
Ç

MTL : A VAX/VMS Compiler for a Ì.lulti-Tasking and Message Passing Language

by

Bevin Reginald Brett, B.Sc. (Hons.)

Department of Computing Science

The University of Adelaide

A thesis submitted for Lhe degree of Master of Science

4th AugusL 198?

xß.3

ACKNO}¡LEGEMENTS

My Lhanks and gratibude go to Dr.C.J.Barter (my supervisor) for the

assistance he has given me durlng the developmenb of this thesls' AIso to

thê many nembers, both students and sLaff, of the Computing Science

Department for the ¡nâny fnteresting conversaLlons we have had discussing

varlous aspects of computing sclence'

DECLARATION

This thesis contains no material which has been accepted for the

award of any other degree or diploma 1n any universlty and, to the best of

my knowlege and belief, contains no material previously publÍshed or

written by another person, except where due reference is made in the text

of the Lhesis.

B.R.Bret't

Ath Augusb,1982

TABLE OF CONTENTS

TABLE OF CONTENTS

SUMMARY

DECLARATION

ACKNO}ILEGEMENTS

Page

1 INTRODUCTION AND RATIONALE

HISTORICAL OVERVIEW OF MESSAGE PASSING AND MULTI-TASKING SYSTEMS

2.1 Introduction
2.1.1 Shared Variables

2.1.2 Message Passing

2.1.3 Correctness

2.3

Irnplementations

I?re 85700/ ú700 ComPuters

RC 4000

Concurrent Pascal

Thoth

VA)Y W S

Simula

COSPOL

Ada

Summary

4

5

6

6

7

I
9

11

12

13

13

14

15

16

2.2.3
2.2.4

2.2

2.2.1

2.2.2

2 2.5

2.6

2.7
2.8

¿.

2.

2.

Page

1T

17

18

19

20

21

21

21

22

23

23

24

25

THE VAX-1 1/WIS ENVIRONMENT

VAX-1'l Architecture

Virtual Addresses

@erands, esPeciaIlY Queues

Instructions, Registers, and Addressing Modes

Procedure Calling.
Tt¡e WS OPerating SYstem

Address space laYout

P1 Spaee and the USER Stack

P0 Space, the Concept of an Image, and the Heap

Summary and Address Space Layout Diagram

WS Processes

WS Event Flags and Asynchronous System Traps (ASTs)

vtts r/o

3

3

3

3

3

.1

.1.1

.1.2

.1.3

.1.4

3.2.2
3.2.3
3.2.4

3.2

3.2.1

3.2.1.1
3.2 .1 .2

3.2.1.3

Pa ge

27

28

28

28

28

28

29

29

29

30

30

30

31

31

32

32

33

33

33

34

35

35

35

36

36

37

37

39

THE MTL LANGUAGE

4.1 Goals

4.2 Restrictions to Pasca1

U .2.1 Fi les
4.2.2 G0T0r s

4.2.3 Operators and Predeclared Roulines

4,2.4 Assignment and TYPe Checking

4.2.5 ScoPe Ru les

4.2.5.1 Scope of Idenfifiers
4.2.5.2 Record Field Names

4.2.6 Complexity Restrictions
4.2 .7 Bugs

4.3 General Extensions

4.3.1 fINCLUDE directive
4.3.2 Modules

4.3.3 Relaxed Declaration 0rdering

4.3.4 EXITLOOP and RETURN statements

Ll.4 Extensions Supporting TASKS

4.4 . 1 Goa1s

4.4.2 TASK roubines

4.4.3 CREATE statement

4.4.4 RESCHEDULE, SLEEP, and AIJAKEN procedures

4.5 ExLensions Supporbing MESSAGES

4.5.1 Goals

4.5.2 MESSAGE variables
4.5.3 BUFFER variables
4.5.4 BUFFER READERS, BUFFER_}IRITERS, BUFFER-MESSAGES

4.5.5 SEND and RECEM statements

4.6 SummarY

Page

40

40

40

41

44

45

q5

46

48

49

50

50

50

52

5ll

56

58

59

ó0

DETAILS

'5-1
5.1 .1

5.1.2
5.1.3
5.1.4
5.1 .5

5.1.6
5.1 .7

5.1.8
5.1.9
5.2

5.2 .1

5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.8

OF THE MTL IMPLEMENTATION

It¡e MTL Compiler

CoaIs

An Overview of bhe Compiler

Speeification of bhe Grammar and SenantÍc AcLions

The Symbol Table

HEAP Management

The Semantics Roubines

Generatlng Code fron the Code Tree

Producing the Object Module fron the Internediabe Code

Summary

The MTL Run-time System

Goal s

An Overview of the Run-Lime Systen and Environment

Heap ManagemenL

The Multi-Tasking Subsystem

The Message Passing Subsystem

Tt¡e I/0 Subsystem

A Problem with Asynchronous SysLem Traps

Summary

Page

61

63

64

ó4

65

66

66

67

67

68

68

69

70

71

EDÏTÏNG AS A I'IESSAGE PASSING AND MULTI-TASKING PROBLEH

6.1 Ttre Application of Concurrency fo Editing
6.2 Ïhe Basic User Environment

6.2.1 File Sub-system

6.2.2 Scene Programs

6.2.3 VDU Suf system, the Human fnlerface
6.2.4 Subsuming "the systemrl

6.3 Implementation fssues

6.3.1 Inberactlve L/O management

6.3.2 Human LimÍtations
6. 3 .3 Te rminaLion

6.3.4 Correctness

6.3.5 Error Management

6.4 language Demands

6.5 Summary

Page

T2

72

72

73

74

75

75

75

75

75

76

76

76

77

77

77

78

78

78

79

80

80

81

RESULTS

7.1

7.1.1
7.1.2
7 .1.3

7.1.4
7.1.5
7.1.6
7.2

7 .2.1

7 .2.2

7.2.3
7.2.4
7 .2.5

7.3

7 .3.1

T .3.2

7 .3.3

7.4

7.4. 1

7 .4.2

7 .4.3
7 .4.4
7.5

AND CONCLUSIONS

I-a nguage Implementat ion

The Run-bime Heap

Procedures and Functions

The Performance of Message Passing

Context Switching

vo
Shared Variables

Operating System Support

Heap Management

Process Creation and Deletion
Mulfiple Address Spaces

I/0 and other Asynchronous System Services

Impact on Other UtilÍbies
Hardware Support

Heap Management

Procedure and Function CaIJ.fng

Context Switching bebween Tasks

Language Design

Message Passing Mechanism

Asynchronous Versus Synchronous Communication

Communication Paths

The Affect of a Mono-Processor fmplementation

Overa11 Conclusions

Page

82

85

87

88

89

90

91

REFERENCES

APPENDICES

A. MTL task creation rates v. ws suÞprocess creation rates
B. user writlen Bounded Buffer cpu-tines v. Runtime system
C. MTL Procedure Ca1l1ng Rates

D. MTL and Pascal New,/DÍspose Rates

E. MTL Context Swibching Bates

F. MTL Message Transmission Rabes

G. The ODDIJORDS Problem

't

I

I

i

I

SUMMARY

The lasL decade has seen increasing awareness of the usefulness of

concurrency in programming languages. Various proposals, including Message

Passing and Remote CaJ-1, have been put forward as mechanisms for

handling the concurrency in a structured way. Yet no implementations of

any of the proposals has found wide accepbance. Many of the proposals have

either remained un-implemented, implemented on a specialized operating

system, or interPreted.

This lhesis describes the development of MTL' a compiler for a

language wifh both multi-tasking and message passing lhat generates

execubable code for a DigÍtaI Equipment Corporation VAX-1 1/WS system. The

code generaled by bhe compiJ.er is capable of interfacing with al-l other VMS

languages, and is almost as efficient as any procedure-based language

implementation on VAX/WS.

Various suggestions are made about how Lhe few remaining

inefficiencies could be removed, and about what features hardware and

software require to support such languages.

An editor was designed and implemented using MTL that took advantage

of the of concurrency to provide a more versatÍ1e user Ínterface. The

implementation of Lhe ediLor was to be a tesL of the adequacy and

efficiency of MTL but it was found that if afso lead to new view of the

userfs environmenl and the relationship of the role of the editor in

relation to the operating sysLem and other utÍlities.

The application of the concepts of concurrency and message passing to

editing unified the whole userrs environment in a system that is extremely

productive and free of limitations, thus showing the fundamenLal power of

these concepts.

Chapter 1

INTRODUCTION AND RATIONALE

Over the last decade the search for comprehensive and power ul hJays

of structuring programs has lead to considerable research Ínto concurrency

and message passing. It has been shown that these mechanisns can lead to

natural and sirnple solutions bhat reflect the structure of many problerns.

A large number of different proposaJ.s for languages that incorporate

concurrency and message passing have been put forward; however there has

been a tendency for these proposals to be given sinpJ-e interpreLer

implemenlations or noL to be implemenLed aL all.

Research has reached a point where serÍous implementation efforts are

necessary to discover and solve the remaining difficul-ties that are

hindering the widespread use of these languages. Such an inplementation

must address the problems of efficient task crealion, context switching and

rnessage passing. Feedback from these implementations can be used to fine-
.tune Lhe language proposals, as welL as suggest further areas of research.

The recent developmenL of Ada is an example of Lhis working in practice.

Some of the implementation efforts should be based on conventional

operating systems and architectures to see if these impose any inherent

difficulties. This thesis is primarily a description of one such

implemenLation, a language called MTL (Messages and Tasking Language). The

implementation was done on a VAX-1 1/780 running the manufacturer suppLÍed

VAX/WS operating sysLem.

The archÍtecture of the VAX-11 series is modern but conventj.onal,

with a strong emphasis on support for such languages as Pascal, Fortran,

and Cobol. Similarly VHS is an efficienL conventional operating system that

supports multi-tasking but was not designed wiLh message passing languages

as a strong consideration. Because of the obvious impact of of the VAX-

111780 and WS on this project Lhe reader is given introduction Lo both in

the third chapter.

It was decided Lhat a significant piece of software would be designed

and written in MTL to check on both 1ts sufficiency and efficiency.
Several projects were considered, including a compiler (using concurrenL

tasks for the various 1exical, syntatic, semantic, and listing phases) or a

series of mathematical exercises (such as a Sieve of Eratosthenes, sorting,

etc) that would use concurrency in unusuaL ways.

The eventual choice lras a screen editor. This project stressed bhe

I/O aspects of multi-tasking as well, as allowing the author !o express some

ideas aboul editing that have come out the University of Adelaidets

development of the Ludwig screen editor[8480]. It was also hoped that fhis
unusual design and implementation of an edÍtor would suggest some

interesting and novel views of fhe how an editor could be used and the sort

of mechanisms it could provide for bhe user. This was indeed the case, and

ChapLer Six describes the resulting design with an emphasis on the use of

concurrency at a user interface level in a screen editor.

fnLeractive computing, with the programmer or other user on-Line fo

the compuLer, has also become increasingly well recognised as the rnost

friendty and most productive approach to using a compuLer. However bhis

has happened so fast that the software, unlike the hardware, has been

unable to keep pace. At any given time when there is a reasonable number

(say ten or more) users logged in to one of the universityrs VAX-'11/780

computersr more than 751 of them will be editing Lext. The main edilor
used, Ludwig, is a powerful screen editor that provÍdes many facilities for

manipuJ.ating and correcting text. However these features are not available

for correcting interactive inputs to the many other facets of the VMS

system. More over it is very difficult, if not impossible, to directly
inlerface any editor with any other ufilify (such as a conpiler) on the

system. All this Leads one Lo suspect that in the future the problem of

connecting various components of the system together is going to look less

hierachical and more netwórk-like. Il also suggests Lhat the primary user

focus in this network is going to be the VDU and the editor (not

necessari.J.y just text but also pictures) bhat controls it. Because of this
rol-e for message passing languages (the network-like appearance will demand

this) and lhe importance of editing, a nalural union resulLs - Lhat of a

screen editor written in a language that supports message passing.

There are available, under VAX/WS, the manufacturert s VAX-'l 1

PascaLIDEC79] compiler and implementations of two languages that support

concurrency and or message passing, Maciunast Mercury interpreterlMASll and

Roperfs Cospo1 interpreterIR08'l]. By using these for comparing the speed

of execution of various aJ-gorithms a rough estimate of the efficiency of

MTL could be obtained. In particular I was interested in the relative
efficiency of message passing and procedure ca1ling. Given the rapid

deerease in lhe price of memory it is apparent that for this conslruct,

2

which would use tibtle memory no matter how badly implemented, efficiency
corresponds to speed of executlon. From the oulset it seemed plausible

that message passing could, in some circunstances, be at least as fast as

procedure calling. This encouraged me to place as much emphasis as

possible on fast message passÍng as it seemed an important phenomona to

observe and document. A surprising result of this thesis is that bhis

effect can indeed be observed on an archÍlecture sueh as that of the VAX-11

which does not have special machine instructions for message passing but

does have them for procedure cal1ing.

3

2.1

Chapter 2

HISTORICAL OVERVIEI.'¡ OF MESSAGE PASSING AND MULT]-TASKING SYSTEMS

Introduction

There has been a growing awareness of the inadequacies of purely

sequenbial, procedure based languages for implementing natural solutions to
simple and complex problems. Tl'¡e classicaL Odd-Word-ReversaL Problem,

posed by DijkstraID172], is an example of a problem thaf has, as ibs

soluLion, a multi-phase algorithm whose implementation is not obvious in an

AIgol-like language.

The problems of running several- sequential- algorithms simultaneously

in one computer-system were initially addressed at the operating system

level. Because operating systems had to be both reliable and efficient, a

theory of shared data sLructures vüas developed. Programmers became ai.¡are

that lhey could gain more flexibility by using a system on which several

communicating jobs could be run.

lhis discovery is J-eading to the introduction of more features to

support this mode of programrning into both programming languages and

operating systems.

Both because of the cost of computers (a factor rapidly diminishing
in importance but historically the most significant) and because it seems a

naturaL way of solving some problems, it is desirabLe to have severaL

algorithms executing rrconcurrentlyrt on a computer system. This thesis uses

the words rrTASKtr and 'rPROCESSrr to refer to a single one of these

algorithms. These basks may belong to users who dontt even want to know of
the otherrs exisLence, or the tasks may be ceoperating in solving a

problem.

It was soon realized that the complexity of computer systems could

only be managed through a theoretical basis for secure multi-Lasking.
Ideally this theory should provide a calcul-us that could be applied to a

system to prove that only legitimale actions could be performed by tasks.

fn practice this ideal has only been partly reached because of the

complexity of the systems. In spite of this diffieuLty the research has

provÍded tools and insights that simplify the design and implemenLation of
secure systems.

4

2.1.1 Shared Variables

The implemenbation of multi-tasking may require bhe use of shared

variables to store the state of some of the resources being managed by the

system. The syslem data base that describes the state of bhe various tasks

is a shared variable, as is the data base describing the state of each

device. The devices themselves, such as disks and tapes, provide a storage

area Lhat may be shared between several basks and hence can be viewed as

shared variables.

Many of the advances in system design and implementaLion have

resulted from the need to naintain the consistency and security of these

shared variables because their accidental or malicious modification can

have a severe impact upon the usability of lhe sysLem. These advances are

reflected in alI parts of the system, from having indivisible instructions
in the instrucbion set through to facilities such as semaphores in high

Level Languages.

Dijkstrars semaphoresIDI68] provide a simple yet effective mechanism

for the various users of a resource to vol-untarily synchronise their access

to it, but do not enforce their usage. This enforcement could be gained in

a high level language by only allowing access to the shared variables
inside blocks of code fhat are surrounded by the appropriate P and V

operations, but this does not prevent Lheir uncontroll-ed modification by

either run-away programs or malÍcious or ignorant users writing in more

primitive languages. Furthermore rrsolutions to apparenlly simple

communÍealions problems are sometimes disproportionately complexrrILI77]

when using semaphores to synchronise Lhe tasks.

The addition of processor modes, which impose resLrictions on

instructions (eg. HALT is only allowed in a privileged mode) and the use of
hardware memory proLection solved this problem at a fundamental leve1. The

only way to change from a fesser Lo a more privileged mode is via a system

ealt or machine instruction that goes through a very smal1, hence

manageable, inLerface.

A theoretical- underpinning for Lhis approach was proviOeO by the

Monibor concept. The system provides },l,onitors that nanipulate resources,

and which have to be caIled at a privileged processor mode. These Monitors

validate the request and perform it on behalf of the task, sometimes

returning information to it.

5

An alternative approach to calling the Monitors, which has an implÍed

detay until Lhe l'{onitor returns to the task, is to have one separate Lask

controlling the resource. fhe separate task has a queue of requests from

tasks that wish bo aecess the resource which it controls. These requests

are processed sequentially as they are removed from the queue. Thtis

approach works well for resources where Lhe request may take some time to
satisfy, such as an I/O device. A queue of requests can be implemenbed as

a data structure with the Monilor provÍding services for en-queueing and

de-queueing the messages.

2.1.2 Message Passing

Such an approach is calLed Message Passing. Various forms of message

passing have been proposed and used since the concept was firsf inbroduced.

Choi has classified the various alternatives by splittÍng the communÍcation

of the message from the meLhod of synchronization. He cfassifies the

possible behaviours of a user task as (A) Request a service, (B) Wait until
the server accepLs the request, and (C) Wait for a reply from the server.

The server has two actions, (D) hrait for a request, and (E) Reply to a

request. Various resLrictions are placed on the ordering of Lhese events

to enforce bhei.r inbended semantics.

Message passing aLso offers hope of a Lheory that supports

distributed computing, with the N tasks spread, perhaps dynamically, over M

processors. In this environment, with N and M reasonably large, the only

communication meLhod currently viable is message passing over some

transmission media.

2.1.3 Correctness

The need for software bhat is transportable between operating systems

is a problem that may be solved by consistent implementations of
programming languages. Ihis is turn requires a precise definition of both

bhe synlax and semantics of the language so that it can be decided whether

the behaviour of translators (compilers, inLerpreters, and even source-text
to source-text translators) is correct or erroneous.

It may be possible to use this precise definition of the languagers

semantics to prove that a progran is ttcorrectrtin a mathematical sense.

Unfortunately for many programs the current proof techniques lead to proofs

many times larger Lhan the text of the program, and for other programs (eg.

6

interactive texb editors) Lhe precise definition of what the program should

do is often as large as the text of the program, and therefore subject to
Itbugsrr in the same way as Lhe software.

In practice a proof of some aspects of a programrs behaviour Ís often

adequaLe, or a complete proof for small, crÍtical, portions of the program.

For instance, such proofs can show that a data base is correclly
inLerlocked without consideration of its contents. The proof Lechniques

are also useful in debugging programs because they provide Lools for

deducing which part of bhe algorithm is incorrect, given lhe behaviour it
is exhibiting, and aLso by providing reassurance about some componenLs of

Lhe system.

A method for showing the correctness of tasks using semaphores to

implement a critical section that modifies a shared variable has been

provided by ttabermannlH472]. He applies his technique to a bounded buffer,

a probJ-em we shal1 be returning to in section 5.2.5, where a bounded buffer
is used as the implemenLation of message passing in MTL.

DijkstraID175] addressed the problem of non-determinism by

introducing a language with non-deLerministic constructs, and then

providing a caLculus for both formal-ly deriving such programs, and for
showing them correct. There was no concurrency in the language. However

it did show that the exact order of executÍon of the program was not only

unnecessary for a proof, but that ofLen a simpler proof could be

conslructed that ignored the precise history.

HoareIH078] combined rnessage passing and non-delerministic commands

in the language CSP, using an informal definition of the languagef s

semantics. This spurred on efforLs to provide a suitable formal model of

such mechanisms for proof bechniques. One such atLempt is IFR?9].

2.2 ImplemenLations

It is considerably easier to develop interpreters or compLete

operating systems for message passing and multi-lasking languages Lhan to

develop a compiler and runtime system. Both interpreters and complete

systems alfow Lhe impLementor considerably more flexibility in where and

how to solve the concurrency and efficiency problems.

7

2.2.1 The 00/86 00 Com ulers

In the early 1960ts the Burroughs Corporation t0R73,BU71l started

producing a series of machines thab supported multi-LaskÍng with shared

memory between the tasks, (the B57OO and 86700 range) . Both ihe

archiLecture and the operating system were designed to support AIgol-like

structured languages with the addition of multi-basking.

Each task has a sLack of its own, within which the activation records

of each procedure or function are stored. Also it can have references to

the stack belonging to its parent task, or any other ancestor. The stack

in turn can conLain descriptors to oLher memory segments. These

descriptors are protected by a combination of the hardware and Lhe system

software, and speci fy eiLher Lhe location in physical memory or the

location in the backing store of lhe segment.

Tasks are created by specifying a procedure, possibly with

parameters, and a Task_Variable in a Process Statement. By assigning

values Lo fields in the Task-VarÍable before using it in a

process Statement various altribuLes of the Lask (eg priority, stacksize)

can be specified.

A Continue Statement, with either an implicit or an explicit naming

of the destination task, causes the current task to be suspended and the

oLher to continue from where it last suspended al its ConLinue StatemenL.

This altows co-routining relationships to be sel up easily.

The task dies when either it exits from Íts main level procedure or

when its parenl exits from any btock which the task is capable of

referencing. By this means the deallocation by the parent of variabLes

accessed by the task can not damage the environment of the lask, because

the task itself dies. It is possible to set up independent Lasks, bul in

this case parameters must be passed by va1ue.

Control and communication between tasks is based on shared variables,

on event flags, and on software interrupts. Event flags have two

attributes, Happened and AvaiLable. A llait Statement causes the current

task Lo wait until the specified Event Happens. A Cause_Stalement makes an

event Happen. A Procure_Statement waits until an event flag is Avail'able

and then procures it, later to release it with a Liberate Stalemenb.

Interrupts are sections of code to be executed when the event is Caused.

I

This archÍtecture and operating system rùas one of the earliest
supporting multi-tasking lnside a single address space. It has hardware

support for lhe inter-task memory protection and for Lhe eactus-stacks

required for the nesting of Lasks. Some decisions (eg. Lhe decisÍon bo

kilt sub-tasks when Lheir parent exibed a critical block unlike Ada which

suspends the parent until the sub-tasks terminate) have been found to be

non-optimal but the influence of design of these machines on MTL can be

clearly seen. This may partly be due to the fact that my initial
introduction to cornputing was on a 8ó700.

2.2 .2 RC 4000

Between 1967 and 1969 Brinch Hansen tPBHT3l and others designed and

implemented a multiprogramming syslem for the RC 4000 machine built by

Regnecentralen in Denmark. The llonitor was designed as a bridge between

the hardware and a virtuaL multiprogramrning machine, not as an operating

system. Indeed one of the aims of lhe RC 4000 system was to aLlow operating

systems Lo be changed on the fly, even running severaf operating systems

simultaneously.

The RC 4000 sysLem very carefulJ-y defines the concepL of a process

and the mechanism for interprocess communication in a vray that was not

dependenL on the particular operating sysLem. The Processes are

hierarchical-Iy organised and are able Lo create sub-processes dynamieally,

providing the resources required by the sub-process out of their own

avai lable resources .

The l{cnilor maintains a pool of sma1l (eight machine words) message

buffers and maintains a single queue of messages for each process. Message

operations are Send-Me ssage , l^la it-Me ssage , Send-An swer , and Wa it-An sI^Ier .

Each proeess has a quota of message buffers, thus preventing it using up

the whole messáge buffer pool. 1o ensure that none of the answering

processr s quota is required for the transaction the same buffer is used for
answer as was used for the message.

I/O devices are treated as processes, performing I/0 operations as

requested by messages.

9

Brinch Hansen Lj.sts several advantages and disadvantages of the RC

40OO system. Of these, Lhe ones that seem directly related to message

passing are:

Advantages. . .

() It implements a nucleus whÍch was successfuÌly exLended to a spooling

environmenL and several real-time systems,

() it was small and simple to irnplement,

() it was relÍable and quickly made almost error-free,
() it was adequately documenLed.

It is probable that the use of message passing as the inter-process

comrnunicaLion mechanism greatly contributed to these advantages being

altained.

Disadvantages. . .

O tne system does not make it easy to debug time-dependenf errors,
() Lhe high cost of verifying monÍtor caLls and doing other protection

cheeks at run time,
() tfie only way of achieving muLuaL exclusion between multiple processes to

a daLa base is Lo have a single process managÍng the data, and

sending it requestsi aL a maximum throughput of 500 messages per

second this was too s1ow,

() the use of cooperating processes is loo expensive on resources, hence

designers of such features as multi-Lerminal- support have tended to

use one complex process rather than a group of cooperating processes,

() an artificial restriction - the size of the message buffer pool,

() an artificial data restriction - a fixed length message size,

O an inefficient implementation - physical copying of messages.

Apart from the first, none of these problems are inherently due to

message passing, reflecting instead other aspects of RC 4000rs design.

These problems are aLl. significant, and should be kept in mind during

the design of any message passing or multi-tasking system. The problem of

debugging concurrent programs is one fhat is going to require considerabfe

further research and experience. MTL does not do run-time checks of

moniLor ca11s, or other protection checks because the compiler does the

usual Pascal checks on parameter 1ists, and since MTL is a single user

environment it does not matLer if the user tries lo subvert the mechanism -
10

he can only damage himself. MTL does have shared variables, and it is
possible to impLement a conventional moniLor protecting those variables.
Large numbers of cooperating processes can be maintained at a very small

cost in resources, the overhead per-process being around 100 bytes of

memory. Neither of the artificial restrictions apply because MTL uses an

indefinitely extensible heap for its messages and these can be any Pascal

Lype. Messages are passed by poj.nter switching, taking advantage of the

common address space beÍng used by the tasks.

2.2.3 Concurrent Pascal

Following his experience wilh RC 4000, þinch HansenlPBH75J designed

the Concurrent PascaL programming language which extended PascaI to include

the concepts of Monitors, Processes, and CI asses (a moduLe that

encapsulates variables that belong to one process or monitor).

Processes have private data, a sequential program, and a set of

access rights. The access righLs list the shared data thaL the process can

operate on. Processes do not operaLe direcbly on the shared data, but use

the appropriate l4,cnitor call-s. Monitors provide exclusive access to the

resource they control, except at poinLs where the process must be

suspended. If the process is suspended, the same Monitor must resume it.

Concurrent Pascal has been used to develop the S0L0[PBH76],

TRIOIPBH80], and MULTIIKR82J operaLing systems for bhe PDP-11 minicompuLer,

and has been implemented on such machines as fhe UNIVAC 1106tDU821. The

compiler generaLes an absLract instruction set which may be implemenLed as

threaded code (Solo and Trio) or compiled tDU82l (although due to memory

requirements this was later changed to use a modified form of threaded

code) .

KruijerIKR82J found the lack of dynamic process

in Concurrent Pascal- when implementing MULTI ' bub

concLusion thal system software written in Concurrent

high reliabilify, adaptabilily, and portability.

cre at ion

draws an

a drawback

prrorl
have a

d

Pascal will

These experiences with Concurrent Pascal- show thal it is possible for
such high leveI languages to be used to implement reliable operating

systems, and that such implementations are considerably easier than bhe

more traditional approach of using assembly Ianguages. However the

extensive use of a kerneÌ and threaded code on all- these sysLems fail-s to

11

release the fu11 computing potential of the host machine. Concurrent

PascaL does not support message passing or the dynamic crealion of
processes and thus these Ímplementations do not address the main

implementation problems of languages such as MTL.

2.2.4 Thoth

ThothtCHT9l is a portable real-time operating system that uses

messages as the meLhod, of inlerprocess communication. The processes are

grouped together into teams which share a common address space and set of

resources. Processes in the same team can therefore also share memory

between themselves, but not with other teams. Message passing provides the

only method of inter-team communication.

The primitives Ímplemented by the Thofh kernel are availabLe to the

processes as system cal1s. Ænongst oLhers there are

() . Create(function , stack size) ,

() .Send(msg,id),
() .Receive(msg) and .ReceÍve(msg,id),
() .RepIy(msg,id),
() .Forward(msg,id).

Processes are created with a specified stack size, organized into a

dynamic tree, based on a creator/creation ordering. Each process has a

priority associated with it, and pre-emptive scheduling based on this
priority and on machine interrupts is provided. However the priority of a

process in a dynamically created team is only with respect Lo olher members

of the leam. Thofh blocks .Sending processes until the .Receiving process

.Replyrs, lhe .Rep1y using the same buffer as the.Send did (as in RC

4000).

The grouping of tasks in a single address space into teams is simil-ar
to the 85700/86700 design. Fl¡wever Ihoth also supports the use of messages

to communicate between different teams which greatly increases the

flexibility of the system by allowing controlled comrnunication between

objects that can not access each otherrs address space. Ihis means the

same mechanism can be used between team members, who trust each other

i.mplicitJ-y, and with other Leams which are not so trustworthy.

12

2.2.5 VAX/WS

VAX/WîS|DECSOl processes have separâte address spaces, but there are

system services that enable processes to share secLions of memory.

processes may also share event-flags wilh others, and these event flags may

then be used to synchronise them. Event flag are not senaphores because

aIl processes waiting for an event flag are released when the event flag

becomes set. Devices ealled Maifboxes allow processes to communicate with

each other, trealing the device as a normal file.

The structure of VAX/WS with respect to multi-Lasking and message

passing is covered in more detail in Chapter 3.

2 .2 .6 Simul a

One of the best known, and most commonly available, languages that

supports a non-proceduraf flow of controL is Simu1atBI73l. Marlin[14A79-2]

gives a formal definilion of the flow of conlrol in Simula. For our

purposes it is sufficient to mention that Simu1a provides dynamic creation

of co-routining classes, thal the flow of control between the various class

instances is explicitly defined by the language. The class instances each

have algorilhms and private data strucLures, as well as access to the data

structures of other instances.

In Simula the flow of control is ful1y specified by lhe program and

is thus completely deterministic. This differs from such languages as

Concurrent Pascal and Ada where the flow of control Ís not specified. It
is a rare example of a widely used routine-based system that needs more

than a simple stack for the sLorage of the activation records, and as such

it indÍcaLes an area (simulation) where a need for concurrency has long

been recognised, with Simula satisfying most of the requirements.

If concurrency can be implemented in languages as efficiently as co-

routining etc. has been in Simula (and there is no obvious reason why thÍs
should not be possible) it can be expected that many of the applications

for Simula will al-so be valid candidaLes as applications requiring
concurrency. Furlhermore it r", Oroufbe easier to dynamicalJ.y gather data

from such model-s because the flow of control is not so imporLant.

13

2 .2.7 COSPoL

COSPOLIR081] is a compiler generating code for a virtual machine that
is irnplemented as an interpreter. The language supports message passing,

and all I/O ís regarded as message passing to special tasks calLed Reader

and llr iter . A para1Iel-command executes a list of tasks concurrently,
Lerminating only when all of lhe tasks terninabes. Because there is no

procedure calling lhe number of Lasks possibLy active at any given time can

be determined by the compiJ.er.

The inLerpreter uses a round-robin scheduling algorithm to control
the execution of tasks, and terminales when no task is capable of
execution. It inherits a problem from bhe PascaÌ runtime system. If a

task waits for a message from Reader (corresponding to a Pascal READ

statement) ¡ne interpreter wouÌd read from the fi1e, thus the other tasks

are not able to continue execution. The problem was partly alleviated by

delaying the read from the file until no other tasks hrere capable of
execulion.

COSPOL has no procedure calling mechanism, and rescheduling is only

done when the stack used to evaluate expressions is empty, hence Lhere is
no need Lo maintain multiple stacks in the interpreLer. COSPOL only
rescheduLes as a consequence of message passing.

Messages are stored in an interpreter implemented heap because the

Pasca1 heap proved too awkward to use. lbe work of Marlin[M479-1] on

impLementing heaps in Pascal ÍnLerprebers was used in the design. Message

queues hrere mainLained for each task and each type of message on a strictly
FIF0 system. Message variabLes are poinLers to heap objects. Transmission

is done by copying the heap object and enqueuing a pointer to the copy

because COSPOL semanbics allow access to a variable which has been sent to
another task , but a compiler optirni zation detects the case where the

original object can not be accessed and in such instances avoids the copy.

Message reception is done by copying this polnler into the message

variable. There is no limit on the size of the queues other than that
imposed by the implementation.

COSPOL iLlustraLes both the advantages and disadvantages of using an

interpreter for implementing a language. In particular there is the ease

of implementation and modifieation of an interpreter versus the facLor of

14

AdI22

aboul 20 or 30 between the cpu Lime used to interpreb a program using

cospol and the time required lo execule it via compiled code.

a

In 1978 per Brinch Hansen[PBH78] introduced the Distributed Processes

concept as a suggested sotution to the problem of implementing real-time

algorithms on distributed processors. In DP he invisaged one process per

processor, with the inter-process comrnunicaLion being performed by a

procedure-calI mechanism.

The suggestion has been embodied in the AdaIMI80] rendezvous because

Ada has been designed to cope with a closely related problem' that of

embedded syslems. The remote-calL appears to the caller as a simple

procedure call, wÍth both input and output parameters. The called task

accepls the calt by exeeuting an Accept StaLement for the appropriate

Enlry Declaration. The Accept_slatement includes a sequence-of-statements

which are executed before the calIer is released from the rendezvous, and

during these statements Lhe input parameters are obtained and the outpuf

parameLers returned.

The rendezvous concept is similar to synchronous message passing'

differing only by the addition of output parameters. This addition makes

remoLe-caff an excellent mechanism for situations in which en immediate

reply Ís expected because it provides an extremely efficient mechanism for

returning results. The calling task waits until the acceptor has refeased

it from the rendezvous, thus there is no buffering between lhe calling task

and the acceptor.

on Lhe other hand message passing is preferable for pipe-line style

communication, where each component is rnassaging lhe information and then

passing it on. It also enabLes Lhe caller to receive a delayed result some

!ime after the request, thus allowing it to perform useful work while

awaiting the reply from a request that will take some time to complete'

Message passing packages can be easily written' including bounded

buffers or synchronous mechanisms, but experience with MTL indicates fhat

the implementation of message passing packages will cause markedly slower

run-time performance lhan the direct inclusion of message passing into bhe

language (see appendix B). Ada would allow inplementations to do lhis, as

the Send and Receive implementations of MTL can be regarded as efficient

15

replacements of a Buffer task.

Since message passing and

roles they should be regarded

competilive proposals.

remote-call are best suited to different
as complementary mechanisms rather than

2.3 Summary

Proof techniques for many programming language concepts, such as

those of HabermannIH472] and DijkstralDI75], have always lagged behind the

implemenLation and usage of those concepLs. Ihey are sti11 incapable of
providing correctness proofs for most large prograns. Nevertheless such

efforts have successfully indicated which programmÍng techniques should be

used and which should be avoided in the construction of rel-iabIe software.

Concurrency has been shown Lo be a useful programming construct but
ib is only just appearing in the major programming languages (except for
Burroughs Extended Algol). ILs availability has been increasing but for
the most part implementations are dependent on eilher interprelers or

specialised operating systems.

The problems caused by the use of shared variables have proven

manageable. A variety of different levels of control- can be enforced upon

them, from being completely unproLected, to being guarded by either a

monitor or a task, the level of protection being chosen Lo maLch the

requirements of the problem being solved.

Message passing has been used as as an effective and flexible
mechanism that enables the programmer to exploit the benefits of
concurrency. It is not necessary to eslablish an arbitrary master-slave
reJ.ationship between two activities fhat are inherently paralleI (the

problem with procedures) , nor is it necessary Lo explici,tly transfer
control between the various activities (the problem with cæroutines) , but
rather each activity is executed when it is required.

The MTL compiler and runtime system Ímplements concurrency and

message passing on a machine with a non-specialized operating system and

conventional architecture.

16

Chapter l
The VAX-1 1/WS Environment

The VAX-1 1 series machines are a recent product of the Digifal

Equipment Corporation, and WS is the operating system they have developed

for these. This chapter is intended to give the reader an underslanding of

both this machiners architecture and the operating system sufficient for

bhe rest of this thesis. It is not inLended to be a complete description

of either the VAx- 1 1 architectureI DEc79-A] , or ùhe WlS operating

systemIDECBO-SS] but only those parts that affect the implementation of

multi-tasking or message-passing languages are covered in any detail'

3.1 VAX-1 1 Architecbure

3 1 .1 Virlual Addresses

VAX is an acronym for Virtual Address eXLension, which is a reference

to the relationship between the VAX-11 series of compulers, and DECrs PDP-

'11 range. The virtual memory is addressed via a 32-bÍt value. ThÍs value

is translated to give either a physical memory address or a page fault by

the memory management hardware. llowever there are some restrictions and

characLeristics that are important.

(1) The virtual memory is granularised into 512 byte pages. A single

page is the smallest item that the memory protection hardware recognises,

and must be aligned on a 512 bybe boundary. The lowest 9 bits in the 32

bit address specify the byte offset of the byte(s) being accessed within

bhe page. This mechanism makes it impossible to protect an arbitrary area

of memory. The nachine has four processor modes (cal'Ied USER, SUPERVISOR'

EXECUTM, and KERNEL respectÍve1y, and in increasing order of power) and

pages are protected from eiLher read or write access at each Ievel. OnIy a

restricted seb of protections are avaiJ.able, as read/write access at a

leve1 implies the same access at the higher Levels. For example, a pâge

that is specified as USER:READ, SUPERVISOR:WRITE can be read by an

instruction operating in any mode, and written by instructÍons running in

supervisor, Executive, or Kernel mode. Speciat PROBE instructÍons are

available to deLermine lhe readability and writeability of areas of memory

without acbually causing a page fault or access violation (trying to access

an area of memory that is protected against the access being atLempLed in

the current access mode) .

e) The Lop Z bits of the 32 bit address specify the region of the page.

Specifically if these top bits are 10 or 11 (binary) then the address is

said to berfin sysLem spacerr, whereas if they are OO or 01 (binary) the

17

+0,,4-

address is said to be Iin process spacer'. OnIy¿first (S0) area of system

space is used 1n WS. Process space is broken into two regions, calIed I'PO

spacetr and rrPl spacet' respectively. Translations of addresses in P0 and P1

space are done via a page table which is also located in virtual memory in

sysLem space . l{hen WS i s di scussed it wilL be explained how these four
regions are used by the WS operating system.

3 1 .2 Operands. espe ci allv Queues

The VAX-11 architecture supports a wide variety of operands and

operand sizes. Typically operands are integers or floafing-point numbers

and are stored Ín 1, 2,4, or 8 byte long areas of memory, or general

purpose registers. Ihese sizes are referred to as BYTE, WORD, LONGWORD or

QUADWORD items respectively. A 32 bit address would bherefore require a

LQNG}'IQRD to store it in. The architecture is slightly biased towards

LONGWORD quantities.

AIso supporLed are operations on strings of characters and on packed

decimal strings. 0f importance to the design of both VMS and MTL, is the

archilecturaL supporl for a doubly-linked queue as a basic data type with

such instrucLions as INSQUE (insert an entry into a queue), and REMQUE

(remove an entry from a queue) . The operations can be perforned in an non-

interruptable manner al either end of a doubly-linked queue of iLems, and

are so used in the implementation of the MTL heap and message passing

mechanism (chapter 5).

A absolute-queue entry starts wilh two longword addresses, the

forward and the backward link. The contents of the rest of the entry are

irrelevanb Lo this discussion. Each absolute-queue (there are also self-
relative-queues) starts wibh a queue header, which is a pair of longwords,

the first pointing to the first item in the queue, and the second to the

last item. If the queue is empty both longwords point to the queue header.

The INSQUE instruction format is

INSQUE entry,predecessor

which inserts the entry into Lhe queue after the specified predecessor.

18

The corresponding REMQUE format is

REMQUE entrY,Pointer

which removes the enLry from the queuer and places a reference to the

removed entry in the poi.nLer. Both these instructlons set processor

condition flags Lo indicate the state of the queue before/afler the

operat ion .

3.1.3 rn structions. Registers, and AddressÍns Modes

Instructions on a VAX-1 1 are orthogona). to the addressing mechanism

used for the operands. For example lhe ADDL2 insLruction can add a value

to a register, to lhe top of stack, or to memory. the instructions Lake

anything between 0 and 7 operands, where some of the operands may be large

tabtes or other large areas of memory.

TL¡e VAX-'11 architecture has 16 32-bit registers, named R0 through

R1'1, AP, FP, SP, and PC respectiveJ-y. R0 and R1 have, by convention, the

role of carrying the result of a function cal-1 back to Lhe caller unless

the type of bhe result is too large in which case the calLer is expected to

provide an OUTPUT parameter to accept the result of the function. R1 also

has the job of carrying the static link into a calIed routine. R0 lhrough

R5 are used by the strÍng manipulation instructions, R6 through R1 t have

no special use although some of the VMS compiJ.ers generale code thab point

R1 1 into the sfatÍc sLorage area and then use relative offsets from it to

access the various sLatic variabLes.

The Sp is the stack pointer. The stack starts somewhere in memory

and grows towards low memory. Ihere are actually 5 separate SP regislers,

one for each processor mode (USER, SUPERVISOR, etc) and one for the

INTERRUPT sLack. On).y Lhe USER stack pointer is of concern to lhis thesis.

Ap, FP, are a necessary component of the VAX-I1 routine calling

mechanism, and are discussed in that tight in the next section. PC is bhe

program counter of a typical Von-Neumann machine.

Operands are either (1) in a register or (2) aceessed via an address

that is formed by operations based on one or two regislers and some

constanLs that form part of bhe instruction stream. An example of lhe

first case would be ADDL2 R0,R0 which adds the 32 bit quantity in R0 to

itself and places the result back in R0 again. There are several possible

19

ways of forming the address mentioned in the second, an example is relative
addressing such as M0VL2 4(R0),R1 which moves the longword found at address

4+conbents of R0 into register R1. Indirect referencing is also possible.
Exact details of these are nol critical to the understanding of fhis
thesis.

3.1.4 Procedure Ca11ing, especially the CALLS and CALLG instructions

0ne objective in the design of the architecture, bhe VMS operating

system and the various language implemenLations was a standard calling
mechanism that would enable any language to generate ca11s lo routines
written in any oLher language. While the wide range of entities that occur

in the various modern compuLer languages make this difficult, the goal was

fairly we1J. attaÍned and Ís nol one to be sacrificed l-ightly. In fact any

language compiler that does not generate code that follows this calling
standard can not be regarded as a true WfS compiler.

The CALLS and CALLG instructions are the architectural basis of this
sLandard. These instructions buil-d a struclure known as a call frame on

the stack. This call frame conLains

(1) the saved values of AP, FP, and PC.

(2) sufficient informati.on bo restore SP.

(3) any registers that the called routÍne wishes saved, this is done

by having the first word of the called routine act as a mask where lhe

bits set correspond to a regisler to be saved.

(4) various other sma1l pieces of house-keeping information.

The FP (Frame PoÍnter) and SP (Stack PoinLer) are pointed at the l-ow

end of the new cal-l frame which is buil-t on the sLack corresponding to the

current machine mode (User, Supervisor ebc.). The AP (Arguunent Poinler) is
pointed bo the parameler list being passed Lo the routine, and then the

rouLine is executed. The RET instruction restores all the saved regÍsters,
removes the frame fron the stack, and returns to the caller.

The difference between the CALLS (call-stack) and CALLG (call-
general) instructions is that the CALLS instruction assumes the parameter

list is on the sLack, whereas the CALLG instruction has as one of its
operands bhe address of the parameter list which may then be located
anywhere in memory. If the instruction was a CALLS, the RET instruction

20

also removes the parameter list from the stack. The CALLG instruction is
used by MTL for procedure callÍng as this allows MTL to place bhe parameter

list in the activation record of the calling procedure which is stored in
Lhe heap.

The saved FPts form Lhe dynamic chain for the routine, linking back

through all the various stack frames. fhis chain is used during condition

handling, a subject outsÍde the scope of bhis Lhesis. During the execution

of a routine the FP is not changed (except when another routÍne Ís cal-l-ed)

but bhe SP oscillates up and down below FP as items are pushed onto or

popped off the stack.

3

3

¿

2

The VMS 0perating SysLem

'l Address space layout

VAX/WS resides mainly Ín virtual memory at and above 80000000 (hex)

and this area (sysfem space) is shared between alI the processes of the

system. The scheduling between these processes is caused by pre-emptive and

voluntary releases of the CPU. Ihe area of memory below 80000000 (hex) is
designated "process spacertand is mainly for Lhe exclusive use of this
process. Processes can share areas of memory, and Lhe shared areas may have

different virtual addresses within fhe differenl processes. Some system

information that is pertinent only to Lhe process is maintained in P'l space

and is proLected against i1lega1 access by means of the access checks

described in section l. 1 . 1 .

3.2.1.1 P1 Space and the USER Stack

Each process has (under WS version 2) one USER-mode stack whÍch is
indicated only by the SP. This stack is normally found at the low end of

P1 space, and groþrs towards P0 space. The area of P1 that is accessible

grows downward from TFFFFFFF (hex) and is limited in size by a quota

imposed by fhe system and P0 space grows upward from 00000000 (hex) and is
restricLed by the same quota. This quota sets an upper Limit on the total
amount of space that is avaifable in P0 and P1. This limil effectively
blocks any attempt to have more than one USER-mode stack because there is
no mechanism for preventing the stacks from collidÍng other than wideJ.y

separatÍng them and there is insufficient memory available for such wide

separations. Various software interrupts use indefinite amounts of storage

on the stack beyond the area in use by the main fLow of program execution,

21

and thus Lhe danger of stacks colliding, eiLher because of these events or

because of deep recursion , is very real.

This forms a limitation if one aLtenpts to introduce concurrency for
such languages as Ada, Simula, and MTL inside a single WS process. If
this can be circumvented then P1 space, with its approximately 1,000

Mbytes of addressable memory should prove adequate, in Lhe immediale

future, for the allocation of slacks.

3.2.1.2 P0 Space, the Concept of an fmage, and the Heap

The instructions and statÍc daba for a program are usually loaded

into P0 space. The first page (addresses 00000000 (hex) to 000001FF (hex))

is usually Ieft as a nG-aêcess page so that access vÍolations caLch most

attempts to use (in Pascal Lerminology) NIL pointers (whÍch point to
location 0) . The combined instruction and data area is loaded into virtual
memory by a system rouLine called the I¡,IAGE ACTIVAÎOR from one or more disk

f iles. The Lerm for this admittedly loose concept is an Il"lAGE. In

praclice often two and (rarely) even more images are loaded into virtual
memory simultaneously. Ihe main use of this practice is to load the VAX-11

Symbolic DebuggerIDEC80-SD] into memory along wifh the program to be

debugged. However the Debugger is loaded inlo a reserved area of P1 space

so that is does not affect lhe behavÍour of the user's program in P0 space.

This area can be expanded upwards to provide a large Heap area under

the control of a multi-layered heap management sysLem. The most basic rule
is rif you wanL more sLorage - exLend P0 spacer, but there is a resource

nanager called LIBGET_VM/LIBFREE_VM for allocating this area in a more

heap-like manner. BuÍIt on top of these are some routines for
alLocating/deallocating smal1 quantities of dynamic sLorage lairly
efficiently.

llhile the stack is in P1 growing downward, the Heap is in P0 space

and grows upward. A layered approach to Heap management is Ímplemented

with the mosl fundamenLal routine being the $EXPREG Expand Region sysLem

service. This service is used to expand P0 space when the Heap is unable

to satisfy a request. The next J.ayer is the LIB$GET VM and LIB$FREE VM

routines for allocating and deallocating areas of virtual memory. BuiLt on

Lop of these are other library routines for efficienLly alloeating and

deallocating strings in a fairly efficient manner. Section 5,2.3 dÍscusses

MTLrs heap nanagement sysLem that does not use this last layer of library
22

routines because the costs involved in calting lhem are too high.

3.2.1.3 Sumrnarv and Address Space Layout Diagram

WS defines a rigid convention
of memory usage, partly caused by the
VAX architecture and partJ_y because of
the design aim that all languages be

capable of caLling routines writLen in
the other languages.

The language implementor must be

aware of the restrictÍons that such a

convention must cause, and find meLhods

of providing lhe facilities required by

the language wÍthin the bounds thal
they set.

As VMS matures and more languages

are impì.emenLed for it some of these

restrictions may be removed but they
are all representative of a

conventional modern operating system.

3.2.2 WS Processes

A WfS process has its own process virtual address space, a coJ-lection
of current resources, a list of quotas restricting the amount of futher
resources it can gain, a set of privj-1eges required for sone acLivities,
and a variety of miscelLaneous other attributes. As was mentioned in 3.2.t
all processes share the system space, and it is possible for two processes
to voluntarily share part of their process address spaces.

The process may be either detached, having an existence of ils own,

or a sub-process which is dependent on its parent process. Such a parent
may be eilher a detached or sub-process iLself, hence the process

23

00000000 P0 Space

Current Image

Heap grows toward P'l space

3FFFFFFF

40000000 P1 Space

User-rnode stack grows toward P0

Command Language Interpreter
Some kernel Lables

VAX-1'l Symbolic Debugger

TFFFFFFF

80000000 S0 Space

VMS kernel and dala base

BFFFFFFF

C0000000 S1 Space

reserved for future use

FFFFFFFF

dependency structure is a tree. When a parent dies all its suLprocesses
are killed also. Sub-processes share the resources of the parent, but may

have more restrictive quotas than the parent.

Typically each user of the sysbem has a process in which eontext the

various images requested by him are run. As each User-mode image

terminates the userr s CLI (Command Language InterpreLer) regains control
and interacls with him to deLermine the next image to be executed. The

system is also capable of running any image as a process, wilhout the
presence of the CLI.

Processes can share memory, event fIags, files, and devices between

Lhemselves. The sysLem provides a tfvirtualtt device caLled a Mailbox which

provides a relatively simple method of piping data between processes

without the overheads of shared disk files, and without the complexitV (or

efficiency) of shared nemory.

The system uses several detached processes and sub-processes to
manage various actÍvities. There is a process ca1led rrJ0B CONTROL'r which

manages the basic leveL of lhe print and batch queues, âs well as

monitoring the terminals for Ínteractive users wishing to 1og in. It uses

Print Symbiont sub-processes to manage the printing of files. The disks

are controlled by detached processes call-ed AncilJ-ary Control Processes

which maintain their formal and arrange the interlocks ebc. required for
sharing the fj.les stored on them.

Processes are created via a system call which incLudes, amongst its
other parameters, the name of the image file that the process is to run.
This places a severe restriclÍon on the number of processes LhaL can be

created per unit time because the creation of processes involves the

reading the image file from disk. S€e Appendix A for a comparison of VMS

sub-process creaLion rate, and MTL task creation rate.

3.2.3 WS Event Flags and Asyn chronous SysLem Traps (ASTs)

Event flags are boolean variables maintained by WS for either a

process or a collection of processes. The primÍtive operations on the

variables are seLting, cì.earing, and reading. It is possible to cause a

process to wait for a particular event fJ-ag to be set by using the $WAITFR

system calI. This call does not reLurn until the evenl fJ.ag is set. Obher

services allow the process to wait until one or all- of a set of event flags

24

become set.

An AST is software interrupt that is delivered to process after the

occurrence of a speeified event. The AST specifies the routine within the

process that is Lo be called as the interruptrs servicer, as well as the

processor mode (USER, SUPERVISOR, etc.) at which it is to be called. A

system service ($DCLAST, Declare AST) is the simplest way of causing an

almost instanLaneous AST to be delivered to the current process (it is not

possible for a user program to deIÍver ASTs to other processes, although

VMS does it internally) . ASTs can be locked out for a particuJ.ar processor

mode (USER, SUPERVISOR, etc.) by means of the $SETAST system service. They

are also locked out during the execulion of the AST-called routine at Lhe

same processor mode or when the current processor mode is more privileged

than that of the AST. For i.nstance if a call to $DCLAST is made from

SUpERVISOR mode and the specified AST j.s to be delivered in USER node the

interrupt will remain pending untit the processor mode drops to USER then

Ít will be delivered. ASTs may be delivered when a process is waiting for

an evenl flag, in which case the process continues to wait after the AST

routine exils.

For example a Chess program could request an AST to be delivered

after five minutes before commencing to compute the next move. When the

AST is delivered the program aborts Lhe best-move search and plays the besf

move found so far, Lhus limiting the time spent searching for a move.

However by far the most frequent use of ASTs and event flags is in the

control of I/O operations.

3.2.4 Vl"lS I/0

VMS uses a multi-Iayered approach Lo providing I/O IDEC80-I0]

facilities for Lhe user. The fundamentaf leve1 is to connect the process

directly to the inLerrupts being generaLed by the device. Immediately

above that is an Ínterface to Lhe VMS device driver via the $aIO (Queue I/O

request) sysLem call. The request has several parameters controllÍng its
behaviour. The requÍred ones are

() a software channel number, which has already been associated with

a device by means of an $ASSIGN (Assign I/0 channel) system call.
() a function such as Read, write, change characLeristics.
() an event fLag number. ThÍs evenl flag is set when the I/O

completes.
25

The optional ones are
() an AST-routine address. An AST is delivered to this rouLine when

the I/0 completes.
() an I-/O Status Bl-ock address. This block is filled in with

information about the operation and the device.

there are afso up to 6 function specific, parameters. During a read

request Lhese would specify the sÍze and location of bhe memory area bo be

read into, the numbers of seconds Lo tÍrne-out the request after, and a

prompt to be issued if the input deviee is a terminal.

Although the $QI0 mechanism is very powerful it is also device

dependent. For this reason WS provides the Record Management SysLem which

translates device independent requests into $QI0rs as well as irnposing an

inLernal file structure on file-structured devices such as disks. RMS also

makes non-file-struclured devices such as terminals appear file slructured.
There are two basic modes of operation, synchronous and asynchronous. In

synchronous mode a call to an RMS routine does not return until Lhe

operation is complete. In asynchronous mode the caLl returns immediately,

and RMS delivers an AST to a compJ.etion routine once the operation is
finished.

The language specific I/0 support routines for the various high level
Languages (Pascal, Fortran, eLc.), use RMS to provide the services they

want. For instance these roulines bufler the output from PascaL WRITE

sLabements untiL a WRITELN is found aL which point Lhey call RMS fo output

the completed line as a record. RMS in turn buffers these records into
blocks and uses $QI0 calls to write them to disk as required. When an

image is terminated RMS flushes all its buffers, so Lhere is no problem

with parfially completed outputs.

26

Chapter 4

THE MTL LANGUAGE

4. 1 Goals

The main aims of MTL! s development were

(1) as a research tool for investigating problems associated with message

passing implementations, and

Q) to provide a VAX,/WS compiler for a language that has message passing

and concurrency.

Ttle syntax of MTL, as welI as many language features, was adopted

from Pascal, with the differences described Ín section 4.2. Ihe MTL

language and run-time support routines provide some very low level-

facilities for supporling concurrency, such as shared variables and

explicit schedulÍng statements, These are sufficient to implement message

passing between tasks and other proposals for the control of concurrency,
such as moniLors, âs user writLen roubines. It is recognised that such low

leve1 mechanisms may not be desirable in a non-research environment.

There are a few areas where the implementation differs fron Pascal,
usually because the extra code required in the compiler was not warranLed.
Most of these differences and restrictions could easily be removed but no

more would be learnt about impì.ementing message passing or concurrency by

doing so and the differences do not have a significant impact on MTL!s use

as a language.

To satisfy the second goal it was importanL that its compilation
speed and the quality of the code produced should compare favourably with
other VAX/VMS compiJ.ers such as Digital's VAX-11 PascaI V1.3. This goaJ.

was attaÍned even though the compil-er does not do extensive optimisations.

Some primitive facilities have been implemented for modul-ar

development and independent compilation to help the user deve3-op large
programs.

27

4.2 Restrictions to Pascal

4 .2 .1 Fi les

MTL only supports exLernal LexL files. Ihese files must be declared

in the program header and not re-declared in the VAR declaration. They

must be RESET and REI¡JRITEn as in sbandard Pascal. They have no f ile
buffers so the only method of doing I/O is by using lhe READ(LN) and

IIRITE(LN) sLaLemenLs. Reading and writing of enumerated types as character

strings are supporled (an extension to standard Pascal) as in the VAX-1 1

Pascal 1 .1 compiler.

4 .2 .2 G0T0f s

OnJ-y GOTO' s withÍn the current procedure or function are allowed. The

compiler does not eheck for G0T0f s into structured sLatements.

4.2.3 Operators and Predeclared Routines

Most Pascal operaLors are supported but no automatic eoersion of real
to integer or vice versa is done. FLOAT, ROUND, and TRUNC are avaiLable

for eonverting between INTEGER and REAL type. Exponentiation (ir*j) is
not implemented. Some of the standard Pascal predeclared roulines have not

been implemented because there is a large library of mathematical and olher

routines available âs parL of VAX/WÍS. MARK and nELEASE are not

implemented because they would significantly degrade Lhe performance of the

heap, which is critical for MTL.

The following standard or VAX-11 Pascal 1.3 routines are predeclared.

ORD,

NEW,

EOF,

CHR, ROUND, TRUNC

DISPOSE

EOLN, PAGE, LINELTM, READ, READLN, RESET, REWRTTE, WRITE, WRITELN

4.2.4 Assisnme nt and Tvoe Checkins

Because MTL differs from many current implenentations of Pasca] in
its type checking, the type checking is described here as a restriction.
Actually it is close to the draft IS0 standardIIS0] for Pascal.

28

MTL uses name' rather than structural-equivalence type checking. In

practise the user is unlikely to notice except when trying to assÍgn

between two arrays bhat are structurally equivalent but decl-ared

separately. The word PACKED is ignored. Constant strings are compatible

with any ARRAY [1..LENCTH] 0F CHAR where LENGTH is the number of characLers

in the string. NIL is compatible with any POINTER type.

Eg : IJ.1ega1 .

var a1 : array [1..10] of char;

a2 : array [1 . .1 0] of char;

a1 z= a?i

Legal.

var al,a2 : array t1..101 of char;

aj := a2l

4.2.5 Scope Rules

4.2.5.1 Scope of Identifiers

MTL implements the draft ISO standard[ISO] for scope rules except for
field identÍfiers (see 4.2.5.2). Identifiers have a scope that extends

from the start of the body j.n which they are declared, Lo the end. They

may not be used before they are delined except in the construction of a

pointer type. When building a type, the type identifier is not defined

until the right hand side of the definition is complete.

4.2.5.2 Record FieId Names

Unlike Pascal, MTL regards the names of fields in records as field
selectors rather than identifiers. This means that bhey do not get entered

into the scope of the record, hence the following is valid MTL but not

valid Pascal.

type stack_item = Fêcord

case nature : simple type of
bool : (boolean : boolean);

intg : (inLeger : integer);
reel : (real : real);

end;

29

The field selectors do become identifiers inside I{ITH staternents,
one would expect.

4.2.6 Complexity Restrictions

as

MTL uses a simple-rninded register allocation strategy and does not
cope with the problem of insufficient registers. This is because there are

10 general purpose registers (R2-R11) availabLe, and in practice MTL does

nob run out of registers very often. RegisLers are allocated for (1)

holdÍng the addresses of the activation record of each routine in static
scope, (2) holding the address of the record inside a trlITH sLatement, (3)

holding the upper-bound of a FOR loop when that bound is not a compiì.e-time

constant, and (4) holdÍng temporary resuLts during expression evaluation.
;LIf MTL generaLes the TOOCOMPLEX error message during compilationTma1l be

necessary to reduce any one of these.

4.2.7 Bugs

It is to be expected that a compiler developed as MTL was wil-l have

bugs in it, both at compÍle time and in the code produced. The compilerts
error recovery afber syntax and semantic errors is generally reasonable but
sometimes poor. There are no known code generation bugs.

Currently the cornpiler does not detect the following error.

Program Bug0 1 ;

procedure P;

var v : boolean;

begin

end ;

procedure Bool-ean; { Erroneous since Itbooleanrr has already }

begin { been used in this Level by the rrvrr ln }

end; { Procedure trPrr. }

begi n

end.

4.3 General. Exlensions

A few extensions were added

i.anguage to use, and to provide a

no type checking or defÍnition
compiled modules.

to Pascal to make it a more comfortable
separate compilation facility. there is
checking performed between separateJ.y

30

The following berms are used in the following discussion with a

specific meaning.

() TASK - ofben called a Process in the literature. TASK is used instead

because Process has a special meaning already in VAX/WS.

O ROUTINE a coLlective term referring to any Procedure, Function, or

Task. This is used because these three have a common syntatie
structure.

4.3. 1 fINCLUDE directÍve

At any point where a space, conment, or lexical token is legal a

|INCLUDE directive may be used. the format is

f TNCLUDE f fil-e-namel

and this causes the eompiler to behave as if the sequence of characters and

end-of-lines encountered in the fINCLUDEd file had been encounLered in the

current file aL thaL point. fINCLUDE directives may occur inside fINCLUDEd

files. The main Íntended use of this feature is as files of definitions
which contain those parls of modules that must be consbant for all the
modules making up a program.

4 .3.2 Modules

The Module facility is impJ.emented as in VAX-11 Pasca1 1.3. A Module

has almost the same syntax as a Program, the only difference being that a

Program has a Compound Slatement and a Module does not.

Program ::= PROGRAM Identifj.er I Fi]e List I ; Block

Module ::= MODULE Identifier I File List] ; Module Block

Block ::= Declarations Compound Statement

Module Block ::= Declarations END

Declarations ::= { [Label Dec].aration l
I ConsLant Declaration]

I type Dec]aration l
I Var Declaration]
I Procedure or Function or Task Declaration]
)

31

Ihe following requirements and recommendations should be followed

when writing Modules to be sure that inconsisbences wilI not develop

between the various componenfs.

(1) The file and variable decLarations in the outer most Level of the

Program and the l,lodule must be the same, and it Ís slrongly recommended

that they be placed in an ÍINCLUDE file (see 4.3.1).

Q) It is strongl.y recommended that Lhe declarations of the exporLable

routines in the Module be writLen in such a way Lhat a text editor can

easily exlract the decLaratÍons and construct fINCLUDE files eonLaining

FORhTARD or EXTERNAL declarations. Ihe module itself can then fINCLUDE

the FORWARD declarations, while other Modules wishing Lo import the

declarations can fINCLUDE the EXTERNAL declarations.

4.3.3 Relaxed Dec laration Orderine

To enable ÍINCLUDE to be used to buiLd a Program out of several files
(each of which may wish to contribute some constants, types, variabJ.es, and

routines) MTL allows these various declarations Lo be mixed in any order.
This aflows the programmer to place the various consLants, types, and

variables related to a particular object or class of objects Lextually

togelher in the source code of the program.

For instance one aspect of a program may be related Lo implementing

an abstract data type called ttsLring of characlerstr. The consLants (such

as itmaximum string lengbhtt), types (such as trstringrr), and routÍnes (such

as rtconcatenate't) can be pJ.aced together in one place in the program,

separaLe from another section of code that implemenls trcomplex numberstr.

4.3.4 EXITLOOP and RETURN sLatements

To avoid many of Lhe instances where Pascal requires labe1s and

G0T0rs, MTL provide EXITL00P and RETURN sLatements. EXITLOOP is equivaLent

to a G0T0 to a label just beyond the end of the current inner-most FOR,

REPEAT, or hIHILE loop. RETURN is equival-ent to a G0T0 to just before the

END of the routiners compound statement.

32

4.4 Extensions Supporting TASKS

4.4. 1 Goals

MTL lasks are not truly concurrent. there is only one current task,
all other tasks are either in the list of executable tasks or suspended for
one of a varieLy of reasons. It was decided Lhat bhis was acceptable,
given fhat MTL was designed to run on a sj.ngle CPU system and provided that
fhe user was given some methods of rescheduling. The message passing

semantics (4.5) provide such rescheduling, as do some primitive staLements
(4.4.4).

MTL tasks provide the concurrency needed for a message passing system

and they are fl-exible enough to al-low the user to write his own scheduling
mechanisms. Shared variabl-es are supporLed. It was decided noL to use

pre-emptive scheduling because of problems with critical sections of code,

and because of run-Lime efficiency. Ihe tasks have to be capable of
calling external routines (see 4.2.5) and this either could only be done by

avoiding pre-emptive scheduling or by adding significant overheads to the
run-time syslem. Furthermore by not using pre-emptive scheduling the user
can experiment with Índivisible operations without need for speciaJ-

inLerlocks. For example COUNT := COUNT+1 is a problem with pre-emptÍve
scheduLing because the value may change between its usage on the right hand

side of the assignment and Lhe assignment being made. This probÌem does not
occur with MTL.

The creation and scheduling of MTL Lasks had Lo be simple, fast, and

flexible. The need for fLexibility 1ed naturally to dynamic rather than
static creatÍon of tasks so networks of lasks could be assembled as

desired.

4.4.2 TASK routines

The declaration of a Task has the same syntax as that of a Procedure,
except all parameters must be passed by value. A Task may access any

variable in scope, not onLy main leve1 variables but also those in the
routines that enclose the task. Tasks have associated with lhem a unique
value, of predeclared type TASK ID, which can be used to refer to them for
control purposes. This value Ís assigned at Task Creation time, and is
guaranteed not to be used again until an indefj.nile but long lime afLer the
taskr s death.

33

A Cask dies when it has finished executing its Compound_Statement.

Since lasks can access variables in any surrounding scope, an attempt

by a routine to exit (hence deallocate an activation record) causes Lhe

exit to be delayed untit all Lasks ühat are sharing Lhe activation record

have died. This guarantees that all the variables accessabl-e by a task

exist throughout its life time. If the task could have VAR parameters then

either Lhe taskr s creaLor or Lhe ohlner of the deepest variable the task

could reference would have to be suspended until the task died. To prevent

this complication it was decided to restricL Tasks to value parameters.

This leads to clearer programs and does not serÍousIy restrict the usage of

Lasks or shared variables.

MTL tasks thus form a tree, with the main program being lhe root.
tlhen it dies the program terminales, buL this can not occur before all the

created tasks have died because all the created tasks are sharing its
acLivation record. This differs from COSPOLIR081] where inilially there

may be several lasks in exislence and there is no sharing of variables

beLween these Lasks. Execution of a COSPOL program conlinues until aIl
these tasks have died, with there being no restrictions on the order of

their death. A Parallel Command, which executes a list of Lasks in
paraJ.leI, does block until all the tasks have finished, and this
corresponds to the delaying of routine exits in MTL.

If no tasks are executable, and none are waiting on a future event

(see 4 .2.7) then fhe program is dead-Ìocked and the runtime sysLem

generates an error message. This normally results in image termination.

4 .4.3 CREATE statement

Tasks are dynamic objects. Ihey are creaLed by the CreaLe Slatement

whose syntax is

Create SLatement ::=
CREATE Task Id Variable := Task Name I Parameter List

The task is creaLed, âtry parameters are copÍed into its
record, its Lask id (see 4.4.2) is assigned to the variable,
placed in the list of executable tasks. However in keeping

philosophy of scheduling the Laskr s creator is kept as the

executing task.

l

activation
and it is
with MTLis

curr ent 1y

34

4.4.4 RESCHEDULE, SLEEP, and AIJAKEN Þrocedures

Because MTL does not do pre-emptive scheduling three predeclared

procedures are available for user-controlled scheduling, besides the

implicit scheduling invoJ.ved in message passing. They are

RESCHEDULE,

SLEEP, and

AWAKEN(sleeping task :task id)

Rescheduling places the current lask at the end of the list of

executable tasks, and picks another to replace it.

Sleeping suspends Lhe current taskrs execution until another task

awakens ib.

AWAKEN(sleeping Lask:task id) is used for awakening such tasks. If
the task specified in the call to Awaken is not sleeping noLhing happens.

4.5 Extensions Supportins MESSAGES

4.5. 1 Goals

Many and various proposals have been put forward concerning message

passing. Amongst the decisions facing Lhe language designer are

(1) tJhether to transmit a copy of the message, or the original.

(2) Is message transmission Asynchronous, wifh some degree of buffering,
or Synchronous?

(3) Whether or nob Lhe receivi-ng task can name the requÍred source of the

message.

(4) llhether or not the sending task can name the bask that is bo receive

the message.

In the design of MTL these choices were made using criteria of speed

and flexibility. The choices rnade for MTL in each case leaves the

alLernative possibility available to the prograruner as a subclass of the

chosen possibiLity, with no loss of speed. FurLhermore the source code of
the program can be easily checked to verify that only the desired mechanism

has been used.

35

4.5.2 MESSAGE variables

Transmission of the ORIGINAL was decided upon because that seemed to
be the most common usage. MTL messages are objects atlocated in the heap,
and thus copies of them can be easily made using NEt'l and an assignment
staLement. It is possi.ble to verify that the transmit-copy mechanism has
been used by checking that every SEND statement (4.5.5) is immediately
preceded by a copy being taken of the message, and that it is this copy
that is sent. Such a check could be made by a simple mechanical program
verifier.

Message types are formed using the reserved word MESSAGE. The syntax
of a message type declaration is

Message Type ::= MESSAGE I Field List] END

This declaratj-on is similar in effect to declaring a pointer to a

record whose type is not expJ.icitly avaiJ.abte. Hence a variable of
message_type musl be treated as though it were a pointer to a record, and

the fiel-ds of the message accessed accordingly. This is so because message

passing is then done by passing this poÍnter (see 4.5.5).

4.5.3 BUFFER variables

ASYNCHRONOUS communication, with a bounded buf fer, r.Ias impl-emented.

By specifying the size of the buffer as 0 a SYNCHRONOUS protocol can be

enforced.

Section 7 .4.2 examines the performance implications of selecting
asynchronous rather than synchronous communication, showing that
asynchronous communication is inherently faster when bounded buffers are
actually required.

Buffers are shared variables used during message passing Lo buffer
the rnessages and to synchronise their transmission.

The syntax of a buffer type decJ-aration is

Buffer Type ::= BUFFER 0F Message Type fdentifier

Buffers must be initialized before their first use. There is a

predeclared routine BUFFER INIT that takes any variable of any buffer type
and initializes it. It takes two parameters, the first being the variable,
and Lhe second being the maximum number of messages that can be buffered.

36

When the second parameter is zero I communication via the buffer is
synchronous; thus ib is possible to verify that the program only uses bhe

synchronous mechanism by examining all the calls to BUFFER INIT.

For example

BUFFER INIT(input buffer,l 0)

4.5.4 BUFFER READERS BUFFER WRITERS BUFFER MESSAGES

Each buffer has three queues associated with it, a queue of readers

trying to read messages from the buffer, a queue of messages being

buffered, and a queue of wrÍters trying to write messages to the buffer.
The size of any of these queues can be obtained via the predeclared

integer valued functions BUFFER_READERS, BUFFER_MESSAGES, and

BUFFER WRITERS. These functions have a single input parameLer, a buffer
variable.

This mechanism is slightJ-y more flexible than the PENDING function in
COSPOLIn081] because it allows a program to determine how many messages are

being buffered rather than just the exisLence of some pending messages.

This may be useful in simulation programs which use lhe buffers to model

queues.

The PENDING function is equivalent to

FUNCTION PENDING(B:BUF) : BOOLEAN;

beg j-n

PENDING := (BUFFER WRITERS(B)+BUFFER MESSAGES(B))) O;

end.

On the other hand it is slower (in cpu-tÍme) than PENDING because it
requires some mechanism for keeping track of the number of objects in each

queue. It remains Lo be seen which of the two is more desirable.

4.5,5 SEND and RECEIVE statements

Rather Lhan naming sources and destinations MTL uses the buffers as

mailboxes, with any task (within scope) being alLowed to both SEND and

RECEIVE messages vÍa them. Static checks can often be made lo verify that

only one TASK is capabte of receiving messages via the buffer if fhat is
the desired behaviour, or that all nessages of a particular type are

received via one particular buffer.

37

In COSPOL the name of the receiving task and the type of the message

are used Lo select an anonymous buffer for the transmission. Each task has

a collection of buffers, one for each type it is capable of receiving.
This is a subseb of Ì,lTLf s mechanism that has the advantage of less code

being required for specifying the connections and the Send and Receive
operations, but it is less flexible.

Buffers can be created dynamieally, using NEl.l, and the pointer passed

as a parameter to one or more created Lasks. This allows the run-time
creation of arbiLrary networks of lasks with any desired pattern of message

flow.

They also allow a Lask to have several input streams of messages of
an identical bype. For instance a task can be receiving messages from two

buffers of bhe same message type, one being designated "high-priority" and

the other trlow-prioritytr. Senders can place their message in either buffer
according to the urgency of the message. A similar situation arises when

using tasks to simul-ate nodes on a network (for exampJ.e a Íntersection of
several roads). The messages (cars) coming in from the different input
buffers (roads) are clearJ.y of the same lype yet each buffer shouLd be

distinct.

Message transmÍssion is done by use of SEND and RECEIVE statements
whose syntax are

Send Statement ::= SEND Message Variable VIA Buffer Variable

Receive Statement ::= RECEIVE Message Variable VIA Buffer Variable

The semantics of a Send Statement are

(1)

(i)
(ii)

The task is suspended in the bufferts sender queue until either
there is room in the buffer for the message, or

there is a pending Receive for a message from the buffer and the
Send Statemenbf s message is the nexL message to be sent.

The second alternative alÌows the use of buffers of zero size for
synchronous communication.

The Message VarÍable is set to NIL. Al-l further attempls to access

the message (by retaining copies of the Message Variable) are invalid.
This is bhe same situation as using DISPOSE on a pointer and then

trying to access the disposed object by retaining other copies of the
pointer. It is not expecled fhat this problem wiLh messages wiLl

3B

Q)

The

(1)

cause Lhe programmer any more serious problems than DISPOSE currently
does.

semantics of a Receive Stafement are

The task is suspended in the bufferrs receiver queue until there is a

message available for it to receive.

Set bhe message variable to the message received. This is similar to
NEI"I and, as would be expecLed, the task should either DISPOSE the

message, pass it on Lo another task, or retain it. Re-using bhe

message variable would have the same affect as re-using a poinLer

varÍable, leaving an in-accessible item Ín the heap.

(2)

4.6 Summar

The MTL language is an extension of Pascal bhat provides for

concurrency and message passing, âs well- as some other additions to
simplÍfy the use of the language.

Tasking may be used either at a very fow Ievel, with explicit Sleep,

Awaken, and Reschedule controì-, or the user can ignore lhe issue of

scheduting by relying on Lhe message passing primitives for the

rescheduling required for pseudo-concurrency.

The use of buffers rather Lhan task-directed messages allows all
combinabions and permutalions of data fIow, such as multi-server queues and

dynamic redirection of message streams.

MTL message passing provides a collection of high-leveI primiLives

sufficiently powerfuJ- to implement most message passing proposals. The

language designer can use MTL to experimenL with the various mechanisms in

the conlexl of experimentaf programs, and be able to have these compiled

and run rather than just looking aL them on paper. This in turn will
provide experience in debugging such programs - experience which is very

hard to gain in any other waY.

AlLernatively the slructures are sufficiently convenienl for a user

who rnerely wishes to implemenl a concurrent algorithm. This means MTL is
usable by both naive and experienced programmers, and in a wide variety of

roIes.

39

Chapter 5

DETAILS OF THE MTL IMPLEMENTATION

5.1 The MTL Compiler

5.1.1 Goals

The major design goals of the MTL compiler and implemenLation were

(1) It should be a slandard Vl.lS compiler, generating standard object

modules for the WS Linker.

Q) It should support the WS procedure-calling sLandard.

(3) It should be flexible, al.lowing further features to be easily added Lo

the language.

(4) It should be accePtablY fast.

(5) The code produced should be of a comparable qualiby to the Pascat Vl.3

compiler. That compiler is not an optimizing compiler, but does

produce reasonabLy good code. All simple optimizations should be done,

including using the correct branch code optimizations, and peephole

optimizations.

In view of these design goals a fairly simpLe, multi-phase compiler

was implemented. Initially only a smal-1, subset of Pascal was implemented,

then this set h¡as incrementally exLended unlil aLmost fu11 Pascal was

ava il able .

5.1.2 An 0verview of bhe Compiler

The compiler consisbs of a colleetion of modules written in BLISS32,

a system programming language and compiler wriLing language for VAX/WS.

Since there were no sources of any WS compilers available, nor any true

compiler writing Loots, lhe entire compiler was written from scratch. Some

aspects of the design of the compiler reflect the fact that BLISS32 is a

typeless language and hence various tricks are possible in the compiler

that are not possible wÍth a typed language.

A table generator was written Ín Pascal to translate a textual

representation of the syntax and references to the required action routines

into a MACRO-32 assembly language form that, when assembLed and linked into

the compÍler, drives the LL(1) parser.

40

The scanner {LEX} is hand-coded and breaks the input stream into

Lokens. ft also handles ÍINCLUDE files and removes comments. The parser

{PARSER} is driven by the tabLe to recognise the synlax and calls the

appropriabe action routines. It handles recovery from all syntactic

errors. The resuft of Lhe action rouLines is either the maintenance of the

symbol table or the production of a code-tree for the current routine.

This code-tree is fed Lhrough {CODE} to produce an instruction stream which

is then fed Lhrough {OBJ} which produces an object module and a machine-

code listing after appJ.ying branch code optimizations and peephole

opt imi zat ion s .

{HEAP} manages the compilerrs heap, and {TXTI0} does the I/O of bhe

source and listing files.

5.1.3 Specificat ion of the Grammar and Semantic Actions

The input to the program that builds the Parser tables is a file of

lines with some additional provisos. Lines with

(1) r!f in column 1 are ignored. (Comments)

e) r-r in col-umn 1 are appended to the previous line. (Continuations)

Blank Lines are ignored.

The syntax of the input is specified by the foLlowing ruÌes. Note

that { . . . } means 'rzero-or-more occurences of t', I means rtalLernativelyrr,

and (...i...1...) means rrone-of the specified possibilities.

file ir= { alom-l-ine } t$t-line { prod-1Íne } r$r-line

atom ::= lexicaL-token-identifÍer

prod ::= identifj.er I f=r rute { tlt rule }]

rule I i= item { item }

item ::= { t/lt aetion-routine-name } unit i t/lr action-routine-name }

unit it= identifier
I tItrule |]t

I t{rrule r}l

i '(ridentifier { tltidentifi.er } ')'

¿t1

For example an extract from the aclual MTL tables is

DecLare the basj.c tokens that the scanner {LEX} knows about.
{LEX} yields these pseudo-productions as it recognizes the
individual tokens. They are declared here so that the program
that builds the Lable knows that they are not true productions,
and hence will not complain about them not being declared in the
lisl of productions below.

LEX K UNDEFINED
LEX K ENDOFFTLE
LEX K IDENT
LEX K INT
LEX K PROGRAM

LEX
LEX K WHILE

EGINKB

Part of the syntax
Program or Module,

specification of MTL, showing the synLax of a
as well as calls Lo some of the action routines-

COMPTL UNIT = // ACT INITIALIZE
(PROGRAM I MODULE)

ACT WTNDUP

LEX K DOT

=llP ROG RAM

MODULE

SYM NE}ITOPLAYER
LEX K PROGRAM

NEhI MODULE # DECL ROUTINE
I LEX_K_LPAREN HEAD PARAM
P ROGBODY

SYM OLDTOPLAYER

SYM NEWTOPLAYER
LEX K MODULE

NEW MODULE # DECL ROUTINE
I LEX_K_LPAREN HEAD PARAM
MODUBODY

SYM OLDTOPLAYER

LEX K RPAREN] I-EXK SEMI

LEX K RPAREN LEX K SEMI

=ll

#

These are used to generate the bable fhat is interpreted by {PARSER}.

The tabLe is a list of eommands that control the flow of the compilation by

direcLing {PARSER} Lo accept an input token, attempt to recognize a sub-
production, call an action rouline, etc.

42

The possible commands are. . .

CALL enLry-point,
ENTER production-name r

RETURN

These implement the parsing of sub-productions. CALL directs {pARSER}

to recursively call itself, with the entry-point specifying the first
command to be executed. This is always an ENTER command which speeifies
the name of the production being recognized, a useful piece of informalion
when tracing the behaviour of {PARSER} and when generating error messages.
RETURN causes the current call to {pARSER} to return.

{PARSER} creaLes a record on the stack for Lhe action routines called
by the production to use as common storage. There are three special
componenLs in this record calLed BACKLINK, RETURN, and RESULT. BACKLINK is
a poinLer to the simiLar record of the calling production. lhe RETURN

field is copied into the RESULT field of the calling production as part of
the RETURN instruction. Thus action routines can locate and use information
passed back by sub-productions or can access information stored higher up

the parse tree. Typically this field passes back a pointer to a node that
will be Linked (by action-routines higher up the parse tree) into the code-
tree.

ACTI0N action-routine

This command is the only way action routines are calLed from the
Parser. They are passed, by reference, the current productionrs record and

are capable of examining the current token and any other global variabLes.
Action routines perform such functions as type-checking, symbol table
maintenance, and the actual building of the code-tree.

LEXEME token,
OPTIONAL token-set alternative-command,

GOTO command

BAD

The LEXEME command accepts the specified token, and caLls the scanner
to read the next one. If the current token is not the specified Loken, an

error message is generated and the limited error recovery mechanism goes

into effect. OPTIONAL branches to the aLternative-corunand if the current

43

token is not in the specified token-set. The current token is not changed.

The GOTO branches unconditionally to bhe specified command. BAD is used bo

indicaLe lhat there is no other possibility, the parse has run into a dead-

end caused by a syntax error.

For example:

ConsÍder the produetion

EXTERNAL FILE LIST = EXTERNAL FILE { LEX K COM}'14 EXTERNAL FILE }

This would translaLe into the following list of commands.

EXTERNAL FILE LIST

LOOP:

FIN]SH:

'EXTERNAL FILE LISTI
EXTERNAL FILE
ILEX K COM¡4A], FTNISH
LEX K COMFIA

EXTERNAL FILE
LOOP

ENTER
CALL
OPTIONAL
LEXEME
CALL
GOTO

RETURN

5.1.4 The Symbol Table

The Symbol Table is mainLained by the module {SYM}. Unlike many

Pascal compilers the identifier lable is maintained using a hashing

Lechnique rather than a binary tree. fach entry in the hash table
corresponds Lo a parLicular identifier speLling. A1l instances of this
identifier currently in scope hash to this entry in the table, and are

stacked (in a chain) Ín if. Later definitions of the identifier are pushed

on top of Lhis sLack. I'Ihen a scope is exited all identifiers Lhal were

declared in the scope are popped off their stacks. This mechanism was used

because it is potentially faster (although no tesLs have been done) and I
þras interested Lo see if it was workable (a preliminary investigation
faÍled Lo show up the one place where it would not work).

There is only one place where it does not work for standard Pascal.

When an enumeraLed type is enumerated as part of a Record declaraLion the

enumerated-type-identifiers must be declared aL the main scope of the

procedure or function, whereas the field-idenLifiers are only decLared

withÍn the scope of fhe record.

44

For example:

Type
enum = (alPha,beta,gamma),
rec = Record

enum : (a1Pha);
End;

{ ¡tlU¡l doesnrl clash, ALPHA does
{ because ALPHA gets declared outside
{ tne scope of the record.

]
]
Ì

Rather than hack a solution to this into Lhe compiler, a decision was

made that in MTL field-identifiers are not enlered into the syrnbol tabIe,

but are an attribute of the record-type. Hence in MTL' but not in Pascal,

the following is valid

Record integer : integer; End

5 .1 .5 HEAP Manaeement

lhe compilerf s heap is managed as a stack with caIls Lo NEW

allocating bhe specified object on top of lhe stack. MARK and RELEASE

operations are used Lo peel layers off the sLack when entering and exiting

scopes. There is also a true Heap availabLe for use in places (such as the

I/O roufines and some aspecls of code generation) where it is required

because the patLern of allocation and deallocation does not follow the LIFO

(Last-IN, First Out) behaviour of the resL of the objects.

5 1.6 The Semantics Routines

Each semantics routine (efsewhere called an action routine) perform

one simple operalion. They either build parts of Lhe code-tree, performing

any required checks such as type compatibiJ.ily, or do such house-keeping as

symbol table mainlenance. The semantic routine that ends a routine

decl-aration calls the code-generator passing it Lhe code-tree for the

routine.

The code-tree cLosely resembles a parse tree of the executable part

of the routine. Each node is a variant record (in the Pascal sense) with a

field specifying whÍch variant the node is. This code tree contains

pointers back into the symbol table for the various identifiers' types'

etc. The nodes can be broken into two distinct Sroups, the STATEMENT nodes

and the EXpRESSION nodes. The staLement nodes have a pointer indicating

their successor, whereas the expression nodes have a pointer indicating the

type of the expression. Expression nodes aLso indicate which component of

an expression they are, some possibilities being a variable, a binary

45

operator (in which case the node wiIl contain two pointers, one to the

right-operand-expression-node and one to the Ieft, as well as bhe name of
the binary operator), or an array indexing operation.

For example during lhe processing of I := J the production for assignment

statements would be used by the Parser. This production is

AssignmenL = ll CHECK_VAR Var /l CMP_ASSIGN Lex K Assign Exp l/ CMP ASSIGNEXP

The semantic routine CHECK VAR is necessary because a valid
al-Lernative would be Function Identifier. The parser then parses a Var,

and the RETURN from it would copy a pointer to a code-tree-node for a

Variable inLo the resulb field of the current {PARSER} record (see 5.1.3).
This result field is copied into the code-tree-node for an assignment

expression that is built by CMP ASSIGN. CMP ASSIGN places a pointer to
this node in Lhe RETURN field of the current record. CMP ASSIGNEXP gets a

pointer to an expression code-tree-node from the result fie1d, does a type-

compatibility check between the Expression and the Variable, and copies Lhe

pointer to Lhe code-tree-node inLo the assignment code-tree-node.

5.1.7 Generating Code from the Code Tree

The module {CODE} converts the code-tree into an Intermediate Code

which is stored in an array. {CODE} is a recursive-descent tree traversing
algorithm, but note that because a correct parse has already been achieved

at this stage there is no need for error deLection or recovery. During the

Lraversal of bhe tree {CODE} does code-selectÍon, register allocation, and

some optimizations that are easier to perform on a tree than they are on

the Intermediate Code.

0ne such optimization that {CODE} performs is the folding of any

constant array indexes back into the address of the array. For instance

AIi,4,j] is changed to A+consbant+f(i,j) where f(i,j) musl be computed aL

run-time.

Because {CODE} works on a code-tree it is relatively easy to do

optimizations involving re-ordering the code. The simplest such

optimÍzation is the shÍfting tests to the end of loops which has Lhe effecl
of removing one branch from inside the Loop to outside.

46

For example:

while condition do
beg in
statement; . . .

end;

goto Lest
start: statement

true:

faLse:

test:
fini:

if condition then goto sbart

It is also possible to generate code that shorb circuits the

evaluation of boolean expressions because the full context surrounding bhe

boolean expression Ís available. Rather than evaluating lhe expression

lhen testing the result, the code produced can use the evaluation to effect
the flow of controL. This is achieved by optionally passing a TRUI_LABEL

and a FALSE LABEL to the { CODE} routine that processes binary operators.

l,lhen Lhese labels are provided, Lhe routine generates Test_And_Branch

rabher than Evaluate And Slore style instructions. (Ihis same technique

optimizes such slatements as rrIF (NOT condition) THENil by doing a

recursive caLl with the TRUE LABEL and the FALSE LABEL transposed, rather
than generaLÍng any code for the NOT.) For example

if (a<b) or (b(c) then if (a<b) then goto true
if (c(=b) then goto false
stalementbeg in

statement; . . .

end ;

Each cal-l to a { CODE} routine fhat is to generate code for an

expression optionalJ-y indicates where the cal-1er wants fhe answer to be

placed. If this is nob specified the rouline returns the place where the

value is to be found. Thus statements such as trA := B+Crr generate rrADD C

to B giving A'r rather than a more complex form that would then need

improvement 1ater. Computed results (as opposed to simple variables or

conslants) that must be returned are returned in registers unless a place

has been specified for them.

{CQDE} does not use a complicaled register allocation scheme,

although one eould be added without affecting lhe rest of lhe compiler.

Registers are only used for Lemporary results, limits of FOR Ioops, WITH

statements, and simiLar construcls, and as pointers to each of the sLatic
scopes.

47

After completing the conversion to intermediate code, {CODE} calIs
{OBJ} to produce the object module.

5.1.8 Producing the 0bject Module from the Intermediate Code

tOBJ] does single-instruction peephole optimizations, and then branch

code resolution. Where possible shorter branch code sequences are used,

but if necessary the longer sequences are inserted.

The peephole optimizatÍon phase is essential because of the wide

range of equivalent, buf shorter, instructions that the VAX archilecture
supports.
For example the code produced by {CODE} from nA i= A+1'r r¡ould be

ADDL3 #00000001,0000001c(R1 1) ,0000001c(R11) ; '16 bybes

Ihis is shortened by {OBJ} successively to

ADDL2 #0000000'1,0000001C(R11) ; ll bytes

INCL 0000001c(R1 1) ; 6 bytes

INCL 1C(R1 1) ; 3 bytes

Branch code optimization is necessary because lhe VAX architecture
has J different ranges of branch instructions; Conditional branches thab

can branch up to about'128 byfes forward and back, Unconditional branches

that can branch up to 32767 bytes forward and back, and Jumps that can jump

anywhere. If this optimization was not performed then unconditional
branches or jurnps would have Lo be used in all cases.

For instance the code for I'IF A < B THENil would be

this instead of

CMPL

BLSS
BRW

true:
faLse:

ârb
t rue
fal se

CMPL

BGEQ

true:
fal se :

â'b
fal se

Final-ly the dala for object module is produced and a symbolic J.isting
of the rnachine code and the actual- byfe stream is placed in the listing
file .

48

5.1.9 Summary

The MTL compiler has proven fairly straight-forward to implement.

The use of a table driven parser has meant there v,,ere almost no problems

wifh the syntax recognition of Pascal, and the separation of code

generabion from the syntax,/semantic analysis has simplified the acbion

routines as well as the inclusion of optimizalions. Another important
advantage of the separation occurs afber the first error has been detected.
From then on no further atlempts to generate code are made, and hence the

compilation procedes aL a faster raLe, allhough syntax analysis and type

checking proceed as before.

It has proven very easy to extend and modify MTL because of the

extreme moduÌarity of the design. Ibe steps involved are in adding a new

feaLure Lo the language are typically

(1) add any reserved words to the reserved word tables in {LEX} .

Q) add the conslruct to the SYNTAX.DAT file and rebuild the Parser table.

(3) add any needed action routines,

(4) add any needed support in {CODE}.

Usually there is no reason to change {OBJ}.

The compiler takes up 182 blocks (512 byLes each) of disk space,

compared to the VAX-1'l Pasca1 1.3 compiler which is about 540 blocks. The

dÍfference in size is due to three causes.

(1) MTL does not support a complete implementation of Pascal, and does not

do as good a job at error recovery as the PascaL compiler. However this
would not account for such a J.arge discrepency.

(2) The Pasca1 compiJ.er is written in Pasca1 but MTL is written in BLISS-

32, and the BLISL32 compiler produces shorter code than the Pascal

compiler.

(3) MTL uses a table driven LL(1) parser, but lhe Pascal cornpiler is a

recursive descent compiler. This requires a lot of machine code compared

Lo Lhe compactly represented LL(1) tabLe in MTLfs {PARSER}.

49

5 The MTL Run-time S sLem

5 'l Goals

Because MTL was to be used for speed comparisons with conventional-

languages the MTL run-Lime sysLem had to inpose minimal cpu-time overheads

on Lhe execuLion of programs.

I'Ihere poss ibJ.e sLandard WS r un-time support routines Here to be

used. Because MTL is an extension of Pascal most of Lhe Pascal supporb

routines were available, particularly for the support of I/O. This helped

keep the size of the MTl-specific run-tÍme system down to about 500 machine

instructions, coded in assembler.

Il was desirable that the normaL VAX/WS debugging tooIs, especiaJ.ly

the VAX/VMS Symbolic Debugger I h,ere available for use in debugging

programs. This is only partialJ-y attainabLe because Lhere is no document

avail-ab1e to the auLhor on the format of the data that is transferred from

the cornpiier bo the Debugger, hence a lot of the informaLÍon the the

manufacLurerrs compilers transfer is not transferred by ÞlTL.

5.2.2 An Overview of the Run-time System and Environment

The MTL run-time system provides support for lhe multi-tasking and

the message passing aspects of MTL. The normal Pascal run-time system is
used Lo do I/0. Routines written in languages other than MTL can be called
because MTL generates the standard VMS calling mechanism for procedure

calls. However the main program must itself be written in MTL because

initialization of some data structures is currently carried out as part of
the main program.

The primary probì-em facing an implemenLor of a concurrent block-
structured language on WS is where to place the aclivation records (in WS

jargon these are called CALL FRAMES) of the routines. There are lhree
basic alternatives.

(1) the various tasks are run as different VMS processes, and hence

have their own address spaces. This nakes interactive debugging difficult
because WS does not have any convenient way of managing multiple processes

simuLtaneously. The processes, which may ni:mber thousands, would consume

huge amounts of critical system resources (eg. such as the nonpaged-poo1).

VMS is very sl-ow ab creating such processes and lhis would impact Lheir use

2

¿

50

in very dynamic configuratÍons.

Q) the stacks for the different tasks are placed in widely
separated areas of the process address space. This is viable
provided there is operating syslem support, such as stack Limit
registers. The discussion in 3.2.1.1 expLains vrhy this opbion was not

used under WS Version 2.

(3) some form of heap is maintained with the activation records

spread through it in a tree structure. Since the only other two

alternatives r.¡ere unsuitable this one had to be used. Ihe disadvantages

with this approach are

i. the costs of copying CALL FRAMES from the one true stack (where

they are placed by the CALL instructions) into the heap, and that of
copying it back to the stack where the RETURN instruction expects it.

ii. because the call frames are not on Lhe stack, but linked
togeLher in the heap, Debugger and Traceback utilities are not capable of
providing a display of the dynamic scope. (The utilities should therefore
be generalised to cope with call frames in other locations than Lhe stack.
Implementing such modifications to WS were beyond the scope of this
thesis.)

iii. also because the call frames are not on the stack the VMS

condition handling mechanism can not be used. This is a serious
disadvanLage for the language, and one that seems impossible to avoid given

the current behaviour of VMS. Condition handling is not discussed furlher
in this thesis, although il is an issue that implernentors of Ada under

VAXIVMS are going to need to address.

As appendix C shows, MTL does badly in comparison with the

conventional stack-based CALL on the VAX-'1 1 because of the costs mentioned

in (i). Several- steps can be taken to alLeviate the problem. A relatively
simple optimization for the compiJ.er would be to detect routines that can

not be interrupted by rescheduling and run these on the stack, never

copying the CALL FRAME inlo the heap. In practise this is r¿hat happens

with all of fhe routines that are not written in MTL. For routines that
are internal to a moduLe (so that the compifer knows all instances of it is
cal-led) a different cal-L mechanism eould be used. A simple mechanism would

be to use Lhe JSB instruction to caLl- the routine so that only the return

51

address Ís placed on the stack. The catled roubine could Lhen allocaLe the

heap space and build the frame directly in the heap' For all routines bhe

return mechanism could be sped up by emulating the RET instruction based on

the heap, rather than copying Lhe heap item back to the stack as is

currently done. It is estimated that a 2' or l-fo]d improvement in

procedurecallingratescouldbeachievedinthisway.

Recent developments in computer archiLecture, for example the Mesa

ProcessortJOS2,LAS2l, show fhat heap based proeedure calling mechanisms can

be implemented in hardware. There is no reason why such machines should

run any slower Lhan others using conventional stack architecture'

If VMS did support multiple USERMODE stacks then the difference in

procedure calling could be made to disappear completely by allocating a

stack per task. Most conventional operating sys|ems would already meet

Lhis requiremenL beeause they do not have the restrictÍons that the vMS

software imposes on the usage of the USERMODE sLack.

5.2.3 Heap Man agenent

It is immedialely apparent lhat the allocation and deaJlocation of

items from the heap is going to significantly affect Lhe performance of

procedure calling. As we shal-I see in 5.2.5 it also significantly impacfs

on the speed of message Passing.

Inthepastmemoryhasbeenrelativelyexpensiveandalotof
research has been done in the area of heap management. With the advent of

relaLively cheap memory and large virtual address spaces many of the

original constraints are no longer binding. Inslead it would appear that

Lhe most importanL criLeria for a heap management scheme is cpu-tirne and

page-fau]t behaviour, not the careful usage of every available portion of

memory. This being Lhe case any cpu-time spent in coalescing the heap is a

waste of resources, unless fragmentation is a serious problem'

MTL uses an extremely simple heap management system. An array of

queue headers, one queue for each size of object between 8 and 512 bytes

in size. No object may be less than 8 bytes. When an object of a larger

size than this is lo be allocated, or the queue of free objects of the

correct size is emply, the sLandard WS heap management utility is used'

However if the queue is not empty a single REMQUE instruction removes

the first free object. when an object is deallocated it is placed in

52

Lhe free queue for the appropriaLe size unless it is too large, in which

case it is deallocated again using the VMS heap manager. Fxperiments with
the VAX-11 Pascal 1.3 Ímplementation have shown a similar mechanism to be

able to reduce page-faults in pathological situations by factors in excess

of 100 because Lhe list of free space is noL being searched in futiLe
atLempts to coalesce the items with a neighboring free area.

In this hray the queues effectively eache the heap. The queues of
objects tend to grow to an optimal sÍze, and allocations are satisfied via
very short instruction sequences. CurrentJ.y Lhe following code would be

execuLed as the result of a call to the Pascal predecJ-ared procedure

NEW(pointer).

MOVL

MOVAL

JSB

s^/18 , Ro

B^-12(R1 3) ,R1
MTL.NEW R1

R0 , -(sP)
RO,I/SHORT HEAP ITEM
10$
HEAP Q HEADERSIRO],RO
e(R0),(Rl)
10$
#8, SP

; R0 := the size of the object.
; R1 := the address of fhe pointer.
; Jump-subrouline to the MTL Heap manager.

MTL.NEW R1: :

MOVQ

CMPL

BGEQ

MOVAQ

REMQUE

BVS

5$: ADDL2
RSB

Save the two regisLers.
See if short enough for our
super-fast heap.

Get pointer to queue header.
Try to unlink item from queue
Br if queue was empty.
Pop the registers.
Return frorn subroutine.

If this sequence is nol fast enough, the size comparison could easily
be performed by the compiJ.er, and the REMQUE/BVS pair of instructions
inserted as in-line code. However this sequence was adequate for MTL.

Deallocation follows a simil.ar path. Appendix D compares this very simple
strategy wilh lhat of VAX-11 Pascal 1.3.

ïhere are two non-obvious advantages to Lhis mechanism. Firstly the
size of each queue tends to grow untiL they are just enough to cover peak

demands. Secondly traditional heap managemenL schemes that do coalescing
during deallocation are susceptibJ.e to poor cpu-time performance due to
strange orders of deallocation. Such behaviour can be expected in a

message passing system. The reader is invited to Lry out the foJ.lowing

example on an available Pascal system.

53

Program Heap(output);
type ptr = ^integer;
var i : integer; a : array[1..1000J of pbr;
begin
for i := 1 to 1000 do new(atil);
start := clock;
for i := 1 to 500 do dispose(a[2*i-1]);
for j. := 1 to 500 do dÍspose(a[2ri]);
writeln(clock-start: 1) ;
for i := 1to'1000 do new(atil);
start := clock;
for i := 1 to 500 do dispose(a[i]);
for i := 1 to 500 do dispose(a[i+500]);
writeln(clock-start : 1) ;
end.

start : integer;

{COMPARE THIS FIGURE}

{AND ÎHIS FIGURE}

5.2.4 The Multi-Tasking Subsystem

Multi-tasking is aecomplished by context swÍLching the sÍngle
processor between the currently active tasks, thus is only pseudæ

concurrency. It is implernented by saving the entire conlext of one task in
a task control block and loadÍng the conLext out of another block. The

only aspects of the machine state that must be saved in this way are the 16

regisLers. A1l other aspects of the task are kept eiLher Ín the TCB (task

control block) or are in the activation records in the heap.

Each lask can be in one of a varieby of states. Each is discussed

in turn below, in the order that fhey tend lo cycle through. For each

state there is a queue of tasks, and each task control block records which
queue the task is currently in. This is very sirnilar to the manner in
which the WS scheduler maintains information about processes, and indeed

t,he design of VMS did suggest fhe design of Lhe MTL scheduler.

Initially all TCBrs are in the IDLE queue. There are finitely many

TCB I s and Lhey are stored in an array. During the execution of a

Create Statement bhe Task is caLled as a normal function. The task copies
the parameters (which may only be passed-by-value) into locaI variables in
the activation record and then calls fhe MTL run-time routine HTL.FORK.

FORK allocales a TCB from the fDLE queue, fills in the context, and places

the TCB at the end of the COMPUTABLE queue. It Lhen emulates a return back

to the creator of the task, reburning the Task Identifier (TID) of the
created task.

54

When a task releases fhe cpu the task at the head of the

COMpUTABLE queue is removed and placed into the CURRENT queue (whÍch only

ever has one entry) . If bhe COMPUTABLE queue is emply, and no lasks are

waiting for events flags (see 5.2.6) to happen the program is

deadlocked and is therefore aborted. If tasks are waiting for event

flags Lhe whole WS process is paused until one of the event flags being

waited for becomes set.

The current task executes as long as it has something to do.

Evenbually it cal1s MTL.SCHEDULE either indirectly as a result of a

message operation or wait-for-event-flag operation, or directly as a

Reschedule StaLement. There are a variety of possible resulting stales for

the task.

The MESSAGE state is used when a task

receive a message bul is temporarily bLocked.

is either trying to send or

used by the message passing subsystem, and the

state by thal subsytem, and is removed from it
task is no longer blocked.

A Lask is placed in the SLEEP state by the Sleep procedure(see

4.4.4). The AWAKEN procedure removes tasks from this state and returns them

lo the COMPUTABLE queue.

The MESSAGE state is onlY

task is only put into this
by that subsystem when the

Ihe HAITING_F0R_EVENT

The task is returned

flag becomes set.

queue is used for
to the COMPUTABLE

waiting on an event

some time after Lhe

tasks
queueflag.

event

The TRYING TO RETURN queue is for routines that are trying Lo return

to their callers, but can noL do so because there are still suFLasks

capable of referencing variables declared by this rouLine. During task

creation the task increments the reference count in the activation

record belonging to its slatic parent. It decrements this count again

when it dÍes. The parent routine is Lherefore unable to exit whj'Ie

this reference count is positive, and hence the taskrs entire dynamic

scope remains accessible Lhroughout its lifetime. l'lhen decremenling a

reference count yields a result of zero I all tasks in bhe

TRyING TO RETURN queue are placed aL the end of lhe COMPUTABLE queue.

However Lhey all- check their reference count again and any that were not

affected by this change get returned to the TRYING T0 RETURN queue.

55

Appendix E gives performance figures for MTL context switehing.

5 .2 .5 The ì4e ss Pa ss in Sub stem

Send statements and Receive statements specify both message and

buffer variables. Ihe MTL run-time sysLen provides Monitor-style

routines that manipulate these to perform the message transmissÍon and

reception. Because these routines are critical to the performance of

message passing they are wribten in assembÌer, however the Lechniques of

HabermanntHAT2l can be applied to proving their correctness, as we will
show.

The memory layout of a buffer type is

BUFFER TYPE =
RECORD

FREE : INTEGER;

QUEUE;RECEIVERS

SENDERS : QUEUE;

MESSAGES : QUEUE;

END;

MESSAGE TYPE =
RECORD

MESSAGES : QUEUE;

REST RECORD

END;
END;

The memory layout of a message type Ís

I count of free slots in buffer i

+-------- -----+
I queue header for queue of i

I bLocked receiver tasks ' i

+-------- -----+
I queue header for queue of i

I blocked sender tasks. i

+-------- -----+
I queue header for queue of i

I messages in buffer. i

+-------- -----+

+-------- -----+
I queue entry for message queue I

| (forward and backward link) i

+-------- -----+
¡l¡r
i type-specific fields. I

¡lar
+-------- -----+

4 bytes

I bytes

I bytes

8 bytes

I bytes

0 or more
bytes

56

Using these.record structures, bhe algorithms for Send and Receive

can be written. . .

PROCEDURE MTL SEND(VAR BUF : BUFFER TYPE; VAR MSG : MESSAGE TYPE);
BEGIN
if not queue empty(buf.senders) Lhen wait(buf.senders,TAfL 0F QUEUE):

if buf.free (= 0 then wait(buf.senders,HEAD 0F QUEUE);
buf. free : = buf. free-1 ;
insert in queue(msg.messages,buf.messages) ;

awaken firEt(Euf .receivers) ;
if buf.free) 0 then awaken first(buf.senders);
END;

PROCEDURE MTI,_RECEIVE(VAR BUF : BUFFER_TYPE; VAR MSG

BEGIN
if not queue empty(buf.receivers) then

wait(buf.receivers, TAIL OF QUEUE) ;

buf. free : = buf. free+1 ;

if queue empty(buf.messages) then
begi n

awaken first(buf. senders) ;

wait(buf.receivers,HEAD 0F QUEUE) ;
end;

remove from queue(msg.messages,buf.messages) ;
awaken_f ir st(UuT. r ece ivers) ;
if buf.free) 0 then awaken firsf(buf.senders);
END;

MESSAGE TYPE);

These algorithms are a modified version of those proven correct by

HabermanntHlZZl. The modificaLions (which do nob affeet the correctness
proof) are. . .

(1) SIGNAL and WAIT are implemented via a queue of tasks, wilh a

Wait(queue,location) and an Awaken(queue) .

(2) Rather than waking a Sending task by the first l.Jait only to fa1]
into the second, writers are only awakened when there is a free slot in the
buffer for the message to be placed in.

(3) The free:=free+1, which corresponds to Habermannrs SIGNAL(FRAHE)

i s done bef ore the message is removed . Si nce l.{TL d oes not do pre-emptive

scheduling bhis is possibl.e because either

Í. the message queue will be empty in whÍch case the free:=free+1 allows
for the case when the buffer size is set to zero and the presence of the
receiver has increased the size of the buffer, or

57

ii. the message queue will be non-empty in which case the removal of the

entry and lhe incrementing of free are commutative.

(4) For RECEIVE the final "awaken(reader); if free) 0 ...rr are the

opposite way round to Habermann. Ihis is purely because they are

comrnutative (since MTL does not do pre-emptive scheduling) and this gives

both routines the same ending, allowing them to share the same

machine code.

Appendix F gives message passing rates for MTL under varj.ous

circumstances, while appendix B shows the importance of supporting message

passing in Lhe language rather than having the application program

implement it via some other technique.

The Odd-l{ord-Reversal Problem (DijkstratDI6SI) was coded as a

procedure calling and then as a message passing algorithm and cpu-times
compared (appendix G). Several comments need be made abouL the resulLs,
which indicated that message passing could be of a similar speed to
procedure cal1ing. The MTL heap was apparently stiIJ. too slow to keep up

with procedure cal1ing. By pre-allocating all the message buffers the cpu-
nottimes eân be made almost equal. This pre-allocation isran artificial

trick, but corresponds to making the improvements mentioned in 5.2.3 to the

MTL heap allocation/deallocation mechanism.

5.2.6 The I/0 Subsystem

Pascal-like I/O is done using the VAX-11 Pascal runtime library
routines, although the MTL eompiJ.er does not support al-l the standard

Pascal I/O. Because of this, any input by a task holds up the entire VMS

process while the operation is performed so no other task may execute while
the input is being done. A similar situation holds for tasks doing output.
fn practice this usually only matlers for terminals, because the VMS Record

Management SysLem does read-ahead and write-behind for dlsk files. MTL is
Lhus incapable of doing asynchronous I/0 on separate terminaLs using Lhe

READ(LN) and WRTTE(LN) sLatements (however it can be done using calIs to
either RMS or $QIOW (see 3.2.4)).

The VMS I/O System Services are capable of operating asynchronously

and notifying the proeess when the I/O is compleLed. This notification is
carried oub in one of two ways, either by the setti.ng of an event flag, or
by the delivery of an AST (Asynchronous System Trap - see section 3.2.3 for

58

details).

MTL provides a run'time support routine fhat suspends the current
task until an event flag is set. Ihe event flag must have been obtained

from MTLI s event f Iag resource manager which is compat ible with the WS

event flag resource manager, bub only uses some of the possible event flags
(namely 1-23, the omitted ones beÍng 0 and 32-63. Flags 24-J1 are reserved

for WS)

the following brief program illustrates the usage of MTL routines for
managing an event fIag.

Program EF DEMO;

Type efn = inLeger;
Funclion MTL GET EF : efn; extern;
Procedure MTL FREE EF(fimmed ef : efn);
Procedure MTL WAIT EF(fimmed ef : efn);
Procedure SYS$SETEF (fimmed ef : efn);
var ef : efn;
begin
Cf := MTL GET EF;
sys$setef(ef) ;

MTL WAIT EF(ef):
MTL FREE EF(ef);
end.

{Allocate an event flag}
{Set it}
{lfait for iti
{Free it}

exLern;
exlern;
extern;

There is a high cpu-time cost involved in having the scheduler check

whether the event flags bhat Lasks are waiting on are set, and WS does not
provide a mechanism for having an AST delivered when the flag becomes set.
Rather than incur this expense the current implementation checks the event

flag on the call to MTL WAIT EF and if it is set returns immediately. If
it is not set then the task is entered into the WAITING FOR EVENT queue,

and when no other tasks are capable of execution the whole process is
paused until one of the event flags being waited on becomes set. At that
time all tasks whose event flags have become set are returned to the

COMPUTABLE queue.

5.2.7 A Problem with Asynchronous System Traps

The alternative method that VMS uses Lo notify a process of I/O

completion (and for other purposes) is the AST (see section 3.2.3). WS

provides a System Service for disabling ASTrs, and this is typically used

to provide a critical section. For example if both the main algorithm and

an AST-driven rout.ine (for example an interval-timer) access the same data

59

base, by disabling ASTts the maln algorithm can temporarily gain exclusive

access to the daba base.

This presents a (minor?) probtem wiLh multi-tasking, because a task

that wishes to block its ohrn ASTts also blocks all those for the other

tasks. Furthermore i¿ is quite Iikely that the AST will get deLivered

during the time when another task, obher than the one thal requested it, is
current.

It is unclear without experience whether either of these difficultÍes
will give trouble in practice. It was judged that the solution for this
problem was too (1) complex, (2) cpu-expensive, and (3) VMS specific, to be

fu1Iy explored in this thesis. It would appear that any solution would

require modifications to WS itself .

5.2.8 Summary

An Ímplementation of message passing that is al-most as efficient as

proceduring calling was implemented under VAX/VMS version 2. Minor

enhancements bo both VMS, the MTL compiler, and the MTL runtime system

would completely alleviate the added over-head of proeedure cal.Iing, while

the generation of intine code for NEW and DISPOSE would make Lhe costs of

message passing as efficient as procedure cal.ling.

Increased Hardware and Sofbware support for heap management and for
multi-tasking inside a single address space (in particular instruetions for

loading and saving the complebe regisLer set) would eliminate compJ.etely

any differences in efficiency between implementations of MTL-Iike languages

and those of conventional block structured languages.

The interfacing of the multi-tasking with the asynchronous system

services presents the greatest software difficulty in the implementation,

and some of Lhe problems were not solvabLe wiLhout modifÍcations Lo the VMS

operating system.

60

Chapter 6

EDITING AS A MESSAGE PASSING AND MULTT-TASKING PROBLEM

6.1 Ïhe Application of Concurrency to Editing

The use of a message passing and multi-tasking concepts in the design

and implemention of an interactive Lext editor Þras found to yield new

insights into the nature of the editing process as well as giving a deeper

awareness of strengths and weakness of bhe particular implementation

language (MTL).

Text editors sbress both the character-manipulatJ.on and the sequence

conLrol aspects of a language Lo the limif. A powerful edÍtor is itself an

implementation of a programming language with the programs being

inberpreLed in some form to manipulate the text and other aspects of bhe

userts environment. Inside the editor boundary condiLions are rife: lines
beeome Loo long, heaps overflow, searches fail to find their barget. The

user can often request the abort of the current command. Yet in response

to any of Lhese occurrences the situation must be neatly tidied up and

control returned to the user. The irnplementation of these Ineat tidy-upsl
is a difficult problem in an edilor written Ín a conventional language and

presents new and interesting problems in a concurrent implemenlation.

Using a Language that supports concurrency to implement an edibor has

several potential advantages. If the rest of the operaling system is
wriLten in a concurrent language the edÍLor will be better abLe to
interface with it. For example if lhe operating system defines I/O in terms

of message passing then the implementation will be easier if the editor
uses the same concept. This will enable the overlapping of the reading and

writing of data files, both bo the terminal and to disk fi1es, to be

overlapped wibh other operations.

This overlapping of the reading of a file and the execution of
commands enLered by a user has proven advantageous in practice. the

University of Adelaide has a utility for interactively examining the
contents of a disk file from a VDU. These fÍIes are frequently hundreds or

thousands of blocks long yet the delay involved in reading of these files
is hidden from the user by just such an overlap of disk I/O and the
execution of commands supplied via the keyboard. The user is not aware of
exactly how much of the file has been read because the firsb few lines
appear as soon as they are available and commands entered from the keyboard

are executed as soon as it is possible bo do so.

61

A concurrent implementation language would also enable a rnulti-
processor implementation, with a portion of the editing being done in the
userrs terminal or work-sLalion, taking a considerable load of the main

CPU. WÍth the arrivaÌ of steadily cheaper personal computers and

networking this may soon be a tolally obsolete radvantager.

In most conventional computing systems Lhe power of the editor is
unavailable whenever the user is enLering input to any other program,

indeed in mosb ediLors this power can not even be used to correct the
commands being enLered. The only way to solve this problem is Lo make the
editor the only inLerface beLween Lhe user and the rest of the sysLem. To

enable fhe editor to completely control the VDU a11 terminal I/0 would have

to be directed through it, and bhis is mostly naturally viewed as a message

passing system. The steady introduclion of high-resolution visual display
units also leads to the possibility of having more than one active Task,

with Task using separate areas of the screen for their terminal I/O. The

combined impact of these requirernents on the editor is that it should be

implemented in a language thal supports message passing and concurrency.

It is natural to propagate the concurrency of the rest of the system

into the userrs editÍng environment. Text editing includes such activibies
as sorting, typesetting, and other reformatting of lhe Layout of the
characters. It also involves pre- and posL- processing of the files (such

as text formatting and control character Ínterpretation, eg underlining),
and the splitting and merging of streams of data. The paradigm of text
editing that we propose supports al1 these activities in a generaJ. and

flexible manner by exploiting message passing and concurrency at the user

environment 1evel.

A primitive version of such an editor i.¡as designed using message

passing and rnulti-tasking but only partia1Ly implemented (in MTL) . The

deep integration of this ed itor inlo WS was not possible but it was

apparent that a more sophisticated version would be a powerful programmerrs

work-bench with such tools as sorting and other reformatting algorithms, an

editor, a compiler, etc. , all available as Tasks which could be

instantiated and connecLed as desired. It was also apparent that MTL would

be capable of fu1Iy implementing this work-bench under VAX/VMS.

62

6.2 The Basic User Environment

the userr s environment is a collection of Tasks which process inpul
and generate output. Some of these Tasks are Scenes, which are special
Tasks designed to edit texb. Other Tasks could be any user program, or
sysLem utility, such as a CLock or a MaiI system.

Each Scene contains a two-dimensional array of characters (which may

also be regarded as a lisb of lines), and has input and outpul paths.
These paths are used to connect the Scene to other Scenes, to disk files,
and also Lo any other current Task. The paths are buffers lor messages of
lines of !ext. Any message arriving in the primary input path is
automatÍcally appended to the end of the rest of the text in the Scene,

messages arriving on other paths have to be explicitly read and deall with.
Scenes provide the multipLe editing environments needed in a powerful
editor. They can be purely passive, storing Lext unlil it is required
1aLer, or Lhey can be linked togeLher as a series of programmable filters
performing various operations on the Lext stream, such as formatting it.

Any Scene can be waLched on the userts VDU, and severaL scenes may be

visibLe at once, thus allowing the user to monitor the behaviour of any
group of Scenes aL any time. This faciJ.ity is essential, not only for
debugging, but also for monitoring background activities such as Tasks that
run for long periods of time.

Each Scene executes editing commands that it reeeives via its command

path (note that these commands are actually programs in their own right) .

This execution is asynchronous, with each Scene executÍng its current
program then accepting the next from its command path for execution. By

connecting the output path of one Scene with bhe input path of another the
application of reformattÍng algorithms to daLa can be done in paralleL as

stages in a pipeline.

A typical use of this facility would be three Scenes set up as â pre-
processor r a Scene under the moment-by-rnoment control- of the user, and a

post-processor. If this configuration bras being used to edit a Pascal.

program the post-processor coul-d be direcling its output to a disk file,
and sending a duplicate of it directÌy to a Task executing the Pascal.

compiler. A J-isting of the errors detected by the compiler wouLd be

directed to another visible Scene to aid the user in their correction.

63

6 .2.1 File Sub-svstem

Because the Scenes are not heirachically organised it would not be

wise to equivalence them to files. Instead a file can be abtached to an

input path of a Scene, in which case iLs contents are appended into the

Scene, or it can be attached to an output path, in which case all outputs

from Lhe Scene are appended to the file.

As an implementation detail this would require the instantiaLion of a

Task Lo perform the actual- I/O and to send or receive the messages via the

appropriate paLhs. However this is a consistent way of viewing al,1 Tasks,

such as compilers, the editor, eLc., and thus is a unifying factor rather

than an awkward implementation issue.

6 .2.2 Scene Pro ams

Since Scenes are used to perform considerably more powerful funetions

than just interactive edilÍng a more sophisticated editing language would

be required than Ís typical for text edibors. The fuIl power of a language

such as PascalIISO] or SNOBOLAtGR68l would be desirable, with mechanisms

available for interfacing lhe language direebly to a Scene.

Ihe instances of the Scene-programs are self-contained rather than

relying on a particular Scene Lo provide storage for their variables, etc.,
but lhey only execute in the context of a Scene. This enables an instance

lo move from one Seene to anoLher, carrying with it lhe values of aII
variables etc., but not lhe Sceners attributes of Lext and paths (although

it can take references to Lhe paths to be used for later directing input Lo

or from the Scene).

This ability to change Scenes allows programs to use networks of

Scenes to perform complex roles. For example two Scenes coul.d be set

up side-by-side wÍLh a merging program shifting from one to the other

outputing lines Lo a comrnon destination in a particular order.

Another use of this ability would be a program that searches through

all the Scenes for occurrences of a particular textual pattern. Because

this program does not modify any of the Scenes attribuLes it can be used

"on-the-flytrwithout regard to the state of the Scenes (although it may get

blocked by a Scene that is executing a program, Lhis would be a situation
where a transmit-with-timeout feature would be desirable) .

64

6.2.3 VDU Sub-s stem the Human Interface

Although the user Ís capable of seeÍng many Scenes simultaneously via
the screen, alI the inputs from bhe keyboard are directed to a single

selected Scene. Ihe user can select a new Scene at any fime as bhe one to

which the input is to be directed.

The keyslrokes entered by the user are compiled Ínto programs and

directed to the selected Sceners comrnand buffer for it to execute.

Notice that these are presented to the Scene as a series of programs fo be

executed the same as any other program that is sent along its command path.

This means fhat there is no need to waiL for bhe command to finish
execulion before selecting a different Scene and directing comrnands to it.

The normal mode of compiling Lhe keyslrokes is to assume the

characters typed are Lo be overtyped (or inserted depending on a mode-

swÍtch) into the Scene and the appropriate programs are produced to do

this. Control characters, such as TAB, and Escape sequences, and olher

sing).e keystroke comnands are also compiled into the appropriate programs.

However if a complex command is to be entered the currenb selection

is remembered and the Scene 'rCOMMANDi| is selected. Editing carries on as

before but wiLh this nehr Scene being the focus of attention. lJhen the

command is fully entered a sinpLe directive is enLered that means

'rCompile the completed command, direct ib to fhe remembered Scene for
execution, and make that Scene the selected one againrr. In this way Lhe

full power of the Editor is available for correcting the complex commands

being entered.

Because the remembered Scene is still visible while entering the

complex command Lhe user need not retain a mental image of bhe text that
the command is to modify. This should considerably reduce lhe number of
incorrect complex commands entered since the command may be very dependent

on the exact details of the text.

Another Scene, also usually Lef| visible, is cal1ed TTMESSAGESTT. All
messages generated by the edilor to the user are simply directed to the

primary input path of this Scene, and hence become visible bo the user. On

a fully integrated system alJ. messages, including those from other users,

would be treated in this manner.

65

This design of the user interface does not insist bhat there is only

one VDU in use. By connecting several VDU|s into the system several userts

could be using it simultaneously. fhis would allow the editing equivalenb

of a conference, with the minutes being automatically maintained. Either
every user woufd have the same Scene selected, or alternatively they would

each have different Scene selected but all the Scenes visible.

The introducLion of severa)- people inlo the system would then lead to
bhe need for controlling the degree of interaction between them, purely bo

stop mistakes from badty affecting other users. Such constraints could

also protect parLs of onets onn area from accidental damage.

6.2.4 Subsuming rfthe systemrr

The Scene model of editing provides a consÍstent framework for user

interaction, concurrent activities, and all standard utilities. All
terminal input uses Lhe fuIl power of the ediLor, and any input or output

can be directed to or from any other outpub or input respectively. The

power of the standard utilities (such as SORT) is available in the editor,
and these utilities are fully interfaced with each other.

The Scene model is Lhus a time-sharing operating system with a fully
inlegrated user environment rather than as just an edilor, with the

traditional concept of an editor disappearing inlo a much more general

concept. This desirable goal is fulJ.y realised by fhe generaL appJ.icalion

of message passing and concurrency to design, thus demonstrating Lhe power

of these concepts.

6.3 Implementation Issues

0n1y the basis of the Scene editor was actually implemented due to
lack of time, the full implementation would be an extremely large project.

It had the creation of Scenes and the execution of simple Scene programs

enlered via the keyboard, âs well as the multÍple visible Scenes, but

neither the ability to execute Tasks other than Scenes nor the muLti-

terminal support.

66

6.3.1 Interactive I/0 management

One serious problem with this design of an editor on a multi-user
system is the large amount of cpu overhead associated with each keystroke.

This problem can ì.argeIy be controlled, as was done in the Ludwig Screen

Editor, by making the Scene that the user is currentJ.y interacting with
aware of iLs involvement wÍth the user. When the user is overtyping text
the truly asynchronous version would generate a neh¡ program for each

character typed and place it on the selected Sceners command path. In

practise it is much cheaper to have the Scene to accept the text from the

terminal, and use the VMS operating sysbem to do the echoing of the

characters.

By a similar mechanism other frequently repeated keysLrokes could be

handled cheaply. Statist,ies gathered for Ludwig give lhe following
distribution of eommands, after overtyping has been ignored.

CARRIAGE RETURN

CURSOR UP

CURSOR LEFT

CURSOR RIGHT

CURSOR DOITN

241"

14í

13t

13t

121

TotaI 7 61"

These figures are badly biased because repeated usage of any of these

cornmands is only counted as one. For example if the user types fhe

LINEFEED three times, only 1 would be added to the count of CURSOR DOWN, so

we do not claim these figures refLect their Lrue proportion of usage, but

they do show quile clearly the gains lo be made by optimizing the behaviour

of a select subset of the commands.

6.3.2 Human Limitations

Humans may find the asynchrony of such an edilor confusing.

Unfortunalely the implemenLation was not complete enough to fully
investigate this but several problems did appear. The most severe problem

eneountered hras associating the error messages with the event that caused

them. Messages are generated by syntax errors, as well as other execution

67

time failures, and a clear mechanism for linking the error wiLh the cause

is required. This problem is exactJ.y the same one as with the debugging of

concurrent algorithms in general.

The other problen, which occurs with conventional screen editors but

is exaggerated by concurrent editing, is the need to view large quantities

of text simullaneously. The terminal the editor was implemented on was

on1-y 24 Lines high by 80 characters wide. It would be preferable to have a

berminal Lhat is 132 characters wide by at feast 70 lines high to allow the

display of adequately many Scenes simuLbaneously. Such terminals are now

becomÍng available.

6 .3.3 Termination

Many editors provide a facility for buiJ.ding and executing complex

instructions from simple ones, and most provide an ABORT mechanism whereby,

by typing a key, the editor aborts the execution of the command and returns

control to the user.

Inside the Scene editor, with its many asynchronous activities, it is
not obvious which Scene(s) the user wants aborted. However since the

behaviour of an ABORT request can only be well-defined at those points

where a program is interacting with lhe user in a dialogue, the ABORT

statement can be construed as aborting the selected Scener s program.

The olher point where ABORT is used is for run-alray programs. In

lhis case it is reasonable that the user should specify which Scene or

which program (since programs can move between Scenes) Ís to be aborted.

Because the activities truly are asynchronous there is no problem in

communicating with lhe user, unless due Lo the lack of pre-emptive

scheduling in MTL. This lack can be avoided by automabicalì.y rescheduling

at the end of each (n'!h) step in the execution of a Scene-program.

6.3.4 Correctness

The correetness of any powerful editor is difficult to establish

because of the wide variety of boundary conditions. A successful approach

seems to be to have a list of asserLions about the editorrs data structure

and to regard bhis as a list of transformation-invariants, ie. assertions

that must be true before and afler various operations are performed on the

data structure. By writing a routine that evaluates these assertions, and

68

caLJ.ing this routine from various points in the code, errors can be very

quickly located. The extensive usage of subrange checking in the Pascal

implementation of Ludwlg demonstrates this poinl very wel1.

6.3.5 Er ror Manaqement

Beeause there are so many boundary eonditions in an editor, it is a

truism that some algoribhmic errors will not nanifest themself even after
fairly exhauslive tests. When these errors finally do occur it Ís
undesirable behaviour for the editor to crash, losing all the userts

current sessionrs work and the environment that has been established.
Ludwig solves Lhis by providing a VMS condition handler which merely forces

the current routine to return to its caLler returning a value of FALSE or

NIL. By being av{are of this possibility throughout the whole source code,

the implementors were able to design their code lo minimise the impact of
Lhe error. Errors that could not be contained cause Ludwig to aborb and to
write out the contents of the various Frames into their respective output

files before the edÍtor is completely exited. These measures have proven

adequate, and it is exLremely rare for fhe editor to abortr even after a

fairly severe internal corruption.

Unfortunately condition handling is not implementable in MTL (see

section 5.2.2) because of resLrictions caused by VAX/VMS version 2.

It would appear that in an asynchronous environment the first step

may be possible, but Lhe second (the winding out of the various frames) may

not be adequaLe because many Scenes will contain useful text, but wil,1 not

have output fil-es. A better approach would be to write out all the various
Scenes to a dump file, and Iet the user pick his way through bhe ruins
recoverj.ng those portions he needs.

0ther approaches such as journalling (wriLing each command to a

journal file as it i.s executed) and checkpointing (writing the current
state lo a file at regular inLervals) may be tried. Ludwig experience

Índicales that journalling is unable to cope with editors that have ABORT

facilities and the ability to build and execute programs, because the

combÍnation of the two implies that journalling must be performed at a

fairly 1ow leveL in the edltor. This implies every command executed must

be journalled whieh causes Lhe journal. to grow extremeLy large.

69

Checkpointing appears to be adequate. Since Lhe Scene edÍtor has a

more complex user appearance than Ludwig, and since it is envisaged that
the user would rareJ.y exit from the editor, it would be a wise precaution

to checkpoint regularly. This would protect the user from himself, flaws

in the edibor, and hardware failures in the computing system.

The implementation of checkpointing in a compleLely asynchronous

editor presents several difficulties. In MTL the contents of the message

buffers are not accessible to any Task without reading them, a sÍtuation
direetly analogous to messages currently in lransmission on a network.

ThÍs makes it impossible to checkpoint all possÍb1e staLes of the Scene

edibor. Any code to flush these buffers would be spread bhroughout the

editor in a clumsy and awkward to maintain manner. Ihe use of a central
registry of all buffers, Scenes ebe. rnay nake it possible bo keep track of
alL the daba structures in a manner that allows a static pÍcture bo be

taken of them, but the asynchronous interface between the editor and VMS

could not be treated in this manner. It would be necessary to wait for
this inberface to enter a quiescent state.

6.4 Language Demands

The ÍmpJ.ementation of an ediLor plaees severe demands on the

character manipulation facilities of a language, an area where Pascal,

hence MTL, is particularly poor. It also stresses the I/O facilities,
particularly those related to Lerminals, because of peculiar needs. Input

is often Itcharacter-by-character : not echoedtr, or alternatively rtup to n

characters but stop before the first occurrence of a character in this
setrr. Very ofLen Lhese requirements can not be met by the language, and

there is a need to call routines written in some other systenrprogramming-

orÍented language. Sophisticated editors tend to be large programs and the

need for modular compilation is a nabural consequence.

EdÍbing does not make many unusual demands on the message passing or

concurrency aspecLs of the language. If the user can see the activiLies of

several pseudo-concurrent tasks the behaviour of the scheduler may become

quite apparent. I'Fair'' scheduling is a difficult thing to define, but it
wilt be very obvious to the user if a particular (visible) task is being

starved or overfeed resources.

70

The source code of the Scene editor does not cLearly indicate the
expected fLow of messages. Instead the code for establishing the various
Links and lransrnitbing the messages Lends to be scattered throughout the
fext of the various modules. Ihis partly invalidates the self-documenling
nature of languages such as PascaÌ. The work of BarterI BA82] on

communication protocols is an atLempt to clarify in bhe source code this
aspect of the algorithm.

With multiple tasks capable of accessing the sane heap item (which

may or may not be a desirabLe feature of MTL) leads to problems in
deallocation of these items. A solution to this may be some form of
garbage collection, provided it does not have a severe Ímpact on cpu
utilisation. Some architectures, such as bhe ÍAPX-432tP0821 , have

considerabl-e hardware support for this facility, and some languages, such

as Ada and Lisp, seem to demand it. vlith large physical and virtual address
spaces a steady buÍld up of garbage in bhe address space may not be

important. A reference-count mechanism may be an adequaLe comprise, as it
only presents problems when there are loops in the data structure, which is
fairLy unusual.

6.5 Summary

A concurrent view of editing has been extended Lo a sysLem that
encompasses all the interaction between the human and the machine(s). This
extension aLLows complete editing of al1 visible data, and the easy
manipulation of daLa through a variety of filtering tasks, such as sorting
algorithms and compilers.

Such systems will provide a more flexÍble, consistent, and friendly
environment for users. Message passing is a viable and efficient basis for
their impJ.ementation.

71

Chapter J

RESULTS AND CONCLUSIONS

7.1 Language Implementation

7,1.1 The Run-time Heap

The performance of the run-time heap is Lhe single most crucial
feature in an efficient implementation of MTL-Iike languages. A simpì.e

design, as described in section 5.2,3, performs extremely well and imposes

almost minimal overhead. The use of inline code rather than procedure

calls for Lhe allocaLion and deallocation of heap items is possible, with
between one and three instructions required to allocate the object
(depending on whether bhe hardware generabes a trap when an attempt is made

to remove an item from an empty list or if it sets the condition codes),

and one or two instructions required to place the object back on Lhe

appropriate free list.

If the heap is managed in this fashion the cpu-time involved in the
allocation and deallocabion of storage can be ignored when comparing the

performance of heap based and stack based systems, since it is of the same

order of magnitude as stack maintenance.

7 ,1.2 Procedures and Functions

The design of the routine calLing mechanism wilL depend on the

operating system and machine architecture that the implementation is aimed

at. Even in the worst caser such as the current MTL implemenLation, when

the actÍvation records have to be stored in a heap, the caLls are only

about nine times sLower than the stack based mechanism, as is shown in
APPENDIX C. Furlhermore there wilL be fewer calls because of the use of
message passing.

An optimising compiler that does globaL flow analysis is able lo
significantly reduce the number of calIs that require the use of the heap

PR0VIDED that pre-emptive scheduling is not implemenled, and use of
specialised instructions can make procedure calls that use a heap to store
the activation records just as efficient as those that use a stack.

Tt¡us the apparent overheads in the MTL implementalion of procedure

caIls is not a consequence of the muILi-tasking per s€, but rather a

consequence of sone limitations Ín the compiler and in the VAX-1 1

architecture.

72

7.1.3 The Performance of Message Passinc

The VAX-1 1 architecture is capable of supporting message passing at
speeds comparable to the CALL insbructions but not at rates comparable to
the JSB (jump-bo-subroutine, which pushes the currenb program counter onto
the stack and then jumps to the subroutine) instructions. Ihis is to be

expected with any conventional architecture because the JSB instructÍon
represents the mininum amount of information that need be preserved.
Hardware support for message passing would change this situatÍon. Such

hardware would completely implement the MTL buffer as a single instrucbÍon.
Even faster JSB-sfyle instructions where the return address is placed Ínto
a register rather bhan memory will probably remain the fastest way of
callÍng Lrivial routines (such as random number generators). Of course
nothing will beat in-line code for sheer speed!

Message passing has the following potential advantages, some of
which are only realised when rnessage passing Ís inplemented with hardware
support. . .

(1) No processor eontext (such as registers, etc) need be saved.

Procedure caJ.ling using the CALL instructions invoLves writing between 20

and 60 byfes of memory from registers during the CALL, and reading this
back into the regisbers for the RETURN.

Q) Parameters Lo a procedure are passed by two basic mechanisms,

either pass-by-reference or pass-by-1oca1-eopy. rn the pass-by-rocal-copy
nechanism, such as Pascar requires, the carring routine provides a

reference to the value of the parameter and the called routine copies this
value inLo a locaf variable. If this vaLue is passed on to another
(nested) routine it is copied again. This repeated copying of values can

be inefficient if the value requires a large amounb of storage. Message

passing is basically the passing-by-reference of a series of heap items and

so it is efficient to pass around large strucbures as messages (the Sender

losy'es access to the nessage and the Receiver gains it).

The use of broadcasted messages can impact on this performance by

requiring copies to be taken, but it appears that this is not the usual
usage of messages. Where efficient broadcasting of large structures is
required it may be possible to broadcast a pointer to a heap item, and by

use of a reference eount mechanism have this item destroyed when the last

73

access i.s refeased. AIl the Receivers would have to be aware bhat they

were sharing this heap iten with other tasks.

Implementations of message passing on distribuLed sysbems are not

able to geb the fulL advantage of pass-by-reference (unless the systems

have a shared memory) but this is another advantage. Since the sending

task does not have access bo bhe message after the call to the SEND

procedure it does not need to be blocked until the message has been

transmitted on Lhe communlcatlon medium. If Lhe communication medium vJas

slow and if the sender was able to access the message after the SEND it
would be necessary to either delay the sender or copy the message before

lransmi ss ion .

(3) In a bhree-phase operation (eg.

be three procedure calls but only two

transfer information through the phases.

read/massage/write) fhere would

message passing oper,ations to

These

acce ss

paging

(4) Tasks tend to have loop-until-finished style behaviours.

loops cause an increase in code-IocaIity and perhaps in memory

locality effects, whÍch should lead to improved cache and

perforroance during the execution of larger algorithr¡s.

7 .1.U Context Switching

Context switching requires the saving of the current context, usuaLly

just the registers, in a control block and selecting and loading the

context of the next task. As such ils performance is very simÍlar to an

expensive procedure ca1)-, where all registers must be saved and restored,

bul only a few smaLl parameters are passed. The use of asynchronous

message passing significantly reduces the number of context switches

required, but the size of the buffers used to implement the asynchrony need

not exceed 10 items Lo geb most of bhe enhaneed performance.

ConLext switehing in MTL Ís greatly simplified and sped up by the

fact that all the tasks run lnside the sarne VAX/WS process. If this were

nob so contexb switching would also require the changing of the virtual-
memory bo physical-memory address translation tables and the invalidation
of both the hardware memory caches and address translation caehes.

74

7.1.5 r/O

1/O causes insuperable difficulties unless Lhe operating system

supports asynchronous I/O. Many current runtime support systems, such as

that for VAX-11 Pascal 1.3 do not support asynchronous I/0 even though VMS

does. This is unfortunaLe because it means thal such runtime sysLems can

nob be used without sacrificing the overlap of I/0 and computation. In
practice only terminal I/O (and possibly communication over sfow medÍa)

cause problems, because disk I/O is overlapped by WIS anyway.

7 .1.6 Shared Variables

The only efficient implementation of any language which supports

shared variables is going to requÍre the tasks to have a (partially) shared

address space . lh is need not prohibit a desirable (but under WS not

easily atlainable) goal of having each task also have a private address

space for such things as stacks. MTL requires that alL the activaLion
records textually surrounding the task be available bo it, precluding such

an implemenLation. An alternative language design may require shared

objects lo be in the heap which could then be maintained in the shared

address space while Lhe activation records are maintained in the private
address space.

7.2 0peratÍng Sy stem Support

7.2.1 Heap Management

Heap management does not require much operating system support, other

than the careful specifieation of a sLandard for all language

implementations to foIIow. The heap should be specified so that simple in-
line eode can do all allocations and deall-ocations, with operating system

support only required when an object of the required size is not availabl,e.

7.2.2 Process Creation and Deletion

Process creation in VAX/WS could be made considerably faster if an

area of the creatorf s memory could be designated as shared with the created

process rather than specifying a disk file for the created process to run.

This probab).y the most radÍcal change to VAX/WS that was observed during

the researching of Lhis Lhesis.

75

It woufd appear, however, that the large overheads in maintaining in
separate processes for separate tasks (separate address space, accounting

information, quotas, elc.) make such a use extremely expensive. A

characteristic of programs in message passing systems is that the tasks are

fypically small, often only a few hundred machine instructions long, and Ít
does not seem sensible to wasLe a complete process for such a small object.

7.2.3 Multiple Address Spaces

If it can be obtained simply and efficienbly in bhe hardware it may

be desÍreable for a process to be able Lo swÍtch between several address

spaces very quickly, allowing such implementation possibilities as 7.1.6.

7.2.4 I/O and other Asynchronous System Services

A minor annoyance in the design of MTL is the inability to tell. VMS

to deIÍver an AST whenever an event flag is set. Of course alL operating

systems shoul-d support asynchronous I/O on all devices for which it is
sensible.

This leads to a general prj.nciple for designing operating
allow the fulI implemention of multi-lasking inside a process :

All events that involve waiting should be designed in such a

other, unrelated, activities can be done during the delay

systems to

h¡ay

and

that
thal
thenotification is delivered to the runtime system of the occurrence of

awaited event.

7.2.5 Impact on Other Utilities

All utilities should be eapable of accepting input and generating

outpuL as messages so that they can be joined in arbitrary ways. It should

be possible, for instance, to invoke any compiLer or sorting algorithm from

any other utili.ty. In particular it should be possible to edit any bext

entered via the keyboard, or any other visible text, using the editor. It
should also be possible to apply any compiJ.er or other utllity bo any text
being currentl-y edited without having to first wrile the text onto a disk
file.

76

This can be easily done be separating the aspects of a utiLity
concerned with obtaining input and reburnÍng output from those aspects that
process this data. The I/O porbion can then be eiLher replaced with a

different but functionally equivalent (from bhe utilityrs point of view)

rnodule that is capable of either being replaced, or of getting data from a

varieLy of sources in a variety of ways, and likewise returning output in
the form that is most convenient in the partieular instance.

7

7

3 Hardware Support

3.1 Heap Management

Special hardware support for heap management is required in the form

of instructions for manipulating queues without the need for software

inLerlocks. This hardware support is available in the VAX architecture as

the INSQUE and REMQUE insLructions.

The absence of preemptive scheduling does not completely remove the

need for these instructions because they are also essential if the language

allows asynchronous interrupts, such as the AST mechanism in VAX/VMS

(section 3.2.3). MTL fal1s into this category.

7.3.2 Procedure and Function Callin

The use of messages is not going to replace procedures and functions
since lhey are complemenLary rather than opposing melhods of structuring
algorithms. However the introduction of the multi-taskÍng required does

cause some difficulties with the all.ocation of activation records.

There are two basic possibiLities. If the tasks each have their own

address spaces (eiLher as a privale portion of a single address space, or

as separate address spaces) there may be room for each to have its o\"In

stack. There is sufficient room in P1 space under VAXIWS, as indicated in
section 3.2.1 .1 , for the Lasks to each be allocated an area Lhere.

Alternatively the actÍvation records may be allocated from the heap, as is
bhe case with the Mesa processorlJ082].

If the activatÍon records are to be al-located from the heap several

choj.ces are possible. The l-ocation of the Queue Headers for each of the

queues may be known to the hardware wÍth the first few bytes of the called
routine indicating the size of the required activation record, or the

caller could allocate the activation record and bhen specify Ít as part of

77

the call, or a very simple calling mechanism could be used (such as the JSB

instruction) with Lhe call-ed routine allocating and constructing the
activation record.

This last choice would require no changes to the VAX-1 t hardware but

wouLd require changes to Lhe VAX/VMS caLling standard which is probably not

acceptable.

T?¡e simplest modification would be the addition of a CALLH

instruction to the architecture which was only useabl-e on CALLHtabIe

routines. This CALLH instruction would get its activation record from the

heap, using a size specified in the 4 bytes preceding the routÍner s entry
mask (see the VAX-'11 Architecture HandbookIDEC79-A] for details on VAX-11

procedure calling). In order to do this there would need to be a heap

management system available that fhe hardware could easily access.

7.3.3 Context Swilching between Tasks

Tasks in a single address space only require the registers to be

saved and restored to do a context switch. The VAX architecture has

instructions for pushing and popping registers onto,/off the stack, but none

for unloadÍng them or loading them from memory. This restrictÍon seems

unnecessary and annoying. A single instruction, that takes as its
arguments two areas in memory, for unloading all the registers and then

1-oading them from the other area, would be useful. Much more useful- than

the HALT instruction that Lakes up an opcode on most architeclures!

7.U Languag e Design

7.4.1 Message Passing Mechanism

The choice of transmission-by-copy versus transmission-of-original is
one that has often been made on grounds ofrtits being sent over a wÍre, so

lets keep the originalrr. For implementations of message passing on a

single processorr or a group of processors with shared memory, transmitting
a pointer to the original is more efficient. It would appear that bhe

retained message is not usually wanted by the Sender anyblay, and if it was

the Sender can take an explicit copy.

78

Message passing has several advantages over more conventional

methods of expressing algorithms.

(1) Tasks tend to be written as loop-until-finished construcbs wibh

local variables maintainÍng the conbext. Procedures on bhe other hand need

globat variables or paraneLers to maintain lhe context from one call to the

next.

Q) The inÍtialization of this context tends to be near ils usage in

the fask, but in a separate procedure textually aparb from its usage in the

case of procedures.

(3) It is an extension to a Language that can also have procedure

ealls, and as such increases the power of the language.

7.4.2 Asynchronous Versus Synchronous Communication

The cpu-time involved in context switching between tasks is larger
than the cpu-time involved in a single message passing operation. Context

swiLching requires the saving and loading of considerable quantities of
information (the machiners registers) and furthermore the operation must be

done four times for a single message passing operation when a bounded

buffer is required! It is used to transfer eontrol from the sender to the

Bounded Buffer, back again, and then laLer on Lo transfer control from the

receiver to the bounded buffer, and back again.

Appendix B shows some timing comparisons demonstrating bhis

conclusion. Since the MTL implementation of message passing costs abouL

half that of a context switch an overall performance of about 1:8 between

the run-bime system implementation of a bounded buffer and a task

implementation of a Bounded_Buffer was observed.

This would indicate it is cheaper in Lerms of cpu-time to incorporate

asynchronous communication into Lhe run-time system rather than have

synchronous communication and user provided buffers. In MTL bhe

asynchronous communication algorithms force synchronous behaviour anyway

when lhe buffer sizes are specified as 0.

79

7.4.3 Communication Paths

COSPOLI RO8 1 I and MercurylMA8 1] both use a communication path

distinguished sotely by the type of the message and the identity of the

destination. This makes for difficulties in modelling such thlngs as

multi-server queues and multi-queue objects (for example the inLersection

of four roads). Curiously enough it also goes against such real--Ìife

models as a single letlerbox serving all members of a family. Since one of

the virtues often claimed for message passing is that iU models the real

world it would appear that buffers are a better choice.

However buffers are also less structured, the flow of control and

messages far from obvÍous, and Lhere is an extra layer of notational

clumsiness involved. [anguage designers shou]d look inLo methods of

collecting such information in one place in the program source text and

look for less clumsy methods of specifying the communication paths and

activities.

7 4.4 The Effect of a Mono-Processor Implementa tion on the Lansuac,e

MTL programs expì.icit1y specify points at which rescheduling may

OC(..ur. Ihis is simple and provides the programmer with criticaL regions

without the use of any olher synchronisation primilives, but hlas viable

only because MTL was aimed at a mono-processor implementation. In

particular MTL does not address the issue of lhe fairness of CPU scheduling

algoriLhm, as each Task holds the CPU until it is prepared bo let il go.

This shows that the design of a mulli-tasking languages is affected

by fhe inLended implementation r and that mono-processor languages and

implementations are simpler than those aimed aL systems with multiple

processors.

80

7.5 Overall Conclusions

I was surprised at the adequacy of fhe VAX arehitecture and bhe VMS

operating systen for implementing MTL. In the areas where there hras

obvious need for improvements these would not be difficult to make, and

brere compatible with bhe rest of the system.

Procedures have been the main structuring tools in use for some time.

As a consequence of this we tend to regard as fnaturalr, solutions to
problems that use ib. There should be continuing efforts to apply message

passing in solutions to problems that have been traditionally been solved

by procedural techniques (sorting, compiling, mathematical algorithms,
etc.). These efforts will yield different insights into bhe nature of the

individual problems and may lead to neater solutions. they will aÌso teach

us more about the ways of using message passing. The design of the Scene

editor was sparked off purely by Lhe desire to apply concurrency to the

problem of implementing an edilor, but lhe editor rapidly grew to encompass

the userrs entire environment.

Ihe continuing developmenL of the Scene environment is the most

promising research project to corne ouL of this thesis. It not only shows

great potentÍal for Íntegrating all aspecLs of the userrs computing

environment but aLso demonstrates Lhe unifying polrer of the concepts of
message passing and multi-tasking.

81

Append ix

Appendix A. HTL task creation rates V. WS sub-process creatÍon rabes

Both MTL and WIS dynamÍcalIy create concurrent objects (Tasks and

Processes respectively) but they have very different performance figures as

the foLlowing experiment shows.

MTL

This MTL program creabes 10000 tasks, each of which sends a message

to the creator and dies. Etapsed Limes and CPU times are printed out every

1000 tasks.

Program Creation;
Procedure Lib$Init Timer; extern;
Procedure Lib$Show Timer; extern;
Type termination = message end;
var trm mbx : buffer of termination;'
Ta sk Son ;

var L : termination;
begÍn
new(t);
send t via Lrm mbx;
end;

var i : integer; Lsk: task id; t : Lermination;
Begin
Lib$Init Tiner;
buffer init(trm mbx,0) ;

for i 1= 9999 dõr+nto 0 do
begin
create tSk != Soni
receive t via trm mbx;
O j.spose(t);
if (i mod 1000) = 0 then Lib$Show Timer;
end;

Lib$Show Timer;
end.

Tt¡e LIB$SHOW TIMER routine dispJ.ays the elapsed time and

in the form hours:minuLes:seconds.centiseconds, since fhe

LIB$INIT TIMER. The firsb outpuls from LIB$SHO}'¡ TIMER were

cpu time,
call to

ELAPSED TIME

ELAPSED TIME

ELAPSED TIME

00:0 0: 00 .75 ,

00:00:0 1 .53,
00:00:02.27,

CPU TIME

CPU TIME

CPU TIME

0:0 0:00.7 4

0:00:01.51

0:00:02.25

which gives 0.78 seconds elapsed time and 0.77 seconds cpu time to create

the corresponding 'l 000 tasks. The cpu time does include that used by the

tasks. Hence an approximate raLe for MTL is 1300 tasks per second cpu

time, and the cpu time is about bhe same as the elapsed time.

82

wlS

The following two BLISS-32 programs perform a similar behaviour under
WS, and were executed on an otherwise idle system. Note that the call.s to
LIB$SH0I.¡_TIMER are now done every 1 00 processes (rather than every 1O0O

tasks as above) because of the nuch slower performance.

Module Process(Main=main,debug)
=

Begin
! Declarations omitted

Routine Main =
be gin
$crembx(chan = chan) ; ggetchn(chan =.chan,pribuf=ddsc);tib$init timer();
decr i from 9999 to 0 do

begin
$creprc(image = idsc ! Create the sub process

$qiow

,mbxunt = .db1kIdibgw unitJ
);
(chan = .chan ! h¡ait for the system to send us
,func = io$ readvbLk ! a message saying the subprc

! has dÍed.
):
mod 100) eqI 0 then Libgshow TimerO;if (.i

end
end;

End
El ud orn

Module SubPrc(Main=main,debug) =
Begin
Routine Main = 1; ! Simply die (by returning from
End ! the main routine).
El udom

The first few calls bo LibgShow Timer yield these results

ELAPSED TIME = 00:00:30,62,
ELAPSED TIME = 00:0 1:0 1.86,
ELAPSED TIME = 00:01:32.60,

CPU_TIME = 0:00:00.34

CPU TIME = 0:00:00.65
CPU TIME = 0:00:00.98

which, by subtraction, gives 31 seconds elapsed time and 0.31 seconds epu

time to create the 100 sub-processes between the bwo sarnples. THE CpU TIME

DOES N0T INCLUDE THAT REQUIRED FOR THE SUÞPROCESSES. Hence an approximate
rate for WS is 3 sub-processes per second eJ.apsed time, but no estimate
can be made of the cpu costs because these are targely hidden in the
subprocess, other than to comment that it too would be 1arge.

83

CONCLUSIONS

MTL creates tasks at about 1300 tasks per second

time) whereas VMS creates them at about 3 tasks per second

The huge difference in elapsed times is largely
requirement that a sub-process must execute an image off
for MTL the code for a Lask is memory resident as part
image.

(cpu and elapsed
(elapsed time).

due to bhe Wf S

dÍsk, where-as

of the current

WS

and

MTL also uses vastly less cpu time because the creation of the
process and the loading of the Ímage from disk are extremely complex

long operations.

84

Appendix B. User writLen Bounded Buffer cpu-times V. Runtime Sysbem

To illustrate the point about t,he cpu-time lnvolved in user written
bounded_buffers and those provided by the MTL runtime system the following
two programs were compiled and run. The results were

runtime system - CPU TIME = 00:00:01.11 seconds

user written - CPU TIME = 00:00:09.47 seconds

Prograrn Bounded Buffer; i MTL Runtime system buffer)
Procedure Lib$InÍt Timer; extern;
Procedure Lib$Show Timer; extern;
const

buf siz = 10;
msg cnt = 10000i

type
ftS$ = nessage end;

var
buf : buffer of msg;

Task Tap;
vari:integer;m:msg;
begi n
for i := 1 to msg cnt do

begin
new(m);
send m vÍa buf;
end;

end;

var i : integer; m

begin
: msg; tap tsk : task id;

buffer_init(buf ,buf siz) ;
create tap fsk :: tap;
Lib$Init Timer;
for i := 1 to nsg cnt do

begin
receive m via buf;
dispose(m);
end;

Lib$Show Timer;
end.

85

Program Bounded Buffer; { User wrÍtLen
Procedure Lib$Inil_Timer ; extern ;
Procedure Lib$Show_Tirner ; extern ;
const buf siz = 10; msg cnt = 10000i
type msg = message endl
var inp,out : buffer of msg; bb tsk : task id;

Bounded Buffer l

Task BB;
var buf : arr

f st ,1st :

begin siz:=
ay [1..buf siz] of m

1..buf siz; siz : 0
0; fst := 1; Ist :=

s8;
. .buf siz;
1;

repeat
if (siz (

begin
rece i ve
if fst
siz :=
end

e1 se
if (siz)

buf siz) and (buffer_writers(inp)) O) then

buf[fst] vÍa inp;
(buf siz then fst := fst+1 else
siz+1;

fst

0) and (buffer readers(out)) O) then
begin
send buf[1st] via out;
if lst (buf siz then lst
siz := siz-1;
end

e1 se
begin
sleep;
end;

until false;
end;

Task Tap;
vari:integer;m:msg;
begin
for i := 1 to msg cnt do

begin new(m); awaken(bb tsk);
send m via inp;
end;

end;

var i : integer; m : msg; tap tsk
begi n
buffer_init(inp,0) ;
buffer_init(out,0) ;
create bb tsk ;= bb;
create tap tst< := tap;
Lib$Init_Timer;
for i := 1 to msg cnt do

begin
awaken(bb tsk);
receÍve m via out; dispose(m);
end;

Lib$Show Timer;
end.

Ist+1 else lst := 1;

task id;

86

Appendix C. MTL Procedure CaII Ra tes .

The following program times lOOOOO procedure caIls. It b¡as cornpiJ.ed
and run using both the MTL compiler and the VAX-I1 pascal 1.1 compiler. The
results were

MTL

VAX-1 1 Pascal 1.3

llith the call.

26. ! cpu-seconds

3.1 cpu-seconds

Wfthout the call.

0.24 cpu-seconds

0,29 cpu-seconds

l

I
I

l

l,

i
I

I

I

I
I

IClearly the
bad 1 y.

eurrenl inplernentation of MTL performs this best very

Program Calls;
var i,j : lnt,eger;
proeedure 11b$init_timer; extern ;
procedure Lib$show_timer; extern;
procedure dummy(var d1,d2:integer) ; begÍn end;
begin
lib$init_timer;
for i := 1 to 100000 do DUMMy(J,J);
lib$show_timer;
end.

8T

Appendix D. MTL and Pascal New/Dispose Rates

This modified version of the program given in 5.2.3 was compiled and

run using MTL and VAX-11 PascaI 1.3. It illustrates the performance

difference between MTL and the convenbional heap manager of VAX-1 1 Pascal

1.3, especially for pathologically bad disposal orderings. The time for
the loops without the NEI'¡/DISPOSE has been subtracted from the cpu-times.
The results were for the two separate loops in the program ...

MTL

VAX-11 Pascal 1.3

0.35 cpu-seconds

0 . '18 cpu-seconds

54.94 cpu-seconds

0.67 cpu seconds

Program Heap(output);
type ptr = ^integer;
var i : integer; a : array[1..10000] of ptr;
procedure tib$init timer; extern;
procedure lib$show tÍmer; exlern;
begin
for i := 1 to 10000 do new(a[i]);
lib$init timer;
for i := 1 bo 5000 do dispose(a[2ri-1]);
for i := 1 to 5000 do dispose(a[2ti]);
lib$show timer;
for i := 1 to 10000 do new(a[i]);
Iib$init timer;
for i :='l to 5000 do dispose(a[i]);
for i := 1 to 5000 do dÍspose(a[i+5000]);
Iib$show timer;
end.

493 pa8e

59 page

1052 page

1 29 page

faults.
faults.

faults.
faults.

88

Appendix E. MTL Context SwitchÍng Rates

This program swiLches context between a pair of tasks 100,000 times,
with a cpu-time of 8.55 seconds, which yields a context switching raLe of
about 11,700 conbext switches per second. Curiously this is considerably
faster than an MTL procedure ca1l, and about half the speed of a VAX-11

Pascal 1.3 procedure call (appendix C).

Program Swifch;
const k = 100000;
Procedure Lib$Tnit
Procedure Lib$Show
Lype msg = m€ssêg€
var b:bufferof

i : integer;
msg;

msg;

0 do begin reschedule; i := i-1; end;
send m1 vÍa b;

Timer;
Timer;
end;

extern;
exlern;

Task s;
var m1 :

begin
while i)
new(m1) ;

end;

var L1 ,L2 : Lask id; m ; msg;

begin
buffer inil(b,2);
i := k;
create t1 := s;
create L2 := si
t ib$ init t imer ;
receive m via b;
receive m via b;
Lib$show timer;
end.

{ initialize the counter }
{ create the two tasks }

{ starb the timing }
{ wait untiL both finÍsh }

{ show the lÍming Ì

89

Appendix F. MTL Message Transmission Rates

Message transmission times depend to a certain extent on the size of
lhe buffers used. This phenomona is only observed between distinct Lasks

because it is caused by having to context switch whenever the buffer fills.
Tt¡e following program measures purely the time taken to pass the message,

because there is no context switching required.

TL¡e performance figure was 100,000 messages in 8.28 seconds, or about

12,000 messages per second. However this includes time to NEW and DISpOSE

the messages. l.lhen the NEW and DISPOSE were shifted out of the loop, the
figures changed to 5.03 seconds, or about 20,000 messages per second. rn
practise performance is goÍng to vary somewhere between these two figures
depending on the number of messages passed compared to the number created.

Program Send Receive;
const k = 100000;
Procedure LÍb$Init Timer;
Procedure Lib$Show Timer;
type msg = message end;
var b : buffer of msg; m

begin
buffer init(b, 1) ;
1 ib$inlt timer;
for i := 1 to k do

begin
new(m);
send m via b;
receive m via b;
dispose(m);
end;

lib$show timer;
end.

msg; i : integer;

extern;
extern;

90

Appen dix G. The ODDWORDS Problem

The following two programs implement the primary portion of Dijkstrars
odd-word-reversal problem. They run in approxÍmaLely equal time of 0.2

cpu- seconds, when compiled with MTL and VAX-11 Pascal 1.1 respeclively. If
the messages are not pre-allocated for the message passing version Ít takes

about 0.3 cpu seconds. These results are more thoroughly discussed in
5.?.5.

MTL

Program ODDWORDS;

const message count = 1200i
bype word = ârrâ! t1..51 of char;

word msg = message brd : word; len
word buf = buffer of word msg;

var msgs : array[1 . .message count]
item buf : word buf;
revs buf : word buf;

integer; end;

of word msg;

{ Cet pre-allocated message }
TABCDET ; end;

TASK ITEM;
var w : word msg; i : integer;
begin
for i := 1 to message count do

begin
W := I,ISGSII];
with w^ do begin len ; = !; wd :=
send w via item buf;
end;

new(w); with w^ do begin len := 1;
send w via item buf;
end;

wd end;

TASK REVERSE;
var w : word msg; flip : booJ-ean;
begÍn
f lip ;= f aJ.se;
repeat receive w via item buf;

Íf w^.r¡d['l] = t.r then exitloop;
if flip then { . . .reverse w^ .wd. . . }
flip := not flip;
send w via revs buf;

until false;
send w via revs buf;
end;

TASK METI;
varw:wordmsg;
begin
repeat receive w via revs buf;

if w^.r+d[1] = r.r thenãxitJ-oop;
until false;
LTB$SHOW TIMER;
end; {Continued on next page. . .}

91

var t : task id; i : integer;
BEGIN
for i := 1 to message count do

new(msgsIij);
LIB$]NIT TIMER;
buffer inib(item buf,100); create
buf feiinit(revfüuf , 100) ; create

create

{ pre-aIlocate messages }

t:= Ílem;
t := reverse;
t := meti;

END.

VAX-1 1 Pasca1 1 3

Program ODDWORDS(input,outPut) ;
eonst message count = 1200;
type word = ârrâ! t1..5J of char;

word msg = record wd : word; len
var w1,w2 : word_msg;

flip : boolean;
rnc count : integer;

integer; end ;

PROCEDURE ITEM(VAR l'¡1 : I'JORD MSG);
begin
with w1 do

begin
if rnc count () message count then

begiî Ìen ¡= !; wd :l 'ABcDEr; end
else

begin len := 1; wd[1] := t.t; end;
end;

rnc_count := rnc count+1;
end;

PROCEDURE REVERSE(W1 : }IORD MSG; VAR W2 : WORD MSG);

Iabel 99;
var i : integer; len : integer;
begin
if flip then i...reverse w1 into w2 Ì etse { w2 := r'I1 }

flip;= not ftip;
99:
end;

PROCEDURE METI(W
begin
end;

: WORD MSG);

begin
LIB$INIT TIMER;
rnc count := 0;
flip := false;
repeat

item(w'l) ; reverse(w1 ,w2)
untiL w2.wdl1] = r.r;
LIB$SHOhI TIMER;
end.

92

meti(w2);

REFERENCES

C .J. Barter,
rrCommunicating PoJ-icy for Composite Processesrr

T BA82]

tBr73l

tBU71l

t cH79 l

tcH81l

Report I 2-7 , Þpt. of Computing Science, University of
Adelaide, Australia, 1982

Technical

The Burroughs
197 1

Comm.

G . M. Birtwistle ,
SIMULA

0.-J.Dah1, B.Myhrhaug, and K. Nygaard,
BEGIN, (Studenblitteratur, Sweden.) AUERBACH

Publishers Inc. PhiIadelphia, Pâ., 1973

The Burroughs
86700

Corp. ,
Extended Aleol Reference Manual

Corp., Detroit, MichÍgan, Form No 5000128,

D.R.Cheriton et aI.,
I'T?roth, a Portable Real-time 0peraLing Systemtl
A.C.M. 22Q) 105-115(1979)

Y. J. Choi ,trProcess Interaction in Modular
Report 81-6, Dept. of ComPuting

Processestr, Technical
Science, University of

IDEC79-AJ Oigital Equipment Corp.,
VAXl 1 Architecture Handbook,

Adelaide, Australia, 1 981

tDEc79 l Digital Equipment Corp.,
VAX-1 1 PASCAL Langu

IDEC80-SSJ Digital Equipment Corp.,

IDEC80-SD] Digitat Equipmenl Corp.,
VAX/VPIS Symbolic

IDEC80-I0J Oigitat Equipment Corp.,
VAX/WS I/0 Userr s Guide ,

age Re ference Manual ,

Distribution CenLer, Digital Equipment Corp
Massachusetts, 0nder No. AA-H4844-TE, 1979

Sales Support Literature
Group, Di gita)-
1979

Equipment Corp., Maynard, Massachusetts,

So ftware
Maynard,

Soflware
Maynard,

So ftware
Maynard,

VAX/WS S slem Services Reference Manual,
DistribuLion Center, Di8 taL Equipment Corp.,
Massachusetts, Order No. AA-D0188-TE, 1980

Debugger Reference ÞlanuaI
Distribution Center, Digital Equipment Corp. ,

MassachuseLts, 0rder No. AA-D0268-TE, 1980

tD168l

DigitaL Equipment Corp.,
No. AA-D026B-TE, 1 980

Software Distribution Center,
Maynard, Massachusetts, 0rder

E .tl. Di jk stra ,rfCo-operating Sequential Processesrt, Page 43-112, In
Programming Languages, (ed. F. Genuys), Academic Press,
L,ondon and New York, 1968

E.Ïl.Dijkstra,
rrNotes on
SL ructured

St ructured
Programming,

Programmingrr , Pa ge
A.P. I.C. Studies

1-82, rn
in Data

Process ing. No. 8, 0.-J. Dahl , E.W. Dijkstra, and C.A.R
197 2

lDr72l

Hoare AcademÍc Press, LÐndon,

tD175l

t DU82 l

tFR79l

tJ082l

tcR68l

IHAT 2l

of Programst', Comm.

B.R.Dunman, S.R.Schach, and P.T.Wood,
rrA Mainframe Implementation of
Software Practice and Ex

E.Vl.DÍ jkstra,
trGuarded Commands, NondeLerminacy and Formal Derivation

A.c.M. 18(8) 453-457(1975)

Concurrent Pascalrr
rience Vol 12 No. 1

Roever,
Coneurrency, and

and Syslem Sciences

89 1 982

N.Francez, C.A.R.Hoare, D.J. Lehmann, W.P.DerrSemantics of Nondeterminism,
Communicabiontt Journal of Computer
19,290-308(1,97g)

R.Johnsson, and J.D.Wick,
rrAn Overview of the Mesa Processor ArchitecluretrACM
Proceedin S osÍum on Architectural Su orl for
Proßram¡ning LanguaRes and Operabing Systems. Palo Alto,
March 1982

R.E.Griswold,J.F.Poage, and I.P.PoJ.onsky,
The SN0B0L4 Programming Language, Prentice-Ha11 Inc.,
En g1 ewood Cliffs, New Jersey 1968

A.N.Habermann,
rrSynchronization of CommunÍcating Processesrr,
A.c.M. 15(3) 171-176(1972)

Comm.

tH078l C.A.R.Hoare,
trCommunicating Sequential Processestr,
666-677(1978)

Comm. A.C.M. 21(8)

tIS0l trspecificabion for Computer Programming Language Pascalrr
Draft International Standard. DP 7185 , 1981

tKRS 2l H.S.M.Kruijer,
rrA Multi-user Operating System for Transacbion
Processing, Written in Concurrent Pascaltr Software
Practice and Experience Vol 1 2(No. 5) 445-454(1982)

tLA82l B . W. lampson ,
rf Fast Procedure Ca1lstt, ACM Proceedings , Symposium on
Architectural Support for Programming Languages and
Operating Systems. Palo A1to, March 1982

LLT77) A.M.Lister,
rrlnter-Process CommunÍcation Mechanismstr, Technical-
Report, 1977 Dept. of CompuLer Science, University of
Queensland, Australia

K.J.Maciunas,
r?Mercury, a Communicating Sequential Process Languagetr,

Sc i ence ,lechnical Report I 1-04, Dept. of Computing

tMA81l

University of AdeJ.aide, Australia, 1981

tMA79-1 l

t0R7 3l

IPBH73]

IPBH76]

TPBH78]

I PBHS O]

tP082l

iR081l

C .D. Harlin,
trA Heap
Pascalrt,
119(Feb.

Based fnplementation of
Software PracLice

the Programming Language
and Experience 9,2 101-

1979)

lt4[7 9-2) C . D. Marl in

Adelaide , 1979

IMISO] HIL.STD-1815
MILITARY STANDARD Ada PROGRAMMING LANGUAGE 1 O-De c- 1 980

E.I.ORGANICK,
Computer System 0rganization, Academic Press, New York,
1973

Per Bninch Hansen,
Operating System Pr inc i ples , PrenLice-Ha11, INC. ,

Englewood Cliffs, New Jersey, 1973

sy stemtr Software Practice and
2) 141-205(1976)

Per Brinch Hansen,
rrDistributed Processes, a concurrent programming coneeptlr
Comm. A.C.M. 21(11). 934- q41 1 q78)

Per Brinch Hansen,
frThe SOLO oPerating
Ex per Íence VoI 6 (No.

(

Per Brinch Hansen and J.Fellows,
ItThe TRI0 operaling sYstem'r So ftware Pr actice and

iAPX-I¡32il, ACM

Ex ience VoI 10(No.1'l) 4 -9 tr 0)

F.J. Pollack et al ,

"supporting Ada Memory Hanagement in lhe
Proceed in s. SymÞosium on Ar chilectural sup ort for
ProEra
March 1 9 82

mminq Languaß,es and OP eraLinc, SvsLems. Palo Alto.

T.J. Roper and C .J. Barter,
rrA Communicating Sequential Process
ImpJ. ementat ionrl Software - Practice
1 215-1 2 4(1981)

Language and
and Ex perience (

Its
11)

