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SUMMARY

The last decade has seen increasing awareness of the usefulness of
concurrency in programming languages. Various proposals, including Message
Passing and Remote Call, have been put forward as mechanisms for
handling the concurrency in a structured way. Yet no implementations of
any of the proposals has found wide acceptance. Many of the proposals have
either remained un-implemented, implemented on a specialized operating

system, or interpreted.

This thesis describes the development of MTL, a compiler for a
language with both multi-tasking and message passing that generates
executable code for a Digital Equipment Corporation VAX-11/VMS system. The
code generated by the compiler is capable of interfacing with all other VMS
languages, and is almost as efficient as any procedure-based 1language

implementation on VAX/VMS.

Various suggestions are made about how the few remaining
inefficiencies c¢could be removed, and about what features hardware and

software require to support such languages.

An editor was designed and implemented using MTL that took advantage
of the of concurrency to provide a more versatile user interface. The
implementation of the editor was to be a test of the adequacy and
efficiency of MTL but it was found that it also lead to new view of the
user's environment and the relationship of the role of the editor in

relation to the operating system and other utilities.

The application of the concepts of concurrency and message passing to
editing unified the whole user's environment in a system that is extremely
productive and free of limitations, thus showing the fundamental power of

these concepts.



"Chapter 1
INTRODUCTION AND RATIONALE

Over the last decade the search for comprehensive and poﬁéffdi ways
of structuring programs has lead to considerable research into concurrency
and message passing. It has been shown that these mechanisms can lead to
natural and simple solutions that reflect the structure of many problems.
A large number of different proposals for languages that incorporate
concurrency and message passing have been put forward; however there has
been a tendency for these proposals to be given simple interpreter

implementations or not to be implemented at all.

Research has reached a point where serious implementation efforts are
necessary to discover and solve the remaining difficulties that are
hindering the widespread use of these languages. Such an implementation
must address the problems of efficient task creation, context switching and
message passing. Feedback from these implementations can be used to fine-
tune the language proposals, as well as suggest further areas of research.

The recent development of Ada is an example of this working in practice.

Some of the implementation efforts should be based on conventional
operating systems and architectures to see if these impose any inherent
difficulties. This thesis is primarily a description of one such
implementation, a language called MTL (Messages and Tasking Language). The
implementation was done on a VAX-11/780 running the manufacturer supplied

VAX/VMS operating system.

The architecture of the VAX-11 series is modern but conventional,
with a strong emphasis on support for such languages as Pascal, Fortran,
and Cobol. Similarly VMS is an efficient conventional operating system that
supports multi-tasking but was not designed with message passing languages
as a strong consideration. Because of the obvious impact of of the VAX-
11/780 and VMS on this project the reader is given introduction to both in
the third chapter.

It was decided that a significant piece of software would be designed
and written in MTL to check on both its sufficiency and efficiency.
Several projects were considered, including a compiler (using concurrent
tasks for the various lexical, syntatic, semantic, and listing phases) or a
series of mathematical exercises (such as a Sieve of Eratosthenes, sorting,

etc) that would use concurrency in unusual ways.



The eventual choice was a screen editor. This project stressed the
I/0 aspects of multi-tasking as well as allowing the author to express some
ideas about editing that have come out the University of Adelaide's
development of the Ludwig screen editor[BA80]. It was also hoped that this
unusual design and implementation of an editor would suggest some
interesting and novel views of the how an editor could be used and the sort
of mechanisms it could provide for the user. This was indeed the case, and
Chapter Six describes the resulting design with an emphasis on the use of

concurrency at a user interface level in a screen editor.

Interactive computing, with the programmer or other user on-line to
the computer, has also become increasingly well recognised as the most
friendly and most productive approach to using a computer. However this
has happened so fast that the software, unlike the hardware, has been
unable to keep pace. At any given time when there is a reasonable number
(say ten or more) users logged in to one of the university's VAX-11/780
computers, more than 75% of them will be editing text. The main editor
used, Ludwig, is a powerful screen editor that provides many facilities for
manipulating and correcting text. However these features are not available
for correcting interactive inputs to the many other facets of the VM3
system. More over it is very difficult, if not impossible, to directly
interface any editor with any other utility (such as a compiler) on the
system. All this leads one to suspect that in the future the problem of
connecting various components of the system together is going to look less
hierachical and more network-like. It also suggests that the primary user
focus in this network is going to be the VDU and the editor (not
necessarily just text but also pictures) that controls it. Because of this
role for message passing languages (the network-like appearance will demand
this) and the importance of editing, a natural union results - that of a

screen editor written in a language that supports message passing.

There are available, under VAX/VMS, the manufacturer's VAX-11
PascallDEC79] compiler and implementations of two languages that support
concurrency and or message passing, Maciunas' Mercury interpreter[MA81] and
Roper's Cospol interpreter[R0O81]. By using these for comparing the speed
of execution of various algorithms a rough estimate of the efficiency of
MTL could be obtained. 1In particular I was interested in the relative
efficiency of message passing and procedure calling. Given the rapid

decrease in the price of memory it 1is apparent that for this construct,
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which would use little memory no matter how badly implemented, efficiency
corresponds to speed of execution. From the outset it seemed plausible
that message passing could, in some circumstances, be at least as fast as
procedure calling. This encouraged me to place as much emphasis as
possible on fast message passing as it seemed an important phenomona to
observe and document. A surprising result of this thesis is that this
effect can indeed be observed on an architecture such as that of the VAX-11
which does not have special machine instructions for message passing but

does have them for procedure calling.



Chapter 2
HISTORICAL OVERVIEW OF MESSAGE PASSING AND MULTI-TASKING SYSTEMS

2.1 Introduction

There has been a growing awareness of the inadequacies of purely
sequential, procedure based languages for implementing natural solutions to
simple and complex problems. The classical 0Odd-Word-Reversal Problemn,
posed by Dijkstral[DI72], is an example of a problem that has, as its
sclution, a multi-phase algorithm whose implementation is not obvious in an

Algol-like language.

The problems of running several sequential algorithms simultaneously
in one computer-system were initially addressed at the operating system
level. Because operating systems had to be both reliable and efficient, a
theory of shared data structures was developed. Programmers became aware
that they could gain more flexibility by using a system on which several

communicating jobs could be run,

This discovery is leading to the introduction of more features to
support this mode of programming into both programming languages and

operating systems.

Both because of the cost of computers (a factor rapidly diminishing
in importance but historically the most significant) and because it seems a
natural way of solving some problems, it 1is desirable to have several
algorithms executing "concurrently" on a computer system. This thesis uses
the words "TASK" and "PROCESS" to refer to a single one of these
algorithms. These tasks may belong to users who don't even want to know of
the other's existence, or the tasks may be co-operating in solving a

problem,

It was soon realized that the complexity of computer systems could
only be managed through a theoretical basis for secure multi-tasking.
Ideally this theory should provide a calculus that could be applied to a
system to prove that only legitimate actions could be performed by tasks.
In practice this ideal has only been partly reached because of the
complexity of the systems. In spite of this difficulty the research has
provided tools and insights that simplify the design and implementation of

secure systems.



2.1.1 Shared Variables

The implementation of multi-tasking may require the use of shared
variables to store the state of some of the resources being managed by the
system, The system data base that describes the state of the various tasks
is a shared variable, as is the data base describing the state of each
device. The devices themselves, such as disks and tapes, provide a storage
area that may be shared between several tasks and hence can be viewed as

shared variables.

Many of the advances 1in system design and implementation have
resulted from the need to maintain the consistency and security of these
shared variables because their accidental or malicious modification can
have a severe impact upon the usability of the system. These advances are
reflected in all parts of the system, from having indivisible instructions
in the instruction set through to facilities such as semaphores in high

level languages.

Di jkstra's semaphores[DI68] provide a simple yet effective mechanism
for the various users of a resource to voluntarily synchronise their access
to it, but do not enforce their usage. This enforcement could be gained in
a high 1level language by only allowing access to the shared variables
inside blocks of code that are surrounded by the appropriate P and V
operations, but this does not prevent their uncontrolled modification by
either run-away programs or malicious or ignorant users writing in more
primitive languages. Furthermore "solutions to apparently simple
communications problems are sometimes disproportionately complex"[LI77]

when using semaphores to synchronise the tasks.

The addition of processor modes, which 1impose restrictions on
instructions (eg. HALT is only allowed in a privileged mode) and the use of
hardware memory protection solved this problem at a fundamental level. The
only way to change from a lesser to a more privileged mode is via a system
call or wachine instruction that goes through a very small, hence

manageable, interface.

A theoretical underpinning for this approach was provided by the
Monitor concept. The system provides Monitors that manipulate resources,
and which have to be called at a privileged processor mode. These Monitors
validate the request and perform it on behalf of the task, sometimes

returning information to it.



An alternative approach to calling the Monitors, which has an implied
delay until the Monitor returns to the task, is to have one separate task
controlling the resource. The separate task has a queue of requests from
tasks that wish to access the resource which it controls. These requests
are processed sequentially as they are removed from the queue. This
approach works well for resources where the request may take some time to
satisfy, such as an I/0 device. A queue of requests can be implemented as
a data structure with the Monitor providing services for en-queueing and

de-queueing the messages.

2.1.2 Message Passing

Such an approach is called Message Passing. Various forms of message
passing have been proposed and used since the concept was first introduced.
Choi has classified the various alternatives by splitting the communication
of the message from the method of synchronization. He classifies the
possible behaviours of a user task as (A) Request a service, (B) Wait until
the server accepts the request, and (C) Wait for a reply from the server.
The server has two actions, (D) Wait for a request, and (E) Reply to a
request. Various restrictions are placed on the ordering of these events

to enforce their intended semantics.

Message passing also offers hope of a theory that supports
distributed computing, with the N tasks spread, perhaps dynamically, over M
processors. In this environment, with N and M reasonably large, the only
communication method currently viable 1is message passing over some

transmission media.

2.1.3 Correctness

The need for software that is transportable between operating systems
is a problem that may be solved by consistent implementations of
programming languages. This is turn requires a precise definition of both
the syntax and semantics of the language so that it can be decided whether
the behaviour of translators (compilers, interpreters, and even source-text

to source-text translators) is correct or erroneous.

It may be possible to use this precise definition of the language's
semantiecs to prove that a program is "correct" in a mathematical sense.
Unfortunately for many programs the current proof techniques lead to proofs

many times larger than the text of the program, and for other programs (eg.
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interactive text editors) the precise definition of what the program should
do is often as large as the text of the program, and therefore subject to

"bugs" in the same way as the software.

In practice a proof of some aspects of a program's behaviour is often
adequate, or a complete proof for small, critical, portions of the program.
For instance, such proofs can show that a data base 1is correctly
interlocked without consideration of its contents. The proof techniques
are also useful in debugging programs because they provide tools for
deducing which part of the algorithm is incorrect, given the behaviour it
is exhibiting, and also by providing reassurance about some components of

the system.

A method for showing the correctness of tasks using semaphores to
implement a critical section that modifies a shared variable has been
provided by Habermann[HA72]. He applies his technique to a bounded buffer,
a problem we shall be returning to in section 5.2.5, where a bounded buffer

is used as the implementation of message passing in MTL.

Di jkstra[DI75] addressed the problem of non-determinism by
introducing a 1language with non-deterministie constructs, and then
providing a calculus for both formally deriving such programs, and for
showing them correct. There was no concurrency in the language. However
it did show that the exact order of execution of the program was not only
unnecessary for a proof, but that often a simpler proof could be

constructed that ignored the precise history.

Hoare[HO78] combined message passing and non-deterministic commands
in the 1language CSP, using an informal definition of the language's
semantics. This spurred on efforts to provide a suitable formal model of

such mechanisms for proof techniques. One such attempt is [FR79].

2.2 Implementations

It is «considerably easier to develop interpreters or complete
operating systems for message passing and multi-tasking languages than to
develop a compiler and runtime system. Both interpreters and complete
systems allow the implementor considerably more flexibility in where and

how to solve the concurrency and efficiency problems.



2.2.1 The B5700/B6700 Computers

In the early 1960's the Burroughs Corporation [OR73,BUT1] started
producing a series of machines that supported multi-tasking with shared
memory between the tasks, (the B5700 and B6700 range) . Both the
architecture and the operating system were designed to support Algol-like

structured languages with the addition of multi-tasking.

Each task has a stack of its own, within which the activation records
of each procedure or function are stored. Also it can have references to
the stack belonging to its parent task, or any other ancestor. The stack
in turn can contain descriptors to other memory segments. These
descriptors are protected by a combination of the hardware and the system
software, and specify either the location in physical memory or the

location in the backing store of the segment.

Tasks are created by specifying a procedure, possibly with
parameters, and a Task Variable in a Process Statement. By assigning
values to fields in the Task Variable before wusing it in a
Process Statement various attributes of the task (eg priority, stacksize)

can be specified.

A Continue Statement, with either an implicit or an explicit naming
of the destination task, causes the current task to be suspended and the
other to continue from where it last suspended at its Continue Statement.

This allows co-routining relationships to be set up easily.

The task dies when either it exits from its main level procedure or
when its parent exits from any block which the task is capable of
referencing. By this means the deallocation by the parent of variables
accessed by the task can not damage the environment of the task, because
the task itself dies. It is possible to set up independent tasks, but in

this case parameters must be passed by value.

Control and communication between tasks is based on shared variables,
on event flags, and on software interrupts. Event flags have two
attributes, Happened and Available. A Wait Statement causes the current
task to wait until the specified Event Happens. A Cause Statement makes an
event Happen. A Procure Statement waits until an event flag is Available
and then procures it, later to release it with a Liberate Statement.

Interrupts are sections of code to be executed when the event is Caused.

8



This architecture and operating system was one of the earliest
supporting multi-tasking inside a single address space. It has hardware
support for the inter-task memory protection and for the cactus-stacks
required for the nesting of tasks. Some decisions (eg. the decision to
kill sub-tasks when their parent exited a critical block unlike Ada which
suspends the parent until the sub-tasks terminate) have been found to be
non-optimal but the influence of design of these machines on MTL can be
clearly seen. This may partly be due to the fact that my initial

introduction to computing was on a B6700.

2.2.2 RC K000

Between 1967 and 1969 Brinch Hansen [PBH73] and others designed and
implemented a multiprogramming system for the RC 4000 machine built by
Regnecentralen in Denmark. The Monitor was designed as a bridge between
the hardware and a virtual multiprogramming machine, not as an operating
system. Indeed one of the aims of the RC 4000 system was to allow operating
systems to be changed on the fly, even running several operating systems

simultaneously.

The RC 4000 system very carefully defines the concept of a process
and the mechanism for interprocess communication in a way that was not
dependent on the particular operating system. The Processes are
hierarchically organised and are able to create sub-processes dynamically,
providing the resources required by the sub-process out of their own

available resources.

The Monitor maintains a pool of small (eight machine words) message
buffers and maintains a single queue of messages for each process. Message
operations are Send-Message, Wait-Message, Send-Answer, and Wait-Answer.
Each process has a quota of message buffers, thus preventing it using up
the whole message buffer pool. To ensure that none of the answering
process's quota is required for the transaction the same buffer is used for

answer as was used for the message.

I/0 devices are treated as processes, performing I/0 operations as

requested by messages.



Brinch Hansen lists several advantages and disadvantages of the RC
4000 system. Of these, the ones that seem directly related to message

passing are:
Advantages...

() It implements a nucleus which was successfully extended to a spooling
environment and several real-time systems,

() it was small and simple to implement,

() it was reliable and quickly made almost error-free,

() it was adequately documented.

It is probable that the use of message passing as the inter-process
communication mechanism greatly contributed to these advantages being

attained.

Disadvantages...

() the system does not make it easy to debug time-dependent errors,

() the high cost of verifying monitor calls and doing other protection
checks at run time,

() the only way of achieving mutual exclusion between multiple processes to
a data base is to have a single process managing the data, and
sending it requests; at a maximum throughput of 500 messages per
second this was too slow,

() the use of cooperating processes is too expensive on resources, hence
designers of such features as multi-terminal support have tended to
use one complex process rather than a group of cooperating processes,

() an artificial restriction - the size of the message buffer pool,

() an artificial data restriction - a fixed length message size,

() an inefficient implementation - physical copying of messages.

Apart from the first, none of these problems are inherently due to

message passing, reflecting instead other aspects of RC 4000's design.

These problems are all significant, and should be kept in mind during
the design of any message passing or multi-tasking system. The problem of
debugging concurrent programs is one that is going to require considerable
further research and experience. MTL does not do run-time checks of
monitor calls, or other protection checks because the compiler does the
usual Pascal checks on parameter lists, and since MTL is a single user

environment it does not matter if the user tries to subvert the mechanism -
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he can only damage himself. MTL does have shared variables, and it is
possible to implement a conventional monitor protecting those variables.
Large numbers of cooperating processes can be maintained at a very small
cost in resources, the overhead per-process being around 100 bytes of
memory. Neither of the artificial restrictions apply because MTL uses an
indefinitely extensible heap for its messages and these can be any Pascal
type. Messages are passed by pointer switching, taking advantage of the

common address space being used by the tasks.

2.2.3 Concurrent Pascal

Following his experience with RC 4000, Brinch Hansen[PBH75] designed
the Concurrent Pascal programming language which extended Pascal to include
the concepts of Monitors, Processes, and Classes (a module that

encapsulates variables that belong to one process or monitor).

Processes have private data, a sequential program, and a set of
access rights. The access rights list the shared data that the process can
operate on. Processes do not operate directly on the shared data, but use
the appropriate Monitor calls. Monitors provide exclusive access to the
resource they control, except at points where the process must be

suspended. If the process is suspended, the same Monitor must resume it.

Concurrent Pascal has been used to develop the SOLO[PBH76],
TRIO[PBH80], and MULTI[KR82] operating systems for the PDP-11 minicomputer,
and has been implemented on such machines as the UNIVAC 1106(DU82]. The
compiler generates an abstract instruction set which may be implemented as
threaded code (Solo and Trio) or compiled [DU82] (although due to memory
requirements this was later changed to use a modified form of threaded

code) .

Kruijer[KR82] found the lack of dynamic process creation a drawback
in Concurrent Pascal when implementing MULTI, but draws an a priori
conclusion that system software written in Concurrent Pascal will have a

high reliability, adaptability, and portability.

These experiences with Concurrent Pascal show that it is possible for
such high 1level languages to be used to implement reliable operating
systems, and that such implementations are considerably easier than the
more traditional approach of using assembly languages. However the

extensive use of a kernel and threaded code on all these systems fails to

1



release the full computing potential of the host machine. Concurrent
Pascal does not support message passing or the dynamic creation of
processes and thus these 1implementations do not address the main

implementation problems of languages such as MTL,

2.2.4 Thoth

Thoth[CH79] is a portable real-time operating system that uses
messages as the method of interprocess communication. The processes are
grouped together into teams which share a common address space and set of
resources., Processes in the same team can therefore also share memory
between themselves, but not with other teams. Message passing provides the

only method of inter-team communication.

The primitives implemented by the Thoth kernel are available to the

processes as system calls. Amongst others there are

() .Create(function,stack size),

() .Send(msg,id),

() .Receive(msg) and .Receive(msg,id),
() .Reply(msg,id),

() .Forward(msg,id).

Processes are created with a specified stack size, organized into a
dynamic tree, based on a creator/creation ordering. Each process has a
priority associated with it, and pre-emptive scheduling based on this
priority and on machine interrupts is provided. However the priority of a
process in a dynamically created team is only with respect to other members
of the team. Thoth blocks .Sending processes until the .Receiving process
.Reply's, the .Reply using the same buffer as the .Send did (as in RC
4000).

The grouping of tasks in a single address space into teams is similar
to the B5700/B6700 design. However Thoth also supports the use of messages
to communicate between different teams which greatly increases the
flexibility of the system by allowing controlled communication between
objects that can not access each other's address space. This means the
same mechanism can be used between team members, who trust each other

implicitly, and with other teams which are not so trustworthy.
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2.2.5 VAX/VMS

VAX/VMSIDEC80] processes have separate address spaces, but there are
system services that enable processes to share sections of memory.
Processes may also share event-flags with others, and these event flags may
then be used to synchronise them. Event flag are not semaphores because
all processes waiting for an event flag are released when the event flag
becomes set. Devices called Mailboxes allow processes to communicate with

each other, treating the device as a normal file.

The structure of VAX/VMS with respect to multi-tasking and message

passing is covered in more detail in Chapter 3.

2.2.6 Simula

One of the best known, and most commonly available, languages that
supports a non-procedural flow of control is SimulalBI73]. Marlin[ MA79-2]
gives a formal definition of the flow of control in Simula. For our
purposes it is sufficient to mention that Simula provides dynamic creation
of co-routining classes, that the flow of control between the various class
instances is explicitly defined by the language. The class instances each
have algorithms and private data structures, as well as access to the data

structures of other instances.

In Simula the flow of control is fully specified by the program and
is thus completely deterministic. This differs from such languages as
Concurrent Pascal and Ada where the flow of control is not specified. It
is a rare example of a widely used routine-based system that needs more
than a simple stack for the storage of the activation records, and as such
it indicates an area (simulation) where a need for concurrency has long

been recognised, with Simula satisfying most of the requirements.

If concurrency can be implemented in languages as efficiently as co-
routining etc. has been in Simula (and there is no obvious reason why this
should not be possible) it can be expected that many of the applications
for Simula will also be valid candidates as applications requiring
concurrency. Furthermore it may proveAbe easier to dynamically gather data

from such models because the flow of control is not so important.
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2.2.7 COSPOL

COSPOLLRO81] is a compiler generating code for a virtual machine that
is implemented as an interpreter. The language supports message passing,
and all I/0 is regarded as message passing to special tasks called Reader
and Writer. A parallel-command executes a 1list of tasks concurrently,
terminating only when all of the tasks terminates. Because there is no
procedure calling the number of tasks possibly active at any given time can

be determined by the compiler.

The interpreter uses a round-robin scheduling algorithm to control
the -execution of tasks, and terminates when no task 1is capable of
execution. It inherits a problem from the Pascal runtime system. If a
task waits for &a message from Reader (corresponding to a Pascal READ
statement) the interpreter would read from the file, thus the other tasks
are not able to continue execution. The problem was partly alleviated by
delaying the read from the file until no other tasks were capable of

execution.

COSPOL has no procedure calling mechanism, and rescheduling is only
done when the stack used to evaluate expressions is empty, hence there is
no need to maintain multiple stacks in the interpreter. COSPOL only

reschedules as a consequence of message passing.

Messages are stored in an interpreter implemented heap because the
Pascal heap proved too awkward to use. The work of Marlin[MA79-1] on
implementing heaps in Pascal interpreters was used in the design. Message
queues were maintained for each task and each type of message on a strictly
FIFO system. Message variables are pointers to heap objects. Transmission
is done by copying the heap object and enqueuing a pointer to the copy
because COSPOL semantics allow access to a variable which has been sent to
another task, but a compiler optimization detects the case where the
original object can not be accessed and in such instances avoids the copy.
Message reception is done by copying this pointer into the message
variable. There is no limit on the size of the queues other than that

imposed by the implementation.

COSPOL illustrates both the advantages and disadvantages of using an
interpreter for implementing a language. In particular there is the ease

of implementation and modification of an interpreter versus the factor of
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about 20 or 30 between the cpu time used to interpret a program using

COSPOL and the time required to execute it via compiled code.

2.2.8 Ada

In 1978 Per Brinch Hansen[PBH78] introduced the Distributed Processes
concept as a suggested solution to the problem of implementing real-time
algorithms on distributed processors. In DP he invisaged one process per
processor, with the inter-process communication being performed by a

procedure-call mechanism.

The suggestion has been embodied in the Ada[MI80] rendezvous because
Ada has been designed to cope with a closely related problem, that of
embedded systems. The remote-call appears to the caller as a simple
procedure call, with both input and output parameters. The called task
accepts the call by executing an Accept Statement for the appropriate
Entry Declaration. The Accept Statement includes a sequence of statements
which are executed before the caller is released from the rendezvous, and
during these statements the input parameters are obtained and the output

parameters returned,

The rendezvous concept is similar to synchronous message passing,
differing only by the addition of output parameters. This addition makes
remote-call an excellent mechanism for situations in which an immediate
reply is expected because it provides an extremely efficient mechanism for
returning results. The calling task waits until the acceptor has released
it from the rendezvous, thus there is no buffering between the calling task

and the acceptor.

On the other hand message passing is preferable for pipe-line style
communication, where each component is massaging the information and then
passing it on. It also enables the caller to receive a delayed result some
time after the request, thus allowing it to perform useful work while

awaiting the reply from a reguest that will take some time to complete.

Message passing packages can be easily written, including bounded
buffers or synchronous mechanisms, but experience with MTL indicates that
the implementation of message passing packages will cause markedly slower
run-time performance than the direct inclusion of message passing into the
language (see appendix B). Ada would allow implementations to do this, as

the Send and Receive implementations of MTL can be regarded as efficient
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replacements of a Buffer task.

Since message passing and remote-call are best suited to different
roles they should be regarded as complementary mechanisms rather than

competitive proposals.

2.3 Summary

Proof techniques for many programming language concepts, such as
those of Habermann[HA72] and Dijkstra[DI75], have always lagged behind the
implementation and usage of those concepts. They are still incapable of
providing correctness proofs for most large programs. Nevertheless such
efforts have successfully indicated which programming techniques should be

used and which should be avoided in the construction of reliable software.

Concurrency has been shown to be a useful programming construct but
it is only just appearing in the major programming languages (except for
Burroughs Extended Algol). 1Its availability has been increasing but for
the most part implementations are dependent on either interpreters or

specialised operating systems.

The problems caused by the wuse of shared variables have proven
manageable. A variety of different levels of control can be enforced upon
them, from being completely unprotected, to being guarded by either a
monitor or a task, the level of protection being chosen to match the

requirements of the problem being solved.

Message passing has been used as as an effective and flexible
mechanism that enables the programmer to exploit the benefits of
concurrency. It is not necessary to establish an arbitrary master-slave
relationship between two activities that are inherently parallel (the
problem with procedures), nor 1is it necessary to explicitly transfer
control between the various activities (the problem with co-routines), but

rather each activity is executed when it is required.

The MTL compiler and runtime system implements concurrency and
message passing on a machine with a non-specialized operating system and

conventional architecture.
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Chapter 3
The VAX-11/VMS Environment

The VAX-11 series machines are a recent product of the Digital
Equipment Corporation, and VMS is the operating system they have developed
for these. This chapter is intended to give the reader an understanding of
both this machine's architecture and the operating system sufficient for
the rest of this thesis. It is not intended to be a complete description
of either the VAX-11 architecture[DEC7T9-A), or the VM3 operating
system[DECB0-SS] but only those parts that affect the implementation of

multi-tasking or message-passing languages are covered in any detail.

3.1 VAX-11 Architecture

3.1.1 Virtual Addresses

VAX is an acronym for Virtual Address eXtension, which is a reference
to the relationship between the VAX-11 series of computers, and DEC's PDP-
11 range. The virtual memory is addressed via a 32-bit value. This value
is translated to give either a physicél memory address or a page fault by
the memory management hardware. However there are some restrictions and

characteristics that are important.

(1 The virtual memory is granularised into 512 byte pages. A single
page is the smallest item that the memory protection hardware recognises,
and must be aligned on a 512 byte boundary. The lowest 9 bits in the 32
bit address specify the byte offset of the byte(s) being accessed within
the page. This mechanism makes it impossible to protect an arbitrary area
of memory. The machine has four processor modes (called USER, SUPERVISOR,
EXECUTIVE, and KERNEL respectively, and in increasing order of power) and
pages are protected from either read or write access at each level, Only a
restricted set of protections are available, as read/write access at a
level implies the same access at the higher levels. For example, a page
that is specified as USER:READ, SUPERVISOR:WRITE can be read by an
instruction operating in any mode, and written by instructions running in
Supervisor, Executive, or Kernel mode. Special PROBE instructions are
available to determine the readability and writeability of areas of memory
without actually causing a page fault or access violation (trying to access
an area of memory that is protected against the access being attempted in

the current access mode) .

(2) The top 2 bits of the 32 bit address specify the region of the page.
Specifically if these top bits are 10 or 11 (binary) then the address is

said to be "in system space", whereas if they are 00 or 01 (binary) the
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the

address is said to be "in process space". Onlyzfirst (S0) area of system
space is used in VMS. Process space is broken into two regions, called "PO
space" and "P1 space" respectively. Translations of addresses in PO and P1
space are done via a page table which is also located in virtual memory in
system space. When VM3 is discussed it will be explained how these four

regions are used by the VMS operating system.

3.1.2 Operands, especially Queues

The VAX-11 architecture supports a wide variety of operands and
operand sizes. Typically operands are integers or floating-point numbers
and are stored in 1, 2, U4, or 8 byte long areas of memory, or general
purpose registers., These sizes are referred to as BYTE, WORD, LONGWORD or
QUADWORD items respectively. A 32 bit address would therefore require a
LONGWORD to store it in. The architecture is slightly biased towards
LONGWORD quantities.

Also supported are operations on strings of characters and on packed
decimal strings. Of importance to the design of both VM3 and MTL, is the
architectural support for a doubly-linked queue as a basic data type with
such instructions as INSQUE (insert an entry into a queue), and REMQUE
(remove an entry from a queue). The operations can be performed in an non-
interruptable manner at either end of a doubly-linked queue of items, and
are so used in the implementation of the MTL heap and message passing

mechanism (chapter 5).

A absolute-queue entry starts with two longword addresses, the
forward and the backward link. The contents of the rest of the entry are
irrelevant to this discussion. Each absolute-queue (there are also self-
relative-queues) starts with a queue header, which is a pair of longwords,
the first pointing to the first item in the queue, and the second to the

last item. If the queue is empty both longwords point to the queue header.
The INSQUE instruction format is
INSQUE entry,predecessor

which inserts the entry into the queue after the specified predecessor.
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The corresponding REMQUE format is
REMQUE entry,pointer

which removes the entry from the queue, and places a reference to the
removed entry in the pointer. Both these instructions set processor
condition flags to indicate the state of the queue before/after the

operation.

3.1.3 Instructions, Registers, and Addressing Modes

Instructions on a VAX-11 are orthogonal to the addressing mechanism
used for the operands. For example the ADDL2 instruction can add a value
to a register, to the top of stack, or to memory. The instructions take
anything between 0 and 7 operands, where some of the operands may be large

tables or other large areas of memory.

The VAX-11 architecture has 16 32-bit registers, named RO through
R11, AP, FP, SP, and PC respectively. RO and R1 have, by convention, the
role of carrying the result of a function call back to the caller unless
the type of the result is too large in which case the caller is expected to
provide an OUTPUT parameter to accept the result of the function. R1 also
has the job of carrying the static link into a called routine. RO through
R5 are used by the string manipulation instructions. R6 through R11 have
no special use although some of the VMS compilers generate code that point
R11 into the static storage area and then use relative offsets from it to

access the various static variables.,

The SP is the stack pointer. The stack starts somewhere in memory
and grows towards low memory. There are actually 5 separate SP registers,
one for each processor mode (USER, SUPERVISOR, etc) and one for the
INTERRUPT stack. Only the USER stack pointer is of concern to this thesis.

AP, FP, are a necessary component of the VAX-11 routine calling
mechanism, and are discussed in that light in the next section. PC is the

program counter of a typical Von-Neumann machine.

Operands are either (1) in a register or (2) accessed via an address
that is formed by operations based on one or two registers and some
constants that form part of the instruction stream. An example of the
first case would be ADDL2 RO,RO which adds the 32 bit quantity in RO to

itself and places the result back in RO again. There are several possible
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ways of forming the address mentioned in the second, an example is relative
addressing such as MOVL2 4(RO),R1 which moves the longword found at address
U+contents of RO into register R1. Indirect referencing is also possible.
Exact details of these are not critical to the understanding of this

thesis.

3.1.4 Procedure Calling, especially the CALLS and CALLG instructions

One objective in the design of the architecture, the VM3 operating
system and the various 1language implementations was a standard calling
mechanism that would enable any language to generate calls to routines
written in any other language. While the wide range of entities that occur
in the various modern computer languages make this difficult, the goal was
fairly well attained and is not one to be sacrificed lightly. In fact any
language compiler that does not generate code that follows this calling

standard can not be regarded as a true VMS compiler.

The CALLS and CALLG instructions are the architectural basis of this
standard. These instructions build a structure known as a call frame on

the stack. This call frame contains
(1) the saved values of AP, FP, and PC.
(2) sufficient information to restore SP.

(3) any registers that the called routine wishes saved, this is done
by having the first word of the called routine act as a mask where the

bits set correspond to a register to be saved.
(4) various other small pieces of house-keeping information.

The FP (Frame Pointer) and SP (Stack Pointer) are pointed at the low
end of the new call frame which is built on the stack corresponding to the
current machine mode (User, Supervisor etc.). The AP (Argument Pointer) is
pointed to the parameter list being passed to the routine, and then the
routine is executed. The RET instruction restores all the saved registers,

removes the frame from the stack, and returns to the caller.

The difference between the CALLS (call-stack) and CALLG (call-
general) instructions is that the CALLS instruction assumes the parameter
list is on the stack, whereas the CALLG instruction has as one of its
operands the address of the parameter 1list which may then be located

anywhere in memory. If the instruction was a CALLS, the RET instruction
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also removes the parameter list from the stack. The CALLG instruction is
used by MTL for procedure calling as this allows MTL to place the parameter
list in the activation record of the calling procedure which is stored in

the heap.

The saved FP's form the dynamic chain for the routine, linking back
through all the various stack frames. This chain is used during condition
handling, a subject outside the scope of this thesis. During the execution
of a routine the FP is not changed (except when another routine is called)
but the SP oscillates up and down below FP as items are pushed onto or

popped off the stack.

3.2 The VMS Operating System

3.2.1 Address space layout

VAX/VMS resides mainly in virtual memory at and above 80000000 (hex)
and this area (system space) is shared between all the processes of the
system. The scheduling between these processes is caused by pre-emptive and
voluntary releases of the CPU. The area of memory below 80000000 (hex) is
designated "process space" and is mainly for the exclusive use of this
process. Processes can share areas of memory, and the shared areas may have
different virtual addresses within the different processes. Some system
information that is pertinent only to the process is maintained in P1 space
and is protected against illegal access by means of the access checks

described in section 3.1.1.

3.2.1.1 P1 Space and the USER Stack

Each process has (under VMS version 2) one USER-mode stack which is
indicated only by the SP. This stack is normally found at the low end of
P1 space, and grows towards PO space. The area of P1 that is accessible
grows downward from TFFFFFFF (hex) and is limited in size by a quota
imposed by the system and PO space grows upward from 00000000 (hex) and is
restricted by the same quota. This quota sets an upper limit on the total
amount of space that is available in PO and P1. This limit effectively
blocks any attempt to have more than one USER-mode stack because there is
no mechanism for preventing the stacks from colliding other than widely
separating them and there is insufficient memory available for such wide
separations. Various software interrupts use indefinite amounts of storage

on the stack beyond the area in use by the main flow of program execution,
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and thus the danger of stacks colliding, either because of these events or

because of deep recursion, is very real.

This forms a limitation if one attempts to introduce concurrency for
such languages as Ada, Simula, and MTL inside a single VMS process. If
this can be circumvented then P1 space, with its approximately 1,000
Mbytes of addressable memory should prove adequate, in the immediate

future, for the allocation of stacks.

3.2.1.2 PO Space, the Concept of an Image, and the Heap

The instructions and static data for a program are usually loaded
into PO space. The first page (addresses 00000000 (hex) to O00001FF (hex))
is usually left as a no-access page so that access violations catch most
attempts to use (in Pascal terminology) NIL pointers (which point to
location 0). The combined instruction and data area is loaded into virtual
memory by a system routine called the IMAGE ACTIVATOR from one or more disk
files. The term for this admittedly 1loose concept is an IMAGE. In
practice often two and (rarely) even more images are loaded into virtual
memory simultaneously. The main use of this practice is to load the VAX-11
Symbolic Debugger[DEC80-SD] into memory along with the program to be
debugged. However the Debugger is loaded into a reserved area of P1 space

so that is does not affect the behaviour of the user's program in PO space.

This area can be expanded upwards to provide a large Heap area under
the control of a multi-layered heap management system. The most basic rule
is 'if you want more storage - extend PO space', but there is a resource
manager called LIB$GET VM/LIB$FREE VM for allocating this area in a more
heap-like manner. Built on top of these are some routines for
allocating/deallocating small quantities of dynamic storage fairly

efficiently.

While the stack is in P1 growing downward, the Heap is in PO space
and grows upward., A layered approach to Heap management is implemented
with the most fundamental routine being the $EXPREG Expand Region system
service. This service is used to expand PO space when the Heap is unable
to satisfy a request. The next layer is the LIB$GET VM and LIB$FREE VM
routines for allocating and deallocating areas of virtual memory. Built on
top of these are other 1library routines for efficiently allocating and
deallocating strings in a fairly efficient manner. Section 5.2.3 discusses

MTL's heap management system that does not use this last layer of library
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routines because the costs involved in calling them are too high.

3.2.1.3 Summary and Address Space Layout Diagram

00000000 PO Space
Current Image
Heap grows toward P71 space

3FFFFFFF

40000000

User-mode stack grows toward PO

P1 Space

Command Language Interpreter
Some kernel tables
VAX-11 Symbolic Debugger
TFFFFFFF
80000000 S0 Space
VMS kernel and data base
BFFFFFFF
CO0000000 S1 Space
reserved for future use
FFFFFFFF

3.2.2 VMS Processes

VMS defines a rigid convention
of memory usage, partly caused by the
VAX architecture and partly because of
the design aim that all languages be
capable of calling routines written in

the other languages.

The language implementor must be
aware of the restrictions that such a
convention must cause, and find methods
of providing the facilities required by
the language within the bounds that
they set.

As VMS matures and more languages
are implemented for it some of these
restrictions may be removed but they
are all representative of a

conventional modern operating system.

A VMS process has its own process virtual address space, a collection

of current resources,

resources it can gain,

and a variety of miscellaneous other attributes.

all processes share the system space,

a list of quotas restricting the amount of futher

a set of privileges required for some activities,

As was mentioned in 3.2.1

and it is possible for two processes

to voluntarily share part of their process address spaces.

The process may be either detached,

or a sub-process which is dependent on its parent process.

may be either a detached or

sub-process
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dependency structure is a tree. When a parent dies all its sub-processes
are killed also. Sub-processes share the resources of the parent, but may

have more restrictive quotas than the parent.

Typically each user of the system has a process in which context the
various images requested by him are run. As each User-mode image
terminates the user's CLI (Command Language Interpreter) regains control
and interacts with him to determine the next image to be executed. The
system 1is also capable of running any image as a process, without the

presence of the CLI.

Processes can share memory, event flags, files, and devices between
themselves. The system provides a "virtual" device called a Mailbox which
provides a relatively simple method of piping data between processes
without the overheads of shared disk files, and without the complexity (or

efficiency) of shared memory.

The system uses several detached processes and sub-processes to
manage various activities. There 1is a process called "JOB CONTROL" which
manages the basic 1level of the print and batch queues, as well as
monitoring the terminals for interactive users wishing to log in. It uses
Print Symbiont sub-processes to manage the printing of files. The disks
are controlled by detached processes called Ancillary Control Processes
which maintain their format and arrange the interlocks etc. required for

sharing the files stored on them.

Processes are created via a system call which includes, amongst its
other parameters, the name of the image file that the process is to run.
This places a severe restriction on the number of processes that can be
created per unit time because the creation of processes 1involves the
reading the image file from disk. See Appendix A for a comparison of VMS

sub-process creation rate, and MTL task creation rate.

3.2.3 VMS Event Flags and Asynchronous System Traps (ASTs)

Event flags are boolean variables maintained by VMS for either a
process or a collection of processes., The primitive operations on the
variables are setting, clearing, and reading. It 1is possible to cause a
process to wait for a particular event flag to be set by using the $WAITFR
system call. This call does not return until the event flag is set. Other

services allow the process to wait until one or all of a set of event flags
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become set.

An AST is software interrupt that is delivered to process after the
occurrence of a specified event. The AST specifies the routine within the
process that is to be called as the interrupt's servicer, as well as the
processor mode (USER, SUPERVISOR, etc.) at which it is to be called. A
system service ($DCLAST, Declare AST) is the simplest way of causing an
almost instantaneous AST to be delivered to the current process (it is not
possible for a user program to deliver ASTs to other processes, although
VMS does it internally). ASTs can be locked out for a particular processor
mode (USER, SUPERVISOR, etc.) by means of the $SETAST system service. They
are also locked out during the execution of the AST-called routine at the
same processor mode or when the current processor mode is more privileged
than that of the AST. For instance if a call to $DCLAST is made from
SUPERVISOR mode and the specified AST is to be delivered in USER mode the
interrupt will remain pending until the processor mode drops to USER then
it will be delivered. ASTs may be delivered when a process is waiting for
an event flag, in which case the process continues to wait after the AST

routine exits.

For example a Chess program could request an AST to be delivered
after five minutes before commencing to compute the next move. When the
AST is delivered the program aborts the best-move search and plays the best
move found so far, thus limiting the time spent searching for a move.
However by far the most frequent use of ASTs and event flags is in the

control of I/0 operations.
3.2.4 VMS I/0

VMS uses a multi-layered approach to providing 1I/0 [DEC80-10]
facilities for the user. The fundamental level is to connect the process
directly to the interrupts being generated by the device. Immediately
above that is an interface to the VMS device driver via the $QIO (Queue I/0
request) system call. The request has several parameters controlling its

behaviour. The required ones are

() a software channel number, which has already been associated with
a device by means of an $ASSIGN (Assign I/O channel) system call.

() a function such as Read, Write, Change Characteristics.

() an event flag number. This event flag is set when the I/0

completes.
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The optional ones are
() an AST-routine address. An AST is delivered to this routine when
the I/0 completes.
() an I/0 Status Block address, This block 1is filled in with

information about the operation and the device.

There are also up to 6 function specific. parameters, During a read
request these would specify the size and location of the memory area to be
read into, the numbers of seconds to time-out the request after, and a

prompt to be issued if the input device is a terminal.

Although the $QI0 mechanism is very powerful it 1is also device
dependent. For this reason VMS provides the Record Management System which
translates device independent requests into $QI0's as well as imposing an
internal file structure on file-structured devices such as disks. RMS also
makes non-file-structured devices such as terminals appear file structured.
There are two basic modes of operation, synchronous and asynchronous. In
synchronous mode a call to an RMS routine does not return until the
operation is complete. 1In asynchronous mode the call returns immediately,
and RMS delivers an AST to a completion routine once the operation 1is

finished.

The language specific I/0 support routines for the various high level
languages (Pascal, Fortran, etc.), use RMS to provide the services they
want. For instance these routines buffer the output from Pascal WRITE
statements until a WRITELN is found at which point they call RMS to output
the completed line as a record. RMS in turn buffers these records into
blocks and uses $QI0 calls to write them to disk as required. When an
image is terminated RMS flushes all its buffers, so there is no problem

with partially completed outputs.
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Chapter Y
THE MTL LANGUAGE

4.7 Goals
The main aims of MTL's development were

(1) as a research tool for investigating problems associated with message

passing implementations, and

(2) to provide a VAX/VMS compiler for a language that has message passing

and concurrency.

The syntax of MTL, as well as many language features, was adopted
from Pascal, with the differences described in section 4.2, The MTL
language and run-time support routines provide some very low level
facilities for supporting concurrency, such as shared variables and
explicit scheduling statements. These are sufficient to implement message
passing between tasks and other proposals for the control of concurrency,
such as monitors, as user written routines. It is recognised that such low

level mechanisms may not be desirable in a non-research environment.

There are a few areas where the implementation differs from Pascal,
usually because the extra code required in the compiler was not warranted.
Most of these differences and restrictions could easily be removed but no
more would be learnt about implementing message passing or concurrency by
doing so and the differences do not have a significant impact on MTL's use

as a language.

To satisfy the second goal it was important that its compilation
speed and the quality of the code produced should compare favourably with
other VAX/VMS compilers such as Digital's VAX-11 Pascal V1.3. This goal

was attained even though the compiler does not do extensive optimisations.

Some primitive facilities have been implemented for modular
development and independent compilation to help the user develop large

programs.
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4,2 Restrictions to Pascal

4.,2.1 Files

MTL only supports external text files. These files must be declared
in the program header and not re-declared in the VAR declaration. They
must be RESET and REWRITEn as in standard Pascal, They have no file
buffers so the only method of doing I/0 is by using the READ(LN) and
WRITE(LN) statements. Reading and writing of enumerated types as character
strings are supported (an extension to standard Pascal) as in the VAX-11

Pascal 1.3 compiler.
4.2.2 GOTO's

Only GOTO's within the current procedure or function are allowed. The

compiler does not check for GOTO's into structured statements.

4.,2.3 Operators and Predeclared Routines

Most Pascal operators are supported but no automatic coersion of real
to integer or vice versa is done. FLOAT, ROUND, and TRUNC are available
for converting between INTEGER and REAL type. Exponentiation (i**¥*j) 1is
not implemented. Some of the standard Pascal predeclared routines have not
been implemented because there is a large library of mathematical and other
routines available as part of VAX/VMS. MARK and RELEASE are not
implemented because they would significantly degrade the performance of the

heap, which is c¢ritical for MTL.

The following standard or VAX-11 Pascal 1.3 routines are predeclared.

ORD, CHR, ROUND, TRUNC
NEW, DISPOSE
EOF, EOLN, PAGE, LINELIM, READ, READLN, RESET, REWRITE, WRITE, WRITELN

4,2.4 Assignment and Type Checking

Because MTL differs from many current implementations of Pascal in
its type checking, the type checking is described here as a restriction.
Actually it is close to the draft ISO standard[IS0] for Pascal.
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MTL uses name- rather than structural-equivalence type checking. 1In
practise the user 1is unlikely to notice except when trying to assign
between two arrays that are structurally equivalent but declared
separately. The word PACKED is ignored. Constant strings are compatible
with any ARRAY [1..LENGTH] OF CHAR where LENGTH is the number of characters
in the string. NIL is compatible with any POINTER type.

Eg: Illegal.

var al : array [1..10] of char;
a2 : array [1..10] of char;
al := a2;
Legal.
var al,a2 : array [1..10] of char;
al := a2;

4,2.5 Scope Rules

4,2.5.1 Scope of Identifiers

MTL implements the draft ISO standard[ISO] for scope rules except for
field identifiers (see 4.2.5.2). Identifiers have a scope that extends
from the start of the body in which they are declared, to the end. They
may not be used before they are defined except in the construction of a
pointer type. When building a type, the type identifier is not defined

until the right hand side of the definition is complete.

4,2.5.2 Record Field Names

Unlike Pascal, MTL regards the names of fields in records as field
selectors rather than identifiers., This means that they do not get entered
into the scope of the record, hence the following is valid MTL but not

valid Pascal.

type stack item = record
case nature : simple type of
bool : (boolean : boolean);
intg : (integer : integer);
reel : (real : real);

end;
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The field selectors do become identifiers inside WITH statements, as

one would expect.

4,2.6 Complexity Restrictions

MTL uses a simple-minded register allocation strategy and does not
cope with the problem of insufficient registers. This is because there are
10 general purpose registers (R2-R11) available, and in practice MTL does
not run out of registers very often. Registers are allocated for (1)
holding the addresses of the activation record of each routine in static
scope, (2) holding the address of the record inside a WITH statement, (3)
holding the upper-bound of a FOR loop when that bound is not a compile-time
constant, and (4) holding temporary results during expression eva;uation.
If MTL generates the TOOCOMPLEX error message during compilationzmay be

necessary to reduce any one of these,.
4.2.7 Bugs

It is to be expected that a compiler developed as MTL was will have
bugs in it, both at compile time and in the code produced. The compiler's
error recovery after syntax and semantic errors is generally reasonable but

sometimes poor. There are no known code generation bugs.
Currently the compiler does not detect the following error.

Program BugO1;

procedure P;
var v : boolean;
begin
end;

procedure Boolean; { Erroneous since "boolean" has already }
begin { been used in this level by the "V" in }
end; { procedure "P", }

begin

end.

4.3 General, Extensions

A few extensions were added to Pascal to make it a more comfortable
language to use, and to provide a separate compilation facility. There is
no type checking or definition checking performed between separately

compiled modules.
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The following terms are used in the following discussion with a

specific meaning.

() TASK - often called a Process in the literature. TASK is used instead

because Process has a special meaning already in VAX/VMS.

() ROUTINE - a collective term referring to any Procedure, Function, or
Task. This 1is wused because these three have a common syntatic

structure.

4,3.1 ¥INCLUDE directive

At any point where a space, comment, or lexical token is legal a

%INCLUDE directive may be used. The format is

ZINCLUDE 'file-name'

and this causes the compiler to behave as if the sequence of characters and
end-of-lines encountered in the %INCLUDEd file had been encountered in the
current file at that point. #INCLUDE directives may occur inside $INCLUDEd
files. The main intended use of this feature is as files of definitions
which contain those parts of modules that must be constant for all the

modules making up a program,

4.3.2 Modules

The Module facility is implemented as in VAX-11 Pascal 1.3. A Module
has almost the same syntax as a Program, the only difference being that a

Program has a Compound Statement and a Module does not.

Program ::= PROGRAM Identifier [ File List ] ; Block .
Module ::= MODULE Identifier [ File List ] ; Module Block .
Block ::= Declarations Compound Statement

Module Block ::= Declarations END
Declarations ::= { [ Label Declaration ]

Constant Declaration ]
Type Declaration ]

{

[

[

[ Var_Declaration ]

[ Procedure or Function or Task Declaration ]
1
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The following requirements and recommendations should be followed
when writing Modules to be sure that inconsistences will not develop

between the various components.

(1) The file and variable declarations in the outer most level of the
Program and the Module must be the same, and it is strongly recommended
that they be placed in an $INCLUDE file (see 4.3.1).

(2) It is strongly recommended that the declarations of the exportable
routines in the Module be written in such a way that a text editor can
easily extract the declarations and construct $INCLUDE files containing
FORWARD or EXTERNAL declarations. The module itself can then $INCLUDE
the FORWARD declarations, while other Modules wishing to import the
declarations can %INCLUDE the EXTERNAL declarations.

4,3.3 Relaxed Declaration Ordering

To enable %2INCLUDE to be used to build a Program out of several files
(each of which may wish to contribute some constants, types, variables, and
routines) MTL allows these various declarations to be mixed in any order.
This allows the programmer to place the various constants, types, and
variables related to a particular object or class of objects textually

together in the source code of the program.

For instance one aspect of a program may be related to implementing
an abstract data type called "string of characters". The constants (such
as "maximum_string length"), types (such as "string"), and routines (such
as "concatenate") can be placed together in one place in the program,

separate from another section of code that implements "complex numbers".

4.3.4 EXITLOOP and RETURN statements

To avoid many of the instances where Pascal requires labels and
GOTO's, MTL provide EXITLOOP and RETURN statements. EXITLOOP is equivalent
to a GOTO to a label just beyond the end of the current inner-most FOR,
REPEAT, or WHILE loop. RETURN is equivalent to a GOTO to Jjust before the

END of the routine's compound statement.
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4.4 Extensions Supporting TASKS

4. 4.1 Goals

MTL tasks are not truly concurrent. There is only one current task,
all other tasks are either in the list of executable tasks or suspended for
one of a variety of reasons. It was decided that this was acceptable,
given that MTL was designed to run on a single CPU system and provided that
the user was given some methods of rescheduling. The message passing
semantics (4.5) provide such rescheduling, as do some primitive statements
(4.4.4),

MTL tasks provide the concurrency needed for a message passing system
and they are flexible enough to allow the user to write his own scheduling
mechanisms. Shared variables are supported. It was decided not to use
pre-emptive scheduling because of problems with critical sections of code,
and because of run-time efficiency. The tasks have to be capable of
calling external routines (see 4.2.5) and this either could only be done by
avoiding pre-emptive scheduling or by adding significant overheads to the
run-time system. Furthermore by not using pre-emptive scheduling the user
can experiment with indivisible operations without need for special
interlocks. For example COUNT := COUNT+1 is a problem with pre-emptive
scheduling because the value may change between its usage on the right hand
side of the assignment and the assignment being made. This problem does not

occur with MTL.

The creation and scheduling of MTL tasks had to be simple, fast, and
flexible. The need for flexibility led naturally to dynamic rather than
static creation of tasks so networks of tasks could be assembled as

desired.

4.4.2 TASK routines

The declaration of a Task has the same syntax as that of a Procedure,
except all parameters must be passed by value. A Task may access any
variable in scope, not only main 1level variables but also those in the
routines that enclose the task, Tasks have associated with them a unique
value, of predeclared type TASK ID, which can be used to refer to them for
control purposes. This value is assigned at Task Creation time, and is
guaranteed not to be used again until an indefinite but long time after the

task's death,.
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A task dies when it has finished executing its Compound Statement.

Since tasks can access variables in any surrounding scope, an attempt
by a routine to exit (hence deallocate an activation record) causes the
exit to be delayed until all tasks that are sharing the activation record
have died. This Suarantees that all the variables accessable by a task
exist throughout its life time. If the task could have VAR parameters then
either the task's creator or the owner of the deepest variable the task
could reference would have to be suspended until the task died. To prevent
this complication it was decided to restrict Tasks to value parameters.
This leads to clearer programs and does not seriously restrict the usage of

tasks or shared variables.

MTL tasks thus form a tree, with the main program being the root.
When it dies the program terminates, but this can not occur before all the
created tasks have died because all the created tasks are sharing its
activation record. This differs from COSPOL[RO81] where initially there
may be several tasks in existence and there is no sharing of variables
between these tasks. Execution of a COSPOL program continues until all
these tasks have died, with there being no restrictions on the order of
their death. A Parallel Command, which executes a 1list of tasks 1in
parallel, does block wuntil all the tasks have finished, and this

corresponds to the delaying of routine exits in MTL.

If no tasks are executable, and none are waiting on a future event
(see 4.2.7) then the program 1is dead-locked and the runtime system

generates an error message. This normally results in image termination.

4.,4.3 CREATE statement

Tasks are dynamic objects. They are created by the Create Statement

whose syntax is

Create Statement ::=
CREATE Task Id Variable := Task Name [ Parameter List ]

The task is created, any parameters are copied into its activation
record, its task id (see U4.4.2) is assigned to the variable, and it is
placed in the 1list of executable tasks. However in keeping with MTL's
philosophy of scheduling the task's creator is kept as the currently

executing task.
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4.4,4 RESCHEDULE, SLEEP, and AWAKEN procedures

Because MTL does not do pre-emptive scheduling three predeclared
procedures are available for user-controlled scheduling, besides the

impliecit scheduling involved in message passing. They are

RESCHEDULE,
SLEEP, and
AWAKEN(sleeping task:task_id)

Rescheduling places the current task at the end of the list of

executable tasks, and picks another to replace it.

Sleeping suspends the current task's execution until another task

awakens it.

AWAKEN(sleeping task:task id) is used for awakening such tasks. If

the task specified in the call to Awaken is not sleeping nothing happens.

4.5 Extensions Supporting MESSAGES

4.5.1 Goals

Many and various proposals have been put forward concerning message

passing. Amongst the decisions facing the language designer are
(1) Whether to transmit a copy of the message, or the original,.

(2) Is message transmission Asynchronous, with some degree of buffering,

or Synchronous?

(3) Whether or not the receiving task can name the required source of the

message.

(4) Whether or not the sending task can name the task that is to receive

the message.

In the design of MTL these choices were made using criteria of speed
and flexibility. The choices made for MTIL in each case 1leaves the
alternative possibility available to the programmer as a subclass of the
chosen possibility, with no loss of speed. Furthermore the source code of
the program can be easily checked to verify that only the desired mechanism

has been used.

35



4.5,2 MESSAGE variables

Transmission of the ORIGINAL was decided upon because that seemed to
be the most common usage. MTL messages are objects allocated in the heap,
and thus copies of them can be easily made using NEW and an assignment
statement. It is possible to verify that the transmit-copy mechanism has
been used by checking that every SEND statement (4.5.5) is immediately
preceded by a copy being taken of the message, and that it is this copy
that is sent. Such a check could be made by a simple mechanical program

verifier,

Message types are formed using the reserved word MESSAGE. The syntax

of a message type declaration is
Message Type ::= MESSAGE [ Field List ] END

This declaration is similar in effect to declaring a pointer to a
record whose type 1is not explicitly available. Hence a variable of
message_type must be treated as though it were a pointer to a record, and
the fields of the message accessed accordingly. This is so because message

passing is then done by passing this pointer (see 4.5.5).

4.5.3 BUFFER variables

ASYNCHRONOUS communication, with a bounded buffer, was implemented.
By specifying the size of the buffer as 0 a SYNCHRONOUS protocol can be

enforced.

Section 7.4.2 examines the performance implications of selecting
asynchronous rather than synchronous communication, showing that
asynchronous communication is inherently faster when bounded buffers are

actually required.

Buffers are shared variables used during message passing to buffer

the messages and to synchronise their transmission.
The syntax of a buffer type declaration is
Buffer Type ::= BUFFER OF Message Type Identifier

Buffers must be initialized before their first use. There is a
predeclared routine BUFFER INIT that takes any variable of any buffer type
and initializes it. It takes two parameters, the first being the variable,

and the second being the maximum number of messages that can be buffered.
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When the second parameter 1is zero, communication via the buffer is
synchronous; thus it is possible to verify that the program only uses the

synchronous mechanism by examining all the calls to BUFFER INIT.

For example

BUFFER_INIT(input_buffer,10)

4.5.4 BUFFER READERS, BUFFER WRITERS, BUFFER MESSAGES

Each buffer has three queues associated with it, a queue of readers
trying to read messages from the buffer, a queue of messages being
buffered, and a queue of writers trying to write messages to the buffer.
The size of any of these queues can be obtained via the predeclared
integer valued functions BUFFER READERS, BUFFER_MESSAGES, and
BUFFER_WRITERS. These functions have a single input parameter, a buffer

variable.

This mechanism is slightly more flexible than the PENDING function in
COSPOL{RO81] because it allows a program to determine how many messages are
being buffered rather than just the existence of some pending messages.
This may be useful in simulation programs which use the buffers to model

queues.
The PENDING function is equivalent to

FUNCTION PENDING(B:BUF) : BOOLEAN;
begin
PENDING := (BUFFER WRITERS(B)+BUFFER MESSAGES(B)) > 0;

end.

On the other hand it is slower (in cpu-time) than PENDING because it
requires some mechanism for keeping track of the number of objects in each

queue, It remains to be seen which of the two is more desirable.

4,5,5 SEND and RECEIVE statements

Rather than naming sources and destinations MTL uses the buffers as
mailboxes, with any task (within scope) being allowed to both SEND and
RECEIVE messages via them. Static checks can often be made to verify that
only one TASK is capable of receiving messages via the buffer if that is
the desired behaviour, or that all messages of a particular type are

received via one particular buffer.
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In COSPOL the name of the receiving task and the type of the message
are used to select an anonymous buffer for the transmission. Each task has
a collection of buffers, one for each type it is capable of receiving.
This is a subset of MTL's mechanism that has the advantage of less code
being required for specifying the connections and the Send and Receive

operations, but it is less flexible.

Buffers can be created dynamically, using NEW, and the pointer passed
as a parameter to one or more created tasks. This allows the run-time
creation of arbitrary networks of tasks with any desired pattern of message

flow.

They also allow a task to have several input streams of messages of
an identical type. For instance a task can be receiving messages from two
buffers of the same message type, one being designated "high-priority" and
the other "low-priority". Senders can place their message in either buffer
according to the urgency of the message. A similar situation arises when
using tasks to simulate nodes on a network (for example a intersection of
several roads). The messages (cars) coming in from the different input
buffers (rocads) are clearly of the same type yet each buffer should be

distinct.

Message transmission is done by use of SEND and RECEIVE statements

whose syntax are

Send_Statement SEND Message Variable VIA Buffer Variable

Receive Statement

RECEIVE Message Variable VIA Buffer Variable
The semantics of a Send Statement are

(1) The task is suspended in the buffer's sender queue until either

( i) there is room in the buffer for the message, or

(ii) there is a pending Receive for a message from the buffer and the
Send Statement's message is the next message to be sent.
The second alternative allows the use of buffers of zero size for

synchronous communication.

(2) The Message Variable is set to NIL. All further attempts to access
the message (by retaining copies of the Message Variable) are invalid.
This 1s the same situation as using DISPOSE on a pointer and then
trying to access the disposed object by retaining other copies of the

pointer. It is not expected that this problem with messages will
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cause the programmer any more serious problems than DISPOSE currently

does.
The semantics of a Receive Statement are

(1) The task is suspended in the buffer's receiver queue until there 1is a

message avallable for it to receive.

(2) Set the message variable to the message received. This is similar to
NEW and, as would be expected, the task should either DISPOSE the
message, pass it on to another task, or retain it. Re-using the
message variable would have the same affect as re-using a pointer

variable, leaving an in-accessible item in the heap.

4.6 Summary

The MTIL language is an extension of Pascal that provides for
concurrency and message passing, as well as some other additions to

simplify the use of the language.

Tasking may be used either at a very low level, with explicit Sleep,
Awaken, and Reschedule control, or the user can ignore the issue of
scheduling by relying on the message passing primitives for the

rescheduling required for pseudo-concurrency.

The use of buffers rather than task-directed messages allows all
combinations and permutations of data flow, such as multi-server queues and

dynamic redirection of message streams.

MTL message passing provides a collection of high-level primitives
sufficiently powerful to implement most message passing proposals. The
language designer can use MTL to experiment with the various mechanisms in
the context of experimental programs, and be able to have these compiled
and run rather than just looking at them on paper. This in turn will
provide experience in debugging such programs - experience which is very

hard to gain in any other way.

Alternatively the structures are sufficiently convenient for a user
who merely wishes to implement a concurrent algorithm. This means MTL is
usable by both naive and experienced programmers, and in a wide variety of

roles.
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Chapter 5
DETAILS OF THE MTL IMPLEMENTATION

5.1 The MTL Compiler

5.1.1 Goals
The major design goals of the MTL compiler and implementation were

(1) It should be a standard VMS compiler, generating standard object
modules for the VMS Linker.

(2) It should support the VMS procedure-calling standard.

(3) It should be flexible, allowing further features to be easily added to
the language.

(4) It should be acceptably fast.

(5) The code produced should be of a comparable quality to the Pascal V1.3
compiler. That compiler is not an optimizing compiler, but does
produce reasonably good code. All simple optimizations should be done,
including using the correct branch code optimizations, and peephole

optimizations.

In view of these design goals a fairly simple, multi-phase compiler
was implemented. Initially only a small subset of Pascal was implemented,
then this set was incrementally extended until almost full Pascal was

available.

5.1.2 An Overview of the Compiler

The compiler consists of a collection of modules written in BLISS32,
a system programming language and compiler writing language for VAX/VMS.
Since there were no sources of any VMS compilers available, nor any true
compiler writing tools, the entire compiler was written from scratch. Some
aspects of the design of the compiler reflect the fact that BLISS32 is a
typeless language and hence various tricks are possible in the compiler

that are not possible with a typed language.

A table generator was written in Pascal to translate a textual
representation of the syntax and references to the required action routines
into a MACRO-32 assembly language form that, when assembled and linked into

the compiler, drives the LL(1) parser.
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The scanner {LEX} is hand-coded and breaks the input stream into
tokens. It also handles %INCLUDE files and removes comments. The parser
{PARSER} is driven by the table to recognise the syntax and calls the
appropriate action routines. It handles recovery from all syntactic
errors. The result of the action routines is either the maintenance of the
symbol table or the production of a code-tree for the current routine.
This code-tree is fed through {CODE} to produce an instruction stream which
is then fed through {OBJ} which produces an object module and a machine-
code 1listing after applying branch code optimizations and peephole

optimizations.

{HEAP} manages the compiler's heap, and {TXTIO} does the I/O of the

source and listing files.

5.1.3 Specification of the Grammar and Semantic Actions

The input to the program that builds the Parser tables is a file of

lines with some additional provisos. Lines with

(1) '"!' in column 1 are ignored. (Comments)

(2) '-' in column 1 are appended to the previous line. (Continuations)
Blank lines are ignored.

The syntax of the input is specified by the following rules. Note

that {...} means "zero-or-more occurences of", | means "alternatively",
and (...!...!...) means "one-of the specified possibilities.
file = { atom-line } '$'-line { prod-line } '$'-line

atom = 1lexical-token-identifier
prod = identifier [ '=' rule { '}' rule } ]
rule = item { item }
item = { '#' action-routine-name } unit { '#' action-routine-name }
unit = identifier
I l[l ruleljl
: |{I ru1e|}l
I 1(' identifier { '}' identifier } ")!'
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For example an extract from the actual MTL tables is ...

1
! Declare the basic tokens that the scanner {LEX} knows about.

! {LEX} yields these pseudo-productions as it recognizes the

! individual tokens. They are declared here so that the program

! that builds the table knows that they are not true productions,
! and hence will not complain about them not being declared in the
! 1ist of productions below.

1

LEX K UNDEFINED
LEX K_ENDOFFILE
LEX_K_IDENT

LEX K_INT
LEX_K_PROGRAM
LEX K _BEGIN

LEX K_WHILE

Part of the syntax specification of MTL, showing the syntax of a
Program or Module, as well as calls to some of the action routines.

— - R

COMPIL UNIT # ACT INITIALIZE
- ( PROGRAM | MODULE )
- # ACT WINDUP
s LEX K _DOT

PROGRAM # SYM NEWTOPLAYER
- LEX_K_PROGRAM

- NEW _MODULE # DECL ROUTINE

- [ LEX K_LPAREN HEAD PARAM LEX K RPAREN ] LEX K SEMI
- PROGBODY

- # SYM_OLDTOPLAYER

MODULE # SYM NEWTOPLAYER

- LEX K MODULE

- NEW_MODULE # DECL ROUTINE

- [ LEX _K_LPAREN HEAD PARAM LEX K _RPAREN ] LEX K SEMI
- MODUBODY

- # SYM_OLDTOPLAYER

'3

These are used to generate the table that is interpreted by {PARSER}.
The table is a list of commands that control the flow of the compilation by
directing {PARSER} to accept an input token, attempt to recognize a sub-

production, call an action routine, etc.
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The possible commands are...

CALL entry-point,
ENTER production-name,
RETURN

These implement the parsing of sub-productions. CALL directs {PARSER}
to recursively call itself, with the entry-point specifying the first
command to be executed. This is always an ENTER command which specifies
the name of the production being recognized, a useful piece of information
when tracing the behaviour of {PARSER} and when generating error messages.

RETURN causes the current call to {PARSER} to return.

{PARSER} creates a record on the stack for the action routines called
by the production to use as common storage. There are three special
components in this record called BACKLINK, RETURN, and RESULT. BACKLINK is
a pointer to the similar record of the calling production. The RETURN
field is copied into the RESULT field of the calling production as part of
the RETURN instruction. Thus action routines can locate and use information
passed back by sub-productions or can access information stored higher up
the parse tree. Typically this field passes back a pointer to a node that
will be linked (by action-routines higher up the parse tree) into the code-

tree,.

ACTION action-routine

This command is the only way action routines are called from the
Parser. They are passed, by reference, the current production's record and
are capable of examining the current token and any other global variables.
Action routines perform such functions as type-checking, symbol table

maintenance, and the actual building of the code-tree.

LEXEME token,

OPTIONAL token-set alternative-command,
GOTO command

BAD

The LEXEME command accepts the specified token, and calls the scanner
to read the next one. If the current token is not the specified token, an
error message is generated and the limited error recovery mechanism goes

into effect. OPTIONAL branches to the alternative-command if the current
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token is not in the specified token-set. The current token is not changed.
The GOTO branches unconditionally to the specified command. BAD is used to
indicate that there is no other possibility, the parse has run into a dead-

end caused by a syntax error.
For example:

Consider the production

EXTERNAL FILE LIST = EXTERNAL FILE { LEX K COMMA EXTERNAL FILE }

This would translate into the following list of commands.

EXTERNAL FILE LIST: ENTER "EXTERNAL FILE LIST'
CALL EXTERNAL FILE

LOOP OPTIONAL [LEX K COMMA], FINISH
LEXEME  LEX K COMMA
CALL EXTERNAL FILE
GOTO LOOP

FINISH: RETURN

5.1.4 The Symbol Table

The Symbol Table is maintained by the module {SYM}. Unlike many
Pascal compilers the identifier table is maintained using a hashing
technique rather than a binary tree. flach entry in the hash table
corresponds to a particular identifier spelling. All instances of this
identifier currently in scope hash to this entry in the table, and are
stacked (in a chain) in it. Later definitions of the identifier are pushed
on top of this stack. When a scope is exited all identifiers that were
declared in the scope are popped off their stacks. This mechanism was used
because it is potentially faster (although no tests have been done) and I
was interested to see if it was workable (a preliminary investigation

failed to show up the one place where it would not work).

There is only one place where it does not work for standard Pascal.
When an enumerated type is enumerated as part of a Record declaration the
enumerated-type-identifiers must be declared at the main scope of the
procedure or function, whereas the field-identifiers are only declared

within the scope of the record.
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For example:

Type
enum = (alpha,beta,gamma) ,
rec = Record
enun : (alpha); { ENUM doesn't clash, ALPHA does }
End; { because ALPHA gets declared outside }

{ the scope of the record. }

Rather than hack a solution to this into the compiler, a decision was
made that in MTL field-identifiers are not entered into the symbol table,
but are an attribute of the record-type. Hence in MTL, but not in Pascal,

the following is valid

Record integer : integer; End

5.1.5 HEAP Management

The compiler's heap 1is managed as a stack with calls to NEW
allocating the specified object on top of the stack. MARK and RELEASE
operations are used to peel layers off the stack when entering and exiting
scopes. There is also a true Heap available for use in places (such as the
I1/0 routines and some aspects of code generation) where it is required
because the pattern of allocation and deallocation does not follow the LIFO

(Last-IN, First Out) behaviour of the rest of the objects.

5.1.6 The Semantics Routines

Fach semantics routine (elsewhere called an action routine) perform
one simple operation. They either build parts of the code-tree, performing
any required checks such as type compatibility, or do such house-keeping as
symbol table maintenance. The semantic routine that ends a routine
declaration calls the code-generator passing it the code-tree for the

routine.

The code-tree closely resembles a parse tree of the executable part
of the routine. Each node is a variant record (in the Pascal sense) with a
field specifying which variant the node is. This code tree contains
pointers back into the symbol table for the various identifiers, types,
etc. The nodes can be broken into two distinct groups, the STATEMENT nodes
and the EXPRESSION nodes. The statement nodes have a pointer indicating
their successor, whereas the expression nodes have a pointer indicating the
type of the expression. Expression nodes also indicate which component of

an expression they are, some possibilities being a variable, a binary
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operator (in which case the node will contain two pointers, one to the
right-operand-expression-node and one to the left, as well as the name of

the binary operator), or an array indexing operation.

For example during the processing of I := J the production for assignment

statements would be used by the Parser. This production is
Assignment = # CHECK VAR Var # CMP_ASSIGN Lex K Assign Exp # CMP_ASSIGNEXP

The semantic routine CHECK VAR 1is necessary because a valid
alternative would be Function Identifier. The parser then parses a Var,
and the RETURN from it would copy a pointer to a code-tree-node for a
Variable into the result field of the current {PARSER} record (see 5.1.3).
This result field is copied into the code-tree-node for an assignment
expression that is built by CMP_ASSIGN. CMP_ASSIGN places a pointer to
this node in the RETURN field of the current record. CMP _ASSIGNEXP gets a
pointer to an expression code-tree-node from the result field, does a type-
compatibility check between the Expression and the Variable, and copies the

pointer to the code-tree-node into the assignment code-tree-node.

5.1.7 Generating Code from the Code Tree

The module {CODE} converts the code-tree into an Intermediate Code
which is stored in an array. {CODE} is a recursive-descent tree traversing
algorithm, but note that because a correct parse has already been achieved
at this stage there is no need for error detection or recovery. During the
traversal of the tree {CODE} does code-selection, register allocation, and
some optimizations that are easier to perform on a tree than they are on

the Intermediate Code.

One such optimization that {CODE} performs is the folding of any
constant array indexes back into the address of the array. For instance
Ali,4,j] is changed to A+constant+f(i,j) where f(i,j) must be computed at

run-time.

Because {CODE} works on a code-tree it 1is relatively easy to do
optimizations involving re-ordering the code. The simplest such
optimization is the shifting tests to the end of loops which has the effect

of removing one branch from inside the loop to outside.
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For example:

while condition do goto test
begin start: statement
statement;... olieVd
end; test: if condition then goto start
fini:
It is also possible to generate code that short circuits the

evaluation of boolean expressions because the full context surrounding the
boolean expression is available. Rather than evaluating the expression
then testing the result, the code produced can use the evaluation to effect
the flow of control. This is achieved by optionally passing a TRUE LABEL
and a FALSE LABEL to the {CODE} routine that processes binary operators.
When these labels are provided, the routine generates Test And Branch
rather than Evaluate And Store style instructions. (This same technique
optimizes such statements as "IF (NOT condition) THEN" by doing a
recursive call with the TRUE LABEL and the FALSE LABEL transposed, rather

than generating any code for the NOT.) For example ...

if (a<b) or (b<e) then if (a<b) then goto true
if (e<=b) then goto false
begin true: statement
statement;...
end; false:

Each call to a {CODE} routine that is to generate code for an
expression optionally indicates where the caller wants the answer to be
placed. If this is not specified the routine returns the place where the
value is to be found. Thus statements such as "A := B+C" generate "ADD C
to B giving A" rather than a more complex form that would then need
improvement 1later. Computed results (as opposed to simple variables or
constants) that must be returned are returned in registers unless a place

has been specified for them.

{CODE} does not use a complicated register allocation scheme,
although one could be added without affecting the rest of the compiler.
Registers are only used for temporary results, limits of FOR loops, WITH
statements, and similar constructs, and as pointers to each of the static

scopes.
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After completing the conversion to intermediate code, {CODE} calls

{0BJ} to produce the object module.

5.1.8 Producing the Object Module from the Intermediate Code

{OBJ} does single-instruction peephole optimizations, and then branch
code resolution. Where possible shorter branch code sequences are used,

but if necessary the longer sequences are inserted.

The peephole optimization phase 1s essential because of the wide
range of equivalent, but shorter, instructions that the VAX architecture
supports,

For example the code produced by {CODE} from ™A := A+1" would be
ADDL3 #00000001,0000001C(R11) ,0000001C(R11) ; 16 bytes

This is shortened by {OBJ} successively to

ADDL2 #00000001, 0000001C(R11) ; 11 bytes
INCL 0000001C(R11) ; 6 bytes
INCL 1C(R11) i 3 bytes

Branch code optimization is necessary because the VAX architecture
has 3 different ranges of branch instructions; Conditional branches that
can branch up to about 128 bytes forward and back, Unconditional branches
that can branch up to 32767 bytes forward and back, and Jumps that can Jjump
anywhere. If this optimization was not performed then unconditional

branches or jumps would have to be used in all cases.

For instance the code for "IF A < B THEN" would be

this instead of
CMPL a,b CMPL a,b
BLSS true BGEQ false
BRW false true:

true: ... false:

false:

Finally the data for object module is produced and a symbolic listing
of the machine code and the actual byte stream is placed in the listing

file.
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5.1.9 Summary

The MTL compiler has proven fairly straight-forward to implement.
The use of a table driven parser has meant there were almost no problems
with the syntax recognition of Pascal, and the separation of code
generation from the syntax/semantic analysis has simplified the action
routines as well as the inclusion of optimizations. Another important
advantage of the separation occurs after the first error has been detected.
From then on no further attempts to generate code are made, and hence the
compilation procedes at a faster rate, although syntax analysis and type

checking proceed as before.

It has proven very easy to extend and modify MTL because of the
extreme modularity of the design. The steps involved are in adding a new

feature to the language are typically ...
(1) add any reserved words to the reserved word tables in {LEX}.
(2) add the construct to the SYNTAX.DAT file and rebuild the Parser table,
(3) add any needed action routines,
(4) add any needed support in {CODE}.
Usually there is no reason to change {0BJ}.

The compiler takes up 182 blocks (512 bytes each) of disk space,
compared to the VAX-11 Pascal 1.3 compiler which is about 540 blocks. The

difference in size is due to three causes.

(1) MTL does not support a complete implementation of Pascal, and does not
do as good a job at error recovery as the Pascal compiler. However this

would not account for such a large discrepency.

(2) The Pascal compiler is written in Pascal but MTL is written in BLISS-
32, and the BLISS-32 compiler produces shorter code than the Pascal

compiler.

(3) MTL uses a table driven LL(1) parser, but the Pascal compiler is a
recursive descent compiler. This requires a lot of machine code compared

to the compactly represented LL(1) table in MTL's {PARSER}.
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5.2 The MTL Run-time System

5.2.1 Goals

Because MTL was to be used for speed comparisons with conventional
languages the MTL run-time system had to impose minimal cpu-time overheads

on the execution of programs.

Where possible standard VMS run-time support routines were to be
used. Because MTL is an extension of Pascal most of the Pascal support
routines were available, particularly for the support of I/0. This helped
keep the size of the MTL-specific run-time system down to about 500 machine

instructions, coded in assembler.

It was desirable that the normal VAX/VMS debugging tools, especially
the VAX/VMS Symbolic Debugger, were available for wuse 1in debugging
programs. This is only partially attainable because there is no document
available to the author on the format of the data that is transferred from
the compiler to the Debugger, hence a lot of the information the the

manufacturer's compilers transfer is not transferred by MTL.

5.2.2 An Overview of the Run-time System and Environment

The MTL run-time system provides support for the multi-tasking and
the message passing aspects of MTIL. The normal Pascal run-time system is
used to do I/0. Routines written in languages other than MTL can be called
because MTL generates the standard VMS calling mechanism for procedure
calls. However the main program must 1itself be written in MTL because
initialization of some data structures is currently carried out as part of

the main program.

The primary problem facing an implementor of a concurrent block-
structured language on VMS is where to place the activation records (in VMS
jargon these are called CALL FRAMES) of the routines. There are three

basic alternatives.

(1) the various tasks are run as different VMS processes, and hence
have their own address spaces. This makes interactive debugging difficult
because VMS does not have any convenient way of managing multiple processes
simultaneously. The processes, which may number thousands, would consume
huge amounts of critical system resources (eg. such as the nonpaged-pool).

VMS is very slow at creating such processes and this would impact their use
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in very dynamic configurations.

(2) the stacks for the different tasks are placed in widely
separated areas of the process address  space. This is viable
provided there is operating system support, such as stack 1limit
registers. The discussion in 3.2.1.1 explains why this option was not

used under VMS Version 2.

(3) some form of heap is maintained with the activation records
spread through it 1in a tree structure. Since the only other two
alternatives were unsuitable this one had to be wused. The disadvantages

with this approach are

i. the costs of copying CALL FRAMES from the one true stack (where
they are placed by the CALL instructions) into the heap, and that of
copying it back to the stack where the RETURN instruction expects it.

ii. because the call frames are not on the stack, but 1linked
together in the heap, Debugger and Traceback utilities are not capable of
providing a display of the dynamic scope. (The utilities should therefore
be generalised to cope with call frames in other locations than the stack.
Implementing such modifications to VMS were beyond the scope of this

thesis.)

iii. also because the call frames are not on the stack the VMS
condition handling mechanism c¢an not be used. This 1is a serious
disadvantage for the language, and one that seems impossible to avoid given
the current behaviour of VMS. Condition handling is not discussed further
in this thesis, although it is an issue that implementors of Ada under

VAX/VMS are going to need to address.

As appendix C shows, MTL does badly in comparison with the
conventional stack-based CALL on the VAX-11 because of the costs mentioned
in (i). Several steps can be taken to alleviate the problem. A relatively
simple optimization for the compiler would be to detect routines that can
not be interrupted by rescheduling and run these on the stack, never
copying the CALL FRAME into the heap. In practise this is what happens
with all of the routines that are not written in MTL. For routines that
are internal to a module (so that the compiler knows all instances of it is
called) a different call mechanism could be used. A simple mechanism would

be to use the JSB instruction to call the routine so that only the return
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address is placed on the stack. The called routine could then allocate the
heap space and build the frame directly in the heap. For all routines the
return mechanism could be sped up by emulating the RET instruction based on
the heap, rather than .copying the heap item back to the stack as is
currently done. It is estimated that a 2- or 3-fold improvement in

procedure calling rates could be achieved in this way.

Recent developments in computer architecture, for example the Mesa
Processor[J082,LA82], show that heap based procedure calling mechanisms can
be implemented in hardware. There is no reason why such machines should

run any slower than others using conventional stack architecture.

If VMS did support multiple USERMODE stacks then the difference in
procedure calling could be made to disappear completely by allocating a
stack per task. Most conventional operating systems would already meet
this requirement because they do not have the restrictions that the VMS

software imposes on the usage of the USERMODE stack.

5.2.3 Heap Management

It is immediately apparent that the allocation and deallocation of
items from the heap is going to significantly affect the performance of
procedure calling. As we shall see in 5.2.5 it also significantly impacts

on the speed of message passing.

In the past memory has been relatively expensive and a lot of
research has been done in the area of heap management. With the advent of
relatively cheap memory and large virtual address spaces many of the
original constraints are no longer binding. Instead it would appear that
the most important criteria for a heap management scheme is cpu-time and
page-fault behaviour, not the careful usage of every available portion of
memory. This being the case any cpu-time spent in coalescing the heap is a

waste of resources, unless fragmentation is a serious problem,

MTL uses an extremely simple heap management system. An array of
gueue headers, one queue for each size of object between 8 and 512 bytes
in size. No object may be less than 8 bytes. When an object of a larger
size than this is to be allocated, or the queue of free objects of the
correct size is empty, the standard VMS heap management utility is used.
However if the queue is not empty a single REMQUE instruction removes

the first free object. When an object is deallocated it is placed in
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the free queue for the appropriate size unless it is too large, in which
case it is deallocated again wusing the VMS heap manager. Experiments with
the VAX-11 Pascal 1.3 implementation have shown a similar mechanism to be
able to reduce page-fahlts in pathological situations by factors in excess
of 100 because the list of free space 1is not being searched in futile

attempts to coalesce the items with a neighboring free area.

In this way the queues effectively cache the heap. The queues of
objects tend to grow to an optimal size, and allocations are satisfied via
very short instruction sequences. Currently the following code would be
executed as the result of a call to the Pascal predeclared procedure

NEW(pointer).

MOVL S”#8,R0 ; RO := the size of the object.
MOVAL  B"-12(R13),R1 ; R1 the address of the pointer.
JSB MTL.NEW R1 ; Jump-subroutine to the MTL Heap manager.

MTL.NEW R1::

MOVQ RO,-(SP) ; Save the two registers,
CMPL RO, #SHORT HEAP ITEM i See if short enough for our
BGEQ 108 ; super-fast heap.
MOVAQ HEAR_Q_HEADERS[RO],RO ; Get pointer to queue header.
REMQUE @(RO),(R1) ; Try to unlink item from queue,
BVS 10% ; Br if queue was empty.

5%: ADDL2 #8,SP ; Pop the registers.
RSB ; Return from subroutine.

If this sequence is not fast enough, the size comparison could easily
be performed by the compiler, and the REMQUE/BVS pair of instructions
inserted as in-line code. However this sequence was adequate for MTL.
Deallocation follows a similar path. Appendix D compares this very simple

strategy with that of VAX-11 Pascal 1.3.

There are two non-obvious advantages to this mechanism. Firstly the
size of each queue tends to grow until they are just enough to cover peak
demands. Secondly traditional heap management schemes that do coalescing
during deallocation are susceptible to poor cpu-time performance due to
strange orders of deallocation. Such behaviour can be expected in a
message passing system. The reader is invited to try out the following

example on an available Pascal system.
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Program Heap(output);
type ptr = "integer;
var i : integer; a : array[1..1000] of ptr; start : integer;

begin

for i := 1 to 1000 do new(ali]);

start := clock;

for i := 1 to 500 do dispose(al2¥i-1]);

for i := 1 to 500 do dispose(al[2%*i]):

writeln(clock-start:1); {COMPARE THIS FIGURE}
for i := 1 to 1000 do new(al[il]);

start := clock;

for i := 1 to 500 do dispose(alil);

for i := 1 to 500 do dispose(ali+500]);

writeln(clock-start:1); {AND THIS FIGURE}
end.

5.2.4 The Multi-~Tasking Subsystem

Multi-tasking 1is accomplished by context switching the single
processor between the currently active tasks, thus 1is only pseudo-
concurrency. It is implemented by saving the entire context of one task in
a task control block and loading the context out of another block. The
only aspects of the machine state that must be saved in this way are the 16
registers. All other aspects of the task are kept either in the TCB (task

control block) or are in the activation records in the heap.

Each task can be in one of a variety of states. Each 1is discussed
in turn below, in the order that they tend to cycle through. For each
state there is a queue of tasks, and each task control block records which
queue the task is currently in. This is very similar to the manner in
which the VMS scheduler maintains information about processes, and indeed

the design of VMS did suggest the design of the MTL scheduler,

Initially all TCB's are in the IDLE queue. There are finitely many
TCB's and they are stored in an array. During the execution of a
Create_Statement the Task is called as a normal function. The task copies
the parameters (which may only be passed-by-value) into local variables in
the activation record and then calls the MTL run-time routine MTL.FORK.
FORK allocates a TCB from the IDLE queue, fills in the context, and places
the TCB at the end of the COMPUTABLE queue. It then emulates a return back
to the creator of the task, returning the Task Identifier (TID) of the

created task.
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When a task releases the cpu the task at the head of the
COMPUTABLE queue is removed and placed into the CURRENT queue (which only
ever has one entry). If the COMPUTABLE queue is empty, and no tasks are
waiting for events flags (see 5.2.6) to happen the program is
deadlocked and is therefore aborted. If tasks are waiting for event
flags the whole VMS process is paused until one of the event flags being

waited for becomes set.

The current task executes as long as it has something to do.
Eventually it calls MTL.SCHEDULE either indirectly as a result of a
message operation or wait-for-event-flag operation, or directly as a
Reschedule Statement. There are a variety of possible resulting states for

the task.

The MESSAGE state is used when a task is either trying to send or
receive a message but is temporarily blocked. The MESSAGE state is only
used by the message passing subsystem, and the task is only put into this
state by that subsytem, and is removed from it by that subsystem when the

task is no longer blocked.

A task is placed in the SLEEP state by the Sleep procedure(see
4.4,4), The AWAKEN procedure removes tasks from this state and returns them

to the COMPUTABLE queue.

The WAITING FOR_EVENT queue is used for tasks waiting on an event
flag. The task is returned to the COMPUTABLE queue some time after the

event flag becomes set.

The TRYING TO RETURN queue is for routines that are trying to return
to their callers, but can not do so because there are still sub-tasks
capable of referencing variables declared by this routine, During task
creation the task increments the reference count in the activation
record belonging to 1its static parent. It decrements this count again
when it dies. The parent routine is therefore unable to exit while
this reference count is positive, and hence the task's entire dynamic
scope remains accessible throughout its lifetime. When decrementing a
reference count yields a result of zero, all tasks in the
TRYING TO RETURN queue are placed at the end of the COMPUTABLE queue.
However they all check their reference count again and any that were not

affected by this change get returned to the TRYING TO RETURN queue.
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Appendix E gives performance figures for MTL context switching.

5.2.5 The Message Passing Subsystem

Send statements and Receive statements specify both message and
buffer variables. The MTL run-time system provides Monitor-style
routines that manipulate these to perform the message transmission and
reception. Because these routines are critical to the performance of
message passing they are written in assembler, however the techniques of
Habermann[HA72] can be applied to proving their correctness, as we will

show.

The memory layout of a buffer type is

BUFFER_TYPE =

RECORD e e e +
FREE + INTEGER; ! count of free slots in buffer | 4 bytes
o —— e e e +
RECEIVERS: QUEUE; ! queue header for queue of i 8 bytes
' blocked receiver tasks. i
o ——————————— e +
SENDERS : QUEUE; | queue header for queue of i 8 bytes
' blocked sender tasks. i
e —————— e e —
MESSAGES : QUEUE; | queue header for queue of i 8 bytes
g messages in buffer. i
END; e — +
The memory layout of a message type is
MESSAGE TYPE =
RECORD B e +
MESSAGES : QUEUE; | queue entry for message queue | 8 bytes
| (forward and backward link) |
o e +
REST : RECORD i i 0 or more
d type-specific fields. i bytes
END; l i
END; e ——— - +
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Using these record structures, the algorithms for Send and Receive

can be written...

PROCEDURE MTL SEND(VAR BUF : BUFFER_TYPE; VAR MSG : MESSAGE TYPE);
BEGIN
if not queue empty(buf.senders) then wait(buf.senders,TAIL OF QUEUE);
if buf.free <= 0 then wait(buf.senders,HEAD OF QUEUE):
buf.free := buf.free-1; o
insert in queue(msg.messages,buf.messages);
awaken first(buf.receivers);
if buf.free > O then awaken first(buf.senders);
END;

PROCEDURE MTL_RECEIVE(VAR BUF : BUFFER TYPE; VAR MSG : MESSAGE TYPE);
BEGIN
if not queue empty(buf.receivers) then
wait(buf.receivers,TAIL OF QUEUE);
buf.free :z buf.free+1;
if queue empty(buf.messages) then
begin
awaken first(buf.senders);
wait(buf.receivers,HEAD OF QUEUE);
end;
remove from queue(msg.messages,buf.messages);
awaken first(buf.receivers);
if buf.free > 0 then awaken first(buf.senders);
END;
These algorithms are a modified version of those proven correct by
Habermann[HA72]. The modifications (which do not affect the correctness

proof) are...

(1) SIGNAL and WAIT are implemented via a queue of tasks, with a

Wait(queue,location) and an Awaken(queue).

(2) Rather than waking a Sending task by the first Wait only to fall
into the second, writers are only awakened when there is a free slot in the

buffer for the message to be placed in.

(3) The free:=free+1, which corresponds to Habermann's SIGNAL(FRAME)
is done before the message is removed. Since MTL does not do pre-emptive

scheduling this is possible because either

i. the message queue will be empty in which case the free:=free+1 allows
for the case when the buffer size is set to zero and the presence of the

receiver has increased the size of the buffer, or

57



ii. the message queue will be non-empty in which case the removal of the

entry and the incrementing of free are commutative.

(4) For RECEIVE the final "awaken(reader); if free > 0 ..." are the
opposite way round to Habermann. This 1is purely because they are
commutative (since MTL does not do pre-emptive scheduling) and this gives
both routines the same ending, allowing them to share the same

machine code.

Appendix F gives message passing rates for MTL wunder various
circumstances, while appendix B shows the importance of supporting message
passing 1in the 1language rather than having the application program

implement it via some other technique.

The 0Odd-Word-Reversal Problem (Dijkstral[DI68]) was coded as a
procedure calling and then as a message passing algorithm and cpu-times
compared (appendix G). Several comments need be made about the results,
which indicated that message passing could be of a similar speed to
procedure calling. The MTL heap was apparently still too slow to keep up
with procedure calling. By pre-allocating all the message buffers the cpu-
times can be made almost equal. This pre-allocation is?%n artificial
trick, but corresponds to making the improvements mentioned in 5.2.3 to the

MTL heap allocation/deallocation mechanism.

5.2.6 The I/0 Subsystem

Pascal-like I/0 1is done using the VAX-11 Pascal runtime library
routines, although the MTL compiler does not support all the standard
Pascal I/0. Because of this, any input by a task holds up the entire VMS
process while the operation is performed so no other task may execute while
the input is being done. A similar situation holds for tasks doing output.
In practice this usually only matters for terminals, because the VMS Record
Management System does read-ahead and write-behind for disk files. MTL is
thus incapable of doing asynchronous I1/0 on separate terminals using the
READ(LN) and WRITE(LN) statements (however it can be done using calls to
either RMS or $QIOW (see 3.2.4)).

The VMS I/0 System Services are capable of operating asynchronously
and notifying the process when the I/0 is completed. This notification is
carried out in one of two ways, either by the setting of an event flag, or

by the delivery of an AST (Asynchronous System Trap - see section 3.2.3 for
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details).

MTL provides a run-time support routine that suspends the current
task until an event flag is set. The event flag must have been obtained
from MTL's event flag resource manager which is compatible with the VMS
event flag resource manager, but only uses some of the possible event flags
(namely 1-23, the omitted ones being 0 and 32-63. Flags 24-31 are reserved
for VMS).

The following brief program illustrates the usage of MTL routines for

managing an event flag.

Program EF DEMO;

Type efn = integer;

Function MTL GET EF : efn; extern;

Procedure MTL FREE EF(%immed ef : efn); extern;
Procedure MTL WAIT EF(%immed ef : efn); extern;
Procedure SYS$SETEF (%immed ef : efn); extern;
var ef . efn;

begin

ef := MTL GET EF; {Allocate an event flag}
sys$setef(ef); {Set it}

MTL WAIT EF(ef); {Wait for it}

MTL FREE EF(ef); {Free it}

end. -

There is a high cpu-time cost involved in having the scheduler check
whether the event flags that tasks are waiting on are set, and VMS does not
provide a mechanism for having an AST delivered when the flag becomes set.
Rather than incur this expense the current implementation checks the event
flag on the call to MTL WAIT EF and if it is set returns immediately. If
it is not set then the task is entered into the WAITING FOR_EVENT queue,
and when no other tasks are capable of execution the whole process is
paused until one of the event flags being waited on becomes set. At that
time all tasks whose event flags have become set are returned to the

COMPUTABLE queue.

5.2.7 A Problem with Asynchronous System Traps

The alternative method that VMS uses to notify a process of I/0
completion (and for other purposes) is the AST (see section 3.2.3). VMS
provides a System Service for disabling AST's, and this is typically used
to provide a critical section. For example if both the main algorithm and

an AST-driven routine (for example an interval-timer) access the same data
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base, by disabling AST's the main algorithm can temporarily gain exclusive

access to the data base.

This presents a (minor?) problem with multi-tasking, because a task
that wishes to block its own AST's also blocks all those for the other
tasks. Furthermore it is quite 1likely that the AST will get delivered
during the time when another task, other than the one that requested it, is

current.

It is unclear without experience whether either of these difficulties
will give trouble in practice. It was judged that the solution for this
problem was too (1) complex, (2) cpu-expensive, and (3) VMS specific, to be
fully explored in this thesis. It would appear that any solution would

require modifications to VMS itself.

5.2.8 Summary

An implementation of message passing that is almost as efficient as
proceduring calling was implemented under VAX/VMS version 2, Minor
enhancements to both VMS, the MTL compiler, and the MTL runtime system
would completely alleviate the added over-head of procedure calling, while
the generation of inline code for NEW and DISPOSE would make the costs of

message passing as efficient as procedure calling.

Increased Hardware and Software support for heap management and for
multi-tasking inside a single address space (in particular instructions for
loading and saving the complete register set) would eliminate completely
any differences in efficiency between implementations of MTL-like languages

and those of conventional block structured languages.

The interfacing of the multi-tasking with the asynchronous system
services presents the greatest software difficulty in the implementation,
and some of the problems were not solvable without modifications to the VMS

operating system.
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Chapter 6
EDITING AS A MESSAGE PASSING AND MULTI-TASKING PROBLEM

6.1 The Application of Concurrency to Editing

The use of a message passing and multi-tasking concepts in the design
and implemention of an interactive text editor was found to yield new
insights into the nature of the editing process as well as giving a deeper
awareness of strengths and weakness of the particular implementation

language (MTL).

Text editors stress both the character-manipulation and the sequence
control aspects of a language to the limit. A powerful editor is itself an
implementation of a programming language with the programs being
interpreted in some form to manipulate the text and other aspects of the
user's environment. 1Inside the editor boundary conditions are rife: lines
become too long, heaps overflow, searches fail to find their target. The
user can often request the abort of the current command. Yet in response
to any of these occurrences the situation must be neatly tidied up and
control returned to the user. The implementation of these 'neat tidy-ups'
is a difficult problem in an editor written in a conventional language and

presents new and interesting problems in a concurrent implementation.

Using a language that supports concurrency to implement an editor has
several potential advantages. If the rest of the operating system is
written in a concurrent language the editor will be better able to
interface with it. For example if the operating system defines I1I/0 in terms
of message passing then the implementation will be easier if the editor
uses the same concept. This will enable the overlapping of the reading and
writing of data files, both to the terminal and to disk files, to be

overlapped with other operations.

This overlapping of the reading of a file and the execution of
commands entered by a user has proven advantageous in practice. The
University of Adelaide has a utility for interactively examining the
contents of a disk file from a VDU. These files are frequently hundreds or
thousands of blocks long yet the delay involved in reading of these files
is hidden from the user by Jjust such an overlap of disk I/0O and the
execution of commands supplied via the keyboard. The user is not aware of
exactly how much of the file has been read because the first few lines
appear as soon as they are available and commands entered from the keyboard

are executed as soon as it is possible to do so.
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A concurrent implementation 1language would also enable a multi-
processor implementation, with a portion of the editing being done in the
user's terminal or work-station, taking a considerable load of the main
CPU. With the arrival of =steadily cheaper personal computers and

networking this may soon be a totally obsolete 'advantage'.

In most conventional computing systems the power of the editor is
unavailable whenever the user is entering input to any other progranm,
indeed in most editors this power can not even be used to correct the
commands being entered. The only way to solve this problem is to make the
editor the only interface between the user and the rest of the system. To
enable the editor to completely control the VDU all terminal I/0 would have
to be directed through it, and this is mostly naturally viewed as a message
passing system. The steady introduction of high-resclution visual display
units also leads to the possibility of having more than one active Task,
with Task using separate areas of the screen for their terminal I/0. The
combined impact of these requirements on the editor is that it should be

implemented in a language that supports message passing and concurrency.

It is natural to propagate the concurrency of the rest of the system
into the user's editing environment. Text editing includes such activities
as sorting, typesetting, and other reformatting of the layout of the
characters. It alsc involves pre- and post- processing of the files (such
as text formatting and control character interpretation, eg underlining),
and the splitting and merging of streams of data. The paradigm of text
editing that we propose supports all these activities in a general and
flexible manner by exploiting message passing and concurrency at the user

environment level,

A primitive version of such an editor was designed using message
passing and multi-tasking but only partially implemented (in MTL). The
deep integration of this editor into VMS was not possible but it was
apparent that a more sophisticated version would be a powerful programmer's
work-bench with such tools as sorting and other reformatting algorithms, an
editor, a compiler, etc., all available as Tasks which could be
instantiated and connected as desired. It was also apparent that MTL would

be capable of fully implementing this work-bench under VAX/VMS.
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6.2 The Basic User Environment

The user's environment is a collection of Tasks which process input
and generate output. Some of these Tasks are Scenes, which are special
Tasks designed to edit text. Other Tasks could be any user program, or

system utility, such as a Clock or a Mail system.

Each Scene contains a two-dimensional array of characters (which may
also be regarded as a list of lines), and has input and output paths.
These paths are used to connect the Scene to other Scenes, to disk files,
and also to any other current Task. The paths are buffers for messages of
lines of text. Any message arriving in the primary input path is
automatically appended to the end of the rest of the text in the Scene,
messages arriving on other paths have to be explicitly read and dealt with.
Scenes provide the multiple editing environments needed in a powerful
editor. They can be purely passive, storing text until it is required
later, or they can be linked together as a series of programmable filters

performing various operations on the text stream, such as formatting it.

Any Scene can be watched on the user's VDU, and several Scenes may be
visible at once, thus allowing the user to monitor the behaviour of any
group of Scenes at any time., This facility is essential, not only for
debugging, but also for monitoring background activities such as Tasks that

run for long periods of time,

Each Scene executes editing commands that it receives via its command
path (note that these commands are actually programs in their own right).
This execution 1is asynchronous, with each Scene executing its current
program then accepting the next from its command path for execution. By
connecting the output path of one Scene with the input path of another the
application of reformatting algorithms to data can be done in parallel as

stages in a pipeline.

A typical use of this facility would be three Scenes set up as a pre-
processor, a Scene under the moment-by-moment control of the user, and a
post-processor. If this configuration was being used to edit a Pascal
program the post-processor could be directing its output to a disk file,
and sending a duplicate of it directly to a Task executing the Pascal
compiler, A listing of the errors detected by the compiler would be

directed to another visible Scene to aid the user in their correction.
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6.2.1 File Sub-system

Because the Scenes are not heirachically organised it would not be
wise to equivalence them to files. Instead a file can be attached to an
input path of a Scene, in which case its contents are appended into the
Scene, or it can be attached to an output path, in which case all outputs

from the Scene are appended to the file.

As an implementation detail this would require the instantiation of a
Task to perform the actual I/0 and to send or receive the messages via the
appropriate paths. However this is a consistent way of viewing all Tasks,
such as compilers, the editor, etc., and thus is a unifying factor rather

than an awkward implementation issue.

6.2.2 Scene Programs

Since Scenes are used to perform considerably more powerful functions
than just interactive editing a more sophisticated editing language would
be required than is typical for text editors. The full power of a language
such as Pascall[ISO] or SNOBOLY[GR68] would be desirable, with mechanisms

available for interfacing the language directly to a Scene.

The instances of the Scene-programs are self-contained rather than
relying on a particular Scene to provide storage for their variables, etc.,
but they only execute in the context of a Scene. This enables an instance
to move from one Scene to another, carrying with it the values of all
variables etc., but not the Scene's attributes of text and paths (although
it can take references to the paths to be used for later directing input to

or from the Scene).

This ability to change Scenes allows programs to use networks of
Scenes to perform complex roles. For example two Scenes could be set
up side-by-side with a merging program shifting from one to the other

outputing lines to a common destination in a particular order.

Another use of this ability would be a program that searches through
all the Scenes for occurrences of a particular textual pattern. Because
this program does not modify any of the Scenes attributes it can be used
"on-the-fly" without regard to the state of the Scenes (although it may get
blocked by a Scene that is executing a program, this would be a situation

where a transmit-with-timeout feature would be desirable).
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6.2.3 VDU Sub-system, the Human Interface

Although the user is capable of seeing many Scenes simultaneocusly via
the screen, all the inputs from the keyboard are directed to a single
selected Scene. The user can select a new Scene at any time as the one to

which the input is to be directed.

The keystrokes entered by the user are compiled into programs and
directed to the selected Scene's command buffer for it to execute.
Notice that these are presented to the Scene as a series of programs to be
executed the same as any other program that is sent along its command path.
This means that there is no need to wait for the command to finish

execution before selecting a different Scene and directing commands to it.

The normal mode of compiling the keystrokes is to assume the
characters typed are to be overtyped (or inserted depending on a mode-
switch) into the Scene and the appropriate programs are produced to do
this. Control characters, such as TAB, and Escape sequences, and other

single keystroke commands are also compiled into the appropriate programs.

However if a complex command is to be entered the current selection
is remembered and the Scene "COMMAND" is selected. Editing carries on as
before but with this new Scene being the focus of attention. When the
command is fully entered a simple directive is entered that means
"Compile the completed command, direct it to the remembered Scene for
execution, and make that Scene the selected one again". In this way the
full power of the Editor is available for correcting the complex commands

being entered.

Because the remembered Scene is still visible while entering the
complex command the user need not retain a mental image of the text that
the command is to modify. This should considerably reduce the number of
incorrect complex commands entered since the command may be very dependent

on the exact details of the text.

Another Scene, also usually left visible, is called "MESSAGES". All
messages generated by the editor to the user are simply directed to the
primary input path of this Scene, and hence become visible to the user. On
a fully integrated system all messages, including those from other users,

would be treated in this manner.
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This design of the user interface does not insist that there is only
one VDU in use. By connecting several VDU's into the system several user's
could be using it simultaneously. This would allow the editing equivalent
of a conference, with the minutes being automatically maintained. Either
every user would have the same Scene selected, or alternatively they would

each have different Scene selected but all the Scenes visible.

The introduction of several people into the system would then lead to
the need for controlling the degree of interaction between them, purely to
stop mistakes from badly affecting other users. Such constraints could

also protect parts of one's own area from accidental damage.

6.2.4 Subsuming "the system"

The Scene model of editing provides a consistent framework for user
interaction, concurrent activities, and all standard wutilities. All
terminal input uses the full power of the editor, and any input or output
can be directed to or from any other output or input respectively. The
power of the standard utilities (such as SORT) is available in the editor,

and these utilities are fully interfaced with each other.

The Scene model is thus a time-sharing operating system with a fully
integrated user environment rather than as Jjust an editor, with the
traditional concept of an editor disappearing into a much more general
concept. This desirable goal is fully realised by the general application
of message passing and concurrency to design, thus demonstrating the power

of these concepts.

6.3 Implementation Issues

Only the basis of the Scene editor was actually implemented due to
lack of time, the full implementation would be an extremely large project.
It had the creation of Scenes and the execution of simple Scene programs
entered via the keyboard, as well as the multiple visible Scenes, but
neither the ability to execute Tasks other than Scenes nor the multi-

terminal support.
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6.3.1 Interactive I1/0 management

One serious problem with this design of an editor on a multi-user
system is the large amount of cpu overhead associated with each keystroke.
This problem can largely be controlled, as was done in the Ludwig Screen
Editor, by making the Scene that the user is currently interacting with
aware of its involvement with the user., When the user is overtyping text
the truly asynchronous version would generate a new program for each
character typed and place it on the selected Scene's command path. 1In
practise it is much cheaper to have the Scene to accept the text from the
terminal, and use the VMS operating system to do the echoing of the

characters.

By a similar mechanism other frequently repeated keystrokes could be
handled cheaply. Statisties gathered for Ludwig give the following

distribution of commands, after overtyping has been ignored.

CARRIAGE RETURN 24%
CURSOR UP 14%
CURSOR LEFT 13%
CURSOR RIGHT 13%
CURSOR DOWN 12%
Total T6%

These figures are badly biased because repeated usage of any of these
commands is only counted as one. For example if the user types the
LINEFEED three times, only 1 would be added to the count of CURSOR DOWN, so
we do not claim these figures reflect their true proportion of usage, but
they do show quite clearly the gains to be made by optimizing the behaviour

of a select subset of the commands.

6.3.2 Human Limitations

Humans may find the asynchrony of such an editor confusing.
Unfortunately the implementation was not complete enough to fully
investigate this but several problems did appear. The most severe problem
encountered was associating the error messages with the event that caused

them. Messages are generated by syntax errors, as well as other execution
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time failures, and a clear mechanism for linking the error with the cause
is required. This problem is exactly the same one as with the debugging of

concurrent algorithms in general.

The other problem, which occurs with conventional screen editors but
is exaggerated by concurrent editing, is the need to view large quantities
of text simultaneously. The terminal the editor was implemented on was
only 24 lines high by 80 characters wide. It would be preferable to have a
terminal that is 132 characters wide by at least 70 lines high to allow the
display of adequately many Scenes simultaneously. Such terminals are now

becoming available.

6.3.3 Termination

Many editors provide a facility for building and executing complex
instructions from simple ones, and most provide an ABORT mechanism whereby,
by typing a key, the editor aborts the execution of the command and returns

control to the user.

Inside the Scene editor, with its many asynchronous activities, it is
not obvious which Scene(s) the user wants aborted. However since the
behaviour of an ABORT request can only be well-defined at those points
where a program is interacting with the user in a dialogue, the ABORT

statement can be construed as aborting the selected Scene's program.

The other point where ABORT is used is for run-away programs. In
this case it is reasonable that the user should specify which Scene or

which program (since programs can move between Scenes) is to be aborted.

Because the activities truly are asynchronous there is no problem in
communicating with the wuser, unless due to the lack of pre-emptive
scheduling in MTL. This lack can be avoided by automatically rescheduling

at the end of each (n-th) step in the execution of a Scene-program.

6.3.4 Correctness

The correctness of any powerful editor is difficult to establish
because of the wide variety of boundary conditions. A successful approach
seems to be to have a list of assertions about the editor's data structure
and to regard this as a list of transformation-invariants, ie. assertions
that must be true before and after various operations are performed on the

data structure. By writing a routine that evaluates these assertions, and
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calling this routine from various points in the code, errors can be very
quickly located. The extensive usage of subrange checking in the Pascal

implementation of Ludwig demonstrates this point very well.

6.3.5 Error Management

Because there are so many boundary conditions in an editor, it is a
truism that some algorithmic errors will not manifest themself even after
fairly exhaustive tests. When these errors finally do occur it is
undesirable behaviour for the editor to crash, losing all the user's
current session's work and the environment that has been established.
Ludwig solves this by providing a VMS condition handler which merely forces
the current routine to return to its caller returning a value of FALSE or
NIL. By being aware of this possibility throughout the whole source code,
the implementors were able to design their code to minimise the impact of
the error. Errors that could not be contained cause Ludwig to abort and to
write out the contents of the various Frames into their respective output
files before the editor is completely exited. These measures have proven
adequate, and it is extremely rare for the editor to abort, even after a

fairly severe internal corruption.

Unfortunately condition handling is not implementable in MTL (see

section 5.2.2) because of restrictions caused by VAX/VMS version 2.

It would appear that in an asynchronous environment the first step
may be possible, but the second (the winding out of the various frames) may
not be adequate because many Scenes will contain useful text, but will not
have output files. A better approach would be to write out all the various
Scenes to a dump file, and let the user pick his way through the ruins

recovering those portions he needs,

Other approaches such as Jjournalling (writing each command to a
journal file as it is executed) and checkpointing (writing the current
state to a file at regular intervals) may be tried. Ludwig experience
indicates that journalling is unable to cope with editors that have ABORT
facilities and the ability to build and execute programs, because the
combination of the two implies that journalling must be performed at a
fairly low level in the editor. This implies every command executed must

be journalled which causes the journal to grow extremely large.
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Checkpointing appears to be adequate. Since the Scene editor has a
more complex user appearance than Ludwig, and since it is envisaged that
the user would rarely exit from the editor, it would be a wise precaution
to checkpoint regularly. This would protect the user from himself, flaws

in the editor, and hardware failures in the computing system.

The implementation of checkpointing in a completely asynchronous
editor presents several difficulties. 1In MTL the contents of the message
buffers are not accessible to any Task without reading them, a situation
directly analogous to messages currently in transmission on a network.
This makes it impossible to checkpoint all possible states of the Scene
editor. Any code to flush these buffers would be spread throughout the
editor in a clumsy and awkward to maintain manner. The use of a central
registry of all buffers, Scenes etc. may make it possible to keep track of
all the data structures in a manner that allows a static picture to be
taken of them, but the asynchronous interface between the editor and VMS
could not be treated in this manner. It would be necessary to wait for

this interface to enter a quiescent state.

6.4 Language Demands

The implementation of an editor places severe demands on the
character manipulation facilities of a language, an area where Pascal,
hence MTL, is particularly poor. It also stresses the I/0 facilities,
particularly those related to terminals, because of peculiar needs. Input
is often "character-by-character : not echoed", or alternatively "up to n
characters but stop before the first occurrence of a character in this
set". Very often these requirements can not be met by the language, and
there is a need to call routines written in some other system-programming-
oriented language. Sophisticated editors tend to be large programs and the

need for modular compilation is a natural consequence.

Editing does not make many unusual demands on the message passing or
concurrency aspects of the language. If the user can see the activities of
several pseudo-concurrent tasks the behaviour of the scheduler may become
quite apparent. "Fair" scheduling is a difficult thing to define, but it
will be very obvious to the user if a particular (visible) task is being

starved or overfeed resources.
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The source code of the Scene editor does not clearly indicate the
expected flow of messages. Instead the code for establishing the various
links and transmitting the messages tends to be scattered throughout the
text of the various modules. This partly invalidates the self-documenting
nature of 1languages such as Pascal. The work of Barter[BA82] on
communication protocols is an attempt to clarify in the source code this

aspect of the algorithm.

With multiple tasks capable of accessing the same heap item (which
may or may not be a desirable feature of MTL) leads to problems in
deallocation of these items. A solution to this may be some form of
garbage collection, provided it does not have a severe impact on cpu
utilisation. Some architectures, such as the 1APX-432[P082], have
considerable hardware support for this facility, and some languages, such
as Ada and Lisp, seem to demand it. With large physical and virtual address
spaces a steady build up of garbage in the address space may not be
important. A reference-count mechanism may be an adequate comprise, as it
only presents problems when there are loops in the data structure, which is

fairly unusual.

6.5 Summary

A concurrent view of editing has been extended to a system that
encompasses all the interaction between the human and the machine(s). This
extension allows complete editing of all visible data, and the easy
manipulation of data through a variety of filtering tasks, such as sorting

algorithms and compilers.

Such systems will provide a more flexible, consistent, and friendly
environment for users., Message passing is a viable and efficient basis for

their implementation.
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Chapter 7
RESULTS AND CONCLUSIONS

7.1 Language Implementation

7.1.1 The Run-time Heap

The performance of the run-time heap is the single most crucial
feature in an efficient implementation of MTL-like 1languages. A simple
design, as described in section 5.2.3, performs extremely well and imposes
almost minimal overhead. The use of inline code rather than procedure
calls for the allocation and deallocation of heap items is possible, with
between one and three instructions required to allocate the object
(depending on whether the hardware generates a trap when an attempt is made
to remove an item from an empty list or if it sets the condition codes),
and one or two instructions required to place the object back on the

appropriate free list.

If the heap is managed in this fashion the cpu-time involved in the
allocation and deallocation of storage can be ignored when comparing the
performance of heap based and stack based systems, since it is of the same

order of magnitude as stack maintenance.

7.1.2 Procedures and Functions

The design of the routine calling mechanism will depend on the
operating system and machine architecture that the implementation is aimed
at. Even in the worst case, such as the current MTL implementation, when
the activation records have to be stored in a heap, the calls are only
about nine times slower than the stack based mechanism, as is shown in
APPENDIX C. Furthermore there will be fewer calls because of the use of

message passing.

An optimising compiler that does global flow analysis is able to
significantly reduce the number of calls that require the use of the heap
PROVIDED that pre-emptive scheduling is not implemented, and use of
specialised instructions can make procedure calls that use a heap to store

the activation records just as efficient as those that use a stack.

Thus the apparent overheads in the MTL implementation of procedure
calls is not a consequence of the multi-tasking per se, but rather a
consequence of some limitations in the compiler and in the VAX-11

architecture.
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7.1.3 The Performance of Message Passing

The VAX-11 architecture is capable of supporting message passing at
speeds comparable to the CALL instructions but not at rates comparable to
the JSB (jump-to-subroutine, which pushes the current program counter onto
the stack and then jumps to the subroutine) instructions. This is to be
expected with any conventional architecture because the JSB instruction
represents the minimum amount of information that need be preserved.
Hardware support for message passing would change this situation. Such
hardware would completely implement the MTL buffer as a single instruction.
Even faster JSB-style instructions where the return address is placed into
a register rather than memory will probably remain the fastest way of
calling trivial routines (such as random number generators). Of course

nothing will beat in-line code for sheer speed!

Message passing has the following potential advantages, some of
which are only realised when message passing is implemented with hardware

support...

(1) No processor context (such as registers, etc) need be saved.
Procedure calling using the CALL instructions involves writing between 20
and 60 bytes of memory from registers during the CALL, and reading this
back into the registers for the RETURN.

(2) Parameters to a procedure are passed by two basic mechanisms,
either pass-by-reference or pass-by-local-copy. In the pass-by-local-copy
mechanism, such as Pascal requires, the calling routine provides a
reference to the value of the parameter and the called routine copies this
value into a 1local variable. If this value 1is passed on to another
(nested) routine it is copied again. This repeated copying of values can
be inefficient if the value requires a large amount of storage. Message
passing is basically the passing-by-reference of a series of heap items and
so it is efficient to pass around large structures as messages (the Sender

10§Xes access to the message and the Receiver gains it).

The use of broadcasted messages can impact on this performance by
requiring copies to be taken, but it appears that this is not the usual
usage of messages. Where efficient broadcasting of large structures is
required it may be possible to broadcast a pointer to a heap item, and by

use of a reference count mechanism have this item destroyed when the last
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access is released. All the Receivers would have to be aware that they

were sharing this heap item with other tasks.

Implementations of message passing on distributed systems are not
able to get the full advantage of pass-by-reference (unless the systems
have a shared memory) but this is another advantage. Since the sending
task does not have access to the message after the call to the SEND
procedure it does not need to be blocked until the message has been
transmitted on the communication medium. If the communication medium was
slow and if the sender was able to access the message after the SEND it
would be necessary to either delay the sender or copy the message before

transmission.

(3) In a three-phase operation (eg. read/massage/write) there would
be three procedure calls but only two message passing operations to

transfer information through the phases.

(4) Tasks tend to have loop-until-finished style behaviours. These
loops cause an increase in code-locality and perhaps in memory access
locality effects, which should 1lead to improved cache and paging

performance during the execution of larger algorithms.

7.1.4 Context Switching

Context switching requires the saving of the current context, usually
just the registers, in a control block and selecting and loading the
context of the next task. As such its performance is very similar to an
expensive procedure call, where all registers must be saved and restored,
but only a few small parameters are passed. The use of asynchronous
message passing significantly reduces the number of context switches
required, but the size of the buffers used to implement the asynchrony need

not exceed 10 items to get most of the enhanced performance.

Context switching in MTL is greatly simplified and sped up by the
fact that all the tasks run inside the same VAX/VMS process. If this were
not so context switching would also require the changing of the virtual-
memory to physical-memory address translation tables and the invalidation

of both the hardware memory caches and address translation caches.
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7.1.5 1/0

I/0 causes Ansuperable difficulties unless the operating system
supports asynchronous I1/0. Many current runtime support systems, such as
that for VAX-11 Pascal 1.3 do not support asynchronous I/0 even though VMS
does. This is unfortunate because it means that such runtime systems can
not be used without sacrificing the overlap of I/0 and computation. 1In
practice only terminal I/0 (and possibly communication over slow media)

cause problems, because disk I/0 is overlapped by VMS anyway.

7.1.6 Shared Variables

The only efficient implementation of any 1language which supports
shared variables is going to require the tasks to have a (partially) shared
address space. This need not prohibit a desirable (but under VM3 not
easily attainable) goal of having each task also have a private address
space for such things as stacks. MTL requires that all the activation
records textually surrounding the task be available to it, precluding such
an implementation. An alternative 1language design may require shared
objects to be in the heap which could then be maintained in the shared
address space while the activation records are maintained in the private

address space.

7.2 Operating System Support

7.2.1 Heap Management

Heap management does not require much operating system support, other
than the careful specification of a standard for all 1language
implementations to follow. The heap should be specified so that simple in-
line code can do all allocations and deallocations, with operating system

support only required when an object of the required size is not available.

T7.2.2 Process Creation and Deletion

Process creation in VAX/VMS could be made considerably faster if an
area of the creator's memory could be designated as shared with the created
process rather than specifying a disk file for the created process to run.
This probably the most radical change to VAX/VMS that was observed during

the researching of this thesis.
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It would appear, however, that the large overheads in maintaining in
separate processes for separate tasks (separate address space, accounting
information, quotas, etc.) make such a use extremely expensive. A
characteristic of programs in message passing systems is that the tasks are
typically small, often only a few hundred machine instructions long, and it

does not seem sensible to waste a complete process for such a small object.

7.2.3 Multiple Address Spaces

If it can be obtained simply and efficiently in the hardware it may
be desireable for a process to be able to switch between several address

spaces very quickly, allowing such implementation possibilities as 7.1.6.

7.2.4 TI/0 and other Asynchronous System Services

A minor annoyance in the design of MTL is the inability to tell VMS
to deliver an AST whenever an event flag is set. Of course all operating
systems should support asynchronous I/0 on all devices for which it is

sensible,

This leads to a general principle for designing operating systems to

allow the full implemention of multi-tasking inside a process

All events that involve waiting should be designed in such a way that
other, unrelated, activities can be done during the delay and that
notification is delivered to the runtime system of the occurrence of the

awaited event.

7.2.5 Impact on Other Utilities

All utilities should be capable of accepting input and generating
output as messages so that they can be joined in arbitrary ways. It should
be possible, for instance, to invoke any compiler or sorting algorithm from
any other utility. In particular it should be possible to edit any text
entered via the keyboard, or any other visible text, using the editor. It
should also be possible to apply any compiler or other utility to any text
being currently edited without having to first write the text onto a disk

file.
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This can be easily done be separating the aspects of a utility
concerned with obtaining input and returning output from those aspects that
process this data. The I/0 portion can then be either replaced with a
different but functionally equivalent (from the utility's point of view)
module that is capable of either being replaced, or of getting data from a
variety of sources in a variety of ways, and likewise returning output in

the form that is most convenient in the particular instance.

7.3 Hardware Support

7.3.1 Heap Management

Special hardware support for heap management is required in the form
of instructions for manipulating queues without the need for software
interlocks. This hardware support is available in the VAX architecture as

the INSQUE and REMQUE instructions.

The absence of preemptive scheduling does not completely remove the
need for these instructions because they are also essential if the language
allows asynchronous interrupts, such as the AST mechanism in VAX/VMS

(section 3.2.3). MTL falls into this category.

7.3.2 Procedure and Function Calling

The use of messages 1is not going to replace procedures and functions
since they are complementary rather than opposing methods of structuring
algorithms. However the introduction of the multi-tasking required does

cause some difficulties with the allocation of activation records.

There are two basic possibilities. If the tasks each have their own
address spaces (either as a private portion of a single address space, or
as separate address spaces) there may be room for each to have its own
stack, There is sufficient room in P1 space under VAX/VMS, as indicated in
section 3.2.1.1, for the tasks to each be allocated an area there.
Alternatively the activation records may be allocated from the heap, as is

the case with the Mesa processor[J082].

If the activation records are to be allocated from the heap several
choices are possible. The location of the Queue Headers for each of the
queues may be known to the hardware with the first few bytes of the called
routine indicating the size of the required activation record, or the

caller could allocate the activation record and then specify it as part of
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the call, or a very simple calling mechanism could be used (such as the JSB
instruction) with the called routine allocating and constructing the

activation record.

This last choice would require no changes to the VAX-11 hardware but
would require changes to the VAX/VMS calling standard which is probably not

acceptable.

The simplest modification would be the addition of a CALLH
instruction to the architecture which was only useable on CALLH'able
routines. This CALLH instruction would get its activation record from the
heap, using a size specified in the Y4 bytes preceding the routine's entry
mask (see the VAX-11 Architecture Handbook[DEC79-A] for details on VAX-11
procedure calling). In order to do this there would need to be a heap

management system available that the hardware could easily access.

7.3.3 Context Switching between Tasks

Tasks in a single address space only require the registers to be
saved and restored to do a context switch. The VAX architecture has
instructions for pushing and popping registers onto/off the stack, but none
for unloading them or loading them from memory. This restriction seems
unnecessary and annoying. A single instruction, that takes as 1its
arguments two areas in memory, for unloading all the registers and then
loading them from the other area, would be useful. Much more useful than

the HALT instruction that takes up an opcode on most architectures!

7.4 Language Design

7.4.1 Message Passing Mechanism

The choice of transmission-by-copy versus transmission-of-original is
one that has often been made on grounds of "its being sent over a wire, so
lets keep the original". For implementations of message passing on a
single processor, or a group of processors with shared memory, transmitting
a pointer to the original is more efficient. It would appear that the
retained message is not usually wanted by the Sender anyway, and if it was

the Sender can take an explicit copy.
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Message passing has several advantages over more conventional

methods of expressing algorithms,

(1) Tasks tend to be written as loop-until-finished constructs with
local variables maintaining the context. Procedures on the other hand need
global variables or parameters to maintain the context from one call to the

next .

(2) The initialization of this context tends to be near its usage in
the task, but in a separate procedure textually apart from its usage in the

case of procedures.

(3) It is an extension to a language that can also have procedure

calls, and as such increases the power of the language.

7.4.2 Asynchronous Versus Synchronous Communication

The cpu-time involved in context switching between tasks is larger
than the cpu-time involved in a single message passing operation. Context
switching requires the saving and loading of considerable quantities of
information (the machine's registers) and furthermore the operation must be
done four times for a single message passing operation when a bounded
buffer is required! It is used to transfer control from the sender to the
Bounded Buffer, back again, and then later on to transfer control from the

receiver to the bounded buffer, and back again.

Appendix B shows some timing comparisons demonstrating this
conclusion. Since the MTL implementation of message passing costs about
half that of a context switch an overall performance of about 1:8 between
the run-time system implementation of a bounded buffer and a task

implementation of a Bounded Buffer was observed.

This would indicate it is cheaper in terms of cpu-time to incorporate
asynchronous communication into the run-time system rather than have
synchronous communication and wuser provided buffers. In MTL the
asynchronous communication algorithms force synchronous behaviour anyway

when the buffer sizes are specified as 0.
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7.4.3 Communication Paths

COSPOL[RO81] and Mercury[MA81] both use a communication path
distinguished solely by the type of the message and the identity of the
destination. This makes for difficulties in modelling such things as
multi-server queues and multi-queue objects (for example the intersection
of four roads). Curiously enough it also goes against such real-life
models as a single letterbox serving all members of a family. Since one of
the virtues often claimed for message passing is that it models the real

world it would appear that buffers are a better choice.

However buffers are also less structured, the flow of control and
messages far from obvious, and there is an extra layer of notational
clumsiness involved. Language designers should look into methods of
collecting such information in one place in the program source text and
look for less clumsy methods of specifying the communication paths and

activities.

7.4.4 The Effect of a Mono-Processor Implementation on the Language

MTL programs explicitly specify points at which rescheduling may
¢gceur. This is simple and provides the programmer with critical regions
without the use of any other synchronisation primitives, but was viable
only because MTL was aimed at a mono-processor implementation. In
particular MTL does not address the issue of the fairness of CPU scheduling

algorithm, as each Task holds the CPU until it is prepared to let it go.

This shows that the design of a multi-tasking languages is affected
by the intended implementation, and that mono-processor languages and
implementations are simpler than those aimed at systems with multiple

processors.
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7.5 Overall Conclusions

I was surprised at the adequacy of the VAX architecture and the VMS
operating system for implementing MTL. In the areas where there was
obvious need for improvements these would not be difficult to make, and

were compatible with the rest of the system.

Procedures have been the main structuring tools in use for some time.
As a consequence of this we tend to regard as 'natural', solutions to
problems that use it. There should be continuing efforts to apply message
passing in solutions to problems that have been traditionally been solved
by procedural techniques (sorting, compiling, mathematical algorithms,
ete.). These efforts will yield different insights into the nature of the
individual problems and may lead to neater solutions. They will also teach
us more about the ways of using message passing. The design of the Scene
editor was sparked off purely by the desire to apply concurrency to the
problem of implementing an editor, but the editor rapidly grew to encompass

the user's entire environment.

The continuing development of the Scene environment 1is the most
promising research project to come out of this thesis. It not only shows
great potential for integrating all aspects of the wuser's computing
environment but also demonstrates the unifying power of the concepts of

message passing and multi-tasking.
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Appendix

Appendix A. MTL task creation rates V. VMS sub-process creation rates

Both MTL and VMS dynamically create concurrent objects (Tasks and
Processes respectively) but they have very different performance figures as

the following experiment shows.
MTL

This MTL program creates 10000 tasks, each of which sends a message
to the creator and dies. Elapsed times and CPU times are printed out every

1000 tasks.

Program Creation;
Procedure Lib$Init Timer; extern;
Procedure Lib$Show Timer; extern;
Type termination = message end;
var trm _mbx : buffer of termination;’
Task Son;
var ¢t : termination;
begin
new(t);
send t via trm mbx;
end;
var i : integer; tsk : task id; t : termination;
Begin
Lib$Init Timer;
buffer init(trm mbx,0);
for i := 999G downto O do
begin
create tsk := son;
receive t via trm mbx;
dispose(t);
if (i mod 1000) = O then Lib$Show Timer;
end;
Lib$Show Timer;
end.

The LIB$SHOW TIMER routine displays the elapsed time and cpu time,
in the form hours:minutes:seconds.centiseconds, since the call to

LIB$INIT TIMER. The first outputs from LIB$SHOW TIMER were

ELAPSED TIME 00:00:00.75, CPU_TIME = 0:00:00.74
ELAPSED TIME 00:00:01.53, CPU TIME = 0:00:01.51
ELAPSED TIME = 00:00:02.27, CPU_TIME = 0:00:02.25

L1]

which gives 0.78 seconds elapsed time and 0.77 seconds cpu time to create
the corresponding 1000 tasks. The cpu time does include that used by the
tasks. BHence an approximate rate for MTL is 1300 tasks per second cpu

time, and the cpu time is about the same as the elapsed time.
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The following two BLISS-32 programs perform a similar behaviour under
VMS, and were executed on an otherwise idle system. Note that the calls to
LIB$SHOW _TIMER are now done every 100 processes (rather than every 1000

tasks as above) because of the much slower performance.

Module Process(Main=main,debug) =
Begin
oo ! Declarations omitted
Routine Main =
begin
$crembx(chan = chan); $getchn(chan =.chan,pribuf=ddsc);
lib$init timer();
decr i from 9999 to 0 do
begin
$creprc(image = idsc ! Create the sub process

,Jmbxunt
)i
$qiow (chan .chan ! Wait for the system to send us
,func io$ readvblk ! a message saying the subprec
. ! has died.
)3
if (.1 mod 100) eql 0 then Lib$Show Timer();
end
end;
End
Eludom

.dblk[dib$w unit]

Module SubPrc(Main=zmain,debug) =

Begin

Routine Main = 1; ! Simply die (by returning from
End ! the main routine).

Eludom

The first few calls to Lib$Show Timer yield these results

ELAPSED TIME = 00:00:30.62, CPU TIME = 0:00:00.34
ELAPSED TIME = 00:01:01.86, CPU TIME = 0:00:00.65
ELAPSED TIME = 00:01:32.60, CPU TIME = 0:00:00.98

which, by subtraction, gives 31 seconds elapsed time and 0.31 seconds cpu
time to create the 100 sub-processes between the two samples. THE CPU TIME
DOES NOT INCLUDE THAT REQUIRED FOR THE SUB-PROCESSES. Hence an approximate
rate for VMS is 3 sub-processes per second elapsed time, but no estimate
can be made of the cpu costs because these are largely hidden in the

subprocess, other than to comment that it too would be large.
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CONCLUSIONS

MTL creates tasks at about 1300 tasks per second (cpu and elapsed

time) whereas VMS creates them at about 3 tasks per second (elapsed time).

The huge difference in elapsed times is largely due to the VMS
requirement that a sub-process must execute an image off disk, where-as
for MTL the code for a task is memory resident as part of the current

image.

MTL also uses vastly less cpu time because the creation of the VMS
process and the loading of the image from disk are extremely complex and

long operations.
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Appendix B. User written Bounded Buffer cpu-times V. Runtime System

To illustrate the point about the cpu-time involved in user written
bounded buffers and those provided by the MTL runtime system the following

two programs were compiled and run. The results were ...

00:00:01.11 seconds
00:00:09.47 seconds

runtime system - CPU TIME
user written - CPU TIME

Program Bounded Buffer; { MIL Runtime system buffer }
Procedure Lib$Init Timer; extern;
Procedure Lib$Show Timer; extern;

const
buf siz = 10;
msg ecnt = 10000;
type
msSg = message end;
var
buf : buffer of msg;
Task Tap;
var i : integer; m : msg;
begin
for i := 1 to msg cnt do
begin
new(m) ;
send m via buf;
end;
end;

var 1 : integer; m : msg; tap tsk : task id;
begin
buffer_init(buf,buf siz);
create tap tsk := tap;
Lib$Init Timer;
for i := 1 to msg cnt do
begin
receive m via buf;
dispose(m);
end;
Lib$Show Timer;
end.
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Program Bounded Buffer; { User written Bounded Buffer }
Procedure Lib$Init - Timer; extern;

Procedure L1b$Show_T1mer' extern;

const buf siz = 10; msg cnt = 10000;

type msg = message end;

var inp,out : buffer of msg; bb tsk : task id;

Task BB;
var buf : array [1..buf_siz] of msg;
fst,lst : 1..buf siz; siz : 0..buf siz;
begin siz := 0; fst := 1; 1lst := 1;
repeat
if (siz < buf_siz) and (buffer writers(inp) > 0) then
begin
receive buf[fst] via inp;
if fst < buf siz then fst := fst+1 else fst := 1;
siz := siz+1;
end
else
if (siz > 0) and (buffer readers(out) > 0) then
begin
send bufllst] via out;
if 1st < buf siz then 1lst := 1lst+1 else lst := 1;
siz := siz=1;
end
else
begin
sleep;
end;
until false;
end;

Task Tap;

var i : integer; m : msg;

begin

for i := 1 to msg _cnt do
begin new(m); awaken(bb tsk);
send m via inp;
end;

end;

var 1 : integer; m : msg; tap tsk : task id;
begin
buffer init(inp,0);
buffer init(out,0);
create bb tsk := bb
create tap tsk := tap,
Lib$Init Timer;
for 1 := 1 to msg cnt do
begin
awaken(bb tsk);
receive m via out; dispose(m);
end;
Lib$Show Timer;
end.
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Appendix C. MTL Procedure Calling Rates.

The following program times 100000 procedure calls. It was compiled

and run using both the MTL compiler and the VAX-11 Pascal 1.3 compiler. The

results were ...

With the call. Without the call,
MTL 26.9 cpu-seconds 0.24 cpu-seconds
VAX-11 Pascal 1.3 3.1 cpu-seconds 0.29 cpu-seconds

Clearly the current implementation of MTL performs this test very

badly.

Program Calls;

var i,j : integer;

procedure lib$init timer; extern;

procedure lib$show timer; extern;

procedure dummy(var d1,d2:integer); begin end;
begin

lib$init timer;

for i := 1 to 100000 do DUMMY(J,J);

lib$show timer;

end.
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Appendix D. MTL and Pascal New/Dispose Rates

This modified version of the program given in 5.2.3 was compiled and

run using MTL and VAX-11 Pascal 1.3. It illustrates the performance

difference between MTL and the conventional heap manager of VAX-11 Pascal

1.3, especially for pathologically bad disposal orderings. The time for

the loops without the NEW/DISPOSE has been subtracted from the

The results were for the two separate loops in the program ...

MTL 0.35 cpu-seconds 483 page
0.18 cpu-seconds 59 page
VAX-11 Pascal 1.3 54,94 cpu-seconds 1052 page
0.67 cpu_seconds 129 page

Program Heap(output);

type ptr = “integer;

var i : integer; a : array[1..10000] of ptr;
procedure lib$init timer; extern;
procedure lib$show timer; extern;

begin

for i := 1 to 10000 do new(ali]l);

lib$init timer;

for i := 1 to 5000 do dispose(al[2*i-1]);
for i 1= 1 to 5000 do dispose(al[2%*il);
lib$show timer;

for i := 1 to 10000 do new(alil);

lib$init timer;

for i := 1 to 5000 do dispose(alil);

for i := 1 to 5000 do dispose(ali+50001):
lib$show timer;

end.
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Appendix E. MTL Context Switching Rates

This program switches context between a pair of tasks 100,000 times,
with a cpu-time of 8.55 seconds, which yields a context switching rate of
about 11,700 context switches per second. Curiously this is considerably
faster than an MTL procedure call, and about half the speed of a VAX-11

Pascal 1.3 procedure call (appendix C).

Program Switch;
const k = 100000;
Procedure Lib$Init Timer; extern;
Procedure Lib$Show Timer; extern;
type msg = message end;
var b : buffer of msg;

i : integer;

Task s;
var ml : msg;
begin
while 1 > 0 do begin reschedule; i := i-1; end;
new(m1); send mi1 via b;
end;

var t1,t2 : task id; m : msg;

begin

buffer init(b,2);

i = k; { initialize the counter }
create t1 := s; { create the two tasks }
create t2 := s5;

lib$init timer; { start the timing }
receive m via b; { wait until both finish }
receive m via b;

lib$show timer; { show the timing }
end.
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Appendix F. MTL Message Transmission Rates

Message transmission times depend to a certain extent on the size of
the buffers used. This phenomona is only observed between distinct tasks
because it is caused by having to context switch whenever the buffer fills.
The following program measures purely the time taken to pass the message,

because there is no context switching required.

The performance figure was 100,000 messages in 8.28 seconds, or about
12,000 messages per second. However this includes time to NEW and DISPOSE
the messages. When the NEW and DISPOSE were shifted out of the loop, the
figures changed to 5.03 seconds, or about 20,000 messages per second. In
practise performance is going to vary somewhere between these two figures

depending on the number of messages passed compared to the number created.

Program Send Receive;
const k = 100000;
Procedure Lib$Init Timer; extern;
Procedure Lib$Show Timer; extern;
type msg = message end;
var b : buffer of msg; m : msg; i : integer;
begin
buffer init(b,1);
lib$init timer;
for i := 1 to k do
begin
new(m) ;
send m via b;
receive m via b;
dispose(m);
end;
lib$show timer;
end.
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Appendix G. The ODDWORDS Problem

The following two programs implement the primary portion of Dijkstra's
odd-word-reversal problem, They run in approximately equal time of 0.2
cpu- seconds, when compiled with MTL and VAX-11 Pascal 1.3 respectively. If
the messages are not pre-allocated for the message passing version it takes
about 0.3 cpu seconds. These results are more thoroughly discussed in

5.2.5.

MTL

Program ODDWORDS;
const message count = 1200;

type word = array [1..5] of char;
word msg = message wd : word; len : integer; end;
word buf = buffer of word msg;

var msgs : arrayl1..message count] of word msg;
item buf : word buf;

revs buf : word buf;

TASK ITEM;
var W @ word msg; 1 : integer;
begin
for i := 1 to message count do
begin
W := MSGS[I]; { Get pre-allocated message }
with w° do begin len := 5, wd := 'ABCDE'; end;
send w via item buf;
end;
new(w); with w” do begin len := 1; wd := '. 's end;
send w via item buf;
end;

TASK REVERSE;

var w : word msg; flip : boolean;

begin

flip := false;

repeat receive w via item buf;
if w.wd[1] = '.' then exitloop;
if flip then {...reverse w" .wd...}
flip := not flip;
send w via revs buf;

until false;

send w via revs_buf;

end;
TASK METI;
var w : word msg;
begin
repeat receive w via revs buf;
if ww.wd[1] = '.' then exitloop;

until false;
LIB$SHOW_TIMER;
end; {Continued on next page...}
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var t : task id; i : integer;

BEGIN

for i := 1 to message count do { pre-allocate messages 1}
new(msgs[il);

LIB$INIT TIMER;

buffen_init(item_buf.100); create t := item;
buffer_init(revs_buf.100); create t := reverse;
create t := meti;
END.
VAX-11 Pascal 1.3
Program ODDWORDS(input,output);
const message count = 1200;
type word = array [1..5] of char;
word msg = record wd : word; len : integer: end;
var wl,w2 ¢ word msg;
flip : boolean;
rnc_count : integer;
PROCEDURE ITEM(VAR W1: WORD_MSG);
begin
with w1l do
begin
if rnc_count <> message count then
begin len := 5; wd := "ABCDE'; end
else
begin len := 1; wd[1] := '.'; end;
end;
rnc_count = rnc count+1;
end;

PROCEDURE REVERSE(W1 : WORD MSG; VAR W2 : WORD MSG);
label 99;
var i : integer; len : integer;
begin
if flip then {...reverse wl into w2 } else { w2 := w1l } ;
flip := not flip;
99:
end;

PROCEDURE METI(W : WORD MSG);
begin
end;

begin
LIB$INIT TIMER;
rnc count = O]
flip := false;
repeat
item(w1); reverse(wl,w2); meti(w2);
until w2.wd[1] = '.';
LIB$SHOW_TIMER;
end.
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