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ABSTRACT 

Atrial fibrillation and sudden cardiac death are two burgeoning cardiac disorders caused by 

arrhythmic events in the heart. Patients with atrial fibrillation are at an increased risk of 

severe cardiovascular complications, hospitalisation, thromboembolic events, clinical 

morbidity, and mortality. Premature death resulting from sudden cardiac death is a significant 

cause of cardiovascular mortality, often occurring in patients without apparent high-risk 

conditions and with normal heart functions. The emergence of obesity epidemic in the 

community is implicated in the rising burdens of atrial fibrillation and sudden cardiac death, 

but this has not been well characterised. More recently, the ectopic cardiac fat depot 

“epicardial adipose tissue” is postulated to mediate the pro-arrhythmic sequalae of obesity. In 

this thesis, investigations were undertaken to characterise these relations in a meta-analysis; 

and to evaluate the cardiac electrophysiological and structural substrates due to epicardial fat 

in ovine sheep models of chronic weight gain and weight fluctuations.   

 In chapter 2, a comprehensive systematic review of the literature and a meta-analysis 

were conducted to define the association of the fibrotic biomarker galectin-3 and atrial 

fibrillation. The findings demonstrated significant associations of high serum galectin-3 and 

risk and severity of atrial fibrillation. 

In chapter 3, a comprehensive systematic review of the literature and a meta-analysis 

were conducted to define the clinical associations of epicardial fat and atrial fibrillation, 

arrhythmia progression, recurrent atrial fibrillation following curative catheter ablation, and 

post-operative atrial fibrillation after cardiac surgery. The findings demonstrated significant 

associations of increased expansions of total cardiac and peri-atrial epicardial adipose tissue 
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with greater risk of atrial fibrillation; severity of atrial fibrillation; atrial fibrillation 

recurrence post-ablation; and de novo incidence after cardiac surgery.  

Next, the underlying mechanisms were explored in chronic ovine models and 

presented in chapters 4 & 5. The results demonstrated that obesity induces expansion of 

epicardial fat and fibro-fatty replacement of atrial myocytes and deterioration of myocyte 

contractile apparatus, which may drive impairments of atrial electrical properties. Despite 

having comparable epicardial fat quantity with reference controls, weight fluctuation, 

induced similar abnormalities, albeit less severe, with stable obesity, thus highlighting an 

explanation for the increased atrial arrhythmias risks often seen with periodic fluxes in 

weight.  

Chapter 6 reports findings from a systematic review and meta-analysis undertaken to 

define the association between obesity and sudden cardiac death. The pooled analyses 

involving over 1.4 million patients demonstrated that, after correcting for traditional high-risk 

risk factors: underweight body mass index (<18.5 kg.m-2) associates with an increased risk of 

sudden cardiac death; overweight shows no significant association with sudden cardiac death; 

obesity (BMI: ≥30 kg.m-2) predicts an exaggerated risk for sudden cardiac death. Similarly, 

unit increment in body mass index was shown to demonstrate a greater risk for sudden 

cardiac death, further implicating the role of increased adiposity in the risk of sudden cardiac 

death. 

   In chapter 7, the molecular and structural substrates for ventricular arrhythmias that 

lead to sudden cardiac death in a model of chronic obesity are presented. Obesity 

demonstrated two-and-half-fold expanded ventricular epicardial fat depot with a consequent 

extensive and severe fat cell infiltrations; significant reduction in ventricular desmosomal 

cadherin desmoglein-2, which demonstrated significant negative correlation with the degree 
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of fatty infiltration; and induction of diffuse ventricular interstitial fibrosis. The findings 

further demonstrated that obesity results in significant abnormal modulation of fibrotic 

pathways, including an alternative component of the central transforming growth factor-beta 

1 pathway, angiotensin II, endothelin and aldosterone signalling pathways.  

The observations of epicardial fat expansion and subsequent fibro-fatty infiltrations 

are particularly noteworthy. Epicardial fat adds an important extra layer to the stratification 

of patients at risk of atrial fibrillation and sudden cardiac death. Fibro-fatty infiltrates alone 

are sufficient to induce re-entrant tachyarrhythmias, leading to atrial fibrillation and sudden 

cardiac death. Clinical assessment of fibro-fatty infiltrates could help improve sudden cardiac 

death risk profiling of patients in the low-risk communities, who paradoxically have high 

absolute mortality rates. More importantly, the fibro-fatty deposits could form a key element 

in substrate mapping as a guide for ablation of lethal arrhythmias.  
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1.1 OBESITY – Scaling an epidemic 

Obesity is a burgeoning condition associated with increased multi-morbid state in affected 

individuals.1 More worryingly, the obesity epidemic is shown to lead to increased public 

health burden and associated social costs to communities.1  

Data looking at trends in weight gain from the 80s through present times have 

consistently shown significant increment in the prevalence of obesity. In a recent Global 

Burden of Disease data, obesity was found among over 107 million children and 603 million 

adults, indicating a prevalence of 5.0% in children and 12.0% in adult population.1 

Conversely, the prevalence of underweight has tremendously decreased globally. According 

to data from the Non-Communicable Disease Risk Factor Collaborators, the global age-

standardized prevalence of underweight decreased from 13.8% in 1975 to 8.8% in 2014, 

highlighting the overall shift in body mass index (BMI), which is defined as weight divided 

by height squared [kg.m-2].2  

Furthermore, future projections of obesity epidemic show increasing disease burden at 

alarming rates. Data from the Australian Department of Health puts yearly increase between 

0.4% and 0.8%, meaning that by 2025, 83% of adult males and 75% of adult females will 

become either overweight or obese.3 Similarly, over a third of children under the age of 20 

years will become overweight or obese.3 Taken together, approximately 7 million additional 

Australians will be impacted by 2025 as compared to 2005 figures.3  

 

1.2 Obesity as a Cardiovascular Risk Determinant 

Although it is known that obese individuals are at increased risk of developing adverse health 

conditions, its impact on cardiovascular health is recently being appreciated. Nonetheless, 
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obesity is shown to be associated with cardiovascular (CV) risk factors, such as diabetes4, 5, 

hypertension5, sleep apnoea6, dyslipidaemia5, and metabolic syndrome7. For example, sleep 

apnoea was reported to be prevalent in 18.9% patients with BMI <25 kg.m-2 rising to 82.85% 

in patients with BMI ≥40 kg.m-2, and in the HypnoLaus study, both overweight (defined as 

BMI: 25 kg.m-2 to 29.9 kg.m-2) and obesity (defined as BMI: ≥30 kg.m-2) independently 

associated with 1.74- to 4-fold increased risk of sleep-disordered breathing in both men and 

women.8 Interestingly, in the same study, adjustment for BMI resulted in marked reduction in 

the association of sleep apnoea with hypertension, type 2 diabetes and metabolic syndrome.8  

When cardiac diseases are investigated, obesity is shown to significantly associate 

with increased risks, incidence, and disease prevalence. The risks of non-arrhythmogenic 

cardiac disease are greater in obese patients compared to normal weight counterparts. Even 

after correcting for advancing age and sex, the cumulative life-time risk of heart failure 

increases with increase in BMI classes, such that it doubles from 9 at BMI <25 kg.m-2 to 19 

at BMI ≥30 kg.m-2.9 This situation is compounded further by evidence implicating obesity 

and overweight in the development of cardiometabolic multimorbid states in affected 

individuals. Using data from 16 prospective cohort studies across Europe and USA, Kivimäki 

et al10 demonstrated that overweight increases the odds of cardiometabolic multimorbidity 

(characterized by type 2 diabetes, coronary artery disease and stroke) to twice those in 

healthy weight groups. In the same study, class I obesity (BMI: 30 to 34.9 kg.m-2) resulted in 

5-fold increased odds of developing multimorbid state, which increased to fifteenfold with 

severe obesity (classes II & III; BMI ≥35 kg.m-2).10  
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1.3 Obesity and Atrial Fibrillation 

1.3.1 Atrial fibrillation – Setting the scene  

Atrial fibrillation (AF) is a rhythm disorder characterized by very rapid, chaotic electrical 

activities in the atria, culminating in accelerated and irregular ventricular activity, and loss of 

atrial mechanical function.11 AF is the most common sustained arrhythmia present in the 

clinical setting, with a wide range of clinical presentations.12-15  

AF is increasingly being recognised as a global clinical conundrum, and according to 

more recent epidemiological data, the occurrence of AF is predicted to surpass traditional 

cardiac conditions like ischaemic heart disease and heart failure.12, 13 Importantly, patients 

with AF have increased risk of significant morbidity, with potentially deleterious outcomes.13 

The disease confers greater risk for stroke and systemic thromboembolism in affected 

patients16, 17, such that a third of stroke events are caused by AF18-20. Interestingly, 

cardiogenic strokes due AF are more severe than other types of strokes; and a significant 

proportion of embolic strokes of unexplained source, termed “ESUS”, are attributed to 

asymptomatic episodes of AF or subclinical AF.18-21 Additionally, there are exaggerated risks 

of all-cause mortality and cardiovascular complications, such as CVD hospitalizations, and 

impairments of quality of life (QOL).22, 23  

 

1.3.2 The Epidemiological Quandary of Atrial Fibrillation 

AF is prevalent in 1% to 4% of the adult population in western countries, such as Australia, 

USA, and the European Economic Area, and is shown to rise above 13% by the 9th decade of 

life.12, 13, 22 According to US population-based figures, the annual prevalence of AF in 2010 
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was estimated at 5.2 million from the 2.3 million reported in the ATRIA study by the end of 

the 20th century.24 Additionally, in an age- and sex-adjusted meta-analysis, AF was found to 

be prevalent among 2.8% of adults.12 Similarly, the global estimates show a growing pattern 

of AF prevalence. The 2010 Global Burden of Disease Study puts the age-adjusted AF 

prevalence rates at 596 per 100,000 males and 373 per 100,000 females, up from 569.5 in 

men and 359.9 in women in 1990, representing a 5% increase.13 Consequently, AF is 

prevalent in staggering 33.5 million adult individuals, which, in fact, compares very well with 

global epidemics like cancers and HIV/AIDS, both, of which, are currently at 32 million and 

36.7 million, respectively.13  

A major contributor to the increased regional and global prevalence of AF is high 

incidence of new disease cases. In the Manitoba Follow-Up Study involving 3,983 

participants, AF developed in 7.5% (299) during 154,131 person-years of observation.25 In 

another study looking at community-based trends in AF incidence, Miyasaka et al22 found 

12.6% relative increase in AF incidence rate over 21 follow-up years, up from the age- and 

sex-adjusted incidence rate of 3.04 new AF cases per 1000 person-years at the end of first 

year to 3.68 by the end of the 21-year follow-up period. These are even higher when patients 

are stratified according to age, with up to 68.9 incident AF cases reported per 1000 persons 

per year by the 10th decade of life.26  

The high lifetime risk of developing AF is another major cause for concern. Previous 

data reported sex-adjusted lifetime risk of AF ≥40 years of age at 25% and was shown to 

remain as high as 16% even after correcting for comorbidities, such as myocardial infarction 

(MI) or congestive heart failure (CHF).27 More recently, modelling data by investigators from 

the Framingham cohort projected a 37% overall lifetime risk of the arrhythmia after 55 

years.28 Moreover, with the increasing risk factors like obesity, this is estimated to be even 
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higher. In fact, the presence of at least one risk factor was associated with 38.4% greater 

lifetime risk of AF compared to 23.4% in the absence of a risk factor.28 Further, with the 

combination of rising ageing population, increasing incidence and high lifetime risks of the 

rhythm disorder, future projections show AF will be prevalent in a significant portion of the 

general population. This was very evident in the 2010 report by Chugh et al13, entailing 5 

million new cases of AF annually. Correspondingly, the US Census Bureau projected AF to 

be prevalent among 15.9 million by 2050, given that the increasing incidence is maintained.13 

Similarly, European-based models have projected 18 million patients to have AF, more than 

doubling the current rate at 8.8 million.29 Most importantly, AF incidence and projection are, 

in most part, to be underestimated because of high rate of subclinical AF, which is rarely 

detected. 

 

1.3.3 Risk Factors for AF 

It is increasingly being accepted that AF is not a disease that occurs in isolation, or the so 

called “lone AF”. It is understood that multiple important clinical conditions, 

electrocardiographic and echocardiographic, and biomarkers predispose to episodes of AF, 

including increasing age, hypertension, heart failure, type II diabetes, valvular heart disease, 

obstructive sleep apnoea. Interestingly, data also show AF symptomatic burden increases 

with increasing number of these concomitant conditions in patients is associated with the 

chronicity of the rhythm disorder. 
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1.3.3.1 Hypertension 

Hypertension (HTN) is a well-established cardiovascular risk factor. HTN is highly 

associated with increased incidence of AF. Indeed, HTN is very prevalent among individuals 

with AF – this was initially demonstrated in a Framingham Heart Disease study over a 

decade ago and is well corroborated by a large body of data till date, ranging from 50% to 

90% of AF patients.28, 30-32 Data show that HTN independently predicts new-onset AF, with 

future risk of AF increasing from 28% to 2.7-fold for every 10 mm Hg of systolic blood 

pressure (BP).31 Independent long-term prediction of incident AF has also been noted for 

upper normal BP’s (defined as systolic BP: 128-138 mm Hg and diastolic BP: ≥80 mm Hg), 

and at 50% and 79% increased risk, respectively.33  

Hypertension is implicated in mechanisms driving AF. Both short- and long-term 

experimental models of hypertension have demonstrated increased inducibility and duration 

of atrial tachycardia and conduction abnormalities.34-36 HTN promotes abnormal atrial 

cardiomyopathy, haemodynamic changes and release of neuro-humoral factors, all of which 

lead to formation of AF substrate. For example, the renin-angiotensin-aldosterone system, 

which is activated in HTN, is a predictor of cardiac arrhythmias.37 Additionally, mechanical 

overload in hypertensive heart disease promotes chronic stretch causing structural 

remodelling of the atria, including myocardial fibrosis, left atrial (LA) hypertrophy, atrial 

inflammation and ion channel remodelling.38 Interestingly, pharmacological control of BP in 

hypertension has shown promise in substrate regression and lower risk of new-onset AF.39  
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1.3.3.2 Obstructive Sleep Apnoea 

Obstructive sleep apnoea (OSA) and central sleep apnoea (CSA) are the most common sleep-

disordered breathing syndromes associated with worsening of health outcomes in adult 

individuals and shown to affect more than a quarter of these subjects globally.6 The 

association of OSA with cardiovascular outcomes is well researched, with data supporting 

more than a triple prevalence rate of heart failure in OSA patients than in non-OSA 

patients.40 Both OSA and CSA are shown to strongly predict AF, demonstrating 2- to 3-fold 

higher risk of developing future AF when compared to healthy cohorts.41, 42 In untreated 

patients, OSA associates with higher recurrence of AF after DC cardioversion43 and catheter 

ablation44 and new-onset post-operative AF.45 Moreover, patients in AF are more likely to 

present with OSA than do those in sinus rhythm.46 Interestingly, treatment of OSA by 

continuous positive airway pressure is associated with reduction in AF recurrence rate and 

post-op AF after cardiac surgery, symptomatic burden and hospitalization.47  

Obstructive sleep apnoea (OSA) is characterized by recurrent episodes of upper 

airway collapse during sleep caused by failure of the neuromuscular system to maintain 

airway patency. These repetitive cycles are what increase susceptibility to AF, wherein they 

lead to oxyhaemoglobin desaturation, sympathetic overdrive and vagal output, and excess 

generation of reactive oxygen species and intracardiac pressures.48 Obstructive disordered 

breathing is associated with enlargement of intra-atrial area, intracardiac electromechanical 

delay, conduction delays, and development of low voltage.49 OSA is also shown to promote 

AF maintenance, as typified by increased prevalence of right atrial rotors.50  
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1.3.3.3 Diabetes Mellitus 

Diabetes mellitus is a well-known cardiovascular risk factor caused by autoimmune-mediated 

reduction of insulin in type 1 DM or insulin insensitivity in type 2 DM (T2DM). Surmounting 

body of evidence shows that diabetes increases the risk of AF, and more than 2-fold 

incidence rate ratios of AF is seen in patients with T2DM.51, 52 In fact, hyperglycaemia and 

elevated glycated haemoglobin A1C are positively correlated with increased mortality, 

recurrence of atrial tachyarrhythmias after catheter ablation53, and AF pre- and post-CABG. 

Data on diabetes-mediated atrial remodelling are very limited. Streptozotocin-induced 

diabetic models show reduced connexin 43 phosphorylation and sinus node conduction 

delay.54, 55 Diabetic rats also display induction of myocardial fibrosis with generation of atrial 

reactive oxygen species, such as advanced glycation end products (AGE).56 Interestingly, 

development of fibrosis was halted in this model via blockade of AGE receptors, indicating 

potential of ROS in diabetic CMP-mediated atrial remodelling.56  

 

1.3.3.4 Heart Failure 

Heart failure (HF) and AF have interesting and complex relationships, often sharing similar 

risk factors and pathophysiological mechanisms. HF independently predicts future AF, 

increases PV reconnections after ablation57 and thus predisposing to recurrent atrial 

arrhythmias58, and AF progression59. AF is more prevalent in HF with preserved ejection 

fraction (HFpEF)60, 61, but the prognostic severity is debatable62. The coexistence of both 

conditions is also noted and reported in more than 30% of patients by several prospective 

studies.59, 63 Notably, incident HF is associated with worsening of outcomes in patients with 

AF, including higher risk of all-cause mortality63, hospitalization, and bleeding. It seems that 
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the substrate for AF in HF is uniquely different from non-HF, often involving myocardial 

fibrosis and distinct remodelling of Ca2+-handling but not increased refractoriness or 

conduction slowing.64, 65   

 

1.3.3.5 Alcohol Excess 

There has always been long suspicion of a link between excess alcohol intake and cardiac 

arrhythmias; however, this has not been thoroughly investigated.66 In 1978, Ettinger et al67 

reported high prevalence of arrhythmias among patients with a history of heave alcohol 

consumption. Interestingly, positive correlation was seen between the months of high 

arrhythmia incidence and months of high occurrence of alcohol-related diseases, thus, leading 

the authors to coin the term “Holiday Heart.”67 During a long-term follow-up of 34,715 

patients (>50 years), heavier drinking defined as >2 standard drinks per day was associated 

with 60% increased hazard of incident AF (HR: 1.60).68 Conflicting evidence exists for the 

association between mild to moderate drinking and AF, with some studies to showing 

significant associations after multivariable adjustment68, while others show no association69. 

At a mechanistic level, conduction disturbances (due to left atrial dilatation and reduction in 

conduction velocity)70, 71 and impaired autonomic tone (reduced respiratory sinus arrhythmia 

after acute alcohol ingestion)72 have been suggested as possible mediators of alcohol induced 

arrhythmogenesis. More recently, data from isolated human and murine atrial myocytes have 

indicated disturbance of calcium handling73, which was mapped to stress signalling 

pathways74. 
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1.3.3.6 Valvular Heart Disease 

Changes in the heart valves are associated with abnormal remodelling of the myocardial 

walls and shown to predispose to arrhythmia.75-77 Indeed, increased risk of AF is 

demonstrated in patients with valvular diseases, such as mitral stenosis and regurgitation, 

aortic stenosis and regurgitation78, and tricuspid regurgitation79. AF was even suggested as a 

marker of more severe or long-standing mitral stenosis, and, in patients undergoing mitral 

balloon valvuloplasty, the presence of AF was associated with reduced procedural success, 

both short-term and long-term survivals, and event-free survival.80 Moreover, the presence of 

AF has been shown to underlie comorbid valvular disease; coexistence of AF and mitral 

valve disease was recently associated with progression of tricuspid regurgitation and right-

sided heart remodelling, which were both eliminated by surgical ablation of AF.81  

 

1.3.3.7 Coronary Artery Disease 

AF is a common finding reported in patients with coronary artery disease (CAD) and both 

conditions are known to coexist. In fact, up to 40% of AF patients are diagnosed with CAD82, 

83 and 74% have preclinical CAD84. Preclinical CAD is also reported to independently 

promote AF; thus, multivariate adjusted analysis shows independent association between 

coronary artery calcium score (CACS) and AF, with up to 3.2-fold greater hazards.85 The 

presence of AF was associated with worse cardiovascular events in patients undergoing 

percutaneous intervention.86 
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1.3.3.8 Sinus Node Disease 

The frequent occurrence of atrial arrhythmias in the patients with SND is long established, 

often owing to tachycardia-bradycardia syndrome or sick sinus syndrome.87, 88 The incidence 

of AF is 10 times higher in SND patients than in the general population, which equates to 125 

per 1000 person-years. In SND patients requiring pacemaker implantation, new AF diagnosis 

occurs in up to 68%, with permanent AF reaching 15% over the long term. Additionally, sick 

sinus syndrome is associated with 5.75- and 4.25-fold greater hazards of both prevalent and 

incident forms of AF.89 Moreover, bradycardia due to SND is known to complicate AF 

management and is often the indication for pacemakers in 83% of SND patients.89, 90   

There is evidence to suggest that this relation is also bidirectional, with AF predisposing 

to sinus node dysfunction and, subsequently, SND. Both of these conditions share similar 

pathophysiological substrates. In a study by Sanders et al88, the authors demonstrated 

widespread atrial electro-structural abnormalities in SND patients, including left atrial 

enlargement, areas of low voltage and scarring, functional conduction delay, increased right 

atrial effective refractory period and loss of rate adaptation to ERP. Similarly, atrial 

tachyarrhythmias have been shown to cause reversible changes in the atrial tissue 

predisposing to SND.91 In pre-clinical models, SND substrates due to AF have been mapped 

to: prolongation of sinoatrial node recovery time and reductions in intrinsic heart rates 

(induced by >2 weeks of rapid atrial pacing) in dogs92; calcium clock malfunction as typified 

by unresponsiveness to isoproterenol and repression of ryanodine type 2 receptors93. Taken 

together, these data suggest that AF is both a consequence and cause of SND. More 

importantly, sinus node dysfunction can create a self-perpetuating substrate for both SND and 

AF. 
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1.3.3.9 Chronic Stretch 

The role of chronic stretch in abnormal atrial remodelling is well documented in reports from 

both pre-clinical and clinical studies over the last few decades. One example of chronic atrial 

stretch and volume overload in humans is the presence of an atrial septal defect (ASD) which 

is associated with atrial volume overload, increased atrial pressure and higher vulnerability to 

AF as compared to normal control subjects.94, 95 Electro-anatomical mapping has 

demonstrated that ASD patients display atrial enlargement, an increase in low voltage areas 

suggestive of myocardial and electrical scar, an increase in electrogram fractionation and 

local conduction slowing.94, 95 However, no change or an increase in ERP was observed.94, 95 

Further, mitral stenosis (MS) in patients leads to chronic atrial stretch with atrial enlargement 

and MS patients show a greater propensity for sustained AF without any changes in ERP.96 

Electro- anatomical mapping in MS patients revealed changes comparable to ASD patients.96 

Interestingly, in patients with MS, the atrial remodeling exacerbates greater physiological 

direction-dependent conduction characteristics compared to patients without chronic atrial 

stretch.97 In another study, vulnerability and heterogeneity in ERP and conduction delay 

correlated with left atrial pressure in patients with MS.98 Epicardial mapping of local 

electrograms and activation times in patients with mitral regurgitation and left atrial 

enlargement showed more extensive regions of conduction slowing during pacing and an 

increase in fractionated electrograms in the posterior left atrium.99 Taken together, chronic 

stretch constitutes a major clinical correlate contributing to AF substrate formation. 
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1.3.4  Genetics of AF 

Although AF is a very multifactorial in nature, it has become a common knowledge that 

individuals with the same number of risk factors do not have the same level of risk.28, 30 In 

2004, Fox et al100, in Framingham cohort, demonstrated that AF status in parents was an 

independent predictor of future AF risk in offspring and was more exaggerated in the 

younger cohort; thus, indicating that the high variability in AF susceptibility might have 

some genetic component. Numerous other studies have also looked at the heritability of AF, 

often reporting similar findings.101-105 It is interesting to note that the gene-attributable risk of 

AF tends to be higher in healthy patients with no known heart condition101, 104 and younger 

individuals100, 102, 103. In a population-based national registry study involving over 4 million 

participants, Øyen et al104 showed higher incidence rate ratios (IRR) of AF in patients who 

had familial AF in younger 1st-relatives; IRR of 5.42 patients ≤39 years old with familial AF 

in ≤39-year-old 1st-degree relative versus IRR 3.28 in patients ≤39 years with 1st-degree 

relative 40-59 years of age. More recently, there have also been heightened interests in gene 

variants modifying AF risk, AF substrate and circuits, and catheter ablation outcome, which 

are further explored below. 

Evidence for a gene locus associated with AF was first reported by Brudaga et al106 in 

1997, where they mapped AF susceptibility gene to locus 10 by linkage analysis. Ever since, 

using linkage analysis, different authors have been able to identify gene variants that might 

precipitate heritable AF, such as: gain-of-function (GOF) mutation in potassium (K+) channel 

a-subunit (KCNQ1)107; GOF mutation of sodium (Na+) channel causing conduction 

disturbances and increased excitability (SCN5A)108, 109; natriuretic peptide precursor A 

associated with shortened APD110. Other reports have focused on single candidate genes to 
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see potential AF predisposing mutations. For example, A single-gene association study 

identified AF-associated variant in the slow component of the delayed rectifier K+ current 

(IKs, R14C); with the authors concluding that, though by itself, R14C was insufficient to 

cause AF, it could precipitates higher risk of AF in the presence a “second hit” like 

hypertension.111 Additionally, a heterozygous mutation (E375X) in the KCNA5 gene 

encoding Kv1.5 (IKur) was identified in only AF patients but not in 540 unrelated controls.112 

The LOF mutation, which introduces a premature stop codon in the primary amino acid 

sequence and loss of the S4-S6 voltage sensor, pore-forming region, and C-terminus, 

associated with APD prolongation, early after-depolarisation, and increased vulnerability to 

triggered activity.112 Interestingly, the authors were able to recapitulate the findings in a 

murine model.  

As a legacy of the human genome project, it is now possible to search within a large 

expanse of the entire genome to find regions or loci that might associate with AF. Techniques 

like the genome-wide association studies (GWAS) have allowed the identification of several 

common variants or single-nucleotide polymorphisms (SNP) associated with AF, with the 

added advantage that they do not require multigenerational family cohorts as is the case in 

linkage analysis studies. Using an analysis of 316,515 SNPs in an Icelandic population (550 

AF/AFlut patients and 4,476 patients), Gudbjartsson et al113 identified rs2200733T and 

rs10033464T as AF-susceptibility variants on chromosome 4q25 and showed that for each 

additional copy an individual has, the risk of AF increases by 1.72 and 1.39, respectively. 

Notably, more than 30 AF-risk loci have been identified as of today, including at least 24 loci 

in people of European decent and at least 6 in Japanese populations. 

Determining the mechanisms mediating these putative AF-risk conferring loci has 

remained a major difficult. To address this, Ritchie et al. looked at 33 AF patients and 17 
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controls and showed that the presence of two common variants in the locus of 4q25 

(rs2200733 and rs10033464) determines clinical expressions of rare mutations in the ion 

channels and signalling molecules: SCN5A, NPPA, KCNQ1, KCNA5, and NKX2.5.114 

Similarly, increased inflammation115, disruption of nucleocytoplasmic transport116, non-

pulmonary vein foci117, and calcium handling- and extracellular matrix-receptor pathways118 

have been implicated in the causal link between genetic risk and AF. In summary, the 

discovery of genetic basis for atrial fibrillation has vast refined our understanding of the 

pathogenesis of the arrhythmia, and further characterisation of the associated loci will 

potentially improve the management of AF. 

 

1.3.5 Mechanisms Driving AF – towards an understanding 

of the atrial substrate 

AF is believed to require both an initiating spontaneous electrical activity and a permissive 

substrate for its development and progression.11, 119, 120 The permissive atrial substrate 

consists in an enabling environment for the pathogenesis of AF and is characterised by the 

shortening of atrial refractoriness and re-entrant wavelength or by local conduction 

heterogeneities caused by disruption of electrical interconnections between muscle bundles; 

thus, AF substrate is created by both structural and electrophysiological atrial remodelling.11, 

120  

 

1.3.5.1 Structural Substrate for AF 

The association of atrial structural remodelling with the pathogenesis of AF is well studied 

and has been reproduced in several animal models. Indeed, data from models of mitral-valve 
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regurgitation121, right atrial pacing122, and congestive heart failure (induced by 5 weeks of 

right ventricular pacing)123 have shown that atrial changes promoting AF may range from 

gross tissue structural alterations (e.g. atrial fibrosis, myocyte hypertrophy and necrosis) to 

ultrastructural changes occurring at cellular levels of myocytes, such as accumulating 

glycogen and collagen. Abnormal morphological changes in the atria are also seen in clinical 

models. For example, Frustaci et al124 demonstrated diverse changes in the atria, involving, 

hypertrophy, inflammatory infiltrates with myocyte necrosis, areas of patchy fibrosis and 

myofibrillolysis, in patients with lone AF.  

Structural substrate for AF takes several weeks to months to develop. It is proposed 

that remodelling of atrial structure starts with ultrastructural changes progressing to more 

visible gross structural changes, thus stabilizing AF circuitry.122 Of note, atrial fibrosis, 

myocyte hypertrophy, loss of contractile structures, and atrial inflammation are implicated as 

the most important factors causing structural remodelling. 

 

1.3.5.1.1 The Atrial Fibrotic Story 

Fibrosis is a key element in the formation and perpetuation of AF and is considered as the 

histological hallmark of structural remodelling.64, 123 Induction of atrial fibrosis during 

formation of AF substrate is well reported in animal models. For example, 1 week of 

ventricular tachypacing-induced heart failure (tachycardiomyopathy) in dogs and resulted in 

extensive atrial interstitial fibrosis formation.64 This has since been corroborated by work in 

transgenic mice overexpressing the pro-fibrotic transforming growth factor-beta 1 (TGF-

b1)125; Zucker diabetic fatty rats126; experimental sleep apnoea in rats127; ventricular pacing-

induced congestive heart failure64, 123; chronically instrumented sheep and rat models of 
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hypertension35, 36; and doxorubicin-induced non-ischaemic cardiomyopathy128. Involvement 

of atrial fibrosis in structural remodelling is also seen in human models of AF as well as risk 

factors, such as advanced age129, mitral valve disease121, dilated and hypertrophic 

cardiomyopathy130.  

Interstitial fibrosis contributes to atrial remodelling by altering muscle bundle 

architecture.120, 131 Cardiac muscle cells are exquisitely arranged from end-to-end into 

contractile units of myofibres, which are further arranged into “bundles” of “fibres”. Within 

each myofibre, myocytes are separated by thin layers of endomysial collagen tissue; in 

muscle bundles, myofibres are separated by perimysial fibrous tissue. Consequently, as 

fibrosis amount increases, myofibres may lose myocyte-to-myocyte connections arising from 

increased transverse separations. In a simulation work by Spach and Boineau, it was shown 

that such loss of side-to-side coupling of myocytes or myofibres can cause “non-uniform 

anisotropy”, a discontinuous electrical conduction.132 Interestingly, Lau et al35 found 

significant negative correlation between atrial fibrosis with conduction velocity, and strong 

positive association with conduction heterogeneity index. So far, this has also been 

corroborated by several others demonstrating: significant correlation between increased 

endomysial fibrosis and complexity of fibrillatory conduction pathways and higher incidence 

of epicardial breakthrough; and higher atrial arrhythmia inducibility and longer AF durations 

with atrial fibrotic changes.133, 134  

 

1.3.5.1.2 Myocyte hypertrophy – becoming too big is a bad idea! 

Structural remodelling can also result from increase in myocyte size. Ausma et al135 

demonstrated up to 195% hypertrophy in atrial myocytes following chronic instrumentation 
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of goats by right atrial pacing. This is further demonstrated upon atrial dilatation (produced 

by right atriotomy and constriction of pulmonary artery)136; chronic atrial dilation (AF goats 

induced by 48-h burst pacing)137; in models of CHF; and during hypertension in chronically 

instrumented ovine and rats (produced by One Kidney - One Clip nephrectomy model)35. 

Though the precise contribution of atrial cellular hypertrophy to substrate formation is not 

quite well defined, it is likely to be due to increased conduction pathway in the ensuing 

enlarged myocytes. To this end, Spach et al138 analysed microscopic propagations in two-

dimensional (2D) neonatal and adult cellular models, showing that increased cell size 

contributes to pronounced propagation delays during transverse propagation, and may be 

more important than patterns of gap junction distribution. It is also shown that conduction 

abnormalities maintaining AF circuits can be produced solely by myocyte hypertrophy 

without involvement of myocardial fibrosis.137 

 

1.3.5.1.3 Gap junction remodelling – abnormal myocyte-myocyte 

connectivity 

The heart muscle cells are lined by highly specialized, low-resistance channels, the gap 

junctions, for exchange of ions and small molecular weight (<1.5 kilodalton, kDa) molecules, 

such as adenosine triphosphate (ATP), cyclic-adenosine monophosphate (cAMP), inositol 

1,3,5-trisphosphate (IP3); and thus, allow for intercellular communication between 

neighbouring cardiomyocytes.139 These junctions are formed by head-to-head joining of 

connexon hemichannels, made up of six four-transmembrane-spanning connexin (Cx) 

proteins, of which three are expressed in the atria (Cx40, 43 & 45).140 Changes in quantitative 

expression of connexin proteins, distribution, location or composition have been implicated 
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in connexin-based atrial remodelling.141-143 It should be noted that the evidence behind 

changes in the amount of Cx proteins has been rather conflicting, with some showing 

increased levels while others show reduced expression in AF.141, 144  

 Alteration in connexin proteins and ultimately gap junctions can cause abnormal 

electrical coupling of myocytes leading to conduction disturbances. Cx40 is particularly 

associated with conduction heterogeneity and is shown that partial or complete loss of Cx40 

eliminates anisotropic conduction.145 This suggests that, under conditions causing increased 

expression of Cx40, development of AF substrate will be favoured. Interestingly, 

Polontchouk et al showed significant association between Cx40 with chronic AF, such that 

2.7-fold increased expression of Cx40 was noted in patients with chronic AF compared to 

SR, which was replicated with pacing-induced AF in rats.141 Similarly, inhibition and 

ablation of Cx43 expression significantly decreases electrical coupling and increases 

inducibility of arrhythmias.146 Cx43 can also promote remodelling by altering partner 

connexins and membrane currents.146 

Further, Cx40 and Cx43 proteins and gap junction redistribution on myocytes may 

cause structural remodelling. Concomitant lateralisations of Cx40 and Cx43 have been 

observed in AF patients undergoing Maze procedure, in chronic AF and experimental AF 

model following rapid atrial pacing.141, 144 The involvement of lateral gap junction 

remodelling in AF substrate is likely to be caused by reduced electrical coupling at 

intercalated disks and increased transverse conduction.141 
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1.3.5.1.4 Remodelling of ultrastructural architecture 

Accumulating body of evidence shows that changes at subcellular levels, occurring early on 

before overt structural remodelling (1 to 3 weeks), may contribute to AF pathogenesis.122 For 

example, Ausma et al135 found marked subcellular changes, including loss of myofibrils, 

accumulation of glycogen granules, changes in mitochondrial shape and size, fragmentation 

of sarcoplasmic reticulum, and dispersion of nuclear chromatin, in over 92% of portion 

myocytes in goats with pacing induced AF. It is shown that mitochondria are smaller, greater 

in number (demonstrating elevated mitochondrial fission) and more elongated in chronic 

AF.135 Mitochondrial dysfunction, typified by decreased adenosine diphosphate-stimulated 

respiration supported by palmitoyl-L-carnitine and mitochondrial permeability transition pore 

opening (indicative of increased Ca2+ sensitivity), was recently shown to predict post-

operative AF.147 Furthermore, there have been observations of ultrastructural changes 

involving amyloid deposition; dedifferentiation of myocytes by molecular switch to foetal 

phenotypes, such as re-expression of a-smooth muscle actin, abnormal distribution of titin 

and decrease in cardiotin; and loss of contractile fibres (myolysis) in AF conditions.135, 148 

 

1.3.5.2 Electrophysiological remodelling 

1.3.5.2.1 Abbreviation of action potential duration and refractoriness 

Electrical remodelling leading to shortening of action potential duration (APD) and atrial 

effective refractory period (AERP) are well documented to increase AF vulnerability and 

stability.149, 150 In goat and dog models of chronic AF, arrhythmia vulnerability was 

associated with decreased AERP (~50%; 150 ms to <80 ms), and heterogeneity in AERP 

reported as an independent predictor of AF.149, 151 In clinical data, AF is associated with 
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reduction in rate adaptation to AERP and increased dispersion in refractoriness.152 Similar to 

changes seen with refractoriness, APD is shown to be shorter in AF than in SR in both 

clinical and experimental models.151 Changes in both AERP and APD occur very early on in 

the course of AF (first 3 days), much before the start of structural remodelling, and they are 

likely to precipitate decrease in atrial contractility seen during short AF episodes.149  

 Adaptation of atrial myocytes to rate changes in AF is proposed as a fundamental 

mechanism driving shortening of APD and AERP. This is reflected by modulations of ion 

channels which lead to pro-arrhythmic changes in membrane currents. In a model of heart 

failure induced by ventricular tachypacing for 4 months, there were significant shortening of 

atrial APD at 90% repolarization (APD90, ~40%), APD50 (~60%), AERP; prolongation of the 

transient outward rectifier K+ ionic current (Ito); and decreases in the ultra-rapid delayed 

(IKur), inward rectifier (IK1) and slow-conductance (IKs) current densities; but, no change was 

found for the rapid component of the delayed rectifier current (IKr).153 The involvement of 

late-sodium current (INa-Late) is also reported to impact atrial APD; it was shown to be 

markedly increased in castrated mice and was correlated with AF burden, rate and duration, 

which was ameliorated by inhibition of INa-L with ranolazine, eleclazine or GS967.154 Further, 

the repolarizing K2P3.1 K+ current (IK2P) has been reported to modify atrial APD in chronic 

AF and pAF with advanced left ventricular dysfunction; inhibition of K2P3.1 was reported to 

cause APD prolongation.155  

 

1.3.5.2.2 Complex Fractionated Atrial Electrograms 

Areas of complex fractionated atrial electrograms, known as CFAEs, have attracted much 

enthusiasm in the electrophysiology field as sites that may harbour substrates for perpetuating 
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fibrillatory circuits. Indeed, CFAEs have shown to represent areas of wave collisions, 

inhomogeneous tissue activations, slow conduction, and localised rotors.156-159 In 1994, using 

right atrial (RA) high-density mapping in 25 patients with Wolff-Parkinson-White syndrome, 

Konings et al160 made the seminal observation of fragmented wavefronts in the free wall of 

the RA. In some patients, activation was shown to be highly fragmented by arcs of intra-atrial 

conduction block producing multiple wavelets.160  

These important findings have led to the development of the novel technique of CFAE 

ablation to treat PAF and persistent AF (PerAF). In 2004, Nademanee et al156 demonstrated 

this in human AF (121 patients; 57 PAF and 64 permanent AF, PeAF) as a first-in-man 

modality. The authors defined CFAEs as ≥2 deflections on atrial electrograms (EGMs), and 

atrial EMGs of cycle lengths (CL) ≤120 ms. Using biatrial three-dimensional (3-D) 

electroanatomic mapping, the authors were able characterise AF by the regional distribution 

of AF, namely: 

1. Type I (23 patients) – CFAEs are localised to one area and the rest of the atria have 

organised EGMs. Applied radiofrequency energy eliminated all CFAEs and 

terminated AF. 

2. Type II (less organised, 43 patients) – CFAEs localised to two areas and ablation in 

both areas to terminate AF. 

3. Type III – CFAEs localised in ≥3 areas (83% in interatrial septum) and was 

associated with multiple unsuccessful pharmacological cardioversions. 

With the aid of CARTO 3D map, the investigators observed organisations of tachycardia 

EGMs following CFAE ablation, which ultimately led to elimination of AF.156 Notably, the 

therapy was associated with high success rate at 1-year post-ablation follow up, 

demonstrating 91% freedom from both arrhythmia and long-term complications.156 The 
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findings were further confirmed in subsequent publication by the investigators.161 However, 

the hypes around CFAE ablation for AF treatment have not yielded much success in other 

trials.158, 159, 162, 163  

Accurate characterisation if CFAEs remains a major challenge, an argument 

highlighted by proponents of CFAE-based ablation of AF. It is worth nothing that over 

eleven definitions of CFAEs have been adopted since research into EGM fractionations 

began about 50 years ago. For instance, the deflection threshold was defined as ≥3 

deflections over the mapping area by Lee et al164; ≥2 deflections and/or continuous 

deflections of a prolonged activity perturbing the baseline, and waveform of cycle length 

≤120 ms or shorter by Nademanee et al156; and just as CL of ≤120 ms or shorter than 

coronary sinus in the report by Oral et al158. The variation in software algorithms have also 

been noted. Over the decades, three software have been used in CFAE detection, including 

interval confidence level (ICL), complex fractionated electrogram (CFE) mean, and 

automated programs calculating CFAE percentage.  

 

1.3.5.2.3 Dominant Frequencies 

The concept of there been localised high-frequency sources of triggers for AF was put fort 

more than half a century ago. In 1931, using dog heart preparations, Brams and Katz165 tested 

the concept of the presence of mother waves traveling in circus that would solely explain AF 

and ventricular fibrillations (VF). The authors made an important observation that fibrillatory 

waves continue even after functional and/or anatomical separation the atrial chambers, thus 

highlighting role of local activity in AF.165 Almost 60 years later, Schuessler and 

colleagues166 showed, in canine RA preparation, multiple re-entrant circuits that tended to 
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convert to small, relatively stable and high-frequency dominant activation with increasing 

concentration of acetylcholine treatment. Two subsequent experimental reports further 

confirmed these finding by demonstration of: focus of very short AF CL in the posterior LA 

wall of halothane-anaesthetised dog, which were successfully cryoablated167; and successful 

ablation (62% to 67%) of dominant focus with short CL in the Bachmann’s bundle in sterile 

pericarditis canine model168. Clinical evidence for DFs was initially reported in nine patients 

with PAF, wherein the authors observed dominant focal and rapidly firing activity source that 

associated with AF and was successfully eliminated with RF ablation.  

DF substrate tends to exhibit heterogeneities depending on the type of AF (PAF or 

PerAF). In an acute canine model, Sih et al169 demonstrated shorter mean AFCL in the LA 

than RA, with DF originating from the posterior and medial portion of the LA. In the chronic 

model, the LA-RA AFCL gradient exhibited greater severity and 25% increased 

disorganisation of LA activation, but no change in the RA. The existence of DF gradients has 

been confirmed in multiple preclinical investigations170, 171. Moreover, ablation of sites 

exhibiting left-to-right gradients is associated high long-term ablation success rate.172 

Furthermore, a single DF was identified in 94% acute AF dogs and 57% in PerAF dogs173. 

Also, in human, high DF sites were reported to be higher in the LA-PV junction than in 

coronary sinus (intermediate) and posterior RA (lowest) in PAF, but no difference was 

observed in PerAF174. Using spectral analysis and frequency mapping modalities, Sanders et 

al157 showed that, in patients with PAF, high DF sites are more localised around the PV, 

whereas, in PerAF patients, DFs are more widely distributed. There reports showing that 

combination of DF- and CFAE-based CA ablations results in high success rates, thus 

indicating that DF mapping may revolutionise substrate-based AF ablation.157 Moreover, a 

recent report using the automated CARTOFINDER system and PentaRay recordings, DF and 
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CFAE demonstrated comparable correlations with low voltage zones in predicting focal and 

rotational AF drivers.175 

 

1.3.5.2.4 Conduction Slowing and Conduction Heterogeneity 

Abnormalities of atrial conduction are known to be important for electrical substrate 

formation. One of the first demonstration for abnormal conduction patterns comes from 

periprocedural induction of AF in Wolff-Parkinson-White (WPW) syndrome patients 

undergoing surgery.160 Whereas, homogenous conduction is usually observed in the right 

atrium of WPW patients in sinus rhythm, AF was associated with complex conduction along 

plenty arcs of block.160 In patients with PeAF, rapid repetitive patterns of conduction were 

reported, implying that increasing heterogeneity in conduction can serve as self-perpetuating 

substrate for more chronic forms of AF. Correspondingly, Allesie et al176 performed 

epicardial mapping in 24 patients undergoing cardiac surgery to characterise fibrillatory 

conductions. The authors found more significantly impaired conduction in PerAF compared 

to acute AF, with the former having 6-fold higher lines of blocks than the latter.176 They also 

found electrical dissociation between neighbouring muscle fibres, which were more severe in 

the PVs than in the free wall of the RA.176 In a parallel report by the same authors, they 

demonstrated that these dissociated fibrillatory wavelets are epicardial breakthrough waves. 

The authors concluded that epi-endocardial dissociation and longitudinal dissociation of atrial 

muscle fibres constitute the second most important substrate for PerAF177.  

 In preclinical models, conduction disturbances have also been demonstrated. Earlier 

reported showed both increased and reduced conduction velocities (CVs) following 

tachycardia induced by rapid atrial pacing.167, 178-180 However, in these studies, there was no 
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change in CV heterogeneity (CHI). More recently, impaired conduction has been 

demonstrated in: rat model of hypertension and ageing36; hypertension in chronically 

instrumented ovine model35; ovine models of overweight and short- and long-term obesity181, 

182; goats with short- and long-term AF134. Notably, Verheule et al134 made the important 

finding that presence of endomysial fibrosis, characterised by separation between muscles 

within bundles, in occur more frequently in chronic AF. intriguingly, the goats with chronic 

AF had slower wavefront expansion and more anisotropy during high-resolution optical 

mapping.134 

 

1.3.5.2.5 Sinus Node Dysfunction 

Sinoatrial (SA) node disease (SND) and AF are known to have bidirectional relation. 

Numerous studies show that AF predispose to SA dysfunction and, subsequently, SND. 

Atrial tachyarrhythmias promote left atrial enlargement, areas of low voltage and scarring, 

functional conduction delay, increased right atrial effective refractory period and loss of rate 

adaptation to ERP. Similarly, atrial tachyarrhythmias have been shown to cause reversible 

changes in the atrial tissue predisposing to SND.91 In pre-clinical models, SND substrates due 

to AF have been mapped to: prolongation of sinoatrial node recovery time and reductions in 

intrinsic heart rates (induced by >2 weeks of rapid atrial pacing) in dogs92; calcium clock 

malfunction as typified by unresponsiveness to isoproterenol and repression of ryanodine 

type 2 receptors93. Tachycardia-induced SA node remodelling does not occur very quickly. 

Manios et al183 observed the recovery of AF induced remodelling occurred over 24 hours. In 

a study of patients with paroxysmal and chronic atrial flutter, Sparks et al91 noted that 

prolongation of SA node recovery time reversed in 5 min for paroxysmal flutter. However, 
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even after termination of flutter, reversal of SA node remodelling did not occur till after 3 

weeks.91 Taken together, these data suggest that AF is both a consequence and cause of SND. 

More importantly, sinus node dysfunction can create a self-perpetuating substrate for both 

SND and AF. 

 

1.3.5.2.6 Abnormal calcium-handling and sensing  

As a conceptual framework, excitation-contraction coupling is initiated by the entry of Ca2+ 

into the cells via the L-type Cav1.2 channel during phase 2 of action potential, leading to 

increased subsarcolemmal [Ca2+]i that activates and causes opening of type 2 ryanodine 

receptor (RyR2) that allows for the surge in systolic Ca2+ levels (Figure 1).184, 185 Diastolic 

Ca2+ level is maintained via the activities of the ATP-dependent sarco/endoplasmic reticulum 

Ca2+-ATPase type-2a (SERCA2a)186, Na+/ Ca2+-exchanger (NCX)187, plasmalemmal Ca2+-

ATPase (PMCA)188-190. Interestingly, [Ca2+]i is highly regulated, such that dysfunction in any 

of its regulating arm can lead to a pro-arrhythmic state. Increased [Ca2+]i is associated with 

increased activation of NCX resulting in influx of Na+ (producing transient inward current), 

which leads to afterdepolarisations (known contributors to APD alternans); ion channel 

remodelling; contractile dysfunction. Yeh et al191 reported, in congestive heart failure induced 

by 2 weeks of ventricular tachypacing in dogs, significant increases in atrial diastolic [Ca2+]i, 

[Ca2+]i transient amplitude, and sarcoplasmic reticulum (SR) Ca2+ overload. The authors 

correlated these events with spontaneous Ca2+ transient events and triggered activity, which 

were suppressed by RyR2 or NCX blockade.191  

Abnormal Ca2+ handling can occur as dysfunctions in L-type Ca2+ Channel (Cav1.2, 

LTCC), RyR2, SERCA2a or calsequestrin-2 (CASQ2). RyR2 controls Ca2+-induced Ca2+ 
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release (CICR) from the SR, and RyR2 remodelling is implicated as the most important Ca2+-

handling factor in AF pathogenesis.191-193 In a canine model of CHF, Kubalova et al194 

detected increased sensitivity of RyR2 to luminal [Ca2+]i and reduced receptor content, which 

correlated with increased Ca2+ sparks. This increased open probability of RyR2 has been 

attributed to hyperphosphorylation of the receptor by protein kinase A (PKA) or Ca2+-

Calmodulin-dependent protein kinase II (CaMKII) in human atrial myocytes.193, 195 

Regulation of important interacting partners of RyR2 may impact CICR; for example, 

arrhythmia-promoting mutation has been noted in junctophilin-2 (JPH2), the protein 

responsible for maintaining the junctional membrane complex for ECC; and increased open 

probability of RyR2 in transgenic mice caused by reduced expression of protein phosphatase 

1 (PP1) is also seen.196 Further, luminal Ca2+ [Ca2+]i is tightly regulated by SERCA2a, 

CASQ2 and phospholamban (PLB), such that reduction in SERCA2a is correlated with AF 

persistence.197 Ca2+-handling abnormality involving LTCC is seen as decreased peak ICa-L 

noted in an ageing model of Welsh Mountain sheep198; significantly reduced mRNA 

expression levels in AF patients199; or decreased a1C subunit with consequently increased 

Ca2+ transients in aged spontaneously hypertensive rats200.  

 

1.3.5.3 AF triggers 

Events originating as ectopic or focal discharges and re-entrant circuits are thought to serve 

as initiating mechanisms for AF.11, 119, 120 These can be organized as “hierarchical” 

propagations, wherein the AF drivers are from localized sources, or in an “anarchical” 

fashion, involving firing from multiple non-localised sources.11  
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Ectopic activity is promoted by abnormality in atrial cellular electrophysiology. 

Figure 2 shows an illustration of the normal AP generation, involving 5 phases, AP upstroke 

by the depolarizing current of Na+ currents (INa, phase 0), the initial extrusion of Na+ (phase 

1), plateau phase due to both opening of LTCC and CICR by RyR2 activation (phase 2), 

early repolarization by outward currents (phase 3) and late repolarization by IKACh and IK1 

(phase 4). Abnormal or enhanced automaticity can be caused by the presence of AF-

promoting conditions that cause membrane potentials to become more positive, thus allowing 

for spontaneous AP generation.201 It should be noted that enhanced automaticity is not easily 

demonstrated as a mechanism of AF.  

Afterdepolarisations, including early and delayed afterdepolarisations (EADs & 

DADs), producing triggered activity are thought to be the main drivers of focal arrhythmias. 

EADs are due to mechanisms causing prolongation of AP and are responsible for 

tachyarrhythmias associated with long QT syndrome.202 These mechanisms may occur as 

potentiation of late non-activating Na+ current, INa,L, or reduction in repolarizing K+ currents; 

the ensuing APD prolongation is able to allow recovery of LTCC from Ca2+-mediated 

inactivation leading to Ca2+ influx and AP in phase 2 or 3 (Figure 2).202, 203 DADs are caused 

by mainly Ca2+-handling abnormalities that allow for spontaneous SR Ca2+ leak and diastolic 

SR Ca2+ release events.195 Diastolic SR Ca2+ release leads to cytoplasmic Ca2+ overload that 

activates the electrogenic NCX, which is able to exchange Ca2+ for influx of depolarizing INa 

(1:3 stoichiometry) and trigger AP.204  
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1.3.5.4 Mechanisms Sustaining AF 

Re-entrant mechanisms are currently understood as the main drivers of persistent forms of 

AF. Both functional and structural remodelling contributes to the formation of re-entrant 

circuitry. Several theories have been postulated over the years to explain the functional 

determinants of re-entry, such as: 

1. The circus movement,  

2. Leading circle,  

3. Spiral circus, and  

4. Multiple wavelets hypotheses (Figure 3).11, 120, 205-207  

 

1.3.5.4.1 Anatomical Re-entry 

In circus movement re-entry, re-entry occurs in the presence of a unidirectional block 

wherein an activation travels along the anatomical block or pathway to re-excite a previously 

excited region.208-210 It follows that this mechanism requires full recovery of a previously 

excited tissue before the activation arrives.211  

 

1.3.5.4.2 Functional Re-entry 

The leading-circle concept posits that re-entry is through a central region constantly being 

activated by rotating waves. It was first postulated by Garrey207 in 1924 and experimentally 

demonstrated by Allessie et al208 in 1973 in isolated rabbit left atrial tissue as requiring no 

anatomical obstacle. The dimension of this re-entrant circuit is equivalent to wavelength 

(defined as product of refractory period and conduction velocity) and adapts to the smallest-
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sized loop to maintain re-entry. The short wavelength of the leading-circle means the chance 

of spontaneous termination is low, thus higher likelihood of AF sustenance.  

As a limitation of the leading-circle model, it fails to account for some observations 

made, such as; the anti-arrhythmic effects of Na+-blocking agents which reduce both 

conduction velocity and wavelength212; and the unchanged wavelength seen in some 

experimental settings and in some AF patients213. The spiral-wave model was developed to 

settle this and is initiated when an activation wavefront encounters anatomical obstacle and 

circulates or rotates around it (also termed “Rotor theory”).11, 120, 205 This is best represented 

by the intricate relationship between the source and sink of electrical depolarization, with 

source being a recently activated region and sink, the region beyond that is still refractory.11, 

205 The wavefront curvature increases along the rotating spiral wave from regions with less 

source-sink mismatch to regions with the critical mismatch, often termed the rotor core. 

Interestingly, rotors have both been observed experimentally and in humans. In humans, rotor 

ablation has been associated with high success rates and, as seen in critical examples, leads to 

80% to 95% freedom from AF.214, 215 

 

1.3.5.5 Molecular Mechanism of AF 

While the formation of AF substrate and eventual perpetuation of AF circuits can be 

understood as involving gross structural, electrical and functionals changes, induction of 

cascades of abnormal signalling are also implicated. Data from animal and clinical studies 

have implicated signals from, but not limited to oxidative stress pathway; inflammatory 

pathway; autophagy; mitochondrial dysenergetics; Ca2+-modulating pathways; fibrotic 

signalling; and microRNA (miR) pathway. 
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1.3.5.5.1 Oxidative Stress 

Oxidative stress, characterized by excess reactive oxygen species (ROS) and reactive 

nitrogen species (RNS), is shown to be higher in patients with AF216, 217, recurrent arrhythmia 

after catheter ablation218, and disease progression and post-operative form of AF219, 220. In 

mice, chronic cardiac overexpression of Rac1 GPase, an activator of nicotinamide adenine 

dinucleotide phosphate hydrogenase (NADPH) oxidase (NOX)-2, results in spontaneous 

development of AF, highlighting role of oxidative stress in atrial substrate formation.221, 222 

Myocardial ROS production tends to show differential temporal and spatial alterations. This 

was demonstrated by 1 weeks of AF in a porcine model; here, both Rac1 levels and NADPH 

oxidase activity were increased in left atrial tissue but no observable difference was seen in 

the right atrium compared to sinus rhythm.223 In the same study, short-term AF was 

associated with higher superoxide (˙O2-) production, with similar results seen in post-

operative AF.223 In contrast, long-term AF in goats224 and permanent AF in humans225 

demonstrated a shift in O2- production from NOX2-NADPH oxidase to uncoupled nitric 

oxide synthase (NOS) and mitochondrial complexes.  

 Mechanistically, the available body of data suggest oxidative stress contribute to AF 

substrate via oxidation and nitrosylation of targets. Indeed, oxidation of a regulatory 

methionine unit in the Ca2+/Calmodulin-dependent kinase II (CaMKII) by increased ROS 

levels has been reported.226 Oxidized CaMKII shows increased activity, with increased 

excitatory phosphorylation of RyR2 on serine residue 2814 leading to greater Ca2+ sparks, 

impaired Ca2+ handling and greater susceptibility to AF in atrial myocytes.227, 228 RyR2 is 

also a target of oxidation during states of oxidative stress and, in atrial myocytes, oxidized 
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RyR2 is significantly increased during chronic AF, with greater open probability.229 

Accordingly, genetic ablation of mitochondrial ROS production in a transgenic mouse model 

of leaky RyR2 was associated with reduced RyR2 oxidation and diastolic SR Ca2+ leak and 

AF induction.229 It is also interesting to note that ROS/RNS can act as signalling molecules 

and activates abnormal myocardial signalling. This is seen with: increase in expression of 

phospho-c-Jun N-terminal kinase 1, MAPK p38 and MMPs following H2O2 stimulation of 

atrial fibroblasts230; and reduction in NF-kB, cell apoptosis, fibrosis and hypertrophy after 

advanced glycation end-products’ blockade with myricitrin in mice with diabetic 

cardiomyopathy231. 

 

1.3.5.5.2 Abnormal Autophagic Events 

The autophagy pathway is a newly implicated molecular pathway in cardiac conditions. 

Physiologically, autophagy serves to protect cells and maintain cellular homeostatic control 

by clearing abnormal cellular structures (abnormal or misfolded proteins, dying 

organelles).232 Disease state ensues when this pathway is inhibited or hyperactivated. Several 

aspects of autophagy have been observed in models of ischaemia, ischaemia/reperfusion 

injury, mitral and tricuspid regurgitation, and hypertrophy, with both protective role and 

detrimental effects noted.233-236 Autophagy has been associated with reduced expression of 

Cx43 and ionic currents, indicating a likely remodelling of electrical coupling of 

myocytes.237, 238 In humans, electron micrograph of RAA samples of patients who went on to 

develop POAF following CABG demonstrated marked autophagosome vesicles but no 

statistically significant difference in fibrosis or inflammation.239 Greater processing of the 

microtubule-associated protein 1B-light chain 3(LC3B)-I to LCB3II, indicating formation of 
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double-membrane autophagosome cellular substructures, has been reported in human AF as 

well as pacing-induced arrhythmia in animal models.237, 240 Moreover, increased 

phosphorylation of AMP-induced protein kinase (AMPK) has been reported in AF, 

highlighting activation of the autophagic process consequent to tachycardia.241 

 

1.3.5.5.3 Inflammatory Signalling  

The infiltration of inflammatory cells and cytokines that mediate inflammatory response in 

myocardial tissue is associated with AF. Both local and systemic inflammation independently 

predict incident AF and recurrence after catheter ablation, cardioversion, and cardiac bypass. 

Inflammation is also implicated in both electrical and structural remodelling.242 Samir et al243, 

in a seminal paper, showed that increased fibrotic remodelling, reduced contractile function 

and abnormal Ca2+ transients in a transgenic mice model with atrial overexpression of tumour 

necrosis factor-alpha (TNF-a). In the same study, programmed stimulation resulted in 

induction of re-entrant atrial arrhythmias in isolated perfused hearts from TNF-a animals 

compared to controls.243 Myeloperoxidase (MPO) is increased in patients with AF244 and, in 

animal studies, ablation of MPO led to reduction of MMP-2 and -9 and fibrosis in mice 

treated with angiotensin II, effects that were rescued upon restoration of MPO245. Activation 

of the NLRP3 inflammasome has also been implicated in the formation of atrial substrate, 

involving myolysis, cardiomyocyte apoptosis, fibrosis, abnormal Ca2+-handling, shortening 

of refractoriness, and increased AF inducibility.246, 247 
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1.3.5.5.4 MicroRNA-mediated Atrial Remodelling 

MicroRNAs (miRNAs) and short non-coding RNA sequences are emerging as very useful 

biomarkers of AF. Circulating levels of miRs have been associated with greater risk of AF 

presence248, incidence248, progression, and recurrence post-catheter ablation249-251. In a cohort 

of 34 patients undergoing on-pump cardiac bypass grafting, higher pre-operative levels of 

miR-483-5p predicted greater incidence of new-onset post-operative AF252. There are even 

observations of altered expressions of miRs in the atrial tissues of AF patients versus AF-free 

individuals, thus underscoring a role for miR in AF substrate formation253, 254. This was 

recently demonstrated in an experimental model, wherein the clustering of miR-23b-3p and 

miR-27b-3p induced atrial fibrosis via activation of TGF-b receptor 3 (TGF-bR3)/SMAD3 

signalling pathway. Additionally, in heart failure after MI model, treatment with miR-21 

blocking agent (KD21) significantly reduced atrial fibrosis and AF induction.255 The 

repression of fibrosis was shown to be mediated by sprouty-1, an inhibitor of the pro-fibrotic 

ERK pathway, and miR-21 levels were negatively correlated with sprouty-1 levels in humans 

with valvular AF.255 Furthermore, miRs have been associated with induction of electrical 

remodelling256, 257 and conduction abnormalities258, 259 in preclinical models. Overexpressions 

of miR-130a and miR-206 have been shown to cause downregulation of connexin-43 with 

subsequent abnormal PR intervals, induction of cardiac arrhythmias, and shortening of 

lifespan.258  

 

1.3.6 AF Association with Adiposity 

The link between obesity and overweight and risk of AF was not evaluated until the turn of 

the 21st Century. There is strong rationale to suggest that obesity may precipitate AF 
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development. Obesity is associated echocardiographic markers of atrial dysfunction and 

shown to associate with atrial enlargement.260 Both AF and obesity are parallel burgeoning 

global conditions, trends that persist even in the wake of declining incidence of traditional 

risk factors. Moreover, obesity can co-segregate with and worsen cardiometabolic risk factors 

that are known to promote the development of arrhythmias, including HTN, T2D, and heart 

failure.1, 4, 7 

In a seminal paper by Wang et al261 in 2004, the authors demonstrated increasing age-

adjusted incidence rates for AF across BMI subgroupings (9.7 per 1000 person-years in BMI 

<25 kg.m-2, 10.7 in BMI 25 to 29.9 kg.m-2, and 14.3 in BMI ≥30 kg.m-2), and after 

adjustment made for CV risk factors and interim MI or CHF, 1-unit increase in BMI was 

associated with 4% greater risk of AF. Also, in the same study, obesity predicted a 52% 

increased risk of AF in males and 46% in females independently of traditional risk factors, 

including MI and CHF, highlighting obesity as important modifiable risk for AF.261 To 

further test the strength of this association, Wong et al262 conducted a meta-analysis by 

pooling multivariable adjusted odds ratios from 51 cohort and case-control studies. Quite 

intriguingly, the authors found 19% to 29% elevated risk of incident AF for every 5-unit 

increase in BMI.262 Additionally, BMI was also associated with recurrence of AF after 

catheter ablation and development of de novo AF following coronary artery surgery.262 

These findings beg the question that obesity might actually underlie 

pathophysiological changes promoting AF. Intriguingly, visceral adiposity has been shown to 

correlate with systemic pro-inflammatory state, worsening of atrial haemodynamics, markers 

of atrial structural remodelling, and neurohumoral system including autonomic tone 

dysregulation, all of which are strongly linked to promoting atrial arrhythmias.260 Similarly, 

there is experimental data suggesting that obesity leads to global biatrial endocardial 
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remodeling which is characterized by LA enlargement, fractionated electrograms, conduction 

abnormalities, diffuse atrial fibrosis.182  

 

1.3.7 Arrhythmogenicity of Epicardial Fat 

There is growing evidence to suggest that the increased risk of AF in obesity may be driven 

by expansion of epicardial adipose tissue (EAT), which is a sequela of increased adiposity 

seen during weight gain.263 Indeed, there has been an explosion of interests in this ectopic 

adipose depot, no less due to its strategic location. Important considerations for 

arrhythmogenic roles of epicardial fat are discussed below. 

 

1.3.7.1 Clinical Link between EAT and AF 

The clinical relation between epicardial fat and AF was first reported by three independent 

cohorts. In the Framingham Heart Study Offspring and Third Generation Cohorts, analysis of 

the pericardial fat by multi-slice computed tomography (MDCT) in 3217 individuals showed 

significant association with prevalent AF.264 This persisted even after correcting for AF risk 

factors, BMI and visceral fat. Interestingly, neither intrathoracic nor visceral abdominal fat 

associated with AF presence.264 In another study, Al Chekakie et al265 demonstrated lager 

volumes of total epicardial fat (quantified by CT) in patients with prevalent AF, which further 

associated with greater persistence of the arrhythmia. Additionally, Batal et al266 evaluated 

the hypothesis whether a more local ectopic fat may be impact AF risk. Using 169 

consecutive patients undergoing CT angiograms, they found that increased peri-atrial 

epicardial fat thickness at the posterior left atrium conferred more than 5-fold greater odds for 

AF.266 The associations have so far been replicated in other cohorts and by other imaging 
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modalities. For instance, Wong et al263 showed by cardiac magnetic resonance infrared scans 

that pericardial fat volumes, but not markers of general adiposity such as body mass index or 

body surface area, were independent predictors of prevalent AF. 

 

1.3.7.2 Characteristic Behaviour of EAT  

The EAT, like commonly found in other adipose tissue, contains not only adipocytes but non-

fat mesenchymal cells, including the resident macrophages, pre-adipocytes, lymphocytes, 

adipose tissue-derived stem cells. The expansion of EAT can be understood as both involving 

the proliferation and the differentiation of pre-adipocytes. Whether both are equally 

responsible for an expanding epicardial fat, or one is the prevailing mechanism of EAT 

accumulation is yet to be determined.  

The activity of EAT is also poorly investigated, including the profile of its secretome, 

their perceived contribution to LA remodeling and paracrine regulations. Recently, one study 

indicated that human EAT has specific regional and anatomic transcriptomic signature, 

depending on whether it is peri-atrial (PA-EAT), ventricular (PV-EAT), or coronary 

(PCA).267 In this study, transcriptomic analyses of EAT and thoracic subcutaneous fat (SAT) 

of 41 patients matched for AF, CAD, and CV risk factors showed up to 2,123 (at false 

discovery rate, FDR, 5) and 2,728 (FDR of 10) genes significantly up-regulated in total EAT 

as compared to SAT, with 400 of these genes commonly shared across the EAT stores.267 

Interestingly, the commonly shared genes were members of the gene families controlling 

extracellular matrix remodeling, inflammation, infection, and thrombosis.267 There was a 

disproportionate expression of these genes in the various depots, with PV EAT having 

overexpression of uncoupling protein 1 (UCP-1); PCA EAT having overexpression of 
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proliferation, O-N glycan biosynthesis, sphingolipid metabolism specific genes; and PA EAT 

specific for myocyte contractile and calcium signalling genes.267 More intriguingly, similar 

number of genes was down-regulated in EAT using SAT as a reference. While these results 

implicate differential gene expression of EAT depots, they raise important questions 

regarding what happens during AF substrate formation. For example, what would the 

behaviour of the secretome of EAT be during obesity or tachycardia/AF? UCP-1-expressing 

adipocytes are shown to be protective, with the characteristic non-shivering thermogenesis. 

AF patients are reported to have reduced expression of UCP-1 mRNA in EAT and UCP-1 is 

negatively correlated with LA dilatation, with the beige adipocyte phenotype (reduced during 

EAT expansion) shown to be an independent predictor of AF.268 Most importantly, if these 

pathways are remodelled in obesity or AF, are they due to EAT adipocytes or the stromal 

components of the adipose tissue? 

Some of these questions were recently investigated by Chilukoti et al269 in a human 

model of AF and an experimental model of rapid atrial pacing (RAP). After a 7-hour long 

pacing of pigs at 600-ms, RAP was shown to alter the expression of 66 genes controlling 

adipogenesis and adipocyte differentiation as shown by their elevated mRNA levels, which 

were confirmed upon 7 days of in vitro differentiation of 3T3-L1 fat cell lines after 7 days.269 

On the other hand, only a fraction of these genes, such as the metabolism-regulating genes 

RETN, IGF-1, HK-2, PYGM, LOX, and NR4A3, were differentially overexpressed in RA 

tissue samples of patients with AF as compared to controls, indicating more metabolic 

adaptation during AF.269 Further characterisation showed significant increase in expression of 

RETN in EAT of AF patients compared to controls, suggesting an induction of inflammatory 

program in fat pad.269 The results also showed that AF might activate a transcriptional 

maladaptation in EAT that favours tissue expandability and lipid accumulation as indicated 
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by increased expressions of NR4A3 in atrial tissue and ANGPTL4 in EAT of AF patients.269 

Noteworthy, these observations are limited by lack of data looking at obese vs non-obese 

models.  

 

1.3.7.3 Inflammation and Epicardial Fat 

Acet et al270 evaluated the neutrophil-lymphocyte ratio (NLR), a highly validated marker of 

systemic inflammatory response, in AF populations and showed a significant correlation with 

epicardial fat thickness (r = 0.66; p<0.001), which was independent of other co-variates 

(p<0.001). In another study, the inflammatory activity of epicardial fat using F-18-

fluorodeoxyglucose (FDG)-PET/CT in patients with AF and in controls was investigated. 

Using the maximal standardised uptake value (SUV) of FDG-PET/CT, the authors observed a 

greater inflammatory activity of EAT in AF patients than in controls (p < 0.001).271 

Additionally, EAT SUV was significantly greater than peripheral subcutaneous adipose tissue 

(SAT) and visceral thoracic fat for patients with AF and controls, with EAT SUV being the 

only independent predictor of AF.271 This lends credence to the postulation of a strong role of 

inflammatory component in epicardial fat-mediated pathogenesis of atrial arrhythmia, more 

so as FDG-PET/CT is reflective of macrophage burden.  

Noteworthy, epicardial fat, as an archetypical visceral adipose tissue, is characterised 

by an intense metabolic activity and functions as an endocrine organ, serving as a source of 

several cytokines and proinflammatory mediators. Accordingly, Mazurek et al272, in an 

earlier publication, demonstrated the presence of tumour necrosis factor-alpha (TNF-α), 

interleukin (IL)-1β and IL-6, and monocyte-chemotactic protein (MCP)-1, respectively, in the 

secretome of EAT from the patients with CAD. Direct release of MCP-1 attests to the 
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contribution of cellular infiltrates to the inflammatory phenotype of EAT. MCP-1 is a 

member of the C-C (gamma, γ) chemokine family of chemoattractants and it induces 

migration and recruitment of monocytes, the precursors of macrophages, in response to 

inflammation.273, 274 In addition to producing pro-inflammatory cytokines, EAT also secretes 

anti-inflammatory markers including adiponectin.275 In AF and obesity, it is plausible to 

speculate that the natural balance between pro- and anti-inflammatory cytokines of EAT 

becomes distorted and tilts in favour of a pro-inflammatory state. Indeed, reduced secretion 

of gelsolin (an anti-inflammatory adipokine) was has been reported in EAT of patients who 

went on to develop post-op AF after CABG.276 In addition to its anti-inflammatory role, 

gelsolin is a negative regulator of the L-type Ca2+ channel, such that its deficiency has been 

associated with increased propensity for AF in a mouse model.276  

Further, there is evidence to suggest involvement of EAT in activation of 

inflammatory cells. In patients with acute coronary syndrome, greater expressions of NOD-

like receptor protein 3 (NLRP3), caspase-1 and pro-IL-1β, thereby indicating induction of 

NLRP3 inflammasome pathway.277 Whether activation of this pathway is involved in 

induction of inflammation during EAT-mediated atrial remodelling remains to be elucidated. 

The lipotoxic nature of the resulting interstitial milieu has huge implications for induction of 

adipose tissue inflammation and a resultant higher propensity for the creation of AF 

substrate.  

 

1.3.7.4 Atrial Myocardial Fibrosis and Epicardial Fat 

The data on involvement of atrial fibrosis in EAT-induced structural remodelling are very 

limiting. Using an ex vivo organo-culture of rat atria with the secretome of EAT and 
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subcutaneous fat, Venteclef et al278 demonstrated marked induction of global and interstitial 

fibrosis in rat atria pre-treated with the secretome of EAT compared to controls but found no 

such observation in SAT-treated atria. This indicates that EAT is also capable of inducing 

fibrosis and a resultant structural remodelling of the atrial myocardium. 

The TGF-b pathway is considered the most important profibrotic pathway, insofar as 

it can occur downstream or independently of the renin-angiotensin-aldosterone system 

(RAAS) activation.125 TGF-b superfamily of proteins represents a distinct clad of proteins 

that act via receptors with serine/threonine kinase properties to elicit a range of functional 

changes, including growth and differentiation. A subfamily of these containing the TGF-bs 

(TGF-b1, 2 &3) and the activins are particularly involved in fibrosis.278 Interestingly, 

observation of abundant secretion of activin-A was made in the secretome of EAT in an ex 

vivo model, which was not the case for subcutaneous fat.278 In the same study, 

supplementation of the organo-culture medium with recombinant activin-A reproduced the 

pro-fibrotic effects of EAT, which was blunted when the atrial tissues where pre-treated with 

activin-A-neutralising antibody.278 This demonstrated that activin-A may mediate the pro-

fibrotic actions of EAT on the atrial myocardium. Additionally, the same authors found 

significant expressions of matrix metalloproteinases (MMPs 1, 2, 3, 8, 9, and 13) in EAT as 

compared to peripheral adipose tissue.278 Importantly, these molecules play key regulatory 

roles on extracellular matrix (ECM) remodelling, including matrix turnover, chamber 

dilatation, and basement membrane components. Increased activity of MMPs is tightly linked 

with heightened collagen fibres deposition, reactivity of fibroblast, and fibroblast-

myofibroblast transition.121  
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1.3.7.5 Fatty Infiltration into the Left Atrium 

Fat cell infiltration is a newly described histological substrate shown to be involved in 

formation of atrial substrate. In a seminal paper, Mahajan et al182 provided an experimental 

demonstration of abundant deposition of fat in the epicardium and intra-atrial fat cell 

infiltration in an ovine sheep model of obesity on histology. Fatty infiltration was more 

significantly seen in the obese sheep compared to the age-matched controls and was shown to 

be more profound in the posterior LA and less in LA appendage, correlating with regions of 

reduced endocardial voltage.182 

Clinical investigations of the phenomenon have been hampered by the limitation in 

available imaging modalities. Nonetheless, with the evolution of the Dark-blood DIR-

prepared Fat-Water-separated sequence MRI imaging method, Tereshchenko et al279 

provided preclinical evidence for fatty infiltration of the atrial septum in the PRIMERI study. 

By evaluating 90 patients with structural heart disease, the authors found that infiltrated intra-

atrial fat area was a significant and an independent predictor of a 10-year risk of AF risk 

based on the ARIC AF risk score (p=0.037).279 Surprisingly, neither BMI nor total EAT area 

significantly predicted higher AF, thus, underscoring intra-myocardial fat in the left atrium as 

an evolving risk factor of pre-clinical AF.279  

Rather than just being a mere histological observation or imaging assessment, 

infiltrated epicardial fat may underlie the formation of AF substrate. EAT adipocytes secrete 

a myriad of cytokines with the ability to alter the functional and structural properties of the 

atrial myocytes. Fatty infiltrates may exaggerate the paracrine or juxtacrine effects of EAT 

secretome atrial myocardium, allowing for a more direct modulating effect on the cardiac 

myocytes.120 Furthermore, fatty infiltration can also allow for closer and somewhat direct 
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cellular crosstalk between fat cells and intramyocardial fibroblasts. Consistent with this, 

Venteclef et al278, in a paper on atrial organo-culture, made an important observation of 

marked myocardial fibrosis in regions with EAT infiltration, with visible fibrotic fibres seen 

the interface between adipose and myocardial tissues. This was further confirmed by 

observations of association between AF and fibrosis of subepicardial fatty infiltrates in 

human and sheep models.280  

Infiltrating epicardial fat may represent a novel and unique structural remodelling of 

the atria, which as noted in prior section plays an important role in the formation of 

permissive substrate for AF. It is well understood that fat acts as insulating tissue to the body 

incapable of conducting heat or electrical impulse.281 Drawing from this premise, the 

presence of fat within the myocardial tissue can constitute local conduction blocks thereby 

leading to disorganization of the conduction waveforms and discontinuity in impulse 

conducting pathways/routes, behaving just like fibrotic fibres.282 Intriguingly, Murthy et al283 

observed a significant and independent correlation between infiltrating fat and P-wave 

fragmentation in patients with paroxysmal AF and those at risk of AF. Abnormal P-wave 

indices are known to predict occurrence of paroxysmal AF. For example, abnormal P-wave 

morphology was independently associated with increased risk of non-sudden cardiac death 

and AF development.284, 285 

 

1.3.7.6 Autonomic Tone Dysfunction and EAT expansion 

Catecholamine excess and neurohumoral cascade activation are amongst the mechanisms 

purported to be responsible for the pathogenesis of AF.64, 166, 286 These mechanisms are tightly 

linked to a dysfunctionality of baseline autonomic tone. Interestingly, epicardial fat is very 
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rich in ganglionated plexi, and thus has triggered an important postulate that it may 

negatively modulate the autonomic ganglia thereby enhancing a dysregulation of the 

autonomic tone which in turn may precipitate the episodes of AF.287 Consistent with this, 

Muhib et al288 reported some novel and intriguing findings from a hospital-based cohort with 

idiopathic hypertrophic cardiomyopathy and AF, showing a significant association between 

lower time-domain measures of heart rate variability (HRV) and the increase in EAT area. 

Additionally, these HRV measures also significantly decreased in patients with prevalent AF 

compared to AF-free controls, a relation that persisted after correcting for confounders.289 In 

another study, both heart rate turbulence (HRT) and HRV parameters were investigated in 

two populations of EAT thickness.290 In the same study, significant correlations between 

depression of these measures of cardiac autonomic functions and higher thickness of 

epicardial fat were noted.290 

HRV and HRT are important and reliable 24-Holter ECG indices that indicate heart 

autonomic balance.289, 291 HRV is an indirect measure of autonomic functions and reflects its 

influence on the sinoatrial node, whereas HRT is an indicator of baroreceptor sensitivity and 

is dampened in patients with reduced baroreceptor-cardiac reflex activity.289, 292 Both HRV 

and HRT have been shown to predict AF and post-operative AF.293-295 It may be possible that 

the secretome of EAT impact  autonomic neurones that make up the GP richly embedded in 

the fat depot. In fact, a new report has implicated cardiac fat pads in abnormal autonomic 

neural remodelling.296 Using canine model of AF, the authors demonstrated differential 

expression levels of long non-coding RNA (lncRNA) molecules involved in regulation of 

neural development, migration, neurodegenerative disorders, between patients with AF and 

SR controls.296 They further showed that these lncRNAs could actually produce pro-

arrhythmic effects, with genetic ablation of TCONS_00032546 shortening the atrial effective 



 

   

 

47 

refractory period thereby increasing AF vulnerability, whereas silencing of 

TCONS_00026102 prolonging ERP and  prevented AF.296 Thus, it may offer a potential 

mechanism to explain the increased propensity for AF due to epicardial fat expandability.   

 

1.3.7.7 Electrical Remodelling with EAT Expansion 

1.3.7.7.1 AF Triggers 

Events originating as ectopic or focal discharges (involving EADs and DADs) and re-entrant 

circuits are thought to serve as initiating mechanisms for AF. Interestingly, Lin et al297 

showed in an in vitro model of LA myocytes an increased DAD amplitude after co-

incubation with rabbit EAT adipocytes. In the same study, EAT significantly increased the 

incidence of triggered beats induced by isoproterenol, highlighting the importance of focal 

ectopy in EAT-induced arrhythmia.297  

As noted earlier, early afterdepolarizations (EADs) are caused by mechanisms that 

prolong action potential duration (APD), including inhibition or loss of the ultra-rapid IKur 

and uncontrolled activation of INa-Late, which allow time for ICa-L to recover from 

inactivation.298 Indeed, co-incubation of LA cardiomyocytes with EAT adipocytes for few 

hours is shown to increase INa-Late, with a concomitant increment in ICa-L, and 90% APD. 

Adipocytokines from EAT have also been shown to decrease IKur after 18 hours of incubation 

of myocytes with EAT secretome.298 

 

1.3.7.7.2 AF Electrical Substrates  

Mechanisms causing shortening of the effective refractory period (ERP) and conduction 

slowing form important substrates for AF. Consistently, a potential role of EAT in promoting 
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conduction disturbance of the atria has been investigated by several groups. In a study of 337 

patients, atrial electromechanical interval was significantly increased in individuals with 

expanded EAT, and in after multivariable adjustment, EAT was found as an independent 

predictor of atrial electromechanical delay.299 This denotes the involvement of reduction of 

voltage and lengthening of total activation time as potential mechanisms. This was recently 

corroborated by the work of Mahajan et al300, which demonstrated pronounced voltage 

reduction and conduction slowing in regions adjacent to epicardial fat depots in obese 

patients. In the same study, left atrial EAT volume was found to demonstrate the best 

correlations conduction velocity, performing even much better than BMI (r2 = 0.31 for LA 

EAT vs. r2 = 0.22 for BMI).300 

 

1.3.7.7.3 Mechanisms Maintaining AF 

While re-entry seems to be the currently favoured mechanism of AF, several clinical 

mapping correlates have been utilised and include high dominant frequency (DF) and 

complex fractionated atrial electrogram (CFAE) sites.156, 157, 160, 301 CFAEs are recognised as 

regions characterised by wave breaks and fusion which are associated with slow conduction 

and pivot activation.164, 175 This repetitive and dyssynchronous nature of wave propagations of 

CFAE regions make them an important substrate for the perpetuation of AF. DF, on the other 

hand, are described as AF drivers with very high activation rate and that are central to a 

focal-firing rotor or local re-entry circuit.160, 175 It is interesting that high DF sites have been 

shown to correspond to sites with larger EAT volume in both paroxysmal AF and persistent 

AF patients.302 But data from the same study showed no relation between EAT and CFAE.302 

However, in another study, EAT volume and CFAE sites were independently associated with 
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AF, and significantly correlated with each other.303 We have also demonstrated that EAT 

demonstrate correlation a better correlation with LA electrogram fractionation than BMI (r2 = 

0.55 for LA EAT vs. r2 = 0.36 for BMI).300 

 

1.3.7.8 Stroke and EAT Expansion 

Stroke and thromboembolic events are a major complication in AF, and are associated with 

poor outcomes, increased need for thromboprophylaxis and excess deaths in AF patients.21 

The risk of stroke in AF is inhomogeneous and is conferred by comorbidities including 

ageing, coronary artery disease (CAD), hypertension (HTN), congestive heart failure and 

prior stroke which tend to act in additive fashion. Whether adiposity may increase the risk of 

stroke in AF is still under-investigated. In a prospective cohort of 190 patients, EAT 

thickness significantly predicted the incidence of cardiovascular events and EAT >6 mm was 

associated with significant reduction in CV event-free survival.304 EAT was also shown to 

correlate with CHA2DS2-VASc score, though this was lost upon the addition of co-variates in 

the analysis.304 Consistent with this, Akdag et al305 found significantly increased EAT in 

nonvalvular AF patients at risk of stroke defined by a high CHA2DS2-VASc score. More 

recently, increased abundance of EAT volume was reported in AF patients who developed 

stroke and total EAT detected as an independent predictor of excess of stroke occurrence 

after AF diagnosis.305  

Endothelial damage or dysfunction is an important determinant of a hypercoagulable 

state and is often present in AF. Molecules like soluble cell adhesion molecule 1 (sICAM-1) 

and von Willebrand factor (vWF) are important markers of endothelial injury and are both 

elevated in AF, predicting future development of stroke.306 In a recent study, Girerd et al306, 
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investigated the association of global or local EAT with markers of endothelial dysfunction in 

49 AF patients. They found significant correlation between posterior EAT, located between 

the mid LA and the oesophagus (LA-ESO) or thoracic aorta (LA-ThA), and sICAM-1 and 

vWF in both local LA and peripheral vasculature independent of BMI and LA volume.306 

Whether this data provides a mechanistic insight into the potential role of EAT in 

thrombogenesis and risk assessment of patients for stroke in AF requires further studies. 

 

1.4 Sudden Cardiac Death – A Background 

Sudden cardiac death is a major public health issue, contributing to a significant proportion of 

cardiovascular deaths worldwide. SCD is best described by the rule of 50: 1, it contributes to 

over 50% of CV deaths; 2, in more than 50% of patients, SCD is usually the first presentation 

of a cardiac event; and 3, it leads to approximately 50% of years of potential life lost to heart 

disease as it occurs mostly during the most productive years of the victims.14, 307-309  

 The understanding of SCD is recently been appreciated despite a long history of the 

disease. In fact, the sudden nature of SCD was known and reported well before the time of 

modern medicine and molecular and genetic advancements. SCD has been described since 

the days of Hippocrates; in the Aphorism II, 41, around 400 BC, Hippocrates noted that 

individuals with syncope were more likely to die suddenly than those without. It would later 

be described by Da Vinci in the 1490s as occurring in victims of “shrunken and withered” 

coronary artery, and by Lancisi, in 1706 under the request of Pope Clement XI, as an 

epidemiological undertaking on sudden death, where he clearly linked SCD to cardiac 

hypertrophy and valvular diseases.310 
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1.4.1 Definition of SCD 

The definition of SCD is best conceptualized by understanding “cardiac arrest”, defined as: 

the cessation of mechanical function or activity of the heart, evidenced by termination of both 

cardiopulmonary and systemic circulations. Cardiac arrest could be of cardiac origin or non-

cardiac origin, described in Table 1. Thus, SCD is temporally defined as a natural death from 

“sudden” cardiac arrest (SCA) in patients without known cardiac abnormality, occurring 

within an hour of onset of symptom (witnessed) or 24 hours in an unwitnessed case.309, 311 

Importantly, this takes into account three key elements of SCD: natural, rapid, and 

unexpected nature of the death. 

 Despite this definition, conflicting views surrounding SCD still exist among 

investigators, especially regarding the “1-hour” component. These differences can be settled 

by considering SCD in four perspectives: 1, its prodromes; 2, its onset; 3, cardiac arrest; and 

4, biologic death.309, 310, 312 The prodromes are a body of cardiovascular signs and symptoms, 

including chest pain, palpitations, dyspnea and fatigability, preceding and predictive of 

imminent cardiac event, but not specifically SCA. Because of huge individual variability, 

some victims do not experience prodromes at all. To be characterized as prodromal of SCD, 

their onset must occur suddenly and must precede the onset of cardiac arrest – within the 1-

hour onset of terminal event that precipitate cardiac arrest. The biological death component 

refers to the consequence of a cardiac arrest, and it denotes the presence of irreversible 

damage caused by pathophysiological process that will ultimately lead to death. It is often 

where controversies arise as it is included in the 1-hour definition because, with prompt 

intervention and life support, death can be prolonged for few more hours to days despite there 

been an irreversible damage.310, 312  
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1.4.2 Public Health Burden of SCD 

SCD is associated with a significant cost to the healthcare systems, communities and/or 

individuals alike. Between 2003 and 2012, Damluji et al313 showed a linear increase in 

hospitalizations and hospitalization-associated costs accruing to SCA, mostly due to 

automatic implantable cardioverter defibrillators (ICDs) use, hypothermia and oxygenation 

therapy (odds ratio 1.3 to 2.4). On a personal level, premature death from SCD accounts for 

50% of years of potential life lost (approximately 2 million years in men and 1.3 million 

years in women) from cardiac disease.14, 308, 309, 314  

Accurate estimation of the public health burden of SCD remains a significant 

challenge in cardiovascular epidemiology. By extrapolating from the Seattle Emergency 

Service system, Cobb et al315 estimated an annual incidence of 184,000 of treated out-of-

hospital cardiac arrest (OSCA) events per year in the United States from 1979 through 2000. 

Low estimates like this are usually when coronary artery disease is the primary aetiology of 

SCD. Interestingly, however, up to 460,000 events per year are reported when all factors 

contributing to SCD are taking into account.14, 309 The latest statistical textbook of the 

American Heart Association (2019) puts the annual rates of SCD at 366,494, representing 

more than 50% of all recorded deaths due to heart disease in the USA.14 Further, a recent 

prospective multicentre study demonstrated incidence of 84 OSCA cases per 100,000 in 27 

European countries, which, at a survival rate of 10%, equates to 131,544 SCD events per year 

for the 174-million population.316 The true SCD would even be higher when in-hospital SCA 

(ISCA), currently at 55.5% of 348 368 patients managed in teaching hospitals and 58.8% of 

among 376 035 managed in nonteaching hospitals in the USA alone, is taken into account.14  
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1.4.3 Mechanism of SCD 

The general understanding is that the development of SCD requires two important 

components: 1, an established substrate (substrate-based cause); and 2, an arrhythmic trigger.  

The substrate-based causations are conditions that predispose to SCD; they consist in 

pathological myocardial, vascular, or molecular adaptations that culminate in arrhythmic 

expressions.317 A majority of these substrates are created in CAD settings; examples include 

the plaque transition, acute coronary syndromes, and ischaemia modules in patients.317, 318 It 

is crucial to note that, in non-ischaemic conditions, the substrates are starkly different. 

Mechanisms mediating the clinical expression of predisposing SCD substrates constitute the 

triggers; these are identified as pro-arrhythmic cascade events discussed below.318-322  

 

1.4.3.1 Lethal Ventricular Tachyarrhythmias 

The initial rhythm leading to sudden cardiac arrest and death typically starts as a ventricular 

tachyarrhythmic event, such as ventricular fibrillation (VF) and pulseless or sustained 

ventricular tachycardia (pVT). The incidence of tachyarrhythmic mechanism is documented 

in up to 80% of SCD cases.309 For example, data from the Resuscitation Outcomes 

Consortium investigators demonstrated rates of 38%, 60% and 79% of VF or pulseless pVT 

as witnessed by emergency-medical service personnel, a bystander and when a bystander 

applied an automated external defibrillator, respectively.323 The true rates might even be 

higher given the deterioration and progression to non-shockable events. 

The mechanism of pVT or VF bears semblance with atrial tachyarrhythmias, such as 

AF. In fact, SCD is associated with AF, and in a recent meta-analysis of 8401 AF patients 
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and 67,608 controls in sinus rhythm, 2.22-fold increased risk of SCD was seen in AF patients 

compared to SR even persisting after multivariable adjustment.324 Like in AF, ventricular 

tachyarrhythmias require electrical trigger events acting on vulnerable ventricular substrates. 

Importantly, induction of fibrotic scarring, inflammation, abnormal connexin proteins, 

abnormal Ca2+-handling and membrane currents, and molecular and cellular maladaptations 

have all been implicated in substrate the formation of re-entrant tachyarrhythmias.322, 325-329  

 

1.4.3.2 Non-tachyarrhythmic Mechanisms 

After the initial arrhythmic events during SCA, it is known that pVT/VF degenerates into 

non-tachyarrhythmic mechanisms, including asystole and pulseless electrical activity (PEA). 

PEAs are higher in younger patients and in IHCA victims.320 Additionally, asystole and PEA 

are more prevalent in non-ischaemic SCD cases than in ischaemic cases.330 There is also 

evidence that bradyarrhythmia can lead to SCD, especially severe episodes capable of 

causing loss of circulation (both cerebral and gross organ perfusions). Noteworthy, there is 

bidirectionality in deterioration of arrhythmic mechanisms, in that, just as tachyarrhythmias 

can degenerate into non-tachyarrhythmic events, these non-shockable arrhythmic can 

spontaneously change into shockable VF or pVT.310, 312 

 

1.4.4 High-risk vs Low-risk Risk Profiling – Scaling the 

Bottleneck in SCD Estimation 

Reduction of SCD burden is wholly dependent on the accurate identification of at-risk 

populations, but this is currently plagued by the available risk stratification tools. These tools 

adopt risk profiling of populations that are based on coronary heart disease, ischaemic heart 
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disease, congestive heart failure, inherited channelopathies, and cardiomyopathies, which 

traditionally have high incidence rates of SCD.312 Despite recent evidence purporting to the 

decline in prevalence of these high-risk cohorts and associated deaths, the occurrence of SCD 

has not demonstrated consequent decreasing trend, see Figure 4.14, 309, 312 Moreover, data has 

shown the general absolute events that occur per year are far greater than accounted for by 

the traditional cardiac risk factors and a history of heart disease, see Figure 2. 

Further, clinical risk profiling for implantable cardioverter defibrillators (ICD) 

prophylaxis using ejection fraction (EF) less than 30% has not yielded promising results. For 

example, retrospective assessment of LVEF by Stecker et al331 in victims of SCD 

demonstrated severe LV dysfunction (LVEF ≤35%) in only 30% patients, indicating that up 

to 70% of the victims would not have qualified to ICD prophylaxis. Thus, investigation of 

new risk markers for SCD in the general low-risk populations is warranted now more than 

ever. 

 

1.4.5 Contagion of SCD in Excess Adiposity  

A growing postulate posits that the increasing burden of SCD may be driven by the rise in 

novel cardiovascular risk factors, such as obesity, which is indeed a global epidemic, see 

Figure 4. And as earlier noted, the risk of high-risk SCD features are greatly increased in 

obese individuals compared to normal weight counterparts.4, 7, 332-336 Recent findings from 

community-based population studies have reported independent association between SCD 

and obesity.337, 338 More intriguingly, obesity-mediated cardiomyopathy has even been 

implicated as the most common non-ischaemic cause of SCD, suggesting involvement of 

adiposity in SCD development.339  
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1.5 Stable Obesity or Weight Fluctuation – which is 

worse?  

Data showing the perils of increasing adiposity during weight gain, such as expansion of 

EAT, is just beginning to gain traction. The risks of arrhythmogenic conditions like AF261 

and SCD337 are increased in obese patients compared to normal weight subjects. This may be 

explained in part by the fact that obesity also promotes traditional clinical correlates, such as 

metabolic syndrome, sleep apnoea, heart failure, acute coronary syndromes, and valvular 

heart disease.5, 7, 335 However, the rising burdens of cardiac arrhythmias are more than can be 

explained by the mere presence of these comorbid states alone. With the induction of low-

grade systemic pro-inflammatory state, renin-angiotensin-aldosterone system activation and 

pro-fibrotic signalling in the obese, it is very likely that obesity directly impacts cardiac 

remodelling and arrhythmic substrates.340 Clinical associations are reported with markers of 

atrial dysfunction260, atrial enlargement260, chronic inflammation340, and neurohumoral 

dysfunction, all of which are strongly linked to atrial fibrillation (AF).Yet still, there is a lot 

we do not know about the excess fat/AF risk relation.  

In preclinical models, several defining links have been uncovered for the pro-

arrhythmogenic role of obesity. These include: increased fibrosis and gross endocardial 

remodelling found in a chronic ovine model182; marked expression of pro-fibrotic cytokine 

after induction of short-term obesity and overweight in sheep181; reduction of Cx40 protein 

and P-wave duration leading to sustained atrial arrhythmia in rats following high-fat feeding 

(8 weeks)341; abbreviation of PV refractoriness with subsequent increased vulnerability to AF 

in porcine atria after 18-week high-fat diet342.  



 

   

 

57 

Interestingly, these data show that therapeutically targeting adiposity could mitigate 

arrhythmogenic substrate and help improve AF management. Indeed, this has been tested in 

several clinical trials. For example, Abed et al334 showed that weight reduction with intensive 

cardiometabolic risk factor management reduces symptomatic burden and severity of AF and 

produces additional cardiac remodelling. Nevertheless, there are important questions 

surrounding the long-term sustainability of weight loss programs. Noteworthy, weight loss is 

associated with several compensatory mechanisms, including reduced resting energy 

expenditure343, increased appetite, and both short- and long-term changes in appetite 

regulators (e.g., leptin, ghrelin, and cholecystokinin)344, that ultimately lead to weight relapse 

in patients. Pathak et al345 prospectively tested this concept in patients who underwent 

catheter ablation for AF in the LEGACY (Long-term Affect of Goal-directed weight 

management of Atrial fibrillation: a 5-Year follow-up study) trial. The authors demonstrated 

that long-term weight loss significantly reduces the burden of AF and echocardiographic left 

atrial substrates. However, they found that the beneficial effects of weight loss were 

counteracted by >5% weight fluctuation (weight loss/gain cycles) in patients.345 More 

importantly, the effect of weight fluctuation was shown to be independent of baseline BMI, 

with over 2-fold greater risk AF recurrence predicted by >5% weight fluctuation (HR: 2.06, 

p=0.02).345 Thus, this data highlights the potential pro-arrhythmic consequences of 

fluctuating weight. The question remains whether the substrate for AF in stable obesity 

differs from weight fluctuation. If so, it is not known which is worse as knowledge of this 

will drastically improve treatment options available for patients struggling with weight 

management.  
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1.6 TABLE 

Table 1. Definition of Cardiac Arrest in Context 

 

 

  

Terms Description Reversibility 

Sudden cardiac 
death 

Sudden, irreversible cessation of 
all biological, biochemical and 
biomechanical functions as a 
consequence of cardiac arrest 

Not reversible 

Cardiac arrest 

Cessation of cardiac mechanical 
function that may lead to death in 
the absence of reversal by a 
prompt intervention. May be: 

- Medical (e.g., cardiac, 
anaphylaxis, asthma or DI 
bleed) 

- Traumatic 
- Drug overdose 
- Drowning 

Rarely reverse spontaneously. 
Reversibility determined by: 

- Mechanism of arrest 
- Clinical setting, and 
- Prompt return of circulation 

Cardiovascular 
collapse 

Characterised by sudden loss of 
effective blood flow because of 
cardiac and/or peripheral vascular 
factors 

May reverse spontaneously: 
- Neurocardiogenic syncope 
- Vasovagal syncope or 

May require interventions: 
- Cardiac arrest 
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1.7 FIGURE LEGENDS 

Figure 1. Mechanism of Excitation-contraction Coupling of Cardiomyocytes  

Figure 2. Mechanisms of Focal Ectopic Activities 

(a.) Normal action potential phases with a resting potential around -80 mV, Na+-induced 

upstroke, plateau phase mediated by Ca2+ entry through both LTCC and RyR2, early 

repolarisation and late repolarisations. (b.) Formation of early afterdepolarisations occurring 

during the plateau phase of AP, and sustained ectopics. (c.) Formation of DADs during late 

phase (4) of repolarisation. Insufficient diastolic Ca2+ leak may cause membrane oscillation 

but not enough to cause AP; but when this is strong enough, full AP may be generated 

leading to DAD and ectopics when sustained.  

Figure 3. Mechanisms of Re-entry 

Figure 4. The Incidence of SCD and Absolute Annual Events in Population Subsets  

With increasing incidence, based on subgroup profiling, a decrease in proportion of the total 

sudden death burden is seen. This effect relates to the population impact of known evidence-

based outcomes of various prevention therapies, and it highlights the challenge of the low-

risk, high-numbers subsets. (Modified from Myerburg RJ, Junttila MJ. Sudden cardiac death 

caused by coronary heart disease.) 
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Figure 1. Mechanism of Excitation-contraction Coupling of Cardiomyocytes 
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Figure 2. Mechanisms of Focal Ectopic Activities 
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Figure 3. Mechanisms of Re-entry 
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Figure 4. The Incidence of SCD and Absolute Annual Events in Population Subsets 
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2. Chapter Two 

Galectin-3 as a Predictor of Atrial Fibrillation – A 

Meta-analysis 
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2.1 INTRODUCTION 

Evidence from a body of clinical and experimental studies have established fibrosis as the 

hallmark of structural remodelling that forms the substrate for atrial fibrillation.125 Fibrosis is 

associated with greater risk of cardiac arrhythmias and shown to predict poorer prognosis 

post-catheter ablation. Despite this, identifying modifiable risk correlates of fibrotic 

remodelling that would help detect patients at risk of future AF remains a challenge. 

 More recently, studies have suggested that galectin-3 (Gal-3) may be important for 

risk stratification and prognostication of AF.346, 347 Gal-3, a b-galactoside-binding lectin, is 

shown to be involved in important regulatory functions, such as cell adhesion, inflammation, 

and fibrosis.348 Consequently, Gal-3 is reported to have important prognostic value in 

traditional risk factors for AF. Indeed, Gal-3 is associated with fibrotic remodelling in heart 

failure349, and high serum Gal-3 is correlated with increased risk of incident of heart 

failure348, 350 and mortality in several epidemiological studies348. It is notable that diminished 

atrial electrical and fibrotic remodelling were reported following therapeutic targeting of 

cardiac Gal-3 in an experimental model.351 In the same study, Gal-3 inhibition was associated 

with increased AF termination and reduced AF burden, indicating that Gal-3 may be a 

druggable upstream target for the prevention of AF.351 Nevertheless, the nature and strength 

of the relation of this fibroinflammatory biomarker with AF prevalence and incidence have 

not been properly defined. Moreover, it not well described whether Gal-3 could influence the 

prognosis of catheter ablation. 

In the present study, we hypothesised that plasma Gal-3 would be increased in 

patients with AF and that it be a predictor of recurrent arrhythmias after catheter ablation for 

AF. Thus, we aimed to: (1) Investigate the relation between Gal-3 and the presence of AF; 
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(2) Evaluate its association with the risk of incident AF in prospective or retrospective cohort 

studies; and (3) Characterise association between baseline or pre-ablation Gal-3 levels and 

the recurrence of AF after catheter ablation.  

 

2.2 METHODS 

2.2.1 Search Strategy 

This meta-analysis is being registered on PROSPERO (ID: 129278) and conducted 

according to the Meta-analysis of Observational Studies in Epidemiology (MOOSE) 

statement. References were identified through online database searches done on PUBMED, 

EMBASE, Ovid MEDLINE and the Core Collection of Web of Science. Searches were 

conducted from inception of each database through 16 March 2019; the following keywords 

were used: (Galectin-3 OR Gal-3) AND (Atrial Fibrillation OR AF). The retrieved papers 

were exported to and sorted by EndNote X9.1 software.  

 

2.2.2 Inclusion and Exclusion Criteria 

Review authors Thomas A. Agbaedeng and Mehrdad Emami carried out the screening of 

references for eligibility and inclusion, with any discrepancy resolved by consensus. Papers 

were retrieved based upon the titles followed by the scrutiny of their abstracts and full-texts 

to ensure nothing was missed. Papers were first excluded based on the following criteria: (1) 

non-English publications; (2) Whether they were conference reports and abstracts that were 

not yet published; (3) editorials and letters to the editor; (4) case reports and case series; and 

(5) duplicate publications. The reference lists of review articles were searched for relevant 
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original papers and excluded thereafter. In the next stage, the full-texts of the references were 

properly perused, with non-relevant studies excluded thereafter. Finally, we included studies 

if they reported on: (1) Serum Gal-3 levels in patients with and/or without prevalent or 

incident AF; (2) Odds ratio (OR), relative risk (RR), or hazard ratio (HR) of association of 

Gal-3 with AF; (3) AF prevalence or incidence in different quartiles of Gal-3; (4) Serum Gal-

3 levels in patients with or without recurrence following catheter ablation of AF; and (5) OR, 

RR or HR of association between Gal-3 with post-ablation AF. 

 

2.2.3 Study Selection and Data Extraction 

The study selection and data extraction were done by review authors using an a priori 

determined set of guidelines. The following outcomes and data were collected: (1) Study 

authors; (2) Publication year; (3) Country of publication; (4) Study design; (5) Mean age of 

participants; (6) Participants; (7) Study endpoints; (8) Follow-up duration; (9) AF incidence, 

prevalence, recurrence after catheter ablation; (10) Serum Gal-3 level; and (11) Risk 

estimates (OR/RR/HR). 

 

2.2.4 Risk of Bias and Quality Assessment 

The methodological qualities of the included studies were assessed on the bases of the study 

design using the Newcastle-Ottawa Scale (NOS) for assessing the quality of non-randomised 

studies in meta-analyses. The scales for case-control studies and cohort studies were used to 

assess the quality of case-control and cohort studies, respectively. The following perspectives 

were used to evaluate quality of cohort studies: 

1. Selection of study groups, 
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2. comparability of these study groups, and  

3. The ascertainment of the outcome of interest.  

And the following for case-control studies:  

1. The selection study groups,  

2. The comparability of the participant groups, and  

3. The ascertainment of the exposure of interest.  

The judgement of the studies was done using a “Star System” and computed as quality scores 

ranging from 1 to 9. A quality score of 1 indicated an extremely poor methodological design 

and a score of 9 was indicative of a very good quality.  

Randomised controlled trials were assessed for risk of bias (RoB) using the Cochrane 

Risk of Bias Assessment Tool for Randomised Studies of Intervention (the Cochrane 

Collaboration). We assessed the RoB in RCTs based on seven domains through which bias is 

likely to be introduced into these studies, namely: 

1. Bias due to random sequence generation (Selection Bias) 

2. Bias due to allocation concealment (Selection Bias) 

3. Bias in blinding of participants and personnel (Performance Bias) 

4. Bias in blinding of outcome assessment (Detection Bias) 

5. Bias due to incomplete outcome reporting (Attrition Bias) 

6. Bias due to selective reporting of outcomes (Reporting Bias) 

7. Bias due to other sources (Other Bias) 

 



 

   

 

69 

2.2.5 Data Synthesis and Analysis 

A random effects meta-analysis was conducted on the pooled results from the various 

citations using RevMan (The Cochrane Collaboration, Copenhagen). Two meta-analytic 

effects size types were used for the data analyses, namely: standardised mean difference 

(SMD) and risk ratios (RR). SMD typically measures the size of an outcome relative to the 

standard deviation (SD) of the outcome, thus, reflecting the real differences in the variability 

of the measured outcomes. RR’s were pooled from studies that conducted multivariable 

analysis, and this was done to show independent association with AF as well as a prediction 

of AF. We used the most adjusted model, which corrected for the following clinical 

correlates: age, sex, heart failure, type 2 diabetes, hypertension, obstructive sleep apnoea, 

coronary artery disease, myocardial infarction, obesity, valvular heart disease, peripheral 

vascular disease, and stroke. 

Serum galectin-3 was measured by enzyme-linked immunosorbent assay and pooled 

as mean plus/or minus standard deviation (mean±SD). The degree of heterogeneity of Gal-3 

estimates across the studies was assessed by examination of forest plots, chi-squared (Chi2) 

test and I-squared (I2) statistic. The latter two provide numerical values for an assessment of 

heterogeneity, with a high Chi2 relative to the degree freedom suggestive of variations in 

effect estimates and I2 greater than 50% indicative of a considerable amount of heterogeneity 

(p<0.1 defined as the cut-off). Statistical significance was set at p≤0.05. 
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2.3 RESULTS 

2.3.1 Search Result and Synthesis of the Literature  

The online database searches and supplementary searches conducted resulted in a total of 460 

references. One hundred and twenty-three duplicate publications were removed and a further 

320 references upon applying the exclusion criteria. Fifteen studies (13 observational and 2 

randomised controlled trials [RCT]) met our inclusion criteria and were included in this 

review. A pictorial overview of the search strategy and selection methodology is shown as a 

flowchart in Figure 1. 

 

2.3.2 Study Characteristics  

A full description of the characteristics of the included studies are provided in Tables 1 to 3, 

including study designs, quality scores, demographics, methodology, study endpoints, 

follow-up, and participants.  

The 15 included studies had a total of 13,736 participants (6,454 [47.0%] males and 

7,282 [53.0%] females) from 9 countries (1 study from both Switzerland & Germany, 1 from 

Italy, 1 from Germany, 1 from China, 1 from France, 1 from the UK, 2 from Serbia, 3 from 

Turkey, and 3 from the USA). Of the 13 observational studies, 9 reported on pre-ablation 

(incident and prevalent) AF346, 347, 352-358, 2 on post-ablation AF359, 360, and 2 on both pre- and 

post-ablation AF361, 362, respectively. There were 9 case-controls, 7 cohorts, and 1 

prospective, community-based study.  

In the RCTs, Wijk et al363 reported on 2 trials (Trial of Intensified versus Standard 

Medical Therapy in Elderly Patients with Congestive Heart Failure [TIME-CHF] and Gruppo 
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Italiano per lo Studio della Sopravvivenza nell’Insufficienza Cardiaca [GISSI-HF]) and thus 

contributed to studies. Of the three RCTs, PROTECT study was a single-centre, prospective, 

randomized trial364; TIME-CHF was multicentre, multinational trial involving 15 centres in 

Switzerland and Germany363; and GISSI-HF were multicentre, randomized trial involving 

357 centres in Italy363. The follow-up period ranged from 0.8 years in PROTECT study to 

nearly 4 years in GISSI-HF study (mean±SD: 2.0±1.7 years). In total, the RCT contributed 

1,001 patients (82.9% males and 17.1% females) and average age of 72±8.5 years. 

 

2.3.3 Risk of Bias and Study Quality 

The methodological study quality was assessed using the NOS quality scale, running on a 1-9 

scale. In the case-control studies evaluating AF presence and severity, the quality was judged 

to be average, ranging from 5 to 7, see Table 1. The two prospective cohorts that investigated 

AF incidence had high quality score (8 in both). For the 3 RCTs, RoB assessment yielded 

low to moderate risk of bias, see Table 2 & Figure 2. The quality of the studies on post-

ablation AF was judged to be moderate (mean [±SD]: 5.5±1.3), with least being 4 and highest 

scoring 6, see Table 3.  

 

2.3.4 META-ANALYSIS 

2.3.4.1 Gal-3 and AF Presence 

We identified seven case-control studies352-355, 357, 358, 361 reporting on serum Gal-3 and the 

presence of AF with a total of 718 participants. Mean serum Gal-3 levels (±SD) was 

extracted from each study and pooled in a random-effects meta-analysis. There was a 
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significant difference between the levels of Gal-3 in patients with pre-existing AF and sinus 

rhythm (SR) controls, Figure 3. We found 0.58 ng/mL higher plasma Gal-3 in AF patients as 

compared to SR controls (SMD: 0.58, 95% CI: 0.38 to 0.78, p<0.0001). We could not further 

compare the association of Gal-3 with AF presence due to lack of adjusted risk estimation in 

the studies. The largest contribution to the overall estimate was by Gurses et al353 at 20.4%, 

followed by Begg et al355 (16.9%), Wu et al362 (14.8%), equally by Sonmez et al352 and 

Selcoki et al354 (13.9%), and Pavlovic et al357 and Kornej et al361 coming bottom (10.2% and 

9.9%). 

 

2.3.4.2 Gal-3 and AF Incidence 

We identified 2 references363, 364 reporting on prospective, randomized trials compared the 

incidence of AF in a dichotomous Gal-3 population (high vs. low).  One of the references 

reported two RCTs, namely TIME-CHF and GISSI-HF, so there were 3 trials altogether. We 

found significant association between high Gal-3 level and AF incidence, Figure 4. High 

plasma Gal-3 associated with 57% increased odds of AF compared to low Gal-3 level (OR: 

1.57, 95% CI: 1.15 to 2.15, p=0.005). GISSI-HF trial explained almost half the pooled risk 

estimate, with PROTECT and TIME-CHF trials contributing a quarter each, Figure 4.  

Next, wanted to explore the relationship between continuous increment in Gal-3 and 

AF incidence. We found 2 large prospective, cohort studies347, 356 that included 11,742 

patients (1,435 incident AF cases) and pooled effect size estimates from the most adjusted 

models. Covariates adjusted for included: age (years), sex (male, female), height (metres), 

weight (kg.m-2), systolic and diastolic blood pressures (mm Hg), antihypertensive medication 

use (yes, no), diabetes mellitus (yes, no), smoking status (current, former, never), history of 
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myocardial infarction (yes, no), history of HF (yes, no), total cholesterol (mg/dL), eGFR 

(mL/min/1.73 m2), rs4644 genotype (CC, AC, AA), ln NT-proBNP (ln pg/mL), ln CRP (ln 

mg/L), and ln TnT (ln ng/L).347, 356 Gal-3 associated with increased incidence of AF, with 1-

unit increment in Gal-3 associated with 26% increased hazards of incident AF ([OR: 1.26, 

95% CI: 1.08 to 1.48, p=0.004]; Figure 5). 

 

2.3.4.3 Gal-3 and AF Severity 

Three studies346, 353, 358 provided data on Gal-3 assessment in patients with paroxysmal and 

non-paroxysmal AF (persistent and permanent AF). A total of 314 patients contributed to this 

analysis. When they were pooled, we found a significantly higher level of Gal-3 in patients 

with non-paroxysmal form of AF as compared to paroxysmal AF, see Figure 6. NPAF was 

associated with 0.51 greater SMD of Gal-3 as compared to PAF (95% CI: 0.28 to 0.73, 

p<0.0001). More than half of this is explained effect estimate from Clementy et al346 (58.9% 

weight). 

 

2.3.4.4 Gal-3 and AF Recurrence 

Four studies359-362 were identified that investigated relation of Gal-3 with catheter ablation 

outcomes. In the pooled analysis, we found that patients with AF recurrence had greater 

baseline plasma Gal-3 levels as compared to those without recurrence. Patients with 

arrhythmia recurrence had 0.96 higher SMD Gal-3 ([95% CI: 0.09 to 1.83, p=0.03]; Figure 

7). Interestingly, we pooled the adjusted risk estimates, we found non-significant association 

between 1-SD increase in Gal-3 and risk of recurrence. According to Figure 8, although 
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there were 22% adjusted odds of AF recurrence per 1-SD Gal-3, this did not achieve 

statistical significance (OR: 1.22, 95% CI: 0.86 to 1.72, p=0.26). 

 

2.3.4.5 Heterogeneity and Sensitivity Analysis 

We evaluated statistical heterogeneity in the studies using Chi2 (degree of freedom) and I2-

statistic. The pooled analysis for Gal-3 and AF presence showed only mild inconsistency in 

effect size estimates (Chi2: 9.18, df: 6, p=0.16; I2: 35%), Figure 3. In NPAF vs. PAF 

analysis, there was no evidence statistical heterogeneity (Chi2: 0.69, df: 2, p=0.71; I2: 0%), 

Figure 6. Similarly, no evidence of heterogeneity was found in the analysis of AF incidence 

([Chi2: 0.12, df: 6, p=0.94; I2: 0%]; [Chi2: 0.27, df: 1, p=0.60; I2: 0%]; Figures 4 & 5). 

However, we found moderate to substantial heterogeneity in the rest of AF recurrence 

comparisons, see Figures 7 & 8.  

 

2.4 DISCUSSIONS 

2.4.1 Major Findings 

Gal-3 is implicated in cardiometabolic risk factors like obesity and heart failure. Its role in 

the pathogenesis of AF has been suggested but not fully described. In this meta-analysis, we 

explore the relationship between plasma Gal-3 and AF, demonstrating that: 

1. Plasma Gal-3 is significantly increased in prevalent AF compared to having no 

pre-existing AF 

2. High Gal-3 associates with 57% greater risk of incident AF 
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3. For every 1-SD increase in Gal-3, patients are at 26% elevated risk of developing 

AF, even after correcting for baseline covariates 

4. Patients with non-paroxysmal AF significantly increased levels of Gal-3 

compared to paroxysmal AF 

 

2.4.2 Mechanisms Promoting AF 

AF is a heterogenous condition with several factors identified to promote its development. 

These factors are further classified as mechanisms responsible for AF initiation and 

mechanisms perpetuating the arrhythmia once initiated. AF triggers were first identified by 

Haïssaguerre et al119 as ectopic activities originating from the pulmonary veins. In this 

seminal investigation, localization of ectopic foci in the PVs, by multielectrode catheter 

mapping, was observed in 94% of patients with paroxysmal AF (PAF), which were 

successfully ablated with radio-frequency energy. The author further demonstrated high 

efficacy of therapeutic targeting of these foci, with 62% patients shown to be free of AF 

recurrence after 8(±6) months of follow-up post-ablation.119 These findings have been 

replicated by multiple investigators365-367, with up to 86.1% freedom from AF recurrence 

reported in follow-up studies365. Additionally, AF triggers have been identified in other sites, 

such as: posterior wall of the left atrium; the superior vena cava; inferior vena cava; crista 

terminalis; ligament of Marshall; coronary sinus ostium; and interatrial septum.368, 369  

Localized re-entrant and multiple wavelets11, 94, 120, 205 are hypothesised to drive AF 

maintenance. These have been mapped to structural and morphological changes94, electrical 

alterations151, re-entry involving functional370, 371 and anatomic166 lines of block in the atrial 

tissue. Interesting, fibrosis is understood as the histological hallmark of structural substrate 
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for initiation and perpetuation of AF.125 Data from the DECAAF study indicated that left 

atrial fibrotic substrate by delayed-gadolinium enhancement MRI independently predicts AF 

recurrence following ablation.372 Others have further confirmed this finding, including 

association of fibrosis with cardiac and all-cause mortality and sudden cardiac death.373-375 

Taken together, these data show that full understanding of the pathophysiology of AF would 

require investigations of multiple pathways, including the role of biomarkers in substrate 

formation.   

 

2.4.3 Galectin-3 and AF 

Recent findings have implicated galectin-3 in the clinical link between fibrosis and 

development of atrial substrate for AF. In two large prospective cohorts, 1-unit increment in 

circulating Gal-3 was associated with 2.29- and 1.19-fold increased hazards of incident 

AF.347, 356 In the Framingham Offspring Cohort, it was shown that this association becomes 

nonsignificant after correcting for traditional risk factors for AF, thus highlighting role of 

other modifiable risk factors in this picture.347 Despite this, when we pooled the two cohorts 

together in a meta-analysis, we found elevated adjusted risk of AF per unit increment in the 

biomarker. We also found higher rates of AF incidences in high Gal-3 populations compared 

to low Gal-3 and associated Gal-3 with greater persistence of AF. We believe this meta-

analysis provides robust evidence for association between Gal-3 and AF. We employed 

multiple study types, including case-controls, prospective cohorts, and randomized trials to 

evaluate this association.   
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2.4.4 Galectin-3 and AF: Role of Increased Adiposity 

The association of Gal-3 and AF may be attributed to cardiometabolic perturbations. 

Circulating levels of Gal-3 are higher in patients with obesity376, abdominal adiposity377, 

dyslipidaemia377, and hypertension377. Similar findings are reported in pre-clinical models. In 

obese rats, treatment with Gal-3 inhibitor modified citrus pectin (100 mg.kg-1 per day) 

ameliorated adipocyte differentiation, adipose tissue inflammation, pericellular collagen 

deposition, prompting the authors to conclude that Gal-3 could play an important role in 

metabolic alterations resulting from obesity.378 Increased Gal-3 levels are also associated 

with adipocyte dysfunction, contributing to insulin resistance , and cardiac lipotoxicity in 

obesity. 

Galectin-3 is a b-galactoside-binding lectin mainly secreted by macrophages and to a 

lesser extent by adipocytes and fibroblasts.379 We speculate that, during obesity, Gal-3 may 

mediate epicardial fat dysfunction and downstream atrial structural and electrical 

remodelling. Consistently, Gal-3 levels are reported to associate with diastolic dysfunction 

the morbidly obese376; in obese male Wistar rats (induced by HFD), Gal-3 is associated with 

fibrosis and inflammation378. This is further mapped to abnormal leptin, an adipokine 

secreted by epicardial fat, signalling; Gal-3 reportedly promotes leptin-induced deposition of 

collagen I and oxidative stress.379 The most compelling evidence comes from a seminal 

investigation Takemoto et al351.  The authors observed increased expression of Gal-3 in 

cardiac microcirculation of persistent AF than paroxysmal AF.351 LA Gal-3 level was found 

to be an independent predictor of AF recurrence after catheter ablation. The authors also 

report reduction of proliferation of atrial fibroblasts in vitro, and amelioration of atrial 

enlargement, hypertrophy, fibrosis, and dominant frequencies in sheep, following Gal-3 
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inhibition.351 These translated to reduction vulnerability to spontaneous AF and AF burden in 

the sheep model380, thus underscoring a role in of Gal-3 in local atrial remodelling.  

 

2.4.5 Study Limitations 

There were several limitations that we noted about the data used in the current meta-analysis. 

The amount of heterogeneity in post-ablation AF comparison is worth noting. Although this 

was significant in some comparisons, we believe that the level of heterogeneity was not 

critical and may not have affected our risk estimates. The use of serum Gal-3 instead of local 

atrial Gal-3 may limit the clinical application of our results. It is crucial to note that serum 

Gal-3 changes may underlie systemic fibrotic diseases not just AF. 

 

2.5 CONCLUSIONS 

The present meta-analysis demonstrates an independent association between galectin-3 and 

AF. Our findings show that serum Gal-3 is increased in prevalent AF compared to no pre-

existing AF. High Gal-3 levels associate with 57% greater risks of incident AF compared to 

low biomarker levels. More crucially, 1-SD increment in Gal-3 levels is predicts 44% greater 

risks of incident AF, persisting even persisting after correcting for baseline AF risk factors 

and comorbidities. Furthermore, Gal-3 is associated with AF severity, with serum Gal-3 more 

greatly increased in non-paroxysmal AF than in paroxysmal AF. In contrast to these findings, 

baseline Gal-3 levels do associate AF recurrence post-CA ablation, such that the association 

with AF is lost after pooling multivariate adjusted risk estimates.
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2.6 TABLES 

Table 1. Clinical Characteristics of Studies Reporting Galectin-3 and Atrial Fibrillation 

Study ID Year Country Design Follow-
up 

(year) 

Qualit
y 

Score 

Mean 
Age (y) 

Participants 
(% male) 

Unit of 
Gal-3 

AF Cases 
(%) 

Clementy et al 2014 France Cross-sectional N/A 
4 

62.0±10.

0 

187 (68) ng/ml 187 (100) 

Gurses et al 2015 Turkey Observational, case-

control 

N/A 
6 

N/A 151(47) ng/ml 76 (50) 

Wu et al 2015 China Prospective, 

Community-based 

N/A 
6 

N/A 96 (96) ng/ml 50 (52) 

Kornej et al 2015 Germany Case-control N/A 5 N/A 119 (63) ng/ml 105 (88) 

Sonmez et al 2015 Turkey Case-control N/A 4 71±8 85 (38) pg/ml 52 (61.2) 

Pavlovic et al 2017 Serbia Case-cohort 1.25 
6 

68.1±10.

9 

54 (59.3) ng/ml 32 (59.3) 

Selcoki et al 2016 Turkey Case-control N/A 6 N/A 84 (44) ng/ml 46 (54.8) 

Stanojevic et al 2019 Serbia Case-control N/A 
7 

66.3±11.

3 

88 (36.4) ng/ml 51 (57.9) 

Begg et al 2017 UK Case-control N/A 6 N/A 129 (69) ng/ml 92 (71.3) 

Ho et al 2014 USA Prospective cohort 11.2 8 59.0 3306 (47) ng/ml 250 (7.5) 

Fashanu et al 2017 USA Prospective, 

epidemiological 

15.7 
8 

62.6±5.6 8436 (41.3) ng/ml 1185 

(14.05) 

Total     6±1.3  12,735 (44.2)  2126 
(33.5) 
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Table 2. Characteristics of Randomised Clinical Trials 

Study ID Year Country Design 
Follow-up 

(year) 

Risk of 

Bias 

Mean 

Age (y) 

Participant 

(% male) 

Gal-3 

Unit 

AF 

Cases 

(%) 

PROTECT 

Study 

2013 USA 

Single-centre, 

prospective, RCT 

0.8±0.2 Moderate N/A 151 (84) ng/mL 61 (40.4) 

TME-CHF 

Study 

2016 

Switzerland & 

Germany 

Multicentre, 

multinational, RCT 

1.3±0.5 Moderate 78±7 219 (64) ng/mL 61 (28) 

GISSI-HF 

Study 

2016 Italy Multicentre, RCT 3.9±1.3 Low 66±11 631 (89) ng/mL 118 (18) 

Total    2.0 ±1.7  72±8.5 1001 (82.8)  240 (24) 
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Table 3. Characteristics of Post-ablation AF Studies 

Study ID Year Country Design 
Follow-up 

(year) 

Quality 

Score 

Mean 

Age (y) 

Participants (% 

male) 
Gal-3 Unit 

AF 

Recurrence 

Kornej et 

al 

2015 Germany Cohort 0.5 5 62±9 105 (63) ng/ml 36 (39.1) 

Clementy 2016 France Cohort 1.0 6 61±10 160 (71) ng/ml 55 (34.4) 

Wu et al 2015 China 

Prospective, 

Community-based 

1.42±0.34 7 48.9±7.8 96 (96) ng/ml 32 (64) 

Begg et 

al  

2018 UK Prospective cohort 1.0 4 N/A 92 (69.6) ng/ml 42 (45.6) 

Total    0.98±0.4 5.5±1.3 57.3±7.3 453 (74.2)  165 (36.4) 
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2.7 FIGURE LEGENDS 

Figure 1. CONSORT Diagram of the Search Strategy 

Figure 2. Risk of Bias Chart: A Summary of Judgements of ‘Risk of Bias’ in the 

Included Randomised Clinical Trials  

Figure 3. Galectin-3 and Prevalent AF 

Figure 4. Evaluation of Association of Galectin-3 and AF Incidence in Randomized 

Clinical Trials 

Figure 5. Evaluation of Galectin-3 and Risk of Incident AF in Cohort Studies 

Figure 6. Galectin-3 and AF Severity 

Figure 7. Galectin-3 and Post-ablation AF 

Figure 8. Galectin-3 and Risk of Post-ablation AF 
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Figure 1. CONSORT Diagram of the Search Strategy 

 

  

PubMed
{(Galectin 3 [TW] OR Galectin-
3 [TW] OR Galectin 3 [MH] OR 
Gal-3 [TW] OR Mac-2 antigen 
OR Galactose-specific lectin 3) 
AND (Cardiac arrhythmia [MH] 
or Cardiac arrhythmia [TW] OR 
Atrial fibrillation [TW] or AF 
[TW])}

460 References from combined 
database and supplementary 

searches

337 References screened based on 
titles, abstracts, and full texts

15 References included in meta-
analysis

123 references excluded as duplicates

322 References excluded:
• Case series and reports 
• Conference abstracts and editorials
• Animal, in vitro and  ex vivo studies
• Reviews and meta-analysis
• Articles not addressing study questions
• Assessment of left atrial galectin-3

Gal-3 & AF incidence/prevalence 
(n=11)

Gal-3 & Post-ablation AF (n=2)

Gal-3 & AF & post-ablation AF (n=2)

Embase
{('galectin 3'/exp OR 'galectin 3'/SYN OR 'mac-2 
antigen'/SYN OR 'mac-2 antigen'/EXP OR 'gal 
3'/SYN OR 'gal 3'/EXP OR 'carbohydrate-binding 
protein 35'/SYN OR 'carbohydrate-binding protein 
35'/EXP OR 'galactoside-binding protein'/exp OR 
'galactoside-binding protein'/SYN) AND ('atrial 
fibrillation'/exp OR 'atrial fibrillation'/SYN OR 'heart 
arrhythmia'/exp OR 'heart arrhythmia'/SYN)} 

Web of Science 
Core Collection
{(Galectin-3 OR 
Galectin 3 OR Gal-
3) AND (Atrial 
Fibrillation OR AF 
OR Atrial 
Arrhythmia)}

Ovid MEDLINE 
{(Galectin-3.mp. or 
Galectin 3/ OR Gal-
3.mp. OR MAC-2 
Antigen.Mp.) AND 
(Atrial fibrillation/ 
OR Atrial 
fibrillation.mp. OR 
AF.mp.)}

Search strategy: PubMed, Embase, Web of Science Core Collection, MEDLINE, and manual bibliographic searching
Search limits: from inception through 16th March 2019, English articles only
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Figure 2. Risk of Bias Chart: A Summary of Judgements of ‘Risk of Bias’ in the Included Randomised Clinical Trials 
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Figure 3. Galectin-3 and Prevalent AF 
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Figure 4. Evaluation of Association of Galectin-3 and AF Incidence in Randomized Clinical Trials 
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Figure 5. Evaluation of Galectin-3 and Risk of Incident AF in Cohort Studies 
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Figure 6. Galectin-3 and AF Severity 

 

  



 

   

 

89 

Figure 7. Galectin-3 and Post-ablation AF 
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Figure 8. Galectin-3 and Risk of Post-ablation AF 
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3. Chapter Three 

Epicardial Adipose Tissue and Atrial Fibrillation 

Risk: A Systematic Review and Meta-Analysis 
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3.1 INTRODUCTION  

A growing body of evidence has demonstrated atrial fibrillation (AF) as a cardiovascular 

epidemic, which is associated with reduced quality of life and increased risk of stroke and 

heart failure.12, 13, 29 Moreover, new-onset AF occurring after open heart surgery (post-

operative AF, POAF) is recognised as a significant complication during the post-operative 

period, affecting 20% to 60% of post-surgery patients.381-385 It is shown to be associated with 

long-term complications, such as worsening of cardiac haemodynamics, increased incidence 

of ventricular arrhythmias, heart failure, cognitive impairment, and increased mortality.22, 386, 

387  

The burgeoning burden of AF has been attributed to the emergence of novel risk 

factors, such as obesity. Indeed, obesity accounts for 20% of all AF and 60% of the rising 

incidence rate of the arrhythmia.22 More recently, epicardial adipose tissue (EAT) has 

emerged as an important element in the pro-arrhythmic substrate formation, with reports 

showing that it might explain the clinical link between obesity and AF.263, 265, 266, 300 EAT is a 

metabolically active fat depot found on the visceral layer of the pericardium and in close 

proximity to the myocardium, sharing the same microcirculation with the cardiac 

musculature.182, 263 This unique anatomic position has raised the postulate of a paracrine 

effect on cardiac musculature. Accordingly, EAT expansion has been reported in 

experimental models181, 182 and shown to underlie increased secretion of pro-fibrotic and 

inflammatory cytokines.278 Indeed, EAT has been associated with induction of atrial 

interstitial fibrosis (the histological surrogate for atrial structural remodelling) and fat cell 

infiltration in animal models, and increased inflammatory activity in patients with AF.182, 280, 

388  
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In this study, we hypothesised that expansion of the ectopic fat pad might predispose 

individuals to excess risk of developing AF, increased risk of relapse following catheter 

ablation and increased incidence of AF post-surgery. Therefore, the aims of this systematic 

review of the literature and meta-analysis were to evaluate the association between EAT and 

(1) AF prevalence and incidence; (2) severity of AF (non-paroxysmal vs. paroxysmal forms); 

(3) recurrence of AF post-ablation; and (4) incidence of AF post-cardiac surgery.  

  

3.2 METHODS  

3.2.1 Literature Search Strategy 

This meta-analysis was registered on PROSPERO (ID: CRD42018105707) and conducted 

according to the guidelines given by the Preferred Reporting Items for Systematic Review 

and Meta-Analysis (PRISMA) and Meta-analysis of Observational Studies in Epidemiology 

(MOOSE). We identified the studies used for this systematic review and meta-analysis 

through online database search done on PUBMED, EMBASE, Ovid MEDLINE and the Core 

Collection of Web of Science. Full keywords used are as follows: 

PubMed: (Fat [TW] OR Adipose Tissue [TW] OR Adipose Tissue [MH] OR Adipocyte* 

[TW] OR Adipocyte* [MH]) AND (Epicardi* [TW] OR Epicardi* [MH] OR Pericardi* 

[TW] OR Pericardi* [MH] AND (Cardiac Arrhythmia [MH] OR Cardiac Arrhythmia [TW] 

OR Atrial Fibrillation [TW] or AF [TW]) 

EMBASE: ('Fat'/EXP OR ‘Fat’/SYN OR 'Adipocyte'/EXP OR ‘Adipocyte’/SYN OR 

'Adipose Tissue'/EXP OR 'Adipose Tissue'/SYN) AND (‘Epicardi*’/EXP OR 

‘Epicardi*’/SYN OR ‘Pericardi*’/EXP OR ‘Pericardi*’/SYN) AND ('Atrial Fibrillation'/EXP 
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OR 'Atrial Fibrillation'/SYN OR 'Heart Atrium Arrhythmia'/EXP OR 'Heart Atrium 

Arrhythmia'/SYN OR AF) 

The Core Collection of Web of Science: (“Adipose Tissue” OR Fat OR Adipocyte* OR 

Lipocyte*) AND (Pericardi* OR Epicardi*) AND (“Atrial Fibrillation” OR “Supraventricular 

Arrhythmi*” OR AF OR “Atrial Arrhythm*”) 

Ovid MEDLINE: (Adipocyte.mp. or Adipocytes/ or Fat.mp. OR Adipose Tissue.mp.) AND 

(Epicardi*.mp. OR Pericardium/ OR Pericardi*.mp.) AND (Atrial Fibrillation/ OR AF.mp. 

OR Arrhythmias, Cardiac/) 

We conducted online database searches from inception through to 5 July 2018, with retrieved 

papers exported to and sorted by EndNote X8.2 software. 

 

3.2.2 Inclusion and Exclusion Criteria 

Screaming for eligibility and inclusion was conducted by two investigators, with any 

disagreement settled by consensus. We screened the retrieved papers based upon the titles 

followed by the scrutiny of their abstracts and full-texts to ensure nothing was missed. Papers 

were first excluded based on the following criteria: (1) publication in non-English languages; 

(2) whether they were conference reports and abstracts that were not yet published; (3) 

editorials and letters to the editor; (4) case reports. The reference lists of review articles were 

searched for relevant original papers and excluded thereafter. In the next stage, the full-texts 

of the references were screened, with non-relevant studies excluded thereafter. Finally, we 

included studies if they reported on: (1) the association between EAT/pericardial fat and the 

prevalence or incidence of AF; (2) EAT and outcome after catheter ablation of AF; (3) 

association of EAT with non-paroxysmal (Non-PAF) AF vs. PAF; (4) the association 
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between the EAT and post-operative AF; and (5) maintenance or dissection of the anterior 

epicardial fat pad and post-op AF. 

 

3.2.3 Study Selection and Data Extraction 

The study selection and data extraction were done by two investigators (Thomas Agbaedeng 

and Andien Munawar), using an a priori determined set of guidelines with any disagreement 

resolved by consensus or with a third author, where necessary. The following outcomes and 

data were collected: (1) AF incidence, prevalence, recurrence after catheter ablation; (2) 

EAT/pericardial fat thickness and volume; (3) Risk estimates; (4) Study endpoints; (5) Study 

design; (6) Participants; (7) EAT measurement modality; (8) study country; and (9) imaging 

modality.  

 

3.2.4 Risk of Bias and Quality Assessment 

The methodological qualities of the included studies were assessed on the bases of the study 

design using the Newcastle-Ottawa Scale (NOS) for assessing the quality of non-randomised 

studies in meta-analyses. The scales for case-control studies and cohort studies were used to 

assess the quality of case-control and cohort studies, respectively. The following perspectives 

were used to evaluate quality of cohort studies: 

1. Selection of study groups, 

2. comparability of these study groups, and  

3. The ascertainment of the outcome of interest.  

And the following for case-control studies:  

1. The selection study groups,  



 

   

 

96 

2. The comparability of the participant groups, and  

3. The ascertainment of the exposure of interest.  

The judgement of the studies was done using a “Star System” and computed as quality scores 

ranging from 1 to 9. A quality score of 1 indicated an extremely poor methodological design 

and a score of 9 was indicative of a very good quality.  

Due to the apparent limitation of quality checklists and scales for intervention studies, 

we further assessed ablation studies using “a Cochrane Risk of Bias Assessment Tool: for 

Non-Randomised Studies of Intervention (ACROBAT-NRSI).” We assessed the risk of bias 

(RoB) in observational studies based on seven domains through which bias is likely to be 

introduced into these studies, namely: 

1. Bias due to confounding, 

2. Bias in selection of participants into the study, 

3. Bias in measurement of interventions, 

4. Bias due to departures from intended interventions, 

5. Bias due to missing data,  

6. Bias in measurement of outcomes, and 

7. Bias in selection of the reported result. 

See Table 1 for the criteria used. 

 

3.2.5 Data Synthesis and Analysis 

A random effects meta-analysis was conducted on the pooled results from the various 

citations using RevMan (The Cochrane Collaboration, Copenhagen). Two meta-analytic 

effects size types were used for the data analyses, namely: standardised mean difference 
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(SMD) and odds ratios (OR). We used SMD to present the change or difference in EAT on a 

uniform scale, insofar as the studies reported heterogenous definitions of EAT (total 

epicardial, peri-atrial, and/or pericardial) measurement. SMD typically measures the size of 

an outcome relative to the standard deviation (SD) of the outcome, thus, reflecting the real 

differences in the variability of the measured outcomes. OR’s were pooled from studies that 

conducted multivariable analysis, and this was done to show independent association with AF 

as well as a prediction of AF.  

EAT was pooled as a volumetric measure or thickness measure and presented as mean 

and standard deviation (mean±SD). Where EAT was reported as median and interquartile 

ranges (IQR), we converted these to mean±SD using models derived by Wan et al389 The 

degree of heterogeneity in outcomes across the studies was assessed by examination of forest 

plots, chi-squared (Chi2) test and I-squared (I2) statistic. The latter two provide numerical 

values for an assessment of heterogeneity, with a high Chi2 relative to the degree freedom 

suggestive of variations in effect estimates and I2 greater than 50% indicative of a 

considerable amount of heterogeneity (p<0.05 defined as the cut-off). Statistical significance 

was set at p<0.05 

  

3.3 RESULTS 

3.3.1 Search Result and Synthesis of the Literature 

The online database searches and supplementary searches conducted resulted in a total of 

1316 references. We excluded 1257 articles that did not meet our inclusion criteria. Thirty-

three observational studies with a total of 24,091 participants (59.1% males and 40.9% 

females) were included in this review. Analysis was done for: (1) epicardial fat and prevalent 
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AF; (2) epicardial fat and incident AF from cohort studies; (3) epicardial fat and recurrent AF 

after catheter ablation; and (4) epicardial fat and POAF after cardiac surgery. A full 

description of the characteristics of the included studies, including study designs, quality 

scores, demographics, methodology, study endpoints, follow-up, and participants, is provided 

in Tables 2 through 5. An overview of the search strategy and selection methodology is 

shown as a flowchart in Figure 1. 

 

3.3.2 Epicardial Fat and Prevalent AF 

Eighteen studies264, 265, 270, 303, 305, 390-397 investigated the prevalence of AF, corresponding to 

7,738 participants (46.8% females). Computed tomography (CT) was the predominant 

technique (75%) for EAT measurement, followed by transthoracic echocardiography (TTE) 

(20%), and cardiac magnetic resonance (CMR) (5%), see Table 2. Overall, we found 

significantly increased EAT volume in patients with AF as compared to sinus rhythm, with a 

SMD of 0.72 (95% Confidence Interval, CI: 0.49 to 0.95; p<0.001) (Figure 2). However, 

there was significant heterogeneity in this comparison (I2 >84%; p<0.001). Subgroup analysis 

showed that the heterogeneity was contributed by Greif et al393, which measured pericoronary 

EAT from coronary calcium score CT images. We next excluded Greif et al393 and still found 

significant difference in EAT between AF and SR controls ([SMD: 0.79; 95% CI: 0.64 to 

0.93; p<0.001] and [I2; p=0.12]).  When we pooled the multivariable-adjusted OR’s from 

seven studies reporting this, 1-standard deviation (SD) increase in EAT volume was 

significantly and independently associated with the presence of AF (OR: 1.03; 95% CI: 1.00 

to 1.05; p=0.03), Figure 3. This comparison had substantial heterogeneity ([I2: 79%; 

p<0.001], Figure 3), which was lost after limiting the analysis to Kanazawa et al303, 
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Mahabadi et al394 and Sevinc et al395 (I2: 49%; p=0.14). In a sub-analysis involving only left 

atrial EAT, significant association with AF presence was also noted ([SMD: 0.78; 95% CI: 

0.43 to 1.12; p<0.001], Figure 4). The heterogeneity in this analysis was moderate and not 

significant (p=0.08; Figure 4). Similarly, EAT was significantly thicker in prevalent AF 

patients as compared with controls (SMD: 1.30; 95% CI: 0.36 to 2.24; p=0.007), Figure 5. 

But there was considerable heterogeneity ([I2=97%, p<0.001], Figure 5), which was 

contributed by Yorgun et al,396 ([SMD: 1.70, 95% CI: 1.13 to 2.28, p<0.001] and [I2: 80%, 

p=0.02] after removing source of heterogeneity).   

 

3.3.3 Epicardial Fat and Incident AF 

Three cohort studies394, 398, 399 reporting incident AF, corresponding to 14,031 individuals 

(54.2% females) with EAT measurement performed using CT, Table 3. Patients were 

followed up for a mean of 7.3 years (SD: 2.4) and 8.8% of them (968) had incidence of new-

onset AF. In the pooled analysis, there was no significant association between EAT volume 

and the risk of incident AF, (OR: 1.07; 95% CI: 0.99 to 1.15; p=0.10), see Figure 6. The 

three studies were well matched, with no statistical evidence of heterogeneity (I2=0%; 

p=0.95).  

 

3.3.4 Epicardial Fat and Severity of AF 

The relationship between epicardial fat and the severity of AF was reported in 14 studies265, 

270, 302, 303, 306, 390-393, 400-404 (2,533 patients; 30% females). From the pooled analysis, both total 

and left atrial EAT volumes were significantly increased in the patients with non-paroxysmal 

AF compared to those with paroxysmal AF (total EAT [SMD: 0.46, 95% CI: 0.24 to 0.67, 
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p<0.001]; LA-EAT [SMD: 0.62, 95% CI: 0.26 to 0.98, p<0.001], see Figures 7 & 8). Pooled 

analysis of EAT thickness showed similar results, with non-PAF patients having 1.34 SMD 

greater EAT than PAF patients (SMD: 1.34; 95% CI: 0.65 to 2.02; p<0.001), Figure 9. 

Pooled analyses involving total EAT volume and LA-EAT volume had moderate amounts of 

heterogeneity (total EAT [total EAT [I2: 69%, p<0.001] and [I2: 54%; p=0.05)], Figures 7 & 

8). In total EAT, heterogeneity was caused by inclusions of Kim et al402, Masuda et al403 and 

Nakamori et al404 ([SMD: 0.60, 95% CI: 0.44 to 0.77, p<0.001] and [I2: 20%; p=0.27] after 

exclusions); and by Nakamori et al404 in LA-EAT ([SMD: 0.72, 95% CI: 0.38 to 1.07, 

p<0.001] and [I2: 43%, p=0.14]). Furthermore, considerable heterogeneity was noted for EAT 

thickness ([I2: 88%, p<0.001], Figures 9) and was contributed by Iacobellis et al401 ([SMD: 

1.68, 95% CI: 1.40 to 1.96, p<0.001] and [I2: 17%, p=0.27] after exclusion). 

 

3.3.5 Epicardial Fat and Recurrent AF  

Ten cohort studies263, 390, 392, 397, 400, 402, 403, 405-407 reported on AF recurrence after catheter 

ablation with a total of 1,938 patients (31.6% females) (Table 4). After a mean follow-up 

period of 18.6±4.6 months, 523 (27.0%) AF patients undergoing catheter ablation 

experienced AF recurrence, defined as AF or atrial tachycardia >30 seconds after 3-month 

blanking periods. The dominant technique for estimating EAT was CT (70.0%), with only 

three studies using CMR and TTE. Total EAT volume was significantly increased in the 

recurrent AF group ([SMD: 0.49; 95% CI: 0.01 to 0.98; p=0.05], Figure 10), with 

independent association demonstrated upon multi-variable adjustment, Figure 11. In three 

studies where EAT thickness was assessed, there was also significant correlation between 

EAT and recurrent AF, ([SMD: 0.98; 95% CI: 0.64 to 1.93; p<0.001], Figure 12). However, 
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there was evidence of significant heterogeneity amongst some of the studies ([I2: 75%, 

p<0.007 & 0.02], Figures 10 & 12).  The source of heterogeneity was traced to EAT depots 

assessed in Nagashima et al390 and Nakatani et al406 (I2: 53%, p=0.14), and CT assessment of 

EAT thickness in Kocyigit et al405 (I2: 51%, p=0.15). 

 

3.3.6 Epicardial Fat and Incident AF Post-cardiac Surgery 

Two studies408, 409 investigated the effects of total epicardial fat on the incidence of post-

operative AF and involved a total of 185 participants (24.9% females). All were prospective 

cohort studies; Opolski et al409 had a retrospective design, whereas Drossos et al408  had a 

prospective design, respectively, Table 5.The results of the meta-analysis showed that 

epicardial fat was significantly increased in patients with incident post-operative AF 

compared to individuals in sinus rhythm (SMD: 0.87; 95% CI: 0.34 to 1.39; p=0.001), see 

Figure 7. The amount of heterogeneity in the analysis was moderate and did not reach 

statistical significance (I2 = 59%; Chi2 = 4.93; p=0.08).  

 

3.3.7 Assessment of Risk of Bias 

The methodological study quality was assessed using the NOS quality scale, running on a 1-9 

scale. Generally, the quality was good across these studies, and ranged from moderate to high 

quality ([mean±SD: 6.4±0.9, 8.0±1.0, and 6.3±1.2 for prevalent, incident and recurrent AF, 

respectively] Tables 2 through 5). Further, risk of bias assessments were performed for all 

included studies and summarised in Figure 8. 
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3.4 DISCUSSION  

3.4.1 Major Findings 

Epicardial fat has been implicated in the risk of cardiovascular disease and is currently being 

investigated as the mechanistic link between increasing adiposity and the development of AF. 

In this meta-analysis, we sought to thoroughly define the association that has been described 

between epicardial fat and AF. It demonstrates that: 

1. Epicardial fat is significantly larger in patients with prevalent, but not associated 

with new-onset AF.  

2. Increased epicardial fat, both as volumetric and thickness measures, is 

significantly associated with greater severity of AF.  

3. The prognosis of AF after a radiofrequency catheter ablation is worsened with 

increasing amount of EAT. Increased EAT is significantly associated with the 

recurrence of AF after ablation.  

4. Finally, epicardial fat is significantly elevated in patients with POAF. 

 

3.4.2 Epicardial Fat and AF 

EAT has emerged as an important visceral adipose tissue that may refine our understanding 

of the role of adiposity in AF risk, and has been implicated as the putative mechanistic link 

between obesity and AF. Batal et al266, Al Chekakie et al265, and Thanassoulis et al264 

independently reported an association between epicardial fat and AF prevalence less than a 

decade ago, and since then, EAT has been consistently shown to be larger in AF patients than 

in those in SR. Wong et al263 associated total pericardial fat with 3.56 to 11.25 odds of AF 
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prevalence and chronicity, which was independent and much stronger than any traditional 

obesity marker, including BMI. In the same study, periventricular fat was associated with 

almost 4-fold increased risk of recurrent AF.263 Interestingly, we have demonstrated that 

epicardial fat is significantly larger in patients with prevalent and new-onset AF, with 1-unit 

increment in EAT volume associated with more than excess odds of AF occurrence 

independently of traditional risk factors. Our pooled analyses also showed associations of 

EAT with progression of AF after catheter ablation. 

 

3.4.3 AF Substrate Due to Epicardial Fat 

EAT is a unique and metabolically active fat depot subtending the visceral layer of 

pericardium and in close proximity to the myocardium, a feature that has ignited much 

interest in its potential paracrine effects on cardiac musculature.182, 278, 280 Accordingly, in 

clinical studies, EAT has been significantly associated with marked conduction 

abnormalities300, electrical imbalance283, cardiac autonomics dysfunction290, and increased 

inflammatory activity271.  

The pro-arrhythmic mechanism of expanding EAT is probably complex. We 

previously demonstrated expansion of epicardial fat with progressive weight gain and 

obesity, with a consequent induction of fat cell infiltration of the posterior left atrial 

myocardium.182 The secretome of EAT has been reported to induce global fibrosis of rat 

atria278, the histological hallmark of structural remodelling, with fibrotic remodelling of EAT 

significant correlated with atrial interstitial fibrosis in left atrial appendage samples from 

humans388. We hypothesised that fibro-fatty infiltrations are sufficient to create AF substrate, 

which might be driven by loss of cell-cell coupling, increased local conduction blocks and 
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conduction heterogeneities.131 Additionally, co-incubation with EAT adipocytes is shown to 

cause abnormal remodelling of membrane currents, afterdepolarisations and increased 

ectopic activities in experimental models, further highlighting the important role of 

infiltrating EAT adipocytes in formation of AF substrate.297  

 

3.4.4 Post-operative AF Substrate Due to Epicardial Fat 

POAF, like other clinical forms of AF, has a complex pathophysiological mechanism and 

several loops have been implicated, such as local and systemic inflammation, oxidative 

stress, neurohumoral cascade activations, and ion channel remodelling. Intriguingly, there is 

an increasing body of evidence to suggest that EAT may contribute to the atrial 

arrhythmogenic substrate, which can predispose to and maintain POAF. In 76 patients 

undergoing CABG, Viviano et al276 demonstrated that gelsolin, an anti-inflammatory protein, 

in the secretome of epicardial fat was predictive of maintenance of sinus rhythm post-

surgery. Noteworthy, by reducing expression of anti-inflammatory factors like gelsolin and 

directly inducing pro-inflammatory cytokine production, as seen in the peri-operative 

settings271, 272, 388, 410, EAT could heighten the vulnerability of atrial tissue to inflammatory 

cascades that ultimately leads to formation of POAF substrate. More importantly, the 

presence of an established AF substrate, such as fibro-fatty infiltrates, directly relates to EAT 

and might impact the POAF risk. Indeed, the degree of fibrosis and P-wave duration during 

the start of open-heart surgery was shown to be predictive of POAF.411  
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3.4.5 Limitations 

There are a few limitations that are worth noting regarding the data in the current meta-

analysis. We found a significant amount of heterogeneity in a number of our pooled analyses. 

Additionally, the use of overwhelmingly non-randomised observational studies as opposed to 

randomised controlled trials is an important drawback and may have biased our analysis. 

Notwithstanding this limitation, the methodological quality of these studies was good, 

ranging from moderate to high quality scores, as well as their risk of bias level.  

Finally, the definition of epicardial fat varied in the included studies, with some 

reporting it as ‘epicardial adipose tissue’ and others as ‘pericardial fat’; while others use both 

definitions interchangeably. This is partly to do with the inconsistency in the literature 

regarding what constitute epicardial adipose tissue and pericardial adipose tissue.412 EAT 

pertains to the fat lying contiguously with the myocardium and found between the latter and 

the visceral layer of the pericardium.413 Pericardial fat is a loose term because it incorporates 

all the fat found around the heart, including the EAT and another adipose tissue ‘paracardial 

fat’, which is located externally to the parietal pericardial layer or membrane.413 One 

important drawback to this vague distinction of these fat zones is that it may lead to 

overestimation or underestimation of the reported values of EAT. 

 

3.4.6 Clinical Implications 

These findings reinforce the clinical associations reported between expansion of epicardial fat 

and AF. Although the best imaging technique to quantify and characterize EAT amount and 

distribution remains unclear, EAT may represent an interesting risk marker to identify 

patients with increased AF risk which could allow a more personalized risk stratification. 
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EAT may hold promise as a novel target for atrial fibrillation, a concept recently tested in 

patients who underwent pulmonary vein isolation wherein treatment with atorvastatin led to 

reduction in EAT volume.414 In addition to pharmacological interventions, combined 

modification of risk factors, which are individually associated with EAT, and weight loss 

may be another strategy to target EAT.345, 415 Further studies are warranted to improve our 

understanding of EAT-mediated atrial remodelling and to determine whether its reduction 

constitutes a treatment target for primary and secondary prevention of AF. 

 

3.5 CONCLUSIONS 

This meta-analysis provides evidence for an independent association between EAT and AF. 

We show that EAT is significantly increased in patients with prevalent AF, and that this 

association is independent of traditional risk factors. EAT was not associated with incident 

new-onset AF, but significantly associated with greater severity of AF, and recurrence of AF 

after catheter ablation. Moreover, increased amount of EAT was also significantly correlated 

with development of POAF.  
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3.6 TABLES 

Table 1. Criteria for assigning risk of bias to studies based on the Cochrane guideline 

RESPONSE OPTION CRITERIA 

Low risk of bias  The study MUST be judged to be at low risk of bias for all domains. 

Moderate risk of bias  
The study MUST be judged to be at low or moderate risk of bias for all 

domains (i.e., there is moderate risk of bias in at least one domain). 

Serious risk of bias  
The study MUST be judged to be at serious risk of bias in at least one 

domain, but not at critical risk of bias in any domain. 

Critical risk of bias  
The study MUST be judged to be at critical risk of bias in at least one 

domain. 

No information on which to base a 

judgement about risk of bias. 

There is no clear indication that the study is at serious or critical risk of 

bias and there is a lack of information in one or more key domains of 

bias. 
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Table 2. Summary characteristics of studies investigating epicardial fat and prevalent AF 

Study ID Country Design Study 
quality 

Participants 
(% males) 

EAT measure 
(technique) AF diagnosis Type of AF (% PAF) 

Muhib et al. 
2013 

Japan 
Case-Control, 
retrospective 

6 62 (58) Area (MRI) 
ECG/Holter/medica

l records 
PAF (100) 

Greif et al. 
2013 

Germany Retrospective 6 1,288 (58.9) Volume (CT) 
Interview/ECG/med

ical history 
PAF & PerAF (63) 

Al Chekakie 
et al. 2010 

United States Case-Control 6 273 (50.2) Volume (CT) NS PAF & PerAF (64) 

Shin et al. 
2011 

South Korea Retrospective 5 80 (72.5) Volume (CT) NS PAF & PerAF (50) 

Kanazawa et 
al. 2014 

Japan Case-Control 5 240 (79.6) Volume (CT) NS PAF & PerAF (66.7) 

Batal et al. 
2010 

United States Case-Control 7 169 (65.1) Thickness (CT) NS PAF PerAF (62.5) 

Nagashima et 
al. 2011 

Japan Case-Control 5 77 (76.6) Volume (CT) 
12-L ECG & 24-h 

holter 
PAF & PerAF (60) 

Nagashima et 
al. 2012 

Japan Not specified N/A 34 (85) Volume (CT) 
12-L ECG/medical 

history/physical 
exam 

PAF & PerAF (47) 

Acet et al. 
2014 

Turkey Case-control 6 197 (46.7) Thickness (TTE) − Non-valvular (53) 

Yorgun et al. 
2015 Turkey Retrospective 7 618 (53.2) Thickness (CT) 

Resting ECG; 24-h 
Holter; interview; & 

medical records 
Non-valvular (39.7) 
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Table 2. CONT… 

Study ID Country Design Study 
quality 

Participants 
(% males) 

Eat measure 
(technique) AF diagnosis Type of AF (% PAF) 

Tsao et al. 
2011 

Taiwan Case-Control 6 102 (71.6) EAT volume (CT) NS Not specified (63.2) 

Iacobellis et 
al. 2014 

United States 
Cross-

Sectional 
5 84 

EAT thickness 
(TTE) 

ECG or 24-h 
Holter 

PeAF | PAF (23.8) 

Masuda et al. 
2015 

Japan 
Cross-

sectional 
6 53 (68) 

LA-EAT | total 
EAT volume (CT) 

NS PAF | PerAF (42) 

Sevinc et al. 
2017 

Turkey 
Retrospective, 
case-control 

7 132 (37.1) 
Atrial pericardial 

fat (CT) 
NS PerAF (0) 

Girerd et al. 
2013 

France 
Cross-

sectional 
6 49 (83.7) EAT volume (CT) NS PAF | PeAF (51) 

Akdag et al. 
2015 

Turkey 
Cross-

sectional 
6 148 (61.5) 

EAT thickness 
(TTE) 

ECG or 
cardiologist-

assessed 
NS 

Mahabadi et 
al. 2014 

Germany 
Prospective 

cohort 
8 3905 (47) EAT volume (CT) 12-L ECG NS 

Nakamori et 
al. 2018 

United States Case-control 7 105 (64) 
LA-EAT volume 

(CT) 
NS 

PAF | PerAF | LS-
PerAF (74) 

Subtotal    6.4±0.
9 7,738 (53.4)    
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Table 3. Summary of cohort studies investigating epicardial fat and AF 

Study ID Country Design 
Study 

quality 

Follow-

up 

(year) 

Participants 

(% male) 
AF diagnosis 

Incidence 

of AF (%) 

EAT measure 

(technique) 

Mahabadi 

et al. 2014 
Germany 

Prospective 

cohort 
8 5 3,905 (47) 12-L ECG 50 (1.4) EAT volume (CT) 

Lee et al. 

2016 

United 

States 
Cohort 7 9.7 2,135 (46.7) 12-L ECG & holter 162 (7.6) 

Pericardial fat volume 

(CT) 

Heckbert et 

al. 2017 

United 

States 
Cohort 9 7.25 7991 (45) 

ICD-9 code for AF 

or flutter 
756 (9.5) 

Pericardial fat volume 

(CT) 

Total   8±1 7.3±2.4 
14,031 

(45.8) 
 968 (8.8)  

AF, atrial fibrillation; CA, catheter ablation; EAT, epicardial adipose tissue; ECG, electrocardiograph; CT; computed tomography; and ICD, 

international classification of disease code. 
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Table 4. Summary characteristics of studies evaluating epicardial fat and AF ablation outcome 

Study ID Country Design Duration Participants Study 
quality Endpoint AF 

diagnosis 
Recurrence 

(% PAF) 
EAT measure 

(technique) 

Kim et al. 
2014  

South 
Korea 

Cohort 19.3 ± 8.5 665 (76.7) 5 Sustained 
AF 

ECG | 
24/48-h 
Holter 

176 (26.5) Pericardial fat volume 
(CT) 

Wong et al. 
2011 Australia 

Cross-
sectional 21.0 ± 12 122 (76) 7 Recurrence 

7-d 
ambulatory 

cardiac 
monitoring 

12 (11.8) 
Atrial/ventricular/total 
pericardial fat volume 

(CMR) 

Nagashima 
et al. 2011 

Japan Case-control 10.2 40 (77.5) 6 
Recurrence 
≥2 months 
post-CA 

12-lead 
ECG & 
Holter 

15 (37.5) 
Left-atrial & total 
EAT volume (CT) 

Tsao et al. 
2011 

Taiwan Case-control 7.5 ± 2.6 68 (76.5) 7 

AT 
recurrence 
or repeat 

CA 

24-hr 
Holter 

24 (35.3) 
Atrial EAT volume 

(CT) 

Chao et al. 
2013 Taiwan Case-control 16±9 283 (69.6) 6 NS 

24-h 
Holter 95 (33.6) EAT thickness (TTE) 

Canapolat 
et al. 2016 Turkey 

Prospective, 
cohort 

19±8.1 
 234 (51.3) 6 NS 

24-h 
Holter 45 (19.2) EAT thickness (TTE) 

Kocyigit et 
al. 2015 

Turkey 
Retrospective, 

cohort 
28.3±29.6 

 
249 (48.3) 6 

AF 
recurrence 

12-lead 
ECG or 

24-h 
Holter 

60 (24.1) 
Atrial/ventricular/total 
EAT thickness (CT) 

Stojanovska 
et al. 2015 

United 
State 

Retrospective, 
cohort 33.0±9.0 169 (76) 6 NS 

Event 
monitor 45 (26.6) EAT volume (CT) 
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Nakatani et 
al. 2015 

Japan Cohort >12 55 (75) 5 
AF >30s at 
>3 months 
post-CA 

12-lead 
ECG & 

24-h 
Holter 

10 (18.2) EAT volume (CT) 

Masuda et 
al. 2015 Japan Cohort 16±4.4 53 (68) 6   41 (77.4) 

LA-/total EAT 
volume (CT) 

Subtotal    >18.6±4.6 1,938 (68.6) 6.0±0.7   482 (26.8)  

AF, atrial fibrillation; CA, catheter ablation; CMR, cardiac magnetic resonance imaging; CT, computed tomography; EAT, epicardial adipose 

tissue; ECG, electrocardiograph; NS, not specified; PAF, paroxysmal AF; TTE, transthoracic echocardiography. 
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Table 5. Summary characteristics of studies evaluating the effects epicardial fact on post-operative AF 

Study ID 
Count

ry 
Design Follow-up 

Participant

s 

Quality 

score 

Interventio

n 

Study 

endpoint 

AF 

incidence 

EAT 

measure 

(technique) 

Drossos et al. 

2012 
Greece 

Prospective 

cohort 

Until 

discharge 
83 (79.5) 7 

Elective on-

pump 

CABG 

Any 

episode of 

POAF 

23 (33.7) 
Pericardial 

fat (CT) 

Opolski et al. 

2015 
Poland 

Retrospecti

ve, cohort 

Until 

discharge 
102 (75.5) 7 

On- or off-

pump 

CABG 

New or 

recurrent 

AF 

24 (23.5) 

LA-EAT 

volume 

(CCTA) 

Subtotal    185 (75.1) 7±0   48 (25.4)  

AF, atrial fibrillation; CABG, coronary artery bypass grafting; CCTA, coronary computed tomography angiography; CT, computed tomography; 

EAT, epicardial adipose tissue; ECG, electrocardiograph; LA-EAT, left atrial epicardial adipose tissue; NS, not specified; PAF, paroxysmal AF; 

POAF, post-operative AF; and TTE, transthoracic echocardiography. 
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3.7 FIGURE LEGEND 

 

Figure 1. CONSORT Diagram of the Search Methodology 

Figure 2. Comparison of Epicardial Fat in Prevalent AF Versus Sinus Rhythm 

This analysis looks at the relation between epicardial fat volume and prevalent AF, 

comparing patients with pre-existing AF vs. those in sinus rhythm. Effects size presented as 

standardized mean difference (SMD) of EAT.  

Figure 3. Association of Epicardial Fat with AF Presence 

This comparison looks at the association of EAT with risk of AF presence. Effects were 

pooled as adjusted odds ratio (OR, per 1-SD increase in EAT) of AF (covariates: age, sex, 

obstructive sleep apnoea, type 2 diabetes mellitus, BMI, hypertension, heart failure, 

ischaemic heart disease, valvular heart disease, left atrial volume). The small squares 

represent effect sizes; the horizontal bars as 95% confidence intervals; and big diamond box 

as overall effect size estimate, respectively.  

Figure 4. Comparison of Left Atrial Volume and AF 

Figure 5. EAT Thickness and Prevalent AF 

Figure 6. Total EAT Volume and Risk of Incident AF 

Figure 7. Evaluation of Epicardial Fat and AF Progression 

This analysis investigates epicardial fat in patients with non-paroxysmal AF versus 

paroxysmal AF. Effect size presented as SMD. a.) 

Figure 8. Comparison of Left Atrial Epicardial Fat Volume in Non-paroxysmal Versus 

Paroxysmal AF 
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Figure 9. Comparison of Total Epicardial Fat Thickness in Non-paroxysmal AF Versus 

Paroxysmal AF 

Figure 10. Evaluation of Epicardial Fat Volume in Recurrent AF 

This analysis looks at the relation between volume of epicardial fat and AF recurrence after 

catheter ablation compared no clinical recurrence. Effects size presented as SMD of EAT 

measured in patients that developed recurrent AF or maintained sinus rhythm.  

Figure 11. Epicardial Fat Volume and Risk of Recurrent AF 

Figure 12. Epicardial Fat Thickness and AF Recurrence  

Figure 13. Comparison of Epicardial Fat and Post-operative AF  

This analysis looks at the relation between epicardial fat volume and POAF compared to that 

in sinus rhythm. Effects size presented as standardized mean difference (SMD) of EAT.  

Figure 14. Risk of Bias Chart: A summary of Judgements Regarding ‘Risk of Bias’ 

Presented as Percentages Across all Included Studies 
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Figure 1. CONSORT Diagram of the Search Methodology 

  

1,316 references from database and 
supplementary searching

1,283 references screened:
§ titles
§ Abstracts
§ Full-texts

31 articles Included in meta-analysis
- 2 Incident AF
- 1 Incident and prevalent AF
- 2 AF post-cardiac surgery
- 6 AF post-ablation
- 6 Recurrent AF/Prevalent AF

33 Non-English references

1,252 Excluded:

1. Case series and reports 
2. Conference abstracts and 

editorials
3. Animal, in vitro & ex vivo studies
4. Reviews and meta-analysis
5. Articles not addressing study 

questions
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Figure 2. Comparison of Epicardial Fat in Prevalent AF Versus Sinus Rhythm 
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Figure 3. Association of Epicardial Fat with AF Presence 
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Figure 4. Comparison of Left Atrial Volume and AF 
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Figure 5. EAT Thickness and Prevalent AF 
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Figure 6. Total EAT Volume and Risk of Incident AF 
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Figure 7. Evaluation of Epicardial Fat and AF Progression 
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Figure 8. Comparison of Left Atrial Epicardial Fat Volume in Non-paroxysmal Versus Paroxysmal AF 
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Figure 9. Comparison of Total Epicardial Fat Thickness in Non-paroxysmal AF Versus Paroxysmal AF 
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Figure 10: Evaluation of Epicardial Fat Volume in Recurrent AF 
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Figure 11. Epicardial Fat Volume and Risk of Recurrent AF 
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Figure 12. Epicardial Fat Thickness and AF Recurrence 
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Figure 13. Comparison of Epicardial Fat and Post-operative AF 

 

 

  



 

   

 

129 

Figure 14. Risk of Bias Chart: A summary of Judgements Regarding ‘Risk of Bias’ Presented as Percentages Across all Included Studies 

  

0% 20% 40% 60% 80% 100%

Bias to confounders (selection bias)

Bias to selection of participants (selection bias)

Bias due to measurement of intervention 
(measurement bias)

Bias due to departure from intended 
interventions (performance bias)

Bias due to missing data (Attrition bias)

Bias due to outcome assessment (Detection 
bias)

Bias due to selective reporting (reporting bias)

Low risk of bias Moderate risk of bias Serious risk of bias
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4. Chapter Four  

Electrical and Electroanatomic Characterisation of 

the Atria in Obesity and Weight Fluctuation 
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4.1 INTRODUCTION  

Obesity has emerged as an important modifiable risk for atrial fibrillation (AF). Body mass 

index, a measure of overall adiposity, is demonstrated to predict excess risk of incident new-

onset AF261 and progression416, recurrent post-ablation AF417, and new-onset AF after cardiac 

surgery418. More recently, data has implicated epicardial adipose tissue (EAT) expansion, 

which occurs during weight gain, in the clinical link between obesity and AF.263 However, 

the mechanisms associating EAT with AF risk have not been fully elucidated. While we have 

previously reported increased EAT in the obesity in both short term and long-term, we do not 

fully understand how ectopic fat relates with atrial electrical substrates 

Furthermore, weight fluctuation, a common finding in the clinic, is has been 

implicated in adverse health conditions343, 344. For example, in the LEGACY study, long-term 

prospective study, we demonstrated benefit of weight loss in reducing the burden of recurrent 

AF in long-term follow up. However, up to 5% weight fluctuation significant reduction in the 

freedom from AF compared to linear weight loss.345 The puzzling question remains as to 

what constitute the atrial substrate due to fluctuating weight. We hypothesis that weight 

fluctuation during weight loss will result in persistent atrial remodelling.   

The aims of the current study were to: (1) characterise atrial electrical substrates in 

stable obesity; (2) characterise atrial electrical substrates due to weight fluctuation; (3) 

evaluate epicardial fat in weight fluctuations and compare these to obesity; and (4) evaluate 

the relation between epicardial fat remodelling and electrical substrates. 
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4.2 METHODS 

4.2.1 Animals  

Twenty-four Merino Cross Wethers sheep (Ovis aries) were studied in accordance with 

guidelines outlined in the “Australian Code for the Responsible Conduct of Research, 2007 

(the 2007 Code)” adopted jointly by the National Health and Medical Research Council, the 

Australian Research Council and Universities Australia. The protocol and animals used 

herein were approved by both the animal research ethics committees of the University of 

Adelaide and the South Australian Health and Medical Research Institute, Adelaide, 

Australia, which adhere to the Guidelines for the Care and Use of Animals for Research 

Purposes. 

 

4.2.2 Obese Ovine Model  

Obesity was induced in 8 sheep using a previously well characterised protocol. In brief, sheep 

were commenced on a high-calorie diet for a period of 40 weeks and maintained in this state 

for another 40 weeks. Obesity induction was started at baseline, whereby healthy sheep with 

normal weight were put on a diet consisting of energy-dense soy-bean oil (2.2%) and 

molasses-fortified grain and maintenance hay with weekly weight measurement. Excess 

voluntary intake was predominantly of grass alfalfa silage and hay. Pellets were gradually 

introduced at 8% excess basal energy requirements and rationed to 70% of total dry-matter 

intake. Blood samples were periodically collected to ensure electrolyte and acid-base 

homeostasis.  
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4.2.3 Weight Fluctuation Model  

Another group of 8 sheep was maintained as the weight fluctuation animal and were 

commenced on a four 20-week cycles of weight gain/weight loss. All animals were 

commenced on a high-calorie diet similar to obese sheep for a period of 20 weeks. 

Thereafter, sheep were maintained on high quality hay for another 20 weeks to induce weight 

loss, with energy-dense pellets rationed at just 0.75% of body weight. At the end of the 20 

weeks, the cycle was repeated again. Blood samples were periodically collected to ensure 

electrolyte and acid-base homeostasis.  

 

4.2.4 Lean Control Model  

Eight age-matched sheep were maintained as controls at their baseline weight. To do this, 

high-quality hay was provided ad libitum, while energy-dense pellets were rationed at 0.75% 

of body weight. The nutritional content of food and housing conditions were identical for all 

three groups, with only the amount of food intake varying. 

 

4.2.5 Animal Preparation 

Animals were pre-acclimatized for at least 1 week before any surgery. Shorn weight was 

recorded immediately before surgery. 
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4.2.6 PROTOCOL 

4.2.6.1.1 Haemodynamic Assessment  

Invasive blood pressure (BP) monitoring was performed during the electrophysiology study. 

Left atrial (LA) and right atrial (RA) pressures were recorded. 

 

4.2.6.1.2 Cardiac MRI  

Before open chest surgery, animals underwent cardiac MRI using 1.5 Tesla (Siemens Sonata, 

MR Imaging Systems, Siemens Medical Solutions, Erlangen, Germany) with 10-mm slices 

through the ventricles without interslice gaps. To do this, animals were securely placed in the 

dorsal recumbent position for scanning. Mechanical ventilation was maintained, facilitating 

electrocardiogram-gated image acquisition with periodic breath holding. Analyses were 

performed offline by blinded operators by using the proprietary software QMass MR (Medis 

medical imaging systems, Leiden, The Netherlands). The following parameters were 

measured as previously described: Left ventricular chamber mass; LV ejection fraction 

(LVEF); Left atrial end-systolic volume (LA-ESv); LA end-diastolic volume (LA-EDv); 

right atrial end-systolic volume (RA-ESv); and epicardial fat volumes. 

Quantification of EAT:  Epicardial fat volumes were quantified using previously validated 

protocol.413 Briefly, a 3D model was constructed from consecutive end-diastolic short-axis 

images using semi-automated software. Regions of adipose tissue were marked in each slice 

followed by linear interpolation of pixel intensities in spaces between consecutive image 

slices. Periatrial and periventricular fat were defined as any pericardial fat subtending the the 

right and left atria and ventricles and below the visceral pericardium, respectively. Total 
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volume of adipose tissue was calculated as a total volume of the 3D model and the mass 

estimated from volume measurements.  

 

4.2.6.1.3 Electrophysiological Study  

The electrophysiological study was carried out based on previously published 

methodology182 and in the post-absorptive state under general anaesthesia. Briefly, venous 

access was obtained through the right femoral and left internal jugular veins. A 10-pole 

catheter with 2-5-2 mm inter-electrode spacing (Daig Electrophysiology, Minnetonka, MN) 

was advanced through the left internal jugular vein and positioned in the coronary sinus (CS). 

A conventional trans-septal puncture was performed using a BRK1 needle and SL0 sheath to 

access the left atrium.  

 Surface electrocardiogram (ECG) and bipolar endocardial electrograms were 

continuously monitored and stored on a computer based digital amplifier/recorder system for 

off-line analysis (LabSystem Pro, Bard Electrophysiology, Lowell, MA, USA). Intracardiac 

electrograms were filtered from 30 to 500 Hz, and measured with computer assisted calipers 

at a sweep speed of 200 mm/s. The following were conducted: 

 

4.2.6.1.3.1 Effective Refractory Period Assessment  

The effective refractory period (ERP) was performed using a rove catheter after the 

electroanatomical mapping study. All ERPs were evaluated at twice the diastolic threshold at 

cycle length (CL) of 400 ms using an 8-beat drive train followed by an extra-stimuli (S2), 

which started with an S2 coupling interval of 120 ms increasing in 5 ms increments. The ERP 

was defined as the longest coupling interval failing to propagate to the atrium. ERP was 



 

   

 

136 

measured from the following 8 sites: 1) RA appendage; 2) RA lateral wall, upper; 3) RA 

lateral wall, lower; 4) proximal CS; 5) distal CS; 6) LA appendage (LAA); 7) LA posterior 

wall; and 8) LA inferior wall.  

 

4.2.6.1.4 Electroanatomical Mapping  

Electroanatomic maps of the LA/RA were created in sinus rhythm using the CARTO 

(Biosense Webster) mapping system as previously published. This carried out using A 3.5-

mm tip catheter (Navistar, Biosense Webster, Diamond Bar, California). The accuracy of the 

sensor position has been previously validated to 0.8 mm and 5o. Briefly, the system records 

the surface ECG and bipolar electrograms filtered at 30 to 400 Hz from the mapping and 

reference catheters. Endocardial contact during point acquisition was facilitated by 

electrogram stability, fluoroscopy, and the catheter icon on the CARTO system. Points were 

acquired in the auto-freeze mode if they met the stability criteria in space (≤6 mm) and local 

activation time (LAT; ≤5 ms). Mapping was performed with an equal distribution of points 

using a fill-threshold of 15 mm. Collected points were edited offline. LAT was manually 

annotated to the peak of the largest amplitude deflection on bipolar electrograms. In the 

presence of double potentials, the LAT was annotated at the largest potential. If the bipolar 

electrogram displayed equivalent maximum positive and negative deflections, the maximum 

negative deflection on the simultaneously acquired unipolar electrogram was used to annotate 

the LAT. 

Each point was binned according to location (region), fractionation (presence or 

absence), scar (presence or absence), and bipolar voltage amplitude to allow analysis in a 

mixed-effects model. Regional atrial bipolar voltage and conduction velocity were analysed 
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offline. The LA/RA maps were segmented for analysis, and the following parameters were 

assessed as previously described: 

1. Atrial conduction velocity: To determine conduction velocity (CV), isochronal 

activation maps (5-ms interval) of the atria were created and regional CV measured in 

the direction of the wave-front propagation (i.e., least isochronal crowding). This was 

then assessed by averaging the distance between 3 to 5 pairs of points as a function of 

the difference in LAT. CV was measured in the following regions: 1) RA upper 

lateral wall; 2) RA lower lateral wall; 3) RA septal wall; 4) LA posterior wall; 5) LA 

inferior wall; and 6) LA lateral wall. 

2. Complex electrogram fractionation: Electrograms with a duration ≥50 ms and 3 or 

more deflections crossing baseline were considered complex fractionated 

electrograms; and double potentials were potentials separated by an isoelectric 

interval and with a total electrogram duration ≥50 ms. For analysis, a fraction of the 

total number of fractionated/double points was utilized. 

3. Atrial voltage: Low-voltage areas were defined as 3 contiguous points with a bipolar 

voltage <0.5 mV. Electrically silent areas (scar) were defined as 3 contiguous points 

with an absence of recordable activity or bipolar voltage amplitude <0.05 mV. 

 

4.2.7 Statistical Analysis  

Data were tested for normality using Shapiro-Wilk tests. Normally distributed continuous 

data were expressed as mean plus or minus standard deviation (SD) and analysed with 

ANOVA across groups (controls, obese and weight fluctuation). Skewed distributions were 

expressed as median and interquartile range (IQR) and medians tested using Mann-Whitney 
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U-tests, or Kruskal-Wallis tests. Nominal data was analysed by Chi-square tests of 

independence. Next, we fitted mixed-effect models to the data in order to compare 

conduction velocity and atrial refractory period across regions, chambers, and groups 

(control, obese and weight fluctuation), with two fixed effects at a time. To investigate LA 

regional patterns in both approaches, region (posterior LA, inferior LA and LA appendage) 

and group (control, obese and weight fluctuation) were modelled as fixed effects with an 

interaction term (region x group). RA regional patterns were similarly investigated. If a 

significant interaction was present, mixed-effects post-hoc test p-values were reported (with 

Sidak adjustment of alpha level). To determine the correlation of electrical remodelling with 

epicardial fat, we fitted bivariate linear regression and estimated Pearson coefficient (r) and 

r2. Two-sided p-values ≤0.05 were considered statistically significant. All analyses were 

performed using SPSS version 25 (IBM SPSS Statistics, Chicago, Illinois) and GraphPad 

Prism version 7.0d (GraphPad Software, La Jolla, CA, USA). 

 

4.3 RESULTS 

4.3.1 Group Characteristics  

The obese state was achieved over 80 weeks, with the obese group reaching peak weight 

(109.1±7.1 kg.m-2) by the 40th week and sustained at the achieved weight for another 40 

weeks. The weight fluctuation group reached obese state by 20 weeks; after this, they lost 

weight for 20 weeks, with obesity re-induced for another 20 weeks before finally undergoing 

another round of weight loss reaching a weight of 77.2±4.5 kg.m-2. The control group 

maintained lean weight (76.1±4.5) over the 80-week period. By the end of 80 weeks, the 

obese sheep significantly increased their baseline weight to almost twice the control and 
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weight fluctuation levels ([p<0.001 for both] Table 1). The final weights of the controls and 

the weight fluctuation sheep were not significantly different from each other (p>0.05). The 

Electrolyte, acid-base, and glucose levels remained within their normal ranges throughout the 

over feeding process. 

 

4.3.2 Electrophysiological Remodelling  

Table 1 shows summary of electrical findings due to chronic weight gain and fluctuation.  

 

4.3.2.1 Effective Refractory Period 

Obesity resulted in reduction in mean atrial refractoriness compared to controls (p<0.001) 

and weight fluctuation (p=0.003), Table 1. There was no significant change in mean atrial 

ERP between fluctuating weight group and controls. Interestingly, ERP did not change 

significantly between the groups across all sites evaluated, except at right atrial appendage, 

where ERP in the obese animals was significantly abbreviated compared to controls 

([130.1±37.6 ms vs. 169.3±53.1 ms], p=0.03) and weight fluctuation ([130.1±37.6 ms vs. 

170.8±50.0 ms], p=0.02), see Figure 1.  

 

4.3.2.2 Atrial Conduction 

Figure 2 shows the endocardial CV across left and right atrial sites. In the left atrium, there 

was a significant reduction in the mean endocardial CV in the obese sheep compared to 

controls ([0.97±0.1 m/s vs. 1.26±0.1 m/s], p<0.001). This was found in LA posterior wall 

(LAPW: p=0.036), LA inferior wall (LAIF: p<0.001), and LA lateral wall (LALW: p<0.001). 

Similarly, obesity demonstrated significant reduction of endocardial CV in the right atrium. 
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The mean endocardial CV was reduced by 23% following sustained weight gain compared to 

maintaining baseline weight ([0.96±0.1 m/s vs. 1.24±0.1 m/s], p<0.001). Obesity also 

demonstrated regional conduction slowing in the RA, including RA upper lateral (RAUL: 

p<0.001), lower lateral (RALL: p=0.008), and septal walls (RASW: p<0.001), respectively. 

When weight fluctuation was compared to lean controls, fluctuating weight was 

associated with significant persistent reduction in CV across both chambers. In the LA, mean 

CV was slower by 0.20 m/s ([1.06±0.1 m/s vs. 1.26±0.1 m/s], p<0.001) in the weight 

fluctuation cohort compared to controls. CV changes were seen across the posterior and 

inferior walls ([LAPW: p=0.024] and [LAIF: p=0.002]) but not in the lateral wall (LALW: 

p=0.328). In the RA, there was a 0.15 m/s reduction in mean CV in the weight fluctuation 

compared to controls ([1.09±0.1 m/s vs. 1.24±0.1 m/s], p<0.001). Regionally, slowed 

conduction was seen in the lower lateral and septal walls ([RALL: p=0.0158] and [RASW: 

p=0.0145]). In the upper lateral wall, conduction trended towards significant slowing with 

fluctuating weight (p=0.063).  

Importantly, final weight loss in the weight fluctuation cohort resulted in mean CV 

being mildly increased in both the LA and RA. Regionally, while CV was comparable in the 

posterior and inferior LA, CV was greater in the lateral wall in the weight fluctuation 

compared to obese sheep. Regional CV was reduced in the upper lateral and septal walls of 

the RA in obese animals compared to weight fluctuation ([RAUL: p<0.001] and [RASW: 

p<0.001]). However, the lower lateral wall had similar CV in both groups (p=0.963). 
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4.3.2.3 Electrogram Fractionation 

Obesity resulted in doubling of LA electrogram fractionation compared to controls ([24.7±3.6 

mm vs. 12.1±2.9 mm], p<0.001), see Table 1 and Figure 3A. With fluctuation in weight, LA 

fractionation was persistently increased compared to lean weight controls ([18.2±3.7 mm vs. 

12.1±2.9 mm], p=0.006). Fractionated electrograms were found be 50.4% higher in the 

weight fluctuation group. On the other hand, when compared to stable obesity, weight 

fluctuation was associated with 26.3% lower fractionated electrograms in the LA ([24.7±3.6 

mm vs. 18.2±3.7 mm], p=0.002).   

 

4.3.2.4 LA voltage  

See Table 1 and Figure 3B for a summary of LA voltages in all three groups. The mean LA 

voltage in the obese sheep was 6.5±1.1 mV. In the controls, we found similar results 

(6.5±0.8), with no significant difference between the two groups (p=1.0). The mean LA 

voltage was slightly reduced in the weight fluctuation group compared to lean controls 

(5.8±1.1 mV vs. 6.5±0.8 mV). However, this was not significantly different between the two 

(p=0.387). Similarly, weight fluctuation did not result in significant reduction in LA voltage 

compared to stable obesity in the sheep models ([5.8±1.1 mV vs. 6.5±1.1], p=0.387).  

 

4.3.3 Epicardial Adipose Tissue Remodelling  

See Table 1 and Figure 4 for summary of epicardial adipose tissue (EAT) quantified by 

cardiac MRI. In relation to the atria, epicardial adipose tissue was distributed adjacent to the 

LA posterior wall and atrioventricular groove (Figure 4A). Total cardiac EAT was greater in 

obese group compared to controls (p=0.037) and weight fluctuation (p=0.039). There was no 
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significant difference in total cardiac EAT depot between weight fluctuation and control 

groups (p=0.98). For the total atrial depot, there was slight increase in fat volume in obese 

group compared to controls but did not reach significance (p=0.2). The volume of total atrial 

EAT increased in obesity than did weight fluctuation group (p=0.02). No significant 

difference in LA EAT was noted for all groups. For RA EAT, depot volume did not 

significantly change between obese or weight fluctuation group and controls; however, obese 

animals showed almost 2-fold higher fat volume compared to weight fluctuation groups. 

 

4.3.3.1 Relationship of Epicardial Fat with Electrical Remodelling  

Table 2 and Figures 5 to 7 summarise the linear regression results of epicardial fat and 

electrical substrates. We noted weak correlation between total cardiac EAT and LA voltage 

and electrogram fractionation, which did not reach statistical significance (p>0.05 for both). 

Again, there was no significant correlation between total EAT and CV and ERP (p>0.05 for 

both). Chamber-based sub-analysis did reveal any significant relation between EAT and any 

electrical parameters (see Figure 5-7).  

 

4.4 DISCUSSION 

4.4.1 Major Findings 

The present study provides new mechanistic insights into the nature of fibro-fatty infiltrations 

as an evolving substrate for AF obesity and in fluctuating weight. Using a chronic ovine 

sheep model:  

Compared to reference controls, atrial substrate due to chronic obesity was characterized by: 
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1. 23% significant reduction in atrial endocardial conduction velocities 

2. More than 2-fold increased fractionated electrograms 

3. 14% abbreviated mean atrial refractoriness 

4. Nonsignificant change in left atrial voltage  

5. 46% significantly expanded total cardiac epicardial fat volume 

 

Compared to reference controls, atrial substrate due to weight fluctuation was characterised 

by: 

1. 12% to 16% significant reduction in conduction velocities in the atria 

2. 50.4% greater fractionated electrograms in left atrium 

3. Non-significant changes in mean refractoriness and left atrial voltage 

4. Nonsignificant change in total cardiac epicardial fat depots. 

 

Compared to stable obesity, final weight loss in weight fluctuation was characterised by: 

1. Significant weight reduction 

2. Significant reductions of right atrial (48%), total atrial (35%), and total cardiac 

epicardial (29%) fat depots 

3. 26.3% reduced fractionated electrograms 

4. Mildly increased conduction velocity 

5. 13% increased mean atrial ERP 

6. Nonsignificant change in LA EAT, regional ERPs, and LA voltage  

In summary, despite achieving weight loss, weight fluctuation during weight loss resulted in 

persistent atrial remodelling despite comparable volumes of epicardial fat depots as lean 

weight and showed similar atrial substrate to obesity, albeit to a lesser extent. These findings 
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are consistent with the clinical findings in the LEGACY study associated with weight 

fluctuation.345 

 

4.4.2 Pro-arrhythmic Substrate Due to Obesity  

Obesity is reported to associate with an increased risk of atrial arrhythmias in several 

epidemiological studies.261, 416 Indeed, intensive research is underway to delineate the 

mechanisms that may mediate this sinister clinical link. Given the low-grade inflammation, 

neurohumoral activations, and autonomic imbalance seen during chronic obesity, it is likely 

that they might drive the formation of AF substrate in obesity.181, 340 Consistent with this, in 

an earlier model of short-term obesity, we showed significant atrial enlargement, induction of 

fibrosis, and inflammatory infiltrates.181 Obesity was associated with greater expressions of 

pro-fibrotic markers, including endothelin (ET)-1, ET receptors (ETAR & ETBR), 

transforming growth factor-beta 1 and platelet-derived growth factor in dose-dependent 

fashions. Mahajan et al182 corroborated these findings by demonstrating LA enlargement, 

increased interstitial fibrosis with accompanying pro-fibrotic TGF-b1 expression using a 

sustained model of obesity, induced by high-calorie feeding for 72 weeks.  

Impairment in electrophysiological properties of the atrium is an important further 

requisite for AF substrate formation.11 We previously reported global biatrial endocardial 

remodelling characterized by conduction abnormalities, fractionated electrograms, and 

increased propensity for AF during sustained weight gain, highlighting that obesity could 

induce electrical remodelling.182 This is well in line with current findings. Nonetheless, 

unlike previous studies, we failed to see association of obesity with reduced posterior LA 

endocardial voltage, which we speculate could be blunted by chronic age of our models. 
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4.4.3 Epicardial Fat and Pro-arrhythmic Substrate  

Epicardial fat expansion is an important factor involved in the pro-arrhythmic substrate 

formation. Experimental studies have shown cardiac MRI assessed EAT expansion as a 

common consequence of obesity, which underscores its role in explaining the clinical link 

between obesity and AF.181, 182 In the present study, we found significantly higher total 

cardiac fat depot but comparable atrial depots with controls. This is in line the findings of 

Wong et al263, reporting non-significant association between peri-atrial EAT and AF burden 

and risk of recurrence after catheter ablation. The author did note, however, that the AF 

burden or recurrence is driven by periventricular depots.263 Furthermore, we showed that 

weight fluctuation is associated with reduction of EAT depots as compared to obesity. 

 

4.4.4 Weight Fluctuation and AF Substrate 

In multiple lines of clinical reports, weight loss has been associated with changes in hormonal 

balance in patients.343, 344 This is postulated to impact both physiological and 

pathophysiological changes.419 These compensatory mechanisms were investigated by 

Sumithran et al344 in a population of postmenopausal women (BMI: 27-40 kg.m-2). After 

weight loss induced by calorie restriction, there was significant increase in appetite regulating 

factors, such ghrelin, gastric inhibitory polypeptide, and pancreatic polypeptide. One year 

after weight reduction, the changes did not return normal value at baseline, thus it highlights 

that the compensatory changes in these factors could cause weight relapse. Hypothetically, 

abnormal release of adipokines like leptin could both directly and indirectly pose great 

arrhythmogenic risk. Importantly, our current data sheds light on the potential nature of the 
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atrial substrate due to periodic fluxes in weight, a common clinical finding in patients.344 

Despite having comparable weights with reference controls, weight fluctuation sheep 

demonstrated LA enlargement, and abnormal atrial conduction and fractionated electrograms, 

without change in atrial endocardial voltage or refractoriness. More importantly, we noted 

that the electro-structural remodelling during weight fluctuation is less severe as compared to 

stable obesity. We believe these observations may explain the findings in the LEGACY 

study.  

 

4.4.5 Study Limitations 

Several limitations are worth noting in the current study. First, there was no segmentation 

performed for atrial EAT due to the limited resolution of CMR. We believe that this could 

have hidden important details on the regional distribution of EAT, which may have prevented 

conclusion on regions that may of important clinical relevance. Segmentation of EAT, as 

reported by Nagashima et al302, would have allowed us to determine EAT location that most 

likely mediate the observed elecro-structural substrate seen therein. It should be noted that 

those investigators used computed tomography as their imaging modality, which 

demonstrates much higher resolution.  

 

4.4.6 Potential Clinical Implications 

These findings provide a mechanistic basis for the clinical associations reported between 

expansion of epicardial fat and AF. EAT may represent a useful risk marker to identify 

patients at an increased AF risk which could allow a more personalized risk stratification. 

EAT could be a promising target for atrial fibrillation, a concept recently tested in patients 
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who underwent pulmonary vein isolation wherein treatment with atorvastatin led to reduction 

in EAT volume. Furthermore, these results provide mechanistic basis for the perils of 

periodic weight fluctuation often encountered in clinical settings. Although weight loss is 

likely to reduce EAT, fluxes in weight could remodel patients’ atria by induction of fibro-

fatty infiltrations and pathologic modulation of contractile units in myocytes. Further studies 

are warranted to explore potential therapies targeting intramyocardial fat cell depositions and 

to determine whether their modulation could constitute a treatment target for primary and 

secondary prevention of AF. 

 

4.5 CONCLUSIONS  

The findings herein demonstrate that chronic obesity induces significant reduction of 

endocardial CV remodelling, doubling of electrogram fractionation, abbreviation of 

refractoriness, and expansion of epicardial fat, without significant change in LA voltage. 

Despite comparable weight with controls, weight fluctuation was associated with significant 

conduction slowing and LA electrogram fractionation, without any significant change in 

mean refractoriness, LA voltage, or total cardiac fat depots. Compared to stable obesity, 

sheep with weight fluctuation showed significant weight loss, lower RA and atrial EAT, 

mildly greater endocardial CV, and increased mean atrial ERP, without significant change in 

LA EAT and LA voltage. This data demonstrates that weight fluctuation results in residual 

endocardial biatrial and electrophysiological remodelling.  
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4.6 TABLES 

Table 1. Anthropometric, and Structural and Electrophysiological Characteristics of Obese, Weight Fluctuation and Control Sheep 

Parameter Control Obese Weight fluctuation 
p-value 

Obese vs. controls 
Weight fluctuation vs. 

controls 
Obese vs. weight 

fluctuation 

Weight (kg) 76.1±4.5 109.1±7.1 77.2±4.5 <0.001 0.960 <0.001 

LA EAT (mL) 4.3±1.3 5.0±2.0 4.2±1.1 0.666 0.987 0.556 

RA EAT (mL) 5.1±1.1 6.9±2.9 3.6±0.9 0.174 0.262 0.006 

Total atrial EAT (mL) 9.5±1.3 12.0±4.5 7.8±1.3 0.228 0.490 0.023 

Total cardiac EAT (mL) 163.5±22.1 238.4±77.1 169.4±47.7 0.037 0.980 0.039 
LA voltage (mV) 6.5±0.8 6.5±1.1 5.8±1.1 1.000 0.387 0.387 
CV, LA (m/s) 1.26±0.11 0.97±0.08 1.06±0.13 <0.001 <0.001 0.026 
CV, RA (m/s) 1.24±0.10 0.96±0.09 1.09±0.11 <0.001 <0.001 <0.001 
ERP mean (ms) 178.6±38.1 153.4±32.7 173.1±31.5 <0.001 0.640 0.003 
ERP, LA (ms) 162.0±33.2 140.0±21.8 161.0±23.5 0.140 0.929 0.074 
ERP, RA (ms) 179.0±22.8 157.0±31.7 180.0±15.9 0.165 0.911 0.081 
ERP, CS (ms) 199.0±40.8 171.0±23.5 182.0±41.1 0.115 0.438 0.490 
LA fractionation (mm)  12.1±2.9 24.7±3.6 18.2±3.7 <0.001 0.006 0.002 
LV ejection fraction (%) 41.6 (8.7) 44.9 (8.3) 45.1 (10.2) 0.710 0.336 0.694 
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Table 2. Relationship Between Total Cardiac Epicardial Fat and Structural and Electrical Substrates  

Parameter Pearson r r2 p-value 

LA voltage (mV) 0.262 0.069 0.251 

CV, LA (m/s) -0.141 0.020 0.542 

CV, RA (m/s)) -0.236 0.056 0.331 

ERP mean, LA (ms) -0.217 0.047 0.345 

ERP mean, RA (ms) -0.216 0.047 0.347 

LA fractionation (mm) 0.312 0.097 0.158 
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4.7 FIGURE LEGENDS 

Figure 1. Distribution of Effective Refractory Periods Across Atrial Sites and Animal 

Groups 

ERP was not changed as results of obesity or weight fluctuation across atrial chambes and 

regions, except in right atrial appendage. LAPW, left atrial posterior wall; LAIF, left atrial 

inferior wall; LAA, left atrial appendage; RAUL, right atrial upper lateral wall; RALL, right 

atrial lower lateral wall; RAA, right atrial appendage; Prox CS; proximal coronary sinus; Dist 

CS; distal coronary sinus; CN, controls; OB, obese; WF, weight fluctuation.  

Figure 2. Changes in Conduction and Conduction Heterogeneity Caused by Weight 

Fluctuation 

Panel A: Endocardial conduction velocity measured six atrial sites. Panel B: Epicardial 

conduction velocity measured across two corners in control, obese and weight fluctuation sheep. 

Panel C: Mean conduction heterogeneity indices of control, obese and weight fluctuation sheep 

measured across two epicardial plaque corners. LAPW, left atrial posterior wall; LAIF, left 

atrial inferior wall; LALW, left atrial lateral wall; RAUL, right atrial upper lateral wall; RALL, 

right atrial lower lateral wall; RASW, right atrial septal wall; C1; corner 1; C2; corner 2; CN, 

controls; OB, obese; WF, weight fluctuation; CHI, conduction heterogeneity index; ns, p>0.05. 

Figure 3. Left Atrial Voltage and Electrogram Fractionation Changes Induced by Weight 

Fluctuation 

Panel A: Left atrial electrogram fractionation of control, obese and weight fluctuation animals. 

Panel B: Left atrial voltage. #, p<0.05: obese vs. controls; &, p<0.05: obese vs. weight 

fluctuation; *, p<0.05: weight fluctuation vs. controls; CN, controls; OB, obese; WF, weight 

fluctuation. 

Figure 4. Epicardial Fat Volume Quantified by Cardiac MRI 

Panel A: Distribution of fat on freshly harvested sheep heart. Fat is mostly abundant around the 

atrioventricular groove and interventricular sulcus. Adipose could also be observed around the 

atrial appendages (white arrowhead showing the left appendage). Panel B: Representative CMR 

images in long-axis view, demonstrating the distribution of epicardial adipose tissue in the three 

study groups; atrial EAT depots are highlighted with contours. Panel C: Box and Whisker charts 
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demonstrating quantified volumes of EAT from the four cardiac chambers; showing total 

cardiac, total peri-atrial, left and right atrial EAT volumes, respectively. CN, controls; OB, 

obese; WF, weight fluctuation. 

Figure 5. Relationship Between Epicardial Fat and Effective Refractory Period 

Panel A: Correlation between total peri-atrial epicardial fat and mean left atrial ERP. Panel B: 

Correlations between right atrial EAT and right atrial ERP.  

Figure 6. Relationship Between Epicardial Fat and Atrial Conduction 

Panel A: Correlation between total epicardial fat and conduction velocity in the left atrium. 

Panel B: Correlations between epicardial fat and conduction velocity in the right atrium. 

Figure 7. Relationship Between Epicardial Fat and Fractionated Electrogram and Atrial 

Voltage 

Panel A: Correlation between total epicardial fat and electrogram fractionation in left atrium. 

Panel B: Correlations between epicardial fat and voltage in the left atrium. 
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Figure 1. Distribution of Effective Refractory Periods Across Atrial Sites and Animal 

Groups 
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Figure 2. Changes in Conduction and Conduction Heterogeneity Caused by Weight 

Fluctuation 
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Figure 3. Left Atrial Voltage and Electrogram Fractionation Changes Induced by Weight 

Fluctuation 
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Figure 4. Epicardial Fat Volume Quantified by Cardiac MRI 
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Figure 5. Relationship Between Epicardial Fat and Effective Refractory Period 
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Figure 6. Relationship Between Epicardial Fat and Atrial Conduction 
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Figure 7. Relationship Between Epicardial Fat and Fractionated Electrogram and Atrial 

Voltage 
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5. Chapter Five 

Cellular Mechanisms of Epicardial Fat in Obesity and 

Weight Fluctuation – Fibrofatty Infiltrations, 

Myofibrillar Remodelling and Lipid Imaging 
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5.1 INTRODUCTION  

Epicardial adipose tissue (EAT) has emerged as an important factor for formation of the atrial 

pro-arrhythmic substrate. EAT expansion, which occurs during weight gain, predicts increased 

risk of atrial fibrillation (AF)182, poorer outcomes following catheter ablation263 and bypass 

grafting409, and correlates with greater risk of thromboembolic events304, 305, 420. Moreover, this 

association is reported to be independent of traditional measures of obesity, indicating that EAT 

can influence AF risk independently of obesity. 

 Recent advances have implicated epicardial fat in ectopic focal mechanisms and re-

entrant substrates requisite for the initiation and perpetuation of AF.11, 35, 119, 122, 128, 137 EAT has 

been associated with structural abnormalities promoting AF, such as induction of atrial 

fibrosis278, atrial enlargement/stretch181, 182, and inflammation271, 272, 388. We have also 

demonstrated relations between the ectopic fat and electrical substrate in a clinical model of 

obesity. Nonetheless, there is great paucity of data characterising the cellular and ultrastructural 

changes that may mediate EAT-induced atrial remodelling.  

Consequently, therapeutic recourses targeting adiposity and limiting expansion of EAT 

are exciting research endeavours. In fact, weight loss has been established to reduce the burden 

of AF, with dose-dependent effects reported.334, 345 However, recent clinical evidence has 

challenged this notion given that obese individuals often experience oscillation in weight.344 For 

example, weight fluctuation was shown to offset the beneficial effects of weight loss, with more 

than 5% weight fluctuation in associated with twofold greater risk of arrhythmia recurrence after 

ablation.345 The puzzling question remains as to what constitute the atrial substrate due to these 

fluxes in weight. We hypothesised that the periodic weight gains during weight fluctuation will 

result in fibrofatty infiltrations similar to obesity but that the degree of EAT remodelling may not 

be as severe.   

In the present study, we aimed to characterise ultrastructural changes responsible for 

EAT-induced atrial remodelling; spatial distribution of lipids due to weight fluctuation and 

obesity; and evaluate the relation between these changes with atrial electrical and structural 

substrates. 
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5.2 METHODS 

5.2.1 Animals  

Twenty-four Merino Cross Wethers sheep (Ovis aries) were studied in accordance with 

guidelines outlined in the “Australian Code for the Responsible Conduct of Research, 2007 (the 

2007 Code)” adopted jointly by the National Health and Medical Research Council, the 

Australian Research Council and Universities Australia. The protocol and animals used herein 

were approved by both the animal research ethics committees of the University of Adelaide and 

the South Australian Health and Medical Research Institute, Adelaide, Australia, which adhere to 

the Guidelines for the Care and Use of Animals for Research Purposes. 

 

5.2.2 Obese Ovine Model  

Obesity was induced in 8 sheep using a previously well characterised protocol. In brief, sheep 

were commenced on a high-calorie diet for a period of 40 weeks and maintained in this state for 

another 40 weeks. Obesity induction was started at baseline, whereby healthy sheep with normal 

weight were put on a diet consisting of energy-dense soy-bean oil (2.2%) and molasses-fortified 

grain and maintenance hay with weekly weight measurement. Excess voluntary intake was 

predominantly of grass alfalfa silage and hay. Pellets were gradually introduced at 8% excess 

basal energy requirements and rationed to 70% of total dry-matter intake. Blood samples were 

periodically collected to ensure electrolyte and acid-base homeostasis.  

 

5.2.3 Weight Fluctuation Model 

Another group of 8 sheep was maintained as the weight fluctuation animal and were commenced 

on a four 20-week cycles of weight gain/weight loss. All animals were commenced on a high-

calorie diet similar to obese sheep for a period of 20 weeks. Thereafter, sheep were maintained 

on high quality hay for another 20 weeks to induce weight loss, with energy-dense pellets 

rationed at just 0.75% of body weight. At the end of the 20 weeks, the cycle was repeated again. 

Blood samples were periodically collected to ensure electrolyte and acid-base homeostasis.  
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5.2.4 Lean Control Model  

Eight age-matched sheep were maintained as controls at their baseline weight. To do this, high-

quality hay was provided ad libitum, while energy-dense pellets were rationed at 0.75% of body 

weight. The nutritional content of food and housing conditions were identical for all three 

groups, with only the amount of food intake varying. 

 

5.2.5 Animal Preparation 

Animals were pre-acclimatized for at least 1 week before any surgery. Shorn weight was 

recorded immediately before surgery. 

 

5.2.6 PROTOCOL 

5.2.6.1 Body Composition  

Dual-energy x-ray absorptiometry scans were performed to accurately determine total body fat in 

the animals. 

 

5.2.6.2 Haemodynamic Assessment  

Invasive blood pressure (BP) monitoring was performed during the electrophysiology study. Left 

atrial (LA) and right atrial (RA) pressures were recorded. 

 

5.2.6.3 Cardiac MRI  

Before open chest surgery, animals underwent cardiac MRI using 1.5 Tesla (Siemens Sonata, 

MR Imaging Systems, Siemens Medical Solutions, Erlangen, Germany) with 10-mm slices 

through the ventricles without interslice gaps. To do this, animals were securely placed in the 

dorsal recumbent position for scanning. Mechanical ventilation was maintained, facilitating 

electrocardiogram-gated image acquisition with periodic breath holding. Analyses were 

performed offline by blinded operators by using the proprietary software QMass MR (Medis 

medical imaging systems, Leiden, The Netherlands). The following parameters were measured 

as previously described: Left ventricular chamber mass; LV ejection fraction (LVEF); Left atrial 
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end-systolic volume (LA-ESv); LA end-diastolic volume (LA-EDv); and right atrial end-systolic 

volume (RA-ESv). 

 

5.2.6.4 STRUCTURAL CHARACTERISATION 

Following the electrophysiological study, the sheep were maintained under general anaesthetic. 

Thereafter, they were euthanised by lethal dose of phentobarbitone injection, with samples taken 

for detailed histological and ultrastructural analyses.  

 

5.2.6.4.1 Histological Assessment 

Following euthanasia, atrial tissues were isolated from the LAA and RAA, perfusion-fixed with 

4% paraformaldehyde and immersed in 10% buffered formalin. Tissue sections were processed 

and embedded in paraffin wax. Fixed blocks were cut into 5-µm serial sections and stained with 

haematoxylin and eosin (H&E) and Periodic Acid Schiff (PAS), respectively.  

 

5.2.6.4.1.1 Fibrofatty Infiltration Assessment 

The fibrofatty infiltration of the atria by was confirmed in Oil O Red preparations and H&E 

stained sections, and assessed on Masson’s Trichrome stained sections as previously published. 

Slides were scanned by NanoZoomer digital image scanner and viewed on NDP.view 2 

(Hamamatsu Photonics K.K., Japan). 6 sections were photographed at 100 µm (20x) 

magnification and processed in ImageJ (National Institutes of Health, USA). The following 

parameters were assessed: 

1. Grade infiltration: Fatty infiltrates were graded by the extensive nature of the infiltration 

using scoring algorithm modified from previously published protocol (Figure 1). The 

algorithm ran on 1- to 4-point grade scale. Grading was done for the most severe infiltrate 

per section and repeated for obese, weight fluctuation and control sheep. The grades of 6 

sections were taken and averaged (presented as mean per animal and number of sections 

per grade).  
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2. Percent infiltration: The percent area covered by all fibrofatty infiltrates per sections was 

measured and expressed as percentage of the total section area. This was done by manual 

segmentation, which was defined in the region of interest (ROI) manager of ImageJ. 

3. Total area of infiltration: The total area of fibrofatty infiltrate was assessed by manual 

segmentation (ROI manager). This was done for the same subset of infiltrate used for 

determining grade infiltration. 

4. Number of adipocyte infiltrates: The largest infiltrate (same used for grade infiltration 

and area of fibrofatty infiltration) was used to determine the number of adipocytes per 

infiltrate per section. This was determined in 6 to 10 sections and averaged. 

5. Adipocyte size: Individual adipocyte characteristics were assessed by manual 

segmentation in the ROI manager (ImageJ). The following parameters were determined: 

the average area of adipocytes (pixel2); the average thickness of adipocytes per infiltrate 

measured by Ferret’s diameter (pixel); and perimeter of each adipocyte (pixel). The 

Ferret’s diameter was determined as the longitudinal distance across each adipocyte – 

longest distance between two points across the adipocyte. 

6. Collagen area in infiltrate: The amount of collagen in infiltrate was determined to show 

the extent fibrotic remodelling of the infiltrate. The collagen fibres were traced by manual 

segmentation in ROI manager (ImageJ) and measured in pixel. 

 

5.2.6.4.1.2 Myolysis Assessment and Glycogen Accumulation 

To quantify the degree of myolysis (sarcomere loss), 5-µm sections were stained with periodic 

acid Schiff (PAS). This was with the understanding that the loss of sarcomeric myofibrils results 

in gradual accumulation of the cytoplasmic space by glycogen molecules, which stain with a 

magenta colour on PAS against a toluidine blue background. Fifteen image sections per site were 

photographed at 25 µm distance (80x magnification) for a total of 8 animals per group. 

Assessment of myolysis was only done by counting number of myocytes with intact nucleus in 

the plane of the section. The grading of myolysis was performed as previously published122 but 

with modification, as follows: 

§ Myocytes with <10% glycogen accumulation of the cytosol were considered to have no 

myolysis 



 

   

 

165 

§ Myocytes with 10% to 25% glycogen accumulation were considered to be mildly 

myolytic  

§ Myocytes with >25% to 50% glycogen accumulation were considered to be moderately 

myolytic 

§ Myocytes with >50% glycogen accumulation were considered to be severely myolytic 

The percentage of total myolysis was expressed as: (Number of myocytes with >10% glycogen 

accumulation/Total myocyte count) x 100%. 

 

5.2.6.5 Matrix-Assisted Laser Desorption Ionization Imaging Mass 

Spectrometry  

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI 

MSI) was used to determine spatial distribution of lipids in the atrial tissues in obesity and 

weight fluctuation. Following non-survival experiments, hearts were harvested and dissected and 

snap-frozen in liquid nitrogen and stored in -80˚C until further use.10-µm thick sections were cut 

at -20. To assist with desorption and ionisation, tissue sections were coated with 3 mg of α-

cyano-4-hydroxycinnamic acid (αCHCA) matrix by sublimation. A laser was used to ionise the 

lipids and electric field was applied until they reached the detector. The laser set to an intensity 

of 150 a.u. and fired for 1.5 seconds per location at a repetition rate of 200 Hz. A spatial 

resolution of 60 µm was selected and a mass range of m/z 50-990 was acquired. MALDI Images 

were obtained using a MALDI Synapt HDMS Mass Spectrometer (Waters Corporation) in MS 

mode. Images were visualised using Biomap (Novartis). 

 

5.2.7 Statistical Analysis  

Data were tested for normality using Shapiro-Wilk tests. Normally distributed continuous data 

were expressed as mean plus or minus standard deviation (SD) and analysed with ANOVA 

across groups (controls, obese and weight fluctuation). Skewed distributions were expressed as 

median and interquartile range (IQR) and medians tested using Mann-Whitney U-tests, or 

Kruskal-Wallis tests. Nominal data was analysed by Chi-square tests of independence. In the 

case of skewed distribution (i.e., total myolysis assessment with PAS staining), data were log-
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transformed before further analysis. To determine the correlation of myolysis with structural 

substrates, we fitted bivariate linear regression and estimated Pearson correlation coefficient (r) 

and r2. Two-sided p-values ≤0.05 were considered statistically significant. All analyses were 

performed using SPSS version 25 (IBM SPSS Statistics, Chicago, Illinois) and GraphPad Prism 

version 7.0d (GraphPad Software, La Jolla, CA, USA). 

 

5.3 RESULTS 

5.3.1 Group Characteristics  

After 80 weeks of high-calorie feeding, the obese group demonstrated significant weight gain 

compared to controls (109.1±7.1 kg.m-2 vs. 76.1±4.5 kg.m-2), see Table 1. The weight 

fluctuation group reached obese state by 20 weeks; after this, they lost weight for 20 weeks, with 

obesity re-induced for another 20 weeks before finally undergoing another round of weight loss 

reaching a weight of 77.2±4.5 kg.m-2. The final weights of the controls and the weight 

fluctuation sheep were not significantly different from each other (p>0.05). The Electrolyte, 

acid-base, and glucose levels remained within their normal ranges throughout the over feeding 

process. 

 

5.3.2 Structural, Functional and Haemodynamic Remodelling 

Blood Pressure 

Changes in systolic BP are presented in Table 1, respectively. Obesity resulted in significant 

increase BP compared to controls (BP [93.2±14.3 vs. 79.4±5.0], p=0.034). Systolic BP changes 

were comparable in the weight fluctuation and lean controls (BP [80.8±10.1 vs. 79.4±5.0], p=ns). 

We observed higher systolic BP in the obese groups as compared to weight fluctuation 

(93.2±14.3 vs. 80.8±10.1), which trended towards significance (p=0.053).  

 

5.3.2.1 Atrial Volume 

Tables 1 & 2 provide summary of chamber characteristics of the study groups. The volume of 

the left atrium (LA) was increased (p=0.001) by 32% (53.6±5.8 cm3 vs.40.6±3.0 cm3) during 
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sustained obesity. Similarly, weight fluctuation resulted in significant increase in left atrial 

volume compared to controls (LA Volume [48.5±6.6 cm3 vs. 40.6±3.0 cm3], p=0.025). We found 

the change LA volume to weight fluctuation to be less severe than stable obesity (LA volume 

[53.6±5.8 cm3 vs. 48.5±6.6 cm3], p<0.001). In the RA, we observed significant difference in 

chamber volumes across the three groups (p>0.05). Furthermore, there was no significant change 

between obese and controls in volumes at the end of diastole or systole in all comparisons 

(p>0.05 for all). The same was true for weight fluctuation (p>0.05). We also did not find any 

significant change in LV ejection fractions across all groups(p>0.05). 

 

5.3.2.2 Atrial Pressure 

Table 1 and Figure 2 provide summary of haemodynamic characteristics of the study groups. 

Both obesity and weight fluctuation caused elevation in LA pressure. We observed more than 2-

fold increased mean LA pressure compared to controls (Pressure [8.5±1.9 mm Hg vs. 3.7±0.9 

mm Hg], p<0.001). With weight fluctuation, the sheep demonstrated 1.5 times higher mean LA 

pressure than lean controls (Pressure [5.7±1.8 mm Hg vs. 3.7±0.9 mm Hg], p=0.02), though this 

was less severe than in stable obesity (Pressure [8.5±1.9 mm Hg vs. 5.7±1.8 mm Hg], p=0.02). 

We further explored diastolic and systolic pressure changes, see Figure 2A. Obesity resulted in 

increased LA systolic and diastolic pressures compared to control (systolic [11.1±2.0 mm Hg vs. 

6.7±0.9 mm Hg], p=0.002; diastolic [6.0±1.8 mm Hg vs. 2.1±1.1 mm Hg], p<0.001) or weight 

fluctuation groups (systolic [11.1±2.0 mm Hg vs. 7.7±3.0 mm Hg], p=0.015; diastolic [6.0±1.8 

mm Hg vs. 3.6±1.0 mm Hg], p=0.007). On the other hand, LA systolic and diastolic pressures 

did not significantly change with weight fluctuation compared to lean controls (systolic [7.7±3.0 

mm Hg vs. 6.7±0.9 mm Hg], p=0.002; diastolic [3.6±1.0 mm Hg vs. 2.1±1.1 mm Hg], p<0.001). 

In the right atrium, obesity resulted in more than 2-fold greater mean right atrial (RA) 

pressure and lean controls (p<0.01), Table 1. Similarly, higher mean RA pressure was noted in 

the obese group compared to weight fluctuation group (p=0.048). We found RA systolic and 

diastolic pressure to be higher in obese sheep compared to controls and animals with weight 

fluctuation, see Figure 2B. Compared with controls, weight fluctuation did not result in greater 
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mean RA pressure (p<0.05 for all). Additionally, the systolic and diastolic pressures were 

significantly changed weight fluctuation in comparison to lean controls.  

 

5.3.3 Fibrofatty Infiltration  

Results for the fibrofatty infiltrations are summarised in Table 2 and Figures 3 & 4. Due to 

chronic age of our model, the controls did show some appreciable infiltration of atrial 

myocardium by fat cells (Figure 3A, left inset). However, with obesity and weight fluctuation, 

the animals demonstrated extensive and widespread fatty infiltrations (Figure 3A, mid & right). 

The most severe infiltrates were characterised by excessive presence of adipocytes and 

inflammatory cells (Figure 3B, arrowheads). More intriguingly, there were presence of giant 

syncytia-looking fat cells likely indicative of cell fusions, which were more common in weight 

fluctuation group (Figure 3C, arrowheads). Both the obese group and weight fluctuation had 

greater average grade infiltrations compared to controls (p<0.05, Figure 4A). There was 

progressive increase in the number of obese and weight fluctuation animals as the infiltrate 

becomes more severe (p = 0.001, Figure 4B). There was no significant difference between obese 

and weight fluctuation groups (p >0.05 Figure 4A). The findings were consistent across both 

atrial chambers. When the region of infiltration was studied more comprehensively, only weight 

fluctuation was associated with significant greater adipocyte number than controls (Figure 4D). 

In the LA, collagen content of the infiltrate was not different between obese and controls (p = 

0.16) but was significantly greater in weight fluctuation group compared to controls (p = 0.042). 

In the RA, there was greater collagen deposition in the infiltrates in the obese group than controls 

(p = 0.05, Figure 4C). 

 

5.3.3.1 Fibrofatty Infiltrations and Electrical Remodelling  

See Table 3 and Figure 5-7 for the summary of the linear regression of fibrofatty infiltrations 

and electrical substrate. Mean atrial fibro-fatty infiltration was correlated with LA and RA CV’s 

and LA electrogram fractionations ([LA CV: r2 = 0.35, p = 0.006], [RA CV: r2 = 0.52, p = 0.001] 

and [fractionated electrogram: r2 = 0.50, p <0.001] Table 3), but not LA voltage or ERP (p > 

0.05 for both). We further evaluated chamber-based correlations. Consistent with results for 
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mean atrial infiltration, LA mean infiltration was correlated with LA fractionated electrograms 

and LA CV but not LA voltage (p >0.05, Figure 7C) or LA mean ERP (p >0.05, Figure 5D). 

The correlation was better with fractionated electrograms than with LA CV ([LA fractionation: r2 

= 0.51, p <0.001], [r2 = 0.38, p = 0.004] Figures 6A & 7A). RA mean infiltration was also 

correlated with RA CV (r2 = 0.45, p = 0.003, Figure 7), but like atrial mean atrial infiltration, it 

did not correlate with RA mean ERP (p = 0.37, Figure 7). 

 

5.3.3.2 Myolysis  

As can be seen in Figure 8 panel A, most myocytes in the control group maintained their 

sarcomeric architecture as indicated by low cytosolic glycogen; only few had mild to moderate 

myolysis. With sustained obesity, the animals showed signs of extensive deterioration of 

myofibres and replacement of the contractile units by glycogen. Weight fluctuation exhibited 

similar impairment of contractile units, albeit to a lesser extent. In the LA, the percent total 

myolysis (mild + moderate + severe) increased in the obese group to more than 2.5-fold those in 

the control group (95.8±2.0% vs. 38.3±16.3%, p <0.001) and by 30% of the weight fluctuation 

group (95.8±2.0 vs. 70.2±9.3%, p = 0.001), Table 2 and Figure 8 panel B. The total myolysis in 

weight fluctuation groups increased to almost twice those in the controls (70.2±9.3% vs. 

38.3±16.3%, p = 0.012), Table 2 and Figure 8 panel B. In the RA, both obese and weight 

fluctuation animals showed greater total myolysis than controls (p = 0.001 for both), but 

comparable myolysis between both groups (p = 0.92), see Table 2 and Figure 8 panel B.  

Furthermore, there were observations of progressive severity of myolysis in the obese 

and weight fluctuation animals, see Figure 9. Myocytes with severe myolysis (>50% of cytosol 

covered by glycogen) were very few in the reference control group but greatly increased in both 

obese and weight fluctuation groups. Myocytes with less severe degree of myolysis became more 

prevalent in the controls and less so in the stable obesity and weight fluctuation groups. 
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5.3.3.3 Association of Myolysis with Structural and Functional 

Substrates  

 See Table 4 and Figure 10-11 for the summary of the linear regression of fibrofatty infiltrations 

and structural and functional substrates. Mean atrial myolysis was positively correlated with: 

body weight (r2=0.39, p=0.025); atrial volume ([LA: r2=0.37, p=0.009], [not with RA: r2 = 0.09, 

p=0.23]; atrial pressures ([LA: r2=0.40, p<0.01], [RA: r2=0.28, p=0.03]); but not with systolic BP 

nor LV ejection fraction (p>0.05). We further evaluated chamber-based correlations. Consistent 

with results for mean atrial myolysis, both LA and RA myolysis did not correlate with systolic 

BP (p= 0.1 and 0.09). LA myolysis showed strong positive correlation with LA volume (r2=0.51, 

p<0.01), meanwhile a negative correlation was found with RA myolysis and RA volume, though 

this was not significant (p=0.09). Additionally, both LA and RA myolysis were correlated with 

left and right atrial pressures ([LA: r2=0.47, p=0.007] and [RA: r2=0.26, p=0.04]), but not with 

LVEF (p>0.05), Figures 12 & 13.  

 

5.3.3.4 Lipid Remodelling by Matrix-Assisted Laser Desorption 

Ionization Imaging Mass Spectrometry 

Please refer to Figure 14 for the lipid maps. We identified five lipid groups that had the most 

abundant spectral peaks: 184.06, 205.99, 760.57, 264.25, and 454.36, respectively (Figure 14 

panel B). The m/z of 184.06, which corresponds to phosphatidylcholine (PC)/sphingomyelin 

headgroup, was abundant in the myocardium but not in epicardial layer, with most intensity seen 

in controls. Similar findings were observed for m/z of 760.57 (PC 34:1). m/z of 205.99, which 

could not be identified in the present pilot study, was more associated with fat regions. 

Differential expression and abundance were also noted for the m/z of 454.36, which again could 

not be identified, and was only observed in the obese myocardium. No further quantitative 

analysis was done due to the pilot nature of the present study, which was aimed to investigate the 

potential usefulness of MALDI imaging as a tool for mapping fibro-fatty lipid substrate.  
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5.4 DISCUSSION 

5.4.1 Major Findings 

The present study provides new mechanistic insights into the nature of fibro-fatty infiltrations as 

an evolving substrate for AF obesity and in fluctuating weight. Using a chronic ovine sheep 

model:  

Compared to reference controls, atrial substrate due to chronic obesity was characterized by: 

1. 13.8 mm Hg greater systolic blood pressure 

2. 32% increased left atrial volume 

3. 2-fold greater left and right atrial pressures 

4. Significant fibrofatty infiltrations characterised by excessive presence of adipocytes, 

collagen and inflammatory infiltrates 

5. 2.5-fold extensive myolysis and deterioration of myocyte contractile apparatus  

6. Nonsignificant change in right atrial dimension 

 

Atrial substrate due to weight fluctuation was characterised by: 

1. Increased left atrial size compared to controls, but less severe compared to stable obesity 

2. Nonsignificant change in right atrial volume compared to controls or to stable obesity 

3. 1.5 times higher left atrial pressure compared to controls, but less severe than in obesity 

4. Nonsignificant change in right atrial pressure compared to controls, but reduced in 

comparison to obesity 

5. Significant fibrofatty infiltrations characterised by excessive adipocytes, collagen 

deposits and inflammatory infiltrates, but comparable to stable obesity 

6. 2-fold significant and progression of myolysis of myocytes, but 30% less severe than in 

stable obesity 

7. Characteristic profile and abundance of lipid species in the atrial myocardium 

8. Nonsignificant change in systolic blood pressure 

  

In three groups, atrial substrate is characterised by: 

1. Significant negative correlation between mean grade infiltration and conduction velocity 
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2. Significant positive correlation between mean grade infiltration and electrogram 

fractionation 

3. Significant correlation of grade infiltration with left atrial volume, but no correlation with 

right atrial volume 

4. Nonsignificant correlations of infiltrations with left atrial voltage nor refractoriness 

5. Significant correlations of myolysis with: 

a. Body weight 

b. Left atrial volume 

c. Left and right atrial pressures 

6. Nonsignificant correlations between myolysis and systolic blood pressure and right atrial 

volume 

In summary, weight fluctuation demonstrated an established pathological atrial remodelling 

despite comparable volumes of epicardial fat depots as lean weight and showed similar atrial 

substrate to obesity, albeit to a lesser extent.  

 

5.4.2 Pro-arrhythmic Substrate Due to Obesity  

Obesity is reported to associate with an increased risk of atrial arrhythmias in several 

epidemiological studies.416, 421 Indeed, intensive research is underway to delineate the 

mechanisms that may mediate this sinister clinical link. Given the low-grade inflammation, 

neurohumoral activations, and autonomic imbalance seen during chronic obesity, it is likely that 

they might drive the formation of AF substrate in obesity.181, 340 Consistent with this, in an earlier 

model of short-term obesity, we showed significant atrial enlargement, induction of fibrosis, and 

inflammatory infiltrates.181 Obesity was associated with greater expressions of pro-fibrotic 

markers, including endothelin (ET)-1, ET receptors (ETAR & ETBR), transforming growth 

factor-beta 1 and platelet-derived growth factor in dose-dependent fashions. Mahajan et al.182 

corroborated these findings by demonstrating LA enlargement, increased interstitial fibrosis with 

accompanying pro-fibrotic TGF-b1 expression using a sustained model of obesity, induced by 

high-calorie feeding for 72 weeks. Interestingly, in the present study involving a very chronic 

model of obesity, we showed both abnormal atrial dimensions and haemodynamics.  
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Impairment in electrophysiological properties of the atrial is an important further 

requisite for AF substrate formation.11 We previously reported global biatrial endocardial 

remodelling characterized by conduction abnormalities, fractionated electrograms, and increased 

propensity for AF during sustained weight gain, highlighting that obesity could induce electrical 

remodelling.182 This is well in line with current findings. Nonetheless, unlike previous studies, 

we failed to association of obesity with reduced posterior LA endocardial voltage, which we 

speculate could be blunted by chronic age of our models. 

 

5.4.3 Epicardial Fat and Pro-arrhythmic Substrate  

Epicardial fat expansion is an important factor involved in the pro-arrhythmic substrate 

formation. In clinical reports, EAT is shown to predict greater risk for AF presence, severity and 

recurrence after ablation.263, 265, 266 When compared to traditional markers of adiposity, such as 

BMI and waist circumference, EAT demonstrates superior risk prediction for AF. The link 

between EAT and AF has been further demonstrated several preclinical models. For example, 

experimental studies have shown that cardiac MRI assessed EAT expansion occurs as a common 

consequence of obesity and that it may explain the clinical link between obesity and AF.181, 182 

Additionally, EAT secretome is shown to promote fibrosis, alteration of pro-fibrotic signalling, 

myocyte electrical properties. 

 

5.4.4 Epicardial Fat-mediated Ultrastructural Remodelling 

According to the prevailing hypothesis, induction of fat cell infiltration could occur as a 

consequence of epicardial fat expansion, further adding to the substrate due to obesity.182, 280, 388, 

412 This was recently confirmed in an experimental study by Mahajan et al182, which 

demonstrated significant invasion of contiguous posterior left atrial myocardial walls by 

epicardial fat cells following long-term weight gain. In the current study, we noted substantial 

presence of infiltrated intramyocardial fat cells. When we studied this a bit more in-depth, we 

discovered that these fatty infiltrates were more extensive and severe in chronic obesity and 

weight fluctuation, which were characterised by increased presence of fibrotic scar tissue and 
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inflammatory infiltrates. The adipocytes exhibited signs of cell fusion more characteristics of 

syncytia formation rather than hypertrophic growth. 

Myocardial fibro-fatty infiltrations represent more than just an epiphenomenon. The 

electrical inertness or lack of heat conductivity of fat is a long-established concept281, 422 and 

could, indeed, underlie sinister pro-fibrillatory mechanisms.11, 120 Consistent with this, our data 

showed significant correlation of fibro-fatty infiltrates with complex electrogram fractionations, 

which serve as cardinal signs of complexity in fibrillatory circuitry.11 We propose that these non-

excitable cells could promote reduction in cell–cell coupling and increased local conduction 

blocks that can promote re-entry, electrical dissociation, and wave breakthrough.  

Furthermore, the presence of fatty infiltrates in the microenvironment of myocytes may 

aggravate the paracrine effects of the EAT secretome. This could permit a more direct 

modulating effect on the cardiac myocytes by secreting myriad cytokines with ability to alter the 

functional and structural properties of the atrial myocytes.11, 120, 282 It is intriguing that, in the 

present study, our results demonstrated extensive myofibrillar remodelling, highlighting that 

increased adiposity leads to ultrastructural changes in the myocytes. Additionally, the extent of 

myofibrillar remodelling was correlated with atrial enlargement and haemodynamic 

impairments. This was observed in both the obese and weight fluctuation models, thus implying 

that fluctuating could promote ultrastructural change akin to obesity. It is likely that subcellular 

changes like myolysis and perturbation of lipid signature occur early on before overt AF 

substrate. This concept is well supported by other reports, which have shown that changes at 

subcellular levels, occurring early on in the time of structural remodelling (1 to 3 weeks), 

contribute to AF pathogenesis. Additionally, it could allow for closer and direct cellular crosstalk 

between fat cells and intramyocardial fibroblasts, increasing the likelihood of the latter to 

transmogrify into aggressive collagen-depositing myofibroblasts.388 It is intriguing that the 

results reported herein demonstrated extensive fibrotic scare formation with progressive severity 

of fibro-fatty infiltrates.   
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5.4.5 Atrial Substrate in Weight Fluctuation 

Obesity relapse remains one major bottleneck in weight management programs. Data from 

several trials have implicated compensatory mechanisms, such as reduced energy expenditure, 

changes in adipogenic (i.e., leptin) and appetite regulating hormones, as likely culprits.343, 344, 419 

Potential cardiomodulatory effect of weight fluctuation was recently demonstrated by us. In a 

long-term follow-up study, we showed worsening of benefits of weight loss with more than 5% 

fluctuation in weight of patients.345 We speculate that the changing adipokines following 

fluctuating weight may modulate atrial electrophysiology and predispose to AF. Indeed, recent 

data suggest that leptin may mediate angiotensin-II-423 and high-fat-diet-induced424 atrial fibrosis 

and induction of AF. It is notable that, in the present study, demonstrated residual areas of atrial 

enlargement and atrial pressure increases, which could mediate diastolic dysfunction and AF 

substrate. More importantly, we noted significant fibrofatty infiltrations and myolysis, which 

correlated strongly with structural and haemodynamic remodelling during in weight fluctuation. 

We believe this data may plausible explanation to the results of the LEGACY study. Taken 

together, it is possible that stable obesity and WF promote atrial remodelling via alternate 

upstream mechanisms, the EAT-trigger and compensatory adipokine (EAT-independent) 

pathways, respectively. 

 

5.4.6 Study Limitations 

Several limitations are worth noting in the current study. First, there was no segmentation 

performed for atrial EAT due to the limited resolution of CMR. We believe that this could have 

hidden important details on the regional distribution of EAT, which may have prevented 

conclusion on regions that may of important clinical relevance. Segmentation of EAT, as 

reported by Nagashima et al302, would have allowed us to determine EAT location that most 

likely mediate the observed elecro-structural substrate seen therein. It should be noted that those 

investigators used computed tomography as their imaging modality, which demonstrates much 

higher resolution.  
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5.4.7 Potential Clinical Implications 

These findings provide a mechanistic basis for the clinical associations reported between 

expansion of epicardial fat and AF. EAT may represent a useful risk marker to identify patients 

at an increased AF risk which could allow a more personalized risk stratification. EAT could be 

a promising target for atrial fibrillation, a concept recently tested in patients who underwent 

pulmonary vein isolation wherein treatment with artovastatin led to reduction in EAT volume. 

Furthermore, these results provide mechanistic basis for the perils of periodic weight fluctuation 

often encountered in clinical settings. Although weight loss is likely to reduce EAT, fluxes in 

weight could remodel patients’ atria by induction of fibro-fatty infiltrations and pathologic 

modulation of contractile units in myocytes. Further studies are warranted to explore potential 

therapies targeting intramyocardial fat cell depositions and to determine whether their 

modulation could constitute a treatment target for primary and secondary prevention of AF. 

 

5.5 CONCLUSIONS  

The findings herein demonstrate that chronic obesity induces fibro-fatty replacement of atrial 

myocytes and deterioration of myocyte contractile apparatus, which may drive impairments of 

atrial electrical properties. Weight fluctuation induces similar but less severe changes to those 

seen during stable obesity and this may explain the increased risk of atrial arrhythmias during 

periodic fluxes in weight. Fibro-fatty infiltrations underlie important substrate for the 

pathogenesis of atrial fibrillation, which necessitate therapies targeting intramyocardial fat cell 

depositions. 
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5.6 TABLES 

Table 1. Anthropometric and Haemodynamic Characteristics 

Parameter Control Obese Weight fluctuation 

p-value 

Obese vs. controls 
Weight fluctuation vs. 

controls 

Obese vs. weight 

fluctuation 

Weight (kg) 76.1±4.5 109.1±7.1 77.2±4.5 <0.001 0.960 <0.001 

Systolic BP (mmHg) 79.4±5.0 93.2±14.3 80.8±10.1 0.034 NS 0.053 

LA pressure (mmHg) 3.7±0.9 8.5±1.9 5.7±1.8 <0.001 0.02 0.009 

RA pressure (mmHg) 2.9±0.9 7.2±2.5 4.6±2.7 <0.002 NS 0.048 

LA-EDv (mL) 34.2±5.2 43.3±6.6 33.0±6.6 0.239 0.884 0.086 

LA-ESv (mL) 23.5±3.9 28.8±3.6 23.5±1.4 0.687 0.773 0.28 

RA-EDv (mL) 34.1±4.8 47.9±5.3 35.0±13.2 0.247 0.962 0.318 

RA-ESv (mL) 22.3±4.1 32.8±4.2 25.1±9.1 0.462 0.972 0.551 

LV ejection fraction (%) 41.6 (8.7) 44.9 (8.3) 45.1 (10.2) 0.710 0.336 0.694 
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Table 2. Structural, Fibro-fatty Infiltrations, Myofibrillar Remodelling of Obese, Weight Fluctuation and Controls 

Parameter Control Obese Weight fluctuation 

p-value 

Obese vs. controls 
Weight fluctuation 

vs. controls 

Obese vs. weight 

fluctuation 

LA volume (cm3) 40.6±3.0 53.6±5.8 48.5±6.6 0.001 0.025 <0.001 

RA volume (cm3) 71.5±12.2 74.1±7.0 63.7±7.6 0.841 0.224 0.067 

Fibrofatty infiltration 

grade, LA 
1.54±0.29 2.51±0.41 2.35±0.42 0.001 0.004 0.710 

Fibrofatty infiltration 

grade, RA 
1.81±0.25 2.85±0.44 2.85±0.44 0.002 0.047 0.249 

Total myolysis, LA (%) 38.3±16.3 95.8±2.0 70.2±9.3 <0.001 <0.001 0.012 

Total myolysis, RA (%) 40.0±19.6 92.3±10.1 82.5±11.0 0.001 0.001 0.920 

Severe myolysis, LA 

(%) 
5.7±4.9 42.7±5.1 17.2±9.5 <0.001 0.042 <0.001 

Severe myolysis, RA 

(%) 
1.6 (8.1) 34.6 (40) 24.9 (24.2) 0.02 0.006 0.671 
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Table 3. Relationship Between Mean Grade Fibrofatty Infiltration and Electro-structural Substrates  

Parameter Pearson r r2 p-value 

LA pressure (mm Hg) 0.620 0.384 0.005 

RA pressure (mm Hg) 0.315 0.099 0.175 

LA voltage (mV) -0.076 0.006 0.756 

CV, LA (m/s) -0.592 0.350 0.006 

CV, RA (m/s) -0.721 0.520 0.001 

ERP mean, LA (ms) -0.102 0.010 0.679 

ERP mean, RA (ms) -0.078 0.006 0.749 

LA fractionation (mm) 0.706 0.498 <0.001 
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Table 4. Relationship Between Mean Atrial Myolysis and Atrial Structural Substrates  

Parameter Pearson r r2 p-value 

Body weight (kg) 0.540 0.392 0.025 

Systolic BP (mm Hg) 0.443 0.196 0.07 

LA volume (cm3) 0.612 0.374 0.009 

RA volume (cm3) -0.308 0.095 0.228 

LA pressure (mm Hg) 0.633 0.40 0.008 

RA pressure (mm Hg) 0.532 0.283 0.028 

LVEF (%) 0.237 0.056 0.394 
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5.7 FIGURE LEGENDS 

Figure 1. Scoring Algorithm for Classifying Fibrofatty Infiltrations 

Figure 2. Changes in Atrial Pressure  

Panel A: Left atrial pressure demonstrating significantly increased diastolic and systolic 

pressure measurements caused by stable obesity and weight fluctuation.  Panel B: Right 

atrial pressure demonstrating significant diastolic and systolic pressure changes due to 

obesity; chamber pressure increased caused by weight fluctuation trended towards 

significance. CN, controls; OB, obese group; WF, weight fluctuation group. 

Figure 3. Fibro-fatty Remodelling of the Atrial Myocardium due to Obesity and Weight 

Fluctuation 

Panel A: Representative Masson’s Trichrome-stained images of the atrial myocardial tissue 

of control, obese and weight fluctuation animals (x0.6 mag, 2.5 mm); inset, showing fibrotic 

remodelling (arrowheads) of infiltrates in obese and weight fluctuation (x20 mag, 100 µm). 

Panel B: Characteristic hyperplastic nature of fibro-fatty infiltrations in obese and weight 

fluctuation animals; arrowheads pointing to inflammatory cells in the infiltrates (x20 mag, 

100 µm). Panel C: Demonstrations of fat cell fusions in obese and weight fluctuation 

animals.; arrowheads pointing to giant syncytiated adipocytes. CN, controls; OB, obese; WF, 

weight fluctuation; mag, magnification 

Figure 4. Characterisation of Fibro-fatty Infiltrations 

Panel A: Average fibro-fatty infiltration grades of the left and right atrial tissues from 

controls, obese and weight fluctuation sheep. Panel B: Association of obesity and weight 

fluctuation with progressive severity in fibro-fatty infiltrations. Panel C: Collagen content of 
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infiltrates. Panel D: Average number of adipocytes per infiltrate. LA, left atrial wall; and 

RA, right atrial wall.  

Figure 5. Relationship Between Fibrofatty Infiltration and Effective Refractory Period 

Panel A: Linear regression results demonstrating no correlation between grade infiltration 

and ERP in the left atrium. Panel B: Correlations between grade infiltration and ERP in the 

left atrium. ERP, effective refractory period; LA, left atrial; RA, right atrial. 

Figure 6. Relationship Between Fibrofatty Infiltration and Conduction Velocity 

Panel A: Linear regression results demonstrating negative correlation between grade 

infiltration and CV in the left atrium. Panel B: Strong positive correlations between grade 

infiltration and conduction velocity in the right atrium. CV, conduction velocity; LA, left 

atrial; RA, right atrial. 

Figure 7. Relationship Between Fibrofatty Infiltration and Fractionated Electrogram 

and Voltage 

Panel A: Linear regression results demonstrating strong positive correlation between grade 

infiltration and electrogram fractionation in the left atrium. Panel B: No correlation between 

grade infiltration and voltage in the left atrium. LA, left atrial; RA, right atrial. 

Figure 8. Remodelling of the Myofibrillar Contractile Units 

Panel A: Representative periodic acid Schiff stained images, demonstrating replacement of 

the myofibrillar units (myolysis) of atrial myocytes (x80 mag, 25 µm). Panel B: Percent total 

myolysis in controls, obese and weight fluctuation groups in the left and right atrial 

chambers. CN, controls; LA, left atrial; OB, obese; RA, right atrial; WF, weight fluctuation.  

Figure 9. Progressive Remodelling of Myofibrillar Contractile Units 

Progressive severity of myolysis because of stable obesity and weight fluctuation, proportion 

of mocytes with no myolysis (Panel A); mild myolysis (Panel C); moderate myolysis (Panel 
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C); and severe myolysis (Panel D). CN, controls; LA, left atrial; OB, obese; RA, right atrial; 

WF, weight fluctuation.  

Figure 10. Relationship Between Myofibrillar Remodelling and Systolic Blood Pressure 

Panel A: Linear regression results showing non-significant weak correlation of myolysis in 

the left atrium with systolic blood pressure. Panel B: Regression results showing weak and 

non-significant correlation of myolysis in the right atrium and systolic blood pressure. BP, 

blood pressure; LA, left atrial; RA, right atrial. 

Figure 11. Relationship Between Myofibrillar Remodelling and Chamber Volumes 

Panel A: Linear regression results showing strong, significant positive correlation of 

myolysis with chamber volume in left atrium. Panel B: Regression results showing non-

significant negative correlation with chamber volume in the right atrium. BP, blood pressure; 

LA, left atrial; RA, right atrial. 

Figure 12. Relationship Between Myofibrillar Remodelling and Atrial Haemodynamics 

Panel A: Linear regression results showing significant positive correlation of myolysis with 

pressure in the left atrium. Panel B: Regression results showing significant positive 

correlation with pressure in the right atrium. LA, left atrial; RA, right atrial. 

Figure 13. Correlation of LV Ejection Fraction with Atrial Myofibrillar Remodelling 

Panel A: Linear regression results showing no correlation of left atrial myolysis with left 

ventricular ejection fraction (x100). Panel B: Regression results showing no correlation of 

right atrial myolysis with left ventricular ejection fraction. LA, left atrial; RA, right atrial. 

Figure 14. Spectral Distribution of Most Abundant Peaks of Matrix-assisted Laser 

Desorption Ionization Images 

Panel A: Representative H & E staining images and orientation (epicardium to endocardium) 

of sheep posterior left atrial tissue showing distribution of fatty infiltrations. Panel B: 
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MALDI images of lipid with the most abundant peaks. The identified lipids are indicated at 

the top; m/z values are shown above the images. The intensity of each pixel reflects the 

abundance in the tissue.  
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Figure 1. Scoring Algorithm for Classifying Fibrofatty Infiltrations 
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Figure 2. Changes in Atrial Pressure 
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Figure 3. Fibro-fatty Remodelling of the Atrial Myocardium due to Obesity and Weight Fluctuation 
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Figure 4. Characterisation of Fibro-fatty Infiltrations 
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Figure 5. Relationship Between Fibrofatty Infiltration and Effective Refractory Period 
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Figure 6. Relationship Between Fibrofatty Infiltration and Conduction Velocity 
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Figure 7. Relationship Between Fibrofatty Infiltration and Fractionated Electrogram 

and Voltage 
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Figure 8. Remodelling of the Myofibrillar Contractile Units 
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Figure 9. Progressive Remodelling of Myofibrillar Contractile Units 
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Figure 10. Relationship Between Myofibrillar Remodelling and Systolic Blood Pressure 
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Figure 11. Relationship Between Myofibrillar Remodelling and Chamber Volumes 
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Figure 12. Relationship Between Myofibrillar Remodelling and Atrial Haemodynamics 

 

 

 

  

r²=0.258, p=0.044

0
2
4
6
8

10
12
14

1 1.5 2

(m
m

 H
g)

RA myolysis
(Log-transformed)

Mean RA pressure

r²=0.475, p=0.007

0
2
4
6
8

10
12
14

1 1.5 2

(m
m

 H
g)

LA myolysis
(Log-transformed)

Mean LA pressure

A B 



 

   

 

197 

Figure 13. Correlation of LV Ejection Fraction with Atrial Myofibrillar Remodelling 
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Figure 14. Spectral Distribution of Most Abundant Peaks of Matrix-assisted Laser 

Desorption Ionization Images 
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6. Chapter Six 

Obesity and Sudden Cardiac Death: A Meta-

Analysis of 1.4 Million Individuals 
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6.1 INTRODUCTION 

Sudden cardiac death (SCD) is responsible for 50% of total cardiovascular (CV) mortality 

and potential-life lost to CV disease.307, 309, 425  According to recent epidemiological findings, 

while the overall burden of cardiac deaths has been gradually declining, the incidence of SCD 

has demonstrated a steady increase over the same period.314, 426, 427  In the United States 

alone, SCD from out-of-hospital sudden cardiac arrest (OSCA) is reported to affect between 

170,000 to 450,000, with incidence rates of 234 deaths per 100,000 person-years.14, 309, 314, 426, 

427  

Despite this, the true burden of SCD is likely to be inaccurately estimated due in part 

to the confusion in what constitutes sudden death. According to the most recent consensus 

documents, SCD is temporally defined as a natural death from “sudden” cardiac arrest (SCA) 

in patients without known cardiac abnormality, occurring within an hour of onset of symptom 

(witnessed) or 24 hours in an unwitnessed case; with cardiac arrest entailing the cessation of 

mechanical function or activity of the heart, evidenced by termination of both 

cardiopulmonary and systemic circulations.309 Importantly, this takes into account three key 

elements of SCD: natural, rapid, and unexpected nature of the death.  

Mechanistically, SCD is shown to be caused predominantly arrhythmic in origin322, 

often precipitated by ischaemic heart disease317, 318. It is also precipitated by other 

pathological conditions, such as cardiomyopathies and inherited channelopathies.312, 318 

However, data from the general population demonstrate that half the crude rates of SCD 

occur in patients without apparent high-risk features or impaired heart function.307, 331 Why 

this is the case remains unknown. Moreover, left ventricular dysfunction, the dominant 
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determinant for primary prevention implantable defibrillator (ICD), has been reported to only 

occur in the minority of SCD patients, thus highlighting the need for novel risk markers.331  

The prevalence of overweight and obesity has more than doubled since the 1970’s, 

with current projections estimating that up to 90% of middle-aged individuals will be either 

overweight or obese by 2025.1, 3 Importantly, the rise of the obesity epidemic has culminated 

in rise of primary CV morbidities and primary risk factors for SCD.1 Obesity, measured as 

body mass index (BMI), has been reported to show a graded and highly significant 

association with myocardial infarction in community-based studies.335 There is also evidence 

suggesting that increasing adiposity may contribute to the pathogenesis of sudden death337, 

with both moderate and severe obesity reported to associate with higher risk of pulseless 

ventricular tachyarrhythmia’s and late potentials.428, 429  

In this study, we aimed to undertake a systematic review of the literature and provide 

a meta-analytic assessment of the link between obesity and SCD. Our objectives were to 

evaluate the association between SCD and: 1) BMI as a categorical variable, and 2) BMI on a 

continuous scale in prospective observational studies. 
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6.2 METHODOLOGY 

6.2.1 Literature Search Strategy and Selection Criteria 

The present study was conducted in accordance with the guidelines given by the Meta-

analysis of Observational Studies in Epidemiology (MOOSE) statement430 and was registered 

on PROSPERO (ID: CRD42018104848). 

We searched the medical literature using the online databases PubMed, EMBASE, 

Ovid MEDLINE, using the key words: 

PubMed: (Overweight [MH] or Overweight [TW] OR Obesity [TW] OR Obesity [MH] OR 

body mass index [TW] OR BMI [TW]) AND (Sudden cardiac death [TW] OR Sudden 

Cardiac Death [MH] OR Sudden Cardiac Arrest [TW] OR Sudden Cardiac Arrest [MH] OR 

Sudden Arrhythmic Death [TW] OR SCD [TW] OR Out-of-Hospital Sudden Cardiac Arrest 

[TW] OR OSCA [TW]) 

EMBASE: ('Obesity'/EXP OR Obesity OR ‘Obesity’/SYN OR 'BMI'/EXP OR ‘BMI’/SYN 

OR 'Body Mass'/EXP OR ‘BODY MASS’/SYN) AND ('Sudden Cardiac Death'/EXP OR 

'Sudden Cardiac Death'/SYN OR 'Out of Hospital Cardiac Arrest'/EXP OR 'Out of Hospital 

Cardiac Arrest'/SYN OR 'Sudden Cardiac Arrest'/EXP OR 'Sudden Cardiac Arrest'/SYN) 

The Core Collection of Web of Science: (Overweight OR Obesity OR “body mass index” 

OR BMI) AND ("Sudden Cardiac Death" OR “SCD” OR “Cardiac Arrest” OR “Out-of-

Hospital Cardiac Arrest” OR “Sudden Cardiac Arrest” OR “OSCA” OR “SCA”) 

Ovide MEDLINE: (body mass index.mp. OR BMI.mp. OR Body Mass Index/ OR 

overweight.mp. OR Overweight/ OR obesity.mp. OR Obesity, Morbid/ OR Obesity/) AND 

(sudden cardiac arrest.mp. OR Death, Sudden, Cardiac/ OR SCD.mp. OR SCA.mp.) 
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Studies published in English were retrieved and exported to and sorted in EndNote 

8.2 software. We screened the retrieved papers based upon the titles followed by the scrutiny 

of their abstracts and full texts, thereafter, and excluded: 1), conference reports and case 

reports; 2), abstracts not yet published, editorials and letters to the editor; 3), studies reporting 

only all-cause mortality and/or non-sudden cardiac mortality; 4), and studies that did not 

address study objectives. Review articles were searched for original papers and were later 

excluded. Finally, we included studies if they met the following criteria: 1), reported sudden 

cardiac death as an endpoint; 2), used BMI or WHR as the measure of obesity; and 3), 

conducted an adjusted multivariable risk estimation.  

 

6.2.2 Data Extraction and Quality Assessment  

Data extraction and study quality assessment were done by two investigators (Agbaedeng 

TA, TAA, and Munawar DA, DAM) independently, using an a priori determined set of 

guidelines, and with disagreements resolved by consensus. We extracted the following data: 

1) The incidence of SCD/all-cause mortality/non-SCD; 2), Age; 3), Body mass index (BMI) 

and/or waist-to-hip ratio (WHR); 4), Risk estimates; 5), Follow-up; 6), Study endpoints; 7), 

Study design; 8), Participants. Methodological quality assessment was done via the 

“Newcastle-Ottawa Scale for Cohort Studies.”  

 

6.2.3 Data Analysis 

A random effects meta-analysis was conducted on the pooled results from the various 

citations using the RevMan 5.3 (The Cochrane Collaboration,Copenhagen), with the effect 

size presented as risk ratio or relative risk (RR). RRs were pooled from studies that 
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conducted multivariable analysis. Meta-analyses involving RR were done to show 

independent association with SCD.  

Analysis was conducted on a categorical or continuous BMI, measured as kilogram 

per metre squared (kg.m-2). BMI categories were defined as per World Health Organisation 

guidelines: <18.5 kg.m-2 as underweight; 18.5 kg.m-2 to 24.9 kg.m-2 as normal weight; 25 

kg.m-2 to 29.9 kg.m-2 as overweight; and ≥30 kg.m-2 as obesity. The degree of heterogeneity 

of effect size estimates across the studies was assessed by examination of forest plots, chi-

squared (X2, or Chi2) test and I-squared (I2) statistic. The latter two provide numerical values 

for an assessment of heterogeneity, with a high Chi2 relative to the degree freedom suggestive 

of variations in effect estimates and I2 greater than 75% indicative of a considerable amount 

of heterogeneity (p<0.1 defined as the cut-off). 

  

6.3 RESULTS  

6.3.1 Literature Searching Results 

Our online database searches on MEDLINE, Embase and the Cochrane Library resulted in a 

total of one hundred and ninety references, which were screened for eligibility. This was 

supplemented with hand-searching of the retrieved citations and searches done on sources 

like Google Scholar, thus, resulting in a total of 3925 references. Upon applying the 

exclusion and inclusion criteria (Figure 1), 22 studies were finally chosen for inclusion. Of 

these, five were further excluded for incomplete data reporting, leaving a total of 17 studies. 
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6.3.2 Study Characteristics 

A full description of the characteristics of the included studies are provided in Tables 1 and 

2, including study designs, quality scores, demographics, methodology, study endpoints, 

follow-up, and participants.  

The 17 included studies had a total of 1,481,604 participants (586,641 [39.6%] males 

and 89,4963 [60.4%] females) from 5 countries (1 study from Canada431, 5 from Finland432-

436, 3 from France437-439, 2 from Japan440, 441, 1 from Sweden333 and 5 studies from the 

USA337, 338, 442-444). There were male- or female-only participants in 9 studies each. Three of 

the studies were multi-centre studies including individuals from multiple sites, including 2 

studies performed in USA and 1 from France; there was no description of centres used in the 

rest of the studies. The follow-up period ranged from 8 years, in Albert et al337 to as long as 

56 years, in Cuddy et al431 27% of the studies had incident SCD/SCA as the primary 

outcome; 18.2% had both SCD and cardiovascular disease (CVD) or myocardial infarction 

(MI) as composite endpoints; 9% had coronary heart disease (CHD) as the endpoint; and in 

45.5%, there was no indication that SCD was or not the primary outcome. 

There was a total of 10,825 cardiac deaths reported in the studies, 8,151 (75%) of 

which were SCD, corresponding to an incidence rate of 5.50 deaths per 1,000 (8,151 SCD 

events/1,481,604 participants). SCD was adjudicated by a combination of review of medical 

records and autopsy reports, coroner, and by next-of-kin.  
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6.3.3 Study Quality 

We assessed the methodological study quality using the Newcastle-Ottawa Quality 

Assessment Scale for cohort studies. Overall, the included studies earned NOS scores ranging 

from 5 to 9 (7.2±0.1), see Tables 1 & 2. 

 

6.3.4 Clinical Characteristics 

Patients diagnosed with SCD were older than event-free subjects (p=0.01) and had higher 

BMI (p<0.01), Table 3. Hypertension was the most prevalent condition in SCD subjects at 

55%. SCD patients were 11 times more likely to have congestive heart failure than disease-

free participants (p<0.01). Diabetes was prevalent among 22% SCD subjects compared to 

4.4% in those without SCD (p<0.01).  24.1% and 16.0% of SCD diagnosed patients had a 

history of coronary heart disease and myocardial infarction, as compared to only 6.5% and 

2.3% in SCD free patients (p<0.01 in all). Atrial fibrillation was also more common in SCD 

patients than in individuals without SCD ([6.3% vs. 3.9%, p<0.01], Table 3). 

 

6.3.5 META-ANALYSIS 

6.3.5.1 Incremental BMI and SCD 

As shown in Table 3, BMI was significantly higher in patients with SCD than in those 

without sudden death. Seven studies including 50,552 individuals reported the association 

between increment in BMI and SCD risk.333, 432-434, 437, 438, 440 Four population cohorts were 

reported in Lahtinen et al433, thereby contributing a total of four risk estimates. The individual 

studies corrected for the following variables: alcohol, sex, cholesterol, age, systolic blood 
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pressure, prevalent CHD, smoking, diabetes, hypertension, left ventricular ejection fraction, 

triglycerides, fibrinogen, parental SCD, parental MI, and heart rate. In the pooled analysis, 

we found significant and independent association between BMI and SCD, such that 1-unit 

increase in BMI predicted more than 6% elevated risk of SCD (RR [95% CI]: 1.06 [1.02-

1.10]; p=0.006), Figure 2. 

 

6.3.5.2 Underweight BMI and SCD 

Four studies reporting on underweight BMI and SCD in a total of 1,097,968 participants.338, 

436, 443, 444 Underweight BMI category was defined as BMI <18.5 kg.m-2, except in Chiuve et 

al338 and Eranti et al436, where it was defined as 18.5 to 20.9 kg.m-2 and <20 kg.m-2, 

respectively. We pooled only the adjusted risk ratios from the individual studies in our 

analysis. Interestingly, an independent association of underweight with risk of SCD was only 

reported by Chiuve et al338, but not shown for others. However, in our pooled analysis, this 

was significant and independent of traditional risk factors, such as: age, gender, smoking 

status, cholesterol, alcohol, family history of MI, diabetes, hypertension, prevalent CHD, 

prevalent HF, ECG variables. We found that the underweight predicted 33% increased risk of 

developing SCD (RR [95% CI]: 1.33 [1.00-1.78]; p=0.05), see Figure 3. 

 

6.3.5.3 Overweight and SCD 

We identified a total of 6 studies evaluating the relationship between the overweight state and 

the risk of SCD, and they had 1,381,477 participants.337, 338, 435, 436, 442-444 Adabag et al443 

reported 2 sub-analyses, risk of SCD in individuals with and without a smoking history; 

therefore, we had a total of 7 risk estimates contributing to our meta-analysis. Overweight 
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was defined as BMI of 25 to 29.9 kg.m-2. Other than in Chiuve et al338 and Eranti et al436, the 

rest of the studies did not show any significant association after adjusting for traditional risk 

factors. Accordingly, when we pooled these adjusted RR’s in our meta-analysis, we found no 

significant association of the overweight BMI with SCD (RR: 1.13; 95% CI: 0.94 to 1.35; 

p=0.20), see Figure 4. 

 

6.3.5.4 Obesity and SCD 

We found a total of 10 studies providing data on the relationship of obesity and SCD, 

equating to 1,438,131 participants.337, 338, 431, 435, 436, 439, 441-444 Given that Adabag et al443 had 

two subgroup analyses, we had a total of 11 risk estimates that we pooled in our meta-

analysis. After correcting for traditional risk factors, Adabag et al443 (both in smokers & non-

smokers), Bertoia et al442 and Chiuve et al338 did not find significant association between 

obesity and SCD. Overall, the included studies adjusted for: age, gender, smoking status, 

cholesterol, alcohol, family history of MI, diabetes, hypertension, prevalent CHD, prevalent 

HF, ECG variables. In our pooled analysis, obesity significantly associated with sudden 

death, predicting 44% elevated risk after correcting for covariates (RR: 1.44; 95% CI: 1.21 to 

1.71; p<0.01), see Figure 5. Eranti et al436 contributed the most to the weight of the estimates 

at 15.3%, with Chei et al441 contributing the least at 1.2%. Given the unconventional 

definition of obesity by Empana et al439 (BMI: 28.5 to 46.7 kg.m-2), we excluded this study 

and still found a significant association (RR of 1.41 (95% CI: 1.18 to 1.68; p<0.01).  
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6.3.5.5 Waist-to-Hip Ratio and SCD 

A total of 2 studies also looked at central adiposity measures as composite measures of 

obesity, including waist circumference and waist-to-hip ratio. Unfortunately, waist 

circumference was reported by only Bertoia et al442, and WHR was grouped differently in the 

2 studies that evaluated this, so no further analysis could be done. 

 

6.3.6 Heterogeneity and Sensitivity Analysis 

We evaluated statistical heterogeneity in the studies using Chi2 and I2 statistics. The pooled 

analysis for underweight BMI and SCD showed no evidence of inconsistency in effect size 

estimates (Chi2: 2.04, df: 3, p=0.56; I2: 0%), Figure 3. However, found moderate to 

substantial heterogeneity in the rest of the comparisons, see Figures 2, 4 and 5.  
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6.4 DISCUSSION 

6.4.1 Major Findings 

Obesity has been implicated in the risk of cardiovascular disease and is currently being 

investigated in the development of sudden cardiac death. In this meta-analysis, we explore 

the relationship between obesity and SCD, demonstrating that: 

1. For every 1-SD increase in BMI significantly and independently associates with a 6% 

elevated risk of developing SCD, even after correcting for baseline covariates. 

2. Underweight status (BMI <18.5 kg.m-2) predicted 33% increased risk of SCD, 

independent of traditional risk factors. 

3. Overweight (BMI 25 to 29.9 kg.m-2) does not show significant association with SCD 

after baseline comorbidities are adjusted for, and. 

4. Finally, obesity (BMI ≥30 kg.m-2) was associated with higher risk of SCD. Even after 

correcting for traditional correlates, obesity still predicted 44% increased risk of the 

disease.  

 

6.4.2 SCD and underweight: is undernutrition or excess 

weight loss to blame? 

In the present study, we showed that underweight is associated with 33% greater risk of SCD 

compared to normal BMI. Indeed, our data is consistent with previously published reports.  

For example, Chiuve et al338 demonstrated up to 58% increased risk of SCD for BMI <21 

kg/m2 in comparison with normal BMI. In another study involving first-time ICD recipients, 

underweight patients demonstrated ~2-fold greater odds of in-hospital death compared to 
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normal weight patients.445 Taken together, these data show that low body weight may be 

detrimental in the context of SCD. It is notable that this comes at odds with the established 

benefits of weight loss for cardiac health. Moreover, the precise mechanism driving 

formation of SCD substrate in this cohort of patients remains evasive. Nevertheless, there are 

some data to suggest undernutrition or excessive weight loss may drive SCD risk 

modification.446 Future research should aim to explore these questions in more detail. 

 

6.4.3 Obesity and SCD 

Sudden cardiac death is a major public health burden attributed to about 360,000 annual 

deaths (with estimates ranging from 180,000 individuals to as high as 450,0000 individuals) 

in the US alone, and a crude estimate at a staggering 5 million globally, making it the most 

significant cause of cardiovascular death worldwide.14, 308, 309 More recently, high lifetime 

risk has been estimated for SCD, putting men at 10.9% and women at 2.8% at age of 45 

years, and this is associated with higher aggregate burden of cardiac comorbidities.314  

Obesity is strongly associated with increased prevalence of traditional risk modifiers of 

SCD. For example, in a prospective multicentre registry of individuals without CAD referred 

for coronary computed tomography angiography, higher BMI was positively associated with 

prevalence of any CAD and obstructive CAD.332 Moreover, incident HF is overrepresented 

among obese individuals compared to people with normal BMI, and obesity was 

demonstrated recently as an independent predictor of HF with preserved ejection (HFpEF) as 

against HFrEF.447 In the present meta-analysis, we show that obesity (defined as BMI ≥30 

kg.m-2) is associated with 44% increased risk of SCD, persistence even after correcting 

traditional risk factors, such as HF and CAD. It notable that, despite the obesity paradox 



 

   

 

212 

often reported in HF-related mortality448, we did not observe this conundrum in the obesity 

and SCD relation. Furthermore, BMI on a categorical scale demonstrated a J-curve relation, 

with the best outcomes seen with normal weight and overweight status, respectively, see Take 

home figure. Our meta-analysis provides robust evidence for obesity and SCD risk. First, we 

provide a comprehensive evaluation of SCD risk in obesity. Second, the overall number of 

participants in this meta-analysis was very large. Third, the average follow-up period was 

long, ranging from at least 8 years to 56 years. Taken together, our data show that obesity 

may drive SCD independently of CAD/HF axis. 

 

6.4.4 SCD Substrate in Obesity 

Whether obesity is directly involved as a potential modifiable risk factor in SCD 

pathogenesis or a mere risk marker is not well described. Obesity has been correlated with 

changes in cardiac electrophysiological properties such as late potentials429, signifying 

delayed activation in diseased myocardium and known marker for SCD, and shown to 

independently predict ventricular tachycardia/fibrillation (VT/VF)428, 449.  

The substrate for SCD in obesity is probably complex and multifactorial. Several 

structural and functional changes that have been described in obese hearts, such as: increased 

left ventricular diameters and mass, eccentric hypertrophy, diastolic dysfunction, and 

repolarisation abnormalities.450-452 Moreover, QRS fragmentation (fQRS), representing 

heterogenous conduction and thereby fibrotic scars453, is a common observation in obesity 

and obese patients dying from SCD454. Both fQRS and fibrosis are shown to predict SCD 

independently of reduced ejection fraction, highlighting the potential mechanism of 

ventricular remodelling in the obese with HFpEF.455, 456  
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Further, obesity is associated with volume overload and haemodynamic impairment, 

which may cause abnormal neurohumoral activations, leading to pro-fibrotic and 

inflammatory signalling.457 Additionally, there may be several ways that obesity can lead to 

SCD. Obesity could impact SCD substrate by promoting traditional risk factors, coronary 

artery disease, and through direct cardiac effects. 

 

6.4.5 Limitations 

The amount of heterogeneity in some of the subgroup analyses is worth noting. Although this 

was significant, we believe that the level of heterogeneity, where it was found, was not 

critical, and may not have affected our risk estimates. The use of overwhelmingly non-

randomised trials is an important drawback and may have introduced bias in the analyses. 

Notwithstanding this limitation, the methodology quality of these studies was moderately 

high, attesting to their internal validity. Finally, the disproportionately low number of males 

(37.3%) in the subjects is another limitation of our meta-analysis. It is well accepted that 

SCD has a male bias. In fact, the latest modelling study puts the life-time risk of SCD at 1 in 

9 in males as compared to only 1 in 30 among female individuals.314  
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6.5 CONCLUSIONS 

The present meta-analysis demonstrates an independent association between obesity and 

SCD. BMI is greatly increased in patients who die suddenly than non-SCD individuals, with 

1-unit increment in BMI associated with greater risk for SCD. Further studies are warranted 

to delineate the mechanisms underlying this association and to explore the role of weight 

management in reducing the premature death due to SCD. 
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6.6 TABLES 

Table 1. Characteristics of Studies Evaluating Obesity on a Continuous Body Mass Index Scale 

Study ID Country Design 
Risk 

Score 

Follow-up 

Period 
Study Endpoint Ascertainment of SCD 

Participants 

(% men) 

Cardiac 

death 

(% SCD) 

BMI 

(kg.m-2) 

Jouven et 

al. 1999 
France Prospective cohort 8 23 years 

Hard CHD 

Major CHD event 
Independent medical committee (ICD code 798.1) 7,079 (100) 603 (19.6) 25.4±3.3 

Laukkanen 

et al. 2013 
Finland 

Prospective, 

population-based 
8 18.8 years ND Independent events committee 2,641 (100) 190 (100) 26.9±3.5 

Anderson et 

al. 2016 
Sweeden 

Prospective, nested 

case-control 
7 20 years CV events Registry, discharge records and death certificates 2,361 (75.9) 363 (100) 27.5±1.1 

Lahtinen et 

al. 2012 
Finland Population cohort 9 5 years SCD Independent physician reviews 27,629 (47.2) 494 (100) 26.7±0.4 

Benchimol 

et al. 2000 
France Prospective 5 8.1±1.6 years 

SCD & 

MI 
ND 319 (85.9) 34 (74) 26.0±3.0 

Laukkanen 

et al. 2009 
Finland 

Prospective, 

population-based 
7 17.6 years ND 

Autopsy reports, interviews and Independent events 

committee 
1,606 (100) 76 (100) 26.7±3.1 

Kataoka et 

al. 2004 
Japan ND 7 6.5±4.8 years SCD Death certificates 8,917 (55.4) 56 (100) 23.6±3.2 

TOTAL   7.3±1.3 15.7±6.7   50,552 (62.1) 1,816 (72.8) 26.1±1.3 

 BMI, body mass index; CHD; coronary heart disease; CV; cardiovascular; ICD, international classification of disease; MI, myocardial infarction; ND, not determined; SCD; sudden cardiac death. 
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Table 2. Characteristics of Studies Evaluating Obesity on a Categorical Body Mass Index Scale 

Study ID Country Design Risk Score Follow-up Period Study 
Endpoint 

Ascertainment of SCD Participants 
(% men) 

Cardiac death 
(% SCD) 

BMI Category 

Cuddy et al. 2006 Canada Prospective, 
longitudinal 6 56 years ND ND 3,983 (100) 171 (100) Overweight 

Obesity 

Eranti et al. 2016 Finland Population cohort 9 35-41 year ND 
Review by 2 
experienced 
cardiologists 

10,543 (52.7%) 1,954 (39) 

Lean 
Normal 

Overweight 
obese 

Albert et al. 2003 United States Prospective multiple-
source surveillance 6 8 years Incident SCA Review by 2 

cardiologists 121,701 (0) 2002 (100) 

Underweight 
Normal 

Overweight 
Obese 

Empana et al. 2004 France Prospective cohort 8 >23 years Incident SCD 7079 (100) 603 (19.6) 
Normal 

Overweight 
Obese 

Chiuve et al. 2015 United States Prospective 7 >32 years Incident SCD 
Next-of-kin 

Medical reports 
Autopsy reports 

72,484 (0) 1,286 (34.6) 

Lean 
Normal 

Overweight 
Class I obesity 
Class II obesity 

Jae et al. 2018 Finland Prospective, population 
cohort 8 22 years  Medical records 2357 (100) 253 (100) 

Normal 
Overweight 

Obese 

Chei et al. 2008 Japan Prospective, population 
cohort 7 9.7±2.5 years CHD Medical records 43235 (100) 65 (100) Normal 

Obese 

Adabag et al. 2015 United States Multicentre; 
Prospective cohort 7 12.6±2.5 years ND 

Next-of-kin 
Coroner 

Autopsy reports 
Committee of 

physicians 

14,941 (45) 253 (100) 

Lean 
Normal 

Overweight 
Obese 

Class II obesity 

Bertoia et al. 2012 United States 
Multi-centre 

Mixed: 3 RCT’s & 
observational 

6 10.8±2.8 years Incident SCD Witness interview 
Medical records 161,808 (0) 418 (100) 

Underweight 
Normal 
Obese 

Noheria et al. 2013 United States 
Prospective 

Multiple-source 
surveillance 

7 8 years ND Medical records 
autopsy ~1,000,000 (49) 2,004 (100) 

Underweight 
Normal 

Overweight 
Obese 

Total   7.1±1.0 21.9±16.8   1,431,052 (38.8) 9,009 (75.8)  
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Table 3. Summary Baseline Clinical Characteristics 

Co-variate Incident SCD SCD Free Effects Estimate (95% CI) p-value 

Age, year 57.7±9.2 55.7±8.6 1.94 [0.38-3.50] 0.01 

Diabetes 22.05% 4.4% 2.39 [1.46-3.90] <0.001 

Hypertension 55.06% 25.7% 1.99 [1.86-2.14] <0.001 

Body mass index, kg.m-2 28.3±1.1 27.2±1.2 1.22 [0.88-1.56] <0.001 

Myocardial infarction 16.9% 2.3% 5.37 [3.08-9.35] <0.001 

Congestive heart failure 14.3% 1.3% 3.89 [2.03-7.44] <0.001 

Coronary heart disease 24.1% 6.5% 4.95 [2.32-10.57] <0.001 

Atrial fibrillation 6.3% 3.9% 2.58 [1.99-3.36] <0.001 
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6.7 FIGURE LEGEND 

Figure 1. A CONSORT Diagram of the Search Methodology 

Figure 2. Risk of Sudden Death with Incremental BMI 

This analysis evaluates the risk of SCD per 1-unit increase in body mass index (BMI) by 

pooling the multivariate adjusted risk ratios (RR) from the included studies. Adjustment was 

made for: hypertension; type diabetes; coronary heart disease; myocardial infarction; atrial 

fibrillation; sex; age; obstructive sleep apnoea; heart failure; and valvular heart disease. BMI 

was measured in kilogram per square metre (kg.m-2). 

Figure 3. Risk of Sudden Death in Underweight Subjects 

This analysis evaluates the association of underweight BMI and the risk of sudden cardiac 

death (SCD). Please refer to figure 2 for factors adjusted for in the included studies. 

Underweight BMI was categorised as <18.5 kg.m-2 or <20 kg.m-2. 

Figure 4. Risk of Sudden Death in the Overweight Subjects.  

This analysis evaluates the association of overweight BMI and the risk of SCD. overweight 

BMI was defined as 25-29.9 kg.m-2. Please refer to figure 2 for factors adjusted for. 

Figure 5. Risk of Sudden Death in the Obese Subjects.  

This analysis looks at the association of obesity with the risk of SCD. Obese BMI was 

defined as ≥30 kg.m-2. 

Take home figure. Schematic of SCD risks in different weight subclasses 

The top schema shows the progressive development of substrates for ventricular arrhythmias 

and SCD. Bottom chart shows J-curve relation between BMI subgroups and the risk of AF, 

with the best outcomes seen in the normal weight and overweight groups, respectively.  
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Figure 1. A CONSORT Diagram of the Search Methodology 

 

3,925 references from database and 
supplementary searching

3,788 references screened:
§ Titles
§ Abstracts
§ Full-texts

17 references included in meta-
analysis

137 Excluded: 
§ Non-English references

3,771 Excluded:
§ Case series and reports 
§ Conference abstracts and 

editorials
§ Animal, in vitro & ex vivo studies
§ Reviews and meta-analysis
§ Articles not addressing study 

questions
§ Non-SCD & all-cause death
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Figure 2. Risk of Sudden Death with Incremental BMI. 
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Figure 3. Risk of Sudden Death in Underweight Subjects 
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Figure 4. Risk of Sudden Death in the Overweight Subjects. 
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Figure 5. Risk of Sudden Death in the Obese Subjects.  
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Take home figure. Schematic of SCD risks in different weight subclasses 
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7. Chapter Seven 

Epicardial Fat and Fibro-fatty Infiltration of the 

Ventricle: Implications for Sudden Cardiac Death 

Substrate in Obesity  
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7.1 INTRODUCTION 

Sudden cardiac death (SCD) is a major health conundrum worldwide, accounting for more 

than 50% of all cardiac deaths.309, 310, 312, 425 Notably, very little has changed in the outcomes 

after SCD over the last few decades. Although there has been a gradual reduction in overall 

cardiac deaths, SCD-attributable cardiovascular death has demonstrated a steady increase.14, 

458 In the US alone, SCD has been shown to cause 180,000 to 450,000 events and is estimated 

at 50 to 100 per 100,000 individuals in both North America and Europe.14, 316  

A large proportion of SCD events are attributed to ischaemic heart disease, 

cardiomyopathies (CMP) and inherited channelopathies.459, 460 Indeed, SCD can be the first 

manifestation of ischaemic heart disease.426 Despite the declining burden of some of these 

predisposing conditions, deaths due to SCD has remain unchanged or, in some areas, is 

rising.427, 461-463 Moreover, in many suffering an SCD episode, there are no salient high-risk 

features to have prompted a preventative strategy.331, 425  

In parallel, there is the growing global obesity epidemic, which poses a huge socio-

economic challenge and a significant disease-attributable public health burden.1 Recent 

clinical reports have demonstrated obesity as a strong independent predictor of greater risk 

for SCD.464, 465 A body mass index (BMI) >30 kg.m-2 has been associated with late potentials 

on signal-averaged ECG and an increased risk for developing ventricular arrhythmias.449 It is 

likely that obesity drives the development of SCD independent of myocardial ischemia. In 

fact, a recent study has implicated obesity-mediated CMP as an important non-ischaemic 

cause of SCD.339 However, the mechanism by which obesity predisposes to SCD remains 

poorly understood. We hypothesize that obesity results in structural change within the 

ventricle to account for the mechanistic link between obesity and SCD. The aim of the 
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current study was to characterise the molecular and structural ventricular remodelling that 

occurs due to chronic obesity. 

 

7.2 METHODOLOGY 

7.2.1 Study Animals  

The study comprised sixteen 1-year old Merino Cross Wethers (Ovis aries) studied in 

accordance with guidelines outlined in the “Australian Code for the Responsible Conduct of 

Research, 2007 (the 2007 Code)” adopted jointly by the National Health and Medical 

Research Council, the Australian Research Council and Universities Australia. Study 

protocol and animals were approved by the animal research ethics committees of the 

University of Adelaide and the South Australian Health & Medical Research Institute, 

Adelaide, Australia, which adhere to the Guidelines for the Care and Use of Animals for 

Research Purposes. 

 

7.2.2 Obesity Model  

Obesity was induced in 16 sheep using a previously well characterised protocol.181, 182 In 

brief, sheep were commenced on a high-calorie diet for a period of 36 weeks and maintained 

in this state for another 36 weeks. Obesity induction was started at baseline, whereby healthy 

sheep with normal weight were put on a diet consisting of energy-dense soy-bean oil (2.2%) 

and molasses-fortified grain and maintenance hay with weekly weight measurement. Excess 

voluntary intake was predominantly of grass alfalfa silage and hay. Pellets were gradually 

introduced at 8% excess basal energy requirements and rationed to 70% of total dry-matter 
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intake. Blood samples were periodically collected to ensure electrolyte and acid-base 

homeostasis.  

 

7.2.3 Lean Controls  

Another 8 age-matched sheep were maintained as controls by providing high-quality hay ad 

libitum. Baseline weight was maintained by ensuring a very low level of energy-dense 

pellets, which were rationed at 0.75% of body weight. Except for the difference in amount of 

food intake, the nutritional content of food and housing conditions were identical for both the 

obese and control groups. 

 

7.2.4 Animal Preparation  

Animals were pre-acclimatized for at least 1 week before any surgery. Shorn weight was 

recorded immediately before surgery. Noteworthy, we could not continue with the 

electrophysiology studies after initial observations of high mortality rates in the obese group 

(half died due to sudden deaths). 

 

7.2.5 STUDY PROTOCOL 

7.2.5.1 Structural and Functional Evaluations 

The obese and the control groups underwent the following investigations: 
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7.2.5.1.1 Body Composition  

The total body fat was quantified using the dual-energy X-ray absorptiometry (DEXA) 

scanning protocol under sedation. 

 

7.2.5.1.2 Haemodynamic Assessment 

Invasive blood pressure (BP) monitoring was performed during the electrophysiology study. 

Left atrial (LA), right atrial (RA), and pulmonary artery (PA) pressures were recorded, 

respectively. 

 

7.2.5.1.3 Cardiac MRI  

Before open chest surgery, animals underwent cardiac MRI using 1.5 Tesla (Siemens Sonata, 

MR Imaging Systems, Siemens Medical Solutions, Erlangen, Germany) with 10-mm slices 

through the ventricles without interslice gaps. To do this, animals were securely placed in the 

dorsal recumbent position for scanning. Mechanical ventilation was maintained, facilitating 

electrocardiogram-gated image acquisition with periodic breath holding. Analyses were 

performed offline by blinded operators by using the proprietary software QMass MR (Medis 

medical imaging systems, Leiden, The Netherlands). The following parameters were 

measured as previously described: Left ventricular chamber mass; LV ejection fraction 

(LVEF); LV end diastolic volume (LVEDV); and epicardial fat volumes. 

Quantification of EAT: Epicardial fat volumes were quantified using previously validated 

protocol.413 Briefly, a 3D model was constructed from consecutive end-diastolic short-axis 

images using semi-automated software. Regions of adipose tissue were marked in each slice 

followed by linear interpolation of pixel intensities in spaces between consecutive image 
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slices. Periatrial and periventricular fat were defined as any pericardial fat subtending the 

atria and ventricles and below the visceral pericardium, respectively. Total volume of adipose 

tissue was calculated as a total volume of the 3D model and the mass estimated from volume 

measurements. The Intra-observer and inter-observer reproducibility demonstrated a 

coefficient of variation 8.3% to 10.7% for atrial EAT, and 6.6% to 7.4% for ventricular EAT, 

and 5.5% to 7.2% for total EAT, respectively. 

 

7.2.5.1.4 Transthoracic Echocardiography  

Echocardiogram was performed with Acuson Aspen (Siemens Healthcare, Malvern, 

Pennsylvania) under general anaesthesia. The LV dimensions were determined in the M-

mode in the parasternal long-axis view at the level of the mitral leaflet tips. Using the 

Teicholz formula, we measured global LV function from the LV dimensions. 

 

7.2.5.2 Morphological Evaluations 

Following the imaging studies, the sheep were maintained under general anaesthetic. 

Thereafter, they were then euthanised by lethal dose of phentobarbitone injection and 

removal of the heart, with samples taken for detailed histological and ultrastructural analyses. 

Confirmation of death was done via visual inspection of a lack of heartbeat. 

 

7.2.5.2.1 Histomorphometric Assessment 

 The animals were euthanised and the hearts tissue was preserved in 10% (w/w) 

formaldehyde. Tissue sections were taken from the right and left ventricular free walls and 
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embedded in paraffin wax. Fixed tissue blocks were cut in 5-µm serial sections and stained 

with haematoxylin and eosin (H & E) and Masson Trichrome stains, respectively.  

 

7.2.5.2.1.1 Assessment of Ventricular Fatty Infiltration 

The fat cell infiltration of the ventricles by the epicardial fat was confirmed in Oil O Red 

preparations and assessed in H & E stained sections. Slides were scanned by NanoZoomer 

digital image scanner and viewed on NDP.view 2 (Hamamatsu Photonics K.K., Japan). 

Evaluation of infiltration was done at low-power (1.2x) magnification and with grading 

algorithm developed differently for the LV and RV. 

For the LV, infiltrated adipocytes were graded as a function of the distance away in 

millimetre away from the epicardial surface of the myocardium.  

- Grade I: For none or less than 1 mm extension from the epicardial surface of the 

muscle wall. 

- Grade II: For infiltration extending beyond 1 mm but less than 2 mm. 

- Grade III: For infiltration of more than 2 mm but less than 3 mm. 

- Grade IV: For infiltration of 4 mm or more of the wall of the LV. 

For the RV, grading was done by the anatomical landmark of the muscle wall from 1 to 4 as 

follows: 

- Grade I: For no none or focal infiltration of the adjacent outer third of the ventricular 

wall by epicardial adipocytes. 

- Grade II: Coalescent infiltration of the outer third and/or focal infiltration up to the 

middle third of the ventricular layer. 

- Grade III: Coalescent infiltration extending from the epicardial adipose tissue to the 

middle or inner third of the ventricular muscle layer. 
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- Grade IV: For up to the sub-endocardial surface. 

 

7.2.5.2.1.2 Assessment of Ventricular Fibrosis 

5-µm sections of ventricular tissue were stained with Masson’s trichrome and scanned by 

Hamamatsu NanoZoomer digital image scanner. Images were acquired at high-power (6.4x 

magnification) and analysed using purpose-built macros by colour deconvolution in Image J 

software. 20 images taken per sample were analysed from 8 animals per group to determine 

the mean values. 

 

7.2.5.2.2 Immunohistochemistry  

To assess fibrotic pathways, immunohistochemistry was performed. Isolated LV and RV 

tissues were fixed in 10% neutral formaldehyde, embedded in paraffin and cut in 5-µm 

sections. Embedded sections were deparaffinised by heat and subsequent washes in silane 

and absolute ethanol. Endogenous peroxidases were masked by incubation in 0.3% hydrogen 

peroxidase in methanol for 30 minutes. After performing heat-induced epitope retrieval, 

sections were incubated in normal horse serum for non-specific sites block, and incubated 

overnight with the appropriate primary antibodies against:  

1. Anti-angiotensin II receptor subtype 1 (AT1R, Rabbit polyclonal, 1/800 dilution, 

Biorbyt Ltd);  

2. Mineralocorticoid receptor (MCR, mouse monoclonal, 1/800, Abcam);  

3. Endothelin receptor type A (ET-A, Rabbit polyclonal, 1/400, Sapphire Bioscience 

Pty);  
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4. Transforming growth factor beta type 1 receptor (TGF-bR1, Rabbit polyclonal, 1/400, 

Sapphire Bioscience Pty);  

5. Phosphorylated sma and mothers against decapentaplegic homologue protein 3 

(pSMAD3, Rabbit polyclonal, 1/500, Biorbyt);  

6. SMAD6 (Rabbit polyclonal, 1/1000, ThermoFisher Scientific); and  

7. Desmosomal disruption was assessed by evaluation of desmoglein-2 expression 

(DSG2, Rabbit polyclonal, 1/250, Biorbyt Ltd) to understand mechanism of fatty 

infiltration. 

Next, sections were incubated in appropriate biotinylated secondary antibodies (Goat anti-

rabbit/mouse, Abcam) for 30 min at 1/250 dilution, followed by 1-hour incubation in 

streptavidin horseradish peroxidase-conjugated tertiary antibody at 1/1000 dilution. 

Immunoreactivity was evaluated using 3,3’-diaminobenzedine (DAB, Sigma) for 7 min and 

counter stained with Mayer’s Haematoxylin. Sections were scanned using NDP NanZoomer 

digital scanner and viewed on NDP.view 2. Images were captured and exported at 20x 

magnification (100 µm, 100% scale), and semi-quantitatively assessed by colour 

deconvolution in Image J software. 

 

7.2.6 Statistical Analysis 

Normally distributed continuous variables were presented as mean ± SD and analysed using 

2-tailed independent student t-test. Skewed data (such as endothelin A and SMAD6 protein 

expressions) were expressed as median and interquartile ranges and analysed using Mann-

Whitney U tests. Nominal variables (such as infiltration grades) were assessed using Pearson 

X2 tests. Next, we fitted mixed-effect models to the data to compare pro-fibrotic markers and 
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desmoglein-2 across chambers and groups (control and obese). Animal group (control and 

obese) and chamber (RV & LV) were modelled as fixed effects with an interaction term 

(chamber x group). If a significant interaction was present, mixed-effects post-hoc test p-

values were reported (with Sidak adjustment of alpha level). In the case of skewed 

distribution data were log-transformed before further analysis. Statistical significance was 

defined at 2-sided p-value ≤0.05. All data analyses were performed in SPSS software 

package version 25 (IBM SPSS Statistics, Chicago, Illinois, USA) and GraphPad Prism 

version 7.0d (GraphPad Software, La Jolla, CA, USA). 

 

7.3 RESULTS  

7.3.1 Animal Characteristics  

The obese state was achieved over 72 weeks, with the obese group reaching peak weight 

(94.71±6.5 kg) by the 36th week and sustained at the achieved weight for another 36 weeks. 

The control group maintained lean weight (57.4±4.6 kg) over the 72-week period. By the end 

of 72 weeks, the obese sheep significantly increased their baseline weight to almost twice the 

baseline levels (p<0.01). There was over a 3-fold increase in total body fat composition in the 

obese state ([35% of body weight versus 9.9%; p<0.001] Table 1).  

 

7.3.2 Structural and Functional Remodelling  

LV septal dimension was higher in the obese group as compared to controls (p<0.01) without 

any change in LV function between the groups (p=0.11). There was elevation of the left atrial 
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(LA) mean pressure (p=0.01) without change in systolic blood pressure (p=0.5) in the obese 

sheep; suggestive of diastolic dysfunction. 

 

7.3.3 Epicardial Fat Hyperplasia and Fat Cell Infiltration  

With sustained obesity, epicardial fat significantly increased to more than 2.5-fold those of 

the lean controls as determined by CMR (p=0.04). Accordingly, we explored epicardial fatty 

infiltration using H & E staining under low power. As shown in Figure 1 panel A, there was 

clear demarcation between epicardial layer and the muscle layer in the controls; however, 

with sustained obesity, the epicardial adipocytes infiltrated deep within myocardium causing 

dislodgement of the muscle cells. The fatty infiltration was quantified semi-quantitatively. 

There was more extensive infiltration of epicardial adipocytes in the LV of the obese sheep 

than the control group (mean grade: 3.00±0.9 vs 1.66±0.5; p=0.03; Figure 1 panel B). 

Severe (Grade IV) infiltration was seen in the LV of the obese group, with absence of grade 

III infiltration in controls. Similarly, the RV demonstrated greater infiltration by fat cells in 

the obese animals as compared to controls (mean grade: 3.17±1.2 vs 1.83±0.9; p=0.03; 

Figure 1 panel B), with infiltration extending up to the sub-endocardial surface (obese = 

grade III&IV vs control ≤ grade II). 

 

7.3.4 Desmosomal Disruption 

DSG2 expression was assessed with immunohistochemistry. DSG2 expression was 

significantly reduced in the obese group; with 15% reduction in protein levels in both RV and 

LV in obese group as compared to controls (RV:46.6±3 vs 54.1±7, p=0.04; LV: 40.2±1.1 vs 

47.8±4.9%, p=0.02; Figure 2 panels A & B). The expression of DSG-2 demonstrated 
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significant correlation with animal weight and degree of fatty infiltration in linear regression 

models ([weight: R2=0.424, p=0.02] and [fatty infiltration: R2=0.527, p<0.001]; Figure 2 

panel C). Animals with the most severe infiltration demonstrated the most significant 

reduction in DSG2. 

 

7.3.5 Ventricular Fibrosis  

The obese sheep demonstrated induction of diffuse interstitial fibrosis in both chambers 

(Figure 3 panel A). Analysis of the Masson’s trichrome stained sections of the LV showed 

significantly greater percentage fibrosis as compared to the lean sheep (13.2±2.8% versus 

5.2±0.9%, p=0.01; Figure 3 panel B). Comparable findings were seen in the RV 

myocardium, with obese sheep demonstrating a significant 14.8±6.1% global fibrosis as 

compared to 5.9±0.9% induced fibrosis in the control animals (p<0.01).  

 

7.3.6 REMODELLING OF FIBROTIC PATHWAYS  

7.3.6.1 Transforming Growth Factor-Beta (TGF-b) Pathway 

Figure 4 demonstrates the summary data on the assessment of TGF-b pathway, with the 

model signalling pathway shown in panel A. There was an abundant expression of the 

receptor protein of TGF-b1 in both ventricles as shown in panel B. TGF-b type 1 receptor 

(TbR1) expression was significantly increased in the LV of obese sheep, with up to 3-fold 

change as compared to the control lean weight sheep (13.4±7.2% versus 5.6±1.6, p=0.02; 

Figure 4 panel C). Similarly, the expression of TbR1 was upregulated in the RV in the obese 

group as compared to controls (16.9±5.6 vs 4.7±2.0%; p<0.01).  
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Further, we evaluated the downstream signalling of TGF-b. Contextually, TbR1 transmit pro-

fibrotic signals downstream by phosphorylating SMAD (Sma and mothers against 

decapentaplegic homologue) proteins, notably, SMAD3, which ultimately regulates pro-

fibrotic genes and fibrosis (Figure 4 panel A). As can be seen Figure 4 panel C, there was 

no significant alteration of phosphorylated SMAD3 with sustained obesity ([p>0.05 for both 

RV & LV], Figure 4 panel D), indicating that this component of the pathway may not drive 

obesity-induced TGF-b signalling. On the other hand, there was significant remodelling of 

SMAD6, the inhibitor of the SMAD3-independent component of the pathway (Mann 

Whitney p=0.001]; Figure 4 panel E). The control sheep demonstrated abundant expression 

of SMAD6 protein, which exhibited nuclear localisation. Intriguingly, chronic obesity 

resulted in a substantial repression of SMAD6 expression and nuclear localisation in both the 

LV and RV ([RV: 2.6±0.4% versus 6.9±0.9%, p<0.01] and [LV: 1.8±0.3% versus 5.8±1.3%, 

p<0.01]; respectively), Figure 4 panel E.  

 

7.3.6.2 Endothelin 1 Signalling  

Obesity was associated with overexpression of the cognate receptor for endothelin signalling 

(ET-A) in both ventricles (Figure 5 panels A & B). As compared to the lean controls, 

chronic obesity resulted in increased upregulation of ET-A protein to nearly twice the 

baseline levels in both the LV (47.6±6 versus 26.8±6.2; p<0.01) and the RV (52.7±2.5 versus 

30.3±5.8; p<0.01; Figure 5 panel C). 
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7.3.6.3 Aldosterone Signalling  

Mineralocorticoid receptor (MCR) for aldosterone changed appreciably with chronic weight 

gain (Figure 5 panels A & C). This changed from 43.4±6.2% in the lean controls to 

55.0±3.3% in the LV of obese group (p<0.01). Similarly, MCR protein was upregulated in 

the wall of RV (54.4±3.1 versus 41.1±7.6; p<0.01).   

 

7.3.6.4 Angiotensin II Signalling  

The pro-fibrotic type 1 receptor for Ang II (AT1R) was found to be markedly expressed with 

obesity (Figure 5 panels A & D). Obesity resulted in more than 4-fold elevation of AT1R 

protein levels in the LV compared to lean controls (12.1±4.9 versus 3.7±0.6; p<0.01). In the 

LV, significant expression of AT1R was also observed, chronic obesity associated with 

doubling expression levels compared to maintained baseline weight (10±3.4 versus 4.2±1.8; 

p<0.01). 

 

7.4 DISCUSSION 

7.4.1 Major Findings  

The present study provides new mechanistic insights into the nature of ventricular substrate 

for SCD in obesity. Using a chronic ovine sheep model, ventricular remodelling due to 

chronic obesity was characterized by: 

1. Expansion ventricular epicardial fat depot (2.5 fold); 

2. Extensive and severe fat cell infiltrations; 

3. Diffuse ventricular interstitial fibrosis; 
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4. Reduction of the expression of ventricular desmosomal cadherin desmoglein-2 (15% 

reduction), with significant negative correlation with degree of fatty infiltration; 

5. Modulation of the TGF-b pathway, with greater expression of TGF-b receptor protein 

(2-4 fold); downregulation of the anti-fibrotic SMAD6; and no significant alteration 

in pSMAD3 levels; 

6. Overexpression of Angiotensin II receptor subtype 1; Aldosterone receptor protein, 

MCR; and endothelin receptor protein, ET-A. 

 

These important structural consequences to the ventricular myocardium may in part 

contribute to the development of SCD in obese individuals. 

 

7.4.2 Obesity and SCD  

Obesity has been shown to predict greater risk for SCD. Both overweight and obese BMI’s 

are reported to contribute from 33% to 79% elevated risk of premature death due to SCD.436 

Sub-analysis of the MADIT II trials showed significant association between obesity and 

ventricular tachycardia/fibrillation, and was shown to persist even after correcting for other 

clinical comorbidities.428 Moreover, BMI >25 kg.m-2 is positively correlated with higher 

incidence of non-sustained VT and 33% higher risk of exercise-induced VTAs independently 

of covariates.428, 466, 467 SCD requires an electrical trigger acting on vulnerable substrates to 

generate lethal ventricular tachyarrhythmias.309, 322, 458 QRS fragmentation (fQRS), which 

represents subtle scarring and myocardial substrate, has been described to be more common 

in obese SCD victims as compared to normal weight groups.454 Similarly, obesity has been 
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correlated with late potentials, signifying delayed activation in diseased myocardium and 

known marker for SCD, on signal-averaged ECGs.429  

 

7.4.3 SCD Substrate in Obesity 

The substrate for ventricular arrhythmias in obesity is not well investigated. In the summary 

Figure 7, a postulate based on the current study and available evidence is provided to suggest 

the mechanisms for the substrate for SCD in obesity.  

Obesity is associated with ventricular remodelling consisting of increased LV 

diameter and mass, eccentric hypertrophy, diastolic dysfunction, and repolarisation 

abnormalities.457 Additionally, LV systolic dysfunction468 and RV diastolic dysfunction457 

have been reported in the severely obese individuals. Furthermore, weight loss has been 

shown to be associated with improvements in diastolic function and LV mass, and RV 

systolic function.451 Our data was in line with previous reports457 and confirmed that severe 

sustained obesity is associated with elevation of left atrial pressure in the absence of systemic 

hypertension.  

Fibrosis plays an important role in the development of arrhythmias and is regarded as 

the histological cornerstone of structural remodelling that creates a substrate for 

arrhythmias.327, 455 Similarly, recent reports suggest significant association of epicardial fat 

expansion with increased frequency of premature ventricular contractions469, VT/VF470 and 

all-cause long-term mortality471 and mortality due to SCD471. The present study demonstrates 

increase in interstitial fibrosis with severe obesity, similar to non-ischemic 

cardiomyopathies.455 Furthermore, we also demonstrate the novel finding of fatty infiltration 

in the ventricles with severe obesity. We hypothesize, that akin to fibrosis, fatty infiltration 
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may predispose to conduction heterogeneity, re-entry and ventricular arrhythmias. Consistent 

with this, Pouliopoulos et al472 reported fibro-fatty interfaces within LV scar borders is 

significantly associated with altered electrophysiological remodelling and abnormal Cx43 

expression and that gradient increase in intramyocardial adiposity correlates with increased 

inducibility of VT following MI. 

Desmosomal mutations have been shown to result in fibro-fatty infiltration of the 

ventricles in arrhythmogenic right ventricular dysplasia (ARVD) by compromising myocyte 

adhesion and loss of further desmosomal proteins.473 In the present study, we observed a 

similar, but to a lesser extent, reduction in the expression of desmoglein-2 (DSG2), a 

desmosomal cadherin whose mutation is found in up a third of ARVD patients474. We 

propose that this reduction in DSG2 expression is the mechanistic link responsible for 

infiltration of ventricular muscle by overlying epicardial adipose tissue. Previous studies have 

shown that the epicardial adipose tissue secretes pro-fibrotic adipokines.278 The fatty 

infiltration could potentially potentiate the paracrine role of the epicardial fat by increasing 

the exposure of the cardiomyocytes to the pro-fibrotic factors.  

 

7.4.4 Molecular Mechanism of Fibro-fatty Infiltration  

The current study demonstrated activation of TGF-b, endothelin and RAAS pro-fibrotic 

pathways in severe obesity. TGF-b signalling is considered a central pathway in 

fibrogenesis.125, 475 The present study demonstrates that activation of the TGF-b pathway with 

associated with downregulation of SMAD6, but not pSMAD3 protein. Based on these 

findings, we propose that obesity-mediated TGF-b signalling is likely to be via SMAD-

independent component of this pathway. The current study also demonstrated activation of 
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the angiotensin II and aldosterone pathways by the overexpression of the pro-fibrotic AT1R 

and MCR. Both Ang II and aldosterone are important effectors of RAAS system and are 

shown to induce interstitial fibrosis and predispose to ventricular tachyarrhythmic events.475-

477 Previous studies have shown that aldosterone can also act independent of this system, with 

the activation of cardiac MCR resulting in hypertrophy, fibrosis, and heart failure 

independent of blood pressure levels.478 It is important to highlight the prime role of MCR, 

insofar as emerging data from human and in vivo animal studies report induction of cardiac 

fibrosis by the aldosterone/MCR pathway without concomitant increase in MCR ligand levels 

but only in receptor expression.475, 478 Furthermore, there was overexpression of endothelin 

receptor subtype A (ET-A), the receptor for the vasoconstricting endothelin 1 (ET-1). ET-

1/ET-A acts a downstream target of TGF-b gene transactivation and angiotensin II-induced 

fibrosis, and as an amplifier of the pro-fibrotic cascade.479  

 

7.4.5 Limitations 

We present strong evidence implicating obesity in ventricular remodelling. However, few 

limitations should be noted. First, our data is limited by its experimental nature. Although 

they have important implication for the understanding of potential mechanism driving SCD 

in obesity, we would need more translational studies to determine the clinical applications. 

Second, there are several methods for assessing molecular remodelling. Here, we were only 

able to evaluate some key receptors and downstream effector proteins due to the availability 

of appropriate reagents. Like downstream effector proteins, receptors are very good 

indicators of local perturbations. They are also better indicators of more chronic changes and 

so will be more useful in assessing effects of chronic obesity. Finally, we were not able to 
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ascertain the electrophysiological consequences of our structural findings. This was largely to 

do with high incidence of sudden cardiac death experienced during the electrophysiological 

study model. About eight of the obese sheep (≥110 kg) experienced several episodes of 

ventricular arrhythmia and subsequently sudden death with handling of the obese heart.  

 

7.4.6 Clinical Implication 

These findings highlight potential mechanisms that may explain the clinical associations 

reported between and obesity and expansion of epicardial fat and SCD. The novel finding of 

fibro-fatty substrates could form a key element in substrate mapping as a guide for ablation of 

lethal ventricular arrhythmias. EAT may represent an interesting risk marker to identify 

patients with increased SCD risk which could allow a more personalized risk stratification. 

Further studies are warranted to improve our understanding of EAT-mediated ventricular 

remodelling and to determine whether its reduction constitutes a treatment target for primary 

and secondary prevention of SCD. 

 

7.5 CONCLUSIONS 

Chronic sustained obesity promotes biventricular remodelling driven by diastolic 

dysfunction, expansion of ventricular epicardial fat depot with resultant fat cell infiltrations 

of the ventricular wall, and diffuse interstitial fibrosis. Molecular assessments suggest that 

these changes due to obesity may be mediated through DSG2 and abnormal SMAD3-

independent TGF-b signalling, Endothelin and RAAS activation respectively. The fibrofatty 

changes in the ventricles may represent a unique substrate for ventricular arrhythmias and 

sudden cardiac death in severe obesity. 
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7.6 TABLES 

TABLE 1. Structural and Functional Characteristics 

 Parameters Controls Obese p-value 

 Body weight, kg 57.4±4.6 94.71±6.5 <0.001 

DEXA Total body fat, % 9.9±2.5 35.1±5.2 <0.001 

CMR Total EAT, ml 128±15 296±48 0.004 

 Ventricular EAT, ml 115.5±12 253.0±53 0.04 

 LVEF, % 67.6±4.5 73.2±5.2 0.11 

 LV mass, g 121.0±21 138.3±18 0.39 

 RVEF, % 52.7±7.5 57.5±5.9 0.422 

TTE LVEF, % 69±3.7 72±4.8 0.31 

 LVSD, mm 6.8±0.4 8.0±0.6 0.003 

 LVESD, mm 22.8±3.7 22.6±3.0 0.91 

 LVEDD, mm 37±4.9 42.8±4.0 0.07 

Haemodynamics  Systolic BP, mm Hg 69.6±12.5 74.5±12.5 0.50 

 LA pressure, mm Hg 9.6±2.5 13.3±2.5 0.01 
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Table 2. Myocardial Deformation and Strain 

 Parameters Controls Obese p-value 

LV Longitudinal strain mean 

(%) 
7.4±1.6 8.7±2.1 0.437 

 Radial strain mean (%) 15.0±4.4 17.6±2.9 0.593 

 Circumferential strain 

mean (%) 
12.1±2.5 12.2±2.4 0.994 

RV  Longitudinal strain mean, 

% 
17.6±3.2 15.6±3.1 0.639 

 Radial strain mean, % 37.9±9.4 28.1±6.6 0.138 
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TABLE 2. Summary of Major Pathomolecular Findings 

Parameters 
Left ventricle Right ventricle 

Control Obese p-value Control Obese p-value 

Fatty infiltration 1.7±0.5 3±0.9 0.03 1.8±0.9 3.2±1.2 0.03 

Desmoglein-2 (DSG-2, %) 47.7±4.9 40.2±1.1 0.02 54.1±7 46.6±3 0.04 

Percent fibrosis, % 5.2±0.9 13.2±2.8 0.002 5.9±0.9 14.8±6.1 0.01 

TGF-b receptor 1 (Tb1R, %) 5.6±1.6 13.4±7.2 0.02 4.7±2 16.9±5.6 0.001 

SMAD3, % 13.5±5.9 21±4.2 0.09 19.9±12 25.2±6.4 0.45 

SMAD6, % 5.8±1.3 1.8±0.3 0.001 6.9±0.9 2.6±0.4 0.001 

Endothelin receptor A (ET-A, %) 26.8±6.2 47.6±6 0.001 30.3±5.8 52.7±2.5 0.001 

Mineralocorticoid receptor (MCR, %) 43.4±6.2 55±3.3 0.002 41.1±7.7 54.4±3.1 0.003 

Ang II receptor type 1 (AT1R, %) 3.7±0.6 12.1±4.9 0.01 4.2±1.8 10±3.4 0.003 
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7.7 FIGURE LEGEND 

Figure 1. Epicardial Fat Volume by Cardiac MRI 

Panel A: Representative CMR images in short-axis view, demonstrating the distribution of 

epicardial adipose tissue in the three study groups; ventricular EAT depots are highlighted 

with contours. Panel B: Three dimensional (3D) representations of the ventricular chambers 

reconstructed on CMR images. Panel C: Bar charts demonstrating quantified volumes of 

EAT; showing total cardiac, total ventricular, left and right ventricular EAT volumes, 

respectively. 

Figure 2. Fat Cell Infiltration 

Panel A: Representative H&E stained sections of the right ventricle and left ventricle; and 

Panel B: degree of fat cell infiltration of obese and control sheep, respectively. 

Abbreviation: LV, left ventricle; RV, right ventricle. Data: mean±SD. 

Figure 3. Desmosomal Remodelling 

Panels A, B: Relative protein expression of the desmosomal cadherin protein, desmoglein-2 

(DSG2) by immunostaining, showing photo-images and semi-quantitative assessment of 

protein expression; and Panel C: showing linear regression of grade infiltration and DSG2 

expression in obese animals, with data pooled from both ventricles. Bar: 100 µm. Data: 

mean±SD. 

Figure 4. Ventricular Fibrosis 

Panel A: Representative Masson’s trichrome stained sections demonstrating collagen 

depositions of the RV and LV. Panel B: Quantitative data showing percent fibrosis in the 

myocardial tissue. Data: mean±SD. 

Figure 5. Remodelling of Transforming Growth Factor Pathway 
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Relative protein expression of members of the TGF-β family by immunostaining, showing 

model signalling of the pathway (Panel A); presentative photo-image (Panel B) and semi-

quantitative assessment of protein expression TGF-β1 receptor (Panel C), phosphorylated 

SMAD3 (Panel D), and SMAD6 protein (Panel E); Bar: 50 µm. Data: mean±SD. 

Abbreviation: pSMAD3, phosphorylated sma and mother against decapentaplegic 

homologue protein 3; SMAD6, SMAD protein 6; TGF-β1, transforming growth factor-beta 

1; TβRI, TGF-β1 receptor subtype 1. 

Figure 6. Remodelling of Further Pro-fibrotic Pathways 

Further remodelling of pro-fibrotic pathways showing relative expression (Panel A) and 

semi-quantitative data for endothelin-1 receptor, (Panel B, ET-A); aldosterone receptor, 

(Panel C, MCR); and angiotensin II receptor, (Panel D, AT1R). Bar: 100 µm. Data: 

mean±SD. Abbreviations: AT1R, angiotensin II receptor type 1; MCR, mineralocorticoid 

receptor; ET-A, endothelin type A receptor 

Figure 7. Central Illustration – Potential Mechanisms of Ventricular Remodelling in 

Obesity 
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Figure 1. Epicardial Fat Volume by Cardiac MRI 
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Figure 2. Fat Cell Infiltration 
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Figure 3. Desmosomal Remodelling 
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Figure 4. Ventricular Fibrosis 
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Figure 5. Remodelling of Transforming Growth Factor Pathway 
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Figure 6. Remodelling of Further Pro-fibrotic Pathways 

  

A B

C D

0

10

20

30

40

50

60

LV RV

M
C

R
 e

xp
re

ss
io

n
(%

 a
re

a)

Controls Obese

p<0.01 p<0.01

0
2
4
6
8

10
12
14
16

LV RV

AT
-1

R
 e

xp
re

ss
io

n
(%

 a
re

a)

Controls Obese

p<0.01 p<0.01

0

10

20

30

40

50

60

LV RV

ET
-A

 e
xp

re
ss

io
n

(%
 a

re
a)

Controls Obese

p<0.01 p<0.01
OBESECONTROLS



 

   

 

256 

Figure 7. Central Illustration – Potential Mechanisms of Ventricular Remodelling in Obesity 
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8. Chapter Eight 

Final Discussion and Implication 
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8.1 Translational Outlook 

The present thesis has investigated important aspects of the developments of atrial fibrillation 

and sudden cardiac death in obesity, establishing epicardial fat expansion and fibro-fatty 

infiltrations as prerequisite events. It has provided strong clinical evidence to establish 

epicardial fat as an independent risk modifier for atrial fibrillation. The findings further 

highlight obesity as a modifiable risk marker for sudden cardiac death independent of high-

risk traditional factors and conditions. More importantly, the observations provided evidence 

for a mechanistic link between cardiac ectopic fat and arrhythmogenic substrates, which has 

advanced our understanding of the mechanistic predispositions to atrial fibrillation and 

sudden cardiac death in obesity. They have several important implications as they underscore 

the need for therapeutic strategies aimed at prevention and regression of the atrial and 

ventricular substrates. 

 

8.2 Epicardial Fat and Atrial Fibrillation 

Multifactorial aetiological basis for atrial substrate formation is well accepted as an 

explanation for the atrial fibrillation epidemic. It is understood that multiple important 

clinical conditions (including advanced age, hypertension, heart failure, type II diabetes, 

valvular heart disease and obstructive sleep apnoea), electrocardiographic and 

echocardiographic factors, and biomarkers predispose to increased propensity for AF. 

Notably, data also show that AF symptomatic burden increases with increasing number of 

these concomitant conditions in patients, and that they associate with greater risk of 

chronicity of the rhythm disorder. Nevertheless, the current global burden and lifetime risk of 
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atrial fibrillation are more than could be explained by traditional cardiovascular risk factors 

alone, which highlights the need to explore emerging risk modifiers.  

Obesity is implicated in precipitating AF risk and momentum is building to accurately 

characterise this association. Multiple lines of data have reported association of obesity with 

echocardiographic markers of atrial dysfunction and atrial enlargement, and markers of 

cardiac autonomic tone dysfunction and inflammation. Moreover, AF and obesity are parallel 

burgeoning global conditions, persisting even in the wake of declining traditional risk factors. 

Among the factors implicated in this relation is galectin-3, a b-galactoside-binding 

lectin mainly secreted by macrophages and to a lesser extent by adipocytes and fibroblasts.379 

Gal-3 is has been shown to promote structural remodelling in a preclinical model of obesity. 

Herein, our data in Chapter 2 reports on the elegant relationship between Gal-3 and AF in a 

meta-analysis. We show that plasma Gal-3 is increased in patients with pre-existing AF 

compared to those in sinus rhythm. Our findings further demonstrated that high Gal-3 

predicts greater risk of AF, this association persisting even after adjusting for covariates.  

More recently, clinical reports have drawn our focus onto epicardial adipose tissue, an 

ectopic fat depot lying contiguously above the myocardium. It has been postulated to 

promote increased vulnerability to pro-arrhythmic states. Despite this, the relationship 

between epicardial fat and atrial fibrillation has not been properly defined. In chapter 3, the 

clinical associations of epicardial fat and atrial fibrillation, arrhythmia progression, recurrent 

atrial fibrillation following curative catheter ablation, and post-operative atrial fibrillation 

after cardiac surgery are presented in a meta-analysis. The findings demonstrated increased 

expansions of total cardiac and peri-atrial epicardial adipose, with greater risk of atrial 

fibrillation occurrence seen for every unit increment in epicardial fat, which persisted even 

after correcting for traditional cardiovascular risk factors and other measures of obesity. 
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Epicardial was associated with severity of atrial fibrillation, recurrence post-ablation, and de 

novo incidence after cardiac surgery. Further studies are warranted to facilitate the 

understanding of atrial remodelling due to EAT and determine whether its reduction 

constitutes a treatment target. The observations suggest possible mechanistic role for atrial 

fibrillation in obesity, thus warranting an understanding of the atrial substrate due to 

epicardial fat. 

 The pathogenesis of AF is driven by a complex interplay of ectopic foci and re-

entrant mechanisms acting on vulnerable atrial substrates. Evidence from a number of 

seminal studies has identified both structural and electrical abnormalities as requisite 

conditions for the formation of the AF substrates. Chapter 4 & 5 draw conclusions from the 

investigation of the key structural remodelling underpinning epicardial fat and AF 

relationships and how it influences electrical substrates in chronic ovine models of obesity 

and weight fluctuation. It has demonstrated that obesity induces expansion of epicardial fat 

hyperplasia and fibro-fatty replacement of atrial myocytes and deterioration of myocyte 

contractile apparatus, which may drive impairments of atrial electrical properties. It has also 

shown that weight fluctuation induces similar but less severe changes to those seen during 

stable obesity and that this may explain the increased risk of atrial arrhythmias often seen 

with periodic fluxes in weight. Importantly, these chapters have highlighted fibro-fatty 

infiltration as an important substrate for the pathogenesis of atrial fibrillation, which thus 

necessitates therapies targeting intramyocardial fat depositions. Taken together, our data 

strongly support the role of epicardial fat and fibro-fatty infiltrations as important pro-

arrhythmic substrates for atrial fibrillation in obesity. We speculate that, during obesity, Gal-

3 may mediate epicardial fat dysfunction and downstream atrial structural and electrical 

remodelling. Given the deregulation of adipokines during weight fluctuation, it is possible 
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that Gal-3 may be involved in the formation of atrial substrate; perhaps, by acting to via 

leptin signalling pathways.378, 480  

 

8.3 Epicardial Fat and Sudden Cardiac Death 

The premature death due to sudden cardiac death represents a significant public health 

burden. Despite the decline in overall burden of total cardiac mortality, the proportion due to 

sudden cardiac has remained largely unchanged and, in some reports, has demonstrated a 

steady increase overtime. Moreover, population-based epidemiologic data demonstrates that 

half of the crude rates of SCD occur in patients without apparent high-risk features, such as 

myocardial infarction, inherited channelopathies, ischaemic and non-ischaemic 

cardiomyopathies, or impaired heart function. There is growing body of data suggesting that 

this burden of SCD might be driven by the rising prevalence of obesity in the community. 

Chapter 6 reports the findings from a systematic review and meta-analysis undertaking to 

define the association between obesity and sudden cardiac death. In the analysis involving 

over 1.4 million patients, underweight body mass index was associated with an increased risk 

of sudden cardiac death. Importantly, obesity predicted an exaggerated risk for sudden 

cardiac death even after correcting for traditional high-risk features of sudden cardiac death. 

Similarly, unit increment in body mass index was shown to demonstrate a greater risk for 

sudden cardiac death. More crucially, these findings implicate the role of obesity in the risk 

of sudden cardiac death and the possibility of incorporating adiposity measures in SCD risk 

stratification 

   Much akin to atrial fibrillation, sudden cardiac death is driven by abnormal cardiac 

electrical activities. However, the potential mechanistic drivers of the ventricular substrate for 
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sudden cardiac death in obesity are not known. In chapter 7, the molecular and structural 

substrates for ventricular arrhythmias that lead to sudden cardiac death in a model of chronic 

obesity are presented. Obesity demonstrated two-and-half-fold expanded ventricular 

epicardial fat depot with a consequent extensive and severe fat cell infiltrations. There was 

significant reduction in ventricular desmosomal cadherin desmoglein-2, which demonstrated 

significant negative correlation with the degree of fatty infiltration. Additionally, obesity was 

associated with induction of diffuse ventricular interstitial fibrosis. The findings further 

demonstrated that obesity results in significant abnormal modulation of fibrotic pathways, 

including an alternative component of the central transforming growth factor-beta 1 pathway, 

angiotensin II, endothelin and aldosterone signalling pathways.  

The observation of epicardial fat expansion is particularly noteworthy as this adds an 

important extra layer to the stratification of patients at risk of sudden cardiac death. Indeed, 

there are few reports showing epicardial fat could predict greater risk for premature 

ventricular complexes, ventricular tachycardia/fibrillation, all-cause long-term mortality, and 

mortality due to sudden cardiac death in stable coronary artery disease.469, 470 Furthermore, 

the novel finding of fibro-fatty substrates in the ventricular myocardium could be sufficient to 

create conduction blocks, leading to re-entrant ventricular tachycardia/fibrillation and sudden 

cardiac death.481 More importantly, the fibro-fatty deposits could form a key element in 

substrate mapping as a guide for ablation of lethal ventricular arrhythmias.282, 481  
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9. Chapter Nine 

Current Challenges and Future Directions 
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The findings made during this doctoral thesis have provided crucial understanding of the 

clinical and mechanistic relationships between epicardial fat and cardiac arrhythmias and 

sudden cardiac death. They indeed have far reaching implication for management strategies 

for atrial fibrillation and sudden cardiac death. However, these observations raise some 

important questions, which would need to be addressed in future research. 

 

9.1 Epicardial Fat: Challenges and Concluding 

Remarks 

The findings reported therein have demonstrated expansion of epicardial fat as a prerequisite 

for the development for atrial fibrillation and sudden cardiac death, using a multimodal 

approach involving meta-analysis and animal models. However, the incorporation of this 

ectopic cardiac fat in risk models is likely to be met with challenges, inasmuch as there is 

inconsistency in the literature regarding what constitute epicardial adipose tissue and 

pericardial adipose tissue. As noted in the thesis, whereas epicardial fat pertains to the fat 

lying contiguously with the myocardium, pericardial fat is a loose term used to describe the 

totality of fat depots found around the heart. It incorporates both “epicardial fat” and another 

adipose tissue “paracardial fat”, which is located externally to the parietal pericardial layer or 

membrane.412, 413 As a drawback, ambiguity in distinguishing these fat zones could lead to 

overestimation or underestimation of the reported values of epicardial fat. Therefore, further 

studies are highly warranted to establish consensus on these definitions and clearly evaluate 

the risks associated with each fat depot. 

 Although this thesis robustly implicates mechanistic relationship between epicardial 

fat and sudden cardiac death, evidence for clinical association is very scant. Further studies 
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are warranted to thoroughly define this clinical relations and strategies to improve outcomes 

of patients at risk of sudden cardiac death.  

 

9.2 Fibro-fatty Infiltrations: Opportunities for 

Dynamic Risk Profiling 

This thesis has demonstrated extensive and severe fat cell infiltrations with induction of 

diffuse interstitial fibrosis because of epicardial fat hyperplasia. This represents a uniquely 

novel substrate for cardiac arrhythmias and sudden cardiac death due to obesity.  

Use of fibro-fatty infiltrations for accurate profiling of sudden cardiac death risk in the 

general low-risk communities but with high events rates would make an exciting research 

endeavour. However, with apparent limitations in imaging modalities, clinical and non-

invasive characterisation of zones of fibro-fatty infiltrates would likely be a major challenge. 

Nonetheless, there is some glimmer of hope, with emerging data demonstrating spatial 

overlap VT/VF circuits on electroanatomic maps and reconstructed CT images in the post-MI 

heart. Clinical utility of this approach would require extensive validation studies. 

 

9.3 Obesity Relapse: The Bottleneck in Management 

Strategies 

The benefits of weight loss have been demonstrated in both non-randomised and randomised 

trials. However, long-term sustenance of weight loss remains a major challenge in clinical 

practice.344 We previously reported that 5% or more fluctuation in weight counteracts the 

effects of initial weight loss in reducing the burden of cardiac arrhythmias.345 Importantly, the 
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findings reported in this thesis implicate an underlying remodelling in the myocardial tissue 

of weight fluctuation animals compared to reference controls despite having comparable 

amounts of epicardial fat. These observations highlight a likely induction of unique cytokine 

profiles by the cyclic fluxes in weight. Further research is very needed to clarify this 

bottleneck. More importantly, better strategies are warranted to effectively prevent relapse in 

obesity following weight management regimes.  
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