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ABSTRACT

Analysis of granitoids from the Olary Block of South Australia, gave rise to the
identification of three genetically different granitoids. The Bimbowrie Granite, characterised by
high Al,O3, Ca0, K20, P20s, Rb, Sr, Pb, Zn and low NayO, Nb, Zr, Ga and Y is an S-type
granite, considered to be largely a product of partial anatexis and melt segregation from adjacent
and underlying migmatitic metasediments during a high grade metamorphic event. The Basso
Granodiorite with high SiOj, Zr, Nb, Y and LREE and low CaO, Al;O3, MgO, V, Ba and Sr
is a typical A-type granite that is, it formed from remelting of crust from which earlier granites
had been extracted, or alternatively from fractionation of basaltic magma. It intrudes the host
metasediments and is subsequently intruded by the Bimbowrie Granite. Thirdly, the Antro
Tonalite exhibits I-type characteristics with high Fe,03, NapO, CaO and TiO; levels and low
LREE and K70.

Rb-Sr dating produced an isochron age of 1642 + 5 Ma for the Basso Granodiorite and
metasedimentary units. The Rb-Sr isotope system is easily reset, and generally registers
significantly younger ages. Hence, 1642 + 5 Ma may reflect the timing of a metamorphic/
deformational event.

Sm-Nd isotope investigations into the Olary Block, revealed a clustering of model ages.
The Bimbowrie Granite has DM model ages of 2.6 - 2.67 Ga, recording the age of extraction
from the mantle. One sample did however produce an age of 3.28 Ga, reflecting the granites
source. That is, it may be sampling metasediment derived from older crust, présent either as a
basal sequence upon which the current stratigraphy is deposited or alternatively it may be
sourcing a metasedimentary pile with a greater crustal residence time than the exposed
metasediments. DM model age for the metasediment of 2.55 Ga further supports the notion that
the Bimbowrie Granite formed as a result of in situ melting of the metasedimentary sequence.

2.12 - 2.13 Ga DM model ages were determined for the Basso Granodiorite. One
sample did however have a TDM similar to the S-type granites of 2.61 Ga; this clearly indicates
crustal contamination of this sample during emplacement, whereas the other samples reflect true
mantle separation ages. ‘

Regardless of the exact rates of crustal growth, it is clear that large volumes of
continental crust were formed during the Palaeo- Mesoproterozoic. Identification of crustal
production peaks for the Australian continent at ~3600 Ma, ~2600 Ma, ~2200 Ma and ~1800
Ma by McCulloch (1987), are reinforced by the data obtained herein. Two peaks were
established, one at ~2600 Ma for the Bimbowrie Granite and the other at ~2200 for the Basso
Granodiorite. Controversy still remains over whether these periods are discrete growth
episodes or simply reflect a variation in the rate of recycling of continental crust into the mantle.



CHAPTER 1 - INTRODUCTION

1.1 The Problem

A geoscientist is constantly faced with the problem of interpreting what they observe
and applying their observations to an understanding of how the Earth works. Proterozoic
terrains present many such problems, including how and why did orogeny occur, has the
volume of continental crust grown, and if so how and when, and what were the tectonic
environments responsible for the unique geochemical nature of melts during this period.

Australia abounds in Proterozoic terrains that potentially offer fundamental insights into
these and many other problems. The task of a geoscientist is to document observations and
expand the total amount of information available in order to be able to address such problems.
Possibly the most useful indicators are igneous rocks, and in particular granites. Granites act as
probes of their source regions, and therefore contain inherent information about the processes
responsible for their formation.

The Olary Block, in South Australia provides an excellent opportunity to address these
and other problems due to types and number of rocks exposed.

By establishing geochemically and isotopically the nature of the granitoids in the Olary
Block, and comparing these with other terrains of similar age, it is hoped that insights into
problems involving Proterozoic crustal growth and tectonism may be obtained.

1.2 Aims Of This Study

It is beyond the scope of this thesis to tackle all the problems mentioned above.
However, by the use of mapping, petrology, geochemistry and geochronology, the poorly
exposed area of the Olary Block under investigation has been detailed in such a manner as to be
useful for further interpretation following the completion of this thesis. With a view to looking
further abroad (ie., at the Gawler Craton, Lachlan Fold Belt and Mount Painter Inlier) it is
hoped this thesis may provide important insights into crust-mantle evolution during the
Proterozoic.

The following is a list of aims proposed for this project:

1) To produce a 70km2, 1:10 000 geological map of the Outalpa-Bimbowrie-Antro area, Olary,
South Australia.

2) To formulate nomenclature for the granitoids petrologically.

3) To classify the granite suites geochemically.
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4) To establish a systematic geochronologic framework for the local region by the use of Rb-Sr
and Sm-Nd isotopes.

5) To delineate the provenance of the sediments and granitoids by the use of Sm-Nd isotopes
and geochemistry.

6) To integrate geochemical and isotopic features and thus elucidate Proterozoic crustal
evolution. |

7) To synthesise data available from selected Australian Proterozoic terrains eg., Gawler
Craton, Lachlan Fold Belt, Broken Hill Block and the Mount Painter and Babbage
Inliers, in order to establish temporal and/or spatial relationships between such terrains
and thus address the larger scale problem of crustal evolution during the Palaco-
Mesoproterozoic for the Australian continent.
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CHAPTER 2 - REGIONAL GEOLOGY

2.1 Geological Setting

The Olary Province of the western Willyama Block, a promontory of the Gawler
Province of the Precambrian shield of Australia (Flint and Webb, 1980), has been the focus of
Jong-standing geological attention due to its proximity and tectonic relationships with the silver-
lead-zinc deposits of Broken Hill.

Palaeoproterozoic rocks in the Willyama Inlier form a series of semi-isolated, partly
exposed blocks which characteristically have faulted western margins and are unconformably
overlain by Adelaidean metasediments along their eastern margins (Flint and Parker, 1993). A
major sinistral north-northeast trending fault (Mundi-Mundi fault) separates the basement of the
Willyama Inlier in South Australia (Olary Block) from that in New South Wales (Broken Hill
Block) (fig. 2.1.1). Correlations have been made between the two blocks, however due to the
lack of substantive data, they are at best tentative.

2

South Australia

Figure 2.1.1 - Willyama Orogenic Domain in New South Wales and South Ausralia

The Olary Block contains medium to high grade regionally metamorphosed and
generally strongly deformed sedimentary and minor volcanic rocks, intruded by extensive
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volumes of granitoids and scattered occurrences of mafic dykes. The oldest rocks in the
Willyama Inlier comprises mixed clastic and chemical sedimentary sequences referred to as the
Willyama Supergroup. The Olary Block portion of the Willyama Supergroup is suggested to
represent a rift margin and although detailed palacoenvironmental syntheses are scarce, it is
recognised that the sequence may be consistent with deposition in a predominantly shallow
marine environment interspersed with non-marine playa lakes, deepening upward (ie., shelf or
intracratonic basin; Rutland, 1976; Cook and Ashley, 1992). Flint and Parker (1993) have
suggested that deposition took place in an ensialic rift zone characterised by immature |
terrigenous and volcanic derived clastics and bi-modal volcanism. Such deposition is suggested
to have taken place prior to ~1700 Ma. Dating by Page and Laing (1992) in the Broken Hill
Block of the Willyama Supergroup recorded a maximum age of sedimentation defined by the
minimum age of detrital zircons of 1690 + 5 Ma.

Rifting, extrusion of tholeiitic magma and development of a slightly deeper trough in
which carbonaceous silty turbidites accumulated soon followed.

Deformation and metamorphism of these sediments to amphibolite grade occured during
the Olarian Orogeny, accompanied by intrusion of felsic granitoids around ~1700-1550 Ma
which caused local migmatisation and melting of host rocks as well as concentration of some
economic minerals (eg., uranium and beryllium) (app. B, plate 4A).

Adelaidean rifting and deposition began at ~900 Ma, following uplift and erosion of the
Palaeo- to Mesoproterozoic rocks. Sand sedimentation and possibly some volcanism (Boucant
Volcanics) took place at this time in the partially fault controlled basin. Continental to marine
deposition continued through the Adelaidean and included shallow-water, possibly fluvial,
hematitic arkose and magnesitic, and silty sedimentation. Deep water sedimentation of
laminated silt and carbonate units followed Sturtian glaciation.

The Cambro-Ordovician Delamerian Orogeny left Adelaidean rocks folded,
metamorphosed and intruded (by the Anabama Granite and associated dykes). This deformation
gave rise to N-S trending folds and a second phase produced NE-SW folds. Gold, copper and
molybdenum concentration took place at this time (Clarke et al., 1987).

Tertiary instability led to downwarping and downfaulting, allowing deposition of
continental sand and shallow marine to estuarine clay and limestone. Much of the current
topography and plain sedimentation may be traced back to Pleistocene uplift, erosion and
deposition.

Geological mapping and related investigations in the Olary Block (Flint, 1981) have
been modest in comparison with the extensive and very detailed structural and stratigraphic
investigations undertaken around Broken Hill (eg. Stevens and Stroud, 1983). Thus the need
for an investigation involving detailed field observations and regional geological synthesis is
apparent. A geological framework for the study area has been established (as below) in order to
fully understand subsequent isotopic and geochemical investigations.
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2.2 Previous Investigations

Mawson (1912) first described the petrology and structure of the crystalline basement,
which he called the Willyama Complex, and the overlying Adelaidean sedimentary sequence.
Later, Campana and King (1958) divided the Willyama Complex within the Olary Block into
four broad sedimentary units; the Weekeroo schist, Ethiudna Calcsilicate Group, Outalpa
quartzites and the migmatite and granite gneisses, of inferred Archaean age ‘granitised’ during
the Proterozoic to produce large granitic terrains within the metasediments. Talbot (1967)
inverted the stratigraphy of Campana and King (1958) and placed the granitic terrains at the
base of the stratigraphy. He described five stratigraphic units in an antiform within the
Willyama Complex and recognised at least two phases of pre-Adelaidean deformation.,

Parker (1972) and Flint and Flint (1975) divided the sequence into units directly
correlatable with the stratigraphy used herein. Modest mapping of the Willyama Complex
within the Olary Block by the South Australian Deptartment of Mines and Energy (Pitt, 1977;
Forbes and Pitt, 1980) and structural work of a fragmentary nature with limited regional context
(Berry et al., 1978; Grady et al., 1984) comprises most of the work undertaken in more recent
years.

Detailed mapping and analysis by mineral exploration companies has enabled an
incomplete database of small yet widely distributed sequences, and a summary of the local
mineralisationk(reviewed in King, 1958; Blissett, 1975; Pitt, 1978) to be outlined.

More recent studies by Flint and Parker (1993) have provided an excellent overview of
the geology of the Olary Block.

2.3 Stratigraphy of the Olary Block

The Palaeoproterozoic Willyama Supergroup and Mesoproterozoic granitoids form a
series of inliers, generally surrounded by stratigraphically younger sediments of the Adelaide
Geosyncline. The establishment of a stratigraphic compendium for the Olary region is difficult
due to the absence of continuous exposure.

Most stratigraphic studies of the Willyama Inliers have recognised a broad subdivision
of gneissic and migmatitic units at the base, structurally overlain by schistose and fine grained
metasediments (Flint and Parker, 1993). Due to intense deformation and metamorphism,
sedimentary structures are rare and stratigraphic sequences have been considerably disturbed.
Furthermore because of the variable metamorphic grade and lack of regional tectonic syntheses,
it has been difficult to distinguish metamorphic units from primary stratigraphic units.

Clarke et al., (1986) proposed five broad lithological suites for the Olary Block;

» Composite Gneiss Suite
* Quartzofeldspathic Suite
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* Calcsilicate Suite

* Bimba Suite

* Carbonaceous Pelite Suite
Each of these are detailed below and summarised in figure 2.3.1. No evidence for
unconformities in this sequence has been observed in the Olary Block.
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Figure 2.3.1 - Proposed stratigraphic subdivision of the Willyama Supergroup in the Olary Block (after
Clarke et al., 1986) and tentative correlation with equivalents in the Broken Hill Block (after Stevens et al.,
1990) (Flint and Parker, 1993)

Composite Gneiss Suite

The Composite Gneiss Suite is interpreted as the basal unit in the Olary Block. The
sediments are generally coarse grained, migmatitic, qtz-fld-bt * sill + gt gneisses. Gradations
exist into psammopelitic and pelitic schists and quartzofeldspathic units.

These gneisses are probably metasedimentary, derived from anatectic melting of the
enclosing psammopelitic sediments (Flint and Parker, 1993), but there are zones in which there
is complete conversion via in situ migmatites into banded, migmatitic and locally massive
leucocratic granitoids. Although intrusive relationships are locally preserved, the granitoids
commonly contain rafts and xenoliths of layered gneiss and have nebulitic textures often
grading into typical in situ migmatites. This suite should not be strictly viewed as a distinct
stratigraphic unit; its field relations imply that there has been large scale doming and
mobilisation about some of the larger granitoid bodies and therefore it could be partly intrusive.
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Quartzofeldspathic Suite

This extensive suite is characterised by massive to layered qtz-plag-bt + K-fld gneiss,
commonly with disseminated grains and/or thin laminae of magnetite (+ haem) and pyrite. The
quartzofeldspathic rocks comprise the informally termed ‘Lower Albite’ unit of massive to
thickly layered albite - qtz (+ K-fld £ bt + mu + magnetite * pyrite) rocks, the ‘Upper Albite’
unit of commonly well laminated albite - qtz (+ K-fld + bt + magnetite + calcsilicates) and the
intervening ‘Middle Schist’ unit of psammopelitic and pelitic schist and composite gneiss
(Ashley et al., 1994).

Lithological layering varies from a few millimetres to tens of metres in thickness, and
sedimentary structures have been recorded, including graded bedding, ripple marks and cross
laminations.

The presence of laminated iron formations and pelitic schistose horizons in addition to
sedimentary structures, indicates a sedimentary origin. Flint and Parker (1993) suggest the
origin of this suite to be derived from felsic volcanoclastic sediments containing saline rich
fluids.

Calcsilicate Suite

The calcsilicate suite is characterised by massive, banded and finely laminated
calcsilicate and feldspathic rocks. It is typically fine grained and includes scattered stratabound
occurrences of calcsilicate matrix breccia. Their mineralogy typically comprises amphibole
(actinolite, hornblende), clinopyroxene (diopside - hedenbergite) and epidote with minor garnet
(grossular - andradite) and accessory sphene, zircon, tourmaline, pyrite and magnetite.

The calcsilicate suite is thought to gradationally overlie the quartzofeldspathic suite.
Flint and Parker (1993) have suggested that the upper portions of the quartzofeldspathic suite
and most of the calcsilicate suite may in fact be correlated laterally.

Cook and Ashley (1992) suggest a clastic sedimentation (of felsic provenance) and
interaction with evaporative brines, together with chemical sedimentation of evaporites and local
hot spring exhalites for the calcsilicates. Depositional conditions being an oxidising,
lacustrine/playa and possibly sabkha environment, with local hot spring activity.

Bimba Suite

This unit is up to 50m thick, laterally continuous, finely laminated and host to
predominantly pyritic sulphides. It is characterised by qtz-bt-albite = mu * sill metasiltstone
interlayered with marble, albitic chert and calcsilicate gneiss. The mineralogy of the calcsilicate
gneiss has many similarities with the calcsilicate suite with the addition of calcite, vesuvianite
and fluorite, and traces of scheelite and magnetite.

The Bimba Formation is interpreted to represent a shallow water, mixed carbonate -
pelite unit transitional between the underlying evaporitic and overlying deeper water marine

Page 14



sediments; with the metal-rich sulphide accumulations a result of episodic hot spring
exhalations (Flint and Parker, 1993).

Carbonaceous Pelite Suite
This suite is dominated by pelitic and psammopelitic schist (bt + mu + gtz £ Al silicates

+ gt + tour), locally grading into thin psammites higher in the sequence. The base of the pelite
is marked by a graphitic facies commonly accompanied by chiastolite porphyroblasts or
andalusite/sillimanite. Thin stratiform pegmatoid-tourmaline horizons, rare garnet-rich
calcsilicates and stratabound pegmatites also occur within the lower part of the suite.

. A regionally distinctive and sharp contact exists between this unit and the underlying
Bimba Suite, hence creating a useful stratigraphic marker.

The pelite suite is interpreted as having been deposited as mud and silt, possibly
turbiditic in part, in a deepening marine basin.

2.4 Lithological Descriptions of the Mapped Sequences - Field and Petrological

The development of a detailed understanding of the origin of the granitic rocks that
comprise a significant portion of the exposed area of the Olary Block has been hampered by a
lack of relative and absolute geochronology, geochemistry and regional mapping of both the
intrusive rocks themselves and surrounding lithologies. '

The mapped area enabled three granitoids to be identified; the Antro Tonalite,
Bimbowrie Granite and the Basso Granodiorite (new names). Detailed below are field
observations combined with petrological descriptions of these three granitoids and the host, a
metasedimentary sequence.

2.4.1 Metasediments

The focus of the field assignment was primarily to investigate the igneous rocks,
however a complete tectonic understanding of the map area required not only investigation of
the igneous suites but also of the metasedimentary sequences in which they 'intrude’.

Typically the metasediments consisted of a series of finely laminated to thickly bedded,
medium to fine grained pelitic and psammitic schists (plate 1A), with thin calc-silicate bands
and albitised layers at certain localities.

The pelitic schists, usually more finely laminated, are Al-rich (as evident by the
presence of garnet) and consist of quartz (~45%) biotite (~25%) muscovite (~20%) K-feldspar
(~10%) with minor amounts of pyroxene, opaques (?magnetite) and + garnet, varying with
initial bulk composition (plate 1B, 1C). Under thin section a strong fabric was observed, most
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PLATE 1

Metasediment showing compositional variation from quartz rich to biotite rich. Field of
view =.7.6 mm (sample number 1027-011).

Garnet porphyroblasts in a pelitic schist with phyllosilicates (bt and mu) wrapping
around. Field of view = 6.2 mm (sample number 1027-098).

Pelitic schist, with the growth of garnet crystals, during metamorphism.

A calcsilicate band rich in epidote, actinolite and diopside, within the quartzofeldspathic
unit.

~.

Brecciated calcsilicate containing dominahtly epidote, sphene, diopside, quartz and
plagioclase. Field of view = 6.7 mm (sample number 1027-006).

Brecciated calcsilicate in hand specimen, note the distinctive green colour of epidote and
diopside (sample number 1027-006).

Retrograded ?andalusite porphyroblast (now muscovite) within a psammite. Note the
wrapping of the finer grained muscovite rich matrix around the porphyroblast. Field of
view = 10.9 mm (sample number 1027-010).

Hand Specimen of retrograded ?andalusite porphyroblasts in a psammitic rock (sample
number 1027-010).
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likely a result of deformation, illustrated by the wrapping of phyllosilicates (bt and mu) around
garnet porphyroblasts.

Thin calcsilicate bands of epidote, actinolite and diopside were found on numerous
occasions amongst the more psammitic, quartzofeldspathic rocks (plate 1D). Such bands are
useful marker beds due to their regional extent. Diopside is the most abundant mineral (~25%)
followed by quartz (~20%) which shows strong undulose extinction. Distinctive green epidote
is present in significant amounts (~15%), together with plagioclase (10%). Actinolite (~10%),
chlorite (~5%), muscovite (~5%), minor opaques and euhedral, diamond shaped sphene are
important minor phases (plate 1E). A brecciated calc-silicate outcrop can be seen 1-2 kilometres
east of Antro Woolshed (appendix H) (plate 1F).

Retrograde ?andalusite porphyroblasts (now muscovite) preferentially growing along
bedding planes exist within some of the more psammitic sequences (plate 1G, 1H; app. B plate
4B). The most likely explanation for their confined extent is due to variation in initial bulk
composition (app. B plate 4C). Regionally pervasive albitite interbeds up to 0.5 metres thick
form continuous bands useful for determining bedding orientation (plate 2A). Cross-bedding
was found within a few of these distinctive sequences, allowing determination of younging
direction.

In addition to the above, the metasediments also include finer grained, pale brown
schist, coarser haematitic schist and crenulated biotite schist. Ripple laminations were preserved
at a few localities.

Numerous cross-cutting pegmatites, both pre and late-syn deformational were identified
in the field (app. B plate 4D, 4E).

2.4.2 Antro Tonalite

This tonalite of locally minimal extent consists of plagioclase (~55%), quartz (~25%),
clinopyroxene (~15%) and K-feldspar (< 5%), with minor phases of sphene, subhedral to
euhedral lozenge shaped apatite, and secondary minerals including muscovite and chlorite (plate
2B). Opaques (?magnetite or ilmenite, commonly cubic shaped) are present in a significant
amount (~20%). This rock is relatively mafic and based on its mineralogy (ie., being quartz
undersaturated, and containing sphene) it initially appeats to have an I-type nature.

One - two kilometres northeast of Antro Woolshed (refer appendix H) exists a poorly
exposed and highly weathered outcrop of this granite, the only one within the mapped area. It is
extensively recrystallised and variably deformed hence measurement of exact foliation and
lineation is unable to be determined. It appears to be intrusive into a sequence of phyllitic
metasediments however no contact between the two lithologies was exposed.

Based on the classification scheme of Streckeisen (1973), this granitoid is a tonalite
(fig. 2.4.2.1).
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2.4.3 Basso Granodiorite

The Basso Granodiorite is located near Basso Mine, Tommie Wattie Bore, Ameroo Hill,
Boundary Deposit and Doughboy Well Mine. It is a quartz-feldspar-biotite rock, exhibiting a
strong foliation, delineated by the planar arrangement of micaceous aggregates (plate 2C). The
granitoid is composed of quartz (~50%), plagioclase (~25%), biotite (~20% ), K-feldspar
(<10%) with minor muscovite, apatite and opaques(?magnetite) (plate 2D).

In view of the classification scheme outlined in chapter 3, the informally-termed
Ameroo Granite of previous workers (eg., Ashley et al., 1994), falls into the category of the
Basso Granodiorite (app. B plate 4F).

Anhedral quartz grains with undulose extinction exist, with the larger grains annealed to
form aggregates of smaller quartz subgrains. Anhedral to subhedral multiple twinned
plagioclase grains containing minor poikilitic inclusions of quartz, biotite and muscovite;
together with K-feldspar commonly in the form of microcline makes up the majority of this
rock. However subhedral, pleochroic dark-brown-green to straw coloured biotite grains,
strongly aligned and intergrown within the quartz and feldspar framework are a major
constituent. Within these, included zircons are highlighted by black alteration haloes. Less
commonly, smaller aggregates of brown-brown-orange biotite overprints the textural features.
Opaque oxides (?magnetite or ilmenite) may comprise up to 10% of the rock (plate 2E).

The Basso Granodiorite, intimately associated with, yet intruded by the Bimbowrie
Granite, is both petrologically and in outcrop significantly different (plate 2F). The Basso
Granodiorite intrudes the host metasediments, and at a later date both lithologies are intruded by
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PLATE 2
Hand specimen of a typical albitite.
Antro Tonalite, showing dominantly plagioclase. Note the fine grain size and degree of

recrystallisation, Field of view = 13.0 mm (sample number 1027-001).

Basso Granodiorite in outcrop. A strong fabric can be seen, delineated by the planar
arrangement of micaceous aggregates.

Basso Granodiorite in hand specimen, note the abundance of biotite (sample number
1027-017).

Basso Granodiorite in thin section, compc}sed of quartz, plagioclase, biotite, K-
feldspar, muscovite and apatite + opaques. Field of view = 13.4 mm (sample number
1027-017).

Contact between the Basso Granodiorite (bottom) and the intruding Bimbowrie Granite
(top). Note the pull away clast from the Basso Granodiorite.

Xenolith of the Basso Granodiorite in the Bimbowrie Granite.

Metasediment xenolith within the Bimbowrie Granite (sample number 1027-114).






PLATE 3

Contact in thin section between a fine grained metasediment xenolith and the much
coarser Bimbowrie Granite. Field of view = 8.2 mm (sample number 1027-036b).

Hand specimen of the Bimbowrie Granite with the diagnostic very coarse grained
feldspar phenocrysts (sample number 1027-005).

Bimbowrie Granite with a fine grained matrix, and a few diagnostic feldspar
phenocrysts (sample number 1027-046).

Bimbowrie Granite in thin section, note the very large feldspar phenocrysts diagnostic
of this granitoid. Field of view = 21.7 mm (sample number 1027-005).

Migmatite in hand specimen (sample number 1027-008).

Migmatites, formed by in situ anatexis of local sediments, with only minimal melt
migration.

Metasediment xenolith with original bedding still evident, contained within the
Bimbowrie Granite.

The Bimbowrie Granite containing an abundance of metasedimentary xenoliths at
contact margins, declining in frequency towards the centre of the granitoid.






the Bimbowrie Granite, as evident by the presence of Basso Granodiorite and metasedimentary
xenoliths within this granite (plate 2G, 2H, 3A). Clear contact margins may be seen within the
field (two such localities are near Boundary Deposit and Basso Mine); and as illustrated in plate
2F, an injection direction of the Bimbowrie Granite may be established.

This medium grained essentially equigranular biotite-rich granitoid is classified as a qtz-
rich granitoid however a granodiorite (gtz-rich) gneiss would perhaps be more applicable (fig.
2.4.2.1),

2.4.4 Bimbowrie Granite

The Bimbowrie Granite is medium to coarse grained, relatively leucocratic, pink to buff
in colour, and composed of qtz-mu-bt-K-fld (microcline) and plag (plate 3B, 3C). Quartz the
most abundant mineral (~40 %) has strong undulose extinction. Plagioclase, defined by its
distinctive multiple twinning contains inclusions of muscovite and quartz and together with
microcline, makes up the majority of the rock (~30% and ~20% respectively). Muscovite is
present in all of the rocks examined but textural relationships suggest that it is possibly a
primary mineral in only a few cases (plate 3D). In thin section, muscovite appears as flakes
interleaved with biotite, that appear to be recrystallised aggregates. This implies that the
muscovite may be a subsolidus phase.

With reference to the 1:10 000 geological map produced for the area (appendix H), the
Bimbowrie granite outcrops near Antro Woolshed, Tommie Wattiec Bore, Basso Mine,
Boundary Deposit, Doughboy Well Mine and Brady Mine. These intrusions are large, relatively
homogeneous and show weak NW-trending (042) fabrics defined by the alignment of very
coarse grained feldspar phenocrysts (app. B plate 4G).

Their field relations imply that they are largely the product of variable segregation of
migmatite leucosomes, exhibiting a complete range of contact phenomena ranging from sharply
intrusive (with the Basso Granodiorite) to gradational into migmatites. Thus it is considered that
they are largely the products of partial anatexis and melt segregation from adjacent and
underlying migmatitic rocks, formed during a high grade metamorphic event (plate 3E, 3F).

This granite has strong S-type characteristics, supporting the notion that it is derived by
in situ anatexis of local sediments, with only minimal melt migration. In support of this is the
presence in thin section of ubiquitous red-brown biotite which invariably contains zircon
crystals with black circular alteration haloes. Geochemical based reasoning gives confirmation
to this notion, discussed in chapter three.

The Bimbowrie Granite contains significant quantities of metasedimentary xenoliths, in
greatest abundance at the margins in contact with the metasediments; declining in frequency at a
distance from this zone (plate 3G, 3H). From this observation, it may be said that assimilation
of the metasediments is taking place.
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Based on the classification scheme of Streckeisen (1973) these granites may be classed
as qtz-rich granitoids, granites or granodiorites (fig. 2.4.2.1).

2.5 Structural and Metamorphic History

Throughout the Olary Block, the Willyama Supergroup has been extensively deformed
and metamorphosed. The Palacoproterozoic Olarian Orogeny and the Cambro-Ordovician
Delamerian Orogeny are two major periods of deformation widely recognised (Thomson,
1969ab; Glen et al., 1977; Berry et al., 1978). Five deformational phases ranging from the
Palaeo- or Mesoproterozoic to Ordovician have been recognised within the Willyama
Supergroup. D1 to D3 are ascribed to the Olarian Orogeny and D4 and D5 are manifestations of
the Delamerian Orogeny.

Olarian Orogeny

Within the Palaeoproterozoic basement, the Olarian Orogeny was by far the more
pervasive, of higher metamorphic grade and formed the majority of meso- and macroscopic
structures. The earliest deformation (D1) is represented by a schistosity (S1) with layer parallel
sillimanite, biotite and/or muscovite, At this time, amphibolite facies metamorphism, with
estimated temperature and pressure conditions of 650-720°C and 2-4kb (Berry et al. 1978) gave
rise to the growth of sillimanite, andalusite, kyanite and garnet within the Palaeoproterozoic
metasediments. Also during this deformational period impure carbonaceous sediments grew
diopside, vesuvianite, garnet, wollastonite and piedmontite metamorphic assemblages (Parker,
1986).
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Figure 2.5.1 - Metamorphism in the Olary Block (after Flint and Parker, 1993)
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The north to south increase in metamorphic grade evident in the Broken Hill Block
(Phillips, 1980) is broadly present in the Olary Block. Significant local perturbations of grade
proximal to some granitoids (eg., Plumbago area and near Cathedral Rock) does however
occut.

Clarke et al. (1987) recognised four metamorphic zones (I, Ia, IIb and III) which have
been spatially partially modified in more recent years, by Flint and Parker (1993). A more
detailed account of these metamorphic zones is set out below.

Zone 1

Zone I contains andalusite porphyroblasts, enveloped by a pervasive Sy mineral fabric
defined by muscovite and chlorite, with less garnet and biotite or fibrolitic sillimanite. In the
carbonaceous rocks, andalusite commonly occurs as chiastolite.

Zone Ila

Zone IIa metapelites are typically chloritoid bearing schists with associated muscovite,
chlorite and garnet. In garnet absent metapelitic rocks, andalusite porphyroblasts are
surrounded by abundant fibrolitic sillimanite (as in zone I).

Zone IIb

Zone IIb contains similar assemblages to those of zone Ila with the addition of rare
staurolite. Close to the syntectonic granitoids, the sequences have been known to contain all
three aluminosilicate polymorphs (Clarke et al., 1987).

Zone Il

Zone III is largely restricted to a region of poor outcrop in the south-east of the Olary
Block. This pelitic zone contains assemblages of either Kyanite and sillimanite or garnet.

The timing relationships of the aluminosilicate polymorphs, together with the peak
metamorphic and overprinting paragenesis, imply an anticlockwise P-T path for the Olarian
Orogeny, pressure increasing with cooling from the metamorphic peak (Clarke et al., 1987).

The presently exposed varjation in metamorphic grade is best explained by regional
block tilting as documented for example in the Himalayas (Le Fort, 1975) and the Alps (Zingg,
1980), and not by a variation in heat flow.

Within the lower Proterozoic metasediments, the stratigraphy is principally controlled
by NE-E trending upright, open to tight Dy folds, refolding an earlier Dy recumbent terrain. The
F; folds are not often seen yet are inferred to be recumbent, giving rise to downward facings
(Clarke et al., 1987). Fy folds exhibit a steeply NW dipping axial plane schistosity (Sz) defined
by sillimanite and biotite (Glen et al., 1977). The S axial plane is commonly defined by
moderate to strong crenulation of the Sy fabric producing a widespread intersection and
crenulation lineation, L. The sub-parallelism of the F; and F; axial traces causes interference
patterns on a mesoscopic scale to be rare. In summary, is seems simplest to consider the D1 and
D5 events as having developed progressively during the same continuum of orogenic event,
which suggests that the time span between them is likely to be small.
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D3 is represented throughout the Olary Block by east striking retrograde shear zones
disecting the sequence, overprinting D1 and D folds. Recrystallisation of mineral fabrics to
lower amphibolite - greenschist metamorphic facies occurs, with extensive hydration of
prévious assemblages. Clarke et al., (1986) recognised that the retrograde shear zones cross-cut
unfoliated (post-tectonic) granitoids. Steeply plunging elongation and mineral lineations present
within the east striking retrograde shear zone preserve evidence for a reverse sense of
movement (S over N) whilst zones oblique to the approximate N-S compression axis preserve a
considerable transcurrent component of movement.

Sedimentation of the Willyama Supergroup sequences is required to have taken place
prior to 1700Ma., as this is the approximate age for the D1 event, estimated by Flint and Webb
(1980), based on the Rb-Sr isotopic system. Intrusion of felsic granitoids occurred over the
period of ~1700 - 1550 Ma. and caused local migmatisation and melting of host rocks. An
imprecise Rb-Sr age of 1503 + 223 Ma. (Flint and Webb, 1980) has been obtained for the
intrusion of granitoids during D3, the final phase of the Olarian Orogeny.

Delamerian Orogeny

Adelaidean and Willyama Supergroup rocks were both affected by deformations D4
(northerly trending axes) and Ds (easterly trending axes).

The Cambro-Ordovician Delamerian Orogeny left Adelaidean rocks folded,
metamorphosed (to biotite grade) and intruded (by the Anabama Granite and associated dykes).
This deformation gave rise to N-S trending folds and a second phase produced NE-SW folds.

North trending synclinal wedges of Adelaidean rocks between the crystalline inliers is
an example of Dy folding. Adjacent to basement inliers, Ds is manifested by deformed pebbles
within the basal Adelaidean, ie., pebbles are tectonically elongated in the direction of plunge of
Ds fold axes (Grady et al., 1984). The D5 folding has caused arching of the major Dy fold
axes.

Faults initiated during sedimentation along the western sides of inliers were propagated
during D4. Both D4 and Ds produced axial planar schistosity or cleavage. Adelaidean rocks
display large broad Ds folds which have steeply dipping axial planes striking E-NE, and are
strongly affected by N-W directed faults (eg. MacDonald Fault) bounding the S-W edges of
crystalline basement inliers.

Detailed analyses of the effects of the Cambrian ‘Delamerian’ Orogeny within the Olary
Block are presented by Forbes and Pitt (1980) for the upper Proterozoic Adelaidean sequence,
and in Berry et al. (1978) and Grady et al. (1984) for the Willyama Complex.
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CHAPTER 3 - GEOCHEMISTRY

3.1 Granite Classification

The most widely used concept amongst igneous petrologists over the last few decades
has been the I- and S-type genetic classification for igneous rocks of Chappell and White
(1974). I-type stands for infracrustal (or igneous precursor), and S-type for supracrustal (or
sedimentary precursor), both however are generated during tectonism (ie., are generally related
to orogenesis) (Whalen et al., 1987). To delineate this further, S-types are derived from the
partial melting of metasedimentary source rocks or pre-existing S-type granites and I-types are
produced either by partial melting or by fractional crystallisation of mantle derived source
material, that have not experienced surface weathering processes (Chappell and White, 1992).
Both however are regarded as essentially crustal melts of pre-existing igneous or sedimentary
material. Unfortunately a large number of granite plutons are difficult to allocate convincingly to
either S- or I-type. In part this arises because some S-type characteristics can be inherited
through extensive hydrothermal interaction with sedimentary country rocks. Additionally,
alteration of a granite's geochemical signature may be dependant upon the extent to which
reworking has taken place.

The additional term M-type has been introduced (as a subset of I-type) for granites of
limited crustal residence time, possibly of mantle or mantle-wedge derivation (Tarney and
Jones, 1994),

To complicate matters further, a fourth granite type, A-type (A for anorogenic or
alkaline) has been introduced, documented for example by Collins et al. (1982) in the Lachlan
Fold Belt and Tuner et al. (1992a) from Padathway Ridge, South Australia. They are
chemically and mineralogically distinct from the more common I- and S-types implying a
different petrogenesis, the exact form of which is a subject of considerable controversy (Turner
et al., 1992a). Collins et al. (1982) suggest that such granites result from remelting of crust
from which earlier granites had been extracted. Alternatively Turner et al. (1992a), suggests
that fractionation of basaltic parental magma gives birth to such granites. A-types are generally
siliceous, reduced, iron-rich, flourine-rich, often niobium-rich, and have consistently high
levels of rare earth elements (REE) (Tarney and Jones, 1994). It is important to note that I-type
granites require by definition a two-stage melting process (one mantle, one crustal) for
generation, S-types also need an intervening sedimentary cycle, and A-types, depending on the
model, are generated by either a three-stage melting cycle (mantle, crustal, crustal) or simply a
single cycle directly from the mantle.

Hence, the differences between the groups are not the result of differences in the melt
forming process but reflect differences in the nature of the source material.
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Three distinct groups of granitoids can be recognised within the field area. In this
chapter these granites are classified by virtue of their geochemistry and classified into tectonic
and source regimes.

3.2 Objectives

Extensive X-ray fluorescence (XRF) whole rock analysis was carried out on
metasediments, migmatites and amphibolites, in addition to the three granite types within the
field area in order to:

(1) Support field evidence that three different granite types exist

(2) Categorise the granitoids into I, S or A type

(3) Note the geochemical affinities of the three granitoids

(4) Constrain source regions of the granitoids

(5) Put constraints on Proterozoic tectonics and crustal evolution in the Olary Block

Note: Refer to appendix C for information regarding analytical techniques, and appendix D for
a complete list of data obtained.

3.3 Geochemical Affinities

Previous geochemical investigations in the Olary Block are restricted to various honours
students and a few workers (eg., Ashley, 1984). Problems with correlating such data with that
of this study lie in inconsistent lithological descriptions, inadequate sample localities and simply
the scarcity of geochemical data.

The multi-element variation patterns obtained for Proterozoic granites are relatively
uncomplicated when normalised against mantle compositions. There are usually negative Ba,
Nb (Ta), Sr (Eu), P and Ti anomalies, that reflect fractionation by mineral phases containing
these elements at some time during the history of the source, or of the magma (Tarney and
Jones, 1994). A progressive enrichment from the more compatible to the most incompatible
element is notable. These distinctive features may be seen in the three granitoid types studied
(see following sections).

Fifty-two samples were analysed by XRF from the field area; this database forming the
basis for classification and subdivision of the granites, allowing scope for identification and
comparison of distinctive features on a local scale.
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3.3.1 Bimbowrie Granite

As a suite, the Bimbowrie granitoids range in composition from quartz rich granites to
granodiorites (fig. 2.4.2.1). They exhibit a limited SiOy range, from 71-76%; significantly less
than the Basso Granodiorite. They are substantially higher in Al»O3, CaO and K7O, lower in
NayO and an excellent discriminant exists in PoO5 where much higher levels are detected.

The Bimbowrie Granite are typically enriched in Rb, Sr, Pb and Zn, depleted in Nb, Zr,
Ga and Y (fig. 3.3.1.1a, b; table 3.3.1.1) with an Al index (molar Alx03/(CaO + Naz0 +
K»0)) in most cases greater than 1.1 (fig. 3.3.1.2), indicative of S-type granitoids (Chappell
and White, 1974).

4 Bl Antro Tonalite
B Bimbowrie Granite

Basso Granodiorite
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Figure 3.3.1.2 - Histogram showing the frequency of Al Index for granitoids of the Olary Block

The Nap0-K70 plot (fig. 3.3.1.3) shows the most fundamental chemical difference
between the three granitoids in the map area. The more potassium rich S-types are lower in
sodium and the separation of the three groups is unambiguous. Differences of this type are a
useful criterion in recognising I- and S-type granitoids and were an important factor in
determining that the overall I- and S-type characteristics were reflections of fundamentally
different sources (Chappell and White, 1974). Field evidence and petrological information
suggests this granite has S-type affinities, geochemistry allows for confirmation and precise
discrimination of this lithology.

Numerous workers (eg., Hine et al., 1978; Turekian and Wedepohl, 1961; Kolbe and
Taylor, 1966) consider that aluminium is enriched relative to Na and Ca in the production of
shales by chemical weathering, since Ca is concentrated in limestones and Na is removed into
seawater and evaporites. Thus pelitic rocks relative to Na and Ca have high K contents,
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reflected in high K/Na ratios of S-type granitoids (fig. 3.3.1.3) and relatively low Ca contents
(fig. 3.3.1.4). Such characteristics are directly reflected in the Al index factor where S-type
granitoids are greater than 1.1.

TiO, contents are similar for the Bimbowrie and Basso granitoids however no
systematic variation of TiOp with SiO is identified within the Basso suite (fig. 3.3.1.5),
implying that it is derived from fractionated igneous rocks (Hine et al., 1978). Similarly, the
plot of Al, Zr and Ti shows an excellent discrimination. The Bimbowrie Granite is spread over
the ternary plot and possibly indicates the movement from a restite phase to a melt phase, as
indicated by high Al values (Garcia et al., 1994).

The S-type Bimbowrie suite characteristically contain elevated levels of Rb and Sr, in
addition to P, Pb and Zn. Zirconium exhibits a strong negative correlation with SiO2 despite it
being appreciably more abundant within the Basso group (fig. 3.3.1.7). Ga is appreciably
lower, as represented in the Ga/Al plots (figs. 3.3.1.8a,b,c,d).

Figure 3.3.1.1a, b demonstrates the uniformity of the Bimbowrie granite despite
regionally extensive outcrop sampling. The compositional (trace) element variation for the three
graniteitypes and a metasediment, illustrating the differences and similarities between each
lithology is detailed in figure 3.3.3.2.

An excellent positive correlation exists between TiO7 and Zr in the Bimbowrie group,
comparitively the TiO2 content of the Basso suite remains constant (fig. 3.3.1.9).

3.3.2 Basso Granodiorite

Discrimination classifications based on trace element geochemistry for the Basso granite
produces a well-defined group corresponding to A-type affinities. The informally termed
Ameroo granite of previous workers (eg., Ashley et al., 1994) has a U-Pb zircon age of 1703 £
6 and is geochemically indistinguishable from the Basso, it is therefore included with the Basso
Granodiorite for the remainder of this paper.

A-type granites exhibit chemical analyses characterised by high SiOj, Naz0 + K30,
Fe/Mg, F, Zr, Nb, Ga, Sn, Y and REE (except Eu) contents and low CaO, Al, Mg, V, Ba and
Sr (Loiselle and Wones, 1979; Collins et al., 1982; White and Chappell, 1983).
Mineralogically these granites contain annite-rich biotite and/or alkali amphiboles and
commonly sodic pyroxene. High Ga/Al values appear to be particularly diagnostic of A-type
granites (fig. 3.3.1.8a,b,c,d). Isotopically, high €ng and low 87S1/86Sr ratios are measured,
supporting the notion that A-type suites are of direct mantle origin, and arguing against a major
crustal component in their genesis (Turner et al., 1992).

Whalen et al. (1987) rely heavily on utilising plots of Ga/Al versus certain trace and
major elements, with the fields indicated for M-, I-, A- and S-type granites. These fields have
been used for discrimination of the A-type Basso granite, relative to the Bimbowrie and Antro
granites, with S- and I-type characteristics respectively. Additionally, plots of Zr + Nb + Ce +
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Y versus major element ratios, are equally effective in identification of A-type granitoids (fig.
3.3.2.1).

The elements employed in most of these diagrams (Al, Fe, Mg, Ga, Zr, Nb, Ce and Y)
have been found to be relatively insensitive to low to moderate degrees of alteration (Pearce and
Cann, 1973) hence they should be equally effective for both fresh and altered granitic rocks. As
the Basso granitoid shows strong foliation this may potentially be a problem, which is avoided
by the use of these elements.

The Basso granitoid satifies all criteria set by Whalen et al. (1987), regarding A-type
granites. SiO2 is higher, in the range 77-79%, AlpO3 is lower than for S-type (Bimbowrie)
granites (fig.3.3.2.2) and they have an Al-index <1.1 (fig. 3.3.1.2). Zr, Nb, Ga and Y are
significantly higher, and Ca, Mg, Ba, V and Sr are significantly depleted (fig. 3.3.2.3; table
3.3.1.1). The Basso Granodiorite falls into the A-type category for both Ga/Al and Zr + Nb +
Ce + Y plots of Whalen et al. (1987).

There are four lines of evidence for the A-type nature of the Basso, namely:

* high LREE

* high SiO2

* high Zr, Nb, Y
*Jow Ca, Rb, Ba, V

It therefore seems apparent that the Basso granitoid displays A-type affinities and will
thus be regarded as of this nature for the remainder of this thesis.

3.3.3 Antro Tonalite

Due to the weathered outcrop and recrystallised nature of the Antro Tonalite, definitive
geochemistry was difficult to obtain, It is clear however, that several distinctive geochemical
signatures allow discrimination from the other granite types in the study area. The initial feature
is an Al Index < 0.95, the only granitoid in the area to show this (fig. 3.3.1.2). The criteria for
distinction between I- and S-type granites is based on the Al Index, with a numerical separation
between the two groups at 1.1 (I-type = <1.1, S-type = >1.1). Thus at first look, this tonalite
can be classified as I-type.

High FepO3 levels, 12.29 wt% average and low LREE values (fig. 3.3.3.1 compared
with the very elevated levels of the A-type Basso Granodiorite, is diagnostic of this granitoid,
in addition to low levels of SiO; (table 3.3.1.1). Na0O, CaO and TiOj are high and KO is
comparitively much lower. All of these features, are consistent with the characteristics of an
intermediate magma, with distinctly I-type affinities. This granite is high in copper, on average
~95 ppm, consistent with the abundance of opaques seen in thin section.
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Figure 3.3.2.2 - Trace element plot discrimination diagram for the Basso
Granodiorite
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3.3.4 Metasediments

Analysis was carried out on several metasediment samples (psammitic to pelitic in
composition) in order to establish any geochemical affinities with the S-type Bimbowrie
Granite, and to help elucidate potential provenance regions.

The metasediments showed signatures typical of psammo-pelitic rocks, with moderately
high Al levels, very high Al index values and low LREE values (fig. 3.3.3.1). Such patterns
are mirrored in the S-type Bimbowrie Granite, reinforcing the genetic link suggested earlier.
Figure 3.3.4.1 demonstrates the similarities and differences between all lithologies.

LITHOLOGY Bimbowrie Basso Antro Metasediment
Granite Granodiorite Tonalite Psammite
No. of Samples n=38 n=/, n=6 n=3
ELEMENT
Major (Wt %)
S102 T2.71 T1.37 01.30 65.51
Al203 14.75 11.73 13.20 17.58
Fe203 1.67 2.47 11.50 3.39
MnO 0.01 0.01 0.05 0.03
MgO 0.46 0.90 1.16 2.17
Ca0O 0.48 0.15 2.65 0.62
Na20 3.88 6.11 7.37 5.74
K20 4.79 0.77 0.25 3.32
TiO2 0.25 0.18 1.20 0.55
P205 0.20 0.01 0.30 0.08
SO3 0.00 0.00 - 0.00
LOI 0.75 0.23 0.26 1.17
Total 99.96 99,972 33.43 100,15
Al Index 1.19 1.05 0.78 1.26
‘Trace {(ppm)
Rb 339.46 71.84 6.05 268.35
Ba 240.00 150.67 103.67 456.00
Th 47.73 40.73 7.77 22.53
U 10.62 8.95 3.73 10.40
Nb 22.31 82.55 21.28 15.73
K 39747.52 6419.82 2103.04 27533.26
La 43.63 75.50 38.17 45.00
Ce 103.26 181.50 88.00 85.33
Ph 25.28 7.05 20.67 10.13
Sr 43,40 17.76 38.26 88.25
P 880.32 36.37 1287.44 363.68
Nd 49.50 95.45 47.67 34.45
Zr 158.27 416.67 297.73 154,77
Sm 8.50 22.80 5.75 6.05
Ti 1479.91 1099.08 7193.99 3277.26
Y 31.87 169.92 71.93 33,97
Sc 4.04 3.90 25.25 12.03
Cr 10.03 2.67 - 69.00
A% 16.43 12.35 - 77.30
Co 69.31 59.30 42.67 42.67
Ga 20.35 28.55 25.40 20.53
Cu 7.46 3.83 94.67 7.33
Zn 28.74 7.33 - 18.00
Ni 2.23 2.67 - 21.00

Table 3.3.4.1 - Average Whole Rock XRF data for the Olary Block, South Australia

3.4 Tectonic Classification Based on Geochemistry

Pearce et al. (1984) and Brown et al. (1984) constructed a different type of granite
classification based on statistical analysis of a large number of granitic chemical analyses from
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well defined tectonic settings. Discrimination diagrams which can be utilised in identifying the
tectonic setting of other granite suites developed as a result of this approach.

They proposed a tectonic classification of granites based on discrimination diagrams
using Rb, Y, Nb, Yb and Ta trace element data, categorising granites as syn-collisional (syn-
COLG), volcanic-arc (VAG), ocean ridge (ORG) and within plate type granites (WPG).

Plots of geochemical data from the map area, on these diagrams (figs. 3.4.1; 3.4.2)
highlights a classification of syn-COL bordering on WP type granite for the Bimbowrie
granitoids. The A-type Basso Granodiorites plot within the WP granite field. The
metasediments are distributed amongst the Bimbowrie granites, consistent with the Bimbowrie
being sourced from them. The Antro granites represents something significantly different,
categorised as WP to OR type. The significant feature of both diagrams, is the complete
separation of the syn-COL and WP granites (Bimbowrie and Basso respectively).

By the time granites are exposed, it is often difficult to obtain unambiguous geological
* evidence for the tectonic setting at the time of intrusion. This is a major difficulty faced when
tectonic interpretation is to be undertaken. To confuse matters further, granites undergo a
complicated petrogenetic history, thus interpretation of their chemical compositions becomes
quite difficult.

Geochemical perturbations in granite magmas form as a result of variable elemental
exchange between trace element rich minor phases, fluxing of volatiles, crystal accumulation
and by contamination of pre-existing continental crust (Pearce et al., 1984). Hence, the validity
of the tectonic classification diagrams must be questioned.

In addition to the above, Precambrian rocks cannot automatically be applied to these
diagrams which are based on analyses of Phanerozoic rocks. A study of the Precambrian
results in a lack of evidence for the notion of uniformitarian principles, that is, that processes
acting today existed in the past. |

Emphasis must be made here that fields on the discriminant diagrams strictly reflect
source regimes (and melting and crystallisation histories) rather than present tectonic regimes
(Pearce et al., 1984). This must be kept in mind when undertaking such analyses.
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CHAPTER 4 - INTERREGIONAL CORRELATION

Whole rock geochemistry has enabled categorisation and investigation of the geological
history of the Olary Block. An integral part of geochemistry is the ability to compare and
contrast data with that obtained from terrains further abroad, offering insights into large scale
tectonic and magmatic processes.

A generalised distribution of the major Australian Precambrian orogenic provinces,
sedimentary basins and the major Phanerozoic Tasman Belt is shown in figure 4.0.1.
Relationships have been demonstrated between Archaean sediments, and Palaeoproterozoic
granites and the younger Mesoproterozoic Hiltaba Suite granites of the Gawler Craton. The

Neoproterozoic - Early Cambrian sediments of the Adelaide Fold Belt and the early Palacozoic
granites of the Lachlan Fold Belt have also been compared.

Tauman Geosync
Palaeozole Fol

R e
1d Belt

D ls:ﬁ:‘ly Phanerozoic
entary Basin

Precambrian Platform Cover

Sedimentary Basin
m Proterozoic Block/Inller -

M P Complex

“ Archaean Block/Inlier -
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= — ——

New England
Fold Belt

Lachlan
Fold Belt

Figure 4.0.1 - Map showing the distribution of the major Australian Precambrian orogenic provinces,

sedimentary basins and the Phanerozoic Tasman Belt (after McCulloch, 1987; Wyborn et al., 1992)

4.1 Geochemistry

Figure 4.1.1 clearly illustrates a correlation between the Bimbowrie Granite (and the
metasediments f@yﬁl which they were sourced) and the Archaean sediments from the Gawler
Craton. All suites exhibit chemical analysis characterised by elevated Rb, Sr, Pb, Ba, K and P
contents and low Nb, Zr, Ga and Y. On the basis of this geochemistry, it is proposed that the
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Figure 4.1.1 - Comparative diagram of the Bimbowrie Granite and Archaean metasediments of the Gawler Craton

A— Cabe Camot

—— & 1027-046 (Bimb.)
——&— 1027-092 (Mtsed.)
————— 1027-102 (Mtsed.)
——/—— Devils Playground

——{ 1 1027-049 (Bimb.)

——®— W Eyre Peninsula

Hiid
HivLL
[IRENN
[IXENN]
e
vt
Wiy
[IFINN]
[N E
HiY
Wi
ik
ey
[YINt
IR
N
[LRX!
e
(130

'
i
}
1

17

PN

IS

ad-

°D

e

aN

_‘BH

syupuoyo/urdd

qa

1.00

element

—— A1027-017 (Basso)

— 1 —— A1027-026 (Basso)

——4—— Hiltaba

—<—— Kokatha

innipa

———&—— QOlympic Dam
—— M

—@&—— Buckleboo
——O~—— Cultana

Figure 4.1.2 - Comparative diagram of the Basso Granodiorite and Hiltaba Suite Granitoi

M
UL
B
HHI LT
LUTIRN
[CIHAN
R
[N
LUTINR]
i
[CIITEN
HHE
A
M
[CIETN]
[N
HHI
EUNEN]
[THN
TN
AN
PR
nea
i
WHI
HHELE
LOETEN]
[CIEN ]
[THIRE
HHILE S
LUERN]
LEIRE]
(RN
Y
HIHL
[UTIEN
[CENIRR]
HHN L
MRt
[TIEN]
L
HHEE) L
(TRl
MUy
HHI
HHIEE
[ITEN]
[CIIEN]
B
HHIEE
M
mi
[N
AHIE L
WL
mHi
CUITEN
ne
[CINER]
uHH
ALY
I
LRTTAE
[GITAN]
[LIRN]
HHE
HHIEE )
e
[CIERN]
HHINE L ¢
HHI L

10000.00

COTEN
M
[N
Wi
mun
it
wi g
(YN
CUTINE
IR
[N
[LITE
W
LUTIEN
(]
[CTIYN
W
ne
B ¢
[LIEN)
e
e
CETEN
Hh
[CTIEN]
[
wan
b
(IR
amite
w
mu
[N
[T
CEIE
[TTRN
[N
[N
anenn
HiH
T
[QIDYS]
anie g
RN
[ETIEN
e
[,

L)
WE

[N
EUTERN N
LITTRN IR
myte
(LT
LR
EUTISN]
[COINE)

M)
THRELA
b
LIITEN]
CURR]
[CHINE]
WHENV
RN
LIIIS RN
IHECT
WOERES b

U
[CHIEN]
HHEY E
[CUER]
nied
WHELE
mn
W

() mnan

[N ]
b
MU
WY
L 1
IR
M
[TIRENG

L L we e
[ SN TIT N
HOLY b
MDY 1 mHEEE
BICHOD L MOV

ey

MEVELL et

BOTELD T OHEEIE
HIHEET L N b
AL BN

W

Mt
4 b
[TIREN
SRR

[T 1
(TN (N
LI Mt
LTt X
nH1 i

i e

LN N]

HERELL 4

ARELY 1
WAEL T
P
BHUTE T miE
TR L]
WUILY U
HOOLL L
WL HIO
W R
a1 e
LI AN
WL A
WS
[t m
NI
WU T WU
e e
HHHED L N
L w0
WL ) B
ALY L
WO E i)
WO W
WHLLE S
WY
MR D e
I LR
HELE L
WU )
SEL L L
WOLEL 1
N LT
WL O W
BB C
WL
K TN

MHELL L HgH

10.00
1

ayupuoydmudd

|
'
1
1
|
'
i
¥
1
'
'
1
1
|
'
]
+
1
'
'
1
1
[
'
|
'
1
i
|
|
i
t
'
1
)
1
'
'
i
1
'
'
'
1
'
'
i
i
'
|
t
|
'
[
+
'
'
1
1
'
'
1
|
t
1
1
'
'
1
t

Z

PN

IS

ad

3D

e

element




Gawler Craton Archaean metasediments are the source for the metasediments of the Olary
Block, from which in turn the Bimbowrie granite has been derived.

Similarly, multi element variation diagrams display an excellent correlation between the
Palaco- Mesoproterozoic Basso Granodiorite and the contemporaneous Hiltaba Suite Granite
(fig. 4.1.2). This comparison is highlighted by similar major element characteristics and
distinctive elevated levels of Zr, Nb, Ga and Y. On these grounds it appears feasible to correlate
the Basso Granodiorite with the Hiltaba Suite magmatism. Similar trends are also reflected in
Delamerian I- and A-type granites and the Lachlan Fold Belt I-type (fig. 4.1.3), suggesting a
genetic link between these magma types as opposed to representing a unique source.

Of interest is comparison of selected I-type Palaeoproterozoic granitoids of the
Donington Suite, Gawler Craton, with the A-type Basso Granodiorite, no geochemical grounds
for similarity exist. However, when the Donington Suite samples are plotted with the
Bimbowrie Granite and the metasediments, from which they were derived, a distinct correlation
may be made (fig. 4.1.4). Hence the notion that the metasediments may be derived from the
Donington Suite Granitoids must be born in mind, however lies out of the scope of this
investigation.

In summary, it is clear that the granitoids of the Olary Block display geochemical
similarities with terrains of similar age. Whether those similarities are merely a reflection of
magmatic processes in similar tectonic regimes or record a fundamental Proterozoic process is
uncertain from the current database. ‘

Comparison with Phanerozoic analogues results in ambiguous relationships between
tectonism in the respective eras.
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Figure 4.1.3 - Comparative trace element diagram of I- and A-type granites
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CHAPTER 5 - ISOTOPES

5.1 Isotope Systematics

The ability to determine the time of formation of new crustal segments is of fundamental
importance in attempting to understand the growth and evolution of continental crust. The decay
of radioactive isotopes provide a natural clock for the absolute measurement of geological time.
The principle methods measure the ratio of radioactive parent isotopes and their daughter
products, for example, rubidium and strontium (87Rb and 86Sr) and samarium and neodymium
(147Sm and 143Nd), to record the time elapsed, with each having its own specific characteristics
and suitability for determining the ages of various geological events.

Interpretation of isotopic data and ages is complex due to the effects of metamorphism
and deformation. Figure 5.1.1 is a schematic illustration of the relationship between tectonic
events and isotopic ages in rocks. In this ideal situation, the Sm-Nd system generally records
the time at which a magma separated from the mantle and was emplaced in the crust.
Additionally, identification of source areas (provenances) of sedimentary rocks is possible as
the sediments retain information about the time of formation of the crustal segments that were
their sources (McCulloch and Wasserburg, 1978).

z,
<«f—— Sm-Nd whole rock (volcanic and granite?) %
¥ =

{«—— U-Pb zircon (volcanic) \.
}€—— U-Pb zircon (granite)
i

Rb-Sr whote rock \

(volcanic and metasediment)

?(—- Rb-Sr whole rock (granite)
H

e \K—Ar hornblende
K-Ar biotite

INCREASING TEMPERATURE ——

VOLCANIC ERUPTION
(and sedimentation)

< INCREASING AGE (Ma) present day

Figure 5.1.1 - Schematic illustration of the relationship between tectonic events and isotopic ages in rocks
(after Drexel et al., 1993)

The Rb-Sr isotopic system is a useful dating tool, however it is less reliable for rocks
that have been thermally, tectonically or chemically perturbed as both Rb and Sr are particularly
mobile in the metamorphic environment (McCulloch and Wasserburg, 1978; Goldstein, 1988).
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As the Rb-Sr system is more easily reset, it generally registers significantly younger
ages, reflecting various phases in the cooling and uplift history of these rocks after burial,
deformation and metamorphism. Emplacement ages of granites may be recorded if they
intruded after an orogenic event.

The recognition that most provinces (including Olary) contain a mixture of primary ages
and thermal overprints has led to the more frequent use of the more 'robust’ Sm-Nd isotopic
system in place of the Rb-Sr system. The Sm-Nd system offers the advantage of a simple
chemical fractionation step between continents and the mantle, which allows the original time of
crust-mantle separation, as opposed to times of later thermal and orogenic reworking, to be
obtained. The validity of this does however, depend on the degree of preservation of the Nd
isotopic system within crustal rocks (DePaolo et al., 1991); that is, it assumes that the system
has remained closed since extraction from the mantle.

Samarium - neodymium isotope systematics provide a means of determining the age of
the continental crust, where 'age' refers to the amount of time the crustal rock material has been
isolated from the convecting mantle. This age is referred to as the Sm-Nd model age or the
mantle separation age.

Sm-Nd model age studies enable the delineation of major periods of crustal growth. The
application of this technique and thus the quantification of rates of crustal formation, first
detailed by DePaolo and Wasserburg (1976), McCulloch and Wasserburg (1978) and Nelson
and DePaolo (1985), is important for determining not only overall rates of continental growth
and recycling, but also for constraining general models of continental crustal development.

Refinement of the initial application of Sm-Nd model ages, undertaken by DePaolo
(1981) and McCulloch and Compston (1981), led to the recognition of a more complex
depleted mantle (DM) evolution rather than a chrondritic Sm-Nd reservoir (Chondritic Uniform
Reservoir - CHUR) as initially assumed. Under this model, the depleted mantle evolves to
increasingly more positive Enxg values whereas CHUR corresponds to €ng of 0. However in
view of the obvious spatial and temporal heterogeneities in the mantle, it is clear that no singlé
mantle evolutionary curve can be justified (McCulloch, 1987).

Precambrian crust evolves to increasingly negative €ng values (as in fig. 5.1.2); and the
complementary depleted mantle evolves to more positive ENd values through time. The
intersection of a sample evolution with the depleted mantle evolution gives the Tng model age.

It is important to remember that Tng model ages do not reflect crystallisation ages, but
the crustal pre-history of a rock. Disparities between model ages and stratigraphic ages may be
resolved in terms of, firstly, assimilation of older crustal material, resulting in a model age
reflecting the contribution of both older and younger components (fig. 5.1.2), or alternatively,
an extended protolith prehistory may account for the difference between Tng model ages and
crystallisation ages. In the second case, derivation of continental crustal materials from the
mantle requires multi-stage differentiation and partial melting processes. Thirdly, it is likely that
the mantle source reservoir may have a different composition to that assumed by the bulk of the
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convecting upper mantle being progressively depleted due to extraction of continental crustal
materials. Hence, model ages calculated for less depleted mantle sources will be erroneous.

.....
.........

¢CHUR EVOLUTION

PROTOLITH
PREHISTORY

Eps Nd

Sk PROTEROZOIC CRUST

ARCHAEAN
FELSIC CRUST

10k

15

V

| | 1
1000 2000 3000 4000

Time (Ma)

Figure 5.1.2 - Schematic diagram showing the evolution of Eng with time, for Archaean and Proterozoic

crust, relative to the depleted mantle (after McCulloch, 1987)

5.2 Olary Isotopic Data

Seven granite samples and an additional metasediment sample were collected from the
Antro-Bimbowrie-Outalpa area for the purpose of Sm-Nd and Rb-Sr whole rock dating.
" Criteria for selection of samples is briefed in appendix C, however the selected samples were
purposely spatially widespread. A summary of the results obtained is given in table 5.2.1.

Model Ages

The geochemical discriminations of granite types given in chapter three are supported by
the isotopic characteristics. Criteria for distinction include the model ages determined, both
depleted mantle and relative to CHUR, and initial Eng values.

Model ages of 2.30 - 2.35 Ga relative to CHUR and 2.60 - 2.67 Ga depleted mantle
(DM) were obtained for three of the four Bimbowrie granite samples analysed. The fourth
produced a quite different value of 3.08 Ga and 3.28 Ga for CHUR and DM respectively (table
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5.2.1, fig. 5.2.1). This significant difference may be reflecting the granites source region. That
is, it may be sampling metasediment derived from older crust, present either as a basal sequence
upon which the current stratigraphy is deposited, or alternatively it may be sourcing a
metasedimentary pile with a greater crustal residence time than the exposed metasediments. In
either case, the older crust it is sampling is not exposed, hence such interpretations must
remain speculative.

The metasediment model age is, as expected, similar to the Bimbowrie granites, 2.29
Ga relative to CHUR and 2.55 Ga depleted mantle (table 5.2.1, fig. 5.2.1). This supports the
notion that the Bimbowrie granites formed as a result of near 'in situ’ melting of the
metasedimentary sequence. Therefore it is clear that the metasediment and three of four
Bimbowrie granites reflect a similar source region, and have similar crustal residency times.

Examination of the A-type granites in the same manner reveals that one of the Basso
group and the sample from Ameroo Hill have Tpym of 2.12 - 2.13 Ga and Tcyyr of 1.55 -
1.66 Ga, with the other Basso Granodiorite sample giving a Tpy similar to the S-types (2.61
Ga), but a TcHUR closer to the other A-types (1.89 Ga) (table 5.2.1, fig. 5.2.1). This is clearly
indicative of crustal contamination of this sample during emplacement, whereas the other
samples appear to reflect true mantle separation ages.

Isochron Ages

7 Examination of the isotope data in the form of whole rock isochrons potentially allows
interpretation of crystallisation and metamorphic events. Analysis of the data in this manner
gave rise to the following observations (refer to appendix G for isochron diagrams).

The 143Nd/144Nd versus 147Sm/144Nd plot of the Bimbowrie data results in an
isochron age of 1194 + 221 Ma, considerably lower than expected. Removal of sample 1027-
009 results in a three point isochron of 2323 + 206 Ma, which is a similar age obtained for
TcHur for these three samples and the metasediment. This suggests that the Sm-Nd isotopic
system is so incredibly robust as to preserve the crystallisation age of the original protolith,
despite having been through at least one crustal cycle.

Isochrons obtained using the Rb-Sr isotopic system, plotting 87Sr/86Sr against
87Rb/868r resulted in ambiguous ages. The older Basso Granodiorite with an established U-Pb
zircon age of 1703 + 6 Ma (Ashley et al., 1994) produced a Rb-Sr isochron age of 1638 + 6
Ma; and with the addition of the metasediment, an age of 1642 + 5 Ma. I suggest that these
values reflect a metamorphic/deformational event, responsible for resetting the Rb-Sr system
and forming the pervasive tectonic fabric seen within this sequence.

Crystallisation of the Bimbowrie Granite took place following, or late within this
tectonothermal event, thus the Rb-Sr isochron age (1809 + 20 Ma) does not reflect this episode.
However this isochron is most likely a result of perturbation of this granite during or after
emplacement by either hydrothermal alteration or a subsequent later metamorphic event. This
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uncertainty is consistent with the doubts expressed about the Rb-Sr dating system for
determination of crystallisation age as detailed earlier.

5.3 Interpretations

From the preceeding discussion, it is clear that the isotopic data describes a
geochronological framework incorporating the following elements. Firstly, the growth of
continental crust at ~2.6 Ga, which subsequently acted as a source region for the metasediments
and hence ultimately is preserved in the Bimbowrie Granite. An orogenic cycle at ~1640 Ma is
recorded by Rb-Sr isochrons in the metasediments and the Basso Granodiorite. It is likely that
the 1703 + 6 Ma zircon age for Ameroo Hill (Ashley et al., 1994) signals the onset of this
event, the Olarian Orogeny, which was responsible for deformation and metamorphism of both
the Basso Granodiorite and the metasediments. Coincident with this orogeny was the input of
further mantle material into the crust, as observed in 2.13 Ga Tpym for the Basso Granodiorite.

The derivation and emplacement of the S-type Bimbowrie Granite occured immediately
after tectonism ceased and contains disturbed Sr isotope signatures, but records the crustal
growth episode of the metasediments. The actual age of emplacement of these magmas is
unconstrained however the isotopes (model ages) are able to give an insight into the timing of
crustal growth within the Olary Block.
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CHAPTER 6 - PROTEROZOIC CRUSTAL
EVOLUTION AND TECTONICS

6.1 Crustal Growth - An Overview

A great deal of uncertainty exists regarding Proterozoic tectonics and crustal evolution.
Two schools of thought have dominated geoscience for some time. Workers including Rutland,
1976; Katz, 1985; and Etheridge et al., 1987 adopt a nonuniformitarianistic approach, whereby
itis suggested that reworking of the Archaean crust into Proterozoic environments is dominant;
with mobile belts representing intracratonic features such as rift or collision zones and thus
highlighting the reworking nature. Additionally vertical crustal growth due to underplating of
mantle derived magmas is inferred to play a significant role.

Alternative models view Proterozoic crustal development in essentially contemporary
plate tectonic terms, for example, Burke et al., 1976; Hoffman, 1980; Windley, 1981, claiming
that Proterozoic orogenic belts represent laterally accreted island arc regimes around pre-
existing continental nuclei. Archaean crust is thus an incidental component. Kroner (1981;
1983) has proposed a model compatible with the concept of horizontal plate tectonics but
differing from the Wilson cycle in that anhydrous subcrustal lithosphere is partially subducted.

Structural, tectonostratigraphic, geochemical, geochronologic, palacomagnetic and
seismic evidence has been compiled by many in support for one or any of these models, from
extensive localities all over the world. In this chapter I endeavour to identify the major periods
of crustal formation with respect to Tpym model ages of the Olary Block, South Australia. In
light of these results, and following compilation with the data of McCulloch (1987), it is hoped
that Proterozoic crustal formation events may be distinguished from recycling of Archaean crust
during the Proterozoic.

6.2 Application of Olary Data

Current thinking suggests growth of the Earths crust began about 3.9 Ga ago (Tarney
and Jones, 1994), but questions regarding episodic or continuous growth, rates and
mechanisms and whether the crust has grown at all are issues that have been the subject of
intense debate over the last two decades.

Initial models for the Earth’s continental crustal growth suggested a three-stage process,
namely:

» creation of basaltic oceanic crust at mid-ocean ridges
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« hydrous melting of that crust and/or of the mantle wedge at subduction zones to form

andesitic island arcs

« lateral accretion of island arcs with re-melting to form a granitic upper crust and a

depleted granulite facies lower crust (Taylor and McLennan, 1985; Fyfe, 1973).

Inherent in such a model are assumptions that subduction (and plate tectonics) have

been important processes throughout Earth history, and thus island arcs have been a persistent

feature. Such models also require the constant availability of thermal energy to remobilise

island-arc crust, and that the lower continental crust must to some extent be a compositional

complement of the upper crust. Another consequence is that progressive depletion of the upper

mantle has resulted from continuous extraction of continental crust (Tarney and Jones, 1994).
With these factors in mind, estimates of the rate of growth of the Earth’s continental

crust with time, based on age data, isotope systematics, and a little prejudice as to tectonic

models, have been made, resulting in a number of possible scenarios (schematically illustrated

in fig. 6.2.1).
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Figure 6.2.1 - Estimates of the rate of growth of the Earth's continental crust with time (present day =

100%). Note the significant differences between the models (after Tamey and Jones, 1994).

Some models require much of the present continental volume to have been attained very
early (eg., at ~4 Ga - Armstrong, 1981; 1991 ), with steady state recycling of crust back to the
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mantle. Others require progressive growth of the continents since the early Archaean (O'Nions
and McKenzie, 1988), some episodically (Patchett and Arndt, 1986).

Regardless of the exact rates detailed for models outlined above, it is clear that large
volumes of continental crust were formed during the Palaeoproterozoic. Two stages of crustal
production exist for the Olary Block, one at ~2600 Ma recorded in the Tpym values of the
Bimbowrie Granite and metasedimentary sequence, and the second around ~2130 Ma as
observed in the Basso Granodiorite Ty values. This is consistent with conclusions made by
McCulloch (1987); he identifies peaks in crustal production for the Australian continent at
~3600 Ma, ~2600 Ma, ~2200 Ma and ~1800 Ma (fig. 6.2.2), and suggests that at these times,
periods of significantly higher than average crustal production took place.

Fraction of Crust Produced Per 200 Ma
‘World Rate (km3/yr)

4000 3000 2000 1000

Crust Formation (Ma)
Figure 6.2.2 - Crustal formation ages, based on TNJ model ages for the Australian continent. Four main
periods of high crustal production are apparent at ~3600 Ma, ~2600 Ma, ~2200 Ma and ~1800 Ma (after
McCulloch, 1987)

From the studies of McCulloch (1987) it may be said that the Palaeoproterozoic is the
single most important period of crustal production (assuming no recycling of continental crust
into the mantle through geologic time). Data obtained for the Olary Block is consistent with this
proposal. The numerical rates are not as significant as the realisation that the crust was growing
rapidly during this period.

An alternative to this is discussed by Gurnis and Davies (1986), who suggest that the
observed peaks of crustal growth reflect a variation in the rate of recycling of continental crust
into the mantle, rather than discrete growth episodes.

The steady state model of Armstrong (1981) illustrates this point (fig. 6.2.1); and is
reinforced in the schematic diagram of no recycling versus recycling (fig. 6.2.3). Massive
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recycling of continental crust such that constant continental masses are retained is an unlikely
scenario, as production rates of ~10km3/yr for a period of 1000 Ma are required (McCulloch,
1987). By contrast, the no recycling model requires only short periods <200 Ma of high crustal
production. Thus the possibility of variations in rates of crustal recycling being the explanation
for peaks at ~2200 and ~2600 is unlikely. Instead, the initial viewpoint that crustal growth
occurred by injection of new material at ~2200 and ~2600 seems more plausible. Recycling of
minor volumes of continental crust into the Earth’s mantle is however, likely, and has probably
been a continuous process (in one form or another) throughout Earth history.

NO RECYCLING RECYCLING
(constant mass)

0 Ma

——'—) ~0.2 crust masses
recycled in 1600 Ma
(~1km3/yr)

1600 Ma

~ \—-—) ~1.5 crustal masses
~ recycled in 1000 Ma

|

| ~ (~10km3/yr)
I ~

|

I

~
~
~
~

2600 Ma

Figure 6.2.3 - Schematic illustration of two end-member crustal growth models. For the case of no mantle
recycling of continental crust, the age distribution pattern directly indicates the rate of growth of continental
crust, In this sketch, growth periods may be accounted for by limited periods (~200 Ma) of more rapid crustal
growth, The alternate model of a near-steady state constant continental mass with crustal recycling (eg.,
Armstrong, 1981) requires extremely rapid recycling of crust from ~1600 to ~2600 Ma

6.3 Models for Proterozoic Crustal Growth

The role of plate tectonics in the Proterozoic crustal growth debate has been the focus of
much discussion over the last few decades. Mueller and Wooden (1988) suggest that extensive
crustal recycling has occurred throughout the history of the Earth, dominated by plate-tectonic
(or plate-tectonic like) processes. The available geological evidence however, may not be easily
reconciled with contemporary style tectonics of the Proterozoic. The flaw in such an argument
lies in the notable lack of subduction related components (eg., andesites, ophiolite complexes
and blueschist terrains), the occurrence of bimodal volcanic suites (Etheridge et al., 1987) and a
lack of paired metamorphic belts (Kroner, 1984).
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An alternative model for Proterozoic crustal growth proposed by Etheridge et al. (1987)
and similarly by Kroner (1977), incorporates lithospheric underplating and subsequent
delamination of the underplate. In this scenario, relatively mafic material is underplated onto
pre-existing Archaean crust. At a later stage, this material is partially melted to produce
widespread felsic magmatism, and associated mafic magmas through higher degrees of partial
melting of the mafic underplate; or may possibly be derived directly from the thermal
perturbation responsible for the felsic magmatism.

This model satisfies both the isotopic and geochemical requirements of the protolith
having an extended prehistory as well as a relatively uniform chemical composition, as
observed in northern Australia (McCulloch, 1987). However, this model too, has a number of
unsatisfactory aspects. First a lack of evidence exists for the essential process of underplating
onto Archaean crust. Second, large volumes of Archaean crust are required to be buried beneath
younger basin cover and only Proterozoic terrains should be exposed today (McCulloch,
1987). Furthermore, the Sm-Nd isotopic data requires a large time gap between initial
underplating and magmatism, hence a difficulty exists in that two separate mantle convection
events are required at subsequent times to induce the tectonism (Etheridge et al., 1987). This is
difficult to infer, mechanically and rheologically as well as thermally.

If it is assumed that underplating occurred onto pre-existing basaltic Archaean crust or
alternatively highly attenuated Archaean felsic crust, these difficulties may be resolved.

Other models have been suggested, for example the ‘Hot Spot’ model of Fyfe (1978),
yet fail to explain adequately the geological observations.

Although the isotopic data presented here does not characterise the tectonic
environment, it is consistent with McCulloch’s (1987) interpretations involving
nonuniformitarianistic tectonics and orogeny. Thus in conclusion, it may be said that the
Proterozoic is a complicated period in Earth’s history where tectonic processes may have acted
in quite a different manner to the plate tectonic regime of the Phanerozoic.
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CHAPTER 7 - CONCLUSIONS

The Willyama Inlier forms a series of semi-isolated partly exposed blocks which are
unconformably overlain by Adelaidean sediments. The oldest, mixed clastic and sedimentary
sequences are referred to as the Willyama Supergroup and are suggested in the Olary Block
portion to represent a rift margin, with the sequences deposited in a predominantly shallow
marine environment interspersed with non-marine playa lakes, deepening upwards (ie., shelf or
intracratonic basin).

Five broad lithological suites have been proposed for the Olary Block by Clarke et al.
(1986), these include, the Composite Gneiss, Quartzofeldspathic, Calcsilicate, Bimba and
Carbonaceous Pelite Suites.

The field area revealed three granitoid suites, previously un-defined and an older
metasedimentary sequence. The metasediments consisted of a series of finely laminated to
thickly bedded, medium to fine grained pelitic and psammitic schists, with thin calcsilicate
bands and albitised layers. The pelitic schists commonly contained garnet, while the more
psammitic, quartzofeldspathic sequences contained retrograded andalusite porphyroblasts, now
represented by coarse muscovite. The calcsilicate bands of epidote, actinolite and diopside were
found in the more psammitic rocks. The geochemistry of the metasediments mirrored patterns
seen in the S-type Bimbowrie Granites, reinforcing the genetic link suggested earlier.

The Antro Tonalite, of only minimal extent, is composed of essentially plag-qtz-cpx and
K-fld. It is extensively recrystallised and poorly exposed. Based on its geochemistry, this
granite is classified as I-type and exhibits high Fe,03, NayO, CaO and TiO3 levels and low
LREE and K50.

The Basso Granodiorite is medium grained, equigranular and composed of gtz-plag-K-
fld and significant biotite. It is regionally extensive and exhibits a strong foliation, delineated by
the planar arrangement of micaceous aggregates. The Basso Granodiorite intrudes the host
metasediments and at a later date, both lithologies are intruded by the Bimbowrie Granite. It has
distinctive A-type geochemical affinities, the genesis of which is the subject of considerable
controversy. The geochemical signatures documented by White and Chappell (1983) for A-type
granites are reproduced in this granitoids geochemistry. They have high SiOy, Zr, Nb, Y and
LREE and low CaO, Al, Mg, V, Ba and Sr. The Bimbowrie Granite is medium to coarse
grained, relatively leucocratic, pink to buff in colour and composed of qtz-mu-bt-K-fld
(microcline) and plag. The diagnostic feature of this granite, is the presence of very coarse
grained, feldspar phenocrysts.

The field relations imply that this granite is largely the product of variable segregation of
migmatite leucosomes, exhibiting a complete range of contact phenomena ranging from sharply
intrusive (with the Basso Granodiorite) to gradational into migmatites. Thus it is considered that
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they are largely the products of partial anatexis and melt segregation from adjacent and
underlying migmatitic rocks, formed during a high grade metamorphic event. This granite has
strong S-type characteristics, supporting the notion that it is derived by in situ anatexis of local
sediments, with only minimal melt migration. The genetic S-type classification implies a
sedimentary precursor. High AlpO3, CaO, K70, P20s, Rb, Sr, Pb, Zn and low NayO, Nb, Zr,
Ga and Y are indicative of this granite.

Throughout the Olary Block, the Willyama Supergroup has been extensively deformed
and metamorphosed. The Olarian and Delamerian Orogeny with collectively five deformational
events can be seen in the basement sequences. Four metamorphic zones, increasing in grade to
the south are present in the Olary Block. It is suggested that amphibolite facies metamorphism
during the first deformational event gave rise to sillimanite, andalusite, kyanite and garnet at
estimated temperature and pressure conditions of 650-720°C and 2-4 kb.

An integral part of geochemistry is the ability to compare and contrast data with that
obtained from terrains further abroad, offering insights into large scale tectonic and magmatic
processes. Positive correlation was met when the Bimbowrie Granite and the metasediments
from which they were sourced, were compared with Archaean sediments from the Gawler
Craton. This initially implies a possible source region for the Olary metasedimentary sequences,
however without detailed isotopic studies, this cannot be verified.

Multi-element variation diagrams also display excellent correlations between the
Palaeoproterozoic Basso Granodiorite and the contemporaneous Hiltaba Suite of the Gawler
Craton. Similar major element characteristics and distinctive elevated levels of Zr, Nb, Ga and
Y highlights this correlation.

Isochron ages obtained for the Bimbowrie and Basso Granitoid Suites were
inconclusive. The Basso Granodiorite with an established U-Pb zircon age of 1703 + 6 Ma
produced a Rb-Sr isochron age of 1638 + 6 Ma and with the metasediment, an age of 1642 + 5
Ma, reflecting a metamorphic event at this stage which reset the Rb-Sr system of both
lithologies. An isochron age for the Bimbowrie Granite was 1809 + 20 Ma, as the
crystallisation of this granite is believed to have occurred after metamorphism, this age is not a
true reflection, simply a factor of a disturbed isotopic system.

Sm-Nd isotope systematics provides a means of determining the age of the continental
crust, where age refers to the amount of time the crustal rock material has been isolated from the
convecting mantle (Sm-Nd model age). Investigations into the Olary Block, revealed a
clustering of model ages. The Bimbowrie Granite has DM model ages of 2.6 - 2.67 Ga,
recording the age of extraction from the mantle. One sample did however produce an age of
3.28 Ga, reflecting the granites source. That is, it may be sampling metasediment derived from
older crust, present either as a basal sequence upon which the current stratigraphy is deposited
or alternatively it may be sourcing a metasedimentary pile with a greater crustal residence time
than the exposed metasediments. DM model age for the metasediment of 2.55 Ga further
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supports the notion that the Bimbowrie Granite formed as a result of in sifu melting of the
metasedimentary sequence. |

2.12 - 2.13 Ga DM model ages were determined for the Basso Granodiorite. One
sample did however have a TDM similar to the S-type granites of 2.61 Ga,; this clearly indicates
crustal contamination of this sample during emplacement, whereas the other samples reflect true
mantle separation ages.

Regardless of the exact rates of crustal growth, it is clear that large volumes of
continental crust were formed during the Palaco- Mesoproterozoic. Identification of crustal
production peaks for the Australian continent at ~3600 Ma, ~2600 Ma, ~2200 Ma and ~1800
Ma by McCulloch (1987), are reinforced by the data obtained herein. Two peaks were
established, one at ~2600 Ma for the Bimbowrie Granite and the other at ~2200 for the Basso
Granodiorite. Controversy still remains over whether these periods are discrete growth
episodes or simply reflect a variation in the rate of recycling of continental crust into the mantle.
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APPENDIX A - FORMAL DEFINITIONS OF
STRATIGRAPHIC UNITS

Name of unit : Bimbowrie Granite

Derivation of Name : Bimbowrie homestead, 35 km north-west of Olary, South Australia,
(OLARY 1:250 000 sheet).

Distribution : N-S trending outcrop near Antro Woolshed, batholiths and isolated outcrops near
Tommie Wattie Bore and Tietz Dam; associated with migmatisation around Brady Mine
and intrusive into the Basso Granodiorite at Doughboy Well Mine, Basso Mine and
Boundary Deposit.

Type Locality : Outcrop south of Antro-Bimbowrie track, 7.5 km west of Bimbowrie
homestead. AMG - 413291 E, 6455287 N.

Petrography : Beige megacrystic quartz-rich granite, containing coarse grained elongate feldspar
phenocrysts in a med-coarse grained qtz-fld-bt-mu matrix. Phenocrysts comprise up to
30% of the rock. Fine-medium grained samples with a few phenocrysts exist in a few
localities (ie., type locality).

Relationship : Formation appears to be due to migmatisation of the metasediments and is clearly
intrusive into the Basso Granodiorite (as below).

Remarks : A weak fabric trending ~042 prevails in these large, essentially homogeneous bodies
as defined by the orientation of feldspar phenocrysts. Minor Basso Granodiorite and
significant metasedimentary xenoliths exist at the contacts with the appropriate
lithological sequences.

Name of Unit : Basso Granodiorite

Derivation of Name : Basso Mine, 5 km south - southeast of Bimbowrie homestead, Olary,
South Australia; (OLARY 1:250 000 sheet).

Distribution : Located near Basso Mine, Tommie Wattie Bore, Ameroo Hill, Boundary Deposit
and Doughboy Well Mine, it is intruded by the Bimbowrie granitoid, and at these
localities displays obvious contact margins. This group includes the rock informally
referred to as Ameroo Hill granite by previous workers.

Type Locality : Basso Mine, Outalpa Station, 5 km south - southeast of Bimbowrie homestead.
AMG - 421517 E, 6449801 N.

Petrography : Medium grained, light grey - buff, bt rich granitoid exhibiting a strong foliation
delineated by the planar arrangement of micaceous aggregates. Composed of gtz-plag-
bt-K-fld + mu £ magnetite * apatite.



Relationship : Intimately associated yet intruded by the Bimbowrie granite, this granite exhibits
a strong foliation.

Remarks : Despite the discontinuous and spatially variable distribution of these granitoids, they
appear in outcrop to be the same; exhibiting a distinctive weathering pattern - delineated
by the biotite coagulations.

Name of Unit : Antro Tonalite

Derivation of Name : Antro woolshed, 11 km west of Bimbowrie homestead, Olary, South
Australia; (OLARY 1:250 000 sheet).

Distribution : Exists as a poorly exposed and highly weathered outcrop, 1-2 km northeast of
Antro woolshed.

Type Locality : Outcrop 1-2 km northeast of Antro woolshed, north of Antro-Bimbowrie track.
AMG - 412992 E, 6456048 N.

Petrography : Fine grained, medium grey, quartz poor tonalite, consisting of Na-plag-px-qtz-
K-fld-hb + chlorite + epidote + sphene + mu + apatite; + significant numbers of
opaques (magnetite). It appears to be relatively mafic and extensively recrystallised.

Relationship : Its poor exposure and highly weathered nature, makes it difficult to distinguish
an intrusive or otherwise relationship with the host rocks, a sequence of phyllitic
metasediments.

Remarks : Due to its extensive recrystallisation, it seems likely that this body was emplaced
prior to deformational events.
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ANTRO TONALITE

Sample Number - A1027-001

Sample Description - In outcrop, this rock is poorly exposed, highly weathered and extensively
recrystallised (as is evident in thin section). It is a fine to medium grained feldspathic granitoid,
medium grey in colour with abundant opaques.

Thin Section Description - No strong fabric is seen in thin section, however it appears to have
deformed brittley, as observed in plagioclase grains which have been drawn apart and filled
with secondary chlorite. It appears to be extensively recrystallised, with smaller quart grains,
over-riding the original much larger plagioclase and quartz grains. Opaques are frequently
euhedral (cubic-rhomboidal) suggesting this mineral to be magnetite. Euhedral to subhedral
apatite exists as an accessory mineral, it has poor cleavage, high to moderate relief, low
birefringence and is pink to colourless with weak pleochroism. Pale green chlorite appears as
an alteration product of pyroxene (ie., it is a secondary mineral), it is pleochroic has one
cleavage, low to moderate relief and low birefringence. Sphene, another accessory mineral, is
pale-dark brown, pleochroic, isotropic, has extremely high relief and forms euhedral crystals
commonly diamond shaped. Pyroxene exists as the clinopyroxene form, is weakly pleochroic,
from pale green to pale pink/brown. It has moderate to high relief and poor cleavage.

Mineral ' Percentage
Plagioclase 55%

Quartz 20%
Opaques 15%
Clinopyroxene 10%
K-feldspar <5%

Sphene minor
Apatite minor
Muscovite minor

Chlorite minor



ANTRO TONALITE

Sample Number - A1027-002

Sample Description - In outcrop, this rock is poorly exposed, highly weathered and extensively
recrystallised (as is evident in thin section). It is a fine to medium grained feldspathic granitoid,
medium grey in colour with abundant opaques.

Thin Section Description - As for A1027-001. However this section does not contain any
sphene, yet has the presence of biotite. Biotite, appears straw-yellow to brown in colour, is
strongly pleochroic, has parallel extinction, a high birefringence and moderate to high relief.
Fractures running through the thin section, contain secondary chlorite.

Mineral Percentage
Plagioclase 50%
Opaques 20%

Quartz 15%
Clinopyroxene 5%
K-feldspar <5%

Biotite <5%

Apatite minor
Muscovite minor

Chlorite minor



BIMBOWRIE GRANITE

Sample Number - A1027-005

Sample Description - Appears in outcrop as large relatively homogeneous plutons, exhibiting a
weak fabric (~042). In hand specimen, the rock has very coarse grained elongate K-feldspar
phenocrysts in a predominantly quartz matrix, with plagioclase, muscovite and biotite. The
matrix is medium to coarse grained and pink-buff in colour.

Thin Section Description - Quart with strong undulose extinction is the most common mineral.
Multiply twinned, prismatic plagioclase, colourless under plane light, exhibits low relief, is
anisotropic and non pleochroic. Microcline, another member of the feldspar group is very much
like plagioclase yet has cross hatched twinning. Muscovite with distinctive birefringence
colours (high), is colourless, non pleochroic, has low relief and one perfect cleavage. The
biotite seen in thin section is typically red-brown in colour, and invariably contains zircon
crystals with circular outlines and black pleochroic haloes. It too is pleochroic, has relatively
high birefringence and moderate to high relief.

Under thin section no fabric can be identified. It is relatively homogeneous and doesn’t
appear to have been deformed to any degree.

Mineral Percentage
Quartz 40%
Microcline 25%
Plagioclase 20%
Muscovite 10%

Biotite - 5%



BIMBOWRIE GRANITE

Sample Number - A1027-009

Sample Description - This sample is similar to A1027-005. It is pink to buff in colour, and has
the diagnostic large, elongate K-feldspar phenocrysts typical of the Bimbowrie Granite. In the
field the outcrop was essentially homogeneous and no obvious fabric identified.

Thin Section Description - Quartz with strong undulose extinction is the most common
mineral. Microcline, a member of the feldspar group with distinctive cross hatched twinning is
colourless, anisotropic, has low birefringence and is non pleochroic, much like, the multiply
twinned plagioclase. Biotite and muscovite are as they appear in sample A1027-005 however
muscovite is in lesser quantities and biotite in greater.

Once again, under thin section no fabric can be identified. It is relatively homogeneous
and doesn’t appear to have been deformed to any degree.

Mineral Percentage
Quartz 40%
Microcline 30%
Plagioclase 20%
Biotite 10%

Muscovite <5%



Bimbowrie Basso Antro Metasediment Calc-Silicate
MINERAL Granite Granodiorite Tonalite
Quartz 40% 50% 25% 45% 20%
Plagioclase 30% 25% 55% 10%
K-feldspar (microcline) 20% (microcline) 10% <5% 10%
Biotite 5% 20% 25%
Muscovite 10% minor minor 20% 5%
Apatite minor minor
Epidote 15%
Sphene minor minor
Pyroxene (cpx) 15% minor (diopside) 25%
Garnet minor
Amphibole (actinolite)10%
Chlorite minor 5%
Opaque minor minor 20% minor minor




PLATE 4

Beryl crystal, commonly associated with pegmatite veins.

Randomly oriented relic ?andalusite porphyroblasts as they appear in the field.
Original sedimentary layering is enhanced by metamorphism, with variation in initial
bulk composition defining the growth of porphyroblasts.

Deformed pegmatite vein cross-cutting metasediments.

Brittle deformation of a pegmatite vein, c';oss-cutting the Bimbowrie Granite.
Ameroo Hill Granite, part of the Basso Granodiorite (sample number 1027-105).
Bimbowrie Granite diéplaying a fabric defined by the orientation of feldspar

phenocrysts.

Tommie Wattie Bore, Outalpa Station.
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APPENDIX C - ANALYTICAL TECHNIQUES

Sample Selection and Preparation

Considerable care was taken when selecting rock samples for analysis within the
laboratory at a later date. The basis for field selection lay solely on the apparent 'freshness' of
the rock, as it appeared in outcrop. Once returning from the field, a diamond saw was used to
remove all weathering from the rock, in order to obtain the most accurate result when analysed.
A small portion of the rock (~4 x 4 cm) was then crushed in the jaw crusher and subsequently
milled in a tungsten carbide mill for the purpose of isotopic and XRF analysis.

X-ray Fluorescent (XRF) Analysis

Both major and trace elements were required for geochemical comparison. Trace
element analysis involved the production of pellets, made from ~5 g of rock powder mixed with
~1 ml of PVA solution encased by boric acid.

For major element analysis, an initial 3-4 g of rock powder was dried in an oven at
110°C for several hours in order to drive off excess water. Subsequently, samples were ignited
at 960°C overnight within the muffle furnace, in order to drive off any volatiles present. One
gram the ignited sample was mixed with 4 g of flux (a mixture of lithium tetraborate and lithium
metaborate) and fused within a Pt/5% Au crucible. After heating for ~10 minutes (until fusion
was complete) the melt was poured into a Pt/Au mould and cooled to room temperature using
air 'jets',

Analysis was undertaken on the Phillips PW 1480 XRF spectrometer for both major
and trace elements.

Isotope Analysis

Approximately 200 mg of milled sample was weighed out and added to a HF/HNO3
(hydrofluoric acid / nitric acid) solution used for digestion in a teflon vessel emplaced within a
steel autoclave. Teflon bombs were used so as to decompose samples and ensure that all the
refractory minerals such as zircon and monazite were completely dissolved. These vessels were
then placed in an oven at 180°C and over a period of 5 days additional HF was added for
complete dissolution. Approximately 2 drops of a Sm-Nd (130Nd - 147Sm) spike solution for
determination of element concentrations was added to 1/3 of the dissolved solution.

Rubidium, strontium and the REE's were separated by standard cation exchange
columns using HCI as an elutriant. Neodymium and samarium were further separated using
cation resin columns of teflon and EDEHP with once again HCl as the elutriant. Neodymium
and samarium were loaded on tantalum side filaments opposing a rhenium filament. Strontium



was loaded on single tantalum filaments prepared with phosphoric acid. Measurements were
made on the Finnigan Mat 261 solid source mass spectrometer.



APPENDIX D

WHOLE ROCK ANALYSIS DATA-
MAJOR AND TRACE ELEMENTS
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APPENDIX E - ISOTOPE SYSTEMATICS

Neodymium and Samarium are light rare earth elements (LREE) that occur in many rock
forming silicate, phosphate and carbonate minerals. The 147Sm isotope is radioactive and
decays by alpha emission to a stable isotope of 143Nd, with a half-life of 1.06 x 1011y,

The growth of radiogenic 143Nd and 87Sr together provide new insight into the genesis
of igneous rocks. The concentrations of both of these elements in igneous rocks increase with
incresing degree of differentiation but their Sm/Nd ratios decrease.

The abundance of radiogenic 143Nd, and hence the 143Nd/144Nd ratio, of the Earth has
increased with time because of the decay of 147Sm to 143Nd. The time dependent increase of
the 143Nd/144Nd ratio of the Earth can be described by a model based on the age and Sm/Nd
ratio of the Earth and on its primordial 143Nd/144Nd ratio (McCulloch and Wasserburg, 1978).
Analysis of stony meteorites provides the primordial 143Nd/144Nd ratio and the age of the
Earth.

The isotopic evolution of Nd in the Earth is described in terms of a model called
CHUR, which stands for “chrondritic uniform reservoir” (DePaolo and Wasserburg, 1976a)
This model assumes that terrestrial Nd has evolved in a uniform reservoir whose Sm/Nd ratio is
equal to that of chrondritic meteorites. The present value of the 143Nd/144Nd ratio of this
reservoir is 0.512638 relative to 146Nd/144Nd ratio of 0.7219. The present 147Sm/144Nd ratio
of CHUR is 0.1967. This information permits the calculation of the 143Nd/144Nd ratio of
CHUR at any time (t) in the past.

Partial melting of CHUR gives rise to magmas héving lower Sm/Nd ratios than CHUR.
Igneous rocks that form from this magma therefore have lower present day 143Nd/144Nd ratios
than CHUR. The residual solids that remain behind after withdrawal of the magma have
correspondingly higher Sm/Nd ratios than the chrondritic reservoir. Consequently, these
‘depleted’ regions of the reservoir have higher 143Nd/144Nd ratios than CHUR at the present
time. This serves as a reference for the isotopic evolution of Nd in rocks that formed from
magma generated within the reservoir in the past. Comparison of the initial 143Nd/144Nd ratios
of igneous and metamorphic rocks in the crust with the corresponding 143Nd/144Nd ratios of
CHUR at the time of crystallisation of the rocks is required. This is what we want to know,
whether the initial 143Nd/144Nd ratios of different kinds of rocks are higher or lower than those
of CHUR at the appropriate times.

DePaolo and Wasserburg (1976) introduced an epsilon parameter so as to allow simple
comparisons of the differences in isotope ratios. Thus €cHUR expresses the difference between
the initial 143Nd/144Nd ratio of a suite of rocks and the corresponding value of this ratio in
CHUR at the time of crystallisation of the rocks.

A positive € value indicates that the rocks were derived from residual solids in the
reservoir after magma had been withdrawn at an earlier time (ie., Nd was derived from a



depleted source and thus has a higher Sm/Nd ratio than CHUR). The more lithophile elements
that are preferentially partioned into the liquid phase during partial melting are depleted within
this reservoir.

A negative € value indicates that the rocks were derived from sources that had a lower
Sm/Nd ratio than the chondritic reservoir (ie., an enriched source). Hence it seems such rocks
were derived from, or assimilated, old crustal rocks whose Sm/Nd had been lowered originally
when they separated from CHUR. Therefore, magmas formed by partial melting in the mantle
have lower Sm/Nd ratios than CHUR whereas the residual solids have higher Sm/Nd ratios.

In addition to this CHUR enables the calculation of when the Nd in a crustal rock
separated from the chondritic reservoir. Model dates are determined by establishing when the
143Nd/144Nd ratio of the rock equalled the 143Nd/144Nd of CHUR. In general the Sm/Nd ratio
of crustal rocks is not changed by metamorphism or even by erosion and redeposition. Thus the
model dates may be regarded as estimates of Nd crustal residence time.
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APPENDIX H

GEOLOGICAL MAP OF THE
ANTRO AREA, BIMBOWRIE STATION and
TWB - BASSO MINE AREA
OLARY, SOUTH AUSTRALIA
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