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Abstract

Improving efficiency in deep learning models implies achieving a more accurate model for a given
computational budget, or conversely a faster, leaner model without losing accuracy. In order
to improve efficiency, we can use regularization to to improve generalization to the real world,
and compression to improve speed. Due to the information-restricting nature of regularization,
these two methods are related. Firstly we present a novel autoencoder architecture as a method
of regularization for Pedestrian Detection. Secondly, we present a hyperparameter-free, iterative
compression method based on measuring the information content of the model with the Information
Bottleneck principle.
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Chapter 1

Introduction

Deep Learning models are a new and powerful element in the machine learning toolkit. Great
advances have been made in recent years applying deep learning to computer vision problems such
as object classification, detection and semantic segmentation. Prior methods for classification op-
erated as two-stage process: a feature transform such as the Scale Invariant Feature Transform
(SIFT)[67] or the Histogram of Oriented Gradients (HOG)[68] would extract useful information
from the data, and these features would be used as inputs for a classifier such as a Perceptron,
Support Vector Machine or Decision Tree. Features are parts of the image that are distinctive
and convey information about it. The classic examples are edges and corners. To a human eye,
a sketch of an object is often sufficient for a viewer to classify it. By extracting features rather
than using raw image data, the problem is made much easier by throwing away irrelevant infor-
mation. Classifiers use a training set of labelled examples to find a function that divides the input
space. This is done by solving an optimization problem to minimize the probability of incorrectly
classifying samples from the training set. This function can then be applied to predict the class
of new examples without labels. ‘Deep Learning’ refers to the use of neural network models with
many layers. The final layer corresponds to the classifier, and the preceding layers correspond to
feature extractors. The difference with respect to the prior methods mentioned above (e.g., SIFT,
HOG) is that the entire model is optimized as a whole, so feature transforms can be ‘learned’
rather than ‘hand-crafted’. Furthermore, each layer operates as a feature transform on the previ-
ous layer, providing features of other features. The Convolutional Neural Network (CNN) and the
Rectified Linear (ReLU) activation function were the key algorithmic advances that allowed these
deep networks to be trained. However, the deep layers of features that give deep learning models
good performance are also computationally expensive for large models. The current widespread
use of CNNs is due to the use of graphics processing units (GPUs) to compute features in parallel,
where CUDA, developed for nVidia’s GPUs, is the most common API.

With the ability to train large models and achieve good performance on ‘real world’ computer
vision tasks, there is now a demand for models that can be deployed on cheaper hardware or process
a video feed in real time (for example, Pedestrian Detection for self-driving cars). In this thesis
we explore two methods for utilizing computing resources more efficiently when developing deep
learning models: regularization and model compression. Regularization improves model accuracy
by reducing overfitting, the tendency of a model to perform well on its training set but worse
on a withheld testing set. A better-regularized model will perform better on the testing set for
the same computational cost. Model compression reduces the size of the model in memory, and
depending on the implementation this can reduce the time taken to compute the features. A good
compressed model will have less computational cost but the same accuracy. Using either of these
strategies, better performance can be obtained for a given computational budget. A large model
can be trained and later compressed to a smaller size, or a smaller model can be trained with a
regularizer so that it achieves better performance with the resources available.

Not only are regularization and model compression both methods for achieving better models
for a given computational budget, they are also ultimately based on the same mechanism: selec-



tively constraining the information stored in the model about the data. Given enough flexibility,
any machine learning model can simply memorize the training data rather than modelling the
data-generating distribution. Rather than storing properties of individual examples we find the
strongest factors of variation within the dataset and create a feature transform to convert inputs
into feature vectors. Information not expressed in these feature vectors is thrown away. While
the feature vectors are simpler than the input, information must also be carried by the model
parameters. A feature with a simple output and many parameters can still overfit, thus there
exist regularization methods that address information carried by feature vectors and methods that
address information carried by the model parameters. Model compression is obviously assisted if
there are fewer parameters that need to be stored, and to reduce memory usage at runtime it is also
helpful to restrict the size of feature vectors. Just like the regularizers, there are model compression
algorithms that operate on the model parameters, and ones that operate on the feature vectors.
The key difference is that in model compression algorithms the format of the information is critical.
Simply reducing the number of channels in a convolutional layer’s output, for instance, carries no
overhead when inference is done on the compressed model. Eliminating model weights rather than
channels requires a sparse matrix storage to take advantage of, and it is possible to find methods
for compression, such as Deep Compression [53], in which the model must be decompressed for
inference in the absence of hardware support. Unfortunately the practical success in the field of
machine learning has (for now) outstripped our theoretical analysis. Terms like ‘flexibility’, ‘ca-
pacity’, ‘dimensionality’ and ‘information content’ are used in a non-rigorous, qualitative fashion,
simply because while we see their effects all the time, we lack a way to quantify the information
expressed in a high dimensional, nonlinear model like a deep neural network. However, theoretical
frameworks such as the Minimum Description Length [73][49] and Information Bottleneck Method
[35] both point to methods to quantify, if only approximately, just how flexible our models are,
and where the information stored in them comes from.

In this thesis, we propose two methods to improve the efficiency of deep learning models, one by
regularization and one by compression. In Chapter 2 we provide an introduction to regularization
and compression. In Chapter 3, we propose a special type of autoencoder, the Region of Interest
Autoencoder, to regularize a pedestrian detection problem and improve performance without in-
creasing the model size or evaluation time. In Chapter 4, we demonstrate a new model compression
algorithm, PIBprune, that uses a variant on the Information Bottleneck method, the Parametric
Information Bottleneck, to estimate the information content of deep learning models. Informa-
tion Bottleneck methods were originally developed as regularizers to improve generalization, but
we show how they can also be used for compression. Our PIBprune algorithm conservatively re-
moves nodes with low information content, while preserving nodes with high information content
to achieve smaller, more efficient models while retaining performance.



Chapter 2

Background

2.1 Regularization

A regularizer is an addition to the training program to prevent overfitting and improve the gener-
alization of a model so that it performs well on new examples. Regularizers are usually associated
with some hyperparameter that controls the strength of the regularization. If the regularization
is too weak, the model will overfit and ‘remember’ the training data rather than modelling it in
a way that generalizes well. If the regularization is too strong, the model underfits instead, and
is not flexible enough to model the training data accurately. This is a feature that regularization
shares with architecture selection; a model that is too large may overfit, while a model that is too
small may underfit. Rather than a hard limit on dimensionality, regularizers use penalties, soft
constraints or auxiliary tasks during training. Instead of guessing at an ideal architecture, a large
model is usually chosen and the regularizer is left to constrain the flexibility of the model during
training.

2.1.1 Weight Decay

The classic example in deep learning and other neural network methods is weight decay [78],
which adds a penalty to the cost function in the training program based on the magnitude of
the parameters in the model. The most frequently used version is L2 weight decay or Tikhonov

regularization,
»C'r‘egularized = £cls + /\HW”%, (211)

where W is the set of weights in the model, L. is a classification loss function dependent on
W and A is a hyperparameter controlling the strength of the regularization. Because it depends
on the squared norm, L2 weight decay tends to heavily penalize large magnitude parameters and
encourage small but non-zero parameter magnitudes. Also used is the L1 or Lasso (Least Absolute
Shrinkage and Selection Operator) regularizer,

ﬁregularized = Ecls + AHVV||1a (212)

which penalizes all weights according to their magnitude rather than their squared magnitude,
and tends towards a sparse model with many zeroed parameters. During training, weight decay
introduces a trade-off between the accuracy of the model on the training set, and the complexity
of the function. Out of several models that fit the data equally well, a regularized training will
produce the simplest model. Finding the simplest model as per Occam’s Razor is a key principle
of regularization, but there are many ways of forcing a model to be ‘simpler’.

2.1.2 Dropout and Dropconnect

Instead of penalizing the weights, Dropout [64][65] tries to prevent co-adaptation of nodes. To
be robust, a node should not be dependant on any single input. Nor should it be dependant on



Figure 2.1.1: Dropout: nodes are randomly dropped from the affected layer at training time,
creating a new sparse architecture for each training step.

any two inputs being available at the same time. Rather, all inputs should be useful in some way.
The authors of Dropout use an analogy to sexual reproduction in nature. The child organism has
a mix of genes from both parents, and genes that are useful in many different combinations are
favoured. To encourage this behaviour, dropout randomly zeroes out the outputs of nodes in the
affected layer. During training, a neural network layer with m inputs and n nodes, weights W and
bias b will have a hyperparameter p, that controls the likelihood of nodes being retained. Given
p we can sample a binary mask for the nodes r ~ Bern (p), where Bern(.) denotes the Bernoulli
distribution.

For any training step, an expected fraction p of the nodes with dropout will be active, the
remaining being inactive. An example of dropped out nodes can be seen in in Figure 2.1.1. This
means that during each training step, the network will have different connectivity and effectively a
different sparse architecture. During training, a neural network layer with weights W, bias b and
dropout rate p will have activations

z=r©®c(Wx+Db). (2.1.3)

During testing we use the expected value of this process. All the nodes are active but weighted by
a factor of %. This gives us

1
2= o(Wxtb). (2.1.4)

Dropconnect [66] is a similar method that zeroes out input connections to nodes rather than
outputs as shown in Figure 2.1.2, resulting in more possible architectures than Dropout. With
Dropout and Dropconnect, the activations of nodes in the network are stochastically modified to
train the model to cope with missing data and different activation patterns for the same input
data. For Dropconnect we also use a hyperparameter p, but the equations are altered so that the
masking happens on the inputs to the node. The mask becomes a matrix R ~ Bern(p) of size
m X n. During training the activation function is

z:a<(R®W)x+b>, (2.1.5)

with

z=a<(;W)x+b> (2.1.6)

during testing.



Figure 2.1.2: Dropconnect: input connections are randomly dropped from the affected layer at
training time, creating a new sparse architecture for each training step.

2.1.3 Semi-Supervised Learning

Reconstruction

Encoding

Figure 2.1.3: A simple autoencoder: a high dimensional input is mapped to a low dimensional
input and reconstructed from its encoding.

Semi-supervised learning attempts to regularize a supervised learning problem such as classi-
fication or detection by combining it with an unsupervised task. This can be performed with or
without extra unlabelled data. Restricted Boltzmann Machines (RBMs) [81][82] and Autoencoders
[86][89][91] are trained to learn an encoding function to encode data into a (constrained) latent
space and a decoding function to reconstruct the original from the encoding as in Figure 2.1.3.

For our purposes we focus on autoencoders, which are simpler than RBMs and can be jointly
trained with a supervised neural network model. A simple autoencoder (see Figure 2.1.3) has an
input space x € R™, and an encoding space z € R™. A neural network layer is used to define a



deterministic mapping from the input to the encoding space,
z = fo(x) = o(Wx + b), (2.1.7)

where o is the activation function and the mapping function f is parameterized by § = {W,b}.
W is the encoding layer’s weight matrix with size m x n and b the n x 1 bias vector. We then use
a decoding layer to attempt to recover an approximate x from the encoding z. We designate the
reconstruction x’. The mapping from the encoding space back to the input space is given by

x' = gp(z) = c(W'z +b), (2.1.8)

where g is parameterized by 6/ = {W’,b’}. W' is the decoding layer’s weight matrix with size
n x m and b’ is its m x 1 bias vector. The loss function is a simple quadratic loss

L(x,x') = ||x —x'||5. (2.1.9)

The loss function depends on the difference between the reconstruction and the original. If
this is combined with a supervised task, the learned features have to satisfy being useful for the
supervised task, while being able to efficiently model the data distribution well enough to recon-
struct examples. Because the problem is unsupervised, factors of variation within classes, not just
between classes, are represented in the feature space. Information that is not required to represent
these variations is discarded. In order to learn interesting features about the data, we need to
constrain the latent space, where in a basic autoencoder this constraint takes the form of dimen-
sionality reduction. Without such a constraint, the model could learn the identity function or a
similar trivial mapping. To learn good features, only information necessary for a good reconstruc-
tion should be preserved.

To use these auxiliary tasks as a regularizer, either pre-training or joint training can be used.
Pre-training was used to construct Deep Belief Networks [83] (DBNs) and Deep Boltzmann Ma-
chines [84] (DBMs) out of RBMs, and later for autoencoder-based semi-supervised learning such as
the Stacked Denoising Autoencoder [89] and Stacked What-Where Autoencoder [91]. As training
techniques have improved, joint training has superseded pre-training, especially on convolutional
networks [91][92]. Pre-training trains a series of layers, one at a time, with each layer using the
previous layers as feature transforms. A classification layer is then added to the end of the network
and the whole network trained with the supervised loss function. The assumption in pre-training
is that the unsupervised objectives will find a useful ‘basin of attraction’ in the parameter space in
which the supervised task will be confined. If the training for the supervised task is too good, it
could escape the basin. On the other hand, joint training uses a combined loss function that adds
the loss functions for the unsupervised tasks in all layers to the supervised task, optimizing for all
objectives at the same time. This allows the unsupervised tasks to constrain the supervised task
throughout the entire training process.

Whereas a basic autoencoder simply encodes the input into a low-dimensional latent space, a
denoising autoencoder [88] can work even if the latent space has more dimensions than the input
space. Denoising autoencoders corrupt the input x to get a noisy input X and then attempt to
reconstruct the uncorrupted original. The encoding mapping becomes

z = fo(x) = o(Wx +b), (2.1.10)

with x ~ (x + A(0, k)), where k is a hyperparameter that controls the amount of corruption. An
analysis by Alain and Bengio [90] shows that denoising autoencoders implicitly model the proba-
bility density function of the data and its gradient (see Fig. 2.1.4). Inputs that are in low density
areas in the input space are shifted towards higher density areas in the reconstruction, and in the
latent space. This means that inputs that have not been seen before will be transformed so they
are closer in the latent space to images that have been seen before. When data points are close in
the latent space, the supervised task will treat them similarly, all other things being equal. The
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Figure 2.1.4: Figure 5 from Alain and Bengio’s analysis [90] demonstrates the effect of a denoising
criterion as a field. Reconstructed points move closer to the areas with high data density.

failure modes for semi-supervised learning are when the reconstruction task is so constrained that
it is unable to model the data effectively, or so unconstrained that it becomes equivalent to the
identity transform. In joint training the influence of the unsupervised and supervised tasks needs
to be balanced so that the supervised task is regularized but not to the point of underfitting.
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Figure 2.1.5: Stacked What-Where Autoencoder. A convolutional network is trained jointly on a
supervised task and multiple reconstruction objectives to assist in learning features that generalize.
The pooling operator is partially inverted by saving the spatial locations or ‘pooling switches’
chosen for max-pooling.

While weight decay and Dropout have become standard practice in engineering deep learning
models, most autoencoder work has been with fully-connected layers and on small input images.
Scaling it up had two main issues: firstly, it has to be made compatible with convolutional networks,
and secondly, reconstructions become harder with larger inputs. In 2015 a method for adapting
autoencoders for use with CNNs was devised — this method is called the Stacked What-Where
Autoencoder[91] (see Figure 2.1.5). This method uses a stack of convolutional autoencoders that
are jointly trained with a supervised loss, with a special method called ‘unpooling’ to recover
information from the max-pooling operation. Recently it was demonstrated [92] that joint training
with the Stacked What-Where Autoencoder could improve the performance of a state-of-the-art
CNN on Imagenet, with 224x224 colour images. In Chapter 3 we adapt this method for our own
purposes for a detection problem and further demonstrate the power of semi-supervised methods to



improve convolutional networks. Like weight decay and Dropout, semi-supervised learning imposes
no overhead on the finished model; it is as fast as an un-regularized model but more accurate on
unseen examples. We have presented an overview of regularization, methods to improve model
accuracy on new examples without using more resources. To see how we can make good models
smaller without losing accuracy we turn to model compression methods.

2.2 Model Compression

While regularization involves taking a large model and limiting its capacity it so that it can’t over-
fit to the training data, model compression limits a model’s capacity so that it is faster and takes
up less storage space, while retaining its accuracy. The key difference between a regularization
and compression algorithm is that to the compression algorithm it is the number of weights and
nodes, and the dimensionality of the activations that matter rather than the flexibility of the pa-
rameters. A critical element in most model compression algorithms is allowing the model to adapt
to the changes caused by the compression process. Because of the complexity of deep learning
models it is usually easier to fine tune a compressed model using gradient descent than it is for
the compression algorithm to adjust the compressed parameters. Because the fine-tuned model
may have very different parameters, it might even be possible to compress the model even more.
This points to an iterative process of compression and fine tuning that we will explore in Chapter 4.

2.2.1 Weight Pruning

The weight decay method for regularization has a counterpart in the compression method of weight
pruning. Weight pruning exploits the fact that many weights in neural network models are close to
zero, so that removing the weights will only result in a small change to the model’s predictions. A
simple weight pruning method simply removes weights with a magnitude below a certain threshold.
If L1 weight decay was used as a regularizer in training the model, weight pruning is already built
in, because many weights will have been forced to 0. This is one example of regularization and
compression overlapping when it comes to restricting the capacity of the model. L1 weight decay
thus provides model compression without any drop in model accuracy - and indeed a possible
increase in accuracy over an unregularized, uncompressed model. However, with weight pruning
and fine tuning, L2 weight decay provides better results - more compression for the same accuracy
[41]. A better regularized model will tend to have more robust features that can cope with the
changes induced by compression, just as they can generalize to unseen samples.

Weight pruning was further developed by more principled algorithms such as Optimal Brain
Surgeon (OBS)[57]. These measure the impact that changes in each weight have on the final
prediction of the model. They do this by computing the Hessian matrix of the weights with
respect to the loss function. However these methods do not scale well. Weight pruning can be used
to speed up model inference, but this requires the exploitation of sparse matrix-vector operations
which are not available in most machine learning toolkits.

2.2.2 Quantization and the Deep Compression Method

While weight pruning relies on sparsifying the weights in the model, quantization reduces the
number of bits necessary to represent each weight. Rather than setting weights to zero, a small
codebook of values is generated and used to approximate the values of all the weights. Quanti-
zation has been combined with weight pruning in Deep Compression [53] to great effect. Rather
than set weight values to zero they are set to their closest approximation in the codebook. They
then use Huffman Coding, a type of lossless run-length encoding, to take advantage of the reduced
number of unique values in the quantized model. This method relies on iteratively compressing
each layer and then fine tuning the model to adapt to the changes. Using this, it is possible to
compress a model to use very little storage, but the storage necessary to store intermediate re-
sults is unaffected. The authors do report an increase in speed, but this is primarily due to the
model being small enough to store in the cache. The model cannot be used for inference when



fully compressed, and has to be expanded by reversing the Huffman Coding and quantization
phases to yield a sparse network. The developers of Deep Compression treat this as a hardware is-
sue and proposed the Efficient Inference Engine (EIE) to perform inference on the quantized model.

2.2.3 Tensor Decomposition

To compress models in order to obtain an increase in speed we need to be able to perform inference
efficiently on the compressed model. For this purpose, we can use tensor decomposition or node
pruning. Tensor decomposition involves converting one (linear) layer in the model to two layers
which are smaller than the original when combined. For this purpose we can take advantage of
existing matrix and higher order tensor decompositions, especially the truncated Singular Value
Decomposition (SVD). For fully-connected layers, the SVD is simple and effective. The m x n
weight matrix W is factorized to

W =UxV', (2.2.1)

where ¥ is a diagonal matrix containing the singular values of W, U and V are unitary square
matrices containing the left- and right- singular vectors respectively, with U having shape mxm and
V having shape n x n. The truncated SVD uses the k largest singular values and the corresponding
singular vectors in U and V to obtain an approximate transform

W =UuxVv'"T, (2.2.2)

where Y’ is now a k x k diagonal matrix, U’ is an m x k matrix containing the k& most significant
left-singular vectors of W, and V is an n x k matrix containing the k& most significant right-singular

vectors. For an input vector x, instead of the activation Wx + b, we have (U’E’ (V’Tx)) + b.

The efficiency in terms of saved weights is dependant on the size of k. For an m x n weight matrix,
there are mn weights. Using truncated SVD there are mk + kn weights. For a square matrix
m = n , k must be less than % for the decomposed transform to use fewer weights. The values
of ¥ can simply be multiplied into U’ and do not need to be saved. Because convolutional neural
networks use 4-dimensional convolutional kernels rather than 2-dimensional weight matrices higher
order tensor decompositions need to be applied. Examples include the Higher Order SVD, Tucker

[70] [93] and CP [94] decompositions.

2.2.4 Node and Channel Pruning

To mitigate compression-related overhead at test time, we can use node pruning and simply shrink
the architecture by removing nodes from the network. The compressed model has the same number
of layers, but fewer nodes in each. The issue here is preserving the accuracy in the compressed
model. Nodes are much harder to remove than weights because their output is linked to each
node in the next layer. The success of Dropout seems to indicate that neural network models can
compensate the loss of nodes to some extent, but inference on Dropout at test time still relies on
all nodes being active. It is harder to prune channels than fully-connected nodes, but most of the
memory usage in deep learning models comes from convolutional layers, despite the fully-connected
layers having more parameters, so it is still potentially useful. One approach for node pruning,
similar to L1 weight decay and weight pruning, is to introduce a penalty on the number of nodes
into the training process and let the optimizer adapt the model as needed. L1 weight decay can be
extended to groups of weights in the Group Sparse Lasso regularizer. Let W be an m x n weight
vector,

m
ACregula'rized = Ecls + )\1 Z HWzHQ + )\2||W||1, (223)

i=1
where W; is the row vector in W corresponding to the weights attached to the i-th node. By
grouping the weights by node, weight pruning by L1 can be converted into node pruning, where
all the weights in a node tend to be driven to 0 at once. When node-pruning is applied to convo-
lutional layers it becomes channel pruning [63]. Louizos et al. [51] use LO regularization for this



purpose, which penalizes the number of non-zero weights rather than their magnitudes. Dropout
derived methods [62] can also be used. These include trainable gates in the model that can reduce
or expand the effective number of nodes at runtime.

2.2.5 Choosing the Compression Rate

Like regularization, compression usually requires selecting a hyperparameter to specify how con-
strained the model will be. In the case of compression, the ideal compression rate may vary
significantly between layers depending on the architecture. Hyperparameter selection can be a
tedious process, so much so that efficient search methods for good hyperparameters has become
a research field in its own right [80]. An ideal compression rate is one that shrinks the model
without removing information necessary to classify the model. We know that deep neural net-
work models are massively overparameterized, which makes training easier, but which damages
the models. Regularizers allow large numbers of parameters while restricting the information they
can store about the training data to prevent the model from overfitting. Empirically, we can find
compression rates for existing compression algorithms that shrink the model without reducing its
accuracy. If we can quantify the proportion of the model that contains useful information, we can
specify a compression rate that allows useful information to remain. The dimensionality and the
VC dimension are inadequate tools for deep neural networks, but in recent years new and powerful
theoretical tools using the Minimum Description Length (MDL) [73] and Information Bottleneck
(IB) [35] have been developed. These can be applied to quantify the information present in the
model. Comparing the information present to the maximum amount of information that can be
stored in the model should yield a good compression rate without treating the model as a black
box and using a trial-and-error approach.

In the last few years, advanced node pruning methods have been proposed that are motivated
motivated by the Minimum Description Length and Information Bottleneck. Recently the VIBnet
[45] was proposed that also uses the IB method, and Bayesian Compression [50], which uses Group
Sparsity combined with the MDL. Interestingly, both the Information Bottleneck and Minimum
Description Length were first applied to neural network as regularizers, to find principled ways to
improve generalization. We are surprised to find that despite using theoretical approaches that
can quantify the information used by the model, there have been very few attempts to find a
hyperparameter-free model compression algorithm. In Chapter 4 we present our node pruning
method, PIBprune, which is derived from the Information Bottleneck method.

10
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Chapter 3

Pedestrian Detection Augmented
by Autoencoders

An earlier version of this chapter was published as a conference paper in the proceedings of DICTA
2017.

Region of Interest Autoencoders with an Application to Pedestrian Detection

We present the Region of Interest Autoencoder (ROIAE), a combined supervised and
reconstruction model for the automatic visual detection of objects. More specifically,
we augment the detection loss function with a reconstruction loss that targets only fore-
ground examples. This allows us to exploit more effectively the information available
in the sparsely populated foreground training data used in common detection prob-
lems. Using this training strategy we improve the accuracy of deep learning detection
models. We carry out experiments on the Caltech-USA pedestrian detection data set
and demonstrate improvements over two supervised baselines. Our first experiment
extends Fast R-CNN and achieves a 4% relative improvement in test accuracy over its
purely supervised baseline. Our second experiment extends Region Proposal Networks,
achieving a 14% relative improvement in test accuracy.

3.1 Introduction

The detection of visual objects is one of the most studied problems in computer vision [1]. A
particularly relevant example of this problem is the detection of pedestrians, which is an impor-
tant task in the self-driving car industry [7]. With rapidly improving hardware and increasingly
large annotated data sets, we are able to apply powerful machine learning techniques to real-world
detection problems. The main methodology being explored for the task of pedestrian detection is
based on deep learning models [17][10][4][11], where the main challenge lies in the adaptation of
such models to the unique setup of the data sets available for training.

Deep learning models use machine learning to simultaneously learn features that represent use-
ful characteristics of the data, and a classifier to distinguish between classes. data sets include a
training set that the model learns from, and a testing set that is used to test the model’s accuracy
on new data. A model’s accuracy on the training set measures how successful the training process
was at minimizing its cost function. Accuracy on the testing set measures how well the model
generalizes to new examples, and indicates how well the model will do when deployed. Improving
deep learning models can be done by addressing training or generalization. Better training will
improve the training accuracy, but this is only useful if the testing accuracy improves with it.
Better generalization closes the gap between training and testing accuracy; this is useful as long
as such a gap exists. In both cases the key measurement of success is accuracy on the testing set.
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Regularized Training with ROIAE
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Figure 3.1.1: The Region of Interest Autoencoder combines supervised and reconstruction tasks.

Pedestrian detection data sets are typically based on images showing a small number of pedestri-
ans (identified with a bounding box). Positive examples come from the region inside the bounding
box, and negative examples come from bounding boxes sampled from elsewhere in the image. The
most common data sets used as benchmarks in pedestrian detection include Caltech-USA [5][6],
ETH [24], Daimler [25] and KITTI’s pedestrian data set [23].

In these data sets, the number of positive bounding boxes corresponding to pedestrians are
overwhelmingly smaller than the number of candidates corresponding to background, resulting in
a severe class imbalance problem. Training deep learning models usually relies on a relatively
balanced set of examples in order to stop the training from collapsing to a trivial solution, such as
predicting everything as background. The small number of pedestrians also hurts generalization
because the few examples the model has for the positive class (i.e., pedestrians) only allows it to
represent a limited amount of variations. Conversely, the presence of a large amount of background
data increases the variation in the distribution of negative samples.

The training difficulties of class imbalance are addressed by existing methods such as R-CNN
[1], which uses sampling to present a more balanced set of samples to the detector while training.
To improve generalization with a small amount of pedestrian samples is harder. More training
samples can be gathered, the model parameters can be regularized or the problem can be re-
parameterized with a more adequate model architecture. Gathering and annotating more data is
effective, but costly and time consuming. This is particularly true for pedestrian detection, where
data collected usually has so few positive examples. Regularizing model parameters is a widely
applied solution but existing regularizers, such as weight decay, are too general to represent well the
characteristics of the data set. Re-parameterization aims at improving training without increasing
the number of parameters, by changing the training method and the model structure. Examples
include the changes to the R-CNN model parameterization by Fast R-CNN [2] and Faster R-CNN
[3], which are designed specifically for detection applications. Specializing further, for pedestrian
detection instead of general detection, we have hybrid algorithms that incorporate boosted deci-
sion forests [17][10][9], and specialized part-based models that integrate prior knowledge of human
structure [30]. However, increasing specialization for the pedestrian detection problem relies on
increasing amounts of human effort to find good priors and heuristics, to some extent replacing
the machine learning it is meant to improve. We argue that it is more interesting and useful for
the computer vision community to develop a regularization approach that can be applied more
generally in other detection problems. Our proposed regularization is based on a reconstruction
objective function that has characteristics of all of the above methods. More specifically, we extend
the training of supervised pedestrian detection models with autoencoders for image reconstruction.
Weight sharing between the supervised detector and autoencoders improves the accuracy of the
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pedestrian detection model on the test set. The training of supervised deep learning models with
autoencoders has been successful on classification tasks such as CIFAR [91] and ILSVRC [92], but
to the best of our knowledge this approach has not been used to assist detection problems.

Our proposed methodology combines modern supervised deep learning detection models with
an autoencoder model to form a novel deep learning approach for pedestrian detection (see Fig.
3.1.1). We call this combined model the Region of Interest Autoencoder (ROIAE). Unlike previous
supervised and autoencoder combinations, we restrict our autoencoder task to only reconstruct the
image’s foreground regions. Because of the scarcity and smaller variation among pedestrians, this
method makes the reconstruction task easier to train by efficiently using the model capacity. We
demonstrate our model using the Caltech-USA data set [5][6] for training and testing. Using the
supervised detector of [4] as a baseline, our proposed method achieves a 14% log-average miss rate
using a VGG-16-based Region Proposal Network (RPN) [3] (the published detection result from [4]
was 14.9%). Training this baseline model with our proposed ROIAE method instead yields 12%
log-average miss rate (a 2% absolute and 14% relative improvement over the purely supervised
version). We also test another baseline using supervised Fast R-CNN and AlexNet that achieves a
23% log-average miss rate, while the ROIAE-trained version yields 22%. An important observation
is that the autoencoder component is only used to regularize the training process. After training,
the autoencoders can be discarded, leaving a detector with better accuracy on the test set and
without any extra overhead in evaluation, allowing us to continue running the detector in real time
(5 frames per second) on commodity hardware.

3.2 Literature Review

Our contribution is to take an existing pedestrian detector and to regularize its training process
with autoencoders to improve generalization. In this section we summarize the literature of each
area that the ROIAE draws upon: detection with deep learning and regularized training with
autoencoders.

3.2.1 Detection with Deep Learning

Detection can be viewed as classification over regions in an image. A sliding window detector
moves a ‘window’ over the input and classifies image patches into foreground or background using
this window. To ensure every possible object is covered, the collection of windows needs to cover
the whole image and overlap with a limited stride and with multiple scales. While this is a natural
approach to solve this problem, in practice converting one input image into several thousand and
classifying each one separately can be too slow, if not algorithmically optimized.

The first successful deep learning model for general detection was the Region-Based Convo-
lutional Neural Network (R-CNN) [1], which re-parameterizes the convolutional neural network
(CNN) classifiers such as AlexNet [14] and VGG-16 [16] for the problem of pedestrian detection.
In R-CNN, an external method is used to propose potential regions of interest (ROIs) based on
‘objectness’ [1]. These ROIs are cropped out and warped to fit into the input of a neural network
classifier. This is an improvement over pure sliding window because of the reduced number of
background proposals, but the external proposal method itself is computationally complex. This
method was extended by Fast R-CNN [2] which reuses convolutional feature maps for all ROIs
in an image. The Faster R-CNN method [3] replaces the external region proposal mechanism
with a deep learning based approach, called Region Proposal Networks (RPN). This means that
the features for ROI proposal and classification can now be trained and tested in an end-to-end
manner. This end-to-end training can potentially find better candidate ROIs, because the final
detection loss is used in the optimization of the RPN, so the RPN is trained to produce optimal
ROI candidates. R-CNN was successfully adapted for the Caltech-USA pedestrian detection data
set by Hosang et al. in 2015 [9], achieving competitive results. In particular, Hosang et al. [9] used
a boosted decision forest for region proposal, making this a hybrid model. This idea was extended
by the “Scale Aware Fast R-CNN” model [10] which achieved state of the art results by creating
distinct sub-networks to detect small-sized pedestrians, again using a boosted decision forest to
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generate region proposals. The CompACT-Deep [17] model took an alternative approach and used
pretrained neural network features in a boosted decision forest detector.

Zhang et al. [4] demonstrated that it is possible to train an accurate pedestrian or other single
class detector, using region proposal networks alone. In adapting the model to pedestrian detection
they needed to address problems caused by small-sized pedestrians. While they are able to inte-
grate R-CNN to improve the baseline RPN detector, this is only possible with a trous convolution
to generate higher resolution outputs [4], while adding Fast R-CNN to the RPN actually degrades
performance even with a trous. They then extended their work by creating an RPN/decision forest
hybrid model, but the novelty was the ability of the RPN to get accurate pedestrian detection re-
sults on its own. Because of its speed, competitiveness and the fact that it is a pure deep learning
method, we use the RPN as our main baseline model.

The RPN approach was extended by the current state of the art for pedestrian detection, the
Fused Deep Neural Network (F-DNN) [11]. F-DNN uses model fusion to create a fast and accurate
detector based on the Single Shot Multibox Detector (SSD) [12]. While they also provide a fast
neural network only detector, F-DNN’s contribution is a different supervised architecture while
ours regularizes an existing supervised network with autoencoders at training time. These, along
with other approaches such as decision forest hybrids, hard negative mining, ensembles and use of
visual flow are not mutually exclusive and can be combined in principle.

3.2.2 Regularized Training with Autoencoders

In order to improve detection accuracy we look at previous works that explored the extension of
supervised training with autoencoder learning tasks. This approach was explored for the training
of the Deep Belief Network or DBN [83]. The DBN model is based on a series of smaller models
called Restricted Boltzmann Machines (RBM), a type of energy-based bipartite graphical model.
Training an RBM involves the minimization of a layer-wise reconstruction loss. After training one
RBM, the parameters can be fixed and a second RBM is placed on top of the first and trained using
the output of the hidden layer from the first RBM in a process called ‘generative pre-training’.
At first, generative pre-training was just used to overcome the difficulties of training deep neural
networks via gradient descent, but Erhan et al. [40] demonstrated that generative pre-training can
also improve generalization.

This property was exploited by the Stacked Denoising Autoencoder (SDAE) [89], which added
noise to its training data and learned to reconstruct the denoised input. The SDAE learned to
preserve information along vectors of variation within the training data set, but to throw away
irrelevant information. This results in a contraction of any inputs towards a manifold in feature
space that contains the training data. By learning these invariants, the model generalized better
than prior stacked autoencoders or the RBM-based networks.

Autoencoders were initially proposed to augment fully-connected networks and performed well
at this task, but to augment most ’real world” models they have to be converted to convolutional
networks. The main problem here is that the pooling operation in CNNs is not invertible, leading
to difficulty in reconstruction [20][91][27]. Another difficulty in applying autoencoders to help real
world supervised problems is the spatial size of the input to be reconstructed; the larger the spatial
size of the input, the more difficult the reconstruction task. We base our ROIAE’s autoencoder
component on the Stacked What-Where Autoencoder (SWWAE) [91]. This model uses unpool-
ing to partially invert the max-pooling process by saving the location of the pooled pixels in the
original image. SWWAEs do not use generative pre-training; instead all the partial autoencoders
and an additional end-to-end autoencoder are trained jointly with the supervised task. The cost
function for training is a weighted sum of the cost of the supervised task and all the autoencoders.
The SWWAESs showed improvement on the CIFAR [31] and STL [32] data sets when unlabelled
data was used in addition to the standard labelled data. While they do perform reconstruction,
SWWAEs do not use denoising or other contractive objectives to ensure contraction to a manifold.
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Figure 3.3.1: Region Proposal Network, from [3]. The RPN implements a sliding window over

a CNN’s convolutional feature map and, for each location in the output feature map, predicts
bounding boxes relative to k fixed proposals called anchors.
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By contrast, Ladder Networks [27] use noisy skip connections in place of unpooling to recover
information lost in downsampling.

Recently, SWWAE was applied to the ILSVRC classification problem, demonstrating the scal-
ability of the model [92]. Joint training performed better than generative pre-training, and both
end-to-end and intermediate autoencoders were required for best results. This model did not use
additional unlabelled data; the autoencoders were able to exploit information in the labelled data
that the supervised training could not. Interestingly, this model improved both training and testing
accuracy, suggesting that autoencoders can improve convergence and generalization at the same
time.

Our ROIAE method jointly trains an RPN for pedestrian detection with autoencoders inspired
by the SWWAE described above. Unlike the methods mentioned above, we force our model to
focus on the foreground (i.e., pedestrian) examples, using its limited representation capacity as
efficiently as possible for our purposes. Using our proposed method we can improve detection
accuracy by making up for the shortage of foreground data in detection problems.

3.3 Methodology

In this section, we first describe the existing supervised RPN detector in isolation. We then describe
our ROIAE method, which extends the RPN during training by joint training with autoencoders
that reconstruct foreground examples.

3.3.1 Detection with Region Proposal Networks

An RPN is a type of fully-convolutional network (FCN) [28], which is fine tuned from a widely

available classification model such as VGG-16 [16] that has been pre-trained on the Imagenet [29]
classification task. Assume that our data set is represented by D = {({, B)i}gll, where [ : Q — R?
defines an image, Q € RE*W and B = {bi}ii‘l,b = [w1,y1, 22, y2] € R? defines a set of manually
annotated bounding boxes. The RPN implements a deep learning model represented by a sequence
of L pairs of linear and nonlinear transforms: f(I,0) = fL o fl=1o fL=2.. 0 f1(1,0), where 6 de-

notes the model parameters.

During testing, the model takes a test image I as input and returns k£ x n bounding boxes:
kxn

{(b,8)i},—, = f(I,0), where ¢ € [0,1] denotes a confidence value for each bounding box b. The
output of the final layer L consists of k x n bounding boxes from the output of fZ~!, where n is the
size of the input feature maps to layer L and k is the number of channels in L. These k channels
correspond to ‘anchor boxes’, which are prototype bounding boxes with a preset aspect ratio and
scale (see Figure 3.3.1). The predicted bounding boxes b are defined relative to their corresponding
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Figure 3.3.2: Average responses of convolutional layers in an ROIAE to an annotated image.
Three encoding layers are part of both a supervised RPN and the autoencoders. In this specific
model we do not use g' or g2. Intermediate reconstruction is generated by the autoencoders
g3 o f3,g* o f*,¢° o f5. The end-to-end autoencoder g o f reconstructs f2 rather than I.

anchor. The t-highest predicted bounding boxes are chosen as candidates, where ¢t < k is a hyper-
parameter. Greedy Non-maximum suppression (NMS) is applied to prevent multiple detections
for the same object, then a second, tighter confidence threshold is applied to get the final s < ¢
predictions, where s is another hyperparameter. For further details on the parameterization of the
RPN see [3], [2] and [1].

To train the model and find 8, we use a training set extracted from data set D defined earlier,
containing images and ground-truth bounding boxes. There are two loss functions, a classification
loss function L. and a regression loss function L,..4. The regression loss compares the s bounding
boxes in B to the ground truth bounding boxes in B. Each beBis assigned its nearest counterpart
in b € B as a regression target (see [1]).

| B| ~ . Py
_ b — billey if |[Bi — bills < 1
Lreg(BaB):Z{H I, i <t (3.3.1)

i—1 ||Bi_bi‘|1, otherwise

The classiﬁcatiop loss L. addresses each b’s confidence level & The confidence target ¢ depends
on the accuracy of b.

1, if 2>,
_ L it > 05 (3.3.2)
0, otherwise
L.;s uses the softmax loss:
N e®
Lys(e,é) =c— (3.3.3)

Dy €
The final supervised RPN loss is a weighted sum Lrpy = Leis + ALreg. The parameters are

updated using this weighted loss with Stochastic Gradient Descent (SGD). The RPN is used both
as our baseline and as the supervised component in our ROIAE.
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Figure 3.3.3: VGG-16 RPN extended with Region of Interest Autoencoder. Orange arrows indicate
intermediate reconstructions.

3.3.2 Region of Interest Autoencoder (ROIAE)

Our ROTAE model extends the RPN by adding an autoencoder component that minimizes an im-
age reconstruction loss. Unlike previous autoencoders we only want to reconstruct areas of an input
image I within the ground truth bounding boxes b € B from our detection problem. To achieve
this we construct a binary mask M@ : Q — {0,1}, where 0 denotes background and 1 denotes
foreground (i.e., regions containing pedestrians). The masked image is defined by I™) =T ® M.
In the autoencoder we use the RPN’s set of transforms f(I,6) as encoders, and we introduce up
to L new transforms g(I,0) = g* o g%... 0 g* o f(I,0) as decoders, | € {N |1 <[ < L}. By abuse
of notation we use f! and ¢' to refer to both the function itself and the output of the function.
Because reconstruction on the earlier feature maps is harder due to their large spatial size, recon-
struction for all layers may be too difficult, or the model may do better with the early layers fixed.
To address this we can remove the first & decoders and use layers | € {N | k <1 < L}.

Once the model is trained we expect I'M) ~ [*(M) = M (g(I,0)), where I* is a reconstruction
of T (see Figure 3.3.2 for examples of reconstructions). g(1,0) is called the end-to-end autoencoder.
We also define autoencoders that reconstruct encoded images f'~! from a deeper encoding f!, via
decoder g'. The encoder f! and a decoder g' can be turned into the intermediate autoencoder g'o f!
(if I = 1 the autoencoder g' o f! reconstructs I, the input to f!). The supervised detector and
autoencoder reconstruction models share f and both contribute to training its parameters (Fig.
3.3.3 depicts the proposed training structure using the VGG-16 based RPN). The loss function is
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where the H is the Huber norm

ll2ll2, if [lefly <1
= . 3.3.5
!l {||m|1, otherwise ( )

The ROIAE is trained with the same scheme as the RPN, with SGD. Our autoencoder loss
function uses the /1 norm to keep the magnitude of the loss (and thus the gradient descent steps)
relatively small, to ensure numerical stability. The masking operation is critical in enabling the
autoencoders to discover variations that characterize the sparse foreground. During training, the
decoding layers in g learn to reconstruct foreground examples and forces the encoding layers in f to
update themselves to preserve information necessary for reconstruction. Preserving the variations
within the foreground aims to regularize the training process. At test time the decoder layers
are discarded, leaving a model of the same size as the RPN baseline but with better-regularized
features.

3.4 Experiments

In this section we describe the Caltech-USA pedestrian detection data set used to evaluate our
method, describe our experiments in detail and present our results.

3.4.1 Caltech-USA data set

Caltech-USA [5][6] is one of the main benchmarks for pedestrian detection. Caltech-USA not only
provides a data set, but a detailed evaluation protocol for comparing performance. Approximately
10 hours of video have been annotated from a car driving on-road. In total there are 250,000
annotated frames, where every 3rd frame is sampled for training. Pedestrians are divided into
three scales based on the height of their bounding box: near (80 or more pixels), medium (30
to 80 pixels) and far (30 pixels or smaller). The creators of the Caltech-USA data set propose a
“Reasonable” subset of the data. This set only includes pedestrians that are labeled ‘person’ (thus
no one in crowds), at least 65% of the pedestrian visible and heights of 50 pixels or larger. This is
the data set most used as a benchmark, and we use it for all our evaluations. We treat the video
frames as still images and do not make use of any temporal information.

The detector is evaluated based on the bounding boxes it returns (after non-max suppression).
Bounding boxes generated by the detector must be assigned one-to-one to the ground truth bound-
ing boxes. Two bounding boxes can only be matched if their intersection-over-union (IOU) ratio is
50% or higher, the standard precision for bounding box matching in most object detection tasks.
Ground truth bounding boxes with no match are counted as false negatives. Predicted bounding
boxes with no match are counted as false positives. Ground truth bounding boxes marked ‘People’
(meaning a dense crowd) are set to ‘ignore’. Ignored ground truth boxes can match multiple pro-
posals at any IOU if they have not already been matched to a positive; neither the ignored ground
truth or proposals matched to them are counted in the evaluation. Evaluation is presented as an
f-ROC curve plotting false positives per image (FPPI) against the miss rate. Accuracy can be
summarized with a scalar by taking the log-average miss rate between 1072 and 10°. In practice
this gives similar results to the miss rate at 10~* FPPIL.
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3.4.2 Experimental Setup

We demonstrate the ROIAE by extending two pedestrian detection models, a small scale model
based on AlexNet and a larger one based on VGG-16. These models were created for the ILSVRC
competition and are thus well known and pretrained versions are widely available.

AlexNet

Our initial work was inspired by the work of Hosang et al. [9], which used a boosted forest to
provide region proposals for an R-CNN network based on AlexNet. As in [9] we use an ACF-based
[21] decision forest to prepare region proposals, and a Fast R-CNN detector based on AlexNet.
We use the implementation of Fast R-CNN from [2] and modify it to support the Caltech-USA
data set. Our AlexNet model is first pretrained on Imagenet [29], then on Pascal-VOC [8]. We
scale up the input images to 1500x1000 with bilinear upsampling to prevent the CNN from down-
sampling excessively. Our AlexNet variant contains Batch Normalization (BatchNorm) modules
that are not present in the original model to help with the autoencoder training. We load the
features from the AlexNet variant pre-trained on PASCAL-VOC from [2] and let it adapt to the
normalization during training. AlexNet has 5 convolutional layers and 2 fully connected layers.
To create the autoencoder component of our ROIAE we construct intermediate autoencoders for
convolution layers 3,4 and 5. Each intermediate autoencoder reconstructs the input of one of the
convolutional layers from its output. There is also an end-to-end autoencoder that reconstructs the
output of convolution layer 2 from convolution layer 5. The end-to-end and intermediate autoen-
coders share parameters. We keep Appor Set at 1. The autoencoder loss weights are far smaller, to
shrink the large magnitude of the regularization loss to the same order of magnitude as the other
losses. The end-to-end autoencoder loss has a weighting of 5 x 10™° and the intermediate losses
have a weighting of 1 x 107°. As in [92] the weights need to be adjusted so that they regularize
the training without over-regularizing and hurting convergence on the supervised detector. We
train for 40,000 iterations (here, one iteration corresponds to the training of a mini-batch) using
Nesterov momentum at 0.99%. Training beyond 40,000 iterations does not improve performance.
We find Nesterov momentum with a high value necessary for the relatively small AlexNet to find
good search directions. We use a batch size of 4 for our training, but batch sizes from 2 to 16 did
not produce any noticeable change in the results.

VGG-16

We replicate the setup of Zhang et al.[4] for our Region Proposal Network baseline and the su-
pervised component in our ROTAE. Like our Fast R-CNN model, the images are scaled up, this
time to 960x720, the scale used by [4]. This model is a modified version of VGG-16, containing 5
different convolutional scales, sometimes called ‘macro layers’. The first 2 macro layers contain 2
sequential convolutional layers, and the third, fourth and fifth macro layers contain 3 convolutional
layers each. Each macro layer is followed by max pooling. We initialize the weights from the VGG-
16 model and fix the first two macro layers in place. We insert Batch Normalization after every
macro-layer. While large scale autoencoder regularization is possible without batch normalization
(see [92]), it makes the model more tolerant of a range of hyper-parameters.

The autoencoder component of the ROIAE uses an end-to-end reconstruction that reconstructs
the input of macro-layer 3 from the output of macro-layer 5, and has intermediate reconstruction
objectives for each learnable macro-layer (i.e., macro-layers 3,4 and 5, see Figures 3.3.2 and 3.3.3).
We use Parametric ReLU [34] in the decoder activation functions to help train the decoder layers
and apply Dropout [64][65] with a value of 0.5 to all data entering each decoder. We train using
SGD with Nesterov momentum 0.9 using a batch size of 1 (required by the RPN implementation)
for 80,000 iterations, as in [4]. We start with a learning rate of 1073 and reduce it to 10~% after
60,000 iterations (again following from [4]). We keep Appor Set at 5, meaning the bounding box
regression is five times stronger than the classification loss, the same as in the baseline model.
We use a loss weight of 5 x 1077 for the end-to-end autoencoder, 1 x 10~7 for the macro-layer
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Figure 3.4.1: f-ROC curves of our baseline (RPN) and augmented model (RPN+ROIAE) with other
published models on Caltech-USA. We include the two best models, Scale Aware Fast R-CNN and
Fused DNN, for completeness but these are not directly comparable to ours. The f-ROC (Free-
response Reciever Operating Characteristic) curve measures the trade off between false positives
per image and the total number of false negatives in the test set. The curve is summarized by the
log-average miss rate, calculated by averaging evenly sampled points along the curve in log space,
between 102 and 10°.

3 autoencoder, 1 x 107 for the macro-layer 4 autoencoder and 1 x 10~7 for the macro-layer 5
autoencoder. We found the loss weights by manual search.

We use the standard settings for Caltech, but we expand the ground truth available for training

the autoencoder component by including boxes labelled ‘ignore’; which are usually excluded from
training entirely, because these pedestrians are too close together to distinguish, too small, near
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Table 3.1: Log-average Miss Rate on Caltech-USA

Model Test Train
(AlexNet)

SCF + R-CNN (published by [9]) 23.33%  N/A
ACF + Fast R-CNN 23.08% 13.38%
ACF + Fast R-CNN + ROIAE 22.14 % 10.28%
(VGG-16)

RPN (published by [4]) 149%  N/A
RPN + R-CNN (published by [4]) 13.1% N/A
RPN (our implementation) 13.96%  12.38%
RPN (without BatchNorm) 15.42%  7.03%
RPN + SWWAE 13.87% 10.88%
RPN + ROIAE 11.97%  7.80%

the image border or too heavily occluded.

We build our RPN+ROIAE model in the Caffe framework [13] using the Matcaffe wrapped to
integrate with Matlab. We use the Matlab implementation of RPN and Faster R-CNN provided
by [4].

3.4.3 Results and Analysis

We compare the training and testing results of our baseline and autoencoder-augmented neural
network models using Dollar’s Caltech toolkit in Matlab to evaluate our model [5].

The results in Table 3.1 indicate that our proposed ROIAE improves the testing and training
accuracy over the purely supervised baseline. The ROTAE achieves a 1 percentage point improve-
ment in log-average miss rate for AlexNet and a 2 percentage point improvement for VGG-16,
with relative improvements of 4% and 14%, respectively. This may seem small, but improvements
of this scale are commonplace in the literature. For a comparison with state of the art see the
f-ROC curves in Fig. 3.4.1. Although both training and testing improve in our models, we can
confidently attribute our performance to an improvement in generalization rather than an improve-
ment in training. It is relatively easy to overfit on this dataset because of the large number of
pedestrians, and further training on both our baseline and autoencoder-augmented models results
in overfitting, increasing the test error while decreasing the training error. In other words, our
autoencoder-augmented model can reach a higher training accuracy before it starts to overfit and
reduce the test accuracy. In Fig. 3.4.1 we also show the state of the art methods Scale Aware Fast
R-CNN and Fused DNN, which achieve higher accuracy but use more computational resources.
Scale Aware Fast R-CNN uses two sub-networks, one trained on large pedestrians and one on small
pedestrians. They use a decision forest to generate candidate bounding boxes. F-DNN uses SSD,
a more advanced baseline than RPN, which connects every feature map to the last layer, incorpo-
rates boosting, and finally trains on data from a combined dataset rather than just Caltech-USA’s
training set. Our method on the other hand concentrates on improving an existing architecture
without additional use of resources for evaluation.

The motivation behind the ROIAE was to apply reconstruction objectives to small but impor-
tant spatial regions of the model’s feature maps. In our case this means that we only attempt to
reconstruct regions with pedestrians rather than background. To compare the effect of our ROTAE
to other autoencoders, we tested a non-masked autoencoder, identical to the ROIAE except that
it did not mask out the background. This non-masked autoencoder training produced nearly the
same result as the baseline: 13.87% vs the baseline’s 13.96% (see SWWAE in Table 3.1). This vali-
dates the motivation behind the ROTAE: due to the small variation in the pedestrians compared to
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the large variation in background, the autoencoder can be trained more effectively to reconstruct
the set of pedestrians only. This addresses two issues; firstly that we need more robust models of
pedestrians, not background, which is abundant. Secondly, large scale reconstruction is difficult to
optimize and would tend to absorb a lot of the model’s capacity, crowding out information useful
for the supervised problem.

We performed our evaluations on an Nvidia 980 Ti GPU. The Fast R-CNN models using
AlexNet take 110 milliseconds to evaluate each image (9 frames per second), while the Region
Proposal Networks using VGG-16 take 175 milliseconds (5.7 frames per second) for each image.
Because we can eliminate the decoders after training, our ROIAE models have the same speed as
their respective baselines.

3.5 Conclusion

Pedestrian Detection is one of the fastest growing applications in computer vision and machine
learning. With this in mind we have not chosen to aim for record breaking results, but to demon-
strate that our ROIAE yields clear improvements over an existing baseline. The ROIAE could
potentially be combined with other advances in detection to yield a model of higher accuracy
without any additional test-time overhead.

Regularizing training with autoencoders was an important step forward in training fully con-
nected deep neural networks. Advances made in the training of large convolutional networks
have produced networks of immense depth. However there is a limit to how much supervised
training alone can achieve with limited training data while avoiding overfitting. In classification,
autoencoder-assisted learning can extract more useful features out of the same data than purely
supervised learning by explicitly modeling variations in the data set.

The recent success of autoencoder-augmented convolutional networks on CIFAR [91] and Im-
agenet [92], and the results we present in this paper with our ROTAE, imply that even more can
be accomplished on detection, where foreground training examples are so sparse. Because in our
method the decoder elements are thrown away after training, there is no added computational cost
to during the testing procedure. The model can be used alone or combined with other advances
such as sensor fusion [7], multi-scale networks [10], boosting [17] or hard negative mining [33].

In the future, we plan to expand our model to more data sets, explore the potential of the
ROIAE under neural network compression schemes and to explore the nature of the features
learned and whether they are similar to those in semi-supervised classification. Our experiments
so far have not used a denoising or other contractive criterion; using a ladder network might result
in further improvements to generalization.
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Chapter 4

Iterative Node Pruning with the
Parametric Information
Bottleneck

It is difficult to compress neural network models while preserving accuracy. We use the
Parametric Information Bottleneck framework to find a compression rate that reliably
preserves the accuracy of compressed models under certain conditions. We take a
trained neural network model and find an upper bound on each layer’s ideal width,
that is, the smallest width that will result in no reduction in accuracy from the original
model. We demonstrate that iteratively compressing and fine tuning converges to a
model with the same or greater test accuracy than the original. We examine the impact
of regularization and starting model size on the final compression rate. However, this
methodology is shown to only be applicable to binary images (i.e., black and white),
such as the ones in MNIST, and for sigmoid activation.

4.1 Model Compression

Deep neural network models have achieved state of the art results on many machine learning tasks
in the last few years despite the lack of theoretical guarantees on their performance. Remarkably,
while large model sizes are needed to optimize a network for good performance, most of the fea-
tures learned are highly redundant [60] and the model can be compressed while retaining most of
its accuracy [57] [60] [53] [50]. The most likely reason for this is that as the number of dimensions
in the weight space grows, the ratio of saddle points to local minima in the optimization program
grows exponentially [42], which means that being trapped in a poor minimum is much less likely.
Increasing model size beyond what is necessary to model the data enables an easier optimization
problem, but this is no longer needed for the evaluation of a trained model because the model
weights are frozen and some of the large number of weights that made the optimization easier
become redundant. Model compression is useful for reducing resource use in terms of memory,
electricity and computations, especially for mobile devices, but it can also be used to improve
inference speed in real time applications such as pedestrian detection.

Model compression methods for neural networks fall into a few distinct categories:

Weight Pruning

Channel/Node Pruning

Lossless Codes

e Tensor Decomposition

Quantization
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e Or some combination of the above.

They usually require setting hyperparameters that directly or indirectly control the compression
rate. Achieving a good balance between model compression and classification accuracy requires
a time-consuming hyperparameter search. A few exceptions are Net Trim [61] and the related
Layerwise Optimal Brain Surgeon [58], but they require time consuming CPU calculations to solve
quadratic optimization programs or the inversion of Hessian matrices. One of the first neural net-
work compression methods, Optimal Brain Damage [56], consisted of a weight pruning approach
that formed a regularization method and a compression algorithm. Compression methods can
improve generalization because they reduce model capacity, forcing it to find a simpler model to
fit the data. The fact that compression methods can act as a regulariser is important because it
links over-fitting with model compressibility. Optimal Brain Surgeon [57], is able to find the least
‘salient’ weights, which would least affect the model output if removed, but to do this requires
computing the model’s Hessian, which is computationally intractable for large networks. The re-
cently proposed Layer-Wise Optimal Brain Surgeon [58] uses a clever approximation method for
the inverse Hessian using block matrices but they still require 48 CPUs and almost as much time
as the training itself to compress a large network.

Because of the difficulties in computing the optimal compression parameters, most modern
compression methods are focused on practical performance in the form of compression ratios vs.
accuracy of the compressed model. Deep Compression [53] delivers very high compression ratios
by combining simple pruning by zeroing out low-magnitude weights, quantization and Huffman
Coding. This method requires decompression for inference, so the authors have also proposed a
hardware system capable of efficient inference on these compressed models [55]. Compression with
the objective of faster inference can be accomplished by tensor decomposition, such as truncated
SVD or the Tucker Decomposition [93], which converts one layer into multiple smaller layers with
fewer computations overall. However no consistent system for ranking these methods’ performance
has been adopted. In this chapter we present a new model compression algorithm using the chan-
nel pruning (for convolutional layers) and node pruning (for fully connected layers) compression
paradigms. While this is more constrained than other methods such as weight pruning, models
compressed by channel pruning have no inference overhead, and can easily exploit the smaller
model size for faster inference. Channel pruning algorithms (e.g., [43]) generally solve some con-
strained optimization problem to minimize the damage caused by the removal of large blocks of
the model. Instead, in our model, we propose a greedy algorithm that finds the smallest safe
size for each layer. We measure the information contents present in the distribution of the acti-
vations of each layer — this tells us the proportion of the layer’s capacity that is in use. We can
then prune nodes or channels until the information capacity of the layer is approximately equal
to the amount of information it contained in the original model. Lost information useful for the
objective is recovered with fine tuning. This process can be repeated until convergence, when the
algorithm cannot find any way to safely reduce the capacity of the model. Because we offload
the recovery of information to the fine tuning process, our method makes efficient use of existing
neural network frameworks using the GPU, with no external solvers or CPU-intensive calculations.

4.2 Measuring Model Capacity

To compress a neural network model without losing accuracy, we propose measuring the ‘model ca-
pacity’ of each layer and using this to determine each layer’s compression rate. The term ‘Model Ca-
pacity’ is related to the amount of information a model can store about the data it is modelling[72].
The implication is that models with a larger capacity than is necessary for a particular problem
can be compressed without losing accuracy [60].

Unfortunately, actually formalizing this notion, and computing the capacity is difficult. The
ultimate lower bound is the Kolmogorov Complexity [71] which is informally the length of the
smallest computer program that can output the model, but this is non-computable. One can com-
pare the number of parameters in a model, but this is only useful for characterizing the differences
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between model architectures and does not distinguish between models of different data sets using
the same architecture. VC Dimension [77] does capture differences between data sets, but is a poor
predictor of neural network performance. In machine learning, it is a common assumption that the
data from a particular domain lie on a (relatively) low-dimensional subspace embedded in a high
dimensional space. For instance in the set of 32x32 colour images, the subset of images of cars
will exclude the large swathes of high entropy images of white noise. It is not necessary nor pos-
sible [76] to represent the entire input space, only a subspace that contains our problem domain [75].

Exploiting the structure of the data and the embedding space within a deep neural network
requires analysing highly nonlinear relationships. The Information Bottleneck method [35], Mini-
mum Message Length (MML) [74] and Minimum Description Length (MDL) [73] are methods that
treat the model as a stochastic process and apply information theory to characterize the model
capacity. Minimum Description Length has been used to find compression hyperparameters for
quantization and node pruning and can be viewed as an alternative to our approach. MDL char-
acterizes the information stored in the model parameters assuming a prior distribution, while the
Information Bottleneck looks at the information contained by the activations of the neural network
layers.

4.3 Rate Distortion and the Information Bottleneck Method

The Information Bottleneck (IB) method was proposed by Tishby et al. [35] as a generalization of
the Rate-Distortion theory for the lossy compression of data. In Rate-Distortion theory, we encode
elements of the data distribution € X to compressed representations z in a code space Z. The
mapping X — Z is described by the conditional probability density function p(z | ). A good
encoding function will minimize the rate, i.e., the average number of bits necessary to represent z.
A lower bound on the rate is given by the mutual information

1(X:2) =3 pla,z)log (p(z | $)> < H(X). (4.3.1)

p(2)

where H(X) is the entropy of X and p(z, z) is the joint probability density function of z and z.
I(X; Z) is equivalent to the rate only if the encoded values are represented with no overhead. In
addition to minimizing the rate, for a good encoding we need to limit the distortion or loss of
information in the encoding. This is characterized by a distortion function d = f(X, Z) which has
to be defined a priori. This distortion function should monotonically output low values for a high
fidelity compression and high values for a low fidelity compression, but specifying which distortions
matter and which do not is left to the choice of d. Selecting d is equivalent to selecting features
to encode the data set. In Rate-Distortion theory, the optimal encoding for a particular d is given
by minimizing the functional

E[p(Z | LE)] = I(Z; X) - B<d($7 Z)>p(x,z) (432)

over all normalized distributions p(z | x), where S is a Lagrange multiplier controlling the trade-off
between the rate and the expected distortion. The Information Bottleneck method introduces a
new variable Y that represents the relevant information in X. This is task-dependent; for instance
if X is a set of images, y € Y could be defined as class labels for X to define a supervised
classification problem. In place of the old distortion function d(zx,z) in terms of X and Z we
substitute I(Z;Y), and define the Information Bottleneck Lagrangian:

Lip(z | )] = 1(Z; X) — BI(Z;Y). (4.3.3)

In classic Rate-Distortion, lossy compression algorithms such as the Discrete Cosine Transform
(DCT) used in the JPEG standard rely on hand-crafted features to decide which information to
throw away. By contrast, the IB method captures the notion of relevant information in terms of
a dependent variable. When compressing data with the IB method, the objective is to preserve
information that is relevant to predicting some interesting variable Y, while eliminating unrelated
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Figure 4.3.1: Figure 2 from [37] showing the relationship between the Information Bottleneck
distortion function Dj;p which measures the relevant information lost during encoding, and the
encoding rate R which specifies the average bits used by an encoded datum. The red curve is the
distortion upper bound for out of sample inputs. When only a finite sample is available there is
a single optimal point with the least worst-case distortion, rather than the trade-off given by the
IB curve. AC is the compression gap and AG is the generalization gap. The DNN layers shown
give an example behaviour of a deep neural network used to model X. Each layer contains less
information than the preceding one, culminating in }A/', the model’s prediction of Y. In the example
given, the network is overfitting, because it could achieve lower worst-case distortion D;p with a
lower rate R.

information.

The IB method defines the relevant information in a variable X as information it shares with a
variable of interest Y, which is the mutual information I(X;Y) < H(X). A good encoding X — Z
will preserve information about Y and discard as much other information as possible. As well as
finding an effective codebook for compression, such an encoding is equivalent to finding a feature
space Z for an input X, for a task involving Y. The information preserved in the embedding from
the data is given by Equation 4.3.1 which is a lower bound on and can be viewed as analogous to
the rate. The relevant information in the embedding is given by

1Z:Y) = 3 ply. ) log <m> <I(x:Y), (434)

which is analogous to the distortion. Ultimately we want to find Z such that I(Z;Y") is maximized
and I(X; Z) is minimized. To do this we minimize the IB Lagrangian given in Equation 4.3.3.
We can now treat Z as the feature space in a model trying to predict ground truth class labels
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Y from input images X, with a mapping X — Z — Y. I(X;Z) becomes the information in
the feature space about the input images X, and I(Z;Y’) becomes the information in the feature
space about the ground truth labels Y. In Equation 4.3.3, minimizing the I(X; Z) term reduces
the complexity of the model by reducing the number of bits needed to represent each x € X, and
minimizing the —I(Z;Y) term increases model accuracy. By changing the Lagrange multiplier 8
we can generate a set of solutions that satisfies this optimization problem; these solutions form a
monotonic curve called the Information Bottleneck Limit. If we move along this curve by increas-
ing B, the lower the distortion from the original, but the less it is compressed. However, in the
context of machine learning this is an oversimplification. In machine learning we only have a finite
number of samples to find a model, and accuracy must be measured on generalization to out-of-
sample data. Adding complexity in this case can actually decrease generalization of accuracy due
to overfitting (see Figure 4.3.1).

In [36], the authors give worst case bounds for the distortion in a withheld testing set (out-of-
sample inputs):

I(Z,Y)<I(Z;Y)+ 0 (%ﬁ'yl) 7 (4.3.5)
. 21(Z:X)
I(Z;X)<1(Z;X)+ 0( 7 ) (4.3.6)

where I(Z;Y) and I(Z; X) are the empirical information between the feature space and the class
labels and input data respectively, n is the number of samples from X and |Y| is the cardinality
(or number of classes) of |Y|. In a one-hot encoding this becomes equivalent to the dimensionality
of Y. At the limit of n — oo the empirical (training) information is equal to the ground truth
(testing) information. For finite n, the gap is proportional to the complexity of the feature space
Z and inversely proportional to the square root of the sample size y/n. To summarize, with a finite
set of samples, machine learning models tend to have an ideal capacity in terms of the lower bound
on the encoding rate I(Z; X), that gives rise to the minimum distortion. Increasing the capacity
of the model beyond this does not improve the accuracy; in fact it can reduce the model’s ability
to generalize. Because the rate I(Z; X) is upper-bounded by log|Z|, where | Z| is the cardinality of
the feature space, This points to a model compression strategy of shrinking |Z| to a conservative
upper bound on I(Z; X).

4.4 Using the Information Bottleneck to Estimate Model
Capacity for Pruning

H(Z1) 4 h

A\

AN “ .
Figure 4.4.1: A neural network model viewed as a Markov chain. Each layer’s output is conditioned
on the previous layer’s output. The information from the input image X is reduced, until only
information relevant to classification remains. If I(X; Z) is minimized and I(Y; Z) is maximized

a minimum sufficient statistic is obtained.
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In neural network models, the amount of memory used in practice is not just dependent on
the information needed to store the model parameters, but on the memory needed to store the
output of each layer. This total memory usage is dependent on the model architecture. In the
case of convolutional networks, the total memory used for inference will grow proportionally to the
spatial size of the intermediate feature maps, while the memory needed to store the model itself is
dependent on the spatial size of the kernel. Both parameter storage and intermediate memory for
a convolutional layer are proportional to the number of channels.

For practical purposes, the most straightforward way to compress models to increase speed and
decrease total memory usage, with no specialized hardware (as in EIE[55]) or sparsity exploiting
algorithms, is to prune nodes (in the case of fully connected layers) or channels (in the case of
convolutional layers). The number of nodes is linked both to the number of parameters and to
the size of the intermediate features. This means that we can apply compression not to the pa-
rameters, but to the feature maps, and get parameter compression automatically. For instance,
pruning a convolutional channel will remove one kernel, and one feature map for that layer. In-
stead of measuring the information content of the weights, which are not random variables and
thus have no obvious way to measure the entropy without a prior distribution, which has to be
chosen beforehand (see [49]), we can base our pruning decisions on the information content of the
activations. According to the IB method the activations have information content based on their
connection to the data-generating distribution.

The key observation is that each layer in the neural network can preserve or discard informa-
tion about its input, but it can never add new information. The output of each layer [ has less
information about the input than the output of the previous layer [ — 1. This serves to reduce the
vast, but mostly irrelevant, information in the input to a few highly informative features that pre-
serve information useful for the final layer to perform classification or regression, as illustrated by
Figure 4.4.1. This interpretation has been used with toy models to analyse the learning dynamics
of neural network layers [59].

Other approaches such as the Variational Information Bottleneck (VIB)[39], which assumes
Gaussian noise, have been applied to compression in the VIBnet [45], but to measure the IB statis-
tics they need to train a stochastic model and incorporate the modelling assumptions as trainable
parameters. Using the Parametric Information Bottleneck (PIB) [38], we compute information as
if our model was a stochastic network, but actually train it using ordinary SGD.

There are two key problems that arise in the application of the IB method to neural networks:
firstly, mutual information terms need to be accurately estimated, and secondly we need to model
neural network layers as outputting probability distributions, while they are deterministic functions
of their input. We address both of these issues with the PIB approach [38]. The PIB shows that a
binary stochastic network can be converted into an equivalent deterministic network using sigmoid
activations. The output of the deterministic network corresponds to the mode of the output of the
stochastic model.

We denote our labelled data set D = {X, Y}, where X is the input data and Y the corresponding
labels. The data set contains N samples , indexed by k, Dy, = { Xy, Yx}. To model this we describe
a neural network as a series of layers where the [-th layer is represented by stochastic variable
Z, € Z, with Zy = X. Connections between two adjacent layers [ and [ — 1 are described by
a stochastic map 21 € Z;_1 to z; € Z; by the conditional probability distribution p(z; | z;—1).
This conditional distribution has the same expected value as the layer’s deterministic activation
function:

Elp(z | z121)) = c(Wizi_1 + by), (4.4.1)

where o is the sigmoid activation function, W is the weight matrix for layer I, and b; the bias.

We can describe this network as a markov chain X — Z; — Zy — ... = Z; — f/, where Y is
the model’s prediction of Y. This system obeys the Data Processing Inequality (DPI) which states
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that
HX)>1(Z;X)>1(Zy; X)) > ... 2 1(Zn; X) > I(f/;X), (4.4.2)

and
HY)>1(Z;Y) > 1(Z;Y) > ... > 1(ZN;Y) > I(Y;Y). (4.4.3)

Measuring I(X; Z;) when many layers seperate Z; from the input is not trivial. Mutual Infor-
mation is in general very hard to measure for high dimensions when we only have samples and not
the exact distribution. Although several advances have been made in this area [48], [47] direct esti-
mates of mutual information in high dimensions have large biases and do not accurately represent
differences between highly correlated distributions. The PIB approximates I(Z;; X), the mutual
information between a layer’s output distribution Z; and the data X with mutual information
between two adjacent layers, I(Z;, Z;_1). This produces IB statistics that lie within the expected
range, which changes smoothly with the parameters and do not have a large bias. Thus we can
use it to characterize the information stored in each layer about the data.

Following the layerwise approximation I(Z;, X) =~ I(Z;, Z;—1) in [38], we approximate the DPI
with
H(X)>1(Z;X) > 1(Z2;21) > .. > 1(Z: Z1-1) > 1Y Z1), (4.4.4)

which can be computed using information local to each layer. The PIB interprets the deterministic
output of a sigmoid node as parameterizing a Bernoulli distribution. Instead of a sigmoid node
outputting g € [0, 1] we have a binary stochastic node Z; ; € Z;,

=p(Zii =1|Z1-1), (4.4.5)
1—qg=p(Z1,;=0]|Z-1). (4.4.6)

Given enough samples the expected value of this stochastic layer converges to
Elp(Zii | Zi-1)] =q. (4.4.7)

Because of the Markov property, the output distributions of all the nodes Z; ; in Z; are conditionally
independent given Z;_;. This means that the nodes in Z; form a product distribution

p(z | 2i-1) = Wip(z1 | z-1)- (4.4.8)

From this we can derive the measurements for the mutual information I(Z;; Z;_1) by factorizing
it into
I(Zl;Zl_l) :H(Zl) 7H(Zl | Zl—1)7 (449)

which can be estimated using local information only. As per [38],

H(Zii | Zi—1 = zi-1) = —qlog(q) — (1 — g) log(1 — q). (4.4.10)

To implement this, we have a number of samples from the previous layer’s output Z;_;, in a
minibatch M C X. We denote the elements of the minibatch M for the output of layer [ as {
(k) | k € M}, where z(k) is the activation at layer [ for data X, each of which can be assumed to

be equally likely, p(z (k)) il L - The empirical conditional entropy is given by

H(Z | Z1-1) = Epy_y) ZH(Zl,i | Zi—1 = 21-1) Z Z |M| H(Zii | Zim1 = 2).

i i keM
(4.4.11)
To find the marginal entropy H(Z;) we again use samples of z; from a mini-batch M as above. We
use the maximum likelihood or ‘plug in’ estimator:

H(ZZ)MLE - - p(zl)[logp Zl |M‘ Z logp (4412)
keM
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but this is not stable when the size of Z; is large. We need to factorize the output distribution for
the layer into the output distributions of each node. We use the PIB’s upper bound on the entropy
based on Jensen’s Inequality:

—logp(z) = —log — |M| Z [ (k) | z1—1 } > Z {logp k) | 21— 1)} ) (4.4.13)

keM kGJVI

We can then work entirely in log-space by converting our product distribution into a sum of log
probabilities as follows:

logp(zr | z1-1) = log Iip(2() | z1-1) = > logp(=y | z1-1). (4.4.14)

Jensen’s inequality could lead to this estimate going above maximum entropy for the Bernoulli
distribution, so we threshold each node’s estimated marginal entropy at 1 bit per node to yield

H(ZZ)MLE——Zmin< Z |M\ log p(z ) =1]2_1) Z \M| logp(z —O|zll)> bits.

keM keM
(4.4.15)
Using this interpretation, every node has a maximum entropy
Hipnaz(Z1,;) = 1bit, (4.4.16)
which occurs when the sigmoid activation is ¢ = 0.5. Each layer has
H,ox(Z)) = | Zy] bits, (4.4.17)

where |Z;| is the number of nodes in the layer (for convolutional layers, substitute pixels in the
output feature maps for nodes). We can now directly relate the information carried by the
layer to the number of nodes needed to represent it (see Figure 4.5.1). Under the PIB mod-
elling assumption, a layer’s output Z; with n nodes has a capacity of n bits, but only stores
[1(Z1; Z1-1)] < Hmae(Z1) = |Z;| bits of information about the data. Ideally, we want to lower the
number of nodes by pruning so that [1(Z;; Z,_1)] & Hpmaz(Z;) = |Z;]. Which nodes to prune can
be decided by finding the nodes that hold useful information.

4.5 PIBprune Algorithm

In the standard IB objective on a data set X with labels Y, and an embedding Z, the procedure
is to maximize I(Z,Y") and minimize I(Z, X). To get effective compression by weight pruning, we
want to instead reduce the number of nodes, or for convolutional networks the number of feature
maps. We can introduce the number of nodes into the IB framework by noting that each node’s
output distribution Z;; has a maximum entropy H,..(Z;,;) that is a constant depending only on
the family of distributions used. The entropy of the entire layer, H,,q.(Z;), is given by:

Honax(Z1) ZHWM Z1:) = |Z)] bits. (4.5.1)

Instead of minimizing I(Z;; X'), we want to minimize the number of nodes by minimizing Hy,q0(Z; ;).
Rather than directly reducing information about the data, we reduce the maximum capacity of the
layer, subject to the constraint that the model does not become smaller than the capacity required
to model the problem. The general structure of the algorithm is shown in Algorithm 1.
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Algorithm 1: PIBprune

Input: Pretrained Layers = {Z1. 1} € Z
Data = {X,Y}
Output: Pruned Layers = {meall,.L} € Zfinal
repeat
Z' := PIBCompression(X,Y, Z)
Z := PIBRecovery(X,Y,Z’")
until Convergence
Zfinal =27
return Zy;,q

S A W N

In pruning a neural network model, most of the information contained in the features remains
intact, but fine tuning the pruned model is usually necessary to recover the accuracy, particularly
with node pruning. This allows the network to compensate for the changed structure. Training
the neural network model by minimizing the negative log-likelihood of the predictions,

NLL(Y,Y) = —log(p(Y =Y)), (4.5.2)

where Y = so ftmax(Zy,), requires maximizing I(Y; Zr). Thus, the relevance maximization part
of the compression-relevance trade-off is already present in the training and fine tuning.

Algorithm 2: PIBRecovery

Input: Layers = {Z] ;} € Z’ with weights {W; 1} and biases {b1.1} ;
Data = {X,Y}

Output: Layers = {Z,. 1} € Z

Z =7

t:=0

repeat

)A/t =/ o0/p_10.. 210X

Cy := NLL(Y,Y)

for =1 to L do

© 0 N 0o A W N =

end

t:=t+1
until Convergence
return 7

e e
N = O

We propose to alternate between maximizing I(Y; Z1,) in Algorithm 2 and minimizing H,,q.(Z;)
in Algorithm 1. Maximizing I(Y; Z1) is a straightforward process of training by stochastic gradient
descent, while keeping the size of the network constant. Minimizing H,,q.(Z;) for each layer
requires deciding to prune the maximum number of nodes such that the next training step can
recover the accuracy. We use the Information Bottleneck statistics to address the question of
choosing which nodes to prune, and when to stop. Because of the granularity of node pruning, we
have to be careful with restricting capacity. With each pruned node, we will inevitably throw away
some information about the data as well as some unused capacity. We use a conservative estimate
on the amount of unused capacity that can be eliminated. We can break down the information
contained in the output distribution of each node Z;; into the following components:

® Hpux(Z;), the maximum entropy a node can have,
o H(Z;;), the marginal entropy of the node,
o Hpur(Z1i) — H(Z;), the gap between the node’s marginal and maximum entropy

o H(Z1;)— H(Z1; | Zi—1) > I(Z;4; X), an upper bound on the node’s information about the
data
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o H(Zy; | Zi—1) > H(Z,;) — I(Z;:; X), an upper bound on the the ‘noise entropy’, or infor-
mation in the layer not about the data and

e 1(Z;;;Y), the information about the label.

We want to constrain the new size of the layer Z; to be at least:
MinWidth(Z;) = [Hmae(Z1) — H(Z1i | Zi-1)], (4.5.3)

which should leave enough capacity to represent the information about the data, plus the gap
between the marginal entropy and the maximum entropy, which should leave flexibility in opti-
mization. In choosing which nodes to prune, the best candidates are nodes with a high "noise”
entropy H(Z;; | Z;—1), which indicates a node containing useless information.

For an efficient representation we would like to delete [I(Z;; Z;—1)] nodes from the layer Z; but
we need to do this by deleting whole nodes, which contain a mixture of conditional entropy and
mutual information. To lose as little useful information as possible, we rank the nodes in order of
informativeness with

InformScore(Z;) = 1(Zii; Z1_1), (4.5.4)

where R
I(Zy;Z121) = Hinao(Z1s) — H(Z1i | Zi—1) > 1(Z;4; X). (4.5.5)
If InformScore(Z,;) < Hm#(z’), we have more noise entropy in the node than all other factors

combined, and we should be able to prune the node. This gives us a conservative constraint on
both the number of nodes pruned per layer, and a requirement for any pruned node to have more
noise entropy than useful information.

Algorithm 3: PIBCompression
Input: Layers = {Zy .} € Z
Output: Layers = {Z) ;} € Z'

1 forl=1to L do

2 Zl, = Zl

3 NewWidth(Z;) := |Z)|

4 sort(Z;; € Z;) by InformScore(Z ;)

5 for i =1 to |Z;| do

6 if InformScore(Zl,i) > Hm#(z”) then
7 ‘ continue

8 else

0 Zy ={Z}\{Z;}

10 NewWidth(Z;) := NewWidth(Z;) — 1
11 if NewWidth(Z;) = MinWidth(Z;) then
12 ‘ break

13 end

14 end

15 return 27’

The effect of removing nodes with high noise entropy ensures that the ratio of I(Z;; Z;—1) to
H(Z, | Z;—1) will not decrease (see Algorithm 3). We can then fine tune the network to recover
the information lost in the pruning process (see Algorithm 2).

Once fine tuning is complete, we find that some of the information lost is not recovered, despite
the accuracy being recovered and there being enough capacity in the model to hold it. Assuming
the fine tuning optimization was successful, this is due to two factors: fine tuning may need to
recover less information from the layer than what was pruned, ie I(Z;; X) not shared with I(Z;;Y).
Also, simultaneous compression in other layers may reduce the input information. We let the fine
tuning process restore lost information 1(Z;; X) and 1(Z;;Y) needed to recover accuracy, then find
a new estimate of the ideal model size in the next step to further reduce the model size, until the
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Figure 4.5.1: The PIBprune algorithm compresses up to a conservative bound on the capacity
(illustration only).

process converges.

This gives us an iterative process (see Figure 4.5.1) which estimates the ideal layer size, prunes
nodes and then fine tunes to recover any lost information useful for the objective function. At
each stage a maximum of [H,,q.(Z;) — H(Z; | Z;—1)] nodes are pruned in each layer. Pruning in
each layer is done independently of other layers and fine tuning takes place for all layers at once.
We terminate the algorithm when there are no remaining nodes that can be safely pruned in any
layer.

4.6 Algorithm Variants

It is possible to relax the above conditions to obtain tighter compression ratios. Firstly, the upper
bound on the mutual information

InformScore(Zy;) = 1(Zi.i; Z1-1) = Hmae(Z1) — H(Z) | Z1_1) (4.6.1)

can be replaced by the empirical mutual information I(Z;;Z;_1) . Similarly, we can change
the maximum number of nodes pruned in a single compression stage from MinWidth(Z;) =
[Hma:c(Zl) - H(Zl,i | Zl—l)—l to

MZTLWZdth(Zl) = I(Zl,i; Zl—l) = [H(Zl) — H(Zm | Zl—l)—|- (462)
In our experiments we denote our methods as follows:

e PIBprune-A: MinWidth(Z;) = [Hpmas(Z1) — H(Z,; | Z1—1)] and mutual information is
replaced by the upper bound InformScore(Z; ;) = IA(ZM; Z1—1) = Hpao(Z)) — H(Zy | Z1—1)

when deciding which nodes to prune

o PIBprune-B: MinWidth(Z;) = [Hmax(Z1) — H(Z1; | Z;—1)] but empirical mutual informa-
tion is used to decide which nodes to prune, InformScore(Z,;) = I(Z:; Zi—1)

e PIBprune-C: MinWidth(Z,) = [I(Z;; Zi—1)] and empirical mutual information is used to
decide which nodes to prune, InformsScore(Z,;) = I(Z;:; Zi—1)
4.7 Implementation Details
We use the Caffe framework’s python wrapper to do the neural network training and Numpy to

calculate the IB statistics. Node pruning is done by setting weights to zero and fixing the bias
to give an output of zero. During fine tuning we reset to zero the weights in the pruned nodes
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following every iteration. Convolutional layers are compressed by channel pruning, which is done
by summing the IB stats of all the outputs in a feature map and either pruning the channel as a
whole or leaving it alone. To measure mutual information we use a validation set of 100 images
as our samples to determine the compression rate. Testing is done on separate test data. These
are probabilistic formulae but they can be calculated from one forward pass over a deterministic
network because the probabilities that we would obtain for stochastic sampling can be read off
the network outputs. We can track the IB statistics in each layer at fixed intervals throughout
training for visualization purposes, but this is unnecessary for the algorithm, which only uses this
information during the pruning phase. This Bernoulli modelling assumption assumes the data
are approximately bimodal, with two major clusters and few intermediate values. This allows the
pixels to be represented as an event in a binary probability distribution.

4.8 Experiments

We test our algorithm on the MNIST data set. MNIST contains approximately binary (i.e., black
and white) images of handwritten digits from 0 to 9. It is widely used to demonstrate new algo-
rithms and is the data set for which we have the most reported results for competing compression
methods. The data set has balanced classes, with 60,000 training examples and 10,000 testing
examples. We let our algorithm choose compression rates automatically in all our experiments
as described in Algorithm 3. Given a good enough training and fine tuning schedule we expect
convergence to a smaller model with roughly the same or greater accuracy. We leave the output
layer uncompressed. There is no generally agreed upon standard for comparing compression algo-
rithms. Problems arise due to different methodologies; some algorithms use a joint training and
compression algorithms, others prune after training and rely on a separate fine tuning process. De-
pending on the type of compression algorithm, weight pruning, node pruning, channel pruning and
quantization may have different advantages on different metrics. The trade-off between accuracy
and compression also has to be considered. In our algorithm, fully connected nodes and channels
are either pruned or not pruned. There is no compression on the input to the nodes.

To evaluate our model, we look at the model accuracy, the compression ratio of feature maps R,
and the the compression ratio of weights R,,. The compression ratio of feature maps is computed
as follows:

A
R = (4.8.1)
" Zz |Zl|
where | Z;| denotes the size of the output of the uncompressed layer I, and |Z;| the size of the output
of the compressed layer. For a fully-connected layer, |Z;| is simply equal to the number of nodes in
the layer. For a convolutional layer |Z;| = C; x W) x H;, where C is the number of convolutional
channels in layer [, with shape W; x H;. The compression ratio of weights is computed with

> Wi
Ry ==—, (4.8.2)
v Iwm
where for fully-connected layers with a weight matrix W, with shape h; x w;, |[W;| = hy x w; is

the number of elements in the weight matrix of layer . For convolutional layers, the weights form
a 4-tensor |W;| = C; x hy X w; x K, where Cj is the number of input channels, K; the number of
output channels and h; x w; the size of each 2D convolution kernel. Fully-connected layers with
more parameters tend to dominate the R,, measurement, while convolutional layers with large
feature maps will dominate the R,, measurement.

In Table 4.1, we show experiments for a 3-layer multilayer perceptron (MLP) with sigmoid
activations. We observe that varying the width of the network structure leads to similarly sized
compressed models, indicating that the model capacity is being pruned to the necessary size.
Adding more redundant capacity simply leads to more compression. This implies a useful method
of automatic width selection: start with an overparameterized model and apply the PIBprune
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Table 4.1: PIBprune-A using simple 3-layer MLP on MNIST. We show the error of the model
before compression (Original) and after compression and finetuning until convergence (Final).
Original/Compressed nodes are the number of nodes in each layer of the network. The output
layer is shown but not compressed.

Original Nodes Compressed Nodes R, R, Error: (Original) (Final)

120—100—10  49—8—10 29%  36% 3% 3%
1000—200—10 66—5—10 53% 6.7% 3% 3%
1000—500—10 69—6—10 42% 5.6% 3% 3%

algorithm to shrink it down to the smallest safe size it can find.
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Figure 4.8.1: Compression and accuracy for PIBprune applied to lenet 300-100. I(Z;;Z;—1) is
plotted over time for each layer. Layers are colour coded. The purple curve is the first layer, the
green curve is the second layer and the red curve the output layer. Figures c¢) and d) compare our
method (orange) to competing methods (blue).
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Figure 4.8.2: R, and R,, vs Accuracy for lenet-5. Figure b) shows I(Z;; Z;_) is plotted over time
for each layer. Layers are colour coded. The purple curve is the first layer, the cyan curve is the
second layer, the yellow curve is the third layer and the red curve the output layer. Figures c) and
d) compare our method (orange) to competing methods (blue).

Table 4.2: Lenet-300-100 on MNIST

Method Original Nodes Compressed Nodes R, R, Error: (Original) (Final)
VDI[52] 300—100—10 114—72—10 36.9% 47.8% N/A 1.8%
LO[51] 300—100—10 214—100—10 1% 81% N/A 1.4%
L0-sep[51] 300—100—10 88—33—10 27.1% 31.9% N/A 1.8%
VIBnet[45] 300—100—10 71—33—10 22% 27% N/A 1.6%
BC-GNJ[50] 300—100—10 98—13—10 29.4% 29.5% 1.6% 1.8%
BC-GHSI50] 300—100—10 86—14—10 25.8% 26.8% 1.6% 1.8%
PIBprune-C-DSN 300—100—10 130—15—10 39% 38% 2.3% 1.53%
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Table 4.3: Lenet-5 on MNIST

Method Original Nodes  Compressed Nodes Ry, R, Error: (Original) (Final)
GDI62] 20—50—500—10 7—13—16—10 1.37% 32.00% 0.9% 1.1%
GL[63] 20—50—500—10 3—12—500—10 23.69% 19.35% 0.9% 1.0%
VD[52] 20—50—500—10 14—19—131—10 9.29% 60.78% 0.9% 1.0%
LO[51] 20—50—500—10 20—25—25—10 8.92% 85.82% N/A 0.9%
L0-sep[51] 20—50—500—10 9—18—25—10 1.08% 40.36% N/A 1.0%
BC-GNJI[50] 20—+50—500—10 8—+13—13—10 0.95% 35.03% 0.9% 1.0%
BC-GHSJ[50] 20—50—500—10 5—+10—16—10 0.64% 22.80% 0.9% 1.0%
VIBnet[45] 20—50—500—10 N/A 0.83  15.55% N/A 1.0%
PIBprune-C-DSN 20—50—500—10 7—26—35—10 4.5%  41.45% 0.93% 0.83%

For comparison, in Table 4.2 and Figure 4.8.1 we demonstrate the effect of compression using
more powerful training methods. We apply dropout(0.2) to the data, use Orthonormal-EP[46]
initialization and Deep Supervision [44] to train a sigmoid version of LeNet-300-100. Because our
method has to operate on sigmoid activations, we do not take into account compression on the
input when calculating the compression ratios. Competing methods’ compression rates are recom-
puted on the assumption of uncompressed inputs.

In Figures 4.8.1 (b) and 4.8.2 (b) we can see the effects of repeated compression and fine tuning
on the information content of the network. Each layer’s I(Z;; Z;_1) increases and saturates as
training converges. The compression phase induces a sharp drop and another climb and saturation
as the training program recovers accuracy. The changes become smaller in magnitude with each
iteration until the algorithm terminates.

Convolutional networks are harder because node pruning is replaced by channel pruning, and it
is even harder to separate informative from uninformative channels than it is for nodes. However,
in terms of memory usage, each channel deleted removes an entire feature map, yielding a great
reduction saving in memory usage, if this can be accomplished. In Table 4.3 and Figure 4.8.2 we
present comparisons on Lenet-5 models on MNIST. Again, in contrast to the other examples, our
model uses sigmoid activations at all layers, rather than linear and ReLU activations, to model the
IB statistics. To train the model we apply Deep Supervision. We note that VIBnet and GD also
specify non-standard training objectives.

In both MNIST models for which we have data for competing compression methods, our
PIBprune method is conservative enough that pruned models consistently remain more accurate
than most of our competitors, while still providing competitive compression ratios. In particular
we do better than another conservative method, LO. We do this without having to set compres-
sion hyperparameters. The compression rate is instead governed by the properties of the trained
model. All other things being equal, increasing the model size initially will result in a relatively
small change to the compressed size. We attempted to extend our method to colour input images
but it was not compatible with our modelling assumptions. We rely on an equivalence between
deterministic nodes and the expected value of binary stochastic nodes. Our attempts to experi-
ment with this produced unreliable entropy and mutual information estimates. We suspect this
to also be a weakness of the Parametric Information Bottleneck that our method is based upon.
Note that the problem is not multiple colour channels, but non-bimodally distributed inputs.

4.9 Discussion and Future Work

Principled model compression algorithms are still in their infancy, but information theory is rapidly
shedding light on exactly how much capacity is really needed to model a problem. We have pre-
sented a novel iterative model compression algorithm based on the Information Bottleneck Princi-
ple. While our model requires binary data and sigmoid activations to work, we nonetheless show
competitive results on MNIST in terms of accuracy vs compression on weights and feature maps.
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Unlike previous compression algorithms, our method finds compression rates automatically rather
than relying on hyperparameters chosen by the user. In a large network, setting compression rates
is a non-trivial task as it is not known a priori how much capacity is needed for each layer to model
the data at that stage of processing. We see three main directions to extend this work. Firstly,
our method only looks at the information content of activations and assumes that the information
in the weights is similar. There exist other methods such as Bayesian Compression that instead
finds the information content of the model weights subject to some prior. A combination of the
two methods would likely perform better. Secondly, because of the Bernoulli distribution used
to model the information content of the activations in our method, our model cannot be used for
non-binary data, ReLLU activations or compression on the input to the model. A modelling strategy
that allows more application would be useful here, but most of these require introducing param-
eters to the modelling that are not dependant on the original model, but must be learned during
training. Finally, our model does not fully exploit the regularization effect of the Information Bot-
tleneck method during training, where it could further improve accuracy. Using the Information
Bottleneck in the optimization stage instead of just for analysis and pruning would be very effective.
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Chapter 5

Conclusion

We have explored regularization and compression in neural networks and made two contributions
to the knowledge in this field. Our work on Region of Interest Autoencoders applied to Pedestrian
detection has shown that joint training with autoencoders can be applied to large scale detection
problems. By better exploiting all the information in the images in the data set rather than just the
image/label correlations we can improve the generalization of the model without requiring more
speed. By focusing on foreground reconstruction we encouraged better modelling of a single class,
rather than the entire domain of photographic data present in the background. This enabled us
to efficiently regularize our model of the pedestrians. In our work on compressing neural network
models using the Parametric Information Bottleneck we demonstrate that neural networks can be
compressed by modelling the information content that each layer preserves about the data, and
reach a good compression rate for node pruning automatically.

The state of the art has now advanced to the point where the Information Bottleneck Method is
being used both to better regularize neural network models and to compress them. Neural network
layers do not create information, but they select which information from the input to keep, and
which to eliminate. Keeping more information implies a larger model downstream, and it can also
lead to overfitting. Because most models are overparameterized, reducing the information that the
layers pass to the next layer can lead to a regularizing and a compression effect. We conjecture
that a unified framework, where regularization and compression algorithms will be developed in
the near future. The key difference in regularization and compression methods is that regulariza-
tion methods, like weight decay and dropout, leave the feature dimensions intact but convey less
information per dimension, while compression methods need to be coarser if inference can be done
on the compressed model. Compromise methods can be reached, such as creating a sparse meth-
ods to efficiently exploit weight-pruned models. The Information Bottleneck does not discuss the
information contained in the weights themselves. This is addressed by the Minimum Description
Length (MDL), and a combination method that analyses both the activations and the weights of
the model may do better.
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