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SUMMARY

The radial distribution functions gab(r) are
computed for a neutral proton-electron equilibrium plasma
of number density 10188/00 for temperatures of 1.35X105°K,
2x10%°K ana 10°K, A Monte Carlo technique, similar to
that used by Wood and Parker in the study of fluids, is
applied to a cell of 32 particles, the periodic boundary
condition being used to reduce surface effectse. The
electrostatic energy due to the Goulomb interactions between
particles is calculated analogously to the approach used by
Madelung for calculating the cell energy in crystals. The
computed radial distribution functions are compared with
those obtained by the Debye-Hlckel theory, the results
of Broyles and Carley, and calculations done by Villars.
Preliminary investigations at temperatures about 1O5°K
indicated a slow convergence of the system to an
equilibrium state, and this probably explains why the
results disagreed strongly with the Debye-Hickel theory.
The approach to equilibrium is interesting in that if
this is studied in detail, useful information about
irrewersible processes can be obtained, but in this
work we are more interested in obtaining the egquilibrium
ga.b(r)° Later results, even after sacrificing some

accuracy to reduce computer time to comply with available



funds, confirmed that the convergence was still very

slow at the lower temperature considered (1Ouck)9

thus suggesting that a complete calculation would be
extremely expensive. However, the approach shows
considerable promise 1f enough computing time is available,
as it can be applied to a wide range of densities and
temperatures, and can thus be used for transition stages
which are, in general,not covered by other methods; e.g.
transition in a gas from the neutral to the ionized state,
The run at 107°K with number density of 1018, fell into
this category, and confirmed the prediction of Saha's
equation that for hydrogen isotopes, the gas is suddenly
ionised at about 10)"L°K. This run, being the longest,
was the most important, and indicated that the equilibrium
radial distribution functions at this temperature and
density may become oscillatory. Such a conclusion,
however, needs further confirmation, as the radial
distribution functions are closely dependent on whether the
system is in equilibrium, and in the above case it is
unlikely that equilibrium has been attained, As
mentioned to confirm the final form of gab(r) will prove
extremely expensive. However, should sufficient funds
become available at some future date, consideration will

be given to such a calculatione
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1.1

I INTRODUCTION

1.1  The Radial Distribution Function

The importance of molecular distribution in fluids has
by now been well establ ished by several authors. Born and
Green [1], Kirkwood [2], Yvon [3], Mayer [4] and Bogoliubov [5]
have all obtained equations by which the fundamental variables of
a fluid, such as the equation of state and thermodynamic variables,
can be calculated in terms of the molecular radial distribution
function of the system. The radial distribution function gij(r)
between a reference molecule of type i and other molecules of
type j can be defined by gij(r) = pj(r)/poj, where O 5 is the
average number density of j type particles, and pj(r) is the
actual number density of J type particles at a distance r from

th

the 1™ particle. Alternatively p (r)a®x gives the

oj 8ij
probability of finding a particle of type j in the element of

volume d®x in the neighbourhood of a point zj when a particle of

type 1 is at x;, and Igjﬁgil = D To illustrate some of the
properties of g(r) consider a liquid. In a simple liquid g(»)
has an appearance given by Fig 1.1. It is zero for r<g,

because at distances of closer approach there exists a large
repulsive force between the molecules, and they are often
considered as rigid spheres of diameter a. As r—>oo g(r)->1
since a particle will not affect the number density at

large distancese. The peaks define so called 'coordination
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shells' where there is a /P
marked preference for
particles to accumulate,

and this is due to the

particles being excluded

from r = 0 to a, and |

~

artly because such a

configuration gives rise A typical radial distribution
function for a simple liguide

to the lowest potential

encergy of particle interactions. The form of g(r) is

strongly temperature and density dependent, and for liguids

the form has been experimentally obtained for particular

temperatures and densities by scattering of X rayse.

1.2 Early work on liguids

Most of the early work done by the authors of
references [1] - [5], is concerned with applying the microscopic
approach to liquids, and they generate integral equations, or
a heirarchy of equations satisfied by the molecular distribution
func tion. Attempts to solve these integral equations using
various approximations were first made by Kirkwood [6] and
A.E. Rodriguez and A.G. McLellan [7], who obtained closed
integral equations for the radial distribution function using
the superposition approximations; and then solved these

numericallye. The results showed that the theory gives the
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correct qualitative descriptions of the radial distribution
function, but that the quantitative results have significant
errors, especially in some of the the rmodynamic functionse

In an effort to improve the agreement, Kirkwood, Lewinson and
Alder [8] extended the application to molecules interacting

with Lemnard-Jones potential but still found a 10 to 20 per

cent discrepancy with experimente. At about the same time,

o somewhat different approach to the theory of liguids,
originally proposed by Lennard-Jones and Devonshire [9], was
being developed. This theory, called the cell theory, or
Free Volume theory of liguids, has since been expanded by

many authors [10], and Kirkwood in an early paper [11] has

shown how the theory is related to his theory. However,

in 1953, Metropolis et al [12] applied a new computing technique
developed in the late L4O's called the Monte Carlo method to
solve this problem. This technique is suitable for calculation
of properties of any substance which may be considered composedfi
of individual interacting molecules, and although it is of ten
used to solve integral equations, it gives a much better idea of
the physical processes when it is applied to molecular problems,
and is hence used extensively in transport problems where the
Boltzmann integral equation is difficult to solves The
apprecach proved immediately successful, aml Wood and Parker
[13], in extending the method to molecules interacting with

a Lennard-Jones potential, obtained results in excellent
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agreement with the experimental results. This concept also
suggested another approach introduced by Alder and Wainwright
[14], which they call "Molecular dynamics'. In this approach
the computer actually follows the particles, and this proves
particularly useful 1in checking critical points, such as

phase transitions and some transport phenomena cbtained in

the previous calculations. Recently some attention has
reverted to solving the integral equations by new techniques.
Percus and Yevick [15] obtair slightly different equations
using a collective coordinates approximation, and their
equation has been solved by Broyles [16]. Broyles also
solves an integral equation obtained via the Convolution
Hypernetted Chain approximation [17] which uses the Mayer
cluster expansion, and in [18] he compares the results of

using Born and Green’s equation with Perkus and Yevickls and

the Convolution Hypernetted Chain approxima tion equation, and
then compares them all with the accurate Monte Carlo calculationg,

finding that the Perkus Yevick equation gives best agreement.

1.3 Extension to Plasmas

H.S. Green [19] has extended his theory to
plasmas, and obtained integral equations which he shows have
the long established Debye Huckel radial distribution function
as a first approximation. Green also finds that corrections

from higher approximations are important, even at fairly low
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densitiese. Recently Villars [20] has solved Green's equations
and obtained radial distribution functions for a metallic

plasmas. However he experienced considerable difficulty with
convergence at low temperatures, Also Broyles [21] has

extended the Perkus Yevick and Convolution Hypernetted Chain
approximations to long-range forces; and obtained radial
distribution functions for a classical electron gas. At the
present time however, the accuracy of the above solutions is

in some doubt, and in this authods work it is intended to extend
the accurate Monte Carlo method and obtain radial distribution
functions for a proton-electron gas with specified number density
and temperature.

Chapter 2 gives the procedure appropriate to this
extension, and the theory behind it, and necessarily includes
some of the work previously reported by Wood and Parker. Using
this theory numerical calculations were then carried out for a
dense plasma, and the computing details, with listing of the
program, etc., are given in Chapter L4, which 1is really an
oversize appendix. In Chapter 3 the results are compared
with the results of Debye-Huckel, and with those of Villars
as far as 1is possible. Differences are discussed and

conclusions drawne.
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IT THE METHOD

2.1 Procedure

2.1 a) General. The procedure adopted to find the radial

distribution function for a plasma is considered before
presenting the theory which justifies it, for this greatly
enhances the understanding and presentation of the theory.
However, because of this approach some points in this section
appear incomplete, and in such cases some forward referring
to the next section is resorted to, where the points will be
more fully discussed and Jjustified.

A system composed of N individual particles 1s
considered confined in a volume V at a temperature T. The
particles are assumed to obey classical statistics ( see
2¢2b)e Further, in the interest of tractability, the particles
are assumed to have spherically symmetric potential fields, and
to interact with the Coulomb potential. Chapman and Cowling
[1], indicate the enormous complexity when the condition of
spherical symmetry is relaxed in the least degree. Sub ject
to the above assumptions, the method is not restricted to any
range of temperature or density, although as pointed out in
the conclusion, the method is much more effective in specific
regions.

In order to reduce the problem to a feasible size
for numerical work, it is necessary to consider only a finite

number of particles N. In this calculation N=32, being
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comprised of 16 electrons and 16 protonse Such a choice
is based on:- (a) conveniencey, for then a cube may be further
split into eight compartments containiné four particles each,
and preliminary investi gations made on these segments;
(b) comparison, as many previous calculations have been done
using N=32; (c) accuracy, as this value of N seems sufficient
to accurately describe the system [2].

The 32 particles are placed in a unit cube of volume
V = 1% = 1 cubic cell unit, (it proves convenient to work in
cell units or mesh units as defined in Appendix I). Since
the computer can only deal with a finite number of digits k,
the coordinates XijsXizyxis 0f the ith particley; must be
represented by a number 0=xiygS1 where xio has a number of
digits =k. Effectively this divides the unit cube into a
fine mesh, and so will convert the number of distinct
configurations (previously an integral) into a finite sum.
The initial C(J1Fonfiguration's coordinates can be chosen
arbitrarily by the use of random numbers, or alternatively
the particles placed in a systematic fashion in positions
which previous results have indicated will lead quickly to
an equilibrium configuration. [The Random Numbers are
generated by a technique given in L.l ]

Another configuration C(k,) is determined from
C(jr) as follows. The coordinates of one of the particles

are changed by a small random amount é& such that |é&l<§o,
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i.e. a random 6 is formed on the interval -§g to 8o and
added to the oig coordinates, SO X=>X + 6&, Y=>y + 5&;

Z=>Z + G, (The choice of Jg is considered in section
2.2(c)). In general the molecule which suffers this
displacement may either be chcsen randomly or in a systematic
fashion as in this calculation, where the particles are all
labelled. The configuration which is the next in the

series C(j. ,) is either C(jr) or C(kr)‘ To decide which

r+1
the potential energy EP of C(jr) and ET of C(kr) are
calculated (This energy calculation is considered 1n 2.1(c))
and a random number RAND is chosen on the interval

s 1 . . i
O<RAND=1; if O=SRAND = ::;ETET—EP) the configuration C(JP)

is taken, if ::iETET—EP) <RAND =1 the configuration C(kr) is

taken. Such a choice (as is shown in 2.2(a)), ensures
that the relative frequency of a configuration C(J) with
potential energy V(j) in the sequence of configurations is
asymptotically e—ﬁv(j). As these configurations are
generated, and all 32 particles moved in turn, a store is
kept of the pairing energy between any two particles, and
also of the distance between any two particles within a
limit of PDL (chosen to be a maximum distance wi thout
increasing computing time too much see Le3)e The pairing
energies are stored so the energy of a configuration can be

computed swiftly, while the storing of the pair distances
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enables an estimste of the radial distribution function for
like particles via

A&L
gL(P) = » and for unlike

or r Ar ¥ n

particles via

My (241)
o7 r*Ar ¥° n

gU(P) =

-e

Where N=3%2
n is the number of large iterations completed in the
calculation, a 'large iteration' being defined when all 32
particles in the cell have been moved, or attempted to move.
ANL is the number of like particles recorded at the
distance r to r+Ar from the given particle, and ANU the

number of unlike particles in the same rangee

2.1 (b) The Periodic Boundary Condition. So far only a

basic cell of 32 particles has been considered. This means
we are only considering a very small portion of the plasma,
so to eliminate surface effects and obtain a representative
sample the periodic boundary condition is employed. The
basic cell is considered to be surrounded by exactly similar
cells, in each of which the molecular configuration in the
basic cell is identically repeated. Hence theappearance

is similar to a crystal latticey, with repetition of the
basic cell of 32 particles. The restriction of having

identical cells, necessarily restricts some configurations
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such as fluctuations in the number of particles in each cell,
This restriction on the ergodicy of the problem has been
showvn to lead to only small errors for systems with N230
when dealing with fluids [2], but significent errors occur
for low N or for very dense systems,. However the identical
repetition of cells is well suited to this computational
technigue and enables most of the surface effects to be

eliminated, while still giving a practical solution.

2.1 (c) Calculation of the Fotential Energy of a configuratione.

The periodic boundary condition suggests the use of Crystal

theory to evaluate the electrostatic potential energy between
the particles. Born and Huang [3] show how to evaluate
this electrostatic potential energy per cell, and call it the
'Madelung Energy' for a given crystal. For a plasma almost
exactly the same technique as Born and Huang's can be used,
but as this potential energy calculation is important some
of their work will be repeated here.

Consider N particles in a cell. Let the position

of the kth particle in the cell be given by a position vector

X(k) = 24X, (k) + 2X2(k) + asXs(k), where

Xy9X29Xg are the components of g(k) along the three basic
vectors of the cell a;,a25a3 and in our case are orthogonal
forming a face centred cubic lattice. Let the cells be

specified by cell indices 1; 1, 1z (these being in reference
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to a zero cell chosen arbitrarily) and define a cell vector
X(1) = 1'a; + P22 + °as. Hence the position vector of
an arbitrary particle is represented by X(1) + X(k), written

X(&) . Also it is frequently useful to define a reciprocal

lattice from the given lattice by defining basic cell vectors
21 X &2 a
P = —————— etCey OP b e2o= G - From these reciprocal
- 85081 X2 = =B B
23081 %2
basic cell vectors b* (dimension of inverse length), a

reciprocal lattice vector can be defined y(h) = n,b' +hzb? +hsb° »

Thus 2458285 form a set of covariant baég vectors, and
p',0%,10° form 2 set of contravariant base vectors, and
x(1).y(h) %i%h;: integer. These reciprocal lattice
vectA;s ar;”useful in specifying lattice waves satisfying
the periodic boundary condition, since if y(h) is 2
reciprocal lattice vector, then exp[ZWiy(h;.ﬁ] is periodic

in x, and so a periodic function f(;) can be expressed

oy (h) X(®)
f(!) = E}IQ(Y) e = Lol L2 s 2wiglh) X(C)
bt Cokfienti ase ques by §0y) = [Wfat[dE (F(E4L)TE ]
and 3(‘._5) COM% l’, M\h %—F&P;v ¢

—omy.X
=3[ e - e (22)

where v is the e=ss volumeg{p&bﬂam}.wib““i“‘xm“_MM‘L’,{"‘U‘“"

The Loctet V! aloeut atiats frorm ¥t Jocobiom v freducsdl by e chomge ﬁhﬂgmbmw‘oblhwc'{‘(f{ox.’xh)s‘
With the above notation, and assuming that the ions
interact as point charges with a Coulomb potential (discussed

later in 2.2(d)), the e.s energy for an arbitrary zero cell

may be written as:-—

& & -
kl;zf) "X@-) | 3 (2.3)

1
E = 5
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where §k is the charge on a particle k
§k' is the charge on a particle k°’
k is an index running from 1 to N on particles in cell l=o,
k’ is an index running from 1 to N on particles in cell 1°
and 1’ is an index running from = tO oo
The " means that when 1°=o0, k’ cannot equal k, as this would
1

include self interaction energy in the sum. The factor 37

appears in the formulae since the summation includes every

interaction twice. Also notice that since a plasma is
electrically neutral, then 3 & = o. (2441)
k

It is impractical to evaluate this energy by direct
summation since the slow decrease of the coulomb interaction energy
wilth distance means that theoretically the sum should be over
an infinity of cells. To overcome this difficulty the

energy is put in a guickly convergent series in the following

manner. Rewrite (2.3) as
S &
E=+%3% & Lin { » k - k } ,
© IR A e 1z0o-al

then using Ewald's identity viz:-

1%(5- ) -x12F
e dpe

H

1 2 [-
(X)) # "
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we have
-|x(11> ~x|2
1 2 gg’ 0 =\k fk
E = 13 Li o= e S - —
k i g—?g{_(k) 21‘6{ N fo ° p_lz(k)—g]

(2.5)
The integral is then split into two gquickly convergent parts

by use of the Theta Transformation, viz:-

— 2 - 2\
-lZQEED)-EI2F_ 2m 5 2 ST/ 130 Pe2my(h) (X G)
2 % e = vy 0’
N
NOTE. This transformation is often referred to as the

Theta Function identity, and can be derived quite generally

in the following manner. Multiply

B °MEE L 5 S(zk) vy o0 (EY)

and integrate with respect to X. This gives

5, j’e—ﬂxe(gfz)z + 2mikexa Ek/kfgfg)e-ﬂxg(£+y)2d9x

hence 3 f —7T'02 (X+y - ik/0?)® "771{2//32-27711{.37 z'ke -7 (y+k)“
. 2m 5 g:ﬂk2/P2-2ﬂ1k-y o e'WTF(Y+£)2.
TV g g k -

(X(x*)=X), altering the w7 factors,

Exchanging k = y(h), vy

1l

and noticing that y(h) = X(1) for a face centred cubic lattice,
the form of the theta function which is usually applied to

crystal physics is obtained. An alternative derivation is
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given by Born and Huang (3], where the concept of reciprocal
lattice vector expansions of a periodic function is stressed.
The right hand side of this identity is a series that
converges rapidly for small values of py and the left hand
a series that converges rapidly for large values of pe
Thus dividing the range of integration of the integral in

(2.5) and putting in the appropriate series we have
op [R1. 770 3(2) | remy(n) . (FE(x")
9 .
= %{fk Lim 3 {— / -;;-

d,p
x->X(k) 1°k°

e ap =
NTT ? X(x) =X

l'
—lx( ) -X|? 2
co =\k - §
+ f. e —_—Tf }
R
The term 1°=o0 may be neglected in the first term (indicated by
a prime) because of (2.4) and changing the order of integration

and summation, with summation now over reciprocal lattice points

in the appropriate case, this becomes:-

R

: [ 2T 5 2'exp<— L. |y(n) |2 +2miy(n) . (z-(x" )) } "
o V& kx°h on

The first term of the expression can be written in terms of a

standard integral called the Error function, defined by

X .2 e
E(x) = &= /= e~¥ at, since then ~=(1-E(Rt)) Sl /ﬂ |12 Fap.
T 4]

The integration of the second term can also be carried out
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between the required limits to give:-—

et Yoy [ L i [Reiae) 0 )5

Rl>_<(k-> Xl

exp(- - 1y(e) |2 rpl2my (). (X (x)) ]

| X(k)-Xi

+2I s &, 2

V e k n :
7 |y(n)|

In taking the 1limit, it can be seen that apart from the second

k’ k
of X in the neighbourhood of X(k), and hence in these termsemecam

term and the term <? > - <?> s all terms are regular functions

directly replace X by X(k). The prime on the summation means
the term (i.) = <§> is excluded. Thus

R <o 1 1°
g-23 ge. [1-m(lx(3e ) 2 |

2 1k ‘& k=k k

RI.zs@) ~x(x) |

+ % 1?1{ SRS g'exp(f—-l%imf)exp[zﬁz(h).(g(k);g_(k'))]

R [ _
+ 22k§k : >X(k){ 1-E(R|X(x*) x|):]

1X(x)-x|BL IX(k)—XI }

This last term then has the form

Lin {%C[*I-E(R()] - J -1 2 1 { /R: P ap - 4T }

{->o0 (->o N
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RC
—_—Limg—l{-/ exzdx}
C‘)O NF’Z-T o
R
- Lim 2 %{-[ [1- + £ oo lax
C">O N/"I-T o) '
i
N7
Now putting D = ng(?: -X(k)| we obtain
R * R 2
E=22 & & .[1-E(D -= 3 (2.6)
2 3 Tk @)1/ s Sk
exp(-7* | y(h) 1%/ R exp[2miy(h). (X(k)-X(k")) ]
+ L % gg,3° — =
2V Xk * kﬁk n

7 |y(n)|*

NOTE. This equation divides the Energ& into calculations
involving a) short range interactions, which are accounted for
in term 41, and b) lcng range interactions, which are accounted
for in term 3 (which since the lattice is periodic, sums over
the reciprocal lattice vectors of the unit cell). Howevery
it is important to notice that the energy associated with

term 1 is NOT the energy of the short range interactions, as
term 2 also involves some short range energy, the amount depending
on the parameter R. Thus the above formulae does not enable
the calculation of the energy in.two distinct partsy, but gives
a practical computation of the total electrostatic energy of

a cell. The energy will be in ergs if §k is in ee.seU.y and
R is in (cm)-1. This ensures that the last term is
dimensionally correct, as y(h), the reciprocal lattice vector

has dimension of inverse length, and V is the volume of the celle
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In crystal theory R is usually chosen of order 1/(nearest ion-
ion distance) for quick convergence of both series. Based

on this, for the plasma R was initially set approximately equal
to 1/(nearest ion-ion distance), however experience has shown
that a better indication of the order of R is given by

1/(Debye Shielding distance). The exact value chosen for

R is subject to other considerations also, such as the accuracy
to be obtained for given computing time, and will be discussed
in detail in section 2.3. As only energy differences county
and R remains constant for a particular run, the energy actually
calculated in cell units (see Appendix for conversion factors)
is given by

exp(-7 | X(1) |2 /F?)

|x(1)1*

o B oo il il .
E=352 COC.5 [1-E(D)] + > Ek,ckck,§

kk‘1

x cos 27l (X(k)-X(k*))xcos 2m 2(¥(k)-¥(k*))xcos 271 s(Z(k)-2(k })-

(2.7)

Where Ck and Ck' are +1 for a proton, and -1 for an electron,
and the exponential term has been expanded in terms of real
and imaginary partsy; and the imaginary parts neglected, as only
the real contributions to the energy are required.

The calculation of the e.s. cell energy via (2.7) is
still very time consuming, and so a careful analysis is made in
section 2.3 as to the choice of Ry, the termination of the two

series, the accuracy, and other factors which affect the computing
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time. The rest of the program is built around this energy
calculation, and carries out the general procedure explained
earlier, Also a significant part of the program is
necessarily concerned with the input of data and the output

of results. A full 1isting of the program, and explanation of

what each part does 1s given in Chapter L.

232 Theoly

2.2 a) General,’ Before passing on to considerations of

accuracy and choice of variables for the computation, it is
perhaps necessary to give a brief outline of the theory
underlying the procedure mentioned in the previous section.,

The idea of applying the Monte Carlo method to compute radial
distribution functions was proposed by N. Metropolisy

A.W. Rosenbluth, M.N. Rosenbluth, A.H.Teller, and E. Teller [4]
and followed by Wood and Parker [5]° The following theory

is based on the above two papers, A petite cancnical ensemble
is constructed from a canonical ensemble (i.e. reducing the
continuum of configurations to a countable set of configuration,)
by considering only a finite number of digits in specifying the
coordinates of a particle. This effectively divides the unit
cell into a very fine mesh, such that the positions of the
molecules are specified by a single number associated with each
mesh cell. This division is inherent in numerical calculation.

and it is physically reasonable that a sufficiently fine
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subdivision will give results indistinguishable from the
continuum of configurations. To calculate the equilibrium

value of any quantity of interest F, then
N .aN

%j Fj exp(-Ej/kT) a° p a® ¢ .
P = s where
2j exp(-E;j/kT) %y ¢y
runs over all configurations. Also since in the interest

of tractability velocity independent forces have been assumed,
the momentum integral may be separated analogously to the

following

/’e—ﬂ«IFV) dp dx = /Ee-ﬁxEdp e—ﬂqu

i
-
wfy
S~
2
N
AV
—
(o))
o
o4
Qs
=y
D
S
Q
(o]
=5 |

can be written

- _ B exp(~V(3)/xT)a® g -

35 exp(-V(3j)/kT &g

Now even in the case where N is reasonably small,
it is impracticable to carry out the multidimensional sum
(or integral) by usual numerical methods, and so the Monte
Carlo method is used. The Monte Carlo method of evaluating

many-dimensional integrals consists of integrating over a
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random sampling of points instead of over a regular array of
points, (An authoritive text on the application of the Monte
Carlo method is that by Hermen Kahn [6].) In this case; if
the Monte Carlo technique was applied in a straightforward
manner, a random configuration would be chosen, and then
weighted by exp(=6V(j)). However, a more practicable method
is to choose configurations with a probability exp(-AVv(j)), and
wieght them evenly. Thus as Wood and Parker put it, 'the
object is to generate a Markov chain in which asymptotically
each state k recurs with a frequency proportional to the
Boltzmann factor exp(~AV(j)) for that state', For then the
average over the chain of any function of the configuration
state, such as Fk’ will converge to the corresponding petite
canonical ensemble average of the same quntity, as the chain
length increases.

The manner in which such a sequence is generated has
been discussed in the previous section 2.1(a). To show that
the relative frequency of C(j) in the sequence of configurations
thus constructed is asymptotically exp(-AV(j)). suppose the
probebility that j, should have the value j is Pr(j)' Let
C(k) be a configuration obtained from C(j) in the manner
described in the procedurece. Then C(k) belongs to a set of
configurations accessible from C(j) by changing the coordinates
of one particle by amounts less than &o. If E(j) denotes

this ensemble (or set of configurations), then ke E(j).
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Let Q be the number of distinct configurations in each of
the ensembles E(J) and E(k). Now the probability of moving
(3)s and we have

from state jJ back to state j is p

r+1 r+1
Q.03 =p.(3) = [M-a(isk)]+ = o (k)a(k,j) (2.9)
r+1 T kem () jeB(k) T
where
a(dpk) = {1 + explpv(x) - pv(5)1} ~1, (2.10)
= probability that C(Jj) will be changed to C(k) by
displacing a molecule in C(j).
> (1) is the summation over all values of k such that keE(j).
keB( j

Now the relative frequency of configuration C(j) is asymptotically
proportional to p(j). But
-1

]
p(J) = lim s 2 p,(J) .
S=> r=1

Hence from (2.9)

Qe(d) = p(J) [@ - = a(Jsk)] + = p(k)a(k, ).
keE(3) j€E(k)

ieee () 2 a(ik) = 2 p(k)alks j) . (2.11)
keE(J) jeB (k)

This means that the prcbabilities must satisfy the
condltion of microscopic reversibilitye. Also in this set
of simultaneous equations to determine the p(j), if we

replace a(jsk) with the expression (2.10),the solution is

p(J) = Aexp[-BV(3)] , where A is independent of j,
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and this is the property of the sequence C(Ji)s C(J2)seee
we wished to prove. Notice that the above proof assumes
that the sequence is ergodic, and this will only be so if
all particles may reach any point in configuration spacee
This is the case here as there will always be a non-vanishing
probability of moving from a given configuration to any other
in a finite number of moves, and this is because the potential
energy is finite for all configurationse. The finite nature
of the potential energy follows because a cut-off is imposed
on the coulomb posential well, so that particles approaching
closer than the potential well cut—off distance AO have cons tant
potential energye. The choice of A0 is important, and is
discussed fully in section (2.24d). Thus we have obtained
a sequence which gives the petite canonical ensemble average

of (2.8) in the form

S
F> = Lim 8 2 F(jr) (2.12)
S5->0 r=1
2.2 b) The distribution choice. There are other ways of

assigning the probabilities a(j,k) so that equation (2.14)

still has a solution p(j)a expl-pv(j)]e However, H.S. Green

has shown that the choice of ajs,k) given in (2.40) secures

the most rapid convergence of the series (2.12). This choice

is of considerable practical importance, since in the calculation

it is necessary to replace (2.12) by
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S
o) F(jr), with suitably chosen
r=V+1

<KF> =8

values of V and S, and if a bad choice is made for a(jsk)s
then these values 6f R and S will be unnecessarily large.
Effectively a(jsk) is a normalised Boltzmann distribution
for particles allowed to move between two potential energy
states V(j) and V(k), as from the Boltzmann distribution
law the probability of a particle frequenﬁiné a particular
state V(j) rather than V(k) is

o=BV (J)

~B(3) |, AV (K)

p(J) =

1
s L BOE)=V(3))

1
BV (3)-v(k))

1 + e

Fig 1 shows how this probability varies with
temperature for some typical changes in potential energy
between two states. If the state j has energy greater than
the proposed new state k, then 8B = V(J) - V(k) will always
be positive, and the probability of staying in j will always

be less than 0.5 An energy change JE = 0.1 cell units
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FIG 2.1 Showing the probability p(j) of a particle changing

its energy by a positive amount ¢E at a temperature T.
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is approximately equivalent to shifting a particle from
286 mesh units to 271 mesh units from another unlike particle.
Similarly an energy change 1.0 corresponds to moving the unlike
particle from 80 mesh units away to a lower energy position
only some 70 units away, and an energy change of 10.0 to a
movement from 12 to 9.5 mesh units. Hence for small energy
changes it can be seen that one must go to temperatures below
104K before the probability of a transition differs significantly
from 0.5, and above this temperature small energy changes will
oceur nearly randomly using the Monte Carlo method. Larger
energy changes however, have a marked effect on the probability,
even at temperatures as high as 105%, Results have shown
that the size of 6B depends on two main factors; (a) the size
and direction of the particle movement ¢6x, which will be
discussed in the next section, and (b) the position of the
closest particle. It has been shown that a small change
¢x will incur a large change 6B if another particle is only a
distaneée of 12 mesh units away, but that it requires a much
larger §x to cause the same JE when the other particle is 80
mesh units away.

Consider the 32 particles moving randomly about the
unit cell, then the unnormalised probability that any one of
the 16 positive particles will be within a distance of 100

mesh units of any one of the negative particles is given by
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P = 16x16xl-g~7r x100x100x100 = 10.7x108, which

is much larger than the corresponding probability of particles

being within 50 mesh units, when

P = 16x16x%ﬂ'x50x50x50 = 1.34x108,

In calculations done on the computer at about 105%, the
particles distribute themselves roughly throughout the unit cell,
and have an average interparticle distance of approximately LOO
mesh units. There are nearly always two unlike particles
separated by less than 100 mesh units, and in future two such
particles will be referred to as 'linked'. The calculations
also show that most of the energy changes when a particle 1s
moved are of order O.1 cell units of energy, and hence statistics
will affect these only rarely at high temperatures. It becomes
almost a matter of chance at these high temperatures that two
unlike particles will become closely linked, and as shown by P
the closer the link, the less probable it is to occur from a
completely random Jjump. In fact due to the manner in which

the solution to the problem has been presented, close links occur
even less than expected from P at high temperatures, for in

1000 iterations a particle only moves on approximately half the
attempted moves, i.c. some 500 times, ard in a random direction
thus moving through about one eighth of the unit cell. During
this random travel the particle has on the average a chance to

link with only two oppositely charged particlesy, hence P should
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equal 2x16x %W'X1OOX1OOX100, equals 1.34x108, These close
links have an important effect on the radial distribution
function at low distances, but because they occur so rarely
very long runs must be done before much weight can be put
on g(r) for r<100 mesh units,

As the temperature is lowered however, the probability
p(j) of moving to a close link, starts to become less random,
and the effect of the statistics becomes apparent, close links
occur much ﬁore frequently, and the radial distribution function
assumes a reasonsbly smooth curve in the region O to 100 mesh
units; though now long runs are needed before the system
settles into equilibrium. In summary the temperature
dependence of p(j) varies from allowing almost random motion
at 105% to having a marked effect on movements at 1049K,
Another interpretation of how the Boltzmann statistics are built
into this problem, which is quite useful in discussion of the
results, is that each particle has associated with it an
effective statistical radius, beyond which the effect of the
statistical distribution is negligible, but within which the
statistics appreciably influence particle movementse. This
effective statistical radius becomes larger as the temperature
is lowered. The importance of the statistics (or the
statistical distribution choice), will again be stressed when

the results are discussed.
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2.2 (c) Choice of {pe This determines the maximum chenge of

molecular coordinates in the transition from one configuration
to the next, and as already indicated, has an important influence

on the rapidity of convergence of the method. H.S. Green has
~ L
calculations. If 8o is too large, the energy/cell will

shown that a do has the right order of magnitude for most
fluctuate considerably with each new iteration, while on the
other hand if §y is too small, not enough samples of configuration
space will be obtained in a reasonable time. There is perhaps
an argument for letting &, be large to start with, and as the
system nears equilibrium, to decrease 6o to a smaller valuee.

The advantages and disadvantages of choosing a large
§o show up in the following considerations. Let two unlike
particles A and B be a small distance r apart, and 21so for
definiteness let this be at a low temperature where the statisticg
highly favour the formation of a pair, l1.e. a transition of the
particle from r to the ground state. Then if &y is large, it
will take a considerable time before a delta occurs which will
allow the particles to move closer together, for if §o22r fig 2.2
(e) 1is obtained. Suppose the program allows B to undergo
a random displacement é& where |é&|§5o, then B can move to
any point in the sphere Sy, anﬁf%ﬁ%iﬁbobability P(c) that it
moves closer to A rather than further away from A is given by

the ratio of the volume of Sy to the volume Sz>-Site
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FIG 2.2 Diagrams used in the calculation of an optimum

maximum step length Jo.



Thus P(c) = h/5 RS = - s and
b/3m(86° )
if 6o=2r as drawn in fig 2.2(a), then P(c) = %,.so on the
average, out of eight trial mcvements of B, on only one
occasion will it move to a lower energy position closer to
A, Since we are considering statistics which highly favour
movements to lower energy the seven moves will not be alloweds,
and the move closer will be accepted. Even when A and B are
a reasonable distance apart so do<2r, the probability of B
moving closer to R rather than further away will be given

from fig 2.2(b) by the ratio of the shaded volume Sz to the

volume S;-8s. Calculating Ss as the volume of two caps them
8 -3
o
Bfo +3
TABLE 1. 5o
(ooL ) W + & 3 Gare ®) whew +2 5
r = d‘o/)_l. 6‘0/2 610 250 >>(5‘o
P(e) = 1/63 1/7 1/2.2  1/1.46 1/1

This shows that for r=Jo/L4 that only one move out of an
attempted 6L will, on the average, result in the particles

coming closer together. Further because of the potential
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well cut-off discussed in the next section, movements of particles
closer than L.2 mesh units will have the same energy as if they
only moved to 4.2 mesh units apart. Hence §p for low
temperature work was chosen to have a valus of 15 mesh units,

as this means not an excessive number of moves has to be made
before the particles have a chance to pair, and yet the particles
can move through a reasonable volume in 100 iterations. However
at high temperatures, where statistics only weakly influence
movement to lower energies even when the particles are close
together and movement is mainly randomy a larger §o would seem
preferable.

2.2 (d) The potential well cut—off AO The choice of this

variable, which limits the potential energy between interacting
particles when they approach each other closer than a distance
AO mesh units, turns out to be important if the degree of
ionisation is to be considered. The actual value of A0 chosen
is based on the following considerationse. The Bohr orbit theory
shows that when an electron is in its ground state in a hydrogen
atomy, it has a potential energy of -c?/a, and a kinetic energy

of e°/2a, where a is the first Bohr radius. The ionisation
energy is the energy needed to remove the electron from its
present energy of -e?/2a to the continuum or zero energy. Then
it can be seen that the lowest potential energy possible, without

any kinetic energy, will be the ionisation energy of -e?/2a.
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This potential energy corresponds to that of an electron at a
distance 2a from the proton, and since this is the ionisation
energy no lower poténtial energy is possible without kinetic
energy being present also, and as this problem is concerned

with potential differences, an electron and proton are considered
as having their lowest interaction energy of -¢® /2a, whenever

an electron comes closer than AO = 2a tc the proton.

The importance of this cut—-of f AO becomes apparent IF
it is said that 'pairing' occurs when two particles are closer
than AO. This critereon for pairing means that the particles
are in their lowest possible potential energy state with no
kinetic energy, i.e. ground state, and so particles are not
considered as paired when they are in excited states, such states
have previously been referred to by saying the particles are
'1inked'. In Ssha's work, which is mentioned in some detall
when the results are discussed, he considers particles paired
only if they are in the ground state as above, but he does not
allow for any excited states (except the continuum) to existe.
This differs from the above casey where a continuum of excited
states (or links between particles) are allowed to exist outside
the ground state radius AO, as particles may move out from AO
in a completely random fashion, being modified only by the
statistics. No gquantum effscts, or only allowing specilal
energy levels when approaching particles near the ground statey

are built into this methode. This difference in the definition
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of pairs - or neutral particles, and merely links between two
charged particles must be kept in mind when comparison is made

with Saha's work.

2.3 Accuracy

2.3 (a) The first term From eguation (2.7) the first

term E; is given by

R §A2 NA2, oo .
Bj=3 2 C 8 0 3 (“0 g D > , where NA2
k=1 k=1 NL==c0
is the number of particles in the reference cell, and the similar
periodic cells are labelled by NLe To terminate the inner

series the energy contribution of particles interacting beyond

a distance XC is neglected; and this effectively considers

interactions over only a finite number of cells NL. To
estimate the error in cutting off at Xc = %3 s assume a

rectangular distribution of particles with distance, for then

the percentage error in E; is given by

f” 1-E(D) LD D
D
Do

o0
[ 1-E(D) ), 7DP aD
D
(0]
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But

j»w 1;%igl LaD? aD = j’wgi 1% i) f ” e_dey> ap
Do Do T D

= 8&/'77{[%2 foo e"yzdy] i :foo %2 eﬁDde}
o Do JDo
= 8y D Ciw - f e y2dy>] - [? D e D ] +[‘ 1 D - e dD}
WU:Z 2 o Do - LY Do JDe ¥ %P !

- -7 QSLZ.i'LT [1-E(Do):| + 8—1{-”-’ Dos 20 — -—g- l:'“r'” - ¥ 5(p, )]

-D 02

= —27 Do2 (1-E(Do)) + 2V Doe - 7 (1-E(Do))

2
= 24T Do e_D° - (2mo° + g) (1-E(Do) ) -

-
Also [ J:%LEl LaD? dD

I

T .
-5 e so the percentage error 1n

- 2
term one is [éJﬂ'D. o P9 _(27 Do + g) (1—E(Do)):}x [el0)
T

2

TABLE 2.

Do 1.0 2.0 2e¢5H 2e7 2. 75 3.0
Error % Lhely .26 .03 +015 <01 .006
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Hence a value of D, of about 2.5 would be sufficient
to determine B1 to three figure accuracy, this value is

dimensionless as Do = RXC.

2.3 _Db) Speed Considerations The most time consuming of all

the operations completed by the computer is the calculation of

. D 2
E(D) = 2 j- e k dte. The number of these to be calculated
T Jo

will depend upon X,s because all contributions with
|§<i'> ~x(x) | > X, are neglected. Thus for optimum speed
Xc is to be as small as possible.

2,3 ¢) Debye Huckel factors The calculation of the energy

is essentially divided into two parts, in one individual
interactions are considered, in the other a collective approach

is used (second energy term). From Debye Huckel theory
individual interactions predominate within the Debye Shielding
distance %D' This suggested that to obtain reasonable accurac;y'g
XC should be made 2 %Do Table %, compiled for a neutral plasma‘
of density 10!'8 electrons/cc, gives some idea of Ny in cell

units as temperature varies.

TABLE 3

Temp °K 104 2x10 4 5%x104 1805 1.35x10%  5x10°F

npleell units) <19k .275 435 615 715 1.375
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2,3 a) Accuracy of the second term From equation (2.7) the

second term E- is given by

g NA2  NA2 o0 exp(-7 |X(1)|?/F?
Bz= 5y 5 Cp 2, Cp. 27 { cos2mly (X(k)-X(k*))
k=1 k':‘l NL= =—c¢ Iz(l) |2

cos2mL (Y (k)-Y(k *) )cos2mls(z(k)-2 (k") )}

Let X = 2m(X(k)-X(k")) Y = 2w(¥(x)-¥Y(kx*)) 2= om(z(k)-2(k*))
Then performing the sum over NL, with NL(0,0,0) excluded, the

following is obtained.

g Na2 A2 ‘7’2/122
Bz =5, 2 Cp 2 C.. | 2e (cosX+cosY+cosZ)
T gt £ g’oq £

+ 2¢ (cosXcosY+cosXcosZ+cosYcosZ)

_3ﬂ2
+ 8/3 e /Rz(cosXcosYcosZ)
-MWQ

e /E

+ (cos2X+cos2Y+cos2Z)

n|=

-57 ;2
+ % & /R (cosXcos2Y+cos2YcosZ

+cosYcos2Z+cos2XcosZ+cos2XcosY

+cosXcos2%7)

+ esssossvcen }

The magnitude of this term increases with R, and for large R
many terms will need to be taken as convergence will be slow.

However if R is less than 7 the series will converge rapildly
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due to the exponential factor, and terms after the third

one become negligible. To obtain a very rough idea of

the error involved in neglecting higher terms, consider
the percentage error given by terms L,5 and 6 compared
to terms 1,2 and 3. To evaluate this ratio in terms
of R, the cos terms are replaced by %2. This gives
as an estimate for the percentage error in E,

"Ll-'ﬂz "5172 o "'6772 o
{% e /Rz(éz) + % e /5, % e /R %v2]

100 x >
-T2, 2 -2m2 , o -37=
{Ze /R (32) + 2e /R % + % e %3 %?5 }
~ 25 e—sﬂz/R2
TABLE L.
R (inverse cell units) 1 2 2.5 27 3.0 3¢5
% Error in E; 10—10 005 -3 «H 1 3

Although this calculation is very sketchy, the thorough
calculation of the root mean sguare error 1s very compleX,
and it was found in practice that the above table was more
accurate than might be expected, and guite sufficient, wi th
the other tables, to obtain a working value for R.

2.3 (e) Summary To obtain optimum accuracy, or approximately

sos, the error in calculating the first term of the energy

should equal the error in calculating the second term,
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iecs E,x%error in By = Epx%error in E; (2.13)
However, since it is the object of the program to calculate
the equilibrium energy for a given temperature and densityy
it is daifficult to know the values of E; and Ez. To
obtain some indication of their sizes some preliminary
calculations were performed using N=l. This was

later found to be only a very approximate guide, as a

box of 32 particles in equilibrium cannot be accurately
constructed from 8 lots of L4 particles in equilibrium.

The initial calculations were useful in that they

indicated the dependence of E; and E, (for a given
configuration, density, temperature, and Xec) on R. 1t
wag found E, falls slightly in magnitude as R increases
from 2.5 to 3 cell units, and that each of the 32 particles
can be considered to have a roughly constant energy of
interaction with the rest, Because of the oscillatory
nature of the second term, the energy associated with a
particular K particle varied considerably, and the sum

of the 32 K contributions to give Ez for the whole cell
was small compared to E; for the cell. The R dependence

ey

of B, is in the factor e s and so rapidly increases
with Re. Table 5 forms an attempted equilibrium configuration
from 8 sets of four particles, temperature 10°°K, density

1018¢/cc, Xc=1.0 cell units, and gives the Energy terms in
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(cell units)_1 for a given configuration, where

Ez = - %ﬂ S C.%°, armd E_ is the total energy per celle

Kk k T
TABLE 5
R 2 2¢7 3.0 3¢5
B -16L4,915 ~1534201 L8473 -140.877
Es + L19 + 1.565 + 2.197 3,235
Es - 36.109 - 48,746 - 5Lh.162 - 63.189
ET -200,605 -200,382 -200.438 - 200.831

Applying equation (2.13) to the figures above, it
was found that optimum accuracy would be obtained by giving
R a value of 2.7 (cell units)-1. This value was subsequently
tried, and compared with a very accurate calculation of the
energy for the same configuration (i.e. R=2 X,=2y=>Do=ly, and
Ey=—164¢6665E,=+.419, BEs=—36.109, Bq =-200,357) and for
XC=1.O R=2.7 gave the minimum error. The accurate
calculation for Xc=2.0 cell units however, was very time
consuming, and it later became apparent that it would be
better to sacrifice some accuracy for an increase in speed,
as the number of iterations necessary for the system to come
to equilibrium proved unexpectedly large. With this in
mind"Xc was reduced 10 5 cell units, which now only includes
the Debye shielding distance for temperatures below

5x104%K, and by going through the above analysis, a value
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of R=3%.5 was found to give the ninimum error. This
reduced the overall accuracy so that the energy now may
contain an error of *1 in the third figure, however the
increase in speed, a factor of about five, amply justified
the change. Also by cutting off at .5, this enabled
quite a deal of gsimplification in the program, as TOW

only the basic cell need be considerede. Further
discussion on the effects of the changes on the program

and the results will be made in the relevant sectionse.
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I1I RESULTS, DISCUSSION AND CONCUSIONS

In this chapter the results will first be presented,
with brief notes, in the order in which the calculations
were done, and then followed by some more general notes on
the graphs. The Debye-Hlckel theory; work done by Broyles
and Carley; Villars; and the Sabha theory are each discussed
in relation to the results, and then a general discussion
of the results is given. Finally the conclusions and

limitations of the method are presented.

3.1 Presentation_ of Results

3.1(a) Preliminary Results from 1620 on L particles. The

first results were used to show that the program calculated
the energy correctly, and that it operated at optimum speed
and accuracy. Due to storage imitations only 4 particles
could be considered on the I.B.Ms 1620, but even so several
featurses became quickly evident. The variation of the
probability for a transition (PET) with energy; the
dependence of the energy on the initial confi guraticn;

the increasing randomness as temperature was raised; the
fact that pairing started to occur at about 1O4°K; were
all apparent from the L-particle calculationse. Most

effort was directed towards increasing the speed of calculation



while still maintaining the accuracy, and as discussed in
the section on Accuracys most of the parameters were
fixed by these considerations.

3,1 (b) Results from IBM7090. Using the L-particle results

to start from a favorable configuration, the program was
transferred to the larger computer, and 16 electrons and

16 protons considered in the unit cell. (Conversion

factors for cell units of length and energy are found

in Appendix I). The electrostatic energy of the 16 electrons
and 16 protons in a particular configuration is termed the
Cell Energys and this is plotted against the number of
iterations done. (An iteration is completed when all 32
particles in the cell have each been considered for possible
movements ) When the energy was considered to have reached
a stable value, the run was terminated, and graphs of the
radial distribution functions for like and unlike particles
were compiled from the equilibrium confi gurations, i.e.
where the energy graph was relatively level. These

graphs are presented collectively in the order that they
were computed, and collective notes follow the graphs to
explain more fully how they were compiled. The number
density was constant for all runs, the number of protons
equalling the number of electrons=10?%g/cc. The values

of the other important parameters; do, the maximum movement
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a particle may undergo; Xc’ the distance beyond which

contributions from the first energy term are neglected;

and the convergence parameter, R, are all included on

the graphs.

Note 1:

Note 2:

6o is in cell units, X in cell units, and R in
(cell units)_1, where the conversion factors

for a cell unit of length are given in Appendix 1.
Run 1 was later found to contain some small faults,
thus truncation in 6& caused a consistent movement
of particles in the ;egative direction, and an
error in an input constant caused the first energy

term to have about 3% error, but these errors

should not greatly alter the graphs.
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3.1 (c) Notes on the graphs. The output from the program

to obtain the radiel distribution functions is in the

form of 500 fixed point numbers far each distribution function,
these numbers, denoted by ANi (ANﬁ in the case of Unlike
particles) give the number of pairing distances recorded
in the interval r to r+Ar, where r goecs from O to 500,
proceeding in steps of Ar=1 mesh units. Then the
estimate for the distribution function is obtained via
equation (2.1). In order to graphically present the
results, and indeed, to obtain anything like a smooth
graph for g(r), it is necessary to sum the AN in steps

of Ar=10, the AN being added manually and then averaged,
while the corresponding r value is the average for the
interval, It is to be observed that, the first 4
numbers of the output represent pairing, since, by the
critereon for pairing from section 2.2, particles closer
than AO=l1.2 Mesh units are considered as paired. The
radial distribution function is normalised, so that

g(r)->1 as r->w, but since the self-interaction distance

is not counted, it follows that only 15 like inter-particle

distances are recorded in the cell for one particle, so

one may expect po=32x15 as the 32 particles are moved.
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However if this is used in (2.1) to obtain the
normalisation constant, then it leads to a large

error when the energy/cell is calculated from the
radial distribution function, as now the number of
electrons (labelled a in equation (3.1)) is not

equal to the number of protons (labelled b in equation
(3.1)), and the cell is not electrically neutral, so

the macroscopic energy components in the formulae

NN
Uy = 2,5 f—— ? (g(r)-1) ¢ umeAr (3.1)
do not cancel. This means po must be the same for

1ike and unlike particles, and the radial distribution
functions are obtained using normalisation factors with
Po=16432 in bothe. It can be seen from the theory that

g(r)->1 as r->w, but unfortunately it was difficult to extend ths
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graphs further than 500 mesh units, without greatly
increasing computational time. For comparison the
radial distribution graphs include a graph of the
Debye-Htickel radial distribution funcition, and the
Debye-Shielding distance is marked by %D’ to indicate
the distance beyond which the charge of the reference
particle should be neutralised.

To obtain the energy graphs from the computer
output, which prints out the iteration number and the
corresponding cell energy, the average 1is taken over
10 energy values, for runs 1 and 2, and this average
is plotted against the mid-point iteration numbere.

For the third, (much longer) run, it was necessary to
average over 20 energy values, and even then the graph
is highly erratic although before averaging it was even
more so, large fluctuations occurring within a few
iterations. Plotted on the right-hand side of the
energy graphs, are various energy levelss The Monte
Carlo level is the average energy of the calculation,
and is obtained by averaging from the vertical line on the
left hand side of the graph to the right hand edge.

The extreme left hand side of the graph is neglected
because the system has not approached anything like

an equilibrium level, while the average is meant to

give the equilibrium energy. The Debye-HlUckel line
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gives the cell energy from ths Debye-HUckel theory
discussed in 3.2 The M.C., DISTN.FN.line calculates
the cell energy from the radial distribution graphs

in the following manner. From equation (3.1)

the electrostatic energy per cell is given by

) 500 1
Uy =3 32.16 = (gu(r)—1)<%;>hﬂr2Ar

r=0

500 1
+ 332,16 3 (gL(r)—n(-t;) W Ar
r=0

where the sum over r is dividad into sections of Ar=25 mesh
units, and hence Ue can be obtained manually from the graphs.,
The D.H. DISTNFN level gives the corresponding Debye-Hluckel
energy for the range O to 500 mesh units, this being obtained
from the D.H. distribution function, summing as above; and
also by integration over the smaller limits a2, and bo

used in section 3.2, The graph, fig 3.5, does not have

the DIS’I‘NFN levels marked, because values obtained for

these energy levels are very uncertain, due to the large
values of g{r)-1 near the origin. Instead, this last
graph, sloping horizontal lines are drawn which indicate

the number of pairs existing (in one cell) at this energy

levele. The lines slope because of the critereon taken

for pairing in section 2.2, so that although only one pair
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may exist, there is an increasing number of links, or
particles not far from pairing, as the calculation proceeds,
and these links lower the energy level at which one pair

is present. Before discussing the graphs and their
implications in detail, the other theories will be

briefly presented and discusssd, so that later comparisons

can be made between the results without forward referencinge.

362 Debve—Hﬁqkel Theory

This theory, put forward by Debye and Huckel [4]

in the 1920's and applied by them [2] to weak electrolytes,
can also be applied to plasmas, i.e. fully ionized gases
whose resultant macroscopic charge is zeroe. (It is

also true that the technique used in this work could be
used immediately to determine radial distribution functions
in electrolytes, the only difference being that the dielectric
constant must be included in the equations.) The theory
is particularly attractive for its simplicity, as using

the Boltzmann distribution law, Poisson's equation, and
assuming that the interionic potential energy is small
compared to the thermal energy, the following eguation is

obtained for the distribution function

CaCh ,,l
gp(r) = exp{rk’l‘ exp(r/'?\D)} (3.2)
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=

kT

where %D = <

8ame®

2
> , and is called the Debye Shielding

distancey; and

egseh are the charges on the particles of type a and by

T is the absolute temperature,

n = no density of particles of type a = no density of
particles of type b for a neutral binary plasma of
singly ionised particles.

The theory implies that surrcunding a given ion there is a
sheath of ions of opposite sign, and that outside a distance
%D the sheath has neutralised the potential field of the ion;
hence %D approximately measures the thickness of the ionic
atmosphere, and also %D is often considered as the distance
within which individual particle interactions are important,
but beyond which a collective approach can be adopted. The
graphs of gIH(r) in FIGS. 3.2; 3.4 and 3.6 emphasize the
exponential form and lack of oscillation. The Debye—
Hilckel energy due to the electrostatic interactions is easily
obtained from equation (3.1) by substituting gDH(r) and using
the linear assumption or the superposition approximation.

The compatability of the linear assumption and the superposition
avproximation is discussed in several books, see [3] and [L].
Fcr a symmetric plasma such that ng=Nip=n we obtain the

energy/unit volume as
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2
_ he' [ -bo/Np__-ao/ M
Ep.g. = (é e

[

where bo is the range of the distribution function

aop is the distance of closest approach (AO)
The two levels plotted on the energy graphs are the total
Debye-HUckel energy, where aor0 and bo->x; and the energy due
to the radial distribution function, where 2o0=0.0042 and
bo=0e5e The difference in the two levels emphasizes the
contribution of the short range interactions, below 500 mesh
units, to the energy, and from the graphs it can be seen that
this increases as the temperature is lowerede. In several
calculations the Coulomb contribution of interactions within
O to 500 mesh units was calculated, and this had a value
very nearly equal to the M.C. DIST® F level.

The Debye-Hlckel theory is known to be inaccurate
when the density of the plasma is highy, for then the interionic
potential is appreciable compared to the thermal energy, and
it has been found that concentrated electrolytic solutions
show some properties of crystalline structure, in which
case the radial distribution function should oscillate, in
.constrast tc the D.H. forme. To improve the D.H. theory
for dense plasmas, and obtain improved values for the energy
levels, MUller [5] and Gronwall, La Mer, and Sandved [6],

expanded the gDH(r) to higher terms before using equation (3.1).
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They noticed that for a symmetrical plasma all the even terms
drop out, and hence such a plasma was more accurately
described by the D.H. method, but even so as the density

was increased they found appreciable discrepancies with

the experimental energiese.

In the cases in this work, the D+He. theory would
not be expected to apply to the 10%°K case, because of the
neutral particles present, and also it is a bad approximaticn
for the 2x104°K case, because here there is at least a 10%
correction in the energy using formulae derived by [6].
However, the correction at 1.35x10°%is only 0.03% and although
the plasma is fairly dense, now the thermal energy is
becoming very large, and one would expect the Debye-Hlckel

theory to apply reasonably well.

3.3 Results of Broyles and Carley and Villars

A.A. Broyles, whose tapers reviewing the methods for
obtaining radial distribution functions in fluids were
mentioned earlier, has recently, with D. Carley, extended
the most successful of these, the Convolution hypernetted
chain (CHNC), Perkus-Yevick (PY) and Broyles-Sahlin (BS)
methodsy; to calculate the radial distribution functions
for long range forces [7]s D. Carley [8] applies the

technigques in detail to a classical electron gas
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(i.e. electrons considered moving in a neutralising uniform
background of positive charge), arnd presents dlstribution
functions for various densities and temperaturesy; in terms
of a parameter 6. For 104%K and 10'8¢/cc; his
63;3701'°I<:/(Ne/cc)13 has a value of 3.7, and at this value
he finds the radial distribution functions (for like
particles) given by the P.Y and B.S methods agree well,
but disagree with the D.H. and CHNC methods. This
disagreement is enough to alter energy values considerably,
but the form of the distribution function from all methods
is very similar, and hence has not been drawn on the
graphs, the D.H being deemed sufficient. He finds no
oscillatory behaviour of g, but notes later that preliminary
results for 6~0.5 begin to show an oscillatory nature for
g, and points out that as 6 becomes smaller solution of
the integral equations becomes more difficult, the convergence
being slower and lecss stablea

H.S. Green [9] put forward a set of integral
equations for plasmas to arbitrary accuracy, and demonstrated
that gDH(r) was an approximate solution of these equationse.
Recently Villars [10] has numerically solved these equations
for metallic plasmas, and published the unlike radial
distribution functions so dbtained. For 10'%g/cc at

10%9K he obtains a curve very similar to the D.H curve,
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but slightly displaced, this being significant when calculating
some of the thermodynamic variables. During the numerical
procedurec he finds that it is necessary to use a D.H. tail

to the radiél distribution function, that g(r) must also

be renormalised, and that if this is done then the results
converge rapidly for temperatures of 107°K and 10°°K,

slowly for 1059, but diverge for 104%K. However he

still publishes the resultsi

3, Saha's Theory

In 1920 Saha [141] and [12] put forward a theory
on the thermal ionisation of gasess; which he considers from
the view-point of chemical equilibria. Applying the law
of Reaction Isobar, in which hs replaces the entropy by
an expression involving the Boltzmann distribution law,
he finally obtains an equation for the degree of ionisation
of the gase This equation has been used extensively since
he proposed it, and has proved reasonably successful,

For a hydrogen gas density 10?8¢/cc, he predicts that
the degree of ionisation o (iee. number density ions/
number density of atoms originslly in the gas) is 5%

at 104%K, and approximately 90% at 2x10%%K, Referring
to the basic cell of 32 atoms used in the Monte Carlo
approachs this means that from Saha's theory one might

expect one pair of particles at 2x10%4°K, with the other
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30 particles existing as ions, whereas at 104%K one would
expect only two ions and the other 30 atoms to be existing

as 15 pairs,. However, the Szha equation involves certain
approximat ions, e.g. it neglects excited statesy; an ion

being either in its lowest bound statey; or in the continuum,
and it also includes thermodynamic assumptions. As no other
successful equations for the percentage ionisation of a gas
have been developed, Saha's work provides the main basis for

comparison on this pointe

2.5 Discussion

From the theories just presented one might expect
the following. At 1.35%10%%K the radial distribution
function agreed well with gDH(r) and that at this
temperature complete ionisation existed. But at
2x104%K and 1049K one might not be surprised if gMC(r)
differed significantly from ng(r), as at these temperatures
ionisation is not complete; and the DesH. corrections are
large.

Looking at Fig. 3.2 for 2.35x10%%K it can be
seen that gDH(r) ard gMC(r) differ enormously, and also
the energy obtained by the MsCe. method is quite different
from the D.,H. level. From later calculations it
became apparent that the main cause of such a discrepancy

is that, in spite of appearances, the system is not in its
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equilibrium state by the end of the run because the system
only comes to equilibrium very slowly. However, during
the search for causes of the discrepancy, several interesting
features came to light. The energy peaks are closely
related to particle movements, and when unlike partiéles
approach, a sudden downward peak appears, and converselye
The particles rarely come close together, being randomly
dispersed throughout the volume of the boxe. In the run
of 750 iterations with do = 12¢3 mesh units the particles,
moving in a random walk, end up about 200 mesh units from
where they starteds Thus it seems that the computation
has not run long enough for a close collision, and also
has not run long enough to lose memory of the initial
configurati on. However, these results may be useful

for obtaining information about irreversible processes,

as the system is in the process of coming to equilibriume.
In fact the system can be considered as particles in
contact with a heat bathy, armd the particles ébserved for
their interactions and movements. Then H.S. Green [13]
has shown that the study of one particle throughout several
collisions (which would be a longer run than the ones
completed) is sufficient to determine the transport
coefficients for the system, and so the results may be
applied to this aspect. Alternatively they could be

used to obtain the time dependence of the radial distribution
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functions, and once this is known, then Wang-Chang and
Uhlenbeck's [14] approach used to cbtain the transport
coefficients. Such an extension of these results
may be attempted at a later date.

To rectify the errors in run 1, run 2 was made
at a lower temperature, where the statistics should have
more influence; do was increased to 15¥3 mesh units so
that more of configuration spzce could be sampled, and
the run was made longer; starting from a configuration
obtained from the end of run 1, but with two pairs. The
effect of increasing 6o can be noticed from FIG 3.3, where
the energy now undergoes much larger fluctuations as the
particles are moved; this may also be partly due to
several weak links being set up between particles. The
average energy level now obtained agress reasonably closely
with the D.H. level. However, looking at the radial
distribution functions obtained (Fig 3.4) there is still
considerable discrepancy between the MC and DH curves,
though this discrepancy is now smallers. That the
discrepancy has the same form may be due to starting
from a similar initial configuration to run 1; note the
two pairs parted guicklye. The MC curve, especially
of the unlike distribution function, is also rather ragged,

which implies a longer run still is needed; and this conclusion
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is strengthened by the fact that there have been no very
close collisions. Because run 2 took considerable
computing time and expense, 1t became evident that a longer
run could not be considered unless the program was altered.
This meant the accuracy of the energy calculation must be
reduced, but by an acceptable amount.

Run 3 was made with such alterations, at a slightly
lower temperature (which seemed of interest since pairing
might occur), and started from the final configuration of run
2e From FIG 3.5 it can be seen that pairing, or very
low energies, soon occurred, and there were large fluctuations
as the pairs came together or jumped apart, this being a
regular feature of the energy graphe. In fact in the
results which have not been averaged as in the energy graph,
it can be seen that on some occasions several pairs suddenly
split up, coming together some time later, and as the run
continues, the number of pairs existing increases, allowing
even larger fluctuations of energye. However, after 6000
iterations the energy graph does not seem to have settled
into an equilibrium state, where one would expect occasional
pairing and splitting up about a mean level, so the radial
distribution functions will not be representative of an
equilibrium state. Notice at the end of the run

approximetely three pairs are present on the average, whereas
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Saha's theory suggested 15 pairs, also in run 2 there was no
pairing when Saha suggested 1 pair. A brief mun at 10%%K
showed that at this temperature all particles remain paired,
as Saha also predicts. This implies that perhaps
ionization is slightly more sudden than Saha suggests, but
such an implication needs to be verified by a longer run

at 1040K, so that equilibrium is reached, and similar runs
at 9x1039%K and 1.5x104%K, This may be attempted later if
sufficient computing funds are available. FIG 3.6 shows
the radial distribution functions for run 3, and although
the graphs are still irregular, the general features are
clearers. For unlike particles there is a peak indicating
the definite preference for particies to pair, this being
followed by a trough suggesting an absence of unlike particles,
before the curve returns to something like the average value.
Such a curve if fully verified, may indicate that some form
of long range structure is being set up in the plasma.

The structure is obviously not nearly as precise as for

an ionic crystal, but it may well enhance the theory of
Plasma Oscillations as postulated by Bohm and Pines [15],
who have shown that collective excitations occur for an
oscillation wavelength greater than the Debye shielding
distance., As %D is small for a low-temperature plasma

of high density, one would expect plasma oscillations
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particularly in such plasmas, The Debye shielding length
in FIG 3.6 occurs just before the minimum of the unlike
radial distribution function, and so would fit in with

the above suggestion.

The like distribution function is now becoming
more like the D.H. curve, but has still not managed to
fully fill-in the depression at about r=200, which has
been present in all runs, and is most probably a feature
of the initial configuration. further, the depression
in the unlike curve has become more marked with the
longer runs, and enhances the concept that in equilibrium

oscillation appears in the g(r).

3,6 Conclusions

The Monte Carlo method of calculating radial
distribution functions in a plasma is a feasible approach
if significant computing time is available. Compared to
other methods it has the advantage of giving the percentage
jonisation if the plasma is not fully ionised; and this is
especially useful for dense plasmase The results indicate
that at least 10,000 iterations must be completed before
the system can be considered near to its equilibrium
state, and for a badly chosen starting configuration,

the run would need to be considerably longer. This
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being the case most emphasis in this work falls on the
results from run 3 (at 104°K with the number density
of 10'8¢/ce), which indicates that the Saha equation
for the degree of ionisation in a plasma is remarkably
accurate, in that it predicts ionisation occurs between
1049%K and 2x1049%K. The distribution functiorsfrom
run 3, imply, and the emphasis on this word must be
stressed, that at in the region of this electron
density oscillation appears in the radial distribution
functions, Howevery, for more conclusive results a
longer run is needed, so the energy of the system can
settle into an equilibrium pattern, and steady-state

radial distribution functions obtained.,
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1V __COMPUTATION

Lel Explanatory Notes

These explanatory notes refer closely to the listing
given in section L .2, It is a very full listing, incorporating
the features of several programmes which could be run slightly
more economically if run individually; for example a 'loader’
program can be used to initially load the data, and after a few
calculations put all the required information on tape, then a
"runner' program just reads off the tape, and continues the
calculatione. Brackets around the listing mean that this part
of the program is not essential to the 'runner'. At the centre
of the listing, an alternative listing is given on the right
hand side, this second listing is much faster than the left
hand side, but at the same time is less accurate, though speed
is more important, as concluded in the results.

The 1listing will now be discussed in detail. Having
dimensioned the particle coordinates, the pairing energy-distance
matrix, and the radial index totals, the control variables used
in mounting tapes and loading data are réad in. (The specific’
nature of each variable is given in the symbol table, section
Le3)e The required tapes are then loaded, and one of three
methods can be used to initially specify the state of the system.
First, 625 to L3, the coordinates of the particles and the

pairing energy distance matrix can be read in by a DO loop, and
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as the program goes through a few iterations, the pairing-energy

matrix will assume its correct valuece Secondly, 621 to 619,

a specific record compiled in some previous run may be read off
the tape and the calculation started from this point. Thirdly
619 to L60, a whole section of calculation may be stored on tape
by first moving the calculation from another tape and restarting
the calculation from the last record read. This elaborate
procedure is necessary because on many computers the read and
write heads can overlap, and it is only safe to read, OR write,
on any one tape, otherwise there is a chance of overwriting

some of the data which has just been read. This stage is only
used if it is required to know detailed movements of the system,
for it is expensive in time and tape space otherwise. Statement
LLOO provides a test to ensure the correct tape record has been
reade. From 409 the program decides whether to zero the pair
distribution indices or whether to leave them, as the cumulative
total for the complete run may be required. The provision for
continuation runs is necessary, as a run of 1000 accurate
iterations takes about five hours on a reasonably fast computer,
such as the I.B.M. 7090. Finally before launching into the
main calculation, a check is made, on both on-line and off-line
printers, that the expected variables defining the starting
configuration for this run, have been correctly stored; and

several data cards are read in, overwriting those read from the
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tape 1f necessary. During any one run these variables
remain essentially the same,

The main DO lcoop controlling the number of major
interati ons completed goes from 91 to 591. The top part
of this nested DO, 91 to 33 zeroes the cell energy to be
calculated, and restarts the calculation at the number one
particle; while the latter part of the loop 84 to 591
determines whether output should be printed, written on tape,
or ignored, it also ensures that if there is output that it
is presented in the correct form. An IF (SENSE SWITCH:1)
is also included to enable an operator to terminate the
program at any time desirede. A second major DO loop starts
at 33 and goes to 8L, and effectively sums over k in formulae
(2.7) It considers the 1 o0 particle in the main cell, and
33-30 decides whether it is a proton or an electron, (particles
1 to 16 are protons, 17 to 32 are electrons) and then zeroes
the temporary BTE) and permanent (EP) energies calculated for
each particle in the loop. By the time the latter part of
the loop 29 to 84 has been reached, ETE and EP associated
with the kth particle have been calculated, and the probability
of the system going to the temporary configuration with the k
particle in a new position is evaluated. A random number
makes this decision. If EP is preferred, the permanent

coordinates are kept, whereas if the decision is to move the
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kth particle to a new position with energy ETE, then the
coordinates of this new position are retained, and the

new pair distances and energies are put into the pairing
energy—-distance matrix to replace the previous onese. As

the configuration has now been decided,; the pairing distances
between the kth particle and all particles in the zero cell
are added to the radial distribution functions for like ML(M)
and unlike MU(M) pairing distances. This is done as follows,
say an unlike particle is between 276 and 277 mesh units from
the kth particle under consideration, then a 1 is stored in
the cumulative radial distance index labelled MU(277). Thus
each time a kth particle is considered, 16 units are stored
in unlike indices, and only 15 in the like indices, since the
kth particle does not interact with itself. If a pairing
distance is beyond 500 mesh units, it is stored in MU(500)

or ML(500) depending on the type of particle. A third DO
loop within the nest goes from 30 to 29. The latter part

of this loops; 94 to 29 is used to decide whether the calculation
just completed computed EP, in which case NDEL = -1 and the
kth particle must be moved by a random amount J, or whether
ETE was computed, in which case control passes out of this

DO loop. The random nunbers 6& are generated by the

program itself 4101 to 102, and a full discussion of the

method is given in secction Lele The random numbers
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generated on (0,1) multiply an absolute displacement Al=Jo
and NA3 is subtracted (to ensure that the particles can move
forward or backward) before being added to the original

coordinates of the kth particlee These new coordinates

th

of the k particle are then used, by sending control back

to 30, to calculate the temporary energy of the kth particle.
The fourth DO loop 4 to 94, effectively carries

out the sum over k’ (=KD) in formulae (2.7). If the loop is

calculating the permanent energy of a particle k (= K), it only

needs to add the correct interaction energies from the

pairing energy—&istance matrix to obtain EP, and it does

this by considering the KD particles one at a time, picks

out the interaction energy K-KD, then passes on to obtain

energy K=KD+1 etc., and adding all the contributions gives

EP. However, 1if the kth particle has just been moved, ard

BETE is the energy to be calculated, then it will be necessary

to calculate the new pairing energies and distances between

K and the KD's for this new configuration. On considering

a new KD particle, the first decision is whether the

interacting particles K and KD are like (NQD = 1) or unlike

(NQD = -1). The cell index NL is set to zero, as are the

partial energy totals SUMHD ard SUMEN. . Due to the accuracy

considerations of (2.3), where it was shown that the expansion

over 1, the cell number, need only be computed for l;= -1,0,1;
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leg = =1;,0;1; 13 = -1,0,1; the coordinates of the interacting

K and KD are first adjusted to obtain the most important

interactions in this range. For example consider fig L1

with K at 100 in Y A

the zero cell,

and KD at =5 -1 1ooo 1

900. [For {

. KD KD| X KD KD

Comput ational . I ° . ° ° X
- F

purposes fizxed -1000 0 1000 2000 X

point arithmetic
Fig 4«1 To illustrate the method of

is used, as it is adjusting the particle
coordinates for the X axise.
much faster ]. Then
as the program procedes to calculate the interaction energy
and distance between K and KD, it will first consider the
interaction between K and KD in cell -1, the distance being
200, It next considers the zero cell, where K snd KD are
800 units apart, and then cell +1 where K and KD are 1800
units apart. However this last interaction is not as
important as the interaction between K and the XKD in cell
-2, where the separation is only1200 units. Thus to take
account of the most important interactions only, the following
device is used. The distance with KD in the zero cell
X(XD)-X(K)-2000=NXT is calculated, and if this NXT is 1ess
than —=1500, 1000 is added. So in the above case NXT=

900-100-2000= -1200, and as this is greater than -1500, it
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is retained as the first interaction distance. The next
will be =200, the next 800, these being the three required.
A similar procedure is adopted for the Y and Z coordinates;
and the overall effect is to centralise the K particle in
the lattice, so the optimum number of interactions are
included, NOTEe The interaction energy between K and KD
is the sum energy of several interactions, in fact the
interactions between Kwith adjusted coordinates and the KD
in the -1 cell, the XKD in the O cell, and the KD in the +1
cell, and similarly for cells in the Y and Z directions;
while the pairing distance between K and KDis the distance
between the adjusted K particle and the nearest KD particle
only, which is in the zero cell.

The summation over the cells is done by looping
from statement 12 to 3%5. The alternative program given
for this looping is much faster because only one cell need
be considered, which as well as excluding many calculations
of interaction energy, also removes the use of cell indices,
however, as noted in 2.3, it is much less accurate. As it
is similar to the more complete listing, only the latter will
be discussed. The cell index NL is started from O, which
represents 1l;=1,=1z=-1 and has a value 1 when 1,=0,1l2=1;=~1
etce; the zero celly, 1l;=1,=13=0, occurs when NL=13, and the

final cell, ly=1,=13=1 when NL=26, The second energy term
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EN of formula (2.7) needs to be evaluated only in the zero
cell, and is computed by20to37 if this is the case,; unless
K=KD when the evaluation can be written in the simpler

form of 22. The first energy term,however,may receive
contributions from other cellse. To f£ind the contribution
from interaction between K and the XKD in the first celly

the square of the distance between K and that KD 1is
calculated (37), if this is greater than A2 the contribution
will be negligible (See 2.3 for determination of A2) and
control passed immediately tc the next cell via 14; but if
the square of the distance is less than A2 there will be

o significant contribution HD as calculated in 21. (Note
that calculation of HD uses a subroutine, ERRF(D) ard this
will be discussed in L.b4). The HD contributions are added
for the 27 cells to obtain SUM HDywhich is the first term
part of the interaction energy between K and the KD. The
small section 26 to 24, only used for the zero cell, stores
the pairing distance between K and the nearest KD particle,
which is in the zero cell after the coordinate adjustment
made previously; it secondly ensures that if this distance
becomes smaller than the potential well cut-off A0 (see 2.2d)
then the distance is replaced by AO before the energy
contribution is calculated. After the energy calcula tion

the cell index increases, and a COMPUTED GO TO statement sends



control to the next cell, and the next energy contribution
is calculs ted. After all ths contributions from the KD's
in each cell have been summed, the interaction energy ET(XD)
vetween the XK' and KD particle is obtained (38) by adding
the first and second terms together, and putting them in

the correct units., [Later this ET(KD) is stored via 36 in
the pairing energy-distance matrix PE1(K,KD) if the
configuration becomes accepted]. Control then passes to
9, and the next XD particle and images interacting with the

Kth

particle are considered. Thus as the program proceeds
out through the nested loops, it decides on the position of the
Kth particle, then sums over the K particles until all the

K particles in the unit cell have been cmsidered, and the

sum given in equation (2.7) is completed at 156, and is
printed out. At certain stages, when the number of iterations
equals NUMB5, a full print out of the pairing-energy distance
matrix and the pair distribution cumulative totals is obtained.
However, the time for one accurate iteration is slow, shout

one third of a minute, thus output must be printed about

every 25 iterations, so in case of machine failure not

too much calculation is loste. Finally if "the IF SENSE SWITCH
is on, or if the number of iterations (NUMB1) is greater than

NUMB2, control goes out of the program, and it then writes

the final values of nearly all variables on tape and printer,
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and finishes. Adequate storage facilities are available
in the 7090 computer.

A few comments are nrobably in order concerning the
data deck, a typical example of which is given directly after
the listinge. The first card cmtains the numbers of the
tape units to be used, and a control variable deciding the
nunber of tapes to be used, while the second card contains
8 fixed point numbers all concerned with the input data to
correctly start the run. Then 32 cards are listed, giving
the coordinates of 32 particles, which are only read in at
the very commencement of a run when no tape input is availables
otherwise they can be left oute. gust before the main
computation starts, other data cards, usually the third, fourth
fifth and sixth, are read in. The third contains 9 fixed
point numbers mainly concerned with the output of the data,
while the fourth and fifth contain floating point constants
associated with temperature, density, conversion factors,
cut-off, and the initial random number. The sixth card
contains 3 floating point variables introduced when the
alternative fast program was made up, and are just functions
of variables used in the slower listing. During a particular
runy, these last three cards remain the same, except for the
random number, which is read in even on continuation runs,

to ensurce that the random sequence continues from the point



left off. Hence there are 6 main input cards, 3 of which
alter every continuation run, and three which remain camstant
except for the random nunbers At the commencement of a new
run the whole 6 cards are subject to change , in this case a
careful watch must also be kept on DIMENSION statements, and
the dimension of some of the output, as variation in these

is impossible without recompilinge. Finally Fig 4.2 gives the

flow chart appropriate to the listing.



[Read in the initial configuration]

Y
E
=
Il

NUMB1+1, K=0, ENY = O, |

L

jICD:K.D-*-'!l

Calculation of the interaction energy between
the K particle and the KD particle and with

its reflections in surrounding cells 1f these
are important ]

YES [IF KD<§2[_

NO
——— NO
B EL<O

YES

Move particle XK by an amount ¢x

Declde which coxfiguration should be i
accepted, and keep the correct one

YES | Im K(32|

NO
Decide whether output should be printedl
YES |IF NUMB; < NUMB2 |
NO

Write final configuration on tapes with
identification variables
Remove tapes

(9

CALL EXIT

FIG L.2 FLOW CHART
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IES 616 UNI OF ADEL BARKER MATHS PHYSICS C 98TX907 PX
XEQ

EXEC TIME 7 MIN

LINES {3C00)

CARDS COLUMN
DIMENSIONNX(32)sNY(32)sNZ(32)sPE1(32s32)sTD(32)sET{32)
DIMENSIONML(500) sMU(B00
READINPUTTAPE24s221 s JTAPEsKTAPESLTAPEsMTAPE sNUM12
READ INPUTTAPEZ2,221 sNUMB8 s NUMBSE s NUMBO s NA2 s NUMB1 s NUMB4 s NUMB7 s NAL
221 FORMATI(1415)
PRINT563sJTAPE
563 FORMAT(1X31H LOAD UNI TAPE BARKER NO.8 ONs13,29HAND PRESS START
IWHEN READY ////7)
PAUSE
REWIND JTAPE
CALL DNSHI(JTAPE)
IF(NUM12)564:5645565
564 PRINTH562sKTAPE
562 FORMAT(1X31H LCAD UNI TAPE NILSSON NOe2 ONsI3929HAND PRESS START
1WHEN READY ///7/7)
PAUSE ’
REWIND KTAPE
CALL DNSHI(KTAPE)
565 IF(NUMB8)625s619:621
625 DO17I=1sNAZ
17 READINPUTTAPE29449NX(I)9NY(I)9NZ(I)
44 FORMAT(214)
DO43K=1sNAZ
DO42KD=12NA2
IF(K-KD)629+629s630
629 PE1(KDsK}=1.0
PE1(KsKD)=04.1
GOTQO43
630 PEL1(KsKDI=1
PE1(KDsK)=0C,
43 CONTINUE
GOTC400
621 READTAPELTAPEsNUMB1
IF (NUMB1-NUMBE)621+622:621
622 BACKSPACELTAPE
READ TAPELTAPE sNUMB1 s ( (PEL1(KsKD) sK=1932)sKD=1532) s (NX(I)sI=1232),
1(NY(I)9I=1932)9(NZ(I)9I=1932):(MU(M)9M=195OU)9(ML(M)9M=195OO)9
O2NALsNAZ sNA3 sPDLsA1sA2 A4 sAOSBETASA3s342B69BT7sRsA8sENY
GOTO400
619 DO46ONUMT=1sNUMBS
READ TAPELTAPE sNUMB1 s ( (PEL(KsKD)sK=1532)sKD=1532)s(NX(I)sI=1232),
TINY(I)s1=1532) s (NZ(I)sI=1532)s(MU(M)sM=1,500) s (ML(M)sM=155C0),
2NAL1sNA2 sNA3 sPDLsA1 A2 A4 sACIBETASA3:B4s36s87sRsA8ENY

«0
1
i
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460 WRITETAPEMTAPEQNUMBla((PEl(KsKD)9K=1932)9KD=1932)9(NX(I)9I=1932)9
l(NY(I)’I=1932)s(NZ(I)sI=1932)s(MU(M)9M=195OO),(ML(M)9M=l9500)’
ZNAlsNAZ,NAB9PDL3A1$A25A4’A09BETA9A39B4’Bé9B79R’A89ENY

400 IF(NUMBI-NUMB&4)401+4095401

409 IF{(NUMB7)19152912291

191 DO10CM=19sNA4
ML (M) =0

100 MU(M)=0 _
291 PRINT584sNUMBLsNX(30)sNY(320)sNZ(30),MUL25)ML1495) >

1PE1(1+30)sPE1{(31s1)sENY
WRITEOUTPUTTAPE395849NUM519NX(30)9NY(30)9NZ(30)9MU(25)9ML(495)9
1PE1{1s30)sPEL1(31s1)sENY
584 FORMAT(gI5s3F14.8)
READINPUTTAPE292219NUM819NUMBZ9NUM839NUMBSsNUMlOaNAlsNA3sMUC9NRN
627 READINPUTTAPE2s77sA0sBETAsA3B4sB6587
77 FORMAT(gF12.8)
READINPUTTAPE2s2211sA1sPDLsA2sA4sAB R
2211 FORMAT(4F126332F1249)
READINPUTTAPE25291sSA0SsENC»TNAS
291 FORMAT(3F14.9)
ENT=(3,0%(1.0+B6))+B7
91 ENY=O¢
NUMB1=NUMB1+1
K=0
23 K=K+1
IF(K-NA1)50+50+51
50 NQ=1
GOTO55
51 NQ=-1
55 ETE=0a
EP‘:O.
NDEL=-1
30 KD=0
TSMEN=0,
TSMHD=0,
4 KD=KD+1
HD=0C.
IF(NDEL)4B s4b 246
46 IF(KD-NALl)H52952553
52 NQD=NQ
GOTO054
53 NQD=-NQ
54 NL=0
SUMHD=0,
SUMEN=0,
NXT=NX(KD)=NX{K)=-2000
18 IF(NXT+1500)5s6s6
5 NXT=NXT+1C0C0
GOTO18
& NYT=NY(KD)=NY(K)-2000
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25
20

37
13
26
58
T4
71
72
73

24
21

22

114
60
15
16

14

IF(NYT+1500)859,5
NYT=NYT+1000

GOTO7
NZT=NZ (KD )=NZ(K)~2000
IF(NZT+1500)11512512
NZT=NZT+100u

GOTO10

XT=NXT

YT=NYT

ZT=NZT
IF(NL-13123525,23
EN:O.

GOTO37
IF(K=KD)20s22520
D=COSF(R4*XT)
E=COSF(B4*YT)
F=COSF(B4*ZT)

B=E+F

C=E*F

EN=D+B+ (D¥B+C) ¥B6+D*C*B7
DS=XTHXT+YTHYT+2T*2T
IF(DS=A2)139114s114

D=SQRTF(DS)
IF(NL=-13)21s26+21
DT=D+TNAS —
IF(DT-PDL) 74574558
DT=500.0

IFINGD) 71271972
TD(KE)=~DT

GCTO73

TD(KD)=DT
IF{D-A0)24+24521
D=A0

D=D/Al
HD=(10-ERRF (D)) /D
GOT060

EN=ENT

HD=0.

TD{KD}=1.0

HD=0,

IF(NQD)16515515
SUMHD=5UMHD+HD
SUMEN=SUMEN+EN

GOTOl4

SUMHD=SUMHD—-HD
SUMEN=SUMEN-EN

NL=NL+1
GOTO(Llsl92s191s2s1s1535 1
NXT=NXT+1000

GOTO12

21
1{37

22

20

58
74
71

72
73
25
24
21

4.4

XT=NXT

YT=NYT

ZT=NZT

IF (K=KD)20522520
EN=ENT

TD(KD)=140

GOT035

D=COSF (B4*XT)
E=COSF (B4¥*YT)
F=COSF(B4*2T)
B=E+F

C=E*F

EN=D+B+ (D#*B+C) ¥B6+D*C*BT
IF(NQD) 12151375137
EN=-EN
DS=XTH*XT+YT*YT+ZT*ZT
D=SQRTF (DS)
DT=D+140
IF(DT-PDL) 74574558
DT=500.0

IF(NQD) 71571572
TD(KD)=-DT

GOTO73

TD(KD)=DT
IF(DS=A2)25335535
IF (DS—SAU) 24524521
D=AC

D=D/Al
HD=(14U-ERRF(D))/D
IF (NQD) 16935535
HD=-HD

91s291l9ls29191s3s1lsls2sl0ls2s1lsle35)sNL




35

48
62

63
94
34

28

101

102

103

104

29

105
32

NXT=NXT-2CCO0
NYT=NYT+1000
GCT0O12
NXT=NXT-20C00
NYT=NYT-2000
NZT=NZT+1000
GOTO12 -l
ET(KD)=A8%SUMHD+A3*SUMEN
ETE=ETE+ET (KD)
TSMEN=TSMEN+EN*A3
TSMHD=TSMHD+HD*AS8

GOTO94

IF(K=KD)162+62963
EP=EP+PEL (KsKD)

GOTC94

EP=EP+PE1(KDsK)
IF(KD-NA2)4934s3¢4
IF(NDEL)289s28929
NXP=NX{K)

NYP=NY (K)

NZP=NZ{K)

NUM=1
R=(129.%R)+.7886751346
NR=R

RN=NR

R=R—-RN
GOTO(102s1032321045105) s NUM
NXD=A4*R

NUM=2

GOTO101

NYD=A4%*R

NUM=3

GOTO101

NZD=A4%*R
NX(K)=NXP+NXD—-NA3

NY (K)=NYP+NYD=NAZ

NZ (K)Y=NzZP+NZD—-NA3
NDEL=NDEL+2

GOTO30

1ol

&.15

NRN * (129% nRN) 4 103 373

RTEN = NRN
R = RTEM /131011,

PET=140/(1U+EXPF(BETA*(ETE-EP)))

NUM=4

GOTO101
IF(R-PET)31-31,+32
ENY=ENY+EP~-ENC

NX{(K)=NXP
NY (K)=NYP
NZ (K)=NzP
GOT085

ENY=ENY+ETE-ENC
DO4CKD=12NAZ
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IF(K-KD)36s38438

38 D=TDI(KD)
E=ET(KD)
GOT039
36 D=ET(KD)
E=TD(KD)
39 PE1(KsKD)=D
40 PEL(KDsK)=E
85 DO84KD=1sNA2
IF(KD-K)83:84286
83 NQ=K
NQD=KD
GOTO87
86 NQ=KD
NQD=K
87 M=(PEL1(NQsNQD)/TNAS)
IF(M)814+81s82
81 M=-M
MU (M) =MU(M)+1
GoTO84 .
82 ML (M)=ML{(M)+1
84 CONTINUE
IF(NUMB1-NUMB5)513s5125513
512 WRITEQUTPUTTAPE355821sNUMBLsKsNXDsNYDsNZDsETESEPsPETsRsENY s TSMEN,
1TSMHD
5821 FORMAT(1XS514sT7F1449)
513 IF(K-NA2)33-156s156
156 PRINT587sNUMB1sENY
587 FORMAT(159F1648)
IF(NUMB1—-NUMB5)402+403,4C2
403 NUMB5=NUMBS5+NUMB3
WRITEOQUTPUTTAPEZ2s582sNUMB1sENY
582 FORMAT(1H1/1XI5sF164.8)
KJ=1
KF=8
160 WRITE OUTPUT TAPE 2s154s((PE1(KsI)sK=KJsKF)sI=1932)
154 FORMAT{1X8F1l448)
IF(KF-32)15551595159
155 KJ=KJ+8
KF=KF+8
WRITEOUTPUTTAPE251155sNUMB1
1155 FORMAT(1H1/1X15)
GOTC160
159 WRITEOUTPUTTAPE351159s(I1sI=1332)
1159 FORMAT(1H1/1X93214)
WRITEOQUTPUTTAPE39153s (NX(1)sI1=1932)s{NY(I)sI=1932)s(NZ(I)s1=1s32)
153 FORMAT(1X3214)
WRITE OQUTPUT TAPE 351585 (MU(M)sM=1sMUC)
WRITE OUTPUT TAPE 341585 (ML(M)sM=1sMUC)
158 FORMAT{1X2515)
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402 IF(NUMB1-NUMBZ2)591+411s411

561 IF(NUM10)408s408.91
408 WRITETAPEMTAPEsNUMBl9((PEl(KsKD),K=ls32)9KD=l932)9(NX(I)9I=1932)9
TONY (D) sI=1932) s (NZ(TI)sI=1532) s (MUM) sM=13500) s (ML M) sM=15500) »
2NALsNAZ2 sNA3 sPDLsAL1sA29A4 2 AUSBETASARsB4sB36387sRsA8sENY
GOT09L
411 WRITETAPEMTAPEBNUMBls((PEl(KSKD)9K21932)9KD:1932)!(NX(I)QI:1932)9
TONY{I)9I=1932) s INZ(TI)oI=1532) 9 {MUIM)oM=1s500)s (MLIM) sM=1+50C)»
ZNALSNAZ2sNA3sPDLsALsA2sAL s ADSBETAASsB4sBEsBTsRsA8ENY
WRITEOUTPUTTAPE351157sJTAPEsKTAPESLTAPESMTAPE
1157 FORMAT(1X10H BARKER ON I3s11H NILSSON ON I3s5H READ I3s6H WRITEIZ)
401 WRITEOUTPUTTAPE3» 150 s NUMBB s NUMBOEsNUMBG s NAZ s NUMS 1 s NUMB4 s NUMBT7 s NAL
150 FORMAT(1X14HIDENTIFICATION/1X1415)
WRITEQUTPUTTAPE32222 s NUMB1 s NUMBZ s NUMB3 s NUMB5 s NUMLIOsNAL s NA3 s NAS
2222 FORMAT(1X1415)
WRITEOQUTPUTTAPE3s151sA0sBETASA3sBL4986987
151 FORMAT(1X10OHINPUT DATA/1XT7Fl4a9)
WRITEQUTPUTTAPE3s152sA13sPDLsA23sA49A8R
152 FORMAT(1X4F126392F12.9)
WRITEOUTPUTTAPE2512919sSA0sENCs TNAS
1291 FORMAT{1X3F1449)
REWIND JTAPE
PRINT517sJTAPE
517 FORMAT (1X34H REMOVE UNI TAPE BARKER NO8 FROMsI3e ///)
REWIND KTAPE
PRINT 516 sKTAPE _
516 FORMAT(1X34H REMOVE UNI TAPE NILSSONNC <3 FROMsIZ //77)

CALL EXIT
END
)5 X1G 7 t{¥XP *Pp A

¥J 208 TessW 7 990 (4 G 15 17 =7 990 (4 TG 15 1G5 {4 19 171(7 190(G4T74 1G4V A
FITVARERHEN S {70 (71 (641090 (=404 TG4 T (7 (9 (=774 74 77V (Ev (4 7=1(G47' A
*J7()PP)O O 10717 86 791 (71(7 154394 75 v {{IXBYX( ' X(((((X)(P P *2( D A
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* DATA
17 17 17 17 +1
-2 0 0 32 0 0 -2 500

496 —90 123
732 237 382
872 -40 221
1110 281 425
331 600 184
590 896 347
801 648 -46
992 940 323
407 205 591
589 364 T41
849 99 618
1099 380 805
445 564 672
809 848 970
891 714 683
1136 907 973
398 226 214
650 526 412
884 250 64
1182 485 295
383 770 171
626 882 378
826 594 159
984 833 281
219 131 620
532 357 921
691 146 715
881 3291259
305 553 944
562 8021052
885 283 792
1137 622 788

9 9 2 1 +2 le 15 1 50027932
4420 . ) .066?10 08220128 00628318 2582429 «08891919
370370 50U«0G0 1000000.,000 31000 14350000000 4235417862

17.64 1.974663000 1.0
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Symbcel Table

AO

A1

A2

A3

Input Data. This potential well cut-off (see 2.2(d))
depends on the density veing considered, and for
10'8¢/cc it has a value of 0042 cell units (see
Appendix 1). Used in 73 it ensures two particles
never come closer than AO, at least for energy
computati on purposes.

Input Data. Converts the distance between K and KD

in mesh units to cell units and at the same time
multiplies by R (in inverse cell units). Hence

it has in 21 a value 100./R cell units.

Input Data. Controls the distance squared at which the
contribution of the first term to the energy may be
neglected via the IF statement near 37. Its magnitude
is a critical factor in the speed and accuracy of the
calculation as discussed in 2.3(b), where A2 = XCQ.
Input Data. Multiplies the second energy term in 35 by a
factor e—ﬂg/Rz/H to give it its correct absolute value

as required from equation (2.7.)

Input Data. Multiplies the random numbers generated on
(0s1) to obtain the random displacement 6?, with components
given by 102,103,104, that the particle i; to undergoe.

It's choice is discussed in detail in 2.2(c),

where 3(55%1)2 = 042



A8

BETA

Bl

B6

BY

4.20

Input Datas Multiplies the first energy term in 35 by
R/2 to give it its correct absolute value as required
from equation(2.7.)

Defined near 20, this variable enables the second energy
term to be evaluated quicklye

Input Data. Reciprocal of the product of the Boltzmamnn
constant (converted to cell units in Appendix 1) and

the temperature in degrees Kelvine. It is the only

input data that varies directly with temperature, and

is used in the probability distribution function 29,

the form of which was discussed in 2.2(b).

Input Datae This converts XT into cell units and at the

same time multiplies by 2. Used in 20 it has a value
2
1000 e—2ﬂ2/R2

Input Data. Used near 37, B6 = , and enables

T A3
the second energy term to be computed guickly.
Input Datas. Used as above ) ue—3ﬂ2/Rg

==
Defined above 37 as E* for quick computation of second
energy term.
(a) Defined in 20 as COSF(BL*XT) for quick computation
of second energy term.
(b) Defined in 13 as SQRTF(DS). This gives the
distance between the interacting X and KD particles in

mesh unitso.
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(¢) May be defined in 2l as D=AO if particles come

too close together.

(d) Later redefined in 21 as D=D/A%1, this puts D in a
form such that it can be used directly to evaluate the
first energy term contribution.

Defined in 37 by DS = XT®T+YTHT+ZT *ZT, this 1is the
distance squared between particles K and KD in mesh units
squared.

Defined in 26 by DT=D+1.0, this adds one mesh unit to the
inter-particle distance in mesh units, to allow for
truncation later when it is used, via TD(XKD), in the
radial distribution functions.

(a) Defined near 20 as COSF (BL*YT) for gquick computation
of second energy tem

(b) Defined near 38 as ET(KD), it acts as a dummy variable
to ensure the pairing distances have the correct signs
attached to them.

This is the contribution to the second energy term from
an interacting K and KD. It is defined near 37 if K#KD,
and otherwise by 22.

Input Data. Has a value R/Nw, and must be subtracted
from the K particle interaction energy ETE or EP, as

in 31 or 32, to obtain the absolute energy including

the third term given in equation (4.6.)



ENT

ENY

EP

ET (KD)

HD
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Used in 22, but defined just after the data is read 1ns
this variable saves time in that the calculation is then
done only once.

Defined by 31 or 32, this sums the interaction energies

of the K particles over the assembly of NA2 particles and
finally gives the cell energy of equation (4L.6) in cell
unitse.

Defined by 62 or 63%, this sums the pairing energies
between K and the KD's from the stored matrix, obtaining
the permanent energy associated with K before it is moved.
Defined after 35, this sums the newly calculated pairing
energies between K and the KD particles. This temporary
energy of interaction may become part of the total cell
energy ,ENY,if the attempt to move the particle is
successful.

Defined by 35, this adds together the first and second

energy terms after they have been summed over all the cells.

It gives the interaction energy between K and KDe. These
temporary pairing energies, calculated for all the NAZ2

KD particles, hence the index, are stored in the pairing
energy matrix if the K particle is moved.

Defined near 20 as COSF (BL#ZT) for gquick computation of
the second energy term.

Defined near 21, this gives the value of the first

energy term for one contribution only.



JTAPE

KF

KJ

KTAPE

LTAPRE

ML (M)
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A variable used in 159 to index the outpute

Input Data. Names the unit on which BARKER UNI TAFE
No.8 is to be loaded.

Designates the particle under consideration in the
zero'th celly; and runs from 1 to 32, In formulae

it is written k.

Designates the particle with which K interacts. Such
particles exist in many cells including the zero celle.
The accurate listing allows for 27 cells, whereas the
fast listing allows for only KD in the zero cell, where
KD is not allowed to equal K. In formulae it is written
as k’.

Variable used in 160 to output the pairing energy matrix
in convenient blockse.

Variable used in 160 to output the pairing energy matrix
in convenient blocks.

Input Data. This names the unit on which NILSSON UNI
TAPE Noe3 is to be loaded.

Input Data. This names the unit from which data is

to be read.

(2) Used in 191 an index to zero the pair distribution
func tion.

(b) Used in 87 to bring the pairing distances to fixed
point form (truncation) it then stores these distances
in the pair distribution function.

Defined by 82 as the like distribution function, this

accumulates the number of like KD particles in the zero



MU (M)

MUOC

MTAPE

NA1

NA2

NA3

NDEL
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cell at a distance M-1 tc M from the K particle. Then
for each K particle considered, 15 like particles will
have their pairing distance from K stored, note the
distance between XK and itself is neglected.

Defined near 81 as the unlike distribution function, this
acts as above, but for each K particle considered, 16
unlike particles will have their pairing distance from K
stored.

Used near 153 in the output of ML(M) and MU(M) to ensure
the correct dimension of M. Also used in 191 if zeroing
ML(M) and MU(M).

Input Data. This names the unit on which output is to
be written.

Input Data. This gives the number of positive particles
present in the zero, or basic, cell.

Input Data. The total number of particles present in a
unit cell. Variation of this parameter affects dimension,
input, and output.

Input Data. Used near 104 with a value (%& -1), it is
subtracted from NXD, NYD, NZD to form Jx, this
displacement now being either positive or negative.
Defined near 30, this variable at 34 decides whether to
move the K particle being considered, or whether a new

K particle should be considerede.



NQ

NQD

NR
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(a) Defined by 50 and 51 to be positive for particles
labelled from 1 to 16, ami negative for particles labelled
17 to 32.

(b) Also used in 83 and 86 to ensure the pairing

distances are read from the pairing energy-distance matrix.
(2) Defined by 52 and 53 to be negative if unlike particles
are interacting, and positive if like particles are
interacting.

(b) Also used in 86 to ensure the pairing distances are
read from the pairing energy-distance matrix.

Called the cell index, this sume over the cell index (1) of
equation (2.7), ard its limits are governed by the accuracy
considerations of section 2.3. For the accurate iisting,
NI is given the value O by 54, then the contribution from
the zero cell is calculated, armd in 1L the next cell is
considered. The computed go to statement just after 14
ensures each cell is given its correct coordinates, and then
control again calculates that cells contribution to the
ENErgye In the fast listing, where only the zero cell is
considered, there is no need for a cell index and
associated computation, ard this saves time.

Defined near 101, this is used in the random number
generator to obtain the integral part of R. See section

L.t for discussion of random number generatorse.



NRN

NUMBT

NUMB1

NUMB2

NUMB3

NUMBL

NUMB5

l+026

Input Data. This is the fixed point random number Ifrom
the alternative random number generator, the merits of
which are discussed in section l.lbe It 1is read in to
obtain a full sequence of random numbers.

Designated Jjust before a random number is needed, this
ensures that after the random number has been obtained
via 101, that control comes back to the correct place in
the program.

A dqummy variable used in 619 to transfer tape records,
where use of variables on the record causes an €rrore
Input Datae. This labels the iterations, and is
essential if tape work is involved so that a particular
iteration can be 1solated. It adds one to itself each
time control passes through 91, the commencement of the
major 1oope

Input Datae. This controls (in 402), how many iterations
are to be done by the computer in this run.

Input Data. This controls (in LO3), how often output
is to be printed.

Input Data. This checks (in LOO), that the correct
record has been read from the tape, 1f not it transfers
control to the end of the programe.

Input Data. This controls (near 403), when the first

output is to be printed.



NUMB6

NUMB7Y

NUMB8

NUMBO

NUM10

NUM12

NXD

NZD

NX(K)
NY(XK)
NZ(K)
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Input Data. This is used near 621 to isolate a

particular record on a tape, usually for input

purposes.

Inpu% Data. Used in 409, this decided whether to

zero or retain the pair distribution indices before

commencing this run.

Input Datae. Used near 625, this decides on the

method of input, thus

<0y input data is read of cards and read in by a DO loop.

=0, tape records are transferred to the write tape, and
the last of the read tape records is used as input.

>0, input obtained by reading one special record.

Input Datae. Used in €19 to define the number of records

to be transferred in the case where NUMB8=0.

Input Datae. Used in 591 this controls whether all output

is written on tdpe, or only the last iteration is put

on tapee.

Input Data. This in &6l controls whether a second

tape should be loaded or not.

Defined in 102, 103, 104, these give the three axial random

coordinate displacements, and 6x° is given by (NXD-NA3)® +

(NYD-NA3)? + (NZD-NA3)Z.

Input Data. These are the coordinates of the Kth particle

in the zero cell, if the whole 32 are given, they completely

define the configuration. They often are read in

initially to start a run.
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NXP Defined by 28, these are used to retain the coordinates
NYP of the Kth particle in store while the program displaces
NZP K by Jx. If K prefers to remain in the permanent

position, they are replaced ss K's coordinatese.

NXT Defined by 18, 6 and 9, these give the axial distances
NYT between K and the KD in a particular celly, and are
NZT designed to include only the most important interactions;

see section L.1.

PDL Input Data. This length is used to cut=off the pair
distribution function. Due to the construction of
the program it will lead to an error if it is greater
than 500 mesh unitsy, snd this is its usual value.

PET Defined by 29, this expression gives the probability of
K going to the temporary energy configuration. The
importance of this expression is discussed fully in
section 2.2(b).

PE1 (RKD) The pairing energy-distance matrix has dimension
NA2xNA2, The elements above the diagonal store the
interparticle distances between K and KD (in the gzero
cell only) while elements on and below the diagonal
give the pairing energy between K and the KD
(summed over the required number of cells). The
elements are negative if unlike particles are inter-
acting, and positive if 1like particles are interacting.

The elements are formed in 39 and 4O.
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R Input Data. This is the random number last used in
the first random number generator, and is input to
ensure a full sequence of random numbers is generated
by 101.

RN Used to convert NR into a floating point number, so
it can be subtracted from R.

RTEM Used in the alternatively listed fixed point random
number generator to convert NRN into floating roint
nunber, prior to division by a floating point number.

SAO The square of AO, this is used in 25 in the alternative
listing to save computing time in taking square roots.

SUMEN Defined near 15, this gives the second energy term
contribution for a particular K KD interaction in
the zero cell.

SUMHD Defined near 16, this sums the first energy term
contributions for the various cells for a particular
K and KD.

TD(KD) Defined by 71, this stores the interjg;article distances
between the moved K particle, and the other particles
in the zero cell. If the temporary configuration is
preferred, these interparticle distances are placed
in the pairing energy matrix by 38.

TNAS Input Data. Used near 87, this enables the pair

distribution function to be divided into coarse or
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TSMHD

XT

ZT
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fine divisionse Its usual value is 1 to obtain the

finest calibration of the pair distribution function

possible.

Used Jjust after 35, this adds together all the SUMEN
to obtain the second energy term for a K particle

and all the KD particles.
Used after 35, this adds together SUMHD to obtain the

first energy term for a K particle and all the KD

particles,
Used at 12 to convert NXT, NYT and NZT into floating

point form preparatory to calculation.
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Loy Subprogramme

During the calculation, only one subroutine is used,

which is CALL DNSHI(JTAPE). This subroutine is standard
for almost all computers using tape units, and its function
is to ensure that the tape is written on in high density
form rather than low density, which is sometimes used for
transferring rather than storing datae. The subroutine
does not need to be provided, as it is written into the
machine.

Several functions are used in the calculation,
specifically COSF, SQRTF, EXPF, ERRF and RANDF. The
Cosine function, COSF, square root function, SQRTF, and
exponential function EXPF, are all standard functions amnd CF
are built into the machine. However, the Error function
ERRF and Random number function RANDF needed to be built
into the program, although they could be obtained in binar&
form from the 7090 share library, and will be discussed in
some detail.

X 2
ERRF. This evaluates E(X) = 5”‘[ Bl dt, often
0

called the error integral, probability integral or

integrale de Gauss, by using Hastings approximation

2 1y-16
ERRF(X)~ 1-(Z ajt®) ; where
i=o

o 1.0000000, a; = 070523078, a2 = 042282012

a3

¢0092705272, a4 = 0001520143, as = 0002765672,
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g = «0000430638 and X must be a floating point number such
that 0X<w, and then the error will be less than.3x10_7.
The time given to calculate one value of Y = BERRF(X) is

3.6 millisec on the 704 computer, which means this is the
really time-consuming operation in the program, and as
mentioned in section 2.3 there are several ways of avoiding
it, but only with loss of accuracy. Several f orms

of calculation E(X) were tried, and the above form as

given in IBM share program A A ERF2(C3) was found to be

the fastest.

RANDEF . As the theory has stressed, random
numbers play an important part in a Monte Carlo calculation,
and hence must be carefully chosen with the least possible
biase. Perhaps one of the best methods of generating random
numbers is the power residue method, which is particularly

convenient on modern computers. This has the fom

R = (K R, + ¢) modp,

n+1
and has been applied to the 7090 computer by Rotenburg(4], where
he chooses the Ky,c and p to reduce correlation between
successive random numbers. The critereon for smll
correlation is given by Coveyoul[2], To suit the machine

35 7

P 1s chosen as 277, and a choice of K = 2

N3y 535
z) 2

+1 and

minimises the correlation between successive

c = (o5 =
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random numbers. Most computers have a random number generator
routine; either built in, or readily accessible from their
library; however in this case the random number from the

library function was obtained by calling RANDF(ARG) and the
sequence started at a given point. When the program was
removed from the computer, the random number function reset
itself to start from the same given point when next called,

and as the calculation was to be done in sections this

meant that each section was started from the same point in

the sequence, and this was unsatisfactory. To obtain a

continuous sequence the following program was devisede.

From
Ro.q = [(27+1)R + (o5+ i%)235]mod235 (Ls1)
Rn'1 R
we have ==tl [}29 =2 .78867513&6:]mod1, and in program
035 o35

form this is

101 R = 129.*R 4+ ,78867513u6

NR =R
RN= NR
R = R-RN

Whenever a random number was needed the program defined NUM,
went to 101 and calculated the random number R, then returned

with it to the relévant part of the program nominated by NUM.
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The random numbers so generated are distributed rectangularly
on (Oﬂ), and appear to obey the simpler randomnegs tests well,
but they do not follow the sequence {L.1) as the 7090 computer
only carries 10 figures, and the rest in 101 are truncated.

It is difficult to tell to what extent the sequence is
affectedy, whether the period is excessively reduced or the
correlation increased, and the method was deemed sufficient
for the shorter runs.

For longer runs an alternative generator was devised,
which had a definite period anmd correlation. It works in
fixed point mode and is based on the characteristic of the
7090 computer to take any fixed point.number as modulo 217,
(131,072), and this is the period. The power residue form
is used, with constants and fcrm chosen similarly to the
previous generator, so

101 NRN = (129%NRN) + 103 373

RTEM = NRN

R = RTEM/131,071
NRN gives the fixed point random number, which becomes
distributed on (0;) by thed ivision of 131,071y and so
NRN is read in at the commencement of every run, to
ensure a continuous sequence. This routine is fast
and convenient, has a period sufficient to deal with
over 1000 large iterations, and has the additional advantage
that similar sequences can easily be generated on smaller

computers.
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APPENDIX T

UNITS

During computation the problem is most conveniently
considered in terms of the 'cell unit', since this gives the
rarameter R a value approximately 2. The cell unit is
further divided into 'mesh units' which enables much of the
arithmetic to be done in fixed point mode. The cell unit
= 1000 mesh units, and its value is determined by the density
to be considered, Thus sixteen electrons in a cube of
1x1x1 cubic cell units must be equivalent to the electron

number density N,

_ N electrons
.cell unit = ogec

1 ecell unit = 3/1% cm

2.52x10—6cm for an electron density of
18

16
1c

il

10 " e/cc.
The energy calculated, Ec’ is computed in terms of
(cell units 1ength)—1° Hence energy in
S {statcoulomb)® _ Ecxe2 _ ‘
cm conversion factor from cell units to cm.
=20

34 6/N

. Energy in ergs =

E in cell units.



The Boltzmann constant can now be converted into cell units

1.380uux1o'16 erg/°K

k =
) 1.380LLx10~ 16 x 3J16/x cell uni ts/°K
2%.067L6x10~20
-l 3
1 107 JN
and B8 = XD = 16.7102 x To50 X T .





