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Abstract: 

With thousands of years of clinical practice, Traditional Chinese Medicine (TCM) is an enormous 

resource for both the pharmaceutical industry and daily health care. However, the wide 

popularization and application of TCM are hindered by the ambiguous explanation of 

mechanisms with ancient Chinese concepts. In addition, modern pharmacologic methods based 

on the interaction between single compound drug and target are inadequate to deal with the 

complex mixtures for TCM formulas which usually contain plant secondary metabolites from 

several or even dozens of herbs. New high-throughput technologies and bioinformatics methods 

can provide systematic and ​holistic​ ways to understand biological processes. Applying these 

methods to TCM research, we can clarify complex biological processes that result from 

hundreds or thousands of molecular interactions between components in TCM and targets in 

the organism. Therefore, the purpose of my project is to use models for the application of 

high-throughput sequencing technologies and bioinformatics methods in order to understand the 

molecular basis of TCM that involve drug-drug and compound-compound interactions.  

My model TCM, Compound Kushen Injection (CKI) is an anticancer agent clinically used in 

China since 1995. It’s commonly used as an adjuvant medicine in the treatment of carcinomas 

for pain relief, activation of innate immune response and reducing side effects of chemo or 

radiotherapy. Extracted from two herbs, CKI contains multiple alkaloids and flavonoids, which 

have been shown to be bioactive in previous studies. However, with the exception of several 

purified, well characterised compounds, the underlying mechanisms of action for CKI are still 

unclear.  

In this thesis, I first applied transcriptome analysis and bioinformatics methods as part of a 

pipeline to investigate interactions between CKI and chemotherapy drugs. With this pipeline, the 

mechanisms for the opposing effects of CKI combined with doxorubicin compared to 

5-fluorouracil (5-Fu) were determined, and potential interactions between CKI and 

chemotherapeutic anticancer agents were revealed. These results are closely related to the 

clinical usage of CKI and may help refine its clinical application. As my second approach, I 

applied transcriptome analysis to investigate the role of the two plant extracts that make up CKI 
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in order to determine which plant extract contains the primary bioactivity and to identify how the 

two plant extracts interact to generate the combined effects from CKI.  

Altogether, this thesis presents approaches for the application of transcriptome analysis in order 

to identify the molecular mechanisms perturbed by CKI. I have successfully applied 

systems-biology based approaches to analyse herb-drug interactions and herbal compatibility 

and demonstrated these methods are valuable additions to TCM research. In addition, my 

results have indicated that high-throughput sequencing technologies and bioinformatics 

methods are powerful tools for linking TCM with modern pharmacologic methods.  
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Chapter 1 
 

Introduction 
 

In this chapter, I provide an overview of the application of bioinformatics to the study of TCM. 

First, online databases and network approaches for TCM research are introduced as the basis 

for -omics based research. Because -omics techniques can characterise biological processes at 

a whole system level, they are powerful tools for revealing the underlying mechanisms of TCM 

which is believed to act upon many targets in the system. I then review the current applications 

of large-scale methods in the study of TCM and introduce the current state of knowledge with 

respect to CKI and explain why it is a suitable model medicine in TCM research. Finally, my 

research hypothesis and aims are described.  
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The Application of bioinformatics and -omics techniques in research 

for traditional Chinese medicine (TCM) and Compound Kushen 

Injection (CKI): a review 

1. Literature review 

Abstract 

As a comprehensive medical practice system, traditional Chinese medicine (TCM) has been            

used in China for thousands of years. Even though widely applied in clinics, it is still a challenge                  

to explain how TCM works. This difficulty impedes its acceptance and development. Due to the               

compositional complexity and relatively low concentration for majority of natural compounds in            

TCM formulas, it is hard to completely reveal the mechanism of TCM by following the               

drug-target-effect model in standard chemical pharmaceutical research. The emergence of          

systems biology has provided a potential solution to bridge TCM and modern science, and is               

drawing more and more attention in TCM research. This review summarizes the application of              

bioinformatics and integrative methods in the study of TCM mechanisms. It is likely that              

research combining TCM and bioinformatics can stimulate new approaches to complex           

problems in both areas as well as to modern medicine. 

 

1.1 Introduction 

With the “back to nature” trend and popularity of complementary medicines, herbal remedies are              

widely used both in China and Western countries [1, 2]. Traditional Chinese medicine (TCM) is               

a valuable resource for the medical industry as well as human wellbeing given its use of                
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naturally derived products and rich accumulated clinical experience over thousands of years of             

practice [3]. Although TCM is consistently used by many people, the mechanism of most herbal               

medicines is still unable to be explained completely by modern scientific methods due to the               

complexity of their components [2]. 

 

Typically, TCM research borrows methods from chemistry and pharmacology [4-6]. Because of            

the complexity of the components in herbs and the constraints of analytical instruments, it is               

almost impossible to qualitatively and quantitatively analyze all compounds in a prescription,            

which may contain several or even dozens of herbs [7]. Therefore, separating single natural              

compounds by chemical purification followed by screens for bioactivity is a widely accepted             

research methodology to determine the molecular mode of action of TCM preparations. A             

well-known example is the discovery that artemisinin can cure malaria by Tu Youyou[8] who              

won the 2015 Nobel Prize. However, this classical research route is limited because the              

efficiency of this method is very low and single compounds usually do not represent the effects                

of the whole herbs or prescriptions [9, 10]. Hence, Chinese researchers also try to reveal the                

mechanism of TCM based on whole prescription and link TCM theory with modern medicine.              

However, except for combinatorial analysis of multiple compounds [11, 12], the pharmacological            

testing and animal model research on prescriptions and TCM theory have not gained             

acceptance in Western countries. Therefore, it is important to find a suitable way to link modern                

medical science and the ancient concept of holism to try to explain and develop TCM. 

 

Prescription based TCM research should consider TCM theory, which regards the human body             

as a whole and treats disease by keeping the harmony between different parts [1]. Systems               

biology concepts of integration and system outcomes are a natural fit for the study of TCM [13,                 
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14]. Specifically, this approach allows pharmaceutical researchers to overcome the restriction of            

specific single targets and single molecules and study the biological system with simultaneous             

perturbations of hundreds of linked targets [15]. Integrative techniques including genomics,           

transcriptomics, proteomics and metabolomics have recently begun to be applied to TCM            

research. At the same time, bioinformatics is a useful tool to deal with the massive data sets                 

produced in these experiments [16]. With these new biological approaches and rapidly            

developing techniques, the molecular mechanisms of TCM may be explained in the near future. 

 

Because of the complexity of TCM, it is important to choose a suitable formula for mechanistic                

research based on a whole prescription. I have chosen Compound Kushen Injection (CKI) as a               

candidate prescription for systems biology investigations, which is administered to more than            

30,000 patients every day as one of the most widely used TCM injections for treatment of                

cancer in China [17,18]. There are three main reasons for choosing CKI for this. Firstly,               

compared with typical decoctions that may contain ingredients from dozens of sources, TCM             

injections are usually only produced from less than three ingredients and therefore are easier to               

analyze. Secondly, different modes of administration make TCM injections attractive as they can             

avoid the influence of intestinal flora and the different bioavailability of various natural             

compounds [19-21]. As a result, the compounds in the injection are those circulating ​in vivo ​, so                

cell-based experiments are a reasonable way of examining their activity. Finally, the            

manufacturing processes and raw materials of TCM injections are much stricter than traditional             

decoctions, improving the reproducibility of experimental results. In short, TCM injections are a             

good choice for beginning to understand the mechanisms of TCM. The methods used here may               

be subsequently applied to research on other TCM formulas.  
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1.2 Composition and current understanding of CKI 

CKI (Compound Kushen Injection), a modern Chinese herb preparation based on TCM theory,             

is widely used in China as an adjuvant with chemotherapeutic or radiotherapeutic treatments for              

cancer [17, 18]. It has been reported that CKI can suppress the growth of tumors, relieve pain                 

caused by advanced cancer and improve immunity. Zhao ​et al. showed that down-regulation of              

the phosphorylation of ERK and AKT kinases and blocking TRPV1 signaling by CKI was              

consistent with an anti-tumor effect as well as reducing inflammation and pain [22]. CKI can               

enhance the level of IgA, IgM, IgG, IL2, IL4, and IL10 and decrease IL6 and TNF-α levels ​in                  

vivo​, leading to improved immunity [23]. In combined use with chemotherapeutic agents,            

literature shows that CKI can significantly inhibit proliferation of MCF-7 side population (SP)             

cells through suppression of the Wnt/ -catenin pathway while cisplatin just suppressed non-SP     β        

cells, supporting the rationale of treating breast cancer by co-administration of CKI and cisplatin              

[24]. These different mechanisms indicate that as a TCM preparation, different bioactive            

compounds in CKI may regulate different targets to produce a systemic anti-tumor effect. 

 

CKI is produced from extracts of two herbs: Kushen (​Radix Sophorae flavescentis​) and Baituling              

(​Rhizoma Smilacis glabrae ​), therefore CKI can be considered as a complex sample. Yue ​et al.               

applied ​high-performance liquid chromatography (​HPLC) and LC-DAD-MS/MS to analyze 27          

CKI samples from different batches and identified 21 components, 19 from Kushen and 2 from               

Baituling [25]. As one of the common herbs used in TCM, natural compounds in Kushen have                

previously been shown to exhibit various bioactivities. Alkaloids (mainly matrine and oxymatrine)            

have been shown to manifest anti-cancer [26, 27], antifungal [28], anti-inflammatory [29] and             

cell protective [30, 31] effects in different studies. More recently, flavonoids in Kushen have              

been reported to have better anti-tumor effects than Kushen alkaloids [20], as they can              
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suppress both the growth of cancer cells [32] and tumor angiogenesis [33]. Compared to              

Kushen, the literature on Baituling is relatively limited. From existing research, the active             

ingredients in Baituling are believed to be flavonoids such as taxifolin and astilbin[34]. As a               

major component in CKI and with no reported anti-tumor effects, Baituling may contribute to              

improved patients’ quality of life and the effects of Kushen through improving immune system              

function [35-37] and anti-inflammatory activity [38, 39]. 

 

1.3 The application of bioinformatics to TCM research 

With the application of integrative bioinformatics techniques and new analytical methods, data            

sets in TCM research are increasing rapidly [16]. Bioinformatics, a fast developing            

interdisciplinary science of biology and computer science, is useful for storing, retrieving and             

analyzing these data and transforming data into knowledge [40, 41]. At the same time, as an                

obligatory tool in systems biology research, bioinformatics can help to identify the mechanisms             

of TCM in a network biology context.  

 

1.3.1 The databases of natural compounds and their targets 

Natural products are a very important source of new medicines, contributing to 60% of new               

drugs from 1981 to 2010 [45]. Although there are usually thousands of components in one herb                

or TCM formula, not all of them contribute to the effect of the formula, and it is likely that                   

homologs may share similar bioactivity [42]. It is, therefore, a reasonable first step to identify the                

main compounds and their bioactivity to acquire basic knowledge. Furthermore, structural           

information of natural compounds is very important for molecular docking experiments [12, 43,             

44]. As a result of decades of TCM research, a huge amount of data about natural compounds                 
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in TCM has been accumulated and many databases (see Table 1.) are now searchable for               

components and bioactivity based on single compounds, herbs or even commonly used            

formulas.  

 

Table 1 Databases about TCM and natural products 

Name Country Contents Websites 
TCMD China Information about 

9127 compounds with 
3-D structure and 
3922 TCM herbs 

Commercial Database 

CMEMCPD China About 50000 
formulas, 1400 
diseases with 

available medicine, 
22000 TCM drugs 

and 19700 
compounds 

http://www.chemcpd.csdb.cn/scdb/main/tcm_i
ntroduce.asp 

CNPD China About 57000 natural 
products and their 

information 

Commercial Database 

NCMI China About 10000 
compounds in 4500 

TCM drugs 

http://pharmdata.ncmi.cn/cnpc/index.asp 

TCM-ID [46] 
 

Singapore Contains 1197 
formulas, 1098 herbs 
and 9852 ingredients 

http://bidd.nus.edu.sg/group/TCMsite/ 

Natural 
Products 
Alert[47] 

USA More than 20000 
species of plants and 

related information 

https://www.napralert.org 

KNApSAcK 
Family 

Databases 
[48] 

Japan Including 20741 
species and 59048 

metabolites 

http://kanaya.naist.jp/KNApSAcK_Family/ 

CHEM-TCM UK Information about 
9500 compounds 

from 350 TCM 

http: / / www.chemtcm.com / 

 

The effect of TCM relies on small molecules to bind to proteins or nucleic acid targets and then                  

modify metabolic processes in human body. As a result, it is an important part of TCM research                 

to identify the targets influenced by natural compounds. Bioinformatics provides two linked            

approaches to identify drug targets: computer prediction and database searching.  
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Computer prediction applies methods from computer-aided molecular drug design to predict           

potential targets based on the 3D structures of compounds and proteins. Commonly used             

computer prediction methods are inverse docking and chemical similarity searching. Inverse           

docking uses small molecules as probes to search databases for potential biological            

macromolecule binding partners [49]. Chemical similarity searching is based on the fact that             

small molecules with similar structures tend to bind to similar targets; searching for information              

on similar chemical compounds can help to predict targets of natural compounds [50]. These              

methods have been widely applied in TCM research from single natural compounds to formulas              

[51, 52]. 

 

Database searching is used to find target information for natural compounds based on             

experiments and computer predictions. Many such databases have been established in recent            

years. For TCM components, there are databases like HIT (Herbal Ingredients’ Targets            

Database) and TCM-PTD (The potential target database of Traditional Chinese Medicine) that            

provide much useful target information. For example, HIT contains 586 natural compounds from             

1300 herbs and their 1301 protein targets [53]. In addition to natural compounds, chemical              

medicine target databases can also provide information for reference in TCM research. The             

Drugbank database (http://www.drugbank.ca) collects 7795 FDA approved and experimental         

medicines and 4313 related proteins while the STITCH database (​http://stitch.embl.de​) contains           

interactions between 300,000 small molecules and 2.6 million proteins [54, 55]. The combined             

use of these databases can help to predict TCM mechanisms to some extent [56].  
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1.3.2 Network based mechanism of TCM activity. 

Due to the complexity of TCM, it is almost impossible to explain its mechanism with one or two                  

pathways. As a result, more and more TCM researchers are turning from traditional             

target-based mechanism studies to network pharmacology research. Network pharmacology         

tries to model the process of disease and the interaction between medicine and organism from               

the viewpoint of systems biology. It studies the mechanism and promotes innovation in medicine              

through high-throughput data in large-scale data capture research, molecular data on the            

Internet and computer analysis [57]. At present, network pharmacology research is constrained            

by low integrity and accuracy of data for computer modeling and the difficulty of testing               

predicted models based on networks. Therefore, the development of network pharmacology           

requires new theories, methods and techniques. At this stage, there are two main approaches in               

network pharmacology: one is building networks of drug effects and diseases based on public              

databases and literature, and then using its predictions to find new targets. The other approach               

is to apply large-scale methods to acquire data about the interaction between drugs and              

experimental models, in order to build a network model of medical targets and disease.  

 

Intuitively, genes and proteins that participate in the disease process should be drug targets.              

However, by building and analyzing a network of drug targets and diseases, Yildirim ​et al. found                

that for some diseases related to endocrine function and blood, drug targets are more likely to                

be disease genes, while only a few targets are disease genes in cancer and gastrointestinal               

disease [58]. In the latter case, drugs usually target the proteins that interact with disease genes                

or block those interactions directly [59]. Therefore, recognizing disease genes and constructing            

disease networks is an important part of network pharmacology.  
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There are two main steps in constructing a disease network. First, gene information associated              

with diseases can be obtained from databases and the research literature. There are many              

databases that contain information on disease-related genes and are available to the public,             

such as OMIM (Online Mendelian Inheritance in Man) [60], GAD (Genetic Association            

Database)[61], DisGeNET [62] and GeneCards [63]. This databases allows one to extract            

information relating to the proteins encoded by these genes and construct networks.            

Sometimes, the genes directly related to known disease genes and their links can be extracted               

as a whole to build a complicated network, which can better express the progress of disease                

[64, 65]. Recently, researchers have also developed algorithms to predict disease-related genes            

based on known genes, such as direct network neighbors and neighborhood [66], k-step             

Markov method [67] and random walks [68].  

 

Recognizing pathways or sub-networks modulated by drugs is the kernel of network            

pharmacology research. By identifying and analyzing the target network regulated by bioactive            

compounds in TCM, we can evaluate the effects on the disease network and then model the                

mechanism of TCM [69]. The target information acquired from TCM databases can be linked to               

pathway databases such as KEGG [70] and BioCarta [71] and the pathway enriched by targets               

can be considered as a candidate pathway regulated by the drug [72]. Once targets and their                

related pathways are recognized, they can be used to build the drug sub-network using similar               

methods for constructing disease networks [73, 74]. 
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Figure 1: Two pipelines of explaining mechanisms of TCM based on networks. 

 

1.4 Large scale methods used in TCM research 

In the past decade, systems biology based on large-scale data analysis methods have rapidly              

developed, especially with the publication of the human genome sequence and breakthroughs            
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in ​mass spectrometry (MS) technology. Genomics, proteomics and metabolomics have been           

widely used in pharmaceutical research in order to understand the responses to drugs at a               

whole system level [75]. Due to the component complexity of TCM, a system level approach               

should be a more suitable solution for TCM research than the traditional study of interactions               

between single genes or proteins and drugs. Furthermore, large-scale data may also provide             

solutions for personalized healthcare, something that is emphasized by TCM theory. As a result,              

there has been a significant amount of TCM research based on large-scale integrative methods. 

 

1.4.1 Epigenomics 

Epigenetics refers to the inherited alteration in phenotype or gene expression without DNA             

sequence changes [76], and regulates the time, location and pattern of gene expression [77].              

Through epigenetics, parental environmental factors can influence the phenotype of offspring by            

DNA methylation, histone modification, chromatin remodeling, gene silencing and RNA editing           

[78]. Disorders of epigenetics have been linked to many diseases such as cancer [79] and               

cardiovascular disease [80]. Because epigenetic changes are reversible, it is a new area for              

pharmaceutical design to treat diseases that cannot be cured by current drugs or gene therapy               

[81, 82]. 

 

Epigenomics refers to the analysis of epigenetic changes across the genome and at present is               

mainly focused on DNA methylation, histone modification and action of miRNAs. In 2003, the              

Human Epigenome Project (HEP) was started in order to identify, catalog and interpret the              

genome-wide DNA methylation pattern in all major human tissues [83]. Later, the emergence of              

next-generation sequencing (NGS) in 2005 accelerated epigenomics research, by allowing the           

generation of high resolution and throughput sequencing data using much less time and money              
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[84]. Combined with existing research methods, NGS can be used to detect epigenetically             

modified genome regions [85-87]. There are now a number of epigenomics research methods             

based on NGS such as whole genome bisulfite sequencing (WGBS), methylated DNA            

immunoprecipitation-sequencing (MeDIP-seq) for DNA methylation and chromatin       

immunoprecipitation-sequencing (ChIP-seq) for histone modification. 

 

Epigenetic changes result from environmental effects and can cause many chronic diseases.            

For example, the initiation and progression of cancer are associated with multiple gene             

expression changes such as silencing of tumor suppressor genes or activation of oncogenes             

[88]. This phenomenon may be linked to the practice of disease prevention and food therapy in                

TCM theory. There is also accumulating evidence indicating that natural compounds and TCM             

formulas can influence gene expression [89, 90]. For example, triptolide from the thunder god              

vine can decrease histone methylation and increase acetylation leading to the induction of             

apoptosis in cancer cells [91] and genistein has anti-cancer activity by regulating miRNAs both              

in vivo and ​in vitro ​[92, 93]. Although at present there is limited epigenomics research on TCM                 

formulations, these results indicate that epigenomics studies could be important in revealing the             

mechanisms of TCM and to help find new drug candidates that target the epigenome. 

 

1.4.2 Transcriptomics  

Transcriptomics is the study of the complete set of RNA transcripts, which is produced by the                

genome under specific circumstances or in a specific cell type [94]. RNA transcripts are              

collectively referred to as the transcriptome and include mRNA, and rRNA, tRNA and other              

non-coding RNAs [95]. The transcriptome can vary with physiological status or as a result of               

external factors. Transcriptomics studies can help to determine where and when genes are             

 

14



turned on or off, and therefore, are very useful tools for characterizing the mechanisms of               

disease progression and therapeutic interventions.  

 

The complexity and size of the transcriptome call for high-throughput data acquisition            

techniques, and there are two main approaches to acquire transcriptomics data. One method,             

microarray analysis, is based on hybridization of fluorescently labeled cDNA to an array of              

sequence probes [96]. However, more recently with the development of next-generation           

sequencing technique, RNA-seq has become the most commonly used method in           

transcriptomics [99].  

 

RNA expression level is one of the most common experimental readouts in biomedical science.              

However, the number of genes for measuring expression is restricted for methods like             

quantitative real-time PCR and northern blotting. This is a particular limitation for TCM research,              

where hundreds of compounds have the potential to perturb tens or hundreds of targets.              

Transcriptomics overcomes this limitation and allows one to examine genome-wide gene           

expression changes, so it can be used in TCM research areas such as mechanism study [100,                

101] and active compound detection [102]. For example, Li ​et al. explored the mechanism of the                

TCM formula Qi-Shen-Yi-Qi for the treatment of myocardial infarction. Using a microarray assay             

for gene expression, they found 55 potential targets of Qi-Shen-Yi-Qi within which 14 were              

confirmed in the literature [103]. Liu ​et al. also used microarrays to profile the transcriptome of                

breast cancer cells and found that Si-Wu-Tang has phytoestrogenic activity [104]. RNA-seq,            

with its increased sensitivity and ability to detect ncRNAs, is the current technology of choice for                

TCM-related transcriptomics. 
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1.4.3 Proteomics 

The proteome is the entire set of proteins expressed by the whole genome at the cell, system or                  

organism level, and proteomics refers to the study of the structures and functions of the               

proteome [105, 106]. Proteomics research mainly relies on two methodologies to separate and             

identify proteins. One is based on the separation of proteins using two-dimensional            

electrophoresis combined with fluorescence analysis for expression measurement and mass          

spectrometer based protein identification from the molecular weight of tryptic peptide [107]. The             

second method is based on peptides, and uses enzymes to break down proteins and then               

analyze with liquid chromatography-mass spectrometry (LC-MS) [108]. With the rapid          

development of mass spectrometer technology and a large demand for comparative analysis of             

different proteomes, quantitative proteomics has been applied widely in disease biomarker           

identification and pathway analysis as well as drug discovery [109, 110]. Stable isotope labeling              

and label-free methods are two common techniques in quantitative proteomics based on mass             

spectrometry [111]. At present, the label-free method is favored because of its simpler process              

and relatively low cost [112]. 

 

Proteomics has been used to study drug mechanisms, find therapeutic targets and identify new              

biomarkers of disease development and drug candidates. Combined with TCM research,           

proteomics has been used to find potential targets of TCM compounds or formulations by              

comparing the differences in the proteome for normal, pathological and post-treatment samples.            

For example, Liu ​et al ​. revealed the mechanism of tanshinone IIA activity against nephropathy              

induced by doxorubicin using proteomics [113]. In addition, proteomics data together with            

information from databases about protein interactions can be used to build pathways/networks            
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affected by TCM to model treatment mechanisms. These models can then be verified by              

validating the functions of key proteins in these networks [114, 115].  

 

1.4.4 Metabolomics 

Metabolomics refers to the qualitative and quantitative analysis of all endogenous metabolites            

produced by biological systems [116]. By analyzing changes in metabolites and metabolic            

pathways, metabolomics can help explain the molecular phenotype and mechanism of           

biological events [117]. From ​nuclear magnetic resonance spectroscopy (​NMR) to          

chromatography-mass spectrometry, multiple analytical instrument platforms have been used in          

metabolomics. NMR was the first high-throughput technology to be applied in metabolomics            

analysis, with the advantage that it can examine samples directly without destroying them [118].              

However, higher sensitivity and throughput makes chromatography-mass spectrometry the most          

commonly used metabolomics platform including GC-MS and LC-MS for volatile and derivative            

metabolites [119, 120]. For maximum coverage of metabolites, the interactive use of different             

platforms is also widely used [121]. The complexity of the metabolome requires multiple             

bioinformatics methods such as pattern recognition techniques in data processing [122] and            

databases for pathway analysis [123]. 

 

Metabolomics may be the most commonly applied large-scale approach in TCM research. In             

addition to the system-wide view, the convenience of sample collection from urine or plasma              

makes it easier to observe dynamic changes ​in vivo, which relates better to TCM theory [124].                

Bioactive compounds from herbs can be metabolized in the body or by intestinal flora, and               

sometimes these metabolic products may have better treatment activity or perhaps toxic effects             
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[125]. Therefore, metabolomics has been widely used to evaluate safety [126, 127], explain             

mechanisms [128, 129] and study formulations [130] in TCM research. 

 

1.5 Integration of different large scale data approaches 

Disease progression and treatment effects can be expressed at different biological levels;            

genome, epigenome, transcriptome, proteome and metabolome. These different levels, while          

linked are not always well correlated or consistent. Previous work has shown that data from one                

large-scale approach cannot be used to predict effects seen with another, but those different              

technologies can provide complementary data [131-133]. Therefore, analysis using a single           

approach may only reflect changes in a limited range whereas multiple approaches can help              

attain more complete and systematic knowledge of disease processes, which can be widely             

applied in drug development, clinical diagnosis and personalized treatment [134]. 

 

Data processing is a major obstacle for the application of multi-approach analysis. To put it               

simply, the first step for integrating multi-approach analysis is to process and analyze the data               

at each level first and then connect the analyses across the different levels. Then, biomarkers or                

pathway networks could be screened or established based on the connections between            

different levels with the ultimate goal of building quantitative models for predicting the effects of               

various factors and treatments [135]. Integration of multiple levels is still in its infancy and the                

development of analysis methods in this area is extremely active. 
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1.6 Conclusion 

While traditional methods based on pharmacological experiments and chemical analysis have           

achieved significant outcomes in TCM research, because multiple compounds affect multiple           

targets in TCM, there is still a huge gap in our understanding of its modes of action. Because of                   

similar holistic views, systems biology methods may help fill this gap by providing a network               

context for TCM research. From virtual model building to different large-scale analyses, these             

new methods are slowly changing the direction of TCM research. Hopefully, TCM can be              

explained scientifically with the application of systems biology and contribute more widely to             

human health. 

 

2. Hypothesis 

The ​central hypothesis for this study is that CKI contains multiple anti-cancer components that              

can affect different pathways to generate anti-cancer effects and act synergistically with other             

cancer chemotherapeutic agents. These effects can be detected using next-generation          

transcriptome sequencing, and characterized by bioinformatic analysis. 

 

3. Aims 

Aim 1: Determine whether CKI works synergistically with anti-cancer chemotherapeutic          

agents. 
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The ​working hypothesis is that natural compounds in CKI can increase cancer cells’ sensitivity              

to chemotherapeutic agents to induce better anti-tumor effects. 

 

Aim 2: Determine whether the two herbs used to make CKI have individual anti-cancer              
effects. 
 

The ​working hypothesis is that Kushen and Baitulin may individually have anti-cancer activity             

by causing apoptosis in cancer cells or stimulating immune cells. 

 

Aim 3: Determine whether the effects of CKI and single herb injections can be detected               

by transcriptomic analysis. 

 

The ​working hypothesis is that CKI and single herb injections can alter the cell transcriptome               

in order to help understand their effects. 
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Chapter 2 

 
A New Strategy for Identifying Mechanisms of Drug-drug Interaction 
Using Transcriptome Analysis: Compound Kushen Injection as a 
Proof of Principle 
 
CKI is typically used as an adjuvant drug for cancer treatment in clinical practice, so the 

research for its interactions with chemotherapy drugs is important in order to use CKI safely and 

effectively. In this chapter, we introduced a workflow to apply transcriptome analysis into 

research for drug-drug interactions (DDIs). With the workflow, we successfully explained the 

mechanisms of opposite combinational effects for CKI with doxorubicin and 5-fluorouracil (5-Fu). 

We found that pathways related to DNA synthesis and metabolism might be the main reason for 

the opposite effects and pathways related to organic biosynthetic and metabolic processes 

might be potential targets for CKI when interacting with doxorubicin and 5-Fu. In addition, we 

also found and verified ​MYD-88​ as an important gene in these interactions. As an important 

adaptor protein in immune response, ​MYD-88 ​would be an interesting target to study the 

relationship between tumor environment and immune system. The results in this chapter not 

only demonstrated the interactions of CKI with chemotherapy drugs but also indicated our 

method is a powerful tool in DDIs research.  
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Abstract 

Drug-drug interactions (DDIs), especially with herbal medicines, are complex, making it difficult 

to identify potential molecular mechanisms and targets. We introduce a workflow to carry out 

DDI research using transcriptome analysis and interactions of a complex herbal mixture, 

Compound Kushen Injection (CKI), with cancer chemotherapy drugs, as a proof of principle. 

Using CKI combined with doxorubicin or 5-Fu on cancer cells as a model, we found that CKI 

enhanced the cytotoxic effects of doxorubicin on A431 cells while protecting MDA-MB-231 cells 

treated with 5-Fu. We generated and analysed transcriptome data from cells treated with single 

treatments or combined treatments and our analysis showed that opposite directions of 

regulation for pathways related to DNA synthesis and metabolism appeared to be the main 

reason for different effects of CKI when used in combination with chemotherapy drugs . We also 

found that pathways related to organic biosynthetic and metabolic processes might be potential 

targets for CKI when interacting with doxorubicin and 5-Fu. Through co-expression analysis 

correlated with phenotype results, we selected the MYD88 gene as a candidate major regulator 

for validation as a proof of concept for our approach. Inhibition of MYD88 reduced antagonistic 

cytotoxic effects between CKI and 5-Fu, indicating that MYD88 is an important gene in the DDI 

mechanism between CKI and chemotherapy drugs. These findings demonstrate that our 

pipeline is effective for the application of transcriptome analysis to the study of DDIs in order to 

identify candidate mechanisms and potential targets.  

 

Key words: Drug-drug interactions, transcriptome, herb medicines, cancer treatments 
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Introduction 

Drug combinations or polypharmacy is a commonly used clinical strategy for elderly patients 

and chronic diseases like diabetes, cardiovascular disease and cancer, in order to overcome 

unwanted off-target effects and compensatory mechanisms for certain drugs ​1​-​3​. However, the 

challenge for polypharmacy ​4​  is how to estimate the effects of drug combinations compared to 

single drugs,  and avoid potentially serious adverse effects resulting from drug-drug interactions 

(DDIs). The most common strategy for identifying DDIs is through pharmacokinetic approaches. 

This is because, by affecting transporters and metabolizing enzymes, one drug’s 

pharmacokinetic process (absorption,distribution, metabolism or excretion) can be changed by 

another drug. However, pharmacokinetic properties are not usually directly linked to 

pharmacodynamic effects and cannot show interactions with treatment targets or potential side 

effects. Furthermore, pharmacodynamic assays may not provide enough information for 

detecting potential interaction effects and interpreting their mechanisms ​5​.  This is a particular 

concern for drug interactions involving complementary and alternative medicines (CAM), where 

herbal extracts can contain over a hundred different, potentially bioactive, compounds.  

 

Public acceptance of combining  complementary and alternative medicine (CAM) with 

conventional medicines has increased significantly over the last few decades. In 2007, nearly 

38% of American adults used CAM ​6​, and in China, which has a long history of traditional 

herbal medicine, 93.4% of cancer patients use CAM ​7​. These medicines, especially traditional 

Chinese medicines (TCM) which are usually made from several herbs, can also exert their 

effects on conventional medicines both through pharmacokinetic and pharmacodynamic effects. 

The complexity of components in these CAMs make it extremely difficult to predict potential 
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interactions with conventional medicines and explain these rationaly. By providing opportunities 

to examine a broad range of biological information, omics-related techniques provide a more 

comprehensive way for the study of drug-drug or herb-drug interactions ​8​. In this report, we 

apply these methods to the identification of interactions between Compound Kushen Injection 

(CKI), a complex herbal extract mixture, and chemotherapy drugs. 

 

In this study CKI is used as a model complementary medicine. CKI was approved by the State 

Food and Drug Administration (SFDA) of China in 1995, CKI is used by more than 30,000 

patients every day as part of their treatment for various types of cancers​ ​9​. Previous reports 

have shown that CKI can sensitize cancer to chemotherapeutic drugs, and reduce side effects 

of chemotherapy and radiotherapy to improve treatment effects and quality of life for cancer 

patients ​10,11​. CKI is extracted from two herbs, Kushen (​Radix Sophorae flavescentis​) and 

Baituling (​Rhizoma Smilacis glabrae​), which contain many natural compounds including, but not 

limited to alkaloids and flavonoids. Matrine and oxymatrine have been implicated  as the primary 

active components for cancer treatment ​12​, but this is not supported by our previous research 

that showed that CKI, but not oxymatrine, can inhibit cancer cell proliferation and cause 

apoptosis by perturbing the cell cycle and other cancer related pathways ​13–15​. However, to date, 

no reports have revealed how CKI or its active components interact with cancer chemotherapy 

drugs.  

 

In order to better understand DDIs and deal with the difficulties caused by complex components 

in herb-drug interactions, we propose a pipeline to apply transcriptome analysis for the study of 

DDIs. CKI was used as a test drug in combination with different chemotherapy agents, and was 

found to have different effects on cancer cells when combined with doxorubicin or 5-Fu 
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(synergistic with doxorubicin and antagonistic with 5-Fu). Based on transcriptome data, we have 

identified hundreds of differentially expressed genes that are correlated with opposite effects of 

CKI and chemotherapy agents on cell viability or apoptosis. These genes indicate that several 

cancer related pathways, such as DNA replication and cell cycle, are perturbed differently by 

CKI under different medical circumstances. Compared to previous DDI studies focused on 

transporters, metabolizing enzymes and therapy targets, our methods can provide a 

comprehensive and deeper analysis of interactions, that may help to pinpoint potential 

therapeutic or side effects, and explain the mechanisms underlying DDIs. 

 

Results 

Pipeline for the study of DDIs using transcriptome analysis 

Figure 1 shows the flowchart for transcriptome analysis of DDIs. First, assays for DDIs are 

selected that are suitable for RNA sequencing and phenotype readouts. Second, shared 

differentially expressed (DE) genes from treatment with the primary drug only and combined 

treatment of primary drug and interacting drug are identified and further classified based on their 

manner of regulation. Gene co-expression analysis can then be used to identify groups of genes 

whose regulation is correlated with phenotype. Finally, different annotation methods can be 

used to propose mechanisms for DDIs and predict potential interactions.  

 

The differentially regulated genes for single drug treatment are calculated with respect to 

untreated samples, while combined treatments are compared to single treatment. In addition, to 

identify types of interactions, genes consistently up or down regulated in single treatment and in 

combined treatment are classified as positively interacting (in other words, the expression level 

of primary chemotherapy agent treatment is intermediate between untreated and combined 
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treatment). Negatively interacting genes have expression levels where the primary 

chemotherapy treatment causes either the highest or lowest expression compared to untreated 

cells, or combined treatment). 

 

CKI enhances the effects of doxorubicin but protects cells when co-administered with 

5-Fu  

CKI alone can inhibit proliferation, induce apoptosis and alter the cell cycle for various cancer 

cell lines ​13–15​. In order to determine whether CKI can potentiate the anticancer effects of 

chemotherapy agents, we used the XTT assay as a preliminary screen for the interaction of CKI 

with different chemotherapy drugs (Supplementary Fig. 1). Results showed that CKI could have 

opposite effects in different chemical contexts. These effects were most obvious at relatively low 

doses of CKI and chemotherapy agents to treat MDA-MB-231(with 5-Fu) and A431 cells (with 

doxorubicin) for 48 hours. CKI increased the apoptotic effects of doxorubicin whereas it 

antagonized​ the cytotoxicity of 5-Fu (Fig. 2A). Flow cytometric analysis of propidium iodide (PI) 

stained cells was also used to assess alterations to the cell cycle and apoptosis for different 

treatment groups. In MDA-MB-231 cells, treatment with CKI caused the increased percentages 

of apoptosis  from 5-Fu to be drawn back to the same level as untreated cells. However, the 

proportion of apoptotic cells increased significantly when CKI was combined with doxorubicin on 

A431 cells (Fig. 2B ). Also, compared to slight changes in the cell cycle caused by the 

combination of CKI and 5-Fu, CKI caused large decreases in G1 and S phases of the cell cycle 

compared to doxorubicin only treatment  (Fig. 2C ). Altogether, these data suggest that CKI has 

opposite interactions  with doxorubicin and 5-Fu ​in vitro​. 

 

Selecting DE genes involved in drug-drug interactions  
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In order to understand the molecular mechanisms of the opposite  interactions of CKI with 

doxorubicin and 5-Fu, we carried out transcriptome profiling from chemotherapy agents 

treatment, CKI treatment and combined CKI+chemotherapy using high-depth next generation 

sequencing. In order to correlate the gene expression results with phenotype results, we 

selected 48 hours as the treatment time with three biological replicates. After preliminary 

multidimensional scaling of all the samples, every treatment group clustered, and clusters were 

clearly separated, indicating that combined CKI treatment can change the transcriptome of 

cancer cells compared to chemotherapy or CKI alone (Supplementary Fig. 3 & 4). 

 

Because we were primarily interested in determining the changes in gene expression between 

combined and single treatments, we identified DE genes by comparing the combined treatment 

to treatment with chemotherapy drug only. We also compared single treatments to untreated. 

This gave 4 sets of DE genes (A431 cell line: doxorubicin compared to untreated and 

doxorubicin + CKI compared to doxorubicin, MDA-MB-231 cell line: 5-Fu compared to untreated 

and 5-Fu + CKI compared to 5-Fu) with each set containing thousands of DE genes (Fig. 3A & 

Supplementary Table 2).  

 

Identification of DE genes based on interaction  and direction of regulation  

From the original four gene sets, we refined our results to get DE gene subsets related to drug 

interactions. Because of our primary focus on the mechanisms underlying opposite effects of 

CKI combined with doxorubicin or 5-Fu, we identified the set of common DE genes across the 

four sets of DE genes identified above. This subset of 2926 genes was selected for further 

analysis (Fig. 3A). Because differential expression can result from up or down regulation of 

expression, we included the direction of interaction as a means to separate DE genes involved 
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in DDIs. If one gene’s change in expression level from untreated to single treatment was 

consistent with its direction of regulation for the combined treatment (either up regulated or 

down regulated) then we defined it as a positive interaction gene, either additive or synergistic. 

In contrast, if its direction of regulation was opposite in the single treatment compared to the 

combined treatment, it was defined as a negative interaction. When these criteria were applied 

to our subset of 2926 genes, while most of the DE genes underwent negative interaction across 

both cell lines/treatments, the proportion of positive interaction genes differed between 

treatment groups. In A431 cells treated with doxorubicin, CKI induced 30.9% positive interaction 

genes, whereas only 12.9% of the genes were positively interacted with CKI in MDA-MB-231 

cells treated with 5-Fu (Fig. 3B).  

 

In order to further characterise the genes with different directions of interaction, we performed 

functional enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathways for our set of shared 2926 DE genes and calculated the number of genes for negative 

and positive interaction with CKI in both  treatment groups/cell lines. The results showed that in 

every pathway, the proportion of DE genes positively regulated  by CKI treatment with 

doxorubicin (A431 cells) was larger than by CKI treatment with 5-Fu (MDA-MB-231 cells) (Fig. 

3C). Strikingly, there were four pathways related to cell cycle that had over 50% the genes 

positively regulated in the A431 cells, including:  “Base excision repair”, “Cell cycle” , “DNA 

replication” and “Homologous recombination”. When we took into account the expectation that 

one third of the DE genes should fall into the positive interaction class (Fig. 1B), we used 

33.33% as the cut off for distinguishing direction of interaction pathways. With this criterion, 

there were 13 pathways where CKI caused positive interactions with doxorubicin, but only 1 with 

5-Fu (Fig. 3C). Furthermore, 9 pathways were consistently found to interact in a positive 
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manner, including immune pathways (“Bacterial invasion of epithelial cells”, “Human 

papillomavirus infection”, “Viral carcinogenesis”) and metabolic pathways (“Glyoxylate and 

dicarboxylate metabolism”, “Steroid biosynthesis”) and others. . 

 

To have a comprehensive understanding of drug-drug interactions, samples treated with single 

chemotherapy agents  were also annotated with KEGG pathways. With the common regulated 

subset, genes in 8 cell cycle related pathways were primarily regulated in the same directions 

(mainly down-regulated in 6 pathways and up-regulated in 2 pathways) both by doxorubicin and 

5-Fu (Fig. 3D).  

 

DE genes related to phenotype 

Based on the direction of regulation in each combined treatment group, we separated the 2926 

shared DE genes into four groups (Fig. 4A & Supplementary Table 3). Group C in which genes 

were negatively interacted in both cell lines, contained the largest number of genes (1815, 62% 

for total gene number) followed by group A genes with 732 that are negatively interacted for 

5-Fu and positively interacted for doxorubicin. The other two groups (B and D) only contained 

208 and 171 genes respectively. Based on the phenotype results, genes in group A were more 

likely to relate to our study purpose, while groups C and D might reveal CKI’s overall effects on 

chemotherapy cancer drugs. 

 

Functional enrichment analysis was also performed for each of the four groups (Fig. 4B, C & D 

& Supplementary Table 3). For group A, the Gene Ontology terms for 732 genes (Fig. 4C) were 

mainly related to “cell cycle” and “nucleobase-containing compound metabolic process”. In 

KEGG pathway analysis, except for pathways closely related to cell growth like “Cell Cycle” and 
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“DNA replication”, there were two cancer related pathways detected, “Bladder cancer” and 

“Chronic myeloid leukemia” and one immune related pathway “NF-kappa B signaling pathway”. 

Genes in these pathways, like cell cycle (Fig. 5A & Supplementary Fig. 2) are regulated in 

opposite direction by CKI compared to chemotherapy drugs. GO terms for 1815 genes in group 

C  (Fig. 4D) were mainly clustered into “Organic substance biosynthetic process”, “regulation of 

cell cycle” and “organic substance catabolic process”, KEGG results also indicated that the 

majority of genes in this group belonged to pathways related to metabolism and biosynthesis. 

Gene numbers for groups B and D were much lower, with mainly immune related GO terms for 

group B and cell cycle related GO terms for group D . Only three KEGG pathways were 

significantly enriched for group D and none for group B. 

 

In order to validate the gene expression changes with different directions of regulation in the 

doxorubicin and 5-Fu treatment groups, we estimated protein abundance using  flow cytometry 

for 4 proteins in group A. Overall, the protein level changes were consistent with gene 

expression levels from transcriptome analysis (Fig. 5B).  

 

Integrating information to select genes for validation  

In order to select genes for experimental validation with bench experiments, we constructed the 

co-expression networks for genes in  group A. 732 genes in 8 treatment groups were separated 

into 14 co-expression modules. By including data from the XTT and apoptosis assays, we 

calculated the correlation coefficients for each gene module with the phenotype results. The red, 

black and purple modules  were more highly correlated with phenotype results than other 

modules. Because it had the highest correlation coefficients with both traits, genes in the red 

module (45 genes) were picked for further investigation (Fig. 6A). 
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Protein interaction, GO and KEGG analyses were performed for genes in the red module. From 

the protein interaction network, MYD88 was the most connected/interacting protein (Fig. 6B & 

C, Fig. 7A). Furthermore, it was commonly shared across different functions or pathways in the 

GO and KEGG analyses. Considering that MYD88 is upstream of NF-kappa B which itself 

regulates the cell cycle and other cancer related pathways, we selected it as a candidate for 

validation by inhibition.  

 

Inhibiting MYD88 partially affected the interaction between CKI and 5-Fu 

To validate our analysis results, we performed the cell viability and apoptosis assays again and 

included an MYD88 inhibitory peptide or a control peptide (Fig. 7B). Because MYD88 is one of 

the key regulators in NF-kappa B pathway and occupies a central position in the red module, we 

expected that inhibiting it would reduce cell proliferation and the opposite effects from CKI on 

chemotherapy drugs. Results showed that for the MDA-MB-231 cells, inhibiting MYD88 does 

not affect the overall cell viability or apoptosis rates. However, compared to the control peptide, 

the inhibitor significantly reduced cell viability for  5-Fu and CKI combined treatment, by 

weakening the antagonistic effect of CKI. In the apoptosis assay, the apoptosis rate for 5-Fu 

treatment was significantly lower when treated with the inhibitor, also suggesting a similar 

reduction in the antagonistic effect . For the doxorubicin group, no significant changed 

interaction was found. However, unlike the MDA-MB-231 cell line, A431 cells were sensitive to 

the MYD88 inhibitor as shown by the overall lower cell viability values compared to the control 

peptide group.  
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In summary, we were able to dissect and characterise a DDI with transcriptome analysis. With 

CKI as a model, we identified candidate mechanisms behind its opposite effects compared to 

different chemotherapy agents and revealed potential interactions with them. We also identified 

and verified MYD88 as a target/key regulator for DDIs between CKI and anticancer drugs. 

These results demonstrate the value of our pipeline for characterising and understanding the 

molecular basis of DDIs. 

 

Discussion 

Drug-drug interactions are one of the main reasons for adverse events associated with 

medication. The traditional pharmacokinetic methods for studying DDIs are inadequate for 

discovering potential side effects or explaining complicated interaction mechanisms. 

Furthermore, the complex components for many complementary medicines and herbal 

medicines that are often used in conjunction with pharmaceutical drugs pose a significant 

challenge research on DDIs . Although high-throughput omics-related techniques have been 

widely used for identifying novel disease biomarkers or potential drug targets ​16,17​, very limited 

research has applied them to the investigation of DDIs. Because transcriptome based 

approaches generate very large data sets, we adopted a hierarchical approach for our analysis 

of DDIs between CKI and chemotherapy drugs. First, instead of comparing every treatment 

sample to untreated control in order to identify DE genes, we decided to set the baseline for 

comparison of interactions as the main drug treatment.  We then identified DE genes for the 

combined treatment based comparison to the main drug treatment. From the common set of DE 

genes found by comparing the main drug treatment to untreated control, and the combined 

treatment compared to the main drug treatment, we selected only genes that were differentially 

expressed and shared across the various comparisons. Second, we used “consistent directional 
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regulation” to separate the DE genes  between multiple treatments into positive and negative 

interaction classes. These are more informative with respect to drug-drug interaction than simply 

up or down regulation. This also allowed genes to be separated based on consistent directional 

regulation to focus the scope of investigation. Finally, we applied gene co-expression network 

analysis to provide useful information for candidate gene selection. These methods combined 

with typical gene annotation analysis and protein interaction analysis, provided a rich profile for 

investigation of DDIs.  

 

Diseases treated with drug combinations are usually complex and related to multiple genetic 

pathways. Furthermore, multiple active compounds in drug combinations, such as herbal 

medicines can affect a variety of targets ​18​19​. Therefore, by integrating the effects of interacting 

genes, analysis of pathways or networks may provide more useful evidence for characterising 

the mechanisms of drug interactions. For the mechanisms of opposite effects generated by  CKI 

combination with drugs, the pathways related to DNA synthesis and metabolism, like “Base 

excision”, “DNA replication” “homologous recombination”, are oppositely interacted between the 

two treatment groups. Related to both chemotherapy drugs down regulate genes in these 

pathways, the opposite interacted effects from CKI can enhance effects from doxorubicin while 

reduce 5-Fu’s effects. Closely linked to these pathways, “cell cycle” and “apoptosis” also have 

large differences in their manner of interaction between the two groups. By correlating the 

results from cell viability and apoptosis assays, we can propose the opposite effects from CKI 

with doxorubicin or 5-Fu are primarily induced from pathways related to DNA synthesis and 

metabolism. As 5-fu and doxorubicin both target DNA replication and CKI’s cytotoxic effects 

have also been shown to increase DNA Double Strand Breaks, this indicates that therapeutic 
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results from drug combinations targeting the same or similar bioprocesses can be very different 

compared to what we might predict ​13,20,21​.  

 

Furthermore, by performing annotation analysis for functional or expression level clustering of 

gene groups, more information about interactions between CKI and chemotherapy drugs can be 

acquired. For group A, the annotation results are similar with opposite interacted results as 

discussed in the last paragraph, which is closely related to the phenotype results. In addition, 

the other three groups can help us to discover potential interactions which are not shown in our 

limited experiments. Group C  displayed negative interaction of CKI to both doxorubicin and 5-fu 

and most annotation terms belonged to organic biosynthetic and metabolic processes. Many 

shared side effects from these two chemotherapy drugs are linked to disorders of metabolism, 

for example, cardiovascular and ​mucosal​ toxicity caused by cancer therapies are mainly 

caused by ​free radicals and oxidative stress ​22–24​. Therefore, although more validation is 

needed, the results for group C might support the clinical reports that CKI can reduce the 

adverse effects of chemotherapy and radiotherapy in cancer treatment. ​In addition, we observed 

two pathways "steroid biosynthesis" and "Fluid shear stress and atherosclerosis" that suggest 

that doxorubicin and 5-Fu affect atherosclerosis in a manner opposite to that of CKI. We could 

find no existing literature that would corroborate this finding. ​Our results indicate that 

transcriptome analysis can not only reveal candidate molecular mechanisms altered by specific 

drugs, but can also provide clues about potential drug-drug interactions.  

 

Transcriptome analysis can provide a far more comprehensive and complex candidate gene list 

than traditional approaches used in drug-drug interaction research. This makes it difficult to 

screen target genes for further study because of the gene specific assays required. In group A , 
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we generated a list of 732 genes, including heme oxygenase 1 (HO-1) and E3 ubiquitin-protein 

ligase (CBL), which are involved in metabolism pathways, that were oppositely regulated when 

CKI was combined with doxorubicin or 5-Fu. In addition, genes like ​tumor necrosis factor 

alpha-induced protein 3 (TNFAIP3) and myeloid differentiation primary response protein 

(MYD88)​ from the NF-kappa B pathway and cyclin-dependent kinase inhibitor 1A (P21) in the 

cell cycle are regulated in the same manner. Although their functions are different, all these 

genes are important in carcinoma ​25–28​. By using gene co-expression and protein interactions 

analysis, we chose MYD88 as a proof of concept for validation as it was highly correlated with 

phenotype results and interacted with more proteins in its WGCNA color module than others. 

Our prediction was that inhibiting MYD88 would decrease the antagonistic effect of CKI on 5-Fu 

and this prediction was confirmed.  By using our approach, transcriptome analysis can not only 

be used for generating comprehensive gene lists for candidate mechanisms, it can also identify 

specific, potential targets for modulating  drug-drug interactions.  

 

In summary, we introduced a pipeline to integrate omics techniques into research for DDIs. By 

using transcriptome analysis to identify candidate mechanisms that might account for CKI’s 

opposite effects on doxorubicin or 5-Fu in cancer cells, we have shown that our methods are 

effective and can be applied to complex situations, including drug interactions with complex 

mixtures or to compare different drug-drug interaction groups. 

 

Methods 

Cell culture and drugs 
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A431 and MDA-MB-231 cells were purchased from ATCC (VA, USA) and cultured in DMEM 

(Thermo Fisher Scientific, MA, USA) with 10 % fetal bovine serum (Thermo Fisher Scientific) at 

37℃. 

with 5 % CO​2​. CKI (total alkaloid concentration of 26.5 mg/ml) was provided by Zhendong 

pharmaceutical Co.Ltd (China) and used at a final concentration of 1 mg/ml. ​Fluorouracil (5-Fu) 

and doxorubicin were purchased from Sigma-Aldrich (MO, USA) and used at final 

concentrations of 10 ug/ml and 1 ng/ml, respectively. MYD88 inhibitor and control peptides were 

synthesised by ​GenScript (Hong Kong, China) with the following amino acid sequences with 

purity > 95%​29,30​; inhibitor: DRQIKIWFQNRRMKWKKRDVLPGT and control peptide: 

DRQIKIWFQNRRMKWKK . 

 

For all ​in vitro​ assays 6-well or 96-well plates were used . The seeding density for both A431 

and MDA-MB-231 cells was  ​cells/well for 6-well plates . For 96-well plates, A431 cells4 × 105  
 

 

were seeded at 8  cells/well and MDA-MB-231 cells were 1.6 cells/well. After seeding,× 104 × 105  

cells were cultured overnight before being treated. 

 

Cell viability assay 

Cells were seeded in 96-well plates with 50 μl of medium. For the MYD88 validation assay, the 

inhibitor or control peptide was added at the same time as cell seeding. After overnight 

culturing, 50 μl of CKI and/or chemotherapeutic agent at appropriate concentration were added 

and incubated for 48 hours. In order to measure the cell viability, 50 μl of XTT:PMS (at 1 mg/ml 

and 1.25mM, respectively, and combined at 50:1 ratio, Sigma-Aldrich) was added and 

incubated 4 hours before detecting absorbance of each well with a Biotrack II microplate reader 
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at 492 nm. Wells without cells were set up for each treatment for subtracting background 

absorbance.  

 

Cell cycle assay 

Cells were cultured and treated in 6-well plates. After 48 hours of drug treatment, cells were 

harvested and stained  with propidium iodide (PI) to examine cell cycle phases as previously 

described ​31​. Stained cells were acquired on BD LSRFortessa-X20 (BD Biosciences, NJ, USA) 

and the data were analysed using FlowJo software (TreeStar Inc., OR, USA).  

 

Flow cytometric quantification of protein expression 

Cells were cultured in 6-well plates and treated with drugs for 48 hours. The cells were 

subsequently harvested and stained with antibodies to detect intranuclear/intracellular protein 

levels. The antibodies were purchased from Abcam (UK) unless otherwise indicated:  rabbit 

anti-CBL and  rabbit IgG isotype control (Cell Signaling Technologies) detected with anti-rabbit 

IgG-PE (Cell Signaling Technologies);  mouse anti-p21 and  mouse IgG2b isotype control 

detected with anti-mouse IgG-Alexa Fluor 488 ;  rabbit anti-TNFAIP3-Alexa Fluor 488 and 

rabbit IgG isotype control-Alexa Fluor 488 ;  rabbit anti-HO-1-Alexa Fluor 568 and  rabbit IgG 

isotype control-Alexa Fluor 568. Data was acquired with a BD Accuri (BD Biosciences) and 

analysed with FlowJo software.  

 

RNA extraction and sequencing 

After being treated with drugs in 6-well plates for 48 hours, cells were harvested and 

snap-frozen with liquid nitrogen then stored at -80 ℃. Total RNA was isolated with the RNA 

extraction kit (Thermo Fisher Scientific) and quantity and quality were measured with a 
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Bioanalyzer at the Cancer Genome Facility of the Australian Cancer Research Foundation ( 

Australia) to ensure RINs > 7.0. Samples were sent to Novogene (China) and carried out on an 

Illumina HiSeq X platform with paired-end 150 bp reads. 

 

Transcriptome data analysis 

Trim_galore (v0.3.7, Babraham Bioinformatics) was used to trim adaptors and low-quality 

sequences in raw reads with parameters:  --stringency 5 --paired. Then trimmed reads were 

aligned to reference genome (hg19, UCSC) using  STAR (v2.5.3a) with parameters: 

--outSAMstrandField intronMotif --outSAMattributes All --outFilterMismatchNmax 10 

--seedSearchStartLmax 30​32​.  Differentially expressed genes between two groups  were 

calculated with edgeR (v3.22.3) and selected  with false discovery rate (FDR) < 0.05​33​.  

 

ClueGO was used to perform the GO and KEGG over-representation analyses with following 

parameters: ​right-sided hypergeometric test for enrichment analysis; p values were corrected for 

multiple testing according to the Benjamini-Hochberg method and ​biological process at 3rd 

level for GO terms​34​. Then Cytoscape v3.6.0 were used to visualise selected terms or 

pathways​35​. Regulation profiles for specific pathways were visualised with the R 

Pathview package​36​.   

 

Co-expression network analysis was performed with WGCNA with “16” as soft thresholding 

power and “5” as minimum gene size for module reconstruction​37​. String (V11.0) was used to 

show protein interactions with 0.4 for minimum interaction score​38​. 
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Figure 1: Experimental and data analysis workflow for applying omics to drug-drug interactions. 
A. The overall design of the study. B. Further details of 2 specific procedures indicated with 
broken-lined boxes in A. The black, blue and orange bars represent untreated, single treatment 
and combined treatment, respectively.  
 
Figure 2: Opposite effects of CKI combined with doxorubicin or 5-Fu on cell viability and cell 
cycle. A. and B. The cell viability and percentage of apoptosis of the cancer cells  treated with 
different drug combinations for 48 hours. C. Representative histograms of cell cycle phases for 
different treatments. Results are represented as means ±SEM (n=9). Statistical analyses were 
performed by comparing  treatments to untreated ( **p< 0.01, ***p < 0.001, **** p < 0.0001) as 
well as ‘CKI + Chemotherapy Agent’ to ‘Chemotherapy Agent only’ (##p<0.01, ###p<0.001, 
####p<0.0001) with one-way ANOVA . 
 
Figure 3: Selection of differentially regulated shared genes and percentage of genes regulated 
in different fashions and their related pathways. A. Venn diagram showing the number of 
differentially regulated genes in cancer cells with different treatments. B. Percentage of genes 
that were regulated in ‘synergistic’ (yellow) and ‘antagonistic’ (blue) fashion in A431 
(doxorubicin) and MDA-MB-231 (5-Fu) cells. C. Percentage of synergistically regulated genes in 
different KEGG pathways. D. Percentage of up-regulated and down-regulated genes for single 
chemotherapy drug treatment in different KEGG pathways. 
 
Figure 4: Grouping of genes based on type of regulation and annotation results for different 
gene groups. A. Criteria for separating 2926 genes into four groups. B. Table for 
over-represented KEGG terms and associated p-values for different groups of genes . C. and D. 
Over-represented GO terms (Biological Process at 3rd level) for genes in groups  A and C.  
 
Figure 5: Differentially regulated genes shown in pathway and validation of selected gene 
regulation. A. Comparison of types of regulation for CKI with doxorubicin and 5-Fu in the “Cell 
Cycle” pathway. Left half of the rectangle for each gene represents CKI with doxorubicin in 
A431 cells and the right half represents CKI with 5-Fu in MDA-MB-231 cells. Red and green 
colors mean synergistic and antagonistic regulation, respectively. B. Validation of gene 
regulation at protein level. Four genes (HO-1, TNFAIP3, P21 and CBL) with opposite types of 
regulation in A431 and MDA-MB-231 cells identified by transcriptome sequencing were selected 
and validated by flow cytometry. ‘U’, ‘D’ and ‘U+D’ represent untreated, single chemotherapy 
drug treatment and CKI plus chemotherapy drug treatment, respectively. Data are represented 
as means ±SEM (n=9). Statistical analyses were performed between single drug treated or 
combined treated to untreated with one-way ANOVA ( *p< 0.05, ***p < 0.001, **** p < 0.0001).  
 
Figure 6: Co-expression analysis for genes in group A and related functional annotation. A. 
Clustering dendrogram for genes in group A and relationships with cell viability and apoptosis 
for each color module (red module is indicated by arrows). B. and C. Over-represented GO 
(Biological Process at 3rd level) and KEGG terms for genes in the red module.  
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Figure 7: Validation of MYD88 function. A. All proteins for genes in the red module in Figure 6 
and their interactions as based on the STRING database. B. Cell viability and percentage of 
apoptosis as a result of different treatments combined with MYD88 inhibitor peptide or control 
peptide. Results are represented as means ±SEM (n=9). Statistical analysis were performed 
with t-test (*p< 0.05, **p< 0.01). 
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Chapter 3 
 

Comprehensive Understanding the Compatibility Mechanisms in      

Compound Kushen Injection with Transcriptome Analysis  
 

The study of herbal compatibility is an essential part of TCM research, as clinical formulas               

usually contain multiple herbal medicines. In this chapter, we introduced transcriptome analysis            

as a means to carry out herbal compatibility studies for CKI. Cellular and analytical chemistry               

results indicated that Kushen acts as the primary herb in the CKI formula, and contributes the                

major compounds and effects on cancer cells. Gene expression changes also confirmed that             

Kushen alone can perturb most pathways where CKI exerts its effects. However, we also              

demonstrated that Baituling can enhance the cytotoxic effects of Kushen and activate innate             

immune functions. These results are closely related to the description for these two herbs in               

TCM theory, which shows the network approach might be a good way to link modern science to                 

ancient TCM theory.  
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Abstract 

Herbal compatibility is the knowledge of which herbs to combine in traditional Chinese medicine 

(TCM) formulations. The lack of understanding of herbal compatibility is one of the key problems 

for the application and popularization of TCM in western society. Because of the chemical 

complexity of herbal medicines, it is simpler to begin to conduct compatibility research based on 

herbs rather than component plant secondary metabolites. We have used transcriptome 

analysis to explore the effects and interactions of two plant extracts (Kushen and Baituling) 

combined in Compound Kushen Injection (CKI). Based on shared chemical compounds and ​in 

vitro​ cytotoxicity comparisons,  we found that both the major compounds in CKI, and the 

cytotoxicity effects of CKI were mainly derived from the extract of Kushen (​Sophorae 

flavescentis​). We generated and analyzed transcriptome data from MDA-MB-231 cells treated 

with single-herb extracts or CKI and results showed that Kushen contributed to the perturbation 

of the majority of cytotoxicity/cancer related pathways in CKI such as cell cycle and DNA 

replication. We also found that Baituling (​Heterosmilax yunnanensis Gagnep​) could not only 

enhance the cytotoxic effects of Kushen in CKI, but also activate immune-related pathways. Our 

analyses predicted that  IL-1𝝱 gene expression was upregulated by Baituling in CKI and we 

confirmed that IL-1𝝱 protein expression was increased using an ELISA assay. Altogether, these 

findings help to explain the rationale for combining Kushen and Baituling in CKI, and show that 

transcriptome analysis using single herb extracts is an effective method for understanding 

herbal compatibility in TCM.  
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Introduction 

At present many complex and chronic diseases rely on therapies that combine modern 

pharmaceuticals. A similar multiple-herb strategy known as “Fufang” is an essential component 

in traditional Chinese medicine (TCM) theory and is used to achieve better therapeutic results, 

and reduce side effects and herbal toxicity​1​-​2​. As result of thousands of years’ of accumulated 

clinical practice, TCM has more than 100,000 formulae and abundant experience that has 

contributed to an understanding of which herbs should be combined in particular circumstances, 

herein referred to as herbal compatibility​3,4​. However, because herbal medicines are made up of 

complex mixtures of plant secondary metabolites, the mechanism of most TCM formulas has 

not been explored. This limitation of TCM has become one of the key problems for its 

modernization, and hinders the application and popularization of herbal medicines​5​. 

 

Recent rapid developments in analytical chemistry and molecular biology have provided 

methods for researchers to tackle the complex mechanisms of herbal compatibility on a number 

of different levels. Usually, these methods focus on one or a few components within a complex 

mixture, in attempts to reveal how preparation/extraction for combined use can change their 

concentrations in products or pharmacokinetic processes ​in vivo​6–9​. However, as a complex 

mixture may contain thousands of compounds, it is unclear how changing one or several 

components in a TCM formula can explain and account for the principles and observations of 

herbal compatibility. Furthermore, pharmacological models that measure phenotypes 

associated with efficacy or proxies for efficacy are limited in their ability to explain potential 

therapeutic effects and mechanisms. New high-throughput technologies for measuring 

molecular phenotypes such as gene expression, and bioinformatic methods can provide 

systematic ways for refining and clarifying complex biological processes that result from 
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hundreds or thousands of molecular interactions. By applying these methods to the study of 

TCM, it is possible to transform the research paradigm from “main active compound that 

influences one target” to “multiple components that influence many network targets”​10,11​. 

Although it is now common to apply RNA-sequencing and systematic methods to study the 

effects of whole TCM formulae, no literature has applied these methods to study herbal 

compatibility. In this report, we apply transcriptome analysis to identify how the combination of 

Kushen (​Sophorae​ ​flavescentis​) and Baituling (​Heterosmilax yunnanensis Gagnep​) extracts can 

account for the broader and increased effects observed in Compound Kushen Injection (CKI). 

 

Our model system for dissecting herbal compatibility, CKI, is derived from an ancient Chinese 

formula and was approved by the State Food and Drug Administration (SFDA) of China in 1995. 

It is widely used as an adjuvant medicine in the treatment of carcinomas for pain relief, 

activation of innate immune response and reduced side effects in cancer therapy​12,13​. Our 

previous results have shown that CKI suppresses the growth of cancer cells by inhibiting cell 

cycle, energy metabolism, and DNA repair pathways​11,14​. Kushen is considered to be the 

principal herb and major contributor to the molecular effects of CKI. Many published studies 

have reported on the alkaloids and flavonoids contained in CKI, most of which are extracted 

from Kushen. These compounds have been reported to have a variety of bioactivities, including 

antitumor, antioxidant and anti-inflammatory activities​15,16​. However, there is no literature that 

mentions the role of Baituling in CKI. Therefore, current studies are not sufficient to provide a 

rational framework for CKI prescription or explain its molecular mechanisms.  

 

In this report, we break down the formula into its individual components in order to study the 

herbal compatibility of CKI. By comparing transcriptome changes in MDA-MB-231 cells between 
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CKI and single herbal extract treatments, we found that Kushen extract alone, perturbed most of 

the pathways through which CKI exerts its effects on cancer cells. However, integrating Kushen 

with Baituling can enhance the effects of Kushen alone on cancer-related pathways and in 

addition can activate innate immune functions. These results support the TCM rationale behind 

the CKI formula and confirm RNA-sequencing as a useful tool for the identification of candidate 

mechanisms in TCM research.  

 

Results 

HPLC comparison of the composition of CKI and single extract injections.  

In order to obtain information about plant specific components in CKI, we used 

high-performance liquid chromatography (HPLC) to compare the compounds in CKI and two 

single herb extracts/injections (Fig.1). From the chromatographic profile, it can be seen that 

Kushen injection contributes most of the major chemical components in CKI. In contrast, few 

compounds were detected in Baituling injection, which only contributes one major compound to 

CKI. Based on comparison with 9 reference standard compounds, 8 main compounds derived 

from Kushen (adenine, N-methylcytisine, sophorodine, matrine, sophocarpine, 

oxysophocarpine, oxymatrine and trifolirhizin) are shown to contribute to CKI. Macrozamin, 

which is used as a control marker for Baituling during manufacturing, only appeared in CKI and 

Baituling injection. These results indicate that CKI contains major compounds from both Kushen 

and Baituling, and Kushen contributes most of the major chemical components in CKI. 

 

Comparison of the anticancer effects between CKI and single injections. 

Our previous results showed CKI suppressed the proliferation of and induced apoptosis in 

MCF-7 cells​11​. To determine whether single injections had similar phenotypic effects as CKI, we 
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conducted XTT assays to measure cell viability using three different cell lines; MDA-MB-231, 

A431 and HepG2. Results showed that Kushen had stronger cytotoxic effects than Baituling in 

all three cell lines. However, neither of the single injections had apoptotic effects comparable to 

CKI (Fig.2A) based on rates of apoptosis determined by flow cytometry with propidium iodide 

(PI) staining. Consistent with XTT cell viability results, more apoptotic cells were found in CKI 

than single injections treatments and Baituling had the smallest effect on apoptosis of the three 

injections (Fig.2B). 

 

Comparison of MDA-MB-231 transcriptomes from CKI and single injection 

treatments. 

In order to elucidate the molecular mechanisms of herbal compatibility in CKI, we carried out 

transcriptome profiling from CKI and the single injection treated MDA-MB-231 cells. Triplicate 

samples for each treatment clustered well in multidimensional scaling plots and different 

treatments were clearly separated (Supplementary Fig 1). Although CKI and Kushen injection 

have similar chemical profiles, the inclusion of Baituling in CKI is sufficient to change the 

transcriptome of MDA-MB-231 cells compared to Kushen single injection treatment. We used 

edgeR​17​ to identify differentially expressed (DE) genes for each injection treatment compared to 

untreated. In addition, we also identified DE genes for CKI treatment compared to Kushen 

treatment to identify the effects of Baituling in CKI (Supplementary Table 3).  

 

To validate the results of transcriptome analysis, we performed quantitative PCR for several 

genes known to be important read-outs for the effects of CKI; TP53, CYD1A1 and CCND1.  

Their expression levels confirmed the interaction of Baituling with Kushen observed in the 

overall RNA sequencing results (Fig.2C).  

5 

70

https://paperpile.com/c/87pIaK/Qi1WK


 

Similar effects of CKI and Kushen single injection on MDA-MB-231 cells. 

Because Kushen is considered to be the primary active herb in CKI, we first examined the 

effects of Kushen and CKI to see if they had similar effects on genes. By comparing the DE 

gene set between Kushen and CKI, the shared DE gene group accounted for 63% and 81%  of 

DE genes from CKI and Kushen respectively (Fig.3A), indicating that Kushen contributed to the 

majority of effects from CKI.  

 

In order to better understand the functions of shared DE genes between Kushen and CKI, we 

performed over-representation analysis using Gene Ontology (GO) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathways for these 2039 genes(Fig.3B&C, Supplementary Table 

5). The results showed that cell cycle- and DNA replication-related pathways and terms were 

largely down-regulated by both Kushen and CKI. Based on our previous publications, perturbed 

regulation of genes in these pathways and annotated by these terms was associated with the 

observed cell viability and apoptotic effects CKI on cancer cells​11,14​. Other terms showing 

perturbation of metabolic processes and cell migration identified in this study, such as 

‘pyrimidine metabolism’, ‘steroid biosynthesis’ and ‘positive regulation of locomotion’, also 

showed up in our previous research on the effects of CKI. Altogether, these results indicated 

that Kushen was very important to the major molecular consequences of CKI treatment, and 

perturbed most of the functions perturbed by CKI, including reduced viability and apoptosis in 

cancer cells. 

 

Different effects of CKI and single injections on MDA-MB-231 cells 
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 Although the above results for enrichment analysis showed that Kushen and CKI mainly 

regulate the same pathways, they did not specifically show the magnitude and direction of these 

perturbations. We, therefore, performed Signalling Pathway Impact Analysis (SPIA) to compare 

the ​significantly perturbed functional pathways across the different treatments. Ninety two 

pathways were found to be significantly perturbed by CKI while only 30 of them were shown to 

be activated. For Kushen and Baituling, the ratios of activated/inhibited were 29/100 and 24/58 

respectively (​Supplementary Table 4​). Clearly, Baituling perturbed fewer pathways, but the ratio 

of activated/inhibited was higher than for Kushen or CKI. Interestingly, most pathways were 

perturbed in the same way (inhibited or activated) by CKI and Kushen as shown in ​Fig.4A, with 

very few pathways showing different types of perturbation​.  

 

This similarity of effects between Kushen and CKI could also be seen in the high level of 

correlation for pathway perturbation between Kushen and CKI (0.83 correlation coefficient) 

compared to (0.33 correlation coefficient) for Baituling and CKI. CKI also had stronger 

perturbation effects on most pathways (​Fig.4C​).  In pathways contributing to cytotoxic effects in 

cancer cells, such as cell cycle, p53 signaling pathway, proteoglycans in cancer and pathways 

in cancer, Baituling perturbed the pathways in the same direction as Kushen and seemed to 

reinforce those effects in CKI. However, the cytokine-cytokine receptor interaction pathway was 

very interesting as it was perturbed in an opposite fashion in Baituling compared to Kushen and 

did not show up as significantly perturbed by CKI treatment (​Supplementary Fig. 2​). By 

comparing DE genes for Baituling and Kushen in the cytokine-cytokine receptor interaction 

pathway (Fig.5), we observed that many genes were oppositely regulated by the two single 

injections, such as genes in the CXC subfamily and IL6/12-like cytokine and receptor genes, 

which supported the SPIA results. 
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The functions of Baituling in CKI. 

In order to investigate the function of Baituling in CKI, we identified the DE genes of CKI 

treatment compare to Kushen treatment. Only 308 DE genes were found (Fig.6A). KEGG 

analysis of these genes showed that with the exception of steroid hormone biosynthesis and 

transcriptional misregulation in cancer, all other pathways were related to immune function, and 

most genes in this set were up-regulated (​Fig.6B, ​Supplementary Table 5​). This result was 

consistent with findings in the SPIA analysis that Baituling tended to activate immune-related 

pathways. The over-represented GO terms for this gene set also included interferon-gamma 

production, organ or tissue specific immune response and interleukin-2 production, all aspects 

of immune function and which only contained up-regulated DE genes (Fig.6C).  

 

The genes in the common set between Kushen and CKI compared to Kushen (Fig. 6A) were 

originally changed with Kushen treatment and then further significantly regulated in combination 

with Baituling (107 genes). Only three pathways (IL-17 signaling, salmonella infection and 

steroid hormone biosynthesis) were over-expressed by genes in this set, indicating Baituling 

could also modify functions related to immune system and hormone function upregulated by 

Kushen in CKI (​Supplementary Fig 3​.​). Furthermore, 24 genes appeared in both Baituling and 

CKI compared to Kushen set (Fig. 6A), which can be regarded as the direct contribution from 

Baituling to the effects of CKI. Analysis of known protein-protein interactions in this gene set 

identified the IL-1 family and interacting proteins known to modulate immune function (Fig.7A). 

To verify that IL-1 protein levels were also changing as predicted, we carried out​ an ELISA 

assay to measure the IL-1 beta levels in different treatments. We were able to demonstrate that 

the increased IL-1 beta level in CKI treatment compared to untreated was mainly related to the 
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effects of Baituling (Fig.7B).​ Altogether, these results showed that Baituling contributed to the 

effects of CKI primarily by altering functions related to the immune system.  

 

In summary, we characterized the herbal compatibility of Kushen and Baitulin in CKI by 

comparing the individual effects of the herbal extracts to the combined extract using 

transcriptome analysis. In this fashion, we were able to explain the origin of CKI’s different 

effects in MDA-MB-231 cells. In addition, we also showed that Baituling could enhance the 

reduction of cell viability and increased apoptosis effects from Kushen in CKI. These results not 

only explained the specific molecular basis of the TCM rationale of combining Kushen with 

Baituling but also illustrate a general method to apply transcriptome analysis to study ​herbal 

compatibility in TCM. 

 

Discussion 

It is undeniable that chemical composition is the basis of therapeutic effects from herbal TCM. 

However, because the identification and quantification of all compounds for even a single herb 

are still extremely difficult if not impossible, we need alternative means to conduct TCM 

research, particularly with respect to the study of herbal compatibility​18,19​. Herbal compatibility 

has a basis in TCM theory, but TCM theory is not generally accepted in Western medicine and it 

is difficult to map concepts from TCM theory to Western medicine. Methods that can identify the 

molecular consequences of TCM formulations and individual herbs can begin to provide such a 

map. One view of TCM is that it perturbs multiple targets or pathways with multiple low activity 

components to generate relatively strong effects. This is in contrast to the standard approach for 

pharmaceutical drug development which seeks to identify single compounds that inhibit a single 

pathway or target. However, this method of using one or several active compounds as 
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representative of single herbs is problematic​10​ for understanding the roles of individual plant 

extracts in TCM formulations. This is illustrated by our results; although containing similar 

amounts of the main chemical compounds, CKI has much stronger effects than Kushen extract 

alone. Therefore, a formula disassembly approach that uses single herbs is a practical way to 

study herbal compatibility. Combined with omics techniques and network analysis, we can 

represent the mechanisms of TCM herbal compatibility as interactions between target networks 

familiar to Western medicine. In this report, we took CKI, a prescription containing only two 

herbs, as a proof of principle. However, related methods can easily be applied to more complex 

formulae.  

 

As a frequently used herb, and because it is considered to contain the main bioactive 

components in CKI, Kushen or its main alkaloids and flavonoids are commonly used to 

represent CKI in studies​20,21​.  Furthermore, TCM theory also regards Kushen as the primary 

herb in CKI. Our results support these hypotheses and TCM theory at different levels. First, at 

the chemical level,  HPLC profiles showed that the source of most major components in CKI is 

Kushen. Second, in terms of overall efficacy, Kushen has much stronger cytotoxic effects than 

Baituling on various cell lines. Third, at the gene level, DE genes shared by Kushen and CKI 

account for 81% and 63% of total DE genes in Kushen and CKI treatments, and most of them 

are consistently up- or down-regulated. Furthermore, important genes are also regulated both 

by Kushen and CKI. Cytochrome P450 family 1 subfamily A member 1 (CYP1A1) gene, a 

steroid metabolizing enzyme which is important for steroid hormone responsive cancers and 

shown as the most over-expressed gene with CKI in our previous results, is also highly 

overexpressed by Kushen but not Baituling​22,23​. Also, the down-regulation of the ​TP53​ gene 

primarily results from Kushen. Our previous results based on CKI treated cells underwent 
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apoptosis while expression of ​TP53​ decreased, which indicates the apoptosis induced by 

Kushen and CKI is not ​TP53​-dependent​11​. Finally, GO and KEGG over-representation analysis 

also indicated that the genes in major cancer related pathways and terms perturbed by CKI, 

including cell cycle, DNA replication, and cell migration, are induced by the shared DE gene set 

between Kushen and CKI. Taken together, our findings agree with TCM theory which considers 

Kushen as the principle herb in CKI, and they map this specific part of TCM theory to effects on 

specific genetic networks and pathways.  

 

On the other hand, we could find no Baituling literature and studies on macrozamin to support 

its application in CKI​24​. From our HPLC and cytotoxic assay results, Baituling injection does not 

contain many components and has no significant effects on cancer cells. In addition, RNAseq 

analysis of Baituling-treated samples are close to the untreated samples in the multidimensional 

scaling plot, and only 253 DE genes compared to untreated were detected. However, after 

comparing the differences between CKI and Kushen, we found Baituling has a strong 

reinforcing effect on Kushen. The SPIA results showed Baituling can enhance many pathways’ 

perturbation strength compared to Kushen treatment, including cell cycle, pathways in cancer 

and proteoglycans in cancer.  In addition, many DE genes in immune-related pathways and GO 

terms are over-represented in CKI compared to Kushen. Together with the opposing direction of 

perturbation for the cytokine-cytokine receptor interaction pathway caused by Kushen and 

Baituling, we can conclude Baituling may also contribute to the immune regulatory effects of 

CKI. This was confirmed by our measurements of IL-1𝝱, which was significantly up-regulated by 

Baituling and CKI. In summary, our results indicate that Baituling, an adjuvant herb in CKI 

according to TCM theory, may enhance the anticancer effects of Kushen and contribute to 

immune regulation. 
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In conclusion, we explained the TCM herbal compatibility of CKI in the context of pathway 

perturbations using transcriptome analysis. Kushen primarily contributes to CKI effects on 

cancer cells by perturbing cell cycle regulation and other functions​11,14​, meanwhile, Baituling 

enhanced potential anticancer effects for Kushen and activated the immune system. Therefore, 

the two herbs in CKI collaborate with each other in effects, which is very similar to formulation 

theory in TCM. Compared to previous studies on herbal compatibility, our method can explain 

the beneficial interaction pattern of herbs in TCM formulae in a more systematic and 

comprehensive fashion.  

 

Methods 

Cell culture and drugs 

MDA-MB-231, HepG2 and A431 cells were purchased from ATCC (VA, USA). All cell lines were 

cultured at 37℃ with 5% CO​2​ in DMEM (Thermo Fisher Scientific, MA, USA) with 10% fetal 

bovine serum (Thermo Fisher Scientific). CKI, Baituling, and Kushen injections were provided by 

Zhendong pharmaceutical Co.Ltd (China). Baituling and Kushen injections were manufactured 

using the same processes as  CKI and diluted to the equivalent concentration of CKI (total 

alkaloid concentration at 2 mg/ml).  

 

All ​in vitro​ assays were conducted in 6-well or 96-well plates. The seeding density was 4 × 105  
 

for 6-well plates across all three cell lines. For 96-well plates,  MDA-MB-231 cells, A431 cells 

and HepG2 cells were seeded at 1.6 cells/well, 8  cells/well and 4 cells/well× 105 × 104 × 103  
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respectively. Cells were cultured overnight before drug treatment and the treatment time was 48 

hours for all assays. 

 

Components comparison with HPLC  

CKI, Kushen or Baituling injection was diluted 1:20 with MilliQ water and then analyzed on a 

photodiode-array UV-Vis detector equipped Shimadzu HPLC (Japan) with a preparative C​18 

column (5 μm, 250 x 10 mm, Phenomenex, CA, USA). The recording range is from 200 nm to 

280 nm, with monitoring at 215 nm. 0.01M ammonium acetate (adjusted to pH 8.0, solvent A) 

and acetonitrile + 0.09 % trifluoroacetic acid (solvent B) were used as mobile phase and flow 

rate is 2 ml/min with linear gradient elution (0 min, 100 % A; 60 min, 65 % A, 70 min, 100 % A). 

Nine Standard compounds, including Oxymatrine, Oxysophocarpine, N-methylcytisine, Matrine, 

Sophocarpine, Trifolirhizin, Adenine, Sophoridine (Beina Biotechnology Institute Co., Ltd, 

China), and macrozamin (Zhendong Pharmaceutical Co.Ltd, China), were used to characterize 

peaks in the HPLC profile.  

 

Cell viability assay 

Cells were cultured and treated in 96-well plates. After 48 hours drug treatment, 50 μl of 

XTT:PMS (at 1 mg/ml and 1.25 mM, respectively, and combined at 50:1 ratio, Sigma-Aldrich, 

MO, USA) was added into each well and incubated 4 hours for the measurement of cell viability. 

A Biotrack II microplate reader was used to detect the absorbance at 492 nm. 

 

Apoptosis rate with cell cycle assay  

After treatment, cells were harvested from 6-well plates and stained with propidium iodide (PI; 

Sigma-Aldrich) as previously described​25​. The stained cells were quantified on a BD LSR 
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Fortessa-X20 (BD Biosciences, NJ, USA) and the data were analyzed with FlowJo software 

(TreeStar Inc., OR, USA).  

 

qPCR for transcriptome validation 

The assay was performed as previously described​11​. The sequences of all primers are shown in 

the Supplementary Table. 

 

RNA extraction and sequencing 

After treatment with injections, MDA-MB-231 cells were harvested from 6-well plates and 

snap-frozen with liquid nitrogen. Total RNA was isolated using the PureLink RNA mini kit 

(Thermo Fisher Scientific). Quality and quantity of RNAs were measured with a Bioanalyzer at 

the Cancer Genome Facility of the Australian Cancer Research Foundation (Australia) to ensure 

RIN>7.0 and sent to Novogene (China) for sequencing with paired-end 150 bp reads on an 

Illumina HiSeq X platform.  

 

Transcriptome data analysis 

The adaptors and low-quality sequences in raw reads were trimmed with Trim_galore (v0.3.7, 

Babraham Bioinformatics) using parameters: --stringency 5 --paired. STAR (v2.5.3a) was used 

to align reads to reference genome (hg19, UCSC) with parameters: --outSAMstrandField 

intronMotif --outSAMattributes All --outFilterMismatchNmax 10 --seedSearchStartLmax 30​26​. 

Differentially expressed genes were calculated with edgeR (v3.22.3) and selected with false 

discovery rate (FDR) < 0.05 and Log fold change >1 or <-1​17​.  
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The GO and KEGG over-representation analyses were performed with ClueGO and visualized 

with Cytoscape v3.6.0 with following parameters: ​right-sided hypergeometric test for enrichment 

analysis; p values were corrected for multiple testing according to the Benjamini-Hochberg 

method and biological process at 3rd level for GO terms​27,28​. The ​Signalling Pathway Impact 

Analysis (SPIA)​ package in R was used to conduct the pathway perturbation analysis​ using all 

DE genes(FDR<0.05)​29​. ​R Pathview package was used to visualize specific KEGG pathways​30​. 

String (V11.0) was used to identify protein-protein interactions with a threshold of 0.4 for 

minimum interaction score​31​. 

 

ELISA for IL-1β level 

A431 cells were treated with different injections for 48 hours in 96-well plates and the cell 

culture supernatant was collected and tested for the level of IL-1β by ELISA using human 

interleukin-1 beta ELISA kit (Biosensis, CA, USA) according to the kit protocol. The ​absorbance 

at 450nm was detected with Multiskan Ascent Plate Reader.  
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Figure 1: HPLC profiles of CKI, Kushen and Baituling injections. Nine component compounds 
characterized using standard compounds are marked with red arrows.  
 
Figure 2: Comparison of the effect of CKI and single herb injections on cancer cell lines. A. and 
B. Viability and the percentage of apoptotic cells treated with different injections for 48 hours. 
C.q-PCR validation of RNA sequencing results. Results are represented as means ±SEM (n=9). 
Statistical analyses were performed using the t-test compared to untreated “Media” (*p<0.05, 
**p<0.01, ***p<0.001, ****p<0.0001) 
 
Figure 3: Significantly differentially expressed genes shared by Kushen and CKI treated cells 
and their functional enrichment analysis. A. Venn diagram showing the number of differentially 
regulated genes in MDA-MB-231 cells treated with Kushen (KS; blue) or CKI (yellow) compared 
to untreated cells. B. and C. Over-represented KEGG pathways and GO terms (Biological 
Process at 3rd level) for genes similarly regulated by Kushen and CKI. Node size is proportional 
to the statistical significance of over-representation and colors represent the proportion of up or 
down-regulated genes (yellow=up-regulated and blue=down-regulated). Similar GO terms are 
clustered (with representative terms shown in bold) and connected with edges.  
 
Figure 4: Pathway perturbation analysis for CKI and single injections on MDA-MB-231 cells. A. 
and B. Perturbation accumulation and significance of perturbation for different KEGG pathways 
treated with different injections. ​Positive perturbation accumulation values mean the pathway is 
activated and ​vice versa​.​ Dot colors indicate whether the pathway was significantly perturbed by 
CKI and/or Kushen. C. Heatmap showing the perturbation value of shared significantly 
perturbed pathways for the three injections. Table on the right-bottom corner shows the 
correlation coefficients for the ​perturbation value ​for the three injections. “*” and “***” represent 
p<0.05 and p< 0.001 respectively (Pearson’s correlation test). 
 
Figure 5: Comparison of gene expression changes caused by Baituling and Kushen treatments 
in the cytokine-cytokine receptor interaction pathway. Left half of each box represents the gene 
expression change with Baituling treatment and the right half represents the effect of Kushen 
treatment. White or grey colors indicate no significant change in gene expression as a function 
of treatment. 
 
Figure 6: DE genes regulated by Baituling in MDA-MB-231 cells line and their functional 
enrichment analysis. A. ​Venn diagram showing the number of differentially regulated genes with 
CKI compared to Kushen (CKI-KS - Blue) and single herb injections (KS - Green or BTL - 
Yellow) compared to untreated. C. and D. Over-represented KEGG pathways and GO terms 
(Biological Process at 3rd level) for DE genes calculated by CKI compared to Kushen treated. 
Node size is proportional to the statistical significance of over-representation and colors 
represent the proportion of up or down-regulated genes (yellow=up-regulated and 
blue=down-regulated). Terms are clustered based on similar GO group (shown in bold) and 
related ones are connected with edges.  
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Figure 7: Validation of IL-1β expression changes regulated by Baituling. A. Diagram showing 
protein-protein interactions for common DE genes between CKI compared to Kushen, and 
Baituling compared to untreated. B. Comparison of expression levels and protein concentration 
for IL-1βwith different treatments. Top panel; IL-1β gene expression levels determined by RNA 
sequencing, bottom panel; levels of IL-1β in culture supernatant measured by  ELISA.  
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Chapter 4 
 

The Effect of Compound Kushen Injection on Cancer Cells: Integrated 

Identification of Candidate Molecular Mechanisms. 
 

In this chapter, I contributed to the exploration of transcriptome changes from CKI treatment on 

MDA-MB-231 and HEPG2 cells. Together with previously published data set from MCF-7 cells, 

the common specific genes/ pathways which CKI exerts its effects on cancer cells were 

identified. 363 common genes were found significantly regulated among three cell lines and 

mainly associated with cell cycle, apoptosis, DNA replication/ repair, and various cancer 

pathways. Many of the common DE genes were related to natural compounds in CKI based on 

an online database. This chapter is in the format of a manuscript that has been submitted to 

BMC Complementary and Alternative Medicine​.  
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Abstract

Background: Because Traditional Chinese Medicine (TCM) preparations are often combinations

of multiple herbs containing hundreds of compounds, they have been di�cult to study. Compound

Kushen Injection (CKI) is a complex mixture cancer treatment used in Chinese hospitals for over

twenty years.

Purpose: To demonstrate that a systematic analysis of molecular changes resulting from complex

mixtures of bioactives from TCM can identify a core set of di↵erentially expressed (DE) genes and

a reproducible set of candidate pathways.

Study Design: We used a cancer cell culture model to measure the e↵ect of CKI on cell cycle

phases, apoptosis and correlate those phenotypes with CKI induced changes in gene expression.

Methods: We treated cancer cells with CKI in order to generate and analyse high-throughput

transcriptome data from two cancer cell lines. We integrated these di↵erential gene expression

results with previously reported results.

Results: CKI induced cell-cycle arrest and apoptosis and altered the expression of 363 core

candidate genes associated with cell cycle, apoptosis, DNA replication/repair and various cancer
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pathways. Of these, 7 are clinically relevant to cancer diagnosis or therapy and 14 are cell cycle

regulators, and most of these 21 candidates are downregulated by CKI. Comparison of our core

candidate genes to a database of plant medicinal compounds and their e↵ects on gene expression

identified one-to-one, one-to-many and many-to-many regulatory relationships between compounds

in CKI and DE genes.

Conclusions: By identifying promising candidate pathways and genes associated with CKI based

on our transcriptome-based analysis, we have shown this approach is useful for the systematic

analysis of molecular changes resulting from complex mixtures of bioactives.

Keywords: Compound Kushen Injection, cancer cell, transcriptome, multiple targets, cell cycle,

apoptosis

Abbreviations:

DE, di↵erentially expressed; TCM, traditional Chinese medicine; CKI, compound Kushen

injection; GO, Gene Ontology; DO, Disease Ontology; KEGG, Kyoto Encyclopedia of Gene and

Genomes; PI, propidium iodide.

Introduction1

The treatments of choice for cancer are often radiotherapy and/or chemotherapy, and while2

these can be e↵ective, they can cause quite serious side-e↵ects, including death. These side-e↵ects3

have driven the search for adjuvant therapies to both mitigate side-e↵ects and/or potentiate the4

e↵ectiveness of existing therapies. Traditional Chinese Medicine (TCM) is one of the options for5

adjuvant therapies, particularly in China, but increasingly so in the West. While clinical trial data6

on the e↵ectiveness of TCM is currently limited, it remains an attractive option because of its long7

history and because its potential e↵ectiveness is believed to result from the cumulative e↵ects of8

multiple compounds on multiple targets [13]. Because TCM often has not been subjected to9

rigorous evidence-based assessment and because it is based on an alternative theoretical system10

compared to Western medicine, adoption of its plant derived therapeutics has been slow.11

In this report, we continue to characterize the molecular e↵ects of Compound Kushen Injection12

3

.CC-BY-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/503318doi: bioRxiv preprint first posted online Dec. 21, 2018; 

98

http://dx.doi.org/10.1101/503318
http://creativecommons.org/licenses/by-nd/4.0/


(CKI) on cancer cells. CKI has been approved by the State Food and Drug Administration13

(SFDA) of China for clinical use since 1995 [31] (State medical license no. Z14021231). CKI is an14

herbal extract from two TCM plants, Kushen (Sophora flavescens) and Baituling (Smilax Glabra)15

and contains more than 200 di↵erent chemical compounds. These compounds include alkaloids16

and flavonoids such as matrine, oxymatrine and kurarinol that have been reported to have17

anti-cancer activities [31, 47, 35, 48]. Some of these activities have been shown to influence the18

expression of TP53, BAX, BCL2 and other key genes known to be important in cancer cell growth19

and survival [45, 38, 25, 17].20

We have previously characterized the e↵ect of CKI on the transcriptome of MCF-7 breast21

carcinoma cells and in this report, we extend our previous results to two additional human cancer22

cell lines (MDA-MB-231, breast carcinoma and Hep G2, hepatocellular carcinoma). Both cell lines23

have also been shown to undergo apoptosis in response to the ingredients of CKI [35, 48, 38, 44].24

Hep G2 is one of the most sensitive cancer cell lines with respect to exposure to CKI [39] and CKI25

is often used in conjunction with Western chemotherapy drugs for the treatment of liver cancer26

patients in China. While the specific mechanism of action of CKI is unknown, several recent27

studies have reported that CKI or its primary compounds a↵ect the regulation/expression of28

oncogene products including �-catenin, TP53, STAT3 and AKT [31, 35, 22, 18, 41].29

However, these and other reports did not evaluate the entire range of molecular changes from30

treatment with a multi-component mixture such as CKI [10, 8]. Whilst several research databases31

and tools for TCM research have been developed [32, 34, 5], they are limited by the fact that most32

of the studies that contribute to the corpus of these databases are from di↵erent experimental33

systems, use single compounds or measure e↵ects based on one or a handful of genes/gene34

products.35

In contrast to previous studies, our strategy was to carry out comprehensive transcriptome36

profiling and network reconstruction from cancer cells treated with CKI. Instead of focusing on37

specific genes or pathways in order to design experiments, we have linked phenotypic assessment38

and RNA-seq analysis to CKI treatment. This allows us to present an unbiased, comprehensive39

analysis of CKI specific responses of biological networks associated with cancer. Our results40

indicate that di↵erent cancer cell lines that undergo apoptosis in response to CKI treatment can41

4
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exhibit di↵erent CKI induced gene expression profiles that nonetheless implicate similar core genes42

and pathways in multiple cell lines.43

The current study presents the e↵ects of CKI on gene expression in cancer cells with an aim to44

identify candidate pathways and regulatory networks that may be perturbed by CKI in vivo. To45

this end we primarily use concentrations of CKI higher than used in vivo in order to be able to46

detect e↵ects in the short time frames available to tissue culture experiments. We also combine47

our current analysis with previously published data to focus on a shared, much smaller set of48

candidate genes and pathways.49

Material and Methods50

Cell culture and reagents51

CKI (total alkaloids concentration of 25 mg/ml) in 5 ml ampoules was provided by Zhendong52

Pharmaceutical Co. Ltd. (Beijing, China). Chemotherapeutic agent, Fluorouracil (5-FU) was53

purchased from Sigma-Aldrich (MO, USA). A human breast adenocarcinoma cell line,54

MDA-MB-231 and a hepatocellular carcinoma cell line Hep G2 were purchased from American55

Type Culture Collection (ATCC, VA, USA). The cells were cultured in Dulbecco’s Modified Eagle56

Medium (Thermo Fisher Scientific, MA, USA) supplemented with 10% fetal bovine serum57

(Thermo Fisher Scientific). Both cell lines were cultured at 37�C with 5% CO2.58

For all in vitro assays, 4⇥105 cells were seeded in 6-well trays and cultured overnight before59

being treated with either CKI (at 1 mg/ml and 2 mg/ml of total alkaloids) or 5-FU (150 µg/ml for60

Hep G2 and 20 µg/ml for MDA-MB-231). As a negative control, cells were treated with medium61

only and labelled as “untreated”. After 24 and 48 hours of treatment, cells were harvested and62

subjected to the downstream experiments.63

Cell cycle and apoptosis assay64

The assay was performed as previously described [28]. For each cell line, three operators65

replicated the assay twice in order to ensure reproducibility of the observations. The results were66

obtained by flow cytometry using either FACScanto or LSRII (BD Biosciences, NJ, US).67

5
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RNA isolation and sequencing68

The treated cells were harvested, and the cell pellets were snap frozen with liquid nitrogen and69

stored at -80�C. Total RNA was isolated with PureLinkTM RNA Mini Kit (Thermo Fisher70

Scientific) according to the manufacturer’s protocol. After quantified using a NanoDrop71

Spectrophotometer ND-1000 (Thermo Fisher Scientific), the quality of the total RNA was verified72

on a Bioanalyzer by Cancer Genome Facility (SA, Australia) ensuring all samples had RINs>7.0.73

For both cell lines, the sequencing was performed in Ramaciotti Centre for Genomics (NSW,74

Australia). The sample preparation for each cell line was TruSeq Stranded mRNA-seq with dual75

indexed, on the NextSeq500 v2 platform. The parameter was 75bp paired-end High Output. The76

fastq files were generated and trimmed through Basespace with application FASTQ Generation77

v1.0.0.78

Bioinformatics analysis of RNA sequencing79

The clean Hep G2 reads were aligned to reference genome (hg38) using STAR v2.5.1 with80

following parameters: –outFilterMultimapNmax 20 –outFilterMismatchNmax 10 –outSAMtype81

BAM SortedByCoordinate –outSAMstrandField intronMotif [6]. The clean MDA-MB-231 reads82

were aligned to reference genome (hg19) using TopHat2 v2.1.1 with following parameters:83

–read-gap-length 2 –read-edit-dist 2 [15]. Di↵erential expression analysis for reference genes was84

performed with edgeR and di↵erentially expressed (DE) genes were selected with a False Discovery85

Rate<0.05 [29].86

The DE genes in common for both Hep G2 and MDA-MB-231 cell lines at 24 hours and 4887

hours after CKI treatment were selected as “shared” genes. These shared genes were utilized to88

describe the major anti-cancer functions and principal mechanisms of CKI.89

Gene Ontology (GO), and Kyoto Encyclopedia of Gene and Genomes (KEGG)90

over-representation analyses of both cell lines were carried out using the online database system91

ConsensusPathDB [14] with the following settings: “Biological process” at third level (for GO); q92

values (<0.01) were corrected for multiple testing with the system default settings. Disease93

ontology (DO) over-representation analyses of both cell lines were performed by using the94

Bioconductor R package clusterProfiler v3.5.1 [40]. For the function analyses of shared/core genes,95

6
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the method was as similar as our previous study [28] using ClueGO app 2.2.5 in Cytoscape v3.6.0.96

We enriched our GO terms in the biological process category level 3 and KEGG pathways,97

showing only terms/pathways with p values less than 0.01. Specific Over-represented98

terms/pathways and gene expression status mapping in KEGG pathways were visualised with the99

R package “Pathview” [21].100

Gene expression-based investigation of bioactive components in CKI101

To integrate with previous data from MCF-7 cells [28], all the shared DE genes regulated by102

CKI identified in all three cell lines using edgeR were mapped to the BATMAN-TCM database103

[19]. The pharmacophore modelling method [16] was used to generate the interaction network104

between the key genes and TCM components using R package igraph [4].105

Reverse transcription quantitative polymerase chain reaction (RT-qPCR)106

RT-qPCR was performed as previously described [28]. The list of target genes selected for this107

study and the sequences of all primers are shown in Additional file 1: Table S1.108

Results109

E↵ect of CKI on the cell cycle and apoptosis110

In our previous study, CKI significantly perturbed/suppressed cancer cell target genes/networks.111

In the current study we present results that confirm and generalize our previous work. We112

observed in the MCF-7 study, low concentrations of CKI in our short-term cell assay showed113

no/little phenotypic e↵ect within 48 hours, and very high doses resulted in excessive cell death at114

48 hours precluding the isolation of su�cient RNA for transcriptome analysis [28]. Therefore, in115

our current study with the two additional cell lines, to ensure consistency, we also selected 1116

mg/ml and 2 mg/ml total alkaloid concentrations of CKI for our assays because they generated117

reproducible and significant phenotypic e↵ects in our cell culture assay.118

We used flow cytometric analysis of propidium iodide stained cells to assess both CKI induced119

alterations to the cell cycle and apoptosis. In Hep G2 cells, CKI treatment resulted in an overall120

7
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Figure 1. E↵ects of di↵erent treatment on cell cycle and apoptosis of Hep G2 and MDA-MB-231

cells. A) The apoptosis and cell cycle distribution of each cell line after 24- and 48-hour treatments with CKI
or 5-Fu assessed PI staining. B) Percentages of cells in di↵erent phases of cell cycle resulting from treatment.
c Percentage of apoptotic cells after treatment. Results shown are mean ±SEM (n=6). Statistically significant
di↵erences from untreated control were identified using two-way ANOVA (*p<0.05, **p<0.01, ****p<0.0001).

increase in the proportion of cells in G1 phase and decrease in S phase (Fig. 1a and b). Similarly,121

in MDA-MB-231 cells, although a consistent increase in G1 phase was not observed, CKI caused a122

decrease in S phase particularly at the 24-hour time point (Fig. 1a and b) indicating possible123

incidence of cell cycle arrest at G1 phase. Furthermore, at 2 mg/ml of total alkaloids, CKI124

consistently induced significantly higher level of apoptosis in both cell lines at both time points125

compared to untreated controls (Fig. 1c). These data together suggest that CKI has e↵ects on the126

cell cycle by interfering with the transition between G1 to S phase as well as by acting on the127

apoptosis pathway and promoting cell death.128

CKI perturbation of gene expression129

In order to elucidate the molecular mechanisms of action of CKI on these cancer cells,130

transcriptome analysis of CKI treated cells was performed. As mentioned above, RNA samples131

from two cell lines were sequenced with 2⇥75 bp paired-end reads. We had previously sequenced132
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transcriptomes from CKI treated MCF-7 cells [28] and have included those results for comparison133

below. The samples from each cell line contained 7 groups at 3 time points (Fig. 2a), in triplicate134

for every group. In the multidimensional scaling (MDS) analysis, each cell line clustered135

independently and generally, within the cell line clusters, untreated cells clustered apart from136

treated cells (Additional file 2: Fig. S1).137

With the mapping rate were around 90% (Additional file 3: Table S2), a p-value based ranked138

list of DE genes (compared to untreated from each time point) was generated for both cell lines139

(Additional file 4: Table S3, sheet 1-4). This list was used to select the shared DE genes. This140

analysis generated thousands of DE genes (Additional file 4: Table S3, sheet 5) across Hep G2 and141

MDA-MB-231 cell lines.142

Because for each cell line the respective treatment groups clustered together on the MDS plot,143

there were large numbers of shared genes between them. As a result, we identified a set of 6852144

shared DE genes by identifying common DE genes from Hep G2 and MDA-MB-231 cell lines, at 24145

hours and 48 hours (Fig. 2b). These shared genes might predict a common molecular signature for146

CKI’s activity. However, there were still a large number of DE genes that were not shared by both147

cell lines, as seen in the heatmap in Fig. 2c. The expression of the shared gene set in both Hep G2148

and MDA-MB-231 is highly consistent. Interestingly, this consistency is with respect to treatment149

time, rather than with respect to cell line.150

RT-qPCR validation and dose response of gene expression to CKI151

Based on our previous results [28], and analysis below, we selected the 4 top ranked DE genes152

expressed in G1-S phase of the cell cycle (TP53 and CCND1 for expression level validation and153

E2F2 and PCNA for low dose response), as well as the proliferation and di↵erentiation relevant ras154

subfamily encoding gene (RAP1GAP1) for low dose response. We also selected a prominently155

expressed gene (CYP1A1) for validation because of its sensitivity to CKI treatment. CYP1A1,156

TP53 and CCND1 expression changes were validated with RT-qPCR with all three genes showing157

similar patterns of expression in the transcriptome data and RT-qPCR (Fig. 3a).158

Because low dose treatment with CKI did not cause significant gross phenotypic e↵ects in either159

cell line, we decided to use gene expression as a more sensitive measure of phenotype to look at160

9
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Figure 2. DE genes shared in both cell lines at both time points.A) Work flow diagram showing
experimental design and sample collection. B) Venn diagram showing the number of shared DE genes between Hep
G2 and MDA-MB-231. C) Heatmap presenting the overall gene expression pattern in both cell lines treated with
CKI. Heatmap is split into four parts based on gene content and expression pattern: 5442 di↵erentially regulated
genes with expression not shared between the two cell lines, 3157 upregulated genes shared between both cell lines,
3522 down-regulated genes shared between both cell lines, and 173 discordantly regulated genes with di↵erential
expression shared between both cell lines.
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the e↵ect of lower doses of CKI. We used 0.125 mg/ml, 0.25 mg/ml, 0.5 mg/ml and 1 mg/ml161

concentrations to look for dose dependency of gene expression. Our results showed an obvious162

dose-dependent expression trend (Fig. 3b) in both cell lines. Because the 0.125 mg/ml163

concentration of CKI is equivalent to what cancer patients are treated with, our results are164

potentially clinically relevant.165

Function enrichment analysis166

To identify candidate mechanisms of action of CKI, we carried out functional enrichment167

analysis. We used ConsensusPathDB [14] and Clusterprofiler [16] along with GO and KEGG168

pathways for over-representation analysis, along with disease ontology (DO) [30] enrichment.169

GO over-representation test was determined based on Biological Process level 3 and q value170

<0.01. The results for both cell lines at both time points were summarized and visualized based171

on semantic analysis of terms in Fig. 4a. From this result, it was obvious that there were a large172

proportion of enriched GO terms relating to cell cycle, such as “cell cycle checkpoint”,173

“negative/positive regulation of cell cycle process” and so on prominently featured for all data sets174

(Additional file 5: Fig. S2, Additional file 6: Table S4, sheet 1-4).175

We then used KEGG pathways to determine the specific pathways altered by CKI in cancer.176

The most regulated over-representative KEGG pathways are summarized according to KEGG177

Orthology (KO) (Fig. 4b). Cell cycle related pathways such as “cell cycle”, “DNA replication”,178

and “apoptosis” were also consistently seen in the KEGG enrichment results (Additional file 6:179

Table S4, sheet5-8) at both 24 and 48 hours. Moreover, in addition to the cell cycle relevant180

pathways, some cancer related pathways were also observed, such as “prostate cancer” and181

“chronic myeloid leukaemia”, and a large number of DE genes (283) from the two cell lines were182

relevant in “pathways in cancer”.183

Because the KEGG enrichment revealed many pathways relating to diseases, most of which184

were cancers, we decided to explore the enrichment of DE genes with respect to DO terms (Fig.185

4c). In the DO list (Additional file 6: Table S4, sheet 9-12), all top ranked terms listed are cancers.186

Interestingly, most cancer types listed are from the lower abdomen, for example “ovarian cancer”,187

“urinary bladder cancer “and “prostate cancer” etc. occurring in genitourinary organs (Additional188

11
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Figure 3. Validation of gene expression and e↵ects of low dose CKI using RT-qPCR. A) Comparison
of DE genes between RNA-seq results (left) and RT-qPCR validation (right) for each cell line at 2 time-points.
Three DE genes (CYP1A1, TP53 and CCND1) were chosen for validation. Gene expression was generally consistent
between transcriptome data and qPCR data. B) Dose response of CKI using a subset of genes with conserved
expression in Hep G2 (left), and MDA-MB-231 (right) from 0 mg/ml to 1 mg/ml of total alkaloids. Six genes
(CYP1A1, TP53, CCND1, Rap2GAP1, E2F2 and PCNA) were selected based on their relevance to important
pathways perturbed by CKI. RT-qPCR results are presented as expression relative to RPS13. Data are represented
as mean ±SEM (n>3). A t-test was used to compare CKI doses with “untreated” (*p<0.05, **p<0.01, ***p<0.001,
****p<0.0001).
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file 6: Table S4, sheet 9-12). For both KEGG pathway and DO enrichment, the e↵ects of CKI on189

both cell lines were similar.190

In addition to cell line specific functional enrichment of DE genes, we also analyzed the191

over-represented GO terms for shared DE genes (Fig. 5a). The most significant clusters were192

highly relevant to metabolic process, such as “cellular macromolecule metabolic process”, as well as193

the corresponding positive/negative regulatory biological process (Additional file 6: Table S4, sheet194

13). Moreover, various signaling pathways, though not forming a large cluster, were also significant,195

for example, “regulation of signal transduction” and “intracellular receptor signaling pathway”.196

Finally, some “cell cycle” related terms constituted relatively large sub-clusters, including “cell197

division” and “mitotic cell cycle process”. The enriched GO analysis was consistent with the cell198

line specific enriched results, and with our previous analysis of MCF-7 cells [28]. It is worth noting199

that for “cell cycle” related terms, most of the participating genes were down-regulated by CKI.200

Similar results were observed from KEGG analysis (Fig. 5b, and Additional file 6: Table S4,201

sheet 14) of shared genes. Various pathways related to cancer, formed a large cluster. Pathways202

such as “DNA replication”, “Ribosome” and “cell cycle” were mostly down-regulated, while203

up-regulated pathways included “inositol phosphate metabolism” and “protein processing in204

endoplasmic reticulum”.205

We also carried out over-representation analysis of DO terms (Fig. 5c) for all shared DE genes.206

The analysis results were consistent with the single cell line DO term analysis with mostly cancer207

related terms; in particular genitourinary or breast cancer terms. While this was also partially208

similar to the KEGG results for shared DE genes, there were some di↵erences in the KEGG209

results for disease pathways compared to the DO results, such as “bacterial invasion of epithelial210

cells”, “Fanconi anemia pathway” and “AGE-RAGE pathway in diabetic complications”.211

Specific to the therapeutic potential of CKI for cancer treatment, we applied our data set212

mapping to KEGG cancer pathways: pathways in cancer - homo sapiens (Additional file 7: Fig.213

S3). The R package Pathview [21] was used to integrate log fold change values of all the gene214

expression patterns into these target pathways. Within the 21 pathways in cancer, the “cell cycle”215

still featured prominently (Fig. 6a). The expression of almost every gene in the cell cycle pathway216

was a↵ected by CKI, with most of them suppressed. We did not observe this kind of overall217
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Figure 4. Functional annotation of DE genes for each cell line as a result of CKI treatment. Summary
of over-represented A) GO terms for Biological Process, B) KEGG pathways and C) DO terms for DE genes as a
result of CKI treatment in each cell line at two time points. For GO semantic and enrichment analysis, Lin’s algorithm
was applied to cluster and summarize similar functions based on GO terms found in every treatment. Similarly, by
back-tracing the upstream categories in the KEGG Ontology, we were able to obtain a more generalized summary
of KEGG pathways for each treatment. The size of each bubble represents the number of GO terms/pathways,
and the colour shows the statistical significance of the relevant function or pathways. The DO summary for each
treatment was determined by back-tracing to parent terms.
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Figure 5. Functional annotation of DE genes with shared expression in both cell lines as a result of

CKI treatment. Over-representation analysis was performed to determine A) GO terms for Biological Process,
B) KEGG pathways, and C) DO terms for DE genes shared in both cell lines. In nodes for both GO terms and
KEGG pathways, node size is proportional to the statistical significance of over-representation. For DO terms,
all the enriched terms are statistically significant (p<1⇥10�5) in each category, and the bar length represents the
number of expressed genes that map to the term.
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pathway suppression in any of the other pathways. We have displayed the summaries for the218

remaining 20 pathways in the heatmap in Fig. 6b. Although all the pathways were all perturbed219

by CKI, they include both over and under expressed genes in roughly equal proportions.220

Collectively, these results suggest a direct anti-cancer e↵ect of CKI, and implicate specific221

candidate mechanisms of action based on the perturbed molecular networks. The most obvious222

example is the cell cycle, where G1-S phase is significantly altered, resulting in the induction of223

apoptosis. The downstream process triggered by CKI is the suppression of gene expression of cell224

cycle regulators, including TP53 and CCND1. The other perturbed cancer pathways provide225

additional candidate mechanisms of action for CKI. In the following section we integrate these226

results with previous results reported in the literature to refine the core set of genes and pathways227

perturbed by CKI.228

Discussion229

Although Hep G2 (liver cancer – mesodermal tissue origin) and MDA-MB-231 (mammary230

epithelial adenocarcinoma – ectodermal tissue origin) are di↵erent cancer types, they shared a231

large number of CKI DE genes with similar expression profiles, presumably these shared genes232

include CKI response genes that are essential to the apoptotic response triggered by CKI.233

However, the number of shared CKI DE genes is too high to allow straight forward identification234

of genes critical to the CKI response. We therefore decided to combine these data with previously235

reported CKI DE genes from MCF-7 cells [28] in order to reduce the number of core CKI response236

genes. The intersection of MCF-7 CKI DE genes with the shared CKI DE genes yielded 363 core237

CKI DE genes (Additional file 8: Fig. S4).238

Among the 363 core CKI DE genes, cytochrome P450 family 1 subfamily A member 1239

(CYP1A1) gene is the most over-expressed. This gene is consistently up-regulated by CKI in all240

three cell lines, and showed significant dose response. In liver cancer cells, over-expression of241

CYP1A1 induced by plant natural products has been associated with Aryl-hydrocarbon Receptor242

transformation [2, 49]. Furthermore, as a steroid-metabolizing enzyme, CYP1A1 is part of cancer243

metabolic processes relevant to steroid hormone responsive tumors, such as breast cancer, ovarian244

cancer and prostate cancer [24, 26, 23, 27]. Therefore, CYP1A1 may be of particular interest for245
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Figure 6. Comparison of shared genes expression in specific pathways across two cell lines. A) Cell
cycle pathways, where each coloured box is separated into 4 parts, from left to right representing 24 hour CKI
treated Hep G2, 48 hour CKI treated Hep G2, 24 hour CKI treated MDA-MB-231 as well as 48 hour CKI treated
MDA-MB-231. B) Heatmap of pathways in cancer. The top two heatmaps summarise the e↵ects of CKI on Hep G2
cells for two time-points, and the bottom two heatmaps show the e↵ects of CKI on MDA-MB-231 cells. In addition
to the cell cycle pathway, there were 21 associated pathways in cancer that were perturbed by CKI. The e↵ects of
CKI on both cell lines were similar, with changes in TARGET database genes indicated by arrows. Compared to
other pathways in cancer, the e↵ects of CKI on the cell cycle pathway showed overall down-regulation.
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understanding the mechanism of action of CKI on cancer cells.246

Comparison of the 363 core genes to the 135 Tumor Alterations Relevant for Genomics-driven247

Therapy (TARGET) genes (version 3) from The Broad Institute (https://www.broadinstitute.org/248

cancer/cga/target) identified 7 DE genes that were shared across the three cell lines and two time249

points (Fig. 7a). Of these seven genes, six (TP53, CCND1, MYD88 (Myeloid di↵erentiation250

primary response gene 88) , EWSR1, TMPRSS2 and IDH1 (isocitrate dehydrogenase 1) were251

similarly regulated (either always over-expressed or under-expressed), while CCND3 was252

over-expressed in all three cell lines at both time points except at 48 hours in MCF-7 cells, where253

it was under-expressed.254

The TP53 gene encodes a tumor suppressor protein, that can induce apoptosis [11]. However,255

in all cell lines TP53 was down-regulated, and all cell lines showed increased apoptosis. This256

suggests that CKI induced apoptosis was not TP53-dependent. Support for this comes from the257

fact that transcripts for PCNA (proliferating cell nuclear antigen), and a group of transcription258

factors: MCM (mini-chromosome maintenance) complex and the E2F family are down-regulated.259

The E2F transcription factors regulate the cell cycle and TP53-dependent and -independent260

apoptosis [37, 12, 42, 33]. In addition, other core genes present in the TARGET database have261

also been shown to induce apoptosis. For example, inhibition of MYD88 induces apoptosis in both262

triple negative breast cancer and bladder cancer [3, 43]. The increased expression of IDH1 may be263

important, as IDH1 is frequently mutated in cancers [16] and when mutated, it causes loss of264

↵-ketoglutarate production and may be important for the Warburg e↵ect. TMPRSS2265

(transmembrane protease, serine 2) has also been shown to regulate apoptosis in cancer [1].266

Therefore, CKI may induce apoptosis through a variety of means.267

In the GO (Fig. 7b) and KEGG (Fig. 7c) over-representation analysis of the 363 core genes268

yielded enrichment for cell cycle and cancer pathways. In the GO enriched genes, cell cycle and269

related pathways accounted for the majority of functional sub-clusters. In the KEGG enriched270

pathways, cell cycle and cancer pathways predominated in a single cluster. Most of the core genes271

in GO and KEGG clusters were down-regulated by CKI. In addition to the cell cycle, CKI272

treatment also caused enrichment for terms or pathways related to cancer progression, such as273

“focal adhesion” and “blood vessel development”. (Additional file 6: Table S4, sheet 5-8). These274
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developmental processes contribute to tumorigenesis and metastasis [20, 36]. It is tempting to275

speculate that CKI may alter these functions in vivo, possibly altering angiogenesis which is276

critical for tumors [9]. In addition, there were metabolic pathways and terms that were also277

identified as perturbed by CKI. E↵ects on many targets/pathways is one of the expected features278

of TCM drugs which likely hit multiple targets [7].279

We have examined the e↵ect of a complex mixture of plant natural products (CKI) on di↵erent280

cancer cell lines and have identified specific, consistent e↵ects on gene expression resulting from281

this mixture. However, the complexity of CKI makes it di�cult to determine the mechanism of282

action of individual components, and often testing of individual components has resulted in either283

no e↵ect or contradictory results in the research literature. In spite of this complexity, it is possible284

to map our results on to a pre-existing corpus of work that links individual natural compounds to285

changes in gene expression. We have used BATMAN [19], an online TCM database of curated286

links between compounds and gene expression. Based on this resource, we have identified 14287

components of CKI that have been linked to the regulation of 52 of our core genes (Fig. 7d). We288

can see from the network diagram in Fig. 7d that one to one, one to many and many to many289

relationships exist between CKI components and genes which is consistent with previous studies290

[38, 18, 46]. As more information becomes available for individual components, we will be able to291

construct a more comprehensive model of CKI mechanism based on network analysis.292

Conclusion293

Our systematic analysis of gene expression changes in cancer cells caused by a complex herbal294

extract used in TCM has proven to be e↵ective at identifying candidate molecular pathways. CKI295

has consistent and specific e↵ects on gene expression across multiple cancer cell lines and it also296

consistently induces apoptosis in vitro. These e↵ects show that CKI can suppress the expression of297

cell cycle regulatory genes and other well characterized cancer related genes and pathways.298

Validation of a subset of DE genes at lower doses of CKI has shown a dose-response relationship299

that suggests that CKI may have similar e↵ects in vivo at clinically relevant concentrations. Our300

results provide a molecular basis for further investigation of the mechanism of action of CKI.301
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Figure 7. Analysis of CKI regulated core genes from this report combined with previous available

data. A) Fold changes of TARGET and cell cycle regulatory gene expression in MDA-MB-231, Hep G2 and MCF-7
[28] cell lines 24 and 48 hours after CKI treatment. Only seven TARGET genes are a↵ected by CKI in all three cell
lines. Most of the 14 cell cycle regulatory genes di↵erentially expressed in all three cell lines are down-regulated.
B) GO term enrichment analysis of 363 core genes from MDA-MB-231, Hep G2 and MCF-7 cell lines. C) KEGG
pathway enrichment of 363 core genes from MDA-MB-231, Hep G2 and MCF-7 cell lines. D) Some individual
compounds present in CKI linked to genes they regulate that are also found in this report and our previous study
[28]. Node size is proportional to the number of related components/genes.
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Chapter 5 
 

Cell Cycle, Glycolysis and DNA Repair Pathways in Cancer Cells are 

Suppressed by Compound Kushen Injection 
 

In the previous chapter, we have identified the pathways that CKI shows its anticancer effects. 

Here, cell cycle, energy metabolism and DNA repair pathways were selected for verification on 

MDA-MB-231 and HEPG2 cells. We have confirmed the protein level with transcriptome data for 

these pathways and found CKI can reduce energy metabolism and increase DNA double-strand 

breaks (DSB). Besides, we have confirmed that oxymatrine, usually considered as the main 

active component in CKI, has different effects to CKI in these pathways. This chapter is in the 

format of the manuscript that was published in ​BMC Cancer 

(​https://doi.org/10.1186/s12885-018-5230-8​). 
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Abstract
Background: In this report we examine candidate pathways perturbed by Compound Kushen Injection (CKI), a
Traditional Chinese Medicine (TCM) that we have previously shown to alter the gene expression patterns of multiple
pathways and induce apoptosis in cancer cells.

Methods: We have measured protein levels in Hep G2 and MDA-MB-231 cells for genes in the cell cycle pathway,
DNA repair pathway and DNA double strand breaks (DSBs) previously shown to have altered expression by CKI. We
have also examined energy metabolism by measuring [ADP]/[ATP] ratio (cell energy charge), lactate production and
glucose consumption. Our results demonstrate that CKI can suppress protein levels for cell cycle regulatory proteins
and DNA repair while increasing the level of DSBs. We also show that energy metabolism is reduced based on
reduced glucose consumption and reduced cellular energy charge.

Results: Our results validate these pathways as important targets for CKI. We also examined the effect of the major
alkaloid component of CKI, oxymatrine and determined that it had no effect on DSBs, a small effect on the cell cycle
and increased the cell energy charge.

Conclusions: Our results indicate that CKI likely acts through the effect of multiple compounds on multiple targets
where the observed phenotype is the integration of these effects and synergistic interactions.

Keywords: Alkaloid, Matrine, Cyclin, Ku70, Ku80, Cell-cycle

Background
Compound Kushen Injection (CKI) is a complex mix-
ture of plant bioactives extracted from Kushen (Sophora
flavescens) and Baituling (Smilax Glabra) that has been
approved for use in China since 1995 by the State Food
and Drug Administration of China (State medical license
no. Z14021231).
Kushen has a long history in Chinese Medicine and is a

very commonly used plant in the Chinese Materia Med-
ica (CMM). This leguminous plant is widely distributed
in Russia, Japan, India, North Korea, and some provinces
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1Department of Molecular and Biomedical Science, The University of Adelaide,
5005 North Terrace, Adelaide, South Australia, Australia
2Zhendong Australia - China Centre for Molecular Chinese Medicine, The
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Full list of author information is available at the end of the article

and regions in mainland China [1]. The medicinal part of
Kushen is its dry root that is used mainly to treat inflam-
mation, eczema, parasites and similar afflictions [2, 3].
Modern pharmacological research suggests that the var-
ious alkaloids and flavonoids contained in Kushen have
anticancer activity, especially with respect to arresting
tumor growth and relieving cancer pain [4]. Compared
to Kushen, Baituling is distributed in some regions of
southern China, and was only used clinically in limited
applications [5]. Because of this limited clinical usage,
there are only a small number of research reports focused
on Baituling.
The combination of above two herbs’ extracts, CKI is

widely used in China as an adjunct for both radiother-
apy and chemotherapy in cancer. While most of the data
supporting its use have been anecdotal and there is little
clinical trial data demonstrating its efficacy, it has been

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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shown to be effective at reducing sarcoma growth and
cancer pain in an animal model [6] and cancer pain in
patients [4].
CKI contains over 200 chemical compounds including

alkaloids and flavonoids such as matrine, oxymatrine and
kurarinol, and has previously been shown to affect the cell
cycle and induce apoptosis in cancer cells [2, 4, 6–10].
Furthermore, functional genomic characterisation of the
effect of CKI on cancer cells using transcriptome data
indicated that multiple pathways were most likely affected
by CKI [8]. These observations support a model wherein
many/all of the individual compounds present in CKI can
act on many single targets or on multiple targets to induce
apoptosis.
Based on previously reported work [8] and our cur-

rently unpublished work (Cui et al) [11], specific path-
ways were selected for follow up experiments to validate
their response to CKI in order to formulate more specific
hypotheses regarding the mechanism of action of CKI on
cancer cells. We had previously shown that CKI altered
the cell cycle and induced apoptosis while altering the
expression of many cell cycle genes in three cancer cell
lines [8, 11]. We had also shown that DNA repair pathway
genes were significantly down-regulated by CKI and that
energy production related to NAD(P)H synthesis from
glycolysis and oxidative phosphorylation was reduced by
CKI. As a result we focused on the following candidate
pathways: cell cycle, DNA repair and glucose metabolism
to validate their alteration by CKI. We used two cell lines
for these validation experiments, one relatively insensi-
tive to CKI (MDA-MB-231) and one sensitive to CKI
(Hep G2). Furthermore, while the literature shows vary-
ing effects for major compounds present in CKI on cancer
cells [12, 13], we also tested oxymatrine, themajor alkaloid
found in CKI and widely believed to be very important for
the effects of CKI, on our selected pathways.

Methods
Cell culture and chemicals
CKI with a total alkaloid concentration of 26.5 mg/ml in
5 ml ampoules was provided by Zhendong Pharmaceuti-
cal Co. Ltd. (Beijing, China). Cell culture methods have
been previously described [8]. The concentration of total
alkaloids in CKI was determined using HPLC.
A human breast adenocarcinoma cell line, MDA-MB-

231 and a hepatocellular carcinoma cell line Hep G2 were
purchased from American Type Culture Collection (VA,
USA). The cells were cultured in Dulbecco’s Modified
Eagle Medium (Thermo Fisher Scientific, MA, USA) sup-
plemented with 10% fetal bovine serum (Thermo Fisher
Scientific). Both cell lines were cultured at 37 °C with 5%
CO2. Cells were split twice per week with trypsinization,
defined as two passages. Both cell lines were discarded
when passage number was more than 15.

For all in vitro assays, cells were cultured overnight
before being treated with CKI (either at 1 mg/ml and 2
mg/ml of total alkaloids). As a negative control, cells were
treated with medium only and labelled as “untreated”.
After 24 and 48 h of treatment, cells were harvested and
subjected to the downstream experiments.
All the in vitro assays employed either 6-well plates or

96-well plates. The seeding density for 6-well plates for
both cell lines was 4×105 cells and treatment methods
were as previously described [8]. The seeding density of
Hep G2 cells for 96 well plates was 4×103 cells per well
and for MDA-MB-231 cells was 8×104 cells per well, and
used the same treatment method as above: after seeding
and culturing overnight, cells were treated with 2 mg/ml
CKI diluted with complete medium for the specified time.

Glucose consumption assay
Glucose consumption was assessed in both cell lines in
6-well plates. Glucose consumption was determined by
using a glucose oxidase test kit (GAGO-20, Sigma Aldrich,
MO, USA). After culturing for different durations (3, 6,
12, 24 and 48 h), 50 µl of culture medium was collected
from untreated groups and treated groups. The cells were
trypsinized for cell number determination using trypan
blue exclusion assay and the number of bright, viable cells
were counted using a hemocytometer. Collected suspen-
sion, blank medium and 2 mg/ml CKI, were all filtered
and diluted 100 fold with MilliQ water. The absorbance
at 560 nm was converted to glucose concentration using
a 5 µg/ml glucose standard from the kit as a single stan-
dard. Glucose consumption was calculated by subtracting
the blank medium value from treated/collected medium
values. Glucose consumption per cell was calculated from
the number of cells determined above.

Measurement of [ADP]/[ATP] ratio
Cells were cultured in white 96-well plates with clear
bottoms. The [ADP]/[ATP] ratio of both cell lines was
determined immediately after the incubation period
(24 and 48 h) using an assay kit (MAK135; Sigma Aldrich)
according to the manufacturer’s instructions. Levels of
luminescence from the luciferase-mediated reaction was
measured using a plate luminometer (PerkinElmer 2030
multilabel reader, MA, USA for CKI experiments or
Promega, WI, USA for oxymatrine experiments) . The
[ADP]/[ATP] ratio was calculated from the luminescence
values using a formula provided by the kit manufacturer.

Lactate content assay
The concentration of lactate, the end product of glycol-
ysis, was determined using a lactate colorimetric assay
kit (Abcam, MA, USA). Cells were cultured in 6-well
plates, and then harvested and deproteinized according
to the manufacturer’s protocol. The optical density was
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measured at 450 nm and a standard curve plot (nmol/well
vs. OD 450 nm) was generated using serial dilutions of lac-
tate. Lactate concentrations were calculated with formula
provided by the kit manufacturer.

Cell cycle assay
Cells were cultured in 6-well plates and treated with 2
mg/ml CKI or 0.5 mg/ml oxymatrine. After culturing for
3, 6, 12, 24 and 48 h, cells were harvested and subjected to
cell cycle analysis by propidium iodide staining as previ-
ously reported [8]. Data were obtained by flow cytometry
using Accrui (BD Biosciences, NJ, USA) and analysed
using FlowJo software (Tree Star Inc, OR, USA).

Microscopy
After treating for 48 h on 22×22 Deckglaser cover glasses
placed in 6-well plates, control and treated cells were fixed
in 1% paraformaldehyde for 10 min at room temperature,
and permeabilized with 0.5% Triton X-100 for 10 min.
After fixation and permeabilization, cells were blocked
with 5% fetal bovine serum for 30 min. Permeabilized cells
were stained with 10 µg/ml of Alexa Fluor!594 conju-
gated anti-γ -H2AX Phospho (red) (BioLegend, CA, USA)
in 5% fetal bovine serum overnight at 4◦C and mounted
with 4’,6-diamidino-2-phenylindole (DAPI).
Stained cells were visualized with an Olympus FV3000

(Olympus Corporation, Tokyo, Japan) confocal micro-
scope using a 20× objective. Fluorescence intensity was
automated pictured collection with ArrayScan XTI Live
High Content Platform (Thermo Fisher Scientific) and
software based nuclear analysis (HCS studio 3.0 Cell Anal-
ysis Software; Thermo Fisher Scientific) was implemented
as for data acquirement of CircSpots under 20× focusing.
The acquired number of each cell line in one replicate was,
approximately 5000 cells for Hep G2 and approximately
2000 cells for MDA-MB-231.

Detection of intranuclear/intracellular proteins by flow
cytometry
Cells were cultured in 6-well plates, treated with or with-
out CKI, and harvested on different time points to detect
intranuclear/intracellular levels of proteins involved in cell
cycle, DNA repair and DNA DSBs pathways using the fol-
lowing antibodies. To measure levels of proteins involved
in cell cycle, rabbit anti-CDK1 (Abcam), rabbit anti-p53,
rabbit anti-cyclin D1, rabbit anti-CDK2 along with rab-
bit IgG isotype control (Cell Signalling Technologies,
MA, USA) were used and these were detected with anti-
rabbit IgG-PE (Cell Signalling Technologies). In addition,
β-catenin levels were detected with rabbit anti-β-catenin-
Alexa Fluor 647 with rabbit IgG-Alexa Fluor 647 isotype
control (Abcam). The levels of proteins involved in DNA
repair pathway were measured with rabbit anti-Ku70-
Alexa Fluor 647 or with rabbit anti-Ku80-Alexa Fluor 647

(Abcam) along with rabbit IgG-Alexa Fluor 647 isotype
control. For the detection of γ -H2AX involved in DSBs
pathway, mouse anti-γ -H2AX-PE and mouse IgG1-PE
isotype control (BioLegend) were used.
The cells prepared for the detection of cell cycle and

DNA repair pathways were fixed and permeabilised using
Nuclear Factor Fixation and Permeabilization Buffer Set
(BioLegend) according to the manufacturer’s instructions.
The cells prepared for the detection of DNA DSBs were
fixed and permeabilised using chilled 70% ethanol. For
samples under single time point and treatment, 2×105
cells were labelled either with target antibody or corre-
sponding isotype. The data was acquired on a FACS Canto
(BD Biosciences, NJ, USA) or Accrui, and analysed using
FlowJo software.

Cell cycle functional enrichment re-analysis
In order to identify the phases of the cell cycle affected by
CKI, differentially expressed gene data from Qu et al. and
Cui et al. [8, 11] was submitted to the Reactome database
[14], and used to identify functionally enriched genes.

Statistical analysis
All assays above were performed in triplicate and repeated
at least three times. Statistical significance was defined
as p-value less than 0.05, and determined by t-test
for microscopy and two-way ANOVA test for rest of
the assays with GraphPad Prism (v7.03, Graphpad Soft-
ware Inc., CA, USA); error bars represent standard
deviation.

Results
Pathway validation
Based on our previous results indicating that CKI could
suppress NAD(P)H synthesis [8] and (Additional file 1:
Figure S1), we examined the effect of CKI on energy
metabolism by measuring glucose uptake, [ADP]/[ATP]
ratio and lactate production.Wemeasured glucose uptake
in both CKI treated and untreated cells from 0 to 48 h after
treatment and observed a reduction in glucose uptake
(Fig. 1a). The growth curves for both cell lines were rel-
atively flat after CKI treatment, in contrast to untreated
cells. MDA-MB-231 cells, which are less sensitive to CKI
in terms of apoptosis, had a higher level of glucose uptake
than Hep G2 cells, which are more sensitive to CKI.
Because the overall glucose uptake was consistent with
the cell growth curves, the glucose consumption per mil-
lion cells for each cell line under treatment was different.
Untreated Hep G2 cells maintained a relatively flat rate
of glucose consumption per million cells, while for CKI
treated Hep G2 cells the rate of glucose consumption per
million cells decreased with time, becoming significantly
less towards 48 h. The glucose consumption variance
for both untreated and treated MDA-MB-231 cells was
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a

b c

Fig. 1 The energy metabolism determination assays in the two cell lines. a Growth curve (top panels) and comparison of glucose consumption
analysis (lower panels) between the two cell lines at 3, 6, 12, 24 and 48 h. Overall glucose consumption is divided by cell number to calculate the
consumption of glucose per million cells. b [ADP]/[ATP] ratio assay result for the two cell lines at 24 and 48 h. c Lactate content detection for the
two cell lines at 24 and 48 h. Statistical analyses were performed using two-way ANOVA comparing treated with untreated (*p<0.05, **p<0.01,
***p<0.001, ****p<0.0001); bars show one standard deviation from the mean

high, but both overall glucose consumption and glucose
consumption per million cells appeared to decrease over
time.
Because changes in glucose consumption are mirrored

by other aspects of energy metabolism, we assessed
the energy charge of both CKI treated and untreated
cells by measuring the [ADP]/[ATP] ratio at 24 and
48 h after treatment (Fig. 1b). Hep G2 cells had a
lower energy charge (higher [ADP]/[ATP] ratio) com-
pared to MDA-MB-231 cells and after CKI treat-
ment both cell lines showed a decrease in energy
charge, consistent with our previous measurements using
a 2,3-Bis(2-methoxy-4-nitro-5-sulfonyl)-2H-tetrazolium-
5-carboxanilideinner salt (XTT) assay (Additional file 1:
Figure S1). However the decrease in energy charge was
earlier and much more pronounced for Hep G2 cells
compared to MDA-MB-231 cells.
The flip side of glucose consumption is the production

of lactate via glycolysis, which is the initial pathway

for glucose metabolism. We therefore measured lactate
production in order to determine if the observed
decreases in energy charge and glucose consumption were
directly attributable to reduced glycolytic activity. We
measured intracellular lactate concentration in both CKI
treated and untreated cells at 24 and 48 h after treatment
(Fig. 1c) and found that lactate concentrations increased
as a function of CKI treatment in both cell lines. This
result is consistent with a build up of lactate due to an
inhibition of the Tricarboxylic Acid (TCA) cycle leading
to decreased oxidative phosphorylation and lower cel-
lular energy charge. CKI must therefore inhibit cellular
energy metabolism downstream of glycolysis, most likely
at the level of the TCA cycle. Decreased energy charge can
have widespread effects on a number of energy hungry
cellular processes involved in the cell cycle, such as DNA
replication.
Having validated the effect of CKI on cellular energy

metabolism, we proceeded to examine the perturbation of
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cell cycle and expression of cell cycle proteins, as these are
energy intensive processes. We had previously identified
the cell cycle as a target for CKI based on transcriptome
data from CKI treated cells [8, 11]. We carried out cell
cycle profiling on CKI treated and untreated cells using
propidium iodide staining and flow cytometry (Fig. 2a) as
described in Materials and Methods. The two cell lines
displayed slightly different profiles to each other, but their
response to CKI was similar in terms of an increase in the
proportion of cells in G1-phase. For Hep G2 cells, CKI
caused consistent reductions in the proportion of cells in
S-phase accompanied by corresponding increases in the
proportion of cells in G1-phase. This is indicative of a
block in S-phase leading to accumulation of cells in G1-
phase. For MDA-MB-231 cells, CKI did not promote a
significant decrease in the proportion of cells in S-phase,
but did cause an increase in the percentage of cells in G1
phase at 24 h and a pronounced decrease in cells in G2/M
phase at 12 h.

We also examined the levels of key proteins involved in
the cell cycle pathway (Cyclin D1:CCND1, Cyclin Depen-
dent Kinase 1:CDK1, Cyclin Dependent Kinase 2:CDK2,
Tumor Protein p53:TP53 and Catenin Beta 1:CTNNB1)
at 24 and 48 h after CKI treatment previously shown to
have altered transcript expression by CKI (Fig. 2b). Both
cell lines showed similar results for all five proteins, with
decreased levels caused by CKI, and validated previous
RNAseq data [8, 11]. CCND1 regulates the cell-cycle dur-
ing G1/S transition. CDK-1 promotes G2-M transition,
and regulates G1 progress and G1-S transition. CDK-2
acts at the G1-S transition to promote the E2F transcrip-
tional program and the initiation of DNA synthesis, and
modulates G2 progression. TP53 acts to negatively regu-
late cell division. CTNNB1 acts as a negative regulator of
centrosome cohesion. Down-regulation of these proteins
is therefore consistent with cell cycle arrest/dysregulation
and the cell cycle result in Fig. 2a. These results indicate
that CKI alters cell cycle regulation consistent with cell

Fig. 2 Cell cycle shift by CKI and changing expression of key proteins. a Histogram and statistical results of cell cycle shift regulated by CKI over 48 h.
In both cell lines, the earliest shifted cell cycle phase was S phase 6 h after treatment. Compared to Hep G2, MDA-MB-231 showed delayed
responses. b Expression levels for five proteins as a result of CKI treatment at both 24 and 48 h. Statistical analyses were performed using two-way
ANOVA comparing treated with untreated (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001); bars show one standard deviation from the mean
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cycle arrest. Cell cycle arrest is also an outcome that can
result from DNA damage such as DSBs [15].
We had previously observed that DNA repair genes

had lower transcript levels in CKI treated cells [8, 11],
so hypothesised that this might result in increased num-
bers of DSBs. We measured the expression of γ -H2AX

in both cell lines (Fig. 3a) and found that it was only
over-expressed at 48 h in CKI treated Hep G2 cells. We
also carried out localization of γ -H2AX using quanti-
tative immunofluorescence microscopy and determined
that the level of γ -H2AX increased in nuclei of CKI
treated cells in both cell lines (Fig. 3b). These results

a

b

c

Fig. 3 DSBs were increased by CKI treatment. a γ -H2AX expression from 3 to 48 h after treatment with 2 mg/ml CKI in two cell lines. b Localization
of γ -H2AX in two cell lines after CKI treatment for 48 h. Blue is DAPI staining of nuclei, pink/red is staining of DSBs with antibody to γ -H2AX. The bar
graph shows a quantification of the average number of γ -H2AX foci per cell detected in immunofluorescence images of 2 mg/ml CKI treated and
untreated groups of 3 independent replicate experiments. c Expression of DSBs repair proteins, Ku70 and Ku80, as a result of treatment with 2
mg/ml CKI in two cell lines. Statistical analyses were performed using two-way ANOVA or t-test (for microscopy) comparing treated with untreated
(*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001); bars show one standard deviation from the mean
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indicated an increase in DSBs as a result of CKI treat-
ment. In order to confirm if reduced expression of DNA
repair proteins was correlated with the increase in DSBs
we measured levels of Ku70/Ku80 proteins in CKI treated
cells (Fig. 3c). In Hep G2 cells, Ku80, a critical com-
ponent of the Non-Homologous End Joining (NHEJ)
DNA repair pathway was significantly down-regulated at
both 24 and 48 h after CKI treatment. In MDA-MB-
231 cells, Ku70 expression was down-regulated at both
24 and 48 h after CKI treatment, and Ku80 was down-
regulated at 24 h. Because Ku70/Ku80 are subunits of
a required DNA repair complex, reduced expression of
either subunit will result in decreased DNA repair. Our
results therefore support a suppressive effect of CKI
on DNA repair, likely resulting in an increased level
of DSBs.

Effect of oxymatrine, the principal alkaloid in CKI
Because CKI is a complex mixture of many plant sec-
ondary metabolites that may have many targets and there

is little known about its molecular mode of action, we
examined the effects of the most abundant single com-
pound found in CKI, oxymatrine, on the most sensitive
cell line, Hep G2. Oxymatrine is an alkaloid that has
previously been reported to have effects similar to CKI, so
we expected it might have an effect on one or more of our
three validated pathways.
Oxymatrine, at 0.5 mg/ml which is equivalent to the

concentration of oxymatrine in 2 mg/ml CKI, did not have
an equivalent effect on the cell cycle compared to CKI
(Fig. 4a vs Fig. 2a). Oxymatrine caused onlyminor changes
to the cell cycle with small but significant increases in
the proportion of cells in G1-phase at 3 and 48 h and a
small but significant decrease in the proportion of cells
in S1-phase at 48 h. Oxymatrine also caused a significant
increase in the proportion of cells undergoing apoptosis in
Hep G2 cells, albeit at a lower level than CKI (Additional
file 1: Figure S2).
Oxymatrine had no effect on γ -H2AX levels in Hep G2

cells (Fig. 4b). This was in stark contrast to the effect of

a

b c

Fig. 4 Effect of oxymatrine alone on validated pathways. Oxymatrine was tested at 0.5 mg/mL which is equivalent to its concentration in CKI. a
Histogram and statistical results of cell cycle affected by oxymatrine over 48 h. b Effect of oxymatrine on γ -H2AX levels after 24 and 48 h. c Effect of
oxymatrine on [ADP]/[ATP] ratio after 24 and 48 h. Statistical analyses were performed using two-way ANOVA comparing treated with untreated
(*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001); bars show one standard deviation from the mean
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CKI (Fig. 3a) at 48 h and indicated that oxymatrine alone
had no effect on the level of DSBs.
Surprisingly, oxymatrine had the opposite effect on

energy metabolism compared to CKI, causing a decrease
in [ADP]/[ATP] ratio indicating a large increase in the
energy charge of the cells (Fig. 4c).

Integration of results
The effect of CKI on cancer cells was validated in all three
of our candidate pathways: cell cycle, energy metabolism
and DNA repair. Because these pathways are not iso-
lated, but instead are integrated aspects of cell physi-
ology CKI may act through targets in some or all of
these three pathways or may act through other targets
that either directly or indirectly suppress these pathways.
CKI may also act through the synergistic effects of mul-
tiple compounds on multiple targets in our candidate
pathways. This possibility is consistent with the par-
tial and minor effects of oxymatrine on our candidate
pathways.

Discussion
We have validated three pathways (cell cycle, energy
metabolism and DNA repair) that are perturbed by CKI
and that can be used as the focus for further investigations
to identify specific molecular targets that mediate the
perturbations.

Cell cycle perturbation by CKI
Our results show that CKI can perturb the cell
cycle by altering the proportions of cells in G1-phase,
S-phase and G2/M-phase. This result is similar to what
we have observed before [8, 11], but has not been widely
reported in the literature. The alkaloid oxymatrine, the
most abundant compound present in CKI, has also been
shown previously to perturb a number of signaling path-
ways [16] and alter/arrest the cell cycle in a variety of
cancer cells [17–21] and we have confirmed this observa-
tion (Fig. 4a) in Hep G2 cells. Our results permit direct
comparison with CKI because our experiments have been
done using equivalent concentrations of oxymatrine alone
or in CKI.While oxymatrine has an effect on the cell cycle,
it is not as effective at perturbing the cell cycle as is CKI.
This indicates that oxymatrine must interact with other
compounds in CKI to have a stronger effect on the cell
cycle.

Energy metabolism suppression by CKI
We have shown for the first time that CKI can inhibit
energy metabolism as demonstrated by lower levels of
NADH/NADPH and a higher [ADP]/[ATP] ratio. These
results, combined with lower glucose utilisation and
higher lactate levels indicate that this suppression was
likely due to inhibition of the TCA cycle or oxidative phos-
phorylation. Previously, Gao et al. [7] have reported that

a c

b

Fig. 5 Integration of the three pathways altered by CKI. a General presentation of energy metabolism affected by CKI. Glucose utilisation is
down-regulated by CKI. This is accompanied by increased lactate in the cytoplasm as CKI inhibits glucose metabolism downstream of glycolysis,
leading to an increase in [ADP]/[ATP] and decrease in NADH/NADPH. b Effects on DNA repair in cancer cells by CKI. CKI may be able to directly induce
DSBs, but may also indirectly induce DSBs by arresting checkpoint functions during the cell cycle. In addition, CKI may also inhibit NHEJ, the major
repair mechanism for DSBs. c Reactome functional enrichment of cell cycle genes based on shared differentially expressed (DE) genes from previous
studies. From M/G1 to S phase, the shared DE genes from both cell lines were significantly enriched. Most of these DE genes, were down-regulated
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CKI significantly increased the concentration of pyru-
vate in the medium and this observation in combination
with our results supports a decrease in metabolic flux
through the TCA cycle as the likely cause of the reported
suppression of energy metabolism. Interestingly, oxyma-
trine on its own had the opposite effect on [ADP]/[ATP]
ratio compared to CKI, indicating that it can enhance
energy metabolism and increase the energy charge of
the cell.

DNA repair suppression by CKI
There is only one report in the literature of oxymatrine
inducing DSBs [22] and no reports with respect to CKI.
Our results show for the first time that not only does CKI
induce DSBs, but that is also likely inhibits DNA repair
by decreasing the expression of the Ku70/Ku80 complex
required for NHEJ mediated DNA repair. It is worth not-
ing however, that the reported effect of oxymatrine on
DSBs [22] uses significantly higher (4–8 fold) concen-
trations of oxymatrine compared to our experiments. In
our hands oxymatrine alone at 0.5 mg/ml showed no
effect on DSBs as judged by the level of γ -H2AX after
24 or 48 h.

Conclusions
CKI causes suppression of energy metabolism and DNA
repair along with altered cell cycle (summarized in Fig. 5).
CKI has also previously been reported to induce apopto-
sis in cancer cells [8]. The overarching question is if CKI
has independent effects on these three pathways or if the
primary effect of CKI is through a single pathway that
propagates effects to other, physiologically linked path-
ways. It may be that CKI suppresses energy metabolism
thus disrupting downstream, energy hungry processes
such as DNA replication and DNA repair. Alternatively,
there could be independent effects on DNA repair lead-
ing to checkpoint induced cell cycle perturbation/arrest.
Our results based on oxymatrine treatment of Hep G2
cells indicate that the cell-cycle is likely directly affected
by oxymatrine and thus CKI. However oxymatrine alone
had no effect on DNA repair and boosted, rather than
reduced the energy charge of the cell. Taken together,
these results support a model of many compounds/many
targets [23] for the mode of action of CKI, where multi-
ple compounds affect multiple targets and the synergistic,
observed effect is significantly different to that seen with
individual components.

Additional file

Additional file 1: Contains supplementary figures as referred to in the
main body of the paper. (PDF 721 kb)
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Chapter 6  
 

Fractional Deletion of Compound Kushen Injection, a Natural 

Compound Mixture, Indicates Cytokine Signaling Pathways are 

Critical for Its Perturbation of The Cell Cycle 

 
Plant secondary metabolites are the building blocks of TCM, and because of the extreme 

complexity of these compounds, it is usually not clear which components are responsible for the 

effects of TCM and how they interact with other compounds. In this chapter, we introduce an 

approach based on applied analytical chemistry with a cell based assay and transcriptome 

analysis to explain the chemical basis of TCM. By knocking out different numbers of primary 

components and testing the activity of residual mixtures, we concluded that many compounds 

are necessary for CKI’s anticancer effects and no single compound can account for the entirety 

of its effects. Furthermore, our methods are more comprehensive and reliable than previous 

TCM research that relied on one or two main components to represent the whole prescription. 

This chapter is in the format of a manuscript that has been submitted to ​Scientific Reports​. 
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ABSTRACT 

We have used computational and experimental biology approaches to identify candidate 

mechanisms of action of a traditional Chinese medicine. Compound Kushen Injection (CKI), 

in a breast cancer cell line in which CKI causes apoptosis. Because CKI is a complex mixture 

of plant secondary metabolites, we used a high-performance liquid chromatography (HPLC) 

fractionation and reconstitution approach to define chemical fractions required for CKI to 

induce  apoptosis in MDA-MB-231 cells. Our initial fractionation separated major from minor 

compounds, and showed that the major compounds accounted for little of the activity of CKI. 

By systematically perturbing the major compounds in CKI we found that removal of no single 

major compound could alter the effect of CKI on cell viability and apoptosis. However, 

simultaneous removal of two major compounds identified oxymatrine and oxysophocarpine as 

critical compounds with respect to CKI activity. We then used RNA sequencing and 

transcriptome analysis to correlate compound removal with gene expression and phenotype 

data. We determined that many compounds in CKI are required for its effectiveness in 

triggering apoptosis but that significant modulation of its activity is conferred by a small 

number of compounds. In conclusion, CKI may be typical of many plant based extracts that 

contain many compounds in that no single compound is responsible for all of the bioactivity 

of the mixture and that many compounds interact in a complex fashion to influence a network 

containing many targets.   

 

INTRODUCTION 

 

Natural compounds are chemically diverse and have long served as resources for the 

identification of drugs (Harvey et al., 2015). However, the standard approach of fractionating 

natural product extracts to identify a single compound’s biological activity can fail because the 

original activity of the mixture is not present in single compounds after fractionation. This 

failure to identify single compounds implies that some natural product mixtures derive their 

activity from the interaction of several bioactive compounds within the mixture. Characterising 

the mode of action of natural product mixtures has remained a difficult task as the 

combinatorial complexity of such mixtures makes it unfeasible to screen all combinations of 

the compounds in the mixture.  

We introduce here a “subtractive fractionation approach” using high performance liquid 

chromatography (HPLC) that can pinpoint significant interacting compounds within a mixture 

when coupled with a suitable bioassay. We combined this approach with RNAseq (RNA 

sequencing) characterisation of our bioassay, correlating the removal of interacting compounds 
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with concomitant alterations in gene expression. This allows us to identify specific 

combinations of compounds associated with specific pathways and regulatory interactions. In 

this report, we have applied this approach for the first time to a particular Traditional Chinese 

Medicine (TCM) formulation: Compound Kushen Injection (CKI), which is used to treat 

approximately 30,000 cancer patients/day in China in conjunction with Western chemotherapy. 

CKI is composed primarily of alkaloids and flavonoids extracted from two herbal medicinal 

plants: Kushen (Radix Sophorae Flavescentis) and Baituling (Rhizoma Smilacis Glabrae).  

Twenty-one chromatographic peaks have been identified from CKI with eight compounds 

being recognized as major components on the basis of their abundance (Ma et al., 2014).  

The extract containing the most abundant compounds in CKI is derived from Kushen herb 

which has a long history in the treatment of patients suffering immune function disorders (Xu 

et al., 2005;Cheng et al., 2006). The main component of CKI, macrozamin, is a derivative of 

baituling which has been a suggested therapeutic agent for the treatment of inflammatory 

disease (Jiang et al., 1997). Gao and colleagues showed that treatment with each of four of the 

main compounds of CKI (oxymatrine, matrine, sophoridine and N-methycytisine) at 4 mg/ml 

significantly decreased cell viability (Gao et al., 2018). However, these concentrations are 

relatively high when compared to the contributing concentration of these four main compounds 

in CKI (Ma et al., 2014). The two main components of CKI, matrine and oxymatrine,  may 

have significant anticancer activities in various types of solid tumors including breast cancer 

non small lung cancer, cervical cancer, prostate cancer, synovial sarcoma, and hepatocellular 

carcinoma (Yu et al., 2009;Li et al., 2015;Wu et al., 2015;Cai et al., 2016;Wu et al., 2016;Aung 

et al., 2017;Gao et al., 2018;Zhou et al., 2018). In contrast, toxicity of medicinal herbs 

containing matrine and oxymatrine as main components has been reported (Wang and Yang, 

2003). Administration of matrine 150 mg/kg and oxymatrine 360 mg/kg significantly increased 

cytochrome P450 family protein CYPB1/2 in rats demonstrating a potential therapeutic 

drawback of these two compounds (Yuan et al., 2010). Overall, understanding the effects of 

CKI based on the effects of single compounds present in CKI has been at best, partially 

successful.  

Alternatively, by removing one, two or three compounds, we have been able to map the effects 

of these compounds and  their interactions to effects on specific pathways based on altered 

gene expression profiles in a cell-based assay. This has illuminated the roles of several major 

compounds of CKI, which on their own have little or no activity in our bioassay. This approach 

can be used to dissect the roles and interactions of individual compounds from complex natural 

compound mixtures whose biological activity cannot be attributed to single purified 

compounds. 
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RESULTS 

 

Subtractive fractionation overview 

Well resolved chromatographic separation of CKI was used to collect all of the major 

components of CKI as individual fractions (Figure 1A).  We then reconstituted all of the 

separated fractions except for those we wished to subtract. We tested the reconstituted 

combination of compounds/peaks to see if removal of a single (N-1) or multiple compounds, 

(N-2 or N-3, where N represents the number of compounds in CKI), or removal of all major 

peaks (minor, MN) or depletion of all minor peaks (major, MJ)  significantly altered the effect 

of CKI in our cell based assays. Our cell based assays (Qu et al., 2016) measured MDA-MB-

231 (human breast adenocarcinoma) cell viability, cell cycle phase and cell apoptosis. A 

summary of the subtractive fractions used in the cell based assays is shown in Table 1. We 

then carried out RNA isolation of cells treated with CKI, individual compounds or CKI 

deletions for RNAseq. Differentially expressed (DE) genes in these samples allowed the 

association of specific compounds with cell phenotype and underlying alterations in gene 

regulation. By comparing DE genes across treatment combinations we identified specific 

candidate pathways that were altered by removal of single or multiple compounds, as detailed 

below. 

HPLC fractions and content identification using LC-MS/MS  
HPLC fractionation and reconstitution was used to generate a number of  N-1, N-2, N-3, MJ 

and MN mixtures, (Figure 1A, B, C and Supplementary Figure 1) with specific combinations 

and their components shown in Table 1.  The concentrations of known compounds in CKI 

and reconstituted subtractive fractions were determined from standard curves 

(Supplementary Data1) for nine available reference compounds, using cytisine as an internal 

standard (Table 2). The combined concentration of 9 reference compounds from CKI was 

approximately 10. 461 mg/ml, whereas subtractive fractions N-OmtOspc and N-MacOmtOspc 

had concentrations of reference compounds of 3.045 mg/ml and 2.335 mg/ml which were 

equivalent to the concentrations of these compounds in unfractionated CKI. The depleted 

OmtOspc and MacOmtOspc were not observed in the N-OmtOspc and N-MacOmtOspc 

respectively. These collectively suggested any effects observed after the treatments of N-

OmtOspc and N-MacOmtOspc were not influenced by the concentrations. A total of 9 (N-1), 

4 (N-3) and 9 (N-2) combinations, along with MJ and MN deletions were tested in our cell 

based assays (Table 1).  
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Phenotypic changes associated with compound deletion 
Fractionation and full reconstitution caused no changes in cell viability compared to original 

CKI (see methods) at either 24- or 48-hours in MDA-MB-231 cells. Both reconstituted CKI 

and CKI caused significantly reduced viability compared to untreated (UT) cells 

(Supplementary Figure 2A). The MJ subtractive fraction contained a total of 9 compounds 

including eight previously identified MJ peaks (Ma et al., 2014) and adenine (unpublished 

data from Ma Yue) (Figure 1A) and the MN fraction contained the remaining peaks (Figure 

1C). MJ had no effect on cell viability, while MN reduced cell viability to the same extent 

as CKI (Figure 2A). The 9 major compounds were individually depleted from CKI and 

tested as 9 (N-1) subtractive fractions, with no significant alterations in cell viability 

compared to CKI (Figure 2B). We then assessed the interaction effects of single MJ 

compounds by adding them back to the MN subtractive fraction. No change in cell viability 

compared to MN was observed (Supplementary Figure 2B). Sets of 3 compounds from the 

9 major/standard compounds of CKI were depleted to generate 3 (N-3) subtractive fractions. 

The nine reference compounds were allocated into three groups, one of which contained 

structurally similar compounds (Omt, Ospc, Spc) and two other groups ([Mac, Ade, Tri] and 

[Nme, Mt, Spr]) that contained structurally different compounds. Of these three fractions, 

N-OmtOspcSpc decreased cell viability significantly (P<0.05) more than CKI after 48 hours 

(Figure 2C) while none of the sets of three compounds on their own had any effect on cell 

viability (Supplementary Figure 2). We then generated 9 (N-2) subtractive fractions based 

on the N-3 subtractive fractions (Table 1). Out of 9 (N-2) subtractive fractions 

(Supplementary Figure 2), only N-OmtOspc significantly decreased proliferation compared 

to CKI (P<0.05) (Figure 2C).  We then depleted macrozamin, the only major compound 

derived from Baituling, together with OmtOspc as N-3 (N-MacOmtOspc) in order to determine 

if there was an additional effect when compared to CKI. N-OmtOspc and N-MacOmtOspc both 

decreased cell proliferation to the same extent (Figures 2C and 2D).  

While  no change in cell viability was found across all N-1 treatments, cell cycle analysis was 

performed to identify more subtle differences. There was no statistically significant difference 

in phases of the cell cycle of MDA-MB-231 cells for many of the N-1 treatments compared to 

CKI except for a statistically significant change in G1 phase by N-Omt after 48 hours (Figure 

3A). On the other hand, N-OmtOspc treatment significantly altered the cell cycle for MDA-

MB-231 cells and induced significant higher apoptosis from 0.25 mg/ml through 2 mg/ml 

treatments as compared to CKI at both time points (Figure 3B and Supplementary Figure 3). 

N-MacOmtOspc treatment also significantly altered the cell cycle at both time-points with 

generally similar effects to N-OmtOspc (Figure 3C).  
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Annexin V/PI apoptosis assays were performed using subtractive fractions on MDA-MB-231, 

HEK-293 (human embryonic kidney cells) and HFF (primary human foreskin fibroblasts) cell 

lines. While CKI at 2 mg/ml caused increased apoptosis in MDA-MB-231 cells at both 24- and 

48-hour after treatment, N-OmtOspc and N-MacOmtOspc subtractive fractions at 

concentrations equivalent to CKI 2 mg/ml significantly increased the percentage of apoptotic 

cells at 24-hour with increasing apoptosis at the 48-hour timepoint, indicating that N-OmtOspc 

and N-MacOmtOspc  significantly enhanced apoptosis compared to CKI (Figures 4A, 4E and 

Supplementary Figure 3A). Although CKI did not generally cause apoptosis in HEK-293 or 

HFF cells, N-OmtOspc and N-MacOmtOspc subtractive fractions significantly induced 

apoptosis (P***< 0.001) at 24-hour and 48-hour (P****< 0.0001) in both HEK-293 and HFF 

cells.  CKI only induced apoptosis of HEK-293 (P*<0.05) at 48-hour and showed no significant 

apoptotic induction in HFF (Figures 4B, 4C and Supplementary Figures 3B, 3C). These results 

indicated that the N-OmtOspc and N-MacOmtOspc subtractive fractions induced apoptosis not 

only in cancerous cells but also in non-cancerous cell lines. In contrast to this, no significant 

apoptosis was triggered by CKI on HFF cells. A small but significant apoptotic induction was 

observed for HEK-293. 

Because of the significant decreased viability accompanied by increased apoptosis triggered 

by subtractive fractions, cytotoxicity tests were carried out for all three cell lines using CKI (2 

mg/ml) and N-OmtOspc and N-MacOmtOspc subtractive fractions at concentrations 

equivalent to CKI 2 mg/ml . N-OmtOspc and N-MacOmtOspc at equivalent concentration to 

CKI 2 mg/ml were significantly cytotoxic to both non-cancerous cell lines (Figure 4D). 

Overall, these results indicated that removal of combinations of specific compounds from CKI 

had unpredictable effects on the ability of CKI to kill cells.  While removal of all major 

compounds from CKI caused no loss of activity and removal of all minor compounds caused 

total loss of activity, removal of selected major compounds (N-OmtOspc) paradoxically caused 

major, significant increases in the ability of CKI to reduce viability and killed cells.   

 

Differential gene expression 
In order to understand the interactions of the components in CKI as a result of depletion, we 

carried out RNAseq of MDA-MB-231 cells treated with CKI and subtractive fractions. Out of 

nine (N-1) subtractive fractions, four, namely N-Omt, N-Mac, N-Tri and N-Nme, were selected 

due to their structural differences to determine their effects on transcript levels. N-OmtOspc 

and N-MacOmtOspc, OmtOspc, MacOmtOspc and CKI treated cells were sequenced at 24 and 

48-hour time points.  
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After normalization, clear clustering of the replicates was observed (Figure 5A and 

Supplementary Figures 4, 5, 6 and 7), indicating that all 4 (N-1) treatments show comparable 

downstream gene expression patterns. Likewise, OmtOspc and MacOmtOspc groups and N-

OmtOspc and N-MacOmtOspc groups showed similar changes in gene expression, except for 

one replicate (N-MacOmtOspc, 24-hour) that clustered with UT, OmtOspc and MacOmtOspc.  

The number of differentially expressed (DE) genes associated with each treatment was 

calculated using pair-wise comparative analysis. CKI treatment was used as a baseline to 

compare all other treatments in order to emphasize the effect of depleted compounds and CKI 

treatment was compared to UT. 

There were thousands of upregulated and downregulated genes at 24 and 48 hours in most 

pairwise comparisons (Figure 5B). However DE genes between OmtOspc and MacOmtOspc 

treatments were not observed and there were almost no DE genes between N-Mac, N-Nme and 

N-Tri treatments (Figure 5B) indicating that these three subtractive fractions had very similar 

effects on gene expression.  

When we compared the DE genes found between treatments, there were a large number of DE 

genes (~71.3%) shared between all four (N-1) treatments (Supplementary Figures 8 and 9 and 

Supplementary Table 3).  A similar number of shared DE genes (~24.6%) between four (N-1), 

OmtOspc and MacOmtOspc and between four (N-1), N-OmtOspc and N- MacOmtOspc as 

compared to CKI at 48-hours indicated that gene expression patterns from N-1 treatments were 

mostly different from N-OmtOspc, N- MacOmtOspc, OmtOspc and MacOmtOspc treated 

cells. 55% of the DE genes between UT,  OmtOspc and MacOmtOspc were shared. When the 

four (N-1) treatments were compared to CKI treatment, 42.8% of DE genes were shared, and 

when N-OmtOspc and N- MacOmtOspc treatments were compared to CKI, 50.1% DE genes 

were shared, indicating that N-OmtOspc and N-MacOmtOspc treatments appeared to be more 

similar to CKI than N-1 treatments.  

The overall levels of similarity in DE genes were as follows: 1)All N-1 treatments had 

approximately 70 % similar gene expression patterns, 2) OmtOspc and MacOmtOspc 

treatments were approximately 50% similar to UT and 33% similar to N-1 treatments, 3) 

downstream gene expression patterns between N-1, N-OmtOspc and N-MacOmtOspc were 

approximately 37% similar. 

 

Gene ontology and pathway annotation of DE genes 
DE genes were analysed for over-representation in our data sets with respect to biological 

function using Gene Ontology (GO) annotation.  We looked for shared DE genes between 

treatments and identified over-represented genes in these shared genes.  The only common 

.CC-BY-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/462135doi: bioRxiv preprint first posted online Nov. 5, 2018; 

147

http://dx.doi.org/10.1101/462135
http://creativecommons.org/licenses/by-nd/4.0/


function enriched across all comparisons was for "cell cycle checkpoint" (Figure 6A).  This 

confirmed earlier results (Qu et al., 2016) and was consistent with the phenotype data for CKI. 

 

Subtracted fractionation altered pathways 
We also performed pathway based analysis to look for pathway level perturbation by 

comparing DE genes within Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways 

between treatments.  We used Signaling Pathway Impact Analysis (SPIA) to identify pathways 

with statistically significant perturbation values expected to alter pathway flux.  We identified 

86 pathways (Supplementary Figure 11) with statistically significant (P< 0.05) perturbations 

of gene expression and of these, 15 pathways were most obviously linked to our phenotypes of 

cell viability, cell cycle and apoptosis (Figure 6B).  By comparing the pathway gene expression 

perturbation scores (pG) between treatments three specific observations could be made: 1) N-

1 fractional deletions vs CKI had significant effects on flux in some pathways without 

phenotypic effects, 2) N−OmtOspc vs CKI which had a pronounced phenotypic effect at both 

24- and 48-hours, had a significant effect on reducing estimated pathway flux for Cytokine-

Cytokine Receptor, Cell Cycle and TGF-Beta signaling pathways, 3) comparison of N-1 

fractional deletions vs fractional deletions of N−OmtOspc/N−MacOmtOspc showed consistent 

pathway perturbations for Cytokine-Cytokine Receptor and p53 signaling pathways. On this 

basis, we inferred that different major compounds could be deleted with very similar effects, 

indicating that they may have similar targets.  In contrast, deleting Omt and Ospc 

simultaneously caused a significant shift in phenotype and was accompanied by specific 

perturbations in pathways that regulate inflammation, cell cycle and apoptosis. The combined 

deletion of Omt and Ospc had a synergistic effect on viability, cell-cycle and apoptosis and a 

synergistic effect on gene expression, consistent with the observed changes in pathway specific 

perturbation of gene expression. Because this double compound deletion potentiated the cell 

killing effect of CKI we hypothesised that the compounds in CKI have multiple targets leading 

to a phenotypic effect that reflects the integration of stimulation and inhibition across all those 

targets.  Removal of Omt and Ospc alter the balance of stimulation and inhibition leading to 

an integrated effect for the remaining compounds in the mixture that caused more cell death 

than CKI.    

 

More detailed examination of some of these interactions within significantly perturbed 

pathways highlighted the gene-specific changes in expression for some key regulators of 

inflammation and the cell-cycle.  Most effects on gene expression from deletion of single vs 

two compounds were similar, suggesting that the enhanced cell killing by N-OmtOspc was due 
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to additive effects of the compound deletions. However, by comparing differences in pairwise 

comparisons between treatments at the gene level within the Cytokine-Cytokine Receptor 

Interaction and Cell Cycle pathways we identified a subset of genes that had opposite changes 

in gene expression when comparing single compound deletions to N-OmtOspc deletion. In the 

Cytokine-Cytokine Receptor Interaction pathway (Figure 7) these genes are IL1-R1 

(Interleukin-1 Receptor), IL-27RA (Interleukin-27 Receptor alphasubunit), TNFRSF1B 

(Tumor Necrosis Factor Receptor Superfamily Member 1B), TNFRSF14 (Tumor Necrosis 

Factor Receptor Superfamily, Member 14) and OSMR (Oncostatin M Receptor/IL-31 Receptor 

Subunit Beta) and they all transduce inflammatory ligand signals to the NFkB pathway and/or 

the apoptosis pathway. In the Cell-Cycle pathway (Figure 8) these genes are CDKN1C (Cyclin-

Dependent Kinase Inhibitor 1C (P57, Kip2), CDC25B (Cell Division Cycle 25B), ATR (ATR 

Serine/Threonine Kinase), CDKN1B (Cyclin-Dependent Kinase Inhibitor 1B (P27, Kip1)), 

CDKN2D (Cyclin-Dependent Kinase Inhibitor 2D (P19, Inhibits CDK4)), TGFB1 

(Transforming Growth Factor Beta 1), FZR1 (Fizzy And Cell Division Cycle 20 Related 1), 

CDC20 (Cell Division Cycle 20), CDC27 (Cell Division Cycle 27), ORC2 (Origin Recognition 

Complex Subunit 2), ANAPC4 (Anaphase Promoting Complex Subunit 4), ZBTB17 (Zinc 

Finger And BTB Domain Containing 17) and ABL1 (ABL Proto-Oncogene 1, Non-Receptor 

Tyrosine Kinase).  The opposite changes in gene expression stimulated by N-OmtOspc 

compared to N-1 subfractions provides support for the idea that multiple major compounds can 

have similar effects on specific genes but that the combination of Omt and Ospc can have 

synergistic and opposite effects on those same genes. This means that multiple compounds 

with overlapping targets (based on their structural similarities) can either reinforce a single 

outcome or exhibit unpredictable and opposite effects when combined.   

 

Overall our results support the concept of multi-compound/multi-target interactions for plant 

extract based drugs that contain many plant secondary metabolites.  Biological effects of 

complex plant extracts may result from interactions of multiple compounds, with negligible 

effects from single compounds alone.  This has implications for how we assess the functional 

evidence for such extracts. 

 

DISCUSSION 

 

Previous studies have demonstrated that CKI can alter the cell cycle, induce apoptosis and 

reduce proliferation in various cancer cell lines (Xu et al., 2011;Qu et al., 2016;Gao et al., 

2018). CKI also killed leukaemia cells via the Prdxs/ROS/Trx1 signalling pathway in an acute 
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myeloid leukaemia patient-derived xenograft model and caused cell cycle arrest in U937 

leukaemia derived cells (Jin et al., 2018).  Cell cycle arrest by CKI at checkpoints is correlated 

with the induction of double strand breaks by CKI treatment (Cui et al., 2018). In contrast to 

our experiments reported above, oxymatrine was previously shown to arrest the cell cycle and 

induce apoptosis in human glioblastoma cells through EGFR/PI3K/Akt/mTOR signaling 

pathway (Dai et al., 2018)  and inhibit the proliferation of laryngeal squamous cell carcinoma 

Hep-2 cells (Ying et al., 2015). As shown in this report, oxymatrine or oxysophocarpine or 

combined OmtOspc treatment caused no significant change in cell viability, the cell cycle or 

apoptosis, in agreement with prior work that showed oxymatrine and oxysophocarpine exerting 

no significant effect on apoptosis, cell cycle or cell proliferation in HCT116 human colon 

cancer cells (Zhang et al., 2014).  

 

The paradoxical result that removal of OmtOspc caused a striking increase in apoptosis is most 

simply explained by a model based on integrating effects of multiple compounds on many 

targets. The interactions between compounds in the mixture can be synergistic and antagonistic 

such that if two compounds are removed that have a synergistic effect that is antagonistic to 

the remainder of the mixture, the resulting depleted mixture will be dis-inhibited compared to 

CKI. This is illustrated by our studies and others that show single compounds alone had no or 

little effect compared to CKI. For instance, while CKI treatment resulted in increased DNA 

double strand breaks and affected the cell cycle resulting in decreased cancer cell proliferation, 

oxymatrine alone exhibited only a small effect in the same assay (Cui et al., 2018). Gao and 

colleagues also reported that oxysophocarpine at 4 mg/ml had no effect, oxymatrine at 4 mg/ml 

(*P<0.05) and CKI at 2 mg/ml (***P<0.001) significantly reduced the proliferation of 

hepatocellular carcinoma SMMC-7721 cells in vitro (Gao et al., 2018). Although significant 

inhibition of proliferation by oxymatrine occurred, the concentration used in this experiment 

was ~ 8x times higher than that of oxymatrine in 2 mg/ml of CKI. These studies agree with our 

experimental outcomes that oxymatrine and oxysophocarpine individually had no or little 

effect compared to CKI treatment.  

 

At the level of gene expression in our study, gene ontology analysis indicated that genes for 

“cell cycle checkpoint” were significantly enriched in cells treated with all fractionated 

mixtures or mixtures of Omt and Ospc. Consistent with other studies, our results also 

demonstrated that these compounds had little or no phenotypic effect on their own, but that 

when both were deleted, the remaining compounds unexpectedly had significantly greater 

effects on phenotype and gene expression. When examined in the context of specific pathways, 
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treatment with OmtOspc or N-OmtOspc which had strikingly different effects on phenotype, 

had similar effects on the perturbation of the “Cytokine-Cytokine Receptor Interaction” 

pathway, the most commonly perturbed pathway seen in our analysis, that interestingly did not 

show up when comparing CKI to UT. This is consistent with previous information showing 

that CKI induced cytokines IL4 and IL10 in cancer patients with acute leukaemia (Tu et al., 

2016).  In contrast to this observation, IL4 and IL10 levels were significantly decreased in 

transgenic mice treated with oxymatrine at a dose of 200 mg/kg (Dong et al., 2002). In our 

experiment, we also observed that while CKI and many of the depleted fractions had significant 

effect on the genes in the “Cytokine-Cytokine Receptor Interaction” pathway, OmtOspc and 

MacOmtOspc had little effect on the genes in that pathway. The observation that many genes 

in the “Cytokine-Cytokine Receptor Interaction” pathway were not affected by OmtOspc and 

MacOmtOspc compared to deletion fractions confirmed that removal of compounds rather than 

treatment with single or a few compounds can be more informative of the role and significance 

of individual compounds as part of mixtures/extracts.  

 

In summary, Our approach allowed the identification of both synergistic and antagonistic 

interactions within the drug mixture. Viewed as a network where the compounds and the targets 

are nodes and the interactions between compounds and targets, and between targets are edges, 

it is clear that the edges (interactions) determine the overall effect of the compound mixture.  

By removing one or two compounds from a mixture, we can potentially perturb the target 

network(s) to either reduce the effect of the mixture for some outcome or potentiate it for 

another. We believe this approach may be of general use for the study of herbal 

medicines/extracts, avoiding failures that stem from exclusive reliance on the identification of 

a single compound that accounts for most of the biological activity in mixtures.  

 

MATERIALS AND METHODS 

 

Cell lines  

MDA-MB-231 cells were purchased from the American Type Culture Collection (ATCC, 

Manassas, VA). HEK-293 and HFF were kindly provided by Prof. Andrea Yool (Medical 

School, University of Adelaide). Cells were cultured in DMEM (Dulbecco's Modified Eagle's 

Medium, Invitrogen) with 10% FBS (Fetal bovine serum, Thermo Fisher Scientific) at 370C 

with 5% CO2.  

 

Compound fractionation by HPLC 
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CKI (Batch No: 20170322, total alkaloid concentration of 26.5 mg/ml) was provided by 

Zhendong Pharmaceutical Co.Ltd (Shanxi, China). CKI (N) was processed to deplete Single 

(N-1), double (N-2) and triple (N-3) compounds using HPLC by standardizing using nine 

compounds, namely Oxymatrine (Omt), Oxysophocarpine (Ospc), N-Methylcytisine (Nme), 

Matrine (Mt), Sophocarpine (Spc), Trifolirhizin (Tri), Adenine (Ade), Sophoridine (Spr) 

(Beina Biotechnology Institute Co., Ltd, China), and macrozamin (Zhendong Pharmaceutical 

Co.Ltd) which were previously reported to be found in published and unpublished data (Ma et 

al., 2014). HPLC fractionation separated Minor (MN) and Major (MJ) peaks  to determine the 

principle and secondary components.  The MJ mixture contained the nine standard compounds 

mentioned above and MN contained the remaining CKI components. In addition, nine N-1 

fractional deletions, nine N-2 fractional deletions and three N-3 fractional deletions were 

produced.  

HPLC separation was achieved using an HPLC instrument (Shimadzu, Japan) equipped with 

a photodiode-array UV-Vis detector with preparative C18 column (5 µm, 250 x 10 mm) 

(Phenomenex, Australia). The following mobile phase was used to fractionate the CKI mixture: 

0.01 M ammonium acetate (adjusted to pH 8.0, solvent A) and acetonitrile + 0.09 % 

trifluroacetic acid (solvent B). The flow rate was 2 ml/min and linear gradient was adopted as 

follows; 0 min, 100% A; 60 min, 65% A, 70 min, 100%A. The chromatogram was recorded 

from 200 nm to 280 nm, with monitoring at 215 nm. Samples were frozen and lyophilised 

using a Christ Alpha 1-2 LD lyophilizer (Martin Christ Gefriertrocknungsanlagen GmbH, 

Germany). Several cycles of lyophilisation and resuspension were used to remove all 

remaining HPLC solvents and final reconstitution was carried out using MilliQ water buffered 

with 10 mM Hepes (Gibco, Life technologies, USA) and adjusted to pH 6.8-7.0. Lyophilised 

samples were resuspended to create an equivalent dilution for compounds in the sample 

compared to CKI.  

 

Identification of reconstituted mixtures by LC-MS/MS  

Agilent 6230 TOF mass spectrometer was used to determine the concentration of the known 

compounds from the CKI and reconstituted N-OmtOspc and N-MacOmtOspc mixtures. 10uL 

sample was injected with the flow rate of 0.8 ml/min, a gradient program of 0 min, 100 % A; 

40 % B; 25 min, 60 % B, 35 min, and solvents H2O + 0.1 % formic acid (solvent A) and 

acetonitrile + 0.1% formic acid (solvent B). The column used was C18 (5µ, 150 x 4.6 mm, 

Diamosnsil, Dkimatech). The recovered contents of the samples was measured by spike-in 

compound cytosine. Gas phase ions were generated with an electrospray source, with with key 

instrument parameters: gas temperature, 325; sheath gas temperature, 350; vCap, 3500; 
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fragmentor, 175;  acquisition range (m/z) 60-17000. Calibration curves for 9 standard 

compounds containing various concentrations were shown in Supplementary Data 1.  

 

Cell viability Assay 

XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] and PMS 

(N-methyl dibenzopyrazine methyl sulfate) (50:1, Sigma-Aldrich) assay was used to assess cell 

viability following. Briefly, 8,000 cells in 50 ul of medium were plated in 96 wells trays 

overnight prior to drug treatments in triplicate. Cells were subsequently treated with 50ul of 

drug mixtures to provide final concentrations of 0.25, 0.5, 2 and 2 mg/ml in 100 µl. Cell 

viability was then measured at 24-and 48-hours after drug treatment by the addition of 50 µl of  

XTT:PMS (50:1 ratio). An equal volume of medium and treating agents plus XTT:PMS was 

used to subtract the background optical density (OD). The absorbance of each well was 

recorded using a Biotrack II microplate reader at 492 nm.  

 

Annexin V/PI apoptosis assay 

Apoptosis, or programmed cell death, resulting from treatment was determined using an 

Annexin V-FITC apoptosis detection kit (eBioscience™ Annexin V-FITC Apoptosis 

Detection Kit, Thermofisher Scientific) according to the manufacturer’s protocol. Briefly, 

4x105 cells were seeded in 6-well plates in triplicate overnight prior to treatment. On the 

following day, cells were treated with the agents as described for 24-and 48-hours. Data were 

acquired with a BD LSR-FORTESSA (NJ, USA) flow cytometer, and FlowJo software 

(TreeStar Inc., OR, USA) was used to analyse the acquired data and produce percent apoptosis 

values. 

 

Cell cycle assay 

Cell culture and drug treatments were performed as described above for cell cycle analysis. A 

Propidium Iodide (PI) staining protocol (Riccardi and Nicoletti, 2006) was used to detect the 

changes in cell cycle as a result of treatment after 24- and 48-hours. The characteristics of 

stained cells were measured using a BD LSR-FORTESSA (NJ, USA) flow cytometer, and 

acquired data were analysed using FlowJo software. 

 

Cytotoxicity assay 

MDA-MB-231, HEK-239 and HFF cells were seeded in 96-well plates at a density of 2.5 x 103 

cells per well in triplicate. CKI and fractionated mixtures to produce a final concentration of 1 

mg/ml and 2 mg/ml were added to each well and after 24-hours of incubation and viable cells 
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were measured using the Alamar Blue assay (Molecular Probes, Eugene, OR). Mercuric 

chloride (Sigma-Aldrich , St. Louis, MO) (5 µM) was used as a positive control and wells 

without cells were set as a negative control in the same plate. 

  

Sample preparation and RNA sequencing 

Cells were plated in 6 well plates with a density of 2x105
 cells/ml overnight prior to drug 

treatments. On the following day, CKI (to give a final concentration of 2 mg/ml) and 

fractionated mixtures (equivalent dilutions of CKI) were added. Total RNA was isolated by 

using an RNA extraction kit (Thermo Fisher Scientific) according to the manufacturer’s 

instructions and RNA samples were quantified and quality determined using a Bioanalyzer at 

the Cancer Genome Facility of the Australian Cancer Research Foundatin (SA, Australia). 

RNA samples with RNA integrity number (RINs) > 7.0 were sent to be sequenced at Novogene 

(China). Briefly, after QC procedures were performed, mRNA was isolated using oligo(dT) 

beads and randomly fragmented by adding fragmentation buffer, followed by cDNA synthesis 

primed with random hexamers. Next, a custom second-strand synthesis buffer (Illumina) , 

dNTPs, RNase H and DNA polymerase I were added for second-strand synthesis After end 

repair, barcode ligation and sequencing adaptor ligation, the double-stranded cDNA library 

was size selected and PCR amplified. Sequencing was carried out on an Illumina HiSeq X 

platform with paired-end 150 bp reads.  

 

Transcriptome data processing 

FastQC (v0.11.4, Babraham Bioinformatics) was used to check the quality of raw reads before 

proceeding with downstream analysis. Trim_galore (v0.3.7, Babraham Bioinformatics) with 

the parameters: --stringency 5 --paired --fastqc_args was used to trim adaptors and low-quality 

sequences. STAR (v2.5.3a) was then applied to align the trimmed reads to the reference 

genome (hg19, UCSC) with the parameters: --outSAMstrandField intronMotif --

outSAMattributes All --outFilterMismatchNmax 10 --seedSearchStartLmax 30 --outSAMtype 

BAM SortedByCoordinate (Dobin et al., 2013).  Then, subread (v1.5.2) was used to generate 

read counts data with the following parameters featureCounts -p -t exon -g gene_id (Liao et 

al., 2013). Significantly differentially expressed genes between treatments were analysed and 

selected using edgeR (v3.22.3) with false discovery rate (FDR) < 0.05 (Robinson et al., 2010).  

Removal of unwanted variance (RUVs) package in R was applied to two different batches of 

transcriptome datasets to eliminate batch variance (Risso et al., 2014). APE was used to cluster 

the treatments (Paradis et al., 2004)  followed by RUVs. Gene Ontology (GO) 

overrepresentation analyses were performed using clusterProfiler with the parameter ont = 
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"BP"(Biological Process), pAdjustMethod = "BH", pvalueCutoff  = 0.01, and qvalueCutoff  = 

0.05 (Yu et al., 2012). Signalling Pathway Impact Analysis (SPIA) was carried out to identify 

the commonly perturbed pathways within the treatments using the SPIA R package (Tarca et 

al., 2008). Significantly perturbed pathways were visualized using Pathview package in R (Luo 

and Brouwer, 2013).  

 

Statistical analysis 

Statistical analyses were carried out using GraphPad Prism 8.0 (GraphPad Software Inc., CA, 

USA). Student's t‐test or ANOVA (one‐way or two‐way) was used when there were two or 

three groups to compare respectively. Post hoc "Bonferroni's multiple comparisons test" was 

performed when ANOVA results were significant. Statistically significant results were 

represented as p<0.05 (*) or p<0.01 (**) p<0.001 (***), or p<0.0001 (****); ns (not 

significant). All data were shown as mean ± standard deviation (SD).  

 

FIGURE LEGENDS 
Figure 1: Fractionation of Compound Kushen Injection. (A) Diagram illustrating the process 

of subtractive fractionation, reconstitution, and screening of fractionated compounds using 

three cell-based assays. (B) HPLC profile of the 9 purified and reconstituted major peaks (MJ) 

demonstrating nine major compounds. (C) HPLC profile of reconstituted fractions not 

containing the 9 major compounds (MN) showing the remaining peaks with no remaining 

major compounds.  

 

Figure 2: XTT Cell viability assays of subtractive fractions in MDA-MB-231 cells at 24- and 

48-hour time points treated with 2mg/mL of CKI and 2mg/mL equivalent concentrations of all 

other treating agents. (A) Suppression of cell viability from the following fractions: UT 

(untreated), MJ, MN, MJ+MN (combination of MJ and MN) and Syn_CKI (synthetic CKI 

generated using nine major compounds). (B) Effect of 9 (N-1) subtractive fractions compared 

to CKI. (C) Effect of N-OmtOspc subtractive fraction and OmtOspc compared to CKI. (D) 

Effect of N-MacOmtOspc subtractive fraction and MacOmtOspc, compared to CKI. 

Statistically significant results relative to CKI treatment shown as p<0.05 (*) or ns (not 

significant), all data were shown as mean ± standard deviation (SD). 

 

Figure 3: Cell cycle assay of subtractive fractions at 24- and 48-hour time point treatments. 

(A) Effect of 9 (N-1) subtractive fractions on cell cycle in MDA-MB-231 cells as determined 

by FACS PI cell cycle staining assay. (B) Effect of N-OmtOspc subtractive fraction and 
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OmtOspc on cell cycle in MDA-MB-231 cells as determined by FACS PI cell cycle staining 

assay. (C) Effect of N-MacOmtOspc subtractive fraction and MOO on cell cycle in MDA-MB-

231 cells as determined by FACS PI cell cycle staining assay. (D) The representative 

histograms of cell cycle analysis by the treatments as compared to UT. Statistically significant 

results shown as p<0.05 (*) or p<0.01 (**) p<0.001 (***), or p<0.0001 (****). All data were 

shown as mean ± standard deviation (SD). 

 

Figure 4: Apoptosis and cytotoxicity assays of subtractive fractions at 24- and 48-hour time 

point treatments. Apoptotic effect of N-OmtOspc, N-MacOmtOspc subtractive fractions, 

OmtOspc and MacOmtOspc in (A) MDA-MB-231 cells, (B) HEK-293 cells, and (C) HFF cells 

as determined by FACS AnnexinV/PI assay. (D) Cytotoxic effect of CKI, N-OmtOspc and N-

MacOmtOspc subtractive fractions was determined using Alamar Blue cytotoxicity assay. 

Statistically significant results shown as p<0.05 (*) or p<0.01 (**) p<0.001 (***), or p<0.0001 

(****); ns (not significant). All data were shown as mean ± standard deviation (SD). 

 

Figure 5: Gene expression clustering and summary of differential gene expression (A) 

Clustering of treated samples based on gene expression, calculated as transcripts per million 

(TPM) using Ward’s hierarchical cluster analysis (Ward.D2) method. Number of differentially 

expressed (DE) genes (FDR < 0.05 according to edgeR) associated with each treatment was 

calculated using pair-wise comparison at (B) 24 hours and (C) 48 hours time point. Treatments 

were compared column versus row. Up-regulated genes are shown in shades of red and down-

regulated genes are shown in shades of blue. 

 

Figure 6: Over-representation analysis of GO functional annotation and KEGG pathway 

perturbation analysis. (A) Over-represented GO terms (Biological Process, BP=3) for DE 

genes identified from comparison of subtractive fraction treated cells against CKI treatment in 

order to show the relative change from depleting compounds. Gene ratio of each term 

calculated from Cluster Profiler was plotted based on the adjusted P-values. Top 5 most 

significant categories of GO terms were plotted by default. Colour gradient of adjusted P-

values ranging from red to blue in order of increasing p-values (high to low significance). 

Number of identified genes in each treatment (numbers in parentheses) were shown in the 

bottom and the sizes of the dots correspond to the ratio of gens out of all significant DE gene 

from each treatment involved in the particular terms. (B) Identification of significantly 

perturbed pathways using SPIA (pG < 0.05) analysis. Eighty-six significantly perturbed 

pathways from twenty-two comparisons were found (Supplementary Figure10). Only 15 
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pathways most obviously linked to our phenotypes of cell viability, cell cycle and apoptosis 

were shown here. Positive (overall increase in gene expression for pathway) and negative 

(overall decrease in gene expression for pathway) perturbation accumulation values of the 

pathways were shown in red and blue respectively. Mean perturbation values of each pathway 

were shown in bar plot.   

 
Figure 7: Differential gene expression profiles of all treatments for Cytokine-Cytokine 

Receptor pathway. The left panel shows comparison of subtractive fraction treated cells against 

CKI treatment and the right panel shows comparison of single compound subtractive fraction 

treated cells against the treatments for two and three compound subtractive fractions. Asterisks 

in green shows a subset of genes that had opposite changes in gene expression across 

treatments.  

 

Figure 8: Differential gene expression profiles of all treatments for Cell Cycle pathway. The 

left panel shows comparison of subtractive fraction treated cells against CKI treatment and the 

right panel shows comparison of single compound subtractive fraction treated cells against the 

treatments for two and three compound subtractive fractions. Asterisks in green shows a subset 

of genes that have opposite changes in gene expression across treatments.  

 

Supplementary Figure 1: HPLC profiles of 25 mixtures including CKI, MJ, MN, 9 (N-1), 4 

(N-3) and 9 (N-2). 50 µl of the samples at 1 mg/ml concentration was injected through the 

semi-preparative column to achieve the profiles.  

 

Supplementary Figure 2: XTT Cell viability assays of subtractive fractions in MDA-MB-231 

cells at 24- and 48-hour time points treated with 1 mg/ml or 2 mg/ml of CKI and 2 mg/ml 

equivalent concentrations of all other treating agents. (A) Suppression of cell viability from the 

following treatments: CKI, WRCKI-B (whole reconstituted CKI in buffer/vehicle control), and 

WRCKI-H (whole reconstituted CKI in milliQ H2O) (B) assessment of the interaction effects 

of single MJ compounds by the addition to the MN subtractive fraction. Single major 

compounds were dissolved in either MilliQ H2O or DMSO (Dimethyl sulfoxide). Effect of 

subtractive fractions (C) N-OmtOspcSpc, (D) N-MacAdeTri, (E) N-MtNmeSpr, (F) N-

MtNme, (G) N-OmtSpc, (H) N-OspcSpc, (I) N-MacTri, (J) N-AdeTri, (K) N-MacAde, (L) 

N- MtSpr, (M) NmeSpr. Statistically significant results shown as p<0.05 (*) or p<0.01 (**) 

p<0.001 (***), or p<0.0001 (****); ns (not significant). All data were shown as mean ± 

standard deviation (SD). 
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Supplementary Figure 3: XTT Cell viability assays of subtractive fractions N-OmtOspc and 

N-MacOmtOspc in MDA-MB-231 cells at 24- and 48-hour time points treated 4 different 

concentrations ranging from 0.25mg/mL to 2mg/mL of CKI and equivalent concentrations of 

two other agents. Statistically significant results shown as p<0.05 (*) or p<0.01 (**) p<0.001 

(***), or p<0.0001 (****); ns (not significant). All data were shown as mean ± standard 

deviation (SD). 

 

Supplementary Figure 4: Representative plots of Annexin V and PI staining in (A) MDA-

MB-231, (B) HEK-293, and (C) HFF.   

 

Supplementary Figure 5: Multiple dimensional scaling (MDS) plot for samples based on 

expression profiles of all genes before the removal of unwanted variance (RUVs in R 

package).  

 

Supplementary Figure 6: Multiple dimensional scaling (MDS) plot for samples based on 

expression profiles of all genes after the application of RUVs.  

  

Supplementary Figure 7: Box plot for samples based on expression profiles of all genes 

before the application of RUVs.  

 

Supplementary Figure 8: Box plot for samples based on expression profiles of all genes 

after the application of RUVs.  

 

Supplementary Figure 9: Venn diagrams showing the number of overlaping DE genes 

between treatments at 24-hours and 48-hours.  

 

Supplementary Figure 10: Identification of significantly perturbed pathways using SPIA 

(pG< 0.05) analysis. Eighty-six significantly perturbed pathways from twenty-two 

comparisons were found. 

 

Supplementary Figure 11: DE genes from the following comparisons (CKI vs UT, CKI vs 

N-Mac, CKI vs N-Nme, CKI vs N-Omt and CKI vs N-Tri) shown in the "Cytokine-Cytokine 

Receptor Interaction pathway at 48-hours. Significant up- and down-regulated DE genes were 

coloured red and green respectively. Each coloured box was separated into five parts according 
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to treatments in this order: CKI vs UT, CKI vs N-Mac, CKI vs N-Nme, CKI vs N-Omt and 

CKI vs N-Tri. White or grey colours represented gene(s) that were not significantly 

differentially expressed by the treatments. 

 

 Supplementary Figure 12: DE genes from the following comparisons (CKI vs UT, CKI vs 

N-OmtOspc, CKI vs N-MacOmtOspc, CKI vs OmtOspc and CKI vs MacOmtOspc) shown in 

the Cytokine-Cytokine Receptor Interaction pathway at 48-hours. Significant up- and down-

regulated DE genes were coloured red and green respectively. Each coloured box was separated 

into five parts according to this order: CKI vs UT, CKI vs N-OmtOspc, CKI vs N-

MacOmtOspc, CKI vs OmtOspc and CKI vs MacOmtOspc. White or grey colours represented 

gene(s) that were not significantly differentially expressed by the treatments. 

 

Supplementary Figure 13: DE genes from the following comparisons (CKI vs UT, CKI vs 

N-OmtOspc, CKI vs N-MacOmtOspc, CKI vs OmtOspc and CKI vs MacOmtOspc) shown in 

the Cytokine-Cytokine Receptor Interaction pathway at 24-hours. Significant up- and down-

regulated DE genes were coloured red and green respectively. Each coloured box was separated 

into five parts according to this order: CKI vs UT, CKI vs N-OmtOspc, CKI vs N-

MacOmtOspc, CKI vs OmtOspc and CKI vs MacOmtOspc. White or grey colours represented 

gene(s) that were not significantly differentially expressed by the treatments. 

 

Supplementary Figure 14: DE genes from the following comparisons (CKI vs UT, CKI vs 

N-Mac, CKI vs N-Nme, CKI vs N-Omt and CKI vs N-Tri) shown in the Cell Cycle pathway 

at 48-hours. Significant up- and down-regulated DE genes were coloured with red and green 

respectively. Each coloured box was separated into five parts according to this order: CKI vs 

UT, CKI vs N-Mac, CKI vs N-Nme, CKI vs N-Omt and CKI vs N-Tri. White or grey colours 

represented gene(s) that were not significantly differentially expressed by the treatments. 

 

Supplementary Figure 15: DE genes from the following comparisons (CKI vs UT, CKI vs 

N-OmtOspc, CKI vs N-MacOmtOspc, CKI vs OmtOspc and CKI vs MacOmtOspc) shown in 

the Cell Cycle pathway at 48-hour treatments. Significant up- and down-regulated DE genes 

were coloured red and green respectively. Each coloured box was separated into five parts 

according to this order: CKI vs UT, CKI vs N-OmtOspc, CKI vs N-MacOmtOspc, CKI vs 

OmtOspc and CKI vs MacOmtOspc. White or grey colours represented gene(s) that were not 

significantly differentially expressed by the treatments. 
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Supplementary Figure 16: DE genes from the following comparisons (CKI vs UT, CKI vs 

N-OmtOspc, CKI vs N-MacOmtOspc, CKI vs OmtOspc and CKI vs MacOmtOspc) shown in 

the Cell Cycle pathway at 24-hours. Significant up- and down-regulated DE genes were 

coloured red and green respectively. Each coloured box was separated into five parts according 

to this order: CKI vs UT, CKI vs N-OmtOspc, CKI vs N-MacOmtOspc, CKI vs OmtOspc and 

CKI vs MacOmtOspc. White or grey colours represented gene(s) that were not significantly 

differentially expressed by the treatments. 

 

Supplementary Figure 17: Differential gene expression profiles of all treatments for TGF-ß 

signalling pathway: the left panel shows comparison of subtractive fraction treated cells against 

CKI treatment and the right panel shows comparison of single compound subtractive fraction 

treated cells against the treatments for two and three compound subtractive fractions.  

 

Supplementary Figure 18: DE genes from the following comparisons (CKI vs UT, CKI vs 

N-Mac, CKI vs N-Nme, CKI vs N-Omt and CKI vs N-Tri) shown in the TGF-ß signalling 

pathway at 48-hours. Significant up- and down-regulated DE genes were coloured red and 

green respectively. Each coloured box was separated into five parts according to this order: 

CKI vs UT, CKI vs N-Mac, CKI vs N-Nme, CKI vs N-Omt and CKI vs N-Tri. White or grey 

colours represented gene(s) that were not significantly differentially expressed by the 

treatments. 

 

Supplementary Figure 19: DE genes from the following comparisons (CKI vs UT, CKI vs 

N-OmtOspc, CKI vs N-MacOmtOspc, CKI vs OmtOspc and CKI vs MacOmtOspc) shown in 

the TGF-ß signalling pathway at 48-hour treatments. Significant up- and down-regulated DE 

genes were coloured red and green respectively. Each coloured box was separated into five 

parts according to this order: CKI vs UT, CKI vs N-OmtOspc, CKI vs N-MacOmtOspc, CKI 

vs OmtOspc and CKI vs MacOmtOspc. White or grey colours represented gene(s) that were 

not significantly differentially expressed by the treatments. 

 

Supplementary Figure 20: DE genes from the following comparisons (CKI vs UT, CKI vs 

N-OmtOspc, CKI vs N-MacOmtOspc, CKI vs OmtOspc and CKI vs MacOmtOspc) shown in 

the TGF-ß signalling pathway at 24-hours. Significant up- and down-regulated DE genes were 

coloured red and green respectively. Each coloured box was separated into five parts according 

to this order: CKI vs UT, CKI vs N-OmtOspc, CKI vs N-MacOmtOspc, CKI vs OmtOspc and 
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CKI vs MacOmtOspc. White or grey colours represented gene(s) that were not significantly 

differentially expressed by the treatments. 
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Table 1: Summarized results of HPLC fractionation and treatments using three cell-based 

assays. N represents the number of all compounds contained in CKI, Mac = macrozamin, Ade 

= adenine, Tri = trifolirhizin, Nme = N-methylcytisine, Spr = Sophoridine, Mt = Matrine, Omt 

= Oxymatrine, Spc = Sophocarpine, and Ospc = Oxysophocarpine. Significant results of CKI 

treatment were calculated based on UT whereas those of other treatments were calculated based 

on CKI treatments. Statistically significant results were represented as p<0.05 (*) or p<0.01 

(**) p<0.001 (***), or p<0.0001 (****).  
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HPLC 
Fractionation Treatments 

Proliferation 
Assay 

(MDA-MB-213) 

Cell Cycle 
Assay 

(MDA-MB-213) 

Apoptosis Assay in three cell lines 

MDA-MB-231 HEK-293 HFF 

9 known + small 
unknown (N) Original CKI * *    

9known major 
compounds MJ      

Small unknown 
minor compounds MN *     

N-1 

N-Mac      
N-Ade      
N-Tri      
N-Nme      
N-Spr      
N-Mt      
N-Omt      
N-Ospc      
N-Spc      

N-3 

N-MacAdeTri      
N-MtNmeSpr      
N-
OmtOspcSpc 

     

N-
MacOmtOspc * **** **** **** ** 

N-2 

N-MacAde      
N-MacTri      
N-AdeTri      
N-MtNme      
N-MtSpr      
N-NmeSpr      
N-OmtOspc * **** **** **** ** 
N-OmtSpc      
N-OspcSpc      

3 compounds  
 

MacAdeTri      
MtNmeSpr      
OmtOspcSpc      
MacOmtOspc      

2 compounds 
 

MacAde      
MacTri      
AdeTri      
MtNme      
MtSpr      
NmeSpr      
OmtOspc      
OmtSpc      
OspcSpc      
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Table 2: Concentration of 9 major compounds in CKI (N) (Batch No:20170322), remaining 

major compounds in N-OmtOspc, and remaining major compounds in N-MacOmtOspc.  

*Total alkaloid content in CKI = 26.5mg/ml based on manufacturer’s assay. 
 
 
 

Mixtures Compounds Regression 
Line 

Regression 
coefficient 

concentration 
(mg/mL)(n=2) 

% 
Contribution 

CKI (N) 

Macrozamin y = 6E-05x 
+ 6E-05 

0.996 1.1   ± 0.03 4.4 

Adenine y = 0.021x + 
0.0074 

0.994 0.09 ± 0.09 0.4 

N-methylcytisine y = 0.0937x 
+ 0.042 

0.9895 0.17 ± 0.02 0.7 

Sophoridine y = 0.1443x 
+ 0.2679 

0.987 0.4   ± 0.08 1.6 

Matrine y = 0.0132x 
+ 0.7512 

0.993 1.26 ± 0.06 5.04 

Sophocarpine y = 0.0343x 
+ 0.3974 

0.994 0.54 ± 0.02 2.2 

Oxysophocarpine y = 0.0371x 
- 0.0108 

0.999 1.1   ± 0.1 4.4 

Oxymatrine y = 0.0132x 
+ 0.6226 

0.992 6.1   ± 0.09 24.4 

Trifolirhizin y = 0.0026x 
- 0.0002 

0.990 0.08 ± 0.002 0.3 

Total 10.8 43.4 

N-OmtOspc 

Macrozamin y = 6E-05x 
+ 6E-05 

0.996 1.1   ± 0.04 4.4 

Adenine y = 0.021x + 
0.0074 

0.994 0.3   ± 0.5 1.2 

N-methylcytisine y = 0.0937x 
+ 0.042 

0.9895 0.03 ± 0.03 0.1 

Sophoridine y = 0.1443x 
+ 0.2679 

0.987 0.3   ± 0.07 1.2 

Matrine y = 0.0132x 
+ 0.7512 

0.993 1.7   ± 0.1 6.8 

Sophocarpine y = 0.0343x 
+ 0.3974 

0.994 0.3   ± 0.01 1.2 

Trifolirhizin y = 0.0026x 
- 0.0002 

0.990 0.07 ± 0.01 0.3 

Total 3.8 15.2 

N-
MacOmtOspc 

Adenine y = 0.021x + 
0.0074 

0.994 0.06   ± 0.09 0.2 

N-methylcytisine y = 0.0937x 
+ 0.042 

0.9895 0.02   ± 0.01 0.1 

Sophoridine y = 0.1443x 
+ 0.2679 

0.987 0.04   ± 0.02 0.2 

Matrine y = 0.0132x 
+ 0.7512 

0.993 1.7     ± 0.06 6.8 

Sophocarpine y = 0.0343x 
+ 0.3974 

0.994 0.2     ± 0.02 0.8 

Trifolirhizin y = 0.0026x 
- 0.0002 

0.990 0.08   ± 0.003 0.3 

Total 2.1 8.4 
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Table 3: Summary of shared, differentially expressed (DE) genes across treatments. Similarity 

(%) calculated from total number of shared DE genes from all listed comparisons. To find the 

number of DE genes, CKI treatment was used as a baseline to compare all other fractionated 

treatments in order to emphasize the effect of depleted compounds and UT (untreated) was 

used as a base to calculate the DE genes for CKI treatment. 

Treatments Comparisons Similarity 
(%) 

Time course 
(hours) 

4 x (N-1)  71.3 48 
4 x (N-1) and CKI 42.7 48 
4 x (N-1), CKI and N-OmtOspc 30.4 48 
4 x (N-1), CKI, N-OmtOspc and N-MacOmtOspc 24.6 48 
4 x (N-1), CKI, OmtOspc, and MacOmtOspc 24.6 48 
4 x (N-1), OmtOspc, and MacOmtOspc 33.7 48 
4 x (N-1), N-OmtOspc and N-MacOmtOspc 37.7 48 
CKI and N-OmtOspc 64.4 48 
CKI and N-MacOmtOspc 63.9 48 
CKI, N-OmtOspc and N-MacOmtOspc 50.1 48 
CKI, N-OmtOspc, N-MacOmtOspc, OmtOspc, and 
MacOmtOspc 

30.2 48 

UT, OmtOspc, and MacOmtOspc 54.9 48 
CKI and N-OmtOspc 56.0 24 
CKI and N-MacOmtOspc 45.6 24 
CKI, N-OmtOspc and N-MacOmtOspc 31.6 24 
CKI, N-OmtOspc, N-MacOmtOspc, OmtOspc, and 
MacOmtOspc 

13.3 24 

UT, OmtOspc, and MacOmtOspc 39.1 24 
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Chapter 7 

 
Conclusions and Future Directions 
 

TCM or herbal medicines are widely applied therapeutic methods in Asian countries and 

becoming more popular in western countries. However, the extreme complexity of their 

components makes it difficult to explain the mechanisms of TCM. Currently, the dominant 

opinion is that TCM contains multiple bioactive compounds that perturb multiple targets or even 

pathways to generate a relatively strong effect. This therapeutic pattern makes it almost 

impossible to research mechanisms of TCM based on the ‘one compound one target’  mode for 

modern pharmaceuticals. The systems-biology approach provides an overall and network view 

for biological changes, which is probably a better way to conduct TCM research.  

 

In this dissertation, we used CKI as our model TCM formula and applied systems biology and 

functional genomics methods to reveal its potential anticancer mechanisms from different 

aspects. Firstly, I described new methods to investigate the interactions between CKI and other 

chemotherapy agents and proved that -omics methods can not only explain observed 

interactions but also provide clues for potential interactions. Therefore, the results for this 

method are closer to the clinical application of TCM and more comprehensive than existing 

methods. Secondly, I applied transcriptome analysis to herbal compatibility research and 

provided a modern view of  the underlying mechanisms used to explain the combination of 

Kushen and Baituling. Thirdly, I contributed to the investigation of anticancer effects of CKI as a 

whole. Based on transcriptome results from different cancer cell lines, the cell cycle, energy 

metabolism and DNA repair pathways were identified as primary pathways through which CKI 

exerts effects on cancer cells. In addition, these results were experimentally validated. Finally, 

through an approach combining analytical chemistry, cellular experiments and systems biology 

approaches, I contributed to work that revealed the effects and interactions of main components 

in CKI. Altogether, by generating a series of new methods, I and others successfully applied 

transcriptome analysis for the study of TCM and showed that systems biology methods are a 

powerful tool in TCM research. Through my work on understanding the interactions of plant 

extracts and the interactions of plant extracts with pharmaceutical cancer chemotherapy drugs, I 
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have significantly contributed to the understanding of TCM through the investigation of CKI’s 

anticancer mechanisms and markedly improved the corpus of knowledge in this respect.  

 

Many areas in this thesis can be explored in more depth. For example, transcriptomics is the 

only omics technique used in our study. We only selected limited target proteins for validation so 

there is still room for improvement in order to understand the effects of CKI at the protein level. 

Also, TCM is usually taken for extended periods to treat chronic disease or sub-acute health 

conditions, making it likely that long periods of use may also involve epigenetic changes. 

Therefore, combined experimental approaches using different -omics techniques and integrating 

the results across different levels of biological molecules may provide a more comprehensive 

view of the mechanisms of TCM.  

 

It is also important to remember that all of our results and analyses are based only on cancer 

cells. The treatment of cancer not only relies on the interaction between cancer cells and 

medicines but is also related to tumor microenvironment and systemic immune responses. 

Although our results showed that CKI and Baituling may have effects on the immune system, 

these observations are by no means comprehensive and still require verification and additional 

research on immune cells. Therefore, experiments and systems biology analysis based on 

animal assays or clinical samples are likely to provide more definitive and practical results for 

translation of our research into practice. 

 

There are also technical limitations to some of the approaches described in this thesis, the 

HPLC analysis and knockout methods in Chapter 6 are based on HPLC with a photodiode-array 

UV-Vis detector for 9 primary compounds in CKI. Although these compounds are considered to 

be the bioactive components in CKI at relatively high concentration, we cannot exclude the 

possibility that other minor compounds do not contribute to the effects of CKI. If UPLC with the 

high-resolution mass spectrometer or other analytical techniques could be applied and​ more 

compounds’ structure in CKI could be described, future work will likely improve the approach 

based on knocking out similar compounds as a group.  

 

TCM is a valuable resource for the pharmaceutical and healthcare industries. However, 

restricted by limited scientific knowledge because of its ancient origin, the principles of herbal 

medicine have been obfuscated by ambiguous ancient philosophy. Because it emphasizes 
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overall and systematic views, systems biology has many common points with TCM theory, 

which make it a useful tool for the modernization of TCM. Our work is just a beginning and 

introduction to the integration of fast developing omics techniques for TCM research.  
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Appendix A 
 

Supplementary Tables and Data. 
 

  

  
179



 

All the supplementary tables and data for chapters 2, 3, 4, 5 and 6 can be obtained online: 

https://drive.google.com/drive/folders/1m6KKwK_O8i96exUNz-c2UhsRnyay0CeL?usp=sharing 

 

1. For chapter 2, there are three supplementary tables. 

a. Supplementary Table 1: Mapping rates for RNA-seq data.  

b. Supplementary Table 2: List of DE genes for different comparisons. 

c. Supplementary Table 3: Gene list for groups based on type of regulation (Group 

A-D) and their over-represented GO terms (count > 4 and P-value < 0.05). 

 

2. For chapter 3, there are five supplementary tables. 

a. Supplementary Table 1: Mapping rates for each RNA-seq result.  

b. Supplementary Table 2: Primer sequences for RT-qPCR target genes. 

c. Supplementary Table 3: DE gene lists for different comparisons. 

d. Supplementary Table 4: SPIA results of significantly perturbed KEGG pathways 

for three injections. 

e. Supplementary Table 5: Significantly over-represented GO and KEGG terms 

(count > 4 and P-value < 0.05) 

I. Sheet 1-2: GO and KEGG enrichment of DE genes shared by CKI 

compared to ‘untreated’ and Kushen compared to ‘untreated’. 

II. Sheet 3-4: GO and KEGG enrichment of DE genes for CKI compared 

to Kushen. 

 

3. For chapter 4, there are four supplementary tables. 

a.  Table S1. RT-qPCR target genes and their primer sequences. 

b. Table S2. Mapping rate of each cell line. 

c. Table S3. List of DE genes in each cell line at each time point. 

d. Table S4. The summary of the functional analysis of both separate datasets and 

shared datasets. 

I. Sheet 1-4: GO enrichment of each cell line at two time points. Selection 

standard: cut off p value<0.01, cut off q value<0.01. 
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II.  Sheet 5-8: KEGG enrichment of each cell line at two time points. 

Selection standard: cut off p value<0.01, cut off q value<0.01. 

III. Sheet 10-12: GO enrichment of each cell line at two time points. 

Selection standard: cut off p value<0.01, cut off q value<0.01. 

IV. Sheet 13: GO enrichment of shared genes by both cell lines. Selection 

standard: cut off p value<0.01. 

V. Sheet 14: KEGG enrichment of shared genes by both cell lines. 

Selection standard: cut off p value<0.01. 

 

4. For chapter 6, there are one supplementary data and one supplementary table. 

a. Data 1. Calibration curve for the concentrations of known compounds in CKI and 

reconstituted subtractive fractions. 

b. Table 1. Summary of shared, differentially expressed (DE) genes across 

treatments. Similarity percentage calculated from total number of shared DE 

genes from all listed comparisons. To find the number of DE genes, CKI 

treatment was used as a baseline to compare all other fractionated treatments in 

order to emphasize the effect of depleted compounds and UT (untreated) was 

used as a base to calculate the DE genes for CKI treatment.  
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Appendix B 
 

Supplementary Figures for Chapter 2  
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Supplementary Figure 1: Cell viability of cancer cells treated with different drug combinations for 

48 hours (MDA-MB-231 cells with doxorubicin and A431 cells with 5-Fu). Results are 

represented as mean ±SEM (n=9). Statistical analysis was performed by comparing each 

treatment to untreated (***p < 0.001, **** p < 0.0001) 

 

Supplementary Figure 2: Comparison of types of regulation for CKI with doxorubicin and 5-Fu in 

the “Pathways in cancer” pathway. Left half of the rectangle for each gene represents CKI with 

doxorubicin in A431 cells and the right half represents CKI with 5-Fu in MDA-MB-231 cells. Red 

and green colors indicate agonistic and antagonistic regulation, respectively. 

 

Supplementary Figure 3: Multiple dimensional scaling (MDS) plot for MDA-MB-231 samples 

based on expression profiles of all genes (Untreated in black, CKI in red, 5-Fu in green and 

CKI+5-Fu in blue).  

 

Supplementary Figure 4: Multiple dimensional scaling (MDS) plot for A431 samples based on 

expression profiles of all genes (Untreated in black, CKI in green, doxorubicin in blue, 

CKI+doxorubicin in cyan). 
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Appendix C 
 

Supplementary Figures for Chapter 3  
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Supplementary Figure 1: Multiple dimensional scaling (MDS) plot for samples based on 

expression profiles of all genes (Untreated in black, Baituling in blue, Kushen in green and CKI 

in blue).  

 

Supplementary Figure 2: Heatmap showing the perturbation value of significantly perturbed 

pathways only for one or two injections. 

 

Supplementary Figure 3: Over-represented KEGG pathways and their contained genes showing 

shared DE genes between CKI (DE calculated by comparison to Kushen treated) and Kushen 

(DE calculated by comparison to untreated). Node size is proportional to the statistical 

significance of over-representation and genes are connected to their belonged pathways with 

edges. 
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Appendix D 
 

Supplementary Figures for Chapter 4  
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Figure S1. MDS plot of the DE gene distribution of two cell lines under different conditions. 

 

Figure S2. The GO semantic similarity analysis of each data set. (A-D) Each small square 

represents a GO biological process functions in level 3. Size of the squares positively correlates 

with the statistical significance of related biological process. Different colour is to distinguish 

biological process clusters that are descripted by the top shaded functional representatives. 

 

Figure S3. DE genes distribution of two cell lines in the pathways in cancer. In the cell cycle 

pathway, each coloured box is separated into 4 parts, from left to right representing 24h CKI 

treated HepG2, 48h CKI treated Hep G2, 24h CKI treated MDA-MB-231 and 48h CKI treated 

MDA-MB-231. 

 

Figure S4. The heatmap of core genes of three cell lines. Heatmap revealing the expression fold 

changes of core genes in three cell lines at two time points. All the core genes can be separated 

into 3 clusters, namely consistently up/down regulated genes and uneven genes.  
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Supplementary Figures for Chapter 5  
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Additional File1:
Cell Cycle, Energy Metabolism and DNA Repair
Pathways in Cancer Cells are Suppressed by
Compound Kushen Injection

Jian Cui, Zhipeng Qu, Yuka Harata-Lee, Thazin Nwe Aung, Hanyuan Shen and David L Adelson

The University of Adelaide, School of Biological Sciences, Dept of Molecular and Biomedical Sciences

1 SUPPLEMENTARY DATA
1.1 Methods

XTT assay: The wells of 96-well tray were seeded with 4⇥103 cells per well for Hep G2 cells and
8⇥104 cells per well for MDA-MB-231 cells in 50 µL of medium and cultured overnight. On the following
day, 50 µL of either medium, CKI or 5-FU were added to the cells. Viability of the cells was measured at 0,
24 and 48 hours after the treatment by adding XTT:PMS (50:1; Sigma-Aldrich). After 4-hour incubation at
37 °C optical density (OD) of each well was read at 490 nm. The background OD was also measured and
the average was subtracted from the OD readings of appropriate wells.
1.2 Figures

Figure S1. XTT assay result of Hep G2 and MDA-MB-231 cell lines. The XTT assay measures levels
of NADH and NADPH by producing a formazan dye product that can be detected at 490nm. A. XTT assay
result for Hep G2 cells. The assay was carried out at three time points: 0, 24, and 48 hours. 5 treatment
groups were used and compared, 150 µg/ml 5-FU as a positive control for a cytotoxic agent, 1 mg/ml and
2 mg/ml CKI as well as the corresponding concentration of vehicle control (VC). CKI has a clear effect on
the amount of formazan dye produced indicating a significant and marked suppression in the production
of NADH and NADPH. B. XTT result of MDA-MB-231 cells. This test is with a low concentration of
5-FU (20 µg/ml). CKI has a clear and marked effect on the level of formazan dye produced indicating a
significant and marked suppression in the production of NADH and NADPH. Statistical analyses were
performed using two-way ANOVA comparing with untreated (****p<0.0001); bars show 1 standard
deviation from the mean.
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Additional File1

Figure S2. Cell apoptosis assay. A. Cell apoptosis in Hep G2 cells treated with CKI. The assay was
carried out at 5 time points to detect apoptosis levels between untreated and 2 mg/ml CKI treated groups.
From 3 to 12 hours, both groups maintained a baseline level of apoptosis. After 24 hour, apoptosis of CKI
treated cells increased, with the difference attaining statistical significance at 48 hours. B. Cell apoptosis in
MDA-MB-231 cells treated with CKI. From 3 to 24 hours, both groups show similar, if noisy results. By 48
hours apoptosis has increased and was statistically significantly different to the control. C. Cell apoptosis
in Hep G2 cells treated with oxymatrine. We compare apoptosis levels between an untreated group and a
group treated with 0.5 mg/ml oxymatrine. From 3 to 24 hours we observed a baseline level of apoptosis.
By 48 hours apoptosis in the oxymatrine treated group is significantly greater than in the control group.
Statistical analyses were performed using two-way ANOVA comparing with untreated (****p<0.0001);
bars show 1 standard deviation from the mean.
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Appendix F 
 

Supplementary Figures for Chapter 6  
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Supplementary Fig. 1: HPLC profiles of 25 mixtures including CKI, MJ, MN, 9 (N-1), 4 (N-3), and 

6 (N-2). Numbers represent compounds 1: Mac, 2: Ade, 3: Nme, 4: Spr, 5: Mt, 6: Spc, 7: Ospc, 

8: Omt and 9: Tri. 50 µl of the samples at 1 mg/ml concentration was injected through the 

semi-preparative column to achieve the profiles.  

 

Supplementary Fig. 2: XTT Cell viability assays of subtractive fractions in MDA-MB-231 cells at 

24- and 48-hour timepoints treated with 1 mg/ml or 2 mg/ml of CKI and 2 mg/ml equivalent 

concentrations of all other treating agents. (a) Suppression of cell viability from the following 

treatments: CKI, WRCKI-B (whole reconstituted CKI in buffer/vehicle control), and WRCKI-H 

(whole reconstituted CKI in milliQ H2O) (b) assessment of the interaction effects of single MJ 

compounds by the addition to the MN subtractive fraction. Single major compounds were 

dissolved in either MilliQ H2O or Dimethyl sulfoxide. Effect of subtractive fractions (c) 

N-OmtOspcSpc, (d) N-MacAdeTri, (e) N-MtNmeSpr, (f) N-MtNme, (g) N-OmtSpc, (h) 

N-OspcSpc, (i) N-MacTri, (j) N-AdeTri, (k) N-MacAde, (l) N- MtSpr, (m) NmeSpr. Statistically 

significant results shown as p < 0.05 (*) or p < 0.01 (**) p < 0.001 (***), or p < 0.0001 (****); ns 

(not significant). All data were shown as mean ± SD. 

 

Supplementary Fig. 3: XTT Cell viability assays of subtractive fractions N-OmtOspc and 

N-MacOmtOspc in MDA-MB-231 cells at 24- and 48-hour timepoints treated 4 different 

concentrations ranging from 0.25 mg/ml to 2 mg/ml of CKI and equivalent concentrations of two 

other agents. Statistically significant results shown as p < 0.05 (*) or p < 0.01 (**) p < 0.001 (***), 

or p < 0.0001 (****); ns (not significant). All data were shown as mean ± SD. 

 

Supplementary Fig. 4: Representative plots of Annexin V and PI staining in (A) MDA-MB-231, 

(B) HEK-293, and (C) HFF.  

 

Supplementary Fig. 5: Multiple dimensional scaling (MDS) plot for samples based on expression 

profiles of all genes before the removal of unwanted variance (RUVs) in R package.  

 

Supplementary Fig. 6: MDS plot for samples based on expression profiles of all genes after the 

application of RUVs.  

  

  
203



Supplementary Fig. 7: Box plot for samples based on expression profiles of all genes before the 

application of RUVs.  

 

Supplementary Fig. 8: Box plot for samples based on expression profiles of all genes after the 

application of RUVs.  

 

Supplementary Fig. 9: Venn diagrams showing the number of overlaping DE genes between 

treatments at 24-hours and 48-hours.  

 

Supplementary Fig. 10: Identification of significantly perturbed pathways using SPIA (pG< 0.05) 

analysis. Eighty-six significantly perturbed pathways from twenty-two comparisons were found. 

 

Supplementary Fig. 11: DE genes from the following comparisons (CKI vs UT, CKI vs N-Mac, 

CKI vs N-Nme, CKI vs N-Omt and CKI vs N-Tri) shown in the "Cytokine-Cytokine Receptor 

Interaction pathway at 48-hours. Significantly up- and down-regulated DE genes were coloured 

red and green respectively. Each coloured box was separated into five parts according to 

treatments in this order: CKI vs UT, CKI vs N-Mac, CKI vs N-Nme, CKI vs N-Omt and CKI vs 

N-Tri. White or grey colours represented gene(s) that were not significantly differentially 

expressed by the treatments. 

 

Supplementary Fig. 12: DE genes from the following comparisons (CKI vs UT, CKI vs 

N-OmtOspc, CKI vs N-MacOmtOspc, CKI vs OmtOspc and CKI vs MacOmtOspc) shown in the 

Cytokine-Cytokine Receptor Interaction pathway at 48-hours. Significantly up- and 

down-regulated DE genes were coloured red and green respectively. Each coloured box was 

separated into five parts according to this order: CKI vs UT, CKI vs N-OmtOspc, CKI vs 

N-MacOmtOspc, CKI vs OmtOspc and CKI vs MacOmtOspc. White or grey colours represented 

gene(s) that were not significantly differentially expressed by the treatments. 

 

Supplementary Fig. 13: DE genes from the following comparisons (CKI vs UT, CKI vs 

N-OmtOspc, CKI vs N-MacOmtOspc, CKI vs OmtOspc and CKI vs MacOmtOspc) shown in the 

Cytokine-Cytokine Receptor Interaction pathway at 24-hours. Significantly up- and 

down-regulated DE genes were coloured red and green respectively. Each coloured box was 

separated into five parts according to this order: CKI vs UT, CKI vs N-OmtOspc, CKI vs 
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N-MacOmtOspc, CKI vs OmtOspc and CKI vs MacOmtOspc. White or grey colours represented 

gene(s) that were not significantly differentially expressed by the treatments. 

 

Supplementary Fig. 14: DE genes from the following comparisons (CKI vs UT, CKI vs N-Mac, 

CKI vs N-Nme, CKI vs N-Omt and CKI vs N-Tri) shown in the Cell Cycle pathway at 48-hours. 

Significantly up- and down-regulated DE genes were coloured with red and green respectively. 

Each coloured box was separated into five parts according to this order: CKI vs UT, CKI vs 

N-Mac, CKI vs N-Nme, CKI vs N-Omt and CKI vs N-Tri. White or grey colours represented 

gene(s) that were not significantly differentially expressed by the treatments. 

 

Supplementary Fig. 15: DE genes from the following comparisons (CKI vs UT, CKI vs 

N-OmtOspc, CKI vs N-MacOmtOspc, CKI vs OmtOspc and CKI vs MacOmtOspc) shown in the 

Cell Cycle pathway at 48-hour treatments. Significantly up- and down-regulated DE genes were 

coloured red and green respectively. Each coloured box was separated into five parts according 

to this order: CKI vs UT, CKI vs N-OmtOspc, CKI vs N-MacOmtOspc, CKI vs OmtOspc and CKI 

vs MacOmtOspc. White or grey colours represented gene(s) that were not significantly 

differentially expressed by the treatments. 

 

Supplementary Fig. 16: DE genes from the following comparisons (CKI vs UT, CKI vs 

N-OmtOspc, CKI vs N-MacOmtOspc, CKI vs OmtOspc and CKI vs MacOmtOspc) shown in the 

Cell Cycle pathway at 24-hours. Significantly up- and down-regulated DE genes were coloured 

red and green respectively. Each coloured box was separated into five parts according to this 

order: CKI vs UT, CKI vs N-OmtOspc, CKI vs N-MacOmtOspc, CKI vs OmtOspc and CKI vs 

MacOmtOspc. White or grey colours represented gene(s) that were not significantly differentially 

expressed by the treatments. 

 

Supplementary Fig. 17: Differential gene expression profiles of all treatments for TGF-ß 

signalling pathway: the left panel shows comparison of subtractive fraction treated cells against 

CKI treatment and the right panel shows comparison of single compound subtractive fraction 

treated cells against the treatments for two and three compound subtractive fractions.  

 

Supplementary Fig. 18: DE genes from the following comparisons (CKI vs UT, CKI vs N-Mac, 

CKI vs N-Nme, CKI vs N-Omt and CKI vs N-Tri) shown in the TGF-ß signalling pathway at 
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48-hours. Significantly up- and down-regulated DE genes were coloured red and green 

respectively. Each coloured box was separated into five parts according to this order: CKI vs 

UT, CKI vs N-Mac, CKI vs N-Nme, CKI vs N-Omt and CKI vs N-Tri. White or grey colours 

represented gene(s) that were not significantly differentially expressed by the treatments. 

 

Supplementary Fig. 19: DE genes from the following comparisons (CKI vs UT, CKI vs 

N-OmtOspc, CKI vs N-MacOmtOspc, CKI vs OmtOspc and CKI vs MacOmtOspc) shown in the 

TGF-ß signalling pathway at 48-hour treatments. Significantly up- and down-regulated DE 

genes were coloured red and green respectively. Each coloured box was separated into five 

parts according to this order: CKI vs UT, CKI vs N-OmtOspc, CKI vs N-MacOmtOspc, CKI vs 

OmtOspc and CKI vs MacOmtOspc. White or grey colours represented gene(s) that were not 

significantly differentially expressed by the treatments. 

 

Supplementary Fig. 20: DE genes from the following comparisons (CKI vs UT, CKI vs 

N-OmtOspc, CKI vs N-MacOmtOspc, CKI vs OmtOspc and CKI vs MacOmtOspc) shown in the 

TGF-ß signalling pathway at 24-hours. Significantly up- and down-regulated DE genes were 

coloured red and green respectively. Each coloured box was separated into five parts according 

to this order: CKI vs UT, CKI vs N-OmtOspc, CKI vs N-MacOmtOspc, CKI vs OmtOspc and CKI 

vs MacOmtOspc. White or grey colours represented gene(s) that were not significantly 

differentially expressed by the treatments.  
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