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ABSTRACT

The problems of everyday cognition, from perception to social interaction and higher level
reasoning, require us to predict future events and outcomes on the basis of past experience.
But often (if not always) solutions to the problems we face are under-determined by our
experience. So we reason inductively, drawing uncertain conclusions from incomplete
information. Yet, despite our lack of first hand data, our reasoning is efficient and effective
nonetheless. So how do we close the gap between the paucity of experience and the
effectiveness of reason? One way that we do this is by exploiting statistical regularities
that we have observed in the world, assuming (contra philosophers’ counsel) that these
regularities will continue to hold. In so doing, we leverage the evidentiary value of the
data that we do have.

This thesis examines our assumptions about what lies beneath the data and how we
leverage them to reason beyond it. In particular, it focuses on our mental models of
the world — generative models that connect observations to hypotheses through their
consequences. I consider the assumptions we make in solving three separate reasoning
problems of increasing complexity. Firstly, in a series of related experiments I explore
the effect of sampling assumptions in a categorisation task based on low-dimensional
perceptual stimuli. Together, these experiments examine how reasoners weigh the value of
extra data when deciding how far to generalise, and the extent to which the computations
involved are influenced by their representational and sampling assumptions. In addition,
I use the same experimental framework to investigate a related question: if people’s
sampling assumptions do alter the weighing of evidence, at what stage do these effects
manifest — during learning, or only at the point of generalisation? Secondly, I examine
the role of sampling assumptions in the shift from percept to concept. A key challenge
for the reasoner when reasoning from high-dimensional categorical stimuli is in deciding
which of the many dimensions or features represent the appropriate basis for induction. I
investigate how the perceived relevance of particular features in the data is affected by
people’s assumptions about the representativeness of the sampling process.

In almost every sphere of human activity, we reason from data generated by others and
we generate data from which others will reason. Equipped with a theory of mind, both
senders and receivers of data may exploit recursive “I think, you think, I think...” reasoning
to increase the evidentiary weight of data, and improve the utility of communication
as a result. But when data is highly leveraged in this way, there is a downside risk.
If reciprocal assumptions are not well calibrated, the reasoner may leap to the wrong
conclusion. In the final study, I investigate the phenomena of recursive meta-inference in
a setting where deception is warranted but lying is not an option — a setting which offers



vi

particular advantages. Firstly, when perpetrating or avoiding a deception, some degree of
meta-inferential assumption becomes a vital pre-requisite. Secondly, placing the goals
of communicating parties at odds offers the potential to more easily distinguish whether
people engage in genuine reflection about the assumptions of another or merely respond
to constraints implicit in the sampling process.

The studies described in this thesis deal with progressively more complex challenges
that we face as reasoners: how far should we generalise when the basis of induction is
clear, how do we determine the relevant basis for induction in the first place, and how do
we calibrate our own inductive inference with that of another. Through a combination
of computational modelling and human behavioural experiments I demonstrate how our
sampling assumptions influence the way we meet these challenges, and how our solution
to each challenge may be inter-related.
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1 WHAT LIES BEHIND THE DATA

We ought then to regard the present state of the universe as the effect of
its anterior state and as the cause of the one which is to follow. Given
for one instant an intelligence which could comprehend all the forces
by which nature is animated and the respective situation of the beings
who compose it — an intelligence sufficiently vast to submit these data
to analysis — it would embrace in the same formula the movements of
the greatest bodies of the universe and those of the lightest atom; for
it, nothing would be uncertain and the future, as the past, would be
present to its eyes.

Pierre Simon, Marquis de Laplace, (Laplace, 1825/1985)

1.1 PRELUDE: LAPLACE’S DAEMON AND THE DAEMON WITHIN

Consider what it might take to build an intelligent daemon of the kind that Laplace had in
mind. Without full knowledge of the physical laws that govern the universe, it’s going
to take a lot of data. But even all the data may not be enough. As it turns out, Laplace
may have overstated the prospects for such a daemon. Quantum theory, for example,
suggests limits either to the determinacy or the observability of the universe (Collins,
2007). Thermodynamic irreversibility may pose problems for backward inference too
(Ulanowicz, 2012). Even at the limits of knowledge, cause and effect may be under-
determined each by the other, the deepest structure of the universe may remain latent.
Notwithstanding the possibility that the universe itself is a computational device (Lloyd,
2002), it looks like fool-proof computation of one state of the universe from another is off
the cards. It’s not clear whether the daemon will fare any better with regard to knowing
“the respective situation of the beings who compose [the universe]”. Meta-inference —
inference about the conclusions drawn by other inferential agents — also faces in principle
limits.Wolpert (2008), for example, shows that at any one time the universe can contain
at most one inference device able to infer the conclusions of all others. Too bad if we
want a spare daemon. “How unsearchable his judgments, and untraceable his ways!” may
generalise more broadly than originally anticipated.



So what of the prospects for the daemon within — the inference engine that drives our
everyday cognition, from perception to social interaction and higher level reasoning?
Living in a world with latent structure has consequences for it too. Because the predictions
that most concern us are under-determined by the data we have, we must (for the most
part) treat data not as the premises in a deductive proof, but as evidence for or against
alternative possibilities. Evidence implies interpretation: representation and computation.
In this sense, data alone is less evidence per se, more a component to be represented in
the computation of evidence. Absent the guarantees of logical entailment, evidence is
sustained in part by assumptions. Hume (1748/2007), for example, expressed the idea that
human reasoning ultimately relies on the assumption that “the future will be conformable
to the past” — a kind of uniformity principle. In addition to the in-principle constraints on
real world inference, our efforts are further circumscribed by our access to the physical
environment and the constraints of our biology. Nonetheless, from a genetic endowment
amounting to less than one gigabyte of information', the human infant rapidly infers a
great deal about the structure of the world despite these constraints.

Supported by an evolving understanding of the structure of the world and the
observations it affords, this trend of reasoning beyond the data continues (and adapts)
throughout the lifespan, particularly when the data is social in origin. At first glance it
might seem a paradox that we could leverage socially generated data more highly than
our own first hand observations. After all, if we endorse a uniformity principle for a world
governed by enduring laws, then we can reasonably restrict our predictions to conform
with our past observations of how those laws operate. But when it comes to socially
generated data — which are at best abstract representations of data from the physical
world — the possibilities are seemingly unconstrained. The flaw in this logic is readily
apparent: the uniformity principle that we endorse for socially generated data represents
not a weaker but a stronger set of constraints than those which we ascribe to nature. As
speakers, though we might say anything, we don’t — wheelbarrow — usually. We constrain
ourselves to abide by norms of communication (e.g., Grice, 1989). As listeners we take
advantage of these conventions to fill in the gaps between what is said and what is meant.
Computationally speaking, this is one of our greatest achievements. By sharing abstract
representations of the world with one another — exchanging the products of inference —
we leverage a computational resource distributed across space and through time. In so
doing, we greatly extend the evidence base that fuels our inference.

'Based on an estimate of approximately 3 billion base pairs in the human genome (Venter et al., 2001)
each of which require two bits to encode.



1.2 THE BIG PICTURE

In the broadest sense, the research I present explores the challenges of inductive reasoning
— the act of making guesses about data we don’t have on the basis of data we do. By
making assumptions about hidden structure in the world, we leverage the value of that
data as evidence. Better evidence in turn supports more accurate predictions and more
efficient learning about hidden structure, allowing us to further leverage the value of our
assumptions. This research is focused, in particular, on understanding a key ingredient in
this virtuous cycle of inductive reasoning. Namely, how we reason about our observations
in relation to the processes that govern them, the structures that constrain them and the
targets of learning and inference on which our sights are set. The over-arching thesis
is that such reasoning plays an important role in driving the efficiency and accuracy of
generalisation. When data is social in origin, the assumptions people make by reasoning
in this way not only impacts their willingness to generalise, but is bound up in how
they face other key challenges of inductive reasoning including the search for relevant
evidence and the framing of the inductive problem itself.

THE CHALLENGE OF INDUCTION AND THE PROBLEM WITH EVIDENCE

To introduce these challenges by way of an example, consider the humble egg. Assume a
reasoner (call her Alice), is in possession of an egg-like object and is trying to decide
whether it is one or not. In keeping with a paradigm widely accepted and adopted
in cognitive science, let’s consider the problem from a computational perspective. In
understanding any computational problem, the important elements to consider are
the information involved, the level of abstraction at which it is represented and the
computations performed.

Turning first to some computational issues. Setting aside a good deal of perceptual
processing (which itself will involve inductive processess during scene segmentation,
feature recognition etc.), assume Alice has a suitable perceptual representation of the
object in question. What now? Suppose she recalls various eggs she has seen in the past.
Even assuming memory is lossless (which it isn’t) it’s unlikely that Alice has seen an egg
that precisely matches the object in question. Regardless, she would be ill-advised to base
her classification on exact matching of all available features. A key challenge of inductive
inference is to determine the relevant basis on which generalisation should proceed — that
is, to determine the appropriate level of abstraction at which any comparisons are made.
Alice should ignore irrelevant features (surface blemishes for example), and focus on
those that matter (shape and texture, for example). But even relevant features need not be
matched exactly. One reason to organise experience into conceptual representations in the
first place is precisely because we believe that similar things afford similar consequences



Nothing so like as eggs, yet no one, on account of this appearing

similarity, expects the same taste and relish in all of them.

David Hume (1748, p. 50),

(Hume, 1748/2007). Presumably, Alice is interested in identifying a would be egg because
she cares about some of the consequences.

Which brings us to the central computational challenge of inductive reasoning: deciding
how far to generalise prior knowledge and experience to new circumstances. Strictly
speaking, this is taking an important step for granted, that of framing the inductive
question to be answered. Different perspectives suggest different framings. For example,
viewed from a reasoning perspective, Alice’s task need only involve assessing on which
side of a conceptual boundary the target sits — is it an egg or not? The question of how
far the boundary extends (how round an egg can be, for example) may not need to
be estimated. However, this latter question may well be of interest when viewed from
a learning perspective. Whether these two questions are equivalent depends upon the
examples involved and the computations employed. Alice might postpone the decision of
how far to stretch her concept of an egg simply by observing that the current item lies
within the range of those previously encountered. This potential short-cut takes another
important aspect of the problem for granted, that of framing or constraining the range of
solutions considered. In taking such a short-cut, Alice makes a law-like assumption that
the concept EGG automatically applies to any item falling in the region of interpolation
between known examples (presumably on many relevant dimensions).

In the way I have painted it, Alice’s problem seems largely a perceptual one, solved
on the basis of a (roughly global) similarity comparison between the item in question
and previous examples of the concept drawn from memory. But as I have already hinted,
even such a seemingly simple generalisation may leverage assumptions. Suppose for
example, Alice were to reason about the digestive properties of duck eggs on the basis of
her experience with chicken eggs: the conceptual properties of ducks and chickens may
weigh more heavily than any perceptual similarities between duck eggs and chicken eggs.
Similarly, whatever she might conclude regarding the maximum size of a chicken egg it
will presumably be constrained by her beliefs about the maximum size of chickens. In
general, inductive reasoning may draw upon a variety of information sources including
perceptual, conceptual and theoretical evidence. But reasoning from evidence in this way
brings challenges of its own.

Viewed from a decision making perspective, one challenge of inductive reasoning
involves selecting evidence relevant to the problem at hand. If data is not evidence per se,
but instead requires interpretation to establish relevance, then the problem of selecting



evidence is especially challenging. Any assumption that supports a method of evidence
selection short of weighing all possible data, has enormous potential for leverage. A
related challenge arises when we consider inductive reasoning from the perspective of
the learner. Here the challenge is, given the observations at hand, what exactly are these
observations evidence of — that is, what can be reasonably be inferred from them?

Across each of the studies I describe in this thesis, I examine the assumptions people
make about the data they observe and how these assumptions affect the way they deal
with these challenges that I have identified.

SO WHAT ARE THESE ASSUMPTIONS AND WHERE DO THEY FIT IN?

Imagine for example, that Alice has not seen eggs before and receives her first mixed
dozen from the “Egg of the Month” club. Given that all of the eggs fit the carton snugly,
what inference might she draw about how eggs range in size? And when she receives her
next mixed dozen in a similar carton, should that change her concept at all? Or consider
instead that she first encounters eggs by flicking at random through the pages of an
illustrated guide to eggs (e.g., Kashimori, 2017). How might this change the evidentiary
value of each egg she sees? The answer depends on the sampling assumptions she makes
about the data. What is the generative process behind these examples? Importantly, how
is it that she came to see these eggs and not some others? What constraints, if any, might
restrict the range of eggs that she is seeing in a way that actually matters?

Viewed in this way, the challenge of reasoning from data resembles the practice
of statistical inference. The reasoner considers the sampling distribution from which
observations are drawn and attempts to connect it with some target distribution of
interest. This involves understanding the ways that the sampling distribution is, and
isn’t, representative of the target distribution. In the example above, if Alice decides that
the size of the eggs she sees was dictated by the size of the carton then seeing additional
cartons of eggs might not help her reason about their size. Conversely, if she assumes
that her book contains a representative range of eggs and their sizes, then each additional
egg she views may be quite informative. After seeing a dozen examples and never having
observed a 50cm egg she may begin to doubt that such a thing exists. Seeing a dozen
more examples should make her increasingly certain of this. Of course, representativeness
is not an all or nothing property of the object in question. Even if the egg samples® were
unrepresentative in other ways (they may all have been especially clean, for example),
Alice’s inference regarding size may still be valid. The reasoner’s task is to consider
representativeness in light of various abstractions over the data. Naturally this does not
imply that it is impossible to learn from unrepresentative data. If Alice observes a 75g
egg she can use this to rule out the idea that all eggs weigh less than 50g, regardless of
any biased sampling.

2 have held back this pun for long enough!



These examples illustrate the way that different sampling assumptions licence different
generalisations by changing the weight of observations as evidence for the proposition
being considered. And they highlight a key challenge for the reasoner in adopting
assumptions in the first place — figuring out what the data is representative of (and
learning fast) and what it is not representative of (and learning slowly). This problem
is complicated by the presence of latent variables which may impact the sampling
distribution in a way that is not clear. At stake is the quality of inference: incorrect
assumptions imply inaccuracy (the wrong things are inferred) or inefficiency (learning
requires more data). Which begs the question regarding how sampling assumptions are
formed in the first place and the range of factors to which they may be sensitive.

The stakes are higher when inference is based on socially generated data. Real world
constraints place obvious restrictions on both the kinds of things that can be “naturally”
observed and the frequency with which observations can be made. Because socially
generated data is relatively unencumbered it offers obvious benefits for efficient learning.
It is possible, for example, to sample from a concept of interest without regard to the
naturally occurring frequencies. But the relative lack of constraints introduces downside
risk too. Firstly, the sharing of evidence is achieved indirectly via a process that amounts to
the resampling of data. Reasoning from re-sampled data without access to the information
supporting it (including background knowledge and assumptions, for example) can be
an efficient way to draw the wrong conclusions. However, where shared culture and
environment promote significant overlap in knowledge and assumptions, this risk is
significantly mitigated. Secondly, while the constraints on real world data that restrict its
availability may also make it difficult to falsify, this is not the case for socially generated
data. Because inference on the basis of socially sampled data brings increased risk and
benefit, by adopting strong assumptions about the sampling process the risks and benefits
are further amplified. Adopting appropriate assumptions becomes increasingly important
for reasoners in this case. An open research question concerns the contextual and content-
based cues that reasoners use in calibrating their assumptions when data is social in
origin, and the strategies they adopt to guard against misinformation.

The focused and explicit study of people’s sampling assumptions is a relatively new
research agenda (actively pursued only in the past two decades). Throughout this chapter
(and in section 1.4 in particular), I will canvas a number of open questions (including
those I have just flagged) concerning the effects of such assumptions on the outcomes
of inference. Such questions lie at the core of the investigations I pursue in subsequent
chapters.

WHAT LIES BEHIND THE RESEARCH?

The theoretical perspective that informs this thesis is rooted in a literature spanning many
decades of research. Ahead of a necessarily selective look at some of that literature, it is



worth summarising this perspective in order to give a feel for the relevance of the topics
discussed. Briefly then, the view sees people as model-based reasoners and holds that:

1. People make theoretical assumptions about the structure of the world in order to
supplement the predictive utility of raw data (direct sensory experience).

2. The mental representations of these assumptions (i.e. the models) when combined
with data are used to interpret the data in light of the assumptions, and determine
its evidentiary weight. Thus, inductive generalisation is seen as a function of the
weight of evidence, rather than simply as a function of the data itself.

3. Models are likewise used to evaluate and update the theoretical assumptions in
light of the data.

4. Importantly, models compete. That is, people generate and test alternative assump-
tions (fragments of structured representations) across many levels of abstraction.

5. Ultimately, the models that persist (have the biggest impact on inference) are
the ones that strike the better balance between cognitive efficiency (generational,
representational, and computational efficiency, for example) and cognitive effect
(accuracy and utility, for example).

In this model-based view of inductive reasoning, the reasoner’s sampling assumptions
can be thought of as that part of their mental models that sits at the interface between
representations of observations and representations of concepts, theories and conjecture.

Although this perspective is sufficiently abstract and hence difficult to directly falsify,
the presumptions above do nonetheless suggest hypotheses more amenable to testing. For
example, the idea that “models compete” suggests that we should expect to see some
competition among sampling assumptions, in much the same way that we might expect
to see it with regard to theoretical assumptions. The experiments I present in Chapters 5
and 6 provide some evidence that people are adapting their sampling assumptions to
the data they observe which suggests they may represent more that one assumption at
any given time. Similarly, Chapter 2 looks at how people’s sampling assumptions may
influence the way that they evaluate alternative representations of the solution space for a
given inductive problem.

THE SHAPE OF THINGS TO COME

My goals in this chapter are threefold: to paint a picture of where sampling assumptions
fit in the overall scheme of inductive inference, to present the case for why sampling
assumptions effect inference in ways that actually matter, and to highlight the open
questions that are the subject of my research. In service of the first goal and to flesh out
the theoretical perspective that informs my research, I first provide a selective review of



the literature as it relates to inductive generalisation. I focus in particular on how different
theories have characterised the sources of “evidence” on which inductive inference
relies. I discuss how inductive generalisation may draw upon inter-stimulus similarity, on
distributional information embedded in conceptual space, and on a range of contextual
information and theoretical knowledge.

After sketching the backdrop against which sampling assumptions might play a role,
I next provide a brief overview of Bayesian inference and its use as a computational
tool for modelling inductive inference in general but sampling assumptions in particular.
Because the Bayesian framework makes explicit the contribution to inference from various
sources of information as well the reasoner’s sampling assumptions, it can provide a
compelling prima facie justification of why sampling assumptions should matter. After
illustrating the computational basis for why sampling assumptions ought to matter, I
review contemporary research that demonstrates important ways in which they actually
do, and highlight open issues relevant to the new research I describe in this thesis.

The studies I present examine the nature and effect of people’s sampling assumptions
in three distinct contexts. Each context emphasises a different challenge of induction and
a different factor driving the interpretation of evidence:

1. The first context, which covers the experiments described in Chapters 2—4, involves
generalisation on the basis of low-dimensional, perceptual stimuli. By providing
a context that makes clear the basis on which generalisation should proceed, the
experiments focus on the central inductive challenge of determining how widely to
generalise on the basis of the data supplied. By varying sample size and the number
of stimulus categories involved, the studies yield insight regarding how people’s
sampling assumptions interact with these factors.

2. The work in Chapter 5 employs a category-based induction task where the basis
for induction is unclear due to use of the high-dimensional conceptual stimuli
and essentially unknown (“blank”) properties. Here the focus is on examining the
reasoner’s challenge of determining when potential evidence is and isn’t relevant.

3. Lastly, Chapter 6 establishes a context where assumptions about what another rea-
soner is thinking are the primary means for interpreting evidence. By establishing
a context where the cooperation of the communicating party cannot be taken for
granted, the work examines inference in the case where the appropriate sampling
assumption (regarding the way that the information provider is sampling data) is
unclear. The study highlights the way that people draw on both the content of what
is communicated (the data) and the context in which communication takes place in
order to calibrate their assumptions about the evidentiary value of the data.

I conclude the chapter with a more detailed overview of the motivation behind the new
research.



1.3 INDUCTIVE GENERALISATION: REVIEWING THE EVIDENCE

The following review is organised around a simple premise. The representational
complexity of observations and the conceptual space in which they are embedded go
hand in hand with the richness and complexity of our generalisations. And it cuts both
ways. Demand for more accurate inference fuels the need for richer representations,
and richer representations support more detailed inference. This relationship between
representational and inferential complexity has been paralleled to a degree in the unfolding
development of a theory of inductive generalisation. As we shall see, representations of
stimuli as points in low dimensional metric space (such as Shepard, 1987, for example)
goes a long way to describe how people (and animals) generalise on the basis of simple
perceptual stimuli. But with the shift in the focus of study from percept to concept,
the notion of metric distance runs into problems. Similarly, the notion of features
and featural overlap (Tversky, 1977), while able to describe the non-metric properties
of empirical judgments, struggles to capture phenomena that involve knowledge of
relationships with stimuli not directly involved. The idea that individual generalisations
may involve hierarchically structured concept representations organised on the basis of
featural similarity (as in Osherson, Smith, Wilkie, Lopez, & Shafir, 1990, for example)
allows further generalisation phenomena to be captured. Yet, as I will explain, the notion
of a statistically coherent concept, while powerful, is insufficient to explain the role that
people’s theorising plays in their inductive inferences, particularly where the information
from which people reason is social in origin.

STIMULUS GENERALISATION: MORE THAN MEETS THE EYE

Almost a century ago Pavlov published his landmark study of classical conditioning
(Pavlov, 1927). In studying the secretion of saliva in dogs he conditioned the animals to
salivate in response to a particular stimuli (the sound of a bell or whistle, for example).
After conditioning, he observed that the same kind of reaction (secretion of saliva)
although reduced in degree, could be evoked by similar stimuli that had not been directly
conditioned. This pattern of behaviour was widely replicated by early researchers in the
field both in animals and humans, raising a number of important questions and sparking
considerable debate.

Does stimulus generalisation reflect a physiological constraint?

Perhaps the most fundamental question raised, concerned the very nature of stimulus
generalisation and the mechanisms underlying it. One possibility was that stimulus
generalisation in the form observed by Pavlov and others might be a result of stimulus
confusion — that is, the failure to discriminate the conditioned stimulus from the
generalised stimulus. Such a failure might, for example, be underpinned by a constraint
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of the perceptual system regarding the “resolution” at which the senses operate. But
Pavlov’s (1927) work and other studies of discrimination learning suggested that the
ability to distinguish the conditioned stimuli from similar stimuli could be acquired. For
example, Pavlov found that it was possible to constrain (but not eliminate) generalisation
by repeating the same conditioned stimulus a number of times (over 1,000 times in some
cases).’ Notably, these experiments involved a single category of reinforcement — that
is, all repeated presentations were accompanied by the same (positive) reinforcement.
In contrast, when conditioning involved two categories of reinforcement (positive
reinforcement and no reinforcement), it was possible to induce stimulus differentiation
with a single (unreinforced) application of a series of related stimuli. Likewise, Hovland’s
(1937) study of galvanic skin response in humans which showed stimulus generalisation
up to 100 JND* units distance from the conditioned stimulus, casts doubt on the notion
that stimulus generalisation reflects a physiological constraint of the perceptual system.

Does the context in which stimuli are sampled affect generalisation?

As noted, Pavlov’s (1927) early work demonstrated an important effect of framing: that
is, whether one or two categories of reinforcement were used significantly impacted
how the extent of generalisation changed with increased sample size. However, the
direction of this effect was not always reliable. For example, while Hovland (1937)
and Pavlov (1927, p.117) found that generalisation to other stimuli diminished as a
result of repeated reinforcement of the conditioned stimulus, Margolius (1955) found the
reverse effect — additional samples broadened the degree of generalisation. Margolius,
in acknowledging the discrepancy with Hovland’s results, dismissed the differences in
experimental paradigms (he had employed operant conditioning, where Hovland had
used classical conditioning). Nonetheless, it is interesting to speculate from a sampling
assumptions perspective whether those differences might have influenced results. In
Hovland’s experiment, the association between a tone and an electric shock is made
on every trial in an otherwise static stimulus environment. Therefore each trial offers a
fresh example of the kind of tone that accompanies a shock. In Margolius’s experiment
relevant data is collected only when the subject (a white rat in this case) exhibits the target
behaviour (pushing on a door in the target stimulus - a 79 cm? circular white disc). While
the environment provides ample opportunity to learn the affordances of the same white
disc, it offers no repeated opportunity to learn about other white discs.’ In Chapters 2

3These experiments might be regarded as an early demonstration of the effect of sample size on
generalisation.

“4Just Noticeable Difference: the threshold below which the difference between two points along some
physical dimension (such as frequency of sound, for example) cannot be perceived reliably (typically with
> 50% or > 75% accuracy over repeated trials).

SPresuming of course that the rats in question mentally represent the spatio-temporal extent of the white
disc as a singular entity.



1.3 INDUCTIVE GENERALISATION: REVIEWING THE EVIDENCE \

and 3, I consider the effect of sample size on generalisation and its connection with the
context in which stimuli are sampled.

The representational basis for stimulus similarity

While there was wide support for the view that both humans and animals were capable
of “true generalisation” (as opposed to discrimination failure)® , the basis of stimulus
similarity was the source of considerable debate. Many researchers held the view
(emphasised by the Gestalt movement) that animals and people were responding to
the situation as a whole, and generalising relational concepts such as “bigger”, “brighter”
and so on. Against this holistic view, was the “sensation driven” view which stressed
the role of the stimuli and its absolute properties. In essence this was a debate about the
representations supporting comparison and generalisation.

In framing his theory of stimulus generalisation, Hull (1943) speculated that stimuli
were represented by the perceptual system through the discharge of a collection of afferent
“molecules”, and that receptors adjacent on the generalisation continuum might overlap
in terms of the molecules discharged. Such “molecular” similarity might, he contended,
explain the shape of primary generalisation gradients and the gradual acquisition of
stimulus discrimination over repeated trials. The idea that experimental settings and
individual stimuli could be broken down into a number of smaller stimulus elements
would also form the basis of later statistical learning theories. For example, Estes
(1950), in modelling the probability that a conditioned stimulus will evoke the target
response, defined a learning rate parameter as the (mean) fraction of the relevant stimulus
elements “sampled” on a given trial. As more trials go by, the probability of sampling a
previously unconditioned stimulus element decays exponentially, so the probability of the
conditioned response increases towards certainty. Bush and Mosteller (1951) captured
stimulus similarity in a similar way, defining the similarity between two stimuli in terms
of the elements in common. But by expressing their index of similarity between two
stimuli §" and S as a proportion of all elements of § (Bush & Mosteller, 1951, Eqn. 4),
they captured the inherent asymmetry involved. Their definition is closely related to
two important models I will discuss later in this chapter: the contrast model of featural
similarity (Tversky, 1977), and the Bayesian model of concept generalisation (Tenenbaum
& Griffiths, 2001a, ¢f Eqn. 11).

Stimulus generalisation and the region of interpolation

The fact that any form of stimulus-response conditioning is possible in the first place
was not without issue. Given noise in both the perceptual system and in the physical
environment itself, it is highly unlikely that the same “stimulus experience” is ever
precisely repeated. If this is the case, then how does a given stimulus-response connection

6 Although for a different interpretation from this early period, see Lashley and Wade (1946).

1
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become established if, as is typically the case, more than one reinforcement is required?
Likewise, even if such a connection could be established after a single reinforcement,
how could the response ever be invoked again unless the stimulus was repeated? Hull
(1943) offered a solution for these two conundrums — the stimulus learning paradox and
the stimulus evocation paradox — with his summation model of primary generalisation.
He suggested that each stimulus presentation, even if insufficient on its own to produce a
reliable stimulus-response connection, nonetheless forms some strength of association
(habit strength) in a single trial. Further he held that there is a narrow region of
generalisation around the reinforced stimuli which (when the stimulus dimension is
represented in JND) follows a pattern of exponential decay. Thus, repeated reinforcements
of the “same” stimuli, establish a series of these overlapping generalisation gradients
emanating from nearby points in the stimulus dimension. While each single reinforcement
(each individual gradient) is not enough to promote generalisation on its own, the resulting
combination is, as Figure 1.1 illustrates. Hull’s rule for combining gradients has strong
connection to a Bayesian formulation of generalisation where each individual presentation
of the stimulus is assumed to be sampled from an independent “consequential region” (as
in, Navarro, 2006).7

Is stimulus generalisation a training or testing effect?

Another important debate in the early generalisation literature concerns the kind of effect
that conditioned stimulus generalisation represents. Models such as those of Hull (1943),
Estes (1950) and Bush and Mosteller (1951), are based on the idea that the nature of a
generalisation gradient is determined by the “bonds” that are formed when stimuli are
first represented (as afferent molecules or stimulus elements, for example). Against what
we might call this “encoding” or “’learning” view of generalisation stands a “retrieval” or
“testing” view. For Lashley and Wade (1946), stimulus generalisation was very much a
retrieval effect because it represents, they held, a failure to discriminate. Similarly, Razran

"The combined generalisation response strength (habit strength) at any given point (ssHR) is calculated
by combining the contribution of each of the n primary gradients at that point according to the following
“summation” rule:

2 23

2
=2 =8 n—1_=n_
M e

ssHr = Zi — T

-4 (=1) (1.1)

where X; represents the sum of all products of contributing points taken i at a time. M represents the
physiological limit (maximum) of habit strength, and acts to ensure that each successive term in the above
equation is lower in magnitude than the previous. This seemingly complicated formula has an interesting
probabilistic interpretation, as follows. Suppose that for any given test stimulus there is some chance that
the target response will happen based on the resemblance of the test stimulus to one of the reinforced
stimuli, and that this probability is reflected in the primary generalisation curves (dividing the habit strength
by the physiological limit to achieve the unit interval). Further assume that each reinforced stimuli acts as
an independent “cause” of responding. Determining the overall probability that the target response will
be generated amounts to calculating the union of each of the independent events, the formula for which
follows the same sum of products rule captured in Equation 1.1.
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Figure 1.1: A plot illustrating Hull’s summation rule (derived from, Hull, 1943, Fig. 46),
predicting stimulus-response generalisation (solid line) on the basis of gradients arising from
individual reinforcements (dotted lines). While generalisation on the basis of any single
presentation is below the response threshold, the effect of repeated presentation (perceived as
adjacent points on the stimulus dimension, due to perceptual noise) is sufficient for generalisation
anywhere in the region of interpolation.

(1949) in advocating his subsequent testing hypothesis, held the view that “all effects
of generalisation are generated during tests of generalisation”. In an experiment using
unfamiliar words, he contrasted the generalisations of people given conflicting meanings
before and after conditioning (but before testing) with people given meaning only after
conditioning. He concluded that the meanings given prior to conditioning had no effect on
generalisation. At the centre of this debate is the issue of whether the evidentiary weight
of data (perceptual stimuli in this case) is captured during encoding, or merely evaluated
during reasoning when the data is retrieved. I consider this issue further in Chapter 4,
where I attempt to distinguish whether sampling assumptions affect generalisation at the
point of learning or only when reasoning.

Generalisation gradients in psychological space

Another challenge facing early researchers of stimulus generalisation concerned how
to represent the value of stimuli in order to make sense of generalisation data. Hull
(1943) suggested that IND represented the appropriate unit for what he called the afferent
generalisation continuum. Others noted that the use of JND in this regard was not without
its problems (e.g., Humphreys, 1939). Bush and Mosteller (1951) left the connection
between the physical dimensions of stimuli and their index of similarity unspecified,
speculating that any universally reliable measure of stimulus similarity might remain

13
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elusive. Shepard (1957), however proposed a solution to just this problem with his
model of stimulus (and response) confusion. He proposed to turn the problem on its
head. Instead of trying to use an arbitrary measure of psychological distance (such as
JND, for example) in an effort to understand confusion probabilities, he started with
generalisation data (confusion probabilities) and looked for invariant monotonic function
whose inverse would transform numbers into distance in some psychological space which
obeyed the metric axioms of distance. He found that an exponential decay function had
the necessary mathematical properties and captured empirical data. Shepard’s finding
was also consistent with Hull’s (1943) earlier use of the exponential decay function to
capture generalisation data.

Early studies of stimulus generalisation, particularly those employing low dimensional
perceptual stimuli, tended to focus on issues of discrimination, identification and
classification. When considering such “whole of stimulus” questions, the literature had
placed much emphasis on understanding the basis of global similarity judgments between
pairs of items. But to generalise our experience of the world by comparing sensory
snapshots would cost too much (in terms of capacity and computational complexity)
and yield too little (in the way of reliable inference). So what kinds of representational
abstractions do people employ to support efficient and reliable generalisation? I turn
now to outline some important developments in the literature concerning generalisation
with respect to conceptual representations that are both richer and more abstract than
perceptual encodings of sensory data.

FROM PERCEPT TO CONCEPT: REPRESENTATION-RICH GENERALISATION

In his seminal work The Organization of Behavior, Hebb (1949) laid out his theory of
schema and the cell assemblies of which they are composed. He was seeking to bridge
two important gaps that he perceived at the time. One was a theoretical and empirical gap
between physiological and psychological phenomena; the other, not entirely unrelated,
concerned the holistic Gestalt view of perception on the one hand and the association-
focused view of learning theorists on the other. Although he didn’t express it in quite this
way, Hebb’s schema reflected the idea that the evidentiary value of data was influenced
over time by the configurations in which the data was typically observed. He contended
that we learn to perceive abstract configurations of stimuli (a triangle, for example) as
a function of practice, and that the schema that we form in so doing makes subsequent
identification easier. Importantly, Hebb saw this process of abstraction as something that
operated at multiple levels from the perceptual to the conceptual.

Attneave (1957) sought to test Hebb’s notion that schema formation benefited later
identification. In two experiments using a paired-associates task, he found that people
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pre-trained on a prototype stimulus made fewer identification errors than those who
received no such pre-training. Subsequently, Hinsey (1963) clarified that the pre-training
was indeed more effective when the stimuli used reflected the central tendency of the test
stimuli (as was the case in Attneave’s study) rather than a more peripheral example. In a
landmark study in the development of prototype theory, Posner and Keele (1968) built
on these earlier results by demonstrating that people could extract a central prototype
without explicit pre-training. In many instances the previously unseen prototype was
classified with greater accuracy than were the control items with which people had
been trained. Relevant to the discussion in Chapter 4, the authors found they could
draw no conclusion whether the formation of abstraction happened during the learning
process or spontaneously during testing as part of the classification process. Rosch
(1973) was less circumspect however, suggesting that categories in domains such as
colour and form may develop around perceptually salient focal points (which need
not be central). She provided an elegant empirical demonstration (Rosch, 1975) of the
asymmetry inherent in such category formation — namely, that non-focal stimuli were
considered closer to focal stimuli than the other way around. Rosch and Mervis (1975)
introduced the notion of family resemblance as a way of accounting for graded category
membership. They argued that semantic categories, rather than represent a list of “must

have” properties, should be thought of in terms of a network of overlapping features.

Carving up a conceptual space according to basic-level categories was seen as a process
of maximising family resemblance (featural overlap) within categories while minimising
it between categories.® Their empirical results demonstrated strong correlation between
an item’s family resemblance score and subjective ratings of proto-typicality.

Featural similarity

A related notion of featural overlap formed the basis of Tversky’s (1977) contrast model
of similarity. The model defines the similarity between two items x and y as:

S(xy) = 0f(INX)—af(9—X)-Bf(X-9) (1.2)

where X and 9 are features sets representing the items x and y respectively. The
parameters 6, a and 3 reflect the relative importance of the common and distinct features,
and the function f defines a measure of salience for a given feature set which may involve
intensity, frequency, familiarity and so on. The simplicity and generality of Tversky’s
model belies its significance. The model has the parameters that it does because Tversky
painstakingly demonstrated that both feature salience and the relative importance of
common and distinct features varies with the stimulus context and with the nature of
the experimental task. However, viewed from a different angle, the free parameters in
the model reflect just what it is that remains elusive when it comes to understanding

81n line with Carnap’s (1967) earlier idea that a set of items is a kind if its members are more similar to
each other than any given thing outside the set.
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similarity and its role in inductive generalisation. For example, what constitutes a feature
in the first place and which features are relevant in a given setting? I consider this latter
problem in Chapter 5, in light of the relevance theory of induction (Medin, Coley, Storms,
& Hayes, 2003), and demonstrate that the context in which the stimuli were sampled
has an important role to play in determining when seemingly relevant featural overlap is
indeed relevant.

Tversky’s model of featural similarity, as well as Rosch and colleagues’ work on
prototypes and family resemblance, represent an important milestone in the understanding
of inductive generalisation. Accompanying a shifting trend in the focus of study from
percept to concept, the models highlighted the need to consider a more flexible mixture
of cue validity and psychological distance as the principle determinant of stimulus
similarity and the driver of generalisation behaviour. Notions of asymmetric featural
overlap between items as well as the distribution of features within and between related
categories would inform subsequent models of property induction.

Generalisation of abstract properties

Structuring our internal psychological space by organising our observations of the
world into conceptually coherent concepts offers the potential to reduce computational
complexity and ease the burden on long term memory. And insofar as the structure
of our category representations reflect statistical regularities in the world, we can use
such representations to infer knowledge about the world by projecting properties from
one category to another. Which raises a number of questions about how such property
induction might work. What, for example, constitutes good evidence in support of a
particular induction? How does this depend on the nature, number and range of known
examples? And how is existing knowledge of the categories involved and of the property
itself, brought to bear?

In one of the first empirical studies of its kind, Rips (1975) asked people to project a
relatively abstract property (an unknown disease) from one animal species to another. He
was interested in the the notion of graded category membership (of the kind proposed by
Rosch, for example) and whether this might influence property projection. He found an
effect of similarity on property induction that would later be widely replicated — namely
that willingness to project a property from the given item to the target item was influenced
by the similarity of the two. Thus, people were more willing to generalise ROBINS —
SPARROWS than ROBINS — HAWKS, because robins and sparrows were judged the
more similar. However, he also observed a fundamental asymmetry in such projections.
People were more willing to generalise from typical members of a category to less typical
members (e.g. ROBINS — GEESE) than the reverse (GEESE — ROBINS). But this effect of
typicality could be made to disappear if people were provided more specific information
about the distribution of the property in question. Rips concluded, that in the absence of
more specific knowledge, people were leveraging the distributional information in the
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superordinate category (BIRDS, for example) and not merely the features of the items
involved. Properties belonging to more typical members were more likely to be shared
by others than properties belonging to atypical members. Rips’s stance on the role of
premise items in inductive judgments reflected a view echoed in later theories — namely,
that an item’s evidentiary value reflects its direct overlap with the target in terms of
observed (largely perceptual) attributes as well as theoretical properties derived from the
distributional information implicit in the categories involved and the conceptual space in
which they are embedded.

Osherson et al. (1990) adopted a similar stance in developing their similarity-coverage
model designed to capture argument strength ratings in category-based induction tasks,
like the following:

Elephants have BCC in their blood.
Monkeys have BCC in their blood.
Antelopes have BCC in their blood.

where one or more premise statements are given (above the line) in support of a conclusion
(below the line). To avoid the effect of property-specific knowledge on judgments, the
premise statements relate to so-called blank predicates about which people should have
limited prior beliefs. According to the model, an argument derives its strength from two
sources of evidence. The first source, the similarity component, derives from a direct
featural comparison between premise and conclusion items — specifically, the shortest
path in psychological space between the conclusion category and any one of the premise
categories. It reflects the evidence of the premise items for the specific conclusion at hand,
and is independent of any fixed category hierarchy. The second source, the coverage
component, is more indirect, deriving from membership in a common superordinate
category (the smallest one containing the premise and conclusion items). It reflects the
weight of evidence that the premise items represent for any item sharing the common
relationship — in effect, the shortest path between conclusion and premise items, averaged
over all potential conclusions.

Osherson et al. (1990) applied their model to successfully account for a wide range

of previously observed phenomena including similarity, typicality and diversity effects.

Yet despite the model’s crucial reliance on the coverage component in accounting for
many of these phenomena, Sloman (1993) achieved comparable accounts with his purely
feature-based model of property induction. In this model, argument strength relates to
how well the features of the conclusion category are covered (overlapped) by the features
of the premise categories. Thus, when holding the conclusion category constant, argument
strength increases as the featural overlap between premise and conclusion categories
increases. And when holding featural overlap constant, argument strength decreases as
the featural complexity of the conclusion category increases. Even without a mechanism
for leveraging knowledge implicit in a common superordinate category, Sloman gave
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a plausible account for all effects accounted for by Osherson et al., excluding that of
premise non-monotonicity where adding positive evidence can weaken a conclusion.
According to Sloman’s model, adding premise items can never decrease featural overlap

(by definition), so argument strength can never weaken as consequence.’

The diversity of evidence

Indeed, it seems intuitively reasonable that adding further positive evidence should act to
increase argument strength, or at least have no effect. Certainly philosophers of science
(e.g., Hempel, 1966; Horwich, 2016) have emphasised the role of diverse evidence in
strengthening the support for a hypothesis. Osherson et al., however, make an important
distinction between evidence coverage and evidence diversity, one which attempts to
explain when premise diversity does and does not promote argument strength. The
following arguments illustrate the distinction:

Flies have property X.

(1.3a)
Bees have property X.

Flies have property X.
Moths have property X. (1.3b)

Bees have property X.

Flies have property X.
Cats have property X. (1.3¢)

Bees have property X.

Argument 1.3(b), with the addition of the second premise: MOTHS, increases both the
diversity and coverage of the argument. The addition of CATS in argument 1.3(c), in
contrast, increases premise diversity but decreases the argument’s coverage by changing
the common reference class from insects to animals. Thus, under the similarity-coverage
model, the second argument is predicted to be stronger than the first while the third is
predicted to be weaker.

In Chapter 5 I explore a different kind of diversity effect, or rather a non-diversity
effect, where the addition of premises that are insufficiently diverse may act to decrease
argument strength. This kind of premise non-monotonicity cannot be accounted for by
the similarity-coverage model, since by definition additional premises can never reduce
the similarity term, nor the coverage term where the covering category remains the same.
I argue that the phenomena depends on the reasoner holding a particular kind of theory
about the process by which arguments are constructed. In a similar vein, Hayes, Navarro,

9Sloman (1993) suggested that his model could be extended by adding a regularisation parameter
(designed to reduce overfitting in connectionist models) in the form of weight decay. In this way, the model
could plausibly account for premise non-monotonicity.
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Stephens, Ransom, and Dilevski (2019) show that people’s general tendency to draw
stronger conclusions from more diverse evidence is somewhat contingent upon the model
of premise selection that they have in mind. The inability of the similarity-coverage
model to capture such effects reflects the fact that, by design, the model is fundamentally
similarity-based. While it does incorporate one source of the reasoner’s background
knowledge — namely, a category hierarchy (specifically a biological taxonomy in the
case of the particular arguments studied) — it has nothing to say about other ways in
which the reasoner’s background knowledge and theories may be brought to bear.'® And
because its notion of similarity is essentially a global one (i.e. based on all available
features of a category), it cannot make predictions about changes in feature salience that
depend upon the property being projected. So if recruiting property specific knowledge
and determining feature relevance is an important part of what the reasoner does, then it
is an important challenge for cognitive theory to explain it. In the next section, I outline
various efforts aimed at incorporating such explanations into the theory of inductive
generalisation.

THEORYFUL INDUCTION: FINDING REASONS TO GENERALISE

Similarity and its role in supporting inductive generalisation was much scrutinised in the
latter half of the 20" century. Philosophers found it difficult to define (e.g., N. Goodman,
1972; Quine, 1969), and experimental results showed that judgments of similarity were
highly context sensitive (Medin, Goldstone, & Gentner, 1993; Tversky, 1977). Such
scrutiny led to a considerable broadening of the concept of similarity. As a result, a
more detailed view of inductive generalisation begun to emerge. One where reasoning
involves judgments of similarity that are theoryful (based on theories, hypotheses and
explanations) as well as theoryless (i.e. pre-theoretic, based on global comparisons and
distributional statistics ). In what follows, I highlight some important conceptual turning
points towards a more “theoryful” theory of inductive reasoning.

From similarity of kinds to kinds of similarity

As I have mentioned already, while the models proposed by Osherson et al. (1990) and
by Sloman (1993) can both accomodate considerable feature richness in terms of the

premise items involved in an argument, they are both limited in another important respect.
Neither model has anything to say about the involvement of the predicate itself (i.e.

the property being projected). This is unsurprising since both models were designed to
capture reasoning with blank predicates. Nonetheless, as N. Goodman (1955) suggested,

10Such design limitations notwithstanding, Osherson et al. (1990) marks an important theoretical and
empirical contribution to the development of a comprehensive theory of induction. In a parsimonious
fashion, it offers a mechanism by which indirect but related evidence — distributional knowledge of relevant
superordinate categories — may be brought to bear on a variety of problems.
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not all properties are equally projectable. Consider the following arguments, for example:

This piece of copper conducts electricity.

(1.4a)
All pieces of copper conduct electricity.

This man in the room is a third son.

(1.4b)
All men in the room are third sons.

Assuming you did not already know that copper conducts electricity, the first argument
still seems stronger than the second.

Unsurprisingly, N. Goodman’s intuition is borne out in the laboratory. People are more
willing to project homogenous biological properties such as skin colour, for example,
than more heterogeneous ones such as obesity (Nisbett, Krantz, Jepson, & Kunda, 1983).
Furthermore, the variability in property projectability may itself vary as a function of
the category in question. Keil, Smith, Simons, and Levin (1998), for example, showed
that children as young as five considered “number of inside parts” to be more definitive
than “dusty” for a given category (animal or machine), whereas “surface markings” was
important for animals but not machines, and “size” was somewhat important for machines
but unimportant for animals.

Heit and Rubinstein (1994) examined the notion of projectability by testing whether
people take more than a single kind of similarity into account when projecting a property.
Their results demonstrated that people make stronger inferences when the property
to be projected (anatomical or behavioural) matched the kind of similarity exhibited
between the animal categories used (Heit & Rubinstein, 1994, Expt. 1 & 2). They further
observed that while both anatomical and behavioural similarity influenced projection
of behavioural properties, only anatomical similarity influenced anatomical inferences.
Heit and Rubinstein suggested that inductive reasoning, is a dynamic process where
people identify those features of the categories involved that are relevant to the property
being inferred. The suggestion, which is echoed in later theories (such as Medin et
al., 2003, for example), makes a good deal of sense. From a philosophical standpoint,
N. Goodman (1972) had argued that a category’s features may be unbounded. Empirically,
Barsalou (1989) had observed that when people were asked to list a category’s features,
the resulting feature sets tended to be context dependent. And there was precedent for
the suggestion in Tversky’s (1977) contrast model of similarity, where the problem of
determining property-specific feature relevance is analogous to the context-sensitive
problem of determining non-zero feature weights. An obvious question arises however. If
the property being inferred is used to determine feature salience in similarity judgments,
what kinds of knowledge or theories might people be recruiting? As I hope to demonstrate
in the discussion that follows, consideration of issues such as these has helped to stimulate
the development of a richer theory of inductive inference.
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From comparison to reasoning: the emergence of theory

N. Goodman (1955) in attempting to address his own riddle of induction, was arguing in
effect against a theoryless notion of similarity as the sole driving force behind induction.
He proposed that the way we determine whether a property represents a suitable basis
for induction is itself a kind of second order induction. That is, by trying out a property
as the basis for a generalisation and finding some success, the property may come to
be entrenched. And if success breeds success, the rich, inductively speaking, get richer.
One property is thus a more suitable basis for induction than another to the extent that it
has become the better entrenched. These second order inductions (or overhypotheses in
N. Goodman'’s terms) may be viewed as a kind of proto-theory adopted by the reasoner
to circumvent the otherwise computationally intractable task of comparing similarity on
the basis of a potentially unbounded number of features.

Quine (1969), like N. Goodman (1972) was wrestling with the slipperyness of similarity,
and in particular its suitability as a measure of conceptual coherence. Quine makes an
important distinction between concepts whose coherence derives from the proximity
of its members in similarity space (what he terms our innate quality space), and those
organised on the basis of a more sophisticated theoretical understanding of what lies
beneath the similarities. Quine suggests that our development from early childhood
follows a gradual trajectory whereby our concepts are restructured increasingly on the
basis of theoretical coherence. Murphy and Medin (1985) build on Quine’s idea regarding
the theoretical coherence of concepts, suggesting that neither (theoryless) similarity
alone, nor the statistical correlation of attributes is sufficient to capture the coherence of
people’s internal representations of real world categories. They suggest that concepts seem
coherent to the degree that they match people’s background knowledge and assumptions,
making a kind of “theory first” argument about conceptual organisation. This view
suggests that correlational structure is represented by causal theories or explanations,
and that similarity “may be a by-product of conceptual coherence rather than its cause”.
Importantly, Murphy and Medin emphasise the bi-directional influence of mental concepts
and theories; theories are composed from concepts, and in turn constrain the features
represented in concepts.

The idea that Murphy and Medin (1985) along with Quine (1969) were driving at
reflects an important shift in thinking about the way in which concepts are structured,
and the raison d’étre for such structure in the first place. The theory-centric view of
concepts places a different emphasis on what the reasoner is trying to achieve. The focus
shifts from answering “how similar are these things?” to “why are these things similar?”.
Computationally speaking, the two questions (in principle at least) might involve different
trade-offs regarding representational complexity and generalisability. Questions of “how
similar?” might be better addressed by concept representations structured around a
theoryless notion of similarity. While for questions with a “why?” focus, a theoretically
coherent organisation of the kind that Murphy and Medin (1985) described, might be more
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appropriate. Certainly the ability to answer “what lies behind the data?” offers potential
benefits. A reasoner who incorporates such thinking into their inductive inferences gains
the ability to leverage past experience in a wider variety of situations than might otherwise
be possible — effectively learning more from less. Whether the right thing is learned
will depend of course on the particulars of the reasoner’s theories and assumptions. But,
as I attempt to highlight through the studies in this thesis, people’s implicit answers to
“why this?” style questions impact how far they generalise (Chapters 2—4), how they
determine what’s relevant (Chapter 5) and how they perpetrate and avoid misdirection
(Chapter 6). While the nature of concept representation is a source of ongoing debate,
the ideas around explanatory coherence and theory-guided generalisation influenced a
number of subsequent theories of induction.

Explanatory coherence

Sloman (1994), for example, investigated the evidentiary value of explanatory coherence
using pairs of arguments like the following:

Most investment bankers are at risk for heart attacks.

(1.5a)
Most firefighters are at risk for heart attacks.

Most investment bankers retire early.

(1.5b)
Most firefighters retire early.

where there were clear but potentially conflicting explanations for the property to be
projected. He found that people’s ability to generate an explanation for the premise and
conclusion had a significant impact on their perception of argument strength. Where
the explanation generated to explain the premise was also a plausible account of the
conclusion (as in the first example above), the premise increased people’s willingness to
endorse the conclusion. But where the explanations were seen to be unrelated (as in the
second example), endorsement decreased. In the latter case, this demonstration of what
amounts to premise non-monotonicity is quite striking. That an unrelated observation
should offer no evidence in support of a conclusion seems reasonable. That it should
somehow count as negative evidence requires some explanation. One possibility, is that
people are pre-disposed to look for a single causal explanation. For example, learning
that investment bankers retire early (presumably to enjoy the fruits of so much hard
labour) might thus reasonably discourage the belief that early retirement is an option
for firefighters (whose labours bear less fruit). Sloman raises another possibility — that
people engage in a form of abductive inference (Harman, 1965; Pierce, 1955), and that
an available explanation applying to the premise but not the conclusion (as in Argument
1.5b) may nonetheless inhibit the generation or retrieval of an alternative. A further
intriguing possibility is that people make assumptions about the pragmatic context in
which arguments are generated which raise heightened expectations of premise relevance
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(Medin et al., 2003). The availability of an alternative explanation may be sufficient for
people to conclude that the premise is intended as negative evidence. The idea that the
rules of evidence change when data is socially generated is a potent one that may help
to explain many reasoning phenomena which otherwise seem unjustified or illogical on
the basis of “naturally occurring” evidence. This is not to say that socially generated
data licences an anything goes approach to inference.!! Indeed a goal of the research
described in this thesis (and Chapter 6 in particular) is to explore the systematic ways
that inference on the basis of socially generated data is related to and builds upon the
more “primitive” kinds of generalisations we make.

Sloman’s (1994) competing explanations are essentially alternative theories that the
reasoner holds regarding feature relevance. Namely, which feature or features should
support the projection of the property in question. In computational terms, we might
think of such explanations as solving the reasoner’s problem of how to select or represent
the evidence. The problem still remains of weighing the evidence in favour of the target

conclusion — namely, does the target of induction have the relevant feature in question.

Depending on the nature of the property in question, the answer may not be immediately
obvious and may also involve further theory-guided generalisation.

E. E. Smith, Shafir, and Osherson (1993), introduced the gap theory of induction
to account for ways that people use background knowledge to reason about threshold
features — something which was not captured in their earlier similarity-coverage model
(Osherson et al., 1990). The essence of the theory is that argument strength reflects
both similarity between premise and conclusion categories as well as the plausibility of

premise and conclusion. Further, the theory suggests how these two aspects trade-off.

When there is significant uncertainty regarding the relevant basis for projection, as when
blank properties are used, then reasoners should rely heavily on similarity. Conversely, in
examples like the following:

Dobermans can bite through wire.

(1.6a)
German shepherds can bite through wire.

Poodles can bite through wire.

German shepherds can bite through wire. (160
where background knowledge or theory suggests a clear explanation for the property in
question (sufficient size and strength in this case), then the structure of the corresponding
feature space becomes relevant. Thus, in the above example, people tend to rate the
second argument as stronger than the first despite the fact that German shepherds bear
a closer resemblance to Dobermans than to Poodles. According to gap theory, it is the
prior implausibility or “surprise value” of the premise relative to the conclusion that adds
weight to the conclusion. It does so by prompting the reasoner to update her criterion
about the property in question (in this case, the strength required to bite through wire).

T Although an hour spent viewing social and news media in 2019 might easily convince you otherwise.
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Sloman’s findings and those of E. E. Smith et al. (1993) highlight the role that people’s
background knowledge and theories play in property induction, lending support to the
idea that people strive for explanatory coherence when interpreting evidence. Together
with similarity-based accounts (such as Osherson et al., 1990; Sloman, 1993, for example),
the work paints a rich picture of the variety of evidence that people recruit in order to
close the gap between premise and conclusion. But what is missing from the picture is an
account of how these different kinds of evidence may be combined and weighed in the
balance. In the next section, I look at how the mathematics of Bayesian inference can be
used to describe inductive generalisation where the reasoner draws on multiples sources
of evidence.

1.4 SAMPLING MATTERS

My principal aim in this section is to convey a sense of why sampling assumptions should
matter, and to outline some empirical evidence which suggests that they probably do. In
support of the first point, I begin by discussing the theoretical foundations of Bayesian
inference and the model of Bayesian generalisation that it supports. It is within this
framework that clear quantitative predictions emerge regarding the effect of sampling
assumptions on the interpretation of data. In essence, it is an investigation of the further
consequences of these core predictions that drives the new research I present in subsequent
chapters.

THE BAYESIAN FRAMEWORK FOR WEIGHING DATA AS EVIDENCE

Thus far I have considered three different sources of evidence that the reasoner might
employ to fuel an inductive inference. Firstly, there is evidence drawn from inter-stimulus
similarity based on direct comparison. The weight of evidence in this case is thought to
relate to some measure of psychological distance (e.g., Shepard, 1987) or featural overlap
(e.g., Tversky, 1977) between the data and the target of induction. Secondly, there is the
kind of evidence reflected in concept representations involving distributional information
over collections of abstract features (e.g., Rosch & Mervis, 1975). Thirdly, there is the
evidence drawn from explicit prior knowledge (e.g., Heit, 1998), explanations (e.g.,
Sloman, 1994), or intuitive theories which may be abstract (e.g. N. Goodman’s, 1955,
overhypotheses), domain-specific (e.g., Heit & Rubinstein, 1994) or property-specific
(e.g., E. E. Smith et al., 1993). The experiments I describe in this thesis examine how
people interpret each of these forms of evidence in light of their sampling assumptions.

Many of the accounts of inductive generalisation that I have so far discussed, focus on
single source of evidence to explain some aspect of inductive inference. The Bayesian
approach in contrast, allows for the specification of models of inductive generalisation
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where the reasoner draws upon and integrates any such evidence. Bayesian models have
been successively applied to inductive inference in a variety of task settings including
stimulus generalisation (Shepard, 1987), category learning (Anderson, 1991), property
induction (Heit, 1998; Kemp & Tenenbaum, 2009; Sanjana & Tenenbaum, 2003), word
and language learning (Xu & Tenenbaum, 2007b), pedagogical teaching and learning
(Shafto, Goodman, & Griffiths, 2014), and more.

Bayesian inference represents a method of belief updating consistent with the axioms
of probability (see Jaynes, 2003, for example). Because of this axiomatic grounding, it
confers certain desirable properties with respect to evidence calibration. For example, it
allows the reasoner to avoid a so-called Dutch book — a series of gambles that reveals the
reasoner’s probabilistic beliefs to be mutually inconsistent (Horwich, 2016, p. 18). As
such, Bayesian inference has been used as the basis for normative or “rational” models of
cognition (e.g., Anderson, 1991; M. C. Frank & Goodman, 2012; Fried & Holyoak, 1984;
Oaksford & Chater, 1998; Shafto et al., 2014; Shepard, 1987). But as Tauber, Navarro,
Perfors, and Steyvers (2017) point out, setting optimality aside, the Bayesian framework
has equally important application as a descriptive tool for capturing people’s prior biases
and sampling assumptions and testing particular cognitive theories. It is in this descriptive
sense that the Bayesian models put forward in Chapters 5 and 6 are intended.

Bayesian models of inductive inference reflect a model-centric view of reasoning.

Like the theory-centric view of induction and concept formation discussed earlier (viz.
Murphy & Medin, 1985; Quine, 1969), the model-centric view changes the conception
of the reasoner’s task from one of comparison to one of explanation. Instead of directly
comparing the source and target of induction to determine whether they are “similar
enough” to warrant the induction at hand, the reasoner compares alternative explanations
for why the induction is (or isn’t) valid. Under the model-centric view, the reasoner forms
an abstract representation (a model) of some relevant aspect of the world encompassing a
number of hypothetical possibilites (hypotheses). The range of hypotheses considered is
typically constrained by the reasoner’s theories, overhypotheses or structured background
knowledge (Kemp, Perfors, & Tenenbaum, 2007; Kemp & Tenenbaum, 2009). Particular
hypotheses are validated or otherwise on the basis of new observations.

To see how the Bayesian inference framework may be used in practice, consider the
following inductive argument:

QUAIL EGGS —=PC, G00SE EGGS
The reasoner’s model in this instance revolves around her ideas about which eggs have
some novel blank property C. In Bayesian terms, she considers a set of hypotheses (more
generally, an hypothesis space) H, where an individual hypothesis & € H represents one
partitioning of the category members (EGGS, in this case) according to whether or not
they exhibit the property in question. If there are N types of egg in her representation of
the category, there are potentially 2" hypotheses that she needs to consider, as Figure 1.2
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illustrates. In the example shown, the reasoner is aware of three different kinds of egg,
and so her hypothesis space consists of 23 = 8 hypotheses (see panel a).

Crucially, the Bayesian reasoner updates the strength of her belief in each hypothesis £
(represented by a probability P(k) € [0, 1]) on the basis of the data she encounters. She
does this according to Bayes’ theorem:

Plhx) = — FEMP(R) (1.7)
Ywes P(x|H)P(H)
which relates her posterior belief P(h|x) after seeing the data x to her prior belief P(h)
and her likelihood function P(x|h).
In Bayesian computational models, the prior serves to specify the kinds of background

information that the reasoner draws on in addition to the evidence of direct observations.
If the reasoner has a particular theory or overhypotheses concerning the property to
be generalised or the relevant domain, then that theory may be captured in the prior.
Returning to the above example, consider the property boils under 8 minutes in place of
the blank property C. This is the kind of property for which background knowledge might
reasonably be brought to bear. Say, for example, that the reasoner believes that bigger
eggs take longer to boil and can thus order all N = 3 types of EGG on the basis of size. In
this case, there are only N 4+ 1 = 4 hypotheses she need consider (see panel b, Figure 1.2).
What amounts to deductively invalid possibilities according to the rule like implications of
her background theory are represented as zero (or negligible) prior belief. In this way, the
prior acts to constrain the (prior) representation of the reasoner’s hypotheses space #, and
significantly reduce the number of possibilities that she considers. Bayesian models have
used the prior to capture the evidence of similarity in hierarchically structured categories
(Sanjana & Tenenbaum, 2003), as well as taxonomic, spatial and causal relationships
amongst related categories (Kemp & Tenenbaum, 2009).

The likelihood function also serves a central role in Bayesian inference by describing
how the evidence in the data bears on the reasoner’s beliefs. Critically, it supports
disconfirmation of hypotheses by capturing the reasoner’s sense of which hypotheses
are compatible with the data, and which are not. In our example, the observation
that QUAIL EGGS boil in under eight minutes (x = +QUAIL EGGS) would invalidate
the hypothesis Ao that none of the known eggs do, as reflected in the likelihood
P(x = +QUAIL EGGS | hg) = 0 — see Figure 1.2 (panel c).

The second role of the likelihood function is to capture the relative strength of evidence
that the data represents under each hypothesis with which it is compatible. For example,
according to the likelihood function shown in Figure 1.2 (panel d), the observation
Xx = +QUAIL EGGS represents stronger evidence for the hypotheses that only quail eggs
boil in under eight minutes (4;) than it does for the hypotheses that all known eggs do
(h7), by a ratio of 3 : 1. It is in this second sense that the likelihood function plays a
central role in the computational analyses described throughout this thesis, supporting a
quantitative assessment of the impact of various assumptions on the outcome of inference.
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Figure 1.2: The panels illustrate how reasoning about a given inductive argument (top row) may be
captured as Bayesian inference. [panel a] If the reasoner knows three different kinds of egg, then
prior to seeing the data (the argument premise in this case), there are eight hypotheses that she
might consider regarding the set of eggs with the given property (black dots). In the absence of
any relevant background information, her prior belief may be uniformly distributed across the
hypotheses: P(h) = % (bottom row of panel). The prior probability that each item has the property
in question P(x € C), is uniformly even as a result (grey dots). [panel b] The rule like implications
of a property-specific theory may simplify the hypotheses space by assigning zero probability to
certain hypotheses a priori. [panel c¢] The Bayesian likelihood (left) captures those observations
which are compatible with each hypothesis (non-zero values indicate compatibility), allowing
the reasoner to update her beliefs from her prior (middle) to her posterior (right), after seeing the
data (x = +QUAIL EGGS). [panel d] The likelihood also captures the evidentiary weight that an
observation represents for each hypothesis with which it is compatible. When these values differ
(left), posterior belief may be unevenly redistributed across the compatible hypotheses (compare
posteriors in panels ¢ and d).
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The example I have used to illustrate the workings of Bayesian inference has
involved discrete observations and a finite hypothesis space with set-valued hypotheses.
Nonetheless, when reasoning about evidence represented in continuous spaces, the same
principles apply. The reasoner entertains hypotheses (albeit infinitely many) and updates
her prior belief on the basis of observations (of continuously varying quantities) in
accordance with a likelihood function (expressed over a continuous domain). Because the
hypothesis space reflects a continuum rather than a discrete set, the summation in Bayes’
theorem (Equation 1.7) becomes integration in the limit.

Having sketched the basics of Bayesian inference, [ now want to describe two important
milestones in the development of a Bayesian theory of generalisation, each of which
1s built around a different likelihood function. Between them, these two theories, and
the two sampling assumptions they embody are central to the new research I describe
throughout this thesis.

Weak sampling and a strong prior bias

Shepard (1987), used a Bayesian analysis in an effort to uncover a universal law that
governs generalisation across a broad range of inductive problems in humans and might
even operate across species. The theory he developed had a strong connection to his
earlier work (Shepard, 1957) seeking to understand stimulus and response confusion, but
reflected a broader outlook. Shepard (1987) conceived of generalisation, not as a failure
of discrimination, but as a cognitive act, noting that we generalise between situations
“because we judge that they are likely to belong to a set of situations having the same
consequence” (Shepard, 1987, p. 1322).

In an appeal to evolutionary theory, Shepard argued that stimuli important to an
individual are not one of a kind, but members of some natural class which he linked
to a particular mental representation: a convex consequential region in psychological
space. Viewed in this way, the problem of generalising from one stimulus to another
becomes a form of ad hoc concept generalisation: i.e. assuming the original stimulus is
an example of some latent concept, the reasoner attempts to decide whether the target
stimulus would also be an example of that concept. In computational terms, once a learner
has observed that one stimuli is consequential (predicts a desirable outcome, for example)
she can calculate the probability that the concept should generalise to a novel stimuli
by considering consequential regions of various size, shape and position as alternative
hypotheses, and averaging over them in a Bayesian fashion.

Central to Shepard’s analysis, is the idea that the learner makes an assumption about
the likely size of the consequential region. In the uni-dimensional case, he showed that if
the learner assumes only that the region has some finite size on average, but otherwise
adopts the principal of maximum ignorance!?, then the resulting generalisation gradients

12The maximum entropy prior in this case is an Erlang distribution with finite scale. Without this
stipulation of finite scale, the generalisation gradient would degenerate to linear form.



1.4 SAMPLING MATTERS \

predicted by Bayes’ rule follow the pattern of exponential decay exhibited in a wide
range of empirical studies (see Shepard, 1987, p. 1318, for a comprehensive list). Further,
he showed that the prediction of an (approximately) exponential pattern of decay is
robust with respect to considerable variation in the prior distribution. By aligning the
idea of stimulus similarity to proximity in psychological space, and linking concept
representation to consequential regions within that space, Shepard demonstrated how
a Bayesian framework could incorporate the evidence of similarity and capture the
pervasive intuition that similar things have similar consequences.

Shepard’s analysis focused on the problem of generalising on the basis of a single
stimulus. When there is only a single data point to learn from, the generative model
underlying the data is less important than it might otherwise be. In Shepard’s model,
the learner observes that a single stimulus has some consequence, but assumes that
the two were sampled independently of one another. The fact that the stimulus and the
consequence coincide is seen as nothing more than that — a coincidence. In Bayesian
terms this weak sampling assumption is captured by a likelihood function of the form:

Px|h) = { P(x) ifxeh (ie.xiscompatible with /) (18)

0 otherwise

where x corresponds to the stimulus observed, and % represents an hypothesis of
interest (about the consequential region, in Shepard’s case). Beyond discriminating
those hypotheses that are consistent with the data from those which are not, the likelihood
function in this case is silent. However likely or unlikely the observation of x may be, it
represents the same weight of evidence for any consistent hypothesis. We can see this
mathematically, through a rearrangement of Equations 1.7 and 1.8:

P(hi|x) _ P(x|h1) P(h) _P(x) P(h) _ P(h)

P(alx) ~ P(x|h) “ P(ha) _ P(x)  P(ha) _ P(ho) (12

which shows that for any two hypotheses /1 and 4, compatible with the data x, the relative
plausibility (or odds ratio) of the two reamins unaltered after seeing the evidence. If
instead x represents a number of observations, then Equation 1.9 still holds.

When stimuli are represented in a continuous metric space (as in Shepard, 1987), new
observations outside the range of previously observed examples will still broaden the
region of generalisation, but the shape of the curve that dictates how far people reason
beyond that range will be largely unchanged.!? Importantly, additional observations
within the previously observed range — those which are in effect, certain examples of the
concept in question — these will have no effect on generalisation. Where the notion of a
“generalisation curve” no longer directly applies, when observations are represented in
set theoretic terms for example (as in Heit, 1998), the same underlying principles hold:

13 Any change that there is comes about either as a result of boundary conditions which induce a form of
linear rescaling along the axes of generalisation, or is contingent upon a non-uniform prior.
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observations represent uniform evidence for all consistent hypothesis, and highly similar
or repeated observations will have little or no effect. The upshot of all of this is that
under a weak sampling assumption, the work in shaping generalisation beyond the data
is done largely by the prior.'* Despite this potential limitation, weak sampling has been
successively used in Bayesian models to capture a variety of inductive phenomena (e.g.,
Heit, 1998; Kemp & Tenenbaum, 2009; Shepard, 1987).

Strong sampling and the size principle

Tenenbaum and Griffiths (2001a) built on Shepard’s analyses in framing their Bayesian
model of concept generalisation (see also Tenenbaum, 1999). The model defines the
probability of generalising a concept C to a novel item y as an average calculated over
each of the hypothetical forms that the concept might take. That is:

P(yeC|x)= Y P(h|x) (1.10)
h:yeh

where P(h|x) is the probability of a given hypothesis after learning from the observations
x, per Equation 1.7.

Tenenbaum and Griffiths (2001a) capture the idea that people may assume that
exemplars are sampled from the concept of interest, thereby making a strong sampling
assumption. In its simplest form, strong sampling implies that the probability of seeing
a particular example consistent with some hypothesis is proportional to the size of
that hypothesis. By extension, if x represents a collection of n independently sampled
observations, then the size of the hypothesis is raised to the nth power. Mathematically,
strong sampling may be captured by the following likelihood function

7 if x1,x0,....,x, €h
P(x|h)={ T 2o (1.11)

0 otherwise

where |h| denotes the size of hypothesis 4.!> As a comparison of Equations 1.8 and 1.11
makes clear, the likelihood function serves the same role in falsifying hypotheses under
both strong and weak sampling. What strong sampling adds however, is a way of weighing

“Were it indeed universal, weak sampling together with Shepard’s suggestion of “evolutionary
internalisation” would suggest a certain irony if taken to extremes — namely, that while the shape of
generalisation gradients may be sensitive to and driven by data gathered over evolutionary timescales, it
would nevertheless be insensitive to change in response to further observations made by the individual.

ISPrecisely what the notion of hypothesis size maps onto depends upon the nature of the hypothesis
space in question. In the case where alternative hypotheses represent a discrete set of examples (animals
that can fly, for example), hypothesis size is equivalent to the number of examples consistent with the
hypothesis. Where hypotheses represent continuously varying quantities that are “everywhere dense” (such
as the perceptual dimensions of size and color), the size of an hypothesis represents its measure which
corresponds to the notions of length, area or volume in Euclidean space (depending on the dimensionality
of the quantity concerned).



1.4 SAMPLING MATTERS \

those remaining hypotheses that are consistent with the data. As before, we can use
Equations 1.7 and 1.11 to see how the relative plausibility of two consistent hypotheses
changes after viewing the data:

P(h[x) _ (lha]\"  P(h)
P(ha|x) (|h1|) P(hy) (1.12)

This shows that under a strong sampling assumption Bayesian inference embodies a size
principle: the evidence of x favours the smaller of the two hypotheses. Just how this
effects belief overall will also depend on the prior. Under a prior that already embodies a
size principle (like the Erlang distribution that Shepard (1987) suggests), the smaller of
the two hypotheses will be favoured from the start and will become increasingly favoured
with each additional (consistent) observation.

The size principle matters

Tenenbaum and Griffiths (2001a) argue that the size principle, which emerges under a
strong sampling assumption, may be a fundamental force driving similarity comparisons.
In section 1.3, I reviewed a number of works which emphasise the importance of similarity
in driving generalisation (e.g., Osherson et al., 1990; Quine, 1969; Rips, 1975; Sloman,
1993; E. E. Smith et al., 1993). The alternative suggestion that judging similarity involves
making generalisations (Tenenbaum & Griffiths, 2001a), is thus an intriguing one.

To illustrate, consider that a reasoner is presented with some object x (by an
experimenter, for example) and that a second object y is introduced calling for a
comparison. Further, suppose that the reasoner makes a strong sampling assumption
about the original object — namely, that x is sampled from some consequential set C
say.!® From a generalisation perspective, the reasoner’s task in generalising from the
first object x to the novel object y amounts to weighing various hypotheses about a

consequential set that contains both items, against alternative proposals containing x only.

The link between similarity judgments (feature weighted comparison) and generalisation
(hypothesis averaging) emerges if we consider that the reasoner’s hypothesis space used
to represent consequential sets corresponds to a set of abstract features (whatever they
may be). If the reasoner’s hypothesis space is represented in this way, then individual
hypotheses correspond to individual features, and an object belongs to some hypothesised
set h if it has the corresponding feature. In this way, hypothesis weights and feature
weights are equivalent, and small heavily weighted hypotheses correspond to small
(specific) heavily weighted features.

16The implicit assumption here is that the second “test” object is weakly sampled, but other assumptions
are certainly not unreasonable. It seems more likely for example, that having selected one cocker spaniel
for me to consider you might select another as the basis for comparison, rather than say one of Mozart’s
arias. Nonetheless, pragmatic assumptions made by participants regarding the sampling of experimental
test items are typically ignored in the literature (which is somewhat justified when exhaustive pairwise
similarity comparisons are involved).
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Reasoning along these lines, Tenenbaum and Griffiths (2001a) demonstrate that the
Bayesian generalisation model (Equation 1.7) subsumes a version of Tversky’s (1977)
contrast model (Equation 1.2). And at a deeper level, their analysis shows that the size
principle offers a principled reason for why more specific features should be weighted
more heavily in featural comparisons.

Navarro and Perfors (2010) present an interesting counterpoint to Tenenbaum and
Griffiths’s (2001a) analysis, arguing that a size principle can emerge as a consequence
of representational efficiency. That is, if the learner seeks to carve up the similarity
structure in the environment according to a set of coherent features, then smaller features
will be preferred. The argument goes something like this. Assume there is a pool of
candidate features, varying in size (number ot items indexed) and coherence (average
pair-wise similarity among the items that share it). Measured across larger features,
coherence is more likely to approach the limit —“average” coherence. Smaller features
in contrast, should have greater variability in coherence on both the high side and low
side. Optimising for high coherence would thus tend to select for smaller features, while
weeding out features with low coherence would mean that the smaller features that were
retained would tend to be the more coherent. Either way, the argument demonstrates
that a size principle governing featural similarity may emerge from optimal encoding
principles, rather than a strong sampling assumption.

What does strong sampling predict that weak sampling doesn’t?

I have been attempting to show why, according to the principles of Bayesian inference
at least, sampling assumptions play an important role in determining the outcome of
inductive reasoning. I have discussed the importance of strong sampling and the size
principle in light of Tenenbaum and Griffiths’s (2001a) analysis of featural similarity. Yet,
I have also illustrated what can be achieved under a weak sampling assumption alone, if
a size principle is built into the prior (as in Shepard, 1987) or is derived from principles
of efficient representation (per Navarro & Perfors, 2010). This begs the question: where
should strong sampling make a difference in a way that can’t be accounted for under
weak sampling and a suitably strong prior?

To illustrate the predictions of the Bayesian model in this regard, let us revisit Alice.
Suppose Alice wants to avoid using eggs weighing less than 45g. Receiving eggs from
her supplier, she weighs the first egg at 49g. Subsequently, she weighs three in all,
finding weights of 49g, 51g, and 50g, respectively. Regarding the possibility of an
underweight egg (< 45g), how might Alice revise her opinion after making the additional
measurements? Under a weak sampling assumption, she should be none the wiser. Yet this
seems counterintuitive. In this example based on a single continuously varying property,
the larger sample seems more informative — it now seems less likely that she might find
an underweight egg. As Figure 1.3 illustrates, this kind of tightening of generalisation on
the basis of increased sample size is precisely what the Bayesian model predicts under
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The effect of sample size under strong and weak sampling
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Figure 1.3: Simulated concept generalisation as a function of sampling assumption and sample
size. The graphs plot the probability of generalising the concept in question (egg weights in
this example) after seeing a single example (dashed lines) and three examples (solid lines). (a)
Under a strong sampling assumption, the additional examples lead to a considerable tightening
of generalisation around the range of egg weights observed. As a consequence the learner may
considerably revise her opinion about the question of interest — the possibility of eggs weighing
45¢ or less — from relatively likely (open circle) to less likely (solid circle). (b) In contrast, under
a weak sampling assumption, the same additional examples have little effect.

a strong sampling assumption, and has been demonstrated across a variety of inductive
reasoning tasks (e.g., M. Frank & Tenenbaum, 2011; Hayes, Banner, Forrester, & Navarro,
2019; Hendrickson, Perfors, Navarro, & Ransom, 2019; Hsu & Griffiths, 2016; Lewis &
Frank, 2016; Navarro, Dry, & Lee, 2012; Tenenbaum, 1999, 2000; Vong, Hendrickson,
Perfors, & Navarro, 2013; Xu & Tenenbaum, 2007a, 2007b).

In a similar vein, imagine that Alice now weighs a fourth egg, this time finding a large
one (75g). Now her sample consists of: 49¢g, 51g, 50g, and 75g eggs. Should she conclude
anything differently, having discovered the large egg? Once again, a weak sampling
assumption implies that she should not change her mind with respect to underweight
eggs, yet once again this feels counterintuitive. Given there is now high variability in
her sample, the possibility of a 45g egg seems different in the two cases. Indeed, as
Figure 1.4 illustrates, the discovery of a large egg may make her more likely to expect
a small one. Related effects of sample variability (diversity) have been noted in the
literature (e.g., Fried & Holyoak, 1984; Hayes, Navarro, et al., 2019; Osherson et al.,
1990). A core assumption of the category density model (Fried & Holyoak, 1984), which
can also account for such effects, is that learners acquire a schematic representation
of the distribution of exemplars along feature dimensions of interest. Other models
(e.g., Osherson et al., 1990), while less explicit about how distributional information is
acquired, nonetheless invoke the idea in accounting for effects of sample diversity. What
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The effect of sample variability under strong sampling
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Figure 1.4: Simulated concept generalisation as a function of sampling assumption and sample
variability. The graphs plot the probability of generalising the concept in question (egg weights in
this example) after seeing three non-diverse examples (dashed lines) and after an additional diverse
example is observed (solid lines). (a) The observation of a 75g egg in this example, by increasing
the variability of the sample, has the effect of broadening generalisation. As a consequence the
learner may considerably revise her opinion about the question of interest — the possibility of eggs
weighing 45¢g or less — from somewhat unlikely (open circle) to more likely (solid circle). But
only under a strong sampling assumption. (b) Under a weak sampling assumption, the change in
variability of the sample is uninformative regarding the question of interest.

these models share is an implicit assumption which diverges from the weak sampling
assumption in a fundamental way. When reasoning about some matter of interest (e.g.
underweight eggs) on the basis of distributional information, the assumption is that the
sample distribution learned (e.g. sample egg weights) is representative of the concept of
interest (e.g. range of egg weights) — in essence, a form of strong sampling assumption.
The two cases I have just illustrated represent core predictions of the Bayesian
generalisation model highlighting the difference between strong and weak sampling.
In sum, while the model predicts that the location of the region of generalisation will
adapt to encompass the data equally under both strong and weak sampling, the prediction
regarding the gradient of generalisation differs. Under weak sampling, gradients are
dominated by the prior. Under strong sampling generalisation can more flexibly adapt to
data. In the absence of negative evidence, additional positive examples of a concept can
lead to a tightening of generalisation gradients causing the region of generalisation to
contract. Conversely, a generalisation gradient can expand in a given direction without
further positive examples in that direction, by increasing sample diversity overall.
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Empirical tests of the strong versus weak distinction

Following the formulation of strong and weak sampling within a Bayesian generalisation
model (Shepard, 1987; Tenenbaum & Griffiths, 2001a), there have been numerous
demonstrations in the literature of the differing effects of these assumptions on inductive
reasoning (e.g., Fernbach, 2006; Hayes, Banner, et al., 2019; Hayes, Banner, & Navarro,
2017; Hayes, Navarro, et al., 2019; Lawson & Kalish, 2009; Navarro et al., 2012;
Tenenbaum, 2000; Vong et al., 2013; Voorspoels, Navarro, Perfors, Ransom, & Storms,
2015). A common experimental approach has involved attempts to manipulate people’s
sampling assumptions between experimental conditions. By presenting people the same
sample of training data but varying the explanation for how it was produced, it is possible
to observe any effects of sampling assumptions in the results of subsequent generalisation
tests. Such manipulations have typically involved a cover story that describes the way that
the training samples were collected. Each of the experiments described in the following
chapters employ this technique. Other related studies, notably those demonstrating
sampling sensitivity in infants (Gweon, Tenenbaum, & Schulz, 2010) and pre-school
children (Rhodes, Gelman, & Brickman, 2010; Xu & Tenenbaum, 2007a), have used more
explicit manipulations involving an experimenter actively sampling data for participants
and giving ostensive cues regarding the method of selection.

Although the point is an obvious one, it is worth emphasising that there is a difference
between the sampling assumption that an experimental manipulation emphasises and the
one that the reasoner adopts. Setting aside the usual scope for individual variation, there
is room for widespread divergence as well. Even seemingly explicit suggestions, such as
“these examples were sampled by a helpful teacher from [the category]”, may not have the
effect intended. For this reason, some care must be taken in interpreting the results of such
studies (and indeed, the new research I describe in this thesis). Nonetheless, the pattern
of results exhibited across these studies is broadly consistent with the predictions of the
Bayesian framework under an assumption of strong or weak sampling, as appropriate for
the experimental condition.

Conservative sampling assumptions

In a seminal study, Navarro et al. (2012) found considerable individual differences
regarding the extent to which people adopt a strong sampling assumption even when a
cover story manipulation was highly suggestive that one was appropriate. Their findings
raise an interesting question regarding the source of such differences. There are of course
numerous differences in cognitive capacities that might be posited in explanation. For
example, the findings I discuss in Chapter 4 suggest that patterns of generalisation may
be less responsive to additional exemplars (less in accordance with the predictions of
strong sampling) when people must recall exemplars from memory — a cognitive capacity
where reasonable individual variation is to be expected. Navarro et al. (2012) suggest that
a form of inferential conservatism may be involved. This suggestion is intruiging because
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it immediately begs the question concerning the reason for such a stance. Two distinct
but related possibilities come to mind, both of which are relevant to the investigations
described in this thesis.

The first possibility, which might account for the prevalence of conservatism (but less
so the variation among individuals) is simply that a strong assumption may frequently
be unjustified. In a tautological sense, a positive example of a given concept can always
be viewed as if it were a draw from the concept of interest. When viewed in that way,
the question facing the reasoner is whether the draw was a fair one, or whether instead
the generative process behind the sample has introduced any systematic bias. There
are numerous ways in which a sampling process might introduce bias. For example,
exemplars of a given concept might vary by location (consider antipodean swans, for
example) or over time (e.g. telephones) in ways that effectively censor the full distribution.
Even when there is no obvious censoring that might impose outright restrictions on the
availability of particular exemplars, learning from a non-uniform exemplar distribution
may give a distorted view of data if the learner assumes that exemplars are uniformly
distributed (per strong sampling). Somewhat related is the distinction between fypes and
tokens. If, as is often the case, the learner is interested in learning the range of exemplars
that form a given concept (such as breeds of dog, for example), then learning about a new
type (e.g. a “cavoodle”) is useful, while observing additional tokens of the same type
(seeing the same dog numerous times, for instance) may be uninformative (e.g., Perfors,
Ransom, & Navarro, 2014; Xie, Hayes, & Navarro, 2018).

As Navarro et al. (2012) suggest, a weak sampling assumption is equivalent to a
low-variance, high-bias estimator, while a strong sampling assumption is low-bias but
high-variance.!” Whether in the long term weak sampling leads to systematic underfitting
or strong sampling leads to systematic overfitting of data, will depend on the frequency
with which the assumptions of strong sampling hold. Short of actually knowing how data
is sampled, there can be no normative stance regarding the appropriate behaviour. As
Navarro et al. (2012) suggest, learners might reasonably adopt a sampling assumption
that varies in strength anywhere along a continuum between weak and strong sampling.
To capture this in computational terms, they introduce the mixed sampling likelihood:

O +(1-8)p  ifxeh

|X

P(x|h) = (1.13)

otherwise

where | X| denotes the number of items that might possibly be observed, and 0 reflects
the probability that the premise item x was strongly sampled. Setting 6 = 0 yields weak
sampling as a special case, while 6 = 1 is equivalent to strong sampling. A plausible
interpretation of such a mixed assumption is that it reflects a conservative disposition
towards the risks and rewards of a stronger sampling assumption, even when one might
reasonably hold. Conservatism of this form might thus be more a longer term strategic

17See (Hastie, Tibshirani, & Friedman, 2009) for a statistical discussion of the bias-variance trade-off



outlook, and less a response to the specific context in which data is observed. The work
of Gigerenzer and colleagues (e.g., Gigerenzer & Brighton, 2009) supports the idea that
more robust reasoning may emerge from a “less is more” approach, where aspects of the
data are ignored in favour of greater efficiency and accuracy in the long-term.

In Chapter 6, I describe an experiment where people play a strategic communication
game, and must reason from evidence provided by a teammate or an opponent. I examine
whether people adopt a conservative stance regarding the way they reason from messages
or whether instead they adopt assumptions based on the context in which communication
takes place as well as the message content itself.

The pros and cons of stronger sampling assumptions

Despite the potential benefits of exercising a cautious inferential stance, and the inherent
uncertainty surrounding the generative process, people nonetheless attempt to leverage
limited data by making strong assumptions. Indeed in some settings — pedagogical
settings, for example, where data is provided by a trusted and knowledgable teacher —
people interpret the data in excess of what the # size principle would suggest (Shafto et
al., 2014). So taking for granted a situation where strong sampling (or something like
it) is a reasonable description of the generative process, how does a stronger sampling
assumption pay off in that case?

So far, I have considered the implications of a strong sampling assumption from a
computational perspective. The key advantage of a stronger sampling assumption over
a more conservative approach is that generalisation gradients can better adapt to data
in the absence of explicit negative evidence, overcoming prior beliefs in the process. A
further benefit to the learner emerges from this — the ability to trade-off representational
complexity and accuracy. For example, consider a scenario (depicted in Figure 1.5),
where a reasoner is attempting to infer the “ideal level” of some continuously varying
(but finite) property. Importantly, the reasoner in this scenario has a strong prior belief
that there is a natural cut-off point that partitions the space into ideal values at the lower
end and non-ideal values at the higher end (as in Figure 1.5, panel a). An alternative
belief (one given little credence by the reasoner in this example) is that the ideal level
represents a cut-off on both sides of a range (as in Figure 1.5, panel b). Where the
reasoner adopts a weak sampling assumption in this example (Figure 1.5 — red line),
no amount of data will shift them from their prior belief. More realistically, where the
reasoner adopts a conservative sampling assumption, a strong prior belief in a particular

representation will still be difficult to shift (Figure 1.5 — green line).'8

Under a stronger
sampling assumption, however, the strong prior evidence is outweighed by a relatively
small sample — the reasoner effectively learns a new representation for the inductive

problem at hand (Figure 1.5 — blue line).

8The green line represents a mixed sampling assumption according to Equation 1.13. The parameter
setting 6 = 0.02 reflects the value fitted to a conservative reasoner reported in Navarro et al. (2012).
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The effect of a strong prior bias under different assumptions
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Figure 1.5: A simulated learning scenario. The learner attempts to infer the “ideal level” of some
quantity, and has a strong prior bias (10,000:1 in favour)) that the consequential region takes
the form of a partition (as in panel a), rather than a range with an upper and lower bound (as in
panel b). The simulation (panel c¢) shows the effect that this bias has under different sampling
assumptions. Under a strong sampling assumption (blue line), just twelve samples are enough
to drive the learner to a different view of the consequential region. In contrast, under weak
sampling the learner cannot learn the alternative representation, regardless of the number of
samples observed within a restricted range. Lastly, a learner who adopts a conservative sampling
assumption will eventually revise his belief, but it may take considerably more data to do so — the
green line depicts the learner’s response having observed a sample ten times larger in size than
the one shown (but within the same range).

While the scenario is somewhat simplistic it is not entirely unrealistic — there is reason
to believe that people do recruit a variety of background information to better interpret the
data at hand, including abstract overhypotheses (Kemp et al., 2007) and property-specific
explanations (e.g., E. E. Smith et al., 1993). Chapter 2 explores this idea in the context
of a category learning experiment. The basic intuition is that people with a stronger
sampling assumption should be more likely than those with a weaker assumption to shift
their representation of the target category as new data arrives.

There is precedence for the idea in the literature. Sanjana and Tenenbaum (2003)
demonstrated how a strong sampling assumption and structured priors trade-off in
category-based induction tasks. Using empirical similarity ratings for various categories
of mammal (collected by Osherson et al., 1990) a taxonomic tree was created via
standard agglomerative clustering algorithms (Duda, Hart, & Stork, 2001). A Bayesian
generalisation model was specified (following Tenenbaum & Griffiths, 2001a) where
each hypothesis represented a collection of one, two or three disjoint clusters (sub-trees).
The prior was weighted in favour of fewer clusters, while the strong sampling likelihood



function favours smaller hypotheses. As in the simple example above, this allows the two
aspects to trade-off as sample size increases. As a consequence, simpler representations
(fewer clusters) may be abandoned in favour of more complex ones in the face of sufficient

additional evidence, but only if the size principle applies (even if only in diluted form).

Sanjana and Tenenbaum (2003) found that behavioural data from three experiments were
better captured by the Bayesian model than the best performing alternative, Osherson et
al.’s (1990) similarity coverage model.

Another way of interpreting the effect of the size principle, is to say that it changes
the evidentiary value of similarity (non-diversity) amongst sampled items. For example,
as we saw in Figure 1.5, additional exemplars coinciding within the learner’s region
of interpolation are ignored under weak sampling, while the same “coincidence” is
leveraged to drive a change in representation under strong sampling. In that example, the

non-diversity observed involved the very quantity that was the basis for generalisation.

But the same principle should apply when attempting to identify the relevant basis on
which generalisation should proceed. For example, consider the following inductive
argument: WALRUS — ELEPHANT, and compare it with a second: { WALRUS, WARTHOG }
— ELEPHANT. In the first argument, the premise and conclusion categories share a
number of features in common, any of which might serve as the basis for generalisation.
In the second argument, the presence of a rare feature (tusks) in both premise categories
seems more suggestive. Does the perception of a seemingly meaningful coincidence of
this kind change the way that evidence is interpreted? And if so, is the effect unavoidable
(as consequence of a feature weighted similarity comparison, for example), or does it
depend on what people assume about the way the argument premises were sampled? [
explore the effects of such coincidental similarity in Chapter 5.

Sampling with intent

Thus far, in discussing strong and weak sampling I have placed little emphasis on whether
the data represents first-hand evidence — that is, “naturally” occurring data directly
observed and interpreted by the reasoner themselves — or second-hand evidence supplied
by another reasoner. But the distinction is an important one. Certainly the stakes are
much higher when it comes to data that is social in origin. Limited physical access to data
and a limited capacity to interpret it, means that we are critically reliant on second-hand
evidence for much of our everyday reasoning. Given the lack of comparable constraints
on the generative process behind the data we receive from others, it seems reasonable
that people might adopt different assumptions when it comes to assessing its evidentiary
weight. Whether people adopt an inferential stance that is less or more conservative as a
result, is likely to depend on the context in which communication takes place, and may
itself be the subject of further inference.

Another relevant matter that I have not yet addressed concerns how we sample
information when providing it to others. How do we select examples to communicate
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a concept? How do we choose what to say when we refer to an object? These are
examples of generative processes of which we as reasoners actually have first-hand
experience (post infancy), so answers to questions such as these may offer insight into
how our assumptions are shaped. And given that we experience both the production and
comprehension of data, the possibility of bi-directional influence emerges. The study I
describe in Chapter 6 focuses on aspects of how this bi-directional influence plays out
when the spectre of deception is present. What follows then is a brief overview of the
work on which Chapter 6 builds and an outline of the issues involved.

To begin on the production side, consider how a teacher might attempt to communicate
a concept to a learner. Assuming an exhaustive demonstration is either impractical or
impossible (because the number of possible exemplars is large or unbounded), what
criteria should the teacher apply when sampling information to provide? A simple criteria
would be to randomly sample information drawn from the concept. If this were the only
criteria that applies when teaching concepts, then it alone would be sufficient basis to
justify a strong sampling assumption on the part of the learner. However, equipped with a
basic understanding of what it means to learn a concept from examples, the teacher might
seek instead to give a better set of examples than one that might be chosen at random.
Adopting such a strategy has obvious benefits compared with random sampling: allowing
the teacher to convey the concept equally effectively but with fewer examples, or equally
efficiently but more effectively. The question arises as to how to do better than random
sampling.

Intuitively, a good set of examples and a set of good examples aren’t necessarily
the same thing. Tenenbaum and Griffiths (2001b) demonstrated this empirically, by
asking people to rate the representativeness of different sets of birds. While robins
individually were rated as more representative than other birds, three robins together
(non-diverse sample) were rated as less representative than a robin, an ostrich, and a
penguin (diverse sample), and a robin, a seagull and an eagle (intermediate sample),
which rated highest overall. From a computational perspective, Tenenbaum and Griffiths
(2001b) demonstrated a principled basis for perceived representativeness by showing
how it corresponds to a standard Bayesian measure for the weight of evidence — the log
likelihood ratio (Good, 1960; Klayman & Ha, 1987; McKenzie & Mikkelsen, 2007). Data
sampled according to such a principle of representativeness should be more helpful to
the learner than data that was randomly sampled from the concept. A random sample
that is coincidentally non-diverse will lead the learner to generalise too narrowly, while a
sample that is overly diverse (above average) may result in over-generalisation.

Empirical research confirms that both adults and children do sample systematically
from the concept when teaching by example. A study by Avrahami et al. (1997) examined
how adults teach linearly separable concepts involving confusable stimuli. Given the
choice of both positive and negative examples, people favoured positive examples of the
category and avoided using examples close to the boundary. Rhodes et al. (2010) studied
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teaching by example with 6 year olds using a property induction task. Children were
asked to select between two sets of three examples to teach another young child about a
particular property (e.g. a four-chambered heart). The goal was to indicate which animals
of a particular kind (dogs, for example) had the property in question. The children showed
a significant preference for the diverse set (e.g. golden retriever, Dalmatian and collie)
over the non-diverse set (three Dalmatians), demonstrating that children from an early
age understand how some sets of examples are better than others at demonstrating the
breadth of a concept.

Interestingly, Rhodes et al. (2010) found that pedagogical context matters in this
regard. When children were asked to act as a scientist and choose three examples to test
whether all dogs (for example) have the given property, their preference for the diverse

examples was at chance. Studying adult performance using the same tasks, Rhodes et al.

(2010) found that adults preferred diverse examples in both the teaching and discovery
scenarios. On the basis of their own research, Csibra and Gergely (2006) propose that
children come equipped at an early age with the cognitive biases necessary to support
pedagogical exchanges. Rhodes et al. (2010) suggest that attention to sample composition
(i.e. sampling assumptions) is supported by different cognitive processes in pedagogical
and non-pedagogical contexts.

On the other hand, most models of category and concept learning proposed in the
literature make no account for this, yet successfully account for human performance
across a range of learning tasks. Typically, such models assume implicitly (e.g., Kruschke,
1992; Love, Medin, & Gureckis, 2004; Nosofsky, 1986) or explicitly (e.g., Anderson,
1991; Fried & Holyoak, 1984; Tenenbaum & Griffiths, 2001a) that examples are selected
by the teacher (or “the world”) at random, incorporating the equivalent of weak or strong
sampling. The contrast between the successful application of random sampling and the
importance of pedagogical context raises an interesting question. While the idea that
people do sample information systematically is intuitively obvious, when do “better than
random” sampling assumptions come into play, and where do they make a difference?

Shafto and Goodman (2008; see also Shafto et al., 2014) introduce a Bayesian model of
concept teaching and learning that captures the relationship between evidence production
and comprehension. The model makes two key assumptions. The rational teacher
assumption is that teachers choose examples designed to help the learner, according
to the following:

PTEACHER(x|h) o< (PLEARNER(h |)C))(x (1.14)

which formally captures the teacher’s goal to increase the learner’s belief in the true
hypothesis (the concept to be demonstrated). Here x denotes a candidate example, &
denotes the concept to be demonstrated, and o reflects the extent to which the teacher
consistently chooses in an optimal fashion. High values of a denote (near) optimal
choosing, while o = 0 implies that the teacher samples at random. A teacher who
samples in this way will select examples of the concept that are representative in much
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the same sense that Tenenbaum and Griffiths (2001b) describe. The rational learner
assumption is that the learner updates their beliefs according to Bayesian inference:

Prearner (7] x) o< Preacuer (x| h)P(h) (1.15)

(cf Equation 1.7), with the expectation not just of positive examples of the concept (as in
strong sampling), but representative ones (i.e. the likelihood function reflects the rational
teacher assumption).

The two equations (1.14 and 1.15) are linked, reflecting the inter-dependence of optimal
teaching and learning. Computationally, the model specifies that the optimal teacher and
learner jointly arrive at a solution that satisfies the two equations, but it does not specify
how they would do so. One intuitive way to think of how this might be achieved is
to consider that a successive series of “if she thinks, I think, she thinks...” thoughts
might occur to both parties. Reasoning reciprocally and recursively in this way, the
samples chosen by the teacher and the inferences drawn by the learner will approach a
simultaneous and optimal solution to both equations. A related Bayesian framework, the
Rational Speech Act (RSA), models the interdependency between the production and
comprehension of data (in this case words and sentences) in a similar way (M. C. Frank
& Goodman, 2012; N. D. Goodman & Frank, 2016). The level of “he thinks, she thinks...”
reasoning is made explicit in the RSA through nested instantiation of pragmatic listener
and pragmatic speaker assumptions. Empirical evidence to date suggests that depth of
reasoning of this form is typically limited (e.g., Colman, 2003; Franke & Degen, 2016;
Stiller, Goodman, & Frank, 2015; Vogel, Potts, & Jurafsky, 2013). Nonetheless, even at
a limited depth, this form of reflective reasoning about a counterpart has the potential
to establish bi-directional influence on behaviour. I examine this form of reasoning in
Chapter 6 in a scenario where the interests of two parties (a sender of information and
a receiver) are opposed, potentially heightening the incentive for each person to try to
“out-think” the other.

Issues of deep recursion and optimality aside, (Shafto et al., 2014) examined the
predictions of the pedagogical sampling model across three experiments involving rule-
based, prototype and causally-structured concepts respectively. On the teaching side, the
results suggest that people choose helpful examples, well predicted by the model. On
the learning side, people drew stronger inferences from the data when presented in a
pedagogical context (broadly in line with model predictions) than when the same data
was presented in a non-pedagogical context. The work reinforces the benefits of stronger
sampling assumptions, allowing the reasoner to learn rule-based concepts faster (from
fewer examples), and to learn distributional information more accurately.

In teaching concepts by example, the challenge is to promote generalisation beyond
the limited set of examples provided. For the speaker in regular conversation, there is
often a different challenge. Both speaker and listener have cognitive capacity constraints
that put downward pressure on the length of utterances. Conversational maxims which
implore the speaker to say no more than is required (Grice, 1989), are predicated on this
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notion. The desire for parsimony can often lead speakers to convey their meaning by
means of an ambiguous utterance. Indeed, the meaning of much of everyday conversation
is not to be found in a literal interpretation alone. The RSA model emphasises the
importance of “informative” sampling in bridging the gap between what is said and
what is meant. According to the model, the speaker chooses her words intentionally
to promote belief in the meaning she wishes to convey, and the listener assumes that
she does so. Without some form of bi-directional inference of this nature, a variety
of ambiguous expression in everyday speech would not be resolvable. By modelling
pragmatic language understanding as Bayesian inference based on informative sampling,
the RSA has successfully captured important examples of ambiguous language use,
including identifying referents (M. C. Frank & Goodman, 2012; Qing & Franke, 2015),
and interpreting scalar implicatures (N. D. Goodman & Stuhlmiiller, 2013). I explore the
role of sampling assumptions in interpreting ambiguous information in Chapter 6, which
examines how people may exploit the “ambiguity reduction” inherent in communicative
inference to mislead by implication.

In summary, these applications of the RSA and the pedagogical sampling model
demonstrate both the value to the reasoner of adopting an informative sampling
assumption, and the variety of situations in which it applies. But widespread reliance on a

strong inferential assumption can bring problems of its own. For example, Bonawitz et al.

(2011) found that because learners who adopt an informative sampling assumption could

make efficient use of small samples, they were less inclined to look for further evidence.

This raises a possibility that I explore in Chapter 6 — that speakers wishing to conceal the
truth may use this fact to their advantage through limited (yet informative) disclosure.
Whether an informant lacks knowledge, has alternative motives, or is simply not
sufficiently motivated, there are often good reasons to exercise a more conservative
inferential approach. However to do so uniformly is to give up the potential benefits which
I have just been outlining. What do people do to avoid this inferential dilemma? Sperber
et al. (2010) suggest that people have a suite of cognitive mechanisms for epistemic

vigilance, which serve to limit the risks of accidental or intentional misinformation.

Research shows that even young children draw inferences about their informants based
on perceived expertise, familiarity, and from more sophisticated evidence such as group
consensus (for detailed discussion see Eaves & Shafto, 2012). A computational basis for
this kind of screening mechanism has been explored using Bayesian models proposing
various forms of joint inference (e.g., N. D. Goodman & Frank, 2016; Gweon et al., 2010;
Shafto, Eaves, Navarro, & Perfors, 2012).

The idea behind this kind of joint inference is that the alternative hypotheses entertained
by the reasoner reflect not only their uncertainty about some question of interest (the
meaning of a word, or the extension of a property, for example), but also about aspects
of their informant that they do not take for granted. The reasoner uses the data to
update their beliefs about all such aspects. In essence, if people are capable of this
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kind of joint inference then it means they can test alternative assumptions “on the fly”,
transforming what are effectively context-based sampling presumptions into more fully-
fledged sampling theories subjected to data-based scrutiny. Such a capability might go
some way to explaining if and how sampling assumptions are bootstrapped during infancy
or early childhood (Gweon et al., 2010). In Chapter 6, I explore the question from the
production side, essentially asking whether speakers act as if people make content-based
sampling assumptions. Chapter 5 also examines this issue. By systematically varying
both sampling cover story and sample contents, the experiment I report there offers a
glimpse at the strength of sampling assumption people infer on the basis of differences in
the data alone.

1.5 OVERVIEW OF NEW RESEARCH

Throughout this chapter, I have attempted to highlight the ubiquity and utility of the
human capacity to reason beyond the data. And I have begun to make a case for why
our sampling assumptions, by influencing the way we view the evidence in the data,
might play a central role in underwriting our capacity for inductive reasoning, driving the
strength and quality of inference as a result. I conclude this chapter with a short sketch of
the research I have conducted in order to investigate the strength of this claim.

To some degree it is fair to say that the study of sampling assumptions and their
effect on inductive inference and inductive meta-inference is in its infancy. So there was
(and remains) no shortage of important, interesting and open questions to consider. The
questions I have chosen to pursue represent less a linear progression of studies providing
a single continuous thread of evidence, and more a collection of distinct but related
research threads. Nonetheless, the studies I present in the chapters that follow were each
designed to speak to the central issue of concern here: that is, how we form and use our
theories of what lies behind the data in order to reason beyond it.

THE PROBLEM OF WHERE TO DRAW THE LINE

The first study I present across Chapters 2—4, examines of the role of sampling
assumptions in category learning. The ability to acquire categories from labelled examples
(that is, via supervised learning) is a vital part of our cognitive toolkit. This is particularly
so during development, supporting as it does the transfer of knowledge to previously
unobserved category members. Acquisition of categories and category boundaries
involves one of the fundamental inductive reasoning challenges, namely how far beyond
the data to generalise.

I begin in Chapter 2 by examining how generalisation of a single learned category to
novel items, is affected by the sampling assumptions that people adopt. By employing
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an experimental design where the diversity of examples is held constant but sample
size is increased, I attempt to isolate the effect of category frequency on the category
representation learned. In so doing, the experiment addresses an important question. If
the learner’s beliefs do reflect an uncertain and graded notion of category membership
(as in Rips, 1975; Rosch & Mervis, 1975, for example), then how does that graded nature
change in response to category frequency, and in particular, how does this adaptation
depend on people’s theories of how the data was sampled?

Building on this work, the experiment described in Chapter 3 introduces the compli-
cation of a second category. The second category has the potential to change the kinds
of category representation that people learn, depending for example, on whether people
believe they are learning two independent or mutually exclusive categories. Further, an
additional source of information arises in the form of category base rates. By providing
different numbers of exemplars across two categories of stimuli, I examine whether and
how sampling assumptions affect the evidentiary value of base rate information. The
central question addressed is how all of this affects the category boundaries that people
infer and whether the impact of sampling assumptions changes in some way with the
introduction of a second category.

As well as illuminating the effect of sampling assumptions on category learning, the
experiments in Chapters 2 and 3, are important in another way. Taken together, the
work has the potential to shed light on an interesting discrepancy that occurs between
empirical results discussed in the categorisation literature and the adjacent generalisation
literature. In generalisation tasks, as exemplified by many of the studies refereed to in
section 1.4 (e.g., Navarro et al., 2012; Sanjana & Tenenbaum, 2003; Xu & Tenenbaum,
2007a), increasing sample size typically has a tightening effect on generalisation. In
contrast, the typical effect of increased exemplar frequency in categorisation tasks is a
widening of generalisation (e.g., Nosofsky, 1988, but see Hendrickson et al., 2019 for
an extended discussion of this issue). Despite the differences between the paradigms,
this discrepancy is somewhat puzzling, particularly if common mechanisms for inductive
reasoning underlie performance on both kinds of task. One obvious difference is in the
number of categories involved. Tightening of generalisation is typically observed in tasks
where a single concept is being considered. Whereas the kind of categorisation task where
widening of generalisation is observed usually involves two or more categories. Why
might the number of concepts or categories make such a difference? Chapters 2 and 3
offer insight into this question by exploring the idea that the contextual shift between
one-category and multi-category learning changes the sampling assumption implicit in
the task, and that the change in patterns of generalisation reflect this.

Although it relies on the same experimental framework as employed in Chapters 2
and 3, I leave my sketch of Chapter 4 until last, because it gets at a different aspect of
sampling assumptions than the rest of the work I describe.
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| WHAT LIES BEHIND THE DATA

THE PROBLEM OF REPRESENTATION

The work described in Chapter 2 also examines another important challenge facing
the learner, concerning the appropriate mental representation to adopt when learning
a category. If the mental representation that the learner adopts is well matched to the
concept being learned, the learner may require fewer examples to acquire it, or generalise
more accurately from a fixed set of examples (e.g., Attneave, 1957; Posner & Keele,
1968). A variety of category representations have been modelled in the literature including
prototypes (J. D. Smith & Minda, 1998), exemplars (Nosofsky, 1986), decision boundaries
(Ashby & Townsend, 1986), independent regions (Navarro, 2006), and so on. And the
idea that learners adapt their mental representation of a category “on the fly” has also been
studied. For example, there is evidence to suggest a change from prototype to exemplar
representation (Griffiths, Canini, Sanborn, & Navarro, 2007), a change from exemplar
to prototype (Homa, Sterling, & Trepel, 1981) and a mixture of representations that
vary throughout learning (Vanpaemal & Navarro, 2007) or across individuals (Kalish &
Kruschke, 1997).

The question thus arises as to where sampling assumptions fit in. If representations and
sampling assumptions both affect learning, then how do the two interact? As discussed
in section 1.4, one consequence of adopting a stronger sampling assumption is that it
offers the learner the potential to overcome strong prior biases and acquire alternative
category representations from data — something which may be difficult or impossible
to learn under a more conservative sampling assumption. The experiment described in
Chapter 2 represents an empirical test of the idea that the sampling assumptions people
adopt influence the category representations they employ, and the two elements combined
have a significant impact on generalisation performance.

THE PROBLEM OF RELEVANCE

A fundamental challenge of inductive inference is to reason about problems which are
under-determined, both by the data at hand and by the sum of past experience. While
data is seldom in short supply (the stimulus environment and our memory is full of it)
evidence often is. Short of evaluating the evidentiary weight of all available data, it makes
sense to prioritise the use of the most relevant data. Relevance theory (Wilson & Sperber,
2004) holds that central to much of human cognition are processes that seek to maximise
the relevance of the information available. The relevance of any information reflects a
tension between the cognitive effect that it affords and the cognitive effort required to
employ it. In computational terms, relevance can be thought of as something akin to
evidentiary weight, but with a built-in penalty for representational and computational
complexity. If the relevance of information is related to its evidentiary weight, then the
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question arises as to whether the perception of relevance may be impacted by sampling
assumptions. This question is the basis for the study described in Chapter 5.

In particular, the experimental investigation I describe looks at how people reason in
a category-based induction task where the basis for generalisation is not immediately
clear. Blank properties are used in order to promote the reasoner’s search for relevant
information. For inductive arguments of the kind used, the addition of further positive
examples having the property in question typically acts to strengthen the argument, an
effect known as premise monotoncity (Osherson et al., 1990). But violations of this effect,

that is premise non-monotonicity have also been observed (e.g., Medin et al., 2003).

Which of these phenomena people exhibit depends upon the perceived relevance amongst
the premise items. I test the conjecture that the process of determining the relevant
features of the data to use for the projection of novel properties is itself dependent upon
people’s sampling assumptions. Although it is the main focus of the study, I also gain
the first glimpse of whether the data itself helps to shape people’s sampling assumptions.
The empirical results I report suport a claim for the importance of sampling assumptions
in shaping the strength and direction of inductive inference.

THE PROBLEM OF CALIBRATION

Across the three major studies I present, the inferential task for the reasoner gets
progressively more difficult. In Chapters 2—4, the method of sampling and the basis
on which generalisation should proceed are both made clear. In Chapter 5, the reasoner
must infer the relevant basis for generalisation themselves, but the method by which
data was sampled is still clear (“no cover story” conditions notwithstanding). In the
study of deception without lying that I present in Chapter 6, reasoners face arguably
their most difficult challenge — calibrating their own inference with the inferences of
another. Given the extent to which our everyday reasoning relies on socially generated
data, and frequently involves reasoning well beyond it, the need to calibrate our sampling
assumptions based on contextual and content-based cues becomes all the more important.

Through a combination of computational modelling and behavioural experiments,
inspired by previous work on pedagogical learning (Shafto & Goodman, 2008; Shafto et
al., 2014) and rational communication (M. C. Frank & Goodman, 2012; N. D. Goodman
& Stuhlmiiller, 2013), I investigate the issues of calibrated inference from two related
perspectives. On the comprehension side, people play the role of a receiver of information
who must draw inferences from information provided. The receiver’s challenge lies in
figuring out just how the information was sampled. In regular communication, as opposed
to pedagogical settings for example, an assumption of helpful, representative or simply
unbiased sampling is not always appropriate. Reasoners must recruit what cues they can
to infer the extent that reasoning beyond the data is warranted. On the production side,
people play the role of the sender who selects the information in the first place. The
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sender’s goal is to do what they can to conceal the truth. In deciding how best to go about
this, the sender’s challenge is to infer how the data they select will be interpreted. Having
people actively sample information to provide another affords the opportunity to examine
people’s own intuitive understanding of how people reason from data and the factors
that affect the process. For example, what cues do people think that receiver’s will be
sensitive to in deciding whether or not to reason beyond the data provided?

By framing twin experiments in a context where the goals of interlocutors are not
aligned, I gain additional diagnostic capacity to determine whether people make nuanced
sampling assumptions that take into account the assumptions of their counterpart, or
simply reason from the constraints implicit in the sampling process. Thus, the study offers
the opportunity to tease apart the effects of how sampling constraints, perceived intent
and the content of data itself play a role in how people reason when communicating.

DO SAMPLING ASSUMPTIONS INFLUENCE LEARNING OR REASONING?

Each of the studies introduced thus far deal with “what” style questions that get at the
computational problem that the reasoner might be attempting to solve. What is at issue in
these studies is not an account of zow the reasoner goes about solving the computational
problem, but rather the nature of the computation itself - what are the inputs and outputs,
what are the computational abstractions involved and how are all these things related.
In psychological terms this amounts to exploring the things that people’s sampling
assumptions are sensitive to, and the direction and magnitude of the effect that such
sensitivities have on the outcomes of inference.

The study I present in Chapter 4, though something of a departure from this
computational theme, is nonetheless a question that is begged by the results of each
of the other experimental investigations that I have conducted as well as related findings
in the literature (see section 1.4, for example). If people’s sampling assumptions can
be said to effect the inferences that they draw, then what is the nature of that effect?
Is it a reasoning effect that comes into play when drawing an inference on the basis of
previously observed data? Or is it a learning effect which effects the mental representation
of data when it is first encountered and encoded in memory? Put another way, if people’s
sampling assumptions determine how they evaluate data as evidence, then is the evidence
evaluated upon encoding or retrieval of the data? Of course it may be that either effect is
possible, or that both kinds of effects may impact a single inference.

As I mentioned in section 1.3, the issue connects with more general questions raised in
the literature. For instance, whether generalisation gradients are a product of learning (as
suggested by Hull, 1943) or reasoning (per Razran, 1949). Or whether representational
abstractions are formed during learning or extracted later when a generalisation decision
is required (a question raised by Posner & Keele, 1968). To the best of my knowledge
and despite these important implications, this learning/reasoning distinction has not been
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directly addressed in the literature, at least in as far as it relates to sampling assumptions.

Thus, although the experiment described in Chapter 4 should be regarded as a proof of
concept, it nonetheless complements the other new work I present in the chapters that
follow.
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2 IS THIS A DAX | SEE BEFORE ME?

Human activity requires an ability to generalise beyond the available
evidence, but when examples are limited — as they nearly always are — the
problem of how to do so becomes particularly acute. In addressing this
problem, Shepard (1987) established the importance of representation, and
subsequent work explored how representations shift as new data is observed.
A different strand of work extending the Bayesian framework of Tenenbaum
and Griffiths (2001a) established the importance of sampling assumptions in
generalisation as well. Here we present evidence to suggest that these two
issues should be considered jointly. We report two experiments which reveal
replicable qualitative patterns of individual differences in the representation
of a single category, while also showing that sampling assumptions interact
with these to drive generalisation. Our results demonstrate that how people
shift their category representation depends upon their sampling assumptions,
and that these representational shifts drive much of the observed learning.

2.1 INTRODUCTION

Suppose that, upon encountering a wallaby for the first time, I am reliably informed
that wallabies are dax. What should I infer to be the extension of the property dax? If 1
know that dax is a biological property I might generalise to other macropods, marsupials,
or mammals. Alternatively, if dax describes a behaviour I might instead generalise to
other hopping or grazing animals. As this thought experiment suggests, human category
representations are structured and complex; multiple systems of categories are relevant
to a single domain and different systems of knowledge are relevant in different contexts
(Heit & Rubinstein, 1994; Ross & Murphy, 1999).

Although there is some work investigating how people acquire multiple systems
of categories (Shafto, Kemp, Mansinghka, & Tenenbaum, 2011) and learn which
representations are relevant to inductive problems like this (Austerweil & Griffiths,
2010), very little is known about individual differences in representation. Do such
differences exist, and can they be measured? When people learn based on new data,
do their representations shift? If so, how and why? Do their assumptions about how the
data were generated drive any of this? These are the questions we focus on in this paper.
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REPRESENTATION AND GENERALISATION

The problem we consider is ostensibly a simple one: learning how to generalise along
a single stimulus continuous dimension. Stimulus generalisation in this situation often
resembles an exponential decay as a function of distance along the relevant dimension, but
only when formulated with respect to the proper stimulus representation (Shepard, 1987).
When adapting Shepard’s analysis into an explicitly Bayesian framework, Tenenbaum
and Griffiths (2001a) noted that generalisation from multiple examples allows for many
different possible stimulus representations. Indeed, there are many different assumptions
a learner might make about category representation. These include exemplar models
(Nosofsky, 1986), prototype models (J. D. Smith & Minda, 1998), decision boundaries
(Ashby & Townsend, 1986), critical regions that mimic prototype models if the regions
are connected (Tenenbaum & Griffiths, 2001a), or exemplar models in which each item
corresponds to a region (Navarro, 2006). Additionally, these representations are not fixed
and stable. Evidence from category learning has shown that human learners tend to
“grow” category representations as they see additional items, with a shift during learning
from prototype to exemplar representations (Griffiths et al., 2007; Love et al., 2004), or
from exemplar to prototype (Homa et al., 1981), or a mixture of representations across
individuals (Kalish & Kruschke, 1997).

SAMPLING AND GENERALISATION

An adjacent literature on inductive generalisation has revealed that what the learner
assumes about how this data came to be the data has a substantial influence on the
inferences people draw. These sampling assumptions affect inferences in concept learning
tasks (Navarro et al., 2012), property induction tasks (Ransom, Perfors, & Navarro, 2016),
and word learning problems (Xu & Tenenbaum, 2007a).

While there are many possible sampling assumptions that one might adopt (e.g.,
Ransom, Voorspoels, Perfors, & Navarro, 2017; Shafto et al., 2014), much of the literature
has focused on two simple possibilities. A helpful teacher is likely to choose positive
examples that belong to the relevant category (known as strong sampling), whereas a
random sampling process selects exemplars independently of the category label (known
as weak sampling). The difference between the two leads to a variety of differences in
how people generalise: most notably, people tend to tighten their generalisations with
additional data if they are assuming strong sampling, but don’t if they aren’t (e.g., Ransom
et al., 2016; Xu & Tenenbaum, 2007a).
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SAMPLING AND REPRESENTATION?

If both representation and sampling assumptions shape generalisation, how do they fit
together? The literature on sampling assumptions typically assumes a fixed stimulus
representation, and the literature on stimulus representation has given little consideration
to the manner in which exemplars are chosen. In this paper, we present empirical
evidence suggesting that these two problems should be considered together. We report
results from two experiments involving a simple inductive generalisation task that
manipulates the sampling assumptions across conditions. We find evidence for individual
differences in category representation, with different participants appearing to represent
categories in different ways. Moreover, there appears to be an interaction between people’s

representations and the degree to which they are sensitive to the sampling manipulation.

Observations selected by a helpful teacher are more likely to cause people to shift
their mental representation of the category in a consistent direction than if the same
observations are selected at random. In fact, these representational shifts seem to account
for the largest share of learning in the task.

2.2  EXPERIMENT 1

Experiment 1 is a single category generalisation experiment that, within the same
experimental framework, combines manipulations of sample size (as in Navarro et al.,
2012; Vong et al., 2013) and sampling cover story (as in Ransom et al., 2016; Xu &
Tenenbaum, 2007a). As a post-hoc analysis, we use people’s responses across all test

items to identify clusters of people who generate similar patterns of generalisation.

These patterns are then used as predicted outcomes in Experiment 2, where they
are explicitly connected to representational clusters. Furthermore, the assignment of
individual behaviour to clusters is tracked during learning, in order to determine whether
representational shifts correspond to learning outcomes.

METHOD

Participants

603 people participated in this experiment via Amazon Mechanical Turk, where they
were paid $1.30US for the 5-10 minute task. 45% were female, 93% were from the US,
and median age was 32 (range: 19 to 77).

Design

People were randomly assigned to one of three conditions that varied the number of
category exemplars (“Wuggams”) as well as the manner in which they were sampled. In the
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Figure 2.1: Example stimuli. Items varied only in the position of the short black vertical line

along the bottom edge of the rectangle.

FOUR condition (N = 194) participants were shown four exemplars with no explanation
offered for how these examples were chosen. Participants in the TWELVE HELPFUL
(N = 200) and TWELVE RANDOM (N = 209) conditions were also shown the same four
exemplars with no explanation, but were then subsequently shown eight more exemplars
for which an explanation was given. In the TWELVE HELPFUL condition people were
told that the additional examples had been intentionally chosen to help them understand
the category, whereas people in the TWELVE RANDOM condition randomly selected
additional items themselves.

Stimuli

Stimuli consisted of a black rectangular frame drawn against a white background, with
a vertical black line inside attached to the bottom edge (see Figure 6.3). The rectangle
was sized to occupy 14% of the available horizontal viewport, with an aspect ratio
of 5:3, and the vertical line extended 29% of the rectangle’s height. To assist with
stimulus discriminability, four evenly spaced light grey vertical and horizontal lines were
drawn within the rectangle. Stimuli varied along a single dimension, corresponding to
the horizontal position of the vertical line within the rectangle (referred to later as the
stimulus value).

The full set of training stimuli included 12 examples with stimulus values ranging
from 21% to 43% in increments of 2%. People in the TWELVE HELPFUL and TWELVE
RANDOM conditions saw all 12 examples, while those in the FOUR condition saw four,
including the two extreme examples (at 21% and 43%) plus two random others in between.
The test stimuli consisted of 19 items with values ranging from 5% to 95% in increments
of 5%.

Procedure

The experiment consisted of a training phase where people were shown examples from
the target category, followed by a test phase where they were asked to decide whether
previously unseen items were in that category.

Training. Participants were told that the purpose of the experiment was to see how
people judged whether or not unfamiliar objects were in the same category as known
examples. In the FOUR condition the instructions stated:



So, we’ll start by showing you some objects that all belong to the same
category («Wuggams»).

at which point four training examples were displayed simultaneously on-screen. Partici-
pants in the the other two conditions were given the same introduction. However, after
the initial examples were shown those in the TWELVE RANDOM condition were further
informed:

The computer has assigned you to experiment group «J8» so we’re
going to let you pick an additional «8» items at random from our collection,
and let you see any «Wuggams» that you find.

Following this a 6 x 5 arrangement of icons resembling packing boxes was displayed on
screen, and people were asked to select eight boxes one by one. After clicking on an icon
the image was replaced with that of an open box, people were informed that they had
found a «Wuggam» inside, and one of the training examples was added to the display.

The TWELVE HELPFUL condition proceeded along similar lines, but people were
instead told:

The computer has assigned you to experiment group «K8» so we’re
going to help you by showing you an additional «8» «Wuggams» chosen
by a helpful teacher to give you a good idea of the full range of «Wuggams».

After which, the array of boxes was displayed with eight of the boxes already opened.
Simultaneously, the display was updated with the eight additional examples. In all
conditions the on-screen presentation order was randomised.

Testing. To minimise any memory effects, the training examples remained on screen
during testing, along with a reminder of how the exemplars were selected. Participants in
all conditions were shown the 19 test stimuli one at a time in random order; this sequence
was repeated four times. The test query was a simple yes or no question, “Do you think
this object is in the «Wuggam» category?”.

RESULTS AND DISCUSSION

The results are shown in Figure 4.3(a), which plots the proportion of trials on which each
test item was assigned to the Wuggam category in each condition. There is a clear effect
of sample size: people who saw 12 examples generalised to a narrower range of test items
than those who saw 4. A Bayesian ANOVA reveals strong evidence (BFo > 10%) for a
model that includes effects of stimulus value, sample size and an interaction, tested against
a null model that includes only the effect of stimulus value.! However, the cover story

"Model comparisons included a random intercept for each subject, and were fit using default priors
(Liang, Paulo, Molina, Clyde, & Berger, 2012; Rouder, Morey, Speckman, & Province, 2012) from the
BayesFactor package (version 0.9.12-2) in R (version 3.4.3).
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(a) Experiment 1. (b) Experiment 2.

Figure 2.2: Performance on a one category generalisation task as a function of sampling
procedure (manipulated between subjects) and sample size (manipulated between subjects in
Experiment 1 and within subjects in Experiment 2). The graphs show the proportion of positive
responses to the question: “Do you think this object is in the «Wuggam» category?” for each of the
test stimuli. The performance of people who saw four examples of the target category (grey line) is
contrasted with two groups of people who saw 12 examples (black lines). In Experiment 1, people
tightened their generalisations as more data is observed, but the sampling manipulation had little
effect; whether people actively sampled the additional examples at random (red squares) or were
told that the items had been selected by a helpful teacher (blue diamonds), they generalised less
when they saw 12 examples rather than 4. In Experiment 2, where the wording of the sampling
manipulation was slightly adjusted, tightening with increased sample size occurs, but only in the
HELPFUL condition.

appeared to have little to no effect, with modest evidence favouring the null hypothesis
(BFp; = 10) that generalisation patterns were the same in both 12-item conditions.

The one exception to this pattern is the three test items to the far left of Figure 4.3(a).
Visual inspection suggests that participants in the TWELVE HELPFUL condition were
somewhat less willing to generalize to these items than were people in the TWELVE
RANDOM condition. This asymmetric pattern is not predicted by “standard” implementa-
tions of the Bayesian generalisation model (e.g., Navarro et al., 2012; Vong et al., 2013).
However, it is consistent with a shift in the proportion of people using a single decision
boundary, which should not fall off on the far (left) side of the observed exemplars.

To examine this possibility we conducted a post hoc clustering analysis of generalisa-
tion curves at the individual subject level. This analysis, which was based on a Dirichlet
process mixture model, automatically identified 11 different “patterns” of generalisation
curves. Nine of the 11 patterns accounted for 98% of the data; and of these nine, three
were minor variants of the others.> The remaining six patterns (illustrated in Figure 2.3)

ZWe used the BayesianGaussianMixture class from the scikit.learn module (v0.19.1) under
Python 3.6.3. The concentration parameter for the Dirichlet process was set to 1, the multivariate Gaussian
distribution assumed a diagonal covariance structure, and the random seed was set to 1. Each generalisation
pattern was encoded as a point in 19-dimensional space with each dimension corresponding to a stimulus
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form the core of the analysis in Experiment 2, and cover 85% of the data from that
experiment. We turn to it next.

2.3 EXPERIMENT 2

Participants

404 people participated in this experiment via Amazon Mechanical Turk, where they
were paid $1.50US for the 10-15 minute task. 48% were female, 94% were from the US,
and median age was 32 (range: 18 to 71).

Design, stimuli & procedure

Experiment 2 was a preregistered® replication and extension of Experiment 1. The two
experiments were identical except for three key differences. First, we adopted a within
subject manipulation of sample size. Regardless of condition, participants were shown
four exemplars with no sampling explanation given and then tested. They were then
shown an additional eight exemplars — either within a HELPFUL (N=205) cover story
or a RANDOM one (N=199) — and then tested a second time. Testing each person twice
allows us to assess how their representation changed based on four examples or twelve.

Second, at the end of each test phase participants were asked to identify the strategy
they used, selecting one of the six options listed in Figure 2.3(c). This data is useful for
determining whether their reported strategies correspond to the generalisation patterns
our model assigns to them.

Third, the cover story in the RANDOM condition was altered slightly in order to leave
open the possibility that some boxes might not contain Wuggams. People were told that
“some of the boxes are stuck and won’t open; in that case just try another.” Each person
sampled 11 boxes but saw only 8 «Wuggams» in total; the other three times (when the box
remained closed) occurred in a random order with the constraint that the first and last
item was always a «Wuggam».

RESULTS AND DISCUSSION

Generalisation

Generalisation patterns in Experiment 2 partially replicated the results from Experiment
1, as shown in Figure 4.3(b). As before, we find a clear effect of sample size (BFjg > 109),

value included in the test items and the value along each dimension corresponding to the probability of
generalising the category label to that test stimulus. Supplemental materials describing details of the model
and all 11 patterns are here: https://tinyurl.com/RPNH18

3https://aspredicted.orq/3tq89.pdf
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Figure 2.3: A graphical depiction of individual differences in generalisation in Experiment 2.
The panel columns represent: (a) Aggregate generalisation curves for people grouped by data
driven pattern definition (black lines) and by response to self report question (grey lines). (b)
The proportion of people allocated to a given pattern. The three bars from left to right represent
people after seeing four examples, and after seeing 12 examples in the RANDOM (red) and
HELPFUL (blue) conditions respectively. The rows of pixels within each bar constitutes a grey-
scale representation of the generalisation data of individuals in that pattern and condition (see
main text for detail). Both sample size and sampling assumption impact people’s representation
of the target category. (c) The response options for the questions that asked people about their
response strategy (title added). There is a one-to-one mapping between the patterns shown and
the representation associated with each response option.



but unlike Experiment 1 we also find an effect of the sampling manipulation. On
an aggregate level, people in the HELPFUL condition tightened their generalisations
(BF o > 10%) whereas those in the RANDOM condition did not (BFg; = 31). This suggests
that the changed wording in the RANDOM condition, which provided a mechanism for
potentially seeing a non-«Wuggam», helped to make the sampling cover story believable.

Representational analysis

Our primary question was whether people used different representations and whether
their representations shifted in different conditions or with extra data. To address this,
we used the six main generalisation patterns identified in Experiment 1, shown in
Figure 2.3(a). They are each suggestive of qualitatively different mental representations:
a one-sided decision boundary (Partition), a two-sided Range, several different kinds
of non-contiguous regions (By Example, Any, Other), and an assignment of All test
items to the category. Each participant at each test phase in Experiment 2 was then
separately assigned to the most similar pattern using the model derived from the results
of Experiment 1.

The results of this analysis are displayed in Figure 2.3. First, we note that the six
patterns identified by our model are indeed roughly equivalent to the six self-report
options offered during the test phase (shown in the column (c)).* This is clear when we
compare the black lines in panel (a) on the left (which plot the average response for all
people assigned to the relevant pattern) to the grey lines in the same panels (which plot

the average generalisation curve for all people who chose the relevant self-report option).

In most respects, the grey and black curves mirror each other very closely, illustrating
that the data-derived patterns (based on classifications) and self-reported strategy are very
similar.

Although the six patterns shown in Figure 2.3 are quite dissimilar to one another, there
is a remarkable degree of within-pattern homogeneity, especially with respect to the
first four patterns: most people assigned to a pattern do genuinely appear to be closely
matching that pattern. This can be seen in Figure 2.3(b), which depicts a compressed
grayscale representation of the raw responses for every participant within a pattern. Each
panel shows three bars corresponding to one of the three possible conditions (4 exemplars,
12 exemplars RANDOM and 12 exemplars HELPFUL). The height of each bar captures
how many people’s generalisations best matched that pattern (thus, for instance, many

more people matched the Range pattern in the HELPFUL condition than any other).

Within each bar, every row of black pixels displays the responses of a single participant:

4 Alignment of the self-report to the model-identified patterns was done based on our qualitative
assignment, but we also performed all analyses using assignments based on RMSE fit (which differ from
the qualitative assignments for 2 of the 11 clusters), or using the (somewhat noisy) self-report data directly.
In all cases the conclusions are the same. Even collapsing Partition and Range into a single representation
and the remaining representations into another produces a qualitatively similar pattern of results.
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each row consists of 19 cells, each colour coded to represent the probability of assigning
the relevant test item to the «Wuggam» category. For instance, an all black row occurs if
all items are assigned to the «Wuggam» category, whereas a grey bar with a patch of black
in the middle would represent a generalisation pattern where only the middle group of
test items were labelled as «Wuggams».

Representational shifts

We are now in a position to address the central questions motivating this experiment. To
what extent are changes in generalisation driven by a change in people’s representation
of the underlying category structure (e.g., shifting from Partition to Range), as opposed
to learning the parameters of a representation (e.g., learning where the boundary in
a partition lies)? Do sampling assumptions have an effect on how people shift their
representations?

To investigate this, note that the panels in column (b) of Figure 2.3 are effectively
bar charts, displaying the proportion of participants assigned to each of the six patterns,
broken down by experimental condition. Visual inspection reveals marked differences as a
function of sample size: when only 4 exemplars are observed, people are most likely to be
assigned to the Any or Other patterns, whereas by the time 12 exemplars are observed the
generalisation patterns are closer to Partition, Range or Other. Similarly there is evidence
of a sampling effect: helpful sampling guides learners towards a Range representation
whereas random sampling does not. A Bayesian contingency test (3 conditions X 6
patterns) finds strong evidence (BF;( > 10°) for a difference in pattern assignments across
conditions.

Looking more closely at these data, we can examine whether the sampling conditions
each had a different impact on how people shifted their representations. To do so, we used
the representation label assigned to each generalisation pattern (see Figure 2.3). If people
were assigned to one pattern after seeing four examples and a different pattern after seeing
12 examples, and those patterns had different representation labels, then and only then
would they be considered as having undergone a representational shift. Figure 2.4 plots
the results of this analysis. It is clear that for those people who believed that examples
were selected by a helpful teacher, additional exemplars led to an overall narrowing of
generalisation, largely as a consequence of a representational shift.> A Bayesian ANOVA

S At first glance, Figure 2.4 appears to reveal a difference in generalisation between people in the
RANDOM and HELPFUL groups at the point when only four examples have been observed and for which
no sampling explanation was offered. But this difference is not reflective of the two conditions as a whole;
rather it occurs only when the data is conditioned on representational shift. It reflects the fact that helpful
sampling was interpreted more consistently than random sampling. Those people in the HELPFUL condition
who already generalised narrowly after seeing only four examples, were less likely to narrow further upon
observing additional examples, and thus more likely to maintain a stable representation; conversely, those
who generalised more widely at first were more likely to change representation. This selection effect is not
the case for those in the RANDOM group where representational shift was less consistent in direction.
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Figure 2.4: The mean effect of additional examples on the marginal probability of generalising
the learned category to novel stimuli, as a function of sampling assumption and representational
shift. Over half of the participants in Experiment 2 (N=119, from the RANDOM condition and
N=111, from the HELPFUL condition) maintained a stable representation of the underlying
category in response to observing an additional 8 examples, and showed little change in
generalisation overall. Likewise, for people in the RANDOM condition who did undergo a
representational shift (N=80). But for many people in the HELPFUL condition (N=94), the
additional examples led to a representational shift resulting in a significant and consistent
contraction in generalisation overall.

reveals strong evidence (BFo > 10) in favour of a model that includes effects of sample
size, sampling condition, representational shift and interactions, tested against a null
model which includes only the participant as a random nuisance parameter.

2.4 GENERAL DISCUSSION

The present work examines how people generalise a concept on the basis of learned
examples. In a single experimental framework, we jointly considered two important
considerations known to shape such generalisation: namely, people’s assumptions about

how the data was sampled, and their representation of the concept they seek to generalise.

In an initial between-subject experiment we found an effect of sample size consistent
with other inductive generalisation tasks of this kind (e.g., Navarro et al., 2012; Vong
et al., 2013). While there was no aggregate effect of sampling assumption, a post hoc
analysis of individual responses revealed common patterns of generalisation suggestive of
mental representations explored in the literature. These included non-contiguous regions
(Nosofsky, 1986), a one-sided decision boundary (Ashby & Townsend, 1986), and a
two-sided connected region (Tenenbaum & Griffiths, 2001a). This analysis also suggested
that people’s sampling assumptions might play a role in determining their representation
of the category, a hypothesis we tested in a second pre-registered experiment.
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The second experiment was based closely on the first but was within-subjects and
involved a random sampling cover story that was slightly modified to be more suggestive
of weak sampling. It replicated the effect of sample size and also found an effect of the
revised sampling manipulation. Moreover, by linking response patterns identified in the
first experiment to people’s responses in the second, we found that observing additional
examples causes some people to undergo a change in their mental representation. This
shift drove much of their change in generalisation, and the nature and consistency of the
change critically depended upon people’s sampling assumptions.

In many ways our results are consistent with previous work finding that people tighten
their generalisations when strong sampling holds but fail to do so when it does not
(Ransom et al., 2016; Voorspoels et al., 2015; Xu & Tenenbaum, 2007a). This work has
attributed such tightening to the operation of the size principle, which favours smaller
hypotheses in a fixed (researcher defined) hypothesis space (Tenenbaum & Griffiths,
2001a). However, our results suggest that while the size principle may still be at work in
some fashion, the truth may be more complex. Learning may in fact be operating on (at
least) two levels in an hierarchical space, one with different representations (hypothesis
spaces) at the top level and fixed hypotheses within each representation at the lower level.
Behaviour that on aggregate looks like generalisation according to the size principle may
actually reflect individuals shifting their representations more than individuals tightening
their generalisations within the same representational space. An interesting line for future
research would be to attempt to account for this behaviour using a hierarchical model
that learns on both of these levels.

2.5 CONCLUSION

“Is this a dagger which I see before me...?”
— Macbeth

“That’s not a knife. That’s a knife.”
— Crocodile Dundee

On the question of how best to classify sharp pointy things, great literary protagonists
differ. And life, in this respect, may imitate art. Individual differences in representations,
known to be driven by data, may be driven by sampling assumptions as well. By taking
such differences seriously we have begun to understand that relationship; we hope that
further research in this direction will continue to yield richer insights.
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2.7 APPENDIX A

This appendix describes data and analyses supplementary to the main text. It reproduces
the material referred to in the original publication (Ransom, Hendrickson, Perfors, &
Navarro, 2018) via an online supplement.

As discussed in the main text, we analysed the data from an initial experiment and
a pre-registered replication and extension to that experiment. Experiment 1 involved a
between subjects manipulation of both sample size and sampling related cover story.
Experiment 2 manipulated the same factors, but the sample size manipulation was within
subjects.

THE DATA SET

Each participant in Experiment 1 saw 19 distinct test stimuli a total of four times each.
On each trial, participants would respond whether or not the given stimuli was in the
target category. Thus, each set of responses we analyse for Experiment 1 is modelled by a
19 element tuple; each element in the tuple corresponds to one of the 19 test stimuli, and
the value of the element represents the proprtion of times that the participant responded
that the given stimuli was in the target category. Because the sample size manipulation in
Experiment 2 was within subjects, each participant in that experiment contributed two
sets of responses to the data set.

CLUSTER ANALYSIS — IMPLEMENTATION DETAILS

Our analysis involved fitting a clustering solution to the data from Experiment 1 in
order to determine whether participants’ response data could be meaningfully separated
into distinct patterns of responding. We modelled the data as a mixture of multivariate
Gaussian distributions in 19-dimensional space, placing a Dirichlet process prior over the
number of clusters. Having found a clustering solution by fitting the data from Experiment
1, we used the clusters obtained (each of which represents a differently parameterised
19-dimensional Gaussian) to analyse the response data from Experiment 2 and assign
each set of responses to the cluster which best captures it.

In practice, we implemented this procedure using the BayesianGaussianMixture
class from the scikit.learn module v0.19.1, under Python 3.6.3. The concentration
parameter for the Dirichlet process was set to 1, the multivariate Gaussian distribution as-
sumed a diagonal covariance structure, and the random seed was set to 1. There are a num-
ber of other minor parameter settings specific to the module used. These can be found in
the python code shown in Listing 2.1 which we include for completeness. See http://scikit-
learn.org/stable/modules/generated/sklearn.mixture. BayesianGaussianMixture.html for
a full description of the BayesianGaussianMixture API and the various parameters
used.
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I import numpy as np

from sklearn import mixture

def initModel (random_seed = 1,
nClusters = 20,
6 concentration = 1,
covariance = ’'diag’):

return mixture.BayesianGaussianMixture (

covariance_type = covariance,

weight_concentration_prior_type = "dirichlet_process",
1 n_components = nClusters,

init_params = ’'random’,

max_iter = 10000,

tol = le-6,

n_init = 100,
16 random_state = random_seed,

weight_concentration_prior = concentration)

def runModel (proportionsl, proportions2):
21 # 'proportionsl’ represents response proportions for Experiment 1
# from N=603 people, for each of the 19 test stimuli.
assert np.shape (proportionsl) == (603, 19)

# 'proportions2’ represents response proportions for Experiment 2
26 # from N=404 people, for each of the 19 test stimuli.
# Note that in Experiment 2, each person was tested twice.

assert np.shape(proportions2) == (404 * 2, 19)

# Initialise the DPGMM model and fit to Experiment 1 responses.
31 bgm = initModel ()
bgm.fit (proportionsl)

# Return the cluster weights and means and the predicted cluster
# labels for all participants across both experiments.
36 return
bgm.weights_,
bgm.means_,
bgm.predict (proportionsl),
bgm.predict (proportions2)

Listing 2.1: Python code used to configure the Dirichlet Gaussian Mixture Model. The
model was used to derive the clustering solution for participant responses described in
the main text.
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Figure 2.5: The complete clustering solution for participant response data derived
from responses gathered in Experiment 1. Each panel shows the proportion of positive
responses to the question: “Do you think this object is in the «Wuggam» category?”, for
each of the 19 test stimuli aggregated across all participants assigned to the given cluster.
The two grey bars in each panel show the total proportion of response data assigned to
the given cluster for Experiment 1 (left bar) and Experiment 2 (right bar). The analysis
reported in the main text is focused on the six labelled clusters that capture the most data
from Experiment 2. The labels correspond to those used in Figure 2.3 in the main text.

CLUSTERING SOLUTION

Running the clustering model as described above, fitted 11 clusters to the data from
Experiment 1. Subsequently, when these clusters were used to group response patterns
from Experiment 2, only 9 of the 11 clusters received assignments. In the main paper, we
focus our analyses on those 6 clusters that accounted for the largest number of participants
from Experiment 2. For completeness, Figure 2.5 shows all 11 clusters found, along with
the proprotions of response patterns that each cluster accounted for.
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In Chapter 1, I presented an account of theoryful inductive reasoning that views

generalisation and other forms of inductive inference as an inherently interpretive act.

Under such an account, data encountered is not evidence per se but prospective evidence
that must be interpreted in light of the learner’s assumptions, including their sampling
assumptions. And the act of adopting a sampling assumption can be viewed as one part
of the process of theory selection — the part which involves reasoning about what can be
learned from the data by determining what it is representative of.

In Chapter 2, I begun to explore some of the issues behind this form of reasoning. The
study presented there involved a one-category generalisation task in which alternative
explanations were given for how the training items were sampled. The experimental
context aimed at stripping down much of the complexity of inductive reasoning. By
employing “knowledge poor” stimuli and making the basis for generalisation clear,
the intent was to greatly simplify the learner’s theory selection process. In this way,
any difference in patterns of generalisation between conditions might reasonably be
attributed to people’s theories about the sampling process. Further, by restricting the
diversity of training stimuli, the aim was to isolate how the “evidence” of additional
non-diverse samples is interpreted in light of different assumptions. The results suggest
that people interpret such additional data more consistently when they have a clearer
theory regarding its origin. Typically, when people believed that the extra information
was representative of the to-be-learned concept they restricted their generalisation around
the examples provided. When instead the origin of the data was unclear, as when some
form of censoring was evident, the effect on generalisation was less predictable.

In this chapter, I extend this investigation to consider what happens when two
categories are involved. How does the presence of a second category alter the patterns
of generalisation observed? In particular, how does it change the way that additional
non-diverse samples are interpreted? The work described here forms part of a broader
investigation by Hendrickson et al. (2019)!, which sought to understand how the
inferential problems of categorisation and generalisation are related. A common technique
used to study generalisation problems is to employ a one-category learning task. And a
common method used to study categorisation is the two-category learning task. Viewed
from the perspective of these tasks the problems seem closely related indeed. Nonetheless,
the addition of a second category has significant potential to change the way that people

The material that follows is based on my own contribution to the article (Experiment 3, Hendrickson
etal., 2019, pp. 93-97)
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reason. Notably, the one- and two-category judgment tasks may be distinguished by
their decision complexity (Seger & Peterson, 2013). A test stimulus in the two-category
task may represent neither, one or both of the categories being learned. In the case
where both (or neither) category labels might reasonably apply to a novel item, the
focus of the question changes to selecting which label represents the better fit. As a
consequence people may recruit additional information when making a forced choice
judgment between the two labels. Category base rates represent an obvious potential
source of evidence when making such decisions. But just what it is that base rates are
evidence of, is a question that the reasoner must address. A particular focus of this chapter
is how that interpretation changes based on the context in which observations are made.

To my knowledge, the only previous attempt to investigate this question using a
multiple-category design is a study by Vong et al. (2013) which found evidence to
suggest that sampling assumptions can shape generalisation from multiple categories.
The present study differs from that work in two key ways. Firstly, the experimental task
employed here is more consistent with the kind used in the category learning literature.
The cover story used in Vong et al. (2013) indicated that the data to be generalised were
temperature observations at which two different kinds of bacteria were found alive. The
temperature readings were depicted schematically, as a distribution of data points along
a single dimension, following the paradigm adopted in Navarro et al. (2012). Here, as
in Chapter 2, although the stimuli used vary in only a single dimension, it is the (two-
dimensional) stimuli themselves that are displayed to participants. Presenting the stimuli
as “objects” (albeit artificial ones) falling into two categories may have consequences
in terms of how people interpret the evidence. Category labels, particularly when two
or more are given to a seemingly related class of objects, typically exist for a reason.
But that reason is not always clear, and as a consequence people might be expected to
entertain different theories regarding just what it is that the categories might usefully
distinguish. Indeed, as the analysis in Chapter 2 revealed, people did consider a variety
of representations for the stimuli used. Secondly, the key classification question I use
(following Hendrickson et al., 2019) is a neutral one: “Which category do you think this
example belongs in?”. In the two-category study of Vong et al. (2013) participants were
asked only about “category A”. It is conceivable that this framing encourages people
to focus exclusively on that category, thereby increasing the tasks’ resemblance to a
one-category generalisation task.

3.1 INTRODUCTION TO THE EXPERIMENT

The design of the two-category experiment closely resembles that of the one-category
experiment described in Chapter 2 (Experiment 1). There is a single FOUR exemplar
condition, where four examples of both categories A and B are provided without
explanation, as well as two variants of a TWELVE exemplar condition involving an
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Figure 3.1: Three possible patterns of results in the two-category learning experiment.
Each panel depicts a category boundary based on four observations of each of two categories
(dashed line), and illustrates how that boundary may change as a result of seeing additional
examples of a single category (solid line). The panels illustrate how three different assumptions
lead to different qualitative effects. Left panel: Assuming that additional items are weakly
sampled and that category base rates are uninformative, leads to no change in generalisation — the
additional (non-diverse) items are effectively ignored. Middle panel: Under the assumption that
additional items are weakly sampled but base rates are nonetheless informative, the boundary
shifts towards the less frequent category. Right panel: On the assumption that the additional
items are strongly sampled in a way that renders category base rates uninformative, generalisation
of category A contracts, pulling the decision boundary towards it. The plots are reproduced from
Hendrickson et al. (2019), where the corresponding prediction models are described in further
detail.

additional eight examples of category A. The only difference between the two latter
conditions concerns the cover story explaining how items are sampled — the set of training
items used is identical. By suggesting that items are selected at random, independently
from the category to which they belong, the TWELVE RANDOM condition is designed
to induce a form of weak sampling. The TWELVE HELPFUL condition in contrast, is
designed to induce a strong sampling assumption by encouraging the belief that items are
chosen from a specific category by a helpful teacher.

In keeping with the goal of the experiment, the two cover stories used in the TWELVE
exemplar conditions are also designed to suggest different explanations as to why there are
more examples of one category than another. By purporting to select items at random, the
TWELVE RANDOM condition is intended to promote the belief that the different sample
sizes are reflective of the true category base rates. In contrast, people in the TWELVE
HELPFUL condition are led to believe that the number of exemplars provided is simply
a constraint imposed on the selections made by the helpful teacher and therefore not
reflective of the true base rates.

By comparing performance across these three conditions, it is possible to examine the
effect of additional exemplars on generalisation and to determine whether the nature of
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the effect changes depending on the learner’s assumptions. In addition, by comparing
people’s behaviour against the predictions of a theoretically motivated computational
model, further insight into the effects may be gained. Hendrickson et al. (2019) present
a straightforward adaptation of the Bayesian generalisation model (Tenenbaum &
Griffiths, 2001a) that is suitable for analysing the two-category decision task. The model
assumes that underlying response strength is determined for each category independently,
following the Bayesian generalisation model. Two plausible Luce choice decision rules
(Luce, 1959) are suggested, one which incorporates inferred category base rates, and
one which does not. Using the model to examine the effect of additional category A
exemplars, each of the three qualitatively different patterns — no change, contraction, or
expansion in generalisation — are all plausible predictions, as illustrated in Figure 3.1.2

Given the findings I report in Chapter 2, where a similar cover story was applied, one
reasonable possibility is that the TWELVE HELPFUL sampling cover story is sufficient
to lead people to believe that each of the eight additional category A items were
strongly sampled from the category. In this case, people should consider that the sample
distribution for category A is representative of the true distribution and should tighten
their generalisations toward category A, relative to people in the FOUR condition (as in
Figure 3.1, right panel).

A plausible alternative is that observing items drawn from multiple categories
significantly increases the learner’s uncertainty regarding the nature of the sampling
distribution and its relationship with the distribution of interest (the joint distribution
of labels and objects). Thus it is plausible that the two category task induces a weak
sampling assumption regardless of the cover story. But uncertainty regarding the sampling
distribution need not uniformly impact conclusions regarding the relevance of stimulus
diversity and base rate information. In which case, the following two effects are predicted.
Firstly, those people who observe twelve randomly sampled category A exemplars should
be more likely to attribute the difference in sampling frequency to a genuine difference
in category base rates, rather than ignore it as uninformative. As a consequence, these
people should show a shift in the boundary away from category A when compared with
people who see only four category A exemplars (as in Figure 3.1, middle panel). Secondly,
people who believe that the eight additional exemplars were restricted to come from
category A (but in a way that need not reflect category diversity) should show no change
in their generalisations toward category A relative to people in the FOUR condition (as in
Figure 3.1, left panel).

2 There are of course alternative explanations for each of the three qualitative patterns, based on
alternative sampling assumptions, for example. However, the three explanations given arguably represent
the most theoretically motivated explanations.



3.2 METHOD
PARTICIPANTS

I recruited 364 participants for this experiment via Amazon Mechanical Turk. Of these,
20 people were excluded from participation, having taken part in previous experiments
employing the same stimulus materials. No results were collected from 31 people who
failed to complete the experiment. A further 15 people were excluded from further
analysis for failing to reach a predefined accuracy threshold.® Data from the remaining
298 participants were included in all subsequent analyses. Participants ranged in age
from 18 to 68 (median age: 32), 39% were female, and 98% of participants were from
the USA. Participants were paid $USD 1.25 for taking part in the 7 minute experiment.

DESIGN

People were allocated at random to one of three conditions. People in the FOUR condition
(N = 96) were shown four exemplars from category B and four from category A, with
no explanation offered for how these examples were chosen. Likewise, participants in
the TWELVE HELPFUL condition (N = 99) saw four exemplars from each category
for which no explanation was offered. However, in addition they saw a further eight
exemplars from category A which, they were told, had been selected from the category
by a helpful teacher. In the TWELVE RANDOM condition (N = 103), people were told
that 16 examples had been chosen for them at random. The “random” selection always
consisted of the four category B exemplars, and twelve exemplars from category A.

STIMULI

The stimuli were identical in general form and appearance to those described in Chapter 2,
varying along a single dimension, corresponding to the horizontal position of the vertical
line within the rectangle (referred to here as the stimulus value). In related experiments
using the same stimuli (Hendrickson et al., 2019) the height of the line rather than its
horizontal position was varied, and stimuli values reflected horizontally or vertically
were used for randomly selected participants. There was no material impact of these
variations upon judgments, so for simplicity of design, testing and exposition a single
variation is used in this experiment. The full set of training stimuli included 12 examples
of category A with stimulus values ranging from 21% to 43% in increments of 2%. For

3This threshold was adopted (prior to inspection of the data) from a related study described in
Hendrickson et al. (2019, Experiment 1) in order to facilitate the comparison of results between the
two experiments. Briefly, the criteria excludes those people who classified test items as category B, despite
falling within the interpolation range of category A, on at least 20% of related trials.
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We selected 16 objects at random from our catalogue.
These turned out to be 12 «Wuggams» and 4 «Blickets».

These examples are in the «Blicket» category:

Example 1 of 76 Test Phase I I I I

Which category do you think this These examples are in the «Wuggamn» category:
example belongs in?

Wuggam Blicket

Please choose the answer you prefer ) I I I I

Figure 3.2: Sample stimulus display in the two-category learning experiment. The four
training stimuli from Category B are displayed in the top row, while the lower three rows show the
twelve Category A stimuli. A reminder of how the stimuli were sampled for the given condition
(TWELVE RANDOM in this example) is displayed at the top of the screen. The panel to the left of
the screen shows the test exemplar for a single trial displayed above the two response buttons.

category B, the training set comprised four stimuli with values of 73%, 77%, 85%, and
87%, respectively. The complete set of stimuli can be seen in Figure 3.2.

People in the TWELVE conditions saw all 12 category A examples, while those in the
FOUR condition saw four, including the two extreme examples (at 21% and 43%) plus
two others randomly selected from the remaining 10 examples. People saw the same four
category B stimuli across all conditions.

PROCEDURE

Following the same basic procedure described in Chapter 2, the experiment consisted of
a training phase where people were shown examples from two target categories, followed
by a test phase where they were asked to decide which category novel items belonged to.
Participants in all conditions were told that the purpose of the experiment was to see how
well they could judge between two categories of similar looking objects.

Training. At the commencement of the training phase, participants were informed how
examples would be selected. This explanation differed across the three conditions. People
in the FOUR condition were told simply:

We’ll start by showing a few examples of each category, taken from our
catalogues.



at which point the four category B and four category A exemplars were simultaneously
displayed on-screen. Participants in the TWELVE HELPFUL condition were given this
same introduction. However, after the initial exemplars were displayed, they were
informed:

The computer has assigned you to experiment group «K8», so we'’re
going to help you by showing you an additional «8» «Wuggams» chosen by
a helpful teacher from our Wuggam catalogue.

After pressing a button to progress in the experiment, the additional eight category A
exemplars were simultaneously displayed below the original exemplars. In the TWELVE
RANDOM condition, people received the following explanation:

The computer has assigned you to experiment group «J16», so we’ll
start by selecting «16» objects at random from our catalogue. We’ll
classify the objects on-screen for you so that you have some examples
to work with.

Following this explanation, participants in the TWELVE RANDOM condition were shown
all 16 exemplars simultaneously. All subsequent instructions were identical across
conditions.

Testing. The training stimuli remained on-screen during the testing phase, and were
annotated with a reminder of how the stimuli were chosen. Participants in all conditions
were tested on the 19 test stimuli one at a time in random order; this sequence was
repeated four times. The test query asked: “Which category do you think this example
belongs in?”. People responded by clicking one of two on-screen buttons, named after
the categories (see Figure 3.2).

3.3 RESULTS

The overall pattern of responses is consistent across all conditions. A clear boundary
emerges, with people more likely to indicate that lower stimulus values were in category
A, while higher values were in category B (Figure 3.3).

The TWELVE RANDOM and TWELVE HELPFUL conditions used different cover stories
to explain how the training items were sampled. The first question of interest is whether
people generalised differently on the basis of the explanation they received? I examine
this by comparing both of the TWELVE conditions to the FOUR condition. People in
the TWELVE RANDOM condition (top row of Figure 3.3, responses shown in black)
are more likely to classify test stimuli as belonging to category A than people in the
FOUR condition (response shown in gray). In contrast, people in the TWELVE HELPFUL
condition (bottom row), who are told that the eight additional exemplars had been selected
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Figure 3.3: Human performance in the two category learning experiment. The
graphs show the proportion of responses selecting category A in response to the question:
“Which category do you think this example belongs in?” for each possible stimulus value
at test. The graphs on the left show responses over the entire range of stimulus values;
those on the right show responses for stimuli in the range between the two categories.
Across all conditions, people saw four category B exemplars along with either four or
twelve category A exemplars. Each row contrasts the performance of people who saw
four category A exemplars (shown in gray) with one of the groups that saw twelve (shown
in black): TWELVE RANDOM in the top row, and TWELVE HELPFUL in the bottom row.
The effect of additional category A exemplars differs depending on condition. People
who were told that all exemplars are selected at random from a collection of objects
were more likely to assign items to category A. In contrast, those who were told that an
additional eight exemplars had been chosen by a helpful teacher, exhibited near identical
responses to people who saw only four exemplars.



Bayes Factor (relative to VALUE ONLY)

Contrast Best Model VALUE ONLY VALUE + CONDITION INTERACTION
RANDOM VS. HELPFUL INTERACTION 1:1 13:1 72:1
FOUR vs. TWELVE RANDOM INTERACTION 1:1 25:1 190:1
FOUR vs. TWELVE HELPFUL VALUE ONLY 1:1 0.11:1 28x107%:1

Table 3.1: Comparison of how well three different linear regression models capture

the results from selected conditions of the two category learning experiment. Top row:

Contrasting the results from the TWELVE HELPFUL and TWELVE RANDOM conditions
shows that the INTERACTION model, which includes both stimulus value and the
condition (random instructions or helpful instructions), as well as an interaction term, best
captures the data. Middle row: Similarly, the contrast between the FOUR and TWELVE
RANDOM conditions is also best explained by the INTERACTION model which includes
differences between the FOUR and TWELVE RANDOM conditions. Bottom row: In
contrast, analysis of data from the FOUR and TWELVE HELPFUL conditions shows
that the VALUE ONLY model, without any difference between the FOUR and TWELVE
HELPFUL conditions, best captures the data. Bayes factors are expressed as odds ratios
against the VALUE ONLY model reported to two significant figures.

from the category by a helpful teacher, show a similar pattern of response to people in
the FOUR condition.

In order to quantify these effects, three contrasts were created based on subsets of the
data. For each contrast, I calculate posterior odds for three different linear models. In the
VALUE ONLY model, predictions are based on the stimulus value only. In the VALUE
+ CONDITION model, predictions are based on both stimulus value and experimental
condition. Lastly, the INTERACTION model extends the VALUE + CONDITION model
with a term that models an interaction between the two predictors. All models include
the participant as a random effect. To determine which of the three models best captures
the data for each contrast, Bayes factors for each model are constructed relative to the
VALUE ONLY model.

In the first contrast, I compare performance between the TWELVE RANDOM and
TWELVE HELPFUL conditions in order to quantify the extent to which the cover story

manipulation changed the way that people interpreted observations. (top row of Table 3.1).

This comparison favours the interaction model, indicating that the two conditions which
differ only in their cover story, produce different generalisations.

The second and third contrasts compare performance in the FOUR condition with that
of the two TWELVE conditions (middle and bottom rows of Table 3.1) in order to quantify
the effect of additional exemplars on generalisation and how it varies depending on cover
story. The results mirror the qualitative patterns in Figure 3.3 and show markedly different
results for the two contrasts. The contrast between the FOUR and the TWELVE RANDOM
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conditions is best captured by the INTERACTION model that indicates a difference
between conditions. This is not the case for the contrast between the FOUR and TWELVE
HELPFUL conditions, which is best captured by the VALUE ONLY model, suggesting
that for people who saw the the “helpful” cover story, there was no effect of additional
category items.

3.4 DISCUSSION

The results of the present study indicate a shift in the boundary between two categories
due to a cover story manipulation describing how training items were sampled. The
finding is consistent with the notion that people interpret prospective sources of evidence
such as sample variability and category base rates in ways which depend upon their theory
of how the sample was produced. Compared with people who had seen four items from
each category, people who saw an additional eight category A items purportedly selected
by a helpful teacher, showed no change in generalisation overall. A similar comparison
revealed that when people were told that all 16 items were sampled at random from an
unknown distribution, this had the effect of expanding the more frequent category.

A Bayesian model of the two-category decision task (described in detail in Hendrickson
et al., 2019) reveals a plausible computational account of these qualitative effects (see
Figure 3.1). The “no change” found in the TWELVE HELPFUL condition matches a weak
sampling model without base rates in the decision rule; this would imply that people
effectively ignored both the lack of item diversity and the unequal base rates when making
their decisions. The category expansion induced in the TWELVE RANDOM condition also
corresponds to a weak sampling model, but one that assumes people do incorporate base
rates into their decisions, at least when the base rate information is perceived to be reliable.
In sum, the analysis supports the finding that people ignored the prospective evidence of
stimulus non-diversity regardless of cover story, but ignored base rates only when they
believed that the additional items were necessarily restricted to a single category. This
suggests that people do not consider the representativeness of the sample as an all or
nothing affair. Even when the origin of items is not entirely clear, a sample may appear
representative in one way (in terms of category base rates, in this case) but not in another
(sample variability with respect to a single property or dimension).

The work described in Chapter 2 as well as the present study represents an extension
of the experimental investigation described in Hendrickson et al. (2019, Experiments 2
& 1, respectively). All experiments adopt the same basic training and test procedures
and use a consistent set of stimuli. The important difference between the two pairs
of experiments is that my own investigation has involved cover story manipulations
of sampling assumptions, whilst the original pair did not. The consistency of the
experimental frameworks across all four experiments thus supports some instructive
comparison of findings, as summarised in Table 3.2.



3.4 DISCUSSION |

Sample seems representative?

Experiment #Cat. Manipulation Effect Variability Base Rates
Present 2 Random expand no yes
Present 2  Helpful no change no no
Hendrickson etal., Exp.1 2 - expand no yes
Ch2,Exp.1 1 Random contract yes no
Ch2,Exp.2 1 Random (censored) no change no no
Ch2,Exp.1&2 1 Helpful contract yes no
Hendricksonetal., Exp.2 1 - contract yes no

Table 3.2: Summary of the present experiment and those described in Chapter 2, and
Hendrickson et al. (2019, Expt. 1 & 2). The studies share a common experimental
framework, and employ the same training and test stimuli for both category A and category
B (where appropriate), supporting meaningful comparison of empirical results. Across
experiments, increasing the sample size of category A from four to twelve exemplars had
different effects on overall generalisation performance which was influenced by people’s
assumptions about the evidentiary value of the sample. When people believed that the
relative lack of variability amongst sampled items was representative of the concept of
interest, their region of generalisation tightened around the items in the sample. When
people believed that the base rates observed were reliable, they used this evidence to
expand the boundary of category A. And when neither form of evidence appeared reliable,
generalisation performance was unaffected. Refer to main text for further discussion.
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| WHERE TO DRAW THE LINE

With respect to the two-category learning experiments, the shift in the category
boundary observed between the TWELVE RANDOM and FOUR conditions in the current
study closely resembles the shift observed in the corresponding FORCED CHOICE
condition in Hendrickson et al. (2019, Experiment 1). This suggests two things about
what people assume by default in the context of a two category learning experiment
—i.e. in the absence of explicit guidance to the contrary (via cover story or sampling
manipulation). Firstly, it suggests that people assume that the distribution over category
labels observed in the sample is representative of the true distribution (or at least the one
from which the test items are drawn). In contrast, it suggests that when more than one
category of item appears in the sample, people discount the implicit negative evidence
that a non-diverse sample might otherwise represent.

When learning from examples of a single category only, the default assumptions appear
to be reversed. Evidence for this is suggested by the close match between the HELPFUL
condition reported in Chapter 2 and the FORCED CHOICE condition in Hendrickson et
al. (2019, Experiment 2). In both cases, there is significant tightening of generalisation
around the range spanned by the training exemplars, consistent with the predictions
of strong sampling. The lack of diversity amongst sampled items, whilst effectively
ignored when two categories are presented becomes strong evidence in the one-category
context. The same qualitative tightening was also found in the RANDOM condition in the
first one-category experiment reported in Chapter 2, suggesting that a strong sampling
assumption may have a strong prior probability in the one-category context. As Table 3.2
shows, across all related one-category experiments, only the TWELVE RANDOM condition
(Chapter 2, Expt. 2), with its implication that the data was censored, appeared to weaken
people’s assumption that the sample variability was representative of the category. And
while it seems intuitive that base rate information should be ignored by default when only
a single category is presented, it is by no means a given. In a relatively small sample, the
absence of a second category label (for example) may simply be evidence of a low base
rate for that category.

Taken together, these findings suggest that while people will adapt their sampling
assumptions when a reason to do so is made explicit, the number of categories observed
in the learning context plays a dominant role in informing people’s assumptions by
default, and shaping their willingness to generalise beyond the examples observed. I
return to further discuss these findings in a wider context in the closing chapter of this
thesis.
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LEARNING OR REASONING FROM
EVIDENCE?

A growing body of literature suggests that making different sampling assump-
tions about how data are generated can lead to qualitatively different patterns
of inference based on that data. However, relatively little is known about
how sampling assumptions are represented or when they are incorporated.
We report the results of a single category generalisation experiment aimed at
exploring these issues. By systematically varying both the sampling cover
story and whether it is given before or after the training stimuli we are able to
determine whether encoding or retrieval issues drive the impact of sampling
assumptions. We find that the sampling cover story affects generalisation
when it is presented before the training stimuli, but not after, which we
interpret in favour of an encoding account.

4.1 INTRODUCTION

For most of the reasoning tasks with which we are routinely faced, it is impossible to draw
conclusions that are logically entailed by what we know already. Instead, we must by
necessity make inductive generalisations on the basis of the limited data we have. In order
to make the most of that data, it is important to accurately assess its evidentiary weight —
to recognise precisely what kind of generalisations it supports. Doing this assessment
accurately depends on understanding the context in which it was observed.

To illustrate why, imagine that you need to buy a present for a colleague as a part of
your workplace Secret Santa. You don’t know this colleague that well, but while helping
them move offices you see a box containing the CDs that they listen to while at work.
Sensing an opportunity to re-gift an unwanted copy of Taylor Swift, you take a closer
look. Upon realising that almost all of their collection consists of 80s Billboard Hits, you
conclude that their musical taste is dated! and reluctantly decide that Taylor Swift is not
for them.

Suppose, instead, that you had seen the exact same data (a box of CDs) but in the
context of helping your colleague move their entire music collection — many dozens of
boxes worth — and that box just happened to be the only open one. Now the same data is
no longer quite so representative: instead of being a carefully culled and chosen set of

I'The fact that your colleague still uses CDs may have told you this already.
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favourites, it is one of many. Thus, it tells you much less about whether your colleague
would like Taylor Swift.

As this example illustrates, knowing something about why one saw the data that one
did (and not some other data) enables people to make more valid inferences. Put another
way, being able to reason about the generative process behind a set of observations tells
people about the weight of evidence that those observations supply. These assumptions
about the generative process are often referred to as the sampling assumptions that people
bring to inference problems. Different sampling assumptions appear to drive qualitatively
distinct patterns of generalisation (e.g., Hayes, Navarro, et al., 2019; Hendrickson et
al., 2019), support epistemic trust (Shafto, Eaves, et al., 2012) and epistemic vigilance
(Landrum, Eaves, & Shafto, 2015; Ransom et al., 2017), fuel pragmatic implicature
(N. D. Goodman & Frank, 2016), and promote accelerated learning (Shafto et al., 2014).

Despite this wealth of empirical support for the utility and importance of sampling
assumptions in generalisation, little is known about either how they affect the encoding
and retrieval of the data, or how they affect people’s mental representations. Is the
evidentiary weight of data under a given sampling assumption computed only at the
point at which the data is later retrieved? Or is it encoded at the time of learning, thus
shaping the underlying representation from the beginning? And how is inference affected
as people’s memories of the data begin to fade?

Using a single-category learning task, we explore these questions here for the first
time. We manipulate both the sampling assumptions people make about the training data
(via cover story) as well whether that cover story is available before or after learning. As
we explain in the next section, if sampling assumptions affect generalisation at retrieval,
we expect no difference in performance regardless of when the cover story was revealed.
Conversely, if they affect how the data are encoded, we expect different patterns of
generalisation depending on when the cover story was available.

SAMPLING ASSUMPTIONS AND INDUCTIVE GENERALISATION

The Bayesian generalisation approach of Tenenbaum and Griffiths (2001a) provides
a useful framework for our research question. In the context of our single category
generalisation experiment, we are interested in how the learner decides whether or not
to extend the target category c to a novel item y on the basis of previously observed
examples x. Within the framework, this decision is assumed to be probabilistic, based on
the available evidence. That is:

P(yeclx,s)= Y P(hlxs) 4.1
heH,:yeh

where s represents the learner’s assumption about the process generating the data x, and
H_ represents the set of alternative hypotheses the learner considers concerning the true



extent of the category c¢.? In other words, the evidence in favour of category membership
is effectively combined across all hypothetical versions of the category containing the
novel item. Using a straightforward application of Bayes’ rule the term P(/|x,s) may be
expressed as:

P(h|x,s) o< P(x|h,s)P(h). 4.2)

This formulation assumes, for simplicity, that the learner entertains a single sampling
assumption (i.e. P(s) = 1), which we presume was given to them by a cover story
describing the generative process.

It is the likelihood function P(x|h,s) that is critical for our current purposes.

Substituting different likelihood functions into this system of equations yields different
predictions about the way that people generalise from given data. For instance, strong
sampling implies a likelihood that embodies the size principle, such that each subsequent
datapoint serves as evidence to further tighten one’s generalisations around the data; weak
sampling uses a different likelihood which implies no such tightening (Tenenbaum &
Griffiths, 2001a). Thus, the likelihood may be thought of as representing different ways
of calculating the weight of evidence that the data provides for the hypothesis under a
given sampling assumption.

Our first question here is when the likelihood is calculated: when the data is first
encoded, or when it is retrieved? If learners do not need to rely on their memories and the
sampling cover story is available from the beginning, it is impossible to disentangle these
two possibilities. However, if we manipulate when participants are aware of how the data
were sampled (i.e., before or after learning), then different possibilities yield different
predictions. We consider two main possibilities in detail.

Retrieval. If the likelihood is calculated upon retrieval, then encoding need only
involve storing the raw data x in some form. The likelihood calculation would be shaped
by whatever sampling assumption was in play during retrieval, regardless of what was
assumed during learning. In this sense, the calculation would resemble the conventional
or “idealised” interpretation of the Bayesian generalisation model. However, while the
conventional interpretation assumes perfect recall of exemplars, a failure to retrieve some
data would imply that the likelihood calculation was effectively over a reduced dataset
(i.e., smaller sample size). The precise effect that this has will depend on the sampling
assumption and on the particular items forgotten. For example, if the diversity of the
dataset is largely unaffected by the failure to retrieve certain items, then generalisation

under a strong sampling assumption should be wider in this case than under perfect recall.

Under weak sampling, in contrast, it is the diversity of the sample and not its size that has
an effect on generalisation; thus, a reduction in sample size without a change in diversity
would mean that generalisation was unaffected. More generally, as the level of retrieval

’In the case that the data x varies over a continuous dimension % will represent a continuum of
hypotheses and the sum is replaced with an integral.
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failure increases, the Bayesian model predicts generalisation increasingly in line with the
prior distribution.

Encoding. If the likelihood is calculated upon encoding, then the strength of evidence
that it represents would have to be stored in some way. In this case, the precise effect of
later retrieval failure might vary depending on how evidence is encoded. For example, if
evidence is stored and retrieved with each exemplar individually then failure to retrieve
a given exemplar would mean that subsequent generalisation operates over a smaller
dataset, as in the retrieval account (although, unlike the retrieval account, using the
sampling assumption that was in play at the time of encoding). If instead, evidence were
stored and retrieved in aggregate form (via the hypotheses, for example) then failure to
recall any particular exemplar need not imply that the associated evidence was lost. In
this way, generalisation might still proceed with all the available evidence (presuming
the same hypotheses were accessed). The details of representation notwithstanding,
if the likelihood is calculated and stored during encoding, and not at retrieval, then
generalisation would be shaped by the sampling assumptions available during learning,
even if those assumptions are changed at retrieval.

4.2 METHOD

Our experiment involved a single-category generalisation task modelled on previous work
demonstrating that sample size and sampling cover story affect people’s willingness to
extend category membership to novel examples (Hendrickson et al., 2019; Ransom et
al., 2018). Although we employed stimuli identical to those used in that experiment, we
modified the method of presentation so that each stimulus was removed from screen after
a (typically brief) period of self-paced study. Using a consistent experimental framework
allows us to directly compare our results with the previous findings, and thus to determine
if the effect of sampling assumptions on generalisation changes as the memory of training
examples decays.

One of our manipulations involved the nature of the cover story people received. Either
they were told that the data was given by a HELPFUL teacher (which corresponds to a
strong sampling assumption and implies that generalisations should be tighter) or they
were given a cover story implying that it was chosen at RANDOM (which corresponds to
a weak sampling assumption and implies that generalisations should be looser). Critically,
we manipulated whether people were given the sampling story BEFORE or AFTER they
saw the training stimuli. If sampling assumptions affect how the data are encoded then
people should generalise differently depending on when they received the story.



Figure 4.1: Example stimuli. Items varied only in the position of the short black vertical line

along the bottom edge of the rectangle.

PARTICIPANTS

We recruited 999 people via Amazon Mechanical Turk who were each paid $1.70USD
for 5-10 minutes participation. 56% were female, with age varying between 18 and 75
(median: 37 years), drawn predominately from the U.S. population (99%). All participants
passed a screening for English language competency prior to participation.

STIMULI

Stimuli were black rectangles containing a vertical black line inside, attached to the
bottom edge (see Figure 6.3). They varied along a single dimension (the stimulus value):
the horizontal position of the line within the rectangle. Participants were told that this
was the way in which stimuli varied. Evenly spaced light grey “guide lines” were drawn
within each rectangle in order to improve discriminability. There were 12 training stimuli
in total, whose stimulus values ranged from 21% to 43% in increments of 2%. They were
divided into two sets corresponding to the two training phases, as described below.

DESIGN AND PROCEDURE

As shown in Figure 4.2, our experiment employed a 2 x 2 x 2 mixed factorial design.
Two factors (Sampling Explanation and Presentation Sequence) were manipulated
between-subjects while another (Sample Size) varied within-subject. People were thus
allocated at random to one of four experimental groups.

Across all groups, the experiment involved presenting people with a number of
examples of a novel 1D category and then observing whether they generalised category
membership to new items based on the examples they had been shown and what they had
been told about those examples.

Sample Size

To facilitate a baseline against which the effect of additional exemplars could be compared,
the experiment involved two rounds of testing. The first (Size 4) occurred after a training
phase involving four training examples, and the second (Size 12) after seeing eight more.
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Figure 4.2: Experiment design. Our 2x2x2 design varied Sample Size within-
subject and Sampling Explanation and Presentation Sequence between-subjects.
All participants began by seeing four individually-presented exemplars followed by
a generalisation task to novel stimuli. Those in the RANDOM condition were then given
a cover story in which the subsequent eight items were chosen at random from boxes
that they themselves had previously selected. Those in the HELPFUL condition were told
that the items were selected by a helpful teacher. In the BEFORE condition, the cover
story was given before seeing the eight new items; in the AFTER, it came after. In all
conditions the experiment ended with a repeat of the generalisation test.

Stimuli for the first training phase consisted of the two extreme examples (with values
of 21% and 43%) and two others selected at random from the ten whose values lay
between the extremes. The eight remaining stimuli formed the second training set and
were presented in random order.

Presentation Sequence

This between-subjects manipulation varied when the sampling cover story was presented
in relation to the second training set. People in the BEFORE condition were told the cover
story (RANDOM or HELPFUL, described below) before viewing the second set of training



items, while people in the AFTER condition were offered the explanation only after all
training items had been presented.

Sampling Explanation

The other between-subjects manipulation varied the details of the cover story explaining
how the data in the second training phase were generated. The initial training phase,
however, was identical for all participants. No explanation was given for how the
exemplars were chosen. People were told only that the purpose of the experiment was to
see how people judged whether or not unfamiliar objects were in the same category as
known examples. In the second training phase people were given one of two different
cover stories explaining how the items were selected.
Helpful. People in the HELPFUL condition were told:

We have a bunch of boxes containing examples of the full variety of «Wuggams». We
have chosen 8 of these boxes especially to help you learn the «Wuggam» category,
bearing in mind the four training examples we showed you originally.

at which point an array of eight icons resembling open packing boxes were displayed in
an adjacent panel. Participants in the BEFORE condition then viewed the eight stimuli
one by one. Those in the AFTER condition saw the identical explanation (with verb tenses
adjusted) only after all eight stimuli in the second training phase had been shown.

Random. The RANDOM condition was designed to encourage people to believe that
each training item was selected at random and that it was at least theoretically possible
to see examples not in the target category. To achieve this, people in the RANDOM
condition were presented with an additional phase preliminary to the first training round.
In this phase, a 6 x 5 arrangement of packing boxes was displayed on screen, and people
were asked to select boxes in any order (but not told why this was necessary). After
selecting 11 boxes, people were told that the contents would be revealed later in the
experiment. Following this, the first training phase commenced, which was identical for
all participants.

During the second training phase, participants in the AFTER condition were immedi-
ately shown the eight remaining training items without explanation. Those in the BEFORE
condition were told that we had many boxes containing examples from our catalogue,
and that these examples included but were not limited to Wuggams. After this, the
original array of (closed) boxes was displayed, indicating the ones that the participant
had previously selected. People were then told:

At the start of the experiment we asked you to choose some of these boxes at random.
These are the boxes that you selected. We’re going to open them now and show you
whatever kind of item we find inside.
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In order to reinforce the notion that it might have been possible to see items from
categories other than Wuggams, the display was updated at this point to reveal eight
open boxes and three closed ones. People were told that some of the boxes they had
chosen were stuck but that we would show them the contents of the boxes that did open.
Participants in the AFTER condition received exactly this cover story (with verb tenses
adjusted) only after seeing all eight training examples.

GENERALISATION TEST

Immediately after both the first and second training phase, participants in all conditions
performed the same generalisation test. In it, they were shown 19 stimuli one at a time in
random order; this sequence was repeated four times. The stimuli consisted of 19 items
with stimulus values ranging from 5% to 95% in increments of 5%. The test query was
a yes or no question: “Do you think this object is in the «Wuggam» category?” Neither
training stimuli nor the sampling explanation remained on-screen during testing, requiring
people to rely on their memory when making judgements.

4.3 RESULTS

Our work is focused on understanding how memory and sampling assumptions interact
to affect generalisation. Do we replicate previous findings showing that differences
in sampling assumptions lead to differences in generalisation? Does this difference in
people’s patterns of generalisation change if the sampling manipulation occurs before or
after stimulus encoding? We address each question in turn below.

First: do we replicate previous results? Our RANDOM BEFORE and HELPFUL BEFORE
conditions are very similar to that of a previous study (Ransom et al., 2018), but are
different in one key way. In our version, the training stimuli were removed from the
screen after initial presentation; in Ransom et al. (2018) and much of this literature the
training stimuli stay visible for the entire experiment. We therefore investigate whether
these previously observed effects of sampling manipulation are replicated even when
people must rely on their memory of the training stimuli.

To investigate this we first analysed the responses of all participants having seen only
the first four exemplars, for which no sampling explanation was given. Against this
baseline we separately compared the responses of people in the RANDOM BEFORE and
HELPFUL BEFORE conditions. The resulting generalisation curves shown in Figure 4.3(a)
reveal that the HELPFUL sampling manipulation led to tighter generalisation than the
RANDOM manipulation. This replicates a key finding of Ransom et al. (2018), shown
in Figure 4.3(c). To examine the strength of evidence for this finding we analysed
generalisation curves for the second test phase (Size 12), calculating the generalisation
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Figure 4.3: Performance on a one category generalisation task as a function of presentation
sequence, sampling procedure (manipulated between-subjects) and sample size (manipulated
within-subject). The graphs show the proportion of positive responses to the question: “Do you
think this object is in the «Wuggam» category?” for each of the test stimuli. People’s performance
after seeing four examples of the target category with no sampling explanation given (grey line) is
contrasted with their performance after seeing all 12 examples and being given an explanation
of how the additional examples were selected (black lines). (a) When the sampling explanation
was given prior to the presentation of the final 8 examples (BEFORE condition), people tightened
their generalisations as more data was observed, but the extent of tightening was affected by the
sampling manipulation; those people who actively sampled the additional examples at random
(red squares) tightened their generalisation less than those that were told that the items had been
selected by a helpful teacher (blue diamonds). (b) In contrast, when the sampling explanation was
given only after all training stimuli were presented (AFTER condition), the sampling manipulation
had no effect, with people tightening their generalisation equally in both cases. (c) Using the
same experimental framework and stimuli, but keeping the training stimuli on-screen during the
testing phase, Ransom et al. (2018) demonstrated the effect of sampling manipulation seen only
in the BEFORE condition. But when people must rely on their memory of observed examples,
their generalisation is wider overall.

probability for each person and stimulus separately. A Bayesian ANOVA revealed that a
model of generalisation probability including stimulus value and sampling manipulation
as predictors is strongly preferred to a model containing stimulus value only (BF;o > 109).

Although we replicated the qualitative difference between sampling conditions, it is
evident on visual comparison of Figure 4.3(a) and (c) that people appeared to generalise
further when they had to rely on their memory of the training stimuli. To determine the
overall effect that this had on generalisation we calculated the marginal probability of
extending category membership to novel items as a function of test phase (4 or 12 items)
and sampling manipulation (RANDOM or HELPFUL). We then compared this probability
between our experiment (the BEFORE conditions) and Ransom et al. (2018).
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Figure 4.4: The mean effect of additional exemplars on the marginal probability of
generalising the learned category to novel stimuli, as a function of sampling assumption
and the presence of a memory aid. When training exemplars remained on-screen
throughout the testing phase participants were less willing overall to generalise the
target category to novel items than when no memory aid was present. In magnitude, the
effect of the memory aid on generalisation was comparable to the effect of observing the
eight additional exemplars.

The results, shown in Figure 4.4, demonstrate that the absence of a memory aid had
a uniform but significant effect on generalisation overall (BFjo > 10'90).3 After seeing
12 exemplars, participants in our study (who had no memory aid) showed a willingness
to generalise to novel items comparable to participants in Ransom et al. (2018) after
seeing only four items that remained on screen throughout. Thus, overall, we find that
the difference in generalisation according to sampling assumption did replicate, but
generalisation was consistently higher when people had to rely on their memory more.

Our second question was whether the effect of sampling manipulation changes when
the sampling cover story is given after the training stimuli rather than before. We
therefore repeated our analysis for people in the RANDOM AFTER and HELPFUL AFTER
conditions, and found that it does: there is no longer a difference in generalisation based
on sampling assumption. As Figure 4.3(b) shows, people tighten their generalisations
to a remarkably similar degree across the two conditions, despite the fact that they had
opposing sampling cover stories (Bayesian ANOVA now favours the model with stimulus
value as the only predictor: BFy; = 42).

To further assess the effect of our sampling manipulation on the qualitative patterns
of responding, we compared each individual’s responses between the two test phases,
after seeing 4 and 12 exemplars. Figure 4.5 shows the proportion of people who either
tightened, widened or showed no net change in their generalisation (marginalised across
test items). Consistent with the patterns at the aggregate level, it is evident that the
explanation given to participants regarding the source of the additional exemplars does

3Based on a Bayesian logistic regression comparing a model of yes/no responses that included stimulus
value, sampling manipulation and memory aid as predictors to one without memory aid.



4.4 DISCUSSION |

B Tightened B Widened [0 No change

bk bk

RANDOM HELPFUL RANDOM HELPFUL

(a) BEFORE (b) AFTER

Figure 4.5: The proportion of people who either tightened (A, < 0), widened (A, > 0) or
showed no change (A, = 0) in their region of generalisation, after seeing additional examples
(where A, reflects an individual’s change in rates of responding in favour of the learned category).
People are grouped according to the explanation they received about the sampling of extra items,
and whether it was given before or after the examples themselves. Error bars show standard error
of proportion. (a) In the BEFORE condition, where the sampling explanation was given prior to the
presentation of the additional examples, the sampling manipulation had an effect. The majority
of people who were told that the items had been selected by a helpful teacher tightened their
region of generalisation, while the (slight) majority of people in the RANDOM condition, who
actively sampled their own additional examples, widened their region of generalisation or showed
no change. (b) In contrast, when the sampling explanation was provided after the additional
stimuli had been presented (as in the AFTER condition), the majority of people tightened their
generalisations regardless of the explanation given.

affect the trajectory of generalisation as more examples are observed. But this explanation
only has an effect if it is given before the exemplars are observed (BF{p = 300) and not
after (BFy; = 2.8).%

4.4 DISCUSSION

To our knowledge, our work here is the first to explore when sampling assumptions
affect generalisation, and by extension when the likelihood is calculated. Our results
demonstrate that the sampling cover story only had an effect when it was made explicit
prior to the presentation of the data. When it was presented at retrieval, then whatever
likelihood was the default at the time of encoding (which, in this case, appeared to have
been strong sampling) was the likelihood that shaped generalisation — even though the
cover story at retrieval should have contradicted it. While we cannot altogether rule out
the influence of sampling assumptions at the point of retrieval, our experiment provides
evidence in favour of an encoding account. Under this account, the evidence for different

“Bayes’ factors are based on a multinomial logistic regression comparing a model of qualitative effect
(tighten, widen, no net change) with sampling manipulation as a predictor against an intercept only model.
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Figure 4.6: Simulated performance on a one category generalisation task as a function of exemplar
recall, sampling assumption and sample size. The graphs plot the probability of generalising the
learned category as a function of stimulus value. Solid lines represent generalisation performance
on the assumption that all exemplars are perfectly recalled at decision time — the default assumption
of the Bayesian generalisation model. Dashed lines represent generalisation performance on the
basis of imperfect recall. For illustration purposes, the simulation uses an independent probability
of recall for each exemplar (p = 0.5). Failing to recall exemplars leads to wider generalisation
overall. (a) Simulated performance in the BASELINE condition (4 exemplars), assuming the default
(strong) sampling. When the sample size is small, the effect of forgetting on generalisation reflects
a balance of two forces: the reduction in diversity may reduce generalisation within the range
spanned by the exemplars, while the reduced sample size leads to wider generalisation outside
the range. (b) Simulated performance in the RANDOM condition (12 exemplars), assuming the
BASELINE performance as a prior and that the 8 additional exemplars are weakly sampled. In the
case of imperfect recall, the simulation predicts that the 8 additional items, although imperfectly
recalled, lead to wider generalisation as a result of increased diversity. (c) Simulated performance
in the HELPFUL condition (12 exemplars), assuming the BASELINE performance as a prior and
that the 8 additional exemplars are strongly sampled. Under strong sampling, generalisation
tightens quickly around the sampled range with each extra exemplar, thus the predicted effect of
forgetting is less in this scenario.

hypotheses is assessed according to the sampling assumption that prevailed at the time
that the data were originally presented.

This finding has a variety of interesting implications. First, it suggests that there is
no such thing as a “theoryless” learner: at no point do people simply encode the raw
data in a veridical fashion. Rather, from the start they are actively engaged in making
sense of it for future generalisation even though there is no current need to generalise.
The question remains as to how automatic this is: would people be able to inhibit the
likelihood calculation if requested to remember each specific data point as precisely as
possible, or if they didn’t think that a generalisation task would be forthcoming?

This has implications for effective pedagogy as well. It is known that learners benefit
from assuming that their teacher is selecting the most informative examples possible
given the learner’s current beliefs. Such reciprocal assumptions can lead to a highly
leveraged form of generalisation in which concepts can quickly be acquired from minimal
input (Shafto et al., 2014). Under the idealised account of pedagogical learning, people’s
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inferences should not depend on when the sampling process becomes apparent. However,
our results suggest that it is important for the teacher to make the sampling process clear
as early as possible.

In a similar way our finding has implications for how people process misinformation
and corrections to misinformation. Ransom et al. (2017) found, for example, that people
can use truthful but limited data in their efforts to mislead others by attempting to
manipulate their counterpart’s sampling assumption. Our work suggests that subsequently
learning that an information source was biased may not be sufficient to correct the bias.
It therefore offers another explanation for the well-established finding that retracting
misinformation does not eliminate its influence (Ecker, Lewandowsky, Swire, & Chang,
2011; Johnson & Seifert, 1994). If people are encoding data in such a way that it cannot
be disentangled from their theory at the time, interpreting that data under a new theory
may be extremely difficult.

Another interesting aspect of this work regards the role of memory. By adopting
the experimental procedure of Ransom et al. (2018) but requiring participants to view
the simuli one-by-one, we were able to assess how memory decay would interact with
sampling assumptions in shaping generalisation. We found that people tightened their
generalisations less when they had to rely on their memory more. A simulation of the
generalisation task used in our experiment verified our intuition that this should be
the case (see Figure 4.6). Our finding is consistent with previous work using complex
linguistic and non-linguistic data rather than a simple one-dimensional category (Perfors
et al., 2014), which suggests that the result is reasonably robust.

Our memory manipulation (albeit across two experiments) also provides some basis
to distinguish between two possible encoding accounts. One possibility is that evidence
is stored and retrieved with each exemplar individually and any failure to retrieve an
exemplar would mean that computation occurs over a smaller dataset. A second possibility
is that evidence is stored in aggregate (across all data points) and retrieved via the
hypotheses. In this case, the contribution of each exemplar would be accounted for at
the point of encoding, and so the computation should proceed as if the full dataset were
retrieved. The two possibilities suggest contrasting predictions. In the first case, we would
expect generalisation in the present experiment to be wider than in the previous (Ransom
et al., 2018, where perfect recall was supported). In the latter case, we should expect the
results of the two experiments to be broadly in line with each other. As already noted, we
found that manipulating how easy it was to remember exemplars did affect generalisation
in a manner consistent with some degree of recall failure. We interpret this as weak
evidence favouring the “exemplar encoding” account over the “hypothesis encoding”
account: the data is stored in such a way that the strength of evidence is in some way
integral to the encoding of the exemplar, at least to the extent that failure to later retrieve
the exemplar equates to a failure to incorporate the associated evidence. Our evidence is
only weak, however, because it is not entirely clear what “forgetting” in the context of
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the hypothesis encoding account would amount to. Fleshing out these distinctions more
and testing them more systematically is a goal for future work.

While the present experiment should be taken in the spirit of a “proof of concept”, our
research nonetheless suggests that memory, sampling, and generalisation are intertwined
in ways that are still not fully understood. By manipulating when different information is
available as well as the cognitive load during learning, it is possible to further illuminate
this complex relationship.
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LEAPING TO CONCLUSIONS

Everyday reasoning requires more evidence than raw data alone can provide.
We explore the idea that people can go beyond this data by reasoning about
how the data was sampled. This idea is investigated through an examination
of premise non-monotonicity, in which adding premises to a category-based
argument weakens rather than strengthens it. Relevance theories explain this
phenomenon in terms of people’s sensitivity to the relationships amongst
premise items. We show that a Bayesian model of category-based induction
taking premise sampling assumptions and category similarity into account
complements such theories and yields two important predictions: first, that
sensitivity to premise relationships can be violated by inducing a weak
sampling assumption; and second, that premise monotonicity should be
restored as a result. We test these predictions with an experiment that
manipulates people’s assumptions in this regard, showing that people draw
qualitatively different conclusions in each case.

Whereas formal deductive reasoning provides a solid bridge from premise to conclu-
sion, everyday reasoning requires an inferential leap. But what assumptions support such
a leap when raw data alone cannot? This question is relevant to the understanding of
category-based induction, an important and representative form of inductive reasoning. In
a typical category-based induction task, people are presented with a conclusion supported
by one or more premise statements and asked to rate the strength of the inductive argument
as a whole. Similarity-based models, which assume that argument strength is assessed
on the basis of similarity between premise and conclusion categories, have successfully
accounted for many aspects of people’s performance in such tasks (Osherson et al., 1990;
Sloman, 1993). Yet there are other characteristics of people’s reasoning in this regard that
are not adequately predicted on the basis of similarity. These characteristics have been
explained as emerging from people’s sensitivity to the relevance of different premises
and the relationships amongst them (Medin et al., 2003).

In this paper we explain why and when premise relevance should matter. We argue
that people’s reasoning is sensitive to premise relationships because they consider the
generative process behind the data they observe. If people made no such considerations,
and instead assumed that all data consistent with the truth were equally likely to be
observed (a so-called weak sampling assumption), then a perceived relationship amongst
premise items should have no effect on argument strength. We demonstrate this by
manipulating people’s assumptions about premise selection, and observing that people
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draw qualitatively different conclusions as a result. Thus, we reproduce an effect of
premise relevance on argument strength demonstrated by Medin et al. (2003) in a
scenario where relevance should matter, and fail to observe the effect where it should
not. Furthermore, we argue that the notion of cognitive effect, central to relevance theory
explanations of induction, is neatly captured by a Bayesian theory of category-based
induction that naturally incorporates different assumptions about premise sampling, along
with the role of category similarity. Our results offer important corroborating evidence
for the relevance theory of induction.

We first describe the category-based induction task, with a focus on arguments in
which additional premises lead to weaker rather than stronger conclusions (known as
premise non-monotonicity). We then describe a Bayesian analysis of this task which
predicts that whether or not people exhibit premise non-monotonicity depends critically
on how they assume the premises were generated in the first place. Finally, we present
an experiment in which we manipulate these assumptions. As predicted by our model,
people’s reasoning differs qualitatively as a function of how they think the premises were
sampled.

5.1 PREMISE MONOTONICITY AND NON-MONOTONICITY

In a typical category-based induction task participants are asked to rate the strength of
inductive arguments like the following:

premise EAGLES have more than one fovea per eye.

conclusion HAWKS have more than one fovea per eye.

Here we use the notation EAGLES — HAWKS to indicate that this problem asks people
to generalize a property from EAGLES to HAWKS.! Given that EAGLES and HAWKS are
similar, participants might rate this as a moderately strong argument. Adding premises
to an argument typically strengthens it, an effect referred to as premise monotonicity
(Osherson et al., 1990). For instance, the argument {EAGLES, FALCON} — HAWKS
appears stronger than EAGLES — HAWKS. The additional premise provides evidence
that the property of multiple foveae should be extended to all birds of prey, and is not a
property of EAGLES alone.

However, systematic violations of premise monotonicity have been observed. For
example, Medin et al. (2003) found that people were less willing to endorse the
generalization {GRIZZLY BEARS, BROWN BEARS, POLAR BEARS} — BUFFALO than
GRIZZLY BEARS — BUFFALO, despite the former having more premises. This non-
monotonicity effect appears to arise because the multiple premise argument provides

. . . mult. foveas . .
"More precisely, we might denote this EAGLES L HAWKS in order to emphasize the property

being extended in the argument. For the most part this detail is not needed for our paper.
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strong evidence that the property should be extended to bears only, and so weakens the
plausibility that buffaloes share the property. This insight is captured in the relevance
theory of induction, which suggests that adding premise categories should weaken an
argument if the added categories reinforce a property shared by all of the premise
categories but not the conclusion (Medin et al., 2003).

This seems sensible, but why is it so? If nothing can be assumed about the way premises
are sampled, then there is no reason to expect a more relevant premise to be advanced
in argument over a less relevant one; the notion that a perceived relationship between
premise items represents the appropriate basis for induction, gains no special credence
simply by virtue of being put forward. But in the real world arguments are rarely (if
ever) constructed from randomly sampled facts. It makes sense for people to assume that
arguments are constructed by sampling relevant facts to support conclusions and achieve
communication goals. Wilson and Sperber’s account of relevance theory (Wilson &
Sperber, 2004) and Grice’s co-operative principle (Grice, 1989), upon which their theory
is based, each offer explanations for why utterances raise an expectation of relevance on
the part of the listener. For Grice, the raised expectation comes about because people, for
the most part, follow communicative conventions that encourage relevance. But such a
heightened expectation should serve only to sharpen the ability to discriminate inputs on
the basis of relevance. A reasonable variation in relevance should exist in the first place.

Wilson and Sperber go further than Grice, arguing that neither a communicative
convention nor a communicative context are strictly necessary for an enhanced perception
of relevance. A tendency to maximize relevance, they contend, is a fundamental feature of
our cognitive systems, arising from the need to make the most efficient use of processing
resources. To give an example, there are a number of theoretical results showing that
positive evidence has stronger evidentiary value than negative evidence under plausible
assumptions2 about the environment (e.g. Klayman & Ha, 1987; Navarro & Perfors,
2011). Given this, maximizing relevance should lead people to prefer to give and to
receive positive evidence, and will therefore treat positive premises (of the form “item x
has property p”) as more relevant than negative ones.

If people assume premises are sampled based on relevance then any property shared
by the premises will gain plausibility as the correct basis for induction and stronger
inferences to that effect should result. For example, if I want to convey the range of
animals that share a particular property, and I want to be as relevant as possible, then I

2The critical assumption is that we live in a world in which most items do not have most properties. This
seems intuitive (e.g., FOXES are furry, but FISH, FEARS and FOOTPRINTS are not), but some care is needed
in substantiating the point. From a logical standpoint any “sparse” property (possessed by a minority of
entities) is mirrored by a “non-sparse” complement. However, they need not be equally salient nor equally
useful when describing the world: people are more likely to think of furry (sparse) as a meaningful property
than non-furry (non-sparse). Indeed, what Navarro and Perfors (2011) show is that in any world where
entities are not completely homogeneous, the categories and properties that intelligent agents attend to
should display this sparsity bias.
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should select additional examples that best capture the appropriate range. Returning to the
bears example, had I wanted to convey the message that many species had some property,
not just bears, you might reasonably have expected me to mention a different kind of
animal. So my choosing further examples of bears when extending my argument provides
evidence that only bears have the property. Qualitatively, this reasoning explains why
people exhibit premise non-monotonicity in this situation. This intuition can be reinforced
quantitatively by the mathematics of Bayesian probability theory, as we explain in the
next section.

5.2 A MODEL FOR REASONING IN CATEGORY-BASED INDUCTION

Consider a standard Bayesian approach to category-based induction tasks (Heit, 1998;
Sanjana & Tenenbaum, 2003). Suppose the learner is given a one premise argument of
the form x - y. Let h denote one possible hypothesis about how far property p should
be extended, and P () denote the reasoner’s prior bias to think that  describes the true
extension of property p. Having observed that item x possesses property p, the posterior
degree of belief in 4 is given by Bayes’ rule:

P(x|h)P(h)

P = E PP G0

Here, P(x|h) is the likelihood, which specifies the probability that the argument would
have used x as a premise if 4 were the true extension of property p. The sum in the
denominator is taken over all hypotheses that the reasoner might consider regarding the
extension of property p. When an argument contains multiple premise items xi, .. ., X, the
likelihood is given by the product of each of the individual probabilities, Hle P(x;|h).
In order to evaluate the claim that item y also possesses property p, a Bayesian reasoner
sums the posterior probabilities of all hypotheses that are consistent with the claim. Thus,
the argument strength is given by:

P(y|x) =), P(h|x). (5.2)

h:yeh

This model has two components, the prior P(h) and the likelihood P(x|k). In our
application of the model, the prior reflects the similarity amongst premise categories. As
described in Appendix A, we use empirical similarity data to set P(4) and simulations to
check that the qualitatively important effects are not overly sensitive to the particular data
collected.

The likelihood is critical to an understanding of when and why premise relevance
matters: it naturally captures different assumptions people may make about how the
premises were generated. For instance, a naive reasoner might assume that the premise
items for an argument are selected at random from the set of true facts about the property
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p. This is called weak sampling. Since the item x is chosen randomly, weak sampling
allows premises to present negative evidence (i.e.,”“item x does not have property p”). For
a premise presenting evidence that item x has property p, the weak sampling likelihood
function is:

P(x|h) o 1 ifxeh (5.3)

0 otherwise

In essence, when presented with item x, a learner assuming weak sampling falsifies all
hypotheses inconsistent with the premise but does not alter their beliefs in any other
respect — the fact that x was chosen over other items has no additional relevance to the
reasoning problem. As a result, such a learner will be less likely to demonstrate premise
non-monotonicity. If premises are generated randomly, seeing BLACK BEARS in addition

to GRIZZLY BEARS does not act as a “hint” that only bears have the property in question.

Rather, because there are almost no hypotheses that could be falsified by the additional
BLACK BEARS premise that were not already falsified by the GRIZZLY BEARS premise,
the additional information is largely irrelevant.

The simplicity of the weak sampling model and its connection to falsification is
appealing. However, as we have seen, it provides a poor description of how inductive
arguments are constructed in everyday reasoning. If a learner expects an argument
to be constructed using positive examples, then a weak sampling assumption is no
longer tenable. A simple alternative is strong sampling (Sanjana & Tenenbaum, 2003;
Tenenbaum & Griffiths, 2001a), in which a premise item is selected only from those
exemplars that possess property p. As noted earlier, this restriction makes sense if people
expect to receive relevant evidence. This gives the likelihood function

1 .
o fxeh

Px|p)y=¢ ™ "7 (5.4)
0 otherwise

where |h| denotes the size of hypothesis 4. In this context, the size is calculated by
counting the number of items that possess property p assuming hypothesis 4 is true.
Under strong sampling, the item presented has relevance beyond falsification. That is,
a premise provides more evidence for a small hypothesis than it does for a larger one
(Tenenbaum & Griffiths, 2001a). A learner who sees multiple premise items consistent
with one small hypothesis will come to prefer that hypothesis over other, broader

hypotheses, even when the broader hypothesis happened to be originally preferred.

As noted in previous research (Fernbach, 2006; Kemp & Tenenbaum, 2009; Voorspoels,
Van Meel, & Storms, 2013), this phenomenon provides a potential explanation for why
people sometimes exhibit premise monotonicity and at other times non-monotonicity.
Compare the one premise argument CHIMPANZEES — GORILLAS to the two premise
argument { CHIMPANZEES, ORANGUTAN} — GORILLAS. Both premises are consistent
with a small hypothesis (i.e., that all primates have that property). Because gorillas are also
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primates the additional evidence provided by the ORANGUTAN premise acts to strengthen
the argument: premise monotonicity is satisfied. In contrast, compare the one premise
argument GRIZZLY BEARS — LION to the two premise argument { GRIZZLY BEARS,
BLACK BEARS} — LION. In the one premise variant, the reasoner might reasonably
believe that the property extends to all mammals or all predators, and so there is at least
some chance that LIONS possess the property. However, when BLACK BEARS is added to
the list of premise items, the reasoner has strong evidence in favor of a small hypothesis,
namely that the property is common only to bears. This produces a non-monotonicity
effect, since an additional positive observation acts to weaken the conclusion.

Importantly, this explanation relies on the assumption of strong sampling. It is this
assumption that gives a premise item relevance over and above its use for falsification. In
the bears example above, the effect occurs because a second bear premise provides strong
evidence for the (smaller) “bears” hypothesis relative to the (larger) “all predators” and
“all mammals” hypotheses, even though all three are consistent with both premises. Under
a weak sampling assumption, premise items have no relevance beyond falsification, and
this shift does not occur.

If strong sampling represents an assumption that premise selection is biased towards
relevant items® and weak sampling represents the assumption that is is not, then it is
reasonable to consider that the bias to expect relevant premises might vary not just in
kind, but also in degree. A mixed sampling model can be used to capture this situation
in a straightforward way (Navarro et al., 2012). Under mixed sampling, the likelihood
function becomes:

Op +(1-0)g  ifxeh

P(x|h) = (5.5)

otherwise

where |X| represents the number of possible premise items, and 6 represents the
probability that the premise item x was strongly sampled. When 0 = 0 the model is
equivalent to weak sampling and has no bias towards positive evidence. In contrast, when
0 = 1 the bias is so extreme that the learner believes it is impossible to receive negative
evidence, and the mixed sampling model becomes equivalent to strong sampling.

The notion that people are sensitive to how the premises were generated represents an
intriguing and testable prediction. If reasoners have an expectation of premise relevance
and thus expect premises to be biased towards positive evidence, they should show
premise non-monotonicity for the bears example. If, on the other hand, they assume
that premise items have been selected at random (i.e., weakly sampled), then premise
monotonicity should be exhibited. Note that this prediction stands in contrast to the

3The strong sampling model is not intended to capture all the complexity of selecting items for relevance.
For instance, richer pragmatic assumptions can be captured using pedagogical sampling models (Shafto et
al., 2014). This complication is not necessary in the current context but some implications are addressed in
more detail in the discussion.



predictions of similarity based models (Osherson et al., 1990; Sloman, 1993) neither
of which incorporate any sensitivity to the mechanism by which the premises are
generated. To that end, we present experimental evidence that premise monotonicity
can be systematically manipulated by changing the assumptions people make about the
origins of the data. Not only do we see qualitative reversals from monotonic to non-
monotonic reasoning consistent with a change from weak to strong sampling, we also
find that the transition occurs in a graded fashion consistent with the smoothly varying
bias parameter in the mixed sampling model.

5.3 EXPERIMENT
PARTICIPANTS

590 adults were recruited via Amazon Mechanical Turk, and were each paid $0.50 (USD)
for the 5-10 minutes participation. 52 were excluded due to browser incompatibility, and
the remaining 538 were aged 18 to 69 years (median age 28, 65% male). 500 participants
were in the United States, with 38 located elsewhere.

PROCEDURE

A cover story informed people that they would be making judgments concerning well
established facts about the properties of animals. Each trial began by presenting a fact
about one animal and then asking about a second. For example, they might first be told that
grizzly bears produce the hormone TH-L2, and then asked whether lions also produce
TH-L2. Responses were collected using a slider bar that allowed people to produce
answers ranging from “100% false” to “100% true”, as shown in Figure 5.1. They were
then told about a second animal, and allowed to revise their original judgment by moving
a different slider. The dependent measure for each trial is the difference between these
two judgments. If the endorsement of the conclusion is stronger on the second occasion,
premise monotonicity is satisfied. If the difference is negative, non-monotonicity is
observed.

CONDITIONS

Participants were randomly assigned to one of the four conditions, each involving a
different combination of cover story and filler trials. The cover story informed people
about how the second fact in each trial was generated, while the filler trials were
designed to be consistent with either a strong or weak sampling assumption. In the
BOTH RELEVANT condition, participants were told that the extra facts were provided by
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Figure 5.1: An illustration of the on-screen presentation of a trial shown at the point
where the second premise has been revealed. The one premise argument is displayed
on the upper portion of the display, while the two premise form is on the lower portion.
The rectangular “slider” (disabled on the upper portion, enabled in the lower) allows
participants to respond “True” or “False” and indicate the level of certainty in their
response.



past players of the game who were trying to select a helpful example of an animal with
the property in question. The story and the filler trials were designed to promote the idea
that facts were chosen on the basis of relevance, similar to strong sampling. In the BOTH
RANDOM condition people were told that they would select a card from a deck displayed
face down on-screen. This card would disclose whether or not a particular animal had
the property in question. In contrast to the BOTH RELEVANT condition, the story and
filler items were designed to support the assumption of weak sampling by encouraging
the belief that facts were being sampled at random. To allow us to investigate whether the
premises alone had an effect on sampling assumptions we ran two further experimental
conditions. The RELEVANT FILLERS condition employed a neutral cover story giving no
information about how the premises were selected, and used the same filler items as the
BOTH RELEVANT condition. Likewise, the RANDOM FILLERS condition employed a
neutral cover story, but used the same filler items as the BOTH RANDOM condition.

STIMULI

All participants were presented with six trials in a fixed order,* as shown in Table 5.1.

Three of these were especially key and appeared in all conditions. There were two target
arguments structured so that they should elicit non-monotonic responding under a strong
sampling assumption (Target 1: {TIGERS, LIONS} — FERRETS; Target 2: { GRIZZLY
BEARS, BLACK BEARS} — LIONS). There was also a Control argument designed to elicit
monotonic reasoning under any mixture of weak or strong sampling ({ CHIMPANZEE,
ORANGUTAN} — GORILLA). Finally, each person saw three Filler trials, designed to
reinforce a particular sampling assumption. Consistent with strong sampling, the filler
trials in the BOTH RELEVANT and RELEVANT FILLERS conditions consisted solely
of positive examples. In contrast, the filler trials in the BOTH RANDOM and RANDOM
FILLERS conditions included negative examples as well, and appeared much more
random.

5.4 RESULTS
MODEL PREDICTIONS

The Bayesian model of strong and weak sampling described in Equations 5.1-6.4 was
used to quantitatively predict how a reasoner holding either assumption would reason
about the two Target arguments and the Control argument. In order to extract these

“Randomization of trial order would not have made sense in this context. Because the filler items were
an important part of the experimental manipulation, it was critical that at least some of these precede the
target items; because we did not want the design to be too obvious, we also wanted to include at least one
filler in between the two targets.
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Additional example

Trial Property to be generalized First generalization RELEVANT RANDOM
Filler 1 have more than one fovea per eye EAGLES — DOVES +HAWKS —TORTOISES
Filler 2 have mammary glands ELEPHANTS — DEERS +COWS +ANTEATERS
Target 1 have a bite force greater than 500 BFU TIGERS — FERRETS +LIONS +LIONS
Filler 3 give birth to underdeveloped young KANGAROOS — WOMBATS +KOALAS —FLAMINGOS
Target 2 produce the hormone TH-L.2 GRIZZLY BEARS — LIONS +BLACK BEARS +BLACK BEARS
Control require cystocholamine for brain function ORANGUTANS — GORILLAS +CHIMPANZEES +CHIMPANZEES

Table 5.1: The property to be generalized, the first generalization, and additional example used in the BOTH RELEVANT/RELEVANT FILLERS
conditions, and in the BOTH RANDOM/RANDOM FILLERS condition. Trials are shown are shown in the order presented in the experiment.
All conditions have the same arguments in the key trials (Target 1, Target 2, and Control), differing only in cover story and supporting filler
trials. The second generalization that people were required to make is formed by combining the first generalization with the additional example.
For example, the second generalization for Target 1 becomes { TIGERS, +LIONS} — FERRETS. The “—” symbol is used to indicate that the
statement should be negated: e.g., “TORTOISES don’t have more than one fovea per eye."
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Figure 5.2: Model predictions for the change in argument strength when an additional
premise is introduced (i.e., P(y|x;,x2) — P(y|x1)). A positive change indicates premise
monotonicity, a negative change, non-monotonicity. In the Control argument, mono-
tonicity is predicted regardless of sampling assumption. For both Target arguments, a
reversal is predicted: premise non-monotonicity is expected only under an assumption of
strong sampling. (The difference in the magnitude of the predictions between the two
Target conditions emerges due to the structure of people’s real-world knowledge about
the domain as reflected in the prior, and is incidental to our main point.)

predictions, it was necessary to specify a hypothesis space 4 and a prior distribution
P(#). The hypothesis space simply consisted of all possible sets of the 14 animals
common to the two experimental conditions. In order to estimate the prior, we collected
similarity ratings for all pairs of the 14 animals. The estimation procedure was an
adaptation of the additive clustering technique (Shepard and Arabie 1979; see also
M. D. Lee 2002, Navarro and Griffiths 2008) and is discussed in more detail in Appendix
A.

Figure 5.2 shows the resulting model behavior. As predicted previously, when weak
sampling is assumed the model indicates premise monotonicity for both Target and
Control trials. Conversely, under strong sampling it predicts non-monotonicity for Target
trials and monotonicity for Control trials. Importantly, while the precise numerical
prediction shown in Figure 5.2 depends on the way in which the prior was derived, the
qualitative effect of sampling assumptions is robust with regard to change in details: as
discussed in Appendix A, the Bayesian model predicts a shift towards non-monotonicity
under strong sampling provided that the prior distribution reflects the conceptual structure
of the animal domain.
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Argument strength

Original Revised Change

Condition N Mean SE Mean SE Mean SE

Target 1
BOTH RELEVANT 135 283 021 210 .021 -.073 013
RELEVANT FILLERS 134 313 .023 259 .022 -.054 015
RANDOM FILLERS 138 301 .020 275 .020 -.026 014
BOTH RANDOM 131 277 022 307 .026 .031 021
Target 2
BOTH RELEVANT 135 523 015 444 .023 -.079 .023
RELEVANT FILLERS 134 538 017 484 .022 -.054 015
RANDOM FILLERS 138 534 017 521 .020 -.012 014
BOTH RANDOM 131 578 018 616 .021 .038 013
Control
BOTH RELEVANT 135 73 015 .863 .014 .090 013
RELEVANT FILLERS 134 765 015 .860 .013 .096 .009
RANDOM FILLERS 138 159 .013 .853 .013 .093 011
BOTH RANDOM 131 790 016 902 .010 A11 013

Table 5.2: Mean argument strength ratings (linearly scaled to the range O to 1) for the
original judgment (after seeing the first premise only), the revised judgment (after seeing
the second premise), and mean change in argument strength (the revised rating minus the
original rating, linearly scaled to the range -1 to 1), summarised by condition and trial

type.

EXPERIMENTAL RESULTS

For each trial, participants rated the strength of an argument in a one- and two-premise
form. The main question of interest was whether sampling assumptions had an impact
upon the way people assessed the evidentiary value of the additional premise. The
dependent measure was therefore the response change between the two judgments: a
positive response change reflects premise monotonicity, while a negative one reflects
non-monotonicity. Table 5.2 presents mean argument strength ratings based on the one-
and two-premise forms, as well as the mean change between judgments, by trial type and
condition.
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Bayes Factor

Condition Target 1 Target 2 Control
BOTH RELEVANT >1,000:1 (u<0) 40:1 (u<0) >1,000:1(u>0)
RELEVANT FILLERS 98:1(u<0) 91:1(u<0) >1,000:1(u>0)
RANDOM FILLERS 1:1@uw<0) 1:5.7(u<0) >1,000:1 (u>0)
BOTH RANDOM 1:1.8u>0) 13:1(u>0) >1,000:1 (u>0)

Table 5.3: Bayes factors indicating the relative likelihood of a one-sided model of mean

change in argument strength against the null model (u = 0), by condition and trial type.

The one-sided test performed in each case (given in parentheses) was chosen on the basis
of the mean change in argument strength observed. u < 0, and u > 0 correspond to the
hypotheses that the true mean change in argument strength represents non-monotonic
and monotonic responding, respectively. Bold type indicates the preferred model in each
case. As predicted, a cover story consistent with a strong sampling assumption lead to
non-monotonic responding in the Target trials, but not the Control trial, while a cover
story consistent with a weak sampling assumption induced monotonic responding across
all conditions and trials. Bayes factors are shown to two significant figures.

Figure 5.3(a) shows, as predicted, that people exhibited different response patterns
depending on their sampling assumptions. For both Target trials, participants in the
BOTH RANDOM condition exhibited premise monotonicity, while those in the BOTH
RELEVANT condition showed non-monotonicity. To quantify the amount of evidence
for these assertions, for every condition we ran Bayesian analysis comparing three
hypotheses: that responding was monotonic (positive change: u > (), non-monotonic
(negative change: u < 0) or that the additional premise had no influence (null effect:
u = 0). Analyses were conducted using the BayesFactor package in R (Morey & Rouder,
2014), applying the method outlined by Morey and Wagenmakers (2014) to test one-sided
hypotheses. The results of these analyses are summarized in Table 5.3, which reports the
Bayes factor between the two best hypotheses in each case. As the table makes clear, there
is strong evidence for monotonic reasoning on the control trials regardless of condition,
but there is evidence for a shift from monotonic to non-monotonic reasoning in the target
conditions.

For the two conditions employing a neutral cover story, our intuition was that a mixed
sampling assumption should be induced. Consequently, we expected mean response
change in the RELEVANT FILLERS and RANDOM FILLERS conditions to be within the
bounds of that for the BOTH RELEVANT and BOTH RANDOM conditions. To investigate
this intuition, we determined the mix of strong and weak sampling assumptions (captured
by 6, as per Equation 5.5) that best fit the mean response change observed for each
condition. The fitting process involved finding a value for 6 (in the range O to 1) that
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Figure 5.3: (a) Average change in people’s argument strength ratings for all four
conditions, calculated by subtracting their original judgment (after seeing the first
premise only) from their revised judgment (after seeing the second premise), then linearly
scaled to the range -1 to 1. In keeping with the predictions, people exhibit premise non-
monotonicity in the BOTH RELEVANT and RELEVANT FILLERS conditions and only for
the Target arguments. The results demonstrate that when a relationship amongst premise
categories not shared by the conclusion is highlighted, a strong reason is needed in order
for such relevance to be ignored and for non-monotonic reasoning to be inhibited. Bars
show one standard error. (b) Best fitting value of © under a mixed sampling assumption.
0 = 0 corresponds to a weak sampling assumption, whereas 6 = 1 would correspond to an
assumption of pure strong sampling. Intermediate values reflect more graded assumptions.
The fitted values confirm that when a cover story establishes a high or low expectation
of premise relevance consistent with the premises observed, people exhibit an increased
bias towards strong or weak sampling, respectively.
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Bayes Factor ( : NO EFFECT)

Model Order restrictions Target 1 Target 2 Control
NO EFFECT M= My = U3 = iy - - -
FILLERS ONLY = < U3 = g 740 : 1 12,000: 1 <1:1
STORY ONLY Uy < =uz < Uy 4,100:1 17,000 : 1 <1:1
BOTH U < pp < uz < g 2,900: 1 30,000 : 1 <1:1
RANDOM EFFECT Ul # U # U3 7 s 520:1 4,600 : 1 <1:1

Table 5.4: Bayes factors representing the relative likelihood of the observed changes
in argument strength under each model compared with the NO EFFECT model. A
higher Bayes factor indicates greater evidence in favour of a particular model. Each
model is described in terms of the order restrictions amongst the values ui, to, u3
and 4, which represent the true means of the BOTH RELEVANT, RELEVANT FILLERS,
RANDOM FILLERS, and BOTH RANDOM conditions, respectively. Bayes factors are
shown to two significant figures.

minimised the squared difference between predicted response change and mean observed
response change summed across Control and Target trials.

As Figure 5.3(b) shows, the change in relative mixture across conditions follows the
expected pattern. The correlation between fitted model and data is 0.94, indicating a
good fit overall. Further analysis showed that order restricted models suggesting either an
effect of cover story only or both cover story and filler items were both well supported
by the data, with the latter having strongest support overall (Bayes factors are shown in
Table 5.4). Bayes factors were calculated using a custom JAGS model, employing the
product space method of model comparison (Lodewyckx et al. 2011; see Appendix B for
details).

Overall, the effect of sampling assumption on premise monotonicity in our experiment
was strong enough to cause a genuine reversal in whether people were prepared to endorse
the conclusion in one case. For the second target trial, 78% of participants in the BOTH
RANDOM condition endorsed the conclusion that lions produce the hormone TH-L2 (by
using the on-screen slider to indicate “True”), compared to 37% in the BOTH RELEVANT
condition. With respect to the first target trial the effect was less pronounced due to
low overall endorsement of the conclusion; 24% endorsement in the BOTH RANDOM
condition compared to 11% in the BOTH RELEVANT condition.
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5.5 DISCUSSION

Arguments, when presented in everyday life, are intended to bring about a change in the
audience. Whether to engage, to teach or persuade, premises are typically selected with a
relevant goal in mind. This paper investigates why premise relevance should matter when
people evaluate arguments. We demonstrate that people’s reasoning in a category-based
induction task is dependent on their assumptions about how the premises were sampled.
If they think the premises were provided by a helpful confederate choosing positive
examples from the categories in question, they show the premise non-monotonicity effect
found previously (Medin et al., 2003). However, if they believe that the premises were
generated randomly, this effect reverses. These results can be explained by a Bayesian
theory of category-based induction that naturally incorporates different assumptions about
premise sampling.

Our results support two qualitatively different conclusions. First, our work shows
that the perceived strength of an inductive argument is influenced not just by the
direct generalizability of premises to conclusion, but also by expectations of premise
relevance. By inducing a weak sampling assumption we showed that sensitivity to premise
relationships can be violated. Second, this influence is pronounced enough to lead to a
reversal of an effect (premise non-monotonicity) that normally obtains for certain kinds
of argument structures. Reasoners who hold different sampling assumptions may endorse
opposite conclusions as a result.

A previous attempt by Fernbach (2006) to demonstrate premise non-monotonicity by
inducing a weak sampling assumption was not entirely successful. Although Fernbach
(2006) found a difference in argument strength depending on sampling assumptions,
participants in that study did not show a qualitative shift from monotonic to non-
monotonic reasoning. Instead, the additional premises raised argument strength in all
cases. It is possible that the relevance of the additional premises was not clear enough
in that manipulation, which did not vary filler items. In our experiment we used filler
items to substantiate the cover story in the BOTH RELEVANT and BOTH RANDOM
conditions. For example, our BOTH RANDOM condition contained negative examples as
filler items, without which a weak sampling assumption is difficult to sustain. Previous
work involving category learning has also found that people rely on data, not just cover
stories, to determine which sampling assumptions are appropriate. For instance, Navarro
et al. (2012) found that the data people were shown affected their generalizations, but
that sampling assumptions implicit in the cover story did not. A replication of that study
which made the sampling assumptions in the cover story more explicit did find a reliable
effect of cover story (Vong et al., 2013). Our results showed a reliable effect of both
cover story and filler items, with participants in the RELEVANT FILLERS and RANDOM
FILLERS conditions exhibiting a similar, albeit attenuated, pattern of responding to those
in the BOTH RELEVANT and BOTH RANDOM conditions, respectively. This lends further
support to the intuitive notion that in many cases people’s sampling assumptions reflect
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some weighted mixture of strong and weak sampling. And while the questions remains
open as to whether and how sampling assumptions are updated as new data arrives, it is
clear that people do pay attention to the nature of the data when determining how that
data was generated.

Prominent models of inductive argument strength, such as the similarity coverage
model of Osherson et al. (1990), and the featural similarity model of Sloman (1993)
suggest that argument strength is based on the similarity between premise and conclusion,
as first observed by Rips (1975). However, these models offer no explicit mechanism to

capture sampling assumptions. Each model “hard-wires” a particular assumption instead.

In contrast, as we have shown, a Bayesian model along the lines we have illustrated can

accommodate the roles of both premise-conclusion similarity and sampling assumptions.

How might the relevance framework for inductive reasoning (Wilson & Sperber, 2004)
accommodate our finding that premise sampling assumptions affect argument strength?
Relevance theory claims that an input is worth picking out from the mass of competing
stimuli when it is more relevant, and that an input is more relevant if it produces a
larger cognitive effect or requires less effort to process. The addition of a premise that
highlights a shared property should raise the relevance of that property when determining
the appropriate basis for induction, by decreasing the effort required to call the property
to mind. But that should be so in each of our experimental conditions, because identical
premises were used in the trials of interest. So that leaves us to posit a difference in
cognitive effect to explain a difference in relevance between conditions.

This is where the Bayesian theory of category-based induction comes in. The theory
describes how beliefs are revised in response to evidence in terms of the redistribution
of probability mass. Such redistribution, we argue, is an excellent candidate measure
for cognitive effect. Under this view, the mathematics of Bayes’ rule predicts that a
strong sampling assumption will always lead to a greater cognitive effect than would
a weak sampling assumption because it leads to belief revision due to differences in
the likelihood of observing certain data, and not simply due to falsification alone.’
Relevance theory holds that comparing stimuli on the basis of relevance is a crucial
part of human reasoning. The Bayesian theory of category-based induction provides
a computational basis for making such comparisons in a way that takes two critical
factors — premise sampling assumptions and category similarity — into account. As such,
the theory represents an important component that can be integrated into the relevance
framework. Likewise, relevance theory complements Bayesian theory insofar as it can
make qualitative predictions regarding processing effort. Any algorithmic account of
category-based induction should take these predictions into account, as well as relevant
empirical findings (e.g. Coley & Vasilyeva, 2010; Feeney, Coley, & Crisp, 2010; Feeney
& Heit, 2011).

3 An important implication of this assumption is that equating cognitive effect directly with change in
argument strength is potentially flawed, since the two forms of belief revision can have opposing effects.
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In general, we found that people in our experiment quite naturally assumed that
premises were selected sensibly or drawn from the category — the difficulty came in
trying to persuade them that they were truly random, as in the BOTH RANDOM condition.
This observation, in combination with the fact that the premise non-monotonicity found
in the BOTH RELEVANT condition corresponds to the standard effect (Medin et al.,
2003), suggests that people have an automatic bias to believe that premises are selected
sensibly: if not by a helpful teacher, at least in a way consistent with strong sampling
(i.e., selected from the category). A biased presumption of relevance is an outcome in
keeping with a central claim of relevance theory that people act to maximise relevance
when selecting inputs to process (Wilson & Sperber, 2004). This is sensible in the context
of category-based induction given that this is how arguments are constructed and used in
the real world, but it does mean that we cannot, as researchers, assume that people reason
as if we are generating examples randomly (even when we are).

It should be noted that our model incorporates strong sampling, which in the context
of category-based induction implies that a category exhibiting the property in question is
as likely as any other to be chosen. Seeking to persuade or dissuade another is typically
a matter of picking a relevant example of a concept, not a random one. Yet, when a
property defines a small or coherent category such as “species of bear” or “black and
white striped animals” then there is likely to be little variation in relevance across the
category members, and a strong sampling assumption may be appropriate. A pedagogical
assumption, in contrast, which gives greater weight to examples that better characterise
a property, may be more appropriate for larger, less coherent categories, where there
is greater variation in relevance across category members.® Shafto et al. (2014) found
evidence to suggest that pedagogical sampling compared to strong sampling lead to
tighter generalizations on the part of the learner, albeit with simple perceptual stimuli.
It is plausible that our BOTH RELEVANT cover story acted to tighten generalizations
over and above the predictions of strong sampling. Such a tightening may have acted to
increase levels of premise non-monotonicity in the BOTH RELEVANT condition. Further
work is needed to determine whether premise non-monotonicity can be observed with
a cover story suggestive of a strong sampling assumption alone, in line with our model
simulations. Regardless, the likelihood function in the Bayesian model may be adapted
to capture either strong or pedagogical sampling (Shafto et al., 2014).

There is substantial evidence to suggest that when attempting to learn, generalize
and draw conclusions from data, people are sensitive to the process by which data is
generated. This sensitivity to sampling has been previously shown in simple generalization
problems (Navarro et al., 2012; Tenenbaum & Griffiths, 2001a), in early word learning
(Xu & Tenenbaum, 2007a), and even in infants (Gweon et al., 2010). Other work has
demonstrated that people are sensitive to more complicated sampling schemes (Shafto et

®Pedagogical sampling (Shafto et al., 2014) may be viewed as a partial instantiation of the commu-
nicative principle of relevance (Wilson & Sperber, 2004), insofar as it can make predictions about belief
revision in an explicitly communicative context.
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al., 2014). Our work extends this sensitivity to category-based induction tasks, adding
an important clarification to relevance theoretic accounts of a phenomena attributed
to relationships amongst premise items. In a world of exclusively weak sampling
assumptions, where evidence supports falsification only, the inferential leap receives no
boost from premise relevance: the relevant becomes irrelevant.

5.6 APPENDIX A

In order to generate model predictions (using Equations 5.1-6.4 described in the main
paper) it is necessary to specify an hypothesis space A and a prior distribution, P(#).
To do so, we restrict the category labels under consideration to the fourteen experimental
stimuli used in both experimental conditions. This is not to say that the experimental
participants were aware in advance of the nature and extent of the stimuli used, nor
restricted their considerations in this manner. We made this restriction to render analysis
tractable, with the view that the predictions remain valid in a qualitative sense, despite
this truncation. The fact that our experimental results match our predictions in qualitative
terms lends support to this view. Given the fourteen category labels, our hypothesis space
#H consists of 2'* hypotheses, each corresponding to the proposition that a unique cluster
of categories share a given property.

Having established our hypothesis space #, we need to separately derive a plausible
prior distribution, P(h), defined over all h € H. We seek a prior that is independent of
any particular property or this specific task, to avoid fitting our predictions too tightly to
the properties used in our experimental trials. That is, P(h) represents the probability that
a blank (unseen) property is shared by those items that belong to a particular category .
In keeping with prominent models of category-based induction (Osherson et al., 1990;
Sloman, 1993), we assume that generalizing a property from one item to another involves
an assessment of their similarity. Intuitively, since hypotheses in our model correspond
to clusters of items, we seek to establish a weighting for each cluster that reflects its
coherence. Prior probabilities will be derived from these clusters, with higher prior
probabilities assigned to more coherent clusters.

To establish clusters and associated weights we apply the additive clustering (AD-
CLUS) model (M. D. Lee, 2002; Navarro & Griffiths, 2008; Shepard & Arabie, 1979)
to similarity data gathered from a separate experiment, described in more detail below.
On the basis of observed similarity data, ADCLUS identifies structure in the domain
free from the undesirable restriction that such structure should take a strictly hierarchical
form. The model defines the similarity of any two objects as the sum of the weights
across all clusters containing both objects. It attempts to find a set of clusters and weights
maximising the fit between empirical similarity data and the theoretically reconstructed
measures. Finding an optimal fit is an under-constrained and computationally expensive
exercise, hence the model implementation seeks to find a good and parsimonious fit.
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Starting with an initial configuration of clusters and weights, a gradient descent algorithm
is employed to find a suitable local optimum. On each iteration of the gradient descent
process, clusters with non-appreciable weights may be discarded.

In order to provide empirical interstimulus similarities as input to the ADCLUS model,
a separate experiment was conducted to gather similarity ratings via a triad task for the
fourteen animal stimuli common to all conditions of our experiment. 63 adults were
recruited via Amazon Mechanical Turk, and were each paid $0.60 (USD) for the 5-10
minutes participation. 5 were excluded due to browser incompatibility, and the remaining
58 were aged 19 to 75 years (median age 31, 41% female). 50 participants were in the
United States, with 8 located elsewhere. For each triad presented, people were asked
to pick which animal was least similar to the others. Each person rated 60 randomly
selected triads. Since there were a total of 364 possible triads, this meant that each triad
was rated by 9-10 participants on average. The pairwise interstimulus similarity for two
stimuli @ and b was calculated as the proportion of all triad ratings for a, b, and some
other stimulus ¢, where ¢ was rated as being the least similar.

The final stage in our model implementation involves the assignment of prior
probabilities based on the clusters and weights identified by ADCLUS. Let H¢ denote
those hypotheses (clusters) identified by the ADCLUS process, and wy, denote the weight
associated with hypothesis & € Hc. We form an initial estimate of the prior distribution
directly from these outputs:

Py(h) o { wn ifhE He (5.6)

0 otherwise

This initial estimate is not quite right, however. The ADCLUS model does not deal
meaningfully with clusters corresponding to a single category. Yet intuitively, in the
context of our experiment, properties that pertain to a single category (TIGER, for
example) are quite plausible. Therefore we need to combine the prior derived from
the cluster weights with one that assigns non-zero probability to the singleton hypotheses
(the set of which we denote ). For the latter, we use a size-based prior:

L ifh H
Ry { B THEHDI (5.7)

0 otherwise

Lastly, we combine these two prior distributions to form the prior used to generate our
model predictions in such a way that the probabilities for singleton hypotheses calculated
in Equation 5.7 are preserved:

Ps(h) if h e Hs
P(h) =4 Py(h)Lycse (W)  ifhe H (5.8)

0 otherwise



As the reader will note, our method for defining the hypothesis space and for deriving prior
probabilities affords a certain latitude. Using the ADCLUS model, the precise clusters
and associated weights identified depend on the values chosen to seed the optimization
process. Whilst we retain the seeding heuristic of Shepard and Arabie (1979), we also
experimented with other heuristics. We found that although such alternatives lead to
different numerical predictions, the important qualitative effect was robust: greater levels
of premise non-monotonicty were predicted under a strong sampling assumption than
under a weak sampling assumption for the Target (but not the Control) arguments.
Similarly, alternative methods may be employed for assigning probabilities to singleton
hypothesis, but once again, the qualitative predictions appear robust in the face of such
changes.

5.7 APPENDIX B

As discussed in the main text, differences in mean change in argument strength across
conditions indicated that our experimental manipulation had some effect. To investigate
the factors driving the effect we compared a number of plausible models to determine
which might best account for our experimental results. The models considered were
based on the change in argument strength predicted by our Bayesian model of category-
based induction, derived from empirical similarity ratings. Under a strong sampling
assumption, our model predicts non-monotonic responding for both Target trials; under a
weak sampling assumption, monotonic responding is predicted.

Furthermore, the fitted values of 6 derived from the mixed sampling model suggest
an ordering in terms of mean response change across conditions. Thus, consistent with
the suggested orderings, three plausible models concerning the nature of the effect were
compared, namely: that the effect was driven by the filler items only (FILLERS ONLY),
that it was driven by the cover story only (STORY ONLY), or that it was driven by both
of these factors (BOTH). The order restrictions for each model are shown in Table 5.5.
A fourth unrestricted model was also considered, namely that results were driven by a
random effect (RANDOM EFFECT).

For each of the four models, we calculated the Bayes factor representing the relative
likelihood of the observed changes in argument strength under the model against the
“no effect” model (NO EFFECT). To do so, we employed a Markov chain Monte Carlo
(MCMC) procedure known as the product space method (Lodewyckx et al., 2011). The
technique supports the comparison of two models (M, and M, for example) by building
a hierarchical “supermodel” combining the models via a random variable (M, say) that
acts as a model index. The Bayes factor for the relative likelihood of M| against M
becomes the posterior odds ratio (M : M) for the two models, divided by the prior odds
ratio. Theoretically, the prior model probabilities may be chosen with freedom, although
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yi ~ Normal ()7,-, (52)
@ $i = B4 BaXii+ BsXoi + PaXsi
2

~ Scaled Inverse x*(1,%3)

Bi ~ Normal(Bo,t})

X; @ B = 8

Bs = di+6

@ Bs = 01 +62+0;
i participants

Figure 5.4: A graphical model supporting comparison of condition means. For each of

the five models considered, 3; represents the condition mean of the reference condition
BOTH RELEVANT. [, B3, and P4, represent the difference between the mean of the
reference condition and the mean of the RELEVANT FILLERS, RANDOM FILLERS, and
BOTH RANDOM conditions, respectively. The models differ only in the definition of 1,
82, and 83.

technical considerations require careful selection if reliable MCMC estimates are to be
obtained. Finally, the prior probabilities for each model may be estimated as follows:

Number of posterior samples where M = k

P(My|Data) = (5.9)

Total number of posterior samples

from which the Bayes factor easily follows.
Figure 5.4 shows the graphical model capturing the common elements for each of the
models tested. The vector quantity

Xi = (X1:, X2i, X3:)
represents a dummy coding of condition for each participant. The vector quantity

B = (B1.B2.B3.B4)

captures the relationship between the means uy, up, u3, and y4 of the BOTH RELEVANT,
RELEVANT FILLERS, RANDOM FILLERS, and BOTH RANDOM conditions, respectively;
that is,

Bi =, Po=p2— 1, B3 =3 — 1, and Py = pu — 1.
The 9; parameters represent the difference between adjacent condition means, and are each
sampled from a normal distribution with mean O and variance 1:%. The range restrictions
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Parameter range

Model Order restrictions o o 33
NO EFFECT Ul = M) = U3 = U4 0 0 0
FILLERS ONLY Uy =y < 3 =y 0 (0,0) 0
STORY ONLY Uy < pp = w3 < Uy (0,0) 0 (0,0)
BOTH pr < < p3 < s (0,00) (0,00) (0,00)
RANDOMEFFECT i £ s £ (—o00)  (—ooom)  (—om,c0)

Table 5.5: The range restriction imposed on the Normal (0, ‘I:(z)) distribution from which
the §; parameters are sampled for each model. A value of 0 indicates that the respective
parameter is always O.

on the values sampled differ across the five models, as shown in Table 5.5. The mean of

the reference condition has a normal prior distribution with mean 8¢, and variance 1:%.

The prior for the error variance (6?) is a scaled inverse x> distribution, with 1 degree of
freedom and scaling parameter K% To ensure that these prior distributions do not favour
any one particular model, and that the posterior is effectively independent of the prior,
the values for B, ’cg, and Kg were derived from the data using the procedure outlined in
Klugkist, Laudy, and Hoijtink (2005, p. 482).
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WHERE THE TRUTH LIES

Efficient communication leaves gaps between message and meaning. Inter-
locutors, by reasoning about how each other reasons, can help to fill these
gaps. To the extent that such meta-inference is not calibrated, communication
is impaired, raising the possibility of manipulation for deceptive ends. We
examined how people reason in such a situation by having people act as the
perpetrator or target of deception across two related experiments. Importantly,
the nature of the task meant that outright lying was impossible. As a result,
deception required either concealing information or supplying technically
correct but misleading information. We find evidence for two distinct patterns
of behaviour. One group of people appear to make assumptions about
communicative intent based on context and message content. Senders in
this group were more likely to mislead, and receivers were more effectively
misled. A second group of people appeared to adopt a more defensive stance
displaying the same cautious approach in all situations. We explain this
behaviour using a computational level account of the kinds of inferences
required by both receiver and sender. These distinct patterns arise from
different assumptions about the generative process behind communication.

6.1 INTRODUCTION

Inference on the basis of real-world communication is a complex and under-constrained
problem. Messages (not unlike flat-packed furniture) rarely come complete with every-
thing necessary to assemble what was intended. Over and above decoding the message on
syntactic and semantic grounds, the receiver must also fill in gaps based on her existing
knowledge and her inductive biases. In so doing, she may make assumptions about the
way that the sender chooses what to say on the basis of what he means to convey (Grice,
1989). Likewise, a sender who seeks to convey a given meaning may make his own
assumptions about the receiver and how she will decode his meaning from the contents of
his message. Critically, both sender and receiver may recognise that for each assumption
they themselves make, their interlocutor may assume that they make it. This pattern of
reciprocal and potentially recursive “meta-inference” may be leveraged by both parties.
This can enhance their ability to communicate accurately yet efficiently and result in
stronger conclusions and more decisive action.
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However, meta-inferential reasoning presents challenges of its own. Meta-inference,
like inference in general, is under-determined: as a result, successful inference relies
on making assumptions that are appropriate to the problem space. Without adequate
mechanisms to ensure that the assumptions of senders and receivers are reciprocally
calibrated, communication can be significantly impaired. Communicative conventions
which rest on the presumption that communication is generally truthful, cooperative and
goal-directed offer a basis for calibrated meta-inference.

At the same time, such conventions raise the possibility of manipulation for deceptive
ends. Once we accept that cooperative principles may not always hold, communicative
meta-inference becomes a vital prerequisite. Without it, people who try to lie will fail to
do so successfully and people who are lied to will be consistently taken in. The spectre of
deception thus both necessitates and complicates meta-inference. The inferential problem
is especially difficult because skilful deceivers may strive to avoid detection by never
lying outright. This kind of deception, known as paltering (Schauer & Zeckhauser, 2009),
occurs when the communicator takes advantage of what they know about the listener’s
mental state to provide information that is not strictly false but will cause the listener to
draw the wrong conclusion.

How do people reason in contexts where the goals of sender and receiver are not
necessarily aligned? In the present study, we investigate this issue in a setting where
deception is warranted but outright lying does not occur. Using behavioural data from
two related experiments, one sender focused and one receiver focused, we examine how
meta-inference (and ultimately inference) is affected when cooperative norms may no
longer apply. We then rely on a model-based analysis to address a number of further
questions. First, intuitively, we expect receivers to reason from evidence (messages)
differently based on the perceived intent of the sender: why should this be the case when
the veracity of the evidence is beyond question? Second, do receivers use cues from the
message content itself in order to gauge the sender’s intent? And finally, how do these
factors affect the sender when deciding whether to mislead or conceal information?

Our approach here complements descriptive accounts of pragmatic reasoning (Grice,
1989) and verbal deception (e.g., Dynel, 2011), which yield valuable insight into the
measures and counter-measures that senders and receivers employ. Our contribution
lies in providing a computational account of how different strategies may be weighed
in the balance and how precisely such strategies give rise to different behaviours and
inferences. By casting people’s beliefs about the conventions that govern communication
as sampling assumptions, and formalising message production as the computational
inverse of comprehension, we can examine the trade-offs involved with greater precision.
We demonstrate that a form of meta-inferential signalling affects the interplay between
meta-inference and inference, and our results highlight the added complexity of meta-
inference when the possibility of deception arises.
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Before presenting our experimental work, we characterise the meta-inferential chal-
lenge that deception without lying represents and provide an overview of the theoretical
basis for our analysis.

THE LIAR’S TOOLBOX: A META-INFERENTIAL CHALLENGE
Imagine the following scenario:

You are a graduate student, attending an academic conference for the first time.
Nervous about your presentation the next morning, you have some wine at the
conference dinner to help you relax. One thing leads to another and after a night
of heavy drinking, you oversleep and miss your talk. Travelling home from the
conference, you meet a colleague at the airport. She asks you how your talk went.

The colleague is a potential future employer, so you are keen not to look foolish.

Assuming that you’d prefer not to reveal what really happened, how can you conceal the
truth from her? There are three main strategies you might consider, each corresponding
to different violations of the Gricean maxims:

OUTRIGHT LYING: One possibility is to proffer a blatant falsehood: “My talk went
really well! I was touched by the standing ovation.” By communicating facts which
the sender knows false, outright lying represents a violation of the fundamental
norm of communication. But as long this violation goes undetected, the receiver
may leverage the assumption of cooperation implicit in the context and draw the
desired incorrect conclusion. That said, lying is often fraught with difficulty. The
liar may be uncertain about what the receiver already knows and it may be easier
for the receiver to detect if new facts come to light. Outright lying is thus not
necessarily the safest option, even for a completely amoral and self-interested
communicator.

BEING UNINFORMATIVE: To avoid outright lying, it may be preferable to say some-
thing irrelevant or otherwise uninformative: “The conference dinner was fun.”
Where no new information is disclosed the receiver’s inference is seemingly
restricted to her prior beliefs. But overtly flouting maxims of relevance and quantity
in this way is likely to raise suspicion. Indeed, the blatant violation of Gricean
norms is often deliberately used as a communicative strategy of its own.

MISLEADING: A third option is paltering: providing truthful but information with a
misleading implication in mind: “I was nervous beforehand, but the session
was over before I knew it and there weren’t any questions I couldn’t handle.”
There are considerable advantages to this strategy. Outright lies often bring harsh
consequences when detected. Misleading implication which, by defintion, is not
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part of what is explicitly conveyed, offers a sense of plausible deniability (J. J. Lee &
Pinker, 2010; Pinker, Nowak, & Lee, 2008) and diminished repercussions (Schauer
& Zeckhauser, 2009). Perhaps because of this, people may be less likely to view
this form of deception as equivalent to lying (e.g., Coleman & Kay, 1981; Hardin,
2010), although this perception may change when one is on the receiving end
(Rogers, Zeckhauser, Gino, Norton, & Schweitzer, 2017). Importantly, because
miselading involves being genuinely informative, norms of relevance and quantity
are not overtly violated. This acts to limit suspicion and reduce the risk of detection
while at the same time leveraging the receiver’s presumption of cooperation. Thus,
by selectively sampling facts in the right way, the sender may lead the receiver to a
false conclusion as a result. Of course, this strategy carries risks of its own. For one
thing, it requires the sender to accurately judge the conclusions that the receiver
will draw. These inferences are likely to be determined in part by the receiver’s
assumptions and level of prior suspicion. Allowing for individual variation on
the part of the receiver makes matters more complex. Misleading thus becomes a
delicate balancing act: enough information must be disclosed to avoid or reduce
suspicion, but not enough that the chance of inferring the truth increases.

What kind of option do people tend to choose in this kind of situation? In a preliminary
study, we asked 96 first year psychology students (87 women) at the University of Leuven
to imagine seven different scenarios like the one above. Participants selected a response
from seven options consisting of two lies, two uninformative statements, two misleading
statements, and the truth. Figure 6.1 presents their preferences, collapsed across scenarios
and equivalent response options.

mislead-
uninformative 1
lie+

truth-

50 100 150 200 250
number of responses

=T

Figure 6.1: When choosing how to communicate in a variety of different scenarios with a clear
motivation to deceive, people showed a strong preference to mislead rather than be uninformative.
Telling an outright lie was the least preferred option.

Two important conclusions emerge from Figure 6.1. Firstly, people were uncomfortable
with deception: 37% of responses involved telling the full truth and only 10% were
outright lies: a surprising number perhaps given that each scenario provided a clear
motivation to deceive. Secondly, among those who chose not to tell the truth, people
showed a clear preference for misleading over lying or being uninformative (37%, 10%



6.1 INTRODUCTION |

and 15% respectively). This finding is consistent with other work on the topic (Montague,
Navarro, Perfors, Warner, & Shafto, 2011; Rogers et al., 2017).

Why do people seem to prefer to actively mislead rather than be entirely uninformative?
At first glance, it seems rational to be as uninformative as possible, because you are
providing no information that the receiver can use to revise her beliefs at all. Effective
misleading, on the other hand, involves salting your statements with a grain of truth. It
thus runs a greater risk of the receiver inferring the real truth.

An important motivation for choosing a misleading utterance over a strictly uninforma-
tive one is because the latter is suspicious. Consider the likely response of choosing to be
uninformative in our earlier scenario:

Colleague: How did your talk go?

You: The conference dinner was fun.

Colleague: Talk didn’t go so well?

You: The main conference room comfortably seats 400 people.
Colleague: That bad, huh? What happened?

Sperber et al. (2010) propose that people have a toolbox of cognitive mechanisms for
epistemic vigilance that reduces the risk of being deceived. The ability to track cooperation
in others forms an integral part of such a defence. Whether through dedicated cognitive
mechanisms or domain general capacities, obvious departures from communicative norms
can be reliably detected by children as young as 3—6 years old (e.g., Eskritt, Whalen,
& Lee, 2008; Okanda, Asada, Moriguchi, & Itakura, 2015; Skarakis-Doyle, Izaryk,
Campbell, & Terry, 2014). Responding in an uninformative way violates the principle of
cooperation so blatantly that the deception is revealed.

A deceiver, sensitive to the epistemic vigilance of his counterpart may prefer instead to
provide truthful but misleading utterances, a technique which may reduce or bypass such
scrutiny altogether (Reboul, 2017). However, in so doing, he faces a delicate trade-off.
Chosen well, such utterances may not only allay the receiver’s suspicion, but by virtue
of the inferential boost accorded to cooperative speakers, the receiver may be led to a
false conclusion, terminating the search for further information (Bonawitz et al., 2011;
Montague et al., 2011). Yet if suspicion is already raised, the receiver is unlikely to fall
for the false implicature and may use the information to get closer to the truth (Dynel,
2011).

This analysis points to two opposite forces, balanced in the selection of one strategy
over another. On one hand, the knowledge that the receiver may engage in inference
about the helpfulness of the statement may lead the sender to opt for a misleading yet
informative statement. On the other hand, if the sender considers that the receiver will be
suspicious a priori, he may resort to being uninformative. In the following section we
present a computational account of meta-inference which has the potential to capture this
sort of reasoning.

137



138

| WHERE THE TRUTH LIES

SAMPLING ASSUMPTIONS AS META-INFERENCE

Consider a communication scenario where one person (the receiver) seeks to update her
beliefs on the basis of information disclosed by another (the sender). The sender, for
his part, selects information designed (according to his intention) to help or hinder the
receiver in her efforts. We may characterise the reasoning of two such communicating
parties as a form of Bayesian inference (following, for example, N. D. Goodman & Frank,
2016; Shafto et al., 2014).

Turning first to the problem faced by the receiver: how should she update her beliefs
based on the evidence provided by the sender? Let & denote one possible hypothesis
that the receiver is currently considering, and P(h) denote her belief in the hypothesis
prior to receiving information from the sender. Then, having observed new information x
(revealed by the sender) the receiver updates her belief according to:

PRECEIVER(h |X) o< PSENDER (X ’ h)P(h), (6.1)

where Psgnper (X]72) represents the assumption the receiver makes about the sender’s
sampling strategy (the way he chooses information to convey). The sender, in turn, is
assumed to select information according to a sampling strategy targeted to the receiver:

PsenpEr (x | h) o< (PRECEIVER (h ’x))oc (6.2)

where Precerver (/2] x) represents an assumption the sender makes about the belief update
rule adopted by the receiver.

The goals of the sender are captured by the parameter a. A positive value for o
corresponds to a sender who wishes to reveal the truth (that is, to increase the receiver’s
posterior belief in the correct hypothesis 4); a negative value for o implies that the
sender wishes to conceal the truth (by reducing the receiver’s posterior belief). The
magnitude of o indicates the degree to which the sender selects optimally: the larger the
magnitude, the closer to optimal his selection becomes, the smaller the magnitude the
more his choice resembles random selection. There are other ways to capture conflicting
goals, like assigning separate utility functions for the sender and receiver with regard to
truth-predicated action, but we chose this for its relative simplicity.

Using the model to describe a particular communication scenario requires Equations 6.1
and 6.2 to be considered simultaneously. Describing how the receiver updates her beliefs
amounts to specifying the sampling strategy for the hypothetical sender that she thinks
she is facing. Likewise, describing the sender’s sampling strategy requires stating an
update rule for the hypothetical receiver that he considers. This may be a deeply recursive
process, depending on the level of “he thinks that she thinks that he thinks...” reasoning
that occurs. However deep the reasoning, we end up with a series of sender and receiver
models nested under one another, starting at the top level with the model of the sender
and receiver whose behaviour we wish to capture, progressing to the model the sender
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has of the receiver, and that the receiver has of the sender, and so on. Past empirical work
(e.g., Colman, 2003; Franke & Degen, 2016; Stiller et al., 2015; Vogel et al., 2013) has
suggested that recursive reasoning in this fashion may be limited in depth. We can avoid
infinite nesting by specifying a sender with o = 0. In this case there is no need for further
nesting, since such a sender selects information at random without regard for the receiver.
Likewise, any alternative update rule for the receiver that is effectively independent of
the sender will also suffice as a ground term.

In any communication scenario there is a potential mismatch in the meta-inferential
assumptions of the two parties. In pedagogical situations, where both parties have
incentive to improve the effectiveness and efficiency of communication, such asymmetries
may be of little consequence; similar qualitative patterns of inference emerge whether
all assumptions are reciprocated or not. But when the goals of sender and receiver are
at odds, qualitatively different patterns of reasoning may emerge depending on who is
aware of the mismatch, who is aware of who is aware, and so on. By structuring a model
as a series of nested sub-models, we can capture differing degrees of reciprocal awareness
between sender and receiver regarding the sender’s intent.

In this paper we use this computational framework to explain people’s behaviour a
pair of related experiments involving a simple “deception game” (see Figure 6.2). In the
first (Experiment 1), participants took the role of the receiver and were asked to infer
the truth on the basis of potentially deceptive evidence. In the second (Experiment 2),
people acted as the sender and were asked to provide evidence relevant to the hypotheses
in question while at the same time preventing the truth from being discovered. We find
that people’s inferences and choices in this task are sensitive to the level of suspicion
of the receiver. Moreover, qualitative individual differences in how people reason in the
deception game correspond to different assumptions about intent and the data sampling
process, as described by our computational framework.

6.2 EXPERIMENT 1: REASONING FROM DECEPTIVE COMMUNICATIONS (RECEIVER)
METHOD

Participants

We recruited 99 adults via Amazon Mechanical Turk, who were each paid $2.00USD
for 5-10 minutes participation. One participant was excluded for browser incompatibility.
The remaining 98 participants were 59% male and aged 19-64 (median age 29).

Procedure

A cover story informed people that they were taking part in an experiment simulating
an online game based on data provided by past players of varying skill levels. People
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(GENUINE)

(3 2

(a) Four alternative “maps” representing the common hypothesis space.

UNINFORMATIVE MISLEADING

HELPFUL

(b) Different patterns of evidence and the inferences they may licence.

Figure 6.2: The deception game. (a) People taking the role of the receiver (Experiment
1) and the sender (Experiment 2) see the same four “maps” in corresponding trials; the
shaded area marks the region where treasure is buried. Only one of the four maps is
genuine. (b) As sender, people seek to conceal the identity of the genuine map, but are
nonetheless required to reveal some locations where treasure is actually buried (blue dots).
They are given three options to choose from: representing Misleading, Uninformative, or
Helpful evidence. As receiver, people attempt to infer the identity of the genuine map on
the basis of the evidence provided, which varies in its potential to drive inference. The
brightness of the shaded areas has been varied here to illustrate how plausible a trusting
receiver might consider each map after viewing the evidence (brighter maps represent
more plausible hypotheses and red dots indicate disconfirmatory evidence).

were told that they would take the role of an “explorer” (the receiver in our terminology)
who must decide on a turn by turn basis which of four treasure maps is genuine based on
evidence provided by a past player taking the turn of a “pirate” (the sender). The evidence
consisted of points corresponding to a subset of locations drawn from the genuine map.
Each point corresponded to a location where treasure was actually buried, but a sender
could provide misleading or uninformative evidence through a strategic selection of
points.

People’s beliefs about the sender’s intent in supplying the evidence was the basis of a
within subjects manipulation. In the TEAMMATE condition, participants (as receivers)
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Figure 6.3: The experimental stimuli. Each trial in both experiments involved one of six
sets of stimuli (rows), comprised of four maps (yellow regions) and three sets of evidence
(blue dots). The task for the sender was to select one of the three sets of evidence to give
to the receiver, while the task for the receiver was to select one of the four maps on the
basis of the evidence they were given. The Uninformative evidence is consistent with
all four corresponding maps. The Helpful evidence is consistent with only one map (the
Truth). The Misleading evidence is designed to encourage a false conclusion (that the
Lure map is genuine), but is also consistent with the Truth. The informativeness of the
Misleading evidence was manipulated by controlling the number of Decoy maps with
which it was consistent (row labels indicate the percentage of hypotheses (maps) ruled
out by the Misleading evidence).
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were told that the sender’s goal had been to help a teammate identify the genuine map. In
the OPPONENT condition the receivers were told that the goal of the speaker had been to
keep its identity concealed.! Regardless of condition, participants knew that the sender
could not provide false information. Thus, evidence could be relied upon to rule out a
given map if any of the locations indicated did not overlap the shaded region shown on
the map.

After the training session, people were shown a block of trials for the TEAMMATE
condition and a block of trials for the OPPONENT condition. Within each block,
participants saw each of the six map sets on three separate occasions: once in conjunction
with the Uninformative evidence, once with Misleading, and once Helpful (see Figure 6.3).
Thus each block consisted of 18 trials in all. The on-screen order of maps displayed in
each trial, the trial order within each block, and the block order itself were all randomised.
On each trial, people were required to consider the four maps and the evidence provided,
and, taking into account whether the sender was a TEAMMATE or an OPPONENT, indicate
which of the four maps they believed was most likely to be genuine.

Materials

The full set of experimental stimuli is shown in Figure 6.3. Each set consisted of four maps
and three pieces of associated evidence. The quality of the evidence was systematically
varied from trial to trial. Helpful evidence constituted a pattern of locations that bore
a close resemblance to the genuine map and ruled out three of the four alternatives.
Uninformative evidence, in contrast, bore little similarity to any of the four maps, and
could not be used to rule any out. Misleading evidence was designed to bear a strong
resemblance to one of the three false maps. In addition, the informativeness of the
Misleading evidence varied across the six sets of stimuli, ruling out either none, one or
two of the Decoy maps, but never the genuine map (the Truth) or the map that it was
designed to resemble (the Lure).

BASIC RESULTS

Our first question of interest is whether people take the intention of the sender into
account when interpreting the evidence offered. Figure 6.4, which plots the responses of
participants based on what they were told about the sender, suggests that they do indeed.
To examine the strength of evidence for this finding we conducted a Bayesian multinomial
logistic regression, comparing two mixed-effects models. In the EVIDENCE ONLY model,
responses were predicted on the basis of the type of evidence presented in each trial. In
the EVIDENCE + SUSPICION model, predictions also included an indicator of suspicion

I'To rule out consideration for player reputation, and to allow us to present each set of maps more than
once, the instructions made it clear that people faced a different player on each trial. To reinforce this, the
name and colour of the icon representing the pirate player was different for each trial.



6.2 EXPERIMENT 1: REASONING FROM DECEPTIVE COMMUNICATIONS (RECEI\/ER) \

Receiver choices in the deception game

TEAMMATE condition
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WI- S | [

OPPONENT condition
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W Truth
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Uninformative Misleading Helpful

Figure 6.4: Proportion of participants selecting each response in Experiment 1. People playing the role
of receiver were asked to identify which of four maps they believed to be genuine on the basis of the
evidence provided. On each trial, people chose between two incorrect Decoy items, one Lure (a subset
of the genuine map) and the Truth. In the TEAMMATE condition, people were told that the evidence had
been provided by a helpful teammate; in the OPPONENT condition they were told that it had come from an
opponent trying to conceal the truth. People correctly recognised that the Helpful evidence was consistent
only with the Truth, and responded accordingly. When the evidence was Misleading (consistent with both
the Lure and the Truth, but closest in size to the Lure) people were far more likely to choose the Lure in the
TEAMMATE condition where there was reason to trust the sender. Likewise, when faced with Uninformative
evidence (consistent with all four choices, but closest in size to the Lure in three out of six cases) people
also displayed a preference for the Lure in the TEAMMATE condition. Error bars show standard error, and
the proportion of responses favouring the Decoy items, is averaged over the two options.

(based on condition). The analyses revealed strong evidence (BFjo > 10) in favour of the
EVIDENCE + SUSPICION model over the EVIDENCE ONLY model, consistent with the
notion that people reason differently depending on the context of communication.> When
people thought the sender was trying to help them they reasoned beyond the immediate
evidence, drawing strong (but mistaken) conclusions as a consequence. But when they
thought the sender was trying to conceal the truth, people adopted a more conservative
approach, appearing to select an option at random from amongst those not directly ruled
out by the evidence.

As one might expect of meta-inferential reasoners, people interpreted the Misleading
evidence differently depending on what they had been told about the sender. In the
TEAMMATE condition, people interpreted it as strong evidence in favour of the deceptive

2Both models included a random intercept for each individual, and were fit using the brms package
(version 2.5.0) in R (version 3.4.3). Trials involving Helpful evidence were excluded because responses in
favour of the Truth were at ceiling in both conditions.
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Lure, while in the OPPONENT condition they were much more cautious. The effect
of suspicion in the face of Misleading evidence represents a five-fold reduction in
relative rates of choosing the Lure over the Truth (95% CI: 3.6 to 6.7).3 Yet even in
the TEAMMATE condition more than a quarter of responses to Misleading evidence were
in favour of items other than the Lure, raising the possibility that some people took
different views of the evidence than others. We return to this issue in our model-based
analyses.

A further curiosity is that people also interpreted Uninformative evidence differently,
depending on what they believed about the intention of the sender — this, despite the
fact that the data had no explicit evidentiary value. When Uninformative evidence was
provided, the Lure map was chosen with greater frequency in the TEAMMATE condition,
where cooperation was expected. While the impact of suspicion was reduced in this
instance (when compared with the case for Misleading evidence), the effect nonetheless
represents a three-fold reduction in relative rates of choosing the Lure over the Truth
(95% CI: 2.1 to 4.1). Given that the deceptive Lure was the smallest hypothesis in size
compatible with the Uninformative evidence in three out of six cases, and the smallest
in size compatible with the Misleading evidence in all cases (see Figure 6.3), a possible
role for hypothesis size in the decision process suggests itself. We consider the nature of
the meta-inferential assumptions that might account for this finding in our subsequent
model-based analyses.

6.3 EXPERIMENT 2: SENDING DECEPTIVE INFORMATION

Experiment 1 demonstrated that people do take the likely intent of the sender into account
when seeking to leverage the evidentiary value of information provided. Given that this
is the case, do people account for this tendency in others in their own meta-inferential
reasoning when they are acting as a sender? That is, do they seek to exploit the receiver’s
trust when they have it, and alter their strategy accordingly? In order to investigate these
issues we invited people to play the deception game as a sender who was motivated to
conceal the truth from their counterpart.

METHOD

Participants

We recruited 100 adults via Amazon Mechanical Turk, and paid them $1.25USD
for 10-15 minutes minutes participation. Two of these participants were excluded for
browser incompatibility. Data from a further 22 participants who failed to demonstrate

3This effect was quantified using our regression model extended to included an interaction between the
type of evidence presented and level of suspicion.



a sufficient understanding of the experiment were excluded from subsequent analyses.*

The remaining 76 participants were 46% female and aged 20-63 (median age 28.5).

Procedure

As in the first experiment, the cover story for the sender version informed people that
they were taking part in an experiment based on an online game and that they would take
the role of a pirate (the sender). On each trial, people were shown the genuine treasure
map and three false maps, and were asked to select evidence to reveal to the explorer (the
receiver).)

People’s sampling strategy (deciding what evidence to disclose) was manipulated
within subjects. In the CONTROL condition, the goal was to provide evidence that would
help the receiver to correctly identify the genuine map. In both the TEAMMATE and

OPPONENT conditions, the goal was to prevent the receiver from guessing correctly.

Participants were told that the receiver was expecting evidence from a teammate (in the

CONTROL and TEAMMATE conditions) or an opponent (in the OPPONENT condition).

Participants were restricted in their choice of evidence to one of three options, namely:
Helpful, Misleading or Uninformative evidence.

Experimental trials employed the same stimuli used in Experiment 1 (see Figure 6.3).

However, an additional four filler trials involved new stimuli, with evidence designed
to reduce tactical responding; that is, whilst a seemingly random pattern of dots was
characteristic of Uninformative evidence in the experimental trials, similar random
patterns in the filler trials could be used to rule out one or more maps. Additionally,
the least informative evidence in each of the filler trials was not a random pattern, but
a pattern bearing a resemblance to one of the four maps. These filler trials were not
analysed.

Participants undertook a training exercise similar to that used in the first experiment.

In the test phase, people saw each of the ten map sets (six experimental and four fillers)
three times (once per condition), making 30 trials in all. The on-screen order of maps, as
well as the order of evidence items was randomised on a trial by trial basis. Trial order

was also randomised, with trials from each of the three conditions randomly interleaved.

The participant’s goal in each trial (corresponding to the three conditions) was clearly
stated via on-screen instructions. On each trial people were required to choose evidence
from amongst the available options that best achieved the stated goal of the trial, taking
into account the four maps shown and the identity of the genuine map.

“Participants were excluded if they failed to select the Helpful evidence on at least 40% of the CONTROL
trials (where the goal was to help the other player), or if they chose the Helpful evidence in 40% or more
Low SUSPICION trials (where the goal was to hinder, and double bluffing was unreasonable).

3Once again, to avoid reputational concerns, people were told to assume that they were facing a different
explorer on each trial, one who had not played the game before, and was unaware of the pirate’s identity.
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BASIC RESULTS

Experiment 1 established support for an intuitively reasonable notion: people take the
sender’s likely intent into account when determining the evidentiary value of information
provided. The aim of the present experiment was to investigate whether people embody
this intuition when motivated to deceive. Figure 6.5 plots the proportion of people
choosing to provide the different types of evidence to a hypothetical receiver, as a function
of experimental condition. The figure suggests that, as expected, people select content to
convey according to their goal and the context in which the content will be interpreted.
A Bayesian multinomial logistic regression, comparing a model with condition as a
predictor to an intercept only model, revealed strong evidence in support of this finding
(BFo > 10°).% In the LOW SUSPICION condition, where the aim was to conceal the
truth from a player expecting help from a teammate, participants made liberal use of the
Misleading option. In contrast, when people faced an opponent in the HIGH SUSPICION
condition, they overwhelmingly preferred to reveal as little as possible, selecting the
Uninformative option in almost every case. Overall, the effect of suspicion on sender
participants represents a three-fold reduction in relative rates of actively misleading rather
than simply limiting disclosure (95% CI: 2.4 to 4.6).Unsurprisingly, in the CONTROL
condition where the goal was to help, people were able to identify the evidence that the
receiver would find most helpful, and almost always selected it.

Sender choices in the deception game

O Uninformative
0% - . . B Misleading
—— D_ Fumm W Helpful

CONTROL LOW SUSPICIONHIGH SUSPICION

Figure 6.5: Proportion of participants selecting each response in Experiment 2. When acting
as senders, people are only willing to provide the Misleading evidence when they believe the
receiver does not suspect deception (left panel); when suspicion is high (middle panel) people
overwhelmingly prefer the Uninformative alternative. In the control condition, people were asked
to choose the option that would most benefit the receiver, and they did so consistently (right
panel).

The pattern of behaviour across conditions — specifically, the change in the willingness
to mislead — 1is largely what one would expect if people were reasoning about the
inference of the receiver in a context sensitive manner. Despite this, the majority of

®Both models included a random intercept for each individual. CONTROL trials were excluded because
responses in favour of the Helpful evidence were at ceiling.
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Figure 6.6: Model Implementation. We use a 3 x 3 grid approximation of the original
stimuli to represent maps (hypothesis) and patterns of marked locations (evidence). A
cell in the coarse grid representation (bottom row) is “on” if cells in the corresponding
area of the original stimuli (top row) are “on”.

senders in the LOW SUSPICION condition preferred to be uninformative. This seems
contrary to the intuition that a meta-inferential reasoner expecting help should be reliably
misled by misleading evidence, and the truth better concealed as a result. To better
understand the assumptions that might drive a quantitative shift in sender preference, but
not a qualitative reversal, we turn now to our computational analysis of the deception

game.

6.4 MODELLING META-INFERENCE IN THE DECEPTION GAME

Our two experiments were designed to investigate how communicating reasoners might
take account of the inferences of their interlocutor in situations where a variety of
assumptions might reasonably hold. Taken together, the pattern of responses across
both experiments appear largely consistent with an intuitively reasonable approach to
meta-inferential reasoning. When receivers think that the sender can be trusted, they
leverage that assumption to reason beyond the data; if the sender cannot be trusted no
such leverage occurs. Senders, seemingly aware of this, are thus more willing to mislead
trusting receivers than they are suspicious receivers. But if the veracity of data is not
in question (because lying is not an option), then precisely what is it that mediates its
strength as evidence? What are receivers (and consequently senders) sensitive to? Using
the computational framework outlined at the start of the paper we can model various
assumptions that might underpin this sensitivity, and ask which of these best captures the
patterns of behaviour observed.
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Model
Condition Schema WEAK STRONG ONE STEP RECIPROCAL
(Receiver)
TEAMMATE (Recr) Weak Strong Help (Weak) Help (... (Weak))
OPPONENT  (Reco) Weak Strong Hinder (Weak) Hinder (...(Weak))
(Sender)

CONTROL  Help ({Recr)) Help (Weak) Help (Strong) Help (Help (Weak)) Help (...(Weak))
Low SusP.  Hinder ((Recr)) Hinder (Weak) Hinder (Strong) Hinder (Help (Weak)) Hinder (Help (... (Weak)))
HIGH SUSP. Hinder ((Reco)) Hinder (Weak) Hinder (Strong) Hinder (Hinder (Weak)) Hinder (. ..(Weak))

Table 6.1: Four alternative models of sender and receiver behaviour in the deception
game. Receivers are assumed to reason according to Equation 6.1 on the basis of the sampling
assumption defined, and to respond in proportion to their strength of belief in each hypothesis.
Senders are assumed to select evidence from amongst the options provided with probabilities
defined according to Equation 6.2. “Help ()” and “Hinder ()" denote opposite forms of intentional
sampling where the selection of data is biased according to the sender’s goal. “(...)” denotes
a recursive and reciprocal assumption. A “Weak” sampling assumption means that evidence is
used solely to disconfirm hypotheses, while a “Strong” assumption implies that data constitutes
stronger evidence for smaller hypotheses, in accordance with the size principle. The schema
column illustrates the common relationship amongst the sender and receiver assumptions within
each model. See main text for further details.

MODEL IMPLEMENTATION

To model the deception game in a tractable way we use a simplified 3 x 3 grid to represent
the experimental stimuli, as illustrated in Figure 6.6. Thus both the hypothesis space H
and the space X from which evidence is drawn, consist of the 2° = 512 possible patterns
of on/off grid cells. For any given trial, the hypothesis space is further restricted to one of
the four maps in question by means of a trial-specific prior that rules out the remaining
possibilities. No such restriction is placed on the evidence X, since people playing the
role of the receiver were not aware of any restrictions regarding the selection of evidence,
save for the fact that it was constrained to be truthful.

In the analyses that follows we consider the four models of deceptive communication
summarised in Table 6.1. Our goal is use the models to investigate which set of
assumptions best captures the behaviour observed across both experiments. Each model
is actually a family of nested sub-models corresponding to the five experimental
conditions (two receiver: TEAMMATE and OPPONENT, and three sender: CONTROL,
Low SusPICION and HIGH SUSPICION). The assumptions of the trusting and suspicious
receivers lie at the core of each model, so we turn to these first.

The first model we consider, the WEAK model, captures the notion that the receiver
(whether trusting or suspicious) makes no assumption about the relative likelihood of
an observation under each of the hypotheses in question. In terms of the computational



framework, we capture this with a weak sampling assumption which defines the
probability of an observation x in the event that hypothesis 4 holds, as

P(x) ifxeh

0 otherwise

P(x|h) = (6.3)

In other words, observations are used to rule out hypotheses that do not fit the evidence (i.e.
where x ¢ h), but the evidence is otherwise uninformative about the remaining hypotheses.

The fact that a receiver adopts such an assumption, however, does not necessarily imply
an absence of meta-inferential reasoning. A weak sampling assumption may capture
the responses of a cautious receiver who is simply unwilling to impute any particular
assumption on the part of the sender, perhaps in response to perceived variability in the
reasoning style of others. Instead she may choose to rely only on the fact that the data
itself was not false (consistent with the instructions given).

Yet in the context of the deception game, the receiver might reasonably justify a stronger
assumption that leverages a perceived dependency between the evidence observed and
the truth of the matter in question. The fact that only positive (and reliable) evidence may
be provided constrains the sender in his choice. And importantly, the less that a given
hypothesis entails (i.e. the fewer the observations compatible with it), the more the sender
is constrained. According to the STRONG model, the receiver takes account of this by
making a strong sampling assumption, where

L ifxen
Px|p)={¢ ™ "7 6.4)

0 otherwise

Once again, such a sampling assumption need not indicate a lack of meta-inference on the
part of the receiver. Rather, as long as the receiver is unwilling to assume that evidence
selection is biased one way or another, then this size principle (Tenenbaum & Griffiths,
2001a), which gives greater weight to smaller hypotheses, seems justified.

The next logical step in the progression of meta-inferential assumptions is for receivers
to assume that senders also engage in meta-inference. A receiver who reasons in this way
will expect the sender to bias selection in favour of evidence that is more informative
(in the TEAMMATE condition) or less informative (in the OPPONENT condition). A
single level of “the receiver thinks that the sender thinks...” reasoning may be modelled
straightforwardly in the computational framework by a sequential instantiation of
Equations 6.1 and 6.2. The receiver’s assumption about how the sender intentionally
biases the selection of evidence is captured by the o parameter: oo = 1 implies a bias in
favour of more informative evidence, while o = —1 implies the converse. For the receiver,
such an intentional sampling assumption either increases or decreases the evidentiary
weight that data would otherwise have under a more basic assumption, depending on the
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perceived intent of the sender.” This essentially asymmetric reasoning style, where the
receiver attempts to reason one step further than the sender, forms the basis of the ONE
STEP model.

The RECIPROCAL model, in contrast, describes the case where each reasoner credits
the other with taking meta-inferential reasoning to its logical extreme. That is, for
any assumption that the receiver makes about the sender, the sender reciprocates that
assumption by assuming that she makes it, and vice versa — here there is no imbalance
with regard to depth of reasoning. Notwithstanding the way that recursive and reciprocal
reasoning proceeds, computationally speaking, it can only be satisfied by finding a meta-
inferential equilibrium - a fixed point beyond which further recursive reasoning does not
change the outcome (Shafto et al., 2014).8

Turning to the models of sender behaviour (see Table 6.1), each model represents
an instance of Equation 6.2 that defines the probability with which the sender selects
evidence from amongst the options provided. The value of the parameter o is matched
to the stated aim of each condition: in the CONTROL condition, where the goal was to
help the receiver uncover the truth, we set oo = 1, while in the Low SUSPICION and
HIGH SUSPICION conditions, where the goal was to hinder, we set & = —1. In addition
to capturing the sender’s intent, a sender model must define the sender’s beliefs about the
receiver’s sampling assumption. For each of the models considered, the sender makes
the same assumption about the receiver as the model itself does.® Each sender model
thus proceeds straightforwardly from the corresponding receiver model. In the CONTROL
and LOw SUSPICION conditions, the sender is assumed to model the would-be receiver
in line with TEAMMATE model, while in the HIGH SUSPICION condition the sender is
assumed to target the OPPONENT receiver.

MODEL-BASED ANALYSES

We can now use the models we have defined to examine people’s reasoning within the
deception game. We are interested in whether people reasoned probabilistically about the
generative process underlying communication within the game, and how this changed
based on whether cooperation or competition was expected. Each model we have defined
represents a different trade-off between the generality of the underlying assumptions and

7In the computational framework, the evidentiary weight of data ultimately stems from either its power
to disconfirm hypothesis (weak sampling) or from the size principle (strong sampling). We use a weak
sampling assumption as the ground term in the ONE STEP model.

8 A single-state fixed point is not guaranteed — bi-stable equilibria may exist under reasonable
assumptions, for example. However, for each of the four models a single-state fixed point exists.

This need not be the case, we might wish to model a disconnect where the sender’s assumption about
the receiver does not match the model’s direct assumption about the receiver. However, we constrain the
models to be coherent in this way because it is both a theoretically reasonable and parsimonious starting
point.



the degree to which inference is driven by those assumptions. So a comparison between
model predictions and behavioural data allows us to assess how sensitive people were to
the relative likelihood of evidence under one hypothesis over another.

For the receiver models, we compared predictions with responses (aggregated across
all participants) to each of the 18 combinations of stimuli (six map sets and three types of
evidence). Model fit, as measured by Root Mean Squared Error (RMSE), was assessed
separately for each type of evidence as well as on an overall basis. Model predictions and
fits to the choices of our receiver participants are shown in Figure 6.7 for the TEAMMATE
condition and in Figure 6.8 for the OPPONENT condition. Because the Helpful evidence
is incompatible with all but one hypotheses in every case, the receiver models predict that
the receiver will identify the truth with complete certainty, fitting our behavioural data
almost perfectly. For this reason, we omit those predictions from our plots, but include
them in the calculation of overall fit.

In each of the models considered, the receiver makes a progressively stronger
assumption about how the sender chooses what to reveal. When the receiver trusts the

sender to cooperate, each additional assumption leads to progressively tighter conclusions.

This cumulative ratcheting effect can be seen in Figure 6.7. The figure shows that a
receiver who adopts a weak sampling assumption is not easily misled. But one who
believes that the sender is trying to help and that he reciprocates her assumptions, will
leap to the wrong conclusion. Less intuitively, perhaps, this ratcheting effect applies
even when the evidence is seemingly uninformative: information that would otherwise be
ambiguous can still tighten conclusions, by virtue of the size principle. Indeed, comparing
the predictions of the STRONG model to people’s choices in response to Uninformative
evidence suggests that the size principle was in effect.

This becomes important when considered from the perspective of the sender who
wishes to conceal the truth. The sender’s goal in this case (following directly from
Equation 6.2) is to do what he can to reduce the receiver’s belief in the true hypothesis
(at least in relative terms). Certainly a misleading message has the potential to achieve
this. But as we have seen, if the receiver’s inference is consistent with the size principle
then even a message that reveals no new information may act to reduce her belief in the
true hypotheses. Thus, when considering these alternatives, the sender may conclude
that the additional information disclosed by misleading yet informative evidence is not
sufficiently offset. Figure 6.9 (TEAMMATE condition) reveals that this is the case in the
deception game. The figure plots the accuracy with which receivers identify the genuine
map given the different types of evidence. It shows that, according to model predictions,
the Uninformative evidence is always most effective at keeping the truth from the receiver
(compromising accurate identification as a result). In the case of the WEAK model, this
follows directly from what it means to be uninformative. For the remaining models, it
follows from the size principle. As a direct consequence, the sender models for the Low
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Model fits to Receiver choices: TEAMMATE condition

Model predictions

People WEAK STRONG ONE STEP  RECIPROCAL

Misleading evidence

50% -

_— | ﬁ.. ﬁl. S| B . @ Decoy
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Overall RMSE 0.14 0.09 0.10 0.16

Figure 6.7: Predictions of four models compared with the choices of people playing the role of
receiver in the TEAMMATE condition. The models are arranged in order, based on the strength
and complexity of the assumptions involved. The WEAK model captures no constraints on the
data, and represents a stance where the generative process is effectively ignored by the receiver.
The STRONG model assumes only that the data represents positive evidence of the concept
in question, and is otherwise unbiased by the sampling process. The ONE STEP model builds
upon the STRONG model by assuming that the sender biases selection towards more informative
content. The RECIPROCAL model assumes not only that the sender is trying to help in this way,
but that both sender and receiver share a mutual awareness of each other’s assumptions. The
ratcheting effect of progressively layered assumptions can be seen in the top row: the more
complex models increasingly favour the Lure item reflecting the fact that stronger assumptions
licence stronger conclusions. The numbers below each graph show the model fits, as measured
by Root Mean Squared Error (RMSE), with lower numbers indicating a better fit. The row at
the bottom of each table shows the overall fit for each model in the given condition. While the
STRONG model best captures the behaviour of participants in the TEAMMATE condition when
evidence is Uninformative, when the evidence is Misleading it appears as though participants
adopted a stronger assumption (although differences between the two are minor).
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Model fits to Receiver choices: OPPONENT condition

Model predictions
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Figure 6.8: Predictions of four models compared with the choices of people playing the role of
receiver in the OPPONENT condition. The WEAK and STRONG models, which are not context
sensitive, make exactly the same predictions as described for the TEAMMATE condition. The ONE
STEP and RECIPROCAL models are context sensitive however. In the OPPONENT condition, these
models assume that the sender is trying to conceal the truth rather than reveal it («d = —1). Their
respective predictions reflect a trade-off between uninformativeness and the size principle, falling
“between” the predictions of the WEAK and STRONG models. As described in the previous figure,
lower RMSE values represent better model fits. In the OPPONENT condition it is the WEAK
model, where the receiver assumes that the sender will be maximally uninformative (effectively
disregarding the process by which the data is generated), that best captures people’s behaviour in
the OPPONENT condition.

SUSPICION condition predict a preference for choosing the Uninformative option, as
Figure 6.10 (LOW SUSPICION condition) shows.
If being uninformative is an effective way of concealing the truth from a trusting

receiver, consider then what inference a receiver in the OPPONENT condition should draw.

As we have seen, a reasonable starting point for this receiver is to assume that the sender
prefers to be uninformative. In our model, information becomes more informative with
respect to a small hypothesis than to a large one, and hence less likely to be produced
by an uncooperative sender. Yet the size principle dictates the reverse — namely smaller
hypotheses consistent with the evidence are more likely. Under the assumptions of the
model, this leads the receiver to find a balance between two opposing forces. As a
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Effect of evidence on the accuracy of Receivers’ inference
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Figure 6.9: Receiver accuracy based on the type of evidence provided. The plotted points represent
model predictions (green circles) and people’s performance (blue circles) aggregated across
the six sets of stimuli, while the polygons illustrate the spread of predictions — each vertex
corrsesponds to a single set. Model predictions in the TEAMMATE condition illustrate the effect
of deceptive evidence on a trusting receiver. As people adopt stronger assumptions, their attempts
to uncover the truth become increasingly inaccurate, leading to almost complete inaccuracy in
the RECIPROCAL case. In contrast, the OPPONENT models predict that stronger assumptions
lead to little change in receiver accuracy. The plots illustrate the connection between the sender
and receiver models. A sender who wishes to keep the truth from the receiver should choose the
type of evidence that leads to the lowest accuracy. Regardless of the strength of the receiver’s
assumption, and whether or not they trust the sender, the model predictions indicate that the
Uninformative evidence consistently leads to lower accuracy. This is in contrast to the observed
accuracy of our receiver participants, who were least accurate in the TEAMMATE condition when
presented with Misleading evidence.

consequence, the inferences predicted by the ONE STEP model are less certain than those
of the STRONG model but sharper than those of the WEAK model (see Figure 6.8).
Somewhat paradoxically, as the receiver becomes less prepared to reason beyond the
data, the sender pays a lower penalty for disclosing information. Thus, in contrast to the
TEAMMATE models which predict that stronger assumptions lead to sharper conclusions,
the OPPONENT models show no such pattern. Instead, progressively stronger assumptions
produce predictions that follow the pattern of dampening oscillation shown in Figure 6.8,
and converge on the RECIPROCAL model. The predictions of the RECIPROCAL model,
however, which represent an equilibrium where neither sender nor receiver “out thinks”
the other, seem unintuitive. A more intuitive way for the receiver to take the sender’s
reasoning to its “logical” extreme, is to consider that he will display an optimal bias
towards being uninformative (Hespanha, Ateskan, & Kizilocak, 2000). As a consequence,

the receiver should not attempt to reason beyond what the data falsifies - i.e. she should



64 MODELLING META-INFERENCE IN THE DECEPTION GAME |

Model fits to Sender choices

Sender Model
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Figure 6.10: Predictions of four models compared with the choices of people playing the role
of the Sender. In the CONTROL condition, where the sender’s goal is to reveal the truth, all
models predict a strong preference for the most informative (Helpful) message, as exhibited by
participants. In the LOw SUSPICION and HIGH SUSPICION conditions however, the sender has
the opposite goal — to hide the truth. The relative homogeneity of the predictions under these
conditions reflects the unanimous prediction of the underlying receiver models that Uninformative
evidence is most effective in this regard. Model fits (RMSE) are shown beneath each plot, and

averaged across conditions in the bottom row of the table. Lower numbers represent better fits.

While the models capture participants’ overall preference for the Uninformative option in the
Low SusPICION and HIGH SUSPICION conditions, the qualitative reduction in the use of the
Misleading option is not predicted. (as the relatively poor fits in the HIGH SUSPICION condition
indicate).

adopt a weak sampling assumption.'® As Figure 6.8 shows, the WEAK model best
captures the behaviour of people in the OPPONENT condition. Whether we choose to
model progressively stronger assumptions by an increasing bias towards the uninformative
(larger negative o), or through increased depth of meta-inference, the predictions of the
STRONG model, which assumes that data selection is unbiased, represent an upper bound

19Tn terms of the computational model, taking the limit as o — —oo of Equation 6.2, yields a likelihood
function compatible with Equation 6.3 — i.e. weak sampling.
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on the strength of inference expected. Thus, once again, Uninformative evidence is
most effective at concealing the truth from the receiver (see Figure 6.9 — OPPONENT
condition), and the sender models predict a preference for using it (see Figure 6.10 —
HIGH SUSPICION condition).

DISCUSSION

Our analysis thus far has demonstrated that our framework captures two important
properties of the receiver’s inference. Firstly, it predicts the (obvious) effect of information
content: trusting receivers draw stronger conclusions from more informative evidence.
Secondly, and more importantly, it predicts an effect of assumption strength: stronger
assumptions lead to stronger conclusions. While our analysis was not intended as a
parameter fitting exercise, the good qualitative fits with theoretically motivated sampling
assumptions suggests that the behaviour of participants in our receiver experiment is
consistent with a sampling assumptions explanation. The strength of the assumption
adopted depends on the perceived intent of the sender, as dictated by the setting in which
communication takes place. In the TEAMMATE condition, people reasoned beyond the
data, giving greater weight to those hypotheses under which the data might make sense
(0. > 0). In the OPPONENT condition, where any attempt to reason beyond the data might
be exploited, people behaved in line with a weak sampling assumption, using data only
to falsify hypotheses (ot < 0).

When it comes to capturing the behaviour of our sender participants, however, the
qualitative fits in Figure 6.10 are less compelling. While the models matched response
patterns in the LOW SUSPICION condition reasonably well, and captured people’s overall
preference for uninformative evidence in the HIGH SUSPICION condition, they failed to
predict context sensitive meta-inference. They could not account for the disparity people
showed between conditions as a function of suspicion. In the case of the ONE STEP and
RECIPROCAL models, which were specified with context-specific assumptions in mind,
this represents a challenge to the sampling assumptions account.

It is instructive at this point to recall the intuition behind the sender’s decision. The
virtue of a misleading utterance is that it appears (to a trusting receiver) to conform closely
to communicative norms. Consequently, the intuition goes, the receiver will accord it
a stronger inferential boost than they would a less informative utterance, promoting
a strong yet misleading conclusion. But the ultimate goal for the sender (as we have
framed it) is not to maximise the receiver’s belief in one of the false hypotheses, but to
minimise her belief in the true hypothesis. Under a weak sampling assumption (o < 0),
the evidence receives no inferential boost and so of course the sender should prefer to use
uninformative evidence. Similarly the so-called strong sampling assumption (o = 0) is not
sufficiently strong as to warrant a change in preference. The intuition behind reciprocal
and recursive meta-inference however, is that each layer of additional “he thinks, she



thinks...” reasoning acts to increase the inferential boost that informative evidence receives
relative to less informative evidence. Thus, a sufficiently strong (recursive) assumption
on the part of the receiver should justify a reversal in the sender’s preference so that he
prefers to mislead. Yet what our analysis has shown is a limitation of our framework in
this regard. As it stands, our framework fails to predict the necessary interaction between
the information content of evidence and the strength of assumption in determining
the strength (or rather weakness) of inference. At least not in the way that matters —
the cumulative ratcheting effect of progressively stronger assumptions preserves and
never reverses the relative superiority of uninformative evidence in limiting receiver
accuracy. Thus we have essentially demonstrated that two key (intuitively reasonable)
meta-inferential assumptions — that trusting receivers make stronger assumptions (of
a positive information bias) than suspicious ones, and that strong assumptions more
strongly benefit informative content — are insufficient to explain sender behaviour in
this situation. What additional or alternative assumptions might senders be making when
deciding whether to conceal information or to actively mislead?

The receiver model fits shown in Figure 6.7 reveal a potential clue. The figure
shows that while the STRONG model provides a better fit to people’s responses to the
Uninformative evidence, the ONE STEP model provides a better account of the Misleading
evidence. This suggests that receivers may make stronger assumptions on the basis of
more informative evidence. This is an idea with some intuitive appeal; for example, if on
hearing your words I believe you have chosen them carefully, I may be more likely to
infer what you have implied.

If receivers’ assumptions are sensitive in this way, or the sender believes them to
be, it should change the nature of the sender’s evaluation. Instead of comparing what
a receiver making a fixed assumption would infer from two alternative messages, the
problem becomes one of comparing the alternatives under the different assumptions they
would induce. For example, if senders assume that receivers reason beyond the data only
when norms of relevance are upheld, then this might increase the incentive for the sender
to mislead a trusting receiver. In the following section we extend our computational
framework to accommodate these kind of “content-sensitive” sampling assumptions.

6.5 MODELLING CONTENT-SENSITIVE SAMPLING ASSUMPTIONS

The computational models we have considered are based on a simple premise: namely, that
people (as receivers) use information to rule out competing hypotheses and are therefore
sensitive (as senders) to its evidentiary value when choosing information to convey.
A given sampling assumption reflects a particular estimate about the degree to which
evidence selection is biased in favour of the informative (o0 > 0) or the uninformative
(o < 0). In the models we have examined, this estimate has been pre-determined solely on
the basis of whether cooperation or competition is expected: that is, a = 41 (cooperation),
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or o = —1 (competition). Although this approach has the virtue of simplicity, it fails to
account for the ostensive nature of cooperative communication, in which the goal is not
merely to produce utterances that are informative, but also ones that are easily recognised
as such. In order to clarify how sampling assumptions might account for our experimental
results, it makes sense to consider the notion of a receiver whose assumptions are sensitive
to message content, and the implications for sender behaviour that this might have.

To see how a receiver might adjust her sampling assumption after observing the
evidence provided, imagine that we (as an observer) already know which is the true
hypothesis and are aware of the possibilities that the receiver is considering. If the aim of
a cooperative sender is to select evidence that reduces the receiver’s uncertainty about the
matter at hand, then we can estimate his selection bias after seeing the evidence he selects,
in the same sense that we might estimate the bias of a coin after seeing only a single toss.
Of course, the receiver does not know the true hypothesis, but she may nonetheless form
an estimate by considering all possibilities in order to determine the “likely helpfulness”
of the information provided. We may model the receiver’s assessment of the sender’s
likely helpfulness via the following straightforward extension of Equation 6.1:

PrecEIVER (h |x) &< Z Psgnper (x|h,s)P(h)P(s) (6.5)
s€S
where s represents an assumption that the receiver makes about the sender’s sampling
strategy, and S denotes the set of alternative strategies considered. As a simplifying
assumption which should reasonably hold in the context of our experiments, we assume
that the receiver considers the sender’s sampling strategy to be independent of the true
hypothesis.

If receivers are vigilant for ostensive signs of cooperation, then there are implications
for the sender. In practical terms, the cooperative sender might select information to
reduce the receiver’s uncertainty not only about the hypotheses under consideration but
also about the way in which the information was sampled. Because senders and receivers
will not in general have perfect mutual information about each other’s knowledge state, it
makes sense for helpful senders to provide information that would be judged as being
helpfully sampled, independent of any particular reciprocal assumption about prior
knowledge. Intuitively, for example, the evidence sample shown in Figure 6.11(a) feels
more likely to have been provided by a competent and helpful sender than does the
evidence sample shown in Figure 6.11(b), despite the fact that each sample is equally
ambiguous in the narrow sense. In terms of our model, a sender who wishes not only
to be informative but also to be seen to be informative, selects information consistent
with a strong selection bias (o > 0, for example) under an appropriately general prior
distribution. The deceptive sender may choose to mimic the helpful sender by making his
informative intention clear, all the while selecting evidence intended to misinform. By
being uninformative he may leave his sampling method (and his meaning) ambiguous.
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(a) Ostensively clear evidence (b) Ambiguous evidence

Figure 6.11: Examples of ostensively clear and ambiguous evidemce. In an example scenario
drawn from the deception game, the receiver must use the evidence sample given (top) to
distinguish amongst four hypotheses (narrow view) drawn from a larger set of possibilities (wide
view). In interpreting the weight of a given piece of evidence, senders and receivers must take a
stance regarding what constitues good evidence. Under a narrow view, evidence is informative
only to the degree that it distinguishes amongst those hypotheses being directly considered.
In this case both evidence samples are equivalent — each is equally ambiguous under a weak
sampling assumption (because they rule out none of the four hypotheses in the narrow view), or
equally helpful under a strong sampling assumption (identifying the target (dark border) due to
the size principle). If instead, the receiver interprets informativity in the broader sense then the
picture changes. In this case, evidence sample (a) is helpful in distinguishing the target from a
considerably wide range of alternatives (pale yellow), whereas sample (b) is relatively unhelpful
even in the wider context. Because the meaning of sample (a) is ostensively clear in this context it
licences a stronger sampling assumption than sample (b), which remains relatively ambiguous.
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Condition Schema Model
(Receiver)
TEAMMATE (Recr) Ostensive = §(Strong) + 3 (Help~ (... (Weak)))
OPPONENT (Reco) Hinder (Ostensive)
(Sender)
CONTROL Help ((Rect))  Help (Ostensive)

Low SUSPICION  Hinder ((Recr)) Hinder (Ostensive)

HIGH SUSPICION Hinder ((Recp)) Hinder (Hinder (Ostensive))

Table 6.2: The OSTENSIVE model of sender and receiver behaviour. The sender and
receiver models for each condition follow the same model schema as the models introduced
previously (see Table 6.1). The core Ostensive assumption corresponds to a reasoner who believes
(with probability p = %) that the data is strongly sampled or (with probability p = %) that
the data is helpfully sampled. The prior probabilities for the two assumptions were chosen to
match the proportion of uninformative and informative stimuli used in the experiment (1:2).
Help~(...(Weak)) denotes a recursive and reciprocal assumption, based on a general prior
distribution (over a superset of the hypotheses currently under consideration). See main text for
further details.

To complete our content-sensitive model (which we shall refer to as the OSTENSIVE
model), we need to specify the set of strategies § that the receiver considers in the
typical course of cooperative communication. For simplicity we consider two strategies
only, but in general we could integrate over any aspect of the model specification, such
as the depth of recursion, the value of o and so on. To reflect the possibility that the
evidence was selected by a helpful sender we adopt the sampling assumption from the
RECIPROCAL model (see Table 6.1 — TEAMMATE condition). The alternative assumption
that the receiver considers is that an indifferent sender selected the information at random
(oe = 0), which is equivalent to a strong sampling assumption.This Ostensive sampling
assumption is intended to describe the receiver’s inference in the TEAMMATE condition.
The sampling assumptions that complete the OSTENSIVE model are shown in Table 6.2.

In the next section, we apply this new model (in addition to the previous ones) to
the data from Experiments 1 and 2. In order to investigate the presence of individual
differences in reasoning, we focus on two sub-groups of participants that we identified
in a post hoc fashion upon visual inspection of the data, as described below. Although
this grouping is post hoc and the corresponding analysis should be taken with caution,
we find that it (and the associated model fits) is revealing about the different kinds of
reasoning that occur in deceptive communication.



EXPERIMENTAL RESULTS: INDIVIDUAL DIFFERENCES IN CONTENT SENSITIVITY

The results of our two experiments demonstrate that people’s communicative inferences
take into account the context in which communication takes place and whether cooperative
norms can be taken for granted. Moreover, the data so far suggest that for receivers at
least, people’s reasoning is sensitive to context (suspicion level). However, context
sensitive tailoring of deceptive strategy on the part of the sender is less evident. In order
to investigate whether people are sensitive to the possibility that message content may
signal the sender’s intent, we now take a closer look at the response distributions of both
receivers and senders.

Turning first to our receiver participants, upon visual examination of the data it appeared
that there were two qualitatively distinct patterns of behaviour based on how people
responded to the Misleading evidence in the TEAMMATE condition. As Figure 6.12(a)
reveals, the relevant response distribution is bi-modal. In addition, we used a Bayesian
model to infer two independent binomial response rate parameters from the given response

distribution. The model favours the same division that we identified by visual inspection.

Further a Bayes’ factor analysis revealed strong support for a model with two independent
response rates over a model assuming only one (BFj9 > 1,000). We therefore defined,
in a post hoc fashion, two qualitatively distinct groups. The Adaptive group, consisting
of all participants who were consistently misled (choosing the Lure on five or six out
of six relevant trials), appeared to be sensitive to the perceived intent of the sender and
to adapt their assumptions accordingly. In contrast, the other participants, which we
have labelled Conservative, appear to be largely insensitive to the sender’s likely goal,
displaying comparable conclusions in either condition.

The responses of receiver participants aggregated according to these groups are shown
in Figure 6.13. The Adaptive receivers drew stronger conclusions when evidence was
Uninformative as well as Misleading in the TEAMMATE condition but showed a very
different pattern in the OPPONENT condition, suggesting they were sensitive to the
sender’s intent. In contrast, the Conservative receivers responded similarly regardless of
the nature of the sender or whether the evidence was Misleading or Uninformative.

We can apply a similar analysis to the sender data from Experiment 2. For the sender,
the essential decision in each trial is whether to attempt to actively mislead the receiver
or instead to just be as uninformative as possible. Where the sender stands in this regard
should be influenced by their assumptions about the receiver — there is little point in
revealing more than is necessary to a receiver who is unlikely to take the bait. We
therefore divided people in two groups based on how frequently they chose to provide the
Misleading evidence in the LOW SUSPICION condition. Although the relevant response
distribution, shown in Figure 6.12(b), is not as clearly bi-modal as was the case in our
receiver analysis, the division into two groups is supported by the same Bayesian analysis

used previously, applied in this case to the relevant sender response data (BFjg > 1,000).

Thus, Adaptive senders are those who chose to mislead on three or more of the six
relevant trials. In analogy with the receiver groups, the remaining participants comprise
the Conservative group.
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Grouping individuals by their use of Misleading evidence
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Figure 6.12: Use of Misleading evidence by receivers and senders. The histograms show the
number of trials (out of six) that (a) receivers in the TEAMMATE condition chose the Lure item
in response to Misleading evidence, and (b) senders in the LOW SUSPICION condition chose to
provide the Misleading evidence. The vertical axis indicates the number of people responding with
the frequency given on the horizontal axis. For a post hoc analysis, participants were separated
into two groups on the basis of visual inspection of the response distributions. The dashed line
separates Conservative participants (red bars) to the left, and Adaptive participants (blue bars)
to the right. The receiver distribution is clearly bi-modal, while the sender distribution is less so.
Nonetheless, a Bayesian analysis revealed strong evidence in favour of the partitioning illustrated
(see main text for detail).

Sender choices for Adaptive and Conservative people are shown in Figure 6.13(c) and
(d) respectively. The figure shows that Adaptive senders, defined on the basis of their
preference to actively mislead an unsuspecting receiver in the TEAMMATE condition,
reverse this preference when the receiver is likely to be alert to the deception in the
OPPONENT condition. In contrast, Conservative senders appear insensitive to the presence
or absence of trust on the part of the receiver, strongly favouring the Uninformative option
in both the LOw SUSPICION and HIGH SUSPICION conditions.

Taken together, the above analyses suggest that there may be a meaningful link between
Adaptive senders and Adaptive receivers, and between Conservative senders and receivers
as well. When Adaptive receivers believe that the sender can be trusted they are readily
deceived by Misleading evidence. As Figure 6.13 reveals, the proportion of Adaptive
receivers who correctly infer the truth is lowest in this case. By favouring the use of
Misleading evidence when facing a trusting receiver, Adaptive senders appear to target
Adaptive receivers. However, Adaptive receivers appear to benefit from their strategy
by being able to draw stronger conclusions when their inferences about sender intent
are correct. In contrast, the figure reveals that Uninformative evidence is most effective
at concealing the truth from Conservative receivers, and that this strategy is the one
favoured by Conservative senders.
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Choices of Adaptive and Conservative people in the deception game
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Figure 6.13: Upper panel: Receiver choices for two different types of participants: (a) Adaptive and (b)
Conservative. Adaptive receivers (N=58) were defined as those more likely to select the Lure when faced
with Misleading evidence in the TEAMMATE condition. Adaptive people also drew stronger conclusions
from the seemingly uninformative evidence, but only when the sender’s cooperation was expected. The
difference in their inferences between the OPPONENT and TEAMMATE condition suggests that they
were sensitive to the sender intent when deciding what conclusions to draw. In contrast, Conservative
receivers (N=40) responded in the same manner regardless of whether the evidence was Misleading
or Uninformative, as well as irrespective of the sender’s intent. Lower panel: Sender choices for (c)
Adaptive and (d) Conservative participants. Conservative senders (N=44) were defined as those more
likely to favour Uninformative evidence in the LOW SUSPICION condition. This preference is reversed in
favour of Misleading evidence for Adaptive senders (N=32). But while Conservative senders prefer to be
uninformative without regard to receivers’ suspicions, Adaptive senders adapt their strategy accordingly,
providing Misleading evidence when the receiver is likely to be low in suspicion but Uninformative
evidence when the receiver suspects them already.

H Misleading
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To summarise, we have grouped our participants on the basis of how they reason about
the effect of Misleading evidence in the TEAMMATE condition. In doing so, we have
isolated those participants (the Adaptive ones) whose responses have driven the context
sensitive behaviour we observed and modelled in aggregate in the first part of this paper.
In what follows, we revisit our computational model to determine whether a sampling
assumptions account can explain the behaviour of these two distinct groups.

MODEL-BASED ANALYSES: INDIVIDUAL DIFFERENCES IN CONTENT SENSITIVITY

We now use the extended version of our model developed above in order to address two
important questions that arose from the original analysis. Firstly, to what degree does the
behaviour of our receiver participants indicate that they are adopting content-sensitive
sampling assumptions? Specifically, do people appear to draw stronger conclusions
(based on a stronger sampling assumption) when presented with Misleading evidence
compared to Uninformative evidence? Secondly, if the sender assumes that the receiver
makes a content-sensitive sampling assumption, how does this impact his choices? Can
this type of reasoning account for the pattern of deceptive behaviour observed in our
sender experiment?

To address these questions, we compared model predictions of the OSTENSIVE model
(as well as the four original models) to the choices of Adaptive and Conservative
participants separately. Model predictions and associated fits are shown in figs. 6.14,
6.15 and 6.17.11 Because our group-level analysis indicated that the pattern of context
sensitive behaviour is driven primarily by Adaptive participants, we focus our discussion
on those participants first, returning subsequently to consider what sampling assumptions
best account for Conservative participants.

Adaptive participants

Figure 6.14 illustrates that for the Adaptive receivers, the OSTENSIVE model best
captures their behaviour, suggesting that they are indeed drawing inferences about the
way that the sender sampled the data based on how helpful the data appears to be.
Because the Misleading evidence appears to be consistent with what might reasonably be
chosen by a helpful sender, the model predicts that a trusting receiver will draw strong
conclusions from it, in line with the predictions of the RECIPROCAL model. In contrast,
the Uninformative evidence is inconsistent with helpful sampling and is therefore more
likely to have been sampled at random. In this case, the OSTENSIVE model predicts
weaker conclusions, more in line with the STRONG model. We find that this tendency
to treat misleading and uninformative evidence in a qualitatively different way has the

Hpredictions and fits were calculated for all models and conditions, but those not relevant to he present
analyses have been dropped from the figures.
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Model fits to choices of Adaptive and Conservative Receivers: TEAMMATE condition

People Model predictions

Adaptive Conservative WEAK STRONG  RECIPROCAL OSTENSIVE
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Overall RMSE 0.25 (0.08) 0.15 (0.19) 0.08 (0.32) 0.07 (0.28)

Figure 6.14: Predictions of the OSTENSIVE model compared with three content insensitive
models of meta-inference and the choices of Adaptive and Conservative participants in the
TEAMMATE condition. In the WEAK, STRONG, and RECIPROCAL models (described earlier),
the way that the assumptions are arrived at in the first place, is left undefined. The OSTENSIVE
model in contrast, describes the computational problem faced by the receiver as one of joint
inference over sampling strategy and the hypotheses in question. Under this form of joint inference,
certain scenarios are considered more likely than others: helpful (but misleading) content is more
likely to have been helpfully selected, while uninformative content is more likely to have been
selected randomly or without care. The closely matching predictions made by the OSTENSIVE
and RECIPROCAL models (for Misleading content) and by the OSTENSIVE and STRONG models
(for Uninformative content), follow as a consequence of the content-sensitive nature of the
OSTENSIVE model. The numbers below each graph show the model fits for Adaptive and
(Conservative) participants, as measured by RMSE. Once again, lower RMSE values represent
better model fits. Adaptive receivers are best fit by the OSTENSIVE model, appearing to rely
on a stronger assumption when given misleading evidence than when faced with something
less informative. Conservative receivers in contrast, gain little leverage from their sampling
assumptions irrespective of the content, and are best fit by the WEAK model.
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Model fits to choices of Adaptive and Conservative Receivers: OPPONENT condition

People Model predictions

Adaptive Conservative WEAK STRONG  RECIPROCAL OSTENSIVE

Misleading evidence
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Figure 6.15: Predictions of the OSTENSIVE model compared with three content insensitive
models of meta-inference and the choices of Adaptive and Conservative participants in the
OPPONENT condition. The OSTENSIVE model is based on the intuition that message content
may be informative both in the usual way and with regard to how it was sampled. Content that is
informative and easily recognisable as such, the intuition goes, can be particularly misleading.
The predictions of the model regarding Misleading evidence, show that a receiver alert to this
form of deception, rather than be misled, could effectively leverage her suspicion to get closer
to the truth. Yet, the plots clearly indicate that this is not what people did. Similarly, neither the
STRONG nor the RECIPROCAL model represent a close match for either group of receivers, since
both models embody a modest amount of meta-inferential leverage (due to the size principle),
despite the receiver’s suspicions. Only the WEAK model, which effectively discounts all evidence
of a meta-inferential nature, provides a reasonable account of either group of participants. Model
fits (RMSE) for Adaptive and (Conservative) participants are shown beneath each plot.
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Effect of evidence on the accuracy of Adaptive and Conservative Receivers
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Figure 6.16: Accuracy of Adaptive and Conservative receivers based on the type of evidence
provided. The plotted points represent model predictions (green circles) and people’s performance
(blue circles) aggregated across the six sets of stimuli, while the polygons illustrate the spread
of predictions — each vertex corrsesponds to a single set. Model predictions in the TEAMMATE
condition highlight the qualitatively different predictions of the OSTENSIVE model which assumes
that the receiver forms their sampling assumption based in part on the information content itself.
Consequently, only the OSTENSIVE model predicts that Misleading evidence will have a greater
negative impact on receiver accuracy than Uninformative evidece, and is able to capture the
accuracy of Adaptive receivers as a result. In the OPPONENT condition in contrast, the OSTENSIVE
model predicts a backfire effect whereby the Misleading evidence improves rather than impairs
the receiver’s accuracy. Notably, this backfire effect did not occur. When faced with a potentially
deceptive sender, both Adaptive and Conservative receivers favoured a literal interpretation of the
evidence (in keeping with the “no lying” rule), as predicted by the WEAK model.

expected consequence: Adaptive receivers in the TEAMMATE condition were less likely
to uncover the truth when given Misleading evidence (see Figure 6.16(a)).

It is important to note that the predictions of the OSTENSIVE model were not reflected
by our participants in the OPPONENT condition. Under the OSTENSIVE model, a
suspicious receiver can discount the ostensive implication of the Misleading evidence,
that way ruling out the Lure hypothesis and improving their chances of uncovering the
truth (see the OSTENSIVE model prediction in Figure 6.16(b)). Instead, for all participants,
it seems more likely that they adopted a weak sampling assumption across the board.
Nonetheless, the qualitative reversal predicted still offers a possible explanation of sender
behaviour. If the sender does assume, as the OSTENSIVE model predicts, that misleading
pays off when the receiver is trusting and backfires when she is suspicious, then a
qualitative reversal of deceptive strategy as a function of receiver suspicion is justified.
Indeed, as Figure 6.17 shows, the OSTENSIVE model best fits the behaviour of Adaptive
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Model fits to choices of Adaptive and Conservative Senders

People Model predictions

Adaptive Conservative WEAK STRONG  RECIPROCAL OSTENSIVE

Low SUSPICION condition
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Figure 6.17: Predictions of the OSTENSIVE model compared with three content insensitive models
of meta-inference and the choices of Adaptive and Conservative participants playing the role of
the Sender. The OSTENSIVE model is based on the idea that data, in addition to being informative
about some matter at hand, may also be informative regarding how it was selected in the first
place. The remaining models describe meta-inference that is not sensitive to content in this way.
Consequently, only the OSTENSIVE model is able to capture the strong preference for Misleading
content exhibited by Adaptive people in the LOW SUSPICION condition. Furthermore, because
the model predicts that attempts to actively mislead will backfire when the receiver is suspicious,
it is the only model that captures the qualitative reversal of preference that Adaptive people
show between conditions. Model fits (RMSE) are shown beneath each plot, and averaged across
conditions in the bottom row of the table. Lower numbers represent better fits. The fits reveal that
only the OSTENSIVE model, which heavily penalizes Misleading evidence when the receiver is
suspicious, comes close to capturing the strength of people’s preference for being uninformative
in the HIGH SUSPICION condition. The fits also reveal that the behaviour of Conservative people
in the LOW SUSPICION condition is not well explained by the models.

senders; it is the only one that predicts a significant change in sender behaviour between
the LOW SUSPICION and HIGH SUSPICION conditions. It therefore captures the strong
preference to mislead a trusting receiver as well as the equally strong preference to be
uninformative when the receiver is likely to be suspicious.

Conservative participants

Our Conservative receivers showed little difference in their behaviour between the
TEAMMATE and OPPONENT conditions, preferring to avoid strong conclusions in both
situations. Accordingly, we find that the WEAK model captures recipient behaviour



consistently for both conditions and for both Misleading and Uninformative evidence
(see figs. 6.14 and 6.15).

What about the senders? Under a weak sampling assumption, the receiver uses
evidence solely to disconfirm incompatible hypotheses. It logically follows then that
the less information the sender reveals the less chance the receiver has of inferring the
truth. But, as Figure 6.16 shows, if the receiver adopts a weak sampling assumption,
then the advantage (from the sender perspective) of offering Uninformative evidence
over Misleading evidence is small. If senders choose their strategy according to this
small relative difference, then we might expect to see senders exhibit a correspondingly
small relative preference for Uninformative evidence. Yet, as the poor fits of the WEAK
model for the senders indicate (see Figure 6.17), this is not how senders behave. Rather,
regardless of condition, Conservative senders show the same strong preference to be
uninformative. This inclination to avoid the misleading option suggests that Conservative
senders, like Adaptive senders anticipating suspicious receivers, believe that attempts
to mislead the receiver will backfire. The predictions of the OSTENSIVE model in the
HIGH SUSPICION condition which capture this “backfire” concept provide the best (and
only reasonable) fit to the behaviour of conservative participants. Because Conservative
senders responded similarly in the LOW SUSPICION and HIGH SUSPICION conditions, we
also assessed the degree to which the Ostensive assumption from the HIGH SUSPICION
condition captured behaviour in the LOW SUSPICION condition. This yielded a better fit
than the next best fitting assumption (Strong: 0.18).

DISCUSSION

The goal of the present study was to examine how people reasoned about evidence in
situations where deception was possible but lying was not an option. People played
the deception game in two related experiments: both as “receivers” and “senders” of
messages (evidence). When viewed as an homogenous sample, people as receivers
were sensitive to the context in which communication took place. They drew strong
conclusions from evidence, but only when they thought the sender could be trusted. But
evidence for context sensitive behaviour amongst senders was weaker overall. Though
people were more willing to mislead when they thought deception was not expected, they
favoured uninformative evidence regardless of context. Using a computational framework
to predict responses on the basis of meta-inferential sampling assumptions, our original
analysis found that while the behaviour of receivers as a whole was consistent with a
sampling assumptions account, the behaviour of senders in the aggregate was not so
easily accounted for by standard sampling assumption discussed in the literature.

Our more detailed analysis was thus prompted by two issues. Firstly, the surprising
result that sender behaviour appeared to be somewhat insensitive to context. And secondly,
the fact that our original model which builds on standard sampling assumptions cannot
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account for even the modest change in sender strategy that was observed. With respect
to the first issue, subsequent analyses of participant’s choices revealed a plausible
explanation. For both senders and receivers there appear to be two qualitatively distinct
groups of people: Adaptive participants who tailored their behaviour according to context,
and Conservative participants who maintained a single consistent approach. Adaptive
receivers reasoned well beyond a literal interpretation of the evidence, but only when
the sender’s cooperation was implied. Adaptive senders demonstrated a clear reversal in
preference for misleading evidence between conditions.

To address the limitations of our original model, we explored the predictions of the
OSTENSIVE model. Table 6.3 summarises the findings of our original and revised analyses.
The analysis indicates that Adaptive participants, acted consistent with an ostensive-
inferential view of communication. When the context dictated that cooperative norms
should apply, full cooperation was not taken for granted. Instead, Adaptive receivers
leveraged ostensive signs of helpfulness. Adaptive senders overwhelmingly preferred to
provide ostensively helpful yet misleading evidence when seeking to mislead.

In contrast, when the context suggests that cooperative norms may not apply, the
analysis indicates a disconnect between sender and receiver assumptions. Anticipating
that ostensive signals can backfire when the receiver is suspicious, Adaptive senders
declined to offer them. Yet absent trust, Adaptive receivers ignored ostensive signals and
took a literal view of data. Despite the disconnect, both sets of assumptions represent
sensible defensive positions. For receivers, a weak sampling assumption means that they
are immune to strategic exploitation. For senders, the extra caution is largely without cost
(unless there are a sufficiently large population of receivers who were trusting despite
obvious cause for suspicion). The concept of a “defensive” assumption may explain
the behaviour of Conservative participants. Our analysis revealed that the best fitting
assumption for both senders and receivers in this group matched the assumption of
Adaptive participants in an adversarial context. We comment further on the Conservative
stance, and other broader issues in the following general discussion.

Despite the limitations of our group-level analyses, due to its post hoc nature and the
limited amount of data collected per individual, we find that the revised analysis gives a
more compelling account of behaviour overall, and for senders in particular. Importantly,
by isolating the group of participants responsible for driving context-sensitive behaviour,
and introducing the OSTENSIVE model to capture content-sensitive sampling assumptions,
we have better captured the way that qualitative patterns of responding were driven by
both content and context.

6.6 GENERAL DISCUSSION

Using a non-verbal communication game where deception was motivated but outright
lying was not an option, we investigated how the spectre of deception changes the way
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All People Adaptive People Conservative People
Condition Assumption Fit Assumption Fit Assumption Fit
(Receiver)
TEAMMATE Strong 0.09 Ostensive 0.07 Weak 0.08
OPPONENT Weak 0.07 Weak 0.09 Weak 0.08
(Sender)
Low SUSPICION Weak 0.07 Hinder (Ostensive) 0.17 Hinder (Hinder (Ostensive)) 0.09
HIGH SUSPICION Strong 0.17 Hinder (Hinder (Ostensive)) 0.12 Hinder (Hinder (Ostensive)) 0.09

Table 6.3: Best fitting models of sender and receiver behaviour in the deception game. See
tables 6.1 and 6.2 and main text for model descriptions. For model fits (RMSE), lower numbers
represent better fits. Overall the fits indicated by our post hoc group-level analysis suggest a more
nuanced picture than the aggregate analysis revealed. In particular, the revised analyses suggests a
role for the kind of content-sensitive sampling assumption captured by the OSTENSIVE model.
Further it suggests that Conservative senders and receivers may have adopted a form of “worst
case” assumption whether or not suspicion was warranted.

that people reason about evidence. Across two experiments, in both production and
comprehension tasks, we found that people’s behaviour was guided by their inferences
about how others reason from evidence. When selecting evidence to provide, people
reasoned about the way that suspicion affects the comprehension process. And when
interpreting evidence provided, people considered the ways that evidence may be used
deceptively. Support for this conclusion in its most basic sense can be seen in the context
sensitive pattern of responses we observed in both experiments.

On the comprehension side, people were sensitive to the (presumed) intent of the
sender. They drew strong conclusions from evidence when the context dictated that it
made sense to trust the sender, but reached guarded conclusions otherwise. This behaviour
is consistent with the findings of comparable studies investigating pragmatic implicature
in non-cooperative contexts. For example, using a picture selection task Pryslopska (2013)
found that the pragmatic interpretation of "some" as meaning "some but not all" was
more likely when the context emphasised cooperation over competition. In a similar vein,
Dulcinatti (2018) demonstrated (via a picture selection task, as well as a task involving
purely verbal reasoning) that a range of scalar and ad hoc implicatures drove people’s
conclusions in cooperative but not competitive scenarios.

On the production side, people’s selective presentation of evidence was also sensitive
to their communicative goal, even without recourse to outright lying. While comparable
studies are somewhat rare, people’s ability to selectively employ seemingly helpful yet
ultimately miselading information has been demonstrated in verbal reasoning tasks in
adults (Dulcinatti, 2018, ch. 6) and in concept teaching tasks in children as young as 4
years old (Rhodes, Bonawitz, Shafto, Chen, & Caglar, 2015). Our experiment extends
these results by using the same experimental task to examine how people adjust their
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strategy in the face of low and high suspicion. When people believed their intentions
would not be viewed with suspicion many preferred to make misleading implications, but
when their motive to deceive was made plain in context, people strongly preferred to give
nothing away.

CONTEXT-SENSITIVE AND CONTENT-SENSITIVE SAMPLING ASSUMPTIONS

Our empirical results established the basis for our computational analyses of people’s
assumptions which reveal useful insights into how people think that others reason from
evidence. Our modelling suggests that people (both as senders and receivers) reasoned
probabilistically about the generative process underlying communication within the game,
and interpreted evidence flexibly in light of those assumptions. The changing nature and
strength of people’s assumptions brought about by the cooperative or competitive context
drove the corresponding change in responding observed. Our findings replicate and
extend core findings in the sampling assumptions literature. From our analysis of receiver
behaviour, we find evidence of the size principle in operation. Following this principle
people tended to generalise from evidence to the smallest compatible hypothesis even
when that evidence was otherwise uninformative. This principle, and assumptions which
build upon it have been shown to shape inductive reasoning in a variety of tasks including
learning abstract concepts (Tenenbaum, 2000), word learning (Xu & Tenenbaum, 2007a),
category learning (Hendrickson et al., 2019), property induction (Fernbach, 2006; Sanjana
& Tenenbaum, 2003), and similarity judgments (Navarro & Perfors, 2010; Tenenbaum &
Griffiths, 2001a). Receiver behaviour in the OPPONENT condition was well captured by
a weak sampling assumption. Frequently, this assumption has been used in the literature
to model aleatory uncertainty in the generative process — when observations are sampled
at random and independently of the concept of interest, for example (Heit, 1998; Kemp
& Tenenbaum, 2009; Shepard, 1987). Our results highlight that it applies in situations
of epistemic uncertainty also, even when observations are clearly restricted to the true
concept.

Despite the fact that trusting receivers reasoned beyond the evidence even when it
was seemingly uninformative, our analysis suggests that people may have adjusted their
sampling assumptions based on the data observed. Although our evidence in support of
this is modest at best, it is nonetheless consistent with previous findings that people’s
sampling assumptions may be shaped by the data (Hendrickson et al., 2019; Ransom
et al., 2016) and that people perform joint inference over the knowledge and intent
of their informant and the truth of the matter at hand (e.g., N. D. Goodman & Frank,
2016; Gweon et al., 2010; Shafto, Eaves, et al., 2012). The data from the OPPONENT
condition is less ambiguous. There are no signs that suspicious receivers were drawn
into content-based second guessing of strategy whether the given evidence appeared
purposefully or haphazardly sampled. Any joint inference (and the function of epistemic
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vigilance that it supports) were effectively suspended given the high prior probability
that the sender was uncooperative. Our computational model cannot speak directly to the
question of whether joint inference regarding sender intent is actually suspended in this
case, or whether such inferences are drawn and over-ruled. Nonetheless, such questions
are an interesting avenue for future investigation. This issue potentially connects with
a debate in the pragmatics literature regarding whether implicatures are drawn as the
context demands (e.g., Russell, 2006) or are always computed by default but sometimes
discarded (e.g., Levinson, 2000).

Our analysis of the problem facing the would-be deceptive sender reveals that what may
seem like an obvious heuristic — mislead the trusting, conceal from the suspicious — is not
so readily justified. Setting aside the fact that the apparently obvious intuition was shared
by only half our participants, our simulations revealed two important disconnects with
standard (content-insensitive) sampling assumptions like strong and weak sampling. The
first of these is when the receiver is not suspicious. Like the rising tide that lifts all boats,
a content-insensitive sampling assumption based on the size principle supports reasoning
beyond the data no matter what the data. Under such assumptions, the mathematics of
Bayesian inference suggests that however misleading a given piece of evidence may
appear, a subset of that same evidence is always a better option.!> When the receiver
instead believes that the sender’s goal is opposed to her own, her best bet is to ignore
those aspects of the signal that the sender controls (e.g., Hespanha et al., 2000). In the
deception game, this means adopting a weak (uninformative) sampling assumption — a
tactic overwhelmingly followed by our receiver participants. Thus the second disconnect
is that senders did not appear to behave in line with the assumption that the receiver
would ignore all unreliable aspects of the evidence. Instead, senders showed a bias against
misleading evidence to an extent not justified by the information penalty alone.!3
Our analysis offers a plausible (albeit speculative) explanation for the senders’ bias:

that is, senders assumed that receivers would reason further beyond some data than others.

Whether people arrived at this assumption through some form of mental simulation or via
an intuitive theory derived from experience, the fact that people assumed that receivers
would act in this way complements the modest evidence from our receiver experiment

12This is certainly the case in the deception game where only positive (and truthful) evidence is allowed,
and applies regardless of the strength of the informativity bias or the number of recursive layers of “he
thinks, she thinks reasoning”. Additionally initial simulations show that this may be a robust result that
applies to any discrete likelihood function obeying reasonable constraints related to the size principle:
namely, any given observation should be more (or equally) likely under the smaller of any two hypotheses
with which it is compatible; and for any two observations compatible with the same hypothesis, the one
that is compatible with fewer alternatives should be more (or equally) likely. A formal proof and further
investigation of the generality of this property are an area for future work.

13Under the (somewhat standard) assumption that o, = 1, as used in our model. One might alternatively
account for the bias observed in the HIGH SUSPICION condition by using a higher value to reflect more
optimal choosing on the part of the sender. But doing so consistently would also predict more extreme
values in the LOW SUSPICION condition which were not observed.
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that this is the case. Alternatively, people might simply be mistaken — in itself this would
represent an intersting disconnect between production and comprehension that would
be worth pursuing. Regardless, to the best of our knowledge, our finding that such an
assumption is operating on the production side is a novel one, and one with interesting
implications if it can be replicated.

OSTENSIVE META-INFERENCE

If people do have an (implicit) awareness that comprehension may be affected by content-
sensitive sampling assumptions, it is interesting to consider whether and how this effects
communication on the production side. For instance, do senders attempt to increase the
chances that a particular sampling assumption will be adopted by their counterpart by
signalling it in some way? The use of ostensive signals such as eye-gaze, pointing and
tone modulation have been shown to play an important role in infant learning. Such
signals help the infant to understand that they are being addressed, to make clear the
referent when teaching object labels, and even to indicate that that the information being
conveyed is of a generalizable nature (Csibra & Gergely, 2009; Topal, Gergely, Miklo6si,
Erd6hegyi, & Csibra, 2008).

More broadly, a central idea of Relevance Theory (Wilson & Sperber, 2004) is that
of ostensive-inferential communication, the purpose of which is not only to inform
one’s interlocutor, but also to inform them of your intention to inform them. The idea
of what we might call ostensive meta-inferential communication is closely related. A
simple example can be found in everyday discourse. Replying “It’s after 5.” when a
colleague asks you the time suggests not that the time is “5:01” as it might under a
strongly informative assumption, but more likely that it is some time after 5 o’clock
(and presumably before 6 o’clock). The use of the modifier “after” may signal that the
recipient should not generalise too narrowly from the data. Using our computational
model we analysed one particular form that ostensive meta-inference might take. The
OSTENSIVE model captured the notion that although two stimuli might license the same
inference in a particular context, the more ostensive one would licence stronger inference
in a broader range of contexts. The results of our sender experiment suggests that senders
considered such implications when weighing up their options. This was evident in their
avoidance of the Misleading option in the HIGH SUSPICION condition, even when it was
technically no more informative than the Uninformative option (see Figure 6.11 for an
example of such).

In experiments investigating the generation of referential expressions, the production
of contextually redundant information (so-called over-specification) has been frequently
observed, while under-specification is comparatively rare (Pogue, Kurumada, & Tanen-
haus, 2016). And while under-specification is consistently rated as unhelpful by receivers,
over-specification is not viewed in this way (Engelhardt, Bailey, & Ferreira, 2006). Indeed,
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by making communication more robust, over-specification can facilitate faster object
identification (Arts, Maes, Noordman, & Jansen, 2011). In our experiment, misleading
but uninformative stimuli can be considered “over-specified”, at least in relation to the
purely uninformative stimuli. Thus, these findings lend support to the idea that people in
our experiment would consider the ostensive properties of stimuli when reasoning about
evidence. If over-specification is common and helpful, then for some senders it will make
sense to favour it when the receiver has no reason to be suspicious and to avoid doing so
otherwise (for fear of the strategy back-firing).

There is some evidence to suggest that a complementary tactic of ostensive under-
specification may too play a role in deceptive communication. In a study of non-verbal
deception with parallels to our own, Montague et al. (2011) used a “rectangle game”
to investigate the use of deceptive strategies and their impact on learners. Participants
played the part of informants who indicated points within or outside of a rectangle,
or learners who had to infer the true boundary from the evidence provided. The cover
story and instructions provided to learners left the helpfulness of informant testimony
in question. Although informants were allowed to lie outright, it was not the preferred
strategy in the competitive condition, presumably because learners were allowed to
verify information. Instead, informants in that condition favoured points which were
relatively uninformative (and had no significant correlation with learner error - a measure
of deceptive success in this case). Because informants in the cooperative condition were
required to provide more points than the two strictly required to mark the opposite corners
of a rectangle, they too provided uninformative points (which also had no significant
correlation with learner error). Nonetheless, informants displayed context sensitivity in
the choice of uninformative points. Uninformative evidence provided by cooperative
informants was mostly positive (within the rectangle), while competitive informants
favoured negative evidence (exterior points). In information theoretic terms, whether
negative evidence is more or less informative than positive evidence depends upon the
structure of the hypothesis space and the size of the hypothesis in question (Navarro
& Perfors, 2011). But given the lack of correlation in Montague et al.’s data between
learner error and uninformative evidence of either kind, the qualitative reversal of strategy
observed between cooperative and competitive informants is intriguing.

A plausible connection with ostensive signalling arises as a consequence of the
frequently sparse nature of the hypotheses with which learners are concerned (Navarro &
Perfors, 2011). In an environment where hypotheses are sparse the expected information
value of negative evidence (in advance of actually determining it) is less than that of
positive evidence. Deceptive informants sensitive to the average uninformativeness of
negative evidence (rather than its context-specific value) may thus prefer it over positive
(yet uninformative) evidence without any further inference required. There is evidence
to suggest that this ostensive use of negative evidence may impact people’s sampling
assumptions. For example, it has been noted that negative evidence or evidence from
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a second concept can induce a weaker sampling assumption on the part of the learner
(Hendrickson et al., 2019; Ransom et al., 2016).

Taken together, our own results and those of Montague et al. (2011) support the
idea that deceptive informants are sensitive to the ostensive qualities of data as well
as its context-specific information content. An interesting avenue for future research
would be to investigate whether any such sensitivity is heightened in deceptive contexts
or representative of communication more broadly. An awareness of such differential
sensitivity has the potential to benefit verbal deception detection techniques such as
forced choice tests (Frederick & Speed, 2007) and model statements (Vrij, Leal, & Fisher,
2018).

INDIVIDUAL DIFFERENCES IN META-INFERENTIAL STANCE

Responses across both experiments were subject to important qualitative differences
amongst individuals. On the comprehension side, only Adaptive receivers were sensitive
to a difference in the evidentiary value of data in cooperative and competitive contexts.
Likewise on the production side, only Adaptive senders were sensitive to suspicion in
forming meta-inferential assumptions. Similar patterns of individual differences have
been noted elsewhere in the literature. In a related study, Franke and Degen (2016)
used a similar Bayesian modelling framework to analyse production and comprehension
behaviour in a (cooperative) reference game. They found that while listener behaviour
appeared consistent with Gricean reasoning (analogous to our ONE STEP model) in the
aggregate, closer analysis revealed that the majority of listeners used so-called exhaustive
reasoning (analogous to our STRONG model), with the average being skewed by a smaller
number of highly pragmatic participants. On the back of their analysis Franke and Degen
(2016) highlight the importance of considering individual differences in computational
level analysis, lest averaging effects obscure the different computational strategies being
employed. Based on our own analysis we echo these sentiments.

Given our analyses, how should we interpret the differences in assumptions between
Adaptive and Conservative participants? One obvious answer relates these differences
to differences in the depth of reasoning in which people engaged. Such differences
have been observed in experimental studies employing strategic reasoning games (e.g.,
Hedden & Zhang, 2002; Ohtsubo & Rapoport, 2006; Stahl & Wilson, 1995). Stahl and
Wilson (1995) for example, analysed people’s responses across twelve 3 X 3 symmetric
games. Comparing various models of player behaviour, they found that most people
could be grouped into one of four major categories: level 0 types who choose randomly,
level 1 types who reasoned as if their opponent was a level O type, naive Nash types
who used an equilibrium strategy (analogous to our RECIPROCAL model), and worldly
types (the largest group) who reasoned that their opponent might be any one of the
preceding types. Stahl and Wilson’s finding that a significant proportion of people
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were sensitive to individual differences in reasoning styles connects with our own
finding regarding Adaptive participants. If people expect a resonable amount of variation
between (or within) individuals then the cognitive effort required to infer content-sensitive
sampling assumptions may be justified. And given a sufficient population of Adaptive
receivers, sensitivity to the meta-inferential implications of content makes sense for
senders motivated to deceive.

But what about our Conservative participants — what might explain their behaviour?
A simple explanation is that Conservative receivers failed to engage in meta-inferential
reasoning at all. But given that the deception game explicitly entails the use of positive
evidence only, an assumption that evidence was selected at random should justify a strong
sampling assumption, not the weak assumption that Conservative receivers adopted.
This does not rule out the no meta-inference explanation of course. The tendency of
experimental participants to underweight the value of evidence has long been noted
(e.g., Edwards, 1968; Phillips & Edwards, 1966), and a variety of explanations have
been offered (for a review, see Corner, Harris, & Hahn, 2010). Navarro et al. (2012),
found evidence that people adopt conservative sampling assumptions across a range
of simple generalisation tasks. By modelling the strength of assumptions drawn (as a
linear combination of strong and weak sampling), they found considerable variation
amongst individuals. However, the “no meta-inference” explanation cannot account for
Conservative senders — such behaviour among senders would have meant choosing
information at random, for which there was no evidence.

An alternative explanation for the behaviour of some Conservative receivers at least is
not that they didn’t (or couldn’t) engage in the kind of meta-inference required, rather
that they drew strong inferences but rejected them in favour of a more literal/logical
interpretation. Feeney, Scrafton, Duckworth, and Handley (2004) found evidence of
comparable pragmatic inhibition. Their study looked at how people respond to uses
of “some” that are felicitous (e.g. some cars are red) or infelicitous (e.g. some birds
have wings). Reaction time data indicated that people took longer to endorse the literal
meaning of infelicitous examples, suggesting extra cognitive effort was required to reject
a misleading implication (for example, that some but not all birds have wings). The
idea that some receivers draw but reject misleading inferences would help to explain
the presence of conservative senders who avoid making such implications in the first
place. However, given that our experiment was not designed to distinguish between the
“no meta-inference” and “rejected meta-inference” explanations, this remains an area for
future investigation.

6.7 CONCLUSION

We presented a computational framework for modelling the production and com-
prehension of information in a combined experimental and computational study of

177



178

| WHERE THE TRUTH LIES

deception without lying. Our work makes two main contributions. First, we have provided
an empirical demonstration that by formalising the production of messages as the
computational inverse of comprehension it is possible to capture the behaviour of people
seeking to mislead or conceal information from suspicious or naive targets. On the flip
side, we have shown that by casting people’s beliefs about the contingent nature of
message production as probabilistic sampling assumptions, the same model can capture
people’s inferences when they are knowingly or unknowingly the target of deception.
Reflecting on the findings of decades of deception research, Levine and McCornack
(2014) argue that the principle drivers of deceptive behaviour are rational and utilitarian.
People deceive when they need to, making the best of the information they possess given
the contextual constraints. Further, they argue that the practical concerns of deception
detection would be better served by an understanding of message content and the context
in which it is produced, than by the myriad non-verbal cues which have proved relatively
ineffective (see for example, Bond & DePaulo, 2006). By showing that the framework
can capture a diversity of behaviour — that is, production and comprehension tasks in
both cooperative and non-cooperative scenarios and across contexts where suspicion does
and does not naturally arise — we hope to have demonstrated its applicability for further
deception research.

Importantly, by using the framework to examine the predictions that particular models
cannot make, we have been able to test alternative hypotheses concerning the ways
that content and context combine to drive inference beyond the data provided. Our
second contribution is thus an empirical demonstration and analysis of the context- and
content-sensitive nature of meta-inference.

The process of reasoning about the inferences of another, has been studied in a variety
of settings, including concept learning and teaching (Shafto et al., 2014), learning from
goal directed actions (Baker, Saxe, & Tenenbaum, 2009; Shafto, Goodman, & Frank,
2012; Ullman et al., 2009), intentional selection (Durkin, Caglar, Bonawitz, & Shafto,
2015; Shafto & Bonawitz, 2015), preference learning (Jern, Lucas, & Kemp, 2017),
attitude attribution (Hawthorne-Madell & Goodman, 2015; Walker, Smith, & Vul, 2015),
and pragmatic language understanding (M. C. Frank & Goodman, 2012; Franke & Degen,
2016; N. D. Goodman & Stuhlmiiller, 2013; Harris, Corner, & Hahn, 2013; Hawkins,
Stuhlmiiller, Degen, & Goodman, 2015). These studies share a common view that people
make probabilistic assumptions about the way that others reason and act, and that they
take this into account when drawing conclusions and communicating. Our work adds
to this growing body of literature demonstrating that people enjoy the benefits of such
meta-inference, learning more from less when interlocutors cooperate, while guarding
against those seeking to exploit such tendencies in order to mislead.
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WHAT LIES BEYOND THE DATA?

My aim in this thesis has been to examine the assumptions we make about what lies
beneath the data and how we use these assumptions to reason beyond it. I have investigated
the effect of sampling assumptions in a diversity of settings: when the relevant basis
for generalisation is clear, and when it is not; and when the generative process has been
made clear and when it has not. A central tennet of this work has been the idea that
data alone is prospective evidence, not evidence itself. I have considered three broad
classes of prospective evidence: perceptual, conceptual and theoretical — and I have
shown how sampling assumptions interact with each to alter the interpretation and the
effect on inference. The work has demonstrated a wide range of effects that people’s
sampling assumptions may bring about. From a subtle shift in the boundary between
two categories (Chapter 3), to changing the mental representation of a concept to be
learned (Chapter 2). From altering the conclusions people draw from evidence in the
data (Chapter 5) to altering the way they produce data as evidence (Chapter 6). Thus
the studies I have described replicate and extend the core finding in a growing body
of literature: namely, that our generalisations are shaped not only on the basis of the
observations we sample from the world, but also on our assumptions about the processes
and constraints that define the sample in the first place. Put simply, sampling assumptions
can make a difference.

In this final chapter I recap the key findings of my research, and take a more critical
look at the implications of the work as a whole focusing on two important aspects.
Firstly, I consider what the findings say about the issue of sampling sensitivity more
generally., which is the source of some debate in the literature. Secondly, I speculate about
the methodological and theoretical implications of the kinds of individual differences
observed across the studies. Along the way, I highlight various topics for future research.

7.1 TL;DR: THE STORY SO FAR...

Number of categories, category base rates, sample size and sampling assump-
tions interact to affect generalisation boundaries.

The original aim of the studies described in Chapters 2 and 3 was to investigate how
sampling assumptions affect the breadth of generalisation on the basis of low-dimensional
perceptual stimuli. By using a common experimental framework across a one-category
and two-category learning task, it was possible to study how sampling assumptions
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interact with the learning context. The two studies manipulated the number of categories
being learned, the amount of the data provided to learners, the category base rates (where
two categories were involved), and the explanation given for how those examples were
selected. In both experiments, people’s generalisation behaviour was sensitive to the
sampling explanation offered, but in a way that interacted with the other contextual
variables. When learning a single category from examples purportedly sampled to
facilitate learning, people reliably tightened their generalisation in response to additional
(non-diverse) examples. When instead a form of censoring was apparent, the additional
examples had no effect on generalisation. When learning two categories, people made use
of the disparity in the relative base rates of each category to inform their generalisation
decision. But they did so only when they believed that examples were sampled at random
from a pool of objects rather than being sampled specifically to facilitate learning.

Sampling assumptions can interact with mental representations of a to-be-learned
category to drive category generalisation.

In both the one-category and two-category experiments (Chapters 2 and 3, respectively),
small samples (four examples) and large samples (twelve examples) spanned the same
range on the relevant generalisation dimension (which was made explicit to participants).
The original motivation for controlling sample diversity in this way was to support
the inference that any change in generalisation observed in relation to additional
exemples was attributable to the sampling assumption that people had adopted. However,
the very notion of controlling for diversity (or equivalently, restricting examples to
the region of interpolation) pre-supposes a particular representation in psychological
space. Closer inspection of the results of the first one-category experiment (Chapter 2,
Experiment 1) revealed that this assumption was not supported by the data. Thus the
study described in Chapter 2 aimed at investigating how mental representations of the
inductive problem at hand (in this case the category to be learned) and people’s sampling
assumptions can interact. The study revealed two important findings. Firstly, despite the
relative simplicity of the low-dimensional perceptual stimuli used, there were significant
individual differences in people’s mental representation of the category to be learned.
Secondly, additional examples led many people to adopt a different representation, but
this change in representation was influenced by the sampling explanation people had
been given.

Sampling assumptions may take effect during learning when stimuli are encoded
in memory.

While the extant literature (as well as my own research) has focused on demonstrating
important effects of sampling assumptions and the computational underpinnings, ques-
tions concerning the nature of evidence and the representation of such assumptions have
received little attention. The motivation behind the work in Chapter 4 was to begin to



get at one such question: do sampling assumptions affect learning or reasoning? The
new experiment was an extension of the one-category learning experiment described in
Chapter 2 (Experiment 2). The design involved systematically varying both the sampling
cover story that people were provided, and whether it was given before or after the
training stimuli were presented. In this way it was possible to examine whether sampling
assumptions took effect when stimuli were first encoded during training or later, when
memories were retrieved during testing. Although the study should be taken in the
spirit of a proof of concept, it nonetheless revealed two interesting findings. The results
suggested that people’s sampling assumptions impacted category learning and not simply
generalisation performance. The sampling explanation had an effect only when it was
made explicit, prior to learning. When it was presented instead after learning (prior to
testing), aggregate generalisation behaviour was remarkably similar irrespective of cover
story manipulation. The finding casts doubt on the notion of the theoryless learner and
has implications for effective pedagogy as well as the correction of misinformation.

Sampling assumptions can effect the perception of premise relevance in a way
that changes the conclusion drawn from an inductive argument.

The work in Chapters 2—4 examined generalisation in what may be thought of as a
knowledge-poor context. Because the stimuli involved were perceptual, artificial and low-
dimensional there is little background knowledge that can be recruited to assist inference.
Thus the relevant basis on which inductive generalisation should proceed is relatively
clear. The study described in Chapter 5 considered a knowledge-rich scenario, where
people reasoned from high-dimensional natural concepts. In such cases, the relevant basis
for generalisation may not be clear. From the results of the category-based induction
task involving non-diverse premises, the study revealed how sampling assumptions affect
the perception of relevance. When people were told that an argument’s premises were
sampled by a helpful confederate they reasoned that the lack of premise diversity was
relevant to the argument. When instead the sampling process appeared random (and
filler trials involved negative evidence) people effectively ignored the “coincidently”
non-diverse premises.

Reciprocal meta-inference shapes the production and comprehension of evidence:
cooperative and misleading communication strategies may exert bi-directional
influence as a result.

Previous work (N. D. Goodman & Frank, 2016; Shafto et al., 2014) had established that a
form of reciprocal meta-inference shapes the way people reason about evidence both when
producing it and interpreting it. Inspired by these findings, the work described in Chapter 6
used a “deception game” to examine what happens when cooperation is no longer
explicitly or tacitly apparent. The study confirmed that meta-inferential considerations
affect production and comprehension behaviour in situations where deception is motivated
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(but outright lying is not an option). The results suggested an intriguing bi-directional
influence between cooperative and misleading communication. Because some data is
more helpful than others, people look for signs of cooperation in the data and calibrate
their sampling assumptions accordingly. Would-be deceivers mimic the ostensive signs
of cooperation to benefit in their deceit from the stronger misleading implications such
signs afford. To avoid the possibility of this form of deception, reasoners may adopt
a conservative stance towards inference, placing a greater burden of evidence on their
interlocutor.

7.2 ON PEOPLE’S SENSITIVITY TO THE SAMPLE

Inductive inference, characteristically, involves reasoning on the basis of limited samples
of data. Understanding the implications of this data shortage remains a central challenge
for cognitive science. If reasoning on the basis of limited data is to be accurate, or at
least not systematically biased, then it is important for the reasoner to understand the
way that the sample was composed. Yet, a widely held view is that reasoning proceeds
on the basis of what is in the sample (the data) and not on how the data came to be.
Such a view is implicit in many of the models reviewed in Chapter 1. Models which, like
the GCM (Nosofsky, 1986) for example, have found considerable success in capturing
people’s performance in what are ostensibly inductive reasoning tasks, despite the lack
of explicit mechanisms for capturing people’s sampling assumptions. And the view is
expressed more explicitly too. Kahneman’s (2011, ch. 7) notion of what you see is all
there is, for example, captures the idea that because people reason on the basis of evidence
retrieved from memory, they fail to take account of how their own memory sample may be
unrepresentative of the world in ways that bias judgments. Fiedler (2012) takes a different
perspective, where empirical reality and not reasoning deficits play a significant role, but
reaches a similar conclusion. According to Fiedler, while people display considerable
accuracy with regard to the statistical properties of the sample itself, they are largely
oblivious to the origin of the data and the processes that lie beneath it. Fiedler (2008)
provides a striking demonstration of what he terms meta-cognitive myopia, where people
are largely insensitive to sampling concerns despite having sampled the data themselves.

Somewhat in contrast to this view stands the extant literature on the role of sampling
assumptions in shaping inductive inference (e.g., Gweon et al., 2010; Hayes, Banner, et
al., 2019; Hayes, Navarro, et al., 2019; Lawson & Kalish, 2009; Navarro et al., 2012;
Tenenbaum & Griffiths, 2001a; Voorspoels et al., 2015; Xu & Tenenbaum, 2007a), that
suggests that people do take the sampling process into account when reasoning from
the contents of the sample. By demonstrating further important aspects of people’s
sensitivity to sampling, the findings I report bolster the evidence in support of this latter
view. Study 1 (Chapters 2—4) demonstrated that people used what they knew about the
way in which examples had been selected to decide whether or not sample variability
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and category base rates were representative of the to-be-learned categories. While the
sampling manipulations had only a modest effect on placement of the category boundary,
the selective use of such implicit negative evidence has implications for the efficiency
with which categories may be learned, as well as the representation that is ultimately
acquired. Study 2 (Chapter 5) provided what is perhaps a more stark demonstration of
people’s selective sensitivity to sample variability. Whether further positive examples
increased or decreased rates of property projection was shown to depend on people’s
sampling assumption. Together the results demonstrate that what you see isn 't all there is
— what you don’t see may also be relevant, depending on how the sample was constructed.

An interesting avenue for future work is to investigate the discrepancies between these
two bodies of literature which prima facie at least, seem to be in conflict. If people are
sometimes, but not always sensitive to the origins of data, then what might distinguish
these cases? What are the cues that people take account of when forming their assumptions
in the first place, and which cues tend to go unnoticed? In each of my first two studies, the
experiments used cover stories and manipulations that were somewhat explicit regarding
the particular ways that stimuli were sampled. In keeping with the majority of studies
which have explicitly manipulated sampling assumptions (but with Hayes, Banner, et
al., 2019; Lawson & Kalish, 2009 as notable exceptions), my own involved the contrast
between socially sampled data and something closer to “naturally” sampled data. The
results provide fresh evidence that people can reliably distinguish between the sampling
implications when data is “encountered at random” or when instead it is provided by
another to demonstrate (Study 1), persuade (Study 2), or misinform (Study 3). But of
course, everyday encounters with data are often much less clearly signposted. If reasoners
are able to use the data itself to infer the appropriate assumption or to distinguish amongst
alternatives, this might confer significant advantages in terms of staying calibrated with
the data. So, in the absence of more explicit guidance regarding the sample’s origins,
what cues might people pick up on that are embedded in the data itself?

My own findings provide some suggestive evidence in this regard. In Study 1 (Chap-
ters 2—4), I used the same basic training and test procedure employed in Hendrickson
et al. (2019), including identical stimuli. As discussed in Chapter 3 (see Table 3.2), this
provides evidence regarding the “default” sampling assumption that people adopt when
learning from examples of one or more categories. In the one-category case, the default
assumption appears to be consistent with a strong (or helpful) sampling assumption.
Given that category labels are implicitly social constructs, and not a property of natural
kinds or objects per se, it is perhaps unsurprising that the “default” assumption where
no explicit guidance was given (Hendrickson et al., 2019, Expt. 2) and the assumption
that people adopted when told that examples had been “helpfully sampled” (Chapter 2),
produced very similar patterns of generalisation performance. Yet this explanation is
not completely convincing. For if the use of category labels were to reliably signal
that examples were sampled from the relevant concept (per strong sampling), then the
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same default assumption should apply in the two category case. But the effect of “no
manipulation” (Hendrickson et al., 2019, Expt. 1) in the two-category context more
closely resembled that of the “random sampling” manipulation (Chapter 3) than it did
the “helpful sampling” manipulation. Further, despite being given explicit instruction
that additional exemplars had been sampled with helpful intent from the category in
question, the extra information had no effect on generalisation performance in the relevant
condition. This suggests that the implications of “helpfully sampled” data are not always
as clear as might be expected, and that the introduction of “mixed samples” (evidence of
for more than one kind of thing or consequence) significantly impacts the strength of the
sampling assumption adopted.

Study 2 (Chapter 5) also provides suggestive evidence concerning the cues to the
sample’s origin that can be extracted from its composition. The experimental investigation
involved two conditions (BOTH RELEVANT and BOTH RANDOM) which manipulated
both the sampling explanation with which people were presented, as well as the filler
items used in control trials. Aligned with these were two further conditions (RELEVANT
FILLERS and RANDOM FILLERS) that employed corresponding filler items but no cover
story. The overall pattern of results suggested that the filler items (those appearing in
the trials preceding the target trials) contributed to the sampling assumption that people
adopted. The key difference in the filler items was that one set involved negative evidence
(categories not exhibiting the property in question) while the other involved exclusively
positive evidence. Like the introduction of a second category in Study 1, the use of
negative filler items in Study 2 acted to weaken the sampling assumption that people
adopted (see Figure 5.3).

A further intruiging possibility regarding the connection between sample composition
and sampling assumptions, is that the sampling process itself is treated as another
unknown and that inference proceeds jointly over the original hypotheses of interest
and different assumptions about how the data might be sampled. Such a capacity, if
reasoners do indeed exercise it, might go some way to explaining how context-specific
default assumptions are bootstrapped in the first place via a process analogous to the way
that overhypotheses are acquired. Support for related forms of joint inference have been
explored in the literature. Notably, work by Goodman and colleagues (see N. D. Goodman
& Frank, 2016 for a detailed discussion) has found that a version of the Rational Speech
Act framework extended to express uncertainty about the speaker, has successfully
accounted for how people infer the meaning of figurative forms of speech (such as
hyperbole and irony, for example) as well as the use of scalar adjectives (like tall, for
example). In my own work, Study 3 (Chapter 6) suggests two distinct (though related)
strands of evidence for the notion that people jointly consider how the data was sampled
at the same time as trying to draw a direct inference from it. In the comprehension task,
people (or a sizeable sub-group thereof) appeared to vary the strength of the assumption



they adopted based on the contents of the sample; and in the corresponding production
task, people appeared to act consistently with the assumption that this is what people do.

When taken together, I think the findings in this thesis license a cautious interpretation,
that we as reasoners stand somewhere between total blindness to what lies beneath the
data, and fully Bayesian reasoners who integrate over multiple sources of uncertainty
in the data. But although the studies have demonstrated people’s sensitivity to various
sampling manipulations, and for the most part the assumptions people appear to have
made have sensible computational interpretations', just what it means to make a
“sampling assumption” is less clear from my experiments. In the Bayesian computational
models I have described and used throughout the thesis, sampling assumptions are
captured by the likelihood function. But it is interesting to consider what the reasoner’s
own perception of their assumptions are. In the study of meta-inference described in
Chapter 6, it is tempting to conclude that people’s assumptions have a “theory-like” status
and are explicit in a way that might be accessible and recountable by them. Yet, on the
basis of the findings of Study 1, the “theory-like” status seems more questionable. For
example, the experiment described in Chapter 4 found no effect of sampling manipulation
when the sampling explanation was given after the training stimuli were presented. The
possibility arises, that what we refer to as “sampling assumptions” might reflect a number
of qualitatively different learning or reasoning phenomena.

In light of this uncertainty regarding the status of sampling assumptions and the wider
debate regarding the extent to which people make them, the development of methods for
explicitly measuring assumptions seems worthwhile. At first glance, various techniques
seem worthy of investigation. For example, a simple technique would be to present
people with a sampling cover story, and ask them to rate different samples for consistency
with the explanation given. By systematically varying the composition of the alternative
samples and examining the effect on ratings, various insights might be gained. Regarding
the plausibility of proposed cover story manipulations, such information would be useful
in a methodological sense. From a theoretical perspective, there is the potential to
examine how tightly people hold their sampling assumptions in different circumstances.
Techniques for likelihood elicitation could also prove useful. It is easy to conceive a
variety of options: from asking people to provide examples of likely (or unlikely) data
items; to rating alternatives for their relative likelihood. Were any such technique to prove
feasible, it could provide useful insight regarding the way that learning a concept of
interest and learning about the generative process may jointly affect one another. And it is
possible that it may reveal a disparity between the “elicited likelihood” and one inferred
on the basis of Bayesian computational analysis.

A final remark regarding people’s sensitivity to the sample, concerns a matter that
is both a limit to the generality of the work in Study 1, as well as an opportunity for

I'A least, when viewed in the aggregate. It is important to note, as I discuss in section 7.3, that individual
results may vary.
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further research. The experiments involved in the first study demonstrated that people
do consider the process that lies behind the data when attempting to learn from it. But
what the long term impact of such assumptions are is an open question. Do people really
remember the conditions under which data was sampled in the longer term? Fiedler
(2008) suggests that “we do not keep separate memories or archives for experiences that
are subject to different sampling constraints”. An interesting question is whether we need
to keep “separate memories” in the episodic sense, or whether the sampling assumptions
that people hold affect the longer term representation in memory of the “likelihood” of
previous observations. The preliminary investigation I describe in Chapter 4, suggests that
this may be the case, or at the very least does not preclude this possibility. A potentially
interesting line of investigation would be to examine the effect of sampling assumptions
in a multi-stage learning scenario, where different assumptions might reasonably apply at
different stages. After all, category learning outside the lab is rarely a one-sitting affair —
we frequently learn in wicked environments (Hogarth, Lejarraga, & Soyer, 2015) from a
mix of socially sampled and naturally sampled data.

7.3 ON INDIVIDUAL DIFFERENCES

A recurring phenomena observed in the studies I have conducted concerns evidence
of qualitative individual differences in patterns of inference. For reasons I discuss in
some detail in Chapters 2 and 6, there is reason to believe that these differences are not
merely experimental artefacts arising from the particular tasks employed. In any case,
there is nothing unusual about such a finding — it is a commonplace in experimental
studies of cognition in general, and in particular has been observed in experiments
comparable to the ones I have conducted. Navarro et al. (2012), for example, observed
individual differences in performance in a perceptual generalisation task comparable
to the one described in Chapters 2—4, albeit with different stimuli and cover story
manipulations. In a study of the effect of sampling assumptions on the perception of
evidentiary diversity (closely related to the experiment described in Chapter 5), Hayes,
Navarro, et al. (2019) noted considerable individual difference in ratings of inductive
argument strength. And using a signalling game somewhat analogous to the deception
game described in Chapter 6, Franke and Degen (2016) found individual differences in
the production and comprehension of referential expressions.

The prevalence of individual differences in experiments like these represent a challenge
for the researcher that is worthwhile acknowledging. Depending on the research question
being investigated and the approach adopted, it may be preferable to attempt to reduce
the extent to which such differences manifest themselves, to account for them as nuisance
variables, or to fully explicate the differences in some way.? Regardless of the appropriate

2See Tauber et al. (2017) for a detailed discussion of related issues in the context of Bayesian
computational modelling.
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course of action, the issue of individual difference should not lightly be ignored. This
point has been well made in the literature (e.g., Gigerenzer & Brighton, 2009; Webb &
Lee, 2004). I raise it again here because my own studies highlight not only the prevalence
but also the impact of the issue. Namely, that aggregate performance on the kinds of tasks
I have used may represent a poor description of many or even the majority of individuals,
masking the very behaviour that is of interest.

Notwithstanding the methodological issues, a deeper understanding of what is driving

the kinds of individual differences discussed is important from a theoretical perspective.

As with the study of inductive inference in general, the question of individual differences
may be posed at different levels: computational, algorithmic and implementational,
for example (Marr, 1982). Even at the computational level, qualitatively different
explanations can be entertained. A Bayesian computational analysis admits many
possibilities, for example. Differences in prior belief or sampling assumptions are an
obvious candidate. Navarro et al. (2012) inferred differences in both. Computational
modelling suggested that people had different prior expectations regarding the extent of
the one dimensional range they were asked to infer. But as the authors conceived, there is
also the possibility that people entertain alternative representations of a consequential
region even in what might seem like clear cut cases. Indeed, this is just what the analysis
in Chapter 2 shows. Regarding sampling assumptions, Navarro et al. (2012) suggested that
people might vary on a characteristic of inferential conservatism that affects the strength
of assumption they adopt. Computationally speaking, this characteristic is represented
as a continuous linear dimension spanning a weak sampling assumption at one extreme
to a strong sampling assumption at the other. In Bayesian terms, a value on this scale is
something like a prior bias (based on experience or ab initio) regarding the appropriateness
of following the size principle to reason beyond the data. A reasonable psychological
interpretation is that this form of conservatism reflects the reasoner’s degree of confidence
that the observations they are seeing are representative of the concept of interest.

There are other interpretations that are worth considering. While reasoning beyond
the data can be an efficient way to learn, it may negatively impact accuracy where the
underlying assumptions turn out to be incorrect. It is interesting to speculate whether this
might trigger (or induce) an element of loss aversion through the avoidance of regret. For
example, I might feel reluctant to accept a pragmatic implication of an utterance because
it feels like a commitment I am making, rather than the speaker. This idea has been
discussed in the deception literature. The suggestion is that the moral distinction between
outright lies and misleading implications arises in part because the listener accepts some
responsibility for drawing the inference (Adler, 1997). Although it is perhaps more
compelling to consider loss aversion in the context of socially generated data (because of
potential for deception involved), it is interesting to consider whether a similar aversion
might apply in cases where data is generated by the environment. In sum, an interesting
line of future investigation would be to drill down further on the kind of stance that this
form of conservatism represents.
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So far, I have discussed how different sampling assumptions and different priors
(including priors over assumptions) may lead to individual differences in patterns of
inductive reasoning. Staying at a computational level abstraction, there is also the
possibility that individuals vary in terms of the complexity of computation performed. The
work in Chapter 6 raised two points on which individuals might differ. Firstly, individuals
may vary in the degree to which they view the problem to be solved as one of joint
inference regarding the meaning of socially generated data and the manner in which
it was generated. And secondly, individuals may vary in the depth and complexity of
“theory of mind” style reasoning. Further research is needed in both areas to clarify the
scale and impact of such differences.

Lastly, it is worth noting that the presence of pervasive individual differences in
sampling assumptions and inferential stance presents a further opportunity for research.
For each kind of individual difference observed, we can ask a related question: when we
collaborate and communicate on the basis of socially generated data, are we as reasoners
sensitive to such individual differences? For example, to what extent do people as speakers
take account of trait-like characteristics like a tendency for overly-literal interpretation
(per conservative, or weak sampling). Likewise, do people track the “confidence” with
which speakers state their beliefs when trying to infer the strength of their underlying
evidence base? If, for example, people are able to perform the kinds of joint inference
that the results in Chapter 6 suggest, then it is at least feasible that they might do so.
Interestingly, if people track such tendencies over the population of speakers and listeners
as a whole, the possibility for strong bi-directional influence emerges: a tendency for
conservative meta-inference on the part of listeners may be influenced by a tendency to
overstate the evidence on the part of speakers, and vice versa. A fully-fledged theory of
meta-inference may need to take meta-inferential sensitivity to individual differences,
and bi-directional influences into account.

7.4 1IT’S A RAP

I’ve made a little study of how we take data, elementary

and through assumptions calculate its value, evidentiary.

It has close ties to research, some that’s quite historical.

I’ve used stimuli, perceptual and some that’s categorical.

Along the way I’ve noted many individual differences,

which may have their consequences shaping our meta-inferences

I’ve shown how our assumptions affect comprehension and production.
Yet this all barely scrapes the surface of a science of induction...

Yes, this all barely scrapes the surface of a science of induction.

Ok, that’s more Gilbert and Sullivan than Eminem. Perhaps I'll stick to research.
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