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Abstract 

Copy number expansion of tandem repeat sequences beyond a pathogenic threshold causes 

more than twenty neurodegenerative diseases known as dominantly-inherited expanded 

repeat diseases. The repeat expansions arise in a diverse range of genomic locations within 

unrelated genes. Repeat-containing RNA represents a product derived from all affected loci 

and has thus been hypothesised to constitute a plausible common pathogenic agent. 

Evidence for bi-directional transcription of repeat RNA, the products of which are predicted 

to form complementary double-stranded RNA (dsRNA), has been observed across all tested 

expanded repeat disease loci. Previous work has demonstrated that expression of repeat 

CAG.CUG dsRNA causes eye-specific and neuronal pathology in a Drosophila model of 

expanded repeat disease. Additional work revealed that repeat dsRNA not only induces an 

inflammatory response, but is dependent upon several components of the innate 

inflammatory system for the resultant pathology. This thesis uses this established Drosophila 

model of expanded repeat disease to further define the innate inflammatory mechanisms 

underlying expanded repeat dsRNA pathology at both the cellular and molecular level.  

Co-expression of repeat dsRNA and a viral protein that inhibits antiviral pathway activation 

led to complete suppression of the resultant eye pathology. This suggests that the repeat 

dsRNA is recognized by the host antiviral machinery as a ‘non-self’ threat, thus inducing a 

damaging inflammatory response that causes the subsequent eye pathology. The reduction 

of key mitophagy components led to an enhancement of the repeat dsRNA eye pathology, 

indicating that mitochondrial quality control is protective in response to the expression of 

repeat dsRNA. The tissue-specific expression of the repeat dsRNA in glial cells responsible 

for the development and maintenance of the Drosophila blood-brain barrier led to 

neurodegeneration and mortality, highlighting these glial cell subtypes as key non-cell 

autonomous determinants of dsRNA-mediated neuronal dysfunction. The characterisation 

of pathways and cell types that underlie expanded repeat pathogenesis are critical for 

defining the molecular and cellular determinants of this novel ‘non-self’ RNA pathogenesis. 

The validation of this model as replicating the corresponding human diseases will enable the 

development of effective therapeutic interventions for this group of diseases.  
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CHAPTER 1: Introduction 

Neurodegenerative disease constitutes an umbrella term describing a number of debilitating 

conditions characterised by neuronal loss and subsequent inhibition of cognitive and/or 

motor function. The probability of developing a neurodegenerative disease increases with 

age (particularly beyond 60 years of age) which, when married with the ageing global 

population, presents a significant and rising socioeconomic concern for both affected 

families and the broader public (1). However, despite decades of intense research focus into 

the mechanisms that underlie neurodegeneration, progress towards effective therapeutic 

intervention remains limited, serving to highlight the complexity of the causal agents 

mediating neurodegenerative disease development and progression. 

Major neurodegenerative diseases include Alzheimer’s disease (AD), Parkinson’s disease 

(PD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS) and frontotemporal 

dementia (FTD). Typically, two forms of each disease have been identified; inherited familial 

forms are early-onset and arise through genetic mutation, whilst the more common 

sporadic late-onset forms are thought to develop through contributions from both genetic 

risk factors and environmental stressors. The characterisation of causal disease genes and 

genetic risk factors implicated in neurodegenerative disease has provided clues into the 

responsible underlying pathways. 

Of these diseases, HD distinguishes itself by way of constituting a monogenic disorder, 

whereas all of AD, PD, ALS and FTD can arise through mutations in a number of separate 

(but often related) genes (2). Indeed, HD belongs to a distinct group of monogenic disorders, 

together referred to as expanded repeat neurodegenerative diseases. Investigation into the 

pathophysiology of HD and related CAG expanded repeat disorders forms the primary focus 

of this thesis.  
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1.1 Expanded repeat neurodegenerative disease 

The copy number expansion of a repeat sequence beyond a pathogenic threshold gives rise 

to more than 20 dominantly-inherited neurodegenerative disorders (Figure 1.1) (3, 4). The 

repeat sequences are highly unstable, leading to their expansion via defective DNA 

mismatch repair (5-7). As such, expanded repeat diseases generally exhibit a molecular 

phenomenon known as anticipation, whereby further expansion of the repeat length 

through subsequent generations correlates with more severe clinical symptoms and an 

earlier age-of-onset (8-10). Despite the individual repeat expansion lesions occurring in 

unrelated genes (Figure 1.1), there exists substantial overlap between the diseases in terms 

of neurological symptoms and copy number repeat disease thresholds, suggesting that a 

common pathogenic pathway may underlie this family of diseases (4). Indeed, the recent 

discovery of a hexanucleotide GGGGCC repeat constituting the most common cause of 

familial ALS/FTD (11, 12) has highlighted the idea that other forms of neurodegenerative 

disease may also share commonality in disease development and progression. 

1.1.1 Polyglutamine (PolyQ) 

There are several pathogenic products that can be derived from repeat expansion loci, 

including both RNA and protein species that have been proposed as key toxic agents. 

Expanded CAG trinucleotide repeat sequences that occur within the coding region of the 

affected gene are typically translated into corresponding polyglutamine (polyQ) tracts 

(Figure 1.1), which are thought to constitute the primary pathogenic agent in the so-termed 

polyglutamine diseases (13-16). Indeed, polyQ toxicity has been demonstrated in a range of 

animal models, including C. elegans, Drosophila and mouse (17). The molecular 

mechanism(s) by which polyQ proteins drive cellular dysfunction are not completely clear; 

mitochondrial dysfunction, transcriptional dysregulation, disrupted axonal transport and 

inflammation have all been proposed to contribute to polyQ-mediated pathology (18, 19). 
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1.1.2 Repeat-associated non-AUG (RAN) translation 

Not all repeat sequences are located within coding regions of the affected gene (Figure 1.1), 

and thus are not expected to encode a repeat polypeptide within the normal protein. 

However, recent evidence has demonstrated the production of expanded repeat-derived 

proteins from hairpin-forming RNA in the absence of a canonical open reading frame (ORF), 

termed repeat-associated non-AUG translation (RAN translation) (20). Initially discovered in 

the CUG trinucleotide repeat disorder SCA8, where RAN translation led to the production of 

repeat proteins in all three reading frames of both the sense (CUG) and antisense (CAG) 

repeat transcripts (20). This follows on from observations of bi-directional transcription at all 

expanded repeat loci tested, highlighting the importance of both the sense and antisense 

strands in expanded repeat disorders (21). RAN translation has since been reported in seven 

additional repeat expansion disorders, including HD (22), fragile X-associated tremor ataxia 

syndrome (FXTAS) (23), and forms of ALS/FTD caused by the C9orf72 repeat expansion (24-

Figure 1.1: Location and composition of repeat sequences giving rise to dominantly-inherited 

expanded repeat disease. ALS, amyotrophic lateral sclerosis; FTD, frontotemporal dementia; FXTAS, 

fragile X tremor ataxia syndrome; SCA, spinocerebellar ataxia; SMBA, spinobulbar muscular atrophy; 

DRPLA, dentatorubral-pallidoluysian atrophy. Figure reproduced from (4) 
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26). How do these non-canonical disease gene products contribute to expanded repeat 

disease? Experimental work in yeast, Drosophila and cell lines investigating RAN translated 

peptides derived from the C9orf72 locus have demonstrated that impairment to 

nucleocytoplasmic transport may underlie neuronal dysfunction in ALS/FTD (27-29), while 

endoplasmic reticulum (ER) stress and proteasome impairment have also been highlighted 

as potential pathological mechanisms (30). Indeed, the field of RAN translation is still in its 

infancy, as such it is likely that the current dedicated research focus will provide a much 

greater understanding of RAN translation. This includes both the mechanisms surrounding 

the initiation of RAN translation in a disease context and how the resultant proteins 

contribute to disease development and progression. Furthermore, how the diverse array of 

RAN-translated polypeptides derived from 4 and 5 base repeat sequences may contribute to 

expanded repeat disease is yet to be uncovered. 

1.1.3 Single-stranded RNA (ssRNA) 

In diseases where either polyQ or RAN translated proteins (or both) are produced, it is likely 

that they participate in the pathogenesis of the given disease, though the extent of this 

contribution remains unclear. In addition, disease-specific protein products are yet to be 

described in all forms of expanded repeat neurodegenerative disease. However, underlying 

all expanded repeat loci is the production of repeat-containing RNA molecules, making RNA 

a plausible common pathogenic agent (4, 31). Single stranded RNA (ssRNA) products derived 

from repeat loci form hairpin structures (32, 33) which have been proposed to cause cellular 

dysfunction through several mechanisms. 

At the forefront is the ability of RNA hairpins to interact with and sequester RNA-binding 

proteins, thus interrupting their normal function (34). For instance, co-localisation and 

subsequent dysregulation of the Muscleblind (MBNL) family of splicing factors by repeat 

RNA foci has been implicated in several expanded repeat diseases, including DM1 and 2 (35, 

36), HDL2 (37), SCA8 (38) and FXTAS (39). Loss of MBNL alternative splicing recapitulates 

many of the clinical symptoms associated with DM (40, 41), suggesting that RNA-mediated 

sequestration of RNA-binding proteins may underlie key aspects of expanded repeat disease 

pathogenesis. Of note, antisense repeat transcripts derived from SCA2 (42) and ALS/FTD (43) 
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repeat loci have also been demonstrated to form RNA foci, suggesting that both strands 

produced from expanded repeat loci can potentially act to sequester RNA-binding proteins 

and thus contribute to disease pathogenesis. Of note, a repeat-containing antisense 

transcript to HTT (denoted as HTTAS_v1) was demonstrated to negatively regulate HTT 

expression (44). The expression level of HTTAS_v1 was decreased in HD brain tissue, 

suggesting that the transcript may be protective as opposed to detrimental (44). Thus, the 

generation of antisense transcripts spanning expanded repeat loci may not be inherently 

deleterious in the context of disease. 

1.1.4 Double-stranded RNA (dsRNA) 

In addition to ssRNA, the observation of bi-directional transcription across expanded repeat 

loci (21) has raised the intriguing possibility of the opposing repeat transcripts forming 

perfectly double-stranded RNA (dsRNA) molecules. Indeed, work from Lawlor et al in a 

Drosophila model of CAG expanded repeat disease demonstrated that expression of 100 

copies of either CAG (rCAG100) or CUG (rCUG100) ssRNA was not detrimental, while co-

expression of both transcripts together (rCAG100.CUG100) led to striking toxicity when 

expressed in eye tissue, as well as dysfunction when expressed neuronally (45). The 

observed pathology was dependent upon Dicer-2 (45), a key component of the RNA 

interference (RNAi) pathway, which acts to process dsRNA into small 21 nucleotide RNA 

fragments (21mers) in order to facilitate silencing of homologous transcripts (46, 47). 

Indeed, an enrichment of CAG7 21mers was detected in rCAG100.CUG100 flies, indicating 1) 

the activity of the RNAi pathway in response to the presence of expanded repeat RNA, and 

2) that the RNAi pathway may underlie the pathology (45). These findings were confirmed in 

an independent Drosophila model of DM1, where co-expression of 250 copies of both the 

sense CUG and antisense CAG transcripts led to Dicer-2 dependent pathology (48). In 

contrast to the dsRNA-mediated pathology observed in Lawlor et al and Yu et al, the 

expression of ssRNA CGG/CCG repeat sequences in isolation led to toxicity in a Drosophila 

model of fragile x-associated tremor/ataxia syndrome (FXTAS), while co-expression of the 

repeat sequences ameliorated the toxicity in an RNAi-dependent fashion (49). This work 

provides evidence that the RNAi pathway can also act protectively in response to repeat 

dsRNA, more in line with its canonical role in antiviral transcript silencing (50). Interestingly, 
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CAG7 21mers have also been detected in human HD brain samples, and the neurotoxicity 

exerted by these repeat RNAs was dependent upon Ago2, another key component of the 

RNAi pathway (51). Thus, the RNAi pathway is also active in the vertebrate system in 

response to expanded repeat RNA, further supporting its participation in disease 

pathogenesis. 

A subsequent microarray analysis conducted on Drosophila expressing rCAG100.CUG100 

dsRNA found that a number of transcripts common to the innate immune response were 

significantly altered in the presence of repeat dsRNA (52). Further analysis revealed that the 

Toll immune signalling pathway was required for the dsRNA pathology, while autophagy 

plays a key role in restricting the observed toxicity (52). Finally, the presence of repeat 

dsRNA induced an inflammatory response, as measured through the transcriptional 

upregulation of both Drosomycin, a downstream peptide synthesised by the Toll signalling 

pathway, and Eiger, the Drosophila orthologue of potent inflammatory cytokine tumour 

necrosis factor (TNF) (52). Taken together, the results suggest that expanded repeat dsRNA 

could represent a foreign or ‘non-self’ molecule to the host innate immune system, thus 

invoking an inflammatory response that could be detrimental to cellular function and 

survival. Of note, the rCAG100.CUG100 dsRNA Drosophila model described in Lawlor et al and 

Samaraweera et al is the model used for the majority of work in this thesis (45, 52). 

Intriguingly, Dicer-2 also participates in inflammatory signalling independent of its role in the 

RNAi pathway. The infection of flies with Drosophila C virus (DCV) leads to the induction of 

the antiviral peptide Vago in a Dicer-2 but not RNAi dependent manner (53), while Dicer-2 

can also regulate Toll signalling (and subsequently Drosomycin induction) in response to 

microbial and viral challenge (54). Thus, the upregulation of Drosomycin observed in 

response to expanded repeat dsRNA (52) may also represent Dicer-2 activity separate from 

the RNAi pathway. Finally, Dicer-2 shares significant domain homology with members of the 

mammalian RIG-1-like receptor (RLR) family of RNA sensing molecules (Figure 1.2) (55, 56), 

which act to detect viral or other ‘non-self’ RNA molecules and induce a downstream 

antiviral signalling response (57). Taken together, these findings strongly point to a role for 

Dicer-2 in RNA sensing not only in the RNAi pathway, but also as part of the inducible 

antiviral RNA inflammatory response. 
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Indeed, there is precedence for participation of the inflammatory response in expanded 

repeat disease pathogenesis. Upregulated inflammatory signalling is detectable in HD gene 

carriers preceding the onset of clinical manifestations (58, 59), while the activation of 

microglia, the resident immune cell within the CNS, correlates with neuronal dysfunction in 

HD gene carriers (60, 61). Thus, the inflammatory response shapes as an excellent candidate 

pathway to investigate in the context of expanded repeat neurodegenerative disease. 

1.2 Innate inflammation 

The normal role of the innate inflammatory system is one of protection. It represents the 

first line of defence against dangerous pathogens and other ‘non-self’ material that 

challenge the host (62) and promotes tissue repair following injury or insult (63). A fully 

functioning innate immune system is of utmost importance to prevent a pathogen invader 

from successfully replicating within the host body (64). However, failure of the initial acute 

inflammatory response to degrade/remove the threat and thereby resolve the situation can 

lead to chronic inflammatory activation, resulting in tissue damage and cellular dysfunction 

that can give rise to a number of autoimmune and autoinflammatory diseases (65, 66). In 

addition, a wealth of compelling research now places inflammation as a key underlying 

pathogenic mechanism in neurodegenerative disease (67). This includes a range of 

neurological disease-causing mutations in genes that regulate inflammatory signalling 

through either positive or negative mechanisms (68). In this manner, the innate immune 

Figure 1.2: Homology between selected DExD/H-box helicase proteins in human and Drosophila. 

Significant helicase domain homology is observed between RIG-I-like receptors IFIH1 (encoding 

MDA5), RIG-I, human Dicer and Drosophila Dicer-1 and Dicer-2. Helicase domain location denoted by 

yellow box. Alignment performed using the MegAlign Pro program (DNAStar). Figure reproduced from 

(343) (Appendix A). 
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system represents somewhat of a double-edged sword in organismal health, one that must 

be tightly-regulated to prevent detrimental outcomes. Thus, a greater understanding of the 

mechanisms governing inflammatory signalling under both homeostatic and disease 

conditions is required. 

1.2.1 Pattern recognition receptors (PRRs) 

 In order to initiate inflammatory defence mechanisms against pathogens, they must first be 

detected through the actions of a group of receptor molecules collectively termed pattern 

recognition receptors (PRRs). These receptors act to sense a wide range of stimuli that fall 

into several groups; conserved structures found on microbes known as pathogen-associated 

molecular patterns (PAMPs), and endogenously derived danger/damage-associated 

molecular patterns (DAMPs) that are released from dying/dysfunctional cells to indicate 

homeostatic disruption (69). Following detection, PRRs interact with downstream adaptor 

molecules to augment distinct inflammatory signalling cascades specified to the threat (70). 

Many PRR families are conserved through to invertebrates, including the Toll-like receptors 

(TLR)s, of which Toll was initially discovered in Drosophila (71). Major groups of vertebrate 

PRRs include TLRs, the RNA-sensing RIG-I-like receptors (RLRs), and the inflammasome-

forming Nod-like receptors (NLRs) (72). 

Of particular interest for the RNA-based model of expanded repeat disease used in this 

thesis are the RNA-sensing PRRs that predominantly serve antiviral based roles (Table 1.1). A 

number of human TLR molecules are capable of detecting RNA species; TLR3, which engages 

viral dsRNA ligands, and TLR7/8, both sensors of viral and bacterial ssRNA (73). 

Inflammasome sensor NLRP3 can respond to a range of viral/bacterial ssRNA and dsRNA 

triggers but relies on upstream receptors to initiate signalling (74). Finally, the RLR members 

RIG-I and MDA5 (encoded by IFIH1) act to detect dsRNA viral replication intermediates (57). 

Less is understood regarding the third RLR member LGP2, though recent evidence has 

highlighted its importance in augmenting RIG-I/MDA5 antiviral signalling (75). Drosophila 

lacks a characterised orthologue of the receptors RIG-I and MDA5, though Dicer-2 may serve 

as a functional equivalent in invertebrates through a viral RNA-sensing role independent of 

its activity in the invertebrate RNAi pathway (53-55). 
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The PRR-mediated detection of pathogenic or ‘non-self’ material begins a cascade of 

signalling that results in the propagation of a stimuli-specific response, which forms the 

activation step of the innate immune response. 

1.2.2 Innate immune signalling 

The integration of PRR signalling through to the induction of inflammatory mediators that 

coordinate pathogen defence and tissue repair is critical to ensure an appropriate response 

is raised against any offending stimuli. Adaptor molecules, kinases and downstream 

transcription factors all participate in signal transduction pathways (Figure 1.3). Indeed, 

further complexity is added to the response by the significant crosstalk that exists between 

some innate immune pathways, knowledge of which is still relatively limited in many cases. 

This cross-talk can occur at the stage of ligand recognition, signalling infrastructure or 

transcription factor(s) (76). This level of functional complexity can aid to produce additional 

layers of specificity through a synergistic or complementary response, or act as a 

Table 1.1: Cellular localisation of known RNA pattern recognition receptors in 

vertebrates and their ligands 
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compensatory mechanism following the inactivation of a particular inflammatory pathway 

via mutation or pathogen-mediated antagonism (77). 

The particular transcriptional program(s) activated are dependent upon the ligand/receptor 

interaction. Microbial infection typically induces expression of inflammatory cytokines such 

as TNF and members of the interleukin (IL) family, whereas viral RNA ligands lead to the 

transcription of interferon stimulated genes (ISGs), including cytokines that specifically 

augment an antiviral response (69, 70). Cytokines (along with other induced molecules such 

as chemokines) are pleiotropic mediators of inflammation that communicate signals within 

and between cells to coordinate the recruitment of immune cells to the site of 

infection/injury and elimination of the pathogen/infected cells through cell death 

mechanisms (69, 78). 

Pathogen infection and other insults can also activate mechanisms tied to host stress 

responses. For example, a number of stressors such as hypoxia, heat shock, mitochondrial 

dysfunction and viral challenge induce the formation of RNA stress granules (SGs) (79). RNA 

Figure 1.3: Diagram of a prototypical innate 

immune signalling pathway. Pathogens or other 

‘non-self’ molecules are detected by the 

appropriate PRR (in blue), leading to its interaction 

with an adaptor molecule (yellow). Typically, a 

signal transduction complex will form consisting of 

the adaptor and other components, including (but 

not limited to) kinase, protease and ligase enzymes 

(green). This results in the subsequent activation of 

one or more transcription factors (orange), leading 

to the downstream induction of target 

inflammatory effector molecules. Figure adapted 

from (76). 
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binding proteins (RBPs) located within SGs act to harbour non-essential mRNA transcripts to 

prevent their translation, thus relieving a portion of translational demand on the cell upon 

stress (80). Stalled mRNAs can then either be released through dissociation of the RBP 

complexes if the stress is resolved, or shuttled to processing bodies (P-bodies) for 

degradation (81, 82). In addition, several dedicated degradative mechanisms can also be 

upregulated as a means to remove the potentially threatening material. 

1.2.3 Degradative pathways 

In order to prevent the chronic activation of inflammatory signalling, cellular clearance 

mechanisms operate to degrade trigger molecules (including PAMPs and DAMPs) and 

damaged organelles that are capable of propagating further inflammation. A range of 

specialised clearance pathways exist; the ubiquitin proteasome system (UPS) and unfolded 

protein response (UPR) mediate protein degradation (83, 84), while RNA exosomes and 

stress granules (SGs) target RNA species (85, 86). 

At the forefront of cellular degradation is autophagy, a process by which cytoplasmic 

molecules and damaged organelles are targeted for recycling/removal. This occurs first 

through the incorporation of targeted cargo into a double-membrane vesicle known as an 

autophagosome, followed by transportation to and fusion with a lysosome to facilitate 

degradation (Figure 1.4) (87). Notably, autophagy plays an important role in degrading the 

disease-associated misfolded proteins characteristic of several neurodegenerative diseases; 

including polyQ repeat-containing mutant Htt in HD (88), Aβ42 in AD (89), mutant α-Syn in 

PD (90) and mutant TDP-43 in ALS/FTD (91). Indeed, specialised forms of autophagy exist 

based on target substrates; notable forms include xenophagy, which degrades bacterial and 

viral pathogens, and mitophagy, a critical process for mitochondrial quality control via the 

removal of damaged/dysfunctional mitochondria (92). 

In addition to maintaining a healthy pool of mitochondria to provide the energy required by 

the cell, the removal of damaged mitochondria is critical for upholding homeostasis. Under 

stress, mitochondria can release a range of DAMPs to further stimulate an inflammatory 

response. Mitochondrial DNA (mtDNA), ATP and mitochondrial ROS (mtROS) derived from 
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damaged mitochondria are all potent activators of the NLRP3 inflammasome (93-95), while 

mtDNA can also induce Type I interferon signalling by binding TLR9 (96) and the cGAS/STING 

DNA sensing antiviral pathway (97, 98). Thus, the efficient removal of mitochondrial trigger 

molecules through mitophagy is essential for preventing inappropriate inflammatory 

signalling. Notably, mutations in key mitophagy regulators PINK1 or Parkin both lead to 

autosomal recessive familial PD (99, 100), highlighting the importance of mitophagy in 

neurodegenerative disease. 

1.2.4 Mitochondria as an antiviral hub 

Mitochondria themselves are also key hubs of the innate inflammatory response, in 

particular as a platform to launch antiviral RNA signalling. In addition to the previously noted 

Figure 1.4: Schematic diagram of the autophagy pathway. Initially, an isolation membrane is formed 

and expanded to envelop the cellular contents targeted for degradation, which can include 

cytoplasmic molecules and damaged organelles. The completed autophagosome is then transported 

and fuses with a lysosome to facilitate degradation of the cargo. Figure adapted from (87). 
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range of mitochondrially-derived DAMPs that drive NLRP3 inflammasome activation in 

response to metabolic stress (101), healthy mitochondria can also serve as a platform for 

antiviral RNA signalling. 

Upon the sensing of cytosolic viral ‘non-self’ RNA products, receptors RIG-I and MDA5 

interact via their respective caspase activation and recruitment (CARD) domains with the 

adaptor molecule mitochondrial antiviral signalling protein (MAVS), which is anchored the 

outer mitochondrial membrane (OMM) (102). This interaction facilitates the recruitment of 

adaptor molecules and kinases to MAVS, ultimately resulting in NF-κB and interferon 

regulatory factor 3 (IRF3) mediated transcription of pro-inflammatory cytokines and 

interferon stimulated genes (ISGs) respectively (Figure 1.5) (102, 103). In addition, MAVS 

promotes inflammasome signalling through its function as an adaptor molecule (104, 105) 

and can also trigger inflammasome activation via membrane permeabilization (106). Finally, 

MAVS (and thus the RLR antiviral RNA pathway) can initiate antiviral cell death in response 

to viral challenge, including both apoptosis (107-109) and necroptosis (110, 111). Indeed, 

several viral pathogens encode inhibitors of MAVS-mediated cell death (108), highlighting its 

importance in restricting the spread and replication of viruses. 

Intriguingly, recent in vitro evidence has shown that both RIG-I and MDA5 oligomerize on 

their respective dsRNA targets to form filaments (112-115). This RLR oligomerization is 

important for the nucleation and formation of MAVS aggregates, the functional signalling 

complexes that drive downstream activation of NF-κB and IRF3 (116-118). Recent evidence 

has demonstrated that MAVS aggregation is inhibited through physical interactions with N-

terminal truncated MAVS isoforms and PINK1/Parkin-mediated mitophagy (119). 

Furthermore, scaffold protein FAF1 can form aggregates that bind to and prevent MAVS 

aggregation under homeostatic conditions (120). Indeed, a number of other protein-protein 

interactions regulate MAVS activation (both positively and negatively) at the mitochondrial 

level (121), demonstrating that RLR/MAVS-mediated signalling is tightly controlled to ensure 

that antiviral signalling occurs at the appropriate time and magnitude in response to 

pathogenic or sterile challenge. 
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Thus, mitochondria serve not only as a metabolic hub within the cell, but also as a platform 

to initiate and augment innate inflammatory signalling and augment inflammation through 

the release of trigger molecules. Indeed, the propagation of inflammation can lead to cell 

death and dysfunction, and not surprisingly has been implicated in systemic and CNS 

disease. 

 

Figure 1.5: Overview of RLR-MAVS-mediated antiviral signalling in vertebrates. Viral or other ‘non-

self’ dsRNA is detected by the cytoplasmic RNA sensors RIG-I and MDA5. RIG-I recognizes short 

dsRNA, whereas MDA5 recognizes long dsRNA. Both RIG-I and MDA5 form a repeating filament 

structure upon the dsRNA that interacts with mitochondrial adaptor protein MAVS via their CARD 

domains. MAVS molecules form a functional signalling complex that recruits kinases and other 

adaptor molecules, ultimately leading to NF-κB and IRF3-mediated induction of pro-inflammatory 

cytokines and IFN stimulated genes respectively. Additionally, RLR-MAVS signalling can also 

promote antiviral cell death as a mechanism to restrict the spread of viral material. 
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1.2.5 Inflammation and neurodegeneration 

Genetic lesions affecting inflammatory components give rise to a number of monogenic 

autoinflammatory diseases, either through gain of inflammatory signalling or loss of 

negative regulation (66). What is now becoming increasingly clear is that mutations leading 

to inflammatory dysregulation also underlie major neurodegenerative diseases, including 

AD, PD and ALS/FTD (68). 

Genetic variants in the innate immune genes TREM2, PLCG2 and ABI3 are all risk factors in 

late-onset AD (LOAD) (122, 123). In addition, APOE, a major susceptibility gene for LOAD, 

drives immune dysregulation through a TREM2-mediated pathway (124). Indeed, amyloid-β 

induces inflammation (125-127), though recent work has demonstrated that it also functions 

protectively as an antimicrobial peptide (128-130). Thus, the role of amyloid-β in 

neuroinflammation appears multi-faceted and is in need of further definition. 

Many of the genes responsible for familial PD are critical for mitochondrial dynamics and 

quality control, in particular PINK1 and Parkin (131) but also including LRRK2 (132), DJ-1 

(133, 134) and VPS35 (135). Furthermore, the accumulation of α-synuclein (derived from the 

SNCA gene, mutated in autosomal-dominant PD) impairs mitochondrial dynamics (136) and 

can also trigger inflammation directly (137, 138). Failure to remove damaged mitochondria 

leads to the release of trigger molecules including mtDNA and ROS that propagate 

inflammation (139, 140), thus highlighting mitochondrial-mediated inflammation as a key 

contributor to PD pathogenesis. 

Several familial genes tied to ALS/FTD are involved in stress responses. ALS-linked mutations 

in the autophagy adaptor proteins p62/sequestosome 1 and optineurin lead to impaired 

autophagy and cellular trafficking (141, 142), while other ALS and FTD-linked genes also 

function in autophagic processes (143). Additionally, TARDBP and FUS both encode RNA-

binding proteins (TDP-43 and FUS respectively) that associate with stress granules (80, 144). 

Both TDP-43 and FUS also regulate RNA splicing (145, 146), implicating RNA metabolism in 

the pathogenesis of ALS and FTD. Finally, the most frequent cause of inherited ALS and FTD, 

an expanded hexanucleotide GGGGCC repeat within the C9orf72 gene, impairs autophagy 
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(147) and dysregulates immune signalling (148, 149). Thus, dysfunctional degradative 

machinery appears a key underlying contributor to both ALS and FTD. 

As previously discussed, inflammatory activation precedes the onset of clinical symptoms in 

HD gene carriers (58, 59). In addition, known HD disease gene products (polyQ and RNA) 

have been shown to induce inflammatory activation (52, 150). This raises the possibility that 

the products, once expanded beyond a pathogenic threshold, are detected by the innate 

immune system as foreign or ‘non-self’, leading to a damaging inflammatory response 

within the host. Indeed, endogenous repeat dsRNA molecules (such as Alu repeats) are 

typically subject to post-transcriptional modifications such as adenosine-to-inosine (A-to-I) 

editing to mark them as ‘self’ molecules and prevent the activation of RNA sensing 

machinery (151, 152). Mutations in the A-to-I editing enzyme adenosine deaminase acting 

on RNA 1 (ADAR1) lead to aberrant Type I interferon signalling and the development of the 

auto-inflammatory neurological disorder Aicardi-Goutieres syndrome (AGS) (153, 154). 

Furthermore, augmented Type I interferon activity through gain-of-function mutations in 

IFIH1 (encoding RNA sensor MDA5) also gives rise to AGS (153, 155). Intriguingly, genetic 

deletion of either MDA5 or its downstream antiviral adaptor MAVS rescues embryonic 

lethality and aberrant inflammatory signalling observed in Adar1 null mice (152, 156), thus 

highlighting ‘non-self’ sensing of dsRNA as a key driver of inflammatory dysfunction in 

neurological disease (157). Finally, the requirement of RLR-like sensor Dicer-2 in driving 

dsRNA-mediated toxicity in Drosophila (45), and the ability of repeat dsRNA to induce an 

inflammatory response (52) raise the possibility that ‘non-self’ recognition of expanded 

repeat dsRNA may comprise a key pathogenic factor in repeat expansion disorders. 

In addition, given the role of non-cell autonomous pathways in the inflammatory response, 

the distinct cell types within the CNS are important to consider when assessing the role of 

inflammation in neurodegenerative disease. Historically, approaches have taken a neuron-

centric view, though in recent years the focus has turned to the non-neuronal glial cells that 

habituate the CNS, and as such their functional diversity and importance in 

neurodegeneration is beginning to emerge. 
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1.3 Glial cells and other non-neuronal cells of the nervous system 

Long thought of as passive neuronal support cells, the currently identified roles of glial cells 

within the nervous system are diverse and of critical importance to neuronal development, 

health and function (158). Thus, it is not surprising that glial cells have been heavily 

implicated in the development and progression of neurodegenerative disease through both 

helpful and harmful mechanisms (159). In line with the diverse roles they perform within the 

nervous system, a range of glial cell types have been described based on distinct 

morphological and functional characteristics (Figure 1.6 A). While the majority of in vitro 

and in vivo analyses into glial form and function has been in a mammalian context, at least 

some of these features are evolutionarily conserved through to invertebrates such as 

Drosophila and C. elegans, where the utility of a simpler model system has been extremely 

useful in unravelling key questions in cell biology (160, 161). Indeed, even within specific 

glial subtypes there exists remarkable heterogeneity that has only recently become clear 

(162-165), highlighting that there is likely still much to learn regarding glial function in both 

the healthy and compromised CNS. 

1.3.1 The development and normal functions of glia 

Microglia comprise approximately 10-20% of the total glial population in mammals (159, 

166) and act primarily as the resident immune cells of the CNS. They originate from 

mesodermal progenitors in the yolk-sac during embryogenesis, then subsequently invade 

the developing CNS and begin to proliferate rapidly (Figure 1.6 B) (167, 168). Under 

homeostatic conditions, microglia constantly scan the CNS environment for pathogens and 

other homeostatic disruptions through the expression of a cluster of receptors (169). In 

addition, they participate in synapse remodelling (170, 171), neurogenesis through the 

removal of apoptotic neuronal bodies (172) and neuronal support through the secretion of 

neurotrophic factors (173, 174). Upon detection of CNS injury or insults such as brain injury, 

pathogens or other ‘non-self’ molecules, microglia undergo “reactive gliosis”; altering their 

morphology and transcriptional signature in a threat-dependent manner (175). These 

responses can be of a helpful manner through controlled removal of the threat/danger 

signal, followed by tissue repair and remodelling (176). However, dysfunctional microglia 
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and/or the persistence of an insult/injury can result in the escalation of pro-inflammatory 

signalling, cell death and tissue damage (177, 178). Thus, microglial function within the CNS 

needs to be remarkably fine-tuned to ensure appropriate responses to CNS stimuli.  

Astrocytes represent the most abundant cell type within the vertebrate CNS, encompassing 

approximately 30% of the total glial cell population (179). At least two classes of astrocytes 

are present: fibrous astrocytes inhabit white matter and comprise cylindrical processes 

reminiscent of long fibres, while protoplasmic astrocytes are located in grey matter and are 

characterised by finely branching processes (180, 181). Both astrocytes and 

oligodendrocytes (collectively termed macroglia) originate from neuroepithelial cells based 

in the neural tube and forebrain (158) that then form radial glia during approximately 

embryonic day 9-10 (E9-10) in mice (Figure 1.6 B) (182). Radial glial cells initially give rise 

only to neuronal cells before switching to produce glial precursors after neurogenesis (183, 

184). Following this, a number of secreted molecules including sonic hedgehog (SHH), 

fibroblast growth factors (FBFs) and cytokines provide positional cues to the precursor cells, 

specifying differentiation into either astrocytes or oligodendrocyte precursor cells (OPCs) 

(158, 182). 

Astrocytes form distinct tiling across the entire CNS (181), connected by gap junctions 

spanning the entire network that allow efficient cell-cell communication (185, 186). Under 

normal conditions, astrocytes play a central role in neuronal circuit plasticity, regulating 

both the formation and pruning of synapses during development via the release of 

molecular signals (187-189). Through their close association with synapses, astrocytes are 

also responsible for facilitating a homeostatic environment for proper neuronal 

communication, including the uptake and clearance of neurotransmitters to prevent 

excitotoxicity (190, 191). Similar to microglia, astrocytes can transition to a “reactive” state 

upon sensing CNS injury/insult, facilitating a set of functional changes that can either 

promote CNS repair or exacerbate tissue damage depending on the stimuli (192, 193). 

Oligodendrocytes comprise the second distinct macroglial cell type and are responsible for 

myelination of axonal fibres within the CNS (194). Myelination provides faster nerve impulse 

conduction along axons, important for maintaining neural connectivity in larger vertebrate  
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Figure 1.6: Vertebrate glial cells and their developmental origins. A) The neurovascular unit (NVU) is 

comprised of glial and other non-neuronal cell types. Vascular cells (pericytes and endothelial cells) 

enclose blood capillaries in order to form the blood-brain barrier (BBB) in conjunction with secreted 

structural proteins that form the basement membrane. Astrocyte end feet make contact with the 

vasculature, facilitating rapid communication between neurons and the BBB to fine-tune nutrient 

supply. Oligodendrocytes myelinate neuronal projections, while microglia scan the CNS 

microenvironment for homeostatic disruptions. Diagram reproduced with modifications from (270). 

B) Lineage diagram of vertebrate glial cells. Neural crest cells give rise to Schwann cell precursors, 

which then migrate to the PNS to generate both myelinating and non-myelinating Schwann cells. 

Neuroepithelial progenitor cells (NPCs) produce radial glial cells, which then generate neurons and, 

following a ‘gliogenic switch’, both oligodendrocyte precursor cells (OPCs) and astrocytes. OPCs 

subsequently differentiate into mature oligodendrocytes. Mesodermally-derived primitive 

macrophages migrate to the CNS during embryonic development, where they form the mature 

microglial population. Corresponding cell types (if featured in both diagrams) are colour-coded. 
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brains (195). As with astrocytes, oligodendrocyte precursor cells (OPCs) derive from radial 

glial cells, migrating from the ventricular zone of the embryonic spinal cord to the CNS 

during early development and give rise to mature oligodendrocytes of the adult brain 

(Figure 1.6 B) (196, 197). The proliferation of OPCs continues into adulthood in order to 

replace dying oligodendrocytes and thus maintain myelin coverage (198). The ensheathment 

of vertebrate peripheral nerves is a role carried out by neural crest-derived Schwann cells, 

which can differentiate into both myelinating and non-myelinating forms (Figure 1.6 B) 

(199). Of note, OPCs are often referred to as NG2 (Nerve-glial antigen 2) glial progenitor cells 

based on their stable expression of the proteoglycan NG2 (200). Intriguingly, the self-

renewing NG2 cells have been proposed to also generate astrocytes (201) and even 

neurons, though this ability remains controversial (202-204). Aside from their role in 

remyelinating nerves following oligodendrocyte death/CNS injury, little more is known 

about putative NG2 cell functionality (205). Therefore, NG2 cells will be grouped with 

oligodendrocytes in future discussion. 

1.3.2 The neurovascular unit (NVU) 

Composed of neurons, glial cells and other non-neuronal cell types, the neurovascular unit 

(NVU) acts as a means to connect the energy-intensive brain with appropriate blood supply 

(206). The NVU represents a specialized complex that encompasses components of the 

vertebrate blood-brain barrier (BBB) and the surrounding neurovasculature (207). Neurons, 

microglia and astrocytes are present, as well as vascular cells including pericytes and 

endothelial cells (Figure 1.6 A). Endothelial cells form the core structure of the BBB, acting 

as a physical barrier separating the tightly regulated CNS environment and the systemic 

circulatory system (208). Connecting endothelial cells are diffusive molecular complexes 

known as tight junctions (TJs) that allow selective transport of molecules and ions across the 

BBB (209, 210). Surrounding the endothelium is a basement membrane comprised of 

secreted structural proteins that form a distinct extracellular matrix (ECM). The ECM 

provides additional regulation of BBB permeability, while also acting as a scaffold for growth 

factors and other structural support molecules (211, 212). The final specialised NVU cell 

type, pericytes are situated between the endothelium, astrocytes and neurons (Figure 1.6 

A). Similar to astrocytes, they communicate with neighbouring cells through gap junctions 
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(213) and regulate a number of vital BBB processes including the regulation of endothelial 

cells and tight junctions to control permeability (214), clearance of foreign material (215) 

and immune signalling (216). Interestingly, pericytes also display multipotent stem cell 

activity following ischemic injury, suggesting that they take on new functionality following 

CNS insult (217, 218). 

In an NVU context, astrocytes extend processes (also known as astrocyte endfeet) to cover 

blood vessels (Figure 1.6 A) where they aid in the development of tight junctions (219) and 

maintain endothelium integrity through bi-directional signalling (220, 221). Maintaining 

intimate physical contact with both neurons and the CNS vasculature allows astrocytes to 

act as a conduit to receive and relay messages between neurons and the vasculature to fine-

tune metabolic homeostasis (208, 222). Microglia maintain their role as resident CNS 

sentinels, scanning for signs of neurovascular damage (223). 

The NVU is of vital importance for coupling the brain with blood flow in order to meet the 

high metabolic demand of neural activity. In addition, the BBB protects the strictly 

homeostatic environment within the CNS from systemic microbes and immune cells that can 

instigate neuronal damage and death (224). Thus, the NVU further illustrates the essential 

role glia and other non-neuronal cells play in preserving proper neuronal function. 

1.3.3 Glial cells in neurodegenerative disease 

While glial cells are now recognized as indispensable for CNS function, their dysregulation 

not only promotes neurodegeneration but even appears to be a proximal cause in some 

cases (225). Factors such as ageing and genetic lesions can cause dysfunctional microglia and 

astrocytes that react inappropriately to CNS insults such as disease gene products, leading to 

heightened inflammatory signalling and neuronal cell death (2). As such, it is not surprising 

that maladaptive glial cells have now been highlighted as potential therapeutic targets to 

ameliorate neurodegenerative disease (179, 226, 227). 

As the resident immune cells of the CNS, microglia have garnered much of the research 

focus on the contribution of glial cells to neurodegeneration. Genome-wide association 

studies have recently identified coding variants in the microglial genes TREM2, PLCG2 and 
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ABI3 as genetic risk factors for AD (122, 123), implicating microglia as a causal contributor in 

the disease. Further supporting a causal role, reactive microglia have been observed 

preceding the onset of clinical symptoms in HD (61, 228) and ALS (229). In addition, pro-

inflammatory microglia drive disease progression through interactions with disease-specific 

gene products including Aβ (126, 230) and Tau in AD (231), α-synuclein in PD (232, 233), 

mHTT in HD (150) and mSOD1 in ALS (234, 235). Failure of microglia to effectively remove 

disease products instead facilitates their redistribution and further propagation throughout 

the CNS (236-238), a phenomenon remarkably conserved through to phagocytic glia in 

Drosophila (239). Thus, the efficient degradation of disease gene products through microglia 

is critical to prevent neuroinflammation. 

Indeed, through normal ageing microglia progressively lose their homeostatic functionality 

and take on a primed, pro-inflammatory phenotype that can exacerbate neuronal damage 

through an exaggerated inflammatory response to CNS insult/injury (177, 240, 241). The 

removal of genetically-induced senescent microglia and astrocyte cells prevents cognitive 

decline in a mouse model of tau-dependent neurodegeneration (242), highlighting ageing 

microglia as a potential therapeutic target. Inflammation stemming from sepsis increases 

the risk of developing neurodegeneration in later life (243), suggesting that systemic 

molecules may also contribute to the sensitization of microglia within the CNS and thus 

drive an exaggerated neuroinflammatory response to a subsequent CNS challenge. 

Like microglia, astrocytes also display reactivity states in response to CNS stimuli that can 

have important implications for CNS disease progression (181). Disease lesions disrupt 

normal astrocyte function and result in non-cell autonomous neuronal dysfunction and 

death (244-246). Recent work from Liddelow and colleagues has demonstrated that LPS-

induced reactive microglia can induce a toxic astrocytic state through the release of TNF, IL-

1α and C1q (247). These reactive astrocytes (termed A1 astrocytes following pro-

inflammatory macrophage and microglial nomenclature) are potent promotors of neuronal 

and oligodendrocyte cell death in vivo and, importantly, were observed in post-mortem CNS 

tissue derived from AD, PD, HD and ALS patients, indicating that disease-specific CNS insults 

drive a similar transition (247). In addition, reactive astrocytes transition to a microglial-

induced pro-inflammatory A1 phenotype through normal ageing, suggesting that A1 
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astrocytes may also underlie age-related cognitive decline (248). Pharmacological inhibition 

of A1 astrocyte conversion ameliorates neurodegeneration in mouse models of PD (249), 

further highlighting the therapeutic potential in targeting astrocyte reactivity. 

Interestingly, reactive astrocytes induced through ischemic injury display a neuroprotective 

phenotype (termed A2) (193), demonstrating that astrocytes can be helpful or harmful 

depending upon the form of environmental challenge. Indeed, reactive A2 astrocytes 

function to promote wound repair and axonal regeneration following spinal cord injury (250-

252). In addition to reactive gliosis, astrocytic degeneration is a common feature in 

neurodegenerative disease (253-256), indicating that astrocytic loss of function may also 

contribute to neuronal dysfunction. Astrocytes are capable of degrading Aβ plaques via 

lysosomal activity (257-259) and the close association of reactive pro-inflammatory 

astrocytes and microglia with amyloid deposits in AD (260) may reflect the loss of this 

phagocytic capability. Taken together, these results highlight the importance of astrocytes in 

non-cell autonomous neuronal decline and support the participation of multiple cell types in 

the pathogenesis of neurodegenerative disease. 

While oligodendrocytes lack the defined reactivity of microglia and astrocytes in response to 

stimuli, their dysfunction and loss contributes to a number of CNS disorders. Most notably, 

oligodendrocyte loss and the subsequent demyelination of nerves in the CNS are hallmarks 

of multiple sclerosis (MS), an autoimmune inflammatory disorder that results in axonal 

degradation and neuronal dysfunction (261). Whether the autoimmune response precedes 

oligodendrocyte and myelin loss or vice versa is still unclear (262), though recent work has 

shown that oligodendrocyte death triggers an autoimmune response directed against myelin 

that results in neurological dysfunction (263), providing evidence that oligodendrocyte loss 

may represent the initial trigger for demyelinating diseases. 

However, evidence of oligodendrocyte dysfunction in neurodegenerative disease is not 

limited to MS. Oligodendrocyte degeneration precedes disease onset in mouse models of 

ALS (264, 265) and AD (266), while demyelination is a recurring feature in the motor cortex 

and spinal cord regions of ALS patients (264, 265) and in pre-symptomatic HD patients (267). 

Additionally, oligodendrocyte-specific expression of an expanded mHTT protein leads to 



24 

 

progressive demyelination and neurodegeneration in mice (268). Glial-secreted TNF causes 

selective cell death of oligodendrocytes (269), therefore it is tempting to speculate that 

inflammatory signalling upon CNS insult may lead to oligodendrocyte death as part of a non-

cell autonomous response, thus further exacerbating inflammation and neurodegeneration 

in CNS disorders. 

Disruption of the neurovascular unit is another structural feature frequently observed in 

neurodegenerative disease (270, 271). Permeabilization of the blood-brain barrier allows the 

infiltration of blood-derived neurotoxic molecules such as fibrinogen, a coagulation factor 

that promotes neuroinflammation in MS and AD via engagement with microglia and Aβ 

respectively (272, 273). Systemic immune cells including neutrophils, phagocytes and 

lymphocytes can also enter the CNS following BBB disruption and drive neuronal tissue 

damage (274, 275). BBB leakage is an early pathogenic event in both mouse and fly models 

of HD (276, 277), suggesting that it may prove a promising therapeutic target for 

intervention. Notably, the BBB impairment observed in Drosophila was also replicated 

through expression of the mutant expanded Ataxin 3 protein, the genetic lesion responsible 

for the expanded repeat disease spinocerebellar ataxia 3 (SCA3), the most prevalent cause 

of dominantly inherited ataxia (277). As such, the BBB may be extremely sensitive to the 

presence of repeat-containing disease gene products, a hallmark of the expanded repeat 

family of diseases. 

An appreciation for the diversity of essential roles that glial cells play under both normal and 

disease conditions is fast emerging. However, with this increased research focus has come 

the realisation that glia are far more complex and heterogeneous than first thought (158). 

As such, the conserved diversity of glial cells through to invertebrates, along with a powerful 

genetic toolkit means that Drosophila provides an excellent in vivo model system to further 

our understanding of glial cell function and their contribution to disease pathology. 

1.3.4 Glial cells in Drosophila 

Despite representing the most abundant cell type within the CNS, our understanding of glial 

biology during both healthy and diseased CNS states remains limited, in part due to the 
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complexity of glial cells and their functions in vertebrates. In this regard, simpler yet 

evolutionarily conserved model organisms such as Drosophila are remarkably useful in 

providing insights into basic cell biology (160, 278). Indeed, similar to vertebrates, in 

Drosophila there exist a number of distinct glial cell types based on morphology, localisation 

and function (Figure 1.7). 

Surface glia groups perineural glia and subperineural glia, both of which cover the entire 

brain and ventral nerve cord in two adjacent single-cell layers (279). Together, they 

comprise the Drosophila blood-brain barrier which separates the CNS and circulating 

hemolymph (279, 280). In addition, they also ensheath peripheral nerves that project into 

and out of the CNS (280). Within the larval brain, surface glial cells derive from four mapped 

clusters of currently unidentified glia progenitors that spread over the entire brain 

hemisphere (281). Within the ventral nerve cord, perineural glial cells derive from two CNS 

neuro-glioblasts; NB2-5 exclusively and NB5-6 which also generates subperineural glial cells 

(Figure 1.7 C) (282). Additionally, three sensory organ progenitors (SOPs) within the PNS give 

rise to perineural glia (Figure 1.7 C) (283). Post-embryonically, perineural glia undergo 

extensive proliferation which likely produces the perineural glial cells of the adult brain 

(284). Subperineural cells are generated embryonically within the ventral nerve cord where 

they stem from five distinct but spatially unrelated neuro-glioblasts (NB1-1, NB2-2, NB5-6, 

NB1-3 & NB7-4, some of which also give rise to other glial subtypes including cortex glia) 

(Figure 1.7 C) (281, 285). In addition, subperineural glia of the PNS are generated from both 

a single CNS-derived neuro-glioblast (NB1-3) and two PNS-derived SOPs, one of which is a 

shared progenitor with peripheral wrapping glia (283). During development, subperineural 

glia do not proliferate but instead expand greatly in size and connect to one another by 

forming septate junctions (280). Individual cells are connected to one another through 

septate junctions that tightly control paracellular transport, reminiscent of tight junctions 

that link vertebrate endothelial cells (286). Thus, surface glial cells share many 

characteristics with the mammalian BBB and are likely to be equally important in preserving 

the tightly-regulated CNS environment. 

Underneath surface glial cells in the peripheral nervous system (PNS) lie wrapping glia, 

which act to wrap individual axonal fibres in a strikingly similar fashion to non-myelinating  
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Figure 1.7: The glial cells of Drosophila melanogaster. A) Overview of the larval Drosophila 

CNS. The neuronal cortex region (gray) contains neuronal cell bodies and most glial cell bodies. 

The neuropil (white) is composed of axonal and dendritic projections together with glial cell 

processes to form a synaptically dense region. The dotted line represents the region shown in 

B) Cross-section of the larval ventral nerve cord displaying glial subtypes. Morphological 

organisation is conserved in the adult brain. Perineural and subperineural glia enclose the 

entire CNS and PNS to form the Drosophila blood-brain barrier. Ensheathing glia border 

neuropil regions to separate them into distinct compartments in addition to wrapping axonal 

tracts, while astrocyte-like glia extend fine processes into the neuropil. Cortex glia form a 

honeycomb-like structure around neuronal cell bodies. Wrapping glia ensheath peripheral 

nerves. Image reproduced with modifications from (278). C) Origin of glial cells within the 

ventral nerve cord. Details of glial cell development in Drosophila are located within the text. 

Corresponding cell types in diagrams B-C are colour-coded. 
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Schwann cells in the vertebrate periphery (287, 288). Wrapping glia stem from progenitors 

together with subperineural glial cells within the ventral nerve cord; the neuro-glioblast 

NB1-3 and a ventral SOP (Figure 1.7 C) (283). Like subperineural glia they do not proliferate, 

but rather extend in length to span peripheral nerves (283). Recent work has also 

demonstrated the importance of wrapping glia-derived signalling in the development of the 

peripheral BBB (289), suggesting that they can also regulate peripheral nerve insulation via 

non-cell autonomous mechanisms. Additionally, wrapping glial cell differentiation is reliant 

upon EGF receptor activation (289), a mechanism shared with the formation of myelin in 

vertebrates (290). This suggests that, despite the lack of myelin in Drosophila, wrapping glia 

share commonalities with both myelinating and non-myelinating peripheral cells. 

Two distinct glial subsets populate the neuropil region of the Drosophila CNS, ensheathing 

glia and astrocyte-like glia, collectively termed neuropil glia (Figure 1.7 B). Neuropil glia 

share common progenitors in both the larval brain and ventral nerve cord. Within the larval 

brain, they are derived from a single neuro-glioblast cluster known as basal procephalic 

neuropile glia (BPLG), whereas the lateral glioblast (LGB) generates the neuropile glia of the 

ventral nerve cord (Figure 1.7 C) (285). However, these embryonically derived neuropile glia 

(also termed primary glia) undergo programmed cell death during metamorphosis which is 

followed by a second wave of gliogenesis that produces the adult (secondary) neuropile glia 

(Figure 1.7 C) (291). The secondary neuropile glia are produced from multipotent neuro-

glioblast precursors within the brain and a set of unidentified progenitors in the ventral 

nerve cord (282, 291). 

Ensheathing glia extend across the edge of the synapse-rich neuropil to form boundaries 

separating the distinct lobes (279). In addition, a morphologically-distinct subset of 

ensheathing glia associate closely with axon tracts that connect the neuropil compartments 

(292), thus showing similarity to oligodendrocytes in this regard. Ensheathing glia function as 

the resident phagocytes of the brain to clear axonal debris following injury (293, 294) and in 

this manner share functional similarity with mammalian microglia. Indeed, via signalling 

from the glial engulfment receptor Draper, ensheathing glia can modulate the magnitude of 

the phagocytic response to scale with injury severity, providing evidence that Drosophila 

glial cells may also display reactivity in an injury-dependent manner (295). Furthermore, 
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ensheathing glia show an age-dependent decline in phagocytic ability via reduced expression 

of Draper (296) that can lead to neurodegeneration (297), highlighting glial senescence as an 

evolutionarily conserved process that contributes to neurological decline. 

Astrocyte-like glia infiltrate the neuropil regions with elaborate branching processes (279); a 

single astrocyte is capable of extending processes into multiple distinct neuropil 

compartments (292). Their densely ramified morphology bears striking resemblance to 

protoplasmic astrocytes of the mammalian brain (298). Indeed, Drosophila astrocytes 

display functional conservation as well; they retain important roles in neurotransmitter 

homeostasis (299, 300) and synapse remodelling (301, 302). Whether they exhibit reactivity 

in response to stimuli in Drosophila is unknown, though they do show tiling behaviour 

similar to vertebrate astrocytes (298), suggesting that they may at least be capable of cell-

cell communication. This is supported by the observation that focal axonal injury leads to 

widespread glial activation within the Drosophila CNS (295), which may rely on glial coupling 

to transmit a distant injury signal. 

Though ensheathing and astrocyte-like glia show a number of functional similarities with 

vertebrate microglia and astrocytes respectively, they have not yet been demonstrated to 

display the potent immune signalling that is characteristic of reactive glial cells upon CNS 

insult (175). However, recent work has uncovered a novel microglial-like cell type that 

infiltrates the Drosophila CNS transiently during development (303). The cells, termed MANF 

immunoreactive Cells (MiCs), appear in the pupal brain following distinct disruptions to 

homeostasis; the triggering of either inflammation or autophagy, or the silencing of the 

neurotrophic factor MANF (303). MiCs display motility and express both Draper and the 

immune transcription factor Relish, suggesting that they are potentially capable of 

performing at least two microglial functions within the developing CNS; phagocytosis and 

inflammatory signalling (303). The understanding of this cryptic cell type is very limited, 

leaving several important questions unresolved. Are there other methods to induce their 

appearance? Are they derived from a dedicated precursor or do they differentiate from 

another cell type following homeostatic disruption? Do they interact with other cell types 

within the CNS? Further investigation of these cells may provide insights into how the 
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Drosophila CNS reacts under conditions of stress and the if MiCs constitute “reactive” glial 

cells in invertebrates. 

The final glial subtype in Drosophila, cortex glia, populate the cortical region of the CNS 

between surface glia and the neuropil (Figure 1.7 B). Here, they wrap individual neuronal 

cell bodies and forming a distinct honeycomb-like structure; a single cortex glial cell can 

ensheath approximately 100 neuronal bodies (279). This spongiform morphology bears 

resemblance to protoplasmic astrocytes that associate closely with neuronal cell bodies 

(304, 305). Within the larval brain they are derived from the same set of unidentified neuro-

glioblast clusters as surface glia (282, 285). In the ventral nerve cord they are generated 

from two defined progenitors; NB6-4 which represents a dedicated cortex glia progenitor, 

whilst NB7-4 which gives rise to both cortex and subperineural glial cells (Figure 1.7 C) (285). 

Surprisingly little is known about the functions carried out by cortex glia, though recent work 

suggests that they play an important role in regulating neuronal excitability; defective cortex 

glial cells lead to a pronounced susceptibility to epilepsy-like seizures following 

environmental stressors (306, 307). Thus, in controlling neuronal firing, cortex glia also share 

functionality with mammalian astrocytes (305). In addition, cortex glia appear vital in 

clearing apoptotic neuronal corpses during development through expression of Draper 

(308), showing that a number of Drosophila glial subtypes can act as semi-professional 

macrophages. Whether this functional redundancy allows different glial subtypes to 

compensate for one another following injury/insult is not clear. However, disruption of 

cortex glia morphogenesis leads to the resultant invasion of astrocyte-like glia into the 

cortex region and vice-versa (309), indicating a level of communication between these glial 

subtypes. 

Indeed, glial cells appear to be central players in Drosophila models of neurodegeneration in 

both helpful and harmful capacities (310). Glial-mediated inflammatory signalling is 

necessary for neurological decline in a Drosophila model of ataxia-telangiectasia (A-T) (311, 

312) and through normal ageing (313), suggesting that invertebrate glia are capable of 

launching inflammatory responses. Notably, these findings were observed through the 

targeting of all Drosophila glial cells. As such, determining the individual glial subtype(s) 

regulating inflammation will be an important area of future research. In this regard, genetic 
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tools designed to manipulate and observe individual glial subtypes are now widely available 

(160, 292), further positioning Drosophila as an excellent animal model with which to 

interrogate glial cell biology. 

1.4 Drosophila as a model organism in immunity and neurodegeneration 

A fast generation time, well annotated genome and widely available genetic toolkit means 

that Drosophila has proven a powerful model to dissect the molecular underpinnings of 

important biological processes. As part of the toolkit comes the GAL4/UAS bipartite 

expression system, which facilitates the specific expression of candidate transgenes under 

control of an upstream activation sequence (UAS) by the GAL4 protein (314). GAL4, an 

exogenous transcriptional activator derived from yeast, acts under the control of a spatial 

and/or temporal promoter known as a ‘driver’. Upon GAL4 binding to UAS sites, the 

candidate transgene is expressed in a specific spatiotemporal manner, allowing the analysis 

of candidate gene function in targeted tissue-types. Adding to the utility of the system, 

transgenic RNAi libraries are widely available for conditional target gene inactivation (315, 

316). Thus, the GAL4/UAS system represents a powerful and efficient method for targeted 

gene manipulation (317) and has been extremely beneficial for Drosophila-based research 

into the main themes of this thesis, namely innate inflammation (including glial cells) (160, 

318, 319) and human neurodegenerative disease (320, 321). 

A number of key innate inflammatory pathways are conserved from human to fly, including 

NF-κB signalling and the Toll pathway, initially discovered in Drosophila (71). In addition, the 

more compact genome of Drosophila offers less redundancy, an advantage when dissecting 

the complex pathways that shape innate immunity and inflammation (318). This degree of 

conservation is still being uncovered – only recently has a Drosophila orthologue of key 

antiviral protein Stimulator of Interferon Genes (STING) been characterised (322, 323), 

which functions in the antimicrobial response despite the lack of an interferon-based 

pathway in the fly. Indeed, there are other differences to consider; an antibody-mediated 

adaptive immune system is absent in Drosophila, though recent evidence suggests that 

immunological memory may still occur via an RNAi-mediated mechanism (324). 

Furthermore, while lacking antiviral RNA sensors RIG-I and MDA5 as well as their adaptor 
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molecule MAVS, the Drosophila Dicer proteins share significant homology with both RLRs 

(Figure 1.2) and Dicer-2 appears to act as an RNA sensor as part of the inducible antiviral 

response in Drosophila (53-55). Overall, the advantages of Drosophila as a in vivo model far 

outweigh its limitations in the field of immunity and inflammation. 

Despite superficial differences, the Drosophila brain shows remarkable conservation with its 

vertebrate counterparts in terms of CNS development (325), signalling and regulatory 

mechanisms (326), as well as behavioural outputs such as sleep and memory (327). As such, 

the fly has proven a fruitful model for tackling the pathogenic mechanisms underlying 

human neurodegenerative disease (321). Drosophila models have been generated for AD 

(328-330), PD (331-334) and ALS/FTD (335-338). Additionally, expanded repeat 

neurodegenerative diseases have also been extensively modelled (339, 340), including the 

rCAG~100.CUG~100 dsRNA model utilized in this research (45, 52). This model was developed 

to investigate the role of bi-directionally transcribed repeat dsRNA in expanded repeat 

neurodegenerative disease, following data highlighting the occurrence of bi-directional 

transcription at many expanded repeat loci (21). The GAL4/UAS system is used to express 

constructs containing the untranslated repeat sequences, which are predicted to form either 

hairpin structures in the case of expression of rCAG~100 or rCUG~100 alone, or perfectly 

double-stranded RNA when both are expressed in conjunction (Figure 1.8) (45, 341). As 

previously discussed, expression of either the rCAG~100 or rCUG~100 repeat constructs alone 

does not cause pathology (Figure 1.8) (45, 342), whereas both constructs together 

(rCAG~100.CUG~100) lead to pathology when expressed in the Drosophila eye (Figure 1.8), and 

neuronal dysfunction when expressed either neuronally or in glial cells (45, 52). Of particular 

note, the high level of neuronal dysfunction observed via glial expression of the repeat 

dsRNA indicates that non-cell autonomous mechanisms contribute to the pathology (Figure 

1.9) (52). 

Further dissection of the pathogenic mechanisms underlying the dsRNA eye pathology 

demonstrated that the repeat dsRNA not only induces an inflammatory response, but that 

inflammation is also required for the pathology (52). RNAi pathway components Dicer-2 and 

Ago2 are required for the resultant pathology (Figure 1.9) (45, 343) (Appendix A), 
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implicating the RNAi response in the pathogenesis. However, over-expression of essential 

RNAi pathway cofactors R2D2 and Loquacious rescued the eye pathology (Figure 1.9) (343) 

(Appendix A). These findings suggest that 1) the RNAi pathway is in fact a protective 

mechanism in response to the expression of repeat dsRNA, and therefore 2) a distinct 

antiviral RNA response underlies the dsRNA pathology (Figure 1.9). Indeed, Dicer-2 has been 

demonstrated to act as an RNA sensor to induce antiviral signalling (53, 54) and shares 

significant domain homology with known mammalian RNA sensors RIG-I and MDA5 (Figure 

1.2) (55, 343) (Appendix A). This highlights the possibility that Dicer-2 detects the repeat 

dsRNA as a ‘non-self’ or viral entity. Supporting this, ectopic expression of human adenosine 

deaminase acting on RNA 1 (ADAR1), which acts to edit endogenous RNA transcripts to 

prevent their ‘non-self’ recognition by RNA sensors, also rescued the repeat dsRNA eye 

pathology (Figure 1.9) (343) (Appendix A). Taken together, these findings suggest that 

expression of the dsRNA induces a damaging antiviral inflammatory response (Figure 1.9). 

Figure 1.8: Expression of CAG.CUG repeat constructs using the GAL4/UAS system. Under the control 

of a tissue-specific promoter, the GAL4 transcription factor binds to UAS sites in order to drive 

expression of A) rCAG~100 or B) rCUG~100, each predicted to form hairpin RNA and C) rCAG~100 and 

rCUG~100 in conjunction, predicted to form perfectly double-stranded RNA. D-E) Expression of either 

rCAG~100 or rCUG~100 alone does not cause disruptions to the eye, while F) co-expression of rCAG~100 

and rCUG~100 in conjunction leads to a disruptive eye phenotype and areas of necrosis. Figures A-C 

reproduced from (341). Figures D-F reproduced from (45). 



33 

 

The experiments in this study focus the role of the innate inflammatory system in driving 

repeat dsRNA-mediated pathology in the previously established rCAG~100.CUG~100 Drosophila 

model (45, 52). This includes investigating how the dsRNA is recognised by pattern 

recognition machinery (Chapter 3) and further examination of innate immune pathways that 

contribute to the dsRNA pathology (Chapter 4). Finally, individual glial cell types are tested 

to determine their non-cell autonomous contribution to the strong dsRNA-mediated 

neuronal dysfunction observed via pan-glial expression of repeat dsRNA (Chapter 5). 

  

Figure 1.9: Graphical representation of findings in the rCAG.CUG dsRNA 

Drosophila eye model of expanded repeat disease. Details referred to in text. 

Experimental observations from (45, 52, 343) (Appendix A). Figure reproduced 

with modifications from (343) (Appendix A). 
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CHAPTER 2: Materials & Methods 

2.1 Materials 

Enzymes 

Power SYBR® Green PCR master mix – Applied Biosystems 

GoTaq® Flexi DNA Polymerase – Promega 

DNAse I – Ambion 

Kits 

RNeasy® mini kit – Qiagen 

Wizard® SV Gel and PCR Clean-Up System – Promega 

High Capacity cDNA Reverse Transcription kit – Applied Biosystems 

Other reagents 

Deoxyribonucleoside triphosphate set (PCR grade) - Promega 

1kb Plus DNA ladder – Invitrogen 

TRIzol™ - Invitrogen 

Oligonucleotides 

All oligonucleotides are standard PCR and were obtained from Sigma-Aldrich unless 

specified. Sequences are present 5’ to 3’. 

General oligos – obtained from Promega 

Random hexamers 

Primers for PCR and sequencing  

UASp-Fwd: GGCAAGGGTCGAGTCGATAG 

UASp-Rev: AGGTTTAACCAGGGGATGCT 
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UASp-Seq-Fwd: CAAGGGTCGAGTCGATAG 

UASp-Seq-Rev: TAACAAGTATGAATGTCAGGTT 

R2D2-Rev: GGACGCAGTAGTCACGCAG 

dADAR-Rev: AGAACTGCGCCATCCTTAAACTG 

hADAR1-Rev: GCCATTGTAATGAACAGGTGGTT 

hADAR2-Rev: CCCACGTAAAAGGGAGGCTC 

Primers for qRT-PCR 

Vago-Fwd: TGCAACTCTGGGAGGATAGC 

Vago-Rev: AATTGCCCTGCGTCAGTTT 

rp49-Fwd: GACGCTTCAAGGGACAGTATCTG 

rp49-Rev: AAACGCGGTTCTGCATGAG 

Nazo-Fwd: GCTGATCGGAGGACTACTGC 

Nazo-Rev: TTGAAATTTCCCTCCGTAAGTC 

STING-Fwd: CCGGTGTCTATCGTCCTTTC 

STING-Rev: CGCTTTAGTTCCTGCATCTG 

CG33926-Fwd: GCGACCGTCATTGGATTGG 

CG33926-Rev: TGATGGTCCCGTTGATAGCC 

Charon-Fwd: TCTCCAATCACGGTAAACAATG 

Charon-Rev: GAACTTTGGTCGGATCTA CTGG 

Drosomycin-Fwd: CGTGAGAACCTTTTCCAATATGATG 

Drosomycin-Rev: TCCCAGGACCACCAGCAT 

The following primers for qRT-PCR were obtained from Geneworks 

Eiger-Fwd: CTGCTCGTGAATGCGATTCAT 

Eiger-Rev: TGCAGTATGCACGATTCCGA 

Buffers and solutions 

Agarose gel loading dye (6X): 30% glycerol, 0.2% (w/v) bromophenol blue, 0.2% (w/v) xylene 

cyanol. 
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TAE buffer: 40mM Tris-acetate, 20mM sodium acetate, 1mM EDTA (pH 8.2). 

Squishing buffer: 10mM Tris-HCl (pH 8.2), 1mM EDTA, 25mM NaCl 

Drosophila media 

Drosophila stocks were maintained on fortified (F1) medium composed of 1% (w/v) agar, 

18.75% compressed yeast, 10% treacle, 10% polenta, 1.5% acid mix (47% propionic acid, 

4.7% orthophosphoric acid) and 2.5% tegosept (10% para-hydroxybenzoate in ethanol). 

Drosophila stocks 

Transgenic repeat lines 

The following recombinant dsRNA lines were used and have been described previously (45, 

341). 

rCAG~100.rCUG~100
S1 - rCUG~100 [H,I]; rCAG~100 [G,I] 

rCAG~100.rCUG~100
S2 - rCAG~100 [A,E]; rCUG~100 [E,F] 

rCAG~100.rCUG~100
M2 - rCAG~100 [J,K]; rCUG~100 [J,G] 

rCAG~100.rCUG~100
M3 - rCAG~100 [J,K]; rCUG~100 [E,F] 

rCAG~100.rCUG~100
W2 - rCUG~100 [D]; rCAG~100 [G] 

Controls 

4xUAS – 4 transgenes containing UAS sites without an insert in the attB system (344) [22A, 

58A, 68E, 96E] 

2xUAS – 2 transgenes containing UAS sites without an insert in the attB system (344) [51C, 

68E] 

UAS – 1 transgene containing UAS sites without an insert in the attB system (344) [51C] 

Stocks obtained from Bloomington Drosophila Stock Centre (BDSC) are denoted with their 

corresponding Bloomington stock number (BL). 
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GAL4 driver lines 

GMR-GAL4 – BL 1104 (345) 

elavII-GAL4 – BL 8765 (346) 

Repo-GAL4 – BL 7415 (347) 

nrv-GAL4 – BL 6799 (348) 

R54C07-GAL4 (referred to as SPG-GAL4) – BL 50472 (349) 

R75H03-GAL4 (referred to as TEG-GAL4) – BL 39908 (349) 

R56F03-GAL4 (referred to as NEG-GAL4) – BL 39157 (349) 

R86E01-GAL4 (referred to as ALG-GAL4) – BL 45914 (349) 

R54H02-GAL4 (referred to as CG-GAL4) – BL 45784 (349) 

Mutant insertion alleles 

upd1YM55 – BL 4767 

upd3d11639 – BL 19355 

drprMI07659 – BL 43909 

McrEY07421 – BL 15997 

ECSITPL00455 – BL 19508 

Over-expression 

UAS-CrPV1A 148 #1 was obtained from Christophe Antoniewski (350) 

UAS-CrPV1A 148 #2 was obtained from Christophe Antoniewski (350) 

UAS-CrPV1A 108 #1 was obtained from Christophe Antoniewski (350) 

UAS-CrPV1A 108 #2 was obtained from Christophe Antoniewski (350) 

PBac(STAT92E-GFP.FLAG) – BL 38670 

UAS-Draper (Isoform I) – BL 67035 (351) 

UAS-Draper (Isoform II) – BL 67036 (351) 

UAS-Draper (Isoform III) – BL 67037 (351) 

UAS-parkin – BL 51651 

UAS-Ref(2)P-GFP – (352) 

RNAi lines 

P(UAS-Stat92E.RNAi)1 – BL 26899 
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The following lines are from the Vienna Drosophila Research Centre (VDRC) collection and 

were obtained from the VDRC stock centre. 

upd1v3282 

upd3v106869 

drprv27086 

Mcrv100197 

PINK1v21860 

PINK1v109614 

parkinv47636 

Ref(2)Pv105338 

ECSITv31287 

ECSITv106141 

2.2 Methods 

DNA manipulation 

Agarose gel electrophoresis 

Gel electrophoresis was performed using 1% agarose in 1xTAE buffer supplemented with 

ethidium bromide (EtBr) at a final concentration of 0.5μg/mL. DNA fragments were 

separated by submerging the gel in a tank containing 1xTAE buffer and applying 100V to the 

tank. DNA fragments were visualised by UV light exposure. 

Gel purification 

DNA bands were excised from agarose gels under UV light and purified using the Wizard® SV 

Gel and PCR Clean-Up System kit according to manufacturer’s instructions (Promega). 

Drosophila genomic DNA preparation 

1 whole adult fly per genotype was frozen on dry ice in a 0.5mL tube. The fly was then 

mashed in 20μL of squishing buffer (see section 2.1) mixed with 5μL 1g/μL Proteinase K (for 

a final concentration of 200μg/mL) for 20-30 seconds before incubation at 55°C for 3 hours. 
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Proteinase K was inactivated via incubation at 95°C for 2 minutes, followed by storage at 

4°C. 

PCR amplification of Drosophila genomic DNA 

PCR amplification was performed using a Bio-Rad DNAEngine Peltier Thermal Cycler. 

Genomic DNA was amplified using GoTaq® Flexi DNA Polymerase reagents with GoTaq® 

Green Reaction Buffer according to the manufacturer’s guidelines (Promega). The cycling 

conditions were 95°C for 2 minutes, then 35 cycles of 95°C for 1 minute, 60°C for 1 minute 

and 72°C for 1 minute, followed by a final 72°C for 5 minutes. 

Drosophila husbandry 

Flies were raised at 18°C or 25°C with 70% humidity on F1 medium. Crosses were performed 

at 25°C unless detailed otherwise. 

RNA purification 

RNA isolation 

30 heads from 1-day old adult female flies were collected per genotype for RNA extractions. 

The heads were snap frozen in liquid nitrogen and stored at -80°C. The tissue samples were 

homogenised in 1mL TRIzol™ with a plastic pestle and further homogenised with a 20-gauge 

needle. The homogenate was then pelleted by spinning at 13000 rpm for 10 minutes at 4°C. 

The resulting supernatant was transferred to fresh RNAse free tubes and 200μL chloroform 

was added and mixed via shaking vigorously. The samples were then spun at 13000 rpm for 

15 minutes at 4°C and the upper aqueous phase was transferred to fresh RNAse free tubes. 

An equal volume of 100% ethanol was added to the sample and mixed briefly via vortexing. 

The sample mixtures were then loaded into RNeasy® columns and the remaining purification 

steps were carried out according to the instructions of the Rneasy® mini kit. The RNA was 

eluted in 30μL Nuclease-Free water and stored at -80°C until further use. 
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Quantitative real-time PCR (qRT-PCR) 

Reverse transcription 

800ng of RNA was DNAse treated using DNAse I according to the manufacturer’s instructions 

(Ambion) and then reverse transcribed using the High Capacity cDNA Reverse Transcription 

kit to produce cDNA according to manufacturer’s instructions (Applied Biosystems). Reverse 

transcription reactions were performed at 25°C for 10 minutes, 37°C for 2 hours and then 

85°C for 5 minutes.  

qRT-PCR reactions 

Reverse transcription reactions were diluted 1/5 in Nuclease-free water and 2μL was used as 

the template in a final reaction volume of 10μL. Triplicate reactions were performed for 

each template with 1.26pmol of each primer together with 1X Power SYBR® Green PCR 

master mix in a QuantStudio 7 Flex Real-Time PCR System (Applied Biosystems). The cycling 

conditions were 95°C for 10 minutes followed by 40 cycles of 95°C for 15 seconds and 60°C 

for 1 minute. A standard curve was generated for each primer pair by including serial 

dilutions from cDNA (neat, 1/2, 1/5, 1/10). A dissociation curve was produced for each 

primer pair to confirm that a single product was amplified in each reaction. The relative 

amount of cDNA was quantified using the relative standard curve method and the results 

were subsequently exported to Microsoft Excel. The quantity of amplified cDNA product for 

each primer pair was normalised against the quantity of cDNA produced with primers for 

the housekeeping gene Ribosomal protein 49 (Rp49) for the corresponding sample. 

Rapid Iterative Negative Geotaxis (RING) assay 

0-1 day old adult male flies were collected in sets of between 10-20 flies and allowed to 

recover from anaesthesia overnight at 25°C. A minimum of 40 flies were collected per 

genotype when possible. Flies were transferred to standard vials and into the RING 

apparatus as described in Gargano et al., (353). The apparatus was tapped several times to 

transfer the flies to the bottom of the tube, and then imaged after 5 seconds (Google Pixel 

camera). Experimental flies and their appropriate control were imaged side-by-side. Five 

consecutive trials were performed per set of flies per timepoint, with the flies allowed to 
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recover for 1 minute between each trial. The images were then transferred into the Fiji Is 

Just ImageJ (FIJI) image analysis program and a line was drawn to represent the halfway 

mark of each vial. Flies were then scored as either “successful” if they passed the halfway 

mark, or “unsuccessful” if they failed to pass the halfway mark. The percentage of 

“successful” flies per trial was recorded as “% climbing ability”. The “% climbing ability” for 

each trial formed a single data point, with the total number of trials for each genotype 

plotted as a scatter graph displaying the average mean and standard deviation using 

GraphPad Prism 7. The average “% climbing ability” was then calculated for each genotype 

and compared to appropriate age-matched controls. When comparing two datasets, a 2-

tailed Student’s t-test was performed to determine significance, while a one-way ANOVA 

and Dunnett’s test were performed to determine significance when comparing more than 

two datasets. The significance threshold was set at p<0.05. The same sets of flies were aged 

by transferring to fresh food every 2-3 days. RING assays were performed at timepoints of 1, 

8 and 15 days of age. Set of flies that fell below 10 individuals during ageing were omitted 

from further analysis. 

Survival assay 

The same flies analysed in RING assays were also assayed for their survival, with the number 

of individuals per genotype recorded per week at 1, 8, 15, 22 and 29 days of age. The 

number of individuals counted at 1 day of age was designated as 100% survival for each 

genotype, and subsequent counts were divided by this total count to represent the 

percentage of individuals remaining.  

Eye photography 

Eyes of at least 20 one day old female flies were viewed per genotype if possible, with 3 

representative eyes photographed per genotype. Eyes were imaged using an Olympus SZX7 

microscope fitted with an SZX-AS aperture along with an Olympus ColourView IIIU Soft 

Imaging System and ToupView image acquisition software. Adobe Photoshop CS was used 

for image preparation. Anterior is to the left in all presented images.   
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CHAPTER 3: ‘Non-self’ recognition of repeat dsRNA 

The innate immune system acts as a protective first-line defence against invading pathogens 

and other ‘non-self’ material. Pattern recognition receptors (PRRs) act as sensors of a wide 

range of ‘non-self’ stimuli, including conserved structures on bacteria and viruses, as well as 

endogenous molecules released under conditions of stress/injury that constitute danger 

signals (69). Detection of a threat is followed by the induction of an inflammatory response, 

resulting in removal of the offending molecules through degradation and/or cell death 

signalling (354). However, persistence of the threat through genetic or environmental 

disruption of inflammatory pathways can lead to elevated cell death and tissue damage. 

Indeed, genetic lesions in a number of genes involved in inflammatory processes have been 

identified as causal or risk factors in neurodegenerative disease (68). Additionally, elevated 

cytokine levels are consistently observed in Huntington’s Disease (HD) gene carriers and 

precede the onset of clinical symptoms (58, 59), indicating that inflammation likely 

represents a proximal causal factor rather than consequence of disease pathology. 

The relative conservation of mammalian and fly innate immune pathways allows the use of 

Drosophila to genetically dissect the role of inflammation under conditions of homeostasis 

and disease (318, 355). Previous work in the Drosophila eye tissue model of dsRNA-

mediated pathology utilized here has demonstrated the requirement for inflammation in 

the development of pathology, including the activity of the Toll-like receptor (TLR) innate 

immune pathway (52) and Dicer-2, which shares homology with the RIG-I-like receptor (RLR) 

family of antiviral RNA sensors in vertebrates (45). Additionally, expression of the repeat 

dsRNA induced upregulation of the antimicrobial peptide Drosomycin and the potent 

cytokine/cell death Eiger, the orthologue of mammalian TNF (52). Taken together, this 

evidence led to the hypothesis that repeat dsRNA is recognized as a ‘non-self’ molecule by 

the innate immune system, thus provoking a damaging cascade of inflammatory signalling 

that manifests as pathology (4, 52). 

Dicer-2 plays a key role in the invertebrate RNA interference (RNAi) pathway; where it acts 

to detect viral dsRNA products and process them into 21-nucleotide small-interfering RNAs 

(siRNAs) (356, 357). The processing step also involves the essential co-factor R2D2, which 
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forms a complex with Dicer-2 to interact with RNA duplexes (358, 359). Following 

processing, the siRNAs are loaded into the Argonaute-2 (Ago2) mediated RNA-induced 

silencing complex (RISC), where it cleaves the siRNA and utilizes the guide strand to locate 

complementary viral mRNA in order to facilitate their subsequent silencing and/or 

degradation (360-362). Indeed, Ago2 also contributes to the pathology observed in the 

repeat dsRNA eye pathology, though not to the extent of Dicer-2 (341). Intriguingly 

however, over-expression of R2D2 was demonstrated to potently suppress the repeat 

dsRNA pathology while loss-of-function mutations enhanced the pathology (343) (Appendix 

A). These findings led to the hypothesis that the RNAi pathway may not drive dsRNA 

pathogenesis, but in fact act as a competing pathway to restrict the influence of the repeat 

dsRNA. 

Notably, Dicer-2 also displays potent antiviral activity independently of the RNAi pathway; 

Drosophila C virus (DCV) infection leads to Dicer-2 dependent upregulation of the antiviral 

peptide Vago and the control of viral load through an unknown signal transduction pathway 

(53). Both Ago2 and R2D2 were dispensable for the pathway, thus uncoupling Dicer-2 from 

its previously established role in RNAi processing (53). Though not strictly independent of 

the RNAi pathway, Dicer-2 also regulates the production of reverse-transcribed viral DNA 

(vDNA) that serves to amplify the antiviral response in a manner distinct from siRNA 

production but dependent upon Ago2 (363). Taken together, Dicer-2 (and Ago2 to an 

extent) play important roles in a number of antiviral mechanisms, and these functions can 

be either helpful or harmful depending upon stimuli context. 

Indeed, RNAi machinery displays a high level of adaptive evolution across a number of 

invertebrate species (364), highlighting the importance and considerable selection pressure 

placed upon antiviral genes. However, viruses themselves also display adaptation to the 

antiviral defence system in Drosophila as part of the ongoing arms race waged between host 

and virus. A number of insect viruses encode viral suppressors of RNAi silencing (VSRs) that 

allow them to inhibit RNAi machinery in order to maximise their replication and spread (50). 

Interestingly, VSRs display diversity in the steps at which they inhibit the RNAi pathway; 

Drosophila C virus encodes a VSR (DCV-1A) containing a dsRNA binding domain that allows it 

to block Dicer-2 from cleaving viral dsRNA (350), while the cricket paralysis virus (CrPV) 
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encodes CrPV1A, a VSR that interacts with Ago2 to prevent its endonuclease activity 

downstream of siRNA production (350). Additionally, CrPV1A can also promote the 

ubiquitination of Ago2, leading to its degradation through an E3-ubiquitin ligase complex 

(365). Finally, CrPV1A can inhibit host transcription and disrupt the assembly of RNA stress 

granules independently of its RNAi silencing function, demonstrating that CrPV1A acts to 

silence multiple antiviral pathways upon infection (366). Indeed, CrPV1A may also act to 

suppress other uncharacterised antiviral mechanisms based on its diverse range of 

interactions with host machinery. 

The RNAi pathway acts to promote degradation of viral material, thus promoting cell 

survival. However, focal cell death is also a critical factor in antiviral defence, serving as a 

potent means to restrict the spreading of a virus (and indeed all pathogens) to adjacent 

uninfected cells (367). When dsRNA arises endogenously, RNA-editing enzymes act to 

catalyse the conversion of these repeat sequences to molecules that are recognized as ‘self’ 

by pattern recognition machinery. In vertebrates, ADAR1 converts adenosine (A) to inosine 

(I) in endogenous dsRNA molecules including Alu RNA repeats, masking their presence to 

dsRNA sensor MDA5 (encoded by IFIH1) and thus preventing inflammation and cell death 

(152, 156, 368, 369). Loss of editing or increased receptor sensitivity (through mutations in 

ADAR1 and IFIH1 respectively) are both proximal causes of the auto-inflammatory disease 

Aicardi-Goutieres Syndrome (AGS) (154, 155), highlighting the importance of ‘non-self’ to 

‘self’ conversion as a regulatory mechanism. In line with this, ectopic expression of human 

ADAR1 rescues repeat dsRNA-mediated eye pathology in Drosophila (343) (Appendix A). The 

bi-directionally transcribed CAG.CUG repeat used in this model provides an ideal target for 

human ADAR1, which preferentially edits repetitive RNA sequences (370). Thus, masking the 

dsRNA through A-to-I conversion (CAG-to-CIG) appears to prevent its detection by 

Drosophila inflammatory machinery. 

Therefore, several of lines of evidence point towards repeat dsRNA acting as a ligand to 

drive antiviral inflammation in Drosophila. The work described in this chapter further 

investigates the hypothesis that expanded repeat dsRNA is recognized by host antiviral 

pathways as a ‘non-self’ or viral-like molecule, thus leading to a damaging inflammatory 

response that is responsible for the observed pathology. 
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3.2 The viral suppressor protein CrPV1A rescues repeat dsRNA-mediated 

pathology 

The cricket paralysis virus (CrPV) infects a broad range of insect species (371) and causes 

lethality in Drosophila (372). In order to avoid antiviral silencing through the RNAi pathway, 

the virus encodes the CrPV1A protein, a potent viral suppressor that targets and inhibits the 

activity of the Ago2 protein; both through a direct interaction that blocks the Ago2 

endonuclease function (350) and the recruitment of ubiquitination machinery to degrade 

Ago2 (365). In this manner, CrPV1A blocks Ago2 activity downstream of the Dicer-2/R2D2 

processing complex, and thus does not affect the cleavage of viral dsRNA into siRNAs (350). 

The requirement for both Dicer-2 and Ago2 in repeat dsRNA eye pathology has led to the 

suggestion that inflammatory signalling stemming from viral-like recognition of the repeats 

is a key driver of the cellular dysfunction (45, 341). In order to further pursue this 

hypothesis, the CrPV1A viral suppressor was ectopically expressed in conjunction with the 

repeat dsRNA specifically within the Drosophila eye using the GMR-GAL4 driver. For this 

purpose, two distinct forms of CrPV1A were examined; the full-length (148 amino acid) 

protein is an efficient silencer of Ago2 (350), whereas the truncated (108 amino acid) protein 

lacks key residues that facilitate interactions with Ago2 and is thus unable to interfere with 

antiviral signalling (350, 365). The identities of the CrPV1A full-length and mutant constructs 

were confirmed through sequencing of one each of the full-length and mutant lines 

obtained (343) (Appendix A). 

Ectopic expression of two independent full-length CrPV1A constructs alone did not cause 

disruptions to the eye (Figure 3.1 B & C) and a similar lack of phenotype was observed with 

each of two independent truncated CrPV1A mutant constructs (Figure 3.1 D & E). As 

previously established, expression of repeat dsRNA within the eye caused loss of 

pigmentation and structural patterning as well as the development of black necrotic spots 

on the posterior side of the eye (Figure 3.1 A'). Strikingly however, co-expression of the 

dsRNA with full length CrPV1A completely rescued all aspects of the dsRNA-mediated 

pathology in both lines (Figure 3.1 B’ & C’), indicating that CrPV1A-mediated antagonism of 

the antiviral response may mask the repeat dsRNA from RNA pattern recognition machinery. 
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Furthermore, both truncated mutant constructs failed to rescue the dsRNA pathology 

(Figure 3.1 D’ & E’), thus demonstrating the requirement of CrPV1A-mediated antiviral 

silencing activity for the suppression. 

The ability of the CrPV1A viral suppressor protein to completely rescue the phenotype 

supports the hypothesis that expanded repeat dsRNA is recognized as ‘non-self’ in a manner 

similar to viral material. Since CrPV1A does not inhibit dsRNA processing but rather the 

catalytic activity of Ago2 (350, 365), and that the canonical RNAi pathway appears to act as a 

competing pathway in restricting the dsRNA pathology (343) (Appendix A), it is plausible 

Figure 3.1: Ectopic expression of CrPV1A completely rescues dsRNA-mediated pathology. In each 

case the GMR-GAL4 driver is used to express the constructs in the eye. A) Expression of a single UAS 

transgene with no insert as a control eye. B-C) Expression of two independent full-length (FL) UAS-

CrPV1A constructs alone. D-E) Expression of two independent truncated UAS-CrPV1A mutant 

constructs alone. A’) Co-expression of repeat dsRNA together with a single UAS transgene. B’-C’) Co-

expression of repeat dsRNA together with two independent full-length (FL) UAS-CrPV1A constructs. 

D’-E’) Co-expression of repeat dsRNA together with two independent truncated UAS-CrPV1A mutant 

constructs. The full length CrPV1A encodes a 148 amino acid long protein. The truncated CrPV1A 

encodes a 108 amino acid long protein. The experiment was performed at 25°C using the 

CAG.CUG~100
M3 dsRNA line. 
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that Dicer-2 and Ago2 act together in a manner distinct from their roles in RNAi to drive 

inflammation (Figure 3.2). Indeed, Drosophila Dicer-2 is related to RIG-I-like receptors RIG-I 

and IFIH1 (MDA5) through shared homology in their DExD/H helicase domains (55). The 

helicase domain is critical for the observed RNAi-independent antiviral functions of Dicer-2, 

including Vago induction (53) and viral DNA (vDNA)-mediated amplification of antiviral 

activity (363). Ago2 is not required for Vago induction (53) but is essential for vDNA 

production (363), suggesting that this pathway may represent another target of the CrPV1A 

protein.  

Figure 3.2: Summary diagram regarding CrPV1A-mediated suppression of expanded repeat dsRNA 

eye pathology. While RNAi components Dicer-2 and Ago2 are required for the dsRNA pathology 

(red), key RNAi binding cofactor R2D2 acts to suppress the pathology (green), suggesting that the 

RNAi antiviral mechanism constitutes a protective pathway in response to expression of repeat 

dsRNA. Thus, Dicer-2 appears to act in its established role as an RNA sensor, likely together with 

Ago2, to drive the dsRNA eye pathology through an antiviral cell death mechanism. CrPV1A 

antagonizes Ago2 to block the RNAi pathway, but also appears to ablate the antiviral inflammatory 

mechanism underlying the dsRNA eye pathology. 
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3.3 Transcript analysis of the inflammatory response to expanded repeat 

dsRNA 

Previous work has demonstrated that the inflammatory response is not only required for the 

repeat dsRNA pathology but is also triggered by the presence of the ‘non-self’ dsRNA itself 

(45, 52). Thus, qRT-PCR was performed to investigate A) if components of other 

inflammatory pathways are upregulated in response to repeat dsRNA, and B) whether co-

expression of CrPV1A can ablate any observed induction, thus indicating potential targets 

for further investigation. The elavII-GAL4 driver was utilized to express the relevant 

constructs in all neuronal cells, where the expression of repeat dsRNA causes age-

dependent neurodegeneration (45). Neuronal tissue samples were taken from one day old 

flies in order to maintain a temporal window consistent with previous transcript analysis 

(52). Additionally, as the neurodegeneration observed in elavII>dsRNA flies is age-

dependent (45), this timepoint minimises both the possibility of transcript loss due to 

dead/dying cells within the CNS and the dilution of altered RNA levels by transcripts from 

unaffected (in this case non-elavII expressing) cells in within the sample tissue (Drosophila 

heads). 

An important final note; lack of significant alteration to gene expression in response to the 

repeat dsRNA does not rule out the given gene in participating in the dsRNA pathology. 

Modest or even no change in transcript levels may be adequate to surpass a functional 

threshold and thus contribute to the pathology. In addition, post-transcriptional/post-

translational regulation of components are both common features in innate immune 

signalling pathways (373, 374), both of which will not be reflected in this analysis. 

Nevertheless, qRT-PCR can provide an effective insight into dsRNA-triggered pathway 

activation via the transcription of downstream response genes. 

Drosomycin is an antimicrobial peptide (AMP) synthesised as a result of signalling from the 

Toll inflammatory pathway (375) and has previously been shown to be upregulated in the 

presence of repeat dsRNA (52). Therefore, Drosomycin transcript levels were analysed to 

confirm the upregulation and to determine if co-expression of CrPV1A blocks this response. 

Indeed, Drosomycin was significantly upregulated in elavII>dsRNA flies (Figure 3.3). 
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Introduction of CrPV1A did not significantly suppress Drosomycin upregulation when 

compared to elavII>dsRNA, though a small trend was observed (Figure 3.3). Thus, 

Drosomycin induction (and Toll pathway activity) is clearly observable in response to dsRNA 

expression but does not appear to be a target of the CrPV1A viral suppressor. 

Overexpression of Drosomycin alone (or indeed several other AMPs alone) in neurons or glia 

leads to age-dependent neurodegeneration in flies, indicating that AMPs can become 

neurotoxic at high levels (376). The flies used in this qRT-PCR analysis were newly-eclosed, 

and thus it is likely that Drosomycin does not accumulate at the level required for 

neurotoxicity at the early time point tested in this study. The Drosophila Toll pathway is 

canonically triggered after detection of gram-positive bacteria and fungi as opposed to viral 

RNA intermediates (377), though Toll pathway mutants exhibit increased susceptibility to 

Drosophila X virus (DXV) (378) and oral infection of Drosophila C virus (DCV) (379). In 

addition, recent evidence has demonstrated that Dicer-2 can bind Toll directly and drive 

induction of Drosomycin upon microbial challenge (54), thus providing a plausible 

explanation for the Drosomycin upregulation observed here. Alternatively (though 

potentially not mutually exclusive), the upregulation of Drosomycin may represent a non-cell 

Figure 3.3: The antimicrobial peptide Drosomycin is significantly 

upregulated in response to repeat dsRNA. In each case 

expression is driven in all neuronal cells using the elavII-GAL4 

driver. Expression of repeat dsRNA alone leads to a significant 

upregulation of Drosomycin compared to the UAS empty 

transgene control (p=0.0077), as did co-expression of repeat 

dsRNA and CrPV1A compared to the control (p=0.0360). Co-

expression of CrPV1A with repeat dsRNA does not significantly 

suppress the induction of Drosomycin compared to repeat dsRNA 

expression alone (p=0.4240). Depicted for each dataset are the 

mean and standard error of the mean (SEM). 2-tailed Student’s t-

tests were used to determine significance; ** p<0.01, * p<0.05, 

ns p>0.05. Expression levels are normalized to the housekeeping 

gene Rp49. Each dataset represents 3 biological replicates plated 

in triplicate. The experiment was performed using the 

CAG.CUG~100
S1 dsRNA and CrPV1A FL #1 lines. 
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autonomous Toll-mediated response to damage/danger associated molecular patterns 

(DAMPs) and other trigger molecules, released from cells that are damaged/killed by the 

focal dsRNA-induced inflammatory response. 

Given the likely role of cell death signalling in dsRNA pathology, the expression level of 

potent cytokine and cell death signalling molecule Eiger was also investigated. Eiger is the 

sole Drosophila orthologue of tumour necrosis factor (TNF), a subject of intensive research 

for its key roles in inflammation and programmed cell death (380). Indeed, these key roles 

are conserved through to Eiger, which interacts with its receptors Wengen and Grindelwald 

(orthologues of mammalian TNF receptors) to activate the c-Jun N-terminal kinase (JNK) 

pathway-dependent cell death (381-383). While Eiger mutants are rendered susceptible to 

pathogen challenge and tumour progression (384, 385), overexpression of Eiger leads to 

developmental defects through heightened cell death signalling (381, 383). Elevated levels 

of mammalian TNF is a constantly observed feature in neurodegenerative disease (386, 

387), and in pre-symptomatic HD disease gene carriers (58, 59). Finally, upregulation of Eiger 

transcript levels has previously been observed in the repeat dsRNA model used in this study 

(52). Therefore, Eiger transcript levels were assessed to determine if CrPV1A-driven 

antagonism of the antiviral response affects Eiger induction. 

Eiger was not significantly altered in elavII>dsRNA flies, while also remaining unchanged 

when CrPV1A was co-expressed with the dsRNA (Figure 3.4). Given the potent cell death 

signalling initiated through Eiger, this lack of alteration may represent the possibility that 

the cells containing elevated Eiger are undergoing cell death and thus losing Eiger signal. 

Indeed, Eiger is a highly pleiotropic inflammatory cytokine with a number of physiological 

roles (388). As such, the focus was shifted to investigate inducible antiviral pathways, which 

are more likely to respond to the presence of dsRNA given its ‘non-self’/viral recognition 

through Dicer-2. The RNAi response is an important mechanism for combating viral 

infection, achieving this via the production of siRNAs as opposed to inducing the expression 

of antiviral peptides (389). However, aside from the RNAi response, the inducible Drosophila 

antiviral response remains poorly understood (390). Thus, peptides that are synthesised 

through the Drosophila antiviral response were investigated as readouts of antiviral pathway 

activity. Recent work has demonstrated that the RNAi response confers resistance to a 
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broad range of viruses, while antiviral activity through the evolutionarily conserved JAK-STAT 

pathway is restricted to viruses from the Dicistoviridae family; DCV and CrPV (391). 

Additionally, Dicer-2 can respond to DCV independently of its role in RNAi in order to 

upregulate the antiviral peptide Vago and control infection (53), a process that is 

evolutionarily conserved in the mosquito Culex quinquefasciatus (392). Finally, recent 

evidence has uncovered co-operation between IMD pathway components Relish and dIKKβ 

with the Drosophila STING orthologue to induce the expression of a battery of antiviral 

response genes in response to DCV and CrPV (393). This included the novel antiviral peptide 

Nazo, which strongly attenuates DCV and CrPV infection when overexpressed (393).  

To determine whether the antiviral pathways regulating Vago and Nazo are active in 

response to the presence of repeat dsRNA, the expression levels of both antiviral peptides 

were analysed through qRT-PCR. Neither Vago nor Nazo were significantly altered in 

response to expression of repeat dsRNA, while co-expression of CrPV1A with the dsRNA also 

did not affect expression levels of the antiviral peptides (Figure 3.5 A & B). Given that 

expression of either Vago or Nazo is not elevated in response to repeat dsRNA, any potential 

antagonism of the antiviral response through CrPV1A is likely masked. Based on the 

Figure 3.4: Drosophila TNF orthologue Eiger is not 

significantly altered in response to repeat dsRNA. In each 

case expression is driven in all neuronal cells using the 

elavII-GAL4 driver. Eiger transcript levels were not 

significantly impacted by the presence of repeat dsRNA 

alone (p=0.2807) or through co-expression of CrPV1A and 

the dsRNA (p=0.6927) when compared to the UAS empty 

transgene control. Eiger levels were not significantly 

different between dsRNA alone and together with CrPV1A 

(p=0.4057). Depicted for each dataset are the mean and 

standard error of the mean (SEM). 2-tailed Student’s t-tests 

were used to determine significance; ns p>0.05. Expression 

levels are normalized to the housekeeping gene Rp49. Each 

dataset represents 3 biological replicates plated in triplicate. 

The experiment was performed using the CAG.CUG~100
S1 

dsRNA and CrPV1A FL #1 lines. 
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observation that Ago2 is dispensable for the induction of Vago (53), it is unlikely that CrPV1A 

targets this pathway, though this cannot be completely ruled out. Nazo is upregulated 

following CrPV infection (393), though whether CrPV1A targets this pathway is also 

unknown. However, since Ago2 was shown to be dispensable for Nazo induction, the 

authors hypothesised that this novel pathway may constitute an additional layer of antiviral 

defence independent of DCV/CrPV-derived VSRs (393). 

Figure 3.5: Expression levels of the antiviral peptides Vago and Nazo are not significantly 

altered in response to repeat dsRNA. In each case expression is driven in all neuronal cells using 

the elavII-GAL4 driver. A) Vago transcript levels were not significantly impacted by the presence 

of repeat dsRNA alone (p=0.4843) or through co-expression of CrPV1A and the dsRNA 

(p=0.3030) when compared to the UAS empty transgene control. Vago levels were not 

significantly different between dsRNA alone and together with CrPV1A (p=0.9008). B) Nazo 

transcript levels were not significantly impacted by the presence of repeat dsRNA alone 

(p=0.8324) or through co-expression of CrPV1A and the dsRNA (p=0.9225) when compared to 

the UAS empty transgene control. Nazo levels were not significantly different between dsRNA 

alone and together with CrPV1A (p=0.8769). Depicted for each dataset are the mean and 

standard error of the mean (SEM). 2-tailed Student’s t-tests were used to determine 

significance; ns p>0.05. Expression levels are normalized to the housekeeping gene Rp49. Each 

dataset represents 3 biological replicates plated in triplicate. The experiments were performed 

using the CAG.CUG~100
S1 dsRNA and CrPV1A FL #1 lines. 

A B 
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The observation that expression of dsRNA does not induce Vago suggests that the role of 

Dicer-2 in regulating this pathway is independent of the mechanism(s) responsible for the 

pathology. Indeed, knowledge of the pathway from Dicer-2 to Vago remains limited, 

including whether other antiviral peptides are induced through this mechanism. Thus, 

identification of the essential participants in this pathway (both interactors and induced 

genes) is required before a definitive assessment of its role in mediating dsRNA pathology 

can be undertaken. Nazo has only recently been characterised as antiviral effector molecule 

that controls CrPV replication (393), and as such the antiviral mode of action of Nazo 

remains unknown. Regardless, it would be of interest to determine if Nazo can modify the 

dsRNA eye phenotype, given that its overexpression potently restricts both DCV and CrPV 

replication (393). 

In addition to Nazo, nine other transcripts were also induced via the STING/Relish/dIKKβ-

dependent antiviral pathway in response to DCV in both flies and Drosophila S2 cells, 

including a number of uncharacterised genes (Figure 3.6) (393). One of these, CG33926, was 

induced potently by all three of Relish, STING and dIKKβ (393). Given its strong induction 

following DCV infection, CG33926 was investigated in the context of repeat dsRNA 

Figure 3.6: The STING/Relish/dIKKβ-mediated antiviral 

pathway in Drosophila. Current pathway proposed from 

experimental data obtained by Goto et al. Drosophila C 

virus (DCV) is detected by an unknown viral sensor(s), 

leading to downstream signalling through STING, dIKKβ 

and NF-κB transcription factor Relish. Relish (possibly in 

conjunction with other transcription factors) then 

induces the expression of a range of antiviral effector 

genes including STING itself, Nazo, Charon and the 

uncharacterised CG33926. The regulatory protein Kenny 

(dIKKγ) inhibits this antiviral signalling pathway, 

potentially through its role in mediating autophagic 

degradation of the IKK complex. Genes in this pathway 

tested via qRT-PCR in this study are STING, Relish, Nazo, 

Charon and CG33926. Figure adapted from (393). 
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expression. Expression of the dsRNA alone led to a striking reduction in CG33926 expression 

when compared to the UAS control, a finding also observed when CrPV1A was co-expressed 

with the dsRNA (Figure 3.7). No significant difference was observed when comparing 

elavII>dsRNA and elavII>dsRNA/CrPV1A flies (Figure 3.7). Therefore, the expression of 

repeat dsRNA appears to potently inhibit the induction of CG33926. 

Unfortunately, the lack of information regarding CG33926 function limits the interpretation 

of this result. Indeed, RNAi knockdown of CG33926 promotes DCV replication, but not to the 

magnitude achieved via knockdown of dIKKβ, Relish, STING or Nazo (393), and thus it 

potentially shares functional redundancy with other genes that were also induced. Of note, 

CG33926 is also upregulated following infection from the DNA virus Kallithea virus (394), 

further strengthening its proposed role as an antiviral effector. Interesting however, is that 

the presence of dsRNA inhibits CG33926 expression as opposed to triggering its induction 

(Figure 3.7). One plausible explanation is that expression of the dsRNA triggers the 

upregulation of Kenny (also known as dIKKγ), a regulatory protein that promotes autophagic 

degradation of the IκB signalling complex to prevent constitutive IMD pathway activity 

(395). In support of this, Kenny restricts the expression of CG33926 (in addition to Nazo and 

Figure 3.7: Expression of CG33926 is significantly 

downregulated in response to repeat dsRNA. In each 

case expression is driven in all neuronal cells using the 

elavII-GAL4 driver. CG33926 transcript levels were 

significantly reduced in the presence of repeat dsRNA 

alone (p=0.0099) and through co-expression of CrPV1A 

and the dsRNA (p=0.0126) when compared to the UAS 

empty transgene control. CG33926 levels were not 

significantly different between dsRNA alone and 

together with CrPV1A (p=0.6087). Depicted for each 

dataset are the mean and standard error of the mean 

(SEM). 2-tailed Student’s t-tests were used to determine 

significance; ** p<0.01, * p<0.05, ns p>0.05. Expression 

levels are normalized to the housekeeping gene Rp49. 

Each dataset represents 3 biological replicates plated in 

triplicate. The experiment was performed using the 

CAG.CUG~100
S1 dsRNA and CrPV1A FL #1 lines. 
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STING) following DCV infection, likely through inhibition of the STING/Relish/dIKKβ signalling 

pathway (393). 

This raises the question as to why Kenny downregulates CG33926 but not Nazo in response 

to repeat dsRNA, given that both genes appear to rely on dIKKβ signalling for induction 

(393). It is plausible that this reflects the tailoring of antiviral gene transcription in a threat-

specific manner; the set of antiviral genes induced through challenge with DCV is likely to 

display both overlap and distinct differences with the corresponding set upregulated in 

response to repeat dsRNA. As such, it would be of interest to determine which of the 10 

elevated transcripts identified in Goto et al., as DCV-responsive are also induced following 

expression of repeat dsRNA. Indeed, CG33926 was induced following DCV infection (393) 

but strongly repressed in response to the dsRNA (Figure 3.7), which serves to highlight the 

complexity of the Drosophila antiviral response. 

Among the other candidates, the IκB gene Charon is one of the few that has been previously 

characterised (393). Charon (also known as Pickle) is vital for Relish-dependent transcription 

of antimicrobial genes (396), but also inhibits the formation of Relish-Relish homodimers to 

prevent aberrant IMD signalling following pathogenic challenge (397). Interestingly, 

neurodegeneration in a Drosophila model of Ataxia-Telangiectasia (A-T) is dependent upon 

Relish-mediated transcription of innate immune genes (311), and as such regulation of 

Relish by Charon may be vital in the context of neurodegenerative disease. Thus, expression 

levels of Charon were assessed in the presence of dsRNA. 

Expression of repeat dsRNA led to a reduction in Charon transcript levels when compared to 

the UAS control, though this was not significant (Figure 3.8). Indeed, a similar decrease in 

Charon was observed compared to the control when CrPV1A was co-expressed with the 

dsRNA, though again significance was not reached (Figure 3.8). Finally, levels of Charon were 

almost identical between elavII>dsRNA and elavII>dsRNA/CrPV1A flies (Figure 3.8). Given 

the trend observed, it would be of interest to gain a greater sample size to determine 

whether or not the reduction is a true biological effect as opposed to variation between 

samples. 



57 

 

Like CG33926, Charon is also negatively regulated by Kenny (dIKKγ) (393). Under 

homeostatic conditions, Kenny is selectively targeted to autophagosomes for degradation, 

whereas in response to commensal bacteria it interacts with dIKKβ and instead targets the 

IKK signalling complex for degradation, thus terminating the immune response (395). As 

such, a possible scenario to explain CG33926 and Charon downregulation is that expression 

of repeat dsRNA induces Kenny, which then acts to negatively regulate dIKKβ-dependent 

signalling through degradation of the IKK complex. Co-expression of CrPV1A with the dsRNA 

failed to restore both CG33926 and Charon levels to that of the corresponding UAS controls 

(Figures 3.7 & 3.8), providing evidence that CrPV1A does not target Kenny. In line with this, 

RNAi knockdown of Kenny attenuates viral replication (393), and thus targeting it would be 

detrimental to the virus. In line with this, the transcript levels of two of the core regulators 

of this novel antiviral pathway, STING and Relish, were also monitored in response to the 

repeat dsRNA. 

The innate immune effector STING was first discovered in mammals as a potent regulator of 

type-I interferon (IFN) production in response to DNA-based pathogens (398, 399). Only 

recently has a conserved invertebrate STING orthologue been uncovered; responding to 

Figure 3.8: Expression of IκB gene Charon is not 

significantly altered in response to repeat dsRNA. In each 

case expression is driven in all neuronal cells using the 

elavII-GAL4 driver. Charon transcript levels were not 

significantly impacted by the presence of repeat dsRNA 

alone (p=0.1923) or through co-expression of CrPV1A and 

the dsRNA (p=0.090) when compared to the UAS empty 

transgene control. Charon levels were not significantly 

different between dsRNA alone and together with CrPV1A 

(p=0.8462). Depicted for each dataset are the mean and 

standard error of the mean (SEM). 2-tailed Student’s t-tests 

were used to determine significance; ns p>0.05. Expression 

levels are normalized to the housekeeping gene Rp49. Each 

dataset represents 3 biological replicates plated in 

triplicate. The experiment was performed using the 

CAG.CUG~100
S1 dsRNA and CrPV1A FL #1 lines. 
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both microbial (323) and viral pathogens (322, 393). In Drosophila, STING appears to 

function as an upstream regulator of the NF-κB transcription factor Relish and thus the IMD 

arm of the innate immune response (323, 393). However, in response to Zika virus infection 

these roles are reversed; Relish induces the expression of STING, which subsequently 

promotes autophagy-mediated restriction of the virus (322). Indeed, knowledge regarding 

the functionality of the invertebrate STING is still in its infancy, whether it directly senses 

viral nucleic acids or requires an upstream PRR is a topic that warrants further study. 

Nevertheless, STING is vital for controlling the RNA-based viruses DCV and CrPV (393), and 

therefore was examined via qRT-PCR to determine whether it responds to repeat dsRNA. 

STING expression was not induced following expression of dsRNA or co-expression with 

CrPV1A when compared to the UAS control (Figure 3.9). Additionally, co-expression of 

CrPV1A and dsRNA also did not alter STING levels compared to dsRNA alone, suggesting that 

CrPV1A does not antagonize STING upon infection (Figure 3.9). Taken together, these 

findings suggest that STING does not participate in the response to repeat dsRNA. 

Notably, Ago2 is dispensable for the STING/dIKKβ/Relish-mediated induction of antiviral 

genes (393), suggesting that this pathway is independent of RNAi and thus not a known 

Figure 3.9: Antiviral effector molecule STING is not 

significantly altered in response to repeat dsRNA. In each 

case expression is driven in all neuronal cells using the 

elavII-GAL4 driver. STING transcript levels were not 

significantly impacted by the presence of repeat dsRNA 

alone (p=0.5771) or through co-expression of CrPV1A and 

the dsRNA (p=0.5738) when compared to the UAS empty 

transgene control. STING levels were not significantly 

different between dsRNA alone and together with CrPV1A 

(p=0.9398). Depicted for each dataset are the mean and 

standard error of the mean (SEM). 2-tailed Student’s t-

tests were used to determine significance; ns p>0.05. 

Expression levels are normalized to the housekeeping 

gene Rp49. Each dataset represents 3 biological replicates 

plated in triplicate. The experiment was performed using 

the CAG.CUG~100
S1 dsRNA and CrPV1A FL #1 lines. 
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CrPV1A target. Indeed, this does not rule out the possibility that STING participates in the 

dsRNA pathology, though how STING interacts with viral RNA is not known. One possible 

scenario could be that Dicer-2 and STING co-operate in antiviral detection and signalling. 

Dicer-2 acts as an RNA sensor through its helicase domain, which is conserved with 

mammalian RNA receptors RIG-I and MDA5 (53). Therefore, it would be of interest to 

determine if Dicer-2 participates in this response as a means to sense viral infection and 

activate STING. 

The NF-κB transcription factor Relish regulates antiviral activity as part of the IMD pathway 

(372, 400) and as part of the STING/dIKKβ/Relish-mediated response (393). Additionally, 

Relish is a regulator of antimicrobial gene expression through the IMD pathway in response 

to bacterial pathogens (401, 402). Relish can homodimerize with itself or form heterodimers 

with other NF-κB factors DIF and Dorsal to fine tune the battery of genes that are induced 

following pathogenic challenge (403). Intriguingly, only recently has Relish also been 

demonstrated to control autophagy in both development (404) and following Zika virus 

infection in co-operation with STING (322). Conversely, Relish activity is required for 

neurodegeneration (311, 376) and has been implicated in age-dependent neurological 

decline (313). Given that its activation can be either of a beneficial or harmful nature in a 

context-dependent manner, Relish transcript levels were measured in response to 

expression of the repeat dsRNA. 

Similar to STING, expression of Relish was not significantly altered in either elavII>dsRNA or 

elavII>dsRNA/CrPV1A flies when compared to the UAS control (Figure 3.10). Additionally, 

co-expression of CrPV1A with the dsRNA did not affect Relish transcription when compared 

to expression of the dsRNA alone (Figure 3.10). Taken together, these results indicate that 

Relish expression is not upregulated in response to the presence of repeat dsRNA. However, 

it must be taken into consideration that Relish is regulated post-translationally; only upon 

proteolytic cleavage and removal of its inhibitory IκB domain does Relish translocate to the 

nucleus to drive transcriptional activation of NF-κB responsive genes (405, 406). 

Furthermore, the transcriptional program initiated through Relish is dependent upon its 

dimer configuration; either Toll or IMD downstream genes can be induced, or both (403). 
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Indeed, the dimer configuration partner of Relish for antiviral gene induction is unknown; 

though Charon, a negative regulator of Relish-Relish homodimerization (397), is one of the 

induced antiviral genes following DCV infection (393). In this manner it may promote 

heterodimerization of Relish with an unknown antiviral transcription factor to bolster the 

antiviral response. Thus, a closer investigation of how Relish protein function (or lack of 

through use of mutant lines) is regulated in the presence of repeat dsRNA may prove more 

informative to this end. 

3.3 Chapter Discussion 

The ability for cells to distinguish between ‘self’ molecules and foreign or abnormal ‘non-

self’ molecules that likely constitute danger is critical not only for host defence but to 

protect essential cellular components from self-inflicted inflammatory damage (407). 

Indeed, a number of endogenously-produced molecules require modification from cellular 

machinery in order to gain ‘self’ status and thus avoid PRR detection (68). Double-stranded 

Alu RNA repeats require modification from ADAR1 in the form adenosine to inosine (A-I) 

editing in order to prevent their detection as ‘non-self’ by the RNA sensor MDA5 (368). Loss 

of ADAR1 leads to aberrant inflammatory signalling and lethality in mice, which can be 

Figure 3.10: NF-κB transcription factor Relish is not 

significantly altered in response to repeat dsRNA. In each 

case expression is driven in all neuronal cells using the 

elavII-GAL4 driver. Relish transcript levels were not 

significantly impacted by the presence of repeat dsRNA 

alone (p=0.8293) or through co-expression of CrPV1A and 

the dsRNA (p=0.4873) when compared to the UAS empty 

transgene control. Relish levels were not significantly 

different between dsRNA alone and together with CrPV1A 

(p=0.5384). Depicted for each dataset are the mean and 

standard error of the mean (SEM). 2-tailed Student’s t-

tests were used to determine significance; ns p>0.05. 

Expression levels are normalized to the housekeeping 

gene Rp49. Each dataset represents 3 biological replicates 

plated in triplicate. The experiment was performed using 

the CAG.CUG~100
S1 dsRNA and CrPV1A FL #1 lines. 
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rescued through the genetic deletion of either the RNA sensor MDA5 (152) or downstream 

antiviral signal adaptor MAVS (156). ADAR1 loss-of-function or IFIH1 (which encodes MDA5) 

gain-of-function mutations are both associated with the autoinflammatory neurological 

disorder Aicardi-Goutieres syndrome (AGS) (154, 155, 408), highlighting the importance of 

‘non-self’ to ‘self’ editing as an immunomodulatory mechanism in human disease. 

Indeed, repeat RNA and its subsequent bi-directional transcription are both features 

common to expanded repeat disorders (21), and as such it has been hypothesised that 

dsRNA formed in this manner may represent a molecular trigger for inflammation (4). In a 

Drosophila model of expanded repeat disease, pathology caused via the expression of 

expanded repeat CAG.CUG dsRNA is dependent upon Dicer-2 and Ago-2 (Figure 3.2) (45, 

341). However, the pathology is suppressed by R2D2, an essential co-factor of Dicer-2 in the 

RNAi pathway, which suggests that Dicer-2 and Ago2 drive the dsRNA-mediated toxicity via 

the alternate antiviral RNA pathway, given that the RNAi pathway appears protective (343) 

(Appendix A). Indeed, Dicer-2 shares homology with the mammalian RNA sensors RIG-I and 

MDA5 (55) and appears to act in this manner upon viral infection in Drosophila (53). 

Additionally, the pathology is completely suppressed through co-expression of the human 

ADAR1 gene (343) (Appendix A), suggesting that conferring ‘self’ status to the dsRNA masks 

its presence from antiviral machinery. Taken together, these results support the theory that 

repeat dsRNA molecules derived from expanded repeat loci are detected as ‘non-self’ in a 

manner similar to viral material, leading to cellular damage via inflammatory signalling. 

To further challenge this hypothesis, a viral suppressor encoded by the cricket paralysis virus 

(CrPV) was utilized. The protein, known as CrPV1A, antagonises Ago2 activity without 

inhibiting Dicer2/R2D2-mediated processing of dsRNA (350), allowing the virus to escape 

RNAi silencing and successfully replicate. Strikingly, co-expression of the full-length CrPV1A 

viral suppressor with repeat dsRNA leads to a complete suppression of eye pathology. 

Conversely, a truncated form of CrPV1A unable to inhibit the antiviral response fails to 

suppress the dsRNA pathology. This finding suggests that repeat dsRNA is recognised as a 

‘non-self’ entity by the host antiviral system, and that CrPV1A ablates the pathway(s) 

responsible for the subsequent damaging inflammatory response. 
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Following this, qRT-PCR was performed on flies expressing dsRNA alone and in conjunction 

with CrPV1A in an attempt to uncover pathways that 1) are upregulated in response to 

repeat dsRNA, and 2) are attenuated by CrPV1A, thus highlighting them as candidates to 

genetically dissect using the established dsRNA eye model. The neuronal driver elavII>GAL4 

was chosen to drive expression of repeat dsRNA and CrPV1A, while the timepoint tested was 

0-1 days of age, both to remain consistent with previous transcript analysis on the dsRNA 

model (52).  

STING and Relish, regulators of a recently described antiviral pathway (393), were not 

significantly altered following expression of the dsRNA, thus making any attenuation of this 

pathway by CrPV1A difficult to discern. Indeed, this novel antiviral pathway is critical for the 

control of both DCV and CrPV infection and was therefore proposed to act as a secondary 

inducible defence mechanism should the respective viral suppressors antagonize the RNAi 

response (393). It is important to note that absence of STING or Relish upregulation does not 

rule out their respective participation in the dsRNA-mediated pathology. Relish in particular 

is subject to critical post-translational regulation, it requires separation from an inhibitory 

domain in order to operate as a transcription factor (405, 406). In addition, Relish can 

homodimerize to induce target genes of the IMD pathway, or form heterodimers with 

another NF-κB transcription factor, DIF, to activate signalling from both the Toll and IMD 

pathways (403). As such, transcript levels may not accurately portray Relish signalling in 

response to dsRNA. 

Knowledge of the Drosophila STING orthologue is still limited and the mechanisms 

controlling its activation and regulation need to be further investigated. In vertebrates the 

cytosolic cDNA sensor cyclic-GAMP synthase (cGAS) produces cGAMP which binds and 

activates STING (409, 410), leading to a potent type-I IFN response against viral pathogens 

(398, 399). Drosophila lack a functional cGAS ortholog able to bind DNA and elicit an 

interferon transcriptional response (323), suggesting that it may serve to activate a different 

subset of inflammatory genes in insects. Indeed, Drosophila STING co-operates with Relish 

to induce antimicrobial peptides from the IMD pathway (323) and to upregulate antiviral 

autophagy following Zika virus infection (322). Taken together, both Relish and STING 

regulate inflammation as effectors of multiple distinct but often linked pathways. Therefore, 
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quantitating the downstream target transcripts of these pathways may prove more 

informative when assessing their responsiveness (if any) to repeat dsRNA. 

Thus, in addition to STING and Relish, the transcript levels of several genes that were 

induced by the STING/dIKKβ/Relish signalling complex upon viral infection (393) were 

assessed quantitatively as readouts of pathway activity. Namely, the newly-characterised 

antiviral peptide Nazo, the IκB gene Charon and the uncharacterised CG33926 were all 

chosen for their potent upregulation following DCV infection and their reliance upon the 

signalling complex for induction (393). Both Nazo and Charon transcript levels were not 

significantly altered in the presence of repeat dsRNA or through co-expression of CrPV1A 

with the dsRNA, though Charon was modestly reduced in both experimental lines. 

Conversely, CG33926 was potently downregulated in response to dsRNA alone and 

dsRNA/CrPV1A co-expression. The differential expression of Nazo, Charon and CG33926 

when comparing observations in Goto et al., to the results obtained in this chapter serve to 

highlight the complexity of the Drosophila antiviral response to ‘non-self’ stimuli. Indeed, 

while the RNAi response provides comprehensive host protection against a range of viruses 

(391), inducible antiviral pathways appear to respond in a virus-specific manner (53, 391, 

393). The inducible pathways have been hypothesised to act as secondary antiviral defence 

mechanisms; upregulated should viruses antagonise the RNAi pathway or cell death 

machinery through the activity of VSRs (393, 411, 412). Thus, the observation that CrPV1A 

does not alter expression of genes within the STING/dIKKβ/Relish antiviral pathway suggests 

that this pathway may be induced as a secondary response to compensate for DCV/CrPV-

mediated inhibition of the RNAi pathway. 

The modest reduction of Charon and significant downregulation of CG33926 raise the 

possibility of negative regulation within this pathway. Indeed Kenny, the Drosophila 

orthologue of IKK complex regulator NEMO (also known as IKKγ), was demonstrated as a 

negative regulator of dIKKβ antiviral signalling (393). Thus, it is plausible that Kenny is 

upregulated in response to the repeat dsRNA, thus inhibiting the STING/dIKKβ/Relish 

induction of antiviral target genes. Kenny prevents constitutive activation of the IMD 

pathway by regulating autophagic degradation of the IKK complex (395) and may perform a 

similar function upon detection of the repeat dsRNA. The fact that Nazo is not also 
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downregulated likely reflects the specificity in antiviral transcriptional programs, that DCV 

and dsRNA induce different target genes. 

Another facet to investigate is the function(s) of CG33926, of which current knowledge is 

scarce aside from its upregulation following viral challenge (393, 394). One can speculate 

that it may encode an antiviral peptide similar to Nazo, or perhaps form part of a 

degradative complex designed to remove viral material. Indeed, a number of other 

uncharacterised genes are induced by the STING/dIKKβ/Relish complex following DCV 

infection (393). Thus, given the potent downregulation of CG33926 in response to the 

dsRNA, it would be of interest to determine if these genes are also differentially regulated 

when comparing DCV and repeat dsRNA challenge. 

Another antiviral peptide induced through DCV infection is Vago, though it differs to Nazo in 

that its activation is Dicer-2-dependent rather than reliant upon the STING/dIKKβ/Relish 

complex (53). However, similar to Nazo, Vago expression was not significantly altered in 

response to repeat dsRNA, nor when CrPV1A was co-expressed. Thus, this Dicer-2 

dependent axis of antiviral activity appears unresponsive to repeat dsRNA, suggesting that 

Dicer-2 has additional antiviral functionality independent of both this pathway and its role in 

RNA interference. Notably, the VSR encoded by DCV (DCV-1A) inhibits the RNAi pathway 

through its binding to dsRNA, preventing Dicer-2 from accessing the dsRNA to direct its 

processing (350, 362). As such, the observation that Vago is induced in response to DCV (53, 

393) suggests that Dicer-2 can still contribute to inducible antiviral defence through its 

helicase domain, which is remarkably conserved with the corresponding domain in 

mammalian RNA sensors RIG-I and MDA5 (55). Thus, while Vago-mediated antiviral activity 

does not appear to participate to the dsRNA-induced response, it is highly likely that Vago is 

not the only downstream target of Dicer-2. Uncovering the components and targets of 

Dicer-2 mediated antiviral signalling may provide a number of novel candidate genes to 

investigate in the context of repeat dsRNA pathogenesis. 

In agreement with previous results (52), the Toll pathway-induced antimicrobial peptide 

Drosomycin was significantly elevated in response to dsRNA, but this induction was not 

blocked through the expression of CrPV1A. Given that the Drosophila Toll pathway functions 
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primarily in antibacterial and antifungal defence (413) it is perhaps not surprising that 

CrPV1A does not inhibit Toll signalling. However, a number of Drosophila Toll receptors 

contribute to dsRNA pathology (52) and Toll pathway mutants are rendered more 

susceptible to Drosophila X virus (DXV) (378) and oral DCV infection (379). Furthermore, 

Dicer-2 can modulate Toll post-transcriptionally to induce Drosomycin in response to viral 

challenge (54), highlighting the potential for crosstalk between inflammatory pathways. 

Indeed, Toll proteins in Drosophila do not act as PRRs per se but instead rely on upstream 

receptors for pathogen detection (413). In this regard, Dicer-2 may again function as an RNA 

sensor to activate antiviral Toll signalling independently of RNAi. Whether Dicer-2 mediated 

activation of the Toll pathway induces canonical target genes (other than Drosomycin) or 

represents a distinct but overlapping transcriptional program tailored to antiviral function 

remains poorly understood but could be investigated by performing qRT-PCR analysis on 

other canonical Toll targets. 

Lastly, the TNF orthologue Eiger was not significantly altered following expression of the 

dsRNA. Indeed, Eiger has previously been shown to be upregulated in this dsRNA model 

(52), and so this discrepancy may represent biological variation between the samples. 

Complicating matters further, Eiger is a positive regulator of cell death (388), and so any 

cells containing elevated Eiger may be undergoing cell death and thus weakening the total 

transcript levels detectable. Blocking Eiger-mediated cell death downstream of Eiger itself 

may prove useful in preventing this in future analysis.  

Therefore, from the results obtained in this study, the repeat dsRNA does not appear to 

induce the newly characterised STING/dIKKβ/Relish signalling pathway, nor Dicer-2 

mediated upregulation of Vago. In addition, the co-expression of CrPV1A with the dsRNA did 

not significantly alter the expression of any of the genes tested, suggesting that the VSR 

encoded by CrPV does not target either of these pathways. However, because none of the 

target genes tested (excluding Drosomycin) were induced in response to the dsRNA, any 

potential effect of CrPV1A may be masked. Thus, it cannot be completely ruled out that 

CrPV1A antagonises one or both of these pathways. Indeed, CG33926 was in fact potently 

downregulated (and Charon to a lesser extent, though this was not significant) in response 

to the dsRNA, suggesting instead that regulatory components of the STING/dIKKβ/Relish 
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may be activated. Kenny (also known as dIKKγ) negatively regulates the IκB kinase signalling 

complex through autophagic degradation (395) and thus presents as another candidate to 

test via qRT-PCR. Of note, the temporal window used for transcript analysis in this study was 

restricted to newly-eclosed flies. Given that the neuronal dysfunction observed in 

elavII>dsRNA flies is age-dependent (45), future studies could incorporate a longer time 

course for transcript analysis. Additionally, determining the degree that CrPV1A functionally 

rescues dsRNA-mediated neuronal dysfunction over time should also be considered. 

As such, the precise pathway that CrPV1A blocks to potently suppress the repeat dsRNA 

pathology is still unknown. CrPV1A employs several known methods to ensure a favourable 

environment for viral replication; inhibiting the key RNAi protein Ago2 (350, 365), initiating 

host transcriptional shutoff and disrupting RNA stress granule formation (366, 414). 

However, the RNAi pathway acts to restrict the dsRNA pathology (343) (Appendix A), 

suggesting that CrPV1A-mediated inhibition of this pathway would likely further enhance 

the pathology as opposed to the observed suppression. The potential role of stress granules 

in the dsRNA pathology is intriguing; they are vitally important for preventing the translation 

of abnormal proteins following stress (415), while antiviral stress granules (termed avSGs) 

act to isolate viral RNA together with ‘non-self’ RNA sensors in order to drive RLR-MAVS 

mediated inflammatory signalling (416). This raises the possibility that avSGs could function 

similarly in Drosophila to isolate Dicer-2 and the repeat dsRNA, leading to heightened 

antiviral signalling that may cause tissue damage and the subsequent pathology observed. 

Thus, determining whether Dicer-2 colocalizes with stress granule machinery may provide 

insight into whether this RNA sensor-avSG interaction is conserved in Drosophila. 

An alternate (but not mutually exclusive) possibility is that CrPV1A ablates an antiviral cell 

death response. Focal, non-lytic programmed cell death in virus-infected cells is important 

for restricting the replication and spread of viral material (367). As such, it is not surprising 

that a number of mammalian and insect viruses deploy inhibitors of apoptosis (IAPs) to 

avoid the activation of cell death machinery (411). Conversely, viral proteins can also act to 

induce lytic cell death as a means to lyse infected cells and promote dissemination of viral 

replicates to neighbouring uninfected cells (417). Thus, antiviral cell death must be tightly 

regulated to avoid the destruction of essential tissues and facilitate the spreading of viral 
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material (367). Indeed, this form of focal cell death is effective for stopping the spread of 

extrinsic threats such as viruses, but would likely cause tissue damage when responding to 

the expanded repeat dsRNA, which represents inherited ‘non-self’ material and is thus 

expressed in every cell. 

What form of cell death could participate in the dsRNA pathology? In vertebrates, antiviral 

cell death can occur in several forms. Apoptosis is regarded as “clean” non-lytic cell death 

for its ability to contain the contents of the dying cell, preventing the escape of danger 

signals and subsequent inflammation (418). Necroptosis, a regulated form of necrosis, 

favours permeabilization of cellular membranes and thus facilitates the release of factors 

that promote further inflammation (419). Necroptosis also participates in the antiviral 

response (420, 421) and is targeted by viral cell death suppressors, highlighting its 

importance in this role (422, 423). The inflammatory caspase-mediated pyroptosis also 

favours the release of inflammatory factors from dying cells and is thus also lytic in nature, 

but achieves this through the formation of a membrane pore facilitated via Gasdermin D 

(424). Information regarding the antiviral actions of pyroptosis are limited, though it has 

been demonstrated to be induced following infection from several human viruses (425). No 

known viral suppressors have been demonstrated to antagonise pyroptosis directly (426). 

Given the inflammatory activation observed in response to repeat dsRNA (45), it would 

suggest that a lytic, inflammatory form of cell death is most likely to mediate the dsRNA 

pathology. The appearance of necrotic black spots on the Drosophila eye following repeat 

dsRNA expression further support the idea that a form of necrosis is involved. However, core 

necroptotic and pyroptotic components lack characterised orthologues in Drosophila, 

though a spreading form of necrotic cell death has recently been described (427). Therefore, 

characterisation of the potentially lytic cell death occurring in the Drosophila expanded 

repeat disease model used in this study should form part of future work. 

The most compelling result described in this chapter provides evidence that expanded 

CAG.CUG repeat dsRNA is detected as ‘non-self’ similar to a viral pathogen. The expression 

of the viral suppressor protein CrPV1A completely rescues the dsRNA eye pathology, 

suggesting that the antiviral response directed against the dsRNA is a key driver of the 

pathology. Expansion of the repeat beyond a pathogenic threshold likely renders the RNA as 
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‘non-self’, which is supported by the observation that 50 copies of the CAG.CUG dsRNA 

repeat is not sufficient to cause pathology (343) (Appendix A), whereas expression of 100 

copies leads to the established phenotype (45). Alas, the precise mechanism ablated by 

CrPV1A that leads to the rescued pathology remains unknown, but would likely comprise 

the key next step in our understanding of the mechanisms that underlie dsRNA-mediated 

dysfunction. 
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CHAPTER 4: Innate inflammatory pathways in the mediation of 

dsRNA pathology 

The current understanding regarding the role of innate inflammation in neurodegenerative 

disease is one of duality. On one hand, it represents the critical first line of defence against 

invading pathogens, injury and other danger signals (428). It can promote the degradation of 

disease gene products through the upregulation of appropriate quality control pathways 

(429, 430) and drive tissue repair following neuronal injury (431, 432). On the other hand, 

the dysregulation of immune pathways through genetic lesions, ageing and epigenetic 

changes can lead to a chronic neuroinflammatory response within the CNS that is highly 

detrimental to neuronal function and survival (2). In line with this, mutations in a number of 

inflammatory components are causal or risk factors for neurodegenerative disease; each 

lesion reflecting either the loss of homeostatic functionality and/or the gain of deleterious 

pro-inflammatory signalling (68). 

In Huntington’s Disease (HD), heightened microglial and cytokine activation precedes the 

onset of clinical symptoms in HD gene carriers (58, 59), while microglial activation correlates 

with the onset and progression of neurological decline in HD (59, 61, 433). A similar 

correlation has also been observed in a knock-in mouse model of spinocerebellar ataxia type 

1 (SCA1) (434), suggesting that inflammation may underlie the pathogenesis of CAG repeat 

expansion disorders more generally. Indeed, the established Drosophila model of CAG.CUG 

repeat expansion used in this study and described previously (45, 52) has provided several 

lines of evidence that support the participation of inflammatory pathways in CAG repeat 

disorders. Firstly, work has demonstrated that several inflammatory components are 

required for the observed pathological features, namely the antiviral protein Dicer-2 (45) 

and several members of the Toll family of pattern recognition receptors (PRRs) (52). 

Secondly, neuronal expression of the repeat dsRNA induces an inflammatory response as 

observed by the significant upregulation of the Toll pathway-induced Drosomycin and 

potent inflammatory cell death mediator Eiger, the Drosophila orthologue of tumour 

necrosis factor (TNF) (52). Finally, autophagy restricts the dsRNA-mediated pathology, 

suggesting that degradation of the dsRNA is neuroprotective (52). Thus, it appears that 
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multiple inflammatory pathways underlie the repeat dsRNA pathogenesis, both in restricting 

and driving the observed pathology. 

The Drosophila eye has proven a popular tissue model to perform functional genetic screens 

(435); the precise structural arrangement of the ommatidia means that disruptions to eye 

development often manifest as easily detectable phenotypes (436). Additionally, the eye is a 

non-essential tissue, therefore strong levels of toxicity can be tolerated without causing 

lethality to the fly. The work in this chapter uses the established repeat dsRNA Drosophila 

eye model (45, 52) in order to investigate whether other components/mechanisms involved 

in the broader Drosophila immune response contribute to the pathology. 

One final note surrounds the methods used to reduce expression of candidate genes in this 

chapter. Given the role of Dicer-2 and other components of the RNAi pathway in mediating 

dsRNA-pathology (45, 343) (Appendix A) , the use of RNAi to knockdown gene expression 

was avoided when possible in order to prevent the potential of the RNAi machinery 

interfering with any changes to the dsRNA pathology. However, endogenous mutant lines 

were not available for all candidate genes tested, and so RNAi knockdown was the only 

obtainable method for reducing expression. Additionally, in several cases (mainly where 

endogenous mutants were unavailable) mutant lines containing transposon insertions into 

the target gene were utilised. While these insertions often disrupt expression of the 

endogenous target gene, many of the insertions contain flanking UAS sites designed to drive 

misexpression of adjacent genes when combined with a GAL4 driver, potentially including 

the target gene itself (437). Thus, where insertional mutants have been used, consideration 

has been made that the target gene may be subject to disruption and/or misexpression 

when combined with the GMR-GAL4 driver. Regardless, these lines are informative as part 

of a preliminary investigation into the contribution of the candidate gene in the dsRNA-

mediated eye pathology; an alteration to the dsRNA pathology indicates that the gene 

contributes and thus warrants future investigation of a more in-depth nature (if the 

appropriate tools are available). 
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4.1 The JAK/STAT pathway contributes modestly to dsRNA pathology 

The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling 

pathway is an important regulator of innate immunity, haematopoiesis and embryonic 

development, roles that are conserved from vertebrates through to Drosophila (438-440). 

The mammalian JAK/STAT pathway is highly complex - there are four JAKs (JAK1/2/3/TYK4) 

and seven STATs (STAT1/2/3/4/5a/5b/6), while more than 30 cytokine/receptor 

combinations can activate the pathway (including members of the interleukin and interferon 

families) (439). In Drosophila there are only single JAK (Hopscotch) and STAT (STAT92E) 

orthologues, however the signalling cascade remains highly conserved (Figure 4.1), thus 

allowing a simpler in vivo dissection of pathway function and interactions (441, 442). 

There are three related ligands that initiate the Drosophila JAK/STAT pathway, the Unpaired 

family of cytokines (Upd1/2/3). The diverse range of vertebrate JAK/STAT transcriptional 

responses is due in part to the large number of different ligand/receptor combinations that 

can initiate the pathway (439, 443). While this diversity is vastly reduced in the Drosophila (3 

Figure 4.1: Overview of the Drosophila 

JAK/STAT pathway. In response to factors such 

as viral challenge and tissue damage, the 

Unpaired family of cytokine ligands (Upd1/2/3 – 

represented as Upd) are induced. All three Upds 

bind to a single receptor – Domeless (Dome). 

Hopscotch (Hop, JAK in mammals) is then 

recruited to the receptor and phosphorylates 

(represented as red stars) STAT92E, which 

facilitates STAT92E dimerization. The STAT92E 

dimer transitions to the nucleus and drives 

transcription of genes that participate in immune 

and stress-related responses. 
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ligands compared to >30 in vertebrates) there still exists some specificity. All three ligands 

are induced through tissue damage (444, 445), whilst Upd2 and Upd3 are also upregulated 

following bacterial or viral challenge (391, 446). Once induced, the Unpaired ligands engage 

the Domeless (Dome) receptor, which bears similarity with the IL-3 and IL-6 receptor families 

(447). This ligand-receptor interaction recruits Hopscotch, which is subsequently 

phosphorylated along with the cytoplasmic section of the receptor (440). This allows the 

recruitment and phosphorylation of STAT92E, facilitating its dimerization and translocation 

into the nucleus where it binds to promoters to activate transcription of target genes (448). 

Target genes include turandotA (totA) and turandotM (totM), humoral factors secreted from 

the Drosophila fat body following systemic stressors such as septic injury (446, 449, 450). Of 

particular interest, JAK/STAT signalling also forms part of the antiviral response directed 

against both Drosophila C virus (DCV) and cricket paralysis virus (CrPV) (391, 451). Thus, 

several components of the Drosophila JAK/STAT pathway, namely Upd1, Upd3 and STAT92E, 

were investigated to assess if the pathway participates in the dsRNA-mediated pathology. 

In order to test for the participation of Upd1 in dsRNA pathology, GMR-GAL4 was utilized to 

co-express both the dsRNA in conjunction with two independent forms of upd1 reduction 

(Figure 4.2). Compared to control flies (Figure 4.2 A), the reduction of upd1 alone through 

either the introduction of a heterozygous endogenous point mutation (Figure 4.2 B) or RNAi 

knockdown (Figure 4.2 C) does not lead to disruption within the eye. As previously 

demonstrated, eye-specific expression of repeat dsRNA (GMR>dsRNA) leads to a pathogenic 

phenotype, most notably a loss of pigmentation and ommatidial patterning compared to 

control flies (Figure 4.2 A & A’). Reduction of upd1 in a GMR>dsRNA background (Figure 4.2 

B’ & C’) did not appear to modify the phenotype, suggesting that Upd1 is not rate-limiting 

for the dsRNA pathology. 

Like both Hopscotch and STAT92E, Upd1 was first characterised for its role in embryonic 

patterning, where its embryonic induction and secretion activates the JAK/STAT pathway 

and ultimately results in the expression of the segmentation genes even-skipped (eve), fushi 

tarazu (ftz) and runt (452). However, Upd1 is not required for the induction of stress-related 

or antiviral genes, which is in contrast to Upd2 and Upd3 (391, 446). Thus, any potential 

inflammatory antiviral activity mediated by the JAK/STAT pathway to remove the ‘non-self’ 
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dsRNA may require ligand/receptor interactions through Upd2 and/or Upd3. To determine if 

antiviral activity through the JAK/STAT pathway could play a role in the dsRNA pathology, 

Upd3 was manipulated in the GMR>dsRNA background (Figure 4.3). 

Compared to the control (Figure 4.3 A), alteration of upd3 through a transgenic P-element 

insertional mutation alone led to ommatidial disruption, smaller eye size and the presence 

of black necrotic spots (Figure 4.3 B). These phenotypic characteristics were fully penetrant 

for this genotype (data not shown). Knockdown of upd3 via the expression of an RNAi 

construct did not cause any noticeable eye phenotype alone (Figure 4.3 C). Of note, the 

transgenic insertion used (upd3d11639) contains flanking UAS sites that can cause 

misexpression of adjacent genes, possibly including upd3 itself (453). Thus, the observed 

phenotype (Figure 4.3 B) may be caused through the misexpression of endogenous genes 

Figure 4.2: Reduction of upd1 makes no obvious contribution to repeat dsRNA-mediated eye 

pathology. In each case the GMR-GAL4 driver is used to express the constructs in the eye. A) 

Expression of a single UAS transgene with no insert. B) A heterozygous upd1 loss-of-function allele 

alone. C) Expression of a upd1 RNAi construct alone. A’) Co-expression of repeat dsRNA together 

with a single UAS transgene. B’) Co-expression of repeat dsRNA together with a heterozygous upd1 

loss-of-function allele. C’) Co-expression of repeat dsRNA together with a upd1 RNAi construct. The 

experiment was performed at 25°C using the CAG.CUG~100
M3 dsRNA line. 
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flanking the insertion. The use of an endogenous upd3 mutation lacking UAS sites could be 

used to test this hypothesis. Indeed, other upd3 mutations also display reductions in eye size 

(454), suggesting that Upd3 plays an important role in eye development, most likely through 

JAK/STAT signalling. 

The presence of the insertional upd3 mutation in conjunction with GMR>dsRNA caused a 

severe eye phenotype (Figure 4.3 B’) compared to the control dsRNA expressed alone, 

though was reminiscent of the upd3 mutation alone (Figure 4.3 B) in phenotype. RNAi 

knockdown of upd3 in a GMR>dsRNA background (Figure 4.3 C’) led to a reduction in eye 

size compared to GMR>dsRNA alone (Figure 4.3 A’) that was consistent among eyes scored. 

Because either the upd3 mutation or dsRNA alone both lead to eye phenotypes (Figure 4.3 B 

Figure 4.3: Upd3 contributes modestly to repeat dsRNA-mediated eye pathology. In each case 

the GMR-GAL4 driver is used to express the constructs in the eye. A) Expression of a single UAS 

transgene with no insert. B) A heterozygous upd3 transgenic P-element insertion alone. C) 

Expression of a upd3 RNAi knockdown construct alone. A’) Co-expression of repeat dsRNA 

together with a single UAS transgene. B’) Co-expression of repeat dsRNA together with a 

heterozygous upd3 transgenic P-element insertion. C’) Co-expression of repeat dsRNA together 

with a upd3 RNAi knockdown construct. The experiment was performed at 25°C using the 

CAG.CUG~100
M3 dsRNA line. 
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& A’) it is likely that the phenotype observed when combined (Figure 4.3 B’) is additive 

rather than synergistic in nature. Nevertheless, the smaller eye observed when upd3 is 

knocked down with GMR>dsRNA (Figure 4.3 C’) suggests that Upd3 contributes in restricting 

dsRNA eye pathology. 

The observation that Upd3, but not Upd1, contributes to dsRNA pathogenesis could 

represent a role for Upd3 in JAK/STAT-mediated antiviral activity as demonstrated by others 

(391). In contrast, Upd1 may remain more strictly dedicated to developmental processes 

(452). Upd2 was not tested due to a lack of suitable lines available, but is also upregulated in 

response to DCV and CrPV (391). As such it would be of interest to investigate the effect of 

Upd2 reduction upon the dsRNA pathology and whether a genetic interaction as seen in 

Figure 4.3 C’ is observed. The upregulation of Upd2 and Upd3 in response to the sensing of 

CrPV is particularly relevant given the role of the CrPV viral suppressor in ameliorating the 

dsRNA pathology (see Chapter 3). As such, monitoring the expression levels of the Unpaired 

genes in the presence of dsRNA may aid in determining their level of participation in any 

potential JAK/STAT response to repeat dsRNA. 

While the Unpaired ligands display partial redundancy within the JAK/STAT pathway (442, 

455), STAT92E is the sole downstream transcription factor of the pathway, and thus 

participates in all aspects of JAK/STAT function. Interestingly, STAT92E can also be non-

canonically activated through a Draper signalling cascade following axonal injury, which 

leads to a feed-forward loop of draper transcription to increase phagocytic capacity and 

confer neuroprotection (295). Additionally, west nile virus (WNV) infection in a mosquito cell 

line (Culex quinquefasciatus) leads to STAT92E activation through Dicer-2 mediated 

induction of the antiviral peptide Vago (392). The canonical JAK/STAT receptor Domeless 

was not required for this activation, suggesting that another unknown receptor participates 

in this aspect of STAT92E signalling (392). Notably, Dicer-2 and Vago are both required for an 

analogous antiviral response in Drosophila (53), though whether the role of STAT92E is 

conserved was not explored. Thus, STAT92E is a vital transcriptional factor in the context of 

innate immunity following exposure to a range of stimuli, including bacterial and viral 

pathogens. 
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In order to investigate if STAT92E contributes to the repeat dsRNA pathology, separate lines 

were used in order to increase (through a bacterial artificial chromosome [BAC] insertion 

containing a DNA fragment including the STAT92E gene under the endogenous STAT 

promotor) or decrease (through RNAi knockdown) STAT92E levels in a GMR>dsRNA 

background. Neither ectopic expression nor reduction of STAT92E caused an eye phenotype 

alone (Figure 4.4 B & C). In conjunction with expression of the repeat dsRNA, ectopic 

expression of STAT92E did not lead to any noticeable changes to the eye compared to the 

control (Figure 4.4 A’ & B’), while knockdown led to a modest return of red pigmentation 

within the eye (Figure 4.4 C’), though this could be due to the high level of red pigment 

observed when the construct is expressed alone (Figure 4.4 C). Indeed, minor structural 

Figure 4.4: Alteration of STAT92E has limited effect on repeat dsRNA-mediated eye pathology. 

In each case the GMR-GAL4 driver is used to express the constructs in the eye. A) Expression of a 

single UAS transgene with no insert. B) A transgenic BAC insertion containing the STAT92E gene. 

C) Expression of an inverted repeat construct targeting STAT92E alone.  A’) Co-expression of 

repeat dsRNA together with a single UAS transgene. B’) Co-expression of repeat dsRNA together 

with a transgenic BAC insertion containing the STAT92E gene. C’) Co-expression of repeat dsRNA 

together with an inverted repeat construct targeting STAT92E. The experiment was performed at 

25°C using the CAG.CUG~100
M3 dsRNA line. 
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disruptions observed through expression of the dsRNA alone were still present (Figure 4.4 

C’). 

These results suggest that STAT92E makes a minor (if any) contribution to the repeat dsRNA 

pathology. Given that ‘non-self’ viral recognition through Dicer-2 appears vital for the 

dsRNA-mediated pathogenesis (see Chapter 3) (45), it is plausible that this interaction is 

through an antiviral cell death response, though other roles performed by the JAK/STAT 

pathway cannot be discounted. If Dicer-2-mediated upregulation of STAT92E in response to 

viral challenge is indeed a conserved mechanism in invertebrates (53, 392), then the minor 

suppression of the dsRNA pathology following STAT92E reduction (Figure 4.4 C’) may 

represent the inhibition of a single immune pathway controlled by Dicer-2 upon sensing the 

dsRNA. Quantitating STAT92E expression in flies expressing the dsRNA in Dicer-2 wildtype 

and mutant backgrounds would aid in determining if this represents a valid hypothesis. 

The JAK/STAT pathway is rate-limiting for the induction of some viral genes and the overall 

control of viral load following infection with DCV and CrPV (391). However, constitutive 

activation of the pathway via Hopscotch does not result in a similar upregulation and is 

therefore not sufficient to drive the response alone (451). This indicates that antiviral genes 

may integrate signals from a number of separate pathways following viral infection, and 

thus blocking a single pathway may only have minimal effect on overall antiviral function. 

Taken together, the reduction of either Upd3 or STAT92E appear to have opposing (albeit 

minor in the case of STAT92E) effects on the dsRNA pathology. This dichotomy may reflect 

the observation that STAT92E activity can be initiated from effector molecules outside of the 

canonical JAK/STAT pathway (295, 392, 456). This would in part mirror observations that 

Dicer-2 is required for dsRNA pathology but functions in this manner independently of its 

canonical role in the RNAi pathway, which suppresses the pathology (45, 343) (Appendix A). 

Further examination of the JAK/STAT pathway would aid in confirming these interactions 

and provide additional insight into whether STAT92E operates independently of the 

JAK/STAT pathway in an antiviral role. 
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4.2 Mitochondrial quality control mediates repeat dsRNA pathology 

A wealth of evidence now places mitochondria at the centre of innate immunity in addition 

to its role as the powerhouse of the cell (140). Mitochondrial participation in immunity is 

multi-faceted; they act as a platform for RIG-I-like receptor signalling through MAVS (102, 

457), generate mitochondrial ROS (mROS) to kill invading pathogens (458, 459) and trigger 

inflammation upon injury/stress via the release of mROS (460, 461) and/or mitochondrial 

DNA (94, 462). Indeed, the release of damage-associated molecular patterns (DAMPs) and 

other pro-inflammatory molecules derived from damaged mitochondria can lead to systemic 

inflammatory disease (96, 460, 462) and drive neuroinflammation (139, 463). 

As such, a number of mitochondrial quality control pathways are in place to remove 

damaged/dysfunctional mitochondria and prevent persistent inflammation (Figure 4.5) 

(464-466). Mitochondria are dynamic organelles and constantly undergo the processes of 

fusion, in order to share metabolites and healthy mtDNA (467), and fission (mediated by 

Dynamin-related protein 1 – Drp1), to sequester away harmful material into mitochondria 

that are subsequently shuttled towards degradation (466, 468). Mitophagy provides the 

means for damaged mitochondria to be degraded by autophagic machinery to prevent their 

accumulation (469). The importance of mitophagy is demonstrated by the observation that 

inherited loss-of-function mutations in mitophagy regulators PINK1 and Parkin cause 

autosomal recessive early-onset PD (99, 100). 

The conservation of mitochondrial quality control pathways between vertebrates and 

Drosophila has proven useful in dissecting the pathways underlying mitochondrial 

function/dysfunction (Figure 4.5) (470). This includes modelling key PD features through the 

use of PINK1 and parkin mutants (332, 334) and dissecting their regulatory roles in 

mitophagy (471). Of particular relevance to expanded repeat disease, over-expression of 

PINK1 is neuroprotective in a Drosophila mutant Huntington (mHtt) model of HD through 

the upregulation of mitophagy (472), suggesting that mitochondrial quality control aids in 

removing HD-specific polyQ expansions. Thus, to determine whether mitochondrial quality 

control is rate-limiting in an RNA model of HD (a different gene product), the repeat dsRNA 
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eye model (GMR>dsRNA) was used to screen against several genes known for roles in 

mitochondrial homeostasis. 

Given the reported neuroprotective role of PINK1 in HD (472), it was examined for its role in 

dsRNA pathology. Under homeostatic mitochondrial conditions, PINK1 is imported into the 

inner mitochondrial membrane (IMM) where it undergoes constitutive degradation (466). 

However, loss of membrane potential in dysfunctional mitochondria leads to the 

accumulation of PINK1 on the outer mitochondrial membrane (OMM), where its kinase 

activity recruits Parkin and progresses mitophagy (473-475). Familial PD mutations in PINK1 

affect its ability to recruit Parkin, which further highlights mitophagy as a key pathway in 

neurodegeneration (473, 475). 

Reducing PINK1 levels via RNAi knockdown alone did not cause any noticeable phenotype 

compared to the control (Figure 4.6 A, B & C). In support of neuroprotective PINK1-

Figure 4.5: Overview of mitochondrial 

quality control pathways. Mitochondrial 

fission, mediated by Drp1, allows the 

separation of healthy (green) and 

dysfunctional (red) mitochondria. The 

damaged mitochondria are depolarized, 

leading to the accumulation of PINK1 on the 

outer mitochondrial membrane (OMM). The 

E3 ubiquitin ligase Parkin is then recruited to 

the damaged mitochondria, adding ubiquitin 

chains (Ub, yellow circles) to protein 

substrates, including ECSIT. Ubiquitinated 

mitochondria attract autophagy receptors 

including p62 and Optineurin, followed by 

the recruitment of LC3-positive phagosomes 

(in orange), thus facilitating degradation of 

the damaged mitochondria. Mammalian 

protein names are denoted in black, 

Drosophila orthologues (if any) are denoted 

in blue. Proteins underlined are tested in 

this chapter. 
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mediated mitophagy in HD, reducing PINK1 expression led to enhanced dsRNA pathology in 

both knockdown lines (Figure 4.6 B’ & C’). Co-expression of dsRNA with the PINK1v21860 RNAi 

construct led to a reduction in eye pigment and the development of black necrotic areas on 

the posterior side of the eye (Figure 4.6 B’), while co-expression with the PINK1v109614 RNAi 

construct displayed a more potent loss of pigmentation but did not develop necrotic areas 

(Figure 4.6 C’). Thus, PINK1 appears to restrict dsRNA pathology. 

Given the observed role of PINK1 in mediating expanded repeat disease pathology both here 

(Figure 4.6) and elsewhere (472), the investigation was extended to Parkin, an E3 ubiquitin 

ligase that acts downstream of PINK1 in the mitophagy pathway. Upon recruitment to 

dysfunctional mitochondria by PINK1, Parkin is activated and begins to ubiquitinate protein 

substrates on the OMM, ultimately facilitating the recruitment of autophagic machinery to 

degrade the material through autophagosomal-lysosomal activity (476). Aside from 

Figure 4.6: Reduction of PINK1 enhances repeat dsRNA-mediated eye pathology. In each case 

the GMR-GAL4 driver is used to express the constructs in the eye. A) Expression of a single UAS 

transgene with no insert. B-C) Expression of two independent PINK1 RNAi knockdown constructs 

alone. A’) Co-expression of repeat dsRNA together with a single UAS transgene. B’-C’) Co-

expression of repeat dsRNA together with two independent PINK1 RNAi knockdown constructs. 

The experiment was performed at 25°C using the CAG.CUG~100
M3 dsRNA line. 
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mitophagy, Parkin also plays an evolutionarily conserved role in pathogen degradation 

through ubiquitin-mediated autophagy (477), indicating that it can also regulate the removal 

of ‘non-self’ material through a common degradative mechanism. Either over-expression of 

parkin via a UAS construct (Figure 4.7 B) or reduction via RNAi knockdown (Figure 4.7 C) did 

not cause any observable eye phenotype compared to the control (Figure 4.7 A). However, 

over-expression of parkin in conjunction with GMR>dsRNA led to a suppression of dsRNA 

pathology, characterised by the return of red pigmentation and slight improvement to 

ommatidial patterning compared to GMR>dsRNA alone (Figure 4.7 A’ & B’). In contrast, 

reducing parkin expression in a GMR>dsRNA background enhanced the dsRNA pathology as 

observed by the presence of necrotic black spots distributed on the posterior side of the eye 

(Figure 4.7 C’). 

Figure 4.7: Parkin restricts repeat dsRNA-mediated eye pathology. In each case the GMR-GAL4 

driver is used to express the constructs in the eye. A) Expression of a single UAS transgene with no 

insert. B) Expression of a UAS-parkin over-expression construct alone. C) Expression of a parkin 

RNAi knockdown construct alone. A’) Co-expression of repeat dsRNA together with a single UAS 

transgene. B’) Co-expression of repeat dsRNA together with a UAS-parkin over-expression 

construct. C’) Co-expression of repeat dsRNA together with a parkin RNAi knockdown construct. 

The experiment was performed at 25°C using the CAG.CUG~100
M3 dsRNA line. 
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The observation that increased parkin restricts the dsRNA pathology supports previous work 

demonstrating that the upregulation of mitochondrial quality control is protective in HD 

(472), while also indicating that multiple products (RNA and protein) from the huntington 

(htt) disease gene affect common pathways. Interestingly, whereas Parkin is necessary for 

the neuroprotective effect of PINK1 over-expression, parkin over-expression alone is not 

protective in the HD model, indicating that the ability of PINK1 to discern between healthy 

and dysfunctional mitochondria is critical (472). 

Downstream of Parkin-mediated ubiquitination activity, a number of autophagic adaptors 

are recruited to mitochondria including p62/SQSTM1 (Sequestosome 1) and Optineurin, 

which act to shuttle the damaged mitochondria to autophagosomes for degradation (478, 

479). Interestingly, mutations in either p62 or optineurin are both linked to familial and 

sporadic forms of ALS (480, 481), highlighting defects in mitochondrial quality control as a 

contributor to motor neuron death. Drosophila contains a conserved p62 orthologue known 

as Refractory to Sigma P (Ref(2)P) but lacks a characterised optineurin counterpart, 

suggesting that mammalian mitophagy may have developed additional compensatory or 

redundant mechanisms to prevent total loss of degradation (465). 

Like p62, Drosophila Ref(2)P has been demonstrated as a participant in mitophagy, acting 

downstream of PINK1 and Parkin to promote the clustering of damaged mitochondria and 

their subsequent degradation (482). In addition, Ref(2)P also localizes to proteinaceous 

aggregates in the Drosophila brain that form under conditions of ageing, 

autophagy/proteasome loss of function and in fly models of neurodegenerative disease 

(483). Finally, Ref(2)P acts as a viral restriction factor to control the replication of Sigma virus 

(484, 485) and Zika virus (322). Thus, Ref(2)P contributes to a number of the pathways in the 

multi-armed Drosophila inflammatory system, so it was investigated whether Ref(2)P 

restricts repeat dsRNA pathology within the eye. 

Over-expression of Ref(2)P through the use of a UAS-Ref(2)P construct did not cause any 

noticeable phenotype compared to a control (Figure 4.8 A & B), and a similar lack of 

phenotype was observed when Ref(2)P was reduced via RNAi (Figure 4.8 C). Over-expression 

of Ref(2)P in a GMR>dsRNA background led to no obvious modification of the dsRNA 
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pathology compared to GMR>dsRNA alone (Figure 4.8 A’ & B’). It must be noted that the 

UAS-Ref(2)P carries a GFP fluorescent tag and it is not known if the addition of a tag affects 

the normal function of the Ref(2)P protein. However, Ref(2)P knockdown enhanced the 

dsRNA pathology, characterised by the presence of black necrotic areas distributed 

throughout the eye (Figure 4.8 C’). 

Therefore, Ref(2)P appears to play a role in restricting the repeat dsRNA pathology, likely to 

be through its role as on autophagy receptor. Whether this is through the Drosophila 

mitophagy pathway (482) or as part of an antiviral/autophagy response similar to its role in 

combating Zika virus (322) is not known. However, given that the dsRNA appears to be 

detected as ‘non-self’ or viral material (Chapter 3) and dsRNA pathology is restricted by 

Figure 4.8: Reduction of Ref(2)P enhances repeat dsRNA-mediated eye pathology. In each case 

the GMR-GAL4 driver is used to express the constructs in the eye. A) Expression of a single UAS 

transgene with no insert. B) Expression of a UAS-Ref(2)P transgenic over-expression construct 

alone. C) Expression of a Ref(2)P RNAi knockdown construct alone. A’) Co-expression of repeat 

dsRNA together with a single UAS transgene. B’) Co-expression of repeat dsRNA together with a 

UAS-Ref(2)P transgenic over-expression construct. C’) Co-expression of repeat dsRNA together 

with a Ref(2)P RNAi knockdown construct. The experiment was performed at 25°C using the 

CAG.CUG~100
M3 dsRNA line. 
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PINK1 and Parkin (Figures 4.6 & 4.7), it is plausible that both mitophagy and antiviral 

signalling act together to facilitate the clearance of repeat dsRNA. Another possible 

explanation is that Ref(2)P represents a link between antiviral signalling and mitophagy, 

where autophagosome formation and cargo degradation downstream of the respective 

initial signalling cascades represents a common endpoint of resolution. Recent evidence 

indicates that Ref(2)P is induced through a Relish (NF-κB) and STING dependent pathway in 

response to Zika virus (322). Thus, it would be of interest to determine whether both Relish 

and STING also contribute to the dsRNA pathology. 

Another protein that links mitochondrial quality control and antiviral signalling is 

evolutionarily-conserved signalling intermediate in Toll pathways (ECSIT). Initially discovered 

as a conserved adaptor protein within the Toll/IL-1 signalling pathway (486), recent evidence 

has demonstrated a key role for ECSIT in bridging RIG-I-like receptors RIG-I and MDA5 to 

their adaptor molecule MAVS on the mitochondrial membrane following viral challenge 

(487). In addition, ECSIT participates in mitochondrial complex I (MCI) assembly in both 

vertebrates and Drosophila (488, 489) and is ubiquitinated by Parkin in order to recruit 

autophagic machinery to damaged mitochondria (490). Finally, ECSIT has been hypothesised 

to act as a sensor of AD pathogenesis through its role as a mitochondrial signalling hub and 

its location within an AD susceptibility locus (491). Surprisingly, aside from its conserved 

roles in Toll signalling and mitochondrial complex I formation (486, 489), knowledge on the 

functions (conserved or otherwise) of ECSIT in Drosophila is scarce. However, the known 

roles of vertebrate ECSIT in antiviral signalling and mitochondrial quality control highlight it 

as a potential contributor to mitochondrial-mediated inflammation in Drosophila. Thus, 

ECSIT was tested for its participation in dsRNA pathology. 

A heterozygous ECSIT insertional mutant displayed no signs of disruption (Figure 4.9 B), 

while reduction of ECSIT through two independent RNAi constructs also did not cause 

phenotypes alone (Figure 4.9 C & D). Strikingly, the heterozygous ECSIT mutant was lethal 

when combined with GMR>dsRNA (Figure 4.9 B’), indicating a high level of cellular toxicity. 

In addition, RNAi knockdown of ECSIT led to enhancement of the dsRNA pathology in both 

independent constructs, as seen by the appearance of black necrotic areas concentrated on 
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the posterior side of the eye and ommatidial disruption (Figure 4.9 C’ & D’). Indeed, it is 

possible that the lethality observed when using the ECSIT insertional mutant (Figure 4.9 B’) 

could be due to GAL4-driven misexpression of adjacent genes (including ECSIT itself), though 

the direction of pathological alteration appears consistent with the reduction of ECSIT 

enhancing toxicity (as seen in Figure 4.9 C’ & D’).  

The limited knowledge surrounding ECSIT function in Drosophila means that the 

mechanisms by which ECSIT restricts the dsRNA pathology are largely speculative. However, 

based on the reported role of ECSIT in mitochondrial quality control (490), and that loss of 

ECSIT leads to enhanced dsRNA pathology reminiscent of known mitophagy regulators 

PINK1 and parkin (Figures 4.6 & 4.7), mitophagy constitutes a plausible common 

Figure 4.9: Reduction of ECSIT enhances repeat dsRNA-mediated eye pathology. In each case the 

GMR-GAL4 driver is used to express the constructs in the eye. A) Expression of a single UAS 

transgene with no insert. B) A heterozygous ECSITPL00455 PBac insertional mutant alone. C-D) 

Expression of two independent ECSIT RNAi knockdown constructs alone. A’) Co-expression of 

repeat dsRNA together with a single UAS transgene. B’) Co-expression of repeat dsRNA together 

with a heterozygous ECSITPL00455 PBac insertional mutant. C’-D’) Co-expression of repeat dsRNA 

together with two independent ECSIT RNAi knockdown constructs. The experiment was 

performed at 25°C using the CAG.CUG~100
M3 dsRNA line. 
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mechanism. Similar to Ref(2)P, ECSIT-mediated restriction of the dsRNA pathology may 

represent crosstalk between mitophagy and innate inflammatory signalling. In addition to its 

involvement in antiviral responses, ECSIT-mediated Toll signalling in macrophages leads to 

antibacterial activity through the production of mitochondrial ROS (mROS) (459), indicating 

that ECSIT can integrate signals from multiple inflammatory pathways. Notably, the Toll 

pathway is not only required for the dsRNA pathology but is also induced through the 

expression of dsRNA (52). Therefore, it would be of interest to determine the effect of ECSIT 

over-expression on the dsRNA eye phenotype, given that loss of ECSIT enhances pathology 

and thus appears to act in a competing pathway to Toll. 

Taken together, these results implicate mitochondria as a key component of CAG expanded 

repeat neurodegenerative disease pathogenesis, potentially through the separate but 

intrinsically-linked inflammatory and mitochondrial quality control pathways. 

4.3 Chapter Discussion 

The activation of innate inflammatory pathways is a tightly controlled balancing act; its 

dampening confers susceptibility to pathogen challenge and often their persistence, 

whereas chronic immune activation leads to tissue damage and dysfunction and is, not 

surprisingly, a common feature in neurodegenerative disease (428, 492). A range of diverse 

genetic lesions that constitute causal/risk factors in neurodegenerative disease affect 

components of the broader inflammatory response; either by inhibiting neuroprotective 

functions such as autophagy and mitophagy, or the amplification of pro-inflammatory 

signalling (68). The relative conservation of inflammatory mechanisms coupled with lower 

functional redundancy among pathways means that Drosophila provides a robust model 

organism to investigate inflammation in the context of neurodegenerative disease 

development and progression (355, 440). 

Previous studies using the Drosophila model of expanded repeat disease described here 

have implicated both Dicer-2- and Toll-dependent inflammatory signalling as drivers of 

disease pathology in the eye tissue model (45, 52). This chapter identifies additional 

components of the broader inflammatory system that contribute to the repeat dsRNA  
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Figure 4.10: Proposed interaction between mitophagy and expanded repeat dsRNA 

pathology. Mitochondrial fission separates healthy (green) mitochondria and dysfunctional 

(red) mitochondria. Additionally, fission may also act to sequester the repeat dsRNA (and 

other danger signals) into damaged mitochondria, which are normally shuttled to autophagic 

receptors and the resultant autophagosomes, where they undergo targeted degradation. 

This prevents the release of inflammatory triggers such as mtDNA, mtROS and potentially the 

expanded repeat dsRNA. The proteins tested in this study, namely PINK1, Parkin, ECSIT and 

Ref(2)P, are all components of a mitophagy pathway. Dysfunctional mitophagy (through the 

reduction of mitophagy components) leads to the persistence of damaged mitochondria and 

the subsequent release of trigger molecules including the repeat dsRNA. This may in turn 

drive chronic inflammation and the activation of cell death machinery that causes enhanced 

dsRNA-mediated pathology. 
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mediated pathology, in particular a number of proteins that participate in mitochondrial 

quality control, thus implicating mitochondrial turnover as a key process in CAG repeat 

expansion disease (Figure 4.10). Mitochondria represent a vital signalling hub for innate 

immunity and inflammation, both as a signalling platform (102) and as a mediator through 

the release of inflammatory factors such as mROS and mtDNA in response to stress and 

other insults (493). As such, pathways that ensure mitochondrial integrity and function are 

of vital importance in preventing uncontrolled inflammation and cell death (469, 494). 

Loss of canonical mitophagy regulators PINK1 or parkin both enhance the dsRNA pathology 

considerably, providing evidence that mitophagy is a key restrictive process in the presence 

of repeat dsRNA. Additionally, over-expression of parkin partially rescues the dsRNA 

pathology, which suggests that the ability of mitophagy to degrade dsRNA may be limited by 

the boundaries of endogenous upregulation. This could be further tested by over-expressing 

parkin in conjunction with a stronger dsRNA line. Over-expression of PINK1 is 

neuroprotective in a Drosophila model of HD generated through expression of mHtt (472), 

and in future should be tested with the dsRNA model used in this study. When taken 

together, the results described here and in Khalil et al., indicate that upregulation of 

mitophagy may represent a promising therapeutic target in HD, and that multiple products 

(RNA and protein) of the same disease-gene (in this case the expanded CAG repeat in Htt) 

are restricted by a common pathway. Intriguingly, recent evidence has described the 

occurrence of mitophagy operating either in parallel with Parkin (495) or completely 

independent of Parkin (496), which likely highlights a level of functional 

redundancy/compensation present in order to prevent compete ablation of mitophagy upon 

homeostatic insult. Indeed, both PINK1 and Parkin appear largely dispensable for mitophagy 

under normal physiological conditions (497, 498), and as such the stress-induced 

PINK1/Parkin axis may represent an entirely distinct mechanism to basal mitophagy. 

While the functions of PINK1 and Parkin mainly encompass their role in mitophagy 

regulation, there are a number of proteins that participate in mitophagy in addition to roles 

mediating other aspects of the broader mitochondrial inflammatory response. Ref(2)P 

(functionally conserved with mammalian p62) is a viral restriction factor (484, 485) that 

functions in mitochondrial quality control as an autophagic receptor, acting as a conduit 
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between ubiquitinated mitochondria and autophagosomes (482). Indeed, these functions 

are often linked; Ref(2)P-mediated antiviral autophagy of Zika virus is induced through 

Relish/STING dependent inflammatory signalling (322). Thus, it is not surprising that 

reduction of Ref(2)P also enhances the dsRNA pathology, though whether this restrictive 

role derives from its participation in antiviral immunity or mitophagy, or both, is a question 

that requires further dissection. 

Unlike parkin, over-expression of Ref(2)P does not ameliorate pathology, which indicates 

that it is not a rate-limiting molecule in the upregulation of Drosophila mitophagy. In 

support of this, several lines of study have reported that mammalian p62/Ref(2)P is 

important for Parkin-mediated mitochondrial clustering (499, 500) but is dispensable for 

mitophagy itself (499, 501). However, p62-dependent removal of damaged mitochondria is 

critical in restricting NLRP3 inflammasome signalling (502), which suggests that the 

participation of p62 in mitophagy may be context dependent. In Drosophila, Ref(2)P is able 

to rescue mitochondrial dysfunction in PINK1 mutants in a parkin-dependent manner which 

demonstrates that, in invertebrates at least, Ref(2)P does indeed function downstream of 

PINK1 and parkin as part of a mitochondrial quality pathway (482). This in part may reflect 

functional overlap between mammalian autophagy adaptor proteins that bind both 

ubiquitin and autophagosome components (469) that is likely to be lower in Drosophila. For 

instance, Optineurin also functions as a Parkin-mediated selective autophagy receptor that 

displays partial overlap with p62 in mammalian cells (479) but lacks a functional orthologue 

in Drosophila. Thus, Ref(2)P may perform a similar but less-redundant role in Drosophila 

mitochondrial quality control. 

Alternatively, does Ref(2)P interact with repeat dsRNA via its participation in Relish/STING-

mediated antiviral autophagy? In mammals, STING functions as a sensor of cytosolic DNA 

(399), while the Drosophila STING orthologue appears be capable of sensing both DNA and 

RNA viral material (323, 393) in addition to acting downstream of Relish in Zika virus 

infection (322). Notably, the Drosophila STING counterpart has only very recently been 

characterised (322, 323), and so GAL4-UAS expression constructs that facilitate genetic 

manipulations of STING could not be obtained for this project. The Drosophila Ref(2)P 

protein contains an N-terminal Phox and Bem 1 (PB1) domain, a ZZ zinc finger domain and a 
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ubiquitin associated (UBA) domain at the C-terminal end (484). The PB1 domain is required 

for viral interactions (484, 485), while the UBA and PB1 (to a lesser extent) domains are 

essential for protein aggregation  and clearing dysfunctional mitochondria (482). Thus, 

analysis of Ref(2)P mutants lacking either the PB1 or UBA domains in the context of repeat 

dsRNA pathology would be informative in determining whether loss of mitochondrial quality 

control or antiviral signalling (or both) contribute to enhancement of the pathology. 

The finding that ECSIT also appears to restrict dsRNA pathology, in conjunction with a lack of 

knowledge regarding its functionality in Drosophila, raises several intriguing questions. Is the 

reported participation of ECSIT in mammalian mitochondrial quality control (490) conserved 

in Drosophila? Is the role of ECSIT as a mitochondrial-localised antiviral signalling adaptor 

(487) also conserved, given that a Drosophila orthologue of MAVS is yet to be characterised? 

If not, does the conserved role of ECSIT in Toll signalling (486) represent an alternative 

innate immune pathway that responds to ‘non-self’ dsRNA? ECSIT also facilitates the TLR-

dependent release of mROS from mammalian macrophages in order to kill bacterial 

pathogens (459) and is integral both in vertebrates and Drosophila for the formation of 

mitochondrial complex I (MCI) (488, 489). Thus, similar to Ref(2)P, ECSIT could plausibly 

restrict dsRNA pathology through its participation in a range of mitochondrial-associated 

pathways. The mammalian ECSIT protein comprises of an N-terminal mitochondrial 

targeting sequence (MTS) and two binding domains (486, 503). The binding domains are 

designated as TNF-associated receptor factor 6 (TRAF6) binding domain and TAK1 binding 

domain respectively and are required for NF-κB signalling through Toll receptors (503). 

Additionally, the C-terminal TAK1 binding domain is sufficient for interactions with the RNA 

sensors RIG-I and MDA5 and is thus important for mediating signal transduction between 

the receptors and the mitochondrial MAVS adaptor protein (487). Drosophila ECSIT has been 

demonstrated to bind to both fly and mammalian TRAF6 (486), and indeed Drosophila 

contains a conserved TAK1 that is important for NF-κB signalling (504, 505). Thus, it is 

reasonable to suggest that this binding domain may also be present in Drosophila. Whether 

the MTS is also conserved is not known. Therefore, much like Ref(2)P, analysis of mutated 

ECSIT proteins would aid in identifying the role of ECSIT in mediating dsRNA pathology. 
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Taken together, mitochondrial quality control, in particular mitophagy, appears vital for 

restricting expanded repeat dsRNA eye pathology in the model used in this study. A 

plausible hypothesis is that this constitutes a method by which the repeat dsRNA can be 

sequestered into mitochondria destined for degradation via mitophagy, thus preventing the 

accumulation of dsRNA as an inflammatory trigger (Figure 4.10). Reducing the expression of 

mitophagy components (PINK1, parkin, potentially also Ref(2)P and ECSIT in this context) 

below a functional threshold leads to dysfunctional mitophagy, allowing the persistence and 

release of molecules (dsRNA, mtDNA and mtROS) that can propagate a damaging 

inflammatory response. The expansion of the dsRNA eye screen to additional components of 

mitochondrial quality control pathways, including mitochondrial fission and fusion which 

precede mitophagy, will challenge this hypothesis and should be considered as part of 

future studies. 

Based on preliminary work presented in this chapter, the participation of the Drosophila 

JAK/STAT pathway in mediating the dsRNA pathology appears minimal, which may reflect 

the ability of alternate inflammatory pathways to compensate for loss of JAK/STAT 

signalling. Reduction of the Upd1 ligand did not affect the dsRNA eye phenotype, while Upd3 

appeared to play a minor role in restricting the pathology. All three Unpaired ligands signal 

through a single receptor known as Domeless (441) and display a level of redundancy in their 

function (455), suggesting that any contribution(s) to dsRNA pathology observed via 

reducing upd expression may be compensated for. Reduction of the downstream 

transcriptional activator STAT92E led to a mild suppression of the dsRNA eye phenotype, 

though whether this is due to the increased red pigment level in the RNAi line itself is not 

known and could be tested with an independent STAT92E knockdown or mutant. STAT92E 

can be activated independently of the canonical JAK/STAT pathway in Drosophila following 

injury or viral challenge (53, 295) and so whether any suppression represents the inhibition 

of the JAK/STAT-mediated transcriptional program or that of an alternate STAT-activating 

pathway could not be discerned in this study. Therefore, extending the dsRNA eye 

phenotype screen to the JAK/STAT receptor Domeless or its adaptor molecule Hopscotch 

would provide further insight into the participation of JAK/STAT signalling in the presence of 

repeat dsRNA. 
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The most compelling results in this chapter implicate mitochondrial quality control in repeat 

dsRNA-mediated pathology. The efficient turnover of mitochondrial material is essential to 

maintain a pool of functional mitochondria and to prevent the accumulation of 

mitochondrial associated trigger molecules including mtROS and mtDNA that can propagate 

inflammatory signalling and neurodegeneration (139, 506). Evidence provided in this 

chapter and elsewhere (472) has implicated dysfunctional mitochondrial turnover as a driver 

of expanded repeat disease. The repeat dsRNA used in this study has been demonstrated to 

induce an inflammatory response (52), and so a plausible scenario exists where dsRNA is 

sequestered into damaged mitochondria destined for degradation through mitophagy, thus 

maintaining a healthy pool of mitochondria and preventing inflammation (Figure 4.10). 

Supporting this, mitochondrial fission events often produce asymmetrical daughter 

mitochondria, where one displays decreased membrane potential and is targeted for 

mitophagy (468). Thus, going forward, it would be of interest to test regulatory components 

of both mitochondrial fission and fusion in the context of dsRNA pathology – does the 

inhibition of fission prevent the shuttling and subsequent degradation of dsRNA? 

Additionally, the investigation of mitochondrial quality control in other expanded repeat 

models could provide a common contributing mechanism to expanded repeat disease. 
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CHAPTER 5: The contribution of glial cell subtypes in repeat dsRNA-

mediated neurodegeneration 

Long thought of as simply support for neuronal cells, a wealth of experimental evidence has 

now implicated glial cells as key drivers in the development of neurodegenerative disease, 

providing a non-cell autonomous mechanism for diseases previously viewed of as purely 

neuron-centric in pathogenesis (225). 

Much of this renewed focus has targeted the resident CNS immune cells, microglia, for their 

ability to transition to a “reactive” state in response to specific stimuli such as pathogenic 

insult and brain injury that can promote CNS repair or drive neuronal toxicity (177, 507). 

However, recent evidence has also uncovered a similar change of state in astrocytes via 

microglial signalling that led to neuronal cell death, further highlighting the importance of 

non-cell autonomous communication in driving neurodegenerative disease (247). It is 

noteworthy that the changes of state observed in both microglia and astrocytes are not 

simply the gain of neurotoxic signalling, but also the loss of their normal homeostatic 

functions performed within the CNS, including the promotion of cellular repair, phagocytic 

clearance of neuronal debris and trophic support (177, 179). Finally, the disruption of non-

neuronal cells responsible for forming the blood-brain barrier (BBB) can also promote 

neurodegeneration through processes including the accumulation of toxic systemic and 

pathogenic molecules and diminished BBB transport efficiency (508). Thus, it is clear that 

glial cells can mediate neurodegeneration through both gain-of-function and loss-of-

function mechanisms, underlying the importance of a tightly regulated CNS environment. 

Despite the lack of distinct one-for-one orthologues between humans and Drosophila, many 

of the functional and morphological features between vertebrate and invertebrate glia are 

conserved (310). Like their vertebrate counterparts, there exists distinct glial subtypes 

within the Drosophila CNS, differentiated through both their described functions and their 

relationships with neuronal cells (160). Their utility as a relatively simple in vivo model, as 

well as the range of widely available genetic and molecular tools to explore the CNS, 

highlight Drosophila as an excellent model to gain further insight into glial cell biology and 

the non-cell autonomous axis of neurodegenerative disease. Previous work using Drosophila 
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has highlighted glial cells as a crucial non-cell autonomous driver of expanded repeat dsRNA-

mediated pathology, where pan-glial expression of the dsRNA leads to striking reductions in 

both neuronal function and survival (52). In order to tease apart the contributions made to 

this high level of pathology by glial cell subtypes, GAL4 driver lines specific to the individual 

subtypes were obtained (Table 5.1). 

There are several considerations to take into account when using Drosophila to investigate 

the role of glial cells in neurodegeneration. Firstly, the GAL4 expression pattern is derived 

from an endogenous regulatory enhancer element, which relies on the putative expression 

pattern of the chosen enhancer to display robust tissue specificity (314). Consequently, 

although GAL4 drivers are identified for specificity as best possible, there exists the 

possibility of expression “leakage” into non-targeted tissue types. Indeed, while the glial 

GAL4 drivers described here (Table 5.1) were chosen on the basis on glial subtype-specificity 

according to previous large-scale analysis of glial-specific drivers (292), some display trace 

levels of non-cell type exclusive tissue expression. One such example is the cortex glial-

specific R54H02-GAL4 driver used in this study (Table 5.1); while the expression pattern is 

Table 5.1: Summary of the glial subtype-specific drivers.  Other frequently used tissue-specific 

drivers are listed for reference. 
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largely specific to cortex glia, evidence of GFP-reporter expression was also observed in 

surface glia and the non-CNS Malpighian tubules (309). Thus, the potential of non-cell type 

exclusive expression must be factored into the interpretation of the results, particularly in 

cases where evidence has already been presented.  Secondly, the relative strength of 

expression of each driver must be considered. As with the tissue-specificity, a comparison of 

the chosen drivers regarding expression was performed and major quantitative differences 

in expression were not noted (292). 

Indeed, a number of the most widely used GAL4 drivers also display evidence of non-tissue 

specific expression. The developing eye-specific driver GMR-GAL4 has been reported to 

express in some neuronal cells, in addition to residual expression in the trachea and larval 

wing discs (509, 510). Elav-GAL4, a commonly used pan-neuronal driver, has also shown 

transient expression in embryonic glial cells and wing discs (511, 512). Thus, GAL4-UAS non-

cell type exclusive expression is not a phenomenon exclusive to the glial subtype drivers 

utilized in this chapter, but must be considered in the interpretation nonetheless. 

With these considerations in mind, the glial subtype-specific driver lines utilized in this 

chapter (Table 5.1) were selected for their high degree of tissue specificity (292). The data 

presented here can be thought of as a preliminary investigation using the best available 

genetic tools, designed to gain an insight into the glial subtypes contributing to the 

expanded repeat dsRNA-mediated pathology, therefore paving the way for future studies of 

a more targeted nature. 

5.1 Phenotypical confirmation of the expanded repeat dsRNA construct 

combinations 

One advantage of the established expanded repeat dsRNA model (45) is the spectrum of 

severity of disruptive eye phenotypes caused through the expression of different 

combinations of repeat transgenic insertions (341). Thus, one line each of the ‘Weak’, 

‘Medium’ and ‘Strong’ dsRNA expression phenotypes were selected to be used in this 

chapter. The independent use of these different phenotypes provides a range of 

pathological severities with which to interrogate the glial subtypes, potentially highlighting 
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any toxicity thresholds present. Indeed, pan-glial expression of either a ‘Medium’ or ‘Strong’ 

dsRNA construct combination has been previously shown to cause lethality, while the 

‘Weak’ construct combination is viable but displays a neurodegenerative phenotype and 

reduced survival (52). Thus, in addition to neurodegeneration, viability and survival can also 

provide insights into glial cell contributions to the dsRNA pathology. 

The independent dsRNA lines were first expressed in an eye-specific manner to confirm their 

relative pathology (Figure 5.1). Since the ‘Weak’ line comprises of two repeat transgenes 

(1xCAG~100/1xCUG~100) compared to four transgenes (2xCAG~100/2xCUG~100) for both the 

Figure 5.1: The relative levels of eye disruption caused through the expression of the 

CAG.CUG~100
 repeat dsRNA construct combinations within the Drosophila eye. The ‘Weak’ line 

contains two transgenes (1xCAG~100 & 1xCUG~100) while the ‘Medium’ and ‘Strong’ lines each 

contain four transgenes (2xCAG~100 & 2xCUG~100). In each case the GMR-GAL4 driver is used to 

express the constructs in the eye. A) Expression of two independent UAS transgenes lacking 

inserts. B) Expression a ‘Weak’ repeat dsRNA construct combination. C) Expression of four 

independent UAS transgenes lacking inserts. D) Expression of a ‘Medium’ repeat dsRNA 

construct combination. E) Expression of a ‘Strong’ repeat dsRNA construct combination. All 

crosses were performed at 25°C. The dsRNA lines used in this experiment are CAG.CUG~100
W2, 

CAG.CUG~100
M2 and CAG.CUG~100

S2 (45, 341). 
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‘Medium’ and ‘Strong’ lines, separate UAS construct-containing lines representing the 

appropriate number of transgenes were used as controls. 

Eye-specific expression of the chosen ‘Weak’ dsRNA construct combination leads to no 

apparent structural disruptions or loss of pigmentation compared to the 2xUAS control 

(Figure 5.1 A-B). This result in is agreeance with previously observed results, where no 

phenotypical effects are produced through the expression of ‘Weak’ dsRNA construct 

combinations (341). In contrast, expression of the ‘Medium’ dsRNA construct combination 

results in both structural defects and loss of pigmentation compared to the 4xUAS control 

(Figure 5.1 C-D). In line with this, the ‘Strong’ dsRNA line enhances this disruption, along 

with the appearance of black necrotic spots scattered throughout the eye (Figure 5.1 E). 

Taken together, these results confirm the pathology gradient of the dsRNA construct 

combinations when expressed within the eye. 

5.2 Pan-glial expression of repeat dsRNA is highly pathogenic 

To confirm that this pathology gradient is also present in glial cells, the pan-glial driver Repo-

GAL4 was utilized to express the dsRNA construct combinations in order to both recapitulate 

the previously observed neuronal dysfunction (52) and to serve as a standard to which the 

contribution of the specific glial subtypes could be assessed. Of note, Repo-Gal4 expresses in 

all glial cells except midline glia (347). Midline glia are distinct in that they derive from the 

meso-ectoderm as opposed to the neuroectoderm and undergo programmed cell death 

before adulthood (513, 514) and thus will not be discussed here. 

In concordance with previous results, pan-glial expression of either the ‘Medium’ or ‘Strong’ 

dsRNA construct combinations both resulted in complete lethality, highlighting the 

susceptibility of glial cells when challenged with the repeat dsRNA. In contrast, the ‘Weak’ 

dsRNA line was viable, allowing the use of the dsRNA-expressing flies in the RING assay to 

assess locomotor function. An impact on locomotor function was observed in 1 day old 

‘Weak’ dsRNA flies (Figure 5.2 A) shown by a significantly decreased climbing ability 

(p<0.0001) which persisted to at least 8 days (p<0.0001) (Figure 5.2 B). The high level of 

locomotor dysfunction mirrors previous observations, where pan-glial expression of a  
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Figure 5.2: Pan-glial expression of a ‘Weak’ dsRNA construct combination causes locomotor 

dysfunction and impacts survival. In each case the Repo-GAL4 driver is used to express the construct 

combinations in all glial cells. A-B) The climbing ability of Repo-GAL4 flies was assessed at A) 1 day of age 

and B) 8 days of age using the RING assay system. Shown are the average mean and standard deviation 

for each dataset. Each data point represents a single trial for a vial of 10-20 flies. 2-tailed Student’s t-tests 

were performed to determine significance. **** p<0.0001. C-D) The survival of Repo-GAL4 flies displayed 

in graphical C) and tabulated D) form.  The dsRNA line used for this set of experiments is CAG.CUG~100
W2. 

The control line used for this set of experiments is 2xUAS. 
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‘Weak’ dsRNA construct combination did not cause lethality but severely impacted the 

climbing ability of the affected flies (52). In addition, the ‘Weak’ dsRNA flies displayed 

impaired survival compared to control flies (Figure 5.2 C), to the point where only 9 flies 

(17.65% of the total collected at day 1) remained after 15 days (Figure 5.2 D). As a result, 

RING assays were unable to be performed on the Repo-GAL4 flies at 15 days due to low 

numbers in the dsRNA group. 

The high level of neurotoxicity caused through pan-glial expression of repeat dsRNA 

demonstrates the sensitivity of glial cells to repeat dsRNA. Though pan-neuronal expression 

of repeat dsRNA also leads to a neurodegenerative phenotype (45), the impact on both 

locomotor function and viability are reduced in magnitude when compared to that of pan-

glial expression. Given that locomotor function is a phenotypical readout of neurons, these 

observations also highlight glial cells as important non-cell autonomous determinants of 

dsRNA-mediated neuronal dysfunction. 

Following on from successful replication of the severe neurodegenerative phenotype 

observed through pan-glial expression of the repeat dsRNA, the next stage involved 

repeating the locomotor assessment of dsRNA-expressing flies using glial subtype-specific 

GAL4 drivers. The purpose of these experiments was to tease apart the specific Drosophila 

glial subsets and attempt to pair their known biological functions within the CNS and their 

contribution in driving the dsRNA-mediated neurodegeneration, subsequently providing 

insight into the potential biological pathways that are rate-limiting in the expanded repeat 

disease model. 

5.3 Subperineural glial expression of repeat dsRNA is pathogenic 

Sub-perineural glia (SPG), along with perineural glia (PG) represent the glial subtypes (also 

known as surface glia) responsible for the formation of the Drosophila blood-brain barrier 

(BBB), a protective covering designed to separate the central and peripheral nervous 

systems (PNS) from the circulating hemolymph. In particular, subperineural glia are critical 

for establishing both diffusive and chemical barriers between the two areas (280, 515). 

Connecting the large sheet-like subperineural cells are septate junctions, which are 
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analogous to the tight junctions located between epithelial cells in the vertebrate BBB (280). 

Subperineural glial cells share common progenitors with perineural and cortex glia within 

both the larval brain and ventral nerve cord (281, 285). Additionally, within the PNS they 

arise from several sensory organ progenitors (SOPs), one of which also generates wrapping 

glial cells (283). During development subperineural glial cells do not proliferate, instead 

expanding greatly in size in order to connect to one another via septate junctions (280). 

Maintaining BBB integrity is recognized as critical to normal neuronal function in both 

vertebrates and invertebrates; disruption of the barrier allows the migration of circulating 

systemic molecules and exogenous microbes into the tightly regulated CNS, often leading to 

detrimental neuroinflammation and subsequent CNS dysfunction (271, 516). As such, 

breakdown of the BBB has been linked to a number of neurodegenerative diseases, 

including AD and HD (508). Therefore, the effect of BBB-specific expression of repeat dsRNA 

was investigated through the use of a GAL4 driver specific to subperineural glia (denoted as 

SPG-GAL4). This driver has been previously shown to be uniformly expressed in all 

subperineural glia cells with no known off-target expression (292). 

Targeted expression of the ‘Weak’ dsRNA construct combination in subperineural glial cells 

led to a significant climbing deficiency after 1 day (p=0.0035) (Figure 5.3 A) that further 

progressed at day 15 (p<0.0001) (Figure 5.3 B). However, the observed locomotor 

dysfunction was not accompanied by a detrimental impact on survival (Figure 5.3 C & D), 

suggesting that neurodegeneration and survival are not always intrinsically linked to one 

another as observed with pan-glial expression of the repeat dsRNA (Figure 5.2). To confirm 

the contribution of subperineural glia to the dsRNA-mediated neuronal pathology, the 

‘Medium’ and ‘Strong’ dsRNA construct combinations were examined under control of the 

SPG>GAL4 driver. Strikingly, subperineural-specific expression of the ‘Strong’ construct 

combination resulted in complete lethality, and therefore could not be assessed for 

neuronal function. However, this result provides an immediate indication of the importance 

of subperineural glia in mediating the dsRNA pathology. This is supported by the results 

obtained in flies expressing the ‘Medium’ dsRNA construct combination in subperineural 

cells (Figure 5.4). The ‘Medium’ flies develop a climbing defect that is present after 1 day 

(p=0.0412) (Figure 5.4 A) and is further enhanced at 15 days (p=0.0083) (Figure 5.4 B). In  
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Figure 5.3: Subperineural glia-specific expression of a ‘Weak’ dsRNA construct combination causes 

locomotor dysfunction but does not impact survival. In each case the SPG-GAL4 driver is used to 

express the construct combinations in subperineural glial cells. A-B) The climbing ability of SPG-

GAL4 flies was assessed at A) 1 day of age and B) 15 days of age using the RING assay system. 

Shown are the average mean and standard deviation for each dataset. Each data point represents a 

single trial for a vial of 10-20 flies. 2-tailed Student’s t-tests were performed to determine 

significance. ** p>0.01, **** p<0.0001. C-D) The survival of SPG-GAL4 flies displayed in graphical C) 

and tabulated D) form.  The dsRNA line used for this set of experiments is CAG.CUG~100
W2. The 

control line used for this set of experiments is 2xUAS. 
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Figure 5.4: Subperineural glia-specific expression of a ‘Medium’ dsRNA construct combination 

impacts locomotor function and survival. In each case the SPG-GAL4 driver is used to express the 

construct combinations in subperineural glial cells. A-B) The climbing ability of SPG-GAL4 flies was 

assessed at A) 1 day of age and B) 15 days of age using the RING assay system. Shown are the 

average mean and standard deviation for each dataset. Each data point represents a single trial 

for a vial of 10-20 flies. 2-tailed Student’s t-tests were performed to determine significance. * 

p<0.05, ** p<0.01. C-D) The survival of SPG-GAL4 flies displayed in graphical C) and tabulated D) 

form.  The dsRNA line used for this set of experiments is CAG.CUG~100
M2. The control line used for 

this set of experiments is 4xUAS. 
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addition, the survival of the flies is severely impacted, with only four SPG>dsRNA (‘Medium’) 

flies (9.76%) remaining after 29 days (Figure 5.4 C & D). Given the high mortality rate for the 

‘Medium’ flies, it is again possible that the surviving flies represent the healthiest subjects, 

thus performing to a better standard in the locomotor assay. Regardless, the ‘Medium’ flies 

tested still developed a significant decline in climbing ability, further highlighting the rate-

limiting role of subperineural glia in the neurodegenerative phenotype. Formation and 

maintenance of the BBB is essential for protecting the CNS from circulating systemic factors 

and pathogenic agents, whilst providing a tightly regulated environment to facilitate proper 

neuronal signalling. As such, it is not surprising that the presence of pathogenic dsRNA 

specifically within the SPG leads to a high level of neurodegeneration and mortality. It can 

be speculated that expression of the dsRNA leads to permeabilization of the BBB, allowing in 

the migration of systemic microbes and immune cells that can both exacerbate 

inflammation and kill cells within the CNS. This raises the question of whether a non-cell 

autonomous inflammatory response directed against subperineural cell-localized dsRNA 

precedes and plays a causal role in BBB breakdown, in addition to the post-BBB breakdown 

response to circulating factors. 

In concordance with these results is recent work investigating the pathology of expanded 

polyQ tracts within Drosophila glial cells. Yeh and colleagues demonstrated that BBB-specific 

expression of the expanded polyQ disease proteins Ataxin3 (Atxn3) and Huntington (Htt) 

each cause BBB leakage and restrict lifespan (277). In addition, the polyQ proteins affect BBB 

development at the early pupal stage, while only a modest impact on permeability was 

observed after the BBB had already been formed (277). This suggests that disruption to the 

development of the BBB, as opposed to any disturbance of the fully formed barrier itself, 

leads to the permeabilization and the associated CNS dysfunction. The work of Yeh et al 

taken together with the results described here indicate that both the RNA and protein gene 

products derived from repeat expansion lesions initiate CNS dysfunction when expressed 

within subperineural glial cells. Whether or not the dsRNA affects the BBB in a similar 

fashion/timepoint to the polyQ disease proteins is unknown, though it can be hypothesised 

that the dsRNA causes dysfunction during development (given that the neuronal dysfunction 

was observed from day 1) and with ageing (as the dysfunction worsened with age). 



104 

 

Aside from forming a second BBB layer on top of the subperineural cells, little is known 

regarding additional functions carried out by perineural glia (517). Thus, whether or not the 

perineural glia contribute to the dsRNA-mediated pathology should also be examined in 

future as a method of determining if the strong phenotype observed in subperineural cells 

forms part of a wider disruption to the BBB or is specific to other functions performed by 

subperineural glia. 

5.4 Wrapping glial expression of repeat dsRNA is pathogenic 

Wrapping glia are unique compared to other glial subtypes discussed here in that they are 

specific to the PNS rather than the CNS. The wrapping glial cells themselves are ensheathed 

within surface glia that form a peripheral barrier referred to as part of the Drosophila BBB, 

though is more reminiscent of the vertebrate blood-nerve barrier (BNB) (518). The primary 

function of wrapping glia is to enclose individual axons projecting both into and out of the 

CNS (280). In this manner, they are roughly homologous to the CNS-localised ensheathing 

glia (EG), in particular tract-ensheathing glial (TEG) cells. This is supported by the 

observation that a considerable number of glial-specific GAL4 drivers that express in TEG 

also display expression in wrapping glia (292). When comparing the Drosophila PNS to that 

of vertebrates, wrapping glia closely resemble the differentiated Schwann cells that form 

non-myelinating Remak fibres (287, 288). Wrapping glia stem from progenitors in shared 

with subperineural cells in the ventral nerve cord; the neuro-glioblast NB1-3 and a ventral 

SOP (vSOP) (283). Also similar to subperineural cells, wrapping glia do not proliferate but 

lengthen considerably during development to ensheath peripheral nerves (283). 

While considered separate entities, the PNS is frequently implicated in CNS-related 

disorders including PD and ALS (519). Consistent with this, a number of genes studied for 

their role in Drosophila PNS development have been identified as major contributors in 

models of human neurodegenerative disease (520). Of particular relevance is a study linking 

the Drosophila sensory organ development regulator senseless to the pathogenesis of 

spinocerebellar-ataxia 1 (SCA1), a disease grouped with HD as a CAG-mediated repeat 

expansion disease (521). Therefore, wrapping glia provide an excellent tissue to investigate 

potential contributions that the PNS makes in the development of repeat dsRNA pathology. 
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The driver nervana2-GAL4 (nrv2-GAL4) was selected to drive repeat dsRNA expression 

within wrapping glia. While initially reported to express in nerve cells (348, 522), further 

studies revealed that the expression was largely restricted to glial cells (280, 523, 524). 

Recent studies using the nrv2-GAL4 driver report strong expression specifically restricted to 

wrapping glia in addition to residual expression within some subperineural glial cells (288, 

289). Thus, while potential non-wrapping glial cell expression of the dsRNA must be factored 

into the observed results, the nrv2-GAL4 provides the most specific tool to explore if 

peripheral dsRNA pathology can non-cell autonomously lead to nerve cell 

dysfunction/death. 

Wrapping glial-driven expression of the ‘Weak’ dsRNA construct combination did not cause 

any observable neuronal dysfunction in RING assays performed at 1 day of age (p=0.8176) 

(Figure 5.5 A) and at 8 days of age (p=0.7370) (Figure 5.5 B). In addition, the ‘Weak’ dsRNA 

flies displayed a lower rate of mortality over 22 days (85.91% survival) compared with 

control flies (64.13% survival) (Figure 5.5 C-D). This suggests that either expression of dsRNA 

within PNS glia is not pathogenic, or that the ‘Weak’ dsRNA construct combination is not 

potent enough to pass the threshold required for cellular dysfunction. To further explore 

this, both the ‘Medium’ and ‘Strong’ dsRNA construct combinations were also expressed in a 

wrapping glia-specific pattern. After 1 day both sets of dsRNA flies were not significantly 

affected in nerve cell function (‘Medium’ p=0.2663 & ‘Strong’ p=0.0626), though the ‘Strong’ 

flies did exhibit a trend of reduced climbing ability (Figure 5.6 A). However, after 8 days both 

the ‘Medium’ and ‘Strong’ flies displayed highly significant climbing defects (p<0.0001 & 

p<0.0001 respectively) (Figure 5.6 B). In addition, a striking decline in survival was observed 

for both sets of dsRNA-expressing flies between 8-15 days; almost complete mortality was 

observed (Figure 5.6 C-D). Therefore, the stronger dsRNA construct combinations cause a 

high level of pathology when expressed in peripheral glia, clearly displaying a non-CNS 

contribution to neuronal dysfunction. 

These results also provide strong evidence of a pathogenic threshold in wrapping glia that, 

when exceeded, leads to cellular dysfunction. It is plausible that these observations reflect 

the ability of wrapping glia to effectively respond to and remove minor threats, an ability 

potentially superseded by a damaging inflammatory response when challenged by a more  
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Figure 5.5: Wrapping glia-specific expression of a ‘Weak’ dsRNA construct combination does not 

lead to defects in locomotor function or survival. In each case the nrv2-GAL4 driver is used to express 

the construct combinations in wrapping glial cells. A-B) The climbing ability of nrv2-GAL4 flies was 

assessed at A) 1 day of age and B) 8 days of age using the RING assay system. Shown are the average 

mean and standard deviation for each dataset. Each data point represents a single trial for a vial of 10-

20 flies. 2-tailed Student’s t-tests were performed to determine significance. ns p>0.05. C-D) The 

survival of nrv-GAL4 flies displayed in graphical C) and tabulated D) form.  The dsRNA lines used for 

this set of experiments are CAG.CUG~100
W2. The control line used for this set of experiments is 2xUAS. 

The collection of experimental data and analysis was performed under supervision by Karen Raymond. 
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Figure 5.6: Wrapping glia-specific expression of either ‘Medium’ or ‘Strong’ dsRNA construct 

combinations lead to age-dependent climbing defects and reduced survival. In each case the nrv2-

GAL4 driver is used to express the construct combinations in wrapping glial cells. A-B) The climbing 

ability of nrv2-GAL4 flies was assessed at A) 1 day of age and B) 8 days of age using the RING assay 

system. Shown are the average mean and standard deviation for each dataset. Each data point 

represents a single trial for a vial of 10-20 flies. A one-way ANOVA was performed to determine 

significance, with Dunnett’s test performed post hoc in the case of significant differences among the 

datasets. ns p>0.05, **** p<0.0001. C-D) The survival of nrv-GAL4 flies displayed in graphical C) and 

tabulated D) form.  The dsRNA lines used for this set of experiments are CAG.CUG~100
M2 & 

CAG.CUG~100
S2. The control line used for this set of experiments is 4xUAS. The collection of 

experimental data and analysis was performed under supervision by Karen Raymond. 



108 

 

substantial ‘non-self’ molecule load. However, whether wrapping glia can function in a 

phagocytic capacity is not well known, though given their close morphological resemblance 

to CNS ensheathing glia it appears likely that this could be a shared function (292). In 

addition, wrapping glia-derived signalling is critical for both the proliferation of perineural 

glia and the expansion of septate junction contacts between subperineural glial cells, 

highlighting their important role in BBB formation (289). Therefore, the expression of dsRNA 

within wrapping glia may lead to disruptions to BBB integrity, allowing systemically-derived 

molecules and cells to enter the nervous system where they can contribute to the 

inflammatory response. 

Notably, these results are similar to the outcomes observed with subperineural glial-specific 

expression of the dsRNA (Section 5.3), further supporting the idea that dsRNA-mediated 

BBB dysfunction plays a key role in the glial-derived phenotypes in this model. Based on 

previous observations using nrv2-GAL4 (288), it is possible that the dsRNA construct 

combinations may be expressed weakly in subperineural glia when using this driver and that 

this expression could contribute to the pathology in the ‘Medium’ and ‘Strong’ lines (Figure 

5.6). Observations that the ‘Weak’ dsRNA construct combination is pathogenic in 

subperineural glia (Figure 5.3) but not in wrapping glia (Figure 5.5) suggest it is unlikely that 

this low level of residual expression would be sufficient to cause any form of cellular 

dysfunction, though this would require further confirmation. If indeed dsRNA-mediated 

breakdown of the BBB is a common pathogenic mechanism in both subperineural and 

wrapping glial cells, the stronger phenotypes observed in the SPG>dsRNA flies may 

represent the fact that the BBB surrounding both the brain and the peripheral nerves are 

affected as opposed to only peripheral nerves in nrv2>dsRNA flies. 

Whether the high mortality observed in ‘Medium’ and ‘Strong’ dsRNA lines is a consequence 

of significant neuronal dysfunction or a separate systemic mechanism is unknown. However, 

ubiquitous expression of the ‘Weak’, ‘Medium’ and ‘Strong’ dsRNA construct combinations 

all cause complete lethality (data not shown). This suggests that the mortality observed here 

stems from neuronal dysfunction, given that nrv2>dsRNA flies are able to successfully 

emerge from pupation. 
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Taken together, these results demonstrate that peripheral wrapping glia are able to 

negatively influence CNS function when challenged with repeat dsRNA, potentially through 

the inhibition of correct BBB formation and the subsequent infiltration of systemically-

derived cells and molecules/danger signals into the CNS. 

5.5 Ensheathing glial expression of repeat dsRNA is pathogenic or mildly 

neuroprotective based on dsRNA construct combination 

Ensheathing glia (EG) represent the most morphologically diverse glial subtype; they are the 

first of the glial subtypes able to infiltrate the neuropil, their flattened cell bodies extending 

to form boundaries to isolate distinct neuropil compartments (279, 285). In addition, an 

anatomically distinct form of ensheathing glia appear to wrap axon tracts as they project 

from the neuropil, similar in morphology to peripheral wrapping glia that ensheath nerve 

fibres outside of the CNS (292). Both ensheathing and astrocyte-like glia (collectively termed 

as neuropil glia) share common progenitors during embryogenesis in both the brain and 

ventral nerve cord (285). Embryonically-derived neuropil glia (primary glia) are unique in 

that they undergo cell death during pupal development, followed by the generation of adult 

(secondary) neuropil glia through a second wave of gliogenesis (291). Whether all secondary 

neuropil glia derive from common progenitors is not well understood. 

The role of ensheathing glia in a phagocytic capacity within the Drosophila CNS has been 

well documented, including the engulfment of axonal debris following injury (293) and 

removal of apoptotic neuronal cells during development (525). Ensheathing glia express 

components of the Draper pathway that are vital for recognition and glial engulfment of 

neuronal debris (293). This process is tightly regulated by differentially spliced Draper 

isoforms that can either promote axonal engulfment or terminate the phagocytic activity to 

restore the glial cells to a resting state (351). The age-related decline of Draper translation 

observed in the ensheathing glia of aged flies leads to a striking reduction in phagocytic 

responses (296). Importantly, neurodegeneration has been demonstrated to be an outcome 

of defective Draper-mediated phagocytic activity (297, 308), highlighting the importance of 

ensheathing glia function in the context of neurodegenerative disease. Thus, expression of 
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the repeat dsRNA was investigated in ensheathing cells to determine if their dysfunction 

formed part of the pathology in Repo>dsRNA flies. 

Of note, the glial cell specific GAL4 driver screen performed by Kremer et al. did not identify 

an expression pattern that was specific to all (neuropil-associating and tract-associating) 

ensheathing glial cells, potentially because such a driver may not exist (292). As a result, two 

separate EG-specific lines were used for this set of experiments; R75H03-GAL4 (TEG-GAL4) 

drives expression in tract ensheathing glia (TEG) specifically, while R56F03-GAL4 (NEG-

GAL4) drives expression specifically within neuropil ensheathing glia (NEG) and a small 

population of TEG cells (292). Therefore, the results have been interpreted in the knowledge 

that not all ensheathing glia are expressing the repeat dsRNA in each case. 

Using the tract ensheathing glia-specific driver to express the ‘Weak’ dsRNA construct 

combination in flies led to a significant reduction in climbing ability after 1 day (p=0.0001) 

(Figure 5.7 A) that persisted at day 15 (p=0.0001) (Figure 5.7 B). In addition, TEG>dsRNA 

(‘Weak’) flies experienced a decreased rate of survival (45.30% survival at day 29) compared 

to the control flies (83.48% survival at day 29) (Figure 5.7 C-D). Thus, the results show that 

tract ensheathing glia-specific expression of a ‘Weak’ dsRNA construct combination caused 

detrimental impacts on both neuronal function and survival, suggesting that tract-

associating ensheathing glia contribute to the dsRNA-mediated pathology. 

To confirm the participation of tract ensheathing glia in the neurodegenerative phenotype, 

either ‘Medium’ or ‘Strong’ dsRNA construct combinations were also expressed using the 

TEG-GAL4 driver. Interestingly, while the ‘Strong’ dsRNA flies displayed a climbing defect at 

day 1 (p=0.0080), the ‘Medium’ flies displayed improved climbing ability compared to the 

control (p=0.0001) (Figure 5.8 A). The ‘Medium’ line continued to display improved climbing 

ability at day 15 (p=0.0011), while remarkably the ‘Strong’ flies also significantly improved 

compared to the control (p=0.0332) (Figure 5.8 B). Survival of both of the dsRNA lines were 

not noticeably impacted compared to the control, though any potential impact on survival 

could be masked by the poor survival of the control line (Figure 5.8 C-D). Thus, in tract 

ensheathing glia, the ‘Weak’ dsRNA construct combination causes a higher level of 

pathology than either of the stronger dsRNA construct combinations. This contrasts with the  
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Figure 5.7: Tract ensheathing glia-specific expression of a ‘Weak’ dsRNA construct combination 

leads to locomotor dysfunction and a moderate impact on survival. In each case the TEG-GAL4 

driver is used to express the construct combinations in tract ensheathing glial cells. A-B) The 

climbing ability of TEG-GAL4 flies was assessed at A) 1 day of age and B) 15 days of age using the 

RING assay system. Shown are the average mean and standard deviation for each dataset. Each 

data point represents a single trial for a vial of 10-20 flies. 2-tailed Student’s t-tests were 

performed to determine significance. **** p<0.0001. C-D) The survival of TEG-GAL4 flies displayed 

in graphical C) and tabulated D) form.  The dsRNA line used for this set of experiments is 

CAG.CUG~100
W2. The control line used for this set of experiments is 2xUAS. 
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Figure 5.8: Tract ensheathing glia-specific expression of either ‘Medium’ or ‘Strong’ dsRNA 

construct combinations cause varied effects on locomotor function whilst not impacting survival. In 

each case the TEG-GAL4 driver is used to express the construct combinationss in tract ensheathing 

glial cells. A-B) The climbing ability of TEG-GAL4 flies was assessed at A) 1 day of age and B) 15 days of 

age using the RING assay system. Shown are the average mean and standard deviation for each 

dataset. Each data point represents a single trial for a vial of 10-20 flies. A one-way ANOVA was 

performed to determine significance, with Dunnett’s test performed post hoc in the case of 

significant differences among the datasets. * p<0.05, ** p<0.01, **** p<0.0001. C-D) The survival of 

TEG-GAL4 flies displayed in graphical C) and tabulated D) form.  The dsRNA lines used for this set of 

experiments are CAG.CUG~100
M2 & CAG.CUG~100

S2. The control line used for this set of experiments is 

4xUAS. 
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pathology gradient observed in SPG>dsRNA flies (Figures 5.3 & 5.4), demonstrating how 

different glial cell subtypes are affected by the presence of ‘non-self’ molecules. 

To determine if this phenomenon is specific to tract ensheathing glia or encompasses the 

broader ensheathing glial cell morphologies, the dsRNA construct combinations were 

expressed specifically in the neuropil-associating EG (NEG) using the NEG-GAL4 driver. In 

concordance with the TEG>dsRNA (‘Weak’) findings, NEG-specific expression of the ‘Weak’ 

construct combination led to a significant reduction in climbing ability at day 1 (p<0.0001) 

(Figure 5.9 A) that persisted to day 15 (p<0.0001) (Figure 5.9 B). Survival was not impacted 

compared to the control (Figure 5.9 C-D), though again the control line displayed reduced 

survival. Given the consistent climbing defects observed in flies expressing the ‘Weak’ dsRNA 

construct combination in either tract or neuropil ensheathing glia, it appears that repeat 

dsRNA causes dysfunction in these cells using weaker construct combinations. 

However, a consistent gradient of dsRNA-mediated pathology (Weak<Medium<Strong) is 

not observed; NEG-specific expression of the ‘Medium’ construct combination displays 

improved climbing ability compared to the control (p=0.0001), while climbing improvement 

is also observed in the ‘Strong’ dsRNA flies (p=0.0376) (Figure 5.10 A). However, an age-

related decline in climbing ability is observed in both sets of dsRNA flies, whereby the 

‘Medium’ and ‘Strong’ flies no longer display any significant climbing improvement 

compared to the control (p=0.1356 & p=0.7064 respectively) (Figure 5.10 B). In addition, the 

‘Strong’ dsRNA flies display a reduction in survival, though this appears to predominantly 

occur after the final RING assay timepoint of day 15, while the ‘Medium’ flies are not 

impacted (Figure 5.10 C-D). The lack of pathology in the stronger NEG>dsRNA lines is 

consistent with the results observed using the TEG-GAL4 driver (Figure 5.8), suggesting that 

this phenomenon is common to all ensheathing glia as opposed to specific morphologies. 

Supporting this is the finding in Kremer et al that the majority of ensheathing glia-specific 

GAL4 lines expressed to some degree in both tract and neuropil ensheathing glia, suggesting 

that many commonalities exist between the distinct ensheathing glial morphologies (292). 
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Figure 5.9: Neuropil ensheathing glia-specific expression of a ‘Weak’ dsRNA construct 

combination causes locomotor dysfunction but does not impact survival. In each case the NEG-

GAL4 driver is used to express the construct combinations in neuropil ensheathing glial cells. A-B) 

The climbing ability of NEG-GAL4 flies was assessed at A) 1 day of age and B) 15 days of age using 

the RING assay system. Shown are the average mean and standard deviation for each dataset. 

Each data point represents a single trial for a vial of 10-20 flies. 2-tailed Student’s t-tests were 

performed to determine significance. **** p<0.0001. C-D) The survival of NEG-GAL4 flies 

displayed in graphical C) and tabulated D) form.  The dsRNA line used for this set of experiments is 

CAG.CUG~100
W2. The control line used for this set of experiments is 2xUAS. 
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Figure 5.10: Neuropil ensheathing glia-specific expression of either ‘Medium’ or ‘Strong’ dsRNA 

construct combinations do not lead to defects in locomotor function, while a moderate impact 

on survival is observed in the ‘Strong’ dsRNA line. In each case the NEG-GAL4 driver is used to 

express the construct combinationss in neuropil ensheathing glial cells. A-B) The climbing ability of 

NEG-GAL4 flies was assessed at A) 1 day of age and B) 15 days of age using the RING assay system. 

Shown are the average mean and standard deviation for each dataset. Each data point represents a 

single trial for a vial of 10-20 flies. A one-way ANOVA was performed to determine significance, 

with Dunnett’s test performed post hoc in the case of significant differences among the datasets. ns 

p>0.05, * p<0.05, **** p<0.0001. C-D) The survival of NEG-GAL4 flies displayed in graphical C) and 

tabulated D) form.  The dsRNA lines used for this set of experiments are CAG.CUG~100
M2 & 

CAG.CUG~100
S2. The control line used for this set of experiments is 4xUAS. 
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The observation with both ensheathing glia drivers in that the ‘Weak’ dsRNA construct 

combination displays a higher degree of pathology than both the ‘Medium’ and ‘Strong’ 

construct combinations raises the question as to whether the neuroprotective functions of 

ensheathing glia are upregulated to scale with the magnitude of the perceived threat or 

injury. This idea is supported by recent work showing that STAT92E-mediated feed-forward 

signalling of the Draper phagocytic pathway is amplified and becomes more widespread 

across glial cells within the Drosophila CNS in response to the severity of axonal injury (295). 

Therefore, it is plausible that the stronger dsRNA lines induce an enhanced phagocytic 

response that is capable of removing/degrading the ‘non-self’ dsRNA and subsequently 

avoiding glial dysfunction. In contrast the ‘Weak’ dsRNA construct combination may only 

induce a modest phagocytic response that is unsuccessful in removing the threat, leading to 

a persistent inflammatory response that is damaging within the CNS. It must be noted that 

the reported scaled phagocytic response is through the detection of axonal injury rather 

than glial dysfunction (295), though the possibility exists that ensheathing glia are able to 

recognize the ‘non-self’ dsRNA on neighbouring glia of the same subtype and act 

accordingly. While Drosophila glia show limited physical interactions between both cells of 

the same subtype and neighbouring subtypes (292), a non-cell autonomous signalling 

mechanism could allow neighbouring glial cells to assist in the clearance of dysfunctional 

cells. Whether this process could involve other glial subtypes is not certain; neuropil 

ensheathing glia form defined boundaries with cortex glia and surround astrocyte glial cell 

bodies, while astrocyte processes have also been observed projecting into the layer of 

ensheathing glia within the neuropil (292). 

Recent work has also demonstrated the important role of Draper-mediated phagocytosis in 

neuropil glia; facilitating the removal of apoptotic neuronal bodies during pupal 

metamorphosis (525). Thus, an alternative plausible explanation is that the stronger 

construct combinations induce apoptosis in the affected cells which leads to their 

subsequent removal, minimizing tissue damage. Conversely, the ‘Weak’ dsRNA construct 

combination-derived dsRNA may not warrant the induction of phagocytic and apoptotic 

machinery, and as such is able to persist and cause problems that manifest in adulthood as 

neuronal dysfunction. 
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Taken together, the ensheathing glia appear to be able to resist the pathology associated 

with the presence of the stronger dsRNA construct combinations, whilst expression of a 

‘Weak’ dsRNA construct combination causes ensheathing glial dysfunction and subsequent 

neurodegeneration. While the mechanism(s) regarding this disparity between the dsRNA 

construct combinations is currently unknown, the ability of glial cells to detect and scale the 

magnitude of their phagocytic response to ‘non-self’ material may play a key role. In 

addition, this process may involve communication between distinct glial subtypes. Recent 

experimental work has demonstrated the requirement of an axon-derived degeneration 

cues to induce Draper-mediated signalling (526); whether damaged ensheathing glial cells 

(and indeed any subtype of glial cells) are able to produce similar ‘eat me’ signals to trigger 

phagocytic activity from neighbouring glia is also not well understood. Temporal control of 

the ensheathing glia-specific drivers using an inducible inhibitor of GAL4 such as GAL80 

could also be considered to determine the critical timepoint at which the ‘non-self’ repeat 

dsRNA is either removed or allowed to persist. 

5.6 Astrocyte-like glial expression of repeat dsRNA is pathogenic or mildly 

neuroprotective based on dsRNA construct combination 

Astrocyte-like glia (ALG) comprise the second Drosophila glial subtype that associates with 

the neuropil; infiltrating the region with dense branch-like processes (279, 298). As 

previously discussed, primary both astrocyte-like and ensheathing glia derive from common 

progenitors during embryogenesis before undergoing cell death, after which secondary 

neuropil glia are generated via a set of uncharacterised precursors (291). Recent work has 

demonstrated the requirement of Notch pathway signalling for the differentiation of newly 

generated neuropil glia into astrocytes in the larval ventral nerve cord (527), while it is 

unclear what signalling pathways control the differentiation of secondary neuropil glia into 

the adult astrocyte-like and ensheathing glia (528). 

The highly ramified structure of Drosophila astrocyte-like cells bears a striking morphological 

resemblance to mammalian astrocytes, in addition to sharing a number of functional 

similarities including synaptic remodelling and neurotransmission (160, 298). Furthermore, 

astrocyte-like glia have also been demonstrated to display phagocytic activity during 
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Drosophila development; steroid signalling prompts larval astrocytes to transform into bona 

fide phagocytes capable of both pruning neurons and eliminating neuronal debris (302). 

Interestingly, astrocyte-like glia do not appear to act in this manner in the adult Drosophila 

brain; they lack expression of key engulfment effectors Drpr/dCed6 and do not respond to 

neuronal injury (293). However, work in mouse has shown that mammalian astrocytes 

continue to display phagocytic activity in the adult CNS, in part through MEGF10, the 

orthologue of the Drosophila Draper (188). 

In order to investigate if the presence of ‘non-self’ repeat dsRNA can affect astrocyte 

function and thus contribute to the observed pan-glial pathology observed (Figure 5.2), the 

astrocyte-like glia-specific R86E01-GAL4 (ALG-GAL4) driver line was obtained. ALG-specific 

expression of the ‘Weak’ dsRNA construct combination led to a significant reduction in 

climbing ability at day 1 compared to the control (p<0.0001) (Figure 5.11 A) that persisted 

through to day 15 (p<0.0001) (Figure 5.11 B). However, the survival of the ALG>dsRNA 

(‘Weak’) flies was not affected, displaying a similar survival trajectory to the control (Figure 

5.11 C-D). The loss of climbing ability without a decline in survival suggests that the presence 

of the ‘Weak’ dsRNA construct combination in astrocyte-like glia may be adequate to cause 

neuronal dysfunction but not of a pathogenic level to cause mortality. Similar results were 

observed when the weak line was expressed specifically within subperineural (Figure 5.3) 

and neuropil ensheathing glia (Figure 5.9), while the ‘Weak’ line expressed in tract 

ensheathing glia caused increased mortality in addition to a climbing defect (Figure 5.7). 

Conversely, expression of either the ‘Medium’ or ‘Strong’ dsRNA construct combinations did 

not lead to climbing dysfunction; rather the ‘Medium’ displayed significantly improved 

climbing ability compared to the control (p=0.0062) whereas the ‘Strong’ line was not 

affected (p=0.0687) (Figure 5.12 A). At 15 days the ‘Medium’ line maintained a climbing 

improvement (p=0.0016), while the ‘Strong’ line again displayed no difference compared to 

the control (p=0.2998) (Figure 5.12 B). Interestingly, both dsRNA construct combinations 

were severely impacted in terms of survival (Figure 5.12 C-D). However, because the 

increased mortality occurred after the day 15 RING assay timepoint, the potential death of  
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Figure 5.11: Astrocyte-like glia-specific expression of a ‘Weak’ dsRNA construct combination 

causes locomotor dysfunction but does not impact survival. In each case the ALG-GAL4 driver is 

used to express the construct combinations in astrocyte-like glial cells. A-B) The climbing ability 

of ALG-GAL4 flies was assessed at A) 1 day of age and B) 15 days of age using the RING assay 

system. Shown are the average mean and standard deviation for each dataset. Each data point 

represents a single trial for a vial of 10-20 flies. 2-tailed Student’s t-tests were performed to 

determine significance. **** p<0.0001. C-D) The survival of ALG-GAL4 flies displayed in graphical 

C) and tabulated D) form. The dsRNA line used for this set of experiments is CAG.CUG~100
W2. The 

control line used for this set of experiments is 2xUAS. 
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Figure 5.12: Astrocyte-like glia-specific expression of either ‘Medium’ or ‘Strong’ dsRNA construct 

combinations do not lead to defects in locomotor function, while survival is impacted in both dsRNA 

lines. In each case the ALG-GAL4 driver is used to express the construct combinations in astrocyte-like 

glial cells. A-B) The climbing ability of ALG-GAL4 flies was assessed at A) 1 day of age and B) 15 days of 

age using the RING assay system. Shown are the average mean and standard deviation for each 

dataset. Each data point represents a single trial for a vial of 10-20 flies. A one-way ANOVA was 

performed to determine significance, with Dunnett’s test performed post hoc in the case of significant 

differences among the datasets. ns p>0.05, ** p<0.01. C-D) The survival of ALG-GAL4 flies displayed in 

graphical C) and tabulated D) form.  The dsRNA lines used for this set of experiments are 

CAG.CUG~100
M2 & CAG.CUG~100

S2. The control line used for this set of experiments is 4xUAS. 
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the most severely affected flies is not a factor when assessing the climbing performance of 

the ‘Medium’ and ‘Strong’ flies.  

The ALG>dsRNA RING assay results presented bear a striking similarity to those obtained 

when using the ensheathing glia drivers (Section 5.5), namely the loss of climbing ability in 

flies expressing the ‘Weak’ dsRNA construct combination and the somewhat paradoxical 

improvement/lack of decline in flies expressing the more potent ‘Medium’ or ‘Strong’ 

construct combinations. This raises the question of whether scaled phagocytic signalling is a 

shared mechanism amongst all neuropil glia. Given that astrocyte-driven CNS debris 

clearance appears to be restricted to larval development (293, 302), this scenario would 

implicate the developmental phase as the critical stage at which the dsRNA can either be 

degraded effectively or persist into adulthood and instigate cellular dysfunction. Restricting 

EG/ALG-specific expression of the dsRNA to different developmental stages in the flies using 

a temperature-inducible GAL80 construct or drug-inducible GeneSwitch construct would be 

highly informative to this end and would likely highlight the critical temporal window for 

intervention. 

Cell-to-cell communication between mammalian astrocytes has been well-established (529) 

and potential evidence of glial cell communication after severe axonal injury in adult flies 

has been recently reported (295). Therefore, if hypothesising on the underlying mechanisms 

in an adult-centric manner, it is possible that the more pathogenic dsRNA construct 

combination-mediated toxicity in ALG induces the release of signals to nearby EG cells, 

instructing the clearance of the affected cells and resolving the insult. Conversely, neuronal 

injury signals in vertebrates can also induce an astrocytic change of state into so-called 

‘reactive’ astrocytes (179). After acute injury astrocytes respond to initiate debris clearance 

and form a “scar” to prevent the spreading of inflammation (250, 302). However, reactive 

astrocytes can also be induced into a neurotoxic state through microglial signalling, leading 

to the release of pro-inflammatory molecules and neuronal cell death (247). 

Whether a similar transformation in Drosophila astrocyte-like glia can occur is unknown; 

indeed they are capable of phagocytic activity and repair after CNS injury (302), though a 

clear microglial orthologue capable of inducing a pro-inflammatory astrocytic state is yet to 

be described. However, a recent report of a novel microglial-like cell type (termed MANF 

Immunoreactive Cells or MiCs) appearing under certain conditions in the Drosophila pupal 
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CNS (303) may provide the closest microglial orthologue currently described. The MiCs 

expressed both the glial engulfment receptor Draper and immune transcription factor 

Relish, though the ability of these cells to communicate with both neurons and glial cells has 

not been investigated. Interestingly, MiCs were found to localise to the neuropil region of 

the brain, an area occupied by astrocytic processes (303), raising the possibility of a localised 

interaction between the two cell types. Indeed, MiCs were only detected using the pan-glial 

driver Repo-GAL4 and did not appear when using glial subtype-specific driver lines, 

suggesting that the appearance of MiCs either represent a global glial cell response or a 

failure of the glial subtype drivers to match the expression strength of Repo-GAL4 (303). 

However, the specific glial drivers used in this study have all been reported to express at a 

stronger level than two independent Repo-GAL4 drivers (292), thus not excluding the 

potential of signalling between astrocyte-like glia and MiCs. Further study into the 

conditions required for MiC induction and their signalling program will be important for 

shedding light on the exciting possibility of microglial-like immune activity within Drosophila 

and in response to the expression of repeat dsRNA. 

5.7 Cortex glial expression of repeat dsRNA causes limited pathogenicity 

Cortex glia (CG) are situated within the cortical region of the Drosophila CNS, forming a 

sponge-like structure of membranes that surround and ensheath individual neuronal cell 

bodies (279). Cortex glia share common progenitors with surface glia in both the larval brain 

and ventral nerve cord during development (285). Embryonically-derived cortex glial cells 

are maintained through to adulthood, though proliferation does occur during the larval 

stages to form secondary cortex glia (282). Given their close contact with neuronal bodies, 

cortex glial cells have been suggested to provide trophic and metabolic support to neurons 

(530), though little more is known about their normal biological roles within the CNS. 

Despite this, recent work has highlighted the importance of cortex glia in proper neuronal 

function. Compromised cortex glial development through the loss of ceramide 

phosphoethanolamine synthase (cpes) prevented adult cortex glia from successfully 

ensheathing neuronal cell bodies, leading to light-induced epileptic seizures in a Drosophila 

model of photosensitive epilepsy (PSE) (306). 
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Therefore, experiments were undertaken to test if the presence of repeat dsRNA within 

cortex glial cells could cause a decline in function, contributing to the high level of 

neurotoxicity observed using Repo-GAL4. Using the CG-GAL4 driver, the dsRNA construct 

combinations were expressed specifically within cortex glia and the resulting CG>dsRNA flies 

were assayed for locomotor function and survival. Expression of the ‘Weak’ dsRNA construct 

combination in cortex glial cells did not lead to locomotor dysfunction in flies 1 day old 

(p=0.2799) (Figure 5.13 A), however after 15 days (Figure 5.13 B) the dsRNA flies displayed 

better climbing ability compared to the control flies (p=0.0436). In addition, the survival of 

‘Weak’ flies was not impacted (Figures 5.13 C & 5.13 D). This suggests that the ‘Weak’ 

dsRNA construct combination is not sufficiently abundant nor pathogenic to drive 

neurodegenerative processes when expressed specifically within cortex glia. 

Expression of the either ‘Medium’ or ‘Strong’ dsRNA construct combinations led to 

significantly reduced climbing ability in flies after 1 day (p=0.0421 & p=0.0065 respectively) 

(Figure 5.14 A). However, the reduced climbing ability of both dsRNA groups did not display 

age-related progression compared to the control flies (p=0.9993 & p=0.9999 respectively) 

after 15 days (Figure 5.14 B). Though the climbing ability of both the ‘Medium’ and ‘Strong’ 

dsRNA flies were unaffected with age, the survival of the ‘Medium’ flies was severely 

impacted, with only 12.5% of flies surviving after 29 days, compared to 71.7% of the control 

flies and 64.17% of the ‘Strong’ flies (Figure 5.14 C & D). Given that the dying flies likely 

represent those most sensitive to any form of potential dsRNA-mediated pathology, there 

exists the possibility that any locomotor dysfunction in the ‘Medium’ flies after 15 days is 

masked by way of the death of the affected flies, thus leaving only the “fittest” flies 

remaining. However, the survival of the ‘Strong’ flies is not impacted in a similar fashion, 

indicating that other stochastic factors such as bacterial growth may be responsible for the 

increased mortality of the ‘Medium’ flies. 

Cortex glia are unique in that they alone populate the cortical regions of the Drosophila CNS 

and are thus the only glial cells in direct contact with neuronal cell bodies (292). As such, it 

stands to reason that tightly regulating cortex glia homeostasis is of vital importance in 

maintaining neuronal function. The observation that cortex glial cells express draper (drpr) 

and ced6, vital components responsible for the clearance of apoptotic cells within the  
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Figure 5.13: Cortex glia-specific expression of a ‘Weak’ dsRNA construct combination does not 

affect locomotor dysfunction or survival. In each case the CG-GAL4 driver is used to express the 

construct combinations in cortex glial cells. A-B) The climbing ability of CG-GAL4 flies was assessed 

at A) 1 day of age and B) 15 days of age using the RING assay system. Shown are the average mean 

and standard deviation for each dataset. Each data point represents a single trial for a vial of 10-20 

flies. 2-tailed Student’s t-tests were performed to determine significance. ns p>0.05, * p<0.05. C-D) 

The survival of CG-GAL4 flies displayed in graphical C) and tabulated D) form.  The dsRNA line used 

for this set of experiments is CAG.CUG~100
W2. The control line used for this set of experiments is 

2xUAS. 
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Figure 5.14: Cortex glia-specific expression of either ‘Medium’ or ‘Strong’ dsRNA construct 

combinations affect locomotor function early but do not progress with age, while differing effects 

on survival are observed. In each case the CG-GAL4 driver is used to express the construct 

combinations in cortex glial cells. A-B) The climbing ability of CG-GAL4 flies was assessed at A) 1 day 

of age and B) 15 days of age using the RING assay system. Shown are the average mean and 

standard deviation for each dataset. Each data point represents a single trial for a vial of 10-20 flies. 

A one-way ANOVA was performed to determine significance, with Dunnett’s test performed post 

hoc in the case of significant differences among the datasets. ns p>0.05, * p<0.05, ** p<0.01. C-D) 

The survival of CG-GAL4 flies displayed in graphical C) and tabulated D) form.  The dsRNA lines used 

for this set of experiments are CAG.CUG~100
M2 & CAG.CUG~100

S2. The control line used for this set of 

experiments is 4xUAS. 
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Drosophila CNS (531), has led to the proposal that cortex glial cells exhibit phagocytic 

function within the adult Drosophila cortex where known phagocytic ensheathing glia are 

unable to act (293). In support of this, recent evidence has shown that cortex glial-specific 

knockdown of draper leads to the accumulation of apoptotic neuronal corpses during 

development, leading to age-dependent neurodegeneration (308). 

Given the lack of neurodegeneration as observed in Figure 5.13 & Figure 5.14, it could be 

speculated that cortex glia are capable of clearing ‘non-self’ dsRNA in development in a cell-

autonomous fashion. This could potentially occur through the incorporation of dsRNA into 

neuronal corpses targeted for degradation if draper is required, given its role as an 

extracellular sensor. Interestingly, cortex glial expression of the ‘Medium’ dsRNA construct 

combination causes a high level of mortality, though it is unclear as to whether this mortality 

represents an age-dependent failure of phagocytic machinery or stochastic factors, 

particularly given that the ‘Strong’ flies do not show a similar level of mortality. As it stands, 

cortex glia remain vastly understudied (160) and so further research will be critical to 

understanding the normal biological functions of cortex glia and how they can respond to 

neuronal insults such as the repeat dsRNA utilized here. 

5.8 Phagocytic effectors contribute modestly to the dsRNA eye pathology 

The lack of neuronal dysfunction observed when the stronger dsRNA construct 

combinations are expressed in neuropil glia (and cortex glia) (see sections 5.5, 5.6 & 5.7) 

raises the possibility that non-cell autonomous phagocytosis is a neuroprotective 

mechanism in response to dsRNA challenge. The importance of the glial engulfment 

receptor Draper in mediating CNS phagocytosis is well documented (310). In addition, 

Draper has been demonstrated to clear Aβ42 and ameliorate behavioural phenotypes in a 

Drosophila model of AD (532), highlighting its importance as a neuroprotective agent in 

neurodegenerative disease models. Indeed, glial cells migrate to the eye imaginal disc during 

development to aid in the formation of visual circuitry (292, 533) and remain important 

within the adult eye supporting photoreceptor cells (534). Therefore, the established dsRNA 

eye screening model (described in Chapter 4) was utilized to determine if Draper can 

suppress expanded repeat dsRNA-mediated eye pathology. 
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Draper expression decreases with age in Drosophila, impairing glial cells in their response to 

CNS injury (296). In addition, RNAi silencing of draper leads to degeneration in muscle cells 

as well as the CNS (297). As such, the potential contribution of Draper to the dsRNA 

pathology was first investigated in flies with reduced draper expression (Figure 5.15). The 

introduction of a heterozygous insertion mutation did not show any structural disruptions 

alone (Figure 5.15 B), while RNAi knockdown of draper alone caused disrupted ommatidial 

patterning compared to the control (compare Figure 5.15 A & C). This supports previous 

observations that draper silencing leads to tissue degeneration (297). The heterozygous 

draper insertional mutant had no obvious effect on the dsRNA pathology (Figure 5.15 B’), 

while combination of the RNAi draper knockdown with GMR>dsRNA led to a loss of 

pigmentation and ommatidial disruption (Figure 5.15 C’), though this appears to be an 

additive effect when compared to expression of the individual components alone (Figure 

Figure 5.15: Reduction of Draper (drpr) has minimal effect on repeat dsRNA-mediated eye 

pathology. In each case the GMR-GAL4 driver is used to express the constructs in the eye. A) 

Expression of a single UAS transgene with no insert. B) A heterozygous draper MiMIC 

transgenic insertion construct alone. C) Expression of a draper RNAi knockdown construct 

alone. A’) Co-expression of repeat dsRNA together with a single UAS transgene. B’) Co-

expression of repeat dsRNA together with a heterozygous draper MiMIC transgenic insertion 

construct. C’) Co-expression of repeat dsRNA together with a draper RNAi knockdown 

construct. The experiment was performed at 25°C using the CAG.CUG~100
M3 dsRNA line. 
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5.15 C & A’). Taken together, these results suggest that Draper is important under normal 

homeostatic conditions but may not play a neuroprotective role in response to ‘non-self’ 

dsRNA challenge. 

Of note, the eye was used as the tissue model for this experimental work, as opposed to glial 

cells within the CNS where Draper has been heavily characterised (293, 294). Indeed, the 

observation that loss of Draper specifically within the eye causes disruptions to eye 

patterning suggests that Draper may perform a similar homeostatic role within the eye. 

Additionally, apoptotic cell death is a normal and required process during eye development 

(535), and so the known role of Draper in processing apoptotic cells during CNS 

development (308) may also be key to ensure proper structural patterning within the eye. 

In order to further assess if Draper can contribute to dsRNA pathology, three alternate 

Draper isoforms (Draper-I, Draper-II & Draper-III) under the control of UAS sites were 

individually expressed (Figure 5.16). Previous work characterising these isoforms revealed 

that Draper-I is the predominant isoform present within the CNS and strongly promotes glial 

engulfment functionality following axonal injury (351). In contrast, Draper-II acts to 

negatively regulate Draper-I signalling and glial engulfment, thus representing a novel 

mechanism for the fine-tuning of glial phagocytosis under injury conditions (351). The role of 

Draper-III in regulating glial engulfment is unknown; expression of Draper-III is not sufficient 

to drive nor inhibit phagocytosis (351). 

Expression of Draper-I or Draper-III alone (Figure 5.16 B & 5.16 D respectively) did not lead 

to any obvious phenotypic changes compared to the control (Figure 5.16 A). However, 

expression of Draper-II alone (Figure 5.16 C) led to the appearance of black necrotic spots 

and slight abnormalities in eye shape towards the posterior side which were fully penetrant 

among scored eyes. This suggests that constitutive inhibition of Draper-mediated 

engulfment is detrimental to normal eye structure. Intriguingly, expression of Draper-II was 

not observed during development as opposed to both Draper-I and Draper-III (351). 

Furthermore, Draper is critical for the clearance of apoptotic neuronal bodies during 

development (308, 525). Therefore, the necrotic spots may represent neuronal corpses, 

allowed to persist into adulthood due to a curtailed phagocytic response. Co-expression of 
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Draper-I with GMR>dsRNA led to a restoration of red pigmentation in the eye and 

patterning (Figure 5.16 B’) when compared to expression of the dsRNA alone (Figure 5.16 

A’). The restoration of pigmentation and patterning was also observed when Draper-III was 

co-expressed, though these changes were almost negligible (Figure 5.16 D’). Expression of 

Draper-II in conjunction with dsRNA shows necrotic spots along with minor disruptions to 

eye shape and structure (Figure 5.16 C’), consistent with the phenotype being the additive 

effect of repeat dsRNA or Draper-II expression alone (Figure 5.16 A’ & C respectively). 

Thus, promotion of glial engulfment through Draper-I activity may play a minor 

neuroprotective role in response to the presence of repeat dsRNA, while blockage of this 

phagocytic activity causes dysfunction to normal eye development regardless of whether 

dsRNA is present. However, it is important to note that endogenous expression of Draper 

was not ablated in this experiment, and thus may contribute to the phenotypic contributions 

Figure 5.16: Expression of individual Draper (drpr) isoforms have minor effects on repeat 

dsRNA-mediated eye pathology. In each case the GMR-GAL4 driver is used to express the 

constructs in the eye. A) Expression of a single UAS transgene with no insert. B-D) Ectopic 

expression of three different Draper isoforms alone. A’) Co-expression of repeat dsRNA together 

with a single UAS transgene. B’-D’) Co-expression of repeat dsRNA together with three different 

Draper isoforms. The experiment was performed at 25°C using the CAG.CUG~100
M3 dsRNA line. 
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(or lack thereof) observed. Indeed, glial expression of Draper-II in wild type flies completely 

ablates glial engulfment while overexpression of either Draper-I or Draper-III failed to 

enhance phagocytic activity beyond that of control flies (351). Since overexpression of 

Draper-I appears to suppress both the roughness and pigment loss caused via dsRNA 

expression (compare Figure 5.16 A’ & B’), it is plausible that enhanced Draper engulfment 

activity through increased Draper-I may prove beneficial when challenged with disease gene 

products. Supporting this, overexpression of Draper-I in a wild type Draper background 

reverses Aβ42 accumulation and the associated neurological phenotypes in a Drosophila 

model of AD (532). 

Taken together, these results indicate that Draper may play a minor restrictive role in repeat 

dsRNA pathology. Loss of Draper or negative regulation of engulfment through Draper-II 

expression causes a disruptive eye phenotype alone, highlighting the important homeostatic 

function of Draper-mediated signalling. However, Draper loss does not further enhance the 

dsRNA pathology, suggesting that other degradative pathways may be upregulated in 

response to the presence of ‘non-self’ dsRNA. In contrast, overexpression of Draper mildly 

suppresses the dsRNA pathology and could reflect increased phagocytic capacity within the 

eye. 

Activation of Draper-mediated phagocytic activity often requires signalling and/or 

recognition of so-called “eat-me” signals that present on apoptotic cells or neuronal debris 

(308). Phosphatidylserine (PS) is a conserved and well characterised example; the 

phospholipid becomes exposed on the outer membrane of apoptotic cells to be recognized 

by phagocytic machinery, including Draper in Drosophila (536, 537). Indeed, proteins can 

also act as ligands via their binding to cells destined for phagocytosis/apoptosis. This 

includes macroglobulin complement-related (Mcr), a thioester-containing protein (TEP) 

closely related to mammalian complement proteins (538, 539). Mcr was first characterised 

as a required binding component for the phagocytosis of the pathogenic yeast species 

Candida albicans in Drosophila (540), thus demonstrating its importance in inflammation. 

Two independent studies have also demonstrated that Mcr is critical for the formation of 

septate junctions (SJs), connections between epithelial cells that form paracellular barriers 
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to separate specialized organ compartments, including the Drosophila blood-brain barrier 

(BBB) (541, 542). 

More recent evidence has uncovered a dual role for Mcr in activating Draper-mediated 

phagocytosis; inducing autophagy in neighbouring cells during development and recruiting 

macrophages to epithelial wounding sites (543). Notably, the mammalian Draper orthologue 

Megf10 is bound and activated by the complement protein C1q in order to phagocytose 

apoptotic cells (544), indicating that this interaction is highly conserved. C1q is important in 

initiating debris elimination through the complement cascade by marking pathogens and 

excess synaptic material (189, 545). However, C1q can also promote microglia-mediated 

neurodegeneration via synaptic pruning in AD mouse models (230) and through its secretion 

from microglia to induce neurotoxic astrocyte reactivity, a process observed in a number of 

neurodegenerative diseases (247). Therefore, the process by which ligands activate 

phagocytic machinery needs to be tightly controlled to avoid elimination of essential cells. 

Thus, Mcr was altered in a GMR>dsRNA background to determine if it participated in dsRNA 

pathology. Introduction of an Mcr P-element insertional mutation did not cause any 

noticeable eye phenotype alone (Figure 5.17 B), while RNAi knockdown of Mcr alone led to 

a very minor disruption to eye patterning compared to the control (Figure 5.17 A & C). The 

RNAi knockdown-induced disruption may indicate that, like Draper, the importance of Mcr 

in clearing apoptotic cells during development is extended to the eye.  

While the heterozygous Mcr mutation appeared to mildly suppress the dsRNA pathology 

(Figure 5.17 A’ & B’), RNAi knockdown of Mcr was lethal in a GMR>dsRNA background 

(Figure 5.17 C’), suggesting that Mcr could be important for restricting dsRNA pathology. 

The McrEY07421 P-element insertion contains UAS sites at the 3’ end which may lead to the 

misexpression of neighbouring genes (including Mcr) when combined with GMR-GAL4. Thus, 

the possibility of misexpression leading to the suppression of the dsRNA pathology must be 

considered. Indeed, both Mcr alterations modify the dsRNA eye pathology, highlighting Mcr 

as a candidate for future targeted studies concerning its role in dsRNA-mediated 

pathogenesis. Additionally, transcript analysis of GMR>McrEY07421 could be undertaken to 

determine the nature of Mcr alteration in this line. Finally, the use of an endogenous Mcr 
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mutant line could be used to test for potentially confounding misexpression, though none 

were available for testing. 

The lethality observed when combining GMR>dsRNA with the Mcr RNAi knockdown (Figure 

5.17 C’) may be caused through the inhibition of homeostatic Mcr developmental functions 

compounded with dsRNA-mediated cellular dysfunction. Alternatively, it could potentially 

reflect the loss of the ability of Mcr to aid in clearance of the dsRNA in cells targeted for 

phagocytosis. Of note, a previous microarray analysis identified Mcr as significantly 

upregulated in response to the presence of repeat dsRNA (341), suggesting that Mcr may 

indeed form part of a protective response directed against ‘non-self’ dsRNA. Given the 

importance of Mcr in development (541-543), a GAL4 inhibitor such as the temperature-

sensitive GAL80 could be used in order to block Mcr RNAi knockdown during development. 

Figure 5.17: Effect of Mcr alteration on repeat dsRNA-mediated eye pathology. In each case the 

GMR-GAL4 driver is used to express the constructs in the eye. A) Expression of a single UAS 

transgene with no insert. B) A heterozygous P-element transgenic insertion alone. C) Expression of 

an Mcr RNAi knockdown construct alone. A’) Co-expression of repeat dsRNA together with a single 

UAS transgene. B’) Co-expression of repeat dsRNA together with a heterozygous P-element 

transgenic insertion. C’) Co-expression of repeat dsRNA together with an Mcr RNAi knockdown 

construct. The experiment was performed at 25°C using the CAG.CUG~100
M3 dsRNA line. 
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This would allow adult flies to emerge (lethal in Figure 5.17 C’) and permit further 

examination of the apparent “helpful or harmful” interactions between Mcr and the repeat 

dsRNA. 

5.9 Chapter Discussion 

Once thought of as purely neuron-centric in terms of cause and consequence, a large body 

of research has brought glial cells to the forefront as non-cell autonomous drivers of 

neurodegenerative disease pathogenesis (225, 546). Emerging evidence has demonstrated 

that both loss of normal homeostatic CNS function and/or gain of pathogenic signalling 

function can promote neurodegeneration, highlighting the requirement for a tightly 

regulated CNS environment (242, 247, 547). The experiments presented in this chapter 

describe a preliminary study into the contributions made by individual Drosophila glial 

subtypes in mediating dsRNA pathology and how their normal biological functions can 

provide insight into the underlying non-cell autonomous disease mechanisms. The extreme 

level of neuronal dysfunction observed via pan-glial expression of the repeat dsRNA was first 

recapitulated to serve as a point of comparison when determining the contributions made 

by glial subtypes. As previously observed, only flies expressing the weaker dsRNA construct 

combination were viable but suffered severe neurodegeneration and mortality. This strongly 

indicated a non-cell autonomous mechanism underlying the pathology and warranted the 

further dissection of glial cell functionality in this disease model. As summarised in Figure 

5.18, expression of repeat dsRNA specifically within subperineural or wrapping glia appeared 

to most faithfully recapitulate the graded level of pathology observed through pan-glial 

dsRNA expression. The expression of dsRNA in subperineural glial cells resulted in significant 

pathology, including complete lethality in the ‘Strong’ dsRNA flies and climbing deficiencies 

in the ‘Weak’ and ‘Medium’ flies. In addition, expression of either the ‘Medium’ or ‘Strong’ 

dsRNA construct combinations specifically within peripheral wrapping glia led to severe 

neurodegeneration and mortality, while the ‘Weak’ dsRNA construct combination did not 

cause any pathology. 

What commonalities exist between subperineural and wrapping glial cells? Firstly, both cell 

types are derived from a shared set of progenitors in the ventral nerve cord and PNS (283). 
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Secondly, while subperineural glia constitute the main structural aspect of the invertebrate 

BBB, signals derived from wrapping glia are required for the expansion of septate junctions 

connecting subperineural cells, thus both demonstrating importance in BBB development 

(289). Thirdly, both cell types do not proliferate through development but instead expand 

greatly in size postembryonically (283). Therefore, it appears unlikely that either cell type 

can be compensated for through proliferation in the event of death or dysfunction. Finally, 

the septate junctions that connect subperineural cells appear most sensitive to pan-glial 

expression of the HD polyQ-expanded protein (277), further supporting the idea that 

subperineural and wrapping glial-specific expression of dsRNA both share BBB dysfunction 

as a common cause of the observed pathology. Whether any non-neuronal cells within the 

CNS augment the observed pathology through neuroinflammatory signalling is unknown, 

given that any pro-inflammatory roles of Drosophila glial cells are not well characterised at 

this stage.  

Importantly, disruptions to BBB integrity have been reported in a mouse model of HD (548), 

in addition to post-mortem tissue samples and induced pluripotent stem cells (iPSCs) 

derived from HD patients (548, 549). Further work in HD mice has demonstrated that BBB 

breakdown is an early pathological event that precedes symptom onset (276). The extent of 

systemic molecule and cellular infiltration into the CNS in HD models is yet to be explored in 

detail, though hyperactivation of peripheral immune cells in HD has been linked to CNS 

dysfunction in several studies (550, 551). 

 

In contrast to a scale of progressive pathology, repeat dsRNA-mediated neurotoxicity in 

neuropil glia (TEG, NEG & ALG) appears largely restricted to the weakest dsRNA construct 

combination used, while the stronger dsRNA construct combinations only display limited 

neuronal dysfunction and but lead to age-dependent mortality in NEG and ALG flies (Figure 

5.18). This goes directly against the established pathology gradient observed in the 

Drosophila eye (Figure 5.1) and raises the possibility of neuroprotective functions in these 

glial cells. Both ensheathing and astrocyte-like glia display phagocytic function through the 

Draper glial engulfment pathway to remove axonal debris (293, 302). Indeed, astrocyte-like 

glia only appear to have this capability during development (293), which potentially 

highlights the developmental stages as a critical “make or break” timepoint whereby the  
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Figure 5.18: Summary of results for individual glial cell subtypes expressing expanded repeat dsRNA. 

The GAL4 drivers used are listed in Table 5.1. W, M and S refer to the ‘Weak’, ‘Medium’ and ‘Strong’ 

dsRNA construct combinations respectively. A) Summary of RING assay results. In each case the % 

climbing ability is compared to the relevant control flies. No impact indicates no significant loss of 

climbing ability, ↓ p<0.05, ↓↓ p<0.01, ↓↓↓ p<0.001. Lethal indicates that no flies successfully 

emerged from pupation. For all glial subtypes, Unaged represents RING assays taken at Day 1. Aged 

represents the last timepoint tested for individual subtypes. For All glia and WG, Aged represents Day 

8. For SPG, TEG, NEG, ALG and CG, Aged represents Day 15. B) Summary of survival results. Colour code 

indicates the difference in percentage flies remaining between the experimental flies and the 

appropriate control flies. Lethal indicates that no flies successfully emerged from pupation. Complete 

mortality indicates the death of all flies before the testing timepoint. Not tested indicates that the flies 

did not suffer complete mortality but were not tested at the timepoint. SPG, subperineural glia; WG, 

wrapping glia; TEG, tract ensheathing glia; NEG, neuropil ensheathing glia; ALG, astrocyte-like glia; CG, 

cortex glia 
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repeat dsRNA is either degraded or persists to exert toxicity within the CNS. Furthermore, 

the Draper pathway can be upregulated globally within the Drosophila CNS in order to scale 

with the severity of axonal injury (295). Thus, it is tempting to speculate that the stronger 

dsRNA construct combinations elicit a more substantial phagocytic or apoptotic (or both) 

response capable of handling the increased ‘non-self’ material load, whereas the ‘Weak’ 

dsRNA construct combination induces a dampened response that allows the dsRNA to 

persist and cause the subsequent neuronal dysfunction. 

Can glia with phagocytic function recognise and engulf dysfunctional glial cells as well as 

neuronal debris? Inhibition of Draper prevents the clearance of axonal debris (293, 294) and 

so it would be of great interest to determine whether proper neuronal function can be 

maintained in flies expressing ensheathing/astrocyte-specific dsRNA when phagocytic 

capacity is ablated. Intriguingly, astrocyte-like glia can also initiate neurite clearance and 

synaptic pruning in development through non-Draper pathways (301, 302), indicating that a 

level of functional redundancy may be present to prevent complete ablation of phagocytic 

function upon pathogenic challenge. 

When compared to the mammalian CNS, ensheathing glia and astrocyte-like glia appear to 

be roughly related to microglia and astrocytes respectively as far as function and 

morphology are concerned. Microglia act as resident phagocytes in the CNS, migrating to 

sites of neuronal injury and pathogenic insult (177), while astrocytes display phagocytic 

activity through the Draper orthologue MEGF10 in order to engulf synapses, in addition to a 

conserved role in neurotransmitter homeostasis (160, 188). However, both microglia and 

astrocytes can exhibit functional changes of state upon CNS insult/injury to promote pro-

inflammatory signalling and neuronal cell death (179, 507). Furthermore, these functional 

and transcriptional shifts towards pathology become more pronounced with age and 

coincide with neuronal decline (248, 552, 553). Though ensheathing and astrocyte-like glial 

cells of the Drosophila CNS have not yet been shown to undergo similar helpful-to-harmful 

shifts in function, aged flies are significantly delayed in their engulfment response to axonal 

debris after injury which is paired with a concomitant decrease in Draper protein levels 

(296). Indeed, flies expressing the stronger dsRNA constructs in either neuropil ensheathing 

or astrocyte-like glia display age-dependent mortality (Figure 5.18 B), which may represent a 
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similar age-related decline in glial engulfment activity. Thus, it will be an exciting future 

prospect to determine if Drosophila neuropil glia also take on a neuroinflammatory change 

of state with age, particularly in the context of neurodegenerative disease models such as 

the repeat dsRNA model used in this work. 

Finally, recent evidence has uncovered the appearance of microglial-like MANF 

Immunoreactive Cells (MiCs) that appear within the developing CNS under conditions of 

upregulated immune signalling, autophagy and silencing of the neurotrophic factor MANF 

(303). Through their expression of Draper and the immune regulator Relish, MiCs appear to 

display the capacity for both phagocytic activity and immune signalling (303), raising the 

intriguing possibility of an interaction with neuropil glia upon dsRNA challenge. However, 

further characterisation surrounding the conditions under which MiCs are induced and their 

functions within the CNS will need to occur in order to support this hypothesis. 

Cortex glia are distinct in this work in that there does not appear to be any defined pattern 

of pathology based on dsRNA construct combination (Figure 5.18). The ‘Weak’ dsRNA 

construct combination displayed no detectable neuronal dysfunction, whereas the ‘Medium’ 

and ‘Strong’ construct combinations displayed age-dependent mortality, though this was 

more pronounced in the ‘Medium’ line. Indeed, cortex glia are also unique in terms of CNS 

localisation; they are the sole occupant of the cortical region, forming vast honeycomb-like 

structures that ensheath neuronal cell bodies (279). Being the only glial cell type to be in 

direct contact with neuronal bodies, it stands to reason that cortex glia themselves require 

protection in order to insulate neurons against CNS injury and pathogenic insults. Cortex glia 

have been reported to express Draper and other components of the phagocytic machinery 

(531) but do not appear to function in this capacity in the context of axonal injury (293). 

However, cortex glial specific expression of Draper is vital for the programmed clearance of 

apoptotic neurons during development (308), which could mean that cortex glial-driven 

phagocytic activity may serve a basal function during development, as opposed to transient 

upregulation in response to either neuronal injury and/or steroidal signalling in neuropil glia 

(293, 302). This idea is supported by the fact that expression of the ‘Weak’ dsRNA construct 

combination that caused pathology in neuropil glia did not affect flies when expressed in 

cortex glia (Figure 5.18), suggesting that a basal level of degradation may suffice for turning 
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over the repeat dsRNA and preventing a heightened neuroinflammatory response. Of 

course, the possibility exists that neuropil glia can extend membranes into cortex glial 

territory upon dsRNA insult to aid in removing the threat non-cell autonomously. The 

normal roles of cortex glia are still not well defined (160), therefore further basic research 

may uncover novel cortex glia functions that can better describe the results observed here. 

Given the key role of Draper in non-cell autonomous phagocytosis and the possibility of this 

process acting protectively in response to dsRNA, the Drosophila eye was used as a 

qualitative model to determine if Draper could suppress the expanded repeat dsRNA 

pathology. Upregulation of the engulfment receptor Draper also led to a modest 

suppression in dsRNA pathology, while Draper reduction in a GMR>dsRNA background did 

not lead to a reciprocal enhancement. Draper has been well characterised as a glial 

engulfment receptor that is upregulated in response to axonal injury (293-295, 351) and is 

capable of clearing Aβ42 in the Drosophila brain (532), but whether Draper can also respond 

to and clear dsRNA material is unknown. Given that Draper activation is modulated based on 

injury severity within the CNS (295), it should be determined if ectopic expression of the 

positive phagocytic regulator isoform Draper (I) leads to a more pronounced suppression of 

dsRNA eye pathology caused via a “Strong” dsRNA construct combination (as shown in 

Figure 5.1 E) as opposed to the “Medium” dsRNA construct combination used in Figure 5.16. 

The reduction of Draper ligand Mcr caused lethality upon RNAi reduction in a GMR>dsRNA 

background, suggesting that Mcr may restrict dsRNA pathology. A possible scenario is that 

Mcr reduction in conjunction with dsRNA expression causes lethality due to the loss of 

function in its roles in septate junction formation and autophagy (541-543). Consistent with 

this hypothesis, expression of repeat dsRNA in subperineural glial cells, responsible for 

septate junction formation, was highly pathogenic, while autophagy restricts the dsRNA eye 

pathology (52). The introduction of a heterozygous Mcr insertional mutation supressed the 

dsRNA pathology, though this may be due to GMR-GAL4 driven misexpression of Mcr and 

neighbouring genes. Transcript analysis in future could prove helpful in determining how 

Mcr levels are altered in this mutant line. Indeed, that fact that the insertional Mcr mutant 

also modifies the dsRNA pathology further highlights Mcr as a candidate gene for future 

work to further define its role in expanded repeat dsRNA pathogenesis. 
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The results described in this chapter act as a pilot study into the contributions of individual 

glial subtypes towards dsRNA-mediated nerve cell dysfunction that has been observed 

previously (52). Based on pairing the results with the known biological functions of each glial 

subtype, the findings suggest that BBB breakdown is a key event in driving the pathogenic 

process, while phagocytosis may be vital for degrading the repeat dsRNA and preventing its 

persistent activation of inflammation. 

While the approach taken in this study focuses on the contribution of single glial subtypes, it 

is highly likely that non-glial cell autonomous communication and responses from other glial 

subtypes underlie the results observed. A limitation of the GAL4-UAS system is that only a 

single specific cell type can generally be manipulated (314), making it difficult to explore the 

potential for non-cell autonomous mechanisms. However, the establishment of 

independent binary expression systems including LexA/LexAop (554) and the Q system (555) 

provide the necessary tools to dissect the non-glial cell autonomous roles hypothesised in 

this chapter. For example, if a knockdown of draper is produced specifically within 

ensheathing glia, are neighbouring cortex glia and/or astrocyte-like glia more adversely 

affected by the presence of repeat dsRNA or indeed any disease product or injury? Non-cell 

autonomous pathology can also arise through gain of toxic pro-inflammatory function, 

recently demonstrated through communication from microglia to astrocytes in mammals 

(247). While evidence of glial-derived inflammatory signalling in Drosophila is limited, 

further characterisation of the migratory immunoreactive MiCs (303) may provide evidence 

supporting the key role glial cells play in CNS disease development and progression. 

In summary, the results presented in this chapter highlight the glial cell subtypes involved in 

BBB development and phagocytosis as promising areas for future research regarding dsRNA-

mediated neuronal dysfunction. This opens new avenues for study not only in CAG repeat 

disorders, but potentially in other forms of repeat expansion neurodegenerative disease.  
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CHAPTER 6: Final Discussion 

6.1 Summary of results 

More than 20 dominantly-inherited neurodegenerative disorders are caused by the 

expansion of a repeat sequence beyond a pathogenic threshold (3). A key question is 

whether many different pathways or a common pathogenic pathway underlies this group of 

disorders (4). Additionally, which candidate pathway(s) represent a plausible common 

mechanism(s) in these diseases? Several expanded repeat loci encode polyglutamine (polyQ) 

tracts which have been hypothesised to constitute the pathogenic agent in such disorders 

(termed polyglutamine disorders) (19), though not all disease-causing repeat sequences 

occur in a coding region of the affected gene. Additionally, several expanded repeat loci are 

subject to repeat-associated non-AUG (RAN) translation, and the atypical repeat 

polypeptides translated at such loci have been hypothesised to drive disease pathogenesis 

(556, 557). However, the relative contribution to disease pathogenesis of the different 

repeat polypeptides derived from each reading frame of such loci, in particular the ‘out of 

frame’ 4 and 5 base repeats, is yet to be determined. 

Repeat-containing RNA constitutes a disease gene product common to all dominantly-

inherited expanded repeat disorders and is therefore a plausible common pathogenic agent. 

Bi-directional transcription across these repeat loci, a process observed in all assessed 

expanded repeat disorders (21), produces complementary RNA sequences that are 

predicted to form perfectly double-stranded RNA (dsRNA). Our lab has previously 

established a Drosophila model of expanded CAG repeat disease (rCAG~100.CUG~100) to 

investigate expanded repeat dsRNA as a pathogenic agent; discovering that the innate 

inflammatory system is both required for repeat dsRNA-mediated pathology and 

upregulated in the presence of the repeat dsRNA (4, 45, 52). The primary aim of this thesis 

was to further define the innate inflammatory mechanisms underlying expanded repeat 

dsRNA pathology at both the cellular and molecular pathway level. 

One focus of the work (presented in Chapter 3) was to investigate how the expanded repeat 

dsRNA was recognized by pattern recognition machinery, similar to a pathogenic threat. 
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Using the Drosophila eye as a tissue model, expression of expanded repeat dsRNA led to 

disruptive eye pathology (including ommatidial disruption and areas of necrotic black spots) 

that has been previously documented in this model (45). However, co-expression of CrPV1A, 

a viral suppressor protein that antagonizes the antiviral protein Argonaute-2, potently 

suppressed the eye pathology (Figure 6.1). This suggests that the endogenously-derived 

rCAG~100.CUG~100 molecules are detected by antiviral sensors as a ‘non-self’ threat, thus 

inducing a damaging antiviral inflammatory response that leads to the resultant pathology. 

Following on from this, transcript analysis via qRT-PCR was performed on flies expressing 

either the repeat dsRNA alone or in conjunction with CrPV1A neuronally to uncover 

potential candidate pathways that participate in the dsRNA-mediated pathology. Supporting 

previous work, the Toll inflammatory pathway-induced peptide Drosomycin was significantly 

upregulated following dsRNA expression (52). However, this induction was not attenuated 

by CrPV1A, suggesting that Drosomycin likely does not represent the underlying pathogenic 

pathway leading to dsRNA pathology. Components of the recent-characterised 

STING/IKKβ/Relish antiviral pathway (393) were not significantly altered, highlighting the 

complexity and multiplicity of the Drosophila antiviral signalling response. Intriguingly, the 

uncharacterised gene CG33926, which is potently induced following viral challenge (393, 

394), was significantly downregulated in the presence of repeat dsRNA. Thus, it is likely that 

the expression of ‘non-self’ repeat dsRNA induces a distinct but overlapping set of 

inflammatory genes to that of the Drosophila RNA viruses. 

The Drosophila eye was used as a qualitative tissue model to further define innate 

inflammatory pathways for their participation in expanded repeat dsRNA-mediated 

pathology (Chapter 4). The most compelling finding was that mitochondrial quality control is 

important for restricting the dsRNA-mediated pathology (Figure 6.1); the reduction of key 

conserved mitophagy genes PINK1 and Parkin led to enhanced eye pathology. In addition, 

reduction of mitochondrial antiviral genes Ref(2)P (p62 in mammals) and ECSIT led to a 

similar enhancement, though whether this implicates their role(s) in antiviral signalling or 

mitochondrial quality control (or both) in restricting the dsRNA pathology remains to be 

seen. Preliminary analysis of the evolutionarily-conserved JAK/STAT antiviral pathway 

suggests that it participates minimally in mediating dsRNA pathology, which may reflect the  
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Figure 6.1: Summary of experimental observations in the expanded 

repeat dsRNA Drosophila model. Details referred to in the text. Findings 

from this thesis are denoted with *. Other experimental observations 

from (45, 52, 343) (Appendix A). Figure reproduced with modifications 

from (343) (Appendix A). 
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ability of other pathways to compensate for the loss of JAK/STAT signalling. Taken together, 

the screening experiments performed in Chapter 4 highlighted mitochondria as a key target 

for future investigation regarding dsRNA-mediated pathogenesis. 

Based on previous work demonstrating that expression of expanded repeat dsRNA in 

Drosophila glial cells drives severe neuronal dysfunction (52), the experiments in Chapter 5 

aimed to dissect the non-cell autonomous contributions of individual glial cell subtypes to 

the neurodegeneration observed. The experimental results highlighted that glial cell types 

involved in the formation and maintenance of the Drosophila blood-brain barrier (BBB), 

namely subperineural glia and wrapping glia, are sensitive to the expression of expanded 

repeat dsRNA. Interestingly, glial subtypes capable of phagocytic activity, ensheathing glia 

and astrocyte-like glia, appeared resistant to the expression of more pathogenic dsRNA 

construct combinations, while sensitive to the expression of a weaker construct 

combination. This indicates that they may respond to repeat dsRNA challenge in a graded 

potency-dependent manner, reminiscent of glial phagocytic reactivity in Drosophila 

following injury (295). Using the expanded repeat dsRNA eye model, both phagocytic 

receptor Draper and phagocytic ligand Mcr modestly restrict the pathology, suggesting that 

phagocytosis is protective in response to the expression of repeat dsRNA. Thus, this work 

has implicated the Drosophila BBB and phagocytosis as two potential non-cell autonomous 

determinants of expanded repeat dsRNA-mediated neuronal pathology that warrant further 

definition (Figure 6.1). 

6.2 Implications for expanded repeat neurodegenerative diseases 

Though research on expanded repeat neurodegenerative disease has uncovered several 

commonalities between the individual disease forms, the pathogenic molecular mechanisms 

that underlie disease development remain unresolved (3). In this regard, the use of a 

genetically simpler in vivo model such as Drosophila can be used to model key aspects of 

expanded repeat disease and dissect candidate pathogenic pathways in a more time 

effective manner. The conservation of fundamental molecular pathways and cell types 

between humans and Drosophila means that findings obtained in flies are applicable to key 

mechanistic aspects of the corresponding human condition. This thesis utilizes Drosophila to 
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model one such commonality observed in these diseases – the production of bi-directionally 

transcribed expanded repeat RNA from affected loci, predicted to form perfectly double-

stranded RNA (dsRNA) (21). The work described in this study identifies several mechanisms 

that participate towards the pathology observed in this expanded repeat dsRNA model. 

Firstly, the finding that a viral suppressor protein can effectively ablate the observed dsRNA 

pathology suggests that the expanded CAG.CUG repeat dsRNA is recognized by the 

inflammatory system as a ‘non-self’ molecule, similar to the RNA of a viral pathogen. This 

supports previous work highlighting inflammatory signalling as a key pathogenic event in 

HD; both in the CAG.CUG dsRNA Drosophila model (45, 52) and in preclinical HD patients 

(58, 59). Given that bi-directionally transcribed RNA is a common feature across repeat loci 

(21), these findings may be applicable to the broader range of expanded repeat disorders, 

including those defined by repeat sequences other than a trinucleotide CAG sequence such 

as the pentanucleotide sequences that cause SCA10 and SCA31. Additionally, constitutive 

antiviral inflammation via the ‘non-self’ recognition of endogenous RNA underlies the 

pathogenesis of the neurological auto-inflammatory disorder Aicardi-Goutieres syndrome 

(AGS) and several related disorders (153). The ablation of antiviral RNA sensing machinery 

has been demonstrated to rescue auto-inflammatory pathology associated with genetic 

causes of AGS, highlighting antiviral signalling as a promising therapeutic target (152, 156). 

Indeed, the results described in this study provide evidence that antiviral inflammatory 

signalling also underlies CAG (and potentially other) expanded repeat disorders, and thus 

represents a potential therapeutic target. 

Secondly, that dysfunctional mitochondrial quality control (namely mitophagy) exacerbates 

expanded repeat dsRNA pathology further supports the protective nature of mitophagy in 

HD (472). Taken together with the work describing ‘non-self’ recognition of expanded repeat 

dsRNA, mitophagy may represent a method to remove and degrade such molecular triggers 

before the onset of sustained and damaging inflammatory signalling. Indeed, mitochondrial 

dysfunction has been highlighted as a key aspect of polyglutamine disorders (558), though 

the majority of evidence stems from research on the mutant HTT protein and thus is specific 

to HD. The findings described here provide evidence that mitochondrial dysfunction 
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underlies repeat RNA pathology, and so may constitute a rate-limiting feature common to 

other expanded repeat disorders. 

Finally, the glial cells that govern development of the Drosophila blood-brain barrier (BBB) 

appear to be highly sensitive to the expression of expanded repeat dsRNA. This finding 

dovetails with recent evidence demonstrating Drosophila BBB sensitivity to expanded polyQ 

proteins (277), indicating that multiple gene products derived from expanded repeat loci can 

drive neuronal dysfunction via BBB disruption. In addition, glial cells capable of performing 

phagocytosis were resistant to the presence of repeat dsRNA, suggesting that these cells 

(and/or potentially adjacent phagocytic glial cells) can degrade the dsRNA and thus prevent 

neuronal dysfunction. Thus, BBB integrity and glial-mediated phagocytosis shape as two 

processes important in restricting expanded repeat dsRNA pathology, further adding to the 

wealth of experimental evidence now highlighting glial cells as key non-cell autonomous 

drivers of neurodegeneration (546). 

6.3 Considerations for this study 

The use of Drosophila as an in vivo model organism provides a number of advantages, 

including the range of powerful tools available to genetically dissect candidate pathways and 

events. However, several caveats were present in this study that need to be taken into 

consideration when interpreting results. 

While the expanded repeat Drosophila model used in this thesis highlights co-expressed 

sense (CAG) and antisense (CUG) repeat sequences (forming dsRNA) as a key pathogenic 

factor in expanded repeat disease, independent work in a Drosophila model of FXTAS has 

demonstrated that CGG and CCG expanded repeat sequences are toxic when expressed in 

isolation but lose this toxicity in an RNAi-dependent fashion when co-expressed (49). 

Although appearing at odds with the dsRNA model used here, there are several key 

differences between the models that impede their direct comparison. Firstly, while RAN 

translation does not appear to contribute to the RNA-mediated pathology observed in the 

CAG.CUG dsRNA model used in this thesis (559), it is plausible that the mechanism 

contributes to the ssRNA-driven toxicity observed in the FXTAS model (49). Further 
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characterisation of the Drosophila FXTAS model used in Sofola et al demonstrated that RAN 

translation of the sense CGG repeat sequence in a +1 shifted reading frame (GGC) encodes a 

polyglycine (polyG) tract that drives pathology within the Drosophila eye (23). Additionally, 

both the CGG and CCG repeat sequences are capable on encoding alanine when subject to 

RAN translation in their respective +2 reading frames (GCG and GCC) (23, 560), the resulting 

polyalanine (polyA) tract of which has also been demonstrated to cause pathology within 

the Drosophila eye (561). Indeed, the work performed by Sofola et al predates the discovery 

of the RAN translation mechanism (20) and so the respective CGG/CCG repeat lines were not 

examined for the presence of this phenomenon at the time. Notably however, earlier 

characterisation of the CGG line found that co-expression of the protein chaperone Hsp70 

suppressed the associated eye pathology (562). Thus, co-expression of the CGG and CCG 

repeat sequences may inhibit the ability of the sequences to undergo RAN translation into 

toxic polypeptides, thus ameliorating the eye pathology observed when either sequence is 

expressed alone (49). 

Another key difference relates to the composition of the repeat sequences themselves. The 

CAG/CUG sequences expressed to generate the expanded repeat dsRNA model used in this 

thesis are uninterrupted to a length of approximately 100 copies (45). In comparison, the 

CGG/CCG sequences utilized in Sofola et al both contain several interruption triplets 

interspersed between 90 copies of the respective repeat, shortening the uninterrupted 

sequence to approximately 70 copies (49, 562). Length of uninterrupted repeat has been 

demonstrated to be a key determinant in expanded repeat dsRNA-mediated pathology (48, 

343) (Appendix), which may mirror the length dependency of mammalian RNA sensors for 

dsRNA binding and antiviral signalling (563). Thus, the length and composition of the repeat 

sequences examined by Sofola et al may not be of a sufficient threshold to be recognised as 

‘non-self’ by pattern recognition machinery, avoiding a pathogenic antiviral response. 

Despite differences however, the RNAi antiviral pathway appears to be protective in both 

Drosophila expanded repeat disease models (49, 343) (Appendix). Thus, it would be of 

interest to determine if other components of the antiviral response (namely Dicer-2 and 

R2D2) are also rate-limiting in the Sofola et al model and, if so, whether these interactions 

are of a helpful or harmful nature. 
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When using the eye-based dsRNA pathology as a genetic screening tissue model, Drosophila 

lines containing loss-of-function mutations were not available for some candidate genes. 

When this was the case, RNAi-based knockdown lines (315, 316) were utilized to reduce 

expression of candidate genes. However, the important rate-limiting role of RNAi pathway 

component Dicer-2 (and to a lesser extent Ago2) in the expanded repeat dsRNA pathology 

means that the use of RNAi-based knockdown to reduce candidate gene expression can 

potentially interfere with observed changes to the dsRNA pathology. While no consistent 

phenotypes arose using RNAi knockdowns to implicate RNAi machinery as a confounding 

factor, the results were interpreted with this possibility in mind. In line with this, insertional 

mutations can also lead to the misexpression of adjacent genes (including the target itself) 

when combined with a GAL4 driver. Thus ideally, the findings observed using the dsRNA eye-

based screen should be validated with endogenous loss-of-function mutations for each 

candidate gene if/when they become available. Finally, endogenous heterozygous mutations 

for a particular gene are not restricted to the specified tissue as dictated by GAL4-UAS 

expression (for example the eye, neurons or glial cells). Thus, it is possible that impacts on 

lethality/viability in these flies may be caused via global gene reduction as opposed to 

tissue-specific effects. 

The cellular specificity of GAL4 promoter constructs used in this study, particularly those 

used to investigate the individual glial subtypes must also be considered. While the GAL4 

driver lines used to express the dsRNA in glial cell subtypes were chosen based on their 

demonstrated specificity (292), one must consider the possibility of off-target tissue 

expression. Off-target expression and/or mosaicism have been reported in some of the glial 

cell subtype drivers (292, 309), though these effects are generally at low levels. Indeed, 

widely-used GAL4 drivers GMR-GAL4 and Elav-GAL4 also display trace expression in other 

tissue types (509, 511). Thus, while it is highly unlikely that any off-target tissue expression is 

of a sufficient magnitude to influence the work described in this study, the possibility of this 

must be factored into the interpretation of the results. 

Finally, a note regarding the expanded repeat dsRNA Drosophila model used in this study. 

The production of dsRNA in this model is via co-expression of independent rCAG~100 and 

rCUG~100 constructs in trans (45), as compared to natural bi-directional transcription across 
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expanded repeat loci which occurs via cis-acting transcriptional machinery (21). Therefore, 

only the product(s) of bi-directional transcription across repeat loci, is modelled in this 

study. Indeed, it is the disease gene product (rCAG~100.rCUG~100), not the mechanism of bi-

directional transcription itself, that is implicated in expanded repeat disease pathogenesis. 

Thus, this model provides an excellent method to investigate how the presence of repeat 

dsRNA leads to the disease pathology observed. 

6.4 Future directions 

This study has provided evidence that ‘non-self’ recognition of expanded repeat dsRNA by 

the innate inflammatory system contributes to the resultant dsRNA-mediated disease 

pathology within the Drosophila eye, and that co-expression of a viral suppressor protein 

(CrPV1A) can ablate this pathology. The key next step is to determine the pathway(s) that 

CrPV1A antagonizes to suppress the dsRNA pathology. The necrotic eye pathology observed 

suggests that a form of antiviral cell death is activated, however the nature (non-lytic vs 

lytic) and effectors of the pathway are yet to be determined. Thus, characterisation of cell 

death in the dsRNA model should be an important future focus. In line with this, the 

possibility of an interaction(s) between CrPV1A and Dicer-2 mediated antiviral signalling 

should be investigated, as it is likely to represent a key step of CrPV1A-driven pathology 

suppression. Of note, this may not necessarily constitute a direct inhibition of Dicer-2 itself 

by CrPV1A, but of downstream intermediary molecules (possibly including Ago2). Indeed, 

while the role of Dicer-2 as a pattern recognition receptor is well supported (53-55), little is 

known regarding the signalling components downstream of Dicer-2 that drive antiviral 

inflammation – for example, a functional equivalent of MAVS is yet to be identified in 

Drosophila. Thus, the characterisation of Dicer-2 signalling intermediates forms an essential 

next step in defining the inflammatory mechanism(s) that underlie the expanded repeat 

dsRNA pathology. 

 

The finding that Drosomycin was significantly upregulated while CG33926 was potently 

downregulated in response to the expression of repeat dsRNA is intriguing. Additionally, co-

expression of CrPV1A did not ablate either of these alterations, suggesting that these 

pathways may represent protective mechanisms. Indeed, the flies tested were at an early 
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timepoint (0-1 days old), and as such it would be of interest to perform transcript analysis 

over an extended time course to determine if these changes correlate with the age-

dependent neurodegeneration observed in elavII>dsRNA flies (45). Furthermore, performing 

functional assays to confirm that CrPV1A can ablate dsRNA pathology in the neuronal tissue 

model should be considered. Both lines of further analysis would be valuable in dissecting 

the antiviral pathways that underlie expanded repeat dsRNA pathogenesis from those that 

constitute protective responses. 

Evidence that mitophagy is vital for restricting dsRNA pathology is consistent with the 

hypothesis that mitochondrial dysfunction is a key driving factor in neurodegenerative 

disease (139), and that the processes that govern mitochondrial quality control warrant 

further investigation with regards to expanded repeat disorders. Mitochondrial fission is 

responsible for the separation of healthy and dysfunctional mitochondria and precedes 

mitophagy, so it is plausible that this constitutes a method for the cell to partition the repeat 

dsRNA (along with other inflammatory triggers) into mitochondria that are targeted for 

degradation. Thus, the dsRNA eye pathology screen should be extended to investigate key 

regulators of mitochondrial fission/fusion to determine if this process operates upstream of 

mitophagy to limit dsRNA toxicity. 

The glial subtype analyses regarding dsRNA-mediated neuronal dysfunction opens up a 

number of opportunities for further study, based on the normal functions of glial cells within 

the Drosophila CNS. Disruption to BBB development and/or maintenance appears a likely 

critical pathogenic event in the observed neuronal pathology, though evidence of BBB 

disruption needs to be confirmed in the affected flies. Determining whether peripheral 

inflammatory cells/molecules infiltrate the CNS following dsRNA challenge should be also 

considered and may provide insight into the role of systemic molecules in disease 

pathogenesis. Several glial subtypes within the CNS are capable of phagocytic function(s) 

(160) and it is plausible based on the results described in this study to suggest that they 

perform this process to remove repeat dsRNA and minimise the resultant neurotoxicity. 

Challenging these specific glial cells with the repeat dsRNA following inhibition of 

phagocytosis (for example through Draper ablation) will prove insightful in 1) determining if 

repeat dsRNA is indeed targeted for removal when present within the CNS, and 2) 
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confirming that glial-mediated phagocytosis is an important process for restricting dsRNA-

mediated CNS pathology. Indeed, knowledge regarding glial function in both vertebrate and 

invertebrate systems is still only beginning to emerge. As such, it is anticipated that future 

research into glial cell biology will highlight additional glial functions that either suppress or 

promote dsRNA-mediated neuronal dysfunction. 

A final note; the models utilized in this study recapitulate the expanded CAG.CUG repeat 

product predicted to form via bi-directional transcription across both CAG and CUG repeat 

loci. As such, the findings described in this study are directly relevant to the disorders 

caused through the expansion of a CAG or CUG repeat. However, repeat expansion disease 

can arise through the expansion of a number of other motifs, including 4, 5 and 6 nucleotide 

sequences (4). Therefore, a key overarching question is whether dsRNA derived from bi-

directional transcription of these other repeat sequences leads to pathology in a manner 

similar to the CAG.CUG repeat described in this study. Indeed, bi-directional transcription 

has been observed across all repeat loci tested (21), and so the investigation of other RNA 

repeat sequences in double-stranded form will determine if dsRNA represents a common 

and targetable pathogenic feature in this devastating group of neurodegenerative disorders. 
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Abstract

Inflammation is activated prior to symptoms in neurodegenerative diseases, providing a plausible pathogenic mechanism.
Indeed, genetic and pharmacological ablation studies in animal models of several neurodegenerative diseases demonstrate
that inflammation is required for pathology. However, while there is growing evidence that inflammation-mediated
pathology may be the common mechanism underlying neurodegenerative diseases, including those due to dominantly
inherited expanded repeats, the proximal causal agent is unknown. Expanded CAG.CUG repeat double-stranded RNA causes
inflammation-mediated pathology when expressed in Drosophila. Repeat dsRNA is recognized by Dicer-2 as a foreign or
‘non-self’ molecule triggering both antiviral RNA and RNAi pathways. Neither of the RNAi pathway cofactors R2D2 nor
loquacious are necessary, indicating antiviral RNA activation. RNA modification enables avoidance of recognition as ‘non-self’
by the innate inflammatory surveillance system. Human ADAR1 edits RNA conferring ‘self’ status and when co-expressed
with expanded CAG.CUG dsRNA in Drosophila the pathology is lost. Cricket Paralysis Virus protein CrPV-1A is a known
antagonist of Argonaute-2 in Drosophila antiviral defense. CrPV-1A co-expression also rescues pathogenesis, confirming
anti-viral-RNA response. Repeat expansion mutation therefore confers ‘non-self’ recognition of endogenous RNA, thereby
providing a proximal, autoinflammatory trigger for expanded repeat neurodegenerative diseases.
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Introduction

Dynamic mutation is the common mechanism of expansion for
existing repeat sequences that accounts for about 30 inherited
diseases. In some cases the repeat expansion causes loss of
gene function, and the resultant phenotype can be attributed to
loss of function of the protein normally encoded by the affected
gene (1). About 20 expanded repeat diseases are dominantly
inherited and occur in otherwise unrelated genes, therefore they
must gain some type of common attribute that causes diseases
(2–4). These diseases share neurodegeneration as a common
symptom, yet are typically distinguished by the neurons first
affected and therefore the symptoms that lead to their initial
clinical presentation and differential diagnosis. As the diseases
progress their pathology tends to spread and so their symptoms
converge, as overlapping neurons are affected (5).

Despite their identification more than two decades ago,
the mechanism(s) by which these dominant mutations cause
symptoms is/are as yet unclear. While most of these diseases
only have an expanded repeat as their single mutation
mechanism, the recent identification of repeat expansion in
the C9orf72 gene has been a particularly notable addition (6,7).
Repeat expansion in the C9orf72 gene is but one of numerous
genetic causes of amyotrophic lateral sclerosis and/or fronto-
temporal dementia (ALS/FTD). ALS/FTD causing mutations
in other genes are not expanded repeats and in some cases
involve the loss of protein function. Commonalities in the lost
functions of the different ALS/FTD genes are therefore likely
indicators of common pathways of pathogenesis. It is therefore
noteworthy that several of these proteins have functions in
RNA Stress Granule metabolism (TDP43, FUS, VCP, CHMP2B)
(8–11) and innate inflammatory pathways (sequestosome 1
(p62), progranulin, optineurin, TBK1) (12–15).

Late age-at-onset neurodegenerative diseases are increas-
ingly being found associated with activation of inflammation
(16–22). In the past this association has been dismissed on the
basis that the inflammatory machinery was just coming in to
clean up after the proximal cause. However, where timing has
been assessed the inflammatory activation precedes neuronal
pathology. Presymptomatic Huntington’s Disease (HD) gene
mutation carriers have elevated circulating levels of cytokines
(16,17). Mouse models of prion disease and Alzheimer’s disease
reveal in both cases that microglial cell activation precedes nerve
cell pathology (23,24). The molecular mechanism for triggering
inflammatory activation thereby causing neurodegeneration
has not been clear.

Inflammation is the front line cellular defense mechanism
that responds to a diverse variety of danger signals (25). Some
of these danger signals or trigger molecules are components of
pathogens, including RNA (22). In such cases the inflammatory
surveillance relies on the molecular architecture to distinguish
these ‘non-self’ molecules from the endogenous molecules in
the cell. In addition, cells have resident, endogenous trigger
molecules that are normally kept below levels required for
inflammatory activation by one or other degradative processes
or are masked by ligation to inhibitors. A recently reported
example of such an endogenous trigger molecule is double-
stranded (ds) Alu RNA, which is recognized by the IFIH1 pattern
recognition receptor unless modified by the ADAR1 editing
enzyme (26–28). Pathogens can therefore also be detected
when their presence results in the increase and/or activation
of such endogenous trigger molecules. Upon activation the
inflammatory response has an early acute phase during which
trigger molecules (that threaten the organism) are degraded

in order to contain the pathogen and destroy its ability to
replicate. If the threat is not eliminated, then a chronic phase
is activated in order to alarm neighboring cells and prime their
response. Chronic inflammation can include the programmed
death of cell foci that are activated during the acute phase. While
inflammation is effective in restricting exogenous pathogens,
this mechanism is the cause of pathology when mutations lead
to the perpetual synthesis of endogenous trigger molecules
that lack ‘self’ architecture, such as repeat RNA. Mutations
that impair the cell’s degradative capacity or cause constitutive
activation of pattern recognition pathways, such as those
which increase receptor sensitivity (29), can also give rise to
autoinflammatory disease (25).

Cells recognize the presence of viral RNA by means of
either the absence of ‘self’ recognition patterns or the presence
of ‘non-self’ patterns, or both, and in so doing distinguish
potentially dangerous RNAs from endogenous RNAs. Specific
pattern recognition receptors for RNA include the RIG-I-
like receptors (RLRs) (30). The RLRs are members of a larger
family of proteins that include Dicer, RIG-I and IFIH1 (MDA-5)
(Supplementary Material, Fig. S1). Drosophila has two members
of the RLR family—Dicer-1 and Dicer-2—with Dicer-2 having been
found to act as both a component of the RNAi machinery and a
pattern recognition receptor for antiviral RNA response (31). The
antiviral RNA response in Drosophila is heavily dependent upon
Argonaute-2 (32,33), but independent of R2D2, a co-factor in the
RNAi pathway (31).

Previously, we and the others explored the hypothesis that
one or other forms of expanded repeat RNA are pathogenic and
have found that (CAG.CUG)100 dsRNA is able to cause pathol-
ogy when expressed in the Drosophila eye (34,35). Furthermore,
this pathology is both dependent upon components of innate
surveillance (TLRs and TLR signaling) and also activates the
inflammatory response (as indicated by elevated drosomycin and
TNF/eiger) (36). Pathology was found to be dependent upon Dicer
and Argonaute proteins, and the (CAG.CUG)100 RNA was cleaved
down to 21mers of (CAG.CUG)7. This latter finding appeared to
indicate the participation of the RNAi machinery (34,35); how-
ever, herein we tested this hypothesis and found that key com-
ponents of RNAi processing (R2D2 and loquacious) are not only
unnecessary for (CAG.CUG)100 dsRNA pathology, but also appear
to constitute an alternative pathology avoidance pathway. We
have therefore pursued the hypothesis that (CAG.CUG)100 dsRNA
is recognized as ‘non-self’ RNA in the manner typical of viral
RNA sequences. The human ADAR1 RNA-editing enzyme con-
trols innate immune responses to RNA and when ectopically
expressed in Drosophila rescues (CAG.CUG)100 dsRNA pathology.
Ectopic expression of cricket paralysis virus protein CrPV-1A,
which facilitates viral infection by suppressing the antiviral cell
death response (37–39), rescues (CAG.CUG)100 dsRNA pathology
in Drosophila.

Results
RNAi co-factors R2D2 and loquacious not required for
dsRNA pathology

The requirement for (CAG.CUG)100 dsRNA pathology on certain
components of the RNAi machinery (specifically Dicer-1, Dicer-
2, Argonaute-2) has previously been reported (34–36). Given the
ability of Drosophila Dicer proteins to also act as pattern recog-
nition receptors (32,33,40–46) we assessed the need for other
components of the Drosophila RNAi machinery in (CAG.CUG)100

dsRNA pathology. R2D2 is an obligate component of the RNAi

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article-abstract/doi/10.1093/hm
g/ddz096/5487598 by U

N
IVER

SITY O
F AD

ELAID
E user on 26 June 2019

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddz096#supplementary-data


Human Molecular Genetics, 2019, Vol. 00, No. 00 3

pathway in Drosophila along with Dicer-2 and Argonaute-2 (47,48),
therefore the role of R2D2 in (CAG.CUG)100 dsRNA pathology
was assessed by its heterozygous deletion or Gal4/UAS over-
expression.

RNAi has become a widely used experimental tool in
Drosophila, as a means to investigate gene function in a particular
pathway, by lowering levels of targeted RNAs. There is, however,
substantial overlap between the RNAi pathway and the antiviral
response mechanism in Drosophila (31,49). The common roles
in these pathways played by Dicer-2 and Argonaute-2, render the
RNAi targeted reduction of candidate modifiers of the antiviral
response problematic. The studies herein have therefore been
restricted to the analyses of loss-of-function mutations (as
heterozygotes) or Gal4-UAS directed ectopic over-expression
of the relevant protein.

While Drosophila carrying a loss-of-function mutation in
Dicer-1 have reduced (CAG.CUG)100 dsRNA pathology, those
with loss of R2D2 have enhanced pathology (Fig. 1A’–D’;
Supplementary Material, Fig. S2). Furthermore, over-expression
of R2D2 rescues the (CAG.CUG)100 dsRNA pathology (Fig. 1I’ and J’;
Supplementary Material, Fig. S2). The reciprocal effects of a
more severe phenotype caused by reduction in R2D2 and
rescued phenotype with R2D2 over-expression suggest that
the pathway in which R2D2 participates is actually in compe-
tition with that which causes (CAG.CUG)100 dsRNA pathology.
Loquacious also acts as an RNAi co-factor. Loquacious protein
function is complicated by alternative splicing that gives rise
to isoforms with distinct roles in the processing of different
small RNA populations. Loquacious mutations can therefore dif-
ferentially affect isoform functions (50,51). Nevertheless, neither
of two independent loquacious mutations (loqsKO and loqsf00791)
exacerbated expanded CAG.CUG repeat pathology (Fig. 1E’
and F’), consistent with RNAi pathways being not required for
dsRNA pathology but instead being a competing pathway to
that which causes the pathology. Furthermore, miRNA sequence
profiles were assessed in (CAG.CUG)100 dsRNA expressing
Drosophila to determine whether small RNA processing is
altered. This analysis revealed minimal differences (+/− 1.2-fold
change) in a small number of miRNAs, between flies expressing
(CAG.CUG)100 dsRNA versus control (Supplementary Material,
Table S1). Those miRNAs (miR-184, miR-263b, miR-274, miR-932,
miR-1017) showing altered levels were tested for the ability of
increased or decreased levels of these miRNAs to alter pathology
in Drosophila lines also expressing (CAG.CUG)100 dsRNA and none
were found to impact eye phenotype (Supplementary Material,
Fig. S3).

Since both Dicer and Argonaute proteins are required for
(CAG.CUG)100 dsRNA pathology (Supplementary Material, Fig. S4)
this suggests that these proteins work in concert to recognize
(CAG.CUG)100 dsRNA as a viral RNA and give rise to the resultant
pathology through pattern recognition pathway instigated
antiviral RNA response rather than the RNAi pathway in which
R2D2 and loquacious normally participate.

Human ADAR1 (but not human ADAR2) editing rescues
dsRNA pathology

RNA modification is a major form of distinguishing ‘self’ from
‘non-self’ RNAs. RNA modifying enzymes typically recognize
distinct sequence and/or structural features in the RNA. The
expanded CAG repeat contains the normal recognition sequence
of adenosine deaminase of RNA (ADAR) enzymes. These
enzymes are also typically affected by the secondary structure
of the RNA. The ds structure of (CAG.CUG)100 dsRNA therefore

represents a normal target for ADARs. The ADAR enzymes are
also of great interest for their relationship with known RNA-
binding pattern recognition receptors (IFIH1 in humans). Loss-
of-function mutations in IFIH1 are able to rescue the phenotype
caused by loss of ADAR1 in mice (51,52). Furthermore, loss-of-
function mutation in human ADAR1 is found to be one genetic
cause of the congenital neurodegenerative disease Aicardi-
Goutieres Syndrome (AGS) (53). Gain-of-function mutations
in the IFIH1 pattern recognition receptor are another cause
of AGS (29), strongly implicating RNA modification in AGS
pathogenesis.

ADAR1 mutations in some individuals give rise to bilateral
striatal necrosis (54), an intriguing link to HD given that this
brain region is typically the first to exhibit pathology in HD.
Based on the finding that mutations in ADAR1 cause AGS and the
substrate specificity of the ADAR enzymes it has been proposed
that ADAR1 may limit the cytoplasmic accumulation of the
dsRNA generated from genomic repetitive elements (55). The
finding (56) of interferon-stimulated gene expression signatures
in the heterozygous ADAR1 mutation carrier parents of affected
offspring with both ADAR1 alleles mutated, suggests that ADAR1
is a rate-limiting determinant of interferon induction and innate
inflammatory response. Therefore, given the role of ADAR1 in
human pathology and CAG RNA sequence specificity of ADAR
proteins, human and Drosophila ADAR enzymes were assessed
herein for their impact on Drosophila (CAG.CUG)100 dsRNA
pathology.

RNAseq analysis of CAG7mer from Drosophila expressing
(CAG.CUG)100 dsRNA alone revealed the activity of endogenous
Drosophila ADAR on ∼6% of CAG7mer RNAs, with most having a
single edited A>I in the final CAG repeat (Fig. 2E). Thus, while
CAG.CUG is a substrate for Drosophila ADAR this low level of
editing suggests that it is either a poor substrate or the level of
endogenous enzyme is rate-limiting. The Drosophila genome has
a single ADAR gene, while three human genes encode ADAR
proteins. Human ADAR1 and ADAR2 are well characterized
and expressed, whereas ADAR3 is not known to have catalytic
function (57). Human ADAR1 is differentially expressed with
alternative splicing giving rise to constitutive (hADAR1c) and
interferon-induced (hADAR1i) forms (58). We therefore tested the
ability of both human hADAR1c and hADAR1i as well as hADAR2
and the Drosophila isoform dADAR to affect the (CAG.CUG)100

dsRNA pathology.
Co-expression with either human hADAR1c or hADAR1i along

with (CAG.CUG)100 dsRNA saw a complete rescue of pathology
(Fig. 2B’ and C’). Little effect was seen with human ADAR2
(Fig. 2F’), while alteration in Drosophila ADAR levels also had
minimal impact (Fig. 2G’), consistent with dADAR being more
closely related to hADAR2 than hADAR1 (59). Co-expression of
Dicer-2 with (CAG.CUG)100 dsRNA causes lethality in the S1 line;
however, lethality and eye phenotype were completely rescued
by co-expression of hADAR1i (Supplementary Material, Fig. S5).
Steady state levels of (CAG.CUG)100 dsRNA were determined
by quantitative RT-PCR on triplicate RNA samples from flies
expressing (CAG.CUG)100 dsRNA and either human ADAR1 or
ADAR2 or Drosophila ADAR (Supplementary Material, Fig. S6).
While all gave lower levels than flies expressing (CAG.CUG)100

dsRNA alone, the comparable level for flies also expressing
hADAR1, hADAR2 or dADAR indicates that lower steady-state
RNA levels alone do not account for phenotype rescue seen with
hADAR1, as hADAR2 and dADAR have no phenotype rescue.
ADAR1 is therefore specifically capable of masking ‘non-self’
status upon (CAG.CUG)100 dsRNA such that it no longer induces
inflammatory pathology.
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Figure 1. R2D2 is not required for the dsRNA phenotype in the Drosophila melanogaster eye. In each case the GMR-GAL4 driver is used to express the control or candidate

alone (A–L) and together with rCAG.rCUG∼100 M3 dsRNA line (A’–L’). (A) GMR-GAL4 does not have an obvious phenotype alone. (A’) Expression of rCAG.rCUG∼100
dsRNA results in disruption to ommatidial patterning and loss of pigmentation. (B) Reducing Dicer-1 levels using Dcr1Q1147X/+ does not alter the phenotype of the eye.

(B’) Reducing Dicer-1 levels while co-expressing dsRNA results in a suppression of the dsRNA rough eye phenotype (when compared to A’). (C and D) Reducing r2d2

levels using r2d21 or r2d2s165fsx do not alter the phenotype of the eye. (C’ and D’) Heterozygous loss-of-function mutants r2d21 or r2d2s165fsx flies with GMR-GAL4 driven

expression of rCAG.rCUG∼100 dsRNA results in an enhanced eye phenotype with increased regions of necrosis (when compared to A’). (E and F) Heterozygous loqsKO

and loqsf00791 have no eye phenotype alone. (E’ and F’) The dsRNA phenotype is enhanced by each of the loqs mutants (when compared to A’). (G) GMR-GAL4 does not

have an obvious phenotype alone. (G’) Expression of rCAG.rCUG∼100 dsRNA results in disruption to ommatidial patterning and loss of pigmentation. (H) GMR-GAL4

driven expression of UAS-Dcr-1 has no eye phenotype alone but (H’) enhances rCAG.rCUG∼100 dsRNA eye phenotype (when compared to G’). (I and J) Over-expression

of r2d2 with either of two independent UAS-r2d2 lines (II or III) does not affect the normal patterning of the eye. (I’ & J’) Co-expression of either these UAS-r2d2 over-

expression constructs together with dsRNA rCAG.rCUG∼100 suppresses the dsRNA phenotype, restoring both regular patterning and pigmentation to the eye (when

compared to G’).

Copy number requirement for expanded repeat
(CAG.CUG) dsRNA pathology

The antiviral RNA defense mechanism involves the binding of
multiple RIG-I-like pattern recognition receptors along single
molecules of RNA to form a filament structure that is then bound

by mitochondrial antiviral signaling protein (MAVS) (60,61). A
length requirement for the RNA molecule appears related to
the need for such filaments to exceed a threshold for MAVS
binding and/or activation (61,62). Therefore, experiments were
undertaken to assess the length dependence of the expanded
CAG.CUG repeat to cause antiviral-mediated pathology.
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Figure 2. ds RNA pathology is dependent on editing by ADAR. GMR-GAL4 was used to express constructs in the eye or ELAV(II)-GAL4 to drive expression in all

neurons. Ectopic-expression of either hADAR1-c or hADAR1-i reduce the rCAG.rCUG∼100 dsRNA eye phenotype. (A) GMR-GAL4 driven expression of 4xUAS with no

repeat construct has no phenotype. (A’) GMR-GAL4 driven expression of rCAG.rCUG∼100 causes disruption to patterning of the eye and loss of pigmentation (line S1).

(B and C) GMR-GAL4 driven expression ectopic-expression of either constitutive (hADAR1-c) or interferon inducible (hADAR1-i) human ADAR1 isoforms does not disrupt

the patterning of the eye. (B’ and C’) GMR-GAL4 driven co-expression of either hADAR1-c or hADAR1-i together with rCAG.rCUG∼100 rescues the rCAG.rCUG∼100 eye

phenotype (when compared to A’). (D) RNAseq of hADAR1 rescued eyes/neurons (GMR/Elav). CAG cleavage products (CAG7mer) are detected following GAL4 driven

expression of rCAG.rCUG∼100 in the either the eye (GMR) or in all neurons (pan neuronal, Elav). CAG7mer abundance is significantly reduced in either tissue following

GAL4 driven co-expression of hADAR1-i with rCAG.rCUG∼100. (E) RNAseq of CAG7mer showing editing of final A in 6% RNAs. CAG7mer is A>I edited in 6% of RNAs

predominantly at position 20 (the last CAG). In the minority of CAG cleavage products that are not 21mers that are edited, it is usually the most 3’ A residue that is edited,

suggesting endogenous dADAR editing is targeted to the last A in the sequence. (F and G) Rescue is specific to hADAR1. GMR-GAL4-driven expression ectopic-expression

of either human hADAR2 or Drosophila dADAR-3/4 does not disrupt the patterning of the eye. (F’and G’) GMR-GAL4 driven expression ectopic-expression of either human

hADAR2 or Drosophila dADAR-3/4 does not reduce the eye phenotype caused by co-expression of rCAG.rCUG∼100 (when compared to A’).

The Drosophila model of expanded CAG repeat disease uti-
lized herein has previously been found to exhibit expanded
dsRNA pathology for 100 copies of the repeat (34). Using a similar
Drosophila model, Yu et al. (35) have also found that (CAG)250

and (CUG)250 RNAs cause pathology when co-expressed in the
eye, whereas the (CAG)34.(CUG)19 combination of RNAs (below
the human disease threshold) do not. Therefore, the ability of
shorter length (CAG.CUG) repeats of 50 copies to cause pathology
was assessed. This copy number is well below the putative
disease threshold (∼100 copies) (63) but above the DNA insta-
bility threshold (∼36 copies) for HD and related expanded CAG
repeat diseases. Fifty CAG.CUG repeats (150 bases) is also well
above that required for RNAi processing, as a ds repeat length
of 19–29 base pairs is sufficient for Dicer-mediated cleavage (64).
Multiple lines of Drosophila were established that express four
UAS-transgenes, two encoding (CAG)50 RNA and the other two
(CUG)50 RNA. None of these (CAG.CUG)50 expressing lines exhib-
ited pathology even though comparable levels of (CAG.CUG)
RNA were expressed (Fig. 3). The (CAG.CUG)100 lines exhibited
much greater pathology when Drosophila Dicer proteins were

also ectopically over-expressed (25), so Dicer-2 was also ectopi-
cally over-expressed in (CAG.CUG)50 lines. Even in the pres-
ence of excess Dicer-2 in no case was pathology observed for
(CAG.CUG)50, in clear contrast to Dicer-2 increasing pathology
in (CAG.CUG)100 lines (Fig. 3B’–E’). Therefore, the dsRNA pathol-
ogy that we have observed in this Drosophila model exhibits
length dependence typical of that required for the antiviral RNA
response, as well as copy number dependence consistent with
that in the human expanded CAG.CUG repeat diseases (63).

Cricket paralysis virus CrPV-1A suppressor of Argonaute
2 rescues (CAG.CUG)100 dsRNA pathology

Length dependence for expanded repeat dsRNA pathology is
consistent with the antiviral recognition mechanism where mul-
tiple pattern recognition receptor molecules bind to long ds RNA
molecules, forming a filament structure. This filament assembly
takes place in RNA stress granules and if unresolved (by granu-
lophagy) brings about MAVS-mediated inflammatory activation,
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Figure 3. Fifty copies of CAG.CUG are insufficient to cause pathology, even in the presence of increased levels of Dicer-2/ ds RNA pathology is length dependent. In each

case the GMR-GAL4 driver is used to express the UAS constructs in the eye. (A) Expression of 4xUAS with no repeat construct has no obvious phenotype. (A’) Ectopic

over-expression of Dicer-2 also has no phenotype in the eye. (B–D) Three independent lines expressing rCAG.rCUG∼50 dsRNA do not affect the patterning of the eye

(when compared to A). Line #1 – rCAG∼50 [M1,M7]; rCUG∼50 [M5,M9], line #2 – rCUG∼50 [M4,M8]; rCAG∼50 [M2,M4] and line #3 – rCAG∼50 [M3,M9]; rCUG∼50 [M2,M3].

(B’–D’) Co-expression of Dicer-2 together with each of the three independent lines of rCAG.rCUG∼50 dsRNA also does not affect the patterning of the eye (when compared

to A’). (E) Expression of a mild line of rCAG.rCUG∼100 (M5) results in loss of patterning and pigmentation. (E’) Co-expression of Dicer-2 together with rCAG.rCUG∼100
(line M5), results in lethality indicating an enhancement of the phenotype. (F) qRT-PCR levels of GMR-GAL4 driven expression of repeat RNA transcripts in independent

rCAG.rCUG∼50 lines compared to rCAG.rCUG∼100 (M5 line). Steady-state rCAG.rCUG repeat RNA levels measured relative to Rp49. PCR primers sequences are given in

Supplementary Material, Table S2.

including cell death. The hypothesis that the antiviral cell death
mechanism is responsible for expanded repeat dsRNA pathology
was therefore tested by co-expression with a viral protein that
inhibits this mechanism (38).

Insect viruses have evolved an effective ablation of the
host antiviral defense mechanism. RNA silencing endonuclease
Argonaute-2 mediates specific antiviral immunity in Drosophila
melanogaster (32). CrPV escapes the antiviral response by
encoding an inhibitor of Argonaute-2. The CrPV suppressor (CrPV-
1A) interacts with the endonuclease Argonaute-2 and inhibits its
activity without affecting microRNA (miRNA)-Ago1-mediated
silencing (37). We therefore crossed two independent lines of
flies ectopically expressing CrPV-1A with fly lines expressing
(CAG.CUG)100 dsRNA—one exhibiting moderate (M3) and two
exhibiting strong (S1 and S2) eye phenotype. In each case
(CAG.CUG)100 dsRNA pathology was completely rescued (Fig. 4;
Supplementary Material, Fig. S7) consistent with the antiviral
RNA functions of Argonaute-2 (and Dicer-2) being required for
(CAG.CUG)100 dsRNA pathology.

Discussion

The pathogenic mechanism by which expansion of existing
DNA repeat sequences brings about dominantly inherited neu-
rodegenerative diseases has been elusive. Indeed, it has been
unclear whether there are multiple such pathways, distinct for
each expanded repeat and its cognate gene, or whether there
is a common mechanism that the different diseases share in
a common chain of causality. These expanded repeat diseases
have diverse repeat motifs located in unrelated genes. However,
in all cases the repeat is transcribed, therefore RNA could be a
common causal agent.

Expanded repeat RNA pathology has been modeled in
Drosophila and ds expanded repeat RNA has indeed been found
to induce pathology (34,35). For all expanded repeat disease
loci tested, transcription is found on both strands, raising the
possibility that ds expanded repeat RNA could be the culprit in
these diseases (65). Indeed, human cells normally contain dsRNA
formed from co-expressed sense and antisense transcripts (66).
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Figure 4. Cricket paralysis viral protein (CrPV-1A) antagonist of Argonaute ablates rCAG.rCUG∼100 dsRNA pathology when co-expressed in the Drosophila eye. In each case

the GMR-GAL4 driver is used to express the constructs in the eye. (A) Expression of 4xUAS with no repeat construct has no obvious phenotype. (A’) Ectopic expression

of CrPV-1A alone has no phenotype in the eye. (B–D) Lines of Drosophila expressing rCAG.rCUG∼100 dsRNA exhibit variable eye phenotype with one mild (B line M3)

and two strong lines of flies (C, line S1; D, line S2) chosen to assess CrVP-1A impact. (B’–D’) in all three lines expressing rCAG.rCUG∼100 dsRNA, together with the

co-expression of CrVP-1A exhibit complete inhibition of rough eye phenotype.

Furthermore, cytoplasmic ds expanded repeat RNAs have been
detected in the brains of individuals affected with C9ORF72
repeat expansion caused ALS/FTD (67).

Dicer and Argonaute proteins are necessary for Drosophila
expanded repeat dsRNA pathology (34,35) (Fig. 1; Supplementary
Material, Fig. S4). These observations together with cleavage of
long RNAs down to (CAG.CUG)7 21mers, have been interpreted
as the RNAi pathway being responsible and the 21mers the
causal agent. This hypothesis is tested herein by assessing the
requirement for further components of the RNAi pathway, R2D2
and loquacious. In both cases reduction of these co-factors led
to an increase in pathology. Indeed, not only does reduction of
R2D2 increase pathology, but also an increase of R2D2 reduces
pathology. These relationships are consistent with the RNAi
pathway and cleavage of the (CAG.CUG)100 RNA to 21mers being
in competition with the responsible pathogenic pathway. Since
the Dicer and Argonaute proteins are also required for antiviral
RNA-mediated cell death we hypothesize that this pathway is
the one responsible for (CAG.CUG)100 RNA pathology.

Both the activation of, and requirement for, the innate
inflammatory surveillance system, have been reported in
this Drosophila model of expanded repeat dsRNA pathology
(36). Inflammatory activation correlates with various neu-
rodegenerative diseases but has been typically thought of
as a consequence of cell death—coming in to clean up the
mess that something else has started. There is, however,
increasing evidence that inflammatory activation precedes
neurodegeneration, consistent with a causal role both in the
human diseases (16,17) and in experimental animal disease
models (23,24).

Nucleic acids are the common means of encoding genetic
information for both hosts and pathogens, therefore innate host
defense requires a mechanism to distinguish harmless endoge-
nous nucleic acids from those that are foreign and potentially
harmful. A large number and variety of modification reactions
alter specific nucleotides in host nucleic acids to essentially ‘bar-
code’ those that are ‘self’ and allow their distinction from those
that are ‘non-self’ or foreign. RNA editing is a form of modi-
fication in which the coding potential of the target nucleotide
is changed, most notably the sequence specific conversion of

adenosine to inosine in RNA sequences, catalyzed by adeno-
sine deaminase of RNA (ADAR). Editing of endogenous RNAs by
ADAR1 is required to prevent activation of the cytosolic innate
immune system (51–54,68).

In the expanded CAG repeat diseases, ADAR editing is of
particular interest as the recognition motif/modification site
is contained in the expanded CAG repeat. Furthermore, ADAR
enzymes have a general preference for dsRNA. Therefore,
expanded CAG.CUG dsRNA is an ideal target for ADAR editing.
The ability of human ADAR1, but neither human ADAR2 nor
Drosophila ADAR, to confer ‘self’ status on expanded CAG.CUG
dsRNA is noteworthy as ADAR1 is a known component of
inflammatory activation (51–54,68). The human ADAR1 gene has
two promoters, one for constitutive expression and the other
interferon-inducible (69). The acute inflammatory response
produces a pulse of interferon signaling as one of its ‘feed-
forward’ responses aimed at resolving the trigger molecules/
danger signals that activate inflammation. Interferon-induced
increase in ADAR1 levels therefore enables the editing of RNAs,
thereby reducing the level of ‘non-self’ RNA signal. Together with
induced increases in RNA turnover processes, this mechanism
can degrade RNA trigger molecule/danger signal threats.

ADAR1 also has a functional relationship with the RIG-I-like
pattern recognition receptor IFIH1 (MDA5), a member of the same
family of proteins as Dicer (51,52). Loss-of-function mutations
in ADAR1 cause early lethality in mice that can be rescued
by deletion of IFIH1. ADAR1 is responsible for the editing of
endogenous RNAs to enable their recognition as ‘self’ (27,28,70).
Absence of ADAR1 sees the ‘non-self’ forms of these RNAs
recognized by IFIH1 that then activates inflammation (26,28).
The endogenous RNAs recognized by IFIH1 include not only
Alu dsRNA but also products of the unfolded protein response
(UPR) pathway. One of the UPR response proteins, IRE-1, cleaves
RNAs in a manner that renders them inducers of IFIH1. Loss-of-
function mutations in ADAR1 and gain-of-function mutations
in IFIH1 are both causes of AGS, a congenital disorder that
includes neurodegeneration, with affected newborns having the
appearance of being subjected to in utero inflammatory injury
(53,71). The gain-of-function mutations in IFIH1 that cause AGS
also increase the affinity of this PRR for its RNA ligands (29).
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The sensitivity to ADAR1 editing of the pathology caused by
(CAG.CUG)100 dsRNA in this Drosophila model is therefore con-
sistent with the recognition of the product of repeat expansion
mutation as a ‘non-self’ RNA trigger molecule/danger signal
that then activates inflammation. ‘Non-self’ driven antiviral
RNA recognition is an important process for virus removal as
evident by the finding that HIV evades this process by recruiting
the RNA 2′-O-methyltransferase FTSJ3 to avoid innate immune
sensing (72).

A growing body of evidence is consistent with there being a
distinction between repeat instability threshold and a greater
copy number threshold for pathology (1,63,73–80). Genetic
variations in mismatch repair enzymes have been shown to
be major modifiers of age-at-onset of Huntington’s Disease (75)
and other polyglutamne diseases (76), as well as mouse models
of these diseases (74,77–80). These enzymes control the rate of
increase by somatic mutation from its inherited (germ-line) copy
number and imply the existence of a higher copy number disease
threshold of approximately 100 copies (63). Copy numbers above
36 are unstable, with the shorter unstable repeats (e.g. 40 copies)
taking longer to reach the disease threshold than inherited
80 copy alleles (typically associated with juvenile HD) (1,63).
Such a mechanism explains genetic anticipation: the inverse
relationship between inherited repeat copy number and age-
at-onset of disease symptoms (1,81). The expanded (CAG.CUG)
dsRNA pathology in this Drosophila model exhibits length depen-
dence consistent with the antiviral RNA response mechanism
being responsible. In addition, the observed copy number
dependence is consistent with distinct thresholds for DNA
instability and pathology in the human expanded CAG repeat
diseases (63).

In order to be infectious, viruses must evade detection and/or
response mechanisms of the innate surveillance system. This
response can include the programmed death of cells if the viral
threat is not degraded. Cell death is orchestrated in both the
cell in which the threat is detected and in adjacent sensitized
cells to give a focal ‘scorched earth’ response that denies the
virus both the opportunity to replicate and to infect adjacent
cells. CrPV has evolved a mechanism of specific interference
with the anti-viral RNA response. The CrPV-1A protein is a
specific inhibitor of Argonaute and RNA stress granule formation
(37,39). Stress granules are the location of filament formation
between viral RNA and the RIG-I-like receptors. In vertebrates
these filaments are then bound by the protein MAVS on the
mitochondrial outer surface that in turn activates the antivi-
ral response (60,61). Co-expression of CrPV-1A with expanded
CAG.CUG repeat dsRNA completely rescues the pathology other-
wise caused by this dsRNA. Therefore, the same cellular defense
pathway of cell death that is normally utilized against viruses
(and evaded by CrPV) is responsible for the pathology caused
by the presence of expanded CAG.CUG repeat dsRNA, indicating
its recognition by the cell as a viral ‘non-self’ RNA, a gain-of-
function that accounts for dominant inheritance.

Inflammatory activation, with increased circulating cytokines
(16) and microglial activation (17) precedes neuronal pathology
in premanifest HD carriers. Inflammatory genes are activated in
cells that are destined to undergo neurodegeneration. These
include the induction of interferon-regulated genes in the
cataracts of patients with myotonic dystrophy due to expansion
of either CUG (DM1) or CCUG (DM2) (18). Increased inflammatory
gene expression is evident in HD brain (19) and inflammatory
gene signatures found in ALS motor neurons (20). Inflammation
is activated at the right time and place to be the causal
mechanism of disease.

In addition to the requirement for inflammatory activation in
the expanded CAG.CUG model described herein (36), other ani-
mal models of dominantly inherited neurodegenerative diseases
caused by the expansion of various repeat motifs have shown
dependence on components of inflammation for pathology. Loss
of MyD88 attenuates early Purkinje cell loss in a spinocerebellar
ataxia type-6 mouse model (82), while p62 plays a protective
role in polyglutamine disease model flies (83). Furthermore, defi-
ciency of toll-like receptors 2, 3 or 4 extends life expectancy in
HD mice (84). Genetic ablation of inflammation typically results
in rescue of disease phenotypes—indicating that inflammatory
activation is required for pathogenesis. While the agent causing
inflammatory activation has not been identified in these latter
cases, a zebrafish model for C9orf72 ALS/FTD reveals RNA as a
pathogenic agent (85). In addition, many of the genes mutated
in non-repeat expanded cases of ALS have roles in inflamma-
tory activation pathways and RNA metabolism. Furthermore,
their mutation typically leads to an increase in inflammatory
activation (12,15).

Repeat expansions are therefore ‘non-self’ mutations that
convert expanded repeat RNA from a harmless molecule when
in low copy number to a nucleic acid that lacks the molecu-
lar architecture to be distinguished as ‘self’. Expanded repeat
RNA that exceeds a copy-number threshold is a persistent trig-
ger of pattern recognition receptor signaling and inflamma-
tory responses. Preventing the detection of the proximal repeat
RNA trigger by either masking the ‘non-self’ RNA (with over-
expression of human ADAR1) or blocking viral-detection path-
ways (with co-expression of a viral antagonist) both prevent
pathology. Elongated repeat sequences are conducive to multi-
merisation of repeat structures that are known to trigger chronic
inflammatory activation. These characteristics not only account
for autoinflammatory cell death being the pathogenic mecha-
nism for neurodegeneration, they are also consistent with the
age-related somatic mutation of inherited (but sub-pathogenic)
unstable copy numbers being the rate-limiting determinant of
disease onset.

While studies herein describe the acquisition ‘non-self’
recognition by RNA, this principle can also apply to other gene
products. For example, structures adopted by prion proteins
activate inflammation (23) and glycated forms of proteins are
preferential activators of the RAGE pattern recognition receptor
(86). ‘Non-self’ mutation can include alteration in structure or
post-translational modification that confers pattern receptor
recognition. ‘Non-self’ mutation therefore provides a specific
mechanism for pathogenic activation of inflammation that can
account for numerous neurodegenerative diseases.

Materials and Methods
Fly husbandry

All crosses were performed at 25◦C with 70% humidity unless
otherwise indicated. Drosophila melanogaster stocks were main-
tained on fortified (F1) medium composed of 1% (w/v) agar,
18.75% compressed yeast, 10% treacle, 10% polenta, 1.5% acid
mix (47% propionic acid, 4.7% orthophosphoric acid) and 2.5%
tegosept (10% para-hydroxybenzoate in ethanol).

Fly stocks

Controls stocks used were 4xUAS (empty vector) as we have
previously described (34), UAS-LacZRNAi was kindly provided by
Richard Carthew (87) and UAS-mCherry RNAi was obtained from
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Bloomington Drosophila Stock Centre (BDSC). Driver lines used
were GMR-GAL4 (76) and P{GAL4-elav.L}2/CyO (referred to as
elavII-GAL4) (88). Pathogenic dsRNA rCAG∼100.rCUG100∼100 lines
used are as previously described (34). Dcr-1Q1147X and Dcr-2L811fsx

(89) as well as UAS-Dcr1, UAS-Dcr2 and UAS-r2d2 (90) were kindly
provided by Richard Carthew, as were UAS-AGO2 (II) and UAS-
AGO2 (III) (90) lines. AGO2414 (91) was obtained from the Kyoto
stock centre. AGO2V966M (92) was obtained from the BDSC. r2d21

(47), r2d2s165fsx (93) and loqsf00791 (94) were obtained from BDSC.
loqsKO was kindly provided by Qinghua Liu and Dennis McKearin
(95). UAS-miR-184 and ΔmiR-184 were kindly provided by Ulrike
Gaul (96). UAS-miR-263b and ΔmiR-263b were kindly provided
by Stephen Cohen (97). UAS-miR-1017 was kindly provided by
Eric Lai (98). Df(3L)BSC577 (including miR-274) and Df(3L)BSC577
(including miR-932) were obtained from BDSC. UAS-hADAR-1c,
UAS-hADAR1i and UAS-hADAR2 (99) and UAS-dADAR (100) were
kindly provided by Liam Keegan. ADAR1F1 was kindly provided
by Michael Palladino (101). CrPV1A lines (39) were obtained from
Christophe Antoniewski. Genotypes of fly lines were confirmed
by PCR (Supplementary Materials, Fig. S8 and Table S2 of oligo
PCR primers).

Generation of untranslated CAG∼50 and CUG∼50 repeat
constructs

Generation of (rCAG.rCUG)100 lines is described in Lawlor et al.
(34). CAG∼50 repeats were digested from pBluescript CAG∼50 (102)
using flanking Hind III. This fragment was then ligated into the
Hind III site of pENTR/D-TOPO IVM2 MYC FLAG. The presence
of the insert was confirmed by restriction digestion with Acc65I
and XbaI. Plasmids were also sequenced and screened for insert
orientation and integrity. Constructs containing either CAG∼50 or
CTG∼50 were subcloned into pDEST-UAST by LR clonase recom-
bination. Constructs were confirmed by digestions with the
restriction enzymes BsrG I and BamH I and by sequencing.

Generation of transgenic lines

Microinjections to generate transgenic lines were performed by
BestGene Inc., Chino Hills, CA, USA. Transformants were mapped
to determine the chromosome of insertion and balanced stocks
were generated by standard genetic crosses. Single insertion
lines for either the CAG∼50 or CTG∼50 constructs were labeled
rCAG∼50 M1-10 and rCUG∼50 M1-10.

Generating recombinant lines

Recombinants carrying two independent insertions of the same
transgene (either rCAG∼50 or rCTG∼50) on the same chromosome
were generated by crossing trans-heterozygous virgin females to
male w1118 flies. Standard genetic crosses were then performed
to generate three lines each carrying four transgenes, i.e. two
expressing rCAG.2 and two expressing rCUG∼50, as follows:

rCAG.rCUG∼50#1 – rCAG∼50 [M1,M7]; rCUG∼50 [M5,M9]
rCAG.rCUG∼50#2 – rCUG∼50 [M4,M8]; rCAG∼50 [M2,M4]
rCAG.rCUG∼50#3 – rCAG∼50 [M3,M9]; rCUG∼50 [M2,M3].

RNA isolation and quantitative real-time PCR

Expression in the fly eye enables qualitative assessment of the
phenotypic consequences of transgene expression, however the

GMR promoter only drives RNA expression in a small proportion
of cells (even though some of these are nerve cells) with the
majority of non-expressing cells of the fly head effectively
diluting out responses. Therefore, as in previous studies in
this model (34,36), RNA was isolated from the whole heads of
either GMR-Gal4 (eye) or ElavII-Gal4 (pan-neuronal) expressing
fly lines of various UAS-transgene genotypes and subjected
to quantitative reverse transcriptase real-time PCR (qRT-PCR)
as described (34,36). Approximately 100 male Drosophila heads
from newly eclosed flies were collected and snap frozen for
each genotype, before homogenization in Trizol (Invitrogen).
Total RNA was extracted using chloroform and precipitated
with isopropanol, then further purified using the RNeasy mini
kit (Qiagen). RNA to be used for RNAseq was precipitated in
sodium acetate and ethanol and shipped under ethanol on
ice. 1 μg of total RNA per sample was treated with DNAse
I (Invitrogen) and reverse-transcribed with oligo(dT)18 and
SuperScript III (Invitrogen). Quantitative real-time PCR was
performed in a LightCycler (Roche Molecular Biochemicals)
using Power SYBR green mix (Applied Biosystems) and either
GAL4-specific primers (forward: 5′-CACTGACCCCGTCTGCTTTG-
3′, and reverse: 5′-GGTTCGGACCGTTGCTACTG-3′) or primers
specific for the repeat-containing transcript. The transgene
expression level was quantified using the delta Ct method for
relative quantification and expressed relative to the level of
GAL4 transcript for each line.

The quantity of amplified cDNA product for each primer pair
was normalized to the quantity of product with primers for the
housekeeping gene, ribosomal protein 49 (Rp49), for the same
sample. The average of triplicate reactions for each sample was
obtained and the standard deviation of the mean was calculated.
The significance between samples was determined by using a
two-tailed Student’s t-test. The significance threshold was set at
P < 0.05.

RNAseq identification of CAG 21-mer repeat editing and
changes in miRNA profiles

RNAseq was as previously described in Samaraweera et al. (36).
Barcoded small RNA libraries were prepared from 1 μg total
RNA isolated from neurons and eyes using the NEBnext Small
RNA Library Prep set for Illumina (NEB). 2S RNA was depleted
at the RT primer hybridization step using a terminator oligo
blocking strategy, as described in http://www.ncbi.nlm.nih.
gov/pmc/articles/PMC4077022/. Libraries were sequenced on
an Illumina HiSeq 2500 in Rapid Run mode. Fastq files were
trimmed with Cutadapt (v1.6) to lengths of 18–35 nt, with 10%
adapter sequence error allowed. CAG repeats were identified
in the sequencing data by searching for exact matches to
18–35 nt strings of CAG repeating units. Edited repeats were
identified by allowing replacement of any to all CAG units
with CGG.

Eye photos

Eyes of at least 15 flies were viewed and representative eyes
imaged. Flies were photographed at 24–48 h post-eclosion. Light
photos were taken with an Olympus SZX7 dissection microscope
fitted with an SZX-AS aperture. Images were captured with
a Colorview IIIu camera and AnalysisRuler image acquisition
software. In all cases, anterior is to the left. Image preparation
was performed using Adobe Photoshop 6.0.
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S5 - hADAR-1 function overrides that of dicer2 in the rCAG.rCUG~100 dsRNA phenotype in the 

Drosophila melanogaster eye. [relates to Fig. 2] 

 

S6 - qRT-PCR levels of uncleaved repeat transcripts in rCAG.rCUG~100 dsRNA flies with co-over-

expression of Drosophila or human ADAR proteins. [relates to Fig. 3] 

 

S7 – A: Ectopic expression of CrPV1A completely rescues dsRNA-mediated pathology.  
        B: Sequence alignment of Cricket Paralysis Virus 1A coding sequences. [relate to Fig. 4] 
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Figure S1 –  

 

Homology between Dicer proteins and other members of the RIG-I family (IFIH1 and RIG-I) 

 

- Homology determined using Clustal alignment in MegAlign Pro program from DNASTAR 

(Lasergene) 

 

 A – overview alignment (human IFIH1, RIG-I, Dicer, Drosophila Dicer1, Dicer2)

 
 

B – sequence homology alignment (consensus, human IFIH1, RIG-I, Dicer, Drosophila Dicer1, Dicer2, logo) 
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Figure S2 – [relates to Figure 1] 

 

Variable severity eye phenotype Drosophila rCAG.rCUG~100 lines (Weak, Medium and Strong) 

expressed with altered levels of RNAi co-factor R2D2 at 25°C.   

 

A, E and I) EV51C is the empty vector control exhibiting no eye phenotype when crossed with GMR-

Gal4. 

B) Weak, C) Medium and D) Strong rCAG.rCUG~100 lines eye phenotypes exhibited when crossed 

with GMR-Gal4.  

E – H) When crossed in to heterozygous loss-of-function r2d21 mutation line, increased severity of 

eye phenotype is evident in the Medium rCAG.rCUG~100 line (G) and lethality for the Strong 

rCAG.rCUG~100 line (H).  

I – L) When additional r2d2 was ectopically co-expressed from the UAS-r2d2 transgene, reduction in 

the severity of the Medium (K) and Severe (L) lines is evident. 
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Figure S3 [relates to Figure 1] 

Altered miRNAs have a minimal effect on double stranded meditated toxicity  

In each case the GMR-GAL4 driver is used to express the constructs in the eye. A) The GMR-GAL4 driver alone 

has no phenotype in the eye. A’) Expression of dsRNA causes disruption to patterning of the eye and loss of 

pigmentation. Heterozygous mutation of B) miR-184 using the miR-184 allele, C) miR-263b using the miR-

263b allele D) miR-274 using the deficiency Df(3L)BSC577 and E) miR-932 using the deficiency 

Df(3L)BSC577 does not affect the patterning of the eye alone and B’-E’) does not have a significant effect on 

the dsRNA phenotype.  F) GMR-GAL4 driven expression of a UAS construct alone has no phenotype in the eye. 

F’) Expression of the dsRNA together with UAS alone causes mild disruption to patterning and loss of 

pigmentation. G) UAS-miR-184 causes a significant phenotype alone showing disruption to patterning, loss of 

pigmentation and necrotic spots and G’) is lethal when expressed together with dsRNA. H) Expression of UAS-

miR-263b alone causes a change in the pigmentation of the eye that is H’) also seen together with dsRNA. I) 

Expression of UAS-miR-1017 does not have a phenotype alone and I’) does not have a significant effect together 

with dsRNA. This experiment was performed at 25C. The dsRNA used in this experiment is 

rCAG.rCUG~100
M3. 
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Figure S4 - [relates to Figure 1] 

 

Argonaute-2 is a rate-limiting factor in double-stranded RNA mediated toxicity.  

 

In each case the GMR-GAL4 driver is used to express the constructs in the eye.  The M3 line of 

rCAG.rCUG~100 dsRNA Drosophila is utilized. This experiment was performed at 25 C.  

A) GMR-GAL4 does not have an obvious phenotype alone.  

B & C) Heterozygous AGO2414 and AGO2V966M mutants have no effect on the patterning of the eye.  

A’) Expression of dsRNA results in disruption to ommatidial patterning and loss of pigmentation.  

B’ & C’) Expression of the dsRNA together with these Argonaute-2 mutants suppresses the rough eye 

and loss of pigmentation of dsRNA toxicity.  

D) GMR- GAL4 driving a single UAS transgene with no insert does not show a phenotype.  

E & F) Over-expression of Argonaute-2 with two independent UAS-AGO2 lines does not have a 

phenotype alone.  

D’) Expression of rCAG.rCUG~100 dsRNA causes loss of ommatidial patterning and pigment loss.  

E’ & F’) Expression of these UAS-AGO2 contructs along with dsRNA has no effect.  
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Figure S5 – [relates to Fig 2] 

 

hADAR-1 function overrides that of dicer2 in the rCAG.rCUG~100 dsRNA phenotype in the 

Drosophila melanogaster eye.  

 

rCAG.rCUG~100 toxicity in the eye is not restored by over-expressing dicer2 in flies also over-

expressing hADAR1 FL. The GMR-GAL4 driver was used to express all constructs.  

A)  Ectopic expression of dicer2 (together with empty UAS vector) has no phenotype in the eye.  

A’) Co-expression of dicer2 and rCAG.rCUG~100 dsRNA is lethal in the S1 line.  

B)  Co-expression of dicer2 together with hADAR1-i does not affect the patterning of the eye.    

B’) hADAR1-i rescues lethality and eye phenotype in S1 flies co-expressing rCAG.rCUG~100 dsRNA 

and dicer2 in the eye. 
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Figure S6 [relates to Fig 3] 

 

qRT-PCR levels of uncleaved repeat transcripts in rCAG.rCUG~100 dsRNA flies with co-over-

expression of Drosophila or human ADAR proteins.  

 

qRT-PCR levels of GMR-GAL4 driven expression levels of repeat transcript in (A) three independent 

rCAG.rCUG~100 dsRNA lines compared to rCAG.rCUG~100 dsRNA lines co-expressing either (B) 

Drosophila dADAR-3/4 or (C) human hADAR1-i or (D) hADAR2 (samples as per Figure 2 A’, C’, F’ 

and G’). Repeat expression is measured relative to Rp49. 

 

    A                      B              C              D 

 

 

   



van Eyk et al  ‘Non-self’ Mutation in Expanded Repeat Neurodegenerative Diseases 9 

Figure S7 - [relates to Figure 4] 

 

 
 

Figure S7A: Ectopic expression of CrPV1A completely rescues dsRNA-mediated 

pathology. In each case the GMR-GAL4 driver is used to express the constructs in the eye. A) 

Expression of a single UAS transgene with no insert as a control eye. B-C) Expression of two 

independent full-length (FL) UAS-CrPV1A constructs alone. D-E) Expression of two independent 

truncated UAS-CrPV1A mutant constructs alone. A’) Co-expression of repeat dsRNA together with a 

single UAS transgene. B’-C’) Co-expression of repeat dsRNA together with two independent full-

length (FL) UAS-CrPV1A constructs. D’-E’) Co-expression of repeat dsRNA together with two 

independent truncated UAS-CrPV1A mutant constructs. The full length CrPV1A encodes a 148 amino 

acid long protein. The truncated CrPV1A encodes a 108 amino acid long protein. The experiment was 

performed at 25°C using the CAG.CUG~100M3 dsRNA line.  
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Figure S7B – Sequence alignment of Cricket Paralysis Virus 1A coding sequences  

 

Alignment of the PCR generated sequence from the constructs encoding full length 148 amino acid 

protein (BB17F_G05) and truncated 108 amino acid protein (BB20F_G07) against the annotated 

sequence (NC_003924.1). 
 

 
NC_003924.1      TCCCTTTGATGTGAGCTAATAAGGAGTAACCGATTCTTACAATGTGATCATGTCTTTTCA 

BB17F_G05        CCCCCT--------------------------------------TCACCATGTCTTTTCA 

BB20F_G07        CCCCCT--------------------------------------TCACCATGTCTTTTCA 

                  *** *                                      * * ************ 

 

NC_003924.1      ACAAACAAACAACAACGCAACCAACAACATCAACTCCCTTGAGGAGCTTGCTGCTCAAGA 

BB17F_G05        ACAAACAAACAACAACGCAACCAACAACATCAACTCCCTTGAGGAGCTTGCTGCTCAAGA 

BB20F_G07        ACAAACAAACAACAACGCAACCAACAACATCAACTCCCTTGAGGAGCTTGCTGCTCAAGA 

                 ************************************************************ 

 

NC_003924.1      ACTAATAGCAGCACAATTTGAAGGAAATCTTGATGGTTTCTTTTGCACTTTTTATGTGCA 

BB17F_G05        ACTAATAGCAGCACAATTTGAAGGAAATCTTGATGGTTTCTTTTGCACTTTTTATGTGCA 

BB20F_G07        ACTAATAGCAGCACAATTTGAAGGAAATCTTGATGGTTTCTTTTGCACTTTTTATGTGCA 

                 ************************************************************ 

 

NC_003924.1      GTCCAAACCACAACTATTGGACTTAGAGAGTGAATGTTATTGTATGGATGATTTTGATTG 

BB17F_G05        GTCCAAACCACAACTATTGGACTTAGAGAGTGAATGTTATTGTATGGATGATTTTGATTG 

BB20F_G07        GTCCAAACCACAACTATTGGACTTAGAGAGTGAATGTTATTGTATGGATGATTTTGATTG 

                 ************************************************************ 

 

NC_003924.1      TGGGTGTGATAGGATCAAGAGAGAAGAAGAATTACGTAAACTGATTTTCTTAACATCGGA 

BB17F_G05        TGGGTGTGATAGGATCAAGAGAGAAGAAGAATTACGTAAACTGATTTTCTTAACATCGGA 

BB20F_G07        TGGGTGTGATAGGATCAAGAGAGAAGAAGAATTACGTAAACTGATTTTCTTAACATCGGA 

                 ************************************************************ 

 

NC_003924.1      CGTTTATGGATATAACTTTGAAGAGTGGAAAGGATTAGTTTGGAAATTTGTTCAAAATTA 

BB17F_G05        CGTTTATGGATATAACTTTGAAGAGTGGAAAGGATTAGTTTGGAAATTTGTTCAAAATTA 

BB20F_G07        CGTTTATGGATATAACTTTGAAGAGTGGAAAGGATTAGTTTGGAAATTTGTTCAAAATTA 

                 ************************************************************ 

 

NC_003924.1      TTGCCCAGAACATCGATATGGATCAACTTTTGGTAATGGATTATTAATTGTGAGTCCCCG 

BB17F_G05        TTGCCCAGAACATCGATATGGATCAACTTTTGGTAATGGATTATTAATTGTGAGTCCCCG 

BB20F_G07        TTGCCCAGAACAT----------------------------------------------- 

                 *************                                                

 

NC_003924.1      TTTCTTTATGGATCATCTTGACTGGTTTCAGCAATGGAAACTTGTTTCAAGTAATGATGA 

BB17F_G05        TTTCTTTATGGATCATCTTGACTGGTTTCAGCAATGGAAACTTGTTTCAAGTAATGATGA 

BB20F_G07        ------------------------------------------------------------ 

                                                                              

 

NC_003924.1      ATGCAGAGCCTTCTTGAGAAAGAGAACGCAACTTTTGATGAGTGGTGATGTCGAATCTAA 

BB17F_G05        ATGCAGAGCCTTC------------------------AAGGGTGG--------------- 

BB20F_G07        -------------------------------------AAGGGTGG--------------- 
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Figure S8 – Verification of genotypes of Drosophila lines by PCR 

 

Gel electrophoresis of PCR products using oligodeoxynucleotide primers specific for the genes 

indicated (see Table S2 for oligodeoxynucleotide sequences). All PCR products (indicated by vertical 

red arrows) are of the anticipated size as predicted by the distance apart of oligodeoxynucleotide 

primers. 

            Markers   R2D2       R2D2     hADAR1-I  hADAR1-c hADAR2  dADAR 
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Figure S9 – Graphical Abstract of ‘Non-Self’ Mutation and Experiments in the Drosophila 

model of expanded CAG repeat diseases. 

 

          

 

Abbreviations 

RLR-PRRs  = RNA binding RIG-I-like pattern recognition receptors 

Dicer, Ago = components of RNAi and antiviral RNA recognition and defense pathways 

R2D2, loqs = components of RNAi pathway 

21mers  = RNA comprised of 7 copies of the CAG repeat (typical RNAi product) 

ADAR1  = human adenosine deaminase of RNA 

CrPV-1A  = Cricket Paralysis Virus 1A protein 
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Table S1 Drosophila miRNAs changes with rCAG.rCUG~100 dsRNA expression [relates to Fig 1] 

miRNA 

Control 

Reads per 

million 

dsRNA 

Reads per 

million 

log2 (ratio)        

dsRNA vs control 

Experiment 1 elavII-GAL4 

miR-932  4732.415 317.347 -3.898 

miR-7  17414.671 2742.788 -2.667 

miR-34  1153.333 238.882 -2.271 

miR-988  3894.429 1272.877 -1.613 

miR-317  4897.807 1802.952 -1.442 

miR-100  10042.600 4238.855 -1.244 

miR-8  15573.307 7551.822 -1.044 

miR-125  4245.060 2476.007 -0.778 

miR-184  4963.964 3145.576 -0.658 

miR-274  3391.638 2174.353 -0.641 

miR-34*  1503.964 985.172 -0.610 

miR-279  26039.310 17696.478 -0.557 

let-7  4099.515 2915.411 -0.492 

miR-133  1874.442 1340.880 -0.483 

bantam  36736.862 27408.704 -0.423 

miR-970  8893.677 7046.159 -0.336 

miR-263b  2059.681 1644.278 -0.325 

miR-263a  9436.163 11567.488 0.294 

pre-miR-34 14594.186 19869.087 0.445 

pre-miR-193 6538.495 9705.251 0.570 

pre-miR-263a  793.881 1332.162 0.747 

miR-1017  2002.345 3658.214 0.869 

Experiment 2 elavc155-GAL4 

miR-184 48388.914 9845.824 -2.297 

miR-274 5763.316 2064.591 -1.481 

pre-miR-34 16768.186 9640.060 -0.799 

miR-957 4220.718 2613.293 -0.692 

miR-278 4210.636 3063.587 -0.459 

miR-263b 2973.029 2317.074 -0.360 

miR-995 1406.486 1111.321 -0.340 

pre-miR-193 5060.073 3998.965 -0.340 

miR-932 2283.649 1820.061 -0.327 

miR-285 12319.355 10111.228 -0.285 

miR-1003 7356.325 6058.586 -0.280 

miR-193 3916.988 3247.482 -0.270 

miR-1017 917.493 1204.759 0.393 

miR-987 986.809 1305.156 0.403 

miR-87 1616.955 2585.461 0.677 

miR-317 9278.270 15641.987 0.753 

miR-133 1305.663 2667.965 1.031 

let-7 12081.160 26889.387 1.154 

pre-miR-210 142.413 1010.924 2.828 

pre-miR-284 148.714 1475.134 3.310 

miR-210 1192.236 22028.601 4.208 

bantam 520.501 15582.345 4.904 

miR-34 37.809 14031.665 8.536 

 

The miRNA with common changes in both experiments are shown in bold. ie. Those with a 1.2 fold change, between dsRNA and the 

control sample, and a minimum of 1000 reads per million in at least one of the samples (control or dsRNA within an experiment).  

 Control= 4xUAS, dsRNA in Experiment 1= rCAG.rCUG~100
S1, dsRNA in Experiment 2= rCAG.rCUG~100

S2.  
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Methods for Table S1  

Alterations of miRNA profiles were analysed using the data sets generated by deep sequencing of flies 

expressing expanded repeats throughout the nervous system.  Briefly, in Experiment 1 the elavII-GAL4 

driver was used to express rCAG.rCUG~100
S1 (dsRNAS1), rCAG~100

#1 and rCUG~100
#1 whereas in 

Experiment 2, rCAG.rCUG~100
S2 (dsRNAS2) was expressed using the elavC155-GAL4 driver. In each 

experiment the small RNA population was sequenced in each of the repeat expressing samples using 

Illumina small RNA sequencing and was compared to each driver with no repeat expression (4xUAS-

control). Independent pan-neuronal drivers together with independent rCAG.rCUG~100 lines were used 

with the expectation of identifying miRNA changes that can be replicated using different genetic 

backgrounds to exclude biological and experimental artefacts in order to obtain robust changes caused 

by dsRNA.  

 

The sequencing analysis produced between 1.5-2.6 million reads that were uniquely mapped to the 

Drosophila genome (BDGP 5.0, 2006). These reads were then mapped to the annotated miRNA 

precursors (D.melanogaster miRBase version 14).  Reads mapping to multiple precursors (pre-miR) 

were further analysed to identify the ‘best match’ based on the longest alignment. These reads were 

further matched to the annotated mature miRNA sequence or predicted star sequence (miRNA*). 

Reads that did not map to miRNA precursors were removed from the analysis. The total number of 

reads mapping to miRBase was normalised across the samples to allow comparison.  

 

Significant changes in miRNA abundance were identified based on two parameters. Firstly the 

complete list was filtered to include miRNAs that recorded a minimum of 1000 reads in at least one of 

the samples (control or dsRNA within an experiment). This list was then filtered based on fold change 

between the samples. Additionally, in Experiment 1 miRNAs that were significantly changed in either 

rCAG~100
#1 or rCUG~100

#1 compared to the control were excluded, in order to generate a list of altered 

miRNAs that are unique to double-stranded RNA expression.  

 

In order to identify common changes to the miRNA profile between the two experiments, these 

analyses were expanded to include miRNAs with a log2 (ratio) of >+0.26 or <-0.26; that is a 1.2 fold 

change, between dsRNA and the control sample, and a minimum of 1000 reads in at least one of the 

samples (control or dsRNA within an experiment) was included. This generated a list of 22 and 23 

miRNAs with a significant change in abundance in the two experiments respectively. miR-184, miR-

263b, miR-274 and miR-932 are decreased and miR-1017 is increased in dsRNA compared to the 

control in both Experiment 1 and 2, indicating the potential for a functionally relevant effect, 

independent of the different genetic backgrounds used in the two experiments.  
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Table S2 

Oligodeoxynucleotide primers utilized for verification of genotypes of Drosophila lines.  

A common (pUAST forward) primer was used for each PCR in conjunction with a unique reverse 

primer as indicated. 

 

Primer name Sequence (5’-3’) 

pUAST forward GAAGAGAACTCTGAATAGGG 

R2D2 reverse GGACGCAGTAGTCACGCAG 

hADAR1 reverse GCCATTGTAATGAACAGGTGGTT 

hADAR2 reverse CCCACGTAAAAGGGAGGCTC 

dADAR reverse AGAACTGCTCCATCCTTAAACTG 

pUASp forward GGCAAGGGTCGAGTCGATAG 

pUASp reverse AGGTTTAACCAGGGGATGCT 

pUASp sequencing forward  CAAGGGTCGAGTCGATAG 

pUASp sequencing reverse TAACAAGTATGAATGTCAGGTT 
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