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ABSTRACT 

When bone undergoes trauma or the architecture deteriorates, due to disease and is 

neglected or misdiagnosed, non-unions can occur, whereby bone does not heal correctly. As a 

consequence, patients experience pain, stiffness, loss of mobility and disability. In many cases 

this can result in an inability to perform normal duties in employment, which causes significant 

financial burden to the patient and economy. The repair of these large bone defects remains a 

significant challenge for orthopaedic surgeons.  Bone grafting strategies have been developed 

to repair and restore bone function, however the demand for functional bone grafts is extremely 

high, with an estimated 2.2 million patients worldwide undergoing bone grafting procedures 

annually. Due to an aging population these numbers are expected to double by 2020, which will 

put further burden on health care costs worldwide. Autologous bone grafting remains the 

current standard to repair bone defects and fractures, however, this method of treatment has 

numerous surgical-associated morbidities and complication rates of up to 30%. Therefore, 

researchers are attempting to identify substitute grafting materials which possess the critical 

bone reparative characteristics required for successful healing. To date, a bone graft material 

which is comparable to autologous bone, with fewer associated morbidities is yet to be 

identified, thus, continued research is required to identify and develop new agents to promote 

and accelerate bone repair. 

Agents which have been thoroughly investigated to enhance the bone repair process in 

combination with bone graft substitutes include the use of BMP-2. BMP-2 has proven to be 

successful due to its pro-osteogenic role whereby it promotes osteoblast functionality through 

the regulation of genes necessary for collagen biosynthesis and mineralisation of the 

extracellular matrix (ECM). Osteoblasts are one of the main cell types responsible for bone 

formation and bone repair. These cells are derived from the mesenchymal progenitor cell 
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population, along with endothelial cells and fibroblasts. Work published by our laboratory 

provides evidence that a group of enzymes with peroxidase activity, namely mammalian-

derived myeloperoxidase (MPO) and eosinophil peroxidase (EPO) as well as plant-derived 

soybean peroxidase (SBP) stimulate the migration of fibroblastic cells and promote their ability 

to generate a functional ECM. In addition, we have presented evidence demonstrating the 

ability of these peroxidases, in promoting endothelial cell function and inhibiting 

osteoclastogenesis, suggesting a potential role for these enzymes in bone repair.  

 The work described in this thesis aims to provide evidence that mammalian and plant 

derived peroxidase enzymes including, MPO, EPO and SBP possess pro-osteogenic activities 

by influencing osteoblast functionality. Using physiologically relevant concentrations of 

peroxidases, this study showed that the enzymatic catalytic activities and substrate specificities 

of each of these enzymes which were shown to be different, resulted in differential responses 

in the context of osteoblast function. EPO and SBP demonstrated a well-conserved pro-

osteogenic capacity to stimulate the biosynthesis of collagen I by primary human osteoblasts 

and promote mineralisation of the deposited ECM. In contrast, MPO, while it was able to 

promote ECM deposition, it failed to promote mineralisation and therefore unlikely to 

contribute to bone formation.  

 The ability of EPO and SBP to stimulate mineralisation by osteoblasts suggests that 

these enzymes may possess key properties for promoting bone repair. Of the two tested 

peroxidases however, SBP is more readily available and significantly cheaper than EPO, 

making it an attractive and realistic candidate for further pre-clinical assessment. Data presented 

in this thesis demonstrate for the first time the pro-osteogenic ability of SBP, in combination 

with a commercially available scaffold to significantly accelerate bone repair in an ovine 

critical-sized defect model. This was confirmed by quantitative micro-CT analysis. Histological 

assessment showed evidence of intramembranous bone formation and viable osteoblast and 
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osteocyte cell populations, indicative of bone repair and maturation. These results suggest that 

SBP may be beneficial as a therapeutic agent to accelerate localised repair of damaged bone.    

 The use of rodents over larger animals for different models of bone repair allows for 

high throughput analyses of multiple variables, such as dose and time. Using wildtype mice, 

we established a critical size defect model to validate SBP in this species, prior to investigating 

other models of bone repair. The doses of SBP investigated in this study demonstrated 

significant inhibition of bone formation with increased fibrous tissue present and an absence of 

bone remodelling indicators. The results presented in this thesis highlight the importance of 

further mechanistic investigation, to determine how SBP regulates the remodelling process and 

the necessity for optimisation before assessing the role of SBP in fracture healing. 

 In conclusion, our findings demonstrate for the first time that peroxidase enzymes likely 

regulate multiple cellular processes involved in new bone formation, including collagen I 

biosynthesis, bone matrix mineralisation and osteogenic regulation. Specifically, the plant 

derived peroxidase, SBP, displays significant pro-osteogenic potential by promoting 

intramembranous ossification. The studies presented in this thesis provide the first in vivo 

evidence for peroxidase enzymes as therapeutic agents with the potential to enhance bone repair 

and, identifies peroxidase inhibitors as a preventative target of pathological ossification.   
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BIOLOGY OF BONE 

Bone is a highly specialised connective tissue, consisting of both organic and inorganic 

constituents and is responsible for providing locomotion, supporting and protecting soft tissues, 

maintaining calcium homeostasis and containing bone marrow for haematopoiesis (Datta, Ng, 

Walker, Tuck, & Varanasi, 2008; Robling, Castillo, & Turner, 2006).  The inorganic 

components are responsible for providing compression, strength and stiffness, whereas the 

organic components provide tension properties. The composition of these components varies 

with species, age, sex, the specific bone and the presence of disease (Ontañón, Aparicio, 

Ginebra, & Planell, 2000). From a macroscopic viewpoint, bone appears non-homogenous, 

porous and anisotropic and can be defined between two types of bone tissue. The first type, 

trabecular or cancellous bone has a porosity of 50-95% and can be found in cuboidal and flat 

bones and at the ends of long bones (Figure. 1.1). The highly porous structure is interconnected 

and filled with bone marrow (R. B. Martin, Burr, & Sharkey, 1998). The other type of bone is 

termed cortical or compact bone and is 5-10% porous and contains a variety of different types 

of pores. Vascular pores are formed by Haversian canals that are aligned with the long axis and 

are connected by the transverse Volkmann canals, containing capillaries and nerves. Other 

pores are termed lacunae which are connected through the small canaliculi canals (Cowin, 

1999). This network forms cylindrical structures termed osteons, or Haversian systems (Figure 

1.2). Bone is a very unique tissue by its ability to grow, modify its shape, self-repair and 

continuously renews itself. The growth of bone mostly occurs during childhood, self-repair 

occurs only during fracture healing and its renewal or remodelling remains constant throughout 

our lifetime. The dynamic and highly complex process of bone formation and remodelling 

requires the coordination of osteoblasts and osteoclasts.  These cells are influenced by growth 

factors, cytokines and hormones, which regulate their migration, attachment, proliferation, 

differentiation and activity. 
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Figure 1.1 Cross-section of a bone showing both cortical and trabecular bone. The cortical 

bone, which forms the cortex of most bones is very dense and contributes to approximately 

80% of the weight of a human skeleton. Cancellous bone is highly vascular and exhibits greater 

surface area than cortical bone which allows for metabolic activity, such as the exchange of 

calcium (Netter, 1990). 
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Figure 1.2 Microscopical structure of cortical bone. (a) 3D image of cortical bone showing the 

network of blood vessels and nerves interconnected within Haversian and Volkmann canals. 

The canals are a central point for individual osteons or harversian systems. (b) A cut section of 

a Harversian system shows the lamellae containing lacunae cavities, which house osteocytes 

and are connected by canaliculi. Figure adapted and modified from (Fridez, 1996).  
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Osteoblasts, osteoclasts and osteocytes 

Bone contains two distinct cell types, the bone forming osteoblasts and the bone 

resorbing osteoclasts. The functional role between these two cell types are very intimate and 

continues throughout skeletal development and life. Cells from the osteoblastic lineage are 

responsible for the synthesis and secretion of molecules that in turn initiate and regulate 

osteoclast differentiation, which results in a tightly regulated process of bone resorption and 

formation (Teitelbaum, 2000). A third cell type, known as osteocytes plays a key role in this 

regulation of bone formation and remodelling by triggering the differentiation of osteoclasts 

(Matsuo & Irie, 2008). 

  Osteoblasts are cuboidal cells which represent 4-6% of the total bone cell population 

and their main role is the formation of new bone (Capulli, Paone, & Rucci, 2014). These cells 

are derived from mesenchymal stem cells (MSCs) and the commitment towards the 

osteoprogenitor lineage requires the timely expression and synthesis of specific osteogenic 

genes, including bone morphogenetic proteins (BMPs) and members of the Wnt pathway 

(Rawadi et al., 2003). Runt-Related Transcription Factor 2 (RUNX2) is critical in regulating 

osteoblast differentiation and has been shown to upregulate the expression of other key 

osteoblast-related genes, including alpha-1 type I collagen (COL1A1), alkaline phosphatase 

(ALP), bone sialoprotein (BSP) and osteocalcin (OCN) (Fakhry, Hamade, Badran, Buchet, & 

Magne, 2013). Once osteoblast progenitors express RUNX2 they begin the proliferative phase 

whereby the progenitors begin presenting ALP activity and become pre-osteoblasts (Capulli et 

al., 2014). Evidence of the formation of mature osteoblasts is observed by the increase in 

expression of Osterix (OSX) and secretion of bone matrix proteins, OCN, BSP and collagen 

type I.  

 The osteoclast is a multinucleated cell derived from mononuclear cells of the 

hematopoietic stem cell niche by the influence of several factors. These factors include, 
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macrophage colony-stimulating factor (M-CSF) which is secreted by osteoprogenitors and 

osteoblasts and receptor activator of nuclear factor kappa-B ligand (RANKL), secreted by 

osteoblasts, osteocytes and stromal cells. Combined, these factors regulate transcription factors 

and gene expression in osteoclasts (Karst, Gorny, Galvin, & Oursler, 2004). M-CSF is 

responsible for binding to osteoclast precursors, which leads to their proliferation and inhibits 

apoptosis. Whereas RANKL is critical in promoting osteoclastogenesis, by binding to its 

receptor RANK, in osteoclast precursors and a result induces osteoclast formation 

(Yavropoulou & Yovos, 2008). 

 Whilst the communication between osteoclasts and osteoblasts is critical, the most 

abundant and specialised bone cell type in mammalian bone is the osteocyte. Osteocytes are 

descendants of mesenchymal stem cells through osteoblast differentiation (Bonewald, 2011), 

that become encased within the bone matrix during bone formation. As osteoblasts transition 

to an osteocyte, the expression of various key regulatory markers changes, including reduction 

of ALP and increasing expression of osteocalcin (Mikuni‐ Takagaki, et al., 1995).  The primary 

role of these cells is to maintain mineral homeostasis by detecting micro-fractures and micro-

cracks in bone (Matsuo, Irie, 2008). During remodelling, healthy and dying osteocytes recruit 

osteoclasts at sites of micro-damage. Healthy osteocytes, not directly adjacent to a site of micro-

damage will release anti-apoptotic molecules as a protective mechanism to prevent their own 

apoptosis. Osteocytes at the site of damage however, release pro-apoptotic molecules that 

contains RANKL to recruit osteoclasts directly to the site (Bonewald, 2011). In addition to 

maintaining bone maintenance, osteocytes also act as mechanosensors in the regulation of bone 

mass through hormonal and mechanical signalling. This includes signalling between osteocytes 

and the parathyroid, kidney, cardiac and skeletal muscle to regulate phosphate homeostasis and 

manage bone calcium levels (Dallas, Prideaux, & Bonewald, 2013).    
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The maintenance and function of the skeletal system relies on a variety of cell types and 

factors, but predominantly the communication between osteoclasts and osteoblasts (T. J. Martin 

& Sims, 2005). However, whilst much of the maintenance is the responsibility of these two cell 

types, they rely on the specialised regulation and mechanosensory of osteocytes. Thus, a 

functional, highly communicative bone network, extending from the pre-osteoblast to the 

mature osteocyte and bone resorbing osteoclast is important for maintaining the integrity of 

bone as a tissue. 

 

Bone remodelling 

Bone is a dynamic organ that constantly undergoes remodelling, where old bone is 

continuously replaced by new bone. This cycle consists of three key phases, initiation of bone 

resorption, which is orchestrated by osteoclasts, transition from resorption to bone formation 

and then a long period of bone matrix formation mediated by osteoblasts, which then becomes 

mineralised (Sims & Gooi, 2008) (Figure 1.3). The initiation phase involves the recruitment 

and differentiation of osteoclast precursors to mature osteoclasts, which maintain bone 

resorption. This occurs by the expression of RANKL of bone lining cells which stimulates 

RANK on osteoclast precursors. In addition, nearby osteoblasts produce the decoy receptor 

osteoprotegerin (OPG), which effectively inhibits osteoclast formation and helps in regulating 

the extent of bone resorption (Bucay et al., 1998). As the bone matrix becomes resorbed, 

numerous factors are released which were embedded during the previous cycle of bone 

formation. This initiates the transition phase whereby the osteoclasts stimulate differentiation 

of osteoblast precursors through the release of various factors. These regulatory factors of bone 

formation include, insulin-like growth factors (IGF), fibroblast growth factors (FGF), 

transforming growth factor β (TGF-β) 1 and 2, BMPs and platelet-derived growth factors 

(PDGF) (Baylink, Finkelman, & Mohan, 1993; Linkhart, Mohan, & Baylink, 1996). The 
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amount of bone resorbed by the osteoclasts determines the concentration of factors released, 

thus ensuring bone formation remains proportional to the level of resorption. Once bone 

resorption has been completed the osteoclasts undergo apoptosis from released calcium and 

mononuclear phagocytes of haematopoietic origin or osteoblast-lineage cells complete the 

resorption process by forming a “reversal line” (Van Tran, Vignery, & Baron, 1982). The final 

termination phase, which is comprised of osteoblastic bone formation occurs at a much slower 

rate, taking approximately 3 months, compared to 3 weeks of bone resorption. The osteoblasts 

form new bone by communicating with one another via gap junctions as well as by releasing 

factors. Once bone formation is nearing completion and the secretion of osteoid begins to slow, 

osteoblasts begin differentiation into either bone lining cells, which remain on the surface or 

into osteocytes and become embedded into the bone matrix (Eriksen, 2010). Once bone 

formation has ceased and bone lining cells cover the bone surface, the matrix becomes 

mineralised through the signalling of osteocytes within the matrix. When the matrix is 

completely mineralised, it reaches a stable state until signalling cues the next cycle of 

remodelling. Through these intracellular communications bone can respond to various stimuli 

including, hormonal, mechanical and inflammatory changes. However, certain conditions can 

alter or impede the remodelling process which includes bone fractures, large osseous defects, 

and even systemic diseases such as osteoporosis. These forms of bone damage require bone 

formation to occur by alternate mechanisms.  
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Figure 1.3 Three-phase model of bone remodelling. Osteoclast (grey) and osteoblast (blue) 

lineage cells are shown on the bone surface (orange). Osteocytes (star-shaped) and the 

canaliculi (blue lines) are shown embedded in the bone. The initiation phase begins with the 

recruitment of haematopoietic precursors. Osteoblast linage cells express osteoclastogenic 

ligands such as RANKL to induce osteoclast differentiation. Once differentiated, the osteoclasts 

become multinucleated and begin to resorb old bone. The second phase, transition, represents 

the switch from bone resorption to formation, via coupling and diffusible factors and membrane 

bound molecules (green). The final termination phase involves the complete formation of 

resorbed bone by the osteoblasts. The mature osteoblasts eventually flatten and become bone 

lining cells over the new bone surface. Figure adapted from (Matsuo & Irie, 2008) 
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Extracellular matrix 

 Bone is comprised of both inorganic mineral and organic matrix. Freshly synthesised 

osteoid prior to being mineralised, contains about 94% collagenous proteins, which are 

predominantly type I collagen. Other non-collagenous proteins of the organic matrix include 

osteocalcin, osteonectin, osteopontin, fibronectin, BSP, BMPs and other growth factors 

(Mizuno, Fujisawa, & Kuboki, 2000; Young, Kerr, Ibaraki, Heegaard, & Robey, 1992). These 

proteins are found embedded within the bone matrix and play crucial roles in signalling bone 

remodelling or influencing the mineralisation process (Delany et al., 2000; Ducy et al., 1996). 

As the organic matrix begins to be mineralised, the quantity of present mineral increases to 70% 

of its total content within 2 weeks. The final 30% of mineral is then slowly deposited over the 

next few months (Gunzburg & Szpalski, 2004). The inorganic component of bone consists 

mostly of phosphate and calcium, however other minerals are also abundant including, 

bicarbonate, sodium, potassium, citrate, magnesium and zinc (Downey & Siegel, 2006; Pereira, 

Rodrigues, Rodrigues, Oliveira, & Gama, 2017). The two key minerals calcium and phosphate 

form the major constituent of inorganic bone, called hydroxyapatite, which is represented by 

the chemical formula Ca10(PO4)6(OH)2. The collagenous and non-collagenous proteins 

combine to form a scaffold for the deposited hydroxyapatite crystals and this final association 

between the organic and inorganic components leads to the stiffness and strength of bone tissue 

(Datta et al., 2008). The calcified bone matrix provides both mechanical support and is essential 

in maintaining bone homeostasis. However, factors such as age, nutrition and disease can lead 

to varied concentrations of bone matrix proteins which can consequently contribute to increased 

bone fracture incidence (Tang, Zeenath, & Vashishth, 2007).       
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BONE DAMAGE   

The highly adaptable nature of bone allows for efficient remodelling which prevents the 

occurrence of fractures. However, fracturing and bone damage can still arise, either by sudden 

loading which surpasses the bones strength, or by continuous activity of a lower loading which 

accumulates bone damage overtime. Once a bone fractures, the complex signalling between 

cells and stimuli leads to an automatic healing process to repair the bone. The healing process 

requires the coordination of several tissues which are directly influenced by the mechanical 

environment. However, in some cases, the mechanical and biological factors prevent the 

damaged bone from reforming properly and this results in either delayed union or non-union.      

 

Mechanisms of bone repair 

 Trauma or deteriorating bone architecture, because of age or disease can reduce the 

bones structural integrity when combined with bone loading, leading to the creation of bone 

fractures. There are two distinct processes by which fractured bone can be repaired which are 

termed primary and secondary bone healing. Primary healing which includes contact healing, 

gap healing and direct union is characterised by union of the fractured bone. This form of 

healing can only occur in a mechanically stable environment, which can be supplied by using 

implants such as plates and screws (Einhorn, 1998). The haematoma that forms within the 

fracture gap initially after injury is removed by the contact between the fracture ends. Once 

removed, osteoclasts undergo a tunnelling resorptive response whereby they move from one 

side of the fracture to the other and form new harversian canals, by providing a pathway for 

penetrating blood vessels (McKibbin, 1978) (Figure 1.4A). Osteoblasts immediately follow the 

osteoclasts and form new osteons which bridge the fracture gap and the new bone begins to 

gain strength through calcification and remodelling, with the additional application of static and 

cyclic loading on the damaged bone (LaStayo, Winters, & Hardy, 2003).  
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 Secondary or indirect fracture healing is the most common form of healing and is 

comprised of both intramembranous and endochondral bone repair. Intramembranous 

ossification is characterised by direct differentiation of MSCs into osteoblasts and occurs 

internally of the periosteum at the proximal and distal edges of the callus and forms a hard 

callus (Figure 1.4B). The bridging of the hard callus across the fracture gap provides the bone 

with the initial stabilisation and biomechanical function (Dimitriou, Tsiridis, & Giannoudis, 

2005; Thompson, Miclau, Hu, & Helms, 2002). Endochondral ossification on the other hand, 

occurs externally to the periosteum, adjacent to the fracture site where the bone is much less 

stable. In addition, MSCs in endochondral bone differentiate into chondrocytes and deposit a 

cartilaginous matrix, which overtime is degraded and replaced by bone. Fracture repair requires 

several processes in order to successfully reinstate mechanical function and stability to the bone. 

This includes an acute inflammatory response, recruitment of MSCs, generation of a 

cartilaginous callus, revascularisation, mineralisation of the callus and final bone remodelling. 

Immediately following fracturing, a haematoma forms and consists of peripheral and 

intramedullary blood and bone marrow cells. The injury also initiates an inflammatory response 

and whilst it is known that chronic inflammation is detrimental to bone, the brief and highly 

regulated secretion of pro-inflammatories in the form of an acute response, is essential to the 

repair process. This acute response peaks within the first 24 hours of injury and is completed 

by 7 days post injury. Several pro-inflammatory factors are released at this time and include, 

chemokines, tumour necrosis factor-α (TNF-α) and interleukin-1 (IL-1), IL-6, IL-8, IL-11 and 

IL-18 (Gerstenfeld, Cullinane, Barnes, Graves, & Einhorn, 2003; Koch et al., 2001; Y.-C. Liu 

et al., 2014; Volpin et al., 2014). These factors are essential for the recruitment of inflammatory 

cells, differentiation of osteoblasts and osteoclasts and promote angiogenesis (Sfeir, Ho, Doll, 

Azari, & Hollinger, 2005; Yang et al., 2007). For the formation of new bone to repair the 

fracture, MSCs must be recruited from the surrounding soft tissue and bone marrow as well as 
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systemic circulation, followed by differentiation into osteogenic cells. The ability for MSCs to 

be recruited to sites of bone damage is regulated by stromal cell-derived factor-1 (SDF-1, 

CXCL12) and its receptor CXCR4, expressed on MSCs (Kitaori et al., 2009). Once MSCs are 

recruited, a molecular cascade leads to collagen type I and II matrix production and the 

upregulation of several signalling factors. The generation of an initial cartilaginous callus which 

later becomes mineralised, resorbed and replaced with bone is critical in the healing process. 

This endochondral formation occurs in between the fracture ends and forms a less stable soft 

tissue callus. During this process TGF-β and GDF-5, a close member of the BMP family 

promote chondrogenesis and endochondral ossification (T. J. Cho, Gerstenfeld, & Einhorn, 

2002). At the same time, BMP-2, -5 and -6 induce cell proliferation and initiate 

intramembranous ossification at the periosteal sites. This generates a hard callus and once it has 

bridged the fracture gap it provides the site with a semi-stable structure for weight bearing 

(Marsell & Einhorn, 2009). Another critical component for successful fracture healing is the 

revascularisation of the fracture gap. This process firstly requires chondrocyte apoptosis and 

degradation of the cartilaginous matrix, to allow the ingrowth of blood vessels at the fracture 

site (Ai-Aql, Alagl, Graves, Gerstenfeld, & Einhorn, 2008). Vascular endothelial growth factor 

(VEGF), expressed in high levels by osteoblasts and chondrocytes, is critical in the regulation 

of vascular regeneration within the fracture gap, by promoting blood vessel invasion and 

transforming the cartilaginous matrix into a well-vascularised osseous tissue. Here, VEGF 

promotes both the proliferation of endothelial MSCs into a vascular network and angiogenesis 

(Keramaris, Calori, Nikolaou, Schemitsch, & Giannoudis, 2008). Once vascularisation has been 

established the cartilaginous callus is resorbed and replaced with a bony callus. This is brought 

about primarily by M-CSF, RANKL and OPG, which initiate resorption of the mineralised 

cartilage and recruit osteoblasts and osteoclasts to begin forming new bone (Kon et al., 2001). 

The Wnt-family is also involved in the differentiation of MSCs into osteoblasts and promote 
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bone formation (Chen & Alman, 2009). Other molecules such as matrix metalloproteinases 

(MMPs) are also involved in endochondral ossification. This family of proteases is responsible 

for extracellular matrix (ECM) degradation and subsequent bone remodelling (Ortega, 

Behonick, & Werb, 2004). BSP is also observed near the resorptive front between the vascular 

bone and remaining cartilage where it acts as the nucleator for hydroxyapatite crystals 

(Scammell & Roach, 1996). As the hard callus forms, the calcified cartilage is replaced with 

woven bone and the callus within the fracture gap becomes increasingly stabilised. The final 

process to complete fracture healing is remodelling of the hard callus to normal bone. This 

involves the activation of a second resorptive phase whereby woven bone is resorbed and 

replaced with mature lamellar bone, which is orchestrated by IL-1, TNF-α and BMP-2 (Ai-Aql 

et al., 2008; Marsell & Einhorn, 2009). The process can take 3-4 weeks in humans, however, 

the completion of remodelling and a fully restored bone structure can take several years (Hall, 

1963). In cases where mechanical stability is not created from bone remodelling or there is an 

inadequate blood supply, the development of fibrous non-union is likely to occur. This is also 

the case for larger fractures where bridging of the fracture ends is not successful.  

 Interestingly, the repair mechanisms of bone damage are not consistent between all 

bones of the skeleton. In long bones and limbs which are fractured and damaged, bone healing 

occurs via intramembranous and endochondral ossification. However, in flat bones such as 

calvarial and facial bones, the repair process occurs by intramembranous ossification alone, 

with no chondrogenic cells present (Alberius & Johnell, 1991). Furthermore, comparisons of 

bone formation between long and flat bones have revealed that the rate of healing in long bones 

occurs much more rapidly than flat bones. This is likely due to the absence of mechanical 

loading of the flat bones, which is a key physiological factor for regulating bone formation 

(Lim, Lee, Yun, Shin, & Park, 2013). These differences in healing rate between bones must be 

considered in cases where a scaffold material is required to aid the repair process. For instance, 
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fast resorbing scaffolds would only be suitable in long bones to match the rate of new bone 

formation.     
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Figure 1.4 Primary and secondary fracture healing. Healing of a fracture is dependent on the 

stability of the fracture site. When bone is undergoing primary fracture healing, osteoclasts 

osteoclasts from the intact bone move across the fracture gap via tunnelling, resorptive 

mechanisms, to re-establish Harversian Canals. Along with the formation of new blood vessels, 

osteoblasts follow the tunnelling osteoclasts and produce new bone and fill the canals with 

osteons (A). Secondary fracture healing undergoes a series of phases in order to restore 

mechanical stability in addition to repairing the fracture. The three phases of fracture healing 

begin with the initial haematoma (B1). Bleeding from the bone and surrounding soft tissue 

results in a haematoma, providing some stability. The clotted site provides a framework for an 

inflammatory response (B2), leading to an influx of numerous cell types and release of various 

cytokines. Granulation tissue also begins to replace the haematoma and a cartilaginous callus 

begins to form. During the repair phase (B3), the external cartilaginous callus is converted into 

a bony callus, followed by bone remodelling. Figure adapted from (LaStayo, Winters, & Hardy, 

2003). 
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Limitations of bone regeneration and repair 

 Despite the characteristic regenerative capabilities that bone possesses, there are an 

array of conditions which negatively affect and impede the repair process. One of the main 

limiting factors of bone regeneration is the extent of damage, which beyond a certain degree or 

size will not naturally regenerate. Even in the case of smaller fractures, numerous factors can 

compromise the repair process, which include the patient’s systemic status, nature of the injury, 

local host response and pharmacologic factors.  

When considering a patient’s systemic status there is an increased occurrence of 

fractures in women compared to men after the third decade of life (Hedlund & Lindgren, 1987). 

However, there is no specific data pertaining to gender and delayed healing. Whilst gender does 

not directly affect healing, aging and its associated health conditions can impact the repair 

process. Hormone deficiency, for example oestrogen, as a result of menopause in women is one 

of the most important factors in the pathogenesis of osteoporosis and as a consequence, 

significantly affects early fracture healing (Richelson, Wahner, Melton III, & Riggs, 1984). The 

link between hormone deficiency and delayed union have been further supported by 

replacement therapy studies, which have demonstrated that maintaining normal hormone levels 

is critical in ensuring bone healing (Felson et al., 1993).   

Location of bone damage is another critical determinant of successful healing. It has 

been well reported that bone fractures can cause disruption of the bloody supply and 

consequently the bone marrow (Carano & Filvaroff, 2003). If the vascularisation is 

compromised, which supplies the osteogenic cells, then it is expected that disruption would 

impede the repair process (Gittens & Uludag, 2001). Another contributor to delayed or non-

union is deep infection at the wound site. An infected non-union is defined as a persistent 

infection at the fracture site for a duration of 6-8 months (Meyer, Weiland, & Willenegger, 

1975). In addition to resulting in delayed healing, infection at the fracture site also prevents 
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stable fixation which leads to mechanical instability (Friedrich & Klaue, 1977). Furthermore, 

the generation of a chronic inflammatory reaction in response to infection can also have 

deleterious effects on bone regeneration (Thomas & Puleo, 2011). 

Within the host, the availability of collagen significantly influences callus formation 

and overall fracture healing. In a mechanically stable fracture, collagen type I is the major 

collagen type present, with collagens type II and V present within the trabeculae (Page, Hogg, 

& Ashhurst, 1986). Collagen type III is another crucial protein found at fracture sites and is 

expressed in early osteoblast differentiation. As the osteoblast matures and remodelling 

progresses, the level of collagen type III rapidly declines. However, in the case of a non-union 

it has been shown that type III collagen levels remain elevated and there is an apparent 

elongation of the osteoblasts early phase, resulting in fibrous tissue formation and consequently 

impaired bone repair (Lawton, Andrew, Marsh, Hoyland, & Freemont, 1997).  

Finally, pharmacologic factors administered prior to fracturing or damaging bone can 

significantly impair the healing process. This includes systemic corticosteroid use which has 

been shown to inhibit bone repair, by reducing the synthesis of collagen type I and growth 

factors, as well as decreasing osteoblast activity (Waters et al., 2000). In addition, whilst chronic 

inflammatory responses can be detrimental to the repair process, the use of nonsteroidal anti-

inflammatory drugs (NSAIDs) has been shown to have inhibitory effects on fracture healing by 

impeding blood flow to the fracture gap (Murnaghan, Li, & Marsh, 2006). It has also been 

shown that patients who smoke were 37% more likely to develop non-union and twice as likely 

to develop infection, which can have further detrimental effects on repair (Gaston & Simpson, 

2007). With many reported factors that can influence non-union, the requirement to intervene 

to correctly repair the defect is essential. This can be done through orthopaedic surgery, by 

applying bone graft materials with or without fixations to bridge the defect or fracture and 

promote healing. 
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Types of non-union 

 A bone fracture is termed a non-union when the fracture ends fail to unite and requires 

additional treatment before successful healing can occur. Traditionally, non-unions are 

classified according to their radiographic appearance, as either hypervascular or avascular 

(Scott P Bruder, Fink, & Caplan, 1994). Hypervascular non-unions are associated with a 

sufficient blood supply with decreasing callus formation and appear as an elephant-foot or 

horse-shoe configuration (Panagiotis, 2005) (Figure 1.5). Additionally, oligotrophic non-unions 

have an adequate blood supply but minimal callus formation. The adequate blood supply 

present in these forms of non-union suggests the presence of a biological response and therefore 

the absence of fracture healing is due to insufficient mechanical stability. Alternatively, 

avascular non-unions have little or no callus formation due to an insufficient blood supply or 

bone forming cells (Phieffer & Goulet, 2006). These situations arise following bone loss or 

removal of the periosteum. Types of avascular non-unions include, severely displaced or 

comminuted fractures, defect non-unions, atrophic non-unions, that are comprised of thin 

fracture ends with excessive scar tissue and torsion wedge non-unions, that arise when the bone 

fragment has only healed at one end (Ebnezar & John, 2016; Panagiotis, 2005) (Figure 1.6). 

Avascular non-unions can arise not only from high-impact injuries but also following multiple 

failed procedures leading to significant bone loss (Alt et al., 2006). The treatment of non-unions 

involves the use of therapeutic interventions that improve the mechanical and/or biological 

environment at the fracture site. In cases where there is sufficient callus formation, such as 

hypervascular non-unions, the main cause of failure to heal is due to poor fracture stability. 

Once mechanical stability is achieved, calcification of the fibrous cartilage occurs, by the 

penetration of new blood vessels, allowing for bone remodelling and eventually bone union 

(Schenk, Müller, & Willenegger, 1968). Unlike hypervascular non-unions, avascular non-

unions require both fracture stability and biological support. In such cases, the defects must be 
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filled with bone graft materials and supported by stable fixation. Currently, there are numerous 

methods of fixation to stabilise non-unions and a variety of bone graft materials that provide 

scaffolding, promote cellular differentiation and contain growth and differentiation factors 

which are necessary for successful fracture healing (Ring, Barrick, & Jupiter, 1997). 
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Figure 1.5 Types of hypervascular non-unions. Highly vascularised non-unions are defined by 

their radiographical appearance. The presence of a callus defines them as either, elephant-foot 

non-unions (A) or horse-shoe non-unions (B). Hypervascular non-unions with no observable 

callus are termed oligotrophic non-unions (C) (Ebnezar & John, 2016). 
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Figure 1.6 Types of avascular non-unions. Avascular non-unions are defined as bone fractures 

with little blood supply and are defined based on their appearance and size. Comminuted non-

unions (A); Defect non-union (B); Atrophic non-union (C); Torsion wedge non-union (D) 

(Ebnezar & John, 2016). 
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BONE GRAFTING 

The repair of large bony defects and non-unions that arise as a result of bone disease, trauma or 

tumour removal remains a significant challenge to orthopaedic surgeons. If bone damage is 

neglected, development of non-unions can occur, whereby the bone cannot repair itself 

correctly, which often leads to pain, stiffness of nearby joints and loss of mobility. Along with 

the associated morbidities, this disability often results in the patient being unable to resume 

normal duties in employment, which causes significant financial burden to the patient and the 

economy (Babhulkar, Pande, & Babhulkar, 2005; Bondurant, Cotler, Buckle, Miller-crotchett, 

& Browner, 1988; Kanakaris & Giannoudis, 2007). Therefore, in order to restore and stabilise 

the bone, bone grafting or the use of bone graft substitutes is required. To further complicate 

matters, the demand for functional bone grafts is becoming extremely high, with an estimated 

2.2 million patients undergoing treatment for bone defects annually worldwide. This generates 

huge economic cost to health care and these numbers are expected to double by 2020, due to 

population ageing (B. Baroli, 2009; Giannoudis, Dinopoulos, & Tsiridis, 2005).  

 

Fracture stabilisation 

 To repair large bone defects which are likely to undergo delayed or non-union, the 

mechanical and biological problems must both be addressed. Stabilisation of the bone is 

essential in ensuring the additional biological component can promote successful bone repair. 

Two forms of fixation are currently available, internal and external fixation (Figure 1.7). Plate 

fixation and intramedullary nailing are the most popular treatment options of internal fixation, 

by their ability to provide adequate stability without causing excessive rigidity (Rodriguez-

Merchan & Forriol, 2004). Plate fixation can be used with or without bone grafts and is often 

accompanied by compression, which encourages ossification of the non-union. The 

disadvantages of using plates to repair non-unions is the increase in damage of the local 



A. SHOUBRIDGE 

30 

 

vasculature. Furthermore, the risk of infection is slightly higher compared to simple bone 

grafting techniques of uninfected tibia non-unions (Smith, 1974). Intramedullary nailing is the 

most common form of internal fixation and is the preferred treatment for most diaphyseal non-

unions. Unlike plate fixation, reamed intramedullary nailing provides the advantage of reaching 

full function earlier, including weight-bearing and motion of adjacent joints. This is due to the 

effect of reaming, which increases the contact area between the nail and the rough surface of 

the medullary cavity. In addition, reamed intramedullary nailing possesses a broad range of 

applications, primarily for the treatment of uninfected non-unions. However, treating an 

infected, or previously infected non-union by nailing, has been associated with increased risk 

of infection (Phieffer & Goulet, 2006). Despite the association with infection, there have been 

reports of 100% successful union using reamed intramedullary nailing for treating tibia non-

unions (Megas, Panagiotopoulos, Skriviliotakis, & Lambiris, 2001). In cases of non-unions 

with bony defects, it is recommended that the reamed nailing is supplemented with bone graft 

materials (Finkemeier & Chapman, 2002). For patients who present with delayed union and a 

previous infection, external fixation is the preferred method of stabilisation. External fixators 

present as either unilateral or circular fixation systems that provide several advantages 

including, wound access, distant stabilisation of the bone fragments and motion of adjacent 

joints which encourages patient mobility. Furthermore, external fixators cause less disruption 

to soft tissues and blood supply, which makes them beneficial for patients who present with 

open wounds or skin contusions (Fragomen & Rozbruch, 2007). Often, external fixation can 

successfully unite bone fractures, however in some patients the fixation can be ineffective and 

must be replaced. If the reoperation involves opening and exposing the non-union, it is 

recommended that bone grafting be done at the same time. Alternatively, if new fixation is 

performed without opening the non-union site it is recommended that bone grafting is delayed 
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(Rodriguez-Merchan & Forriol, 2004). In most cases, reoperation of an internal or external 

fixator requires the addition of a bone graft of graft substitute. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A. SHOUBRIDGE 

32 

 

 

 

 

 

 

 

 

 

Figure 1.7 Popular techniques of fixation for fractures. Commonly used internal fixation 

strategies include, plate fixation (A) and intramedullary nailing (B). In place of internal fixation, 

an external fixator (C) can provide greater stabilisation, which is often required in more 

complex non-unions. Figure adapted from (Claes, 2017). 
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Osteogenic, osteoinductive and osteoconductive properties 

 Once mechanical stability has been achieved, the biological issues associated with large 

bone defects can be addressed, through the use of bone grafts. Three major characteristics of 

bone graft and graft substitutes that are essential to bonding, or osteointegration of the graft 

material to the host bone are osteogenesis, osteoinduction and osteoconduction. To successfully 

qualify as a bone graft, the material must possess at least one of these functions. Grafting 

materials harvested from donors may contain living osteoprogenitor cells which can survive 

transplantation and have the potential to differentiate into osteoblasts and osteocytes. The 

ability for grafting materials to contain these viable cells characterises the material as 

osteogenic (Cypher & Grossman, 1996). Bone graft and graft substitutes which stimulate 

proliferation of stem cells and the differentiation of stem cells to osteogenic cells are termed 

osteoinductive (Perry, 1999). Several growth factors are responsible for influencing this process 

and include BMPs, PDGFs, FGFs and other members of the TGF-β superfamily (Cypher & 

Grossman, 1996). Finally, the term osteoconductive refers to the graft material’s ability to 

provide an interconnected structure which allows new cell migration and blood vessel 

formation, whilst also providing a framework for new cell attachment of osteoblasts and 

osteoprogenitors (Hak, 2007).   

 

Autogenous and allogenic bone graft 

 Autogenous bone grafts which is bone tissue harvested from the patient is considered 

the current gold standard for reconstruction of large bone defects, as it possesses osteogenic, 

osteoinductive and osteoconductive properties. It also provides minimal immunogenic rejection 

and ample histocompatibility (Bauer & Muschler, 2000a; Homma, Zimmermann, & Hernigou, 

2013; Perry, 1999; Samartzis, Shen, Goldberg, & An, 2005). The bone is often harvested from 

the iliac crest, but can also be taken from the distal femur, proximal tibia, fibula, ribs and radius, 
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before being implanted into the damaged site (Dimitriou, Mataliotakis, Angoules, Kanakaris, 

& Giannoudis, 2011). Although autologous bone is the best replacement material for a defect 

or fracture site, this method has a complication rate of up to 30%. Complications include, donor-

site morbidity and pain from harvesting, extended hospitalisation and also surgical-associated 

morbidities such as, infection, inflammation and chronic pain (Ami R. Amini, Cato T. 

Laurencin, & Syam P. Nukavarapu, 2012; Banwart, Asher, & Hassanein, 1995). The quantity 

of bone that can be harvested is also very limited, which can pose a problem for larger defects 

(Jimi et al., 2012).  

 A common alternative to autogenous grafting is the use of allogenic bone, which 

accounts for approximately one-third of bone grafting procedures (T. Boyce, J. Edwards, & N. 

Scarborough, 1999). The use of allografts which are taken from donors or cadavers eliminates 

several patient morbidities and issues associated with limited supply.  However, allografting 

also presents a number of hazards, including risk of disease transmission from the donor. The 

risk of HIV transmission is estimated to be 1 in 1.6 million and other viruses including hepatitis 

B and C have also been previously reported to be transmitted through allograft material (T. 

Boyce et al., 1999).  Thorough screenings of donors and better sterilisation techniques such as 

tissue freezing and sterilisation by radiation have aided in minimising disease risk (Vangsness 

et al., 2003). However, these processing techniques eliminate any osteogenic capabilities and 

negatively affect the osteoinductive and osteoconductive potential of the graft material (Lane 

& Sandhu, 1987), which significantly decreases their biological capacity (Anderson et al., 1999; 

Oklund, Prolo, Gutierrez, & King, 1986).  

Due to the above-mentioned limitations of natural bone grafts, a wide variety of 

synthetic bone graft substitutes have been developed. A summary of various bone graft and 

bone graft substitutes and their respective properties are described in Table 1. Many of these 

alternative graft substitutes utilise a range of materials, including natural and synthetic 
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polymers, ceramics and composites. Additionally, factor and cell-based strategies have been 

investigated, which can be used alone or in combination with other materials (Laurencin, Khan, 

& El-Amin, 2006). The development of a successful graft however, must possess the 

osteogenic, osteoinductive and osteoconductive characteristics, to ensure effective bone 

healing.  
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Table 1.1 Properties of bone graft and bone graft substitutes 

Class Description Properties of action 

Autograft Used alone  Osteogenic 

 Osteoinductive 

 Osteoconductive 

Allograft Used alone or in combination with other materials  Osteoinductive 

 Osteoconductive 

Ceramic based Includes calcium phosphate, hydroxyapatite, used alone or in 

combination with other materials. e.g., Mastergraft
®

 

 Osteoconductive  

Collagen based Biodegradable scaffold used alone or in combination with other 

materials. e.g., BioMend, CollaCote 

 Osteoconductive 

Factor based Natural and recombinant growth factors used alone or in 

combination with other materials. e.g., BMPs 

 Osteoinductive 
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Ceramic and collagen bone graft substitutes 

Approximately 60% of bone graft substitutes currently available contain ceramics. 

Common commercially available forms include porous implants, non-porous implants and 

granular particles with pores, which all possess excellent osteoconductivity. The interest in 

using ceramics, specifically those comprised of calcium phosphates (CaP) is mostly because 

the primary inorganic component found in bone is calcium hydroxyapatite (HA), a subset of 

calcium phosphate (Zwingenberger et al., 2012). Whilst HA is naturally occurring in bone and 

has osteoconductive and osteointegrative properties, the high Ca/P ratio (1.67) and crystallinity 

causes a slow resorption rate (W. Wang & K. W. K. Yeung, 2017). As an alternative to HA, 

beta-tricalcium phosphate (β-TCP) use has been explored as it possesses a lower Ca/P ratio 

(1.5) which enables accelerated degradation and resorption (Torres, Tamimi, Alkhraisat, 

Prados-Frutos, & Lopez-Cabarcos, 2011).  However, this results in significantly weaker 

mechanical properties (LeGeros, 2002). To address this issue, HA and β-TCP are combined to 

form biphasic calcium phosphate (BCP), where the resorption rate and mechanical properties 

can be controlled. A BCP ratio which has been rigorously tested and deemed suitable 

commercially is 15% HA:85% β-TCP, which is provided by several companies, including the 

Mastergraft® products provided by Medtronic (Khan & Lane, 2004).   

Collagen type I is the main organic component of bone, accounting for 97% of protein 

found in bone (Glimcher & Lian, 1989). Collagen which serves as a template for biological 

bone, is one of the most commonly used scaffold materials, with a variety commercially 

available e.g., CollaCote™ and BioMend®. Type I collagen scaffolds are known to have good 

biocompatibility, biodegradability, osteoconductivity and weak antigenicity (W. Wang & K. 

W. K. Yeung, 2017). Furthermore, collagen scaffolds have been studied exhaustively and have 

been shown to support sustained release of a variety of osteoinductive factors, which makes 

them highly effective at repairing bone (Geiger, Li, & Friess, 2003; Winn, Uludag, & Hollinger, 
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1999). One drawback of collagen-based materials are the mechanical properties, which are very 

weak and so, these materials are often found in the form of composites such as collagen-HA 

(Kikuchi et al., 2004). Therefore, consideration of the bone type and mechanical properties are 

needed for graft substitutes. High weight-bearing bones, such as the femur, when fractured or 

presenting with a non-union require greater stiffness and structural stability. Whereas low 

weight-bearing applications such as the repair of cranial damage can benefit from materials that 

provide accurate aesthetic remodelling with reduced weight-bearing support.  Although 

collagen and ceramic graft materials demonstrate high biocompatibility and osteoconductivity, 

new bone formation is often limited due to their poor osteoinductive capabilities (Yuan et al., 

2002), therefore the addition of growth factors or cells is often required. 

 

Bone morphogenetic proteins 

 Growth factors and proteins which reside in bone are responsible for the regulation of 

numerous cellular functions, including the production and resorption of bone. BMPs which are 

members of the TGF-β superfamily, are biologically active molecules with the ability to 

promote recruitment, proliferation, differentiation and migration of bone-forming cells (Lind, 

Eriksen, & Bünger, 1996). The capacity for BMPs, specifically BMP-2, 4 and 7 to bind to 

receptors on MSCs, osteoblasts and chondrocytes and promote their activity makes them 

potential osteoinductive agents for clinical use (Kloen et al., 2003). BMPs are often delivered 

to a surgical site by a variety of graft materials including allogenic bone and synthetic scaffolds. 

The osteogenic and osteoinductive potential of BMPs has been thoroughly proven in both 

preclinical and clinical studies with an analogous performance to autogenous bone (Boden, 

2001; Friedlaender et al., 2001; Mussano, Ciccone, Ceccarelli, Baldi, & Bassi, 2007). Despite 

the potential of BMPs, only recombinant human BMP-2 and 7 have been approved for select 

use in Europe and the United States, where they have been used in spinal fusion surgery, 
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craniomaxillofacial surgeries and as a replacement for autogenous bone in tibial non-unions 

(Boden & Schimandle, 1995; Ristiniemi et al., 2007; Vaccaro et al., 2005). Although reports 

suggest multiple benefits for the use of BMPs in orthopaedic surgery, there are numerous 

complications to consider. In spinal surgery alone there have been reported complications of 

neurological impairment, bone resorption at the graft site and neck swelling (Benglis, Wang, & 

Levi, 2008; Wong, Kumar, Jatana, Ghiselli, & Wong, 2008). These reports, along with the 

significant high cost of using BMPs (Garrison et al., 2007) suggests the requirement to identify 

other factors possessing osteoinductive properties, that result in fewer adverse side effects and 

be of greater economic value. 
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PRE-CLINICAL MODELS 

In order to biomechanically simulate humans as accurately as possible and assess the effects of 

experimental bone graft substitutes of defect and fracture repair, numerous animal models have 

been established. With the availability of numerous animal species and experimental 

approaches to test the capacity of graft materials, several factors need to be taken into 

consideration when determining the appropriate model for the tested material. Species of 

animal, age of the animal, type of defect, stability of the defect and anatomic location all have 

an influence on the quality and type of bone that forms within the defect site (Bosch, Melsen, 

& Vargervik, 1998). Therefore, researchers must ensure that the biological, biochemical and 

physiological characteristics of an animal species and the selected defect model will accurately 

replicate the repair mechanisms anticipated in humans. 

 

Non-union models of bone repair  

 A critical prerequisite for any model used to test bone graft substitutes is to ensure that 

the empty defect heals more slowly than the experimental defect. The ideal scenario for any 

model is one by which the defect undergoes osseous union only with the addition of an applied 

bone graft substitute. A wound of this size is termed a critical size defect and was defined by 

Schmitz and Hollinger as the smallest intraosseous wound that would not heal by bone 

formation during the lifetime of the animal (Schmitz & Hollinger, 1986). As a result, the defect 

heals by fibrous connective tissue formation, not by new bone regeneration. It is hypothesised 

that this is due to the inability for cells to differentiate into osteoblasts and chondroblasts in the 

central region of the defect due to a lack of tissue factors (e.g., BMPs) to induce a rate of cellular 

differentiation. The reduced presence of these cells results in a failure to mineralise the matrix 

within the central region of the defect, leaving behind a dense fibrous connective tissue 

(Schmitz, Schwartz, Hollinger, & Boyan, 1990). Whilst the size of the defect is essential when 
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utilising this model, a number of other factors must also be considered which can influence 

healing of the defect, including animal species, animal age, anatomic location of the defect, 

bone structure and vascularisation and mechanical loading (Reichert et al., 2009; Schmitz & 

Hollinger, 1986).  

 

Animal species as a testing model 

 Several animal species have been used to simulate the human in-vivo environment, 

physical conditions and comparability of bone graft substitutes, including rodents, rabbits, dogs, 

sheep, goats and pigs. When selecting a specific animal as the test model, certain factors must 

first be considered. Firstly, the animal model must clearly demonstrate comparable 

physiological and pathophysiological similarities to humans. Further selection criteria that must 

also be considered is cost of animal procurement, availability, tolerance to captivity and ease 

of housing (Pearce, Richards, Milz, Schneider, & Pearce, 2007). Additionally, it is important 

to consider the number of implants per animal, duration of the experiment and expected 

differences in biological response, before determining the most suitable animal species 

(Upman, 2006). Whilst there are numerous animal models available to test bone graft materials, 

as mentioned above, this thesis will focus primarily on rodents and sheep. 

 Rodents are a commonly used animal for bone-related research as they are small, easy 

to handle and relatively inexpensive to obtain and house, which is important to consider due to 

the long housing times required in orthopaedic research. For these reasons they are often 

considered the first in-vivo model for assessing the effectiveness of experimental bone graft 

substitutes (Gomes & Fernandes, 2011). Implantation of graft substitutes such as ceramics, 

collagen, BMPs and stem cells in various rat bone defect models have all successfully 

demonstrated osteoinductive and osteoconductive capabilities (Kirker-Head et al., 2007; Yoon, 
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Dhar, Chun, Gharibjanian, & Evans, 2007). This included the use of critically sized femoral 

and calvarial defects. It is also a common animal subject to study multiple aspects of bone 

regeneration, including fracture, defect repair, joint infection and osteoporosis (An & Freidman, 

1998). Although mice are a much smaller rodent than rats, they have become increasingly 

popular as an animal model for skeletal research, specifically to screen potential novel 

substances for osteogenesis and chondrogenesis (An & Freidman, 1998). A highly useful model 

used in mice is the critical-size calvarial defect model, with a defect size > 2 mm considered a 

critical non-healing defect (Aalami et al., 2004; Cowan et al., 2004; Im et al., 2013; Levi et al., 

2010). Whilst both rats and mice possess numerous advantages as pre-clinical animal models 

for investigating and assessing the potential of novel bone graft substitutes, there are limitations 

to consider. In particular, compared to larger animals such as sheep, rodents have much smaller 

long bones which can be difficult to use in fixation models and do not form haversian-type bone 

tissue, unlike larger animals and humans (Li et al., 2015; M Martiniaková, Grosskopf, 

Vondráková, Omelka, & Fabiš, 2005).  

 The use of small animals provides researchers with a significant amount of knowledge 

with regards to the effectiveness of tested bone graft substitutes. However, large animal models, 

such as sheep have been developed to verify the potential of novel materials, closer to a clinical 

setting. The advantages of using mature sheep is firstly, they possess a body weight similar to 

adult humans and the comparable dimensions of their long bones to humans allows for the use 

of human implants (Newman, Turner, & Wark, 1995). Secondly, the load bearing of the hind 

limbs and forces exerted is roughly half of what humans experience when walking (Taylor et 

al., 2006), which allows for comparisons of mechanical loading of implants in sheep to humans 

possible. Also, sheep have a rate of bone healing similar to humans (den Boer et al., 1999). This 

makes sheep a very useful model for femoral and tibial defect and fracture models. They have 

also been used as a model to assess the repair of mandibular, calvarial and metatarsal defects 
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(Reichert et al., 2009). The creation of large segmental defects and critical sized defects are the 

most common models for sheep in orthopaedic research and a segmental defect size of 25-40 

mm and cancellous defects >11 mm in diameter, do not heal spontaneously (Ehrnberg, De 

Pablos, Martinez‐Lotti, Kreicbergs, & Nilsson, 1993; Malhotra, Pelletier, Yu, Christou, & 

Walsh, 2014; Moxham et al., 1996). Whilst sheep bones possess a similar macrostructure to 

humans, making them an ideal model, histologically, the bone structure of sheep is quite 

different. Small animals and humans are known to possess osteons or Harversian systems, that 

are the basic structural unit of compact bone (Pearce, Richards, Milz, Schneider, & Pearce, 

2007). In larger animals such as sheep, plexiform bone predominates. Plexiform bone possesses 

a dense vascular canal network, which creates a “brick-wall” appearance and provides greater 

mechanical support than woven bone (Brits, Steyn, & Noelle, 2014). Furthermore, it has been 

reported that age can play a role in the extent of bone remodelling. Skeletally immature sheep 

have shown a similar bone density to humans, compared to mature sheep which have a 

significantly higher trabecular bone density and therefore greater bone strength than humans 

(Nafei, Danielsen, Linde, & Hvid, 2000). For these reasons it is critical to ensure that the age 

of sheep used within a study are consistent and considered when making comparisons between 

other studies. Although there is no perfect animal model that can simulate identical biological, 

physiological biochemical characteristics to humans, it is possible to obtain a great deal of pre-

clinical information of a novel graft substitute by using the appropriate animal and model.      
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PEROXIDASE ENZYMES 

Peroxidases are a haem-containing superfamily of ubiquitous and essential proteins found in all 

living organisms, including plants, microorganisms, fungi and animals (Hiraga, Sasaki, Ito, 

Ohashi, & Matsui, 2001). It is well-established that these enzymes possess antimicrobial action, 

through the formation of enzymatic reaction products. The term “haem” refers to the 

ferriprotoporphyrin IX prosthetic group which is an essential component of the enzymes active 

site and essential for reactivity with hydrogen peroxide (H2O2). In the enzymes native form, the 

oxidative status of iron within the haem group is in the ferric form of Fe3+. In the presence of 

H2O2 peroxidases engage in several redox reactions which convert the enzyme into various 

catalytic intermediates (Figure 1.8). Firstly, the reaction is initiated by available H2O2 which 

results in two-electron oxidation, converting the enzyme from its native state of Fe3+ into 

Compound I (Fe4+) and the H2O2 is reduced to H2O. Compound I, which is a strong oxidant can 

be converted back to its ferric state by reacting with halide ions (X-) (“halogenation cycle”) 

(Davies, Hawkins, Pattison, & Rees, 2008). The conversion of the enzyme back to this state 

occurs via a two-electron reduction, oxidising the halide ions to the corresponding hypohalous 

acids (HOX). Additionally, Compound I can be reduced by one electron by oxidising organic 

and inorganic substrates (RH*), yielding a substrate free radical and Compound II, which is 

referred to as the oxy-ferryl (Fe4+) haem intermediate (“peroxidase cycle”). In a second one-

electron reduction step Compound II is reduced back to its resting ferric peroxidase and 

generates a free radical and water molecule. At the end of the cycle the peroxidase is returned 

to its original native state, to repeat the halogenation and peroxidase cycles through the 

initiation of available H2O2. Another intermediate, Compound III is usually formed when there 

is an excess of H2O2. This intermediate is also largely formed by the combination of superoxide, 

which is produced by the oxidation of H2O2, with the ferric enzyme (Fe2+). Although, the 

superoxide could also be generated via a one-electron reduction from oxidised substrates to 
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molecular oxygen. In this state Compound III is not catalytically active, but the inactivation is 

reversible (Goodwin, Grover, & Aust, 1997).  
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Figure 1.8 Catalytic cycle of peroxidases showing dual pathways of oxidation. In the 

halogenation cycle the native enzyme is oxidised in the presence of H2O2 to form Compound I 

(1). In the presence of halides (X-), Compound I is converted back its native state and, in the 

process, produces hypohalous acids (HOX) (2) (halogenation cycle). Alternatively, in absence 

of halides, Compound I can be converted to Compound II by one electron-donating substrates 

(RH*) (3) (peroxidase cycle). Compound III is formed in the presence of excess H2O2, which 

is an inactive form of the enzyme that slowly reverses back to its active native state. Figure 

adapted and modified from (Davies et al., 2008). 
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Peroxidases and wound healing  

 There is sufficient evidence that peroxidases, specifically mammalian-derived are 

involved in inflammatory processes and therefore could have implications in wound healing. 

However, a discovery by Rayner and colleagues reported that compounds present in bovine 

milk whey growth factor extract (WGFE) have a direct effect on skin fibroblasts to increase 

tissue repair in normal and compromised models of wound healing (Rayner et al., 2000). The 

additional treatment with WGFE promoted cellular infiltration within the wound for both 

normal and steroid-treated rats compared to control (Figure 1.9), with a greater response to 

WGFE observed in the steroid-treated animals. It was first suggested that growth factors such 

as TGF-β were responsible for the enhanced wound response, however, the amount of growth 

factors that would be required to generate such a response were not present in WGFE. This led 

to the suggestion that another factor must be present to influence the difference in fibrogenic 

response. Using cell-based screening methods of fractionated WGFE, it was ascertained that 

bovine lactoperoxidase (LPO) was the protein responsible for generating the main functional 

component of WGFE. Additional research has demonstrated increased collagen production by 

dermal fibroblasts treated with mammalian peroxidases, myeloperoxidase (MPO) and 

eosinophil peroxidase (EPO) and plant-peroxidases soybean peroxidase (SBP) and horseradish 

peroxidase (HRP) (DeNichilo et al., 2015). The ability of SBP to promote a fibrogenic response 

in a full-thickness dermal porcine model further demonstrates the regenerative potential of these 

enzymes. Of significant relevance to this thesis, is their capacity to significantly increase the 

synthesis of a collagen-rich ECM which is essential for successful bone repair (Figure 1.10). 

Furthermore, the direct stimulation of fibroblasts to promote invasion, migration and collagen 

synthesis suggested that peroxidases may have a causative role on mesenchymal cellular 

function, in the context of repair. Studies have since demonstrated that MPO, EPO 

(Panagopoulos et al., 2015) and SBP (unpublished) can stimulate other mesenchymal lineage 
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cells, including endothelial cells, by acting as pro-angiogenic molecules capable of regulating 

vessel development (Figure 1.11). These findings suggest that peroxidases, both mammalian 

and plant-derived could have applications in tissue repair, through the regulation of 

mesenchymal lineage cells essential in wound healing and be utilised as therapeutic agents in 

regenerative medicine.  
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Figure 1.9 Histology of a rat incisional wound model. Photomicrographs show cross sections 

through day 5 incisional wounds from normal (A and B) and steroid-treated (C and D) rats that 

received WGFE (B and D) or collagen vehicle only (A and C) at time of wounding. Sections 

were stained with Masson's trichrome and photographed at ×250 magnification (Rayner et al., 

2000). 
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Figure 1.10 Peroxidase enzymes stimulate potent tissue regeneration in a porcine excisional 

wound model. A and B: The wounds with INTEGRA stapled in place. C and D: Representative 

low-power images of sections stained with Masson's trichrome. E and F: Representative higher-

magnification images of boxed areas in panels C and D showing the control INTEGRA is 

poorly infiltrated with cells from the wound bed (E), whereas the INTEGRA treated with SBP 

(F) shows numerous fibroblasts and inflammatory cells interspersed with new extracellular 

matrix deposited between the INTEGRA fibres. Figure adapted and modified from (DeNichilo 

et al., 2015). 
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Figure 1.11 Peroxidases promote vascularisation of subcutaneously injected Matrigel in mice. 

(A) Representative images of excised Matrigel plugs stimulated with (i) saline (vehicle), (ii) 

VEGF (100 ng/ml), (iii) EPO (5 μg) and (iv) MPO (5 μg), shows an increase in vasculature in 

the peroxidase treated Matrigel. (B) Representative images of CD31 (4×) and H&E (40×) 

immunostaining of (i) saline (vehicle), (ii) VEGF (100 ng/ml), (iii) EPO (5 μg), and (iv) MPO 

(5 μg), shows peroxidase induced infiltration of endothelial cells and an increase in red blood 

cells (arrows) within the Matrigel compared to saline and VEGF controls. Figure adapted and 

modified from (Panagopoulos et al., 2015). 
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Myeloperoxidase  

 MPO is a highly cationic, dimeric protein which consists of two monomer units of 

73kDa each, joined by a cysteine disulphide bridge (Davies et al., 2008). They are located 

within neutrophils which provide the frontline of defence against invading microbes, by 

engulfing and ingesting foreign organisms. During granulocyte differentiation of 

promyelocytes and promyelomonocytes, MPO is synthesised throughout their maturation 

process in the bone marrow. The synthesis of MPO ceases after this stage of cell development 

and so circulating monocytes do not continue to synthesise this enzyme. During neutrophil 

activation and ingestion of a foreign body into a phagosomal compartment, azurophilic granules 

are secreted into the compartment, where MPO is subsequently released. Coinciding with the 

secretion of azurophilic granules, NADPH oxidase is assembled on the internal membrane 

surface and is responsible for providing a source of superoxide radicals and H2O2, which MPO 

subsequently transforms, into hypochlorous acid (Borregaard & Cowland, 1997).     

 

Eosinophil peroxidase 

 EPO is a 70kDa cationic glycoprotein, which shares a sequence homology of 70% with 

MPO, however the catalytic behaviour and substrate specificities of these enzymes differ 

(Tahboub, Galijasevic, Diamond, & Abu-Soud, 2005). It is located within the cytoplasmic 

granules of human eosinophilic leukocytes and unlike MPO is much less active in Cl- oxidation, 

but highly active with Br-, I- and SCN- (Bozeman, Learn, & Thomas, 1990). Whilst neutrophils 

phagocytose their target and release MPO into the phagolysosomal compartment, the larger size 

of parasites targeted by eosinophils requires the exocytosis release of EPO onto the parasite 

surface. Eosinophils play an essential role in allergic reactions and a major part in host defence 

against parasites, fungi and bacteria by generating superoxide anions through an NADPH 

oxidase system. EPO is far more capable at generating large quantities of superoxide anions 
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and H2O2, with levels of these molecules estimated to be threefold to tenfold higher than those 

generated by MPO (Davies et al., 2008).  

 

Mammalian peroxidases and fracture healing 

 In the occurrence of most fractures there is a certain amount of mechanical instability 

which leads to interfragmentary movement of the bone and consequently, secondary bone 

healing. This response requires a local inflammatory reaction by circulating inflammatory cells, 

including neutrophils, eosinophils and macrophages, which remain in the fracture region until 

regenerative cells invade the site (Prasad & Udupa, 1972). This inflammatory phase becomes 

initiated when the vasculature becomes disrupted and a haematoma forms around the fracture 

site, leading to the infiltration of these cells. Within 24 hours after injury there is a significant 

influx of neutrophils, which become the predominant leukocyte at the fracture haematoma 

(Glynne Andrew, Andrew, Freemont, & Marsh, 1994). Here, the inflammatory cells release 

pro-inflammatory factors that are essential in initiating the repair cascade. They carry out this 

role by having a chemotactic effect on other inflammatory cells, enhancing ECM synthesis, 

stimulating angiogenesis and recruiting fibrogenic cells to the fracture site (Dimitriou et al., 

2005). The importance of the initial fracture haematoma and subsequent inflammatory phase 

has been demonstrated in animal models. Studies have shown that removal of the haematoma 

as well as repeated debridement of the haematoma, leads to delayed or non-union (Grundnes & 

Reikerås, 1993; Park, Silva, Bahk, McKellop, & Lieberman, 2002). MPO and EPO have not 

yet been directly implicated in the bone repair process beyond providing oxidative defence 

against bacteria and invading pathogens. However, the knowledge that these enzymes are 

released at sites of tissue injury and inflammation, suggests a potential role for these enzymes 

in the repair process. Furthermore, recent studies have demonstrated an association between 

eosinophilic inflammation and osteitis in patients diagnosed with chronic rhinosinusitis, 
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suggesting a link between an increased presence of eosinophils and pathological osteogenesis 

(Mehta, Campeau, Kita, & Hagan, 2008; Snidvongs et al., 2012). A link between inflammatory 

involvement and ectopic bone formation has also been reported in the soft tissue of patients 

following a traumatic injury, which is defined as heterotopic ossification (HO) (Evans et al., 

2009). Whilst it is well established that inflammatory cells are a contributing factor to HO, the 

mechanisms and factors responsible are not yet defined (Convente, Wang, Pignolo, Kaplan, & 

Shore, 2015). These findings suggest that localised use of mammalian peroxidases MPO and 

EPO could potentiate the bone repair process.  

 

Soybean peroxidase 

SBP is a 37 kD glycoprotein expressed in the root, leaf and seed hull of Glycine max 

(soybean) (Gillikin & Graham, 1991). It belongs to the secretory plant peroxidase superfamily 

(class III), which play a role in the self defence system of plants, lignification (strengthening of 

the cell wall) and salt tolerance (Henriksen et al., 2001). Besides SBP, the most well-known 

member of the class III peroxidases in horseradish peroxidase (HRP), to which SBP shares 57% 

sequence homology (Welinder, Mauro, & Nørskov-Lauritsen, 1992). HRP has been identified 

as the most structurally similar protein to SBP, with key structural characteristics maintained 

between the two proteins. This includes the location of their four distinguishing disulphide 

bridges, a single tryptophan present and a prosthetic haem group (Welinder & Larsen, 2004). 

Whilst both HRP and SBP have been widely used for biosensing and diagnostic applications 

due to high stability, SBP has been recognised to be significantly more thermally stable, possess 

greater catalytic activity and is reportedly less susceptible to haem loss and permanent 

inactivation by hydrogen peroxide (McEldoon & Dordick, 1996; Wright & Nicell, 1999). The 

inactivation temperature of SBP is reportedly 90.5°C, compared to 81.5°C for HRP. 

Furthermore, SBP can maintain catalytic activity from a pH of 2.0, compared to HRP at pH 2.4 
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(Henriksen et al., 2001; McEldoon & Dordick, 1996). In addition, SBP is present in large 

amounts, readily available and inexpensive, which makes it an attractive candidate over HRP 

for large scale use (Gillikin & Graham, 1991).  As expected, plant-derived peroxidases also 

differ from mammalian peroxidases in both size and binding of the haem group. Plant 

peroxidases, including SBP consist of ~ 300 amino acids and the haem-domain is not covalently 

bound, compared to mammalian peroxidases which are much larger, ranging from 576-738 

amino acids and covalent bonding of the haem group (O'Brien, 2000; Obinger, 2006). Whilst 

mammalian peroxidases have been widely studied due to their greater physiological relevance, 

plant peroxidases have been tested for use in enzymatic crosslinking of hydrogels. These studies 

have demonstrated not only resistance to hydrogel degradation after subcutaneous injection but 

also in vivo non-cytotoxicity (Sofia, Singh, & Kaplan, 2002). The advantageous properties of 

SBP, particularly its stability, has given rise to numerous medical applications, such as a 

detecting agent in diagnostic toolkits and biosensing for various medical conditions (Hiraga et 

al., 2001). Although SBP’s uses are still being fully elucidated, its superior functionality and 

availability makes it an attractive agent for further research.   

 

Oxidative stress and bone maintenance 

 It is well-established that oxidative stress is involved in mineral tissue homeostasis and 

the production of reactive oxygen species (ROS) contributes by promoting bone resorption 

through the formation and activation of osteoclasts (Ha et al., 2004). Studies using bone marrow 

precursor cells have demonstrated that RANKL-induced osteoclastogenesis requires ROS 

production. Overexpression of glutathione peroxidase 1, the main antioxidant enzyme found in 

osteoclasts, has been shown to prevent RANKL-induced osteoclastogenesis (Lean, Jagger, 

Kirstein, Fuller, & Chambers, 2005; Lee et al., 2005). This suggests a key role for H2O2 in the 

formation of osteoclasts. In addition to promoting the formation of osteoclasts, H2O2 can induce 
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oxidative stress and inhibit osteoblast differentiation and reduce their lifespan. When mouse 

osteoblastic cells were incubated with H2O2, mineralisation levels decreased and osteogenic 

markers RUNX2, ALP and BSP decreased in expression (Arai, Shibata, Pugdee, Abiko, & 

Ogata, 2007). However, this can be overcome by the use of ROS inhibitors, which have been 

shown to restore osteoblast differentiation (A. L. Liu, Zhang, Zhu, Liao, & Liu, 2004). Whilst 

it is clear ROS production is present during normal bone remodelling, recent studies have 

shown increasing oxidative stress might be involved in the pathogenesis of some bone diseases. 

For example, postmenopausal women who are at greatest risk of developing osteoporosis, are 

found to have decreased catalase and glutathione peroxidase activity, which are critical for 

depleting H2O2 (Ozgocmen, Kaya, Fadillioglu, Aydogan, & Yilmaz, 2007). Furthermore, 

studies have shown diabetic patients who present with increased oxidative stress levels have an 

associated increase in fracture risk (Strotmeyer & Cauley, 2007). In addition to impairing these 

diseases, high levels of ROS can impede the fracture healing process, by inhibiting osteoblast 

formation. This increase in ROS cannot be depleted without the addition of antioxidant 

enzymatic activity.  Thus, current data suggest antioxidants might be beneficial in bone health 

as a strategy to reduce bone loss and its associated morbidities and mortality.      
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AIMS AND SIGNIFICANCE OF THE PROJECT 

The repair of large bony defects and non-unions that arise because of bone disease, trauma or 

tumour removal remains a significant challenge for orthopaedic surgeons. The occurrence of a 

non-union that cannot heal naturally is associated with several morbidities and can lead to 

disability and consequently financial burden on both the patient and economy. Furthermore, the 

number of patients requiring treatment is increasing due to the ageing population.  To restore 

and stabilise the bone, bone grafting or the use of bone graft substitutes is required. Successful 

bone graft substitutes require three key characteristics, osteogenicity, osteoinduction and 

osteoconduction. Unfortunately, besides autologous grafting, which has several associated 

morbidities, researchers are yet to identify a graft substitute which possesses the three key 

characteristics required to successfully repair bone.  

Our laboratory has been investigating a group of enzymes called peroxidases which may 

provide osteoinductive properties, to be used in combination with scaffold materials. 

Peroxidases are haem-containing enzymes whose functional involvement in organism health 

has mainly been limited to providing a mechanism for oxidative defence against invading 

bacteria and other pathogenic microorganisms. Work published by our laboratory provides 

evidence that mammalian peroxidases MPO and EPO, and plant-derived peroxidase SBP, 

stimulate the migration of fibroblastic cells and promote their ability to secrete collagen type I 

protein both in vitro and in vivo to generate a functional ECM (DeNichilo et al., 2015). In 

addition, we have presented further evidence demonstrating the ability of peroxidases to 

promote angiogenesis and inhibit osteoclastogenesis, suggesting a potential role for these 

enzymes in fracture repair.  

 Osteoblasts are the main cell type responsible for collagen type I biosynthesis during 

normal bone formation and fracture repair. It is well established that osteoblasts, endothelial 

cells and fibroblasts are derived from the same mesenchymal progenitor cell population. We 
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therefore hypothesise that peroxidase enzymes can influence osteoblast cellular processes to 

increase collagen biosynthesis and matrix mineralisation resulting in new bone formation. This 

novel concept raises the possibility that peroxidase enzymes may have therapeutic potential in 

regulating new bone formation in various clinical settings, including fracture repair and disease-

related bone loss.  

The hypothesis of this thesis is peroxidase enzymes have a causative role on osteoblast 

function, resulting in increased collagen ECM biosynthesis and mineralisation and as a result, 

possess the capacity to induce new bone formation at a locally targeted site.   
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The specific aims of this research project are: 

 

Aim 1: investigate the effect of physiologically-relevant mammalian peroxidase enzymes on 

osteoblast cell functionality of collagenous ECM biosynthesis and deposition and 

mineralisation of the deposited matrix. 

 

Aim 2: explore the ability of plant-derived peroxidase enzymes to promote osteoblast 

functionality and determine their effectiveness compared to mammalian peroxidases. 

 

Aim 3: determine the osteoinductive potential of plant-derived peroxidase enzymes to 

accelerate bone formation in vivo, using a standardised animal model of bone repair. 
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 PEROXIDASE ENZYMES REGULATE COLLAGEN 
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ABSTRACT 

Large bone defects and fractures remain a significant problem in regenerative medicine. Current 

treatment strategies which include autografting, allografting or the use of synthetic materials, 

promote bone repair but have numerous limitations including, poor osteoinductive effects. 

Growth factors such as bone morphogenetic proteins (BMPs) improve osteoinduction however, 

we are yet to identify one that is of greater economic value and with fewer adverse effects. 

Peroxidases are haem-containing enzymes which are normally released at sites of tissue injury 

and inflammation by infiltrating immune cells and until recently, have been studied mainly in 

the context of providing oxidative defence against invading pathogens. We have discovered 

new and previously unrecognised roles for haem peroxidases in extracellular matrix 

biosynthesis, angiogenesis and osteoclastogenesis, all of which play an important role in bone 

remodelling and repair. In this study, we used in vitro models to investigate the ability of the 

extremely cheap, stable and potent plant-derived soybean peroxidase, to regulate osteoblast 

function, which is necessary for normal bone repair. Here, we have demonstrated soybean 

peroxidase’s pro-osteogenic role, by promoting collagen I biosynthesis and matrix 

mineralisation, which are both essential for the formation and maturation of a mineralised 

scaffold and subsequently, new bone. Mechanistically, we have also shown soybean 

peroxidase’s ability to regulate osteogenic genes responsible for inflammation, extracellular 

matrix remodelling and ossification, which are necessary for normal bone healing. These 

findings show soybean peroxidase to be an effective regulator of osteoblast function and thus, 

could have numerous implications as a therapeutic agent in the context of bone repair. 
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INTRODUCTION 

Large bone defects which occur as a result of trauma, tumour resection and fractures remain a 

significant problem in regenerative medicine. Autogenous bone graft transplantation is the 

current “gold standard” for the treatment of large bone defects. This form of transplantation 

consists of bone matrix, autologous cells and growth factors which provide a scaffold for new 

bone to form (Jimi et al., 2012). However, there are significant limitations associated with 

autografting including, pain from bone harvesting, longer rehabilitation and limited supply of 

grafting material (Homma et al., 2013). Despite alternatives such as allografts or synthetic graft 

materials, these treatment strategies are also limited by immunogenic or poor osteoinductive 

effects (Betz, 2002).  

Recently, synthetic biomaterials which possess osteoconductive properties that promote 

the ingrowth of newly formed bone, have been widely investigated for use in bone regenerative 

medicine (Oryan, Alidadi, Moshiri, & Maffulli, 2014). For example, β-tricalcium phosphate (β-

TCP) and synthetic hydroxyapatite (HA) are being developed due to their high biocompatibility 

and osteoconductive properties (Patlolla & Arinzeh, 2014). Despite their poor osteoinductive 

potential (e.g.; to signal stem cell differentiation), these calcium phosphate ceramics have 

proven to be effective carriers of osteoinductive agents such as bone morphogenetic proteins 

(BMPs), to accelerate bone formation (Ono, Gunji, Kaneko, Sait, & Kuboki, 1995). While 

BMPs play an important role in fracture repair, with the ability to promote recruitment, 

proliferation, differentiation and migration of bone-forming cells (Lind et al., 1996), their 

clinical use has resulted in a number of complications. These include higher revision rates, due 

to an increased inflammatory response accompanied by cyst-like bone and soft tissue swelling 

and ectopic bone formation (Zara et al., 2011). These reports, along with the significant high 

cost of using BMPs suggest the need to identify osteoinductive factors which result in fewer 

adverse side effects and be of greater economic value. A number of other agents have been 
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suggested to promote bone repair, such as those to enhance vascularisation (Curtin et al., 2015), 

but none have advanced to the clinic. Therefore, new therapeutic interventions for complex 

osseous defects and fractures are needed. 

Peroxidases are a group of haem-containing enzymes found in animals, plants and 

micro-organisms (Hiraga et al., 2001). It is well-established that these enzymes share the same 

catalytic mechanism, by converting hydrogen peroxide and chloride ions into hypochlorous 

acid, which is one of the most reactive oxidants produced in vivo and is responsible for 

peroxidase anti-microbial actions (Aruoma & Halliwell, 1987). We have recently discovered 

new functional roles for peroxidase enzymes, including mammalian myeloperoxidase (MPO) 

and eosinophil peroxidase (EPO), plant-derived soybean peroxidase (SBP) and horseradish 

peroxidase (HRP). These roles include the ability to regulate fibroblast collagen extracellular 

matrix (ECM) biosynthesis (DeNichilo et al., 2015), drive angiogenesis (Panagopoulos et al., 

2015) and inhibit osteoclastogenesis (Panagopoulos et al., 2017). Collectively, these findings 

suggest that peroxidases may have a causative role in tissue repair. In addition, we have recently 

discovered additional new roles for mammalian peroxidases in bone repair, by their ability to 

promote osteoblast collagen biosynthesis, osteogenic gene expression and bone matrix 

mineralisation (Mark O. DeNichilo et al., 2016). Despite the effectiveness demonstrated by 

mammalian peroxidases on osteoblast function in vitro, we have investigated the possible 

contribution of the plant-derived SBP in bone repair. SBP is one of the most biologically active 

peroxidase enzymes we have tested to-date, both in vitro and in vivo (DeNichilo et al., 2015). 

Furthermore, SBP is safe, highly stable and extremely cheap to manufacture in large quantities, 

making it a highly feasible and desirable candidate for clinical use. 

In this report, we characterise for the first time, the ability of SBP to stimulate the 

release of collagen type I and promote matrix mineralisation by primary human osteoblasts. 

This is supported by mechanistic data that shows SBP regulates pro-osteogenic genes known 
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to be essential for bone regeneration. Our findings show SBP promotes osteoblast function in 

vitro and has the potential to play an important role as a therapeutic agent in bone repair. 
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MATERIALS AND METHODS 

Ethics Statement 

The use of all normal human donor-derived bone tissue was approved by the human ethics 

committee of the Royal Adelaide Hospital/University of Adelaide (Approval No. RAH 

090101). Human bone samples were obtained with informed written donor consent, as required 

and approved by the ethics committee. 

 

Osteoblast Cell Culture 

Normal human bone-derived osteoblasts were isolated from intertrochanteric trabecular bone 

samples from four donors of both genders, age range 46-67 years, undergoing primary hip and 

knee replacement surgery, as described previously (Atkins et al., 2003). Human osteoblasts 

were expanded in culture using Dulbecco’s Modified Eagle’s Medium (DMEM; high glucose 

with no ascorbic acid; AA), supplemented with 2 mmol/L glutamine, 100 IU/mL penicillin, 100 

µg/mL streptomycin, 20 mmol/L HEPES, and 10% foetal bovine serum (FBS; Invitrogen Life 

Technologies, Carlsbad, CA) in a 5% CO2-containing humidified atmosphere. These cells 

maintain an osteoblastic phenotype in culture and stain positive for alkaline phosphatase 

activity. 

 

Collagen I Enzyme-Linked Immunosorbent Assay (ELISA) 

To evaluate the effect of SBP on collagen I production, osteoblasts were cultured and treated 

as previously described (Mark O. DeNichilo et al., 2016). Briefly, osteoblasts were cultured in 

96-well plates for 5 days in DMEM/10% FBS until reaching confluence. Cells were starved 

overnight in serum-free DMEM and then stimulated for an additional 72 h in serum-free 

DMEM containing either AA 2-phosphate at 100 µmol/L (Wako Chemical Industries, Osaka, 

Japan) as a positive control, or with soybean peroxidase (SBP; Bio-Research Products, North 
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Liberty, IA) in the absence of AA supplementation. Osteoblast-conditioned media was then 

collected for measurement of secreted, soluble type I collagen by ELISA. Cell viability/growth 

was then assessed using the alamarBlue fluorescent dye assay (Invitrogen Life Technologies), 

according to manufacturer’s instructions. Fluorescence was measured at wavelengths of 530 

nm excitation and 595 nm emission using a FLUOstar Optima plate reader (BMG Labtek 

Australia, Mornington, VIC). 

The amount of soluble type I collagen in cell-conditioned medium was measured by a 

direct coat enzyme-linked immunosorbent assay method, as previously described (Mark O. 

DeNichilo et al., 2016). Samples and standards were added to a 96-well Maxisorp plate (Nunc) 

and left at 4°C overnight. The plate was then washed with phosphate-buffered saline (PBS) 

with 0.05% Tween, 2.5% bovine serum albumin (BSA)/PBS blocking solution added to each 

well and the plate incubated for 1 h at room temperature. The plate was then washed and 

primary antibody (0.25 μg/mL rabbit anti-human-collagen I polyclonal; Rockland 

Immunochemicals, Limerick, PA) in 5% non-fat dairy milk added to each well for 3 h at room 

temperature. After washing, europium-tagged anti-rabbit secondary antibody (0.5 μg/mL in 1% 

BSA/PBS; Perkin Elmer Life Sciences, Turku, Finland) was added for 1h at room temperature. 

After a final wash, Enhancement Solution (Perkin Elmer Life Sciences) was added, and time-

resolved fluorescence was measured at excitation 355 nm and emission 620 nm using a 

FLUOstar Optima plate reader (BMG Labtek Australia). The collagen content of each sample 

was determined from the standard curve (μg/mL), constructed from purified type I human 

placental collagen (BD Biosciences Australia, North Ryde, NSW) and then normalised to 

DMEM-only treated cells. 
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In Vitro Mineralisation 

Normal human bone-derived osteoblasts were seeded into 96-well plates (Nunc) at a density of 

1.2 × 104 cells per well and cultured for 5 days in AA-free 10% FBS/DMEM at 37°C and 5% 

CO2. Triplicate wells were stimulated with SBP in osteogenic DMEM mineralisation medium 

[DMEM supplemented with 5% FBS, 100 μmol/L AA 2-phosphate (Wako Chemical 

Industries), 10−8 mol/L dexamethasone (Hospira Australia, Mulgrave, VIC), and 10 mmol/L β-

glycerophosphate (Sigma-Aldrich)] to assist bone mineral formation. Cells were maintained in 

culture for 21 days, with fresh medium with or without SBP, changed every 7 days. To detect 

matrix mineralisation, the Alizarin Red staining method was used as previously described 

(Mark O. DeNichilo et al., 2016). Briefly, cells were washed with PBS and fixed with 10% 

phosphate-buffered formalin. The fixed cells were then washed twice with distilled water and 

stained with 2% Alizarin Red S solution (Sigma-Aldrich). The stained mineralised matrix was 

photographed using a Nikon Eclipse 50i microscope attached to a DS-L2 control unit (Digital 

Sight, Nikon Europe, Amsterdam, The Netherlands) and a DS-Fi1 digital camera (Nikon 

Corporation, Tokyo, Japan).  

The extent of mineralisation was quantitated by eluting the Alizarin Red S dye with 

10% (w/v) cetylpyridinium chloride (Sigma-Aldrich) in 10 mM phosphate buffer pH 7.0, for 

10 mins to release remaining calcium-bound Alizarin Red S.  Absorbance was measured at a 

wavelength of 570 nm using a FLUOstar Optima plate reader (BMG Labtek Australia).  

 

Microarray 

To evaluate the effects on known primary human osteoblast pro-osteogenic genes by SBP, a 

microarray was performed. Osteoblasts harvested from a single donor were seeded at a density 

of 6 × 104 into T25 culture flasks in DMEM/10 % FBS and maintained in culture for 5 days. 

On reaching confluence, cells were stimulated with or without 5 µg/mL SBP for 12 days in 
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osteogenic DMEM mineralisation medium [DMEM supplemented with 5 % FBS, 100 μmol/L 

AA 2-phosphate (Wako Chemical Industries), 10−8 mol/L dexamethasone (Hospira Australia, 

Mulgrave, VIC), and 10 mmol/L β-glycerophosphate (Sigma-Aldrich)]. Total RNA was 

harvested using an RNeasy Mini Kit (Qiagen Australia, Chadstone, VIC) according to the 

manufacturer’s instructions. RNA yield and purity were quantified by Nanodrop 

spectrophotometric measurement at 260 nm (Nanodrop Technologies, Thermo Fisher 

Scientific, Scoresby, VIC, Australia). RNA was analysed using whole-genome Illumina 

sequencing (Australian Genome Research Facility, Parkville, VIC). The Illumina 

GenomeStudio software (Version 1.9.0) was used to extract and normalise the expression data 

for the mean intensity of the array. Genes that were statistically significant (p = ≤0.05) and 

exceeded a pre-set threshold for significantly higher (≥1.5 fold change) or lower (≤1.5 fold 

change) expression compared to control were included for further analysis. Of the genes 

presented in the array, 836 genes met this prerequisite. Those genes which had the greatest 

difference in fold change and known key osteogenic genes were selected and classified 

according to associated gene ontology terms and participation in biological pathways. The 

genes were arranged in related groups using functional annotation tools and bioinformatics 

software provided by the open web-based Database for Annotation, Visualisation and 

Integrated Discovery (DAVID) Bioinformatics Resources 6.7 (Huang, Sherman, & Lempicki, 

2009a, 2009b) (Table 1). 

 

Quantitative Real-Time PCR (qRT-PCR) 

To validate nominated genes from the microarray, qRT-PCR was performed. Custom TaqMan® 

Array Fast Plates (Thermo Fisher, Scoresby, VIC) were pre-spotted with TaqMan® Gene 

Expression Assay probes for BMP-2, BSP, WNT-5A, FRZ-B, CCL5, CXCL5, CXCL6, 

CXCL12, MMP1, MMP3, IL6 and IL8. GAPDH was used as the control house-keeping gene. 
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The assay numbers for each probe are defined in Table 2. Quantitative RT-PCR was performed 

using TaqMan® Fast Advanced Master Mix (Thermo Fisher, Scoresby, VIC), in a ViiA 7 Real-

Time System (Applied Biosystems, Foster City, CA).  

 

Data Analysis and Statistics 

Data points derived from experiments are reported as the mean ± standard deviation (SD). 

Analysis of variance to determine significant difference between samples was performed using 

the paired Student's t-test. 

 

 

 

 

 

 

 

 

 

 

 



A. SHOUBRIDGE 

94 

 

RESULTS 

SBP Stimulates Primary Human Osteoblasts to Release Type I Collagen  

Collagen type I is the most abundant type of collagen and accounts for approximately 90% of 

the total collagen content of bone (Gay & Miller, 1978). When primary human osteoblasts were 

stimulated for 72 h with SBP, in the absence of AA we observed a dose-responsive increase in 

collagen type I release. Maximal doses of SBP resulted in a three-fold increase in soluble 

collagen type I release which was comparable to the amount measured in the presence of AA, 

which was used as the control (Fig. 1A). Significant increases in collagen secretion were 

observed even at the lowest dose of SBP of 6 ng/mL. Assessment of cell viability indicated that 

SBP and AA had no impact on osteoblast numbers (Fig. 1B), even up to 6.25µg/mL (data not 

shown). This confirmed that SBP is not toxic at the doses tested and importantly, shows the 

increase in collagen type I was not related to effects on cellular proliferation. Consistent with 

our previously published data of mammalian peroxidases, these results demonstrate that the 

plant-derived SBP can promote collagen type I secretion by osteoblasts in an ascorbic acid-

independent manner (Mark O. DeNichilo et al., 2016). 
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Figure 1. Soybean peroxidase (SBP) promotes collagen I release by cultured human 

osteoblasts. A ELISA detection of soluble collagen I in osteoblast-conditioned medium after 

72h stimulation with SBP at the doses indicated. Ascorbic acid 2-phosphate (AA) at 100µmol/L 

served as the positive control, whereas cells treated with Dulbecco’s modified Eagle’s medium 

(DMEM) alone (unstim) served as the baseline control. The levels of collagen I are expressed 

as fold change and normalised so the average values of unstim were set to 1. The data are pooled 

from three experiments each conducted using cells derived from two donors. B Viability of 

cultured osteoblasts after 72h stimulation as assessed using the alamarBlue dye assay. Cell 

viability was normalised so the average values of unstim cells were set to 100% relative to each 

peroxidase dose. The data are pooled from three experiments each conducted using cells derived 

from three donors. Data are the mean±SD for unstim, AA, and each peroxidase dose. *P < 0.05; 

†P < 0.01; ‡P < 0.001 
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SBP Stimulates Primary Human Osteoblasts to Promote Matrix Mineralisation 

We next examined the ability of SBP to promote the matrix mineralisation process of primary 

human osteoblasts. Light microscopy clearly shows SBP significantly increased mineral 

deposition of osteoblasts at each dose tested (Fig. 2A), as observed by the increased intensity 

of Alizarin Red staining from the lowest dose at 0.78 µg/mL. Quantification of the eluted 

Alizarin Red staining revealed that the addition of SBP resulted in a significant increase in 

mineralisation at 0.78 µg/mL (Fig. 2B), with cells stimulated by SBP at the highest dose of 6.25 

µg/mL showing a three-fold increase in mineral deposition. This was compared to cells 

maintained under mineralising conditions without SBP. Together, these data suggest that SBP 

is promoting normal matrix mineralisation of stimulated primary human osteoblasts. 
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Figure 2. Soybean peroxidase promotes osteoblast matrix mineralisation in vitro. A 

Representative images of Alizarin Red stained cultured human osteoblasts stimulated with SBP 

for 21 days at the various doses indicated. B Quantitation of mineralised calcium extracted from 

cultured osteoblast monolayers following stimulation with SBP for 21 days at the doses 

indicated. Cells treated with mineralisation medium alone (unstim.) served as the baseline 

control. The levels of mineralised calcium are expressed as fold change and normalised so the 

average values of unstim were set to 1. Statistical significance was calculated by two-tailed 

Student’s t test with the various doses of SBP compared to the mineralisation medium alone 

(unstim) group. Dose response experiments using osteoblasts were independently performed at 

least three times using cells derived from two different donors. Data are the mean ± SD of 

triplicate determinations for unstim and each peroxidase dose. *P < 0.05; †P < 0.01 
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SBP Regulates Expression of Genes Involved in Osteoblast Function 

We next sought to attribute the effects of SBP on mineralisation to levels of expression of genes 

associated with osteoblast differentiation and mineralisation. We performed a RNA microarray 

on SBP-treated osteoblasts which identified 6,554 genes to be differentially expressed. Those 

genes which had the greatest difference in fold change and known key genes involved in 

osteoblast function were selected and classified according to the molecular function of their 

related protein and their involvement in biological processes, using web-based classification 

programs as described in the Methods section. Based on that approach we present differentially 

expressed genes in six categories: genes involved in ossification, inflammatory and immune 

responses, cell migration, extracellular matrix and genes encoded in response to wounding 

(Table 1.). The expression of selected genes was confirmed by qRT-PCR. The data obtained 

with qRT-PCR confirmed the microarray data on gene expression for BMP-2, BSP, WNT-5A, 

FRZ-B, CCL5, CXCL5, CXCL6, CXCL12, MMP1, MMP3, IL-6 and IL-8 (Table 2.). Taken 

together, these results indicate the effects of peroxidases may be the culmination of differential 

regulation of effector genes that are key to osteogenesis and repair. 
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Table 1. Pathways of genes differentially expressed by soybean peroxidase-treated 

osteoblasts 

 

 

 

 

 

 

 

 

Term Count Genes Fold 

enrichment 

GO:0001503~ossification 2 BSP, BMP2,  29.40 

GO:0006954~inflammatory response 5 IL6, BMP2, IL8, CXCL6, CCL5 18.92 

GO:0006955~immune response 6 IL6, IL8, CXCL5, CXCL6, CXCL12, CCL5 10.69 

GO:0009611~response to wounding 5 IL6, BMP2, IL8, CXCL6, CCL5 11.60 

GO:0016477~cell migration 4 IL6, IL8, CXCL12, CCL5 17.82 

GO:0031012~extracellular matrix 3 WNT5A, MMP3, MMP1 12.34 
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Table 2: Soybean peroxidase regulates the expression of key osteoblast-related genes 

 

 

 

 

 

 

 

 

Gene Assay number PCR product size (bp) Fold change SD p-value 

BMP-2 Hs00154192_m1 60 4.87 0.93 0.001993 

BSP Hs00173720_m1 95 4.31 0.11 0.000001 

WNT-5A Hs00998537_m1 61 2.21 0.04 0.000012 

FRZ-B Hs00173503_m1 108 0.44 0.01 0.000012 

CCL5 Hs00982282_m1 70 208.67 4.75 0.000001 

CXCL5 Hs01099660_g1 93 461.44 31.25 0.000014 

CXCL6 Hs00605742_g1 125 649.20 77.15 0.000130 

CXCL12 Hs03676656_mH 88 5.11 0.40 0.000063 

MMP1 Hs00899658_m1 64 26.08 0.98 0.000002 

MMP3 Hs00968305_m1 126 403.35 17.89 0.000003 

IL6 Hs00174131_m1 95 5.41 0.27 0.000011 

IL8 Hs00174103_m1 101 147.57 9.46 0.000011 

GAPDH Hs02786624_g1 157    
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DISCUSSION 

Collagen type I is the major extracellular matrix constituent of bone and its synthesis by 

osteoblasts is critical for normal bone formation (Cox, Einhorn, Tzioupis, & Giannoudis, 2010). 

It is well reported that AA, an enzymatic cofactor, is essential for the accumulation of a 

collagen-rich matrix which subsequently becomes mineralised (Franceschi & Iyer, 1992). The 

role of AA in ECM production has been well characterised, by its ability to promote 

hydroxylation of peptidyl-proline which results in the assembly of a stabilised triple-helical 

procollagen molecule. Without AA, the absence of hydroxylation results in unstable 

procollagen molecules which rapidly degrade within the cell (Myllyharju & Kivirikko, 2001). 

Importantly, in vivo studies have shown that AA deficiency results in delayed bone matrix 

mineralisation (Sugimoto et al., 1998), highlighting the link between collagen deposition and 

matrix mineralisation. We show here that the plant-derived SBP stimulates collagen I release 

by osteoblasts in the absence of AA supplementation. When considering the previously 

assumed, indispensable role of AA in ECM production and mineralisation, the ability of SBP 

to elicit a similar response in collagen synthesis in the absence of AA suggests a potential 

therapeutic role for this enzyme in regenerative medicine.  

We demonstrate here that SBP promotes osteoblast matrix mineralisation. For these 

mineralisation studies, AA was maintained in the mineral media due to its essential role for 

normal cross-linking of soluble collagen and its presence in normal physiological conditions 

(Peterkofsky, 1991). In the presence of AA, we found SBP to significantly promote matrix 

mineralisation by human osteoblasts. When considering the limitations of current grafting 

strategies, particularly the healing time required for large bone defects, we believe SBP could 

be effective at accelerating the repair process as seen by the increase in mineralisation compared 

to AA alone. The ability of SBP to manipulate the mineralisation process beyond the initial 
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stage of collagen biosynthesis suggests that SBP possesses the necessary properties of an 

effective osteoinductive agent.   

In association with mineralisation, we found SBP to be an effective regulator of several 

genes involved in osteoblast function including, osteoblast differentiation, mineralisation and 

repair. Firstly, our in vitro studies exhibited significant up-regulation of BMP-2, WNT-5A and 

BSP. It was previously reported that BMP-2 regulates BSP and WNT-5A mRNA expression 

by cultured osteoblasts (Lecanda, Avioli, & Cheng, 1997; Robubi et al., 2014). SBP not only 

up-regulated these bone forming genes but down-regulated a known repressor of osteogenesis, 

FRZ-B related protein. FRZ-B acts as a competitive inhibitor of the WNT signalling pathway 

(S. W. Cho et al., 2008), which, like BMP-2 is a key modulator of bone formation (Takada, 

Kouzmenko, & Kato, 2009). These data suggest that SBP may indirectly regulate mineralisation 

via induction of BMP-2, which acts as an intermediate for the regulation of downstream effector 

genes. BMP-2 has been extensively tested both in vitro and in vivo as an agent for the repair of 

osseous defects both alone and in combination with other growth factors (Nakamura et al., 

2005; Simmons, Alsberg, Hsiong, Kim, & Mooney, 2004; Street, Bao, Bunting, et al., 2002). 

Of these, vascular endothelial growth factor (VEGF) has been highly investigated by its ability 

to induce angiogenesis, act as an effective promoter of osteoblast differentiation and BMP-2 

induced bone formation (Peng et al., 2005; Street, Bao, Bunting, et al., 2002). This is of 

particular relevance given our recently published findings which demonstrate the pro-

angiogenic potential of peroxidases compared to VEGF (Panagopoulos et al., 2015).While 

BMP-2 appears to be the most potent osteoinductive agent identified to-date, several studies 

have shown osteoclastic activation and bone resorption in response to BMP-2 treatment 

(Seeherman, Li, Bouxsein, & Wozney, 2010; Toth et al., 2009), which may interfere with 

accelerated bone repair. This is further supported by a recent study which tested osteoprotegerin 

(OPG), a receptor activator of nuclear factor kappa-B ligand (RANKL) inhibitor which blocks 
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the differentiation and function of osteoclasts, increased bone repair of a mouse critical defect 

model in combination with locally delivered BMP-2 (Bougioukli et al., 2016). These reports 

are of significant interest, considering our recent findings which demonstrate the ability of 

peroxidases to inhibit RANKL-induced osteoclast formation and bone resorption 

(Panagopoulos et al., 2017). Therefore, our findings suggest that peroxidases may act as 

effective agents in regulating multiple aspects of the bone regenerative process.  

 In addition to the regulation of genes involved in osteoblast function by SBP, we 

observed significant up-regulation of numerous cytokines and chemokines including CCL5, 

CXCL5, CXCL6, CXCL12, IL-8, and IL-6, which are crucial in the recruitment and regulation 

of bone remodelling. For example, CCL5 when knocked out in mice, resulted in impaired bone 

formation and increased osteoclastogenesis (Wintges et al., 2013). Moreover, CCL5, was 

shown to promote osteoblast migration and survival (Yu, Huang, Collin‐Osdoby, & Osdoby, 

2004). The regulation of  IL-8, CXCL5 and CXCL6, which are essential for endothelial cell 

proliferation and neutrophil attraction (Koch et al., 2001), further supports SBPs potential role 

in angiogenesis. The pro-inflammatory cytokine IL-6 was also upregulated by SBP, which has 

been shown to both enhance and inhibit osteoclastogenesis and more recently has been reported 

to be involved in promoting osteoclastogenesis by indirectly increasing RANKL expression by 

osteoblasts (Duplomb et al., 2008; Udagawa et al., 1995). However recent studies have found 

IL-6 may affect bone mass by influencing osteocyte communication towards osteoblasts 

(Bakker, Kulkarni, Klein-Nulend, & Lems, 2014). Despite the conflicting results it is evident 

IL-6 is necessary for bone remodelling and therefore essential in the repair process. Up-

regulated CXCL12 is also substantially involved in bone formation and healing. Previous 

studies have shown that blocking CXCL12 or its receptor CXCR4, led to reduced osteoblastic 

differentiation markers, including their transcription factors (Zhu et al., 2007). Furthermore, in 

a mouse model, inactivation of CXCR4 resulted in reduced bone mass, decreased bone mineral 
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density and decreased expression of collagen type I (Zhu, Liang, Huang, Doty, & Boskey, 

2011). Interestingly, increased collagen type I secretion in the presence of SBP may be 

responsible for the increase in MMP1 expression observed, due to its functional role in the 

degradation of collagen type I (Rao, Mohanam, Puppala, & Rao, 1999). Although MMP3 is not 

a collagenase like MMP1, it was reported previously to be an effective activator of proMMP1 

(Rao et al., 1999). This investigation of the mechanistic relationship SBP has on osteoblast 

function was only conducted on a handful of key osteogenic genes, in order to better understand 

the role SBP has on mineralisation and repair. The limitation of only investigating a handful of 

key genes does provide preliminary evidence to suggest a causative role of SBP in the bone 

regenerative process by mechanisms involving the regulation of genes essential for bone repair.    

 In conclusion, our findings suggest SBP possesses a new pro-osteogenic role, to act as 

an osteoinductive agent, by promoting collagen I biosynthesis and matrix mineralisation. We 

have also presented the first evidence for potential mechanisms, demonstrating SBP’s ability to 

regulate genes involved in osteoblast function that are responsible for inflammation, ECM 

remodelling and ossification, which are necessary for normal bone healing. However, further 

studies are required to fully elucidate the mechanisms by which SBP promotes osteoblast 

differentiation and activity. Although it remains to be seen how effective SBP will be in vivo, 

we believe that it has the potential to be used in a localised setting in combination with current, 

commercially available biomaterials and scaffolds. Continued research both in vitro and in vivo 

will further optimise SBP and ultimately determine its potential as an effective osteoinductive 

agent for bone repair.  

 

 

 



A. SHOUBRIDGE 

107 

 

ACKNOWLEDGEMENTS 

This work was supported in part by The Hospital Research Foundation and the National 

Health and Medical Research Council (Career Development Fellowship/627015; Project 

Grant/1050694). 

 

CONFLICT OF INTEREST 

The authors declare that they have no competing interests. 

 

 

 

 

 

 

 

 

  



A. SHOUBRIDGE 

108 

 

REFERENCES 

Aruoma, O. I., & Halliwell, B. (1987). Action of hypochlorous acid on the antioxidant 

protective enzymes superoxide dismutase, catalase and glutathione peroxidase. 

Biochemical Journal, 248(3), 973-976.  

Atkins, G. J., Kostakis, P., Pan, B., Farrugia, A., Gronthos, S., Evdokiou, A., . . . Zannettino, 

A. C. (2003). RANKL expression is related to the differentiation state of human 

osteoblasts. Journal of Bone and Mineral Research, 18(6), 1088-1098.  

Bakker, A., Kulkarni, R., Klein-Nulend, J., & Lems, W. (2014). IL-6 alters osteocyte signaling 

toward osteoblasts but not osteoclasts. Journal of dental research, 93(4), 394-399.  

Betz, R. R. (2002). Limitations of autograft and allograft: new synthetic solutions. Orthopedics, 

25(5), S561-S570.  

Bougioukli, S., Jain, A., Sugiyama, O., Tinsley, B. A., Tang, A. H., Tan, M. H., . . . Lieberman, 

J. R. (2016). Combination therapy with BMP-2 and a systemic RANKL inhibitor 

enhances bone healing in a mouse critical-sized femoral defect. Bone, 84, 93-103.  

Cho, S. W., Her, S. J., Sun, H. J., Choi, O. K., Yang, J.-Y., Kim, S. W., . . . Shin, C. S. (2008). 

Differential effects of secreted frizzled-related proteins (sFRPs) on osteoblastic 

differentiation of mouse mesenchymal cells and apoptosis of osteoblasts. Biochemical 

and biophysical research communications, 367(2), 399-405.  

Cox, G., Einhorn, T., Tzioupis, C., & Giannoudis, P. (2010). Bone-turnover markers in fracture 

healing. Bone & Joint Journal, 92(3), 329-334.  

Curtin, C. M., Tierney, E. G., McSorley, K., Cryan, S. A., Duffy, G. P., & O'brien, F. J. (2015). 

Combinatorial Gene therapy accelerates bone regeneration: non‐viral dual delivery of 

VEGF and BMP2 in a collagen‐nanohydroxyapatite scaffold. Advanced healthcare 

materials, 4(2), 223-227.  

DeNichilo, M. O., Panagopoulos, V., Rayner, T. E., Borowicz, R. A., Greenwood, J. E., & 

Evdokiou, A. (2015). Peroxidase Enzymes Regulate Collagen Extracellular Matrix 

Biosynthesis. The American Journal of Pathology, 185(5), 1372-1384.  

DeNichilo, M. O., Shoubridge, A. J., Panagopoulos, V., Liapis, V., Zysk, A., Zinonos, I., . . . 

Evdokiou, A. (2016). Peroxidase Enzymes Regulate Collagen Biosynthesis and Matrix 

Mineralization by Cultured Human Osteoblasts. Calcified Tissue International, 98(3), 

294-305.  

Duplomb, L., Baud'Huin, M., Charrier, C., Berreur, M., Trichet, V., Blanchard, F., & Heymann, 

D. (2008). Interleukin-6 inhibits receptor activator of nuclear factor κB ligand-induced 

osteoclastogenesis by diverting cells into the macrophage lineage: key role of serine727 

phosphorylation of signal transducer and activator of transcription 3. Endocrinology, 

149(7), 3688-3697.  

Franceschi, R. T., & Iyer, B. S. (1992). Relationship between collagen synthesis and expression 

of the osteoblast phenotype in MC3T3-E1 cells. Journal of Bone and Mineral Research, 

7(2), 235-246.  



A. SHOUBRIDGE 

109 

 

Gay, S., & Miller, E. J. (1978). Collagen in the physiology and pathology of connective tissue: 

Fischer. 

Hiraga, S., Sasaki, K., Ito, H., Ohashi, Y., & Matsui, H. (2001). A large family of class III plant 

peroxidases. Plant and Cell Physiology, 42(5), 462-468.  

Homma, Y., Zimmermann, G., & Hernigou, P. (2013). Cellular therapies for the treatment of 

non-union: the past, present and future. Injury, 44, S46-S49.  

Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009a). Bioinformatics enrichment tools: 

paths toward the comprehensive functional analysis of large gene lists. Nucleic acids 

research, 37(1), 1-13.  

Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009b). Systematic and integrative analysis 

of large gene lists using DAVID bioinformatics resources. Nature protocols, 4(1), 44-

57.  

Jimi, E., Hirata, S., Osawa, K., Terashita, M., Kitamura, C., & Fukushima, H. (2012). The 

current and future therapies of bone regeneration to repair bone defects. International 

journal of dentistry, 2012.  

Koch, A. E., Volin, M. V., Woods, J. M., Kunkel, S. L., Connors, M. A., Harlow, L. A., . . . 

Strieter, R. M. (2001). Regulation of angiogenesis by the C‐X‐C chemokines 

interleukin‐8 and epithelial neutrophil activating peptide 78 in the rheumatoid joint. 

Arthritis & Rheumatology, 44(1), 31-40.  

Lecanda, F., Avioli, L. V., & Cheng, S. L. (1997). Regulation of bone matrix protein expression 

and induction of differentiation of human osteoblasts and human bone marrow stromal 

cells by bone morphogenetic protein‐2. Journal of cellular biochemistry, 67(3), 386-

398.  

Lind, M., Eriksen, E., & Bünger, C. (1996). Bone morphogenetic protein-2 but not bone 

morphogenetic protein-4 and-6 stimulates chemotactic migration of human osteoblasts, 

human marrow osteoblasts, and U2-OS cells. Bone, 18(1), 53-57.  

Myllyharju, J., & Kivirikko, K. I. (2001). Collagens and collagen-related diseases. Annals of 

medicine, 33(1), 7-21.  

Nakamura, Y., Tensho, K., Nakaya, H., Nawata, M., Okabe, T., & Wakitani, S. (2005). Low 

dose fibroblast growth factor-2 (FGF-2) enhances bone morphogenetic protein-2 (BMP-

2)-induced ectopic bone formation in mice. Bone, 36(3), 399-407.  

Ono, I., Gunji, H., Kaneko, F., Sait, T., & Kuboki, Y. (1995). Efficacy of hydroxyapatite 

ceramic as a carrier for recombinant human bone morphogenetic protein. Journal of 

Craniofacial Surgery, 6(3), 238-244.  

Oryan, A., Alidadi, S., Moshiri, A., & Maffulli, N. (2014). Bone regenerative medicine: classic 

options, novel strategies, and future directions. Journal of orthopaedic surgery and 

research, 9(1), 18.  



A. SHOUBRIDGE 

110 

 

Panagopoulos, V., Liapis, V., Zinonos, I., Hay, S., Leach, D. A., Ingman, W., . . . Zannettino, 

A. C. (2017). Peroxidase enzymes inhibit osteoclast differentiation and bone resorption. 

Molecular and cellular endocrinology, 440, 8-15.  

Panagopoulos, V., Zinonos, I., Leach, D. A., Hay, S. J., Liapis, V., Zysk, A., . . . Evdokiou, A. 

(2015). Uncovering a new role for peroxidase enzymes as drivers of angiogenesis. The 

international journal of biochemistry & cell biology, 68, 128-138.  

Patlolla, A., & Arinzeh, T. L. (2014). Evaluating apatite formation and osteogenic activity of 

electrospun composites for bone tissue engineering. Biotechnology and bioengineering, 

111(5), 1000-1017.  

Peng, H., Usas, A., Olshanski, A., Ho, A. M., Gearhart, B., Cooper, G. M., & Huard, J. (2005). 

VEGF Improves, Whereas sFlt1 Inhibits, BMP2-Induced Bone Formation and Bone 

Healing Through Modulation of Angiogenesis. Journal of Bone and Mineral Research, 

20(11), 2017-2027.  

Peterkofsky, B. (1991). Ascorbate requirement for hydroxylation and secretion of procollagen: 

relationship to inhibition of collagen synthesis in scurvy. The American journal of 

clinical nutrition, 54(6), 1135S-1140S.  

Rao, C., Mohanam, S., Puppala, A., & Rao, J. S. (1999). Regulation of ProMMP-1 and 

ProMMP-3 activation by tissue factor pathway inhibitor-2/matrix-associated serine 

protease inhibitor. Biochemical and biophysical research communications, 255(1), 94-

98.  

Robubi, A., Berger, C., Schmid, M., Huber, K., Engel, A., & Krugluger, W. (2014). Gene 

expression profiles induced by growth factors in in vitro cultured osteoblasts. Bone and 

Joint Research, 3(7), 236-240.  

Seeherman, H. J., Li, X. J., Bouxsein, M. L., & Wozney, J. M. (2010). rhBMP-2 induces 

transient bone resorption followed by bone formation in a nonhuman primate core-

defect model. The Journal of Bone & Joint Surgery, 92(2), 411-426.  

Simmons, C. A., Alsberg, E., Hsiong, S., Kim, W. J., & Mooney, D. J. (2004). Dual growth 

factor delivery and controlled scaffold degradation enhance in vivo bone formation by 

transplanted bone marrow stromal cells. Bone, 35(2), 562-569.  

Street, J., Bao, M., Bunting, S., Peale, F. V., Ferrara, N., Steinmetz, H., . . . van Bruggen, N. 

(2002). Vascular endothelial growth factor stimulates bone repair by promoting 

angiogenesis and bone turnover. Proceedings of the National Academy of Sciences, 

99(15), 9656-9661.  

Takada, I., Kouzmenko, A. P., & Kato, S. (2009). Wnt and PPARγ signaling in 

osteoblastogenesis and adipogenesis. Nature Reviews Rheumatology, 5(8), 442-447.  

Udagawa, N., Takahashi, N., Katagiri, T., Tamura, T., Wada, S., Findlay, D. M., . . . Kishimoto, 

T. (1995). Interleukin (IL)-6 induction of osteoclast differentiation depends on IL-6 

receptors expressed on osteoblastic cells but not on osteoclast progenitors. Journal of 

Experimental Medicine, 182(5), 1461-1468.  



A. SHOUBRIDGE 

111 

 

Wintges, K., Beil, F. T., Albers, J., Jeschke, A., Schweizer, M., Claass, B., . . . Schinke, T. 

(2013). Impaired bone formation and increased osteoclastogenesis in mice lacking 

chemokine (C‐C motif) ligand 5 (Ccl5). Journal of Bone and Mineral Research, 28(10), 

2070-2080.  

Yu, X., Huang, Y., Collin‐Osdoby, P., & Osdoby, P. (2004). CCR1 chemokines promote the 

chemotactic recruitment, RANKL development, and motility of osteoclasts and are 

induced by inflammatory cytokines in osteoblasts. Journal of Bone and Mineral 

Research, 19(12), 2065-2077.  

Zara, J. N., Siu, R. K., Zhang, X., Shen, J., Ngo, R., Lee, M., . . . Kwak, J. (2011). High doses 

of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation 

in vivo. Tissue Engineering Part A, 17(9-10), 1389-1399.  

Zhu, W., Boachie-Adjei, O., Rawlins, B. A., Frenkel, B., Boskey, A. L., Ivashkiv, L. B., & 

Blobel, C. P. (2007). A novel regulatory role for stromal-derived factor-1 signaling in 

bone morphogenic protein-2 osteogenic differentiation of mesenchymal C2C12 cells. 

Journal of Biological Chemistry, 282(26), 18676-18685.  

Zhu, W., Liang, G., Huang, Z., Doty, S. B., & Boskey, A. L. (2011). Conditional inactivation 

of the CXCR4 receptor in osteoprecursors reduces postnatal bone formation due to 

impaired osteoblast development. Journal of Biological Chemistry, 286(30), 26794-

26805.  

  



A. SHOUBRIDGE 

112 

 

 

 

 

 

 

 

CHAPTER 4:  

THE EFFECT OF SOYBEAN PEROXIDASE TO PROMOTE 

BONE REPAIR: A PRELIMINARY STUDY 
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ABSTRACT 

Recently, the use of synthetic scaffolds to provide a three-dimensional platform for bone cells 

to integrate and deposit new bone for the treatment of bone defects has increased, in particular 

as carriers of osteoinductive factors. However, despite on-going research we are yet to identify 

an ideal factor that can provide controlled, accelerated regeneration of new bone without the 

limitations in current regenerative therapies. The aim of the present study was to investigate 

whether SBP possesses osteoinductive capabilities by accelerating bone repair when combined 

with commercially available biphasic calcium phosphate (BCP) granules. BCP granules were 

pre-treated with SBP and untreated BCP served as the control. The ability for SBP to promote 

bone repair beyond the capacity of BCP granules alone was evaluated by conducting 

microcomputed tomography and histological analyses after 4 weeks of implantation in the 

femoral condyles of 4 sheep, using a bilateral model. Micro-CT analysis revealed SBP-treated 

BCP significantly increased bone formation within the defects at 4 weeks compared to BCP 

alone. Histological assessment correlated with reconstructions from micro-CT data, showing 

new bone formation prominent at the defect margins and surrounding individual BCP granules. 

In addition, a significant presence of osteoblasts and embedded osteocytes were observed in all 

specimens, indicative of intramembranous ossification. Whilst this study only assessed a single, 

early time point, results showed that SBP may be beneficial to be used clinically as an 

osteoinductive agent to accelerate repair of large bone defects and fractures.  
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INTRODUCTION 

Bone grafting is a common procedure in orthopaedic surgery to repair large osseous defects and 

fractures as a result of damaged, diseased or aged skeletal tissues. It is estimated that 2.2 million 

bone grafting procedures are performed annually world-wide and these figures are expected to 

double by 2020 due to population aging (Biancamaria Baroli, 2009; Giannoudis et al., 2005).  

 Clinically, autografting remains the current ‘gold standard’ grafting procedure for 

treating bone defects as it is histocompatible and non-immunogenic (Bauer & Muschler, 

2000a). Autograft bone is also highly effective due to its three-dimensional scaffold structure, 

which provides osteoconduction and also by providing bone cells for osteogenesis and growth 

factors (ie. BMP-2) to augment osteoinduction (Finkemeier, 2002). However, the amount of 

autologous bone which can be harvested is very limited and there is the potential for donor site 

morbidity at the second surgical site and higher complication rates (Almaiman, Al-Bargi, & 

Manson, 2013; Finkemeier, 2002; Gamradt & Lieberman, 2003). Allografting is a common 

alternative to standard autografting as it can provide ample amounts of bone without the 

additional morbidities from harvesting, however it also possesses a number of limitations 

(Gazdag, Lane, Glaser, & Forster, 1995). These include loss of osteoinductive properties and 

cellular components due to processing of bones to avoid immunologic rejection, as well as the 

risk of infection and disease transmission (Bostrom & Seigerman, 2005; Greenwald et al., 

2001). Due to these limitations the use of bone graft substitutes, often in the form of calcium 

phosphate ceramics is increasing, by their ability to eliminate many of the issues associated 

with the use of autologous and autograft bone (Fillingham & Jacobs, 2016). Of these, synthetic 

materials comprised of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA), termed 

biphasic calcium phosphate (BCP) have been studied extensively (Bouler, Pilet, Gauthier, & 

Verron, 2017) as the composition of these minerals is comparable to normal bone tissue (Kivrak 

& Taş, 1998). Although these materials demonstrate high biocompatibility and osteoconductive 
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properties, new bone formation is often limited due to their poor osteoinductive capabilities 

(Yuan et al., 2002). This limitation can be overcome however, by the incorporation of 

osteoinductive agents such as BMP-2 (Szpalski et al., 2012). Unfortunately, there are numerous 

concerns associated with the application of BMP-2, including local complications such as 

ectopic bone formation and significant costs attributed to the high doses administered 

(Tannoury & An, 2014). Therefore, researchers are currently investigating other growth factors 

and agents that possess osteoinductive properties which can effectively repair bone similarly to 

BMP-2, without producing comparable adverse effects. 

  Our laboratory has recently identified new functional roles for a group of haem-

containing enzymes called peroxidases. These enzymes which are naturally occurring in many 

organisms such as animals, plants and microorganisms have been well reported to possess 

antimicrobial activity (Aruoma & Halliwell, 1987). However, we have recently discovered that 

these enzymes, specifically mammalian peroxidases myeloperoxidase (MPO) and eosinophil 

peroxidase (EPO) and additionally plant peroxidases horseradish peroxidase (HRP) and 

soybean peroxidase (SBP) possess the ability to regulate various processes critical for tissue 

repair. These include the ability to regulate fibroblast ECM collagen biosynthesis (DeNichilo 

et al., 2015), drive angiogenesis (Panagopoulos et al., 2015) and inhibit osteoclastogenesis 

(Panagopoulos et al., 2017). Additionally, in the context of bone repair we have presented 

evidence that our most potent peroxidases tested to date, EPO and SBP, significantly regulate 

osteoblast ECM collagen biosynthesis and matrix mineralisation in vitro (unpublished). These 

findings demonstrate a potential role for peroxidases to be used as osteoinductive agents for 

bone repair. Although EPO has proven to be highly effective in regulating osteoblast function, 

it is highly expensive and currently not available in large quantities, making the use of EPO 

impractical for clinical use. Therefore we have been focusing our research on plant-derived 

SBP. To date, SBP has proven to be one of the most biologically active peroxidases, both in 
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vitro and in vivo (DeNichilo et al., 2015), but importantly it is non-toxic, highly stable and very 

inexpensive to manufacture. These properties make it an attractive agent, with significant 

potential for translation. However, before we can consider their use clinically, we needed to 

assess the ability of SBP to repair bone in vivo. 

Therefore, the objective of this preliminary study was to evaluate the osteoinductive 

capacity of SBP to accelerate bone regeneration when used in combination with a commercially 

available BCP. For this purpose SBP-soaked BCP granules (15:85 HA:β-TCP) were implanted 

in a critical-sized defect of the sheep femoral condyle. The use of a bilateral model allowed for 

individuals to serve as their own control, receiving ceramic granules alone or in combination 

with SBP. New bone formation was assessed 4 weeks post-surgery by histological and 

microcomputed tomography analyses. Our data demonstrate preliminary osteoinductive effects 

of SBP to improve the rate of bone regeneration in combination with BCP in-vivo. 
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MATERIALS AND METHODS 

Ethics Statement 

The study was approved by the Animal Ethics Committee of the University of Adelaide (M-

2015-044A) to conduct this study at the Medical Engineering Research Facility, Chermside, 

QLD. 

 

Animals 

Four male castrated, wethers sheep aged 3-5, years weighing 56-69 kg (mean: 60; SD ± 5.9) 

were randomly assigned with even distribution, to receive the experimental treatment in either 

the left or right hind limb to eliminate bias. The opposing hind limb received the control 

treatment. Due to the comparatively low impact this procedure has on the animal, a bilateral 

model is well tolerated and allows for the control and experimental treatments to be conducted 

in each animal.  

 

Experimental Procedure 

The sheep were fasted for 12 h prior but had free access to water during this time. To alleviate 

post-operative pain, a fentanyl patch (2-3 µg/kg/hr) was applied 24 h prior to surgery and 

reapplied every 72 h for a minimum of 10 days. After pre-emptive sedation and analgesia with 

midazolam (0.2 mg/kg) and buprenorphine (0.005 mg/kg), animals were induced with Propofol, 

which was administered until effect (3-4 mg/kg). Animals were then intubated and administered 

Isoflurane in oxygen at 2%. A patient warmer was used during the procedure to keep the 

animal’s body temperature stable and to prevent hypothermia. Cephalosporin (22 mg/kg) and 

Meloxicam (0.2 mg/kg) were administered pre-emptively and during the surgical procedure. 

Non-steroidal anti-inflammatory flunixin meglumine (1.1 mg/kg) was also administered. 
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Animals were positioned in dorsal recumbency and the operative site for each hind limb was 

prepared through sequential sterilising scrubs and draping. 

 Once marked, a 2-3 cm incision was made directly over the mid-medial aspect of the 

femoral condyle and underlying soft tissue removed to reveal the bone. A 12 mm diameter, 10 

mm deep defect was then created with sequential use of differing size drill heads (8.5 mm, 10 

mm and 12 mm). This method was used to avoid unnecessary thermal necrosis. The defect was 

then flushed with saline to remove any remaining bone fragments. Once the defect was created, 

commercially available Mastergraft® BCP [15% HA / 85% β-TCP] granules (Medtronic 

Sofamor Danek, Memphis, TN) were deposited into either condyle. In one defect, 1.25 cc BCP, 

which was pre-soaked for 15 mins in 5 mL soybean peroxidase (650 µg/mL) was added. The 

remaining defect received 1.25 cc BCP pre-soaked with 5 mL Ringer’s lactate (saline) solution 

as the control. Once the soaked BCP granules were added, they were gently compacted into the 

defect to ensure consistent and even distribution. The wound was closed using 0-vicryl in a 

cruciate pattern for the deep fascial layer and continuous pattern for the subcutaneous layer. 

Metallic skin staples were then applied over the surface. Finally, a bandage with antimicrobial 

dressing was applied over the surgical site. Animals were given antibiotics and analgesics 

according to the standard operating protocols. Animals remained in a sling for 24 h before being 

moved to indoor housing for the entirety of the study. Sheep were monitored 3 times a day for 

the first 3 days followed by once per day for the remainder of the study. Bandages were removed 

2-3 days post-surgery and surgical wounds assessed for signs of wound complication. The skin 

staples were removed 14 days post-surgery. The animals were sacrificed 4 weeks post-surgery 

and specimens were obtained by aseptic technique. 
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Microcomputed Tomography (Micro-CT) Imaging 

Samples (n=4) in 70% ethanol were cut to size in order to fit within a 36.9 mm diameter sample 

tube with the drill hole defect in vertical orientation. The samples were scanned in a micro-CT 

scanner 40 (Scanco Medical, Bassersdorf, Switzerland) at an energy of 70 kVp and intensity of 

114 µA with 200 µs integration time, resulting in an isotropic voxel size of 36 µm. The 

reconstructed scans were evaluated using Scanco µCT Evaluation Program (v6.5-3). A 

cylindrical volume of interest (VOI) with a diameter of 11 mm was defined for the analysis. 

The vertical evaluation length (cylinder height) was defined in a preview and consisted of the 

central, cylindrical section of the defect (approximately 100 slices or 3.6 mm), excluding the 

zones at the top and bottom ends of the defect to prevent “boundary effects”. To identify newly 

formed bone throughout the VOI, and to reduce partial volume effect at the grain boundaries of 

the ceramic granules, a masking procedure was employed (Burghardt, Kazakia, Laib & 

Majumdar, 2008). First, using a high threshold of 5069 Hounsfield Units (HU, 872.6 mg 

HA/mm3), with a gauss filter of σ=0.8 and a support of 1.0 was applied to segment the BCP 

granules within the defect. Next, the granules were enlarged by 2 voxels on all faces, and this 

enlarged granule volume was deducted from the VOI, leaving only the intra-granule space of 

the VOI. Newly formed bone was segmented from this space with a lower threshold of 2121 

HU (356.3 mg HA/mm3), a gauss filter of σ=1.8 and a support of 3.0. For the quantitative 

evaluation, the total cylindrical volume of interest (TV), the volume of the segmented newly 

formed bone (BV) and the average mineral density of the newly formed bone were calculated.  

 

Histology 

Femoral condyles were subjected to ethanol dehydration steps prior to being placed into a 

Methyl Methacrylate (MMA): Polyethylene Glycol 400 (PEG) solution (100% MMA: 10% 

PEG). Femurs were left in the MMA: PEG solution for 21 days, at which time polymerisation 
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was induced using a solution containing MMA: PEG: Perkadox (0.2%). Trimmed resin blocks 

were sectioned in the sagittal plane at 10 μm thickness. Sections were prepared for Toluidine 

blue staining. Images were taken using the NanoZoomer Digital Pathology (NDP-Hamamatsu, 

Hamamatsu City, Japan). Toluidine blue stained slides were used to visualise sites of new bone 

formation and the presence of osteoblasts and osteocytes. Sections were viewed using the 

associated software (NDP View Version 2.5; Hamamatsu, Hamamatsu City, Japan). 

 

Statistical Analysis  

Data points derived from experiments are reported as the mean ± standard deviation (SD). 

Analysis of variance to determine significant difference between samples was performed using 

the paired Student's t-test.  
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RESULTS 

Surgery  

Based on previous in vitro and in vivo studies (unpublished), we selected SBP at 650 µg/mL 

for in vivo testing in a standardised bilateral femoral defect model (Fig. 1). Saline and 

peroxidase-soaked BCP granules were prepared (Fig. 2) and implanted directly into the defect 

site (Fig. 3). No surgical complications or postoperative morbidities were detected in any of the 

sheep. The impact of this procedure on the animals’ wellbeing, in particular, ambulation has 

been minimal with good use of both hind limbs throughout the study.  
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Figure 1. Surgical procedure: an incision is created from the condylar notch to the proximal 

trochlear ridge (solid line). The osteochondral defect (diameter 12mm, depth 10mm) is created 

in the medial aspect of both femoral condyles (bilateral model) and is controlled by a drill guide 

to a depth of 10mm (red circle). 

 

 

 

 

 

 

 

 



A. SHOUBRIDGE 

126 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A. SHOUBRIDGE 

127 

 

 

 

 

 

 

 

 

 

 

Figure 2. The SBP and control group treated BCP, shortly before implantation. 
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Figure 3. Scaffold implantation (a), soft compaction into the defect (b) and after compaction 

ready for suturing (c) and (d).  
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Micro-CT Evaluation 

The effects of SBP in combination with biphasic ceramic granules on bone formation after 4 

weeks of implantation were studied by micro-CT imaging. Representative three-dimensional 

reconstructions of the micro-CT images which were created in the central zone of the defect 

(Fig. 4) showed increased bone formation in the treatment hind limbs, compared to control (Fig. 

5A). Quantitative analysis of the reconstructions depicted in Fig. 5A revealed a statistically 

significant increase in bone volume at the defect site in the SBP-treated limbs compared to 

control (p = 0.04) (Fig. 5B).   
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Figure 4. Representative micro-CT image of reconstructed defect block used for quantification. 

A cylindrical volume of interest (VOI) with a diameter of 11 mm and length of 3.6 mm, 

excluding the zones at the top and bottom ends of the defect to prevent “boundary effects”. 

 

 

 

 

 

 

 

 



A. SHOUBRIDGE 

133 

 

 

 

 

 



A. SHOUBRIDGE 

134 

 

 

 

 

 

 

Figure 5. Localised application of SBP-soaked BCP granules within a femoral defect increases 

bone formation. Sheep received a 12mmx10mm defect within the femoral condyle of both hind 

limbs. Each defect was filled with saline or SBP pre-soaked granules. A: Representative micro-

CT reconstructions. At 28 days the sheep were sacrificed, and micro-CT scanning of the bones 

was performed at the defect site. B: Quantitative analysis of the micro-CT data showed 

increased bone volume within the defects treated with BCP+SBP compared to BCP+saline 

(control). Analysis is presented as the mean bone volume (BV) to tissue volume (TV) of the 

SBP treatment compared to control. Data was analysed and reported as the mean ± standard 

deviation (SD). Analysis of variance to determine significant difference between samples was 

performed using the paired Student’s t-test of four determinations for control and peroxidases. 

*P = 0.04. 
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Histological Analysis 

In conjunction with micro-CT evaluation, histological assessment of new bone formation in the 

presence of SBP compared to control was conducted. Toluidine blue staining of cross-sections 

through the cancellous bone and implant showed an observable increase in new bone formation 

at the defect margins (data not shown). However, this increase in new bone formation at the 

periphery was not uniform around the entire implant in both SBP-treated defects and control. 

Representative images (Fig. 7) of new bone formation for each sample was shown to occur 

around individual HA/β-TCP Mastergraft® (MG) BCP granules. However, no difference in the 

extent of new bone formation around individual BCP granules between SBP-treated and saline-

treated control was observed. Despite no observable difference in bone formation around 

individual BCP granules, it is evident that SBP-treated granules did not impair normal bone 

formation processes. This can be deduced by the presence of osteoblasts and osteocytes adjacent 

to the treated granules in all animals tested (Fig. 7). Thus, observational analysis of histological 

specimens suggest that SBP-treated granules generated a comparable bone formation response 

to control. 
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Figure 7. Toluidine blue staining demonstrates formation of new bone after localised treatment 

of SBP-soaked Mastergraft® granules at 28 days post-surgery. Representative histological 

analysis of sheep femoral defects after 28 days treated with saline or SBP-soaked HA/β-TCP 

Mastergraft® (MG) BCP granules. Each individual animal has its own representative image for 

SBP and saline (a-b; c-d; e-f; g-h). Each representative image was taken near the defect margin 

where majority of new bone growth had occurred. Yellow asterisks indicate bone formation 

adjacent to BCP granules. Voids marked with a “G” indicate the location of MG granules. 

Cuboidal osteoblasts (dark blue) lining the new bone forming surface are indicated by red 

arrows and embedded osteocytes (pale, purple) are identified by black arrows. 
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DISCUSSION 

In this proof-of-concept study, the ability of SBP to accelerate bone repair in combination with 

commercially sourced BCP was assessed. The study successfully showed new bone formation 

after 4 weeks of BCP implantation, with increased healing observed in the bone defects treated 

with SBP.    

The critical-sized femoral condyle defect model remains a suitable model for testing the 

effectiveness of osteoinductive factors. The decision to use sheep for testing SBP’s 

osteoinductive capabilities was due to its reliability as a representative pre-clinical model to 

assess new bone formation (Apelt et al., 2004; Peters, Hines, Bachus, Craig, & Bloebaum, 2006; 

Theiss et al., 2005). It has been well reported that sheep possess a similar bone metabolism to 

humans and the ability to create larger defects in sheep to test therapies is of greater relevance 

than the use of rodents (N Patel et al., 2005).  

 The role that peroxidases have in regulating multiple cell types to promote tissue 

regeneration has been well-reported by our laboratory (DeNichilo et al., 2015; Panagopoulos et 

al., 2015). Of particular relevance to this study are our recent findings which have demonstrated 

that SBP is highly effective at stimulating primary osteoblasts to promote collagen biosynthesis 

and mineralisation of the deposited ECM (unpublished). The results presented in this current 

study, predominantly the significant increase in new bone formation as shown by micro-CT (p 

= 0.04), successfully validates this previously conducted in vitro data. These in vitro studies 

also presented early mechanistic evidence showing significant regulation of a number of key 

osteogenic genes. This further supports the rapid new bone deposition observed in this study 

and clearly demonstrates SBP’s potent osteoinductive capabilities. In addition, the mechanistic 

data also demonstrates upregulation of a number of pro-inflammatory genes in the presence of 

SBP, including a number of MMP’s and chemokines. Whilst the upregulation of these genes, 

which are known to be critical to generate an acute inflammatory response during early fracture 
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repair (Pape et al., 2010) would be beneficial, we must consider the potential risk of long-term 

inflammatory responses as a result of treatment with SBP, particularly in bone defects. 

Therefore, investigating late stage bone formation, specifically the integrity and strength of new 

bone after treatment with SBP is necessary for future studies.  

 From our in vitro studies and the broader research community, it is well established that 

peroxidases have a pro-inflammatory role, which could be beneficial for fracture healing. 

However, the significant increase in bone formation observed by this micro-CT at just four 

weeks post-surgery suggests a potential role for these enzymes not just for repair of non-unions, 

but also large bony defects. Furthermore, observational assessment of this preliminary study 

shows osteoblasts lining the deposited osteoid, with osteocytes entrapped within their lacunae. 

Signs of endochondral bone formation, such as the presence of chondrocytes or cartilage were 

absent. In regions of direct bone-implant contact at the defect margin, moderate bone ingrowth 

was observed. However, there were minimal regions of direct bone-implant contact at the defect 

margins (data not shown) which is potentially the cause of non-uniform bone formation at the 

periphery of the defects in all specimens. This observation correlates with the micro-CT 

reconstructions, where majority of new bone is at the defect margins, in a non-uniform 

distribution. The nature of the highly porous structure of the individual BCP granules created 

difficulty in ensuring the implant was uniform throughout the defect. Compaction of the 

granules once in the defect was conducted in an attempt to overcome this potential problem, 

however, to ensure granule pores remained intact, they were not compacted with significant 

force. It could be argued that an implant with direct bone-implant contact, such as a smooth 

press-fit implant would allow for greater uniformity in new bone formation at the defect margin. 

However, it has been reported that the addition of HA can eliminate the negative response of 

non-interference fit between bone and the implant (Søballe, Hansen, Brockstedt-Rasmussen, 

Pedersen, & Bünger, 1990). Taken together, this preliminary study has successfully 
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demonstrated an ability for SBP to promote new bone formation compared to BCP alone. In 

addition, the presence of SBP does not appear to generate a toxicity effect to the local cell 

population, where we see an abundance of osteoblasts and osteocytes, necessary for normal 

bone healing. Whilst this proof-of-concept study was successful, numerous limitations must be 

considered.   

A limitation of this study was the number of animals used. When considering the 

literature, there is significant variability in sheep numbers when using the critical-sized femoral 

condyle defect model (Milano et al., 2010; Zscharnack et al., 2010). Whilst most studies range 

from 6-12 animals, using a bilateral model, some studies only use 4 animals per treatment. 

However, this study was conducted as a preliminary, proof-of-concept study and so no prior 

study power was determined. Despite this, a significant difference between the addition of SBP 

compared to BCP alone was observed. The positive result suggests future studies will not 

require significantly large numbers to obtain a conclusive result, however careful consideration 

will be needed due to the intent to optimise SBP for clinical use. An additional consideration 

for future in vivo studies is the use of non-steroidal anti-inflammatory drugs (NSAIDs). These 

drugs have been previously reported to impair bone healing however, the drug Meloxicam, used 

in this study reportedly has no effect of bone healing (Pountos, Georgouli, Calori, & 

Giannoudis, 2012). Furthermore, a decrease in healing was not observed in the SBP-treated 

group, suggesting that the NSAIDs used in this study did not inhibit the bone reparative effects 

of SBP. Future fracture studies where callus formation and inflammation are critical for 

successful healing should consider which NSAIDs are used and how this may affect the pro-

inflammatory effects of peroxidases, including SBP. An aspect of this study which could also 

be considered a limitation is the single and early endpoint used to assess the effectiveness of 

SBP to accelerate the bone repair process. The single, short time point of 4 weeks was proposed 

to observe the early bone remodelling process and observe how SBP interacts with the local 
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bone environment. This early time point also enabled us to observe potential toxicity effects 

exhibited by the peroxidases at such a high concentration. Sampling across multiple time points 

at 2, 4, 6 and 12 weeks would have provided a more revealing image of the true bone formation 

and remodelling processes in the presence of SBP. A robust study of this nature would provide 

an understanding of where the agent is acting in the repair process and whether it provides any 

benefit in reducing healing time. However, with limited resources we were only afforded a 

single time point. An additional limitation to our analysis of the overall healing response was 

the limited histological data. Whilst observational assessment correlated with our micro-CT 

analysis, the use of double-labelled fluorochromes would enable us to directly measure the 

extent of new bone formation. Future studies will also be better equipped to conduct robust 

histomorphometrics with blinded analysis. A further limitation for this study is the absence of 

a positive control (ie. BMP-2). Future studies will require the comparison of SBP to the 

previous standard, BMP-2 to discern the clinical potential of SBP. Although this study does not 

allow us to compare to a positive control, the purpose of this study was to provide evidence that 

SBP can promote bone repair in vivo, when used in combination with an appropriate scaffold, 

which has been successfully demonstrated. 

 In conclusion, the present study provides a proof-of-concept role for peroxidases, by 

demonstrating that SBP, in combination with commercially available BCP could accelerate the 

repair of a critical-sized femoral condyle defect in sheep.  

Furthermore, histological observations between SBP and control suggest that SBP is 

non-toxic to the local cell populations, which is a critical step when identifying new, 

experimental agents. The requirement for novel osteoinductive agents to replace BMP-2 in the 

clinic provides an opportunity to continue to explore the possible applications of SBP in repair. 

Based on the limitations drawn from this study, further studies with more robust analyses are 

required to fully elucidate the potential of SBP to accelerate the repair of damaged bone. This 
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includes testing SBP long-term, in large segmental defect and fracture models with comparisons 

to BMP-2, which will ultimately determine its clinical effectiveness. 
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ABSTRACT 

To date, the functional role of peroxidase enzymes in human health has mainly been limited to 

providing a mechanism for oxidative defence against invading bacteria and other pathogenic 

microorganisms. Our laboratory has recently discovered new and important roles for 

mammalian and plant-derived peroxidases that include, the ability to promote tissue 

regeneration by modulating the function of mesenchymal lineage cells. This suggests that they 

may be used to repair bone defects and fractures. We previously demonstrated that SBP has the 

capacity to enhance bone repair in an ovine critical size defect (CSD) model. Whilst we have 

successfully established the CSD model in sheep, future fracture models testing SBP will be 

determined firstly in rodents. Therefore, this study was undertaken to validate plant-derived 

soybean peroxidase (SBP) in a mouse CSD model, which has been used extensively to test new 

bone graft substitutes. Critical size (3 mm) calvarial defects were created in the right parietal 

bone of adult female Balb/C mice. Defects were either treated with a collagen scaffold alone, 

or a scaffold pre-loaded with SBP at three separate doses (50µg, 100µg & 200µg). At 8-weeks, 

implants were retrieved and evaluated by micro-CT and histological analysis. Contrarily to 

what was expected, micro-CT results showed inhibition of bone formation in the SBP-treated 

groups when compared to scaffold alone (p < 0.01). Histological analysis revealed that for all 

SBP-treated groups at 8-weeks, the majority of the defect contained dense and slightly 

vascularised fibrous tissue. Mature bone formation was observed in the scaffold alone group 

with many positive TRAP-stained osteoclasts present, which is indicative of bone remodelling. 

For the doses investigated, the results show that the addition of SBP compromised bone 

remodelling in this mouse CSD model. These results suggest that further investigation is 

required to determine how SBP regulates cells essential for the remodelling process and further 

optimisation is required before testing the osteoinductive potential of SBP in a fracture setting.       
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INTRODUCTION 

The repair of large or complex bone defects and fractures that cannot repair correctly require 

the use of bone graft substitutes, in order to stabilise and restore bone integrity. To successfully 

qualify as a bone graft substitute the material should ideally possess two of the following 

characteristics, osteogenicity, osteoconductivity or osteoinductivity (Lane & Sandhu, 1987). 

The current standard surgical strategies to repair skeletal defects is to utilise autogenous or 

allogenic bone materials (Bauer & Muschler, 2000b; Boyce, Edwards & Scarborough, 1999). 

Although these current approaches are generally successful, there are a number of 

disadvantages. Autologous bone is often limited in availability and complications which can 

arise in 30% of cases have numerous associated morbidities (Amini, Laurencin, & Nukavarapu, 

2012; Banwart et al., 1995; Jimi et al., 2012). Allogenic bone grafts overcome some of the 

disadvantages of autogenous bone, however the risk of disease transmission and decreased 

biological capacity compared to autografts makes them an unfavourable choice (Lane & 

Sandhu, 1987; Oklund et al., 1986). Thus, there is a requirement for alternative bone graft 

substitutes which possess or combine the aforementioned characteristics, needed to ensure 

effective bone healing.  

 Growth factors and proteins have been increasingly used and tested to act as 

osteoinductive agents for clinical use. Much focus has been on factors directly responsible for 

the regulation of numerous cellular functions, including the formation and resorption of bone. 

Bone morphogenetic proteins (BMPs), which are essential factors for promoting the activity of 

bone-forming cells, have been used extensively both pre-clinically and clinically and have 

demonstrated significant osteoinductive potential (Dragoo et al., 2003; Kloen et al., 2003; 

Mussano et al., 2007). However, there are now emerging reports of complications post-surgery 

and along with the significant high cost of using BMPs clinically, there is a need to identify 

safer and cheaper alternative agents (Flierl et al., 2013; Garrison et al., 2007).    
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 Our laboratory has recently demonstrated that peroxidases, which are a ubiquitous 

group of haem-containing enzymes, known for their antimicrobial role during host defence 

(Hiraga et al., 2001) have implications in wound healing (Rayner et al., 2000). Previous in vitro 

studies have demonstrated that peroxidases are pro-angiogenic (Panagopoulos et al., 2015) and 

have the capacity to stimulate osteoblasts to increase collagen I biosynthesis and mineralise the 

surrounding extracellular matrix (ECM) (DeNichilo et al., 2016). In vivo, our laboratory has 

also demonstrated that plant-derived soybean peroxidase (SBP), which is an inexpensive and 

highly available peroxidase compared to previously tested peroxidases, stimulates a fibrogenic 

response and induces connective tissue regeneration in a porcine model (DeNichilo et al., 2015). 

Additionally, we have successfully employed a CSD model in the medial femoral condyles of 

sheep (unpublished), which has demonstrated that SBP successfully accelerates bone formation 

in a critical size sheep femoral defect. This study established the clinical potential of SBP in a 

femoral drill-hole defect model, however, we needed to further optimise and verify its 

effectiveness to repair bone fractures. Although sheep are an ideal model for testing bone repair 

therapies in a fracture setting, there are significant costs associated and ethical pressures, which 

must be taken into consideration when testing new treatments (Martini, Fini, Giavaresi, & 

Giardino, 2001). In comparison, the significantly lower cost of rodents allows for high 

throughput optimisation studies. This includes the ability to conduct longitudinal studies and 

assess multiple doses. Furthermore, the size of rodent bones allows for rapid analyses compared 

to sheep. Thus, the decision was made to use of rodents as the species for preliminary testing.  

We attempted to mimic the response observed in the sheep model by exploring a critical size 

defect (CSD) model in mice. CSDs are defects which cannot heal by bone formation throughout 

the lifetime of the animal, without the addition of an applied bone graft substitute (Schmitz & 

Hollinger, 1986). 
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 In this study we hypothesised that delivery of SBP in combination with an 

osteoconductive, absorbable collagen scaffold, CollaCote™ would increase bony bridging and 

bone formation at 8 weeks, when compared with scaffold alone. To test this hypothesis, we 

implanted SBP-loaded scaffolds into a mouse cranial CSD of 3 mm in diameter and quantified 

new bone formation at 3 days and 8 weeks by longitudinal microCT analysis. Histological 

analysis was also performed at 8 weeks.     
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MATERIALS AND METHODS 

Ethics Statement 

The use of all normal human donor-derived bone tissue was approved by the human ethics 

committee of the Royal Adelaide Hospital/University of Adelaide (Approval No. RAH 

090101). Human bone samples were obtained with informed written donor consent, as required 

and approved by the ethics committee. The animal study was approved by the Animal Ethics 

Committees of the University of Adelaide (M-2013-221A) and SA Pathology (8-15a).  

 

Cell Culture 

The osteosarcoma cell line SaOS-2 were kindly donated by TGR BioSciences (TGR 

BioSciences Pty Ltd, Adelaide, SA). SaOS-2 cells were expanded in culture using Dulbecco’s 

Modified Eagle’s Medium (DMEM; high glucose with no ascorbic acid; AA), supplemented 

with 2 mmol/L glutamine, 100 IU/mL penicillin, 100 µg/mL streptomycin, 20 mmol/L HEPES, 

and 10% foetal bovine serum (FBS; Invitrogen Life Technologies, Carlsbad, CA) in a 5% CO2-

containing humidified atmosphere. These cells maintain an osteoblastic phenotype in culture 

and stain positive for alkaline phosphatase activity. 

 

Cell Viability 

To determine the effects of SBP on cell viability, SaOS-2 cells were cultured in 96-well plates 

(Nunc, Roskilde, Denmark) at a density of 1.2 × 104 cells per well for 5 days in DMEM/10% 

FBS until reaching confluence. Cells were starved overnight in serum-free DMEM and then 

stimulated for an additional 72 h in serum-free DMEM containing either AA 2-phosphate at 

100 µmol/L (Wako Chemical Industries, Osaka, Japan) as a positive control, or with soybean 

peroxidase (SBP; Bio-Research Products, North Liberty, IA) in the absence of AA 

supplementation. Cell viability/growth was then assessed using the alamarBlue fluorescent dye 
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assay (Invitrogen Life Technologies), according to manufacturer’s instructions. Fluorescence 

was measured at wavelengths of 530 nm excitation and 595 nm emission using a FLUOstar 

Optima plate reader (BMG Labtek Australia, Mornington, VIC). 

 

Animals 

56 Female Balb/C mice at 8 weeks of age (Institute of Medical and Veterinary Services 

Division), weighing 13.6-23.6 g (mean: 19.9; SD ± 1.7) were acclimatised to the animal housing 

facility for a minimum period of 1 week before the commencement of experimentation. The 

general physical well-being and weight of animals were monitored continuously throughout the 

experiments. All mice were housed under pathogen-free conditions and all experimental 

procedures on animals were carried out with strict adherence to the rules and guidelines for the 

ethical use of animals in research and were approved by the Animal Ethics Committees of the 

University of Adelaide and the Institute of Medical and Veterinary Science, Adelaide, SA, 

Australia. 

 

Scaffold Preparation 

Scaffolds used in this study were collagen-based biodegradable scaffolds called CollaCote™ 

(Medtronic Australasia, Sydney, NSW). Before conducting the in vivo study, it was confirmed 

that this scaffold material could readily uptake SBP to the desired concentrations of 50µg, 

100µg and 200µg. These doses were determined to be suitable based on previous in vitro studies 

and an in vivo pilot study. For in vitro assessment, the CollaCote™ material was cut as 3-mm 

diameter discs, using a manual biopsy puncture (Stiefel Laboratories, Melbourne, VIC). It was 

determined that each scaffold could hold 15 µl of solution. From this information, scaffolds 

were individually added to wells containing 30 µl of SBP at 3.33 mg/mL, 6.66 mg/mL and 

13.33 mg/mL which was expected to result in the uptake of 50 µg, 100 µg and 200 µg total SBP 
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respectively. Scaffolds were maintained at room temperature for 24 h. Total concentration of 

SBP taken up by the scaffolds was quantified using the Nanodrop spectrophotometric 

measurement at 403 nm (Nanodrop Technologies, Thermo Fisher Scientific, Scoresby, VIC). 

For in vivo preparation, scaffolds were cut as 3-mm diameter circles in a sterile setting 

and maintained under sterile conditions. 24 h before surgery and implantation, 14 scaffolds per 

treatment group were loaded individually into separate wells of a v-bottom 96-well plate. 30 µl 

of SBP at concentrations of 3.33 mg/mL, 6.66 mg/mL and 13.33 mg/mL were aliquoted onto 

each scaffold which would result in the final concentrations of SBP within each scaffold to be 

50 µg, 100 µg and 200 µg. As a control, 30 µl of saline was also added to individual scaffolds. 

Scaffolds were loaded, sealed and kept at the IMVS Animal House at room temperature 

overnight, ready to be implanted the next day.   

 

Mouse Calvarial Critical Size Defect Model 

An established gold standard mouse calvarial size defect (CSD) model was used to test the 

ability of SBP-soaked collagen scaffolds to induce bone repair, as previously described with 

minor modifications (Aalami et al., 2004; Hollinger & Kleinschmidt, 1990). Briefly, each 

treatment group (n=14) which consisted of 8-week-old Balb/C female mice, were anaesthetised 

by 80 mg/kg Ketamine hydrochloride and 10mg/kg Xylazine via intraperitoneal (i.p) injection, 

followed by subcutaneous (s.c) injection of 0.1 mg/kg Buprenorphine analgesic. Once mice 

were non-responsive to paw pinching, hair on the scalp was clipped and disinfected with 70% 

ethanol before a C-shaped incision of the skin was made, over the right parietal bone. The 

pericranium was removed by blunt scraping and 3-mm calvarial defects were created in the 

right parietal bone with a biopsy puncture (Stiefel) with meticulous care taken to avoid 

damaging of underlying dura mater. Care was also taken to ensure the cranium did not dry out 

by applying phosphate buffered saline (PBS) as needed. Each parietal bone defect was filled 
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with a 3-mm-diameter CollaCote™ collagen scaffold (Zfx Australia Pty Ltd, Sydney, NSW), 

with the assigned treatment as mentioned above. The skin was sutured closed using resorbable 

sutures and mice were moved to a heat pad to recover before being transferred into cages. Mice 

were monitored twice a day for 5 days after surgery to ensure complete recovery. 

 

In Vivo Live Microcomputed Tomography Imaging 

Computed tomography (CT) images were obtained using a SkyScan-1076 in-vivo micro-CT 

scanner (Bruker-micro-CT, Kontich, Belgium) while the animals were anaesthetised via i.p 

injection, as previously described (Zinonos et al., 2009). Briefly, the micro-CT Scanner was 

operated at 50 kV, 110 μA, rotation step of 0.8, 0.5-mm Al filter, scanning width of 35 mm, 

scanning resolution of 9 μm, and imaging time of 30 min. For ex vivo analysis, skulls were 

surgically resected before being inserted into the scanner. Micro-CT settings remained 

consistent to the in vivo scans. The cross-sections were reconstructed using a Skyscan 

reconstruction program (software NRecon, Bruker). Cross-section images were then realigned 

consistently between samples and the sagittal sections saved (software Data Viewer, Bruker). 

Files were then imported into CTAn software (Bruker) for three-dimensional analysis and 

three-dimensional image generation. All images were viewed and edited using CTVol (Bruker) 

visualisation software. 

 

Ex Vivo Micro-CT Imaging  

At 56 days post-surgery, mice were euthanised by CO2 gas and cervical dislocation. Mice heads 

were then surgically excised and placed into labelled containers filled with 70% ethanol ready 

for ex vivo micro-CT. The micro-CT scanner and analysis was conducted as previously 

mentioned for in vivo imaging.  
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Histology 

Skulls were fixed in 10% (v/v) buffered formalin (24 hours at 4°C), followed by 4 to 6 weeks 

of decalcification in 0.5 M EDTA–0.5% paraformaldehyde in PBS (pH 8.0) at 4°C. Complete 

decalcification was confirmed by radiography. The calvaria and underlying brain tissue was 

excised and then embedded in paraffin. 5 µm longitudinal sections were prepared and stained 

with hematoxylin and eosin (H&E). Additional sections were used for TRAP (Sigma-Aldrich) 

staining following the manufacture's protocol. Images were taken using the Olympus CKX41 

(Olympus, Hachioji-shi, Tokyo) microscope.  

 

Statistical Analysis 

Data points derived from experiments are reported as the mean ± standard deviation (SD). 

Analysis of variance to determine significant difference between samples was performed using 

the paired Student's t-test.  
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RESULTS 

SBP promotes cell survival at high concentrations. 

Assessment of cell viability after 72 h indicated that high dose SBP had no impact on SaOs-2 

cells when compared to untreated cells (Fig. 1). This confirmed that SBP is not toxic at the high 

doses tested and without effect on cell proliferation. This is consistent with our previous in vitro 

studies, which demonstrated the non-toxic effects of SBP on primary human osteoblasts 

(unpublished). 
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Figure 1. High dose SBP does not affect cell viability. Viability of cultured osteosarcoma cell 

line SaOS-2 after 72h stimulation with SBP (µg), as assessed using the alamarBlue dye assay. 

Cell viability was normalised so the average values of untreated cells were set to 100% relative 

to each dose of SBP. Representative data are the mean ± SD of triplicate determinations, of 

three independent experiments.  

 

 

 

 

 

 

 



A. SHOUBRIDGE 

 

163 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

50

100

150

0 50 100 200 AA

SBP

C
el

l v
ia

b
il

it
y 

(%
 r

el
a

ti
ve

 to
 u

n
st

im
)

Cell Viability
A

(µg)



A. SHOUBRIDGE 

 

164 

 

CollaCote possesses favourable characteristics as a vessel to contain SBP.  

Visualisation of CollaCote™ under SEM shows a highly porous, honeycomb-like structure 

within the material (Fig. 2A). Interior sections showed a uniform framework of Type I bovine 

collagen with voids ranging from approximately 10 µm to 100 µm. When the scaffold material 

was cut to 3-mm diameter discs and 15 µl of SBP added at increasing concentrations, we 

observed an ability of the CollaCote™ to retain the entire 15 µl solution by swelling in size and 

increasing in colour intensity with each increasing SBP concentration (Fig. 2B). Once we were 

confident that SBP could be absorbed by the material and retained, we assessed the ability of 

the material to take up desired concentrations of SBP for implantation into mice. We confirmed 

that the scaffolds, which hold 15 µl of solution, could successfully uptake our desired doses of 

SBP to be used in vivo of 50 µg, 100 µg and 200 µg by adding SBP at 3.33 mg/mL, 6.66 mg/mL 

and 13.33 mg/mL respectively, by Nanodrop quantification of remaining solution (Fig. 2C). 

From these in vitro experiments we were confident that CollaCote™ was a suitable material to 

contain SBP and to be utilised as an osteoconductive scaffold to assist SBP in accelerating the 

repair of critical size defects in mice. 
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Figure 2. CollaCote readily uptakes desired concentrations of soybean peroxidase. A: 

Representative SEM images of the CollaCote scaffold material. Images were taken of the 

interior and cross-sectional aspects of the material at low and high magnifications. B: 

Representative images of CollaCote scaffolds retaining SBP at increasing concentrations. 3-

mm diameter scaffolds were cut and pre-soaked with SBP for 24 h at the doses indicated. C: 

Quantitation of SBP retained within the scaffolds after 24 h. 3-mm diameter scaffolds were 

soaked in SBP for 24 h at 3.33, 6.66 and 13.33 mg/mL. Experiments were independently 

performed two times and each reading was taken in duplicate. Data are the mean ± SD of 

triplicate determinations for each peroxidase dose. 
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SBP-loaded CollaCote scaffolds inhibit bone remodelling in a Calvarial critical size defect 

model.  

Previous in vitro studies conducted by our laboratory have shown SBP to be highly effective in 

promoting the production of procollagen I and generating a mineralised ECM by primary 

human osteoblasts (unpublished). Furthermore, we have demonstrated that SBP has the 

capacity to increase the deposition of new bone at 4 weeks, in an ovine defect model. To further 

optimise and validate the effectiveness of SBP in bone and fracture repair using rodents as an 

extremely cheap and high throughput species, we needed to establish the gold-standard CSD 

model in mice. Representative micro-CT images via 3D reconstruction at day 3 post-surgery 

demonstrate consistent creation of the defects across each tested group including control (Fig. 

3A). 3D modelling and quantitative analysis of the defects containing saline-treated 

CollaCote™ at day 56 confirmed the osteoconductive ability of the scaffold material. Bone 

formation presented as total bone volume (BV), showed an approximately 50% increase in BV 

at day 56 compared to baseline (p < 0.05) (Fig. 3B). In support of the micro-CT data, 

histological evaluation confirms the presence of new bone formation, by CollaCote™ alone, as 

indicated by the formation of bone marrow pockets, angiogenesis and new bone surfaces (Fig. 

4). Furthermore, TRAP staining provided further evidence of new bone formation and 

remodelling due to the number of positive-stained osteoclasts lining the new bone surfaces. In 

contrast, SBP-loaded scaffolds significantly inhibited bone formation compared to control and 

demonstrated a BV comparable to baseline (p > 0.05). In addition, Histological evaluation of 

the maximal dose of SBP administered (200µg) showed significant reduction in bone formation 

and remodelling when compared to the saline control (Fig. 4). H&E staining shows a lack of 

newly formed bone and bone marrow pockets within the defect. A large amount of irregular 

collagen fibres can be observed within the defect surrounding small blood vessels. Finally, a 

number of positive TRAP-stained osteoclasts can be observed, however they are only located 
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along the original bone surfaces. These findings demonstrate the complexity of bone formation 

and remodelling and furthermore, the numerous potential roles SBP has on the regulation of 

cellular function in vivo.  
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Figure 3. SBP combined with CollaCote inhibits bone regeneration within a calvarial critical 

size defect. Mice (n=14) received a 3-mm defect within the right parietal bone of the calvarium. 

Each defect was filled with saline or SBP-soaked collagen scaffold (CollaCote). A: 

Representative micro-CT reconstructions. At day 3 live micro-CT scanning of the calvarium of 

each mouse was conducted to establish a baseline. At day 56 mice were sacrificed and ex vivo 

micro-CT scanning of the defect site was performed. B: Quantitative analysis of the micro-CT 

data showed increased bone volume within the defects treated with CollaCote+saline (control) 

compared to CollaCote+SBP at each dose. Analysis is presented as the mean bone volume (BV) 

of each SBP dose compared to control. Data was analysed using paired Student’s t-test and are 

the mean ± SD of fourteen determinations for control and each SBP dose. *P<0.01. 
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Figure 4.  Reduced detection of TRAP-positive osteoclasts and bone formation in the presence 

of SBP-loaded scaffolds. A: Representative images of histological analysis using H&E and 

TRAP to visually compare between the calvarial CSD treated with SBP (200µg) and control. 

V: blood vessel; DM: dura mater; BM: bone marrow; Oc: osteoclast.  
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DISCUSSION 

The purpose of this study was to establish a cheaper and high throughput model of bone repair 

by using rodents, which can be used to further optimise SBP as an osteoinductive agent. 

Therefore, the objective of this study was to evaluate the efficacy of SBP in combination with 

an osteoconductive scaffold to accelerate repair of a 3 mm critical size bone defect in mice.  

Based on our previously successful ovine model (unpublished), we hypothesised that the 

delivery of SBP, which would act as an osteoinductive agent with an osteoconductive scaffold, 

would result in a synergistic response to increase bone formation within the CSD compared to 

the scaffold alone.  

We have previously demonstrated in an ovine CSD model, that SBP is an effective agent 

at accelerating bone formation in combination with an osteoconductive scaffold. However, 

whilst the CSD model is an established model for assessing the regenerative potential of bone 

graft substitutes (Hollinger & Kleinschmidt, 1990), the mechanism of repair within these 

cancellous bone defects is predominantly via direct intramembranous ossification (Pobloth et 

al., 2016; Uebersax, 2008). This mechanism of repair differs to the combination of 

endochondral and intramembranous ossification observed in fracture models and so, new bone 

graft substitutes need to be verified in different models which replicate these mechanisms. We 

therefore aim to assess the potential of SBP to enhance repair of a fracture model initially in 

rodents, before progressing to sheep. However, the purpose of this study was to firstly establish 

SBP in a rodent model, by using a CSD model in the mouse calvaria. It was hypothesised that 

the calvarial CSD would reproduce what was observed in the sheep drill-hole CSD, due to the 

comparable healing mechanisms of intramembranous ossification (Alberius & Johnell, 1991).  

Due to this understanding, we anticipated similar outcomes in the context of bone 

formation using the mouse CSD model. In contrast, micro-CT and histological analysis showed 

exactly the opposite effect, where SBP inhibited the response. Comparisons of bone formation 
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between long and flat bones have previously shown that the rate of healing in long bones occurs 

much more rapidly and the absence of mechanical loading within the calvaria can impede the 

healing process (Lim et al., 2013). Whilst this was initially overlooked in our study design, the 

presence of new bone within the scaffold alone group in this study clearly demonstrates that the 

model itself may not be the problem. We are certain the collagen scaffold itself is 

osteoconductive and responsible for the partial healing of the defect, as previous experiments 

conducted in our group revealed that empty defects were generally filled with fibrous tissue 

within the 8-week timespan and absent of new bone. The 8-week timespan was selected based 

on previous studies that have shown the critical time of healing is between the 4th and 8th week 

post-surgery, with minimal healing beyond the 8-week time point (Cooper et al., 2010).  

The use of carriers for sustained release of growth factors is necessary for delivering 

bone-inducing agents. In addition, they act as osteoconductive scaffolds to provide structural 

support for the infiltrating bone-remodelling cells (Wang & Yeung, 2017). Type I collagen 

scaffolds are an ideal candidate for the delivery of growth factors, as type I collagen is a major 

component of bone (Glimcher & Lian, 1989). Collagen sponges have been extensively tested 

and have demonstrated successful release of growth factors, including BMP-2 (Friess, Uludag, 

Foskett, Biron, & Sargeant, 1999; Schmidmaier, Schwabe, Strobel, & Wildemann, 2008). In 

this study, CollaCote firstly proved to be a suitable scaffold by its ability to take-up desired 

concentrations of SBP. Secondly, it appeared to be nearly completely resorbed by 8-weeks. 

Interestingly, in the SBP-treated defects, there is a significant amount of collagen within the 

defect. It is likely that the dense collagenous tissue is unresorbed CollaCote, due to the absence 

of remodelling.  

The successful partial healing in the control group and the intact dura mater observed 

in each treatment group and animal, which is critical for normal bone repair (Cooper et al., 

2010), confirms the model’s success. It also strongly suggests that SBP is responsible for the 
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inhibition of bone formation within the CSD. Recent unpublished evidence by our laboratory 

has demonstrated that SBP can effectively promote osteoblast function by increasing collagen 

biosynthesis and matrix mineralisation. With comparable results also observed in the presence 

of mammalian peroxidases (DeNichilo et al., 2016). However, we have also recently 

demonstrated that both plant and mammalian peroxidases can inhibit osteoclastogenesis in vitro 

(Panagopoulos et al., 2017). Whilst we have investigated both osteoclasts and osteoblasts in the 

context of peroxidase treatment, we have not yet investigated the effect these enzymes have in 

a dynamic co-culture system. Since bone remodelling and repair is a dynamic process which 

requires communication between both cell types (Sims & Gooi, 2008), it is possible the doses 

of SBP used disrupted this cellular communication and consequently the remodelling process.   

It is also a possibility that the absence of healing was partially related to the model itself. 

From the literature it is clear that peroxidases are released at sites of tissue injury by 

inflammatory cells, including neutrophils, macrophages and eosinophils (Acharya & 

Ackerman, 2014; Van der Veen, de Winther, & Heeringa, 2009). Furthermore, we have since 

presented in vitro evidence that plant-derived SBP promotes the expression of pro-

inflammatory markers, expressed by osteoblasts necessary for recruitment and remodelling, 

(unpublished). This suggests that peroxidases may play a greater role at sites of inflammation. 

This is of relevance to the absence of healing observed in this study, as controlled surgeries 

created in the calvaria, such as the CSD model, would not be expected to generate the same 

inflammatory response generated in the long bones, where the previous CSD model in sheep 

was conducted (unpublished). It is therefore a possibility that for peroxidases to work 

effectively as regenerative agents, a significant inflammatory response may be required. 

Inflammation does not solely provide a reason for the inhibitory effect observed in this study. 

However, since during normal fracture repair, eosinophils, neutrophils and macrophages are 

recruited to the fracture site (Andrew, Andrew, Freemont, & Marsh, 1994) where they release 
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peroxidases the fracture setting likely represents the best therapeutic approach for SBP in bone 

repair. It is also well reported that peroxidases, particularly SBP, are highly stable under a range 

of temperatures and pH (Henriksen et al., 2001; McEldoon & Dordick, 1996) which suggests 

that it is unlikely SBP degraded once at the defect site.  

 Several limitations need to be considered when interpreting the data presented here. 

Firstly, the absence of a positive control such as BMP-2 would have provided valuable 

information regarding the effectiveness of SBP compared to the current clinical agent. Although 

SBP impeded the repair process, future experiments should include BMP-2 to provide more 

information as to the reliability of this model. A further limitation of this study was the lack of 

in vitro evidence to determine the suitable dose of SBP to be used. To address this, three 

increasing doses of SBP were used, however the range of doses were broad and for future 

experiments smaller doses should be considered. In addition, studies should have been 

conducted to assess the release of SBP from the scaffold material, to determine the rate and 

concentration of release. Furthermore, whilst these doses of SBP were tested in the SaOS-2 

osteosarcoma cell line, which demonstrated a nontoxic effect of these cells, validation of 

toxicity effects at high doses should be tested using primary human osteoblasts. Finally, we 

have evidence of SBP’s ability to promote osteoblast function and inhibit osteoclastogenesis, 

which suggests a role for this enzyme in bone repair when optimised. However, further in vitro 

studies are essential to understand the inhibitory effect observed in this study and should be 

conducted before pursuing the fracture model. 

Taken together, the results of this present study demonstrate an inhibition of bone 

formation following delivery of SBP within the bone defects. Despite the results of this study, 

the model was conducted successfully and CollaCote™ proved to be a suitable osteoconductive 

scaffold, by partially healing the bone defects. Moreover, SBP does not cause cytotoxicity, 

which could have been a cause for inhibition of bone formation. However, this should be further 
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validated using primary human osteoblasts. Based on previous in vitro studies and the 

successful sheep CSD model the potential for SBP to act as an osteoinductive agent should not 

be disregarded, despite the results of this study. Therefore, future studies using rodents as a 

cheap and high-throughput model should investigate lower range doses of SBP. The link 

peroxidases have with inflammation also suggests that the fracture setting would be a more 

appropriate model to explore, compared to the calvarial CSD model where inflammation is 

limited. Whilst there is still a considerable amount of research to be done, the requirement for 

novel osteoinductive agents is clear, due to the current complications associated with the use of 

BMP-2. Therefore, further research is essential, to fully elucidate the mechanistic role of SBP 

in promoting osteoblast function and confirm whether SBP can be used as a cheap, stable and 

effective osteoinductive agent in fracture healing or various settings of bone damage. 

 

 

 

 

 

 

 

 

 

 

 



A. SHOUBRIDGE 

178 

 

ACKNOWLEDGEMENTS 

This work was supported in part by The Hospital Research Foundation and the National 

Health and Medical Research Council (Career Development Fellowship/627015; Project 

Grant/1050694). 

 

CONFLICT OF INTEREST 

The authors declare that they have no competing interests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A. SHOUBRIDGE 

179 

 

REFERENCES 

Acharya, K. R., & Ackerman, S. J. (2014). Eosinophil granule proteins: form and function. 

Journal of Biological Chemistry, 289(25), 17406-17415.  

Alberius, P., & Johnell, O. (1991). Repair of intra-membranous bone fractures and defects in 

rats: Immunolocalization of bone and cartilage proteins and proteoglycans. Journal of 

Cranio-Maxillofacial Surgery, 19(1), 15-20.  

Amini, A. R., Laurencin, C. T., & Nukavarapu, S. P. (2012). Bone Tissue Engineering: Recent 

Advances and Challenges. Critical reviews in biomedical engineering, 40(5), 363-408. 

Andrew, J. G., Andrew, S. M., Freemont, A. J., & Marsh, D. R. (1994). Inflammatory cells in 

normal human fracture healing. Acta Orthop Scand, 65(4), 462-466.  

Banwart, J. C., Asher, M. A., & Hassanein, R. S. (1995). Iliac crest bone graft harvest donor 

site morbidity. A statistical evaluation. Spine, 20(9), 1055-1060.  

Bauer, T. W., & Muschler, G. F. (2000a). Bone graft materials: an overview of the basic 

science. Clinical orthopaedics and related research, 371, 10-27.  

Boyce, T., Edwards, J., & Scarborough, N. (1999). Allograft bone: the influence of processing 

on safety and performance. Orthopedic Clinics, 30(4), 571-581.  

Cooper, G. M., Mooney, M. P., Gosain, A. K., Campbell, P. G., Losee, J. E., & Huard, J. (2010). 

Testing the “critical-size” in calvarial bone defects: revisiting the concept of a critical-

sized defect (CSD). Plastic and reconstructive surgery, 125(6), 1685.  

DeNichilo, M. O., Panagopoulos, V., Rayner, T. E., Borowicz, R. A., Greenwood, J. E., & 

Evdokiou, A. (2015). Peroxidase Enzymes Regulate Collagen Extracellular Matrix 

Biosynthesis. The American Journal of Pathology, 185(5), 1372-1384.  

DeNichilo, M. O., Shoubridge, A. J., Panagopoulos, V., Liapis, V., Zysk, A., Zinonos, I., . . . 

Evdokiou, A. (2016). Peroxidase Enzymes Regulate Collagen Biosynthesis and Matrix 

Mineralization by Cultured Human Osteoblasts. Calcified Tissue International, 98(3), 

294-305.  

Dragoo, J. L., Choi, J. Y., Lieberman, J. R., Huang, J., Zuk, P. A., Zhang, J., . . . Benhaim, P. 

(2003). Bone induction by BMP-2 transduced stem cells derived from human fat. 

Journal of orthopaedic research, 21(4), 622-629.  

Flierl, M. A., Smith, W. R., Mauffrey, C., Irgit, K., Williams, A. E., Ross, E., . . . Stahel, P. F. 

(2013). Outcomes and complication rates of different bone grafting modalities in long 

bone fracture nonunions: a retrospective cohort study in 182 patients. Journal of 

orthopaedic surgery and research, 8(1), 33.  

Friess, W., Uludag, H., Foskett, S., Biron, R., & Sargeant, C. (1999). Characterization of 

absorbable collagen sponges as rhBMP-2 carriers. International journal of 

pharmaceutics, 187(1), 91-99.  



A. SHOUBRIDGE 

180 

 

Garrison, K. R., Donell, S., Ryder, J., Shemilt, I., Mugford, M., Harvey, I., & Song, F. (2007). 

Clinical effectiveness and cost-effectiveness of bone morphogenetic proteins in the non-

healing of fractures and spinal fusion: a systematic review.  

Glimcher, M. J., & Lian, J. B. (1989). The chemistry and biology of mineralized tissues: 

proceedings of the Third International Conference on the Chemistry and Biology of 

Mineralized Tissues, held in Chatham, Massachusetts on October 16-21, 1988 (Vol. 1): 

CRC Press. 

Henriksen, A., Mirza, O., Indiani, C., Teilum, K., Smulevich, G., Welinder, K. G., & Gajhede, 

M. (2001). Structure of soybean seed coat peroxidase: A plant peroxidase with unusual 

stability and haem‐apoprotein interactions. Protein Science, 10(1), 108-115.  

Hiraga, S., Sasaki, K., Ito, H., Ohashi, Y., & Matsui, H. (2001). A large family of class III plant 

peroxidases. Plant and Cell Physiology, 42(5), 462-468.  

Hollinger, J. O., & Kleinschmidt, J. C. (1990). The critical size defect as an experimental model 

to test bone repair materials. Journal of Craniofacial Surgery, 1(1), 60-68.  

Jimi, E., Hirata, S., Osawa, K., Terashita, M., Kitamura, C., & Fukushima, H. (2012). The 

current and future therapies of bone regeneration to repair bone defects. International 

journal of dentistry, 2012.  

Kloen, P., Di Paola, M., Borens, O., Richmond, J., Perino, G., Helfet, D., & Goumans, M. 

(2003). BMP signaling components are expressed in human fracture callus. Bone, 33(3), 

362-371.  

Lane, J. M., & Sandhu, H. (1987). Current approaches to experimental bone grafting. The 

Orthopedic clinics of North America, 18(2), 213-225.  

Lim, J., Lee, J., Yun, H.-S., Shin, H.-I., & Park, E. K. (2013). Comparison of bone regeneration 

rate in flat and long bone defects: calvarial and tibial bone. Tissue Engineering and 

Regenerative Medicine, 10(6), 336-340.  

Martini, L., Fini, M., Giavaresi, G., & Giardino, R. (2001). Sheep model in orthopedic research: 

a literature review. Comparative medicine, 51(4), 292-299.  

McEldoon, J. P., & Dordick, J. S. (1996). Unusual thermal stability of soybean peroxidase. 

Biotechnology progress, 12(4), 555-558.  

Mussano, F., Ciccone, G., Ceccarelli, M., Baldi, I., & Bassi, F. (2007). Bone morphogenetic 

proteins and bone defects: a systematic review. Spine, 32(7), 824-830.  

Oklund, S. A., Prolo, D. J., Gutierrez, R. V., & King, S. E. (1986). Quantitative comparisons of 

healing in cranial fresh autografts, frozen autografts and processed autografts, and 

allografts in canine skull defects. Clinical orthopaedics and related research(205), 269-

291.  

Panagopoulos, V., Liapis, V., Zinonos, I., Hay, S., Leach, D. A., Ingman, W., . . . Zannettino, 

A. C. (2017). Peroxidase enzymes inhibit osteoclast differentiation and bone resorption. 

Molecular and cellular endocrinology, 440, 8-15.  



A. SHOUBRIDGE 

181 

 

Panagopoulos, V., Zinonos, I., Leach, D. A., Hay, S. J., Liapis, V., Zysk, A., . . . Evdokiou, A. 

(2015). Uncovering a new role for peroxidase enzymes as drivers of angiogenesis. The 

international journal of biochemistry & cell biology, 68, 128-138.  

Rayner, T. E., Cowin, A. J., Robertson, J. G., Cooter, R. D., Harries, R. C., Regester, G. O., . . 

. Belford, D. A. (2000). Mitogenic whey extract stimulates wound repair activity in vitro 

and promotes healing of rat incisional wounds. American Journal of Physiology-

Regulatory, Integrative and Comparative Physiology, 278(6), R1651-R1660.  

Schmidmaier, G., Schwabe, P., Strobel, C., & Wildemann, B. (2008). Carrier systems and 

application of growth factors in orthopaedics. Injury, 39, S37-S43.  

Schmitz, J. P., & Hollinger, J. O. (1986). The critical size defect as an experimental model for 

craniomandibulofacial nonunions. Clinical orthopaedics and related research(205), 

299-308.  

Sims, N. A., & Gooi, J. H. (2008). Bone remodeling: Multiple cellular interactions required 

for coupling of bone formation and resorption. Paper presented at the Seminars in cell 

& developmental biology. 

Van der Veen, B. S., de Winther, M. P., & Heeringa, P. (2009). Myeloperoxidase: molecular 

mechanisms of action and their relevance to human health and disease. Antioxidants & 

redox signaling, 11(11), 2899-2937.  

Wang, W., & Yeung, K. W. K. (2017). Bone grafts and biomaterials substitutes for bone defect 

repair: A review. Bioactive Materials, 2(4), 224-247.  

Zinonos, I., Labrinidis, A., Lee, M., Liapis, V., Hay, S., Ponomarev, V., . . . Evdokiou, A. 

(2009). Apomab, a fully human agonistic antibody to DR5, exhibits potent antitumor 

activity against primary and metastatic breast cancer. Mol Cancer Ther, 8(10), 2969-

2980.  

 

 

 

 

 

 

 



A. SHOUBRIDGE 

182 

 

 

 

 

 

 

 

 

CHAPTER 6:  

DISCUSSION 

 

 

 

 

 

 



A. SHOUBRIDGE 

183 

 

The work reported in this thesis provides new contributions to knowledge on the ever-

expanding function of peroxidase enzymes and their role in health and disease. The data 

presented shows for the first time the potential of these enzymes to be used as therapeutic agents 

to promote bone repair. Specifically, mammalian and plant-derived peroxidase enzymes EPO 

and SBP respectively, potently stimulate ECM biosynthesis and mineralisation of the bone 

matrix through regulation of osteoblast activity. In view of these findings, the link between 

inflammatory cells and heterotopic ossification (HO) identifies a potential role for peroxidase 

inhibitors in reducing unwanted pathological bone formation.    

Despite current treatment strategies, including autologous grafting for bone repair and 

regeneration, researchers are yet to identify an agent that possesses the key characteristics of an 

optimal bone graft material. To date, autologous grafting remains the only material that 

provides osteoconductive, osteoinductive and osteogenic capabilities. Tissue engineering is 

considered an alternative grafting strategy due to the reduction in patient morbidities which 

commonly arise from autologous and allografting materials. This strategy comprises of 

biodegradable scaffold materials which are combined with inductive biomaterials, cells or 

growth factors to promote the repair process. Whilst a substantial amount of research has 

centred on the use of factors that promote osteogenic responses, there is great interest in 

investigating the importance of an inflammatory cell presence to improve healing (Bastian, 

Koenderman, Alblas, Leenen, & Blokhuis, 2016; Spiller et al., 2014). The initial acute 

inflammatory phase is critical for bone healing because it acts as the primary source of 

cytokines, chemokines and growth factors to the damaged site. However, the mechanisms by 

which these signalling cascades initiate bone repair are unclear. What is clear is the crosstalk 

between inflammatory cells and cells related to bone healing and remodelling is necessary, but 

also highly complex (Mountziaris, Spicer, Kasper, & Mikos, 2011). The importance of the 

inflammatory response during healing suggests that locally released factors may be involved in 
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influencing the regenerative process. Our laboratory has recently established that peroxidase 

enzymes, including, MPO and EPO, released by inflammatory cells that amass at sites of 

infection or trauma within the skeleton, act as regulators of fibroblast collagen ECM 

biosynthesis, angiogenesis and osteoclastogenesis. These studies provide insight into the 

potential role inflammatory cells and peroxidases play in normal tissue regeneration and fibrotic 

disease. Therefore, this thesis explored the role of peroxidases in promoting osteoblast 

functionality and bone repair. The findings presented in this thesis, identifies for the first time 

new and previously unrecognised roles of mammalian and plant-derived peroxidase enzymes 

as regulators of osteoblast functionality. To my knowledge this is the first report that describes 

a functional role for peroxidase enzymes in promoting osteoblast function and bone repair. 

The first aim of this project was to assess the effect of mammalian peroxidases MPO 

and EPO on osteoblast functionality in vitro and to establish the role these enzymes have in 

bone formation. When osteoblasts were treated with MPO or EPO in the absence of AA, we 

observed a significant increase in collagen I biosynthesis without a corresponding increase in 

collagen I mRNA levels. Inhibition of collagen I secretion by peroxidase-treated osteoblasts in 

the presence of prolyl hydroxylase inhibitor DMOG, also indicated that post-translational 

modifications were likely affected by the peroxidases. Importantly, the work presented here 

also demonstrates that MPO and EPO can be bound and internalised by osteoblasts. This 

supports previous studies demonstrating their ability to bind and be internalised by members of 

the MSC family, including fibroblasts and endothelial cells. In the presence of AA, EPO alone 

significantly promoted matrix mineralisation and regulated mRNA expression of osteogenic 

genes. These findings, together with recent data linking eosinophilia and ectopic bone 

formation (Macias et al., 2001; Snidvongs et al., 2012), collectively suggests a mechanistic 

explanation for the pro-osteogenic properties of eosinophils and a role for EPO in bone repair. 

Unlike EPO, MPO failed to promote mineralisation and did not regulate the expression of 
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osteogenic genes examined. Despite both MPO and EPO sharing a 70% structural homology, 

the catalytic behaviour, substrate specificities and kinetics of these enzymes differ significantly. 

Furthermore, MPO and EPO generate different intracellular oxidant species (Borregaard & 

Cowland, 1997; Bozeman, Learn, & Thomas, 1990), which could be responsible for the 

difference in their ability to promote mineralisation and regulate osteogenic gene expression. A 

recent review has highlighted the importance of MPO released by neutrophils and macrophages 

in the progression of heterotopic ossification (HO) (Kraft et al., 2016). They hypothesised that 

neutrophils may be involved in the early stages of HO as neutrophils are a major source of 

prostaglandin E2 (PGE2). PGE2 has been the target of clinical utility including fracture healing 

and osteoporosis due to its diverse actions on inflammation, bone healing and bone formation 

(Li, Thompson, & Paralkar, 2007).  The authors reported that the role of neutrophils in HO is 

due to enhanced prostaglandin E2 (PGE2) released from these cells, which leads to a dose-

dependent increase in BMP-2 and osteoblast differentiation. This increase in PGE2 is reportedly 

due to a MPO-dependent mechanism, whereby MPO transforms prostaglandins to inactive 

products and consequently alters their activity at an inflammatory site (Paredes & Weiss, 1982). 

Whilst we did not observe a response in mineralisation by MPO-treated osteoblasts in this 

thesis, the association of inflammatory MPO and bone formation will need to be further 

explored, including its role in HO. The presence of eosinophils and neutrophils in inflammatory 

diseases collectively highlights a potential mechanistic link for MPO and EPO in diseases of 

chronic inflammation. These findings present an opportunity to explore the use of peroxidase 

inhibitors as a therapeutic strategy, using models of osteitis and ectopic bone formation. 

Importantly, in vitro data to address this aim, demonstrates the capacity of EPO to regulate 

osteoblast activity, including mineralisation and osteogenic expression, which are critical 

processes of bone repair. By fully elucidating the molecular mechanism(s) by which 
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peroxidases regulate osteoblast function we may identify multiple therapeutic strategies where 

peroxidases may be used to regulate bone formation.  

An important goal for bone repair strategies is to identify potent agents that possess 

controlled osteoinductive and/or osteogenic capabilities. The intent for these agents is to be 

utilised with osteoconductive materials, to provide surgeons with an effective synthetic bone 

graft substitute. Osteoconductive scaffolds are currently available for clinical use, however the 

identification of effective osteoinductive and osteogenic agents is still required. A critical aspect 

for a successful clinical agent, aside from its bone repair capabilities is the cost, due to the 

unavoidable expense of orthopaedic surgery. Furthermore, agents need to demonstrate potency 

and safety to ensure effective repair with minimal adverse effects. We have now demonstrated 

that the mammalian peroxidase EPO, regulates osteoblast functionality and promotes the 

cellular processes required for bone formation, including collagen I biosynthesis and matrix 

mineralisation.  However, EPO is an impractical candidate due to the prohibitively expensive 

and large-scale manufacturing costs. Conversely, the plant-derived peroxidase SBP, is 

inexpensive, commercially available in large quantities and has demonstrated potency in 

promoting collagen I section by fibroblasts and drive angiogenesis. The highly stable nature of 

SBP and its lack of toxicity in previous studies, attest to the safety of such an agent for clinical 

utility (DeNichilo et al., 2015; Hiraga, Sasaki, Ito, Ohashi, & Matsui, 2001; Panagopoulos et 

al., 2015).  

Therefore, the second aim of this project was to investigate the ability of plant-derived 

peroxidase SBP, an inexpensive and nontoxic factor, to promote osteoblast functionality as a 

potential therapeutic candidate. In vitro experiments presented in this thesis demonstrated that 

SBP stimulated collagen I release by osteoblasts, promoted mineralisation of the deposited 

ECM and concomitantly regulated mRNA expression of numerous key osteogenic genes. SBP, 

like EPO demonstrated an ability to promote collagen I release by up to 3-fold compared to the 
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positive control, AA (Ch. 3, Fig. 1). In addition, osteoblasts stimulated with SBP under 

mineralising conditions showed up to a 3-fold increase in ECM mineralisation (Ch. 3, Fig 2), 

similarly to what was observed in the presence of EPO (Ch. 2, Fig. 5). Whilst EPO demonstrated 

greater potency at maximal doses of up to 6-fold, under the same mineralising conditions, the 

effectiveness of SBP, combined with its numerous benefits, including low cost, availability and 

stability suggests this enzyme could be an effective and economic therapeutic agent. The 

greatest variability between EPO and SBP was the mRNA expression level of BMP-2. EPO 

showed ~14-fold increase in expression (Ch. 2, Fig. 6) compared to a near 5-fold increase 

observed in the presence of SBP (Ch. 3, Table 2). The comparable mRNA expression of 

downstream genes regulated in the presence of SBP and EPO, including WNT-5A and BSP, 

suggests that a minimal increase in BMP-2 expression is evidently sufficient to promote 

expression of downstream targets. Therefore, the reduced BMP-2 expression of SBP-treated 

osteoblasts is still sufficient to significantly promote mineralisation. Although EPO has 

demonstrated greater potency than SBP, the effectiveness of SBP, combined with its numerous 

benefits compared to EPO, including low cost, availability, stability and safety make it a much 

greater therapeutic candidate in both its effectiveness and economic use. The work conducted 

here addresses a critical aspect of this thesis which was to identify a cheaper yet comparable 

peroxidase to EPO, in the context of promoting osteoblast functionality. Moreover, when 

compared to the complications and high cost associated with BMP-2, SBP may be considered 

an attractive option. Finally, although being plant-derived, SBP possessed the capacity to 

promote expression of pro-inflammatory and ECM remodelling genes, which are critical for 

successful bone repair. This suggests that SBP can influence human osteoblast function beyond 

normal levels and could be considered for clinical use in the context of promoting bone 

formation. 
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The third aim of this study was to assess whether localised delivery of SBP, using 

commercially available scaffold materials could enhance bone repair at a locally targeted site. 

For this study, biphasic granules comprised of HA/β-TCP were pre-treated with SBP and 

dispensed into bilateral femoral condyle defects in adult sheep. Whilst it could be argued that a 

fracture model would provide information of greater value, the simplistic approach for a novel 

agent was to assess its effectiveness in a critical size defect (CSD) model. The results of this 

preliminary study demonstrated that while HA/β-TCP granules are an effective osteoconductive 

material, SBP significantly increased intramembranous bony healing beyond the scaffold alone 

at 4 weeks, as shown by micro-CT analysis. Toluidine Blue staining of bone defects revealed 

no distinct difference in local cell populations between SBP-treated and control groups. Taken 

together, SBP enhanced the biphasic granules’ ability to promote bone formation, with no 

observable toxic effects at the localised region. Since bone regeneration can take up to 12 weeks 

in sheep, long-term studies will be required to assess the continuing effects of these enzymes 

in vivo and confirm their non-toxic effects, as this is a critical determinant for the clinical use 

of novel agents.   

However, the prohibitively expensive nature of the sheep model together with the 

number of sheep needed to provide statistical power made it unfeasible to pursue at this stage, 

thus, we explored validating SBP in a high throughput mouse model. This would allow us to 

explore fracture models in rodents and the use of various scaffold-materials and multiple end 

points with greater efficiency. CSD mouse models are commonly established in the calvaria of 

the skull, specifically the parietal bones (Aalami et al., 2004; Cowan et al., 2004). Whilst the 

long bones, which was the site of the ovine model, differ anatomically to the calvaria and can 

heal more rapidly due to the additional benefit of mechanical loading, the structure of trabecular 

bone in the ends of long bones, is comparable to flat bones including the calvaria (R. B. Martin, 

Burr, & Sharkey, 1998). Furthermore, our laboratory has previously established the calvarial 
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CSD model successfully in mice. Therefore, the CSD model in the calvaria was utilised as a 

high-throughput model to assess the bone regenerative potential of SBP, instead of a long bone 

defect or fracture model. However, in this study, inhibition of bone formation was observed in 

SBP treated defects (Ch. 5, Fig. 3) with a significant fibrous tissue presence and an absence of 

remodelling indicators, including osteoclasts (Ch. 5, Fig. 4). The mouse CSD model is well-

established in the literature and was successfully reproduced by our laboratory as shown by the 

successful partial healing when using an osteoconductive scaffold alone as the control. It can 

therefore be concluded that the inhibition of bone formation observed in the presence of SBP, 

was not a result of failure to reproduce the CSD model, but likely due to the dose of SBP used. 

The inhibition of bone repair and absence of osteoclast-positive TRAP staining of the SBP 

treated defect sites suggests that the high concentrations tested, were impairing numerous bone 

repair and remodelling processes. For successful bone healing to occur there must be constant 

communication between sufficient population numbers of osteoclasts and osteoblasts (T. J. 

Martin & Sims, 2005). It is therefore plausible based on these studies and the absence of 

osteoclasts at the defect site, the concentrations of SBP utilised in this study significantly 

inhibited osteoclast formation, which resulted in disruption of cellular communication to repair 

the bony defects. However, given that our recent findings indicate that peroxidases possess a 

pro-fibrogenic and angiogenic response both in vitro and in vivo (DeNichilo et al., 2015; 

Panagopoulos et al., 2015), combined with data presented in this thesis, at optimal doses, 

peroxidases can promote tissue repair. Therefore, further studies which involve testing a broad 

range of peroxidase concentrations and determining the underlying mechanism(s) by which 

peroxidases regulate osteoblast and osteoclast function are needed. Future in vivo studies must 

involve careful consideration of dosage to prevent inhibitory responses from occurring.  

Taken together, the significant findings observed in the sheep model presents a proof-

of-concept role for SBP as a therapeutic agent to promote bone repair. Furthermore, it replicates 
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the pro-osteogenic role observed in vitro. The results obtained in the mouse model clearly 

present the issues of optimisation in pre-clinical models and whilst the result may be concerning 

for the future of SBP in the context of bone repair, the evidence presented in the physiologically 

comparable sheep model was positive. Further studies and more robust ex vivo analyses are 

needed to ensure that SBP is an effective agent pre-clinically and optimisation within the high 

throughput rodent model will be beneficial for establishing future models, including fracture 

models. Fracture models are of interest due to the relationship inflammation has on successful 

fracture healing and the known pro-inflammatory role of peroxidases. Thorough studies using 

multiple models and species, including future sheep studies to validate rodent models are 

necessary to fully elucidate the therapeutic potential of peroxidases in bone repair.  

The findings in this thesis not only demonstrate a new functional role for peroxidases 

in promoting osteoblast function, but also provide the foundations for future studies where 

optimisation of these enzymes could be beneficial as novel therapeutic agents to enhance bone 

repair. In addition, the potential link that peroxidases have in pathological ossification provides 

us with the opportunity to explore the use of selective peroxidase inhibitors to manage the 

progression of ectopic bone formation. 
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FUTURE DIRECTIONS 

The limitations of current bone graft substitutes are a major challenge for orthopaedic 

surgeons for managing complex bone defects and fractures. Due to the limitations of gold-

standard autologous grafting and severe adverse effects associated with alternative bone graft 

substitutes, such as BMP-2, there is a need to identify alternative osteoinductive agents. The 

current study suggests that peroxidases, whether plant or mammalian-derived such as SBP and 

EPO, have the capacity to act as osteoinductive agents by their ability to promote osteoblast 

function. Furthermore, this thesis has presented evidence that SBP has the ability to promote 

bone formation in vivo. These preliminary studies identify a potential new range of 

osteoinductive agents for aiding bone repair. However, the work presented in this thesis also 

presents conflicting results for peroxidase enzymes in promoting bone repair, as seen in chapter 

5, which shows significant inhibition of murine calvaria bone repair, when treated with high 

concentrations of SBP. Whilst one could argue the data presented in chapter 4, demonstrating 

the ability of SBP to increase bone repair of an ovine defect model is conducted in an animal 

of greater physiological relevance to humans, it is evident that further studies and robust 

analyses need to be performed to optimise the concentration of SBP to investigate bone healing. 

Well-established mouse models of fracture healing that also offer high throughput analysis in 

drug development exist and are likely more amenable to testing the clinical utility of SBP. 

Rodents are a useful animal model for testing therapies, due to being inexpensive compared to 

large animals and in this context a much more relevant model of bone repair. Once a range of 

optimal doses of SBP has been identified using the CSD model, more complex models of bone 

repair can be explored. This includes the fracture repair model of the long bones, which involves 

a greater complexity of remodelling mechanisms, a significantly greater inflammatory response 

and other factors such as mechanical loading. These studies will improve our understanding of 
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the osteoinductive potential peroxidases have and optimisation of this enzyme could lead to the 

development of a clinically effective agent to improve the rate of bone healing in patients.       

The work described in this thesis identifies a previously unrecognised role for 

peroxidase enzymes on osteoblast functionality, associated with increased expression of 

osteogenic genes, including autocrine intermediate BMP-2. It is well established that autocrine 

BMP-2 production is essential for activating downstream targets in osteoblasts, necessary for 

osteoblast differentiation and bone formation (Phimphilai, Zhao, Boules, Roca, & Franceschi, 

2006). Further findings presented by this thesis indicate that peroxidases are rapidly bound and 

internalised by primary osteoblasts and can promote mineralisation of these cells in vitro. 

Collectively, these findings suggest that one mechanism by which peroxidases increase 

mineralisation is by promoting endogenous BMP-2 production. Future studies investigating the 

role peroxidases have on BMP-2 production and therefore osteoblast function will be vital in 

their development as a therapeutic agent. The use of small molecule BMP inhibitors will be 

vital for investigating the mechanistic link between peroxidases and BMP signalling. A recently 

described BMP inhibitor called K02288, has demonstrated successful inhibition of stimulated 

Smad1/5/8 phosphorylation, without affecting TGF-β signalling (Sanvitale et al., 2013). This 

particular BMP inhibitor has also shown greater potency and selectivity than other small 

molecule BMP inhibitors, including Compound C and LDN-193189 (Vogt, Traynor, & 

Sapkota, 2011). By blocking BMP-2 signalling with the use of an inhibitor we will be able to 

determine if EPO and SBP directly upregulate BMP-2 production or by an independent 

mechanism.  

An alternative mechanism by which peroxidases promote osteoblast activity is through 

depletion of ROS. ROS, including H2O2 are generated during normal cellular metabolism and 

at high levels can push cells into a state of oxidative stress, which is detrimental to cellular 

function. Recent findings have shown that oxidative stress leads to inhibition of bone cell 
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differentiation of pre-osteoblastic cells such as MC3T3-E1, primary rabbit osteoblasts and bone 

marrow stromal cells (Mody, Parhami, Sarafian, & Demer, 2001). The precise mechanism by 

which oxidative stress-induced inhibition of osteoblast differentiation occurs is still unclear. 

However, there is sufficient evidence that activation of both ERK and NF-KB are essential for 

the oxidative-stress induced inhibition of both alkaline phosphatase activity and collagen type 

I expression (Bai et al., 2004). It is well-established that peroxidases utilise H2O2 as a substrate 

to generate ROS. Based on this knowledge and our data, which demonstrates rapid binding and 

internalisation of peroxidases by cultured osteoblasts (DeNichilo et al., 2016) raises the distinct 

possibility that peroxidases can regulate intracellular H2O2. Therefore, we hypothesise that a 

potential mechanism by which peroxidases regulate osteoblast function in the context of 

osteogenesis is by depleting intracellular H2O2 levels. To assess this potential mechanism, in 

vitro studies will be conducted to determine the intracellular ROS levels of osteoblasts after 

peroxidase treatment. This will be assessed by measuring oxidative stress of osteoblastic cell 

cultures, using 2,7 dichlorofluorescein diacetate (DCF), a cell permeable dye which becomes 

fluorescent once reacted with intracellular ROS, such as H2O2 (Mody et al., 2001). We 

anticipate that these studies will collectively shed light on the mechanism(s) by which 

peroxidases regulate osteoblast function. These findings will be necessary to provide further 

understanding of how peroxidases function in vivo, which will enable us to further optimise this 

enzyme for pre-clinical and potentially in the future, clinical use. 

Whilst there are several options available to manage and treat pathological ossification, 

including heterotopic ossification (HO), such as nonsteroidal anti-inflammatory medications 

(NSAIDs), bisphosphonates, radiation and physical therapy, there is a lack of clinical 

improvement for non-surgical interventions (Ranganathan et al., 2015). Operative intervention 

is currently the most successful treatment option, however severe complications can occur and 

depending on the extent of surgery required, disability can arise as a result of surgery. Though 
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the mechanistic processes involved in the progression of HO are not clearly defined, which has 

made targeted treatment of HO difficult, evidence suggests a mechanistic link between the local 

inflammatory response and HO development (Convente, Wang, Pignolo, Kaplan, & Shore, 

2015). Specifically, enhanced recruitment of wound healing fibroblasts and a shift from normal 

soft tissue repair towards ectopic bone formation. Furthermore, it is hypothesised that treating 

HO at the inflammatory stage, prior to the formation of osseous tissue would be the ideal 

treatment strategy. However, the only current form of treatment in this context is the use of 

broad immunosuppressive drugs and whilst these drugs have shown success in inhibiting HO 

formation, therapies which target specific immune cells, including macrophages and 

neutrophils could be of greater benefit (Kraft et al., 2016). In addition to HO, the potential link 

between eosinophil infiltration and ectopic bone formation in chronic rhinosinusitis patients 

suggests a potential treatment target for this disease and others where increased eosinophilia is 

observed. The work presented in this thesis suggests that peroxidase enzymes, MPO and EPO 

are involved in multiple cellular processes critical to bone formation, which suggests a potential 

link for these enzymes in pathological ossification. Furthermore, it identifies a potential new 

avenue of targeted therapy for pathological ossification, where inflammation plays a critical 

role in the progression of these diseases. Small molecule peroxidase inhibitors have been 

developed over the years which have demonstrated their effectiveness with minimal detrimental 

effects (Kubin, 2011; Winterbourn, Kettle, & Hampton, 2016). These inhibitors have been 

designed specifically for inflammatory diseases such as chronic asthma and chronic sinusitis. 

Having now established a potential link for mammalian-derived peroxidases in pathological 

ossification, MPO and EPO inhibitors should be further investigated for their targeted anti-

inflammatory therapy and subsequent prevention of ectopic bone formation. This would require 

the use of small animal models which mimic acquired HO, such as BMP-4-overexpressing mice 

(Kan & Kessler, 2010). These studies would not only enhance our understanding of the role 
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peroxidases have in inflammation but also the effect inflammation has on the progression of 

pathological ossification. Furthermore, by conducting studies utilising peroxidase inhibitors, 

we may increase our understanding of the mechanisms involved between peroxidases and 

osteogenesis, which subsequently may provide further knowledge of the role these enzymes 

have as therapeutic agents for bone repair. 

Collectively, these future directions will not only provide valuable pre-clinical 

information that will help determine the therapeutic capacity of peroxidases in enhancing bone 

repair, compared to current osteoinductive agents, but also allow us to develop therapies which 

target MPO and EPO selectively against pathological ossification, thereby potentially inhibiting 

ectopic bone formation. 
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CONCLUSION 

The findings presented in this thesis provide novel insights into the role of peroxidase 

enzymes in bone repair. MPO, EPO and SBP were proven to exhibit potent effects in inducing 

formation of the extracellular matrix, which is critical for ensuring successful bony healing. 

EPO and SBP were also recognised to be effective promoters of osteoblast function by 

regulating osteogenic gene expression and matrix mineralisation. The physiological relevance 

of EPO in promoting osteoblast function and its release from eosinophils at sites of 

inflammation suggests a potential mechanistic link for EPO in pathological bone formation at 

sites of tissue eosinophilia. Importantly, SBP has demonstrated the ability to enhance bone 

repair at a locally targeted site. The discovery that plant-derived SBP, like EPO, can promote 

osteoblast function, whilst also effectively enhance bone repair in vivo, gives rise to the idea of 

utilising novel non-mammalian-derived, cheaper agents which are easier to manufacture for 

promoting tissue regeneration. 

In conclusion, data presented in this thesis demonstrates that peroxidase enzymes 

possess the capacity to regulate multiple cellular processes by osteoblasts, including collagen I 

biosynthesis, matrix mineralisation and regulate numerous pro-osteogenic genes. This thesis 

has also demonstrated the potential role SBP could have in a clinical setting by its ability to 

significantly enhance localised bone formation in a physiologically relevant animal model. 

Collectively, the findings of this thesis provide new evidence for peroxidase enzymes as novel 

osteoinductive agents likely to be used locally, in combination with bone graft substitutes to 

enhance bone repair. 
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