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Abstract 

The development of the portable electronic devices, electrical vehicles, and smart grids 

boosts the development of electrical energy storage devices. Among them, lithium-ion 

batteries, a typical kind of rocking-chair batteries, have been considered as one of the most 

competitive choices. However, the limited lithium content in the Earth’s crust raises a 

concern that its cost might increase with the growing demand for electrical vehicles. 

Therefore, due to the relatively abundant content of sodium and potassium, sodium and 

potassium ion batteries are considered as alternatives with reduced cost to lithium-ion 

batteries. Nevertheless, the electrode materials for these two devices suffers the sluggish 

ion reaction kinetics and the large volume expansion due to the larger ion radiuses of 

sodium-ion and potassium-ion than one of lithium-ion. Constructing hollow structured 

materials with shorten ion diffusion length and large voids to alleviate volume expansion 

is considered as one of the best approaches to solve those issues of sodium and potassium 

ion batteries. However, the rational design and engineering to hollow structure according 

to the features of these two batteries remain rarely reported.  Additionally, more insightful 

understandings of the superior electrochemical performance of hollow structured 

electrodes are also needed. Therefore, this thesis aims to offer some hollow structured 

electrode materials with rational design and engineering for sodium and potassium ion 

batteries with insightful understandings. 

Firstly, Chapter 2 summarizes the application and development trends of hollow structured 

electrode materials as anodes for sodium ion batteries. In this chapter, it points out that the 

future development of hollow structured electrode materials lays on the optimization of the 

confinement, the building units and the utilization of the inner voids. Therefore, the 

research efforts were mainly devoted in the rational design and synthesis of complex 

hollow structured anodes for sodium and potassium ion batteries in this thesis. 

The first aspect is about sodium and potassium titanates, a kind of conventional 

intercalation anodes for sodium and potassium ion batteries. In Chapter 3, the building 

units of hollow structured Na2Ti3O7 were tuning by changing the solvothermal reaction 

solvents. It has been demonstrated that Na2Ti3O7 hollow spheres assembled from 
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nanosheets was with enhanced ion reaction kinetics by exhibiting a 33% higher charge 

capacity at the current density of 10 C than that of the ones assembled from nanoparticles. 

Furthermore, the as-prepared sample delivered a reversible capacity of over 60 mAh g-1 

after 1000 continuous cycles at the high rate of 50 C. In Chapter 4, dual-shell structured 

sodium and potassium titanate cubes with oxygen vacancies were achieved. Various 

spectroscopy approaches were employed to offer an atomic understanding of the oxygen 

vacancies. Additionally, it was revealed by density functional theory calculation that the 

superior electrochemical performance originates from the enhanced conductivity which is 

induced by oxygen vacancies.  

The second aspect of this thesis focuses on the synthesis of multi-shell structured anode 

materials for sodium and potassium ion batteries. Due to the large number of inward voids 

in hollow structured materials, hollow structured electrodes have been considered as with 

low volumetric energy density even though their high gravimetric energy density derived 

from their high reversible capacity. In Chapter 5, multi-shell structured Sb2S3 with high 

volumetric energy density and gravimetric energy density was synthesized. In the 

comparison of electrochemical performance, the multi-shell sample exhibited a higher 

reversible capacity than the one of pristine Sb2S3. Additionally, it also showed enhanced 

durability compared to its single-shell counterparts. These two points demonstrate the 

superiorities of multi-shell structured Sb2S3 to its single-shell counterpart and pristine 

Sb2S3. In Chapter 6, the dual-shell structured bismuth nanoboxes were synthesized and 

employed as anodes for potassium ion batteries. This as-prepared sample achieved an 

initial reversible capacity of over 300 mAh g-1 and the reversible capacity maintained over 

200 mAh g-1 after 200 cycles under the current density of 1 C. More importantly, this dual-

shell structured bismuth was employed as a concept of proof to reveal the origin of the 

improved reversible capacity of nanostructured alloy anodes. Through various Operando 

synchrotron-based techniques, it was revealed that there are different origins of improved 

reversible capacity under low current density and high current density. Under the low 

current density, i.e. 0.2 C, the improved reversible capacity originates from the change of 

the electrochemical reaction path, in which the nanostructure offers enhanced capability to 

tolerate the volume expansion. Additionally, in the scenario of high current density, for 

instance, 2 C, the nanostructured alloy anodes provide higher surface area, resulting in 
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more electrochemical surface reactions and, consequently, improved reversible capacity 

under high current density. 

To sum up, this thesis includes several examples of rational design and engineering hollow 

structured materials, such as Na2Ti3O7 hollow spheres assembled from ultrathin nanosheets 

with N-doped carbon coating, dual-shell structured titanates with oxygen vacancies, multi-

shell structured Sb2S3 with enhanced energy density, and dual-shell structured bismuth 

nanoboxes. Furthermore, some insightful understandings of the origins of their superior 

electrochemical performance were acquired through various physicochemical and 

electrochemical characterizations. 

3



4



5



Acknowledgments 

This thesis can come to fruition only with the kind support and assistance of many people. 

I would like to extend my sincere thanks to all of them.  

First and foremost, I owe my deepest gratitude to my principal supervisor, Prof. Shizhang 

Qiao, who has been supportive throughout my Ph.D. study with his patience, enthusiasm, 

and immense knowledge. Without his continuous guidance and valuable suggestion 

concerning this work, this thesis would hardly have been completed. I also want to thank 

my cosupervisor, Dr. Lei Zhang of the University of Adelaide, for his insightful comments 

and useful advices during my research and paper writing. 

I am deeply indebted to all colleagues in Prof. Qiao’s group at The University of Adelaide: 

Prof. Ling Tao of Tianjin University, Dr. Yao Zheng, Dr. Jiao Yan, Dr. Sheng Chen, Dr. 

Jingjing Duan, Dr. Ruifeng Zhou, Dr. Jingrun Ran, Dr. Lin Xiong, Dr. Bita Bayatsarmadi, 

Dr. Jinlong Liu, Dr. Lei Liu, Dr. Dongdong Zhu, Dr. Cheng Tang, Dr. Dongliang Chao, 

Dr. Bo You, Xuesi Wang, Chao Ye, Yongqiang Zhao, Anthony Vasileff, Yang Shi, 

Huanyu Jin, Chaochen Xu, Jieqiong Shan, Xin Liu, Mohammad Ziaur Rahman, Laiquan 

Li, Bingquan Xia, Huan Li, Dazhi Yao, Xin Xu, Yanzhao Zhang, Xing Zhi for the 

technological assistance, for the enlightening discussions, and for all the fun we have had 

in the last four years. 

Special thanks go to Officers Michelle Fitton and Sue Earle, Jason Peak and Analytical 

Services Coordinator Dr. Qiuhong Hu from School of Chemical Engineering and 

Advanced Materials for their administrative helps; Microscopists Mr. Ken Neubauer, Dr. 

Lisa O’Donovan, Dr. Animesh Basak and Dr. Ashley Slattery from Adelaide Microscopy 

for their technical supports. 

It is a great pleasure to express my heartfelt appreciation to those who contributed directly 

to some material characterizations: Dr. Qinfen Gu, Dr. Justin Kimpton, Dr. Helen Brand 

of PD beamline team, Dr. Bernt Johannessen of XAS beamline team, and Dr. Bruce Cowie, 

Dr. Lars Thomsen, Dr. Anton Tadich of soft X-ray spectroscopy team of Australian 

Synchrotron, and Prof. Hugh Harris of The University of Adelaide, for their help and 

insightful discussion on synchrotron related techniques; Prof. Xianfeng Yang of South 

6



China University of Technology, for transmission electron microscopy analyses; and Prof. 

Christopher Sumby of The University of Adelaide, for X-ray diffraction tests. I have 

benefited greatly from their generous help and passionate discussions. 

I would also like to acknowledge The University of Adelaide and Australia Research 

Council (ARC) for financial support. 

Finally, I am grateful to all my families and friends in China and Australia for their long-

time support, encouragement, and unconditional love. They were always there cheering me 

up and stood by me through the good times and bad. 

7



  

8



Chapter 1 : Introduction 

1.1 Significance of the project 
The lithium-ion batteries have been widely used as the electrical energy storage devices in 

portable electronic devices and electric vehicles.1-2 However, the rising demand for 

lithium-ion batteries from the electric vehicles industries induces the raising concern that 

the price of lithium will significantly increase because of the uneven distribution and 

relatively small content of lithium in the Earth’s crust.3-4 Therefore, developing similar 

rocking-chair batteries as cheaper alternatives to lithium-ion batteries is considered as a 

good solution.5-8 Compared with the content of 20 ppm of lithium in the Earth’s crust, 

owing to the relative abundance of sodium or potassium (23,000 ppm for sodium and 

17,000 ppm for potassium), developing the sodium or potassium ion batteries is considered 

as a solution for this issue of limited content lithium of lithium-ion batteries.3, 6-8 

Though the cheaper price of sodium or potassium ion batteries, there are mainly several 

issues about them as electrical energy storage devices. Firstly, the most significant issue 

for employing sodium or potassium ion batteries to replace the lithium-ion batteries is the 

larger ion radiuses of sodium-ion and potassium-ion, resulting in the sluggish ion 

transportation in the electrode materials.7-10 Additionally, because of the lowest voltage vs. 

standard hydrogen electrode of lithium (-3.04V) and the relative higher ones of sodium (-

2.71V) and potassium (-2.94V), sodium and potassium ion batteries are considered with 

lower energy densities than lithium-ion batteries.9-10 Furthermore, the density functional 

theory (DFT) calculations and experimental results suggest that the electrochemical 

reactions of the electrode materials with sodium/potassium ions causes larger volume 

expansion than the one with lithium ions.6-8 To sum up, there are mainly three challenges 

in developing the novel rocking-chair batteries: the sluggish ion transportation, the lower 

energy densities and the large volume expansion. Therefore, to realize the practical 

applications of sodium and potassium ion batteries, the electrode materials with enhanced 

ion transportation kinetics, enhanced energy density and improved capability to alleviate 

the volume expansion are highly desired. 
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Hollow structured materials, with the functional thin shells and the inner voids, offer the 

advantages of a large surface-to-volume ration, short diffusion length, large contact area, 

abundant inner voids to alleviate the volume expansion during cycling etc.11-13 Therefore, 

the applications of hollow structured electrode materials exhibited great successes for 

lithium-ion batteries.11-12 However, the previous researches demonstrated that the simple 

hollow structured materials are with drawbacks in fulfilling the requirement of sodium and 

potassium ion batteries.14 Therefore, rational design and engineering hollow structured 

electrode materials based on the features of those batteries are highly desired but remain in 

the initial stage of development.14  

1.2  Research objectives 
The major goals of this thesis are to design and synthesize a series of complex hollow 

structured anode materials for sodium and potassium ion batteries and to acquire 

fundamental insights into their superior electrochemical performance. Specifically, the 

objectives of this thesis are: 

 To fabricate a novel hollow structure of Na2Ti3O7 spheres assembled from ultrathin 

Na2Ti3O7 nanosheets with nitrogen-doped carbon coating with excellent rate 

performance as anodes for sodium-ion batteries; 

 To reveal the sodium-ion transportation kinetics is highly related with the building units 

of the hollow structure by the better performance of hollow spheres assembled from 

nanosheets than the one of hollow spheres assembled from nanoparticles; 

 To design a series of novel dual-shell structured titanate cubes with oxygen vacancies 

to achieve good rate performance and durability as anodes for sodium and potassium 

ion batteries; 

 To develop an optimizing approach to promote the performance of titanates as anodes 

for both sodium and potassium ion batteries; 

 To synthesize a novel multi-shell structured Sb2S3 with improved energy density, 

enhanced durability and superior reversible capacity; 

 To identify the key barrier in the electrochemical reaction between sodium and 

nanostructured Sb2S3; 
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To manufacture a novel dual-shell structured bismuth boxes with enhanced durability

as anodes for potassium ion batteries;

To understand the origins of the improved reversible capacity of alloy anodes for

rocking-chair batteries under various current densities through various synchrotron-

based techniques.

1.3 Thesis outline 
This thesis is partial outcomes of my Ph.D. research presented in the form of journal 

publications. This thesis is mainly about various complex hollow structured anodes 

materials for sodium and potassium batteries. And it identifies the origins of their superior 

electrochemical performance. Specifically, the chapters in the thesis are presented in the 

following sequence: 

Chapter 1 introduces the significances of design and engineering hollow structured

electrode materials for sodium and potassium ion batteries. Additionally, it outlines the

research objectives and key contributions to the field of hollow structured anode materials

for sodium and potassium ion batteries.

Chapter 2 reviews the recent application and development trends of hollow structured

anodes for sodium ion batteries.

Chapter 3 reports a rational design and synthesis of Na2Ti3O7

spheres with excellent rate performance as anodes for sodium ion batteries.

Chapter 4 studies a general approach to optimize the electrochemical performance of

titanate and investigates the origin of this superior electrochemical performance.

Chapter 5 develops multi-shell hollow structured Sb2S3 with superior energy density,

durability and reversible capacity.

Chapter 6 employs dual-shell structured bismuth boxes in potassium ion batteries as a

concept of proof to investigate the origins of the improved reversible capacity of alloy

anodes for rocking-chair batteries.

Chapter 7 presents the conclusions and perspectives for future work on rational design

and engineering hollow structured anodes for novel rocking-chair batteries.
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Chapter 2 : Literature Review 

2.1 Introduction 

This chapter is mainly about the applications of hollow structured anodes for sodium ion 

batteries. By summarizing the developments of hollow structured anodes, we developed 

the concept of simple and complex hollow structured anodes for sodium ion batteries. 

Because of the differences between sodium and lithium-ion batteries, complex hollow 

structured anodes have been developed to meet the special requirements of being anode for 

sodium ion batteries. To summarize the novel hollow structures, the developments of 

hollow structured anodes with confinements, hierarchical structures, and multishell 

structure are highlighted and presented through recent studies. Finally, we also proposed 

several strategies to boost the development of complex hollow structured anodes for 

sodium ion batteries. 

2.2 The Application of Hollow Structured Anodes for Sodium-Ion 

Batteries: From Simple to Complex Systems 
This chapter is included as it appears as a journal paper published by Fangxi Xie, Lei Zhang, 

Chao Ye, Mietek Jaroniec, Shizhang Qiao, The application of hollow structured anodes for 

sodium-ion batteries: from simple to complex systems, Advanced Materials, 2018, 

201800492. 
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a redox process taking place in the host 
material.[11] From a crystallographic point 
of view, this process is a reversible elec-
trochemical reaction, which involves the 
change in the oxidation state of transition 
metals and a topotactic reversible inter-
calation of sodium ions inside the crystal 
structure of the host without major struc-
tural changes.[9,10] Except for the anodes 
based on the insertion mechanism, there 
are also anodes based on the alloying or 
conversion mechanism.[9] The anodes 
based on the alloying mechanism are those 
that can electrochemically store sodium 
ions via alloying reaction (M + nNa+ + 
ne− = NanM).[9,12–14] In this electrochemical 
reaction, sodium ions form alloys with 
anode materials. Contrasting to the inser-
tion mechanism, the bonds between host 
atoms are broken.[13] Therefore, the atomic 

framework of the host does not constrain the reaction, which 
grants the alloying anodes much higher specific capacity than 
that in the “insertion” anodes.[12,13] As regards anodes based on 
the conversion mechanism, the conversion reaction is usually 
defined as the reaction of sodium and a binary transition metal 
compound, MaXb (M = transition metal, X = O, S, P,…), to yield 
M nanoparticles embedded in a matrix of NayX.[9,10] This elec-
trochemical reaction involves the full reduction of the transi-
tion metal to its metallic state, which assures high theoretical 
capacity.[10] Like in the case of alloying reaction, the bonds 
between M and X are broken, which grants the “conversion 
anodes” high theoretical capacity. Since the crystal structure is 
destroyed and new compounds are formed during these elec-
trochemical reactions, the high capacity anodes undergo severe 
volume expansion and the consequent capacity fading upon 
cycling.[9,12,15,16] This is one of the key obstacles toward practical 
applications of these high capacity anodes.

Hollow structured materials, with the functional thin shells 
and the inner voids, offer the advantages of a large surface-to-
volume ratio, short diffusion length, large contact area, etc.[17–19] 
Resulting from numerous benefits, they have been widely 
employed in several fields, for example, electrocatalysts, super-
capacitors, and lithium-ion batteries.[17–20] Instead of modifying 
nanostructure of anode materials for lithium-ion batteries, 
the employment of hollow structured materials resulted in a 
significant enhancement of the rate performance, durability, 
and specific capacity.[17–23] While the rational design of hollow 
structured anodes for sodium-ion batteries is similar to that of 
hollow structured anodes for lithium-ion batteries, the require-
ments referring to the properties of materials are different 

Hollow structures exhibit fascinating and important properties for energy-
related applications, such as lithium-ion batteries, supercapacitors, and 
electrocatalysts. Sodium-ion batteries, as analogs of lithium-ion batteries, 
are considered as promising devices for large-scale electrical energy storage. 
Inspired by applications of hollow structures as anodes for lithium-ion 
batteries, the application of these structures in sodium-ion batteries has 
attracted great attention in recent years. However, due to the difference 
in lithium and sodium-ion batteries, there are several issues that need to 
be addressed toward rational design of hollow structured sodium anodes. 
Herein, this research news article presents the recent developments in the 
synthesis of hollow structured anodes for sodium-ion batteries. The main 
strategies for rational design of materials for sodium-ion batteries are pre-
sented to provide an overview and perspectives for the future developments 
of this research area.

Sodium-Ion Batteries

1. Introduction

Sodium-ion batteries are considered as the most competitive 
electrical energy storage devices for smart grids to enable the 
practical application of renewable energy.[1–4] They have similar 
working mechanism as lithium-ion batteries but possess much 
lower cost due to cheaper sodium and aluminum current col-
lectors.[5–7] However, there are still some major barriers for 
their wide-scale usage.[8,9] One of them is the lack of suitable 
anode materials. Therefore, the search for a suitable anode for 
sodium-ion batteries is an essential task toward practical usage 
of sodium-ion batteries. Like the anodes for lithium-ion bat-
teries, there are several kinds of anodes for sodium-ion batteries 
based on the insertion, alloying, or conversion mechanism.[9,10] 
Among three kinds of anodes, the most widely applied ones are 
those based on the insertion mechanism. Basically, the “inser-
tion” anodes involve a sodium-ion storage mechanism that is 

Adv. Mater. 2018, 1800492
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due to the differences in sodium and lithium-ion batteries. 
First, because the expansion and strain of anodes in sodium-
ion batteries during charging/discharging processes are more 
significant than those in the anodes used in lithium-ion bat-
teries, the sodium anodes are easier to peel off.[9] Therefore, 
in the rational design of hollow structured anodes for sodium-
ion batteries, apart from the simple hollow structure, there is a 
need to design an extra space to accommodate a larger volume 
expansion. Additionally, due to the larger ion radius of sodium, 
the reaction kinetics is more sluggish during the charging/
discharging processes than that in the case of lithium-ion bat-
teries.[5,6,9] Hence, in addition to the simple hollow structured 
anode to reduce the diffusion length at the interface between 
electrode material and electrolyte, the building block should be 
specially designed to accelerate the ion diffusion in the hollow 
structure to further enhance the sodium kinetics.[17,24] The most 
importantly, due to the lower voltage of sodium cathodes than 
those of lithium cathodes, the energy density of sodium-ion 
batteries is lower than that of lithium-ion batteries.[5,8] Another 
concern is the low volumetric density of hollow structured elec-
trode materials.[16,25–28] Therefore, because of the low energy 
density of sodium-ion batteries and the low volumetric density 
of hollow structured electrode materials, the energy density of 
anodes in sodium-ion batteries is one of the major concerns 
toward application of these batteries. To sum up, although the 
design of hollow structured anodes for sodium-ion batteries 
should be similar to that in the case of lithium-ion batteries, the 
different features of these batteries require the use of proper 
anode materials.

There are several reports on the use of hollow structured 
anodes in sodium-ion batteries but a critical appraisal of this 
important area of research is not available yet. Here, we sum-
marize recent advances in the development of hollow struc-
tured anodes for sodium-ion batteries. First, we present the 
progress in the application of simple hollow structured anodes 
in sodium-ion batteries. After that, the fabrication and applica-
tion of different complex hollow structured anodes for sodium-
ion batteries are discussed. Finally, a brief outlook of the future 
trends in this area is presented.

2. Simple Hollow Structures

In this section, we summarize the application of simple hollow 
structured anodes in sodium-ion batteries. These structures 
are defined as follows: (i) the hollow structure is without any 
confinement, (ii) the building blocks are simple nanoparticles 
without further tailoring, and (iii) the hollow structure con-
sists of single shell. Among all kinds of “insertion” anodes, 
the carbon-based anodes are the most widely used.[29,30] For 
instance, Tang et al. developed simple carbon hollow spheres 
by hydrothermal carbonization of the mixture of poly(styrene) 
latex and D-glucose.[31] As compared to the solid carbon 
spheres, the hollow carbon spheres as shown in Figure 1A,B 
exhibited higher reversible capacities under both low and high 
current densities. Under the current density of 1 A g−1, the 
hollow carbon spheres exhibited a reversible capacity of over 
100 mA h g−1 while the solid ones delivered a reversible capacity 
of about 50 mA h g−1 (Figure 1C). This result demonstrates that 

the hollow structure has favorable transport properties, which 
assure a superior electrochemical performance.

In addition to hollow spheres, hollow nanotubes, 1D hollow 
structures, are also attractive for sodium-ion batteries because of 
the structural stability and good conducting connectivity.[32–34] Liu 
et al. used the in situ transmission electron microscopy to investi-
gate the behavior of hollow carbon nanofibers (CNF) for sodium-
ion batteries. This study suggested that there is a strain caused by 
volume change during sodiation process, which can be partially 
alleviated by the hollow structure.[35] Except for hollow carbon 
tubes, there are also other reports on sodium titanate hollow 
tubes, another “insertion” anode. Thanks to the good connectivity 
of tubes and different modifications as shown in the scanning 
and transmission electron microscope (SEM and TEM) images, 
a capacity retention of over 90% after 10 000 cycles was achieved, 
demonstrating their excellent stability (Figure 1D–F).[36,37] As 
compared to the hollow spheres, thanks to the prolonged length 
and the consequently high length-to-diameter ratio, the 1D 
hollow structured anodes, for example, nanotubes, possess extra 
advantages of good conducting connectivity and better structural 
stability. Therefore, the nanotubes normally exhibit better cycling 
performance than hollow spheres.

There are also several reports on 3D hollow structures.[38–40] 
Zhao et al. prepared the 3D macroporous MXene films with 
different compositions. The as-prepared samples exhibited a 
reversible capacity of 250 mA h g−1 at 2.5 C after 1000 cycles, 
which was significantly better than the reversible capacity 
obtained on multilayer MXenes and MXene/CNT hybrid open 
structure (Figure 1G–I).[39] This work demonstrates that the 
proper architecture is crucial for achieving great electrochem-
ical performance. As compared to 0D and 1D hollow structures, 
the 3D architecture provides higher electrolyte/electrode con-
tact area, which is beneficial for the transportation of sodium 
ions, and consequently, assures a superior rate performance.

Numerous studies showed that the hollow structure of anodes 
is crucial for good electrochemical performance because of sev-
eral reasons: (i) large amount of electrochemical active sites 
due to the large surface-to-volume ratio; (ii) large contact area 
between electrode and electrolyte; (iii) short ion diffusion path 
because of thin shell and inner void. The above-mentioned rea-
sons grant the hollow structured anodes in sodium-ion batteries 
the performance better than that in the solid structured analogs.

3. Complex Hollow Structures

Although simple hollow structures possess many advantages, it 
is worth to mention that most of the reports on simple hollow 
structured anodes with good performance are not based on the 
alloying or conversion mechanism. On the other hand, sev-
eral simple hollow structured “alloying and conversion” anodes 
have been reported.[41–44] Although they showed better electro-
chemical performance than pristine materials without hollow 
structure, it seems that the simple hollow structured anodes 
fail to achieve a satisfactory performance, which is in contrast 
to the simple hollow structured anodes for lithium-ion batteries. 
To find out the origin of the above-mentioned unsatisfactory 
performance, it is worth to mention that there are substantial dif-
ferences between “alloying/conversion” anodes for sodium and 
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lithium-ion batteries: the larger volume expansion, the severe 
strain, lower voltages, etc. These reasons cause that the simple 
hollow structured anodes assembled via alloying or conversion 
mechanism show superior performance in lithium-ion bat-
teries, but only a moderate performance in sodium-ion batteries. 
Therefore, there is a need for improving the design of anodes in 
sodium-ion batteries to obtain the optimal durability, enhanced 
transport of sodium ions and electrons, and higher energy den-
sity. This improvement can be achieved by developing complex 
hollow structured anodes. In this section, we present the devel-
opments of the complex hollow structured anodes with confine-
ments, hierarchical structures, or multishell structures.

3.1. Hollow Structured Anodes with Confinements

Chevrier and Ceder compared the relationship between the vol-
umetric energy density and volume expansion in the “alloying” 

anodes for lithium and sodium-ion batteries through first prin-
ciples calculations.[45] It was shown that the Na alloying com-
pounds should be able to accommodate about 150% of volume 
expansion in order to reach the similar capacity as anodes for 
lithium-ion batteries. Specifically, based on the density func-
tional theory (DFT) calculations and phase diagrams of Na-Sn, 
the expansion of alloying reaction of Sn to storage sodium 
ions is 420%, which is also proved via the in situ X-ray diffrac-
tion and in situ transmission microscopy technique.[46,47] On 
the contrary, the expansion caused by the alloying reaction of 
lithium and tin is only 260%, which is just about 62% of the 
former.[16,48] Hence, during the sodiation/desodiation processes, 
due to the larger radius of sodium ion than that of lithium ion, 
the electrochemical reaction with sodium ions causes much 
larger expansion than that in lithium-ion batteries.[9,45] From 
this perspective, the inner void of hollow structure should be 
suitable to accommodate this larger volume expansion.[17–19,49] 
However, it has been demonstrated that the electrode materials 
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Figure 1. A) and B) TEM images, and C) rate performance comparison of D-glucose derived carbon hollow spheres (0D) and solid carbon spheres as 
anodes for sodium-ion batteries. Reproduced with permission.[31] Copyright 2012, John Wiley & Sons, Inc. D) SEM and E) TEM images, and F) rate per-
formance of hydrogenated Na2Ti3O7 hollow tubes (1D) as anode for sodium-ion batteries. Reproduced with permission.[37] Copyright 2016, American 
Chemical Society. G) SEM and H) TEM images, and I) rate performance of different hollow MXene 3D frameworks as anode for sodium-ion batteries. 
Reproduced with permission.[39] Copyright 2017, John Wiley & Sons, Inc.
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still suffer large strain even in the case of hollow structures.[49] 
Therefore, to develop a suitable confinement to maintain the 
integrity of active material is considered as one of the useful 
approaches to counteract the larger volume expansion caused 
by electrochemical reactions.[50–53] Additionally, due to the large 
exposed surface, the hollow structured anodes often lead to low 
initial Coulombic efficiency.[20] Introducing some confinement 
can be helpful to create a more stable solid electrolyte interface 
(SEI) film to enhance the initial Coulombic efficiency.[54]

For example, Liu et al. employed carbon confinement 
to enhance the performance of hollow Sb nanoparticles 
(Figure 2A,B). The carbon-coated antimony hollow spheres 
showed a high capacity of 280 mA h g−1 after 200 cycles under 
the current density of 1000 mA g−1 (Figure 2C).[55] In addition 
to carbon, a conductive polymer coating is also an advanta-
geous way to improve the cyclic stability and rate performance 
of those high capacity anodes. Zhao et al. employed polyaniline 
(PANI) to improve the performance of SnO2 hollow spheres 

Adv. Mater. 2018, 1800492

Figure 2. A) Low-magnification TEM, B) TEM elemental Mapping images, and C) cycling performance of carbon coating antimony hollow spheres as 
anode for sodium-ion batteries. Reproduced with permission.[55] Copyright 2016, American Chemical Society. D) Low-magnification TEM, E) high-mag-
nification TEM images, and F) rate performance comparison of SnO2 hollow spheres with polyaniline (SnO2@PANI), SnO2 hollow spheres (SnO2-HS), 
and bare SnO2 as anode for sodium-ion batteries. Reproduced with permission.[56] Copyright 2015, Royal Society of Chemistry. G) Low-magnification 
SEM, H) high-magnification TEM images of SnS nanotubes with carbon coating, and I) rate performance comparison of SnS nanotubes with carbon 
coating and SnS microflowers with carbon coating. Reproduced with permission.[61] Copyright 2017, John Wiley & Sons, Inc. J) Low-magnification 
TEM, K) high-magnification TEM images of hollow spheres assembled by N-doped carbon coating Na2Ti3O7 nanosheets (Na2Ti3O7@C HHSs), and 
L) rate performance comparison of hollow spheres assembled by Na2Ti3O7 nanoparticles (Na2Ti3O7 HSs), hollow spheres assembled by Na2Ti3O7 
bare nanosheets (Na2Ti3O7 HHSs), and Na2Ti3O7@C HHSs as anodes for sodium-ion batteries. Reproduced with permission.[24] Copyright 2017, John 
Wiley & Sons, Inc.
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used as an anode for sodium-ion batteries. By introducing the 
polyaniline as a soft elastic coating to buffer the volume change 
and create a stable SEI layer during charging/discharging, the 
reversible capacity of SnO2 hollow spheres after 400 cycles 
under the current density of 300 mA g−1 was improved from 
145.5 to 213.5 mA h g−1, as well as the initial Coulombic effi-
ciency was improved too. The enhanced cycling performance 
was attributed to the PANI buffer layer, which is beneficial 
for alleviating the volume change and prevent agglomeration 
(Figure 2D–F).[56]

Due to the larger radius of sodium ions, as compared to that 
of lithium ions, the volume change for “alloying/conversion” 
anodes is significant, which affects the anode durability.[57] With 
the inner voids, the hollow structure is naturally well suited to 
alleviate the volume change. However, without the confine-
ment, even with hollow structure, due to the larger expan-
sion, these high capacity anodes are still easy to peel off, which 
causes a large amount of irreversible capacity. On the contrary, 
anodes with the confinement, the papers mentioned previously 
and other reports demonstrate that the confinement can be 
beneficial for enhancing the cycling performance because the 
outward confinement can guarantee that the active materials 
are contained in the confinement after the expansion.[44,58,59] 
Therefore, employing confinement is a useful approach to opti-
mize the performance of hollow structured anodes for sodium-
ion batteries.

3.2. Hollow Anodes with Hierarchical Structure

Due to the larger radius of sodium ions, the strain during 
charging/discharging processes of anodes for sodium-ion bat-
teries is much larger than that in lithium-ion batteries.[9] Su 
et al. developed a finite element model (FEM) with different 
densities of voids, to show that the average von Mises stress 
during sodiation/desodiation among different hollow spheres 
with different densities of voids can vary from 5.5 to 0.43 GPa,  
which is about 12.8-fold difference.[49] The above-mentioned 
work demonstrates that the stability of hollow spheres during 
sodiation/desodiation can be enhanced by introducing voids 
in the outer shells. For example, Zhou et al. used a wet-
chemical synthesis method to obtain hollow red-phosphorus 
nanospheres with porous shells as anodes for sodium-ion 
batteries and demonstrated that the porous hollow structure 
was maintained after cycling, indicating that the porosity of 
the functional walls can alleviate the strain.[60] Furthermore, 
He et al. reported the synthesis of hollow SnS nanotubes 
(Figure 2G,H). With the voids in SnS hierarchical hollow nano-
tubes, the SnS@C hollow nanotubes delivered an average spe-
cific capacity of 290 mA h g−1 under a high current density of 
5 A g−1 (Figure 2I).[61] Liu et al. also demonstrated that the use 
of ultrathin nanosheets for fabrication of hierarchical structures 
is helpful to maintain the pristine morphology.[62] Those above-
mentioned works demonstrate that introducing voids in hollow 
structures by optimizing the building blocks is an effective way 
to enhance their durability.

Additionally, apart from the “alloying/conversion” anodes, 
hierarchical structures are also beneficial for the “insertion” 
anodes. Due to the larger ion radius, more attention should be 

paid toward optimization of the reaction kinetics between elec-
trode and sodium ions by employing optimal building blocks 
for hollow structured anodes.[37] For example, Pan et al. inves-
tigated the sodium storage and transport properties of layered 
Na2Ti3O7 and suggested that the diffusion coefficient of sodium 
ions along Na2Ti3O7 layers is about 15 orders of magnitude 
larger than that related to the transport of these ions through 
the layers.[63] Inspired by this finding, Na2Ti3O7 hollow spheres 
assembled by different building blocks were obtained in various 
solvents (Figure 2J,K). As compared with the hollow spheres 
assembled by nanoparticles, the hollow spheres assembled 
by nanosheets showed 33% higher charge capacity at the cur-
rent density of 10 C, demonstrating the superiority of ultrathin 
nanosheets as building blocks (Figure 2L).[24] This work showed 
that the rational design of building blocks is of great signifi-
cance for improving the ion transport and, hence, improving 
sodium storage performance under high current densities.[24]

The previous works demonstrated that, as compared to 
the hollow structures assembled by nanoparticles, the hollow 
structured materials assembled by nanosheets or other tailored 
building blocks might possess other important features. For the 
“alloying/conversion” anodes, because of larger amount of voids 
in the functional walls, the use of tailored building blocks is ben-
eficial to alleviate the strain. Regarding the “insertion” anodes, 
the optimized ion transport paths are able to assure the improved 
sodium-ion transport and, consequently, enhance the rate  
performance. Although great improvements were made in the 
lithium anodes by modifying the building blocks, there are still 
limited reports about modifying the building blocks of hollow 
structured anodes for sodium-ion batteries. Combining the 
hollow structure and the specific hierarchical building blocks 
could be an interesting way to improve the durability and rate 
performance of sodium anodes.

3.3. Hollow Structured Anodes with Multishells

Ong et al. used the first principle calculations to study the dif-
ferences in the voltages of sodium-ion and lithium-ion-based 
intercalation cathodes. Because sodium-ion intercalation into a 
fixed positive electrode is energetically unfavorable as compared 
to the lithium-ion intercalation, the calculated and observed 
Na voltages for most of the cathodes are lower than the cor-
responding Li voltages.[64,65] Additionally, by taking into account 
the higher equivalent weight of sodium than that of lithium, 
sodium-ion batteries will have difficulties in competing with 
lithium-ion batteries in terms of energy density.[5] When the 
hollow structure with single shell is considered, because of the 
large inner void, the concern about the low tap density is essen-
tial.[15,16,28] As the consequence of the lower voltage of sodium-
ion batteries and the lower tap density of hollow structured 
anodes with single shells, the energy density of hollow struc-
tured anodes for sodium-ion batteries is another crucial con-
cern. As compared with the single shell counterparts, multishell 
hollow structured anodes often possess two extra advantages. 
First, they can utilize most of the voids, which are distributed 
in each shell to alleviate the strain during charging/discharging 
processes. This can improve the tap density of hollow struc-
tured material and maintain the advantages of hollow structure. 
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Additionally, different shells enhance the stability because they 
support each other and assure protection of the interior shells 
by the exterior shells.[25–27] This grants the multishell hollow 
structured anodes better durability as compared to the hollow 
structured anodes with single shells.

The simplest multishell structure is yolk–shell structure. 
With the outer shell to protect the inner core, the stability 
of electrode material can be enhanced. With the inner void 
between the inner core and the outer shell, the strain during 
charging/discharging can be alleviated.[25–27] Also, the large 
void inside the outer shell is utilized by the inner core, which 
increases the tap density of electrode. Therefore, yolk–shell 
structure attracts large amount of attention.[66,67] Wang et al. 
reported the yolk–shell iron sulfide–carbon nanospheres with 
enhanced electrochemical performance (Figure 3A,B).[68] As 
regards the electrochemical performance, micro-FeS can only 
retain 195 mA h g−1 after 300 cycles, with a corresponding 
capacity retention of 37.8%. On the contrary, the core–shell 

FeS@C nanospheres showed a similar trend as micro-FeS, 
indicating the core–shell structure cannot tolerate the volume 
change of the inner core. It is worth to mention that the 
yolk–shell FeS@C still retained a decent reversible capacity of 
488 mA h g−1 with a higher capacity retention of 67.6%. This 
result showed that the bare micro-FeS featured the poorest 
durability, implying the importance of the protection by outer 
carbon shell. Additionally, this finding also suggests that the 
yolk–shell structure is preferable for tolerating the large volume 
variation of FeS inner core during sodiation/desodiation 
(Figure 3C).[68] Expect for the conversion anodes, this modifica-
tion strategy is also effective for the anodes with combination 
mechanism of alloying and conversion. Liu et al. employed 
yolk–shell Sn4P3@C nanospheres as the anodes for sodium-
ion batteries (Figure 3D,E) and showed that the as-prepared 
sample with the outer carbon shells was shown to tolerate the 
sodiation volume variation and, hence, granted this material 
an enhanced electrochemical performance. The galvanostatic 
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Figure 3. A) TEM, B) TEM elemental mapping images, and C) cycling performance comparison of microsized FeS, core–shell FeS/C nanoparticles 
(FeS/C), and yolk–shell FeS@carbon nanospheres (FeS@C) spheres as anodes for sodium-ion batteries. Reproduced with permission.[68] Copyright 
2015, Nature Publishing Group. D) SEM, E) TEM images, and F) rate performance of yolk–shell Sn4P3@C nanospheres as anode for sodium-ion 
batteries. Reproduced with permission.[69] Copyright 2015, Royal Society of Chemistry. G) SEM, H) TEM elemental mapping images, and I) cycling 
performance of corresponding samples as anodes for sodium-ion batteries. Reproduced with permission.[70] Copyright 2015, American Chemical Society.
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process showed that the as-prepared material delivered a highly 
stable discharge capacity of about 360 mA h g−1, demonstrating 
the superiority of unique yolk–shell structure (Figure 3F).[69]

Though the many superiorities of yolk–shell structure, the 
inner core in this structure is still a solid nanosphere. Even 
with the protection of outer shell, the inner core still suffers the 
drawbacks of solid sphere. With the aims of utilizing the ben-
efits of hollow structure and increasing energy density, hollow 
structure with more shells is the goal to achieve. However, there 
are limited reports of employing multishell anode for sodium-
ion batteries. Choi et al. reported the synthesis of SnS-MoS2 
yolk–shell structure with two shells (Figure 3G). Though the 
TEM-EDX (energy-dispersive X-ray spectroscopy) analysis, the 
multishells of as-prepared sample and the uniform distribution 
of SnS and MoS2 can be confirmed (Figure 3H). In the compar-
ison of sodium-ion storage cycling performance, the yolk–shell 
SnS showed the highest initial capacity but with poor durability 
while the yolk–shell MoS2 showed good stability but with poor 
initial capacity. Also, the specific capacity of dense SnS-MoS2 
microspheres showed a similar trend as the yolk–shell SnS but 
a slightly improved stability. With the protection of outer shells 
and the support from MoS2, the yolk–shell structure with two 
shells showed a high reversible capacity and a similar stability 
with yolk–shell MoS2, demonstrating the superiority of the 
yolk–shell structure with multishells (Figure 3I).[70]

To sum up, there are two crucial issues facing the hollow 
structured anode materials, which are the low energy density 
and poor durability. The above-mentioned works demonstrate 
that the multishell structured anodes provide similar perfor-
mance to simple hollow structured anodes with increased volu-
metric capacity. Additionally, with the support from the outer 
shell to the inner shell, the durability of hollow structured 
anodes can be enhanced. Therefore, multishell hollow structure 
with improved energy density and durability should be one of 
the future directions for the development of hollow structured 
anode materials for sodium-ion batteries.

4. Conclusion and Outlook

In summary, we have reviewed the state-of-the-art research 
activities in hollow structured anodes for sodium-ion batteries. 
With the thin functional outer shell and the inner void, the 
hollow structure possesses several advantages: large surface-to-
volume ratio for more electroactive sites, large void to accom-
modate the volume change as well as strain during sodiation/
desodiation process and short diffusion length for sodium ions 
and electrons. Synthesizing hollow structured electrode mate-
rials has been widely applied as a modification strategy to opti-
mize the electrochemical performance of anodes for sodium-ion 
batteries. However, there is still plenty room for the application 
of this strategy. First, apart from carbon or polymer, introduc-
tion of novel confinements to buffer the volume change and 
maintain the integrity of electrode is still an interesting topic for 
exploration. For example, various oxides have been proved as 
useful confinements to improve the durability of lithium-based 
electrodes.[71,72] Therefore, combining novel confinements and 
hollow structures can be an interesting area to be explored. 
Additionally, from the perspective of further optimization of the 

ion and electron transport paths and introduction of voids to 
alleviate the strain, the presented works showed that employing 
optimized building blocks to construct the hollow spheres 
makes significant improvement of the rate performance and 
durability. Although various building blocks are employed to 
construct hollow structured anode for lithium-ion batteries, 
there are still limited effort on the use of optimized building 
blocks to construct hollow structured anodes for sodium-
ion batteries, which is more urgent because of the larger ion 
radius, which leads to the more severe strain and more sluggish 
kinetics. Furthermore, the synthesis of hollow structured anode 
materials for sodium-ion batteries is still focused on the simple 
hollow spheres with single shells. Because of the low voltage 
of sodium-ion batteries and poor volumetric capacity of hollow 
structured electrodes, from the viewpoint of high energy density, 
the optimization of the void-to-solid ratio seems to be a prom-
ising solution. Therefore, the use of the multishell structure is 
the best approach to improve the void-to-solid ratio with all the 
advantages of hollow structured materials. However, there are 
still limited reports on the use of multishell hollow structured 
anodes for sodium-ion batteries. With the aims of obtaining 
good electrochemical performance and comparable energy den-
sity, the development of multishell hollow structured anodes is 
of great importance toward their practical applications.
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Chapter 3 : Na2Ti3O7@N Doped Carbon Hollow Spheres for 

Sodium-Ion Batteries with Excellent Rate Performance 

3.1  Introduction and Significance 
Na2Ti3O7 has been considered as a promising candidate for anode in sodium ion battery 

because of its low working voltage and consequently high energy density. However, its 

rate performance is limited by the poor conductivity and the sluggish ion transport kinetics. 

Therefore, rational design and synthesis of Na2Ti3O7 to enhance the electrochemical 

performance remains a challenge. Here, by adjusting the synthesis conditions, Na2Ti3O7 

hollow spheres assembled from N-doped carbon coating nanosheets were obtained.  This 

uniquely structured material exhibited excellent rate performance.  

The highlights of this work include: 

1. Synthesis of Na2Ti3O7 hollow spheres

Hollow spheres of Na2Ti3O7 were synthesised to assure short ion diffusion paths and

large surface area for the contact between the electrode material and electrolyte, were

firstly synthesized.

2. Rational design of two-dimensional structure of Na2Ti3O7

Na2Ti3O7 is a layered structure in which the sodium ions can be easily transported along

the layer while their transport through the layer is difficult. Hence, the sheet-like

nanostructure of Na2Ti3O7, which has a small number of layers, was synthesized

rationally to optimize the transport of sodium ions.

3. N-doped carbon coating on Na2Ti3O7

N-doped carbon, which might enhance both the transport of sodium ions and electrons,

is used to improve the performance of Na2Ti3O7 as an anode for sodium-ion battery for

the first time, which further enhances the electrochemical performance.

4. Excellent rate performance and durability

Thanks to the unique structure, this composite material showed excellent rate

performance. Even under the high current density of 50 C, it can still deliver the specific

capacity of more than 60 mAh g-1. Also, it maintained over 90% of the capacity after

1000 cycles, demonstrating the good durability.

24



3.2 Na2Ti3O7@N-doped carbon hollow spheres for sodium-ion batteries 

with excellent rate performance 
This chapter is included as it appears as a journal paper published by Fangxi Xie, Lei Zhang, 

Dawei Su, Mietek Jaroniec, Shizhang Qiao, Na2Ti3O7@N-doped carbon hollow spheres 

for sodium-ion batteries with excellent rate performance, Advanced Materials, 2017, 

201700989.
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paths of sodium ions and consequently, to 
enhance the sluggish Na reaction kinetics 
with Na2Ti3O7. Zhang et al. reported a 3D 
spider-web architecture of Na2Ti3O7. This 
unique structure reduces the diffusion 
length of sodium ions, which guaran-
tees its superior electrochemical perfor-
mance.[18] Meanwhile, besides the struc-
ture optimization, surface engineering 
has been considered as an effective way to 
improve the poor electronic conductivity 
of Na2Ti3O7 and, hence, enhance its per-

formance.[7,12,17] However, the lack of rationally designed nano-
structured Na2Ti3O7 for anodes in sodium-ion batteries limits 
its rate performance, especially under high current density, 
which is still unsatisfactory.

Hollow structures have been widely applied for the rational 
design of anode materials for lithium-ion batteries because they 
can offer short diffusion paths for transport of ions, high spe-
cific surface area accessible to the electrolyte, and a lot of active 
sites enhancing electrochemical activity under high current 
density.[9,10,19–24] Additionally, the large voids in hollow struc-
tures are beneficial to release the strain during charging/dis-
charging processes.[19,25] Meanwhile, previous research shows 
that sodium ions migrate much easier along the Na2Ti3O7 
layers than through these layers.[12] Therefore, the hollow archi-
tectures assembled from nanosheets seem to be more desir-
able for Na2Ti3O7 anodes in sodium-ion batteries because their 
unique structure can reduce the number of layers and conse-
quently the energy consumption during the diffusion process of 
sodium ions travelling through these layers. As compared to the 
hollow spheres composed of nanoparticles, the hollow spheres 
assembled from Na2Ti3O7 nanosheets may possess additional 
advantages, but their synthesis is more challenging.[26]

Besides optimization of the structure, carbon coating is con-
sidered as an effective strategy to improve the performance 
of Na2Ti3O7 because it can serve as both the conducting addi-
tive to promote the electron transport in the poorly conduc-
tive Na2Ti3O7 and the elastic buffer improving the stability of 
Na2Ti3O7.[15,27,28] As compared with bare carbon materials, 
N-doped carbon might further enhance both ion and electron 
diffusion, resulting in enhanced electronic and ionic conduc-
tivity.[29] However, despite the merits brought by N-doped 
carbon, to the best of our knowledge, there is lack of reports 
on the surface modification of Na2Ti3O7 with N-doped carbon.

Herein we report the first synthesis of Na2Ti3O7 hollow 
spheres assembled from N-doped carbon-coated ultrathin 
Na2Ti3O7 nanosheets. The hollow structure provides a large 
specific surface area, better access to the electrolyte, and 
shorter diffusion paths for both ions and electrons. The 

Uniform Na2Ti3O7 hollow spheres assembled from N-doped carbon-coated 
ultrathin nanosheets are synthesized. A unique multilayer structure of 
nanosheets is presumed to significantly reduce energy consumption during 
the diffusion process of sodium ions, while the carbon-coated structure can 
increase the overall conductivity. The as-prepared sample used as an anode 
in sodium-ion batteries exhibits the best rate performance ever reported for 
Na2Ti3O7, delivering more than 60 mAh g−1 after 1000 continuous cycles at 
the high rate of 50 C, which was achieved due to its unique structure.

Sodium-Ion Batteries

Sodium-ion batteries have attracted a lot of attention due to the 
significantly reduced cost of the entire electrical energy storage 
system.[1–6] Among all kinds of anode materials employed 
in sodium-ion batteries, the Ti-based materials attracted a 
great attention due to their unique properties assuring high 
activity, low cost, and environmental friendliness.[7–10] Taking 
into account the lowest voltage of the Ti-based materials, 
Na2Ti3O7 has been considered as an ideal anode material with 
high energy density.[11–16] Na2Ti3O7 features a zigzag layered 
framework of TiO6 octahedra, which are linked by edges. A 
large amount of energy is required for travel of sodium ions 
through a layer, which is much higher than that needed for 
travel along the layer.[12,13] Additionally, poor electron conduc-
tivity of Na2Ti3O7 associated with its large bandgap (3.7 eV) cre-
ates another barrier for migration of electrons. Therefore, these 
factors are responsible for sluggish Na reaction kinetics, which 
limits the rate performance of Na2Ti3O7 as an anode in sodium-
ion batteries.[12,17]

In order to improve the performance of Na2Ti3O7, numerous 
efforts have been undertaken to reduce the length of diffusion 
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ultrathin nanosheets significantly decrease the number of 
Na2Ti3O7 layers and, hence, provide preferable diffusion paths 
for sodium ions. Finally, the ultrathin carbon coating mean-
ingfully enhances the conductivity and facilitates transport 
of electrons.[15] As expected, at the high current density of 
50 C, the as-prepared Na2Ti3O7 hollow spheres assembled from 
carbon-coated nanosheets could deliver a reversible capacity of 
more than 60 mAh g−1, which is twice larger than the revers-
ible capacity (≈26 mAh g−1) of the materials assembled from 
nanoparticles and nearly twice larger than the reversible 
capacity (≈32 mAh g−1) of the materials assembled from bare 
nanosheets, demonstrating the superiority of the sheet-like 
structure and the N-doped carbon coating.

The synthesis procedure of Na2Ti3O7@C hollow spheres is 
schematically illustrated in Figure 1. First, highly uniform silica 
spheres were synthesized by Stöber method.[30,31] Second, the 
uniform amorphous titanium hydroxide was coated on the sur-
face of silica template to obtain the titanium hydroxide-coated 
silica. Subsequently, hollow spheres composed of Na2Ti3O7 
ultrathin nanosheets were produced under hydrothermal 
conditions in sodium hydroxide aqueous solution probably 
due to the formation of a lamellar sodium titanate structure 
resulting from the intercalation of sodium cations between 
TiO6 octahedral layers.[32] Next, dopamine was employed to 

form polydopamine on the surface of nanosheets and create 
the polymer-coated nanosheets. Finally, the as-prepared sample 
was placed into a tube furnace and calcined to acquire the final 
product: hollow spheres composed of carbon-coated Na2Ti3O7 
ultrathin nanosheets. The resulting Na2Ti3O7@C hierarchical 
hollow spheres are denoted as Na2Ti3O7@C HHSs. For the pur-
pose of comparison, hollow spheres assembled from Na2Ti3O7 
ultrathin nanosheets without carbon coating (Na2Ti3O7 hierar-
chical hollow spheres denoted as Na2Ti3O7 HHSs, Figure S1, 
Supporting Information) and hollow spheres assembled from 
Na2Ti3O7 nanoparticles without carbon coating (denoted as 
Na2Ti3O7 HSs, Figure S2, Supporting Information) were syn-
thesized and the rate performance of those materials was 
tested, too.

Figure 2 shows the scanning electron microscope (SEM) 
images of the silica spheres before (panel a) and after (panel b) 
coating with titanium hydroxide. As shown in Figure 2a, the 
highly uniform silica templates with a smooth surface and 
a diameter of about 500 nm could be obtained by the Stöber 
method. After coating, the surface of as-prepared particles 
became rough (Figure 2b), indicating that titanium hydroxide 
was coated on the surface of silica spheres. The diameter of as-
prepared particles increases to about 560 nm, which implies 
that the average thickness of Ti-based coating layer is about 
30 nm. It is worth noting that the particles remained uniform 
after the aforementioned coating process (Figure S3, Sup-
porting Information). Additionally, the roughness and 30 nm 
thickness of the coating layer are clearly visible on the trans-
mission electron microscope (TEM) images (Figure 2c). The 
sample morphology after hydrothermal reaction with sodium 
hydroxide and the subsequent calcination was investigated by 
SEM (Figures S1 and S2, Supporting Information). It should be 
noted that the composition of reaction solvent has a significant 

Adv. Mater. 2017, 29, 1700989

Figure 1. Illustration of the route for synthesis of Na2Ti3O7@C hollow 
spheres.

Figure 2. a) SEM images of silica spheres; b) SEM and c) TEM images of Si@Ti(OH)x spheres; d) SEM, e) TEM, and f) HRTEM images of Na2Ti3O7@C 
HHSs.
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impact on the morphology of final products, especially in rela-
tion to the building blocks of hollow structures. When the 
reaction takes place in pure water, hollow spheres assembled 
from nanosheets are obtained (Figure S1, Supporting Informa-
tion), while the hollow spheres assembled from small particles 
are formed in the water/ethanol mixed solution (Figure S2, 
Supporting Information).

The final particles (Na2Ti3O7@C HHSs) were studied by 
SEM and TEM imaging analysis. As shown in Figure 2d 
and Figure S4 (Supporting Information), the Na2Ti3O7@C 
HHSs particles are highly uniform spheres assembled from 
nanosheets. Their morphology is almost the same as that 
of the particles after treatment with sodium hydroxide but 
without carbon coating, indicating that the dopamine-derived 
carbon coating is ultrathin and highly uniform. As shown in 
the inset in Figure 2d,e, the hollow structure is clearly visible. 
The thickness of shell is estimated to be about 40 nm, while 
the nanosheets have the width of tens of nanometers. The 
detailed morphology can be further observed on high-resolu-
tion transmission electron microscope (HRTEM) images. The 
HRTEM images show 2D ultrathin nature of Na2Ti3O7 sheets. 
It should be noticed that these ultrathin nanosheets with the 
thickness of less than 5 nm are highly uniform and consist of 
a few layers of Na2Ti3O7 (Figure 2f and Figure S5, Supporting 
Information). Meanwhile, the detailed crystal structure of these 
nanosheets is revealed by HRTEM images of Na2Ti3O7 HHSs 
(Figure S6, Supporting Information). As can be seen from the 
corresponding fast Fourier transform (FFT) pattern shown 
in Figure S6 (Supporting Information), the lattice spacings 

of 0.207 and 0.206 nm with an interfacial angle of 88° can be 
indexed as (402)  and (104), revealing that the enclosed facets 
of Na2Ti3O7 nanosheets are {010}. This agrees with the {020} 
sharp peak visible on the X-ray powder diffraction (XRD) pat-
terns (Figure 3a). As can be seen from Figure S6 (Supporting 
Information), the exposed facets can provide large tunnels for 
the diffusion of sodium ions.

The surface modification of Na2Ti3O7 with carbon has been 
demonstrated as an effective way to improve the conductivity 
and, hence, the electrochemical performance.[7,15,33] Due to the 
large bandgap of 3.7 eV, Na2Ti3O7 is considered as an insu-
lator, which causes the sluggish kinetics of sodium ions and 
the poor rate performance of the pristine material. The carbon 
coating layer was employed to solve this issue. As shown in 
Figure 2f, the ultrathin and highly uniform carbon layer has 
been achieved and its thickness has been estimated to be below 
2 nm. Additionally, the high angle annular dark field scanning 
transmission electron microscopy (HAADF-STEM) elemental 
mapping images (Figure S7, Supporting Information) also 
demonstrate the presence of carbon and its even distribu-
tion in the hollow spherical structures. Thermogravimetric 
analysis (Figure S8, Supporting Information) shows that the 
content of carbon in this composite material is about 24%. 
Furthermore, based on the Raman spectra (Figure 3b), it can be 
found that the intensity of G band located at around 1600 cm−1 
(indicating the sp2-hybridized graphitic carbon atoms) is much 
higher than the intensity of D band related to the disordered 
carbon atoms.[34–36] The Raman spectra indicate the highly gra-
phitic nature of the carbon coating. The X-ray photoelectron 
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Figure 3. The structural analysis of Na2Ti3O7@C HHSs. a) XRD patterns of Na2Ti3O7@C HHSs. b) Raman spectra of Na2Ti3O7@C HHSs. c,d) XPS 
survey and high-resolution N1s spectra of Na2Ti3O7@C HHSs.
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spectroscopy (XPS) reveals the N-doped nature of this thin 
carbon coating (Figure 3c). According to Figure 3d, the high-
resolution spectra of N 1s region can be fitted with two peaks: 
the one located at 400.0 cm−1 can be assigned to the secondary 
amine nitrogen (RNHR) and the one located at 398.1 cm−1

is attributed with tertiary/aromatic (NR) amine func-
tionalities, demonstrating the N-doped nature of the carbon 
coating.[37] The N content in this composite material estimated 
from the survey XPS spectrum (Figure 3c) is 2.97%. Further-
more, Brunauer–Emmett–Teller (BET) surface area increases 
from 99 m2 g−1 (Na2Ti3O7 HSs), 168 m2 g−1 (Na2Ti3O7 HHSs)
to 307 m2 g−1 (Na2Ti3O7@C HHSs) due to the 2D structure of
nanosheets and the micropores present in the coated carbon 
layer (Figure S9, Supporting Information).

The cycling performance of Na2Ti3O7@C HHSs was exam-
ined on the basis of galvanostatic discharge–charge measure-
ments. The initial profiles for Na2Ti3O7@C HHSs are shown 
in Figure 4a, which were recorded in the voltage range of 
0.01–2.5 V versus Na/Na+ at a current density of 1 C, cor-
responding to 177 mA g−1. The first discharge capacity is 
647 mAh g−1 while the first charge capacity is 278 mAh g−1, 
resulting in a low Coulombic efficiency of 43.0% in the first 
cycle. This low Coulombic efficiency can be generally attrib-
uted to the decomposition of electrolyte and the formation of 
solid-electrolyte interfacial (SEI) film, which is also reflected 
by the initial cycles of Na2Ti3O7 HHSs and Na2Ti3O7 HSs with 
the corresponding Coulombic efficiencies of 53.8% and 57.4% 
(Figure S10, Supporting Information), respectively.[18] The 
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Figure 4. Electrochemical sodium-storage properties of Na2Ti3O7@C HHSs: a) Initial discharge–charge voltage profiles of the first, second, and 
fifth cycles in the current density of 1 C. b) Rate performance of Na2Ti3O7@C HHSs, Na2Ti3O7 HHSs, and Na2Ti3O7 HSs. c) Cycling performance 
of Na2Ti3O7@C HHSs under the high current density of 50 C. d) CV curves of Na2Ti3O7@C HHSs at various sweep rates. e) Diagram of capacitive 
contribution to the total capacity.
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low Coulombic efficiency is also suggested by the large void 
between the first cycle and the second cycle in the initial cyclic 
voltammetry (CV) profiles (Figure S11, Supporting Informa-
tion). After five cycles, as shown in Figure 4c, the current den-
sity increased to about 50 C, corresponding to about 8.8 A g−1. 
The corresponding Coulombic efficiency increased to over 90%, 
which implies the highly reversible nature of the as-prepared 
sample. It is noteworthy that the capacity fading for almost 1000 
cycles is just 6.5%, corresponding to the initial cycle charging 
capacity of 72.8 mAh g−1 and the final cycle charging capacity of 
68 mAh g−1. This small capacity fading indicates a good dura-
bility of this uniquely structured material. To the best of our 
knowledge, this is the first report on the use of Na2Ti3O7 under 
50 C and it is also the best rate performance ever reported. The 
good durability and high reversible capacity, which is about 40% 
of the theoretical capacity of Na2Ti3O7, verify the possibility of 
using this material as a high-performance anode for sodium-
ion batteries. To evaluate the rate capability, Na2Ti3O7@C 
HHSs were cycled at various current densities, while the 
charge capacities are shown in Figure 4b and the discharge/
charge profiles are shown in Figure S12 (Supporting Informa-
tion). Na2Ti3O7@C HHSs exhibited reversible capacities of 210, 
179, 142, 120, 94, 82, and 63 mAh g−1 at the current densities 
of 1, 2, 5, 10, 20, 30, and 50 C. First, at the current density of  
50 C, Na2Ti3O7 HHSs (no carbon coating) can only deliver about  
50% charge capacity of Na2Ti3O7@C HHSs, indicating a sig-
nificant enhancement of the sodium-ion storage performance 
resulting from N-doped carbon coating. Second, Na2Ti3O7 
HHSs exhibit about 33% higher charge capacity at the current 
density of 10 C in comparison to Na2Ti3O7 HSs, supporting the 
idea that the ultrathin nanosheets can improve the rate perfor-
mance of Na2Ti3O7. Also at higher current densities, Na2Ti3O7 
HHSs show smaller polarization than Na2Ti3O7 HSs, which 
supports the idea of better sodium-ion transport in Na2Ti3O7 
HHSs (Figure S13, Supporting Information).[38] In conclusion, 
it has been demonstrated that this unique structure of N-doped 
carbon-coated ultrathin nanosheets can not only improve the 
conductivity but also facilitate the diffusion of sodium ions.

To further investigate the origin of the superior electro-
chemical performance of Na2Ti3O7@C HHSs, the sodium-
ion storage mechanism was investigated by CV tech-
niques.[17,33,39,40] Figure 4d shows the CV curves at various 
sweep rates from 0.1 to 10 mV s−1. At the higher sweep rates 
(higher than 2 mV s−1), an obvious distortion from the basic 
shape is visible on the CV curves. This distortion is originated 
from several sources such as increased Ohmic contribution 
and/or diffusion constraints.[17] The contribution to the total 
charge stored resulting from the redox pseudocapacitance and 
intercalation can be analyzed by the following equations 

1 2
1/2i V a v a v( ) = +  

(1)

or

/ 1/2
1

1/2
2i V v a v a( ) = +  (2)

where a1v represents the contribution of redox pseudocapaci-
tance and double layer capacitance while a2v

1/2 reflects the con-
tribution originating from the insertion processes.[17,33,39] If a1 

and a2 are determined, the current response from the capaci-
tive and insertion processes at the specific potential can be 
determined. As illustrated in Figure 4e, the contribution from 
the capacitive process to the total charge stored increases with 
increasing sweep rates. The pseudocapacitive contribution to 
the total capacity increases from 37.9% (the specific capacitive 
contribution is shown in Figure S14, Supporting Information), 
corresponding to the scan rate of 0.1 mV s−1, to 88.3% at the 
scan rate of 10 mV s−1 (the specific capacitive contribution is 
shown in Figure S15, Supporting Information) while the capac-
itive contributions obtained for Na2Ti3O7 HHSs and Na2Ti3O7 
HSs show similar trend (Figure S16, Supporting Informa-
tion). Thanks to the high ratio of pseudocapacitive contribution 
in the total charge stored and the unique structure of hollow 
spheres assembled from N-doped carbon-coated nanosheets, 
Na2Ti3O7@C HHSs exhibit an excellent performance as an 
anode for sodium-ion batteries under extremely high current 
density.

The above results clearly show that the unique structure 
of hollow spheres assembled from N-doped carbon-coated 
nanosheets can significantly enhance the sodium-ion storage 
performance of Na2Ti3O7 as compared to the hollow spheres 
assembled from Na2Ti3O7 nanosheets alone and the hollow 
spheres assembled from nanoparticles. Specifically, the hollow 
structure provides large surface area for the contact of the 
electrode material with electrolyte, which is beneficial for the 
transport of sodium ions. It is worth to mention that the hollow 
structure significantly reduces the diffusion length of sodium 
ions in Na2Ti3O7.[19] Furthermore, the N-doped carbon coating 
with micropores provides a high surface area for electrode/elec-
trolyte interface, which reduces the diffusion length of electrons 
and ions, and provides relatively high conductivity to improve 
the transport of electrons, while the aforementioned N-doping 
also results in the large number of reactive sites for sodium 
ions.[29,41] Additionally, the hollow spheres assembled from 
nanosheets can also provide more electrochemical active sites 
than those formed from nanoparticles due to the higher sur-
face-to-volume ratio.[26] Most importantly, the prior theoretical 
studies show that the diffusion coefficient of sodium ions along 
Na2Ti3O7 layers is about 15 orders of magnitude larger than 
that related to the transport of these ions through the layers.[12] 
Therefore, the 2D structure with fewer layers is preferable for 
the transport of sodium ions due to the large energy barrier 
associated with their migration through the layers, which is 
matched with the improved performance of hollow structure 
assembled from nanosheets (Na2Ti3O7@C HHSs and Na2Ti3O7 
HHSs) in comparison to the hollow structure assembled from 
nanoparticles (Na2Ti3O7 HSs) in this work. Our results prove 
that the significantly reduced dimension along the layers of 
ultrathin nanosheets can facilitate the diffusion of sodium ions 
in Na2Ti3O7, resulting in greatly improved sodium kinetics and, 
hence, the excellent rate performance as an anode in sodium-
ion batteries.

In summary, a novel nanostructure of hollow spheres assem-
bled from N-doped carbon-coated ultrathin Na2Ti3O7 nanosheets 
has been successfully synthesized. These well-defined Na2Ti3O7 
hollow spheres exhibit excellent sodium storage performance 
under high current density, due to the reduced diffusion 
length originating from their unique structure assembled from 
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ultrathin nanosheets and the improved electronic conductivity 
of the N-doped carbon coating. All these features enhance 
the electrochemical performance of this anode material for 
sodium-ion batteries, leading to the excellent performance 
under the high current density. This study demonstrates that 
reducing the number of layers in nanosheets can enhance the 
electrochemical performance of such layered material. Due to 
the wide application of layered material in batteries, electroca-
talysis, and other areas, this study indicates a new avenue for 
the design of layered materials for electrochemical applications.
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Experimental Procedures 

Synthesis of Materials  

Synthesis of SiO2 Spheres. Silica spheres were synthesized by the modified Stöber 

method:[1] 12.6 mL of tetraethyl orthosilicate (Sigma-Aldrich) were added rapidly into the 

mixed solution of 72 mL of ammonia (30%, Sigma-Aldrich) and 240 mL of absolute ethanol 

(Chem-Supply) under vigorous magnetic stirring. The as-prepared silica spheres were 

washed with distilled water and ethanol several times and collected by centrifugation. 

Synthesis of SiO2@Ti(OH)x Spheres. SiO2@Ti(OH)x spheres were prepared by a slightly 

modified sol-gel method.[1a] 0.4 g of silica spheres were ultrasonically dispersed in a mixed 

solution containing  120 mL of ethanol and 1.2 mL of water. After that, 0.3 g of 

hydroxypropyl cellulose (average Mw=~80,000, Sigma-Aldrich) were added to the solution. 

After stirring for 30 minutes, a mixed solution of 4.0 mL of titanium butoxide (Sigma-

Aldrich) and 10.0 mL of ethanol were added into the mixed solution at a rate of 1.5 mL min-

1. Next, the temperature of oil bath was increased to 80 oC and maintained for 100 minutes. 

The as-prepared SiO2@Ti(OH)x was collected by centrifugation, washed with ethanol three 

times and redispersed ultrasonically (5 min) in 25 mL of distilled water to obtain the 

suspension having concentration of about 20 mg mL-1. 

Preparation of sodium titanate hollow spheres (Na2Ti3O7 HSs and Na2Ti3O7 HHSs). 10.0 

mL of the as-prepared solution as described above, 2.0 mL of 5 M sodium hydroxide 

aqueous solution and 8.0 mL of the suitable solvent were added into a 50-ml autoclave. To 

prepare hollow spheres assembled from nanoparticles (Na2Ti3O7 HSs), the solvent was 

ethanol; however, distilled water was used for the preparation of hollow spheres 

assembled from nanosheets (Na2Ti3O7 HHSs and Na2Ti3O7@C HHSs). After sealing, the 

autoclave was kept at 140 oC for 6 hours. The precipitate was washed with distilled water 

and ethanol several times and collected by centrifugation. After drying at 60 oC in a 

vacuum oven, the as-prepared hollow spheres were calcined at 500 oC for 3 hours with a 

ramping rate of 5 oC per minute. 

Synthesis of hollow spheres assembled from carbon-coated sodium titanate nanosheets 

(Na2Ti3O7@C HHSs). 50 mg of the as-prepared sodium titanate hollow spheres 

assembled from nanosheets were ultrasonically (30 min) dispersed in a solution containing 

0.1 g of Trizma® base (Sigma-Aldrich) and 80 mL of distilled water. After that, 48 mg of 

dopamine hydrochloride (Sigma-Aldrich) was added rapidly into the suspension with 
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intense stirring. The product was washed and collected by centrifugation after 3-hour 

reaction at room temperature. After placing it in vacuum oven overnight, the resulting 

hollow spheres were calcined in a tube furnace at 500 oC for 3 hours with a ramping rate 

of 5 oC per minute. 

Characterization

X-Ray Powder Diffraction (XRD) data were collected on Rigaku MiniFlex 600 X-Ray

Diffractometer. The field-emission scanning electron microscope images were acquired on 

the FEI Quanta 450 FEG scanning electron microscope. The transmission electron 

microscope images and the high-resolution transmission electron microscope images were 

taken on JEOL JEM 2100F. Thermogravimetric analysis (TGA) was conducted on 

METTLER TOLEDO TGA/DSC 2 under air flow with a temperature ramp of 20 oC min-1.

Raman spectra were obtained using HORIBA LabRAM HR Evolution with the excitation 

wavelength of 532 nm. 

Electrochemical Measurements 

The electrochemical performance tests were carried out in 3025 type coin cells at room 

temperature. The working electrode consisted of active material (i.e., Na2Ti3O7 HSs, 

Na2Ti3O7 HHSs, Na2Ti3O7@C HHSs), carbon black (Super P from VWR, supplied by Alfa 

Aesar) and binder (CMC, average Mw= ~700,000, Sigma-Aldrich) in a weight ratio of 

60:30:10 with a mass loading of about 1.0 mg cm-2 while the copper foil was employed as 

the current collector. The electrolyte was composed of 1.0 M NaClO4 in a mixture of 

ethylene carbonate and diethyl carbonate (1:1 by volume), while 1.0 M NaClO4 in a 

mixture of ethylene carbonate and propylene carbonate (1:1 by volume) was employed in 

the rate performance testing. Galvanostatic tests were performed on Landt CT2001A. The 

cyclic voltammetry data were collected on CHI 650D electrochemical station.  

Reference 

[1] L. Yu, H. B. Wu, X. W. Lou, Adv. Mater. 2013, 25, 2296; b) W. Stöber, A. Fink, E. Bohn, J.

Colloid Interface Sci. 1968, 26, 62.
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Supplementary Results 

Figure S1. FESEM image of Na2Ti3O7 HHSs. 

Figure S2. FESEM image of Na2Ti3O7 HSs. 
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Figure S3. FESEM image of SiO2@Ti(OH)x

Figure S4. Low magnification SEM Image of Na2Ti3O7@C HHSs. 
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Figure S5. TEM image of Na2Ti3O7@C HHSs. 

Figure S6. (Left) HRTEM image of Na2Ti3O7 HHSs, the corresponding FFT image (inset) 

and (right) the scheme of the corresponding crystal structure. 
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Figure S7. HAADF-STEM elemental mapping images of Na2Ti3O7@C HHSs. 

Figure S8. TGA curve of Na2Ti3O7@C HHSs 
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Figure S9. N2 adsorption isotherms and (inset) the corresponding pore size distributions of 

the as-prepared samples. 

Figure S10 Initial cycles profiles obtained for Na2Ti3O7 HHSs (left) and Na2Ti3O7 HSs 

(right) 
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Figure S11. Initial CV profiles obtained for Na2Ti3O7@C HHSs 

Figure S12. Various rate profiles of Na2Ti3O7@C HHSs 
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Figure S13 Various rate profiles obtained for Na2Ti3O7 HHSs (left) and Na2Ti3O7 HSs 

(right) 

Figure S14. Red curve shows the CV curve of Na2Ti3O7@C HHSs and the shaded region 

indicates the capacitive contribution measured at 0.1mV s-1
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Figure S15. Blue curve shows the CV curve of Na2Ti3O7@C HHSs and the shaded region 

indicates the capacitive contribution measured at 10mV s-1

Figure S16. Diagram of the capacitive contribution to the total capacity of Na2Ti3O7 HHSs 

(left) and Na2Ti3O7 HSs (right) 
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Chapter 4 : Dual-Shell Titanate Cubes to Optimize Transport of 

Large Radii Alkali Ions 

4.1 Introduction and Significance 
Due to their relatively abundant content in the Earth’s crust, the sodium and potassium ion 

batteries are considered as alternatives with much lower cost to the conventional lithium-

ion batteries. However, the sodium and potassium ions are with larger ion radiuses than 

lithium ions. Therefore, these two sets of batteries are facing the issue of sluggish ion 

transportation kinetics. Herein, we report the rational design and synthesis of dual-shell 

structured titanate materials with optimized ion transportation on two levels.  

The highlights of this work include: 

1. Rational design and synthesis of dual-shell structured titanate materials

Dual-shell materials are considered as with higher energy density and enhanced

durability than their single-shell counterparts. Therefore, the dual-shell structured

titanate cubes assembled from ultrathin nanosheets are constructed, considering with

enhanced ion transportation on the material level.

2. Atomic understanding of the introducing of oxygen vacancies

Several high-end spectroscopy approaches are employed to offer an atomic

understanding of the introducing of oxygen vacancies. Apart from that, density

functional theory calculation is also included to offer more understanding of the

optimization on the atomic level.

3. A general approach to optimize ion transportation kinetics

This structure is applied in both sodium and potassium ion batteries. It is demonstrated

that this structure makes significant improvements in rate performance for both systems,

demonstrating the versatility of this approach.
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4.2 Dual-Shell Titanate Cubes to Optimize Transport of Large Radii 

Alkali Ions 
This chapter is included as it appears as a journal paper published by Fangxi Xie, Lei Zhang, 

Yan Jiao, Anthony Vasileff, Shizhang Qiao, Dual-shell titanate cubes to optimize transport 

of large radii alkali ions, to be submitted 
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Optimizing the transport of larger ions like sodium and potassium 
ions is of great significance for sodium and potassium ion batteries. 
Herein, we rationally construct dual-shell structured titanates with 
oxygen vacancies to optimize ion transport. Serving as anodes for 
batteries, the as-prepared samples exhibit enhanced rate 
performance compared to samples without oxygen vacancies. This 
demonstrates an effective approach to optimize ion transport for 
enhancing rate performance.   

Introduction 
Lithium-ion batteries have been widely applied as electrical 
energy storage devices in portable electronic devices and 
electric vehicles.1-4 Due to the scarcity of lithium in the Earth’s 
crust (20 ppm), growing demand from the electric vehicle 
industry is significantly increasing the commodity’s price.3, 5, 6 
Sodium and potassium ion batteries are considered cheaper 
replacements of lithium-ion batteries due to the relative 
abundance of sodium and potassium.5, 7-9 However, due to their 
larger atomic radii, a major concern of these two new battery 
alternatives is the diffusion of these relatively larger ions in the 
electrode materials.10, 11 
 Two-dimensional layered electrode materials have been 
widely applied as cathodes and anodes for rocking-chair 
batteries.11, 12 With close-packed layered structures, the ions 
can be inserted and diffused along the layers. Among these 
electrode materials, Ti-based layered materials have attracted 
great attention due to their unique properties of high activity, 
low cost, and environmental friendliness.11, 13-16  Especially, due 
to their high energy density and capacity, layered sodium and 
potassium titanates show great potential as anodes for sodium 
and potassium ion batteries.17-19 However, because of the larger 
radii of sodium and potassium ions, ion transport kinetics are 
generally poorer in these materials. Therefore, rational design 
and engineering to optimize ion transport in these layered 
titanate materials is highly desired. 

 Generally, there are two levels of optimization pertaining to 
ion transport kinetics: the structure level and the atomic level.20, 

21 Specifically, regarding the structure level, fabricating various 
nanostructures of the electrode material is one of the most 
common and widely applied strategies.11 For instance when 
optimizing the ion transport kinetics of titanate, some reports 
constructed three-dimensional net-like structures and tube 
structures.22-24 However, most of those as-reported 
optimizations ignore its unique two-dimensional layered 
structure. Therefore, the rational design and engineering of 
layered Ti-based anodes remains limited. Furthermore, on the 
atomic level, heteroatom-doping and vacancy introduction 
exhibit great improvements in enhancing the electrochemical 
performance of the electrodes.22, 23 However, despite these 
great improvements, a deeper understanding of the 
performance origin remains elusive. 
 Herein, we report the design and synthesis of  hydrogenated 
titanate boxes with dual-shell structures assembled from 
nanosheets. From electrochemical characterization, the 
materials exhibited excellent rate performance, demonstrating 
that the nanosheet building units can enhance the 
electrochemical performance of layered titanate anode 
materials. Additionally, several state-of-the-art spectroscopy 
techniques and density functional theory calculations were 
employed to offer an atomic level understanding of the origins 
of their improved electrochemical performance. This study 
demonstrates a versatile approach to enhance ion transport of 
larger radius ions and the performance of rocking chair 
batteries. 

Result and discussion 
The synthesis route of dual-shell sodium titanate is illustrated in 
Fig. 1a. Firstly, iron oxide cubes were synthesized through a 
reported approach.25 As seen in Fig. S1, the as-prepared iron 
oxide cubes have a highly uniform size and rough surface. After 
that, an ultra-thin silica shell was synthesized through the 
coating of silica derived from the hydrolysis of tetraethyl 
orthosilicate and the subsequent removal of the inner iron-
oxide core. Detailed morphology characterizations are shown in 
Fig. 1b and S2. 

a. School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, 
Australia. 
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Fig. 1 a.) Scheme of the synthesis procedure of dual-shell Na2Ti3O7 nanocubes; b.) TEM 
image of a silica hollow shell; c.) SEM image of titanate coated silica; d.) SEM and e.) TEM 
images of dual-shell Na2Ti3O7 nanocubes. 

 From these images, the thickness of the silica shell is tens of 
nanometers, demonstrating the ultrathin nature of the silica 
shell. Subsequently, the titanate shell was coated by a similar 
method reported previously (see supporting information).11 
Compared with the smooth surface of the ultrathin silica shell, 
the as-prepared particles have a rough surface (in Fig. 1c)  
indicating that the titanate layer was successfully coated on the 
hollow silica cubes. The ultrathin silica shell was then removed 
with sodium hydroxide aqueous solution to obtain titanate 
hollow boxes. Given the reaction of titanate and sodium 
hydroxide is a surface-dominated reaction, the Ti-based central 
mass would transfer toward the outer region to react with the 
sodium hydroxide, resulting in double-shell structured cubes. 
After calcination in an argon and hydrogen gas mixture, 
hydrogenated dual-shell Na2Ti3O7 was obtained, which is 
denoted as H-DSNTO. Additionally, in order to make a 
comparison, a dual-shell sample was calcinated in pure argon 
and is denoted P-DSNTO. 
 Detailed morphology characterizations of dual-shell 
Na2Ti3O7 are shown in Fig. 1d and 1e. Specifically, from scanning 
electron microscopy (SEM), it can be seen that the as-prepared 
particles are of uniform size (Fig. 1d). More importantly, many 
nanosheets are formed on the surface of the as-prepared 
particles, indicating that the cubes consists of nanosheets. 
Additionally, the dual-shell structure is revealed through 

transmission electron microscopy (TEM; Fig 1e) in which two 
different dark lines are found on the shell edge. It is also 
confirmed that both shells consist of nanosheets, which is 
beneficial for ion transport on the structure level. 

 

Fig. 2 a.) XRD spectrum of H-DSNTO; b.) EELS and c.) O K-edge spectra of both H-DSNTO 
and P-DSNTO; high-resolution XPS spectra of H-DSNTO and P-DSNTO d.) O 1s and e.) Ti 
2p.  

 Apart from the morphology characterizations, various 
spectroscopic techniques were applied to investigate the crystal 
structure and electronic structure of H-DSNTO and P-DSNTO. As 
shown in Figure 2a, the X-Ray powder diffraction (XRPD) pattern 
of H-DSNTO is similar to our previous report, demonstrating 
that the phase of the as-prepared sample is Na2Ti3O7.11 Two 
significant peaks in the corresponding powder diffraction 
patterns with a two-theta angle of around 10o and 48o can be 
attributed to the (100) and (020) peaks of Na2Ti3O7, 
demonstrating that the phase of H-DSNTO is mainly Na2Ti3O7. 
From electron energy loss spectroscopy (EELS; Fig. 2b), the 
titanium L2 and L3 edges of H-DSNTO and P-DSNTO were 
investigated. Compared with the titanium L2 and L3 edges in P-
DSNTO, both peaks in H-DSNTO shift to lower energy loss, 
indicating the presence of oxygen vacancies and enhanced 
conductivity of H-DSNTO. Additionally, O K-edge XANES was 
employed to further evaluate the impact of hydrogenation. In 
the O 2p region (Fig. 2c), the relatively lower deltaE(eg-t2g) 
shows the partial reduction of H-DSNTO, indicating the present 
of oxygen vacancies and the consequent enhancement of  
conductivity.26 Furthermore, X-ray photoelectron spectroscopy 
(XPS) was employed to evaluate the chemical differences 
between these two samples (Fig. S3 and S4). When comparing 
the high-resolution XPS O 1s spectra of both samples (Fig. 2d), 
H-DSNTO shows an additional peak located at 532.1 eV, 
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corresponding to Ti-O-H species.23 Similar to the results 
mentioned above, in the high resolution Ti 2p spectra of the 
hydrogenated sample (Fig. 2e), there is an additional Ti3+ peak 
which appear at 455 eV. Both XPS results demonstrate the 
presence of oxygen vacancies in the crystal lattice of Na2Ti3O7. 
To summarize, various techniques were employed to evaluate 
the difference between H-DSNTO and P-DSNTO. The key 
difference between these two samples is the presence of 
oxygen vacancies in H-DSNTO. 

 

Fig. 3 a.) Initial cycle curves of H-DSNTO; b.) Comparison of rate performance of H-DSNTO 
and P-DSNTO; c.) Long cycling performance test of H-DSNTO. 

 To evaluate the impact of oxygen vacancies on 
electrochemical performance, both H-DSNTO and P-DSNTO 
were employed as anodes for sodium ion batteries. In the initial 
cycles as shown in Fig. 3a, H-DSNTO exhibited an initial 
discharge capacity of 360 mAh g-1 and an initial charge capacity 
of 163 mAh g-1, corresponding with a coulombic efficiency of 
45.3%. The coulombic efficiency of P-DSNTO is slightly higher 
(48.2%) as shown in Fig. S5. The relatively low coulombic 
efficiencies of H-DSNTO and P-DSNTO might originate for two 
reasons. Firstly, some surface functional groups may have 
reacted with sodium ions, causing irreversible capacity in the 
initial cycle. Additionally, the formation of a solid electrolyte 
interface (SEI) film might be another reason for the initial 
irreversible capacity. After the initial cycles, the rate 
performance of these two samples was compared. As shown in 
Fig.3b and Fig. S6, H-DSNTO exhibited reversible capacities of 
165, 141, 116, 107 and 90 mAh g-1 under current densities of 1, 
2, 5, 10, and 20C, respectively. On the contrary, as shown in Fig. 
S7, the P-DSNTO exhibited reversible capacities of 143, 126, 
101, 88 and 68 mAh g-1 under the same current densities 
mentioned above. It is worth noting that H-DSNTO showed 
significant improvement in rate performance. Especially under 
high current density of 20C, H-DSNTO exhibited significantly 
enhanced reversible capacity of over 20 mAh g-1, corresponding 
to over 30% increase. This improvement demonstrates that the 
introduction of oxygen vacancies significantly increases the rate 
performance of Na2Ti3O7. Additionally, H-DSNTO also exhibited 
excellent durability (Fig. 3c). Initially, H-DSNTO exhibited an 
initial reversible capacity of 125 mAh g-1 under a current density 
of 10 C. After 2000 cycles under 10C current density, H-DSNTO 

maintained reversible capacities of over 120 mAh g-1, 
corresponding with a total capacity loss of 4%. This low capacity 
loss demonstrates the excellent stability of the as-prepared 
sample. Additionally, its stability is evidence that no significant 
change to the crystal lattice occurred and the oxygen vacancies 
might remain after long cycling. 

 

Fig. 4 The interlayer in the DFT calculation models of a.) pristine Na2Ti3O7 and b.) Na2Ti3O7 
with oxygen vacancy; c.) Density of states of P-DSNTO and H-DSNTO; d.) TEM image as-
prepared H-KTO; e.) Comparison of rate performance of H-KTO and P-KTO. 

 To reveal the origin of the enhanced electrochemical 
performance of H-DSNTO, a fundamental understanding of the 
impact of oxygen vacancies on the electronic structure was 
investigated by density functional theory (DFT) calculation. The 
schemes show the interlayer structures of the two models of 
pristine Na2Ti3O7 (Fig. 4a) and Na2Ti3O7 with an oxygen vacancy 
(Fig. 4b). As indicated in the density of states (DOS; Fig. 4c), the 
key difference among these two samples is some new electronic 
states induced by the oxygen vacancy, which results in 
enhanced conductivity and consequently the enhanced rate 
performance of H-DSNTO.27 
 To further evaluate the potential of introduced oxygen 
vacancies, hydrogenated potassium titanate with oxygen 
vacancies was synthesized through a similar synthesis 
procedure by simply employing potassium hydroxide to replace 
sodium hydroxide. In the TEM image (Fig. 4d), a similar feature 
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of hollow cubes assembled with nanosheets was observed in 
the as-prepared samples of hydrogenated potassium titanate 
(denoted H-KTO, while the calcinated sample in argon is 
denoted P-KTO). In the evaluation of its potential to serve as an 
anode for potassium ion batteries, its performance under 
various current density was tested. Specifically, as shown in Fig. 
4e, the H-KTO exhibited reversible capacities of 200, 156, 152, 
126, 110, and 100 mAh g-1 under current densities of 50, 100, 
200, 400, 1000, and 2000 mA g-1, respectively. On the contrary, 
the P-KTO only exhibited reversible capacities of 143, 118, 108, 
101, 85, and 71 mAh g-1 under current densities of 50, 100, 200, 
400, 1000, and 2000 mA g-1, respectively. From the results 
shown above, it can be inferred that the introduced oxygen 
vacancies can not only enhance the performance of sodium 
titanate but also improve the reversible capacity of potassium 
titanate, demonstrating it as a versatile approach to boost the 
transport of alkali metal ions. 

Conclusions 
In summary, this study reports the rational synthesis of dual-
shell sodium titanate and potassium titanate boxes assembled 
from nanosheets with oxygen vacancies. As optimization at the 
structure level, the rationally synthesized nanosheet structures 
facilitate the transport of ions with larger radii. Additionally, 
both DFT calculations and electrochemical characterizations 
show that hydrogenated-induced oxygen vacancies enhance 
the conductivity of pristine materials, demonstrating 
optimization of ion transport at the atomic level. Overall, this 
work provides a methodology that can be applied to enhance 
ion transport in sodium and potassium ion batteries at both 
structure and atomic levels and offers novel guidance for 
improving the transport of larger radii ions in novel rocking chair 
batteries. 
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Preparation of Materials 

The preparation of Fe2O3 cubes: The Fe2O3 sub-microcubes were first synthesized by a 

previously reported method (Colloids Surf., A 1998, 134, 265; Angew. Chem. Int. Ed., 

2015, 54: 4001). Typically, 50 mL of 5.4 M NaOH solution was added to the same volume 

of 2 M FeCl3 solution in 5 min under continuous stirring at 75 °C. The resulting Fe(OH)3 

gels were continuously stirred at the same temperature for 5 min, and afterward aged at 

100 °C in a preheated oven for 96 hours. After the reaction, the red products were collected 

by filtration and washed three times with deionized water and ethanol before drying in a 

vacuum oven overnight. 

The preparation of hollow silica boxes: 1.5 g of iron oxide cubes were dispersed in a mixed 

solution of 130 ml ethanol and 13 ml water using ultrasonication (10 min). Subsequently, 

12 ml of ammonium hydroxide solution was added in the as-prepared solution. After that, 

a mixed solution of 9.7 ml ethanol and 0.3 ml TEOS was added dropwise at 1.0 ml per 

minute under continuous stirring. After 6 hours reaction time, the sediment was collected 

by centrifugation. The precipitate was re-dispersed in 500 ml of 0.5 M oxalic acid to react 

for 18 hours at 90°C. In this time, the color of the solution turns a chartreuse yellow. All 

the sediments were collected by centrifugation. 

The preparation of titanate coated hollow silica boxes: 30 mg of silica boxes was dispersed 

in a mixed solution of 120 ml of ethanol and 1.2 ml of distilled water using ultrasonication 

(10 min). 0.3g of hydroxypropyl cellulose (average Mw=~80,000, Sigma-Aldrich) was 

added to the solution. After stirring for 30 minutes, a mixed solution of 2.0 ml of titanium 

butoxide and 10.0 ml of ethanol were added to the mixed solution at a rate of 1.5 ml min-

1. Next, the temperature of the oil bath was increased to 80 oC and maintained for 100

minutes. The as-prepared titanate coated hollow silica boxes were collected by

centrifugation and washed with ethanol three times.

Preparation of sodium titanate dual-shell structured boxes: The as-prepared titanate coated 

hollow silica boxes were re-dispersed ultrasonically in 19 ml of distilled water. This as-

prepared suspension was added to a 50 ml autoclave with an additional 1.0 ml of 5 M 

sodium hydroxide aqueous solution. After sealing, the autoclave was kept at 120 oC in a 
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preheated oven for 6 hours. Finally, the as-prepared sample was collected by centrifugation 

and washed with ethanol three times. 

Characterization 

X-Ray Powder Diffraction (XRD) spectra were collected on Rigaku MiniFlex 600 X-Ray 

Diffractometer. The field-emission scanning electron microscope (SEM) images were 

acquired on a FEI Quanta 450 FEG scanning electron microscope. The transmission 

electron microscope (TEM) images and the high-resolution transmission electron 

microscope (HRTEM) images were taken on JEOL JEM 2100F. X-ray photoelectron 

spectroscopy (XPS) measurements were conducted on a X-ray microprobe from Thermo 

(Escalab 250Xi) with monochroma . The synchrotron-based XANES 

measurements were carried out on the soft X-ray spectroscopy beamline at the Australian 

Synchrotron, which is equipped with a hemispherical electron analyzer and a microchannel 

plate detector that enables simultaneous recording of the total electron yield and partial 

electron yield. 

Electrochemical Measurements 

The electrochemical performance tests were carried out in 3025 type coin cells at room 

temperature. The working electrode consisted of active material (i.e., P-DSNTO, H-

DSNTO), carbon black (Super P from VWR, supplied by Alfa Aesar) and binder (CMC, 

average Mw= ~700,000, Sigma-Aldrich) in a mass ratio of 60:30:10 and a mass loading of 

about 1.0 mg cm2, while copper foil was employed as the current collector. The electrolyte 

was composed of 1.0 M NaClO4 in a mixture of ethylene carbonate and diethyl carbonate 

(1:1 by volume) with 5% Fluoroethylene carbonate. Galvanostatic tests were performed on 

a Landt CT2001A.  

Computational Details 

Density functional theory calculations were performed using the Vienna Ab Initio 

Simulation Package (VASP).[1] The exchange-correlation interaction was described by 

generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) 

functional.[2] The Monkhorst-Pack k-point mesh was set to 2 × 3 × 4. The convergence 

criteria on the total energy for each ionic step was set to be 1.2 × 10-5 eV. Atoms were 
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relaxed until the residual forces were less than 0.01 eV Å 1 in each system. For the density 

of state calculations, the k-points was set to be 6 × 9 × 12.  
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Supporting Figures: 

 

Fig. S1 SEM images of iron oxide cubes at different magnifications: a) low magnification; 

b) high magnification. 

 

 

 

Fig. S2 a) SEM image, b) TEM image of hollow silica cubes with ultrathin shells. 
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Fig. S3 XPS survey spectrum of H-DSNTO. 

Fig. S4 XPS survey spectrum of P-DSNTO. 
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Fig. S5 Initial cycle curves of P-DSNTO. 

 

 

 

Fig. S6 Discharging and charging curves of H-DSNTO under various current densities. 
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Fig. S7 Discharging and charging curves of P-DSNTO under various current densities. 
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Chapter 5 : Multi-Shell Hollow Structured Sb2S3 for Sodium-

Ion Batteries with Enhanced Energy Density 

5.1  Introduction and Significance 
Low energy density is the key barrier for sodium ion batteries. Simple hollow structures 

with large inward voids enable to accommodate the volume expansion and offer high 

gravimetric energy density. However, the large inward voids significantly decrease the 

volumetric energy density. Thus, even though high gravimetric energy density can be 

achieved due to the hollow structure, it is a great challenge to achieve high volumetric 

energy density in hollow structure. Here, multi-shell antimony sulfide (Sb2S3) particles 

were successfully synthesized. As compared with the single-shell counterparts, the multi-

shell structured hollow Sb2S3 exhibited higher volumetric energy density and enhanced 

durability. Additionally, this unique multi-shell structured material exhibited enhanced 

gravimetric energy density than the pristine Sb2S3. Operando synchrotron-based powder 

diffraction was employed to reveal that the origin of high gravimetric energy density is the 

more complete conversion reaction thanks to the novel structure. And the proposed 

mechanism points out an important direction for the future development of sodium anodes. 

The highlights of this work include: 

1. Hollow structured Sb2S3 with higher volumetric energy density 

Hollow structured Sb2S3 can offer enhanced electrochemical reactivity and 

consequently, high gravimetric energy density. However, the large inward voids also 

decrease the volumetric energy density. Multi-shell hollow structured Sb2S3 with 

complex internal feature is synthesized, which not only maintains the high 

electrochemical reactivity but exhibits enhanced volumetric energy density. 

2. Enhanced sodium storage performance and durability 

The multi-shell sample delivered high reversible capacity of over 600 mAh g-1
 under the 

current density of 2000 mA g-1, which is about three times of that of the pristine Sb2S3. 

As compared with its single-shell counterparts, the multi-shell sample exhibited high 

reversible capacity of over 500 mAh g-1 under the current density of 1000 mA g-1 after 
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50 cycles, while the single-shell sample could only deliver about 200 mAh g-1, 

demonstrating the enhanced durability of the former due to the complex internal feature. 

3. Convincing mechanism

Due to the ultra-small size nature of products from electrochemical reaction, the impact

of structure on the electrochemical reactions remains elusive. With the high intensity

and consequently, excellent time-resolution, synchrotron-based operando powder

diffraction was employed to confirm the enhanced electrochemical reactivity of multi-

shell samples via comparison of the operando powder diffraction patterns.

5.2 Multi-shell hollow structured Sb2S3 for sodium-ion batteries with 

enhanced energy density 
This chapter is included as it appears as a journal paper published by Fangxi Xie, Lei Zhang, 

Qinfen Gu, Dongliang Chao, Mietek Jaroniec, Shizhang Qiao, Multi-shell hollow 

structured Sb2S3 for sodium-ion batteries with enhanced energy density, Nano Energy, 

2019, 591-599. 
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A B S T R A C T

Low energy density is the key issue that needs to be addressed for sodium ion batteries. Antimony sulfide (Sb2S3)
with high theoretical capacity is considered as an ideal anode, but it suffers from poor electrochemical activity
and consequently, low energy density. Simple hollow Sb2S3 structures with high electrochemical activity offer
high gravimetric energy density, while large internal voids significantly decrease the volumetric energy density.
Here, multi-shell Sb2S3 was synthesized as an anode for sodium ion batteries, exhibiting much higher reversible
capacity and gravimetric energy density than the pristine Sb2S3. Moreover, the multi-shell structure presents
higher volumetric energy density with enhanced durability than its single-shell counterpart due to the optimized
utilization of the inner void. Operando synchrotron-based X-ray powder diffraction (XRPD) was used to verify the
enhanced electrochemical activity originated from more complete conversion electrochemical reactions. The
multi-shell Sb2S3 design may provide a guide for the development of high-performance hollow structured anodes
with preserved high energy density.

1. Introduction

Sodium ion batteries (SIBs) are considered as alternatives for li-
thium ion batteries (LIBs) due to the significantly reduced price [1–9].
However, due to the higher equivalent weight of Na than Li and the
relatively lower cathode voltages of SIBs than LIBs, SIBs usually suffer
from the low energy density [5–10]. To improve their low energy
density, including volumetric energy density and gravimetric energy
density, is the key for the practical applications of sodium ion batteries
[2,4,5,10–15]. Linked directly with high energy density, the specific
capacity is considered as the most critical evaluation criterion for
electrodes [9,16,17]. Thus, with the aim to improve the energy density
of sodium ion batteries, one of the most important approaches is the
preparation of suitable electrodes with high specific capacity
[4,7,9,18–20]. Compared to the intercalation mechanism based on the
reversible insertion/extraction of sodium ions, the alloying and con-
version anodes are considered more appealing due to their much higher
theoretical specific capacity [9,19,21–25]. As a typical anode material
with both alloying and conversion sodium-ion storage mechanisms,
Sb2S3 with a high theoretical capacity of 946 mAh g−1 is considered as
one of the most ideal anodes for sodium ion batteries [26–30].

However, one of the major issues is that Sb2S3-based anodes can only
deliver limited reversible capacity, indicating their poor electro-
chemical activity [27,30,31]. This poor electrochemical activity can be
mainly attributed to the poor electrical conductivity due to the for-
mation of electrochemical reaction intermediate Na2S with poor elec-
trical conductivity and the sluggish ionic diffusion of relatively larger
sodium ions in Sb2S3 [5,20,26]. Therefore, a limited reversible capacity
associated with low gravimetric energy density have been reported so
far. It remains a challenge to develop Sb2S3 with enhanced electro-
chemical activity and high reversible capacity and, consequently, high
energy density [27,29].

Various nanostructures were synthesized to improve the electro-
chemical activity of Sb2S3, e.g., one-dimensional nanorods and flower-
like spheres assembled by nanosheets [27,29,30]. Those nanostructures
featured shorten diffusion lengths and enhanced electrochemical ac-
tivity, resulting in higher gravimetric energy density [29,30]. As re-
gards to the energy density, two types of this quantity are considered,
i.e., the gravimetric energy density and the volumetric energy density
[12,13,17,32,33]. With the enhanced electrochemical activity, the
gravimetric energy density of the aforementioned nanostructured Sb2S3
is quite decent, while it made a huge compromise on the volumetric
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energy density [13,34,35]. Thus, the nanostructured Sb2S3 is con-
sidered as a low volumetric energy density material [34,35]. To over-
come this issue, the hollow micrometer-sized particles with suppressed
diffusion length of thin functional shell and enhanced contact with
electrolyte due to the relatively large surface area, are considered as
optimized structures with enhanced electrochemical activity and pre-
served volumetric energy density [36–38]. According to the previous
reports, both the hollow structured SnS2 and carbon microspheres ex-
hibited superior rate performance, indicating an improved electro-
chemical activity of sodium ion anodes with hollow design [21,39–41].
Even though the direct evidence for boosting electrochemical activity
remains elusive, the previous reports suggest that the application of
hollow structures may afford Sb2S3 with enhanced electrochemical
activity and consequently, high reversible capacity. Whereas, the large
internal voids in hollow structures would significantly decrease the
volumetric energy density [13,36–38,42,43]. Challenge remains in
achieving high volumetric energy density in hollow Sb2S3 structures.

Herein, we firstly report the design of multi-shell Sb2S3 structures
obtained from the metal-organic frameworks (MOFs) templates. It is
suggested that the micrometer-sized multi-shell hollow Sb2S3 structures
with better utilization of large internal voids can be considered as un-
ique structures to achieve high volumetric energy density but remain
high gravimetric energy density of hollow structure. Multi-shelled an-
timony sulfide used as an anode in sodium ion batteries exhibits an
enhanced reversible gravimetric capacity and higher volumetric energy
density than the pristine and single-shell hollow counterparts.
Additionally, the inner shells provide extra support for the outer shell,
benefiting the long-term durability of the multi-shelled hollow anodes.
Furthermore, the mechanism of the enhanced electrochemical activity
of multi-shelled hollow structures is revealed by synchrotron-based
operando X-ray powder diffraction technology.

2. Experiment

2.1. Materials synthesis

Synthesis of zeolitic imidazolate framework 8 (ZIF-8): The synthesis of
ZIF-8 was performed as reported elsewhere [44,45]. First, 0.734 g of
zinc nitrate hexahydrate was dissolved in 50mL of methanol. On the
other hand, another solution was prepared by dissolving 0.81 g of 2-
methylimidazole and 0.5 g of 1-methylimidazole in 50mL of methanol.
The latter solution was poured into the former one under magnetic
stirring, which was stopped as soon as the two solutions were com-
bined. After aging for 24 h, the precipitate was collected by cen-
trifugation, washed with methanol and then dried overnight at 60 °C in
a vacuum oven.

Synthesis of multi-shell Sb2S3: 40mg of the as-prepared ZIF-8 was
transferred into a round bottom flask and dispersed in 30mL of anhy-
drous ethanol under ultrasonication for 10min. The flask was soaked
into 95 °C oil bath. After that, a mixed-solution of 0.72 g thioacetamide
and 10mL of anhydrous ethanol were added into the flask and the
whole reaction was processed under 95 °C for half hour. The inter-
mediate was collected by centrifugation and washed with anhydrous
ethanol. Afterward, the intermediate was redispersed in the flask
having 30mL of anhydrous ethanol as a solvent under ultrasonication.
A similar process with 0.5-h refluxing and collection process was re-
peated to create another shell. After another 1.5-h reflux process, the
as-obtained sample was collected and washed with anhydrous ethanol
twice. After that, the as-prepared sample was redispersed in 20mL of
anhydrous ethanol while another solution was prepared by dissolving
40mg of antimony chloride in 20mL of anhydrous ethanol. The former
solution was poured into the latter one under magnetic stirring, which
was stopped after 2 h. The product was collected and washed with
ethanol three times.

Synthesis of single-shell Sb2S3: 40mg of the as-prepared ZIF-8 was
transferred into a round bottom flask and dispersed in 30mL of

anhydrous ethanol under ultrasonication for 10min. The flask was
soaked into 120 °C oil bath. After that, a mixed-solution of 2.0 g
thioacetamide and 20mL of anhydrous ethanol was injected into the
flask and the whole reaction was processed under 120 °C for 3 h. After
the reflux process, the as-obtained sample was collected and washed
with anhydrous ethanol twice. After that, the as-prepared sample was
redispersed in 20mL of anhydrous ethanol while another solution was
prepared by dissolving 40mg of antimony chloride in 20mL of anhy-
drous ethanol. The former solution was poured into the latter one under
magnetic stirring, which was stopped after 2 h. The product was col-
lected and washed with ethanol three times.

Synthesis of core-shell Sb2S3: 40mg of the as-prepared ZIF-8 was
transferred into a round bottom flask and dispersed in 30mL of anhy-
drous ethanol under ultrasonication for 10min. The flask was soaked
into 95 °C oil bath. After that, a mixed-solution of 0.72 g thioacetamide
and 10mL of anhydrous ethanol was added into the flask and the whole
reaction was processed at 95 °C for half hour. The intermediate was
collected by centrifugation and washed with anhydrous ethanol. After
washing, the intermediate was redispersed in the flask under ultra-
sonication with 30mL of anhydrous ethanol as a solvent. After another
2.5-h reflux process, the as-obtained sample was collected and washed
with anhydrous ethanol twice. After that, the as-prepared sample was
redispersed in 20mL of anhydrous ethanol while another solution was
prepared by dissolving 40mg of antimony chloride in 20mL of anhy-
drous ethanol. The former solution was poured into the latter one under
magnetic stirring, which was stopped after 2 h. The product was col-
lected and washed by ethanol three times.

Synthesis of Sb2S3 nanowire: About 0.135 g of antimony potassium
tartrate, 0.021 g of sulfur powder and 0.2 g of citric acid were dispersed
in 8mL of water in a 50mL Teflon-lined autoclave. After 2min stirring,
20mL of ethylene glycol was added. After stirring for 40min and in-
jecting 2mL of hydrazine hydrate, the autoclave was placed and
maintained at 180 °C in an oven for 8 h. After cooling down to room
temperature, the product was collected by centrifugation and washed
with distilled water twice and ethanol once. Eventually, the product
was dried overnight at 80 °C in an oven.

2.2. Materials characterization

X-Ray powder diffraction (XRPD) data were collected on Rigaku
MiniFlex 600 X-Ray Diffractometer. The field-emission scanning elec-
tron microscope (SEM) images were acquired on the FEI Quanta 450
FEG scanning electron microscope. The transmission electron micro-
scope (TEM) images were taken on FEI Tecnai G2 Spirit. The scanning
transmission electron microscope (STEM) and high-resolution trans-
mission electron microscope (HRTEM) images were taken on FEI Titan
Themis. The operando XRPD was conducted in the Powder Diffraction
(PD) beamline of Australian Synchrotron (ANSTO) with a beamline
wavelength of 0.6525 Å. The surface area was evaluated from nitrogen
adsorption data measured at 77.3 K (ASAP 2020) using the
Brunauer–Emmett–Teller (BET) method.

2.3. Electrochemical measurements

The electrochemical performance tests were carried out in 2032
type coin cells at room temperature. All the active materials were cal-
cined at 300 °C for 2 h to enhance the crystallinity. The working elec-
trode consisted of active material (i.e., multi-shell Sb2S3, single-shell
Sb2S3 and pristine Sb2S3), carbon black (Super P from VWR, supplied by
Alfa Aesar) and binder polyvinylidene fluoride (PVDF) in a weight ratio
of 60:30:10, while the copper foil was employed as the current col-
lector. The loading mass of the electrode material is around
1.0–1.4mg cm−2. The electrolyte was composed of 1.0 M NaCF3SO3

dissolved in diglyme. Galvanostatic tests were performed on Landt
CT2001A battery testing system. The cyclic voltammetry (CV) data
were collected on CHI 650D electrochemical station.
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3. Results and discussion

The synthesis procedure of the multi-shell Sb2S3 is illustrated in
Fig. 1. First, the designed framework and chemical instability of metal-
organic frameworks offer feasibility toward their conversion to the
desired structures by chemical reaction with certain reagents. Inspired
by that, the ZIF-8 particles having shape of truncated octahedrons and
uniform particle size of 2 μm were synthesized using a slightly modified
strategy reported elsewhere [44–46]. The solid structure of the original
ZIF-8 particles is verified by TEM image in Fig. S1. Multi-shell struc-
tured ZnS can be formed after facile reflux sulfidation process. The
formation process can be described as follows: in the initial sulfidation
process, an amorphous but firm shell, consisting of Zn and S, forms on
the surface of ZIF-8. Then the inner core shrinks, and the central mass
relocates to thicken the outer shell [47,48]. During quenching, the
adhesive force from outer shell is released and the fresh surface of inner
core ZIF-8 is exposed [49,50]. The yolk-shell particles with an inner
core of ZIF-8 and an outer shell of amorphous ZnS are formed, similarly
to the previously reported heterogeneous contraction process. After
performing another sulfidation, another shell can be formed on the
fresh surface of ZIF-8. Hence, multi-shell ZnS particles could be ob-
tained after three quenching and sulfidation processes (Figs. S2 and S3).
The as-prepared ZnS particles remain highly uniform after several sul-
fidation reactions with slight cavities on the surface of truncated oc-
tahedron particles (Fig. S2). The multi-shell structure of ZnS is revealed
by TEM in Fig. S3. Afterward, the multi-shell structured Sb2S3 micro-
particles can be achieved via a simple ion-exchange method (see details
in Experimental Procedures). This successful ion-exchange might rely
on the relatively smaller solubility product constant of antimony sulfide
than that of zinc sulfide [48]. To further explore this synthesis ap-
proach, the reaction conditions were modified to achieve various
hollow structures. As shown in the schematic Fig. S4, increasing
amount of reactant, prolonging reaction time and performing only one
sulfidation reaction leads to one outer shell only during the whole
sulfidation process. Afterward, the inner core of ZIF-8 is shrunken
during the whole reaction while the central mass is continuously re-
located outward driven by the reaction between Zn2+ cations that are
slowly dissolved from ZIF-8 template and S2− anions that are liberated
during hydrolysis of thioacetamide [47]. This process results in the
single-shell ZnS and the consequent single-shell Sb2S3 (Figs. S5 and S6).
For a moderate amount of thioacetamide, moderate reaction time and
two sulfidation reactions, core-shell structures are formed (Fig. S7). The
outer ZnS shell is formed at the initial stage of the reaction. After
quenching, a fresh surface of ZIF-8 is exposed. When the as-obtained
sample is placed in the solution containing thioacetamide and the fresh
surface of ZIF-8 is exposed to S2− anions, an inner core of ZnS is
formed. This results in the core-shell ZnS particles and leads to the
consequent core-shell Sb2S3 particles (Figs. S8 and S9). When being

with three sulfidation reactions, two ZnS shells were formed, resulting
in the multi-shell ZnS particles and the consequent multi-shell Sb2S3
particles (Figs. 1 and 2). These results suggest the proposed strategy can
be applied for the rational design and synthesis of hollow structured
materials with complex internal features.

The detailed morphological and structural characterization of multi-
shell Sb2S3 particles is shown in Figs. 2 and 3. As can be seen from these
figures the as-prepared multi-shell Sb2S3 particles are highly uniform
(see Fig. 2A). The multiple shells of Sb2S3 are identified in Fig. 2B. The
size of each particle is around 2 μm while the thickness of each shell is
around tens of nanometers. The multi-shell structure is further con-
firmed by STEM images in Fig. 2C and Fig. S10. Additionally, it can be
found out that the inner shell of Sb2S3 maintains the shape of truncated
octahedron. In the HRTEM image (Fig. 2D), the lattice spacing is
0.35 nm, which agrees with the (111) plane of Sb2S3. Moreover, the
elemental mapping and elemental line scan (Fig. 2E and F) provides
more evidence to support the triple-shell structure. Especially, two
peaks located between 1500 and 2000 nm on the line scan spectra in-
dicate the multi-shell structure of Sb2S3. Furthermore, the triple-shell
structure is also demonstrated by the scanning electron microscopy
image of one particle with a broken shell (Fig. S11), which consists of
two outer shells and a truncated octahedron core. Additionally, the X-
ray powder diffraction pattern of the Sb2S3 sample after calcination
demonstrates the pure phase of stibnite antimony sulfide (JCPDS
#42–1393) (Fig. 3A). The X-ray photoelectron spectroscopy (XPS)
survey spectra and the high-resolution Sb and S spectra (Fig. 3B–D) also
prove the successful synthesis of Sb2S3 without impurities.

The as-prepared samples were employed as anodes for sodium ion
batteries to evaluate the electrochemical performance of antimony
sulfide with unique multi-shell structure. Pristine Sb2S3 with a mor-
phology of solid wires was prepared as a control sample (Figs. S12 and
S13). As shown in Fig. 4A, during the initial cycle, the multi-shell
sample achieved an initial reversible capacity of 901 mAh g−1 with an
initial Coulombic efficiency of 55% while the initial Coulombic effi-
ciencies of the single-shell and pristine samples are 61.7 and 45.7%,
respectively. This low initial Coulombic efficiency can be attributed to
the irreversible reaction of Na+ with Sb2S3, the decomposition of
electrolyte and the formation of solid electrolyte interface (SEI), which
agrees with the initial cyclic voltammetry profiles showing a large void
between the initial cycle curve and the second cycle curve (Fig. 4B)
[51]. As shown in Fig. 4C, the cycling performance of the as-prepared
samples was evaluated under the current density of 1000mA g−1. The
pristine Sb2S3 exhibited an initial reversible capacity of only around
210 mAh g−1. For comparison, both the multi-shell sample and the
single-shell sample exhibited initial reversible capacities of over 700
mAh g−1 under the same current density, demonstrating that the
hollow structure with thin functional shell and large surface area offers
an enhanced electrochemical activity. On the other hand, although the

Fig. 1. Scheme illustrating the synthesis route from ZIF-8 to multi-shell Sb2S3.
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single-shell Sb2S3 presents high initial reversible capacity, the capacity
decreases gradually due to the unstable nature of single-shell structure.
The poor durability of single-shell Sb2S3 is also demonstrated by the
discharge/charge profiles from different cycles (Fig. S14), in which the
single-shell Sb2S3 shows the most significant capacity fading. After 50
cycles, the multi-shell Sb2S3 could still maintain a reversible capacity of
over 500 mAh g−1, much higher than that of pristine (around 150 mAh
g−1) and single-shell Sb2S3 (around 200 mAh g−1), demonstrating the

advantages of enhanced durability and higher energy density. In the
rate performance test (Fig. 4D, Fig. S15), the pristine sample exhibited
the reversible capacities of 308, 299, 273, 198 and 116 mAh g−1 at the
current densities of 100, 200, 400, 1000 and 2000mA g−1, respec-
tively. As compared with the pristine sample, the multi-shell Sb2S3
exhibited the higher reversible capacities of 909, 871, 806, 725 and 604
mAh g−1 at the current densities of 100, 200, 400, 1000 and
2000mA g−1, respectively. This rate performance is relatively

Fig. 2. A) SEM image, B) TEM image, C) STEM image, D) HRTEM image E) STEM elemental mapping images (The scale bar is 500 nm), and F) STEM elemental line
scanning spectrum of multi-shell Sb2S3.
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remarkable compared with the state-of-art anode materials for sodium
ion batteries (Table S1). The reversible rate capability of multi-shell
structured Sb2S3 is significantly higher than that of the pristine sample
(116 mAh g−1 at 2000mA g−1), demonstrating an enhanced electro-
chemical activity and higher gravimetric energy density. Additionally,
in the initial cycles, the single-shell Sb2S3 exhibited a similar reversible
capacity with multi-shell Sb2S3, also demonstrating the enhanced
electrochemical activity of hollow structure. Nonetheless, with the
process of cycling, the reversible capacity of single-shell one decreased
gradually, exhibiting the poor durability of the single-shell Sb2S3 as an
anode for sodium ion batteries. This study shows that the multi-shell
structure can offer better durability than the single-shell counterpart,
demonstrating the superiority of multi-shell structured Sb2S3.

Operando synchrotron X-ray powder diffraction (XRPD) measure-
ments under high intensity X-ray for both the multi-shell and pristine
samples were conducted at PD beamline, Australian Synchrotron
(ANSTO) to demonstrate the origin of higher reversible capacities of
multi-shell samples [52,53]. The electrochemical reactions of Sb2S3
with sodium-ion can be represented by the following equations
[26,51,54]:

Conversion reaction:

Sb2S3 + 6Na+ + 6e− ↔ 2Sb + 3Na2S (1)

Alloying/dealloying reaction:

2Sb + 6Na+ + 6e− ↔ 2Na3Sb (2)

In order to make a comparison between the patterns of the multi-
shell structured Sb2S3 and the pristine one, all the diffraction intensities
were normalized with the intensity of initial (221) diffraction peak of
Sb2S3. In the XRPD plots of Sb2S3 (Fig. 5A and B), the peaks located at
around 13.5°, 14.0° and 14.3° can be assigned to (221), (301) and (311)
of Sb2S3, respectively. During the discharge process of the multi-shell
sample (Fig. 5A), these peaks disappear gradually until the voltage of
0.75 V. On the contrary, the diffraction peaks of the pristine Sb2S3

remain to the voltage of 0.5 V. This phenomenon demonstrates that
antimony sulfide in the multi-shell sample reacts efficiently with so-
dium ions while some in the pristine one remains, indicating more
complete conversion reaction in the multi-shell sample. This result is
consistent with the initial discharge curves showing a small plateau
around 0.75 V for the multi-shell sample while the corresponding pla-
teau is missing for the pristine sample. This can be attributed to the
better contact of multi-shell Sb2S3 with the electrolyte than with the
pristine sample, resulting in the enhanced electrochemical activity and
higher reversible capacity. Larger surface area of multi-shell samples
supports this conclusion (Fig. S16). From Fig. 5C and D, the reflection of
Sb (012) facet located at ∼12.3° appears with the diminution of Sb2S3
peaks, indicating the occurrence of the conversion reaction between
sodium ion and antimony sulfide. It should be noticed that the intensity
of Sb reflection in the multi-shell is higher than that in the pristine
sample. This indicates that more antimony is generated in the multi-
shell sample during conversion reactions, revealing that this reaction is
more complete. Consequently, the intensity of Na3Sb reflection at
∼17.5° of the pristine sample is significantly lower than that for the
multi-shell sample due to smaller amount of the generated antimony
(Fig. 5E and F). In conclusion, the key difference between these two
samples is in the conversion reactions. Due to smaller amount of gen-
erated Sb in the conversion reaction between the pristine sample and
sodium, a large amount of Sb2S3 remains unreacted. The lack of anti-
mony limits the sodium ion storage capability, leading to the lower
reversible capacity of the pristine sample. As regards the multi-shell
sample, more antimony is generated due to the high conversion effi-
ciency, which enhances alloying reaction. As can be seen from the
scheme, higher reversible capacity of the multi-shell sample in com-
parison to the pristine Sb2S3 solid rods can be ascribed to more com-
plete reaction with sodium ions.

Apart from the superior performance under low current density, the
multi-shell structured sample exhibited excellent performance under
high current density. Therefore, the sodium-storage mechanism under

Fig. 3. A) X-ray powder diffraction spectra; B) XPS survey spectrum; C, D) High resolution XPS spectra of Sb and S of multi-shell Sb2S3.
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high current density is also investigated by CV technique. The degree of
capacitive effect can be qualitatively analyzed by separating the current
response into the contributions associated with diffusion-controlled
process and pseudocapacitive charge storage. Among these two storage
processes, the capacitive charge storage is considered to be advanta-
geous because of high charging rate and consequently, high power
density [24,25]. Fig. 6A and Fig. 6B show the CV curves at various
sweep rates from 0.1 to 10mV s−1 of multi-shell Sb2S3 and pristine
Sb2S3, respectively. As shown in Fig. 6C, the pseudocapacitive con-
tributions of multi-shell Sb2S3 are 44.2, 46.0, 48.2, 53.2, 65.8 and
84.0% under the sweep rate of 0.2, 0.5, 1, 2, 5 and 10mV s−1, re-
spectively. Additionally, the pristine sample exhibits the contribution of
31.2, 33.8, 37.3, 42.8, 55.9 and 74.6% under the same sweep rate,
correspondingly (Fig. 6D). According to the previous report, the as-
achieved multi-shell structure assembled by nanoparticles enables a
better Na+ or electrolyte access to the surface of active material. Ad-
ditionally, the multi-shell structure also offers both the exterior and
interior surfaces for the electrochemical reaction. Consequently, this
multi-shell structure can achieve a higher pseudocapacitive

contribution [25]. Therefore, the high pseudocapacitive contribution of
the multi-shell sample can be considered as the origin of its high ca-
pacity under high current densities.

There are several implications of the multi-shell Sb2S3 anodes in
sodium ion batteries. Specifically, as compared with pristine Sb2S3, the
diameter of multi-shell Sb2S3 is larger than that of pristine one.
However, due to the significantly smaller thickness, the multi-shell
structure offers the better contact with electrolyte, which offers more
electrochemical active sites for the electrochemical reactions with Na
ions. Additionally, taking account of the large volume expansion during
the electrochemical reaction between Sb2S3 and sodium ions, the multi-
shell structure offers extra room to accommodate large volume ex-
pansion and alleviate strain. These two reasons lead to the enhanced
electrochemical activity and, consequently, a more complete reaction
with sodium ions. As can be seen from the operando synchrotron-based
XRPD patterns, the key difference is more complete conversion reaction
and more intermediate antimony to alloy with sodium ions, resulting in
higher reversible capacity of the multi-shell sample. Therefore, the
latter offers much higher reversible capacity and consequently, higher

Fig. 4. A) Initial discharging/charging profiles of multi-shell Sb2S3; B) Initial CV curves of multi-shell Sb2S3; C) Comparison of long cycling performance of multi-shell
Sb2S3, single-shell Sb2S3 and pristine Sb2S3; D) Comparison of the rate performance of multi-shell Sb2S3, single-shell Sb2S3 and pristine Sb2S3.
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gravimetric energy density. On the other hand, as compared with the
single-shell sample, the multi-shell Sb2S3 with large internal voids of-
fers higher volumetric energy density, which is a crucial concern for
anodes in sodium ion batteries. Furthermore, as compared with the

single-shell counterparts, the multi-shell sample also offers an enhanced
durability, which can be attributed to the extra support from different
shells and the exterior shell protecting the interior shells [37,38,42]. To
sum up, the multi-shell Sb2S3 can maintain the high gravimetric energy

Fig. 5. Comparison of contour plots of the operando synchrotron X-ray powder diffraction with superimposed voltage profiles shown for selected ranges of different
samples
A, B) Sb2S3 C, D) Sb E, F) Na3Sb.
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density of hollow structure with maintained volumetric energy density
and better durability than the single-shell one.

4. Conclusion

In summary, we report the synthesis of Sb2S3 hollow structures with
complex interior multi-shells. As compared with the single-shell Sb2S3,
the multi-shell one exhibited an enhanced durability and higher volu-
metric energy density. On the other hand, the multi-shell one exhibited
much higher reversible capacity because of the enhanced electro-
chemical activity originating from the hollow structure. The operando
synchrotron-based X-ray diffraction reveals that the key difference is
more complete conversion reaction. The design of multi-shell Sb2S3 as
the anode for sodium ion batteries opens new opportunities for the
development of electrodes with high energy density and enhanced
durability for similar electrochemical energy storage systems.
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Supplementary Results 

 

 

Fig. S1. TEM image of ZIF-8. 

 

 

 

 

Fig. S2 SEM images of multi-shell ZnS. 
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Fig. S3 TEM image of multi-shell ZnS. 

Fig. S4 Scheme illustrating the synthesis route from ZIF-8 to hollow Sb2S3. 
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Fig. S5 TEM images of hollow ZnS. 

 

 

 

 

Fig. S6 TEM image of hollow Sb2S3. 
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Fig. S7 Scheme illustrating the synthesis route from ZIF-8 to core-shell Sb2S3. 

Fig. S8 TEM images of core-shell ZnS. 
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Fig. S9 TEM image of core-shell Sb2S3. 

 

 

 

 

Fig. S10 STEM image of multi-shell Sb2S3 nanoparticle. 
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Fig. S11 SEM image of broken multi-shell Sb2S3 nanoparticle. 

Fig. S12 SEM image of pristine Sb2S3. 
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Fig. S13 XRPD pattern of pristine Sb2S3. 
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Fig. S14 Discharge/charge profiles of different cycles from long cycle performance test of 

different samples A) multi-shell Sb2S3, B) single-shell Sb2S3, C) pristine Sb2S3.  
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Fig. S15 Discharge/charge profiles under various current densities of different samples A) 

multi-shell Sb2S3, B) single-shell Sb2S3, C) pristine Sb2S3. 
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Fig. S16 Nitrogen adsorption isotherms measured for various Sb2S3 samples. The BET 

surface areas of the corresponding samples are listed in this figure.  
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Table S1 Comparison of as-synthesized multi-shell Sb2S3 in this work with some state-of-art 

anodes in the literatures 

Material 
Low current 

density 

Reversible 

capacity under 

low current 

density 

Highest 

current 

density 

Reversible 

capacity under 

Highest 

current density 

Ref. 

Multi-shell 

Sb2S3 
0.1 A g-1 909 mAh g-1 2 A g-1 604 mAh g-1 This work 

ZnS-Sb2S3@C 

Core-Double 

Shell Polyhedron 

0.1 A g-1 630 mAh g-1 0.8 A g-1 391 mAh g-1 [1] 

Sb2S3 added bio-

carbon 
0.1 A g-1 1113 mAh g-1 6 A g-1 369 mAh g-1 [2] 

1D van der 

Waals Sb2S3 
0.1 A g-1 863 mAh g-1 2 A g-1 337 mAh g-1 [3] 

Sb2S3/carbon 

fiber cloth 
0.5 A g-1 758 mAh g-1 15 A g-1 416 mAh g-1 [4] 

SnS2/Sb2S3@rGO 0.1 A g-1 685 mAh g-1 4 A g-1 567 mAh g-1 [5] 

SnS@NC 

microboxes 
0.1 A g-1 607 mAh g-1 1 A g-1 456 mAh g-1 [6] 

Cobalt sulfide 

MSNB 
0.1 A g-1 524 mAh g-1 5 A g-1 346 mAh g-1 [7] 

MoS2/C 

microtubes 
0.2 A g-1 564 mAh g-1 10 A g-1 401 mAh g-1 [8] 

Ultrathin 

Ti2Nb2O9 

Nanosheets 

0.05 A g-1 237 mAh g-1 4 A g-1 134 mAh g-1 [9] 

N-Doped 

C@Zn3B2O6 
0.1 A g-1 358 mAh g-1 1 A g-1 173 mAh g-1 [10] 

Hierarchical 

Hollow 
0.2 A g-1 383 mAh g-1 10 A g-1 339 mAh g-1 [11] 
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NiSe2@Carbon 

Sb Nanorod 

Encapsulated in 

Carbon 

0.1 A g-1 621 mAh g-1 10 A g-1 375 mAh g-1 [12] 

N/S-

rGO@ZnSnS3 
0.1 A g-1 655 mAh g-1 2 A g-1 257 mAh g-1 [13] 
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Chapter 6 : Revealing the Origin of Improved Reversible 

Capacity of Dual-Shell Bismuth Boxes Anode for Potassium Ion 

Batteries 

6.1 Introduction and Significance 
A significant improvement in the reversible capacity was achieved for nanostructured alloy 

anodes.  However, even though a large amount of nanostructured alloy anodes were applied 

in rocking-chair batteries, due to the poor temporal resolution of lab-based X-ray powder 

diffraction and the lack of sufficient information about chemical properties of these anodes, 

the origin of their improved reversible capacity remains unclear. Here, we combine 

operando synchrotron-based X-ray powder diffraction with high temporal resolution and 

ex-situ X-ray absorption near edge structure spectroscopy to study the double-shell 

nanostructured bismuth boxes as alloy anodes to reveal the origin of their improved 

reversible capacity.  

The key findings of this work are: 

1. The first synthesis of double-shell nanostructured bismuth boxes;

2. Identifying the key role of nanostructure in improving the reversible capacities;

3. Revealing different origins of the improved reversible capacities of nanostructured alloy

anodes under various current densities;

4. Guidance for the rational design and engineering of nanostructured alloy anodes

6.2 Revealing the origin of improved reversible capacity of dual-shell 

bismuth boxes anode for potassium ion batteries 
This chapter is included as it appears as a journal paper published by Fangxi Xie, Lei Zhang, 

Biao Chen, Dongliang Chao, Qinfen Gu, Bernt Johannessen, Mietek Jaroniec, Shizhang 

Qiao, Revealing the origin of improved reversible capacity of dual-shell bismuth boxes 

anode for potassium ion batteries, Matter, 2019, accepted for publication.
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Revealing the origin of improved reversible capacity of dual-shell 

bismuth boxes anode for potassium ion batteries 
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Summary 

Nanostructured alloy anodes have been successfully used in several kinds of rocking-chair 

batteries. However, a full picture of the origin of their improved reversible capacity remains elusive. 

Here, we combine operando synchrotron-based X-ray powder diffraction (XRPD) and ex-situ X-

ray absorption near edge structure spectroscopy (XANES) to study the double-shell structured 

bismuth boxes as anodes in potassium ion batteries to reveal the origin of their improved capacity. 

The nanostructured bismuth anode offers an enhanced capability to tolerate the volume expansion 

under a low current density of 0.2 C, resulting in a more complete alloy reaction and improved 

reversible capacity. Additionally, under a high current density of 2 C, nanostructured bismuth 

anode with larger surface area offers more sites to electrochemically alloy with potassium and 

results in a lower average oxidation state of bismuth. These findings offer a guidance for the 
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rational design and engineering of electrode materials according to the current density for rocking 

chair batteries. 

KEYWORDS: multi-shell particles, hollow structures, potassium-ion batteries, anode materials, 

operando synchrotron XRPD 

Introduction 

Rocking-chair batteries, such as lithium, sodium, potassium, and calcium ion batteries, are widely 

applied as electrical energy storage devices for portable electronic devices and electrical vehicles. 

On their anode side, alloy anodes with much higher theoretical capacity than the conventional 

intercalation anodes are considered as a superior choice.1-11 Nonetheless, these alloy anodes often 

suffer the larger volume expansion and consequently, the capacity fading.5-7,9 Therefore, various 

nanostructured alloy anodes have been developed.3,4,9 Although a significant improvement of their 

reversible capacity has been achieved, its origin remains still unclear.6,7 

To reveal the origin of the improved capacity, various approaches have been explored. The 

most common approach involves X-ray powder diffraction (XRPD) to observe the electrochemical 

alloying process. Especially, the previous studies involving the XRPD monitoring of the alloying 

process of silicon anodes in lithium ion batteries, suggest that the reduction of the particle size or 

film thickness leads to the suppression of Li15Si4 phase, which results in the change of the final 

product of electrochemical reaction and increases the reversible capacity.7,12,13 Additionally, the 

final product of the alloying reaction of bismuth, another alloy anode, in sodium ion batteries is 

affected by varying the particle size. The final product derived from nanosized bismuth and sodium 

is cubic Na3Bi, while the one originating from microsized bismuth is hexagonal Na3Bi.14 The 

change in the electrochemical reaction-path due to nanosizing the alloy anodes could be the reason 

of the improved reversible capacity.7,14,15 However, most of the reported results refer to the 
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electrochemical reaction paths under small current density. The difference in the behavior of 

nanostructured and bulky alloy anodes under high current density remains elusive due to the poor 

temporal resolution of lab-sourced XRPD, which might require a relatively long acquisition time 

for obtaining proper crystallographic information.16-19 To resolve this issue, electrochemical 

characterization approaches with high temporal resolution have been applied. Several reports 

about anodes which contains alloy elements suggest that the origins of higher reversible capacity 

are the enhanced pseudocapacitive response or fast ion kinetics.20-24 However, the characterization 

of electrochemical reactions bases mainly on the electrical signals while the information about 

chemical properties, such as the phase evolution or the oxidation states, is lacking. More 

importantly, the conclusion about the enhanced pseudocapacitive contribution is in contradiction 

with the suppression of certain electrochemical reactions observed by X-ray powder diffraction. 

At present, most of the reports are devoted to either the phase evolution under low current density 

or the electrochemical response under high current density. Therefore, due to the rarely reported 

phase evolution of nanostructured alloy anodes under high current density and the lack of chemical 

properties from electrochemical characterization, a full picture of the origin of increasing 

reversible capacity of nanostructured alloy anodes remains unclear. 

Herein, we report the first synthesis of double-shell structured bismuth boxes. Their 

electrochemical process as an anode for potassium ion batteries is studied by combining an 

operando synchrotron-based XRPD with high temporal resolution and ex-situ X-ray absorption 

near edge structure (XANES).16,18,19 By employing this nanostructured bismuth material and 

comparing its electrochemical behavior with that of microsized bismuth, a full picture of the origin 

of the improved reversible capacity of nanostructured alloy anodes is revealed. The improved 

reversible capacity of nanostructured bismuth under low current density originates from numerous 
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internal voids able to accommodate the large volume expansion, while that under high current 

density originates from large amount of electrochemical active sites associated with high surface 

area. This study points out that the origins of the improved reversible capacities under various 

current densities are different. This demonstrates the key role of the nanostructure in improving 

the reversible capacity of alloy anodes. These findings offer guidance for the future rational design 

and engineering of nanostructured alloy anodes for rocking-chair batteries. 

Results and discussion 

The complete synthesis route of nanostructured bismuth anodes is illustrated in Figure 1A. As 

shown in Figure 1A and Figure S1, the uniform ZIF-8 (zeolitic imidazolate framework-8) cubes 

with a size of around 500 nm were selected as the initial template and synthesized by using a 

slightly modified approach reported elsewhere.25 After a series of modified sulfidations reported 

by us previously, the double-shell zinc sulfide boxes with slight indentations on their surface are 

clearly seen (Figure S2).26 As suggested in our previous report, due to the difference in the 

solubility product constants, the zinc cations in the as-prepared sample are replaced by bismuth 

cations via a facile room temperature cation-exchange method.26 The scanning electron 

microscope (SEM) and transmission electron microscope (TEM) images (Figure S3, S4) show 

that the double-shell box structure is maintained during this exchange process. After surface 

coating with polydopamine and subsequent calcination, the carbon-coated double-shell bismuth 

hollow boxes (C@DSBC) are obtained and studied by SEM and TEM imaging analysis. As shown 

in Figure 1B and Figure S5, the uniform cubic shape remains after coating and subsequent 

calcination. The TEM and scanning transmission electron microscopy (STEM) images (Figure 

1C and S6) show a porous dual-shell structure of these boxes with the thickness of each shell 

estimated to be around several nanometers. The high-angle annular dark-field STEM (HAADF- 
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Figure 1. Synthesis procedure, morphology and physicochemical characterization of 

C@DSBC: A.) Scheme illustrating the synthetic procedure of C@DSBC; B.) SEM image of 

C@DSBC; C, D) HAADF-STEM images; E.) XRPD-spectrum (* represents bismuth and # 

represents bismuth sulfide); F.) HAADF-STEM elemental mapping; G.) high-resolution nitrogen 

XPS spectrum. 

 

STEM) image (Figure 1D) shows the lattice spacings of 0.33 nm and 0.30 nm with an interfacial 

angle of 56o indexed as (012) and (004) facets of bismuth, respectively. A combination of these 

data with those of XRPD data shown in Figure 1E reveals that the composition in the as-prepared 

96



6 
 

sample is mainly rhombohedral bismuth phase. Additionally, the STEM elemental mapping 

images (Figure 1F) illustrate the even distribution of bismuth, carbon, and nitrogen, indicating 

that the nitrogen-doped carbon is homogenously coats the surface of bismuth boxes. The N-doped 

nature of the carbon coating is also demonstrated by X-ray photoelectron spectroscopy (XPS) 

(Figure 1G, S7A and S7B).27,28 Furthermore, the Raman spectrum (Figure S8) shows that this 

carbon coating is highly amorphous, while the carbon content is around 7% according to the 

thermogravimetric analysis (Figure S9). 29-31 

The microsized bismuth is selected as the control sample to offer a more comprehensive 

understanding of the improved reversible capacity of nanostructured alloy anodes. The detailed 

characterizations are shown in Figure S10 (SEM image and XPS survey spectrum). As shown in 

Figure 2A, the C@DSBC sample achieves an initial reversible capacity of 351 mAh g-1 with an 

initial coulombic efficiency of 52%. This low initial coulombic efficiency can be attributed to the 

irreversible reaction of K+ with Bi, the decomposition of electrolyte and the formation of solid 

electrolyte interface (SEI).32,33 Despite of the low initial coulombic efficiency, the subsequent 

discharging/charging curves of C@DSBC exhibit good overlays, suggesting the good stability of 

the previously formed SEI, which benefits the subsequent cycling stability. Some slight differences 

between microsized bismuth and double-shell structure can be found in Figure 2A and 2B. The 

initial discharging curve for C@DSBC shows several plateaus. On the other side, the discharging 

curve of microsized bismuth features one plateau. The cyclic voltammetry (CV) curves show only 

one significant reduction peak for microsized bismuth (Figure S11), while much higher anodic 

current response can be observed before 0.25V on the CV curves of C@DSBC (Figure 2C). This 

indicates that there are differences between C@DSBC and microsized bismuth samples during 

their initial cycling processes. After the initial cycles, as shown in Figure 2D, C@DSBC exhibited  
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Figure 2 Electrochemical performance of bismuth samples: Initial cycling curves of A.) 

C@DSBC; B.) microsized bismuth; C.) initial CV curves of C@DSBC; D.) rate performance of 

C@DSBC; E.) long cycling performance of C@DSBC and microsized bismuth. 
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a good rate performance as an anode for potassium ion batteries. Specifically, it delivered the 

reversible capacities of 340, 302, 274, 251, and 222 mAh g-1 under the current densities of 40, 80, 

200, 400, and 800 mA g-1, corresponding to 0.1, 0.2, 0.5, 1, and 2C, respectively. As regards the 

long-cycling durability, C@DSBC exhibited an enhanced durability as compared to that of the 

microsized bismuth. Specifically, as shown in Figure 2E, during the initial period, both bismuth 

samples exhibited stable reversible specific capacities of around 300 mAh g-1. After being cycled 

for around 20 cycles, a more significant decrease is observed for the reversible capacity of the 

microsized bismuth, while the reversible capacity of C@DSBC remains over 300 mAh g-1. After 

cycling for 200 cycles, the reversible capacity of the microsized bismuth is 65 mAh g-1, 

corresponding to the capacity loss of 77.0% during 200 cycles. On the contrary, the reversible 

capacity of C@DSBC is maintained over 200 mAh g-1, which corresponds to the capacity decay 

of 0.13% per cycle, showing a good durability of C@DSBC as an anode for potassium ion batteries. 

The electrochemical characterization suggests that C@DSBC behaves differently from 

microsized bismuth during the initial cycling. The difference in electrochemical reactions during 

the cycling process shown by various synchrotron-based techniques reveals the origin of the 

improved capacity.  

Firstly, the cycling process of both C@DSBC and microsized bismuth under low current 

densities are monitored by operando XRPD. As previously reported, the electrochemical reaction 

of bismuth and potassium ion during the discharging process can be represented by the following 

equations32,33: 

Bi→KBi2→K3Bi2→K3Bi 

In our operando XRPD study, during the cycling process of double-shell bismuth and microsized 

bismuth, the most significant difference appears during transformation from K3Bi2 to K3Bi. During  
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Figure 3. Origin of superior electrochemical performance under low current density: 

Comparison of contour plots of the operando XRPD with superimposed voltage profiles shown 

for selected ranges of K3Bi2 (A, B) and K3Bi (C, D). Scheme of superior electrochemical 

performance of C@DSBC under low current density (panel E). 
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the initial discharging process of double-shell bismuth, as shown in Figure 3A, the reflection peak 

is assigned to  facet of K3Bi2, which is located at 18.18o, and appears for the discharging 

taking place to the voltage of around 0.3V. With the progress of electrochemical alloying reaction, 

the intensity of reflection peak of K3Bi2 starts to decrease and the reflection peak almost disappears 

when the voltage approaches a value of 0.2V. Subsequently, as shown in Figure 3C, when the 

intensity of reflection of K3Bi2 decreases, the (222) peak of K3Bi, which is located at 12.16o, 

appears, indicating the K3Bi2 phase is going through a transformation to K3Bi. When the charging 

process starts, the intensity of K3Bi decreases significantly and the intensity of K3Bi2 increases 

subsequently and decreases afterward, indicating the superior reversibility of C@DSBC as an 

anode for potassium ion batteries. As a comparison, the microsized bismuth was also subjected to 

the same process with the same current density. Interestingly, as shown in Figure 3B, the reflection 

of K3Bi2 appears around the middle of the discharging plateau. The intensity of this reflection 

peaks only decreases partially with proceeding electrochemical reaction. Afterward, at the initial 

stage of charging the intensity of reflection for K3Bi2 only slightly decreases, indicating that most 

of K3Bi2 remains unreacted and the reversibility of microsized bismuth is poor. More importantly, 

during the discharging process of bismuth, as shown in Figure 3D, the intensity of K3Bi phase is 

low. As compared with the high intensity of K3Bi reflection peak in the case of C@DSBC, one 

can conclude that there is no significant formation of K3Bi phase. Therefore, under the low current 

density, the main difference between the electrochemical reactions of these two materials is the 

transformation from K3Bi2 to K3Bi. This result indicates that the electrochemical alloy reaction 

between C@DSBC and potassium is more complete than that between microsized bismuth and 

potassium. Initially, the main final product from electrochemical reaction of C@DSBC is K3Bi, 

while the one in the case of microsized bismuth is K3Bi2. In the previous reports, both Huang et.al 

101



11 
 

and Lei et.al reported that the normalized volume expansion during the electrochemical reaction 

is over 400% from Bi to K3Bi.32,33Combining with the data of the volume expansion from previous 

studies, as shown in the scheme (Figure 3E), this difference might come from the much higher 

strain and volume expansion during the phase transformation process from K3Bi2 to K3Bi. With 

the large internal voids, the C@DSBC sample is capable to accommodate larger volume expansion. 

On the contrary, the microsized bismuth can only tolerate smaller volume expansion, resulting in 

a change of electrochemical reaction path. Therefore, the final main product after initial 

electrochemical reaction of microsized bismuth is K3Bi2, corresponding to the volume expansion 

of around 167%. To sum up, nanostructured alloy anodes offer the enhanced capability to 

accommodate large volume expansion, resulting in a more complete alloy reaction and 

consequently higher reversible capacity under low current density. 

When the electrochemical reaction occurs under a relatively high current density, the 

electrochemical reaction might be quite different from that under low current density. The 

electrochemical reaction taking place on C@DSBC under high current density (2C) is explored by 

combining operando XRPD and ex-situ XANES. The operando XRPD reveals that the reflection 

intensity of bismuth in C@DSBC decreases significantly with the electrochemical process (Figure 

4A). On the contrary, the reflection intensity observed for microsized bismuth is only slightly 

reduced (Figure 4B), indicating that more bismuth in this sample remains unreacted. This finding 

demonstrates that the electrochemical alloying reaction of bismuth in C@DSBC with potassium 

is more complete than that in microsized bismuth. However, surprisingly, unlike the 

electrochemical process under low current density mentioned above, there is no significant change 

in the intensities of both K3Bi2 phase and K3Bi phase (Figure S12) on the spectra of C@DSBC. 

This finding indicates that the main electrochemical reaction of C@DSBC under the relatively  
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Figure 4. Origin of superior electrochemical performance under high current density: 

Comparison of contour plots of the operando XRPD with superimposed voltage profiles shown 

for bismuth reflection of different samples: C@DSBC (A) and microsized bismuth (B). The 

pseudocapacitive contribution obtained for C@DSBC (panel C with inset showing the CV curves 

of C@DSBC at various sweep rates). The corresponding Emip for various samples (panel D with 

inset showing the XANES spectra of various samples. Scheme illustrating the superior 

electrochemical performance of C@DSBC under high current density (panel E). 
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high current density could be a surface-driven adsorption reaction. This finding is also confirmed 

by the kinetics analysis of C@DSBC. As shown in Figure 4C, the contribution arising from 

pseudocapacitive behavior of double-shelled structured bismuth, which is calculated from the CV 

data for various sweep rates (Figure 4C inset), increases to over 70 % at the scan rate of 10 mV s-

1. This indicates that the main contribution to the reversible capacity might originate from the 

surface-driven adsorption reactions but not the alloying reaction with crystallized product 

mentioned above at the low current density. This might be the reason why no significant 

crystallized alloy of potassium and bismuth is detected by operando XRPD during cycling under 

a relatively high current density. Therefore, the ex-situ XANES spectroscopy was employed to 

reveal the difference of electrochemical reaction product from both samples. 

The microsized bismuth sample discharged to 0.01V with potassium as the counter electrode 

under a low current density and bismuth oxide (Bi2O3) were selected as the standard samples. In 

the XANES spectra, the energy inflection point of the Bi-LIII edge indicates the average oxidation 

state of bismuth in the corresponding samples. On these ex-situ spectra (Figure 4D inset), the Bi-

LIII edge of C@DSBC after discharging under the current density of 2C is closer to that of the 

discharged Bi standard sample, compared with that of the discharged microsized bismuth. To 

illustrate clearly this point, the position of the main inflection point (Emip) is selected as the 

descriptor of oxidation state of bismuth in the corresponding samples (Figure S13). As shown in 

the bar graph (Figure 4D), the bismuth in C@DSBC shows similar average oxidation state 

corresponding to Emip of 13423.7 eV to the discharged Bi sample (13423.66 eV), while the 

microsized bismuth sample shows higher oxidation state (13424.08 eV). As suggested by Figure 

4E, this difference in the oxidation state might indicate that the electrochemical reaction under 

high current density is dominated by surface-driven adsorption reactions. The lower average 
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oxidation state of C@DSBC indicates that its electrochemical reaction generates more alloy 

product, resulting in lower average oxidation state. This might come from the higher surface area 

of 33.1 m2 g-1 of C@DSBC as compared to 9.2 m2 g-1 of microsized bismuth (Figure S14). 

Therefore, the nanostructured alloy anodes offer larger surface area and more electrochemical 

active sites to react with alkaline ions, resulting in larger consumption of electrode materials, lower 

average oxidation states and consequently, higher reversible capacities under high current density. 

Combination of the results from operando XRPD and ex-situ XANES allows for two main 

conclusions. First, the improved reversible capacities of nanostructured alloy anodes in batteries 

under various current densities have different origins. For cycling under low current density, the 

key is a more complete alloy reaction resulting from the change of electrochemical alloying 

reaction path. Under the condition of high current density, the surface-driven adsorption reactions 

are more important, which result in larger consumption of electrode materials and consequently, 

lower average oxidation state. Second, the key role of the nanostructure in enhancing the 

electrochemical performance of alloy anodes is identified. Specifically, the higher reversible 

capacity under low current density originates from high capability of nanostructured alloy anode 

to accommodate larger volume expansion than that in the microsized sample. In the case of high 

current density, the higher reversible capacity originates from larger surface area of nanostructured 

alloy anode, which offers more electrochemical active sites to react with alkali ions.  

Conclusions 

In summary, we have constructed new dual-shell structured bismuth boxes as anodes for potassium 

ion batteries. Through combining several synchrotron-based techniques and employing dual-shell 

bismuth boxes permitted us to reveal the origins of the improved reversible capacity of 

nanostructured alloy anodes under various current densities. The origin under low current density 
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is the change of electrochemical reaction path, which is derived from the enhanced capability of 

nanostructured anode on tolerating the larger volume expansion. Under high current density, the 

origin of this improvement is associated with surface-driven electrochemical reactions promoted 

by larger surface area of nanostructured anodes. This finding offers guidance for the rational design 

and engineering electrodes for various applications. 

Experimental Procedure: 

Synthesis of materials: Synthesis of ZIF-8 Cubes: First, 55 mg of zinc acetate dihydrate, 8 mg of 

hexadecyl trimethyl ammonium bromide (CTAB), and 1.14 g of 2-methylimidazole were 

dissolved in 80 mL of deionized (DI) water. 25 Next, the resulting solution was mixed and stirred 

for 5 min at room temperature. The as-prepared mixed solution was transferred into a Teflon-lined 

autoclave and placed in a 120 oC oven for 6 hours. After synthesis, the sample was washed with 

deionized water and ethanol for three times and dried at 60 oC overnight. 

Synthesis of C@DSBC: 40 mg of the as-prepared ZIF-8 was transferred into a round bottom 

flask and dispersed in 30 mL of anhydrous ethanol under ultrasonication for 10 minutes. The flask 

was soaked into 80 oC oil bath. After that, a mixed solution containing 0.54 g of thioacetamide and 

10 mL of anhydrous ethanol was added into the flask and the reaction was processed at 80 oC for 

half hour. The intermediate was collected by centrifugation and washed with anhydrous ethanol 

twice. Next, the as-prepared sample was redispersed in 20 mL of acetone, while another solution 

was prepared by dissolving 0.1 g of bismuth chloride in 20 mL of acetone. The former solution 

was poured into the latter one under magnetic stirring, which was stopped after three hours. The 

product was collected and washed with acetone and ethanol three times. Next, the as-prepared 

sample was redispersed in a solution containing 40 mg of Trizma® Base and 30 mL of distilled 

water. Finally, 6 mg of dopamine hydrochloride was added rapidly into the suspension under 
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intense stirring. The product was washed with ethanol and collected by centrifugation after 3-hour 

reaction at room temperature. The resulting sample was dried overnight in a vacuum oven and 

calcined in a tube furnace at 400 OC for 3 hours with a ramping rate of 3 oC per minute. 

Materials characterization: XRPD data were collected on Rigaku MiniFlex 600 X-Ray 

Diffractometer. The field-emission SEM images were acquired on the FEI Quanta 450 FEG 

scanning electron microscope. The TEM images were taken on FEI Tecnai G2 Spirit. The STEM 

and HAADF-STEM images were taken on FEI Titan Themis. The Operando XRPD was 

conducted in the Powder Diffraction (PD) beamline of Australian Synchrotron (ANSTO) with a 

beamline wavelength of 0.5904 angstrom in a transmission mode. The coin-cells for Operando 

powder diffraction are modified from 2032 coin-cells with X-ray transparent windows made from 

Kapton film.18 The ex-situ XANES spectra were collected in the X-ray Absorption Spectroscopy 

(XAS) beamline of Australian Synchrotron (ANSTO). The electrodes tested in XAS were taken 

from disassembled coin-cells and sealed by Kapton tape in an Argon-filled glove box. The 

electrodes were tested in a fluorescence mode. The discharged bismuth sample was prepared in a 

coin-cell using microsized bismuth and potassium as the cathode and anode, respectively. The 

coin-cell was discharged to 0.01V under a current density of 0.05C. The surface area was evaluated 

from nitrogen adsorption data measured at 77.3 K (ASAP 2020) using the Brunauer–Emmett–

Teller (BET) method. 

Electrochemical measurements: The electrochemical performance tests were carried out in 2032 

type coin cells at room temperature. The working electrode consisted of active material (i.e., dual-

shell bismuth and pristine bismuth), carbon black (Super P from VWR, supplied by Alfa Aesar) 

and binder (CMC, average Mw=~700,000, Sigma-Aldrich) using a weight ratio of 60:30:10, while 

the copper foil was employed as the current collector. The electrolyte was composed of 2.0 M 
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potassium bis(fluorosulfonyl) imide dissolved in 1,2-dimethoxyethane. Galvanostatic tests were 

performed on a Landt CT2001A battery testing system. The cyclic voltammetry data were 

collected on a Gamry 1000e electrochemical station. 
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Supporting Figures: 

 

 
Figure S1 scanning electron microscope (SEM) images of ZIF-8 cubes. 

 

 

 

 
Figure S2 transmission electron microscope (TEM) image of Zinc sulfide precursor. 
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Figure S3 SEM images of dual-shell precursors. 

 

 

 

 

 
Figure S4 TEM images of dual-shell precursors. 
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Figure S5 SEM image of C@DSBC. 

 

 

 

 

 
Figure S6 TEM image of C@DSBC. 
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Figure S7 X-ray photoelectron spectroscopy (XPS) spectra of C@DSBC a) survey spectrum; b) 

high-resolution carbon spectrum. 
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Figure S8 Raman spectrum of C@DSBC. 

 
Figure S9 Thermogravimetric analysis profile of C@DSBC. 

The mass loses after heating up to 750oC is 0.77%. Since the final product is Bi2O3, the content of 

bismuth should be 92.9% and the carbon content is 7.1%. 
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Figure S10 Detailed characterizations of microsized bismuth: A.)SEM image; B.)XPS survey 

spectrum. 

Figure S11 Initial cyclic voltammetry (CV) curves of microsized bismuth. 
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Figure S12 Contour plots of the operando synchrotron-based X-ray powder diffraction with 

superimposed voltage profiles shown for selected ranges of C@DSBC: (A) K3Bi and (B) K3Bi2. 

 

Figure S13 The selected part of the first derivative of the Bi-LIII edge spectra of the samples 

studied (the purple lines indicate the corresponding Emip) 
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Figure S14 Nitrogen adsorption isotherms measured for bismuth samples. 
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Chapter 7 : Conclusions and perspectives 

7.1 Conclusions 
This thesis is devoted to rational design and engineering of hollow structured anodes for 

sodium and potassium ion batteries and to acquire fundamental insights into their enhanced 

electrochemical performance through various electrochemical approaches or synchrotron-

based techniques. Based on the works included in this thesis, the following conclusion can 

be drawn: 

1. The transportation of alkaline metal ions can be optimized by the rational engineering

of building units of hollow structured electrode materials. Through the rational design and

engineering of building units of hollow structured Na2Ti3O7, Na2Ti3O7 hollow spheres

assembled from nanoparticles and nanosheets have been achieved. Specifically, the hollow

spheres assembled from nanosheets exhibited a 33% higher charge capacity at the current

density of 10 C than that of those assembled from nanoparticles, demonstrating that the

building units of nanosheets facilitate the transportation of sodium ions.

2. The transportation of alkaline metal ions can be further optimized by the introducing

oxygen vacancies in the nanosheets. Hollow structured sodium titanate and potassium

titanate cubes assembled from nanosheets with oxygen vacancies have been synthesized.

The as-prepared samples with oxygen vacancies both exhibited enhanced electrochemical

performance in comparison to those ones without oxygen vacancies, demonstrating this

approach as a versatile way to enhance the electrochemical performance of layered

electrode materials.

3. Hollow structured materials are always considered as having high gravimetric energy

density but low volumetric energy density. To solve this issue, multi-shell hollow

structured Sb2S3 was synthesized to serve as a concept of proof to enhance the volumetric

energy density of hollow structured materials. With the complex internal feature, the multi-

shell structured Sb2S3 offered an enhanced energy density compared with its single-shell

counterparts. Additionally, it also offered enhanced durability in comparison to its single-

shell counterparts due to the extra support from interior shells. Both two points
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demonstrated that the multi-shell structured electrode materials are more appealing than 

their single-shell counterparts. 

4. It has been widely acknowledged that the nanosized alloy anodes offer improved

reversible capacities compared to their microsized counterparts. However, the origin of

these reversible capacities remains unclear. Therefore, we employed the dual-shell bismuth

boxes as anodes for potassium ion batteries as a proof of concept and combined several

operando synchrotron-based techniques to reveal the origin of the improved reversible

capacity. As a result, it was revealed that the origins of the improved reversible capacities

of nanostructured alloy anodes under low current density is the change of electrochemical

reaction path while the one under high current density is the enhanced pseudocapacitive

contribution.

    In summary, various hollow structured electrode materials for sodium and potassium ion 

batteries have been developed. By applying those hollow structured electrodes in sodium 

and potassium ion batteries, it has been demonstrating that complex hollow structure can 

be employed to enhance the electrochemical performance of anodes for those batteries. 

Moreover, the insightful understandings of their improved electrochemical performance, 

such as the origins of the improved reversible capacity and the enhanced rate performance, 

are achieved from various characterizations. 

7.2 Perspectives 
Despite considerable progress has been achieved in the research area of hollow structured 

anode materials for rocking-chair batteries, more efforts are needed to achieve optimized 

structures and more insightful understandings for electrode materials to realize the practical 

application of those electrode materials. 

1. The multi-shell structure can be applied to improve the volumetric energy density of

hollow structured electrode materials. In the as-reported multi-shell structured anodes in

this thesis, there are still significant gaps between those shells, resulting in lacking fully

utilization of the voids inside those hollow structure. Therefore, to further explore the

hollow structured anodes, more rational design and engineering should be achieved on

better utilization of the inward voids to further enhance the volumetric energy density.
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2. Apart from rational design and engineering, in my opinion, another future development 

direction for those hollow structured electrode materials can be to achieve more insightful 

understandings of their structure evolution during their cycling process. Up to now, most 

of the reports are about the investigation of the origin of the initial improved reversible 

capacity. The investigation about the origin of capacity fading and the hollow structure 

evolution during the cycling process remains rarely reported. Therefore, the research 

efforts can be paid on this aspect. 

3. The further application of hollow structured electrode materials on other rocking-chair 

batteries, especially for those multivalent-ion batteries, remains occasionally reported. 

With the enhanced energy density derived from double or triple the number of electrons 

offered by one mole of multivalent ions, they are considered as more appealing choices 

than those single-valent ion batteries. Therefore, the application of hollow structured 

electrodes in those batteries demands more attention. 

4. Furthermore, several issues remain to realize the practical applications of complex 

hollow structured electrode materials in rechargeable batteries. Firstly, nowadays, most of 

the synthesizing routes of complex hollow structured electrode materials are very 

complicated. Effort should be paid to explore and simplify the synthesis procedures to 

produce the hollow structured materials with high performance in a larger-scale, cost-

effective and clean process. For example, developing template-free formation processes or 

exploring one-pot strategies to obtain hollow structured electrode materials could be two 

future directions to realize their practical applications. Secondly, another major barrier for 

rechargeable battery application is the low tap density of hollow structured materials due 

to their abundant inner voids. In my opinion, there are mainly two ways to solve this 

challenge: firstly, developing multi-shell structure to fulfill the inner voids with active 

materials; secondly, assembling the hollow structured particles to create micro-sized 

secondary structure which  has high tap density to enhance the overall tap density of 

electrode materials. With these two strategies, the tap density of hollow structured 

materials could be improved, and the practical applications of hollow structured materials 

in rechargeable batteries might be realized. 
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    To sum up, as far as I am concerned, more and more accomplishments in hollow 

structured electrode materials for rocking-chair batteries will be achieved through the 

increasing research interest in this field. 
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