to simplify the corresponding vacuum expectation value. In general, this equival-
ent effective operator will depend on the gauge fields and the inverse of the fermionmatrix
(i.e. the fermion propagator), and so we write

⟨O⟩ = ∫
DUOeff[U,M−1[U]] exp(−Seff[U])

∫ DU exp(−Seff[U])
. (3.31)

Of course, to evaluate this completely is still a computationally expensiveoperation. As
an order-of-magnitude exercise, consider a small 10 × 10 × 10 × 10 lattice. The number of
lattice sites is 10 000, and since each lattice site has 4 forward-looking links, the number of
unique gauge links is 40 000. Each of these gauge links is parameterised by 8 real variables,
and so the integral over all gauge field configurations is equivalent to the integral over all
8 of these parameters for each gauge link – that is, a 320 000-dimensional integral! Even
using amodest 10points in eachdimension, to numerically integrate thiswould involve the
sum of an astronomical number of terms: 10320 000. If we consider the current generation
of Intel microprocessors, which can perform about 1012 additions per second¹, it would
take about 10319 988 seconds to evaluate this – or 10319 970 times the age of the universe!

If the integrand is sampled randomly, the majority of the link configurations will pro-
duce very large actions, and so be exponentially suppressed in their contribution towards

¹A 20-core Skylake processor running at 2.6 GHz can perform 8.32 × 1011 double-precision floating-
point additions per second.
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the expectation value in Equation (3.31). Only very few field configurations will make a
significant contribution, and so if we sample the parameter space such that each configura-
tion appeared with a weight corresponding to its Boltzmann factor exp(−Seff[U]), we can
efficiently compute the vacuum expectation value as just the average across this sample:

⟨O⟩ ≃ 1
n

n

∑
i=1

O(Ui), (3.32)

where {Ui ∣ i = 1,…, n} is the ensemble of “importance sampled” gauge field configura-
tions.

3.3.2 Two-point Propagators on the Lattice
In the previous section, we discovered thatwe can integrate out the fermion fields to obtain
effective operators that depend only on the gauge fields and the fermion propagator. Since
all of the quark dependence is expressed through the propagator component, it is natural
that this becomes a fundamental component when investigating hadrons on the lattice. To
calculate the propagator, S, we use the fact that it is the inverse of the fermion matrixM:

Mab
αβ(z, x)Sbcβγ(x, y) = δacδαγδ(z − y), (3.33)

In the case of theWilson and clover fermion actions, we only have local, nearest, and next-
nearest references, and so we can use sparse matrix inversion techniques to efficiently cal-
culate the propagator. In particular, in this work we used BiCGStab [55] and CGNE [56].

Even using the accelerated sparse matrix inversion algorithms on modern hardware,
to calculate all elements of the full propagator would require substantial computational
investment. However, it is sufficient to only consider propagation from a single space-time
site to all other sites.

3.3.3 Three-point Propagators on the Lattice
If we wish to investigate the internal structure of a hadron, we need to probe it with some
external current j. This current will interact with the quark fields forming the hadron, and
so such an investigation will involve calculating the three-point correlation function

Sabαβ(x, y, z) ∶= ⟨Ω∣qaα(x) j(y) qbβ(0)∣Ω⟩ , (3.34)

where q and q are the quark and antiquark fields, respectively, and ∣Ω⟩ is the vacuum state.
We can write a general current vertex as

j(x) = q(x) Γ q(x), (3.35)
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(a) (b)

Figure 3.2: The two interaction components contributing to the three-point correlation
function afterWick contraction. (a)The coupling of an inserted current to a valence quark,
the so-called “connected” contribution. (b) The coupling of an inserted current to a sea
quark, the “disconnected” contribution; these latter interactions are neglected in this work.

where the bilinear Γ describes the coupling at the vertex between the incoming and out-
going color-spin charge. Substituting this into the definition of the three-point propagator
and performing the Wick contractions we see that there are two components: where the
current couples to a valence quark, andwhere the current couples to a sea quark. Feynman
diagrams for these are presented in Figure 3.2.

Evaluating the second of these components, involving disconnected loops, requires
huge statistics, and is beyond the scope of this work. Only very recently are such contribu-
tions being directly included in lattice calculations [57–59] – and there only for ground-
state baryons, not the excited states of interest in this work. Alternatively, if we are com-
paring against model predictions, we can explicitly exclude such diagrams from the model
calculation to arrive an equivalent comparison, as is done in [60, 61].

Expressing the first component in terms of two-point (valence) quark propagators and
taking the Fourier transform, we have

Sabαβ(x, y4, 0;q) =∑
y

exp(iq ⋅ y)(S(x, y)ΓS(y, 0))abαβ, (3.36)

where 0 is the source for the two-point propagator and y4 is the temporal component of
y. While it looks like this would need the computationally-expensive all-to-all propagators
discussed above, we can rewrite it as

Mab
αβ(z, x)Sbcβγ(x, y4, 0;q) =∑

y
exp(iq ⋅ y)δ(z − x)Γad

αδS
dc
δγ(y, 0). (3.37)

Now, we treat the right-hand side as the source for the three-point propagator and solve
the resulting linear system in the same fashion as for the two-point propagator. This is the
sequential source technique [62].
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Since we will be interested in the electromagnetic structure of the Λ(1405) for this
work, we use theO(a)-improved conserved vector current [63, 64]

jμ(an) ∶= jcμ(an) +
ra
2 ∑ν

∂ν(q(an)σνμq(an)), (3.38)

where

jcμ(an) ∶=
1
4
(q(an)(γμ − r)Uμ(x)q(an + aμ̂)

+ q(an + aμ̂)(γμ + r)U†
μ(an)q(an)

+ q(an − aμ̂)(γμ − r)Uμ(an − μ̂)q(an)

+ q(an)(γμ + r)U†
μ(an − aμ̂)q(x − aμ̂)) (3.39)

is the conserved current for the Wilson action. To ensure all terms of the current are one-
link terms, we treat theO(a) term as

∂μ(q(x)q(x)) = q(x)(
←Ð∇ μ +

Ð→∇ μ)q(x), (3.40)

where←Ð∇ andÐ→∇ are the forwards- and backwards-acting covariant derivative operators.
By ensuring all terms are one-link terms, the corrections to the tree-level couplings

used herein do not encounter large non-perturbativemean-field improvement corrections
associated with tadpole contributions. The remaining radiative corrections are anticipated
to be small.

3.3.4 Statistical Analysis
Since we are now including only a sampling of all gauge field configurations in our path
integrals, we need a method to estimate the statistical variance this naturally produces. In
this work we use the jackknife resampling technique, which involves calculating the stat-
istical estimator (in this case, the mean) across all subsamples (the “sub-ensembles”) that
omit a specific number of configurations.

Let us first develop the delete-1 jackknife resamplingmethod, where a single sample is
removed when forming each sub-ensemble. IfU = {Ui ∣ i = 1,…, n} is our set of n gauge
fields configurations, then we define Ui to be the set of these configurations with the i-th
element removed:

Ui ∶= U ∖ {Ui } . (3.41)

On each of these subsets, we calculate the estimator s

si ∶= s(Ui), (3.42)
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and together these values form an estimate for the distribution of this estimator. In partic-
ular, it allows us to calculate the mean and variance of the estimator:

s̄ = 1
n

n

∑
i=1

si and σ2(s) = n − 1
n

n

∑
i−1
(si − s̄)2. (3.43)

This naturally generalises to the delete-d case, where we remove d elements, keeping in
mind that the normalisation of themean and variance will change due to the change in the
number of elements. Moreover, the higher-order jackknife subsamples allowus to estimate
the distribution of quantities that themselves depend on the jackknife distribution. For
example, if we consider linear least squares regression analysis, while the delete-1 jackknife
allows us to estimate the weights of each input observation, we need the delete-2 jackknife
to estimate the variance in the resulting parameters².

3.4 Ensembles Used inThisWork
In thisworkweuse thePACS-CS (2+1)-flavour full-QCDensembles [51],made available
through the ILDG [65]. The lattice has 32 points in each spatial direction and 64 points
in the temporal direction, and have β = 1.90. The gauge fields are represented using the
Iwasaki gauge action of Section 3.2.1 [52] with c0 = 3.648 and c1 = −0.331, while the
fermions are represented using the clover quark action of Section 3.2.2 [53] with cSW =
1.715.

There are 5 light quark masses available, with light-quark hopping parameters κu,d of
0.137 00, 0.137 27, 0.137 54, 0.137 70, and 0.137 81. Setting the scale by extrapolating the
Sommer parameter to the physical quarkmass produces a lattice spacing of 0.0907(13) fm,
and this gives pionmasses ranging from702MeV/c2 down to 156MeV/c2. We can also set
the scale on each ensemble individually by considering the Sommer parameter for that par-
ticular ensemble, and this is what we use in this work. Table 3.1 summarises the properties
of the five available ensembles.

The strange quark mass is the same for all light quark masses, with hopping parameter
κs = 0.13640. However, this is slightly too high to reproduce the physical kaonmass. Plot-
ting the kaon mass data provided in [51] againstm2

π in Figure 3.3 and extrapolating to the
physical limit, we see that the kaon lies approximately 50MeV/c2 too high. We can cal-
culate the κs required to reproduce a physical-mass kaon using two methods: first, by re-
quiring the correctmass for the sspseudoscalarmeson, and second, by requiring the correct
kaonmass at the lightest available light quarkmass through theGell-Mann–Oakes–Renner

²While the linear least squares method does produce an estimate for the variance (and covariance) of
the parameters, it assumes a normal distribution for the input observations.
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κu,d κs mphys
π mπ

0.137 00 0.136 40 701.0(100) 622.3(91)
0.137 27 0.136 40 569.8(83) 512.4(79)
0.137 54 0.136 40 411.3(61) 388.2(55)
0.137 70 0.136 40 295.7(52) 282.1(48)
0.137 81 0.136 40 155.8(69) 151.5(67)

Table 3.1: Properties of the PACS-CS (2 + 1)-flavour ensembles [51] used in this work.
mphys

π is themass of thepionwith the scale set in thephysical limit, whilemπ is the samewith
the scale set on each ensemble individually. Both mass columns carry units of MeV/c2.

relation. The mass of the ss pseudoscalar meson is inferred from the leading linear quark
mass dependence of the squared pseudoscalarmasswith reference to the physical pion and
kaon masses. Both methods produce almost identical hopping parameters, and so we use
their average as the hopping parameter for the valence strange quarks, κval

s = 0.13665.
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Figure 3.3: The kaonmass plotted againstm2
π on the PACS-CS ensembles using the results

from [51]. The dashed vertical line represents the physical pion mass, and the star on this
line indicates the physical kaon mass. The values have been converted into physical units
using the Sommer parameter to set the scale. Fitting the lattice results using amodel of the
formm2

K = α + βm2
π yields α = 0.2774(71)GeV2/c4 and β = 0.537(40), which produces a

mass 42.9(61)MeV/c2 too high at the physical pion mass.
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Four

Hadronic Observables
in Lattice QCD

In any quantum field theory, the information about a system is encoded in the correlation
functions corresponding to the observables of interest, and we know from Section 3.3 that
we can calculate such quantities on the lattice using the gluon fields and quark propagators.
Thus, at this pointwe need to identify appropriate correlation functions and investigate the
relationships between the contained fields.

If we have some quantum system described by the field operator χ(x) = χ(x, t) (an
“interpolating” operator for the system), then the time evolution of this system is described
by the two-point correlation function

G(p, t) =∑
x

e−ip⋅x ⟨Ω∣χ(x, t)χ(0, 0)∣Ω⟩ , (4.1)

where p is the momentum of the system, and this gives us insight into the spectrum and
dispersive properties of the system. Similarly, if we probe the systemat some time0 < t′ < t
through the operatorO, the information is encoded in the three-point correlation function

G(p,p′; t, t′) =∑
x,x′

e−ip⋅xe−i(p
′−p)⋅x′ ⟨Ω∣χ(x, t)O(x′, t′)χ(0, 0)∣Ω⟩ , (4.2)

where p′ is the initial momentum (so that the momentum transfer is q = p − p′), and this
gives us information about the internal structure of the system.

These correlation functions seemingly give us a relatively straightforward method to
extract the physical properties of a system. However, in practice, this is not necessarily the
case. For example, the interpolating operator χ will, in general, couple to all eigenstates
with the same quantum numbers; it is not, a priori, possible to construct an operator for
a specific eigenstate. Thus, if we are interested in a specific state (such as in this work), we
need a way of isolating its contribution.

For that matter, taking a step back from the correlation functions, there are an infin-
ite number of interpolating operators that will couple to the system of interest – the only
requirement is that they have the correct quantum numbers and are gauge invariant. The
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former condition is needed so that they actually couple to the system, while the latter is
equivalent to requiring them to produce colour-singlet objects, with no colour degrees of
freedom.

If we consider a baryon as a local system of three quarks, the most general form for an
interpolating field is a linear combination of terms of the form

εabc(qaTα (x)CΓ1qbβ(x))Γ2qcγ(x), (4.3)

where qaα(x) is the quark field for flavour α and carrying colour a, C is the charge conjug-
ation matrix, and Γ1 and Γ2 are combinations of γ matrices that mix the fermion spins to
produce a system of the appropriate JPC.

Of course, as we discussed in Section 2.3, there is experimental evidence for states in
the hadronic spectrum that cannot be described by the simple, three-quark structures that
Equation (4.3) produces. As a result, to fully explore the hadron spectrum, more exotic
interpolating operators may be needed, such as a “penta-quark” operator with the form
qqqqq [66].

However, calculations involving thesemore exotic operators generally require substan-
tially more computational investment, and so in this work we limit our scope to the local,
three-quark interpolating operators. Since we are not using the quenched approximation,
we still capture some of this exotic structure through the dynamical generation of quark-
antiquark pairs. As we will see later, this is sufficient for our purposes.

4.1 Correlation Functions at theQuark Level

4.1.1 Two-Point Correlation Functions
To investigate the relationship between the fields in the two-point correlation function,
we begin by inserting the general form of our interpolating field (Equation (4.3)) into the
expression for two-point correlation function (Equation (4.1)):

G(p, t) = εabcεa′b′c′∑
x

e−ip⋅x⟨Ω∣(qaTα (x)CΓ1qbβ(x))Γ2qcγ(x)

qc
′

γ′(0)Γ′2(qb
′

β′(0)Γ
′
1Cqa

′T
α′ (0))∣Ω⟩. (4.4)

Here, we have permitted different interpolating operators at the source and sink, as indic-
ated by the Greek indices denoting the quark flavour quantum numbers. A prime on an
index or object indicates that it belongs to the source interpolating operator.

Performing all possible Wick contractions leads to the result

G(p, t) = εabcεa′b′c′∑
x

e−ip⋅x (Aabc
a′b′c′ + Babc

a′b′c′ + Cabc
a′b′c′ +Dabc

a′b′c′ + Eabc
a′b′c′ + Fabca′b′c′) (4.5)
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where

Aabc
a′b′c′(x) = Γ2 Scc

′

γγ′(x, 0) Γ′2 tr (Γ1 Sbb
′

ββ′(x, 0) Γ
′
1 (Saa

′

αα′(x, 0))T) δαα′δββ′δγγ′ , (4.6)

Babc
a′b′c′(x) = Γ2 Scc

′

γγ′(x, 0) Γ′2 tr (ΓT
1 Sab

′

αβ′(x, 0) Γ
′
1 (Sba

′

βα′(x, 0))T) δαβ′δβα′δγγ′ , (4.7)

Cabc
a′b′c′(x) = Γ2 Scb

′

γβ′(x, 0) Γ
′
1 (Sba

′

βα′(x, 0))T ΓT
1 Sac

′

αγ′(x, 0) Γ′2 δγβ′δβα′δαγ′ , (4.8)

Dabc
a′b′c′(x) = Γ2 Scb

′

γβ′(x, 0) Γ
′
1 (Saa

′

αα′(x, 0))T Γ′1 Sbc
′

βγ′(x, 0) Γ′2 δγβ′δαα′δβγ′ , (4.9)

Eabc
a′b′c′(x) = Γ2 Sca

′

γα′(x, 0) Γ′T1 (Sbb
′

ββ′(x, 0))
T ΓT

1 Sac
′

αγ′(x, 0) Γ′2 δγα′δββ′δαγ′ , and (4.10)

Fabca′b′c′(x) = Γ2 Sca
′

γα′(x, 0) Γ′T1 (Sab
′

αβ′(x, 0))
T Γ1 Sbc

′

βγ′(x, 0) Γ′2 δγα′δαβ′δβγ′ . (4.11)

This is themost general form for a two-point correlation function formed from three-quark
interpolatingfields of the formgiven inEquation (4.3). The terminatingflavour-spaceKro-
necker deltas act to select the appropriate terms based on the quark flavours of the inter-
polating operator; in many cases a number of these terms will vanish due to mismatched
quark flavours. Moreover, this expression is now just a product of γ matrices and quark
propagators, and so is readily and inexpensively evaluated.

4.1.2 Three-Point Correlation Functions
As in the previous section, we can begin an analysis of the three-point correlation function
by inserting thedefinitions of the interpolatingoperators (Equation (4.3)) and current ver-
tex operator (Equation (3.35)) into the expression for the three-point correlation function
(Equation (4.2)):

G(p,p′; t, t′) = εabcεa′b′c′∑
x,x′

e−ip⋅xe−i(p
′−p)⋅x′⟨Ω∣(qaα(x)CΓ1qbβ(x))Γ2qcγ(x)

qdδ(x′)ΓOqdδ(x′)qc
′

γ′(0)Γ′2(qb
′

β′(0)Γ
′
1Cqa

′

α′(0))∣Ω⟩. (4.12)

Again, we perform all possible Wick contractions to produce an expression composed of
quark propagators and γ matrices, and this leads to two broad classes of terms depending
onwhether we contract the quark and antiquark fields in the current formwith each other,
or if we contract them with quark fields from the interpolating operators:

G(p,p′; t, t′) = εabcεa′b′c′∑
x,x′

e−ip⋅xe−i(p
′−p)⋅x′ ((Gvac)abca′b′c′(x) + (Gval)abca′b′c′(x)) . (4.13)

The first of these classes produce the same terms as in the two-point correlation func-
tion but weighted by an additional trace term:

(Gvac)abca′b′c′(x) = tr(Sddδδ(x′, x′)ΓO) (Aabc
a′b′c′ + Babc

a′b′c′ + Cabc
a′b′c′ +Dabc

a′b′c′ + Eabc
a′b′c′ + Fabca′b′c′) ,

(4.14)
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where the Aabc
a′b′c′ through F

abc
a′b′c′ are as in the previous section. As indicated by the suggest-

ive notation, these terms encode the vacuum contributions to the amplitude; as discussed
previously, these require huge statistics to produce a usable signal-to-noise ratio and are
beyond the scope of this work, particularly with our focus on excited states.

The second class of terms, Gval, encode the contribution from coupling the current
with the valence quarks. Again, we have terms of similar form to the two-point correlation
function, but this time they are replicated with each flavour quark propagator replaced, in
turn, with the corresponding three-point quark propagator:

(Gval)abca′b′c′(x) = (Aabc
a′b′c′ + Babc

a′b′c′ + Cabc
a′b′c′ +Dabc

a′b′c′ + Eabc
a′b′c′ + Fabca′b′c′)∣Sδδ(x,0)→Sδδ(x,t′ ,0;q)

,
(4.15)

where q is the momentum transfer, defined at the start of this chapter.
For both of the classes, we note that there is a simple sum over quark flavour δ – that is,

the full three-point correlation function canbe split into the contribution of the interaction
with each quark flavour in turn. Moreover, since we operate on a per-flavour basis in lattice
QCD, we can evaluate these individual flavour contributions (noting, of course, that only
their sum is physically observable). This is particularly advantageous when working with
neutral hadrons, as wewill discover whenwe consider the three-point correlation function
at the hadronic level in Section 4.2.2.

4.2 Correlation Functions at theHadronic Level
Knowinghow to calculate the two- and three-point correlation functions is not particularly
useful if we do not know how to extract the physical observables of interest from them. To
discover this, we need to consider the structure of the correlation functions at the higher,
hadronic level. Here, we take the view that the interpolating operator χ is a creation opera-
tion for hadronic states with corresponding quantum numbers, while χ is the correspond-
ing annihilation operator.

4.2.1 Two-Point Correlation Functions: Energy andMass

In true quantummechanical spirit, let us begin by inserting a complete set of eigenstates of
theHamiltonian operator between the interpolating operators in the two-point correlation
function to give

G(p, t) =∑
α,p̃,s
∑
x

e−ip⋅x ⟨Ω∣χ(x)∣α, p̃, s⟩ ⟨α, p̃, s∣χ(0)∣Ω⟩ . (4.16)
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Using the Hamiltonian and momentum operators, we can translate the annihilation oper-
ator back to the origin using

χ(x) = eiHte−iP⋅xχ(0)eiP⋅xeiHt, (4.17)

and then our correlation function simplifies into

G(p, t) =∑
α,p̃,s
∑
x

ei(p̃−p)⋅xe−iEα(p̃)t ⟨Ω∣χ(0)∣α, p̃, s⟩ ⟨α, p̃, s∣χ(0)∣Ω⟩

=∑
α,s

e−iEα(p)t ⟨Ω∣χ(0)∣α, p, s⟩ ⟨α, p, s∣χ(0)∣Ω⟩ , (4.18)

whereEα(p) is the energy of state αwhen endowedwith three-momentump, andwemade
use of the definition of the Kronecker delta to perform the sum over p̃.

If we move to a Euclidean time formulation, we have

G(p, t) =∑
α,s
∑
x

e−Eα(p)t ⟨Ω∣χ(0)∣α, p, s⟩ ⟨α, p, s∣χ(0)∣Ω⟩ . (4.19)

Immediately, we see that each term in the sum over states can be decomposed as the
product of a decaying exponential factor together with an operator overlap factor describ-
ing how the interpolating operator χ couples with state α. Moreover, all of the time de-
pendence is contained within the exponential factor, with the contributions from higher-
energy states decaying faster than those of lower-energy states. This immediately leads to
the “long-time” approximation

lim
t→∞

G(p, t) =∑
x

e−E1(p)t ⟨Ω∣χ(0)∣1, p, s⟩ ⟨1, p, s∣χ(0)∣Ω⟩ , (4.20)

where 1 denotes the ground state of the system.
Of course, in practice, this is not truly realisable. There is only a finite extent to our

space-time lattice, so t → ∞ can only be approximated by ensuring the temporal extent
of our lattice is sufficiently large that the approximation is good. Moreover, the signal-to-
noise ratio also decays at the same rate as the correlator, and so we need to ensure we have
sufficient statistics that we can still resolve a signal at a sufficiently late time. This is not
so much of an issue when there is a large energy gap between states, since the decay rate
is proportional to energy, however it is especially important when working with a dense
spectrum.

Since the interpolating operator is a spinor when investigating baryons, we need to
consider separately the positive- (α+) andnegative-parity (α−) states. If χ transforms under
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parity as χ ↦ γ0χ, we can parametrise the operator overlap factor as

⟨Ω∣χ(0)∣α+, p, s⟩ = Zα+(p)
√

mα+

Eα+(p)
umα+(p, s) (4.21)

⟨Ω∣χ(0)∣α−, p, s⟩ = Zα−(p)
√

mα−

Eα−(p)
γ5umα−(p, s), (4.22)

where umα±(p, s) is a standard Dirac spinor for a fermion of massmα± . Inserting these into
the two-point correlation function, we get

G+(p, t) =∑
α+ ,s

e−Eα+(p)tZα+(p)Z′α+(p)
mα+

Eα+(p)
umα+(p, s)umα+(p, s)

−∑
α− ,s

e−iEα−(p)tZα−(p)Z′α−(p)
mα−

Eα−(p)
γ5umα−(p, s)umα−(p, s)γ5. (4.23)

where the + superscript indicates that it is for an interpolating operator that transforms
with positive parity, and the prime-decorated coupling constants correspond to the source
operator while the undecorated to the sink operator. We can evaluate the sum over spins
directly using

∑
s
umα±(p, s)umα±(p, s) =

γ ⋅ p ±mα±

2mα±
, (4.24)

and this allows us to simplify the two-point correlation function into

G+(p, t) =∑
α+

e−Eα+(p)t

2Eα+(p)
Zα+(p)Z′α+(p)(γ ⋅ p +mα+)

+∑
α−

e−Eα−(p)t

2Eα−(p)
Zα−(p)Z′α−(p)(γ ⋅ p −mα−). (4.25)

Exactly the same process follows for interpolating operators that transform with negative
parity, with the only difference being in the relative signs of the mass in the spinor term
(γ ⋅ p ± mα−). Thus, we can write down a single expression to describe the behaviour of
both positive- and negative-parity interpolating operators:

G±(p, t) =∑
α+

e−Eα+(p)t

2Eα+(p)
Zα+(p)Z′α+(p)(γ ⋅ p ±mα+)

+∑
α−

e−Eα−(p)t

2Eα−(p)
Zα−(p)Z′α−(p)(γ ⋅ p ∓mα−). (4.26)

In order to extract useful, scalar quantities from this correlation function, we need to
somehow project the spinor matrix structure down a single value; to do this, we take the
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trace of the correlation function, multiplied by some projection matrix Γ. We define the
projected correlation function by

G(Γ;p, t) ∶= tr(ΓG±(p, t))

Since we now have a scalar quantity and all of the time dependence is in the exponent of
the exponent term, we can take the ratio between distinct times and define the effective
energy of the system as

Eδt
eff(Γ;p, t) ∶= 1

δt
ln

G(Γ;p, t)
G(Γ;p, t + δt)

; (4.27)

in the long-time approximation, this allows us to extract the energy of the ground state:

Eδt
eff(Γ;p, t) t→∞= 1

δt
ln

e−Eα(p)t

e−Eα(p)(t+δt)
= Eα(p). (4.28)

In this work, we use δt = 1, and drop the reference to this from the effective quantities.
For sufficiently large times, Eδt

eff(Γ;p, t) will be constant in t (once the contribution from
higher-energy states has decayed), at which point a constant fit of the form E(t) = E will
produce the energy of the ground state. Importantly, this allows us to extract the mass by
considering the zero-momentum case, with the effective mass of the system defined by

meff(Γ; t) ∶= Eeff(Γ; 0, t)
large t
≃ m1. (4.29)

Immediately, we note that the selection Γ = γ0 removes all of the parity information,
and collapses the expression into a single sum over states of both parities, with

G±(γ0;p, t) =∑
α

e−Eα(p)tZα(p)Z′α(p). (4.30)

However, such a choice would lead to significant contamination from opposite-parity
states, even in the long-time approximation, since the low-lying states of both parities have
similar energies. Instead, we consider the combinations

Γ± =
γ0 ± I

2
; (4.31)

applying these projection matrices to the spinor factors in Equation (4.26) gives us

tr(Γ+(γ ⋅ p ±mα)) = Eα(p) ±mα, and (4.32)
tr(Γ−(γ ⋅ p ±mα)) = Eα(p) ∓mα. (4.33)
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There are two immediate takeaways. Firstly, at zero momentum, we have completely
isolated either the positive- or negative-parity states, and secondly that this is possible using
only interpolating operators that transform with positive parity. This is due to the cyclic
property of the trace – the extra γ5 matrices that appear when coupling to opposite-parity
states can be cycled around in the trace until they sandwich the projectionmatrix, at which
point we can redefine Γ to absorb them. This is equivalent to the replacement Γ± → Γ∓.

At non-zero momentum, there is some mixing of the states, with the strength of the
contribution of opposite-parity states proportional with the difference between the mass
and energy [67]. For small momenta, this difference is small, and the opposite-parity con-
taminations are negligible.

4.2.2 Three-Point Correlation Functions: Electromagnetic
Structure

To investigate the three-point correlation function at the hadronic level, we begin by insert-
ing a complete set of eigenstates on both sides of the current insertion in Equation (4.2) to
obtain

G(p,p′; t, t′) = ∑
α1 ,p̃1 ,s1

∑
α2 ,p̃2 ,s2

∑
x,x′

e−ip⋅xe−i(p
′−p)⋅x′ ⟨Ω∣χ(x, t)∣α2, p̃2, s2⟩

⟨α2, p̃2, s2∣O(x′, t′)∣α1, p̃1, s1⟩ ⟨α1, p̃1, s1∣χ(0, 0)∣Ω⟩ . (4.34)

We can again use the Hamiltonian and momentum operators to translate the operators
back to the origin, and so, moving to Euclidean time, we have

G(p,p′; t, t′) = ∑
α1 ,α2
∑
s1 ,s2

e−Eα2(p)(t−t
′)e−Eα1(p

′)t′ ⟨Ω∣χ(0)∣α2,p, s2⟩

⟨α2,p, s2∣O(0)∣α1,p′, s1⟩ ⟨α1,p′, s1∣χ(0)∣Ω⟩ (4.35)

There are now two exponential decay factors: the first depends on the temporal separ-
ation between the source and the current insertion, tO− tsrc = t′, while the second depends
on the separation between the current insertion and the sink, tsnk − tO = t − t′. The rate at
which these decays occur may be different if the current insertion causes a state transition
(so that α2 ≠ α1).

All of the information about the interaction between the hadron and the current is
encoded within thematrix element ⟨α2,p, s2∣O(0)∣α1,p′, s1⟩. As in the two-point case, the
exponential decay factors suppress excited state contributions relative to the ground state
in the large time limit, however in order to use the sequential source technique to construct
the three-point propagatorswe needed to fix the current insertion time t′. As such, we need
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to select an appropriate t′ so that there is sufficient time for the ground state to dominate
in each decay window (before and after the current insertion) while retaining sufficient
signal-to-noise ratio that the correlation function is actually usable.

As in the case for the two-point correlation function, we need to project the spinor
matrix structure down to a useful scalar quantity. We again do this by taking the trace with
an appropriate projection matrix,

G(Γ;p,p′; t, t′) ∶= tr(ΓG(p,p′; t, t′)). (4.36)

In this work, we are interested in the electromagnetic current; being a vector quantity,
our three-point correlation function actually carries a Lorentz index μ, and so we make
the replacement G(Γ;p,p′; t, t′) → Gμ(Γ;p,p′; t, t′). A common parametrisation of the
matrix element in Euclidean space for such a current is

⟨p, s2∣Oμ∣p′, s1⟩ =
√

m2

E(p)E(p′)
um(p, s2) (γμF1(Q2) + iσμνqν

2m1
F2(Q2)) u(p′, s1),

(4.37)
where F1 and F2 are the Dirac and Pauli form factors andQ2 = (p−p′)2 is the momentum
transfer. Using this together with the forms of the operator overlap factors from Equa-
tions (4.21) and (4.22) we can write the projected three-point correlation function as

Gμ(Γ;p,p′; t, t′)
large t
≃ Z1(p)Z′1(p′)

4E1(p)E1(p′)
e−E1(p)(t−t′)e−E1(p′)t′

tr(Γ(γ ⋅ p ±m1) (γμF1(Q2) + iσμνqν

2m1
F2(Q2)) (γ ⋅ p′ ±m1)) , (4.38)

where the ± is selected based on the relative parities of the interpolating operator and the
ground state, again indicated by 1; if they transform with the same parity, we use +, while
if they transform with opposite parities we use −.

Let us define Tμ(Γ;q;p,p′) to be the trace term of the three-point correlator, with

Tμ(Γ;q;p,p′) ∶= tr(Γ(γ ⋅ p ±m1) (γμF1(Q2) + iσμνqν

2m1
F2(Q2)) (γ ⋅ p′ ±m1)) . (4.39)

This allows us to write the long-time approximation for the three-point correlation func-
tion more succinctly as

Gμ(Γ;p,p′; t, t′)
large t
≃ Z1(p)Z′1(p′)

4E1(p)E1(p′)
e−E1(p)(t−t′)e−E1(p′)t′Tμ(Γ;q;p,p′). (4.40)

Since the t′ dependence is contained within the exponent of the exponential factor and is
antisymmetric with respect to the momentum, we can eliminate it by taking the product
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with the initial and final state momenta reversed, to give

Gμ(Γ;p,p′; t, t′)Gμ(Γ;p′,p; t, t′)
large t
≃

Z1(p)Z1(p′)Z′1(p)Z′1(p′)
16E1(p)2E1(p′)2

e−E1(p)te−E1(p′)tTμ(Γ;q;p,p′)Tμ(Γ;−q;p′,p). (4.41)

The dependence on t and the coupling factors can be eliminated by dividing by the
appropriate-momenta two-point correlation functions, with

Gμ(Γ;p,p′; t, t′)Gμ(Γ;p′,p; t, t′)
G(Γ′;p, t)G(Γ′;p′, t)

large t
≃

Tμ(Γ;q;p,p′)Tμ(Γ;−q;p′,p)
4E1(p)E1(p′) tr(Γ′(γ ⋅ p ±m1)) tr(Γ′(γ ⋅ p′ ±m1))

. (4.42)

where again± is selected based on the relative parities of the interpolating operator and the
ground state.

As in the previous section, we consider the use of Γ′ = Γ± based on the parity of the
state; then, the trace terms in the denominator can be evaluated using Equations (4.32)
and (4.33), and immediately we can construct the ratio

Rμ(Γ;p,p′; t, t′) ∶=

¿
ÁÁÀ 2E1(p)

E1(p) +m1

2E1(p′)
E1(p′) +m1

Gμ(Γ;p,p′; t, t′)Gμ(Γ;p′,p; t, t′)
G(Γ±;p, t)G(Γ±;p′, t)

large t
≃
√
Tμ(Γ;q;p,p′)Tμ(Γ;−q;p′,p), (4.43)

which contains nothing but the trace terms of Equation (4.39), fromwhich we can extract
the various form factors through judicious choices of Γ. Of particular interest in this work
are the Sachs electromagnetic form factors, given by

GE(Q2) = F1(Q2) − Q2

(2m1)2
F2(Q2) (4.44)

GM(Q2) = F1(Q2) + F2(Q2). (4.45)

Quickly we can see that we can construct effective functions for these using

Geff
E (Q2; t, t′) = R0(Γ±j ;q, 0; t, t′) and (4.46)

∣εijkqi∣Geff
M (Q2; t, t′) = (E1(q) +m1)Rk(Γ±j ;q, 0; t, t′), (4.47)

where the projection matrices are

Γ± ∶=
γ0 ± I

2
and Γ±j ∶= Γ±γjγ5 =

γ0 ± I
2

γjγ5, (4.48)
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and, as with the effective energy function, for sufficiently large t we can fit these with a
constant fit model to extract the values for the ground state.

We can get a measure of the physical size of a baryon from its mean-squared charge
radius, ⟨r2⟩E, which can be calculated through

⟨r2⟩E = −6
dGE(Q2)

dQ2 ∣
Q2=0

. (4.49)

For charged baryons, it is well known that the small-Q2 dependence of the electromagnetic
form factors can be modelled using a dipole ansatz of the form

GE(Q2) = ( Λ2

Λ2 +Q2)
2

GE(0), (4.50)

where Λ is a constant that characterises the structure of the baryon. This allows us to eval-
uate the charge radius using

⟨r2⟩E =
12GE(0)

Λ

= 12GE(0)
Q2

⎛
⎜
⎝

¿
ÁÁÀ GE(0)

GE(Q2)
− 1
⎞
⎟
⎠
, (4.51)

where GE(0) = q is the charge of the baryon. On the other hand, for neutral baryons we
need to bemore careful – a dipole ansatzwould imply thatGE is zero for allQ2. However, as
we discovered in Section 4.1.2, we do have access to the contributions from the individual
quark sectors through our lattice calculations. Since quarks are electrically charged, we can
use a dipole ansatz for eachquark individually and then sum them(with appropriate charge
weightings) to reconstruct the full baryon charge radius, and this procedure is well defined
for both the charged and neutral baryons.

Similarly, we can investigate the distribution of spin and angular momentum within a
baryon through the evaluation of the magnetic moment μ = GM(0), the magnetic equival-
ent of the electric charge. If we assume that the magnetic form factor scales the same with
Q2 as the electric form factor, this can be evaluated as

μ = GM(Q2)
GE(Q2)

. (4.52)

Moreover, again we have access to the individual quark sector contributions through our
lattice calculation.

41



4. Hadronic Observables in Lattice QCD

4.3 Variational Analysis of Cross-Correlation Functions
At the beginning of this chapter, we discussed how the two- and three-point correlation
functions contain information about all hadronic states with quantum numbers matching
those of the interpolating operator. In Section 4.2 we explored using the long-time approx-
imation to extract details about the ground state bywaiting long enough that contributions
from the higher-energy states have all but disappeared. However, what if we are interested
in one of these excited states instead of the ground state? Or, what if the energy difference
between the ground and excited states is small enough that there is still a significant contri-
bution from the excited state by the time the statistical noise begins to dominate? In both
of these cases, the standard long-time approximation will fail.

Of course, if we had an interpolating operator that only coupled to the state of interest,
we could avoid all of these issues and directly evaluate the quantities of interest. However
as we discussed previously, it is not possible, a priori, to construct such an operator. The
key phrase here is “a priori” – suppose that such an operator φα did exist for each state α;
we could then write

⟨Ω∣φα∣β, p, s⟩ = Zα(p)
√

mα

Eα(p)
umα(p, s) δαβ. (4.53)

Moreover, if we have any set Χ = { χi } of interpolating operators that spans the operator
space, we can use the linearity to also write

φα(x) =∑
χ∈Χ

vαχ χ(x) and φα(x) =∑
χ∈Χ

uαχ χ(x), (4.54)

for some real constants vαχ and uαχ . Equivalently, we can use vector notation to write

φα(x) = vα ⋅ χ(x) and φα(x) = uα ⋅ χ(x). (4.55)

At this point, we note that the “perfect” combination of our basis set of interpolating oper-
ators to exactly isolate a particular state will, in general, be momentum dependent. That is,
vα ≡ vα(p) and uα ≡ uα(p).

Let us now define a Γ-projected two-point correlation matrix by

G(Γ;p, t) =∑
x

e−ip⋅x tr(Γ ⟨Ω∣χ(x, t)(χ(0, 0))T∣Ω⟩),

=∑
α

e−Eα(p)t

2Eα(p)
Zα(p)(Zα(p))T tr(Γ(γ ⋅ p ±mα)). (4.56)

The (i, j)-th entry in this matrix is just the Γ-projected two-point correlation function ob-
tained from using χi as the sink operator and χj as the source operator. Immediately we
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note that

G(Γ;p, t)uα(p) =∑
x

e−ip⋅x tr(Γ ⟨Ω∣χ(x, t)(χ(0, 0))T∣Ω⟩)uα(p)

=∑
x

e−ip⋅x tr(Γ ⟨Ω∣χ(x, t)φ(0, 0)∣Ω⟩)uα(p)

= e−Eα(p)t

2Eα(p)
Zα(p)Zα(p) tr(Γ(γ ⋅ p ±mα)), (4.57)

where we have used Equation (4.53) in performing the sum over states. Conveniently,
the only state present in this vector of correlation functions is α! We could similarly pre-
multiply by vαT to obtain

vαT(p)G(Γ;p, t) = e−Eα(p)t

2Eα(p)
Zα(p)(Zα(p))T tr(Γ(γ ⋅ p ±mα)), (4.58)

and indeed, performing both the pre- and post-multiplication reduces the result down to a
scalar quantity in operator space:

vαT(p)G(Γ;p, t)uα(p) = e−Eα(p)t

2Eα(p)
Zα(p)Zα(p) tr(Γ(γ ⋅ p ±mα)). (4.59)

The question now is, how can we find the coefficients uα and vα that allow us to con-
struct these perfect interpolating operators? With the time dependence contained in the
exponent of the exponential factors, we can easily construct a recurrence relationship from
Equation (4.57) with

G(Γ;p, t0 + Δt)uα(p) = e−Eα(p)(t0+Δt)

2Eα(p)
Zα(p)Zα(p) tr(Γ(γ ⋅ p ±mα))

= e−Eα(p)ΔtG(Γ;p, t0)uα(p) (4.60)

That is, the coefficient vector uα is a (right) generalised eigenvector of G(Γ;p, t0 + Δt)
andG(Γ;p, t0), with generalised eigenvalue e−Eα(p)Δt. Similarly, vα is a left generalised ei-
genvector of the same two matrices. Moreover, each solution for the eigenvalue problem
will correspond to a different state in the spectrum for this system. This is the variational
method for constructing “perfect” interpolating operators, and more details can be found
in [68, 69].

Importantly, not only do the coefficient vectors give us the means to write down these
perfect interpolating operators, we can also use them to project correlation functions for a
single energy eigenstate from our original correlation matrix through

Gα(Γ;p, t) = vαT(p)G(Γ;p, t)uα(p), (4.61)
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where the uα(p) and vα(p) are calculated using any pair of t0 and Δt.
Of course, we will never have enough interpolating operators to completely span the

operator space; in general, it is infinite dimensional. We can only approximate the full sys-
tem, and the effect of this will be to introduce contaminations from energy eigenstates
outside of the span of our interpolating operators. The size of these contaminations will
therefore be dependent on how well we choose our operator basis – specifically, how
well it spans the full operator space. We can then make use of the long-time approxim-
ation to minimise the excited-state contamination and investigate the properties of each
approximately–eigenstate-projected correlation function to ensure they satisfy the single-
state property of Equation (4.59).

To solve the generalised eigenvalue problem, we can either pre- or post-multiply (for
uα(p) and vα(p), respectively) both sides by the inverse ofG(Γ;p, t) to convert the prob-
lem into an ordinary eigenvalue problem, or we can solve the generalised eigenvalue prob-
lem directly. Generally, it is preferable to solve the generalised eigenvalue problem directly
to avoid any numerical instability from the matrix inversion.

Using these coefficient vectors, we can construct eigenstate-projected three-point cor-
relation functions by applying them to the three-point correlation matrix formed in the
same fashion asG(Γ;p, t):

G(Γ′;p,p′; t, t′) = ∑
α1 ,α2
∑
s1 ,s2

e−Eα2(p)(t−t
′)e−Eα1(p

′)t′ tr(Γ′ ⟨Ω∣χ(0)∣α2,p, s2⟩⊗

⟨α2,p, s2∣O(0)∣α1,p′, s1⟩ ⟨α1,p′, s1∣χ(0)∣Ω⟩), (4.62)

It follows that

(vα(p))T G(Γ′;p,p′; t, t′)uβ(p′) =∑
s1 ,s2

e−Eα(p)(t−t
′)e−Eβ(p

′)t′

tr(Γ′ ⟨Ω∣φα(0)∣α,p, s2⟩ ⟨α,p, s2∣O(0)∣β,p′, s1⟩ ⟨β,p′, s1∣φβ(0)∣Ω⟩), (4.63)

where care has been taken to ensure the coefficient vectors used on each side match the
incoming and outgoing momenta, respectively.

4.4 Improvements to the VariationalMethod
In order to make use of, for example, the jackknife resampling method discussed in Sec-
tion 3.3.4, we need to ensure that we compare the same quantity on each of the sub-
ensembles. This includes the solutions to the generalised eigenvalue problem used in the
variationalmethod, and sowe need to identify a suitablemethod to associate the solutions
across sub-ensembles. The obvious choice is to order the solutions based on the eigen-
value, however this presupposes that the ordering of the energies is the same across all
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sub-ensembles; in the case of near-degenerate states, this may not be the case, and so such
an approach would be prone to misidentification.

The eigenvectors, on the other hand, provide a distinct and unique “fingerprint” for
each state, but to use this we need to define a suitable measure that allows us to compare
eigenvectors between sub-ensembles. The inner product seems like the obvious choice,
since it provides a measure of the overlap between two vectors, with a pair of eigen-
vectors fromdifferent sub-ensembles referring to the same state if they havemaximal inner
product. However, the lack of orthogonality in our basis for the operator space means this
too would be prone to misidentification; since the basis vectors are not orthogonal, it is
possible for an eigenvector to have large overlap with multiple eigenvectors from another
sub-ensemble. Moreover, since our original interpolating operators are not normalised
with respect to their overlap with the energy eigenstates, it is possible for a few (or even
one) operator to dominate, again leading to misidentification.

To correct for the lack of orthogonality in the operator basis, we first note that in the
ensemble average the two-point correlationmatrix is Hermitian. As such, we can create an
improved, unbiased estimator for the correlation matrix using

G̃(Γ;p, t) = G(Γ;p, t) +G†(Γ;p, t)
2

. (4.64)

Not only is thismatrix thenHermitian, but its columnswill be linearly independent if (and
only if) the interpolating operators used in its construction are also linearly independent.
In this case, G̃(Γ;p, t) will be positive definite, and it immediately follows that the uα(p)
and vα(p)will be G̃(Γ;p, t0)-orthogonal – that is,

vα†(p)G̃(Γ;p, t0)vβ(p) = 0, (4.65)

for α ≠ β (and similarly for u(p)). Moreover, G̃(Γ;p, t) permits a Hermitian, positive-
definite principal square root, G̃1/2(Γ;p, t), and so this orthogonality relation can be writ-
ten as

0 = vα†(p)G̃1/2(Γ;p, t0)G̃−1/2(Γ;p, t0)G̃(Γ;p, t0)G̃−1/2(Γ;p, t0)G̃1/2(Γ;p, t0)vβ(p)
= vα†(p)G̃1/2(Γ;p, t0)G̃1/2(Γ;p, t0)vβ(p). (4.66)

That is, the vectorswα(p) ∶= G̃1/2(Γ;p, t0)vβ(p) are orthogonal.
Of course, this is just an orthogonality relation between vectors obtained from the

same correlationmatrix. It will only approximately holdwhen comparing vectors obtained
from different correlationmatrices. Since jackknife subensembles are all estimators for the
same ensemble average, the subspaces spanned by the interpolating operators are generally
sufficiently similar that this approximate orthogonality is enough to identify correspond-
ing eigenstates. On the other hand, the subspace spanned can vary quite dramatically with
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changes in momentum; an attempt to compare the eigenvectors obtained at a zero mo-
mentumwith those at a large momentum is likely to fail. However, as long as one can take
sufficiently-small steps through increasingmomentum, it is possible to track the flow as far
as one needs.

To correct for the poor normalisation, we note that

[G(Γ;p, 0)]ii =∑
α
∣Zα

i (p)∣2 tr(Γ(γ ⋅ p ±mα)), (4.67)

provides a measure of the relative strength of the two-point correlation function formed
using χi at the source and sink. Using this, we can construct “normalised” interpolating
operators χ̂i = χ1/

√
[G(Γ;p, 0)]ii, and then construct a “normalised” correlation matrix

using these through

[Ĝ(Γ;p, t)]ij =
[G(Γ;p, t)]ij√

[G(Γ;p, 0)]ii[G(Γ;p, 0)]jj
. (4.68)

The elements of this matrix areO(1) at t = 0, with equality on the diagonal.
It is important to note that this is not a true norm, due to the cross-terms arising from

the sum over all states in Equation (4.67), and that the poor normalisation will progress-
ively return as we move away from t = 0. As such, we want to perform this normalisation
procedure as close as possible to the start time t0 used in the variational analysis. For-
tunately, since the exponential decay provides a recurrence relation between successive
times, we can equivalently normalise at any t > 0 – including at t = t0.

To use the eigenvectors calculated using the normalised two-point correlation matrix
to eigenstate-project the three-point correlation matrix, we need to use the same normal-
ised interpolating operators. However, this is equivalent to pre- and post-multiplying the
original three-point correlation matrix by the the same factors as in Equation (4.68), but
again ensuring that the correct momenta are used:

[Ĝ(Γ′;p,p′; t, t′)]ij =
[G(Γ′;p,p′; t, t′]ij√

[G(Γ;p, t0)]ii[G(Γ;p′, t0)]jj
. (4.69)

4.5 Smearing theOperator Basis
Aswe notedwhen discussing the variational method, key to the success of the technique is
the identification of a set of interpolating operators that have good overlap with the states
of interest while spanning enough of the operator space to minimise contaminations. Up
until this point, however, the only interpolating operators that we have discussed are those
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of the form given in Equation (4.3). A set of such operators is, in general, very limited in
size – for example, for the nucleon, there are only three linearly independent operators:

χΓ1 ,Γ2
(x) = εabc(uaT(x)C Γ1db(x))Γ2uc(x), (4.70)

for (Γ1, Γ2) ∈ { (γ5, I), (I, γ5), (γ5γ0, I) }. Moreover, as we noted in that discussion, this
is the most general form for a local, three-quark interpolating operator – the only way to
expand the operator basis is to relax one of the two conditions: the locality of the operator
or the number of valence quarks.

Increasing the number of valence quarks would allow us to construct multi-particle
interpolating operators, but as we noted previously this generally leads to a substantial in-
crease in the required computation investment, and so is beyond the scope of this work.
Instead, we focus on relaxing the locality of the operators in this work, and indeed, this
makes sense from a physical perspective – one would generally expect at least some spatial
distribution of the quarks within a hadron. There are two popular methods for allowing
such a structure: displaced operators and smeared operators.

The former of thesemethods begins by replacing someof the local quark fields inEqua-
tion (4.3)with spatially-displaced quark fields ψ i(x) = Ui(x)ψ(x+aμ̂), and then using the
Clebsch-Gordon coefficients to construct linear combinations with the correct quantum
numbers [70–72]. However, the reduced symmetry on the lattice means that distinct JPC,
corresponding to the infinite tower of irreducible representations of O(3), get mixed into
the finite number of irreducible representations ofOh, and therefore care must be taken to
separate these out. Moreover, such operators require propagator inversions for each source
orientation, and as in the case of using higher–quark-count operators this quickly adds to
the computational investment.

The latter approach begins by noting that our choice of a delta function for the source
and sink field operators is not particularly physically realistic. We generally expect thewave
function to have some extended, spherically-symmetric distribution about the origin, and
so we look to recreate such a structure to use for our field operators. The prescription is
to take our delta function operator and “smear” it in the spatial directions by including
contributions from neighbouring sites; by applying this smearing multiple times, we can
effectively control the width of the operator.

In this work, we use gauge-invariant Gaussian smearing [73]. We start with a delta
function centred at x = z, η0(x) = δ(z − x) and iteratively construct smeared operators
through

ηi(x) =∑
y
F(x, y)ηi−1(y), (4.71)

where

F(x, y) ∶= (1 − α)δ(x, y) + α
6

3

∑
μ=1
(Uμ(x)δ(x + aμ̂, y) +U†(x − aμ̂)δ(x − aμ̂, y)) (4.72)
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and α is a constant that controls the strength of the smearing.
For the source operator, this amounts to the replacement of the source vector η0(x)

in Equation (3.33) with the smeared version ηn(x) for some n and α and solving for this
new, smeared propagator. Moreover, solving for the smeared propagator will have sim-
ilar convergence properties as for the point source, and there is no appreciable increase in
computational cost!

On the sink side, using a smeared operator is straightforward because the expression
for the correlation functions already includes a sum over the sink location. The evaluation
of a smeared sink operator merely involves the replacement of the corresponding propag-
ators in Equation (4.5) with those constructed through the same iterative process as for
the operator itself:

Sn,abαβ (x, 0) =∑
y
F(x, y)Sn−1,abαβ (y, 0). (4.73)

Again, there is no appreciable increase in the computational cost.
For a given unsmeared interpolating operator χ0, a linear combination of smeared in-

terpolating operators χn across various values for n would be expected to have spherical
nodes. This would suggest that such an operator would have large overlap with radial ex-
citations, and such is shown for the Roper resonance in [74].
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Five

Isolating the Λ(1405)
The results presented in this chapter were originally published in Physical Review
Letters [75] along with several supporting conference proceedings [76–78]. Our
presentation here is adapted from these manuscripts, but also includes minor im-
provements to the techniques and improved statistics.

Following on from the CSSM Lattice Collaboration’s recent work in developing an effect-
ive technique for investigating the low-lying odd-parity nucleon spectrum [18], it is nat-
ural to consider its application to other hadron spectra. Given the success of the technique
in identifying the nearly-degenerate N∗(1535) and N∗(1650), can it also be used to re-
solve the low-lying Λ(1405) that otherwise always appears high in lattice calculations? In
the nucleon study, significant chiral curvature was observed in the dependence on quark
mass, especially for the N∗(1650) – only by moving close to the physical point can this
lattice state be identified with its physical counterpart. With this in mind, we use the same
techniques and ensembles here to investigate the negative-parity, spin-1/2 spectrumof the
Λ.

The variational analysis, described in Section 4.3 takes advantage of the extra inform-
ation found by calculating cross-correlation functions for different operators at the source
and sink to isolate individual states [79, 80]. Such an analysis is necessary as the lowest
three JP = 1/2− states in this channel all lie within a 400MeV range, at 1405.1+1.3−1.0 MeV/c2,
1670 ± 10MeV/c2, and 1800+50−80 MeV/c2 [6]. Because SU(3)-flavour symmetry is broken
by the heavier strange quark mass, all three of these states will survive until the signal is
buried in noise, and so the long-time approximation usually used to extract ground-states
will only be able to resolve amixture of these low-lying states. To expandour operator basis
beyond that provided by the usual flavour andDirac structures, we employ gauge-invariant
Gaussian smearing, described in Section 4.5, at both the source and sink.

In comparison to the odd-parityN∗ resonances, where significant finite-size effects de-
velop through avoided level crossings between the baryon and themulti-particle scattering
states, the odd-parity Λ(1405) is relatively independent of the box size. For example, us-
ing the KN Jülich model of hadron exchange [81, 82], the lowest multi-particle scattering
states, πΣ and KN in the I = 0, S = −1, JP = 1/2−, lie, respectively, below and above the
Λ(1405), and do not cross for lattices withmπL ∈ [1.7, 3.5] [83]. As such, we expect the
finite-size effects to be small in this analysis.
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5.1 InterpolatingOperators for the Λ Baryon
Given that the Λ baryon lies in the centre of approximate SU(3)-flavour, there are a variety
of interpolating operators that will couple to it. These correspond not only to the usual
various Dirac structures, but also to the different possible flavour-symmetry structures. If
we consider a flavour-octet structure, the operators have the form [84]

χ8
i (x) =

1√
6
εabc(2 (uT

a (x)CAidb(x))Bisc(x)

+ (uT
a (x)CAisb(x))Bidc(x) − (dT

a (x)CAisb(x))Biuc(x)), (5.1)

while if we consider a flavour-singlet structure, the operators have the form

χ1
i (x) = −2εabc( − (u

T
a (x)CAidb(x))Bisc(x)

+ (uT
a (x)CAisb(x))Bidc(x) − (dT

a (x)CAisb(x))Biuc(x)), (5.2)

where the i ∈ { 1, 2} suffix enumerates the potential Dirac structures, with

(A1,B1) = (γ5, I) and (A2,B2) = (I, γ5). (5.3)

However, due to the inherent symmetry in the flavour-singlet structure, we note that the
two Dirac structures are related through a Fierz identity, and so we relabel this operator as
the unsuffixed χ1 ∶= χ1

1.
Using the terms common to these two flavour structures, we can also construct the

so-called “common” operators

χc
i (x) =

1√
2
εabc( (uT

a (x)Aisb(x))Bidc(x) − (dT
a (x)Aisb(x))Biuc(x)). (5.4)

These isospin-0 interpolating operators make no assumptions about the SU(3)-flavour
symmetry properties, and should couple to all states of the Λ baryon, regardless of their
SU(3)-flavour–symmetry structure. By way of analogy with the “common” operators, we
name the interpolating operators with specific SU(3)-flavour–symmetry structures (χ1

i
and χ8

i ) the “flavoured” operators.
In Ref. [85], the low-lying nucleon spectrum is investigated using the same ensembles

as in this analysis using a wide range of the Gauge-invariant source- and sink-smearing
described in Section 4.5 – from 16 to 1600 sweeps, which corresponds to RMS radii of
between 0.20 and 16.00 (in lattice units). There they found that both small and large num-
bers of sweeps were beneficial in spanning the operator space, but that the extremely-high
numbers of sweeps produced ill-conditioned correlation matrices, and so settled on using
{ 16, 35, 100, 200} sweeps with α = 0.7. As this basis spans the space well, we apply it to
the negative-parity Λ sector.
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Figure 5.1: Comparison of the masses extracted from (left) the eigenvalues of Equa-
tion (4.60) (the “eigenmass”) and (right) fitting the projected effective mass derived from
the projected correlation function of Equation (4.61) on the ensemblewith κu,d = 0.13700
for t0 ∈ { 17,…, 21} and Δt ∈ { 1,…, 5}. Numbers of the abscissa indicate t0 with Δt in-
creasing within each t0.

5.2 Exploring the Variational Parameters
Webegin our analysis of the negative-parity Λ by investigating the dependence of the spec-
trum on variational parameters t0 and Δt. Since, in this work, we insert our hadron source
at t = tsrc = 16, let us consider the range t0 ∈ { 17,…, 21} and Δt ∈ { 1,…, 5}. For this
initial exploration, we use the operator basis formed from the two “common” interpolating
operators of Equation (5.4) together with 16 and 100 sweeps of gauge-invariant Gaussian
smearing.

In Section 4.3, we discussed twomethods for determining themass of a state identified
through a variational analysis – we can either invoke the long-time approximation and fit
the projected effective mass, or we can extract it from the eigenvalue of the generalised
eigenvalueproblem. Wecall this lattermass the “eigenmass” of the state. Plots of themasses
found using both these methods for the ensemble with κu,d = 0.13700 are presented in
Figure 5.1, and for the other ensembles in Appendix A. The eigenmasses suggest the four
states are split into two groups of two states each.

By selecting variational parameters too soon after the introduction of the source, there
is too much contamination from higher-mass states for the variational analysis to com-
pletely isolate the low-lying states. As a result, the eigenmass shows a large dependence
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5. Isolating the Λ(1405)

on variational parameters for small t0 and Δt. On the other hand, if wewait too long to per-
form the variational analysis then the noise begins to dominate and we are left with large
errors on the eigenmasses and poor fits.

Thefits to the projected effectivemasses are relatively stable across the variational para-
meters, especially at small t0 and Δt. This is because the eigenvectors have a relatively weak
dependence on the parameters t0 and Δt. Moreover, the contamination from higher-mass
states affecting the eigenmasses can be (mostly) removed by fitting at later times through
the standard long-time approximation (at the expense of increased errors). At large values
of t0 and Δt, the ground-state plateau (of each projected effectivemass) is so overshadowed
by the noise it cannot be reliably fitted.

In order to proceed with our analyses, we select the variational parameters (t0, Δt) =
(18, 2) as representative.

5.3 Exploring theOperator Space
Since the “common” interpolating operators χc

i ofEquation (5.4) should couple to all states
in the Λ channel, we begin our exploration of the operator space with combinations of
these and look at the behaviour when we vary the number and amount of smearing in-
cluded in the operator basis.

Plots of the masses extracted from both the eigenvalues (the “eigenmass”) and from
fitting the projected effective masses using (t0, Δt) = (18, 2) for the ensemble with κu,d =
0.13700 are presented in Figures 5.2 and 5.3 across all combinations of smearings and
“common” interpolating operators, and for the other ensembles in Appendix B.

We again note the grouping of states; here, the pattern suggests that the spectrum ob-
served in our analysis consists of nsm groups of nop states, where nsm is the number of smear-
ings included in the operator basis and nop is the number of interpolating operators in-
cluded. We discussed previously that we expect linear combinations of smeared operators
to couple well with radial excitations due to the nodes in the spatial distribution. A natural
extension to this is that the members of each group of states correspond to the same ra-
dial excitation, with the energy difference within the group due to some broken symmetry
(such as SU(6)–spin-flavour).

Both the eigenmasses and fitted projected effective masses show some smearing de-
pendence when only a single smearing level is included in the operator basis. Generally
speaking, larger amounts of smearing produce more stable (and lower) spectra, with the
exception of 200 sweeps on its own (and to a lesser extent, the combination of 100 and 200
sweeps).

On their own, both of the “common” interpolating operators produce fits of approx-
imately the same mass, with that produced by χc1 lying slightly below that of χc2 (however
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Figure 5.2: Comparison of the masses extracted from fitting the projected effective mass
(left) and from the eigenvalues (right) on the ensemble with κu,d = 0.13700 across all
combinations of smearing levels using a single “common” interpolating operator.
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Figure 5.3: Comparison of the masses extracted from fitting the projected effective mass
(left) and from the eigenvalues (right) on the ensemble with κu,d = 0.13700 across all
combinations of smearing levels using both “common” interpolating operators.

this is not a statistically significant effect). However, by including both interpolating op-
erators in a correlation matrix analysis, we can identify two nearby states, with the lower
lying slightly below that produced by either of the operators individually, and the higher
lying slightly above. This suggests that we were only able to isolate a mixture of these two
states when using only a single interpolating operator.

Moreover, in the physical spectrum there are three low lying states – using just the
“common” interpolating operators has only allowed for the identification of two states. So
far we have observed that the number of states in each group follows the number of inter-
polating operators. Thus, a reasonable assumption is that there is also another state in the
lattice spectrum but that we have not included enough interpolating operators to isolate
themall. Instead our pair of isolated states is still just a pair ofmixtures. Fortunately, we still
have some unused interpolating operators – the “flavoured” operators of Equations (5.1)
and (5.2).

Similarly to above, plots of the eigenmasses andfitted effectivemasses for the ensemble
with κu,d = 0.13700 are included in Figures 5.4 to 5.6, and for the other ensembles in Ap-
pendix B. The pattern of states again appears as nsm groups of nop states – that is, we now
see three low-lying states, as in the physical spectrum. The dependence of the spectrum on
the smearing included in the operator basis is the same as for the “common” interpolating
operators.
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5.4. Investigating the Quark Mass Dependence

That we see the same number of low-lying states here as in the physical spectrum may
be a consequence of using three different local interpolating operators in the correlation-
matrix analysis. In actually predicting the number of low-lying states, it would bepreferable
to consider additional spin-flavour structures and perhaps non-local operators containing
derivatives. Whilewe identifiedfive interpolating operators in Section 5.1, we cannot com-
bine these in an expanded variational analysis as the correlation matrix becomes singu-
lar, indicating the additional interpolating operators do not span the space in a sufficiently
unique manner.

We note that there is very little change in the quality of the fits, as represented by the
reduced χ2, upon adding the second and third interpolating operators that enable the isola-
tion of a second and third state in each group, as demonstrated in Figure 5.7. This is due to
the dominance of the first interpolating field considered in creating the lowest-lying state;
the contribution from the second and third operators introduces aminor correction to the
correlator without significantly influencing the quality of the fit. However, there is a cumu-
lative effect as the correlation matrix increases in size, and the onset of plateau behaviour
in the projected correlators improves significantly. This is particularly important for the
study of the electromagnetic form factors, where the electromagnetic current is inserted as
early as possible in Euclidean time to ensure good signal in the form factor measurements.

There is also aminor but consistent improvement in the relative error of the fittedmass
for the lowest-lying state as additional interpolating operators are introduced into the op-
erator basis. This is despite the actual mass decreasing slightly, which would otherwise
naturally lead to an increase in the relative error. This can be attributed to the earlier onset
of the plateau in the effectivemass, since this permits fits starting at earlier Euclidean times
where there is less statistical error.

We need to ensure that we have a sufficiently large basis to minimise contamination
from higher-energy states; to ensure this, we aim to isolate two states above the states of
interest. In order to satisfy this aim for the lowest group of states we need to include at
least three levels of smearing. For the lowest-lying states there is statistically no difference
between all operator bases that include at least three levels of smearing. As such, we adopt
the basis containing all three flavoured interpolating operators at 16, 100, and 200 sweeps
of smearing for the remainder of this work (with an exception for Section 5.5 where we
also consider 16, 35, and 200 sweeps to ensure there is nomanifest difference in the flavour
structure).

5.4 Investigating theQuarkMass Dependence
To determine if our approach can isolate the otherwise-elusive Λ(1405), we need to con-
sider how the spectrum depends on the quark mass; only by approaching the physical
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quark masses can we draw a conclusion on this. To this end, we consider the dependence
on the square of the pion mass as a proxy for the quark mass – through the Gell-Mann–
Oakes–Renner relation we have m2

π ∝ mq at leading order in the chiral expansion [86].
In Figure 5.8 we present the dependence of the spectrum on the square of the pion mass
using both “common” interpolating operators, while in Figure 5.10 we present the same
using all three “flavoured” operators. Figures 5.9 and 5.11 present the same but restricted
to the low-lying states.

Aswemove towards the physical point, while the lowest-lying state does trend towards
the physical value for the Λ(1405), it remains high. Moreover, the level ordering with re-
spect to the nearbymulti-particle scattering states is wrong. This is despite the expectation
that the finite-size effectswill be small. However, we donote that the second lattice state re-
produces the physical value for third physical state, and this again suggests that the lowest-
lying lattice state for this operator basis is a mixture, of the lowest two physical states.

On the other hand, as we discussed previously, the use of the “flavoured” operators
allowsus isolate all three low-lying states as demonstrated inFigures 5.10 and5.11. Nowwe
can also reproduce the correct level ordering on our lightest ensemble. Moreover, themass
on the lightest ensemble is consistent with the physical Λ(1405). We include a tabulation
of these values in Table 5.1.

We also observe that the masses of the low-lying states experience significant jumps
near the infinite-volume scattering thresholds, likely through avoided level crossings. On
the lattice these scattering thresholds are basis states that get mixed in the finite volume to
form energy-eigenstates.

Using the “common” interpolating operators, we obtain a value of 1.534(46)GeV/c2
at the lightest quark mass, still above that of the Λ(1405). Indeed, this value is very near
the average of the two lowest-lying physical states. We also still have the problem of the
missing state, and so we must conclude that using the “common” interpolating operators
cannot cleanly resolve the low-lying JP = 1/2− sector for the Λ baryon.

For the “flavoured” operators, the values obtainedon this lightest ensemble are consist-
entwith the physicalmasses of the Λ spectrum. Wehave successfully isolated the Λ(1405)
for the first time in lattice QCD. In Table 5.2 we present a comparison between the phys-
ical masses for the lightest JP = 1/2− Λ states in nature with the values obtained on the
lightest ensemble (with κud = 0.13781) from the “flavoured” analysis. Since there are cur-
rently only these three energy eigenstates in the experimentally-observed physical spec-

Figure 5.4: (facing page) Comparison of the masses extracted from fitting the projected
effective mass (left) and from the eigenvalues (right) on the ensemble with κu,d = 0.13700
across all combinations of smearing levels using a single “flavoured” interpolating operator.
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Figure 5.5: (facing page) Comparison of the masses extracted from fitting the projected
effective mass (left) and from the eigenvalues (right) on the ensemble with κu,d = 0.13700
across all combinations of smearing levels using two of the three “flavoured” interpolating
operators.
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Figure 5.6: Comparison of the masses extracted from fitting the projected effective mass
(left) and from the eigenvalues (right) on the ensemble with κu,d = 0.13700 across all
combinations of smearing levels using all three “flavoured” interpolating operators.

trum, it’s not possible to compare the higher-energy states resolved in our analysis with
those in nature.

In [87], we develop a simple model using Hamiltonian effective field theory focus-
sing on the flavour-singlet couplings to the bare basis state required by the admission of
a three-quark configuration carrying the quantum numbers of the Λ(1405). This allows
us to investigate the finite-volume effects, and a bootstrap analysis in the infinite-volume
limit produced amass of 1.48+0.17−0.07 GeV/c2 for the Λ(1405). Thebootstrap distribution has
a very sharp peak at the most probable value of 1.41GeV/c2, in good agreement with the
experimental value of 1.4051+0.0013−0.0010 GeV/c2.

This analysis is extended in [88] to not distinguish between the possible flavour-
symmetry structures, andhere two complex poles in the scattering amplitude are identified
for the Λ(1405), the locations of which depend on if a bare baryonic state is included in
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Figure 5.7: Comparison of the quality of the fits to the projected effective mass, as repres-
ented by (left) the reduced χ2 and (right) the relative error in themass, across the available
combinations of “flavoured” interpolating operators on the ensemble with κu,d = 0.13700.
We selected 16, 100, and200 sweeps of gauge-invariantGaussian smearing for all combina-
tions presented here. There is very little variation in thesemetrics across the combinations,
especially when the singlet interpolating operator, χ1, is included. This is due to the dom-
inance of a singlet flavour structure in the lowest-lying state, which is discussed later in
Section 5.5.

the matrix Hamiltonianmodel¹. Since the bare state is needed not only to find a candidate
for the Λ(1670), but also to obtain an accurate description of our lattice results near the
SU(3)-flavour limit, we quote here the two poles for the Λ(1405) when the bare state is
included: (1429 − 22i)MeV/c2 and (1338 − 89i)MeV/c2.

5.5 Flavour-Symmetry Structure
Theeigenvectors fromour variational analysis not only allowus to project correlation func-
tions for pure energy eigenstates, but they can be directly viewed to gain an understanding
of each states’ structure. In essence, the components of the eigenvector for a particular state

¹The poles are complex as the Λ(1405) is an unstable resonance in the physical spectrum; the real part
describes the location of the corresponding peak in the cross section while the imaginary part describes its
width (or equivalently, the decay rate of the resonance).
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Figure 5.8: Dependence on m2
π of the eigenstate-projected masses obtained using the

“common” interpolating operators χc1 and χc2. The dashed vertical line represents the phys-
ical pionmass, and the star-shapedpoints on this line indicate themassesof the states found
in nature. Points have been offset slightly on them2

π axis where needed to avoid collisions
and aid viewing; where this occurs, the centre of the group lies as the true value.

state physical [6] “flavoured”

Λ(1405) 1.4051+0.0013−0.0010 1.442(50)
Λ(1670) 1.670 (10) 1.622(65)
Λ(1800) 1.800 +0.050

−0.080 1.867(37)

Table 5.2: Comparison of the masses of the lowest-lying physical states with those of the
lightest group of states the “flavoured” analysis on the lightest ensemble considered. Our
lattice QCD investigation has resolved three low-lying energy eigenstates in accordance
with nature. All values are in GeV/c2.
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Figure 5.9: As for Figure 5.8, but restricted to the two lowest-lying states. The star-shaped
points on this line indicate the masses of the states found in nature while the horizontal
bars represent the (red) πΣ and (purple) KN infinite-volume scattering thresholds.

describe the importance of each interpolating operator in creating that state; a large eigen-
vector component suggests that the corresponding operator is important in describing the
wave function of that energy eigenstate.

Figures 5.12 and 5.13 plot the absolute value of the components of the right eigen-
vectors (uα of the generalised eigenvalue problem in Equation (4.60)) projecting the three
lowest-lying states using the “flavoured” interpolating operators for the two smearing com-
binations being used in this analysis. The behaviour is the same in both cases – the SU(3)-
flavour–singlet operator χ1 (at all the included smearing levels) is—by far—the predomin-
ant contributor to the lowest-lying state. This suggests that this state, which we have iden-
tified with the Λ(1405), carries a predominant flavour-singlet structure. The other two
states are dominated by the SU(3)-flavour–octet operators χ8

i of both Dirac structures,
with the χ8

2 being (slightly) favoured for the second state and χ8
1 for the third.

To further investigate the flavour-symmetry structures, we calculate the lengths of the
projections onto the SU(3)-flavour–symmetry–specific subspaces – those spanned by the
operators with each flavour symmetry structure. If the component of the (left) eigenvector
associated with interpolating operator χ and n sweeps of smearing is unχ , then the length of
the projection onto the subspace associated with the operator χ is given by

pχ ∶=∑
n∈S
(unχ)

2
, (5.5)
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5. Isolating the Λ(1405)
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Figure 5.10: Dependence onm2
π of the eigenstate-projectedmasses obtained using the “fla-

voured” interpolating operators χ1, χ8
1, and χ

8
2. Thedashed vertical line represents the phys-

ical pionmass, and the star-shapedpoints on this line indicate themassesof the states found
in nature. Points have been offset slightly on them2

π axis where needed to avoid collisions
and aid viewing; where this occurs, the centre of the group lies as the true value.

where S is the set of smearings included in the variational analysis, and this gives us a quant-
itative measure of the relative contribution for each interpolating operator. In Figure 5.14
we plot these lengths across our ensembles for both sets of smearings under consideration,
and tabulate the results inTable 5.3. Wecan clearly see thedominanceof the flavour-singlet
operator χ1 in the low-lying state. Moreover, that the values are essentially identical in each
set of smearings gives confidence that our selection of a specific set of smearings does not
manifestly influence the structure of the projected states here – the flavour structure is in-
dependent of the smearing basis used.

It is also worth noting that the separation between the flavour-singlet and -octet struc-
tured operators is at its most pronounced near the SU(3)-flavour limit, with the contri-
bution from the octet operators near-vanishing for the lowest-lying state, and the singlet
operator the same for the other two states. This is expected due to the increasingly-broken
SU(3)-flavour–symmetry as we move towards the physical pion mass.

In approaching the physical point, two types of SU(3) symmetry breaking are en-
countered. Thefirst, discussed above, is themixingof interpolatingoperators in theprocess
of isolating the energy eigenstates. The second is the breaking of the interpolating operator
symmetry itself due the unique role of the heavier strange quark. Together, these effects
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5.5. Flavour-Symmetry Structure
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Figure 5.11: As for Figure 5.10, but restricted to the three lowest-lying states. The star-
shaped points on this line indicate the masses of the states found in nature while the hori-
zontal bars represent the (red) πΣ and (purple) KN infinite-volume scattering thresholds.

give rise to significant flavour symmetry breaking at the physical point.
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5. Isolating the Λ(1405)

Figure 5.12: (facing page) The components of the left eigenvector projecting the correla-
tion functions associated with the three lowest-lying states using all three “flavoured” in-
terpolating operators and 16, 35, and 200 sweeps of smearing. The lowest-lying state (top
plot) is always dominated by the flavour-singlet interpolating operator, with a mild con-
tribution from the flavour-octet operators as we move away from the SU(3)-flavour limit.
Points have been offset slightly on the m2

π axis where needed to avoid collisions and aid
viewing; where this occurs, the centre of the group lies as the true value. The legend de-
scribing the series has been distributed across all three plots to aid visibility; this combined
legend applies to all plots of this Figure.
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5.5. Flavour-Symmetry Structure
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5. Isolating the Λ(1405)

Figure 5.13: (facing page) As for Figure 5.12, but using 16, 100, and 200 sweeps of smear-
ing. Again, the lowest-lying state (top plot) is always dominated by the flavour-singlet in-
terpolating operator, with amild contribution from the flavour-octet operators as wemove
away from the SU(3)-flavour limit.
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5.5. Flavour-Symmetry Structure
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5. Isolating the Λ(1405)

Figure 5.14: (facing page)The length of the projection of the left eigenvector onto SU(3)-
flavour–symmetry–specific subspaces (that is, the subspaces spanned by the components
associatedwith specific interpolating operators) across the ensembles used in this analysis.
This gives a measure of the relative strength of each flavour-symmetry structure in each
state, and clearly shows the dominance of the flavour-singlet structure for the lightest state
(top plot). Points have been offset slightly on them2

π axis to avoid collisions and aid view-
ing; the centre of each group of points lies at the true value. The legend presented in the
top plot also applies to the other two plots of this Figure.
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5. Isolating the Λ(1405)

16,35,200
16,100,200

m
π [G

eV/c 2]
χ
1

χ
81

χ
82

χ
1

χ
81

χ
82

0.6223(91)
0.99616(54)

0.00135(33)
0.00249(39)

0.99608(70)
0.00140(37)

0.00252(50)
0.5124(79)

0.9892(14)
0.00353(88)
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0.00385(98)
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0.0290(51)
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0.9749(87)

0.0062(44)
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0.0203(67)
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Six

Electromagnetic Structure
of the Λ(1405)

The results presented in this chapter were originally published in Physical Review
Letters [61] along with several supporting conference proceedings [60, 89–91].
The Editors also selected the Letter as a “PRL Editors’ Suggestion”. Our presenta-
tion here is adapted from these manuscripts, with additional results relating to the
electric charge radius and magnetic moment.

Now that we have developed an effective technique for isolating individual energy eigen-
states, we can apply other lattice QCD techniques to investigate other properties of the
Λ(1405) on our finite volume lattice. The electromagnetic form factors are particularly in-
teresting as they provide insight into the distribution of charge and magnetism within the
Λ(1405). Moreover, the form factors can be resolved one quark flavour at a time in lattice
QCD, allowing us to directly investigate the internal structure of this mysterious baryon.

6.1 Sachs Electromagnetic Form Factors

In the same way that using eigenstate-projected correlation functions allows us to reduce
the contamination fromother eigenstates in an effectivemass analysis, it can also be used to
improve the effective Sachs electromagnetic form factors GE,M developed in Section 4.2.2.
This allows us to investigate each energy eigenstate individually. As in the previous chapter,
weuse theoperator basis obtainedusing the three “flavoured” interpolatingoperators at 16,
100, and 200 sweeps of gauge-invariant Gaussian smearing.

For a fixed inserted momentum, the momentum transfer is dependent on the mass of
the state. As such, it will vary across the available ensembles. This means that to obtain a
meaningful comparison between the ensembles we need to extrapolate to a common Q2.
The momentum transfer for the Λ(1405) across the ensembles is tabulated in Table 6.1.
Tominimise the shift across the ensembleswe selectQ2 = 0.16GeV2/c4, since it is near the
average of the available values, and use the dipole ansatz of Equation (4.50) to perform the
adjustment. We assume that the magnetic form factors scale the same as the electric form
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6. Electromagnetic Structure of the Λ(1405)

mπ [GeV/c2] Q2
Λ(1405) [GeV2/c4]

0.6223(91) 0.142 206(49)
0.5124(79) 0.145 701(56)
0.3882(55) 0.160 165(98)
0.2821(48) 0.163 42(11)
0.1515(67) 0.169 390(88)

Table 6.1: Momentum transfer,Q2, for the Λ(1405) on each available ensemble.

factors at the quark-sector level for the small values ofQ2 considered here. This determines
GM(0) = GM/GE for unit-charge quark sectors.

In Figure 6.1, we present the quark mass dependence of these form factors for the
Λ(1405), along with the contributions from individual, unit-charged quark sectors. To
check that our extrapolation to a commonQ2 does not significantly change the results, we
plot the form factors both before and after the extrapolation. These results are tabulated in
Table 6.2. The conserved vector current was inserted at t = 21 as the eigenstate-projected
two-point correlation functions are dominated by a single state by this time. Figure 6.2 il-
lustrates the two-point correlation function and demonstrates the importance of our vari-
ational analysis.

At the heaviest u and d quark masses, approaching the SU(3)-flavour limit,mu = md =
ms, the underlying approximate flavour-singlet structure ismanifest in bothGE andGM with
the light and strange sectors contributing equally. However, at the lightest quark mass en-
semble, closest to nature, the strange quark contribution to themagnetic form factor of the
Λ(1405) drops by an order ofmagnitude and approaches zero. As the simulation paramet-
ers describing the strange quark are held fixed, this is a remarkable environmental effect,
and of unprecedented strength.

To ensure that this is not an artificial effect from the selection of the fit window, we plot
the effective strange-sector contribution to the Sachs magnetic form factor in Figure 6.3.
Clearly, any reasonable fit in the region of the plateau will produce a similarly-low value for
the lightest ensemble.

To test if there is any basis dependence in this contribution to themagnetic form factor,
we perform the same form factor analysis but using different levels of smearing. In particu-
lar, we consider { 16, 100}, { 35, 100}, { 16, 35, 100}, and { 16, 35, 100, 200} in addition
to the { 16, 100, 200} used above. A plot of the quark mass dependence of Gs

M for these
operator bases is presented in Figure 6.4. All of these operator bases agree well within er-
rors, and so we continue our analysis using the original set of smearings, { 16, 100, 200}.
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6.1. Sachs Electromagnetic Form Factors
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Figure 6.1: Dependence of the Sachs electric (top) and magnetic (bottom) form factors
on the quark mass (as represented by the square of the pion mass) for the Λ(1405), along
with contributions from the individual unit-charged quark sectors. Values are plotted both
before (left) and after (right) extrapolation to a common Q2 = 0.16GeV2/c4 using the
dipole ansatz of Equation (4.50). Thedashed, vertical line indicates the physical pionmass.
Points havebeenoffset slightly on them2

π axis about their true valueswhereneeded to avoid
collisions and aid viewing; where this occurs, the centre of the group lies at the true value.
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6. Electromagnetic Structure of the Λ(1405)
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6.2. The Λ(1405) is a KN Molecular Bound State
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Figure 6.2: Two-point correlation function for the Λ(1405) on the ensemble with κu,d =
0.13781 obtained through (blue) our “flavoured” variational analysis of Chapter 5 and
(red) a traditional single-operator analysis (χ1 with 16 sweeps of smearing). The fit win-
dows were selected through a reduced-χ2 analysis. The dashed vertical line at t = 16 in-
dicates the baryon insertion time, while the dashed vertical line at t = 21 indicates the
conserved vector current insertion time. Not only does the variational analysis produce
a lower mass (represented here by the negative of the slope of the fits), but the projected
correlation functions become dominated by a single state at a sooner time (represented by
the earlier start time to the fits).

6.2 TheΛ(1405) is a KNMolecular Bound State

If we consider the Λ(1405) as an elementary three-quark state, the strange quark must
make a sizeable contribution to the magnetic form factor, with equal contributions from
all three quarks in the SU(3)-flavour limit. Similarly, if we consider a πΣ bound state, the
strange quark is confined within the spin-1/2 Σ and so again should make a non-zero con-
tribution to the magnetic form factor.

On the other hand, if we consider the Λ(1405) as a KN molecular bound state, the
Λ(uds) valencequark configuration is complementedby auuquark–antiquark pairmaking
a K− (su) proton (uud) bound state, or a dd quark-antiquark pairmaking a K0 (sd) neutron
(ddu) bound state. In both cases, the strangequark is confinedwithin a spin-0 kaon andhas
no preferred spin orientation. Because of this and the fact that the antikaonmust have zero
orbital angularmomentum inorder to conserve parity, the strangequark cannot contribute
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Figure 6.3: The effective unit-charge strange-quark contribution to the Sachs magnetic
form factor on the ensembles with (blue) mπ = 388.2(55)MeV/c2 and (red) mπ =
151.5(67)MeV/c2. The “best fits” for these series were selected through an analysis of
the reduced-χ2 calculated from the full variance-covariance matrix. The electromagnetic
current is inserted at t = 21 and represented by the dashed, vertical line, and the rapid on-
set of the plateau following this reflects our use of optimised interpolating-field operators
through the variational analysis.

to the magnetic form factor of the Λ(1405).
Thus, only if the KN component in the structure of the Λ(1405) is dominant would

one expect to find the vanishing strange quark magnetic form factor apparent in our res-
ults. As the u and d quark masses become light, and the cost of creating uu and dd quark-
antiquark pairs from the QCD vacuum diminishes, we observe an important rearrange-
ment of the quark structure within the Λ(1405) consistent with the dominance of a mo-
lecular KN bound state.

Asmentioned in theprevious chapter, in [61]weuseHamiltonianeffectivefield theory
to construct amodel focussing on various flavour-singlet couplings to a bare baryonic state,
and use this to investigate the spectrum of the JP = 1/2− Λ sector. Using this model, the
emergence of a dominant molecular KN bound state as the quark mass approaches the
physical values is directly reproduced.

Similarly, in [60, 91], we use partially-quenched chiral effective field theory to isol-
ate and remove the disconnected interaction diagrams that are inaccessible to our direct
lattice calculation. This enables a prediction of the light quark sector contributions to be
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Figure 6.4: Dependence of the strange quark contribution to the Sachs magnetic form
factor on the quark mass (as represented by the square of the pion mass) for the lowest-
lying state (the Λ(1405)) extracted using various smearing bases. All operator bases agree
within the statistical errors. Points have been offset slightly on them2

π axis about their true
values for ease of viewing; the central point for each group lies as the true value form2

π .

observed in our simulations. Towards the SU(3)-flavour limit, the predictions of this “con-
nected KN model” (i.e. where only the connected interaction diagrams are included) are
very different from our direct lattice calculations. However, once the Λ(1405) rearranges
its structure in the light-quark regime, there is good agreement between the model and
our lattice results. This is manifest on the ensemble with the lightest quark mass, again
confirming the development of a dominant molecular KN bound state in the structure of
the Λ(1405) as we move towards the physical limit.

These analyses are extended in [88] to include the flavour-octet couplings. At heavy
quarkmasses, towards the SU(3) flavour limit, the authors show that the Λ(1405) is dom-
inated by a flavour-singlet bare baryon state. On the other hand, at light quark masses, to-
wards the physical point, while there is some mixing of a flavour-octet bare baryonic state
they confirm that the Λ(1405) is dominated by a molecular bound KN component.
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6. Electromagnetic Structure of the Λ(1405)

mπ [GeV/c2] ⟨r2⟩E ⟨r2⟩u,dE ⟨r2⟩sE
0.6223(91) 0.0006(14) 0.3333(83) 0.3316(96)
0.5124(79) 0.0050(19) 0.3618(75) 0.3467(97)
0.3882(55) 0.0049(44) 0.399(12) 0.385(20)
0.2821(48) 0.0156(49) 0.400(14) 0.353(19)
0.1515(67) 0.0351(49) 0.426(17) 0.3210(90)

mπ [GeV/c2] μ μu,d μs

0.6223(91) −0.0082(69) 0.312(29) 0.337(32)
0.5124(79) −0.014(11) 0.295(31) 0.338(36)
0.3882(55) −0.005(20) 0.492(43) 0.507(57)
0.2821(48) 0.025(28) 0.366(60) 0.291(55)
0.1515(67) 0.239(26) 0.796(63) 0.080(46)

Table 6.3: The (top) electric mean-squared charge radius and (bottom) magnetic mo-
ment for the Λ(1405) obtained using a dipole ansatz for the small-Q2 behaviour ofGE and
GM, along with the contributions from the individual, unit-charged quark sectors. Mean-
squared charge radii are expressed in units of fm2, while the magnetic moments are ex-
pressed in terms of the nuclear magneton, μN.

6.3 Electric Charge Radius andMagneticMoment

Aswe discussed in Section 4.2.2, we can use our values for the Sachs electromagnetic form
factors to calculate the electric charge radius and magnetic moment, and these give us in-
sight into the distribution of charge and spin within the state. As the states observed on
the lattice are eigenstates and do not have an open decay channel, the use of a dipole to
characterise the distribution is appropriate. Plots of these quantities for the Λ(1405) are
included in Figure 6.5, with the values tabulated in Table 6.3.

At the heaviest quark masses, approaching the flavour-symmetry limit, the mean-
squared charge radius for the light quarks in the Λ(1405) is the same as for the strange
quark. This is consistent with the dominant component being a bare baryonic state, where
all three quarks are treated equally with respect to the structure of the state. As we move
towards the lighter quark masses, there is a small increase in the light quark mean-squared
charge radius. This is expected, since the distribution will naturally “spread out” as the
mass decreases. However, at the same time there is a decrease in the charge radius for the
strange quark – since the mass of the strange quark is fixed, this is purely an environment
effect.
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6.3. Electric Charge Radius and Magnetic Moment
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Figure 6.5: The (top) electric charge radius and (bottom) magnetic moment for the
Λ(1405), along with the contributions from the individual, unit-charged quark sectors.
The dashed, vertical line indicates the physical pion mass. Individual quark sector contri-
butions have been offset slightly on the m2

π axis about their true values where needed for
ease of viewing; where this occurs, the centre of the group lies at the true value.
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Figure 6.6: Comparison between the mean-squared charge radii of the Λ(1405) and
the positive-parity ground-state Λ. The light-quark mean-squared charge radius of the
Λ(1405) is suppressed relative to the ground state, which is consistent with the develop-
ment of a significant KN component in the structure of the Λ(1405). The dashed vertical
line indicates the physical pion mass. Points have been offset slightly on them2

π axis about
their true values where needed to avoid collisions and aid viewing; where this occurs, the
centre of the group lies at the true value.

If we compare these charge radii against the positive-parity, ground-state Λ, as demon-
strated in Figure 6.6, we see that these results are also consistent with the development of
a significant KN component in the structure of the Λ(1405). Since the centre of mass will
lie nearer to the heavier nucleon, the anti-light quarks will be distributed further out by
the antikaon, and this will result in a suppressed light-quark charge radius for the Λ(1405)
relative to the ground state.

For the magnetic moment, we note the large difference between the light and strange
quark contributions as we move towards the physical quark mass. The same justification
as for the near-vanishing strange magnetic form factor from the previous section applies:
we would only expect the contribution from the strange quark to the magnetic moment
to vanish in the limit that the Λ(1405) is purely a KN molecular bound state, where the
strange quark is confined with a spin-0 kaon with zero orbital angular momentum.
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Seven

Concluding Remarks

Since its original prediction in 1959, and subsequent discovery in 1960, the nature of the
Λ(1405) has been the subject of intense debate. As we discussed early in this work, it
is very difficult to reconcile the experimentally-observed unexpectedly-low mass with a
simple three-quark state in a naïve constituent-quark model. On the other hand, since it
sits just below the KN scattering threshold, we could describe it as a molecule-like bound
state of an antikaon and a nucleon, and this approach has been explored through various
theoretical and phenomenological formalisms.

Not only does this work form the first investigation of the low-lying JP = 1/2− spec-
trum of the Λ baryon at near-physical pion masses using lattice QCD, it is also the first
lattice QCD study to demonstrate the isolation of the elusive Λ(1405). Not only do we
reproduce the physical masses for all of the experimentally-observed resonant states in the
JP = 1/2− Λ sector, but we do so using conventional three-quark operators. By analysing
the eigenvectors obtained from our variational analysis, we observe that the Λ(1405) is
dominated by the flavour-singlet interpolating operators but contained important flavour-
octet contributions at lightu anddquarkmasses, far from theSU(3) symmetric point. This
observation has since been independently confirmed by the BGR Collaboration in [92].

To complement our lattice calculations, we used Hamiltonian effective field theory to
construct amodel constrained by our lattice results. Using thismodel, we are able to clearly
see the emergence of a dominant KN component in the structure of the Λ(1405) as the
quark masses approached their physical value.

Since this investigation, a Hamiltonian effective field theory calculation incorporating
direct two-to-two particle interactions has been carried out in [88]; with these additional
interactions, the two-pole structure of the Λ(1405) is observed. As one approaches the
physical light quark-mass regime, the bare quark-model-like basis state becomes associ-
ated with the third and fourth states of the finite-volume spectrum traditionally associated
with octet flavour symmetry. The Λ(1405) remains dominated by the KN component as
observed in this work. This result is also independently supported by the unitary chiral
perturbation theory analysis of Molina and Döring in [93, 94].

Continuing this work’s lattice investigation of the Λ(1405), we presented results for
the Sachs electric and magnetic form factors, along with the associated electric mean-
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7. Concluding Remarks

squared charge radius and magnetic moment. Near the SU(3)-flavour symmetric limit,
where the up, down, and strange quarks all have the same mass, our results here clearly
demonstrate the effect of this symmetry, with all three quarks contributing equally. In
this limit, the electric and magnetic form factors for the Λ(1405) all but vanish, with a
correspondingly-low result for the electric mean-squared charge radius and magnetic mo-
ment.

However, aswemove towards the physical point, we observe a fundamental redistribu-
tion of the quarks within the Λ(1405), and the contribution from the strange quark to the
magnetic form factor nearly vanishes. This observation can only be reconciled if we admit
a dominant KN component in the structure of the Λ(1405), just as we found previously
using our Hamiltonian model. The other possible structures—of a pure three-quark state
and a πΣ component—would require a substantial contribution from the strange quark to
the magnetic form factor.

With this in mind, we used the recently redeveloped graded symmetry approach in
partially-quenched chiral perturbation theory to identify and separate the contributions
from connected and disconnected interaction diagrams. Since the disconnected diagrams
are inaccessible in our lattice QCD study, we constructed a connected KN model where
only the connected diagrams contribute to the coupling with an external electromagnetic
current. Using this model, we demonstrate that the contribution from the light-quark sec-
tor to the magnetic form factor from our lattice results is consistent with a KN model on
the lightest ensemble available in this work. At this point the lattice QCD results and our
connected KNmodel are remarkably consistent, again confirming the KN structure of the
Λ(1405).

Combining all of these results together and summarising, we have presented compel-
ling evidence that the Λ(1405) is dominated by amolecule-like bound state of an antikaon
and a nucleon in the physical limit. This structure is signified by

• the vanishing of the strange quark contribution to the magnetic moment,

• the agreement between the connected KN model and our light quark form factors
at the lightest ensemble, withmπ = 156MeV/c2, and

• the dominance of the KN component found in the finite-volume Hamiltonian ef-
fective field theory treatment.

At the same time, the presence of a non-trivial flavour-singlet three-quark component ex-
plains why the state is readily accessible through our variational analysis constructed using
only local three-quark interpolating operators. Moreover, our ability to excite this state
with a localised three-quark interpolating operator provides further evidence of a localised
bound state.
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From a broader perspective, we have presented evidence for the existence ofmolecular
meson-baryon bound states in QCD. The evidence is firmly founded on the electromag-
netic structure of the Λ(1405) and supported by more traditional spectral analyses. If the
kaon andnucleon can formbound states, it is natural to search forKΣ andKΛ bound states
in the odd-parity nucleon resonance spectrum. Again, an exploration of the electromag-
netic structure of these states as performed in this study for the Λ(1405) will be vital to
disclosing the presence of molecular meson-baryon bound states.

For future investigations of the Λ(1405), it would be instructive to explore and isolate
the contributions from nearby multi-particle scattering states using multi-particle inter-
polating operators, both to the energy spectrum and to the electromagnetic form factors
(especially through their individual quark sector contributions). Using the very developed
framework in [95, 96] it should thenbe possible to combine all the low-lying contributions
observed in lattice QCD and make contact with the full resonance structure.
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Figure A.1: Comparison of the masses extracted from the eigenvalues (left) and from fit-
ting the projected effective mass (right) on the ensemble with κu,d = 0.13700 for t0 ∈
{ 17,…, 21} and Δt ∈ { 1,…, 5}. Numbers of the abscissa indicate t0 with Δt increas-
ing within each t0.
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Figure A.2: Comparison of the masses extracted from the eigenvalues (left) and from fit-
ting the projected effective mass (right) on the ensemble with κu,d = 0.13727 for t0 ∈
{ 17,…, 21} and Δt ∈ { 1,…, 5}. Numbers of the abscissa indicate t0 with Δt increas-
ing within each t0.
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Figure A.3: Comparison of the masses extracted from the eigenvalues (left) and from fit-
ting the projected effective mass (right) on the ensemble with κu,d = 0.13754 for t0 ∈
{ 17,…, 21} and Δt ∈ { 1,…, 5}. Numbers of the abscissa indicate t0 with Δt increas-
ing within each t0.
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Figure A.4: Comparison of the masses extracted from the eigenvalues (left) and from fit-
ting the projected effective mass (right) on the ensemble with κu,d = 0.13770 for t0 ∈
{ 17,…, 21} and Δt ∈ { 1,…, 5}. Numbers of the abscissa indicate t0 with Δt increas-
ing within each t0.
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Figure A.5: Comparison of the masses extracted from the eigenvalues (left) and from fit-
ting the projected effective mass (right) on the ensemble with κu,d = 0.13781 for t0 ∈
{ 17,…, 21} and Δt ∈ { 1,…, 5}. Numbers of the abscissa indicate t0 with Δt increas-
ing within each t0.
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Figure B.1: Comparison of the masses extracted from fitting the projected effective mass
(left) and from the eigenvalues (right) on the ensemble with κu,d = 0.13700 across all
combinations of smearing levels using a single “common” interpolating operator.
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Figure B.2: Comparison of the masses extracted from fitting the projected effective mass
(left) and from the eigenvalues (right) on the ensemble with κu,d = 0.13700 across all
combinations of smearing levels using both “common” interpolating operators.
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Figure B.3: Comparison of the masses extracted from fitting the projected effective mass
(left) and from the eigenvalues (right) on the ensemble with κu,d = 0.13727 across all
combinations of smearing levels using a single “common” interpolating operator.
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Figure B.4: Comparison of the masses extracted from fitting the projected effective mass
(left) and from the eigenvalues (right) on the ensemble with κu,d = 0.13727 across all
combinations of smearing levels using both “common” interpolating operators.
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Figure B.5: Comparison of the masses extracted from fitting the projected effective mass
(left) and from the eigenvalues (right) on the ensemble with κu,d = 0.13754 across all
combinations of smearing levels using a single “common” interpolating operator.
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Figure B.6: Comparison of the masses extracted from fitting the projected effective mass
(left) and from the eigenvalues (right) on the ensemble with κu,d = 0.13754 across all
combinations of smearing levels using both “common” interpolating operators.
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Figure B.7: Comparison of the masses extracted from fitting the projected effective mass
(left) and from the eigenvalues (right) on the ensemble with κu,d = 0.13770 across all
combinations of smearing levels using a single “common” interpolating operator.
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Figure B.8: Comparison of the masses extracted from fitting the projected effective mass
(left) and from the eigenvalues (right) on the ensemble with κu,d = 0.13770 across all
combinations of smearing levels using both “common” interpolating operators.
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Figure B.9: Comparison of the masses extracted from fitting the projected effective mass
(left) and from the eigenvalues (right) on the ensemble with κu,d = 0.13781 across all
combinations of smearing levels using a single “common” interpolating operator.
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Figure B.10: Comparison of the masses extracted from fitting the projected effective mass
(left) and from the eigenvalues (right) on the ensemble with κu,d = 0.13781 across all
combinations of smearing levels using both “common” interpolating operators.

Figure B.11: (facing page) Comparison of the masses extracted from fitting the projected
effective mass (left) and from the eigenvalues (right) on the ensemble with κu,d = 0.13700
across all combinations of smearing levels using a single “flavoured” interpolating operator.
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B. Exploring the Operator Space: Plots

Figure B.12: (facing page) Comparison of the masses extracted from fitting the projected
effective mass (left) and from the eigenvalues (right) on the ensemble with κu,d = 0.13700
across all combinations of smearing levels using two of the three “flavoured” interpolating
operators.
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B. Exploring the Operator Space: Plots

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Fitted Mass [GeV/c2]

16, 35, 100, 200
35, 100, 200
16, 100, 200
16, 35, 200
16, 35, 100

100, 200
35, 200
35, 100
16, 200
16, 100
16, 35

200
100
35
16

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Eigen-mass [GeV/c2]

χ1, χ81, χ
8
2

Figure B.13: Comparison of the masses extracted from fitting the projected effective mass
(left) and from the eigenvalues (right) on the ensemble with κu,d = 0.13700 across all
combinations of smearing levels using all three “flavoured” interpolating operators.

Figure B.14: (facing page) Comparison of the masses extracted from fitting the projected
effective mass (left) and from the eigenvalues (right) on the ensemble with κu,d = 0.13727
across all combinations of smearing levels using a single “flavoured” interpolating operator.
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B. Exploring the Operator Space: Plots

Figure B.15: (facing page) Comparison of the masses extracted from fitting the projected
effective mass (left) and from the eigenvalues (right) on the ensemble with κu,d = 0.13727
across all combinations of smearing levels using two of the three “flavoured” interpolating
operators.
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Figure B.16: Comparison of the masses extracted from fitting the projected effective mass
(left) and from the eigenvalues (right) on the ensemble with κu,d = 0.13727 across all
combinations of smearing levels using all three “flavoured” interpolating operators.

Figure B.17: (facing page) Comparison of the masses extracted from fitting the projected
effective mass (left) and from the eigenvalues (right) on the ensemble with κu,d = 0.13754
across all combinations of smearing levels using a single “flavoured” interpolating operator.
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B. Exploring the Operator Space: Plots

Figure B.18: (facing page) Comparison of the masses extracted from fitting the projected
effective mass (left) and from the eigenvalues (right) on the ensemble with κu,d = 0.13754
across all combinations of smearing levels using two of the three “flavoured” interpolating
operators.
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Figure B.19: Comparison of the masses extracted from fitting the projected effective mass
(left) and from the eigenvalues (right) on the ensemble with κu,d = 0.13754 across all
combinations of smearing levels using all three “flavoured” interpolating operators.

Figure B.20: (facing page) Comparison of the masses extracted from fitting the projected
effective mass (left) and from the eigenvalues (right) on the ensemble with κu,d = 0.13770
across all combinations of smearing levels using a single “flavoured” interpolating operator.
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B. Exploring the Operator Space: Plots

Figure B.21: (facing page) Comparison of the masses extracted from fitting the projected
effective mass (left) and from the eigenvalues (right) on the ensemble with κu,d = 0.13770
across all combinations of smearing levels using two of the three “flavoured” interpolating
operators.
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B. Exploring the Operator Space: Plots
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Figure B.22: Comparison of the masses extracted from fitting the projected effective mass
(left) and from the eigenvalues (right) on the ensemble with κu,d = 0.13770 across all
combinations of smearing levels using all three “flavoured” interpolating operators.

Figure B.23: (facing page) Comparison of the masses extracted from fitting the projected
effective mass (left) and from the eigenvalues (right) on the ensemble with κu,d = 0.13781
across all combinations of smearing levels using a single “flavoured” interpolating operator.
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B. Exploring the Operator Space: Plots

Figure B.24: (facing page) Comparison of the masses extracted from fitting the projected
effective mass (left) and from the eigenvalues (right) on the ensemble with κu,d = 0.13781
across all combinations of smearing levels using two of the three “flavoured” interpolating
operators.
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B. Exploring the Operator Space: Plots
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Figure B.25: Comparison of the masses extracted from fitting the projected effective mass
(left) and from the eigenvalues (right) on the ensemble with κu,d = 0.13781 across all
combinations of smearing levels using all three “flavoured” interpolating operators.
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