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SUMMARY

The rad.ial d.istri but ion f\rnctions Sro (r) are

computed. for a neutral proton-electron equi1lbrium plasma

of number density 1 O1B./". for temperatures of 1.35x1O5"K,
r, lr^

2x¡O+oK and 1O*"K, A Monte Carl-o teehnique, similar to

that used. by wood_ and_ Parker" in the stud-y of f luid,se 1s

applied. to a cel-l of 32 particlese the period-ic bound.ary

cond-ition being used- to red.uce surface effects. The

electnostatlc energy d-ue to the 6oulornb interactions between

particles is calculated- analogously to the approach used- by

Mad-e1ung for ealcul-ati-rrg tlæ celI energy in crystals' The

computed. rad.ial distribution funetions are companed with

those obtained. by the Debye-Ifückel theory, the results

of Broyles ancl Carleye anf. calculations d-one by Vi11ars.

Prellminary investigations at temperatures about 105'K

ind-icated a slow convergence of the system to an

equllibnium state¡ arid this pr"obably explains why the

results d-isagneed- stnongly with the Debye-Hückel theorT¡'

the ap'pnoac-h to equillbrium is interesting in that if

-æ
this is stud.ied in d-etaiJ-r useful information about

irrelensible processes can be obtained-e but 1n this

work we are more interested in obtaining the equilibrium

SuO(r)" Later resultse even after sacrificing some

accuracy to reduce computer time to eomply with avail-able



fund.sr confirmed that the conver,gence \¡vas still very

slow at the l-ower tempenature considerecl- (f oh k),
thus suggesting that a cornplete calculation l'rould- be

extremely expens j-ve. Howevere the appnoach shows

consid.erable promise if enough computing time is avaj-1ab1ee

as it can be applied to a wld.e range of d-ensities and.

ternpenatures, and can th;us be used- for transition stages

which ar,ee in general-rnot covered. by other method-s¡ eogo

transition in a gas from the neutral to the ionized. state"

The run at 1o4't< with nr:mber d-ensity of 1016e fe]l into

this categoryr ârrd- confinmecl the pred.iction of Sahars

equation that for hyd.nogen lsotopes, the gas is sudd.enly

ionised- at about 1O[oK" This run, being the longest,

was the most inportantr and- ind-icated- ihat the equilibniurn

rad.ial d-lstribution functions at t} is ter,rperature and.

d.ensity may become oscill-atoryo Such a concÌusion,

hou¡even: need.s f\¡rthen corrf irmationr as the radial

d.istribution functions are closely d.ependent on whether the

system is in equilibriume and 1n the above case it is
unl-ikely that equilibnium has been attained_n As

mentioned. to confj-rm the final for:m of SuO(r) will- prove

extnemely expensiveo Holvevere should. sufficient f\rnds

beccrne avail-abl-e at some future d_ate, consid_eration i¡¡i1l

be given to such a calculationn
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1.1

LTII{'IRODUCTï 0N

al Dis

Ehe impontance of mo1eculan d.lstribution 1n f luid.s has

by now been well established- b}t several authors. Born and'

Green h ], Klnln¡¡ooit lZl, Yvon lll, Mayen t4] and Bogollubov t5]

have al-1 obtalned. equations by which the fundamental variables of

a fluld¡ süch âs the equatlon of state and. thennod.ynanic vaniables¡

can be calcul-ated. in terms of the molecular rad-ial d.istrlbution

function of the system. The rad.ial d-istributj-on functlon git(n)

between a reference molecule of type L and. other molecules of

type J can be defined by gir(r) = OrG)/Oo¡' whene po, is the

averege number density of i type particles¡ ana pr(n) ls the

actr:al nr¡mben d.ensity of J type particles at a d.istance r flem

the 1th ¡nrticle. Alternatively poi Si¡ (n)d3x gives the

probabllity of find.ing a particle of type j 1n the element of

volr¡¡ne dox in the neighbourhood- ctr a point Aj *hen a particle of

type i 1s t¡ ë1r ând. l¡¡-=11 = F., To illustrate sonæ of the

prolnnties of e(n) consider a 1iqu1d.. In a simpJ-e 11guid. e(n)

has an appearance given by Fig 1.1. It is zeno for'¡(âr
because at d'istances of el-oser approaeh there exlsts a lange

r.epulslve fonce between the molecules¡ and they are often

eonsid.ened as nlgid. spheres of d-iameter ar As rl-)oo g(n)->t

since a ¡nrticle will- not affect the numben d.enslty at

large dlsÍances. The peaks d.efine so cal-Ied. rcoord.ination



1.2

shellsr where there 1s a

marked- preference for
particles to accumulatee

and- thls is d-ue to the

particles being exclt¡d.ed.

fnomr=otoà2arld.
pantly beeause sueh a

s(r)

ar
F1g 1 .1

corrfiguration glves nlse A typical rad.ial d.istribution
f\rnctlon f or a slnple liquid..

to the lowest potentlal

enenry of partlcl-e interactions. the form of g(r) is

strongly temperature and. d.ensity d-e¡lend.ent, ard. fon 11quid.s

the form has been experimental-ly obtained fon panticulan

ternpenatures and. d-ensltles by scattering of X nays.

Most of the early wonk d-one by the authons of

refenences [t ] lslt is concenned. with applyi.ng the micnoscoplc

appnoach to 11quid.sr and they generate integnal equationsr oF

a heiranchy of equations satisf ied by the molecular ilistributlon
furption. Attempts to solve these integral equatlons using

various approximations were finst rnad.e by Kinkwood. t0] and.

A.E. Rod.riguez and. A.G. Mcl-,el-lan lll, who obtairæd closed

integral eqrations for the radial distribution functlon u,sing

the superposition approximati-onn and then sol-ved these

numenlcally. The results showed that the theony glves the
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correct qualltative clescriptions of the nad.ial d.istribution

function¡ but that the quantitative results have slgnificant

errors, especially in Some of the thermodynamic functiorlso

In an effort to inpncnre the agneement¡ Kirkwood-, Lewinson ancl I

Ald.er tB] extended the application to molecules interacting

with Lennard.-Jones potential- but st1lf found. a 10 to 20 per

cent discrepancy with experlment. At about the same time ¡

a somewhat d.ifferent approachr to the theony of Ìlquids¡

oniginally proposed by Lenre.rd.-Jones and Devonshlre [g]r was

belrrg d.eveloped., This theory¡ ea]Ied. the cell theony¡ oll

tr'ree Volr:rne theory of liguid-sr has since been expnd-ed- by

many authors [f O 1, and. Kirkwood. in an early paper [tt ] f,rs

shown how the theony is related to his ttreony. Howevene

in 1953c Metnopolis et a1 UZI applied a neïv computlng techniqLre

d.eveloped. in the late'4Ors cal1ed thre Monte Canlo method to

solve this problem. This technique is suitable for calculation

of properties of any substance which may be eonsid.ered. composed- ''

of indivÍdual interacting moleculese and. although it is often

used- to solve integral eguations, it gives a much better iC-ea of

the physical processes uÈren it is applled- to mol-eculan problems,

and is hence used- extenslvely 1n transport pnoblems whene the

Boltzmanrr lntegnal equatlon is d-iff1cult to solve. The

approach proved. immed.iately successful, ard Ïl/ood and Parker

llll, in extend.ing the method. to molecules interacting wiih

a Lennard.-Jones potentiale obtalned resul-ts in excel-lent
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agreenent with the e4perimental resultso Th-is concept also

suggested another appnoach intnoduced by A1d-er and- Vtlainwright

[1Lf J, whlch they ca]-I 'Molecu]ar d.ynamì-cst . In tlris approach

the computer actually foll-ows the particlese anfl this proves'

partlcularly usefut in checking crltlcal pointsr sueh as

phase transitions ard. some transport phenomena obtained- in

the previous calculatlons. Recently Some attention has

reverted. to solving the integral- eguations by new technlques'

Percus and Yevick [t¡] obtair. slightly d-ifferent equations

using a collective coordinates appnoxination¡ and- their

eguation has been solved by Bnoyles [t61. Bnoyles also

solves an integral equation obtained via the Convolutlon

Hypernetted- Chain approxÍmation [tZ] wfri-ch uses the ]tiayen

cluster expansion, and in [tg] fte compares the results of

using Born and. Green?s equation with Perkus and' Yevickrs and'

the Convolution Hypernetted Chain approximation eqlationt and'

then compares them all- with the accurate Monte Carlo cal-culatiolfl'

find.lng that the Perkus Yevlck equation gives best agreeilêflto

H,S" Green [tg ] has extended. hris theony to

plåsmasg and obtained- integral equations which he shows have

the long establ-ished. Debye Huckel rad-1a1 ùistribution functlon

as a first appnoximati-on. Gneen al-so finls that corrections

fnom higher approximations are important¡ eVer at falrly 1ow
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d-ensities. Recently Vitlars IZO] fias solved. Greent s equations

and- obtained. rad.ial d.istributlon functions f or a metal-l-ic

plasma. However he expenienced- consid-erable d-lfficulty with

convergence at 1ow temperatures, Also Broyles lZl ] fras

extertled. the Pericus Yevlck and- Convolution Hypernetted. Chain

approximations to long-range forces, and- obtained rad.1a1

d.istnibutlon functions for a elassical electnon gâS. At the

pnesent time however, tlle accuracy of the above solutions is

in some doubt, and. in this authods work it 1s lntended" to extend-

the accurate Monte Canlo netlrod and. obtain radial distribution

f\-Lnctions fon a proton-el-ectron gas ïvit'Lr specifled nurnber d.enslty

and. temperature.

Chapter 2 gives the proced.ure appropriate to this

extension, and- the theory behlnd. itr and necessarlly includ-es

some of the work pneviously reponted- by TVood and. Parken. Using

this theory numerlcal- calculations were then carried- out fon a

d.ense plasmae and. the cornputirrg d-eta1l-ss with listlng of the

programe etc.e are given in Chapter I+t which is really an

oversi ze append-ix. In Chapter 3 tlne results are compared

with the results of Debye-Huckelp arrd wÍth those of Villars

as far as is possible. Differeræes ane d-iscussed. and-

concl-usi ons d.rar¡vn.
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2.1
II TTTE MEÎHOD

2.1 a) Genenal The pnoced-ure ad.opted- to find- the rad-iaIa

d.istnibution ñrnctlon fon a plasma is consid.ened. before

presenting the theor1r whlch justifies itr for this greatly

errhances the und-erstandlng and. presentation of the theory.

Howevere because of this approach some points 1n this section

appear incomplete, and- in such caseg Some fonward nefenring

to the next section is nesorted- to, where the points will be

more fu1ly dlscussed and justified..

A system composed of N ind.ividual particles is
consid.ered. confined. in a volume V at a temperatr¡.ne 1. The

particles are assumed- to obe¡r c1ass1cal statistics ( see

2.2b). tr\rnther, 1n the intenest of tnactabilityr the partlcles

are assumed. to trave spherically symmetnic potential fleld.sr and

to interact vrith the Coulomb potential. Chapman and. Cowling

[1 ], ind.lcate thre enormous conplexity when the cond.itlon of

sphenlcal s¡rmmetny is relaxed. 1n the feast d.egree. Sub jeet

to the above assumptionsr the method. is not restricted. to any

range of tempenatr:re on d.ensity¡ although as polnted out in

the conclusion, the method. is much more effective in speciflc

regi orrs ¡

In ord-en to reduce the problem to a feasible size

for numenical lnrorke it is necessary to consider only a finite
nrrmben of par,ticles N. In this cal-cul-ation N=32¡ being
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colnprised. of 16 el-ectr.ons and. 16 protons. Such a ehoiee

is based. on:- (u) convenien.c€r for then a cube may be furthen

split into eight compartments containir.g folr" particles oâch¡

and. pnel-imlnary investigations mad.e on these segments;

(¡) comparison, as many prevlous calcul-ations have been done

using N-J2¡ (c) accuracy, as this val-r¡e ctr N seems sufficient
to accurately d.escrlbe ttrre system lZl.

The 32 particles are plaeed- j-n a unit eube of volume

V = Ls = 1 cubic cell unitr (it proves convenient to wonk in
cetl units on mesh units as d.efined. in Append.ix I). Sinee

the computer can only d.eal- wlth a finite number of d.igits k,

the coord-inates x¿ ttxLetxis of the 1th prnticle¡ mìrst be

represented- by a number OSx¿6¡S1 whene x¿c¿ has a number of

d.iglts Slc. Effectively this d.ivldes the unit cube into a

fine meshr and. so w1l-l- convert the number of d.istinct

configunations (previously an integral) into a finite surno

The initial- CiJr,¡"otrlguratlonrs coordinates can be chosen

arbitnarily by the use of rand.om numbers¡ or alternatively
the particles placed. in a systematic fashlon 1n positions

whlch previous results have ind.lcated. will lead- quickly to

an equilibrium configunation. [nfre Rand.om Numbers are

genenated. by a technique given in 4.4]
Anothen configunation C(ko) is determined from

C(ir) as follows. The coordinates of g of the panticles

are etranged- by a smal-l rand.om amount d-- such that l4rl <dr,
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1.€. a rand-om t t" fonmed. on the interval -d6 to do and

ad,d.ed to the o1d- coord-inates¡ so x-)x * d*, y->y + 6y,

z->z + tu. (ffre ehoice of do 1s consld-ered. in sectlon

2.2(c)). In general the molecule which suffers this

d.isplacement nay either be chosen nand.omly or in a systenatic

fashlon aS 1n thls calculatione whene the particles are all

labelIed.. The configuration which is the next in the

senies C(io*t) iu either C(Jr) or C(ko). To d.ec1d.e whlch

the potential enengy EP of C(jo) and ET of C(k*) are

cal-eulated (ffris enerry caleulation 1s eonsid.ened- In 2.1(c))

and a rand.om number RAITD is chrosen on the interval

oSRAI{DS1 ¡ if oSRA}TD s i?1-nf-np) ttre configunation C(ir)
1+e-'

is takerrr lf 1

f,þr-nr¡ 
<RANDsl the configuration C(ko) 1"

taken. Such a choice (ts is shown in 2.2(.)), ensures

that the relative fnequeney of a configuration C(i) with

potentlal energy V(j) in the seguence of conflgunations is

asyrnptotlcally e-Bv( i ) . As th ese c onf lgunati ons are

generated.e and. aIL 32 partlcles moved in tunn, a store is

kept otr the pairlng eriergy between any two particlese and

also of the distance between any two particles within a

l1mit of PDL (chosen to be a maximum distanee without

increasing conputirrg time too much see l+'J)' The paining

energies are stored. so the energy of a configUration can be

eomputed swiftlyr wlrile ttre storlng of tlæ pair d.lstanees
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the nad.ial d-istnibution function f onenables an estlmate of

l-ike particles via

s¡(n) =

partlcles via

eu(n) =

Nr,

2rr n2 An l{2 n

at{u

2r 12 An N2 n

e âÐ.d for unlike

(z "t),

\4ihere N=J2

n is the number of large lterations completed. in the

calculation, a rlarge iterationr belng defined- when aLI 32

particl-es 1n the cell have been moved.e or attempted to iloveo

AIL is the number of l1ke particl-es neeorded- at the

d.istance n to n+Àn fnorn the given partlcles and. Al{U the

nurnben of unlike partieles in the sane Farrgoa

2.1 (b) The period.ic Bound.arv Cond.ition. So far onl-y a

basic cell of 32 pe-rticles has been consj-d.ered. This means

we are only consldening a very smal-l pontion of the plasmae

so to ellminate surface eff ects and- obtain a nepnesentative

sample the period-lc boundary cond.ltlon is ernployed. the

baslc eell is consid.ered. to be surround.ed. by exactly sinilar
ceIls, in each cf whlch the molecular configuration in the

baslc cell- is ldentical-J.y repeated. Hence theappearance

is sinllar to a crystal latticee with repetltion of the

basic ceIl cf 32 particles. the restrictlon of having

identical- eellsr necessanily restricts some configurations
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such as fluctuations in the nunber of particles in eaeh cel-1n

This restriction on the ergod-Ìcy of the problem has been

shovnr to l-ead to oirly sma1l errors for systems with N=fO

when d.ealing r¡rith f luid-s l2l, but significant errors ocsLlr

for low N or for very d.ense systems. Hourever the id.entical.

nepetition of cells is well suited- to this eonputational

technique and- enables most of the su:efaee effects to be

el-iminated-, r,vhile still givlng a practical solution.

The peniod-ie bound-ary cond-ition suggests the use of Crystal 
G

theony to eval-uate the electrostatlc potential energy between

the lnntlcles. Born and. Huang lZl show how to evaluate

thls electrostatie potential enerry per ce11, and. call it the
tMadelung Energyr for a given cnystal-. tr'or a plasma almost

exactly the sane technique as Bonn and- Hua::grs can be used,

but as this potential enerry calculation 1s lmportant some

of thelr work yrill be repeated_ here.

Consider N partlcl-es in a cell-. Let the posltion

of the kth pantiel-e in the celJ- be given by a position vecton

f(k) = a,x,(t<) + grx2(u) + ayr("(k), whene

X¡oXerïs ar"e the components of X(t<) along the three basic

vectons of ttre cel1 ?t cgzcgsg and- in our case are orthogonal

fonnlng a face eentred cubic lattice, let the ce11s be

specified. by ceI1 ind.ices 1¡ rz Ls (tJrese belng in refenence
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to a zero ee1l chosen arbitrarify) and- d.efine a cell vector

¿(f) = Itg, + Êg" * 1"g". Hence ttre posltion vector of

an anbltrary partlcle is represented- by I(1) + X(t<), wrltten

XÆ\ . Al-so it is frequently useful t o flef irie a neciprocal
-\"/
l-attlce fron th.e given lattice by d.efining basic cel1 vectors

Þ" etc.p oF Þo.gp = Îop " From these reciprocal

baslc cell vectors bø (aimension of inverse length)¡ a

reciprocal lattlce vector cari be d.ef 1ned. y(h) = hrÞl +:nzs- +hsÞ" "

Thus ?tt1eta,u form a set of covariant base vectors¡ âIld'

Þt rþ-rþ" fonm a set of contravariant base vectcns, an¿
¿-J

¿(r).y(h) =)1r¡= lnteger. These reciprocal lattice

.r""tol" arå'usefut in specifying lattice waves satisfying

the period.lc boundary cond.ition, since if V(ft) is a

recipnocal lattlce vecton, then expfZniy(fr).¿] i.s perlod.ic

in $r and. so a period-ic function f(E) can be expressed-

fff) = >¡s(v) uzdv(rr) 'r::',

ur{.,¿{^o c*4+:,,¡ó^,h"*, î.rr-. ; fr, = ßl'u'I'ldffU',t',ls¡"-zrillr')'Xtt,l]
and g(g) ç-*{år.^. h¿,rûli¡¡tlo'l{^¡-+¡{'

e(v) = + [ rk) "-'*!'Y t. (z,z)
" Jcell

where v is the €tl+ volume Loû^b,allr.,rd-lX dt'e, t4,.ltt^L.tt'ruJrâ¡{ 4l(. ÁÁ¡ .

-tlû {..btÈ V't elp.Ê û}¡¿a{¡ü, ô$ {^¿cl^ovt¿ ûa''ftpû;rtu rn¡ùlolå,Írc,n¿i:q{" x .¡,6
lluith the above notati on, and assuming that the lons

interact as point charges with a Coulomb potential (d-iscussed

later in 2.2(d)), the o¡s enengy for an anbitrary ze"o ce1l

may be v'¡ritten as:-

1
2

(z Õ)Tt- t
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where f¡ 1s the change on a pantlcl-e k
>oA_- is the charge on a particle k'Þ1ç

k is an index running fnom 1 to N on partÍcles i-n cel-l 1=oe

k-'ls an ind.ex n:nning fr"om 1 to N on particles in ce1l r'
and. L' ls an lnd.ex running from -oo to ooc

The¡' means that when 1'=o, k' cannot equal k, as this would.

incl-ud.e self lnteraction energr 1n the sürn¡ The faetor å

appeans in the f ormulae since the summation incl-udes every

interaction twiee. Also notiee that since a plasma is
electnically neutnal, then >

k
Tt is Ímpnactical to evaluate this energy by d.inect

summation since the slow d-eerease of the coulonb interaction enen

wlth d-istanee means that theoretically the sum should be o\¡er

an infinity of cells. To overcome this d-ifficulty the

energy is put in a quickly convergent series 1n the following
manner. Rewrite (ZÕ) us

8v

E= +>
k

Ês¡ Lim r
L

sk gk

ra(*:Þ' l¿(t )+l
,

E->r(k)

then using Ewald.r s identity viz:-
t

)
I" ,

rr(*:) -ar

¿

d"
oo

ô
t -zl'f

d-p
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we have

çk l1i¡rrl k{ iltu¿- "

à "-ll(r)+r(r<')-Ãl' 
Ê 
=4 ì þz

{-tr

,"E

E=!Ð
k

-rÃ(*:) -rt'r

(2.5)

the integral is then split into two quickly convergent parts

by use ctr the Theta Transfonmatlon, vlzz-

NOTE. This transformation is often referred to as the

Theta Î"r:¡ction ldentj-ty, and ean be d.enived. guite genenally

1n the following manner. Multiply

K
^2t1k.x(t t d(¿-E) bY e-rÊ (¡*I)

and- integrate with nespect to x. this glves

>-
K

hence

I .-*O (¡*v) 2 + 2tt']r Ãda * = >U/of=-l ) e-rÊ (5+v)' 
d" *

L [ "-*t 
(¡*y - ik/f )" e-É/f -zrnB.I ¿"x = \"-rÊ (v+g)i

a
aa

2r
V "-oÊ 

/ Ë -Zrnþ.y
e-TÊ (Y*E)' 

.

Exchanging E = y(h)s y = (E(k')-Ã)¡ altering the ur factorse

arrcl noticing that v(rt) = 4(1) for a face centred cubic latticee
the fonm of the theta function wirj_ch 1s usually applied. to
enystal physics is obtained.. An alternative derivation is
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given by Born and Huang lll, where the concept of recipnocal
lattiee vector expansions of a peniod.ic function is stnessed.n

The right hand- side of this id.entity is a series that
colfverges napid.ly for small values of þ and. the left hand-

a senles that converges napidly for lar"ge values of p.

thus d.ivid-ing the nange of integration of the integnal in
(2.5) ana putting

E=å àfi. lli¿Col

in the appropnia
Rt*ft I"

te series we have
1 -Ê /p'lv(e) 12 +2rrIy(h). (ë-1,(t") )

dp
Ê''

d.p -
l¿(r.)-xl

E=å å-f'. tÍm^ ^ x->&(r.)
2

d-z'

f

€¡.u*nf-tð(i:) -o r o)

)-'lK'

+ [_* + "-lr(i:) 
-1," o uo_ ro 

JJn {-tr X(k) -x )

The term 1'=o may be neglected- in the first term (inaicated_ by

a prime) because ctr (2.4) and changing the ond-er of integratlon
and summation, with summation now over reciprocal lattlce points
in the appropriate case, this becomes:-

L,K,

h
f

Jo

R
+ 2r

vp" k'
Ê
Ê

exp lv(it) l2 +zrny(n) . (x-x(r.') d.p

The flrst terrn of the expnession can be written in tenms of a

stand.ard- integnal called the Enr.or f\rnction, d_efined. by
p(x) =?- /*"-t'at, since thenfrfr-n(nt)) =+ /-"-ltl'Êap-Vø' Jo íÌ'' o"Jn
îhe integration of the second. term ean also be carried. out
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between thre required l-lmits to give:-

I
f -Er*rx(*.) +rt]

v (rr ) [zr¿v(rt). (x-x(r') ) ]

n=åàfi< Tl]¡fo) .r{*l) -o'[* ,.",o, 
to'

s¡

l¿(a)gi

exp 2

,f lv(¡)1"

In taking the Ilmit, it ean be seen that apart frorn the second-

tenm ana the term (i:) = (i) ' al-l terms are resuran functions

of Ã 1n the nei.ghbounhood of X(k)¡ and- hence in these tertnsæacâtqr

directly r.eplaee å by I(k) o The pnime on the summation means

the tenn (t: ) = (t)

rf
(7r-+-àvk'

G,Ëu' !
11

1s exclud.ed., Thus

o.-3Ð-2
IK

5r.fi.'
Rta(*l) -xrr.) I

[,-'r*u(ïl) -atrl n]1

t k

* & il, fi.fi., ì'u*n( )"ræ[zzriv(rr). (x(r<¡:¿(t') ) ]

+ Lim
l¡(r.')-al

R -p(nlX(r.')-xl) l 1

l¿(r.)-¿l

This tast term then has the fornt

Lim
C->o

(
I

L
= Llm 2 +[Ë"R

ãe rr-n(nc)l - å] f->o úø
-f ð.p

úø
2



1m

->o
=L

e

--êe -- d.x
2 1( f Rs

= 7 {- I{'Ir \ L J^

I"åt2 x4+ 2 - .o:

2.11

(2.6)

Rf
= Llm

e->o G
nD¿..
Vã

lt-* a_
Jdx

exp(-Ê I v(ir) l' / 'n1explzrny(rt) . (a(a)-x(r.') ) l
+ T._

2V
l,¿-kn ,f lv$) l'

NOTE. This equation divid-es the Energy into calculations

invoJ-ving a) shont range interactions, lvhieh ar.e accounted. for
in term 1, and. b) lcng rarrge inieractions, which ane accounted-

for in term 3 (which slnce the lattice is period-1ce s1lfls over

the reciproeal lattice vectors of the unit ce11), Hor¡trevere

1t is important to notice that the energy associated with

term 1 is NOT the energy of the shont range interactionsr âs

term 2 also involves some short range energye the amount d.epending

on the parameter R. Thus the above fonmulae d.oes not enable

the calcul-ation of the energy in two clistinct pantse but gives

a praetlcal computation of the total electrostatic enengy of

a cell" The energy wiJ.l- be in ergs jf fk is in e.sruoe and

R is 1n ("*)-1. This ensunes that the last ten¡r is
dimensionally correctr âs V(h), the reciprocal lattice vector

has d.imension of inver.se length¡ and V is the vol-ume of the cell-"

Ëcsksk
h



2.1?

In crystal theory R is usualJ-y chosen of ord.er 1rl(nearest i-on-

ion d-istance) f or quiek convergence of both series. Based-

on thisr fon the plasma R was initlally set appnoximately equal

to 1/(nearest ign-ion dlstance)e hon¡ever experience has shown

that a betten ind-ication of the ord-en of R 1s given by

trl(Oe¡ye Shield.lng d.istance). The exact val-ue chosen fon

R is subjeet to other considenations a1so, such as the accuracy

to be obtalned fon given eompuiir¡g tlme¡ and. u¡i1I be d.lscussed-

in d-etail in secti on 2.J. As only energy d-iflfenences cormt,

and. R nemains constant for a particular runr the energy actually

calcul-ated. in cell- units (see AppencLix f or converslon factors)

is gj-ven by

n =* >, c,cr, * [r-n(o)] **oäL,cr.co,:, ""nt;I:Ttt''"/É)
, kk,l K K Ð z'tr F-I<' K K-I l¿(f ) l,

x cos 2nL1(X(t )-X(r.') )xcos 2trra(V(tc)-v(k',))xcos 2,nLs(z(u)-z(tr', t)
(2.7)

lllthene CO and. CO, ane +1 for a pnoton, and. -1 fon an electron,

and the exponential- term has been ex¡pand.ed. in terms of real
and- lmaginary partsr and- the imaginany parts neglected, as only

the real contnibutions to the energy are required..

the cal-culation of the €¡sr cell energy via (2.7) is

stil-I very time consuming, and- so a caneful analysis is mad-e in

section 2.J as to the choice of Re the terrnination of the two

seriesr the accuraeyr and other. factors which affeet the computing
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time. The rest of the pnognam is built around thÍs energy

cal-cul-ation, and- carries out the general procedure elq)l-ained.

earl-ier. Also a signif icant part of the program is
necessarily concerned- with the input of data and- the output

of results. A full listing of the program, and- explanation of

what each pant d-oes is given in Chapter l+.

2.2 TbepJN

2.2 a) General"' Before passing on to considerations of

accuraey and- choice of variables for the computationr it is

perhaps necessary to glve a bnief outl-ine of the theory

und-erlying the proced-ure mentioned- in the previous section.

The id-ea of applylng the Monte Carlo method- to compute radial-

d.istribution functions was pnoposed by N" Metropolise

AoW. Rosenbluth, M.N. Rosenbluth, A.HoTeller, and- E. Tell-er tU]

and followed by Wood. and- Parker [¡]. The foltowing theony

is based. on the above two papers. A petite canonical- ensemble

1s constructed. from a canonical- ensemble (i.", red-ucing the

continuum of configurations to a countable set of configurationr)

by eonsid-ering only a flnite number of d.lglts in speeifying the

coord.inates of a particl-e. This effectlvely divid.es the unit
cel1 into a very fine meshe auch that the positions of the

moleeules are specified. b.y a single number associated with each

mesh cel.1" This d.ivision is inherent in numerical cal-orlationt

and- 1t is physi-ca11y reasonable that a sufficiently fine
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subd.lvision will give results indistirrguishable from the

continuum of configunations, To calculate the equillbrium

value of any quantity of interest F, then

>j Fj exp(-n;,/rcr) d"Np d"Nq
, where j

>j exp(-n¡,/t<t) ¿"Np d"Nq

rurrs over all configurations. Also since in the interest
of tnaetability veloeity ind.epend-ent fonces trave been assumed.o

the momentum integral may be separated- analogously to the

following

F

f "-B(c+v) uo dx = tJ:l

I

e

ô

t-pßE -gvdp d.x

I
L
2m -g\r

e

p2
u3

@)t*" ïu-ffu=o 
and hence F

e dx

can be wnitten

F
>JFj exn(-v( j Vtct)a3 

Nq

>j exp(-v( ¡)/ur d."Nq

(2.8)

Now even in the case wLrere N is reasonably sma1I,

1t is lmpracticable to carny out the multid.inensional sum

(o" integnal) ¡V usual numerical rnethodsr ârrd so the Monte

Carlo method is useC. The Monte Carlo method. of evaluating

naqy-d.inensional- integrals consists of integrating over a
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rand.om sampling of polnts instead of over a regular array of
points, (Ar authoritive text on the application of the Monte

Canlo method. is that by Hernan Kahn [6].) In thls case, if
the Monte Canlo technlque ïvas applied. in a straightforward.

mannere a rand-om conflgunation would. be chosen, and then

weighted by exp (-øl (¡) ). Howevere â nor€ pnacticable method.

i s to ehoose configurations wi th a probabillty exp(-PY(;) ), antL

wieght tLrem evenly. Thus as V[ood. and. Panken put it, rthe

object is to genenate a Markov chaln in which asynptotieall.y

each state k recurs with a frequency pl3oportiorral to the

BoltzmanrL factor exp(-tr(j)) for that statet. For then ttre

average over the chain of any functlon of the configuration
stater such as F¡r will conver'ge to the correspond-ing petite
canonical enserbl-e avenage of the same qr.antity, as the chain

length incneases.

lhe manner in which such a seguenee is genenated. has

been dlscussed. in the previous secti on 2"1(a). To show that
the nelatlve fnequency of C(¡) in the sequence of configurations
thus constnucted- is asymptoticarly exp(-Ar(j)), suppose the
pnobabllity that jo should. have the valr:e j is pr( j). Let

C(t<) ¡e a configuration obtained. f ncrn C(¡) in the manner

d.escnlbeÖ in the procedune. Then C(k) belongs to a set of

conflgunations accessible f rm C( j) ¡v chranging the coond.inates

of one particle by anounts l-ess than ó'e" If E( j) d.enotes

this ensemble (oo set of conf iguratl ons ) ¡ then k6 E( j).
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Let Q be the mrmber of d.istinct configunations in each of
the ensembles E(J) ana E(k). Now the probability of moving

fnom state in+1 back to state i is nr*1(j), and. we have

o n"*, (j) = pr(i) >,- k6n(j) jen(tc7

whene

cr(jrk) = [r + exp[pv(r<) - ø/(j)]] -1 , (2.1o)

= probability thåt C( j) will- be changed to C(k) by

d.isplacing a molecule in C( j).

tes( j)
Now the relative frequency of ccnfiguration C(j) is asymptoticalty
pnopontional- to p( j) 

" But

-1
S

oo

qp(i) = p(i) tn o?rtrl 
.'(i,k)l + 

¡rotolp(k)cr(k,J)"

1.e. p(J)_ _E,.,, ø(irk) = .x_,_. p(k)cr(kri)" (z.tl)k6E(j) JeE(k)

this means that the pnobabilities mr:st satisfy the

cond.ltion of micnoscopic reversibility. Also in this set
of simultaneo'usi equations to d-etermine the p(j), if we

replaee a(jrk) with the expression (z"l o)rthe solutlon is

p( j) - Aexpt-gv(¡) I , vrhene A is independent of je

p(i)

Hence fnom (z.g)

I

S

1m
s

r=1
er(i)
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and- this is the property of the sequence C(ir), C(¡r)r...
we wished- to prove, Notice that the above proof assumes

that the sequenee is ergodlc¡ and this w111 only be so lf

all particles may reach any point in configuratlon spâceo

This is the case here as thene wil-l always be a non-vallishing

probability of moving from a given configuration to any other

in a flnite number of moves, and- thls 1s because the potential

erængy 1s finite for all- configuratiorrso The finite nature

of the potential enerry follows because a cut-off is imposed-

on the coulomb potentlal wellr so thet particles appnoachlng

closer than the potential well cut-off d.1 stanee A0 have constant

potential en€rglfo The choice of A0 ie irnportant¡ and. is

discussed. full-y 1n section (Z.Za). Thus we have obtained-

a Sequence whieh gives the petite canonical ensembfe average

of (2.8) in ttre form

4¡'¡ = T,in S
S- )o"

S
sa
r=1

-1 F( ir) (z"tz)

2.2 b\ . Thene are other T[aYs of

assigning the pnobabllities cr(irk) so that equatlon çz.l't)
st1l1 has a solution p( j)cr expt-A¡(i) ]. However, H.S. Green

has shov¡n that the choice of a(irk) gì-ven in (Z.tO) secures

the most nap1d. convergence of -,,he series (Z.lZ). This choice

1s of consid-erable practical impontance¡ since in the calculation

it is necessary to replaee (z"le) ¡v
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IS
(F> = S-r >

r=V+1

val-ues of V and S, and. if a bad choice is mad.e for q(itk),

then these values of R and- S wil-1 be unnecessarily large.

Ef f ectivef y cr( i rt<) is a normal ised Bolt zmarrn d-i stributi on

for particles allowed. to move between two potential energy

states V( j) an¿ V(X), as from the Bol-t zÍLarrr¡ clis tribution

law the probability of a particle frequenting a particular

state V(¡) rather than v(tc) is

p(J) = "-ø( 
¡)

e-pv(i) -A¡(k)+e

1

1 + "-e(v(r<)-v( 
¡) )

I

+ eB(v( ¡ )-v(t ) )
a

1

Fig 1 shows how this pnobabllity varies with

temperature for Some typical changes in potential energy

between two states. If the state i has energy greater than

the proposed new stat€ kr then dE = V(J) - V(k) will always

be positivee and- the pnobability of staying in i will always

be less than O.Jo An energy change dh = O.1 ce11 units
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FIG 2.1 Showing tLre probability p( j) of a partiele changing

1ts eülergy by a positive amorrnt db at a temperatune T.

dE=O
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1s appnoximately equlvalent to shifting a partì-cle fron

286 mesh unlts to 271 mesh units from another unlike particfe.

Sin1lar1y an eners/ charrge 1.0 corresponds to moving the unl-ike

particl-e from BO mesh units away io a l-ower enerry position

only some 70 units arjvag¡ and. an energy change of 1O.O to a

movement from 1 2 to 9,5 mesh units. Hence for smal1 energy

changes it can be Seen that one must go to temperatures bel-oli'

1O4oK before the probability of a transition d.iffers signif lcantly

from O.5t and. above this tempe:ature smal-l- energy changes will

occur nearly randomly r:sing the Monte Carlo nrethod-. Larger

energy changes however¡ have a marked- effect on the probabilityt

even at temperatures as high aS 1O5oK. Results have shown

that the size of ób aeperrd.s on two nain factors; (u) the size

and. d.irection of the particle movement dx, wlrich will be

d.iscussed- in ttre next section, and (¡) the posltion of the

closest partlcl-e. It has been shown that a sma11 change

.gþ w11] incur a large change dn if anotlær partiel-e is only a

d-istance of 12 mesh units av'¡ayr but that it requlres a much

langer dk to cau.se the satne dE when the other partiele is 80

mesh unit s âTÌIâg r

consider t:ne 32 particles moving rand.omly about the

unit celle then the u¡normalised. pnobability that any one of

the 16 positive particl-es ïri1l be r¡¡lthin a d.ista.nce of 1OO

mesh r:riits of any one of the negative particles is given by
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P = 16x16r+" xlOOxlOOxlOO = 10./x1O8, whlcht
is much larger than the correspond-ing probability of partlcles

being within 50 mesh units¡ when

P = 16x16rÞro x5Ox5Ox5O = 1.J4x1Os.

In cal-culations d-one on the computer at about 1O5oK, the

particles distnibute themselves roughly thnoughout the unit ce11t

and. have an average lnterparticle dlstance of approximately 4OO

mesh r:¡rits. There are nearly alvuays two r:nl-ike particles

sepanated by less than 1OO mesh units, ard. 1n future tv¿o such

partlcles will- be referred to as t]!þ!t. The calculatlons

al-so show that most of the energy changes when a particle ls

moved. are of ord.er 0.1 ce11 units of energy, and. hence statistics

will affect these on]-y rarely at h-igh temperatures. It becomes

al-most a matter of chance at these high tenperatures that two

unlike partlcles w1ll- become closely linked.¡ and. as shown by P

the closer the linke the l-ess probable 1t is to occur fnom a

completely rand.om iump' Tn fact due to the manner in wLrich

the solutlon to the pnoblem has been presented-, cl-ose links occur

even less than e:q>ected. fnom P at high temperaturese fon in

lOOO iteratlons a particle only moves on appnoxirnaieJ-y half the

attempted. moves, i.oo Some þ00 times¡ ard. in a rand.om d-irection

thus moving thnough about one eighth of the unit cell. During

this rand.om tnavel the particle has on the average a chance to

link with only two opposj-tely charged- particles, hence P shoulcl
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equal 2x16*\o x1OOx1OOxlQ9, equals 1.34x108. lhese close

links have an impontant effect on the rad.ial d.istribution

fb.nction at low Oistances, but because they occur So narely

very long runs must be d.one before much weight can be put

on g(n) f on n<1Oo mesh r:nits.

As tLre temperature is lowered however, the pnobability

p(j) of moving to a elose linkr starts to become less random,

and. the effect of the statistlcs becomes api:anentt close links

occun much mone fnequently, and- the rad-ia} d.istributlon function

assumes a reasonably smooth curve in the region 0 to 1OO mesh

units; though now long runs are need.ed. before the system

settles into egull-ibri-un. In Summary the temperaturo

d-epend.ence of p(i) varies from allowlrrg almost random motion

at losoK to Lr,aving a marked. effect on movements at 1O4oK.

Another interpretation of how the Bol-tzmarlrL statistics are built

into this problernr which is quite useful in d.iscussion of the

resultse is that each particle has associated- v¡ith it an

effective statistieal nad.ius¡ beyond. which the effect of the

statistical d.istributlon is negligiblee but within which the

statistics appreciably influence particle movements. îhis

effective statistical ::adius becomes langen as the temperaü:re

is lowened. The importa¡ce of the statlstlcs (o* the

statistical- d.istribution choice), will again be stressed- Ïvhen

the results are d.iscussed..
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2.2 (c) choice of do. This d-etermines the maximr:m chsnge of

molecular coord.inates in the transition from one configunation

to the nexte and- as already lnd.lcated-e has arr irnpo::tant irrfluence

on the napldity of convergence of the methoil. H.S. Green has

shown that a do I h *" the nlght ord.er of magnltud-e for most

calculations. If do is +,oo largee the en ergy/eell will

fluctuate considerably with each new iteration, while on the

other hand. if do j-s too sma1l¡ not enough samples of configuratlon

spaee will be obtalrred. 1n a reasonable time. There is perhaps

an argument fo:: letti4g d¿ be lange to stant withr and- as the

system nears equilibnium, to d.ecrease €o to a smaller value"

fhe ad.vantages and d.isad-vantages of choosing a large

do shøv up in the fol-lowlng consideratiollso Let two unlike

particles A and. B be a smalf d.istance n apante and also for

d-efiniteness 1et this be at a low temperatune where the statisties

highly favoun thre fornetion of a pain¡ i.e. a tnansltion of the

partlcle fnom r to the gnound state. then 1f de is largee it
will- take a consid-erable tirne before a delta occurs which will

allow tTre partlcles to move closer togethere for if doèzr fig 2.2

(u) is obtained.. Suppose the program all-ows B to und.engo

a rand.om d.lsplacement ó'* wlene ld*l Sdor then B can move to

any point in the sphere Sl, unatlffioobability p(e) that it
moves closer to A rather than furthen away from A is gÍven by

the natio of the volume of Sr to the volume S¿-Sr.
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FIG 2.2 Diagrams r,iseÔ in the calcul-ation of an optimum

maximum step length doo
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do 2to >>60
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and-thus P (c) ,

if 6s=2r as drawn in f ig 2.2(a), then p(c) = f, 
'*o on the

average, out of eight trial mcvements of Bt on only one

occasion wilf it move to a lowen enerry position eloser to

A. Since we are consid.erlng statlstics whlch highly favour

movements to lower energy the seven moves u¡il1 not be aflowed'

and- the move cl-oser will- be accepted. Even when A and- B are

a reasonable distance apart so 86<2ns the probabili-ty of .F

moving closer to P rather than f\pther away wil-1 be given

from flg 2.2(b) ¡v the ratio of the shad.ed volume 55 to the

volume Sl-Ss. Calcu]- ati S s as -t-þ.-q

I

I
I

þ
I

l
I

I

I

Ë(c)

This shows that for r=to/\ that only one move out of an

attempted. 6l+ wi11, on the average, result 1n the particles

coming cl-oser together. Funther because of the potenti-al
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wel-l eut-off discussed in the next seetion.. movements of particles

closen than Ll.2 mesh units will have the same energy es if they

only moved. to )+.2 mesh units apart. Hence do for low

ternperature ïrIork was chosen to have a Val-ue of 15 mesh units,

aS this means not an excessive nurnber of moves has to be mad-e

before the particl-es Llave a chance to pair, and yet the particles

ca¡ move through a reasonabl-e voh.:me in 1OO iterationls. Howeven

at higþ temperaturese rrhere statistics only weakly infl-uence

movement to 1cr¡rer energies everr r¡¡hen the particles are close

together and- movemerrt is ma1n1y rand.om, a larger d6 wou1d. Seem

preferabJ-e.

z.z (a\ tþe potential Tr/e1l ff A0 The choice of this

vaniable¡ xvhich l-imits the potential- energy between interacting

particles when they approach each ottrer cf oser than a dlstance

AO rnesh unitse turns out to be inrportant if the degree of

ionisation is to be consid.ered-. The actual- val-ue of AO chosen

is based. on the f ollovring consid.eratioh.s¡ The Bohr orbit theor;r

shov¡s tfjat r¡¡hen an efectron is in its ground. sta-te in a hyd-rogen

atome 1t has a potentlal energ]' of -e2/a, and- a kinetlc energr¡r

of e'/za, where a 1s the f1 rst Bohr rad.ius. The ionisation

energy is the energy need.ed. to remove the el-ectron from its

present energy of -e'/2a to the continuum or zero errergy. Then

it can be seen that the lowest potential enerry possiblee without

any kinetic energyr wil-1 be the ionisation energy of -e'/2a.
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This potential enerry correspon,ls to that Of an electron at a

d-istance 2a rrom the proton, an1 since this is the ionisation

energy no l-ovrer potential energy iS possible vr¡ithout kinetic

energy being present a1so, and. as thj-s problem is concerned-

r¡,rith potential d.ifferencesy ârI electron and proton are consid'ered

as having their l-owest interaction energy of -e'/2a, whenever

an electron comes closer than AO - 2a to the proton"

ftheimportanceofthiscut-offAObecomesapparentlF

it 1s sald. that tpairingt occurs when two particles are cloger

than AO. This critereon for palring means that the partlcles

are in their lourest possible potential energy state with no

kinetic energy¡ i.€. ground- stater and- so particles ane not

consld.ened as paired. when they are 1n excited statese such states

haveprevlouslybeen,referredtobysayingtheparticlesare
tl-inked.r. In Sahats work, rivhich is nentioned- in some d-etail

ïvhen the results are d.iscr:ssed-e he consid.ers trarticles paired

only if they are in the ground- state as above, but he d.oes not

allow for any excited- states (except the cr:ntinuum) to exlst'

Thls d.iffers from the above case, where a continuum of excited

states (or links between particles) are allowe¿ to exist outsid'e

the ground state rad.ius Ao¡ as particles IIEy move out from AO

in a completely rand.om fashionr being mod.ified. only by the

statlstics. No ql¿ntun effectse or only allowing special

energy 1eve1s when approaching particles near the ground stater

are built into this method. this d.ifferenee 1n the d-efinition
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of pairs - or neutral particles¡ and. merely Ìinks between two

charged- partlcles must be kept in mind. r,"¡hen comparison is mad-e

r,irith Sahar s l¡/ork.

2.3 Accurac-yæ

2,3 (a) The first Letru From ectruation (z'7) tr'e f irst

tenm E¡ is given bY

Er =å
NA2
t
k-1

oo

Nfr=-oo

NA2 1.O-E(D) e r,vhene NA2
k'=1

ck ca
D

is the nqmber of particles in the reference ce11, and. the sinil¿r

periodic cell-s are labelIed. by NLo 1o terrninate the inner

series the energy contribution of particles interacting beyond-

a d-lstanee X" is neglected.; and. thls effectively corrsid.ens

interactions c'\¡er only a finlte numben of ce11s NL. To

estimate the error 1n cuttlng off at Xc = P r a,'jsume a

rectangular distrlbution of particles vrith d-ista¡.ce¡ for: then

the pencentage errcr in El is given by

ï,:
4zo'ao

- 1-E(Ð 4zÐ, d¡
[" D

a
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But

Also

-D o'

*"[[ r

1.0

h.l+

oo

ÎABLE 2.

2.o

.26

/":# 
I+1rú d.D = [ 

*(z 
4øo [ 

* .-f av) ao
Joo\fø Jo

ef
2Do

-f
ï"*'

= -2,¡r Do2(r-n(oo)) + 2dn Doe-Do - gz (r-n(oo))

= -Búø *# 
¡-E(o")]. Y Dee-Do2- ry

dv]

À"

(zrmo2 * !z) (t-n(Do)).

t+øÚdD = - i t so the percentage erron in

fzun 
o. .-Do' -(zn Do2 * i) (t-n1o"l )] .

l; ú
d.D

2.7

.015

= B{ø'

= 2úø'Do e

ô
2D

1*1
4

Fr" ! t'(o")]

T
2

D"

Io 100
oterm one is

De

Error /o

2.0

.03

2.75

.01

3.O

.006
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Hence a value of Ðo of about 2'5 would be sufficient

to deternnine E1 to three figure accurâcvr this value is

d.imensionless as Do - RX"' 
.

ions The most tine consuming of all

the operations completed by the Computer is the calcutation of

wil-l- d-epend. upon X"r because af I contributions with

lf(*:) -ltol l> x" are neglected.. rhus ron optimum speed

x is to be as smal-l as Possible.--c

2.3 c) Debve Huckel fac tors The calculation of the energy

is essentially ùivid-ed into two trmrts¡ in one ind-ivid'ual

interactions are considered¡ in the other a collective approach

is used (secorrd. energy term). From Debye Huckel- theory

ind.ivid.ual interactions pred.ominate within the Debye Shield'ing

d-lstanee b. This Ejuggested. that to obtain reasonable accuracy?

x" sho:l-d- be mad.e = )b" Table 3, eompiled for a neutral plasma

of d-ensity lots electnons/ec, gives some ldea of b in cel-l

units as temPerature varies.

TABLE 3

Tenp oK

\(cerf r:llts)
104

.194

2xloa

.275

JxlOa

.435

1Cs

.615

1.35x1es

"715

5x1o F

1.37Ð
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From equatlon (2.7) trre

second term E2 is given bY
NA2 }TA2 xp(-Ê lX(r) l'/*

lx'=1 Kck
1

I
1-Iç=

Ez= îr
L
2

oo

I[L= -\;
os2r:r (x(t<)-x(t.') )

lx(r) l"

co s}rrL 2(v (r<) -v (ic') ) c os2trl 
"(z 

(u) -z (w ) )l
t et x = zr(x(r<)-x(r<') ) Y = zrr(y(u)-v(r.'') ) z = ztr(z(r)-z(t'))

Then performing the sum over NL, with NL(OrOrO) exc}¡d-ed-, the

f ollowing 1s obtalned-.

-xf2i{A
Ez = L

2n ck
NA2

k=1 k'=1 K

+ r.-'f /É (cosxeosY+cosxcosZ+eosYcosZ)

2e /É ( eosX+cosY+cosZ)

úTfB /* (cosxcosYcosZ)/le
-4rf

e+L /* (c os2x+co sÌY+coszz)

-rrt'

+

4
5

+ ô /* ( cosXcos2Y+cos2YcosZ

+ c osYc o s 2Z+ co s2Xc os Z+ c o s 2Xcos Y

+eosXc os2Z)

+

The magnitud.e of tÏÚ-s term increases with Rr and- for large R

marry terms vr¡ill- need to be taken aS convergenee will be Slow'

However if R is less than rr the serles wil-1 converge napid-ly

-'.

l
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d-ue to the e*ponential factore and terms after the third'

one becorne negligible' To obtain a ve r\/ r.oustr 1d.ea of

the error involved- in neglecting higher terms, consid-er

the percentage error given by terms 4r5 and- 6 compared-

to terms 1r2 and. 3. îo evafuate this ratio in terms

of Rr the cos terms are replaced- ¡v #z' This gìves

as an estimate for the percentage error in E,

5Ê-1+Ê /Ê rîr)
/É çftr) * 2e

4 -6xf
e /* 2.)

2{2
l+

t
/*1^zri 3+ 3

1OO x
I/* â.r; /* I2e ñ2

-o-,fi- /n'N 25 e

TABLE 4.

R (.tnverse ce11 unj-ts) 1 2 2.5 2.7 3.O 3.5

,/o Brror in E 2 10-'10 .o5 ,3 .5 1 3

Altlrough this cal-cul-ation is veny sketchyr the thorough

calculatj-on of the root mean sguare error is veny eonnplexe

and- it v¡as found. in practice that the above table was more

accurate than might be expected-e anfl guite sufficlentt with

the othen tables¡ to obtain a wonking value for R.

@ 1o obtain optimum accuracy¡ or. approxinately

soy the error in calculating the first tenm of the energy

shoul-d equal- the error in cal-culating the second terne
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i.or E¡x/oeruor in E¡ i E2x{oerror in Ez Q'ß)

Howevere since it is the object of the progran to cal-cul-ate

the equillbrium enenry for a given temperature and d-ensity¡

it is d.iff icult to know the val-ues of E¡ arÌd. 82. To

obtaj-n some indjcation of their sizes some prelimlnany

calculations were perf ormed. using N=l-¡. îhis was

later found_ to be only a very appnoximate guicle, as a

box of 32 particles in equilibrium cannot be accurately

constructed. fro¡n B l-ots of 4 particles in equilibrium.

The lnitial cafculations were useful in that they

ind.lcated- the d.epenclence of Er and E2 (for a given

configutsation, d-ensity, tempenature, and Xc) on Rn It

was found El fa1ls slightly in magnitude as R increases

fnom 2.5 to 3 cefl units, and. that each of t]¡e 32 panticles

can be consid.ered. to have a roughly constant energy of

interaction with the nest. Because of the oscillatory

nature of the Second. termr ti:e energy associated- with a

particular K partlcle varied considerablyr and the Sum

of the 32 K contributions to give E2 for the whole cell

TÍas smal-l- comparecl to Er t:o,_:ne cell. The R d.epenci-ence

of E2 1s in the factor e-f /r e ârtd so rapid.ly increases

with R. lab1e ! forms an attempted egui1-ibnium configunati on

from B sets of four particJ.es, temperature ,gsoKr density

1Otge/cer Xc=1 .O cell- unitse arrl gives the Energy tenms in



(ce11 units)-1 for a given configuration, whene

REs = - #" ì "o', 
ard E, is the total energy per ceII.

2

-164 .915

+ .419

- 36.109

-200.605

TA3LE 5

2.7

-1 53.2O1

+ 1.565

- 48,71+6

-z}o'-382

3.o

1I+B "l+73

+ 2.197

54 "162

-2OO.l+38

2 "32

3.5

-140.877

3"235

63"189

2OO.B31

R

E¡

Ez

Eg

ET

Applying equation (2.13) to the fi$:res abovee it

was found. that optinum accuracy would be obtained- by giving

R a value of 2.7 (cell unit")-1 . Thi s vafue was subsequently

tnied-, and. companed. with a very accurate cal-culatlon of the

enengr fon the Same conflguration (i.e. R=2 X"=2¡:)Do=4r and.

Er=-1 64.666tI"2=1.419, E3=-J6.1O9, ET --2ooð57) and for

X"=1 .O fu2.7 gave the minimum error. the accurate

calculation fon X'=Z.O celI uni-ts howevere was Very tlme

consuming, and- it laten became apparent that it woul-d- be

betten to Sacrifice Some accuracy f on an ir:crease in Weed',

as the number of iteratlons necessary for the system to eome

to equilibnlum proved unexpectedly large. liVith thls in

mind-'X" was reduced. to .5 cel-l units, which noÏv only includ-es

the Debye shleld.lng òistance for temperatures below

5x1O4oK, and. by golng thror:gh the above analysise a value
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of fu3.! uras found. to give the rninlmun error' This

red.trced. the overal-l accuracy so that the energy now may

contain an error of !1 in the third. figuree hcnvever the

increase in speed, a factor of about fives arnpfv justifled-

the ehange. Also by cutting off at .5g this enabled'

quite a Oeal of slmplifl-cation in the programt as now

only the basic eell need- be eonsldered' Fu'rt'her

d.iscussion on the effects of the changes on the program

and. the results will be mad.e in the relevant sections'
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I]] RESI.ILTS, DISCUSSION AND CONCUSIONS

In thls chapter the results u¡i11 f inst be presentede

with bnief notes¡ in the ord.er in whicLr the calculations

Trere done, and- then followed- by sone more genenal notes on

the gnaphso The Debye-Hüekel theony; work d.one by Bnoyles

and Canley; Villars; and- the Saha theory ane eaeh discussed

in relation to the results ând. then a general d.iscl¡,ssion

of the results is given. Finally the concl-uslons and-

lirnitati ons of the method. are presented..

3.1 Pnesentation of Results

å"1-(a'l preliminary Besul-ts f¡om 1620 on lypartlcles. the

first nesults were used. to show that tLre program cal-culated-

the energy correctly, and i;hrat 1t operated at optinum speed

and. accuracyc Due to storage lmitati ons only l+ particles

coul-d. be consid.enecl on the f .B.M. 162Oe but even so several

features beeame quickly evid-ent. the vaniation of the

probability for a r.ransition (f-Uf ) with enengy; the

d-epend.ence of the energy on the lnltial configUration;

the lncneaslng nand.omness as tempenature was raised-; the

fact that pairing started to occur at about 1O4"I<i were

a1l- apparent fnom the [-particle calculations. Most

effort was d.lrected- towards incneasing the speed of calculation
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whil-e stil-l- malntaining the accuracy, and. as d-iscussed- Ìn

the section on Accunacy, most of the panameters ïvene

f ixed. by these consider.atioflse

3J . Using the l+-Panticle results

to start fr.om a favonable eonflguration, the program was

tnansferred- to the largen computer, and. 16 electrons and.

16 pnotons consid.ered in the unit celt. (Conversion

factors f or cel-1 units of length and- enengy are found-

in Append-ix I). the electnostatic energy of the 16 electrons

and 16 protons in a particular configuration is terned. the

Cell- Energye and. thris is plotted. agalnst the number of

iterations d-one. (.¿n lteration is completed- when a1J- 32

particles in the cell have each been consid-ered for posslble

movement. ) ItrJhen the energy $¡as consid-ened to have reached

a stable value, the nun $¡as termlnated-, and- gnaphs of the

rad-ial- clistribution functions f or like and. unlike panticl-es

ïvere compiled. from the equilibnium confi gunationse i.e.

where the energy graph was rel-atlvely Ievel. these

gnaphs are pnesented. collectively in the order that they

u/er,e computed, and collective notes follow the graphs to

expl-ain more fulJ-y hovrl they ïuere conpiled.. The numben

d-ensity was constant for all rütìse ttre nurnber of protons

equalling the number of electrons=lOtBe/ceo The vafues

of the othen lmportant pararneters i 0o, the maximum movement
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a partlele may und-ergo ì Xe, the d.lstance beyond- which

contributions fnom the flrst energy terrn ane neglected';

and_ the convergence parameter, Rr are all incl-ud.ed. On

the graphs.

Note 1: do is in cel-l 'nitse X" in eel1 units¡ and. R in

(ce1J- unit")-1, where the conversion factors

for a cell unit of length are given 1n Append.ix 1 .

Note 2z Rrrn 1\¡¡as later founcl to contain some small faultse

thus tn:¡cation in d" caused- a consistent movement

of panticles in the Lgative directlon, and' an

error in an input constant caused the first enengy

term to have about 3% ercor, but these enrores

shoul-d. not greatly alten the graphs.
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. The output from the Program

to obtain the rad.ial distribution functions is in tte

form of 5OO fixed. point numbers f on each d.istributlon functione

these m:mbepse d-enoted- ¡y Nl (NU in ttre case of Unlike

panticles) give the number of painlrrg d.istances reeord.ed.

in the intenval r to r+Ane wher,e r go3s fnom O to 5OOt

proceed-ing 1n steps of Ar'=1 mesh units. Then the

estimate for the d-lstr"ibution f\:.nction is obtained. via

equatlon (Z.l). In orcl-er to graphically present the

results, and. ind-eed., to tbtain anything l-ike a smooth

gnaph for g(r)e 1t is necessary to sum the Al{ in steps

of An=1O, the Al{ being ad.d.ed. nanua}ly and then avenaged.¡

while the correspond-ing n value is the average f on the

intenval. It is to be observed. thatr tf,re flrst 4

numbers of the outpu! represent pairinge slncer by the

critereon for palring from section 2.2e particles closer

than AO-l+,2 Mesh units are considered as paired.. The

rad.ial d.istnibution function is normal-ised, so that

g(r)->1 as F-)coe but since the self-interaction d-istance

is not cor:ntede it f ol-lows that only 15 like inter-panticle

d.istances are record.ed. in the cel1 f or one particler so

one nay er¡rect p6-J2x15 as tlne 32 particles ane moved..
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However if this is used- in (Z.l) to obtain the

normalisation constant, then it leads to a large

error when the ene ngy/cell is caleulated- from the

nad.laI d.jstribution functione as no\.\r the number of

eleetnons (tabeltea a in equatlon (l'l)) ls not

equal to the number of protons (taletfea I in equatlon

(J.t)), and. the cell 1s not electrlcally neutral' so

the macroscoplc energy components in the formulae

u" = >.% E (e(o)-r )ø.o4r*'a* (l.l¡
r

d.o not eance]' This neans Po must be the same for

like a¡d r:nl-ike panticles¡ â¡-r.d. the rad.ial distribution

functions are obtalned. using normalisation factors wit'tt

po=16.32 in both. It can be seen f rom the theory that

g(r)->1 as r.-)ooe but i:¡fontunately it was d.lffleult to extend' th:

2
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graphs fur.ther than lO0 mesh uni-tsr without greatly

increasirrg eoroputational tine. For c cmparison the

rad-ial. distribution graphs includ-e a graph of the

Debye-Hüeke1 rad.ial- d.lstribution functione and- the

Debye-shield.ing d_istance is marked by br to inolcate

the d-istance beyond. which the ckrarge of the refererrce

panticl-e should- be neutralised.

To obtain the energi¡ graphs from the computer

output, which prints out the itenation number and- the

correspond_ing cel_l energy, the average is taken over

.10 energy values, fOr nns 1 and, 2, and- this average

1s piotted against the mid--point iteration number.

For the third_, (much longer) rune it Yüas necessary to

average over 20 enerry values, and. even then the graph

is higbly erratic al-though before averaging it was even

more sor lange f l-uctr¡ations occurring u/ithin a f ew

iteratioh.so Pl_otted_ on the rlght-hand. side of the

energy graphs, are various enerry fevels. The Monte

carlo fevel- is the average energy of the calculatione

arrd. is obtained- by averaging from the ventieal l-ine on the

Ieft hand- sid.e of the graph to the right hand- ed-ge.

the ext¡'eme left hand. sid-e of the graph is neglected-

because the system has not approached anything l1ke

an equllibrium ieveI, vuhile the average is meant to

give the equilibrium energy. The Debye-Hückel line
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glves the celI energy from the Debye-Hïickel theory

d-iscussed. in j.2. The NI.C. DïSTN.FN.1j-ne calculates

the cell energy from the radial ôistribution graphs

in the followlng manner. !'rom equation (l.l¡

the eleetrostatic energy pen cel1 is glven by

500
rJ,^ = I 32.16 >

ti
(so(o)-t l(*)""to'

f=O

500
+ 13z.16 >

F=O
(s"(r)-r,(+) 4rrn'ar e

where the Sum over r is d-1vld-ed into secti ons of Lr=2J mesh

unitse and. henc" Ua can be obtained nanually from the graphs'

The D,H. UISIN¡'N level gives the correspond.ing Debye-Hirckel

energy for tkp range O to !00 mesh rrnits, this belng obtained-

fnon the D.H. d-istribution frrnctionr summing as above; and.

also by integration over the smaf ler l-imits â6 and bo

used- in sectiorr J.2o The graph, f ig 3"5c d-oes not have

the DISTNFN 1"rr"l-" manked., because values obtained. fon

these energy l-evels are veny uncentain, d.ue to the large

values of g(r)-1 near the origin. Instead.e this last

graph, sloping horizont'al l-1nes ane drawn v¡hrich ind.icate

the number of pairs exlsting (in one ce.l-l-) at this erÌergy

l-evelo The tines slope because of the critereon taken

for pairing in section 2.2¡ so that althougþ only one pair
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may exist, there is an increasing number of links¡ oP

particles not fan from painlnge as the calculation proceed-se

and- these links lower the ene¡gy 1evel at whlch one pair

ls presentn Bef ore diseussing the gnaphs and. their

.lmplications in d.etaile the other theories will be

briefly presented. and- disorssed.e so that later comparisons

can be mad-e between the results without fonvard. referencing"

This theory, put forward by Debye and' Hìicke1 tt ]

in the 1920?s and. applied by then lZl to weak eleetnolytest

can also be applied- to plasmas¡ i'e ' fÏ1ly ionized gases

whose resultant macroscopi-c charge is zero. (tt is

also true that the technique used. in thls work could be

used immediately to d-etermlne rad-ia1 d.istribution frrnctions

in electnolytes, the only d.ifference being that the d.ielectnic

constan'u nust be included. in the equations.) The theory

is particularly attractive for its sfunp11eity, as using

the Bolt zmanr. dj-stribution Iaw, Poissont s equatione âIId-

assuming that the interionic potential energy is smaIl

compared- to the thernal energyr the following equation is

obtained. for the d.istributiorr function

o-(n)=""p[3 i 
-j (3.2)Þab \ - / ---- Lrtr ery (r/\) J
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1

ïvhere b = (ffi:*)", and is catted. the Debye shielding

d.istancer and

aøceb are the charges on the pantlcles of type a and. b,

T is the absolute temPeraturee

rl. = rto d.ensity of partlcl-es of type f = Iro d.ensity of

particl-es of type b for a neutral binary plasma of

singl-y ionised. ¡n.rt1c1es "

The tlreony impties that surrcrrnd.ing a given ion there is a

sheath of ions of opposite sign, and. that outside a distance

b the shreath has neutralised the potential field- of the ion;

hence b upp"oximately measures the thickness of the ionic

atmospheree and also b is often eonsid.ered. as the d-istance

within whieh ind.ivid.ual particle interactions are lmportante

but beyond- which a collective approach can be ad.opted.. The

graphs of S*(n) in FIGS. J.2, 3.4 and' J.6 ernphasÍze the

exponential form and. lack of oscillation" The Debye-

HiÎckel enerry due to the electrostatic interactions is easily

obtained. from equation (3.1) by sr¡bstituting S¡n(r) and using

the linear assumption or the superposition approximation'

The compatabillty of the linear assumptlon and. the superposition

appnoximation is d.iscussed in several booksr s€€ lll and. [4].
Fcr a symmetrj-c plasma such that ¡¿=rtþ=rr ït/ê obtain the

enengy/unit vol-ume as
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EÐ.H.

vrhere be is the range of the distribution function

âo is the d.istance of closest approach (¿O)

The two level-s plotted- on the energy gnaphs'aro the tctal
Debye-HÎíckel- energye i.vhere aolO and- bo-)*i and. the enersr due

to the rad-ial oj-stribution firnctione where ao=O.OO42 and.

be=O.1. The d-ifference in the two levels emph,asizes the

contnibuiion of the short range interactj-onsr below IOO mesh

unitse to the energy, and. fnon the graphs i-t can be seen that

this increases as the temperature is lovrered. In sevenal

calculations the Coulomb contr,ibution of intenactions witi'lin

0 to 5OO nesh units was calculated-, and- thi-s hacl a vafue

very nearly equal to the ilI.C. DISTN FN 1eve1.

The Debye-Hü.ckel theory is known to be inaccurate

when the d-ensity of the plasma is high, for then the Ínterionic
potential is appneciable compared- to the thermal- energye and

it has been f ound that concentnated. electrol-ytic solutions

show some propertles of crystalline siructure, 1n which

case the radial distribution function should oscillate, 1n

ccns+"rast to the D,H. form. To improve the D.I{. ttreory

for d.ense plasmas, and. obtain improved_ values for. the energy

levers, Mtfllen Lsl and. Gronwall g La Mere and. sand.ved. lø1,
expand.ed. tire grr(r) to higher terms before using eqlÞtion (3"1¡"

ffi- ["* 
o/To-e-u"rno]
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they noticed- that for a symmetnical plasma al-l the even tenms

d-rop out, and. hence such a plasma lvas more aceurately

clescribed by the D.H. methode but eve4 so as the d.ensity

wag increased. they found. appreciable ùiscrepancies wlth

the experirnental energies.

In the eases in thl s wonk, the D.H, theony r¡¡ould.

not be expected. to apply to t]¡,e lOaoK case, because of the

neutral particles present, and also it 1s a bad- approximation

for tlne ZxlOaoK case, because here there 1s at least a 1O/"

corr.ection in the energy using fonmul-ae derived by [6].

Hov,¡even, the coruection at 1.35x1o5oKis onry o.o3% a¡d- althougir

the plasma is fainly dense¡ nolv the thermal energy 1s

becoming very large¡ and- one would- eiçect the Debye-HÎickel

theory to applY reasonablY well.

t o V

A.A. Bnoylese whose papers ¡eviewing the method-s f our

obtaining rad-1al- d-istribution functions in fluid.s Yrere

mentioned- earl-iere has recently, witþ D. Car]ey¡ extended-

the most successful of these¡ the Convolution hypernettecl

chain (CHNC), Penkus-Yevick (pv) and Broyles-Sah]in (eS)

methods, to calculate the rad.ial d.istnibution functions

for long range forces [7]. Do Canley tB] applies the

teehniques in d.etail to a classieal- electron gas
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(i.., electrons considered- moving in a neutnalislng unifor.m

backgnourrd- of positlve charge), ard. presents d.istribution

functions f or various d-ensities ancl temperatüI€Se in terms

of a pararneten 0. For 1O4oK and- 1O'3e/ccs hls
1

0a57}T"K./(tter/ce)3 has a value of 3.7c and- at this value

he finds the raoial d-istrlbution f\;.nctions (f or l.ike

particle;s) given by the P.Y a]ld. B.s methods agree well¡

but disagnee with the D'H" and- CHNC methods., This

d.isagneement is enough to al-ter enerry values consideratolye

but the form of the d.istribution furrction f rom al-L methods

is veny similar, and. hence has not been dravør on the

graphs, the D.H being deerned- sufflcient. He finds no

osciln-atony behaviour of gy but notes later that pnelimlnary

resul-ts f or, 0:O.5 begin to show an oscillatory rratur.e f on

gy and. points out that as 0 becomes smallen solution of

the integral equations becomes mone d.iffieultr the comrergence

being sl-ower and- less stable.

HoS. Green tg] put f onward. a set of integnal

equations for plasmas to arbitrary accuracy¡ ard d.emonstrated-

that S¡n(n) was an approximate sol-utlon of these equations.

Recently Vil-Iars [tO] nas numericalJ-y solved. these equations

fon metall-ic plasnase and, published. the unl-ike rad.iaf

d-istribution functi ons so ob-r,ained.o For 10' 8 e/ec at

1O4oK he obtains a curve very similar to the D.H cufiroe
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but sligþtly d-isplaced, this being significant when cal-culating

Some of the thermodynamic variables. During the numerical

pnoced.r:re he fincLs that it is necessary to use a D.Il. tail

to the rad-ial- dlstribution function, that e(r) must also

be nenormalised, and that if this is done then the results

converge rapid.ly f or ternperatures of 1OzoK and- 106oK,

slorivly f or l OsoK¡ but d.iverge for 1 O4oK. Hoy,rever he

stil-1 publishres the results!

3.\ Sahar s Theorv

on the tLlermal- ionisation of gasege which he considers from

the view-point of chemical equilibria. Applying the 1aw

of Reactlon Is obanr in whlch he neplaces the entropy by

an expression involving the Bo1-tzmarrrr d.istributlon 1aw¡

he f inal-1y obtains an eqrzrtion f or the d-egree of ionisation

of the gâse This equati on has been used- extensively since

he proposed. it, and- has proved. reaoonably succ€ssfülr

Fon a hyd-rrogen gas d.ensity 1O1ge/cc, he pred.icts that

the d.egree of lonisati on cx (i.". number d-ensity lons/

number d-ensity of atoms originally in the gas) is 5%

at 1O4oK., and. approximately 90% at 2x1O4oK" Referning

to the basic cell- of 32 atoms used- in the Monte Carl-o

approache this means that fnom Sahats theory one might

expect one pain of particl-es aL 2x1)ao7Ç with the other
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30 partlcles existing as ionsr whereas aL 1O4oK one would-

expeet only two ions and. the othen 50 atoms to be existing

as 1! pairs. However, the Saha eqr:ation involves certain

approximat ionse ê. go it neglects excited- states¡ ârr ion

being either 1n its lowest bormd stater or in the continuumt

and. it also incl-udes thermoÖynamic assumptions. As no othen

Successful equations for the percentage ionisation of a gas

have been d.eveloped.e Sahars wonk provid.es the main basls for

comtrnrison on thi s point.

Fnom the tlieorles just pnesented- one migLrt expect

-uÏre fol-l-owing. At 1.35x1O5oK the rad.laI distribution
functlon agreed. wel-l witLr SOn(.r:) and that at this

tempenature complete ionisatlon existed. But at

zxlO4oK and 1O4oI< one might not be surpniseÖ if g*a(n)

differed signif icantly f rom qn(r)r âs at these temperatures

ionisatlon is not complete, and- the D.H. corrections are

1-ange.

L,ooking at Fig. 3.2 fon 2.35x1osoK it can be

seen that SOn(r) ard- S*a(r) d.iffen enor"mously, and. also

the eneng5r obtained. by the I\{.C. method- is quite d.ifferent

from the D,H. l-evel. From later cafculations 1t

became apparent that the main cause of such a discrepancy

is that, in spite of appearances, the system is not in its
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equilibrium state by the end of the run because the system

only comes to e quillbrium very sl-owiy. However, during

the search f on causes of the d-iscrepanClr several interesting

features cane to light. The energy peaks are closely

rel-ated. to parti-c1e movements, and- when unlike particles

appnoach, a sudd.en downward- peak appeârs¡ and. conversely.

the particles rarely come close togethene being randomly

d.ispersed. thoughout the vol-ume of the box. In the run

o1 75O iterations with do - 12d3 mesh unj-ts the partielase

movlng in a random wal-k, end up about 2OO mesh units from

where they startecl" Thus it seems that the computation

has not nun long enough for a cl-ose collisionr and. also

has not n;n l-ong enough to l-ose memory of the initial.

corìf iguration. However, these results may be useful

for obtaining inforrnation about i-rrevensibl-e pFocossese

as the system is in the pnocess of coning to equilibrium.

In fact the system can be consid-ened- as particles in

contact with a heat bathr ârd the particl-es observed f on

thein interactions ard- movemerrts. Then lf oSo Green llll
has shown that the stud.y of one particle ttrroughout sever-al

collisions (which woul-d- be a longer nun ttan the ones

completed-) is sufflcient to d-etenmine the transport

coefflcients for the system, and. so the results may be

applied- to this aspect, l\lternati.vely they could be

used- to obtain the tirne d-ependence of the rad.ial- d-istribution
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functions, and. once this is knov¡n, then \Ifang-Chang and.

Uhlenbeck's [1]+] approach used- to obtain the transport

coefficients. Such an exterrsion of these resul-ts

may be at'Lempted- at a. later date.

To rectify the errors in run 1, run 2 was made

at a l-owen temperattìIee where the statistics should- have

more i-nfluence, do was increased to 15^!-3 mesh units so

that more of conf iguration space eor-r-Id- be sanplecl, and.

the run Trias mad-e longer, starting from a configuration

obtained. from the enrJ. of run 1, but lvith two pairs. The

effect of increasing 8o can be not j-ced. fnom FI-G 3"3e where

the energy nc¡n¡ und-ergoes much larger fluctuations as the

particles are moved.; this may also be ¡mrtly due to

several- weak links being set up between partì-cles. The

avenage energy level now obtaineC agrees reasonably closely

with the D"Ii. level. Howevere looking at the rad-ial-

clistribution functions obtained- (¡'ig 3.1+) there is sti11

considerabl-e d-iscrepancy between the MC and- DH cu.trvese

though this discnepancy is now smal-ler. That the

d.iscrepancy has the same form may be d-ue to stanting

from a simil-ar initiat conflguration to run 1; note the

two pairs parted- quì-ckIy, The IfC curvee especially

of the unl-ike d-istribution function, is al-so rather raggede

which funplies a longen run still is need.ed-; and- tlri-s conclusion
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is strengthened- by the fact that tlpre have been no very

close eoll-isions. Because run 2 took consi-d.erable

computing time and- expense, it became evid.ent that a longer

run could- not be consid.ered. rrnl-ess the prograln WaS altered"

This meant the accuracy of the enerry calcul-ation must be

neduced.g but by an acceptable amount.

Run J vras mad.e r¡rith such alterationss at, a sligþtly

lov¿er temperature (which seemed- of interest s ince pairing

rnight occur), and. started. fron the final- conflguration of run

2. Fnom FIG 3.5 it can be seen that pairing¡ or very

l-ow energies, soon occurrede and there $/ere large fluctuations

as the pains came together or iumped apart, this being a

regular feature of the energy graphn In fact in the

resul-ts which have not been averaged. as in the enerry graphe

it can be seen that on some occasi-ons severaf palrs suddenly

split üpr coming together Some time later, and aS t'he rrrn

continues, the number of pains existing incneasese allowing

even largen fl-uctuations of enepggr However¡ after 6OOO

itenations the energy graph does not seem to have settl-ed

into an equilibrlum state, v¡here one would- expect occasional

pairing and- spl-itting up about a mean levef e so the radial

d-istribution functions will not be nepresentative of an

equilibrium state. Notice at the end. of the run

appnoxima.tely three pains are present on the average, whereas
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sahars theory sr-rggested 1! paÍns, also in run 2 there vìras no

palring lvhen Saha suggested 1 pain. A brief r"un at 10 soK

shov'¡ed. that at this temperature all particles remain pained-,

as Saha also pred.icts. This implies that perhaps

ionizati-on is sfigbtly more sud.d-en than Saha suggests, but

such an lmplication need.s to be venified- by a longer nun

at 1O4oK, so that equillbrium 1s reached.e and similar runs

at gxlOsoK and 1.5x1O4oK. This may be attempted. later if

sufficient computing fund.s are available. FIG 5.6 shows

the radial dlstribution funct j-ons for rt:",n 3, and although

the graphs are stil-l irnegularr' the general features are

clearer. Fon u¡like particles there is a peak ind.lcating

the d.efinite preference f or particles to pain, this being

follovr¡ed- by a tnough suggesting an absence of unl-ike particles,

before the cunve neturns to something l1ke the average value.

Such a curve 1f fulIy verifiedr mâV ind.icate that some form

of long range stnrcture is being set up in the plasma.

The structure is obviously not nearly as precise as for.

an lonic crystal¡ but 1t may well enhance the theony of
Plasma Oscill-ations as postulated- by Bohm and Pines hSl,
who Ltave shown that collective excitations occut for an

oscill-atj.on wavelength greater than the Debye shield.ing

d-istance. As b is snal-l- for a row-tempenature plasma

of hlgþ d,ens ityr one woul-d. expect pÌasma oscillati ons
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panticularl-y in such pl-asmas. The Debye shield.ing length

in FIG 3.6 occurs iust before the minimum of the unlike

rad-ial Cistribution ftnction, and- so woul-d. fit in with

the above srlggestion.

The l1ke d.istribution function is novÍ becoming

more like the D.If. curver but has st111 not managed- to

fully fill-in the d-epression at about r=20O, which has

been present 1n al-l lruns e arr1 is rnost pnobably a f eature

of the initial configuration. Further, the d.epression

1n the unl-ike curve has become more marked- uuith the

longer runs, ard- enhances the concept that in equllibnium

oscillation appears in the g(r).

3.6 Concl-usi ons

The Monte Carl-o method- of calculating radial

d.istribution functions in a plasma is a feasible approach

1f slgnif icant computing time is availabl-e ' Compared. to

other method-s it has the advantage of giving the percentage

lonisatlon if the plasma is not f.1rlly ionised¡ and. this is

especially useful for dense plasmas. The results indicate

that at least IOeOOO iteratlons must be compl-eted- before

the system can be consj-d,ened- near to 1ts equilibri-um

state, and_ for a baclly chosen starting eonfigurationt

the run vuould- need. to be considerably lorger. This
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being the case most emphasis in thls work fal1s on the
results fnom run 5 (at 1O4oK with tlre number d.ensity

of lOtee/ee), which ind.icates that the Saha eqr:ation

for. tLte d.egnee of ionisation in a plasnra is remarkably

accr:rater in that it pred-icts ionisation occuns between

1O4oK and. 2x1O4q<. the d.lstrlbution functiorsf rom

n4î 3, _igp-Lf, and. the enphasis on thi s v¡ord. must be

stressed., tlÐt at in the negion of this electron

d.ensity oscillation appears in the rad-ia1 distnibutlon

ftnctions, However, for more conclusive results a

longer run is needed, so the enengy of the system ean

settle lnto an equilibniun patterie, and. stead.y-state

rad.ial d.istnibution functi ons obtained..
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IV COI,{PUT ON

îhese explanatory notes refen closel.v to the l-isting
glven in section [.2. rt is a very fu]I listing, incorporating
the f eatunes of several prograrnmes which cou1d. be run slightly
more economically if run individ.ually; for exanple a rl-oad.err

program carr be used to initially l-oad. the d.atae and. after a few

calcul-ations put al-l the required. information on tape, then a

trt¿nnerr program just read-s off the tape, and continues the

calculation. Brackets anound- the listing mean that this part
of the program is not essential to the tnlulnerr. At the eentre

of the listing, an alternative l-istlng is given on the right
hand sid.e, this second listing is much faster than the left
hand- sid-er but at the sarne time is less accurate¡ though speed.

is more important, as conclud.ed_ in the results.
The listlng l¡/ill- now be d.iscussed- in d-etail. Having

d.inensionecl the particle coord.inates, the palring energy-d-istance

matrlxr and. the radial ind.ex total-s, the control varl.abl-es used.

in mountirrg tapes ancL load.ing d-ata are räad in. (tne speeifie
natune of each vaniable is given in the symbor tabley section

4.3). The nequired. tapes are then loacl-ed, and. one of thnee

met'Lrod.s can be used. to initlall-y speclfy the state of tlæ systeno

Finst¡ 625 to L¡J, the coord.inates of the particl_es and the

pairlng energy o.istance matrlx can be read- in by a DO ]oop, and
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as the program goes through a few iteratious¡ the pairing-energy

matrix w111 assume its corrc¿ct value. Second.lye 6Zl to 619s

a specific record. compj-led in some previous run may be read- off

the tape ancl the calcul-ation s¡arted- from thls point. Thircll.y

619 to 460e a v/hole section of calculation may be stoned. on tape

by first uroving the calculation fnom another tape ancl restarting

the calculation from the l-ast record. read. This el-aborate

procedure is necessary because on many computers the read- ancl

wnite head.s can overlap, and. it is onl-y safe to readr 0R writee

on any one tape, otherwise thene is a chance of overwriting

sone of the data which has just been read. this stage is only

used. if it 1s required- to know d-etailed movements of the system¡

for it is expensive in time and- tape space otherwise. Statemen!

l¡O0 provid-es a test to ensure the correct tape record- has been

read. From 4O9 the proguam d.ecid.es whether to zero the pair

d-istribution ind-lces or whether to leave themy âs the cumulative

total- for tlæ complete run may be requirecl. The provision fcn

continuaticn runs is hocessâFy¡ as a nrn of 1000 accurate

iterations takes about five hours on a neasonably fast computen,

such as the I.B.I{. 7O9O. Finally before launching into the

main calculation, a check is mad-e, on both on-l-ine and. off-line

printers, that the expected variables d-efining the stantingç

configuration for thl-is lõLlnr have been correctly storecl; and.

several d.ata cards are read. in, overvrriting those read. from the
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tape 1f necessary. During any one run these variabJ-es

reinain essentially the sâD€r

The main D0 loop controlllng the number of majon

interations compl-eted. goes fron 91 to 591 . the top part

of this nested. DO, 91 to 33 zeroes the cel1- energy to be

cal-cul-ated-, and- restarts the calculation at the number one

partlcle; while the l-atter part of the loop 84 to 591

d-etermines iuhether output should. be pninteo, written on tape,

or ignored, it also ensures thrat if there is output that Ít

is presented. in the coruect formo An IF (SntuSg SWITCH,I)

1s also included- to enable an openaton to terminate the

prograrn at any time desinecl. A second. ma jon D0 loop starts

at 33 ano goes to B4r and. effectlvely sums over k in formul-ae

(2.7)" ït consid.ers trre i<th partlcle in the main ce1le and.

33-30 decj-d-es whether it is a pnoton or an el-ectrone (particles;

'l to 16 are protons, 17 to 1Z are electrons) and then zeroes

the temporary 6TE\ and. p ermanent (ne) energies calcul-ated. f or

each partlcJ-e in the loop. By the time the l_atter part of

the loop 29 to Bl+ has been reaehed-, llTE and_ EP associated_

with the t th ptrtlcle have been calculated, and the pnobability

of the system going to the temporar¡y configuration with the k
particle in a new position is evaluated" A rand.om number

makes this d.ecision. If EP is pnefenred-, the permanent

coord.lna,tes are kept, vrhereas if the d_ecision is to move the
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thk particle to a nevr position rvith energy ETE9 then the

coondinates of this new position are retained.r ard. the

new pair d,i stances and. energies are put into the pairing

enerry-ôistanee matnix to replaee tLre previous ones. As

the configuration has now been d-ecid.ed.e the pairing d.ì-stances

betv¡een the tcth panticle and. all panticles in the zero cel-l

are add.ed- to the radial d-istribution functions f or' like ffi(M)

and unlitce lt¡U(n,I) pairing distances. This is d.one as fo11ows2

say an unlike pantlele is between 276 and. 277 mesh units from

the kth particJ-e under consid-eration¡ therr a 1 is stored 1n

the cumul-ative nad.1al d.istance ind.ex labell-ed. MU(277). Thus

each time a i<th particle is consid.erede 16 units are stored-

1n unlike ind.icese and. onJ-y 15 in the like indicesr sinee the

t th prnticle d-oes not interact wlth itself " If a pairing

distance is beyond. lOO mesh unltse it is stored. 1n It{U(fOO¡

or MI,(5OO) a"pending on the ty-¡e of panticle, A thind. DO

loop within the nest goes from JO to 29. The latter part

of this loopt 9l+ to 29 is used. to decid.e whether the caleul-ation

just eompleted computed EP, in which case I\TDEL = -1 and. the

t<th particle must be moved. by a nand.om amount t, on whether.

ETE was computed-, in which case eontrol passes out of this
D0 loopo The random numbers Ç ane generated. by the

program 1tse1f 101 to 1O2e.rrA u-zuf f discussion of the

methocl Ís given in sectÍon l+.1+" The rand.om numbers
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generated- on (Ort) mu1t1p1y an absolute d-isplacement A\-de

and- NA] is subtracted- (to ensure that the particles can move

fonward or baclcvr¡and.) before being ad-d.ed- to the oniginal

coord-inates of trle 1<th particle. These new coord-inates

of tfre tth partlcle are then used.e by send.ing control back

to 3ot to calculate the temporary energy of trre tth partiel-e.

The fourth DO loop h to 94t effectively carries

out the sum over, k' (=x¡) in fonmulae (2.7). If the l-oop is
calcuJ-ating the permanent eners/ of a particle k (= K), 1t only

need.s to ad-d the correct interaction energies fnom the

paining energy-C.j.stance natrlx to obtain EP¡ and. it d.oes

this by consid-ering the KD particles one at a tlmee pÍcks

out the interaction enerry K-IO' then passes on to obtain

energy K-KD+1 etco, and. ad.ding a1l- the contributÍons gives

EP. However, 1f tne tth particJ-e has just been moved, ard"

ETE is ttre enengy to be calculated., then Ít will be necessany

to calculate the new pairing energies and. distances between

K and- the KDrs for this new configuration. On consld.enlng

a neïv KD particle, the first d.eclsion is whether the

lnteracting partlcles K and. I{X are l-ike (WQ¡ = 1) or unlike

(NeO - -'l ). the eell index NL is set to zeroe as are the

partial- energy total-s SUMHD ar-d- SUMEN. . Due to the accuracy

consid.erations of (ZÕ), ulhene it uias shown that the expansion

over le the cell- number, need- only be conputed. fon 1t= -1rOr1;
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1¡ = -1 eOel; Is = -1 eoel; the coond.iriates of the interacting

K and- I(D are flrst adjusted- to obtain the most impor.tant

interactions in this range. For example eonsider f ig lr.1

ïuith K at 10O in
the zero celI,
and. KD at

9OO. fnon

computati onal

punposes fixed
point arithmetic

I'ig 4.1 To ilfustrate the rnethod_ ofis used.r as it is adjusting the particle
eoorclinates for the X axiso

much faster ]. Then

as the program proced-es to calculate the intenactÍon energy

and d-istance between K and- Io, it wilr f irst considen ttie
j-nteraction between K anct KD in celr -1, the d-istance being

2oo, rt next consid-ers the zepo cefr-e where K and KD are

Boo units apart, and- then cell +i whene K and. KD are l Boo

units apart. Hou¡ever this last interactlon is not as

lmportant as the interactlon between K and_ the KD in cell
-2, where the separation is onlylzoo units, Thus to take
account of the most important interactions onlyr the following
d-evice is u.sed.. the d-istance vrith KD in the zero cell
x(KD)-x(r)-2ooo=NXr is calculated.¡ and. if tLris NXT is less
than -15ooe 1000 is ad.d.ed-. so in the above ease N)o-

9OO-1OO-20O0= -12OO, and as this is greaten than -'l5OO, it

Y

-2 -1

-1 000

ooo 1

0 '1000 2000 ¡¿
J!

KÐ
a

KD
a

K
a

KD
a

KD
O
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is retained. as the f irst lnteraction d-istance. The next

will be -20O, the next BOO' these being the three nequirecl.

A sfunilar proced.une is adopte,l for the Y alld Z eoord-inatest

and. the overall effect is to centnalise the K particle in

the lattice, so the optimum mr.mber of interactions are

incfud.ed. NOTE.The interaction energy between K and KD

is the sum energy of several interactions, in fact the

interactions between Kwlth acrjusted. coorclinates and- the KD

1n the -1 ee11, the KD in the 0 cellr and. the KD in the +1

ce}l¡ and- simll-arl-y for cel1s in the Y and Z d-irections;

whlte the pairing d.istance 'betvreen K and KDis the d.istance

between the ad-justed- K particle and- the nearest KD particle

only, which is 1n the zero ce1lo

the summation over the cell-s is done by looping

fnom statement 12 to 35. The alternative program given

for this looping is much faster because only one cell- need-

be consid-ened., whlch as wel-l as exclucling many cal-cul-ations

of intenaction energvr also removes the use of ce1l indicese

howevere as noted. in 2"3t it is much less accu-nate. As it

is similar to the mone eomplete llstlng, onJ-y the latter will

be d.iscussed. The cell- index NL is started fnom Oe whlch

repnesents 1¡=12-1s=-l and. has a val-ue 1 wiæn 1r=0, Iz-!t--I

etc. ; the zeyo cel lr 1f =12=1s=0¡ occurs when NL=1Je ancl th e

final eel-lr f l-1 z=l-s=1 when NL=26. The second. energy tenm
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EN of fonmula (2.7) needs to be eval-uated only in thre zercr

cel1, aud is computed- by2Oto37 if this is ttæ case, unl-ess

K=KD when the evaluation ean be u¡r'itten in the simplen

fonm of 22. the. first energy ternrhoniover¡may receive

contributions from other cel1s. To finC the contnibutlon

from interaction between K and- the KD in the first cel1t

the square of the d.istance between K and. that 10 is

calculated. (tl), if this is gneater LTøn A2 the contnibution

wil-l be negliglble (See 2.3 for d.etermina',,ion of A2) and-

control passed immed"iately tc the next cel} via 1l+; but if

the square of the d-istanee is less tLwn A2 there will- be

a significant contrÍbution HD as cal-culated in 21 . (:Uote

that cal-culation of ÏID uses a subroutine, ERRF(D) ard. thr-is

will- be d- jscussed in 4.4). TLre HD contnibutions ane ad-d-ecl

for the 27 eeI1s to obtain SUM l{D¡vrhich is the first tenm

part of the lnteraction energy betv¿een I( and the KD. The

smafl- section 26 to 24c only used- for the zero cel1e stores

the pairlng d-istanee betvreen K ancl the nearest KD partlcle,

which j-s in the zero cell- after the coorclinate adjustment

macle previously; it second-ly <:nsures that if thls d.istance

becomes smaller than the potential- well cut-off AO (see 2"2d')

then the distance is replaceC by A0 before the energ5r

contnibuti on is cal cr:.J-ated. Af ten the energy calcula tion

the cel-I ind-ex increases¡ and. a COI\,ÏPIfIED G0 TO statement send.s
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control to the next cell, and- the next energy contrlbution

is cal-cuIa.ted. After all th= contributions from the KDrs

in each cell- have been summed-, the interaction energy ET(IO)

between the Nth an¿ lçOth partlcle is obtained (¡g) by add.ing

the first and- second- terms together¡ ârrd- putting them in

the correct units. [later ürfs ET(I<D) is stored via 36 in

the pairlng energy-clistance matrix PE1 (l(rx¡) if the

configuration becomes acceptel]. Control then passes to

9l+ an¿ the next KD particle and- images interacting with the

Kth pa"ticle are consÌd-ered-. îhus aS the progrann proceeds

out through the nested loopss it d-ecid.es on the posltion of the

Kth purticle, then sums over the K particl-es untir all- the

K particles 1n the unit cell have beeir cørsid-eredr ancl the

srlrn given i-n equation (2"7) is cornpleted- at 156t and 1s

prlnted. out. At centain stages, rvhen the number of itenations

equals NUMB5, a fuIl print out of the pairinEç-energy d.istance

matrix and. the pair distrlbution cumulative totals is obtainecl-"

Hovrevere the time f or one accurate iteration is slow, about

one third. of a ninute, thus output must be printed- about

every 25 itenatiorrs, so in case of machine failune not

too much calculati on is lost. Finally if 'the IF SENSE S\rvITCIl

J.s'one or 1f the number of iterations (tCUMgt) iu gneater than

NUMB2T control goes out of the programe and- it then writes

the final- values of nearl-y a1l- variables on tape and. pnintere



l+.1o

and. finishes, Ad.equate storage f aeilities are availabl-e

in the 7O9O eomputer.

A fer¡¡ comrnents are rrobably in order concenning the

d.ata d-eck, a typical example of which is given d-irectly aften

the l-isting. The first car,l eortains the numbers of the

tape units to be used, and. a control variable clecj-d.ing the

nunrber of tapes to be used, while the second. card. contains

B fixed- polnt numbers a]l concenned v¡ith the j.nput d.ata to

correctly start the g:n. Inen 32 cands are listed-¡ giving

the coord-inates of 32 particlese which are only read in at

the very commerÌcement of a run li¡hen n'o tape input is availablee

otherwise they can be l-eft out. iust before the maln

computation starts, other d-ata card-sy llsüally the third., f ourth

flfth and sixthe are read- in. The thi rd. c ontains 9 fixed.

point numbers mainly concerned- with the output of the datar

vrhll-e the founth and- fifth contain floating point constants

associatecl wlth temperaturee o-ensityr conversion f actorst

cut-off e and. the initial- rand-om numbenn The sixth card-

contains J floating point variables introd-ucecl when the

alternative f ast progran tvas made upy ancl are iust f\-l,nctions

of variabl-es used- in the sl-oTver listing. During a particular

Fllne these l-ast three card-s remain the same¡ except for the

random number, ufrrich is read- in even on continr:.atiorl rllrJSe

to ensurc that the random sequence continues from the point
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left off. Hence there are 6 main input card-sr 3 of which

al-ter every continuation run, a¡d. thnee which remain constant

except fon the random nuriber. At the ccnmercement of a neu¡

ru¡ the whole 6 cards are subject to change, in this case a

caref\-rI watch nr¡^st also be kept on DIMEIISION statements¡ and

the climension of some of tlæ outputr âs variation in these

is impossible without necomplling. FinalJ-y Flg h.2 gives the

ftow chant appropriate to the listlng.
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IE5 616 UNI OF ADEL BARKER i"lATHS PHYSICS C 9ETXgOT PX

XEA
EXEC TII.4E 7 iVI¡J
LINEs (3Û00)
CARDS COLUI'1N
DI I4ENSIONNX (32 ) rNY IZZ ) rNZ (321 t PEl (32'.32 ) 'TD( 32) tEr (32)
D I ¡lENSI Oi\il4L ( 500 ) r ivlu ( 5c0 )

READ I NPUT TAPE 2 ¡ 221 I JTAPE : KTAPE : LTAPE I MTAPE I NU[4I2
R EAD I NpUTTAP E 2, 2 21, NUMB g ç iriUl'186 : friUMBg r NA 2 r NUi'48 I I N Uþ18¿i r Nul"lB 7 r NA4

FCR¡4AT (1415 )

PRil{I563riTAPE
FORt"ljAT ( 1X3 tH LOAD U5I TAPE BARKER NO. B ON ¡ I3 r ZgHAND PRESS START

]Ì\IHEN READY /////)
PAUSE
REl/JIND JTAPE
CALL DNSHI ( JTAPE )

I F (NUN112\ 564s564¡565
PR I Nf 562 r KTAPE
FORMAT(tX¡t¡ LOAD UtiI TAPE NILSSON No.3 ONrI3r2gHAND PRESS START

l'dHEf.l READY /////l
PAUSE
REU/1¡,lD KTAPE
CALL DNSHI ( KTAPE )

IF(NUMBgl625,6t9¡62r
DO17I=i:NA2
READiI\IPUTTAPE2)44:i\X( I );jTIY( I ) INZ( I )

FORI\4AT ( 3I4 )

DO43K=l;NA2
DO4?KD= 1 : NA2
IF(K-KD)629ç629ç630
pEl(KDe(,)=f.0
PE1(KrK¡¡=9.1
GC TO43
PE1(K:K¡)=1.0
pEl(KD:K)=0.1_
C0NT I NIU 5
GO TO40 0

READTAPELTAPE I NUIVìB 1

I F ( NUI'i3 1-NUl'486 ) 6 2I ¡ 522 ç 62I
BACKSPACE LTAPE
READ TAPELTAPE:NUi''lB1r((PE1(KrKD)rK=1r32)¡KD=I¡32) ;(NX(I)rI--L¡32)t

1 ( NY ( I ) I I =L ç32) I ( NZ ( I ) : i =Ls32 ) : ( MtJ ( M ) rM=I ç5AO ) I ( þ1L ( M) rM=l I 500 ) I
2NA1 r NA2 rNA3 I PDL: A I r A 2 t A4: A0 :3ETA; A 3 ¡-ó4 r ts 6 r ts7 r R; AB I ENY

G0Ï040c
DO46 C¡tjUf,lT = 1 r N Ul.4 B 9
READ TAPELTAPE r NU|'IB1 r ( ( Ptl ( K r KD ) rK=1 r 32) çKD=1 232) t ( NX ( I ) r I =1 t32) ç

i ( NY ( I ) : I --I t32) , (NZ ( I ) r I=1 t32) ¡ ( i'4U ( l"i) rf'4=i r50O ) r ( I"lL (14 ) rif=l r 5C0 ) r
2NA1 : NA2 rl',143 r PDL: Al r A2 r A4 r AC r BETA ¡ A3'.ó4 r36: B7 r R rAB I ENY

22!

563

564
562

565
625

I1
44

629

õ 5\)

43

A) i

a¿¿

6r9
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+AO bJRITETApEivITApETNUMBIT ( (PE1(KrKD) rK=1r 32) tKD=L¡32) , (NX( I ) ri=Lt32I'

l(Ny( I )r i =Iç32) ¡(Nz( I ): i =IsZ2) r (þ1U1¡'4) rM=1r5OO), (ML(M) rM=ir50O) r

2NA1 I NA2 I NA3 : PDL I A 1:A 2t A4 e '{o I BETA I A 3 ¡b4 rB ó I B7 r R I A8 I ENY

4OO iF (NUMB1-NUMB4 )401 r +09 ;+OI
409 IF(NuM87 ) 191 r 29I¡29I
191 DO10üM=1 rNA4

l"'ll(M)=0
100 MU(M)=0
)St pRINT!g4rNUMBtrNX(30 ) rNY( aO ) rilZ(3ù) rMU( 25) t¡4L(495 ) r

1PE1 ( I r3O) rPEl ( 31 r 1 ) ;ENY
WR I TEOUTPUITAP E3 ¡ 584r NUMBl r NX ( 30 ) rNY ( 30 ) rNZ ( 30 ) I i'|b ( 25 ) I l\4L ( 495 ) ¡

1PE1 ( 1r3O) ¡PEI ( 31rl ) rENY
584 FORMAT ( 615 ¡3FL4.8 I

READ I NpUTTApE 2 ¡ 221 r NUViBI:NUMB2 ; Nui4B3 : NuMB5 : NUM 10: NA I I NA3 rMUC I NRN

621 READINPUTTAPE 2 t11 rA0 TBETATA3 ¡84>36 ç31
-t-7 FORMAT (óF12.8 )

READI NPUTTAPE 2¡2211 I AJ IPDL I A2IA4 IA8 IR
22IT FORMAT ( 4F L2.3 ç27I2.9 )

READ I NPUTTAPE 2;?9 1 I SAO I ENC: TNAS

29r FORMAT ( 3F14.9 )

ENT= ( 3 . O* ( 1 .0+86 ) ) +37
9I ENY=0.

NUMBl=NUMBI+1
K=0

33 K=K*l
IF(K-NA1)50¡5O¡5I

90 NQ=1
GCTO5 5

5I NQ=-1
55 ETE=0.

rñ-^
LT -V '
NDEL=-1

3A KD=0
TSMEN=0.
TSMHD= 0 .

4 KD=KD+I
HD=0.
IF(NDEL)48 ç46;46

46 IF ( KD-NAIl52ç52t53
52 NQD=NQ

GOTO54
53 NQD=-NQ
54 NL=0

SUMHD= 0 .
SUI''jEN= 0 .
NXT=NX ( KD ) -NX ( K) -2OOO

1B IF(NXT+150O)5ç6ç6
5 NXT=NXT+1000

GOTO 1 B

6 NYT=NY ( KD )-NY (K )-2OOO
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I
I F (NYT+t¡1,,0 )B ;9 >9
NYT=l'iYT+iü0u
GO TO7
NZT=NZ (KD ) -i\iz (K )-2OOO
IF(NZT+I5OO)TI¡T2>L2
NZT=NZT+i0Cu
G0To10
XT=l'lXT -r
YT=NYT
? T-Nt7 -r
Lt-ttLt

I F ( NL-13 ) 23 r25 ¡23
EN=0.
GO TO3 7
IF(K-KD120t22¡20
D=COSF ( B4*XT )

E=COSF (84)rYT )

F=CO5F (34++71 ¡

B=E+F
C= E-rF
EN=D+B+ ( D*B+C ) ìê86+D.x.CxB7
D S = X T* XT +Y T -x-Y T+Z f ., ZT
iF(DS-42)13r114r1-14
D=SQRTF ( DS )

IF(liL-13)21t26ç2I
DT=D+TNA5
IF(DT-PDL)74¡74s58
DT=500. O

IF(NAD)1I¡1It-72
TD(KD)=-DT
GCTO73
TD(KD)=DT
IF(D-A0124t24tZl
D=40
D=D/ AI
HD=(1.0-fRRF(Dl]l/D
GO Toó L)

EN=ENT
HD=0.
TD(KD)=1.0
HD=C.
I F (NQD ) 16 ' 15 ¡15
SUMHD= SUMHD+HD
SUMEN= SUM EN+EN
GOTO I 4
SUMH D=SUMHD_HD
SUMEN= SUM EN _EN

NL=NL+1
GOTO ( I r I r Z> LçL ¡2 >LsI ¡3 >

NXT=NXT+i00U
coTo),2

o

10
1I

T?

23

2'
2A

37

I3

26

qa

74
1I

12
aal)

24
2T

22

114
ó0
I5

T6

14

I
I

I

T2

22

¿U

¿t. | ¿l

XT =NXT
YT=NYT
L I =i\tL I

i F ( K-KD | 2a ;22 t2A
EN=El\T
TD(KD)=I.O
coÏo35
D=COSF (B4J.XT )

E=COSF (84ìtYT )

F=COSF ('ò4x'Zf I

B= E+F
- _ - )L-L-t^r
E¡=!+b+ ( D-FB+C )x-ij$+)Y,.Cx'i7
i F (NOD T T2T,L3-I ;T31
LN=-t l\
D5=XTx XT+Y T xY T+ZT *Z T

D=5QRTF ( DS )

DT-D+1.0
i F ( DT-PDL l14 t14;58
DT=5C.ù.0
IF(NAD)1L¡-ll¡12
TD(KD)=-DT
GOT 01 3
TD(KD)=DT
IF(uS-A2)Z>¡35¡35
IF(DS-SAv)24¡24¡2i
D=AO
D=D/Al
HD=(I.Ü-ERRF(Ù))/)
I F (NAD ) 16 ¡V5 ¡35
HD=-HD

)1
31

5B
14
17

72
13
25
24
2L

I6
-

¡I t2¡L ¡l t2 r i- r l- r 3 ti¡I¡2tI sI s2 ¡! ¡I' 35 ) rl'lL



2 NXT=NXT-20C0
NYT=NYT+10CC)
GOTOl 2

3 NXT=NXT-2000
NYT=NYT-2000
NZT=llZT+1000
G0To12

+.15

to3 373

35

4B
62

ET ( KD ) =ASXSUMHD+A3*SUI'IEN
ETE=ETE+ET ( KD )

TSMEN=TSMEN+EN*43
TSt\lHD=TSMHD+HDJËAB
G0 T094
IF(K-KD)62¡62ç63
Ep=EP+Pg1(KrKD)
GOTC94
EP=EP+PE1(KOrK)
IF(KD-NA2)4t34ç34
iF(NDEL)28¡28;29
NXP=NX ( K )

NYP=NY ( K )

NZP=NZ ( K )

NUM=1
R=(129..'tR)+.78 86151346T tol NeN' lrrirNßN)'r
i,,riì=x I erÊ'1" t.rcN
RN=NR I ÈcRfEFt/tgloll.
R=R-RN J
GCTO (IA2> 103:104r105) rNUM
N XD= A4-xR
NUM= 2
G0TC101
N Y D=A4XR
NUfi'l= 3
GOTOLC1
NZD=A4xR
NX (K ¡ =\¡P+[JXD-NA3
NY(K)=NYP+NYD-NA3
NZ(K)=NZP+NZD-NA3
NDEL=ND 7L+Z
GOTO30
pET=L.O/ ( 1.0+EXPF ( BETAx( ETE-EP ) ) )

NUM= 4
G0T0101
IF(R-PET)31 ¡3Iç32
ENY=ENY+EP-ENC
NX(K)=NXP
NY(K)=NYP
NZ(K)=NZP
coÏ085
ENY =ENY+E T E-E NC

DO4Cç¡= 1 I NA2

63
9+
34

101

ro2

103

104

29

105
5¿

3I



38

36

39
40
85

4.t6
IF(K-KDl36¡38r3E
D=TD ( KD )

E=ET ( KD )

GOTO39
D=Eï ( KD I

E=TD ( KD I
PE1(K:KD)=D
PE1(KD:K)=E
DOB4KD=1rNA2
IF(KD-K)83t84;86
NQ= K

NQD= KD

coTo87
NQ= KD

NQD= K

N1= ( PEI ( NQ r NQD ) /Ï¡lA5 )

IF(M)81rBIt82
1"1 = - l"'l

l,lu (M ) =MU ( 1,1) +l
GOTO84 ù

ML (t'i ) =ii'lL ( ¡,1 ) +I
CONTINUE
i F ( NUMts1-NUiqB5 t 5t3 ç 512 ¡513
WR i T TOUTPUT TAP 13 ¡ 5B2I ç NUMB I r K r NXD r NYD r NZD r ETE r EP r PET r R r ENY ¡ TSMEN,

1 T SMHD

FOR|"ìAT ( 1X5 I 4 c1 I I4.9 )

IF(K-NA2)3?r156çr56
PRINT5BTTNUMBITENY
FORMAT(T5'F16.8)
i F (NUl'481-NUMB5 )40 2t4A3 t4Q2
NUMB 5 =N UtvlB 5 +NUi"1B 3
tVR I TEOUTPUTTAP E3 ¡582 rNUMB I I ENY
F0RMAT ( 1H1/1XI 5 r F16.8 )

KJ=1
KF=ö

'^JRI 
TE OUTPUT TAPE 3:I54r ( ( PEl ( Kr I ) : K=KJ rKF ) I I=I¡32)

FORI'1AT ( 1X8F 14. B )

I F ( KF-3 2) 755 ; I59 ç 159
KJ = KJ+B
KF = KF+8
I^/R I TEOUTPUTTAPE3 ¡II55 ¡NUMB1
FORMAT(1H1/1XI5)
GOï0160
iìlR I TEOUTPUTTAPE 3 ¡ LI59 ç I I ¡ I= I c32 )

FORMAT ( t¡I/LXt32I4)
WRITEOUTPUTTAPE3t153T(i\,iX(i):i=Is32)r(NY(i)rI=I;32)r(NZ(I);I=Iç32)
FORMAT ( IX3214)
WRITE OUTPUT TAPE 3¡I58I (MU(M) IM=1:MUC)
i{RITE OUTPUT TAPI 3tl5B: (ML(M):M=l-rMUC)
FORMAT (TX2515)

B3

86

87

81

82
84

5r2

5B2T
513
156
qo1

443

582

160
154

r55

TT55

159
II59

r53

158



402 I F ( NUi"lB1-NUl¡ts2 ) 19l :411 r4L 1

59L IF (NUMi0) 4ùBr40E;91

,t.17

408 l{RiTËTAPEÌV1TAPE'Nl.,l"lij1r ( (PE1(K¡KD)rK=1t32) cKD=1¡32) t (NX(l ):I=l_ ç32) t
i(r\Y( i )rI=I¡32) t{îrZ( I )rI=1r32), (MU(M)'M=Is5ûC), (i,4L(M)rlvi=1>5AA) ¡
2NA1 rliA2 rNA3 r PDL r AI t A2 rA4: A0 r BETA r A3 r i34 r3ó r ijT r R rAg r INy

GO TO9 1
411 'ûiRI TETAPEf-4TAPE rf{Ui{B1r ( (FEI { KrKD) rK=t:32) tKD=It32) : (NX ( I ) r i =I>32) ç1(NlY(I)rJ=1s32I¡(NZ( I)rI=It32)r(ivj.J(lvr)rþ1=I;5C'j)ril,1l(j\1)ri4=1r5OO):

2NA 1 ; I'iA2 r NA3 r PDL: A i r A 2 ¡ A4: A0 r tsETA r A 3 t84 r B6 r B7 r R r Ag r ENy
l^iR I T EOUIPUT IA P E3 t II5'7 r J TAP E : KTAPf r LTAP E r i'lTAP E

1157 FORPIAT(lXlüH SARKeR Ol{ I3rllH i!ILSSOi\i Oil I3t5N READ I3r6H wRITEI3)
401 WRITE0UTPUTTA?83¡150rNUMi38¡luul"1tJ6rl'iUl"1o9ri'jA2rliUMol;NUi,'1È4rNUlvl37rNA4
150 FCRþ1AT ( lXl4HIDENTIFICATION/1XI4T5 I

lVR i ÏE0uTP uT ÏAP 13 ¡ 2222 > NJi¡tii I : NUi'',i¡2 r i\rrMts 3 ¡ Nui"1B5 r NUM 10 r r\A1 r i\A3 r i\A5
2222 FORI"lAT ( 1X l4 i 5 )

i¡JR I TiOUTPUTTAPE3 ç 15 i : A0 I iIETA ¡ l+3 ¡34 çts6 cJ7
151 FORI\IAT ( lXl0HIhìPUT DATA/IX7FI4.9 )

'dRI TEOUTPUTTRPT 3 ¡T521 ATTPDL r A2I A4IA8 IR
T52 FORMAT ( 1X4FL2.3 >2FT2.9 )

r¡rR I T EOUTP UT TAP E? > 12 9l r SA0 r ENC ' T NA5
I29l F0Ri!1AT (1X3F14.9 )

RE\,JIND JTAPE
PRINTSI-TTJTAPE

5N FORMAT(TX¡+¡ REIUìOVE tJi'{I TAPT BARKE¡I IiO.8 FROM¡I3I ///I
REI\] I ND K TAP E

PRINT 51ó IKTAPE
5I6 FORMAT(rX34n REi'1OVE UNI TAPE I'lILSSCNl\io.3 FROi"lrt3r ///t

CALL EX I T
ENI ñLt\u

)5 XrG 7 '(-)+lP *PP I A
*J 7t!1¡rrW 1 99t(4 tg t5 t1 -1 9gt(4 79 t5 t9tl4 r9 tlt(-l t9t(G414 rG4rA
uoJ-lt (X.Érî-*)rN 5t(1r(7r(64t9t(-4t4lc4tl r(7r(91(-114 14 11 t(Et(4 7-t(G47 1 A
xJ7( )PP)O O 'C7 '7 8ó 79t (7t (7 15494 75 ' (((XBrX( 'X((( ((X)(P ? xL( O A



{- DATA
Ll I1
-20

496 -90 I23
732 237 382
812 -40 22I

1110 281 425
33I 600 184
59C 896 347
401 648 -46
992 940 323
401 205 591
589 364 14I
849 99 ó 18

1099 38A BC5
445 561 612
809 848 910
891 114 683

1136 901 913
398 226 2r4
650 526 4r2
884 250 64

LIB? 485 295
383 170 171
626 EBz 378
826 594 I59
984 833 281
2r9 i31 620
532 351 92t
691 146 1L5
BBl 3291259
305 553 944
562 8021052
885 ?83 1 ,a2

rI37 622 788
09

4 .2A
31A.71A

11.64

1'7ll t7
3?

+1
0 00-250ü

4.tB

1 5'Jv27,o32
. c06 28318 . 2582429

31,000 I.35û000c00

2 I +2 16 15
.0ó6310 .A822AI28

50ü.000 1ü0000'i.000
I.91 4663AA0 1 .0

.088gL9Ig
.235 4r1 8 62
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ti.< Svm¡ct ra¡te

AO Input Data. this potential rvell- cut-off (see Z.Z(a))

d.epend-s on the d.ensity being consid.ered., and f on

1Ot 8e/ec it has a value of rOOh2 cell- units (see

Appenclix 1). Used. in 73 it ensures two particles
never come c l-oser than AO, at least f on energy

computati on Burpos€s¡

Input Data. Converts the distance between K and. KD

in mesh unlts to cel-1 units and at the sare time

multiplies by R (1n invense ceII units). Hence

it has in 21 a value 1OO./R cell uni-ts.

ïnput Data. Controls the d_istance so_uared_ at which the

contribution of the first term to the energy may be

neglectecl via the rF statement near j7. rts magnitucre

j.s a critical- facton in the speed and. aceuracy of the

calculation as discussecl 1n 2.3(b), u¡here AZ - Xa'.
Input Data. I\Iultiplies the seconcl energy term in 35 by a

factor u-f /n'/n to give it its correct absolute var-ue

as required. fnom equat icn(2.7.)

Tnput Data. Multiplies the random nurnbers generated on

(ort ) to obtain the rand.orn d isplacement €*, with components

given by 1O2e1O3r1O4, that the particle il to urrd-engo.

Itrs choice is d.iseussed in detail in 2,2(e),

whene 31M¡" = to'

A1

A2

A3

Al+



A8

B

BETA

Bh

B6

I+.2o

Input Data, N{uJ-tiplies the first enengy terrn in 35 by

R/2 to give it its eonrect absolute value as required.

from equat ian(2.7.)

Defined- near 20t this variable enables the second energy

tenm to be evafuatecl qrickly.

Input Data. Reeiprocal of the procluct of the Boltzmarryr

constant (convertecl to eelI units i-n Append.ix 1) and

the tempenature in d-egrees Kelvin. It 1s the only

input d-ata that varies d.irectly r¡¿ith temperaturee and.

is used, in the proirability CListnibution function 2),

the form of which was d-isoussed- in 2.2(þ).
Input Data. thls converts XI into ee1l units and- at the

salne tjme multiplies by 2rr. Usecl in 20 it has a value
2rr
ffic

^-zrf /*Input Data, Used- near 37 t 86 = fu- , and enables

the seeonc-L energy term to be computed qulckly.

B7 Input Data, Used as above

c

B7= \e-3rf /#
7tr-Tl*

D

Definecl above 37 as E4' fon quiek computation of second

energy te rm.

(") Defined. ln 20 as COSF(tsl1ÐCT) for quick computation

of second energy term.

(¡) Defined, in 13 as SqRTF(¡S)" Thls gives the

distance between ttre lnteracting K and. KD partlcles ín
mesh units,



E

DS

D[

EN
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(") May be defined. 1n 2h as D=AO if particles come

too clos e together.

(A) Laten ned.efined. in 21 as D=D/A1 , tÌiis puts D in a

form sueh that it can be used. d.irectl-y to evaluate the

first energy term contribution.
Defined in 37 bV DS = KITXT+YIffI+ZT*ZTc this is the

d-istance squared- between panticles K arrl KD in mesh units
squared.

Def ined. in 26 by Ut=D+1 .0, this ad.ds one rnesh unit to the

inter-particle d.lstance in mesh units, to atlow for
truncation later when Ít 1s used., via TD(KD), in the

rad1a1 d-lstni butl on functi on-s .

(u) Deflned- near 20 as COSF (e+"m) for quick conputatlon

of second- enerry term

(¡) Defined- near JB as ET(I(D), i', acts as a d.ummy variable
to ensilre the pairing d.lstanees have the correet signs

attachecl to them.

th-is is the contribution to tlle second_ enerry term from

an interacting K and KD. It 1s d.eflned near j7 if I<IKD,

and- othenwise by 22.

Input Datan Has a value il^frr, ancl must be subtnacted-

from the K particle interaction energy ETE on Ep, as

in 3l or 32¡ to obtain the absolute energy includ_ing

the ttrl nd. t erm gl ven in e qu ati on (4.6 . )

tsNC



ETüT

ENY

EP

ETE

nr (m)

)+,22

Used. in 22g but defined. iust after the d-af"a is read in.o

this variable saves time in that the calcul-ation is then

d-one only orlCe¡

Definecl by 3l or 32, this sums the interaction errergies

of the K particles over the assembly of NA2 particles and

finatly glves the cel-l energy of equation (4.6) ltt cel-l

uni-ts.

Defined fy 62 or 63¡ this sums the pairlng energies

between K and- the KDts from the stored- rnatrix, obtaining

the permanent energy associ-ated- with K before it i-s moved-.

Deflned afler 35t thls sums the neY/Iy cal-culated- paÍring

energies between K and. the KD particles. thls temporary

energy of interaction rnay becor¡e part of the total cell-

energyrEMrif the atternpt to move the particle 1s

successfuf.

Defined by 35, this ad-ds together the f irst ancl second-

energy terms after they have been summed- over al-l the cellÇ'

It gives the interaction energy between K and- KD. îhese

temporary pairlng energies, calcu]ated- for all the NA2

KD particl-es, hence 'i;he ilrlex¡ are stored in the pairing

energy matrix if the K particle is movecl.

Defined- near 20 as cosF (e4*zr) ror quick computation of

the second. energ¡r tertn.

Deflned_ near 21e this gives the value of the f irst

energy term for one contributlon only.

F

HD



ï

JTAPE

K

KD

KF

KJ

KTAPE

TTAPE

M

rw(u)

I+.23

A vaniable used. in'159 to ino.ex the output.

Input Data. Nanes the unit on lvhieh BARIGR UNI TAm

No.B is to be load.ed.

Deslgnates the particle und.er consideration in the

zeyorth cellr ard. nuns fnom 1 to 32. In fonmulae

it is written k.

Designates the partlcle with whieh K interacts, Such

panticl-es exist in many ce1ls includ.ing 1.,Lre zero ce11o

The accurate listing al.lows for 27 cells, rnrheneas the

fast listlng all-ows fon only KD in the zero cel1e where

IO is not allowed to equal K" In f ormulae it is written
as k'.
Variabl-e used in 160 to output the palring energy matrix

in eonvenient blodrs.

Variable used- in 160 to output the pairlng enerry matrix

in eonvenient bl-ocks.

Input Data. Th-is names the unit on which NILSSON UNI

TAPE No.J 1s to be l-oad-ed.

Input Data. Tl'ris names the unit from which data is

to be read..

(") Used. in 191 an ind.ex to zero the pain d.istnibution

functl on.

(¡) Used in 87 to bring the paining dlstances to fixed.

point fonrn (truncation) it then stores these d.istances

in the pair d.i stributlon f\rnction.
Defined- by 82 as the ljke d.lstribution function, thls
accumulates the nunrben of like I{D panticles in the zero



MU (M)

MUC

MTAPE

NA1

NA2

NA]

'l+.24

cel-l at a distance I\{-1 tc M fr-om the K partlcle. Then

for each K particte consid.ened.r l5J-ike particles will

Ïrave their pairing d.istance from K stored.r note the

distance between K ard. itsel-f is neglected.

Deflned- near 81 as the ur:.Iike d-istribution functionr th-is

acts as above, but for each K particle considened, 16

unl1ke particles will have their paining d.istance from K

stored..

Used- near 153 in the output of Mr,(lt) and. ['ru(ilr) to ensure

the correct d-imension of I\{. Also used- in 191 1f zeroing

Mt(M) and MU(M).

Input Data. This names the unlt on whrich output is to

be ,,vritten.

Input Ðata. îÌris gives the number of positlve particfes

pnesent in the zeror oF basic, cell.

Input Data. The total number of particles present in a

unit cel-l. Variation of this parameten affects d.inensiont

inputr and. output.

Input Data. Used. near 1o4 v,¡ith a value (# -, l, it is

subtracted from NXD, NYD, NZD to f orm 1fur this

d.isplacenent now being either positive or negative.

Defined. near 3Oc this variable at 34 decid-es vrhether to

move the K particle being consld-ered-e or whether a nerü

K parti c1e shoul-d- be consi dened-.

NDEL



NQ

NQD

NL
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(") Defined- by 50 and. 51 to be positive for particles

label-led. f rom 1 to 16, ard- negative f on particl-es labelled-

17 t,o 32.

(¡) AJ-so used in 8J and. 86 to ensure the palring

òistances are read. fnom the pairing energlr-d.istance matrixo

(u) Defined. by 5Z anô.53 to be negative if unlike particles

are interacting, and. positive if l-ike partlcles are

interacting.
(¡) Also used_ in 86 to ensune the palrlng djstances are

read. from the pairir€ ener"gy-d.istance matrix.

Oal-i-ed. the cell ind.exe thls suEB over the ceJ-l in¿ex (1) cf

equation (2.7) r ard its l-imits a-re go1erned by the accuracy

consid-erations of secti on 2.J. tr'or the aceu¡rate listing¡

NL is glven the value 0 by fu, then the contrilution fnom

the zero ce1l- is calculated, ard. in 14 the next ce1I is

considered-. The conputed. go to statement iust after 14

ensures each cell is given its correct eoo¡d-inates¡ and- then

control again cal-culates that cel1s eontribution to the

eneFggo In the fast listing, lvhere only the ze?o cell- 1s

consid-ered., there is no need. f or a cell- irdex and-

assoclated. computation, ard thls saves time.

Defined. near 1O1 t thls is used. 1n the rand-om number

generator to obtain the integral part of R. See section

4.h for oiscussion of ranÖom nunber generators.

NR



NRl{

NUM

NU¡.{BT

NUMBl

NUMB2

NUMBS

lruMBl+
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Input Data. This is the fixed- point random number from

the alternative rand-om nirnrber ge¡enator, the merits of

l.¡hich are d-iscussed. in section L¡.1-¡. It is read in to

obtain a full- sequence of rand-om rrumberso

Designated. just before a rand.om nuntber is need.ed-r this

ensures that after the rardom number has been obtained-

via 101, that control comes back to the correct place in

the pr ogramo

A dummy variable used- in 619 tc transfer tape necord-st

uirhene use of varlables on the recond. causes an error.

Input Data. This labels the iterationsr and- is

essential if tape work is involved. so that a particular

iteration can be lsolated.. It add-s one to itsel-f each

time control passes through !1, the conmencement of the

majon 1oop.

Input Data. This contnols (i.n 4OZ), how many iteratlons

are to be d.one by the conputer in this tstlrlr

Input Data. This controls (in 4Ol)r how often output

is to be printed-.

Tnput Data. this checks (in [Oo)e that the correct

record- llas been read. from the tape , if not it transfers

control to the end. of the program.

Input Data. This controls (near l+Ol)¡ when the flrst

output is to be printed.
NUMB5



NUMB6

NUMBT

NUMBB

NUI/IB9

NUMI O

NUMI 2

NXD

NYÐ

NZD

nx(r)

nv(r<)

ltz (x)
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Input Data. This is used near 621 to isolate a

particulan reeord. on a tape, usually for input

purposes.

Input Data. Used. in 409, this d.ecided. v¿hethen to

zero or retain the pair d-istribution lnd-ices before

commencing this Ftlm.

Tnput Data. Used near 6Z5t this d.ecides on the

method- of inputr thus

(O¡ input d.ata is read- of card-s and. read- in by a DO loop'

=0, tape reeord.s are transferred- to the write tape, and

the l-ast of the read. tape record-s 1s used as 1nput.

)O¡ input obtained- by reading one strecial record.

Tnput Data. UseA in 619 to d.efine the number of record-s

to be transferred in the case r¡¡here \\JI{BB-O"

Input Data. Used- in 591 tiris control-s lvhether all outpu!

is written on taper oP only the last lteration is put

on tape.

Input Data. This in 564 contror-s whether a second-

tape shoul-d- be load.ed- or not.

Defined- in 'lO2r 1O3¡ lOhr these give the three axial rand.on

coord.inate òispLacements, and. ff i s given by (tfx¡-}{A¡)2 +

(Nvo-tu5)2 + (tqzo-rul )' .
ïnput Data. These are the coord.inates of ûre t<th panticle

in thc zero cell, if tLre whole 32 are givenr they completel-y

d.efine the confÍguration.. They often are neaci. in

initfal-ly to star"t a run.



r[xP

NYP

NZP

NXT

IIYT

NZT

PDL

PET

PE1 (KJ<D)
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Defined- by 28, these ane used to retain the coordinates

of the tlth particle in stor,e r¡¡hi1e the program d.lsplaces

K by 4Ë. If K prefens to remain in the perrnanent

position, they are replaced as Kts coordinates.

Defined. by 1Br 6 an1 9c these give the axial- d-istances

between K and. the KD in a particular cel1, and. are

d.esigned- to irrcl-ude only the most inrportant interactionsu

see section l+.1,

Input Data. Thj-s length is used. to cut-off the pain

distributi on f\:ncti on. Due to thre constru.ction of

the program it wil-l l-ead. to a-n error if it ls greater

than IOO mcsh unitse ancl thls is its usual vafue.

Defined. by 29, this expression gives the pnobability of

K golng to the temponary enersr configuration. The

importance of this expression is d_iscussed_ fully in
secti on 2. Z (¡) .
The pairing energy-d.istance natrix has dimension

NA2xNA2. îhe elements above the d_iagonal store the

interparticle d.is-bances between K and KD (i.n tfre zero

ce1l onfy) while el-ements on and below tLre diagonal
give the pairing energy between K and. the KD

(sumnred over the requÍ-red- number of cells). The

elements al.e negative if unlike partlcles are inter-
acting, and. positive if like particles are lnteracting.
The elements are formed_ in J9 and_ 40.



R

RN

RîEM

SÀO

SUMEN

SUMHD

rD (KD)

TNA5
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Input Data. This 1s the random number l-ast r:sed. in

the first rand-om m:mber generator, and. is input to

ensure a full sequence of rand.om nr¡mbers is generated.

by 1O1.

Used. to convert NR into a floating point numbere so

it can be subtnacted. from R.

Used- in the al-ternatively 11sted. f ixed point random

m.¡mber generator to convert NRN into floating noint

nurnber, pnior to d:ivlslon by a floating point nuriber.

The square of AO, this is used. in 25 in the altennative

llsting to save computing tinre 1n taking square roots.

Defined. near 15t this gives the secorrd- energy term

contribution for a panticular K KD interaction in
the zero cell-.

Defined. near 16, this sums the first energy term

contributions for the various cel-Is for a partieular

K and. KÐ. 
r

Defined. by 71 ¡ this stores the interparticle d.lstances

between the moved. K particle, and. the other particles

in the zero ce}I. If the temirorary configuratlon ls
preferred., these interpartlcle distances are placed.

in the pairing energy matrix by JB.

Input Data. Used rrear. B/, this enables the pair
d.istnibution function to be d.ivid.ed. into coarse or



TSfufEN

lSMHD

I+"30

fine divisiorrs¡ Its usual- val-ue is 1 to obtain the

finest calibration of the pair d.istribution f\rnction

pos sib1e.

Used just af1"er JJt this ad.ds together all the SUMEN

io obtafn the second enerry term for a K pntiele

and all the KD particles.

used. after 35t this ad.ds together SUMHD to obtain the

first energy tenm for a K pantÍc1e and. all the KD

panti c1e s.

Used- al 12 to eonvent N'XI' Nm and. NZT into floating
point form pneparatory to calculation.

XT

YT

z1
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l+.h Subprogramme

During the calculation, only one çllþËqutine is usede

which is CALL DNSHI (.n¡pn) . This subroutine is stand.ard.

for. almost all computers uSirrg tape lrnits, and. its function

is to ensure that the tape ie v¿ritten on in high d.ensity

form rather than 1ow densityr whieh 1s sometimes used. for

transfenring rather than stori'rrg data. the subroutine

d-oes not need- to be provided¡ &s 1t is written into the

machine.

Several funçj,ig4g are used in the cal-culationt

specifically COSF, SQRfFe EXPF' ERRF and- RAIIDF. The

Cosine f\:nction, COSFr square root function, SQRTFT and-

exponential function EXPF' are al-l stand-ard. functions ard :

are built into the machine. Howeverr the Error function

ERRF and Rand-om number function R.A]{DI' needed. to be bu1lt

into the pnograme although they could- be obtained. in bt!^oy

form from the 7O9O share library, and. lvi1] be d.iscussed- in

some d.etai]-.

caffed. the error integral, pnobabil-ity integral or

ERRF, This evatuates n(x) = #, fx "-t'at, often
J6

integrale d.e Gausse by using Hastings appnoximation
b

ERRF(x): 1-(; aLtL)-16 ; whene
1=O

âo = l.OOOOOOO, â.1 = .O7O523O78, az = ,AI+2282O12

ã3 = .oo927o5272, à4 = .0001 J2O143t âs = ,0002765672,
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â6 = .0000450638 ana X must be a floating polnt numben such

that OS((oo2 and then the er.ror will be less than 3*10-7.

îhe time given to cal-culate one val-ue of Y = ERRF(X) is

3.6 míILisec on the 7OI+ computer, which means this is the

really time-consurning operation in the programe and as

mentioned. in section 2.3 there are several Tvays of avoid.ing

1t, but only with loss of accuracy. Several forms

of calcrrl-ation n(X) were tnied.¡ and. the above form as

given in IBI\il share progratn A A ERF2(Cj) vras fourrd- to be

the fastest"

-RANDE" As the theony has stressedr random

nr¡¡nbers play an important part in a Monte Carlo cal-culationt

and. hence must be carefully chosen v¿ith the least possibl-e

bias. Perhaps one of the best method-s of generatlng rand-oni

numbers is the polver residue method.r lrlhlch is particulanly

convenÍent on mod-ern computens. This has the form

Rn+1 = (r nr, + c) mdp,

and. has been applied to the 7O9O computer by Rotenburs[t ], where

he chooses the Krc and p to ned-uce eorrel-ation between

successive rand-om nurnbers. The cnitereon f or small

conrelation 1s given by Coveyou[Z]" To suit the machine

P is chosen as 235, and. a choice of K - Z7+1 and.

c = t.S t ft) 235 nlnimises the eornel-ation between successive
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random numbers" I/iost computers have a nandom number generator

routine¡ either built in, on read.ily accessible from thein

library; holvever. in th-is ease the rand.om number fnom the

libnany function was obtained. by calling RAI\DF(¿RG) and. the

sequence stanted at a given point. When the program \Mas

removed. from the ccrnputen, the nand.om number function reset

itself io start from the same glven point when next eal-1ed.,

and. as the calculation was to be done in sections this
meant that each section was started. fnom the same point in
the sequencee and- this rïas unsatisfactor.y" To obtain a

continuous sequence the f ollowing program was d-evised.

tr'nom

Rn+1 = lQ7+1)\ * (.5+ *lru" l,ood2"u (4,t ¡

we have 
Rn+1

23s

fonm this 1s

7,'
Rn + .78867513\6 mocl1 ¡ and. in pnogram
2es l

1O1 R= 129.*R+ .7886751346

NR= R

RN= NR

R = R-RN

\4/henever a rand.om number was ræeded. thre pnogram öefined. ItruM,

went to 'l 01 and. calculated. the rand.om numben R, then returned

with it to the nelevant part of the pnognam nominated by NUM,
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The random numbers so generated- are d-istributed rectangularly

on (Or1), and- appear to obey the simpler nandomness tests well¡

but they do not fol-low the sequence (4"t¡ as the 7O9O computen

only carries 10 figures, and- tlæ rest in 101 are tnuncated¡

It is d.ifficult to tel-l- to what extent the sequence is

affected-e whethen the period- is excesslvely red.uced- or the

conrel-ation increased, and- the method was d-eemed sufficient

for the shorter, PU.rlsr

For longer nuns an alternative generator ïvas d-evised.t

which had- a d.efinite period ard correlationn It wæks in

fixed- point mode and- 1s based. on the characteristic of the

7O9O cornputer to take any fixed. point number as modulo 21 7,

(l3l ,Ol2)r arr1 thls is the period. The poxrer resid.ue for.m

is used., virith constants and f orm chosen simi1-arly to the

previous generaton, so

101 NRl{ - (tzlt{RN) + 1o3 373

RTEI{ = NRN

R = RTEM/1 31 ,O71

NRN glves the fixed- polnt rand.om numberr lvhich becomes

distnibuted. on (O91 ) by the d- ivision of 13i sO71c and so

NRN is read- in at the commencement of every mn, to

ensure a continuous sequence. This routj-ne is fast
and- convenient, has a period_ sufficient to d_eal uritfr

over 1OO0 large iterations, and- has the ad.d-itional ad-vantage

that simil-ar sequences can easily be genenated- on smallen

compute 16.
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APPE}TDÏX T

UN]TS

During computatlon the problem is most conveniently

consld.ered- in terms of the I cell unit I r since this gives the

parameter R a value approximatel-y 2. The cell- unlt is
funthen d-ivid-ed- lnto tmesh unitsr which enables much of the

arithmetic to be d.one in fixed- polnt mod.e. The cel-l- unit

= IOOO mesh units, ard. its value is determined. by the d.ensity

to be eonsid-ered." Thus sixteen electrons in a cube of

1 x1 x1 cubic cell unlts must be equivalent to the electron

mrmber d-enslty N,

JS_ _ N el_ectrons
1c.celI unit - Gc

1 ceI1 unit =

eF$S =
( sta lomb)2

cm

,3 .Oþ?tr6"1O'2

l{et*

The energy ealeulated., Ec, is eomputed in terms of

(ce11 units tength)-1 , Hence eners/ in

= 2.52x1O-6cm for an electron density of
1o1B e/cc.

-Ei xe.-c
conversion factor from ceIl unlts to cm.

a-Ð. .Ujnefgy J-f} eFgS = E in cel1 units.



the Boltzmann constant can now be conver.ted. into cell units

-16k = 1.jBOi+4x1O erg/"K

- 1.38ou+x1o-11 *-1Ã ceII r:ni ts/"K
-2023.O671+6x1O

and É = *r = i6.71oz ^ ^U;i. 
+ a




