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SUMMARY .

The aim of this thesis is to present a unified study of some
of the fundamental secondary processes induced by a finite birth-
and-death process. The motivation for the study comes from queueing
theory, since a number of elementary queueing models of finite
capacity can be viewed as finite birth-and-death processes. However,
so as not to limit the scope of the analysis, the study is approached
more abstractly using the formal stochastic process, the finite
birth-and-death process.

The overflow process is an obvious, and very important, induced
secondary process, and the early portion of the thesis is devoted to
its study. Oéthogonal polynomial theory is used extensively in the
analysis of the inter-overflow time distribution, and applications
of the results to queueing theory are discussed.

A feature of the thesis is the discovery in the final section
of chapter 3 of a new characterisation of the hyperexponential
family of distributions.

In chapter 4 we regard arrivals which cause the process to
enter some prescribed state as constituting a secondary process.

The analysis thus reveals results concerning the time between
successive entries to the boundary states and also intermediate states.

The final section of chapter 4 demonstrates how a number of
isolated results in the literature concerning first passage times
can be derived as corollaries to our analysis.

A similar initial approach can be adopted to analyse the
overflow from certain queueing models which are not finite birth-
and-death processes. This is demonstrated in chapter 5 where the
overflow from the single server queue with finite waiting space and

renewal input is discussed.

iv.
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1.1 INTRODUCTION .

It is appropriate to begin a study of secondary processes
induced by finite birth-and-death processes by discussing the
motivation for such a study. A number of questions concerning
queueing models of finite capacity c;n be interpreted as or related
to secondary processes. When considering a finite capacity queueing
model there is the inevitable question of overflow: what is its
nature and how is it affected by the parameters of the model?
However the overflow is a secondary process induced by the queueing
process. ,

Aside from this obvious example, there are several more subtle
applications. One can regard the arrivals which cause the model to
enter some prescribed state (or set of states) as events of a
secondary process. Thus problems related to first passage times,
sojourn times, busy periods and so on can be viewed in the light of
induced secondary processes.

However the scope of the study would be restricted were it
approached simply from a queueing theory viewpoint. Thus, although
we draw on queueing theory considerations for motivation (and at
times terminology), the study is approached more abstractly using
a formal stochastic process, the finite birth-and-death process.

The aim of the thesis is therefore to present a unified study of

some of the fundamental secondary processes induced by a finite
birth-and-death process. The specific queueing theoretic applications
will only be mentioned, or at most used as illustrations or examples.

The only exception to this occurs in chapter 5 where a related

problem is in fact approached from the queueing theory aspect.



Throughout this thesis formal statements of definitions,
theorems, proofs, et cetera, are terminated with the symbol =,
so as to distinguish them from the main text.

The remainder of this chapter is devoted to discussions

of certain preliminary concepts.



1.2 THE BIRTH-AND-DEATH PROCESS.

The analysis of a specific queueing model can often be achieved
by associating it with some class of formal processes within the
general theory of stochastic processes. Results proved for the general
class of processes can then be directly applied to the model.

Birth-and-death processes form one important class of stochastic
processes, and a substantial portion of this thesis is devoted to
investigating certain secondary processes associated with finite
birth-and-death processes. Examples are given in section 3.2 to
illustrate how the general theory which we will develop can be applied
to certain specific queueing models. The principal reference for this
section is Feller [1968].

1.2.1 Definition. A birth-and-death process is a continuous time,

discrete state process which obeys the following postulates:

Denote the state space of the system by N (as N must be finite
or countably infinite we can without loss of generality take
N={0,1,2,...,N) or N=1{0,1,2,...} respectively). Suppose at
some time t the process is in state j € N.

(i) The conditional probability that during the period (t,t+h)

the transition 3 = (j+1) occurs equals
Ajh+ o(h), as h >0,

if j+1 € N, where % > 0 depends only on J.
(ii) The conditional probability that during the period (t,t+h)

the transition 3 = (j-1) occurs equals
H h +o0(h), as h~> 0,

if j-1 € N, where ) > 0 depends only on J.
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(iii) The probability that during the period (t,t+h) the

transition Jj + k occurs (where k € N, k # j+1, k # j-1) is
o(h), as h > 0.

We call the elements of the set {Aj;j,j+l € N} birth rates and
those of the set {uj;j,j—l € N} death rates. We will use the term
finite birth-and-death process to indicate that the state space of
the process is finite. =

The most important property of a birth-and-death process is
that it exhibits a memoryless nature. The future behaviour of the

system subsequent to time t depends only on the state of the system

at time t+0. (We have written t+0 to cover the cases when an event
occurs at t.) We shall now write this property formally for later
reference.

1.2.2 The Memoryless Property. The future behaviour of a birth-and-

death process from some time t depends only on the state of the

process at time t+0. ] n



1.3 ORTHOGONAL POLYNOMIALS.

In later chapters we will make use of orthogonal polynomials and
their properties as a tool in the analysis. In this section some
elementary theory of orthogonal polynomials will be discussed as a
preliminary to this later work. The prinéipal references for this
discussion are Szego [1939], Erdélyi, et. al., [1953] and Chihara [1978].

1.3.1 Definition. (See Szego [1939], section 2.2)

Let Y(x) be some given non-decreasing function, with infinitely

many points of increase, and suppose the moments

n

m = fﬂ x dy(x), n=0,1,2,..., (3.1)

exist as real numbers. Then a sequence of polynomials (pn(x)):

=0
is an orthogonal polynomial sequence for the distribution function Y(x)
if and only if

(1) pn(x) is a polynomial of exact degree n, n=0,1,2,...,

(ii) Jm p_(x) p_(x) dy(x) = 0, for m # n,
(iii) Iw [pn(x)lz dy(x) # 0, n=0,1,2,...

The condition that Y(x) has infinitely many points of increase

is equivalent to the condition that the set
G(Y) = {x;P(x+8)-P(x-8) > 0 for all § > 0} , (3.2)

called the spectrum of Y, be infinite (see Chihara [1978], p. 51).

Given any distribution function Y(x), then there exists a

(o 0]

sequence of polynomials (pn(x))n which is orthogonal with respect

to P(x) (Szego [1939], section 2.2(1)), and eacnh p (x) is uniquely
n

determined up to an arbitrary non-zero factor (Chihara [1978], p. 9).
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oo

That is, if (ﬁ;(x))n=o is also an orthogonal polynomial sequence

with respect to Y(x), then there exist constants K # 0 such that

f)n (x) = Knpn (x), n=0,1,2,..., (3.3)

o0
and conversely given any sequence of constants (Kn;Kn # 0)n 0 then

[= o}

(Knpn(x))n is an orthogonal polynomial sequence with respect to

P(x) .

©o

We note that, if the sequence (pn(x))n : is orthogonal with

respect to Y(x), then it is also orthogonal with respect to Ky (x)
for any positive constant K (Chihara [1978], p. 10). However, since

P(x) is non-decreasing and has infinitely many points of increase, we

r ap(x) > 0 ,

and so there exists K.> 0 such that

have that

J dlkp(x)] = 1 .

Thus, without loss of generality, we can demand Y(x) to be such that

00
J dy(x) =1 (3.4)
=00
in the definition 1.3.1 of orthogonal polynomials. In the remainder
of this thesis we shall therefore assume that (3.4) holds when referring
to a distribution function.
Suppose m(x) is a distribution function for which there exists

a constant C such that

P(x) = P(x) +C

at all common points of continuity. We say that Y(x) and m(x) are

substantially equal (Chihara [1978], p. 52), since Y(x) can be
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replaced by &(x) in any Lebesgue-Stieltjes integral over (-®,)
with respect to Y(x), for a continuous integrand, without affecting

the value of the integral. For this reason, if the sequence (pn(x))o°
n

=0
is orthogonal with respect to Y(x), then it is also orthogonal with
respect to VY(x).

o)

A sequence (pn(x))n of orthogonal polynomials is called

determinate if all distribution functions with respect to which it is
orthogonal are substantially equal. The qguestion of determinacy is
related to the "problem of moments" which is extensively discussed in
the literature. We shall not investigate the matter further, save

[e0]
pointing out that there do exist sequences (pn(x))n 0 which are

'

orthogonal with respect to (infinitely many) substantially unequal
distribution functions (Chihara [1978], p. 58).

It should be pointed out that Chihara [1978] uses a more general
approach to orthogonal polynomials by replacing the Lebesgue-Stieltjes
integral in definition 1.3.1 with a general linear functional with
finite moments. Our definition of orthogonal polynomials corresponds
precisely to a subclass of such linear functionals which Chihara calls
"positive-definite"” (Chihara [1978], chapter 2).

Oorthogonal polynomials have a wealth of properties, particularly
involving their zeros. The particular properties and results which we
will require for our analysis will be stated and referenced in the text

where they are used.



1.4 THE CONCEPT OF TRAFFIC,.

When considering queueing models one is concerned with the
interaction of an arriving stream of calls(*) and a group of trunks(*)
to which it is offered. It is thus desirable to have some measure of
the extent to which the arriving calls attempt to "work" the system,

and also a measure of the system's ability to handle this "work".
Intuitively; one would think of these two related concepts as the
"traffic" offered to the system, and the "traffic" carried by the

system respectively. This section formalises the concept of traffic.

It is important to realise that any concept of traffic is not
inherent to thg arriving stream of calls. Moreover, traffic is brought
about by the arriving calls' interaction with the equipment installation,
and so must be dependent on both.

We will restrict our attention to queueing processes which possess
and are in statistical equilibrium. That is, all transient effects can

be ignored.

1.4.1 Definition. The offered traffic a to the system in equilibrium

is the mathematical expectation of the number of arrivals during a time

period equal to the average holding time. That is,
A
a = ﬂ ’ (4.1)

where A is the mean arrival rate to the system, and i is the mean

holding time.

(*) In this section we will use the term "calls" to represent the
components of the input process, and the term "trunks" to represent

the components of the service installation.
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1.4.2 Definition. The carried traffic a' by the system in

equilibrium is the mathematical expectation of the number of busy
trunks. That is,
a' =] kp_, (4.2)
k
where Pk is the probability of k trunks  being occupied at a

randomly selected time point.

Both these definitions seem reasonable in terms of the intuitive
ideas they endeavour to formalise. However, although one would expect
there to be a simple relationship between offered and carried traffic,
the definitions of these two quantities, in their present form, do not
indicate any such relationship.

The definitions have been presented in the forms in which they
are most commonly used. Intuitively, one would expect the carried
traffic to be the proportion of offered traffic that is not lost. This
statement appears tautological, but, as the definitions stand, requires
proof.

1.4.3 Lemma. For a queueing process in equilibrium

a' = (l—PL)a ’ (4. 3)
where PL is the probability that an arriving call is lost.

The proof of this lemma follows readily from Little's Result,

which states that, in any equilibrium process,

(4.4)

where ﬁs is the mean number of calls in the system, As is the mean
rate at which calls enter the system, and '1‘S is the mean time spent
in the system by a call. This result has existed for many years, but

was first rigorously proved by Little [1961]. The exact definition of
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"system" is left flexible, provided all three parameters are for the
same "system”.

Proof of 1.4.3. Consider the group of trunks, and let this be

the "system" of Little's Result. We have immediately a' = ﬁs (by

definition) and % = Ts‘ The mean rate at which calls arrive at the

"system" is the mean rate at which successful calls arrive, since the

"system" is just the trunk group. That is,
)\S = >\(1—PL)
Substitution into Little's Result yields

C= M-
a——u(lPL):

and so, by definition 1.4.1,

a' a(l-PL) .

It is worth noting that Little's Result can be similarly used
to show that the offered traffic is equal to the expected number of

occupied trunks, if there were infinitely many trunks available.



CHAPTER 2. A SURVEY OF

RELATED LITERATURE.

12,
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CHAPTER 2. A SURVEY OF RELATED LITERATURE .

As previously indicated, the study of secondary processes
induced by finite birth-and-death processes has applications to a
wide class of finite capacity queueing models, particularly concerning
their overflow stream. This will be demonstrated in later chapters,
but it is appropriate to begin with a brief overview of some of the
principal works which deal with the overflow problem from a queueing
theory viewpoint.

One of the pioneering analytical investigations into the overflow
from finite capacity queueing models appeared in Kosten [1937] .
Kosten [1937] éonsiders two groups of identical trunks with negative
exponential holding times. The first or primary group is finite and
is offered a Poisson stream of arriving calls. Calls which cannot be
accommodated on this primary group engage a trunk on the secondary or
overflow group, which is infinite. Kosten [1937] obtains an explicit
formula for the joint distribution of occupancy on the primary and
secondary groups, from which is obtained the marginal distribution
and the first two moments of the occupancy on the secondary group.

A version of the analysis of Kosten [1937] in English can be found
in Cooper [1972] (pp. 113-119).

Brockmeyer [1954] examines the model of Kosten [1937] in the case
when the overflow group is finite, and obtains the joint probability
distribution for this case. A summary of the results of Kosten [1937]
and Brockmeyer [1954] and some additional formulae are given in
Wallstrom [1966] (pp. 202-209). Chastang [1963] also examines
questions related to the Kosten and Brockmeyer models.

A direct derivation of the mean and variance of the occupancy

on the overflow group for the Kosten model is given in Riordan's
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appendix to Wilkinson [1956]. These formulae form the basis for
Wilkinson's Equivalent Random Method first proposed in Wilkinson [1956].
Schehrer [1976], also using a joint probability distribution approach,
determines the higher order moments of the overflow from the Kosten

and Brockmeyer models.

Investigations of the overflow stream and its effect on the
overflow group for the Kosten and Brockmeyer models with general
renewal input have been made by Takdcs [1959] and Potter [1979]. A
summary of some of the main formulae can be found in Pearce and Potter
[1977] . See also Palm [1943] and Syski [1960] (section 3.1 of chapter
5).

Kuczura [1973] approximates the overflow from a system with
Poisson input by an "interrupted Poisson process"; this is a process
consisting of a Poisson stream which is alternately switched on for
a negative exponentially distributed time and then switched off for an
independent negative exponentially distributed time.

Numerous studies of the overflow problem from a queueing theory
viewpoint, both analytical and approximate, have appeared in the
literature. Our discussion here attempts only to mention some of
the more relevant studies.

As mentioned earlier, we will be using a sequence of orthogonal
polynomials associated with a finite birth-and-death process as a
tool in the analysis. Karlin and McGregor, in a series of papers,
also use an orthogonal polynomial sequence in their analysis of an
infinite birth-and-death process, and related problems. A number of
comparisons and comments can be made, and so we now give a survey of
these papers.

Karlin and McGregor [1955] serves mainly as an introduction and

a promise of results to come. Karlin and McGregor [1957a] develops the
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basic theory on which the later work rests, and so is of fundamental
importance to the series of papers. Using their notation, define
%j (t) to be the probability that the process will be in state j

at time T+t, given that the state at time T was i. Then,

recalling definition 1.2.1,

Pi'iH(t) = )\it + o(t)

P, () =1 - (Ai HLIE 4 o(t) .

P (t) =W E+olt),

i,i

as t - O, i=0,1,2,...

(A number of the results in the series of papers can allow o >0,
and the transition O =+ -1 is interpreted as an absorption into some
state -1.) Elementary theory of Markov processes results in the

following matrix eguation for the infinite matrix P(t) = (Pij(t)):

P'(t) = AP(t) , t=20, (0.1)

where A is the (infinite) matrix

- (Ao+Uo) Xo 0 0 s %
U1 =(A1+1) Al 0
= 0 U2 = (A2+U3) Az R (0.2)

(Equation (1.1) of Karlin and McGregor [1957a] .)
Other equations involving P(t) also follow from elementary
theory. The main thrust of this paper is to look for an integral

representation of P(t) in terms of the eigenvectors of A.
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Karlin and McGregor introduce an orthogonal polynomial sequence

[es]

(thd)nzo by means of the equation
-xQ =20 , Qo(x) =1, (0.3)
wherxe 0= [Qo(x) Q1(x) Q2(x) ...]T . The paper derives the

following integral representation for %j (t):

B, () =T Ee"“ Q (x)Q (a(x) (0.4)

where Y(x) is a distribution function with respect to which the

(o]

sequence (Qn(x))n is orthogonal, and

+

>\.0)\1.-.}\'_1 0
=1, = ——=="1=2 =1,2,3,.
o I TITEYRT: & )

In order to establish (0.4), and also to answer questions related to
the existence and uniqueness of P(t), the paper analyses in depth

oo

the orthogonal polynomial sequence (Qn(x))n R and its associated

T

Stieltjes moment problem. Some of the results are also of independent
analytical interest.

Karlin and McGregor [1957b] wuses the results of Karlin and
McGregor [1957a] "to establish equivalences between properties of
the stochastic process and properties of the sequences {Xn},{un} )
and to evaluate, in terms of these seguences, some of the interesting
probabilistic quantities associated with the process". Certain
ergodic theorems are proved, and the problem of computing Y(x),
given the matrix A, 1is discussed.

Karlin and McGregor [1958a] applies the theory developed in
the previous cases to many server dqueueing processes with Poisson
input and exponential service times (with infinite waiting space for

blocked customers). Some of the problems tackled are as follows:
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"(1) to obtain a usable formula for the transition probability
P, (t);

(2) to compute the distribution of the length of a busy
period;

(3) to compute the distribution of the number of customers
served during a busy period;

(4) to compute the distribution of the maximum length of
the queue during a busy period; and similar questions.”

Karlin and McGregor [1958b] and [1959a] consider linear growth
birth-and-death processes and random walks respectively.

Karlin and McGregor [1959b] proves a theorem which finds
conditions expressed in terms of the analytic properties of the
transition probability function which are equivalent to continuity
of the path functions for a wide class of stationary Markov processes
whose state space is the set of non-negative integers. As a side
remark the paper mentions that, in the special case of a birth-and-
death process, the Laplace-Stieltjes transform F:j(s) of the
distribution function for the length of time until the next entry to
state j from an epoch at which the system is in state i, where
i < j, (the "first passage time from i to 3j") is given by

(-s)

FE (s) = i I (0.5)

Q (=s)
Karlin and McGregor [1959b] finds this result as a corollary to some
formulae of Karlin and McGregor [1957a] involving Pij(t). However
as a bye-product of some of our preliminary analysis we will find
a more direct derivation of formula (0.5). This Will be discussed
in section 4.4.
In section 3.1 we will observe a simple relationship between

(o]

the orthogonal polynomial sequence (Qn(x))n o and the orthogonal
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polynomial sequence which we will introduce. For the moment we note

that equation (0.3) (assuming W=0) can be written as

AQu,y (0 + (x=A -uDQ (x) + 19 | (x) =0, (0.6)

n=1,2,3,...,

0o (x) = 1, 01(x) = Al—o (=x+Ao) -

Karlin and McGregor [1959¢c] and its companion paper [1959d]
consider coincidence properties of birth-and-death processes.

Finally, we discuss some work of Keilson which relates both to
some of our analysis and to the work of Karlin and McGregor. Keilson
[1979] (section 3.3) obtains a spectral representation for the
transition probabilities in a time-reversible ergodic chain. A birth-
and-death process is one of the simplest examples of a time-reversible
ergodic chain, and so this work is seen to be an extension of the
ideas of Karlin and McGregor.

Keilson [1979] (section 3.5B), using his spectral representation,
finds an expression for the first passage time density from a state
n to its neighbouring state n+l for a birth-and-death process.

This expression is a weighted sum of exponentials. As with the
expression (0.5) of Karlin and McGregor, our analysis in section 3.1
will provide an alternative derivation of this result.

Keilson [1979] again considers first passage time densities for
birth-and-death processes in his chapter 5. The connection between
this work and our approach will be indicated in the text of section

3.1 and also in section 4.4.
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CHAPTER 3. THE OVERFLOW

FROM A FINITE BIRTH-AND-DEATH

PROCESS.

3.1 The Overflow from a Finite Birth-and-Death Process.

3.2 Applications in Queueing Theory.
3.2.1 Telephone Trunking Model.
3.2.2 Telephone Trunking Model with
Holding Registers.
3.2.3 Finite Source Models.

3.2.4 Other Models.
3.3 Some Notes on the Associated Orthogonal Polynomials.

3.4 The Hyperexponential Distribution as an Overflow.
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3.1 THE OVERFLOW FROM A FINITE BIRTH-AND-DEATH PROCESS.

In this section we consider a stream of secondary events
associated with a general finite birth-and-death process. The system
is characterised by N states (where N 1is a positive integer),
labelled 0,1,2,...,N-1. When the system is in some state n
(0 < n < N-1) births occur at a rate An, and independently deaths
occur at a rate uo- The system must stay within the prescribed state
space, and so in state O only births may occur, with rate Ao, and
in state N-1 only deaths may occur, with rate Mgt We assume
)h >0 for 0<n < N-1 and H >0 for 0 < n<N-1.

We will impose an additional structure on the birth-and-death
process by allowing overflows to occur, with rate XN_1_> 0, when
the system is in state N-1. These overflows do not cause a change
of state, but merely constitute a stream of secondary events, which
we will refer to as the overflow stream from the finite birth-and-
death process. It should be noted that this secondary stream is not
simply a Poisson stream, since overflows can only occur when the
system is in state N-1. We note also that the occurrence of overflows
in state N-1 in no way affects the behaviour of the underlying
birth-and~-death process.

For reasons of the obvious physical interpretations, we shall
refer to births and overflows collectively as arrivals, and so
Xo,kl,...,AN_l are the aqrrival rates. The nature and properties
of the overflow stream will now be studied.

An important initial observation is that the overflow stream,
although not Poisson, is in fact renewal. This can be readily seen

by noting that the future behaviour of the system subsequent to an

overflow event is dependent only on the fact that the system is in
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state N-1 (recall the memoryless property 1.2.2). The overflow
stream can thus be characterised by the probability distribution
function of the inter-event time, which we will denote by F(t).
Our examination of the overflow stream can be achieved by investigating
F(t).

Denote by {T%n) < TS“) < Tgn) < ...}, where 0 <n<N-1,
the random epochs when the system is in state n and an arrival
occurs(*). Define fn(t) (n=0,1,...,N-1) to be the probability
distribution function for the time to the next overflow from an
instant Tin) - 0. (The memoryless property 1.2.2 gives that f;(t)

(n=0,1,...,N-1) is independent of k.) Then we have trivially

that

£, , () = ult) , (1.1)

where u(t) is the unit-step or Heaviside function defined by

B I o0, if t <0

u(t) = 1 (1.2)
1

, if t=0 .

We write £ l(t) for the probability distribution function for the
time until the next overflow from an arbitrary epoch at which the
system is in state O and no arrival is just about to take place.

The memoryless property 1.2.2 gives that f l(t) is also well-defined.

Suppose that the system is in state n (O < n < N-1) and

consider an epoch Tin) (some k = 0). Note that the system will be
in state n+l at time Tin) + 0. We are to find an expression for

* .
*) Thus the inter-overflow time is the length of the time interval

(N-1) (N-1)

" ' Ty y (some k = 0).

[t
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£ (t), which is the probability of the event that the next overflow
n

- 0 occurs by time T(n) + t. Since

(n)
T k

subsequent to time

the overflow itself corresponds to an arrival, and moreover cannot

be the arrival at Tin) itself (recall that O < n < N-1), then

the desired event can only occur if there is at least one arrival

or death subsequent to time Tin) + 0 but Dby time Tin) + t.

We shall consider separately the two cases corresponding to which

occurs first.

Suppose that the next event to occur subsequent to time Tin) + 0

is an arrival in the time interval (Tin)+y,Tin)+y+dy), where

y+dy < t . The probability of this occurrence, noting the independence

of arrivals and deaths, is simply

A 1exp(—>\ y—un+l¥)dy + o(dy)

n+ n+1

The time which now remains for the next overflow to occur in is

t-y+0(dy), and the system, having been in state n+l since time

T(n)

N + 0, 1is just about to have an arrival occur. Thus the probability

that the first event subsequent to time Tin) + 0 1is an arrival and

the next overflow occurs by time Tin) + t is given by

n+l: n+1*" n+l

t .
I exp(-\ y-u  y)A £ (t-y)dy ,
0 (1.3)

n=0,1,...,N-2.

Similarly, suppose that the first event_ subsequent to time

Tin) + 0 is a death occurring in the time interval (Tin)+y,T(n)

. +y+dy) ,

where y+dy < t. The system, having been in state n+l since time

T(n)

X + 0, now is just about to return to state n. But the time

from this epoch until the next overflow is stochastically

indistinguishable from the time until the next overflow from an epoch
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at which the system is in state n-1 and an arrival is just about

to occur {(or, in the case of n=0, from an epoch at which the system
is in state 0 and no arrival is just about to occur); this follows
from the memoryless property 1.2.2 since the future behaviour after
either the transition (n+l) - n or the transition (n-1) = n
depends only on the fact that the system is now in state n. Thus

the probability that the first event subsequent to time Tin) + 0 is

a death and the next overflow occurs by time Tin) + t is given

by

t
J exp(=A _ y-U vIu £ (t-y)dy .,

n+1

0 (1.4)
n=0,1,...,N-2 .
The probabilities (1.3) and (1.4) correspond to two mutually

exclusive but exhaustive events, and so

1 y_un+ 1 y)

t
fn(t) = j exp(—)\n+
0 (1.5)

- - >
[A fn+1(t y)+un+lfn_l(t y)ldy , t = 0,
n=0,1,...,N-2.

Consider now an epoch at which the system is in state 0 and
no arrival is just about to occur. In this case the next subsequent

event must be an arrival, and so

t
ﬁ_l(t) = J exp(-Agy) Aofo (t-y)dy, t =2 O. (1.6)
0

We note that Keilson [1979] (p. 58) obtains an expression for
the Laplace transform of the first passage time density from state
n to state (n+l) in terms of that from state (n-1) to state n.

Keilson's approach can thus be seen to be a special case of our method.
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Although the nature of the overflow from the finite birth-and-death
process can be deduced from a consideration of first passage time
densities from states to their higher neighbour, we have adopted
the more general approach for two reasons:

(1) it will facilitate our later analysis;

(2) it will provide the key for the connection of the result (0.5)
of chapter 2 with other results concerning first passage times.
(This will be dealt with in section 4.4.)

Note that the integrals on the right-hand-side of equations

(L.5) and (1.6) are (Lebesgue-Stieltjes) convolutions, and so, in

terms of the Laplace-Stieltjes transforms

O

f:(x) = } exp(-xt)dfn(t) = (1.7)
0

Re x 2 0, n=-1,0,1,...,N-1,

these equations read

£* (%) = A?ix £ (x) (Re x = 0) , (1.8)
1
f:(x) - ET"THI"‘"IETAn+1 f:+1(x)+un+1f:-1(x)] g (1.9)
n+1 nt+1

Re x 2 0, n=0,1,2,...,N-2

A simple rearrangement of equations (1.8) and (1.9) gives the following

system of recurrence relations:
Aof(x) - (x+ko)f*l(x) =0 (Re x> 0) , (1.10)

Ao ER L - Gl o D ERG) L £ (%) = 0, (1.11)

n+l

Re x 2 0, n=0,1,2,...,N-2

Favard's Theorem (see Favard [1935] or Chihara [1978], pp.21-2)

states that a set of relations of the form
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P ., (x) - (AHX+Bn)pn (x) + CPp._, (x) =0

1]

n=1,2,3,...,

with An,Cn >0 and initial specifications

po(x) =1 , pi1(x) = Roex+Bg (Ap > 0)

7
defines a sequence (pn(x)):;o of orthogonal polynomials, pn(x)
being of exact degree

n in x. Thus the relations

>‘npn+l(x) - (x+ln+un)Pn(x) + unpn-l(x) =0 (*)

r

(1.12)
n=1,2,...,

- 1
PO(X) = l, T

PI(X) . AO(X+A0)7

define such a sequence (p;(x)):;o of orthogonal polynomials.

From equations (1.10) and (1.11) we therefore have that

f*(x) = alx)p (x) .,

(1.13)
n=-1,0,1,...,N-1 ,

for some function o(x) independent of n. The supplementary

condition (1.1), or equivalently the condition

* =
fN_l(x) 1

r

acts as a boundary condition which fixes

1

o =Gy

The relation (1.13) therefore reads

P (x)
f*(X) _ n+1
n

NG (1.14)
n=-1,0,1,...,N-1 .

*
( )For n > N-1 take Ah’un to be any positive real numbers for the
sake of the definition (1.12) of (pn(x)):):0 . The polynomials

pN+1(x), pN+2(x),... are irrelevant to the problem.
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The purpose for the introduction og the functions fn(t)
(-1 < n < N-1) can be seen by expressing the probability distribution
function for the time between successive overflows, which we have
denoted by F(t), in terms of fn(t) (-1 € n < N-1). Consider an

N- 1

epoch Ti ) (some k = 0). The distribution of time from
N- 1 N- 1

Ti D= _ 0 until the next overflow subsequent to time Ti ) + 0

(that is, the inter~overflow time) is the same as the distribution

N- 2
of time from T; ) _ 0 (some £ =2 0) until the next subsequent
overflow. This follows from the memoryless property 1.2.2, since at
N- 1 N- 2
both Ti ) + 0 and T; ) + 0 the system is in state N-1.

(Recall that an overflow does not cause a change of state.) Hence

F(t) = fN-z(t) ) (1.15)

If we denote by F*(x) the Laplace-Stieltjes transform of F(t),

given by

F*(x) = J exp(-xt)dF(t) , (1.16)
0

Re x =0 ,

then equations (1.14) and (1.15) imply that

pN- 1 {x)
F¥(x) = ————— (1.17)
PN(X}

The orthogonality of the polynomials p;(x) gives rise to

some important results, which are summarised in the following lemma.

3.1.1 Lemma.

(1) E%(O) =1, n=0,1,2,... .
(ii) The polynomial ;}(x), where n is a non-negative integer,

possesses n distinct negative real zeros. Denote these zeros by

(n) _(n) (n)
X X X

1 §&2 Feeooyg
n
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(iii) The following decomposition into partial fractions holds:

™
S
-y
1

=
1
[
I

Il 2

P (x) i

n=1,2,3,...,
where {xfn): i=1,2,...,n} is the set of zeros of ph(x) and

>0, i=1,2,...,n .

Proof of 3.1.1.

(i) The proof uses (1.12) and induction on n. We have
po(0) = p1(0) =1, and the inductive hypothesis is the assumption
that 1) (0) =1 (i=0,1,...,n). Setting x =0 in (1.12) immediately
yields E;+1(O) = 1, and so, by the Principle of Mathematical
Induction, the result is proved.
(ii) The fact that the zeros of p;(x) are real and distinct is a
standard property of sequences of orthogonal polynomials (see Erdélyi,
et al., [1953], p. 158). Another property common to orthogonal
polynomials is that between any two consecutive zeros of p;_l(x)
there lies exactly one zero of pn(x), and conversely, (see Szego
[1939], sec. 3.3). We will use this to prove that all the zeros of
ph(x) are negative, proceeding by induction on n.

Note that the zero of p,(x) is negative, and take as the
inductive hypothesis the assumption that the zeros of P . (x) are

1

negative.

-1 -1 -1
Denote the zeros of ph_l(x) by xgn ), gn ),..., i?l ),

(n) _(n) (n)
b4

1 !2 I"'In r

and
the zeros of p;(x) by where the zeros are

ordered so that

(n-1) < (n-1)
X X - P B
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and

x(n) <x(n) q. <x(n) <x(n)
n n- 1 2 1

Then the orthogonality of the polynomials implies that

NEYRPENCIS VISR C)RPAN CIED <

(n-1)
X
n n- 1 n-1 ne 2° 2

LM e ()

< ... <
2 1 1

and so, from the inductive hypothesis we conclude that

(n)
X
i

<0, i=2,3,...,n .

We now show that if x&n) 2 0 then a contradiction follows.

Suppose xgn) 2 0. Then

]

T oM
p (0) = T (-x") <0,
i=1

(n)

which contradicts (i) of this lemma. Thus, x, <0, and so

(n)
X,
i

<0, i=1,2,...,n .

Hence, by the Principle of Mathematical Induction, the result is
proved.

(iii) The decomposition into partial fractions of this type is also
a direct consequence of the orthogonality of the polynomials (see
Szegd [1939], theorem 3.3.5). It should be noted that Szegd is more
restrictive than most authors in his definition of orthogonal
polynomials in that he requires the polynomials to be normalised in
such a way that the leading coefficient is positive. This is the

case for our polynomials (pn(x)): o ! and so Szego's theorem

3.3.5, which relies on this fact, does apply. "

Applying lemma 3.1.1 to equation (1.17) yields

N
F*(x) = ) ) (1.18)
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(N)

where '{xi =X i=1,2,...,N} 1is the set of zeros of p _(x) and
o = G:N) >0 (i=1,2,...,N). ©Note that if the Laplace-Stieltjes
transform of a function £(t) is = , for some constant K, then

X+K
f(t) - £(0) = (1 - exp(-kt)) , t=0.

Thus, as F(0) = 0, we can invert (1.18) to yield

F(t) =
i

o
(- ;‘—) [1 - exp(x ©)] ,t=0. (1.19)
1 i

Il 12

A hyperexponential distribution is defined to be a convex linear

combination of exponential distributions. Applying lemma 3.1.1(i) to

equation (1.17) reveals that

F*(0) =1,
and hence, using (1.18),
p! %
V (-—) =1. (1.20)
AL X,

We have also shown that X, <0 and o, > 0, and so

o,
) i
(- _x_) >0, i=l,2,...,N . (1.21)

1

The results (1.20) and (1.21) imply that the probability distribution
function for the time between successive overflows, which is given
by relation (1.19), is hyperexponential.

The theory of partial fractions entails an explicit exXpression

for o (see Kreyszig [1972], p. 158):

p, , (%)
N-1 .
4 =—— , i=1,2,...,N, (1.22)
]
py (%)
where ' implies differentiation with respect to x. Thus the

weights, Q (i=1,2,...,N), in the convex linear combination of
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exponential distributions are given by

B =- gz Coxopp(x) S8,

o Py (%)

i=1,2,...,N.

The results of this section can be summarised in the following
theorem:

3.1.2 Theorem.

The distribution function of the time between successive
overflows from a finite birth-and-death process of N states, with
associated overflow process, is a convex linear combination of N

exponential distributions. Specifically,

N
F(t) = ) B [l -exp(xt)] , t>0. (1.24)
i=1
The parameters X, (i=1,2,...,N) of the component exponential
distributions and the weights Bi (i=1,2,...,N) of the convex linear

combination are uniquely determined by the birth-and-death process

o0

through the sequence of orthogonal polynomials (pn(x))n , given

=0

by the recurrence relations (1.12). The parameters are simply the

zeros of pN(x), and the weights can be computed by equation (1.23).

We will now note the relationship between the orthogonal

oo

polynomial sequence (pn(x))n and the orthogonal polynomial

sequence (Q (x))Oo used by Karlin and McGregor in their series
q n n=0

of papers. (See chapter 2.) Comparison of (1.12) of this section

and relation (0.6) of chapter 2 reveals that
pn(x) = Qh(—x) , n=0,1,2,... . _ (1.25)

The fact that our analysis has generated (essentially) the same
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orthogonal polynomial sequence as that found by Karlin and McGregor
when considering the eigenvectors of the matrix A (recall chapter
2, equation (0.2)) gives a further insight into the fundamental
relationship which exists between the birth-and-death process and
the orthogonal polynomial sequence. We will discuss this connection
further in section 4.4.

In chapter 2 it was mentioned that Keilson [1979] (p. 40) writes
the first passage time density from a state to its higher neighbour
as a weighted sum of exponentials, using his spectral representation

for the transition probabilities. Since the state of the process at

N- 2
i ) +0 (some k> 0) is (N-1), it is thus evident that
fN 2(t) is simply the first passage time distribution from state

(N-1) to some state N, were there such a state. Thus the analysis
leading to theorem 3.1.2 provides an alternative derivation of the
formula of Keilson, without making reference to the transition

probabilities.
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3.2 APPLICATIONS IN QUEUEING THEORY.

It is well known that many elementary queueing models can be
framed as birth-and-death processes. (See, for example, Cooper [1972]
or Kleinrock [1975].) Thus the theory developed in the previous
section can be applied to a wide family of queueing models of finite
capacity to examine the nature of the time between successive overflows.
An overflow here refers to an arrival at the service installation when
there are no vacant positions, and which is consequently rejected.

This particularly applies to models in telephony.

3.2.1 Telephone Trunking Model.

Consider ‘the following basic telephone trunking model: a
Poisson stream of calls of intensity A arrives at a group of T;
identical trunks. A call which arrives when the group is not at
capacity engages one of the vacant trunks for a time, called its
holding time, which is distributed according to some (fixed)
negative exponential distribution. For conyvenience, we will use a
time scale which has as its unit the mean holding time.

If we define the state of the system to be the number of calls
engaged, then the model is a birth-and-death process of T +1 states
(viz. 0,1,2,...,T;) with rates

A =X, n=0,1,2,...,T1 ,
(2.1.1)
MW =n , n=1,2,3,...,T)
(Note that the call termination rate for each occupied trunk is
unity, and so the total call termination rate is n; hence uh = n.)
The recurrence relations for the orthogonal polynomials ;k(x)

(n=0,1,2,...) become
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Apn+l(x) - (x+l+n)pn(x) + nph_l(x) = 0, S
n=1,2,...,

]
l—l
+

po(x) =1, pi1{x)

>R

The recurrence relations which define the Charlier polynomials

cn(x;k) (see Erdélyi, et. al., [1953], section 10.25) are

Ac (x;\) + (x=A-n)c (x;A) + nc (x;A) =0,
n+1l n n- 1

(2.1.3)
n=1,2,...,
- X
col(x;A) =1, c1(x;A) =1 - 7\ A
Comparison of ,(2.1.2) and (2.1.3) reveals that
p (x) =c (-x;}) , (2.1.4)
n n

n=0,1,2,...

The Charlier polynomials are a well-established family of
orthogonal polynomials associated with Poisson's distribution of
rare events. The occurrence of these Charlier polynomials in
investigations of this basic telephone trunking model has also been
noted by Karlin and McGregor [1958a] (section 3), and Potter [1979]
(section 2.3.1). 1In fact, the result (2.1.4) agrees with the results
of section 2.3.1 of Potter {1979], which discovers that the Laplace-
Stieltjes transform of the inter-overflow time distribution function

is given by

c_ {-x;)\)

= __._1___—.—.—..—,—-
F* (x) T (2.1.5)
1

Potter derives the result (2.1.5) as a special case of a formula for

(*)

The natural extension of Xn,un for n > T; has been used (refer

to the footnote to equation (1.12) of section 3.1).
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the Laplace-Stieltjes transform of the inter-overflow time distribution
function for the telephone trunking model offered a general renewal
input process.

The hyperexponential nature of the overflow from the basic
telephone trunking model has previously been noted by Khintchine [1969]
in his investigations of the Palm functions (% (t) associated with
the model. (See pp. 87-95 of Khintchine [1969].) Potter [1979]

(p. 19) shows that Khintchine's formula for the Palm function ;(t)
is consistent with the results stemming from equation (2.1.5) in the

case T; =1 .

3.2.2 Telephone Trunking Model with Holding Registers.

The telephone trunking model of section 3.2.1 can be readily
generalised to allow a finite number of holding registers which store
incoming calls when all trunks are engaged. These calls remain on
the holding registers until a trunk becomes vacant. Thus calls are
only rejected when both the trunk group and the holding register
group are at capacity.

If we assume that there are T, holding registers then the

rates of the birth-and-death process are

An =\ , n=0,1,2,...,T1+T2 ,

(2.2.1)
{n , n=0,1,2,...,T,

Ty , n=T,Ti1+},...,T1+T2

The recurrence relations for the associated orthogonal polynomials
;h(x) (n=0,1,2,...) become
Apn+l(x) - (x+A+n)pn(x) + npn_l(x) =0,
n=1,2,...,T; ,
Ap ,, (x) = (x#A+T1)p (%) + Tip , (x) =0, (2.2.2)

_ (*)
n=T;,T+1,...,

(*) The natural extension of Kn,un for n > T1+T, has been used

(refer to the footnote to equation (1.12) of section 3.1).
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po(x) =1, pl(x)=1+’—; .

We note that

pn(x) S cn(—x;k) , n=0,1,2,...,T;+1 , (2.2.3)

but for n > T;+l this relationship does not hold.

3.2.3 Finite Source Models.

Implicit in the previous two models has been the assumption
that there is an infinite population from which service requests
originate. In many practical applications such as an assumption
serves as a reasonable approximation in situations where the
population is very large in relation to the size of the service
installation. However, in some applications account must be made of
the fact that a customer in service cannot generate another service
request until it has again left the system.

In these cases we consider each customer to be an identical
source of service requests. When not in service, the source generates
service requests at a rate Y, say. The rate when the source is in
service is, of course, zero. If we suppose there are M such
sources, and S (S < M) servers (with no waiting room) then the

rates for the birth-and-death process are

A

n

({M-n)Yy , n=0,1,...,S ,
(2.3.1)
L =n, n=1,2,...,S .

n

To illustrate the construction of the parameters and weights
of the inter-overflow time distribution function let us consider the
case of two sources (M=2) and one server (S=1). From (2.3.1) we

have

Ao =2y, A=Y, wm=1. (2.3.2)
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The associated orthogonal polynomials p (x) are easily found from
n

the recurrence relations (1.12) of section 3.1 to be

PO(X) =1 ’
pi1{x) = g;(x+2Y) ) (2.3.3)

1

= 572 [x2+(3Yy+1) x+2Y2] .

P2 (x)

According to theorem 3.1.2, the parameters of the two component

exponential distributions are the two zeros of p;(x), which are

X1 = %[—(3Y+l)+/yz+6y+l] (2.3.4)
and
Xy = %[—(3Y+l)~/Yz+6Y+l] . (2.3.5)
We note that
x1Xp = 2Y2 . (2.3.6)
Now
p,(x1) = 5%7-[¢%2+6y+l] ; (2.3.7)
and
p;(x2) = - 5%3-[/72+6y+1] : (2.3.8)

From equation (1.23) of section (3.1)

8 = - ;L_. Pl(x1)
! x1  ph(xy)

1
_ 1 5§(x1+2Y)

X1 ——Mziﬁ Y246 y+1

using (2.3.7)

i

- - X1+2Y)
/Y2 +6Y7+1 X1

= = ——l‘—__ (y+x2)
VY2+6v7+1

using (2.3.6)
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1 +1
=5 + ——:gﬁzzzz (2.3.9)
2VY +6v7+1
Similarly,
1 +1
Bo = 5 - L (2.3.10)
2/y%+6Y7+1

Thus the distribution function of the time between successive

unsuccessful requests for service is

1 +1 —3y=1+/Y2+67+1
F(t) = (§+—Y——J[1—exp( YouRY 2V - 0]

2/ +6Y7+1

+ (% - ——fééézzz)[l - exp(

2/ % 467+1

_ 1. 2
Shiat gY oY+l L 4y, (2.3.11)

V

t 0.

3.2.4 oOther Models .

The scope for inventing models to which our theory applies is
quite endless, and only the most important basic models have been
presented here. More involved models can be achieved by combining
some of the simpler ones, and also by adjusting the birth and death
rates to allow for such phenomena as baulking or discouraged arrivals
(arrival rate decreases as the number in the system increases) and
accelerated service (service rate per server increases as the number
in the system increases).

Given the rates for a finite birth-and-death process, it is a
simple procedure to find the numerical values of the parameters and
weights of the hyperexponential inter-overflow time distribution
function. A computer program to achieve these computations is given

in appendix 1.
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3.3 SOME NOTES ON THE ASSOCIATED ORTHOGONAL POLYNOMIALS.

For the sake of completeness we now make some notes and
observations regarding the orthogonality of the polynomials PH(X)
(n=0,1,2,...) associated with the finite birth-and-death process.

We recall that in chapter 2 it was mentioned that Karlin and McGregor,
in their series of papers, make use of the orthogonal polynomial

sequence (C%(x)): o ! which we observed in section 3.1 (equation

©0

(1.25)) is simply the sequence (pn(—x))n The properties of the

=0
polynomials QI(x) (n=0,1,2,...), and hence those of pn(x)
(n=0,1,2,...), from an orthogonal polynomial theory viewpoint, are
discussed at length in Karlin and McGregor [1957a] and [1957b], and

so, in this section, only some additional observations of specific
interest will be made.

Tt has been noted in section 3.2.1 that for the telephone trunking
model the polynomials pn(x) are simply related to the Charlier
polynomials. In the telephone trunking model with holding registers
of section 3.2.2 the recurrence relations (2.2.2) for the ph(x) are
also quite simple, particularly in the case when the number of trunks,

T, is unity. It is the latter special case which we will investigate.

The recurrence relations (2.2.2) for the case T; =1 are

Apn+l(x) - (x+A+1)pn(x) + pn.l(x) =0,
n=1,2,3,..., (3.1)

= X
po(x) =1, pi(x) =1+73.
Define the generating function

G(x,2) = ) p (x)z , |z] <1. (3.2)
n=a0

1
By multiplying (3.1) by zn+ and summing over n from 1 to

we obtain
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A[G(x,z)—l—(l+§)z] - (x+AH)z[G(x,z)~1] + zzG(x,z) =0,
which yields, on rearrangement,

A-z
T A= (x+A+1) z+z? : (3.3)

G(x,2)

The generating function of the Chebyshev polynomials of the

second kind, Un(x) , 1is

[s o]
n 1
non;(x)C = 1oxciz? ! (3.4)

(see BAbramowitz and Stegun [1964], p. 783). Comparison of (3.3) and

(3.4) reveals .that

e X4+A+1 1 X4+A+1
B (x) = X200, 5 = 1 T S e
n=1,2,...

Proof of Relation (3.5).

Consider the right-hand-side of (3.5). Multiplying by z

and summing over n from 1 to ® we obtain

? A'% U (x+A+l) no_ § X%fl B (x+k+1 n
am1 n 2V ® . n- 1 2;>\ z

8

x+A+1

U ( ) ()"
o M 27\ YA

x+A+1

Z .. n Z
LU GR-GR T R X

]

=
Il ~1

x+A+1

A Z n
-3 .nzo v S O -1

il

since Up(x) =1
(1 -3
= 1 - 2(x+)\+l)(z ) +_Ei = L
2/A ' Vh A
using (3.4)

_ A=z ~
T A (x+A+1) z+z2

G(x,z) - 1 using (3.3)
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o0
=} p 0z -1 using (3.2)
n=0
[s0]
= Z pn(x)zn since po(x) =1

This last expression is the left-hand-side of (3.5) after multiplication

by z"  and summing from n=1 to . Thus expression (3.5) is true.

n
We shall now investigate further the relationship between pn(x)

and the Chebyshev polynomials. We note that the two orthogonal

o0 co

polynomial sequences (pn(x))n=0 and (Knpn(01x+02))n 0 (where

K #0 and 0; # 0) are essentially the same. If we picture the

polynomials ph(x) graphically then K provides a vertical dilation

while 0; and 0O, provide a horizontal dilation and shift respectively.

Thus, knowing any result concerning (pn(x)): o ! the corresponding

result for (K p (01x+02))oo
nn n

—o can be found immediately. However,

the recurrence relations of these two systems may be markedly
different on first inspection.

Bearing this in mind, and recalling the result (3.5), let us

[»o]

define the orthogonal polynomial sequence (rn(x))n=0 by
2 5
rn(x) = A2 ph(ZX.x—A—l) . (3.6)
Then from (3.1) we obtain the recurrence relations
X, (x) = 2xr_ (x) - rn_l,(x) '
n=1,2,..., (3.7)
_ 1
ro(x) =1, ri1(x) = 2x - 7
Proof of (3.7).
ntl L
= 2 -— A - J
r,, (x A pn+l(2k.x A-1) using (3.6)

n-1

= A2 [(Zk%k—k—l+k+l)pn(ZA%x—A—l) - pn_l(2k%x—l—l)] using (3.1)
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n 3 | 3
2x2\2 P, (2X°x=-A-1) - X 2 pn_l,(z}\ x-A-1)

2xr (x) - r (x) using (3.6) . =
n n-1

Note that the recurrence relation (3.7) is simply the Chebyshev
recurrence relation (Abramowitz and Stegun [1964], p. 782, 22.7.4 and
22.7.5). The two "kinds" of Chebyshev polynomials, T;(x) and Un(x),
both satisfy the same recurrence relation, differing only in the
initial specifications.

Chihara [1978] (p. 204) quotes a result of Geronimus [1930]

(o]

which states that a sequence of orthogonal polynomials (P“(x))n:0

satisfying theé Chebyshev recurrence relation, but with general

initial specifications
Po(x) =1, Pi(x) =ax-b , (a#0)

can be represented by

P (x) = aT (x) + (a-1)U (x) - bU (x) ,
n n n- 2 n- 1

n=2,3,...

o0
Thus the sequence (r (x)) 0 can be written as
n n

v

1
r;(x) = 2Tn(X) + Uh_2(x) - 7X—Un-1(x) '
(3.8)
n=2,3,...
It should be pointed out that this does not conflict with the result

(3.5), as can be seen from the following argument.

Proof that (3.8) is consistent with (3.5).

Equation 22.5.6 of Abramowitz and Stegun [1964] reads

T (x) = U (x) - xU (x)
n n n-1



42,

Thus

1
21 (x) + U, (x) = 2= U (x)

1
2[Un (x) -xU_ (x)] + u_, (x) - iy U, (%)

It

1
2UL(x) - [ZXU;_I(X) - Un_z(x)] - 7X-U;_l(x)

I

20 (x) - U (x) - 71>T o, x

using the Chebyshev recurrence relation

!

U (0 - U

If we use (3.6) to write (3.5) in terms of rn(x) we obtain

r(x) =0 () - x U (0,

and so the two results (3.5) and (3.8) are consistent. L

Chihara [1957] investigated the distribution function, Y(x),

[+

for orthogonal polynomial sequences (Pn(x)) 0 satisfying the
n

Chebyshev recurrence relation but with initial specifications

Po(x) =1, Pi(x) =2x-b, (b #0).

Using his result for the case b =~§i’ we find that the distribution

function wr(x) corresponding to the orthogonal polynomial sequence

o0

{rn(X))n=0 is given by
ox [ v/1-t?
g o= 2l s 1< x <
wr(x) - JI D UT . dat for 1< x 1, (3.9)
while wr(x) is constant on (-®,-1]1 and also on [1,®), except

when A < 1 in which case wr(x) has a single jump of magnitude

) A+l
1-A at the point x = 5py

(2]
We must comment on the determinacy of (rn(x))n 5 (recall
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section 1.3). We note that there exist finite a,b such that [a,b]
contains the spectrum of Y(x). Chihara [1978], p. 29, defines a
set he calls the true interval of orthogonality, and his theorem
3.2, p. 58, gives that this interval is a subset of [a,b], and is
thus bounded. Chapter 2, section 5 of Chihara [1978] shows that if
the true interval of orthogonality is bounded then the system is
determinate. Thus wr(x) as given is unique, save for distribution
functions which are substantially equal to wr(x).

We have defined wr(x) to be the distribution function

o

corresponding to the orthogonal polynomial seqguence (rn(x))n ’

=0

which means that

{ rm(x)rn(x)dwr(x) =0 for m # n, (3.10)
and
J [x (x)]zd]pr (x) # 0, n=0,1,2,... . (3.11)

By using (3.6) to express the statements (3.10) and (3.11l) in terms

of pn(x) (n=0,1,2,...), we obtain

J pm(zf“‘x—k-l)pn (:.2>\1%<—A—1)dq)r (x) =0 (3.12)
for m # n,

and

Jf [pn(2>\l“.x—>\—1>]2dwr (x) #0 , (3.13)

=00

n=0,1,2,...

A simple linear change of variable in (3.12) and (3.13) gives

J p_(x)p (x)ay, (3‘—%%) =0 (3.14)

for m # n,
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r [p_(x)]%ay (X—Jz'—};—l) £0, (3.15)
n=0,1,2,...

Thus, denoting the distribution function corresponding to the

orthogonal polynomial sequence (pn(x))°°

nso by wp(x), the results

(3.14) and (3.15) imply by definition that

X+A+1 (*)

1]) (x) =Y (7 (3.16)
Thus from equation (3.9) we have
xX+A+1
2>\ [z /-t? )
d)p (x) = J_1 IEE- -1 dt (3.17)
5 e
for =-2A°=-A-1 < x < 2A°-)-1,
which is the same as
2VNHAFL T a3
1 Vat-(t-A+1) ?
wp (x) = == J—x - dat (3.18)
L e
for -2)1%=A-1 < x < 20°%-XA-1 .
Proof of equation (3.18). i
If we make the linear change of variable t = t = —ZA%t+X+l

in (3.17) we obtain

b = - EA_I—X [1—4A(K+l t) ] at
P 2VA+A+ (-%) (-2/)
2 VA+FAF1
gL L= 0r1-8) 217"
2T ) t
-X
2 JA+A+1
_ 1 1.0 = 214
= | 1~:[4t (t-A+1) <]

* ©
( )Note that the determinacy of (rn(x))n o implies the

determinacy of (pn(x)):;0 .
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and thus (3.18) holds. =

Also from (3.9) we have that wp(x) is constant on

li—)\—l] and also on [2X%—A—l, ®) , except when A < 1 in

(=0, =2A
which case wp(x) has a single jump of magnitude 1-A at the
point x = 0.

Thus, to summarise, the orthogonal polynomial sequence (pn(x)):):0

associated with the telephone trunking model with holding registers

but only one trunk is simply related to the Chebyshev polynomials,

specifically
-2 X+A+1 1 X+A+1
B, () = A% [0, (50 = o 0, G ) sl
n=1,2,... .

The distribution function wp(x) with respect to which the polynomial

is orthogonal is given by

sequence (ph(x)):

w ( ) B __l— [2\/}\+}\+1 }/4t—(t—>\+l)2 at
p T 2w t (3.20)
for —2X!5—>\—1 < x < 2}\%4—1 ;
while wp(x) is constant on (-, —2K%—X—1] and also on

[2X%—A—l, ©), except when A < 1 in which case wp(x) has a single
jump of magnitude 1-A at the point x = 0.

We note, since the unit of time has been taken as the mean
holding time, that X is the offered traffic to the system. (Recall
section 1.4.) 1If, in queueing systems with infinite waiting room,
the offered traffic per server equals or exceeds unity, then the
system is unstable, with queues growing beyond bound. Since in our
model there is only one server, the offered traffic per server is
simply A, and, although there cannot be any instability since the
system is finite, we nonetheless see from our formula for wp(x) that

A=1 is still a "critical" value.
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3.4 THE HYPEREXPONENTIAL DISTRIBUTION AS AN OVERFLOW.

Theorem 3.1.2 states that the overflow from a finite birth-
and-death process of N states is a hyperexponential distribution
with N component exponential distributions. We now seek to
establish its converse: that any hyperexponential distribution with
N component exponential distributions can be interpreted as the

overflow from a finite birth-and-death process of N states.

o0

Consider the sequence (Pn(x))n 5 of orthogonal polynomials

introduced in section 3.1. Associated with this sequence is the

o0

sequence (qh(x))n:0 of monic orthogonal polynomials defined by

]

q%(x)

Aoklkz...kn_lpn(x) , n=1,2,...,
(4.1)

po(x) =1 .

qo (x)

This sequence is simply a renormalisation of the original sequence,

and using (4.1) in (1.12) we obtain the recurrence relations

g (x) ,

-=1"n "n=-1"

qn+1 (x) = (x+>\n+un)qn (x) 0 )\n
(4.2)
n=1,2,...,

go(x) =1, q1(x) = x+A,

(We note that a simple induction argument using (4.2) gives that
qi(x) is in fact monic.) Egquation (1.17) of section 3.1 can thus
be written as

q , (X

F*(x) = )\N-l ——qN—(;)—— = (4.3)

Suppose we are given some arbitrary hyperexponential distribution

defined by its probability distribution function, say
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N
F(t) = ) B [l - exp(xt)] , t>0, (4.4)
i=1

where X <0, X all distinct, % > 0, and

N
Yy B =1. (4.5)

If we denote by F*(x) the Laplace-Stieltjes transform of F(t),

then (4.4) implies that

YooY

* =

PR = ) oo (4.6)
i=1 i

Re x 2 0,
where
o =-xB >0, (4.7)
i ii

i=1,2,...,N .

Expression (4.6) can be written in the form

q (x)
F* (X) = }\ _.I:I_'_l_ (*)

w1 g , (4.8)

where
N
A, = L oo >0, (4.9)
i=1
N
qe(x) = T (x=x), (4.10)
i=1
and
N N
9 (x) =>\1 X[a. T (x-x)] . (4.11)
-1 N-1 i=1  j=1 i
j Fi

We note that q l(x) and qN(x) are monic polynomials in x of

exact degree N-1 and N respectively, and that AN 2 0.

(*) .
e.f. equation (4.3).
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In order to establish the converse of theorem 3.1.2 we must

find positive real numbers Ao,kl,...,AN_l, H1rHareee by such

o0

that the sequence of orthogonal polynomials (qn(x))n o ! defined

by (4.2) has q 1(x) and qN(x) as its (N-1l)st and Nth members
respectively.
The zeros of qN(x) are X1,Xzse--rXg s and suppose they are

ordered so that

x <X < t.. < x9 < X3

The theory of partial fractions (see Kreyszig [1972], p. 158)

gives that )
q. . (x)
N- 1 i .
OLi = >\N-1 —?_(—X_)— ’ (4.12)
N i
i=1,2,...,N,
where ' implies differentiation with respect to x. As XN . >0,
% >0 (i=1,2,...,N), then equation (4.12) implies that
G, (%)
N ' (x 1) >0, (4.13)
C‘{N i

i=1,2,...,N.

Now qN(x) is a polynomial of exact degree N with N distinct

zeros, and so

a (x )ag(x ) <0, (4.14)

i=1,2,...,N-1.

(That is, the gradient of the polynomial changes in sign from one
zero to the next.) Combining the inequalities (4.13) and (4.14) we

see that
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a5, (5, <0, (4.15)

i=1,2,...,N-1,

and so, by the Intermediate Value Theorem, there is at least one
zero of qN_l(x) in the interval (ﬁ ) xi+l), i=1,2,...,N-1. But

qN_l(x) has at most N-1 real zeros, and there are N-1 such

intervals. Hence all the zeros of qN 1(x) are real and distinct,

with exactly one in each of the intervals (xi, xi+l)' i=1,2,...,N-1.

If we denote the zeros of qﬁ_l(x) AN ST SYRRRY) and

suppose they are ordered so that

< < . <
Ne 1 YN_2 . Y2<ylr

then the above result gives that

e L TN <y, <x%, <y, <x (4.16)

The string of inequalities (4.16) enables us to invoke a
theorem of Wendroff [1961], which guarantees the existence of a
sequence of monic orthogonal polynomials in x with Iy l(x) and

qN(x) as the (N-1)st and Nth members respectively. These

polynomials satisfy a recurrence relation of the form

d 4, (x) = (x-c“)qn (x) - dnqn_l (x) , (4.17)

n=0,1,2,...,
where ¢ is real, dn >0 (n=0,1,2,...) and g 1(x) =0
n .
We now use a descending inductive argument (for n=N-1,N-2,...,1)
to show that (4.17) can be written in the form of (4.2), with

Ao,ll,...,kN_l, H1sH2, e by all positive, and also that
qi+1(0) = Ai% (0), i=0,1,2,...,N-1 . (4.18)

As a basis for the induction (the case n=N-1), we note that AN ’
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exists and is positive. Substituting (4.7) into (4.5) we see that

N o
y -3 =1,

i=1 i

and so, combining (4.6) and (4.8),

N QN_I(O) .
N1 q (0) -
That is,
qN(O) - XN—lgN-l(O)

Take as the inductive hypothesis, for n € {N-1,8-2,...,1},

the assumption that An’xn+1""’AN-1' and W oMby all
exist and are positive, and also that
qn+1(0) = anh(O) . (4.19)
Comparison of (4.2) and (4.17) reveals that
uoo= -cn—An (4.20)

exists. 1In order to show W >0 it is thus necessary and sufficient

to show that

- > A,
n n

which is also equivalent to the condition

-Ac >2AF (4.21)

since An > 0 by the inductive hypothesis.
Denote the zeros of qn+l(x) by El,Ez,...,£n+l . Then the

orthogonality properties (see Szego [1939], theorem 3.3.5) give that

q, (x) n+l N

Al'l c1[1‘*—] {x) i ‘ X"E (4-22)

where n >0 (i=1,2,...,n+l). Let
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=

i
ei =—'§' ’

i=1,2,3,...,n+l,

(4.23)

and so, by setting x=0 in (4.22) and using the relation (4.19),

we see that

n+1
] 6=1. (4.24)
i=1
Now from (4.22), since q£(x) is a monic polynomial, we have
n+1
A= Lo, (4.25)
i=1
and so, using (4.23),
n+1

and hence also

n+l
Moo= () 8 g)? . (4.26)
i=1
Write
+. -1
qh+1(x) = x 1+anxn+a.n_1xn +...4+a; x4+, (4.27)
and
-1 -2
q (1) = X 4b X 4b X +...4b x4by (4.28)

Now from relation (4.22) we see that

+
q (x) = I (x=£) , (4.29)

and

+
I on T o(xEg) . (4.30)

Comparison of (4.27) and (4.29) reveals that

nt+1

a =- ) E (4.31)
i=1
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and likewise comparison of (4.28) and (4.30) reveals that

1 nt+l

+
Yy on ) (=€) . (4.32)

i
1 i=1

iti

L
n-1 >\
n

Now from (4.31) we have that
n+1
2 (—Ej) = an + (C',i r
j=t

i i=1,2,...,n+l,

which, on substitution into (4.32), gives

+
b, = f?— z n (a +E) . (4.33)

Rearrangement of (4.33) yields

A -a)=- ] 8 g2 . (4.34)

n n-1

But by equating the coefficients of x  in (4.17) we see that

+
- A c =) ©E&% . (4.35)

Now a theorem of Mitrinovié [1970] (theorem 1, p. 76) gives, by
virtue of (4.24), that
n+1 n+1
2 2
z eigi > Z eigi) !

i=1 i=1

and so, by (4.26) and (4.35),
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- A ¢ >AF . (4.36)

It has already been demonstrated that (4.36) is equivalent to the

statement that

Thus

a
A = = 4.37
. U ( )

exists and is positive, since dn > 0.

Setting x = 0 in the recurrence relation (4.2) gives
d ., (0) = ()\n+un)qn(0) - >\n_11.lnqn_.1 (0y ,

and so, using (4.19),

XHQ£(0) = (An+un)qn(0) - An_lunqn.l(o) . (4.38)
Rearrangement of (4.38) yields
q (0) = A ,q (0, (4.39)

which completes the inductive argument.

All that remains to be shown is the initial specifications
qp(x) =1, q;(x) = xtAo . (4.40)

The fact that the polynomials are monic gives immediately that

gy(x) = 1. Now equation (4.39) in the case n=l states
a,;(0) = Agqo(0) = Ao ,

and hence, as q;(x) is a monic first degree polynomial,

qi(x) = x+Ag ,

as required.
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Thus we have established the existence of positive real numbers

A0sAl1se-erA UirM2,eeerby such that

N-1"

q ., (x) = (x+>\n+un)qn (x) - )\n_ MU (x) , (4.41)

n=1,2,...,

with qgp(x) = 1, a1(x) = x+Ao .
We note that, from the given hyperexponential distribution, qN_l(x),
qN(x) and AN_I are uniquely determined. By equating coefficients
of powers of x in (4.41) for the case n=N-1, and noting that
qN_z(x) is monic, we see that AN_2,UN_1 and qN_z(x) are all
uniquely detegmined, and so inductively all the rates and polynomials
are likewise uniquely determined.

We can now summarise the results of the investigation of the

converse of theorem 3.1.2 as follows.

3.4.1 Theorem .

A hyperexponential distribution with N component exponential
distributions can be interpreted as the overflow from a finite
birth-and-death process of N states, with associated overflow
process. The rates of the process are uniquely determined, and can
be computed recursively from (4.41), using equations (4.6) and (4.8)

to provide a starting point. .

Theorem 3.1.2 and its converse, theorem 3.4.1, establish a
one-to-one correspondence between finite birth-and-death processes
of N states, with associated overflow process, and hyperexponential
distributions with N component exponential distributions. This
correspondence is achieved via the overflow from the finite birth-
and-death process.

Given the parameters and weights of a hyperexponential distribution,

it is a simple procedure to find the numerical values of the arrival
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and death rates, and a computer program to achieve this is given

in appendix 2.



4.4

CHAPTER 4. OTHER SECONDARY PROCESSES

ASSOCIATED WITH FINITE BIRTH-AND-DEATH

PROCESSES.

The Time Between Successive Entries to the

Full State.

The Time Between Successive Entries to the

Empty State.

The Time Between Successive Entries to an

Intermediate State.

First Passage Time Distributions.

56.
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4.1 THE TIME BETWEEN SUCCESSIVE ENTRIES TO THE FULL STATE.

We have examined, in the previous chapter, the nature of the
overflow stream from a finite birth-and-death process. We may
however also be interested in questions relating to the length of
time between entries to the boundary state, and also, having left
the boundary state, the length of time the system spends in other
states before it again enters the boundary state.

Consider a birth-and-death process with N+1 states (where N
is a positive integer), labelled 0,1,2,...,N. (Note that in the
previous chapter we considered a birth-and-death process with N
states, 0,1,2,...,N-1; we now consider a process with N+1 states,
0,1,2,...,N, merely to facilitate comparisons between results of
this section and results from the previous chapter.) When the system
is in state n (0 < n < N) births. occur at a rate An, and
independently deaths occur at a rate U When the system is in
state 0 only births may occur, with rate Ao, and when in state N
only deaths may occur, with rate My We again assume Xn > 0 for
0<n <N and uo> 0 for O < n < N. For our present discussion
it will not be necessary to impose an overflow structure on the
finite birth-and-death process.

(n) (n) T(zn)

Denote by {TO < T3 < < ...}, where 0<n <N, the

random epochs at which a birth occurs when the system is in state n,

and also denote by {o%") < oﬁ") < Ogn) < ...}, where 0<n<N,

the random epochs when the system is in state n and a death occurs.
For obvious intuitive reasons we will refer to the boundary

state N as the full state, and on entering the full state the

system becomes blocked. Define a blocking period to be the time
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from when the system is just about to become blocked until it next
is just about to leave the full state. A blocking cycle will be
the period of time from when the system is just about to become
blocked until, after leaving the full state, the system is again

just about to become blocked. That is, a blocking cycle is the

(N-1) _(N-1)

N ' et ), for some k > 0. Note that at an

time interval [T
instant when one blocking cycle ends the next blocking cycle begins.
We will refer to the time from when the system is just about to leave

the full state until it next is just about to become blocked as a

vacancy period. That is, a vacancy period is the time interval

[O(N) (N-1) (%)

v T ) , for some k = 0. Thus a blocking cycle consists

of two parts: a blocking cycle commences with a blocking period and
is then followed by a vacancy period. These concepts are illustrated

in figure 4.1.1.

Blocking Cycle 1 Blocking Cycle 2

-

Vacancy Vacancy
r Period 1 ~ Period 2
C

A
1

zZ
i
|—_\_._/ N

Ne=l—] s s+e¢

N—2— !
N—=3— —I——

State

Time

Fig. 4.1.1
An illustration of blocking cycles and vacancy periods.

*
( )If the process originally started in state N this interval
(N) (N-l))

should read [0k '
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The length of any blocking cycle has the same distribution as
that of any other blocking cycle (recall the memoryless property
1.2.2). The analogous observations for blocking periods and vacancy
periods likewise applies. Accordingly we will denote the probability
distribution function for the length of a blocking cycle by B(t) and
that for the length of a vacancy period by V(t). Of course, the
distribution function for the length of a blocking period is simply
1-ee" (£>0).

Denote by bn(t), 0 < n < N-1, the probability distribution

function for the time to the next entry into the full state from

’

Tin) - 0; that is, from an epoch at which the transition n = (n+l)
is just about to occur. (Compare with the functions fn(t) of

section 3.1.) The system becomes blocked immediately upon the transition

(N~-1) > N, and so trivially
b (£) = u(t) , (1.1)

where u(t) is the unit-step or Heaviside function given by the
expression (1.2) of section 3.1. We write b_,(t) for the probability
distribution function for the time until the next entry into state N
from an arbitrary epoch at which the system is in state 0 and no

birth is just about to occur. These functions bn(t) (n=-1,0,1,...,N-1)
are well-defined due to the memoryless property 1.2.2. We now use

the same procedure as in section 3.1 to find expressions for these
functions bn(t) (n=-1,0,1,...,N-1).

Suppose that the system is in state n, 0 <n < N-1, and

(n)

N (some k 2 0). Note that the system will

be in state n+l at time T;n) + 0. Thus bn(t) is the probability

consider an epoch T

of the event that the system next enters state N by time
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T(n)

" + t. Since the entry into state N must itself be a birth,

then the desired event can only occur if there is at least one

birth or death subseguent to time Tin) + 0 but Dby time Tin) + t.
If we refer to the derivation in section 3.1 of the equations

(1.3) and (1.4) which lead to the expressions(l.5) and (1.6) for

ﬁ](t), we see that exactly the same argument applies to bn(t)

with "overflow" replaced by "entry into state N". Since fn(t)

and bn(t) (n=-1,0,1,...,N-1) satisfy the same recurrence relation

and have the same boundary condition, we thus conclude that

b () = £ (£), n=-1,0,1,...,N-L. (1.2)

»

This result, although it may be surprising at first glance,
is actually to be expected. Both these distribution functions relate
to time intervals which commence as a transition n - (n+l) is Jjust
about to occur and end at the instant of the next subsequent arrival
in state N-1l. Whether this arrival constitutes an overflow or
causes a transition to some state N is of no consequence to the
time interval being considered. In particular we note that bn(t),
n=-1,0,1,...,N-1, is independent of the value of Uy

Thus, from equation (1.14) of section 3.1, the Laplace-Stieltjes

transform of bn(t), defined by

b*(x) = J[ e *ab (v) , (1.3)
n n
0
Re ¥ =2 0, n=-1,0,1,...,N-1,

is given by
pn-i-l (x)

—B;T;T—' ' (1.4)

b:(X) =
n=-1,0,1,...,N-1,

where (_pn(x))n=0 is the sequence of orthogonal polynomials defined
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by (recall equation (1.12) of section 3.1 and its footnote)

AR, (x) = (x+X #u)p (%) + WP (x) =0, (1.5)
n=1,2,...,
— X+
Po(x) T1, pylx) = X0
0
N
Consider an epoch Oi ) (some k = 0) at which a vacancy
N
period commences. Now the distribution of time from GL - 0]

until the next entry into the full state (that is, the length of
the vacancy period) is the same as the distribution of time until
; (N-2)
the next entry into state N from an epoch i - 0 (some £ = 0).
This follows immediately from the memoryless property 1.2.2, since
(N) (N-2)

at both Oy + 0 and T, + 0 the system is in state N-1.

That is,

v(t) = b (), (1.6)

which implies, when combined with result (1.2) of this section and

expression (1.15) of section 3.1, that
v(t) = F(t) , (L.7)

where F(t) is the inter-overflow time distribution function for
the corresponding birth-and-death process of N states with
associated overflow process. Thus equation (1.24) of section 3.1
gives also an expression for V(t).

We can summarise the results concerning the vacancy period
as follows:

4.1.1 Theorem.

The distribution function of the length of a vacancy period
for a finite birth-and-death process of N+1 states is a convex

linear combination of N exponential distributions. Specifically,
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v(t) =

i

Bi[l - exp(ﬁ t)] , t=0, (1.8)
1

[N e 4

where {xi; i=1,...,N} is the set of zeros of p,(x) and

P , (%)
Bl =-—-‘—-N—l"—-{—xl—'j—, i=l,2,-..,N- (1-9)
% Py t¥

We note that V(t) is independent of the value of Wy and
also is exactly the same as the distribution function for the time
between successive overflows from the corresponding birth-and-death
process of N states formed by deleting state N and considering

births in state N-1 as overflows. L]

Now the length of a blocking cycle is equal to the sum of the
length of the blocking period and the length of the following
vacancy period. Thus the distribution function of the length of a
blocking cycle, B(t), is the (Lebesgue-Stieltjes) convolution of
the distribution function of the time spent in state N with that

of the length of a vacancy period, V(t). That is,

rt

B(t) V(t-y)d[l-e "N

Y0

-t
= v(t—y)uNe'”Nydy , t>o0. (1.10)
0

If we denote by B*(x) and V*(x) the Laplace-Stieltjes

transforms of B(t) and V(t) respectively, given by

B* (x)

Jf e *"dB(t), Re x =0, (1.11)
0
and

il

V* (x) Jf e *tav(t), Re x>0, (1.12)
0

then equation (1.10) implies that



63.

B*(x) = i — V*(x) . (1.13)

From (1.7) we have
V¥ (x) = F*(x) , (1.14)

and equation (1.17) of section 3.1 gives that

pr 5 DELT (1.15)
P (%)

Combining (1.14) and (1.15) and substituting into (1.13) reveals

that y

uN PN- 1 (x)

* =
B* (%) Ty PN(X) . (1.16)

Using the notation and results of lemma 3.1.1, we can write equation
(1.16) as

Q.

N
=21 T (1.17)

My

B* (%) (X+UN)

i
Recalling equation (1.23) of section (3.1), which defines B
(i=1,2,...,N) as

, i=1,2,...,N,

w0
N
1
_Nl_Q

we can express equation (1.17) as

B* (x) = Ii 5 B b 18
o poy () (xmx) (10

In order to invert the Laplace-Stieltjes transform we must
decompose the expression (1.18) for B*(x) into partial fractions.

We note that if Uy # -X for some i (1 < i <N) then
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- Bi Hy * B b\ Hy { B, My \ (-x)
= < + (1.19)

(x+p ) (%= ) wetx /) ) \perx ) ()

Thus from (1.18) we have
B (-x )
(NoEE N My ST A i
* = | -

o - (1 5) g Ly ] o o

if uN #'ﬁ% for all i=1,2,...,N,

and
N
B* (x) = / z xiBi \ HN
WL i) Ty
ifi
N B (-x )
|- i N i
' iz, [(HN+xi ) (x-x. ) (1.21)
i Fi
o
Bl
(x+uN)2
if Wy = _ﬁ for some j (1 < j <N).

(Recall that the zeros of pN(x) are distinct, and so UN can equal

X, for at most one j (1< j <N).)

Now if the Laplace-Stieltjes transform of some function £(t)

K

ol for some constant K, then

£(t) - £(0) = (L -¢e*y , t=o.

Also if the Laplace-Stieltjes transform of some function g(t) is
K
W , then

g(t) - g(0) = -te ** +é (L-e¢"y, t=o.
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However,

B(O0) =0,

and so, inverting (1.20) and (1.21), we have

B(t) =/}ZI ik > (1 - & “N
(RN
(1.22)
N - B
+ X[T‘—:H“—)—.(l-exit)], t >0,
i=1 uin

if UN # -X, for all i=1l,2,...,N,

and
N x B \
' / 11 " EN
B(t) = { ) (1 -¢e"N)
\i=l 1JN-'-XI/
1#j
N B u
; »
+ ) [r—(-—% (1 - el )] (1.23)
i=1 LR
iFi
+B - Ny~ gt N, >0,
if = X, for some j (1 < j <N).
It is self-evident that the latter expression for B(t) (for
the case My = X, for some j (1< j < N)) is not hyperexponential.

Suppose that uN # —X for all i=1,2,...,N, so that expression

(1.22) for B(t) applies. Define it (i=1,2,...,N+1) by

B.
Yi . l:_LN , i=1,2,...,N,
e
(1.24)
N x B
_ z i i
Yves -1 Mt

Then, from (1.22),
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N
B(t) =y, (1-e"™) + ] ya-ih,
i=1

(1.25)
t >0, u #-x for all i=1,2,...,N.
N i

Thus, in this case, B(t) is a weighted sum of exponential
distributions, and these weights of course sum to unity since B(t)
is a distribution function. For B(t) to be hyperexponential we
require in addition that the weights be positive. Now iy >0
(i=1,2,...,N) if and only if (uN+xi) >0 (i=1,2,...,N), since
Q >0 (i=1,2,...,N) and Uy > 0. But if (uN+xi) > 0 for all

i=1,2,...,N, then YN+1 < 0, since X <0 (i=1,2,...,N). Thus

»

we will have always at least one negative weight, and so B(t) is
not hyperexponential.

We can summarise the results concerning the blocking cycle as
follows:

4.1.2 Theorem.

The distribution function of the length of a blocking cycle for

a finite birth-and-death process of N+1 states is given by

N X_Bi \

B(t) = - .
-E. ntx )

1

(1 - ¢ ¥N)

(1.26)
B, My

(ule )

+
qu

(1 - exit)] , t>o0,

if My # X, for all i=1,2,...,N,

B(t)

1l
LN
I p~12
| %
T.®
kS
g
=
|
[
=
Z

(1 - e i‘)] (1.27)

+
™
=
]
o
=
2
e
+
=
z
ot
V
o
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if uN=—xj for some j (1< j <N,
where {xi ; i=1,2,...,N} is the set of zeros of Py (x) and
p (% )
N- 1 .
B = ——— , i=1,2,...,N. (1.28)
! % P (%)

We note that B(t) is never hyperexponential. =
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4.2 THE TIME BETWEEN SUCCESSIVE ENTRIES TO THE EMPTY STATE.

In this section we will examine the same birth-and-death
process of N+l states, but we will now concentrate on phenomena
associated with the 0 boundary state. Again we will denote by
{r%“) < TS“) < TE") < ...}, where 0<n <N, the random epochs
at which a birth occurs when the system is in state n, and also

c%") < oﬂ“) < Ogn) < ...}, where 0 < n <N, the

denote by {
random epochs when the system is in state n and a death occurs.
We shall now make some definitions related to the boundary
state 0 which are analogous to the definitions of section 4.1
concerning the boundary state N. We will refer to the boundary
state 0 as the empty state, and on entering the empty state the
system becomes idle. Define an idle period to be the time from
when the system is just about to become idle until it next is just
about to leave the empty state. Ban idle cycle will be the period
of time from when the system is just about to become idle until,
after leaving the empty state, the system is again Jjust about to
become idle. That is, an idle cycle is the time interval
[Oil),diii), for some k = 0 . Note that at an instant when one
idle cycle ends the next idle cycle begins. We will refer to the
time from when the system is just about to leave the empty state
until it next is just about to become idle as an engaged period.

(0) (1), (¥*)
N ’Gk+l) for

That is, an engaged period is the time interval [T
some k > 0. Thus an idle cycle consists of two parts: an idle

cycle commences with an idle period and is then followed by an

engaged period. These concepts are illustrated in figure 4.2.1.

(*)

If the process originally started in state O this interval

(o) 0(1)

should read [T ) ).
k k
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Idle Cycle | Idle Cycle 2
r A
L A
Engaged Engaged
Period | . Period 2

C B
L p,

State
o

Time
Fig. 4.2.1

An illustration of idle cycles and engaged periods.

The length of any idle cycle has the same distribution as
that of any other idle cycle (recall the memoryless property 1.2.2).
The analogous observations for idle periods and engaged periods
likewise applies. Accordingly we will denote the probability
distribution function for the length of an idle cycle by I(t)
and that for the length of an engaged period by E(t). Of course,
the distribution function for the length of an idle period is

Agt

simply 1 - e (t = 0).

Consider a birth-and-death process of N+1 states, labelled

~n A

0,1,2,...,N, with birth rates A, (n=0,1,...,N-1) given by

oo, ¢ P=0,1,2,...,N-1, (2.1)
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and death rates ﬁﬁ (n=1,2,...,N) given by

He = A , n=1,2,3,...,N. (2.2)

©0

Define the orthogonal polynomial sequence (Wn(x))n=0 by

MW () - (xR MW (x) + 1LV (x) =0,
n n+l n n n n n~—1
(2.3)
n=1,2,3,...,
— l A
Wo(x) =1, Wi(x) = - (x+Ag)
Ag

Let {yi; i=l,2,...,N} be the set of zeros of W&(x) and define

Q (i=1,2,...,N) by

Wi 9,)

p. = = —5r— . (2.4)
i b WN (v,)

Let G(t) be the probability distribution function for the length
of a vacancy period, and let ﬁ(t) be that for the length of a
blocking cycle, for this birth-and-death process.

Applying theorems 4.1.1 and 4.1.2 to this new process we

have immediately that

(*)

For n > N-1 take AE and U to be any positive real

00

numbers for the sake of the definition (2.3) of (Wn(x)) 0
=

The polynomials WN+1(X)’ Wﬁ+ (X) ye-ay are irrelevant to

2

the analysis.
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N
vie) = ) p [L - exply, )], t=>0, (2.5)
i=1
N N VANY 2
B(t) =(12 — ‘) (1 - exp(-Hgt))
i =1 uf\i+yi ) (2.6)
N rp He
+ X[A‘ = (l—exp(y_t)):l, t =0,
i=l“(uﬁ+yi) j

if ﬁﬁ # e for all i=1,2,...,N,

b, g
N1 - exny t))] (2.7)

B _AA _ AA _/\A >
+ 0 [1-exp(-let) ] P, Ugt exp(-let), t >0,
if Wg = -, for some j (1L < § < N).
Now if we associate state n of the new process with state
N-n of the original process (n=0,1,2,...,N), then, by virtue of
relations (2.1) and (2.2), we have that the two processes are
stochastically identical. However the blocking cycles and vacancy
periods of the new process are precisely the idle cycles and engaged

periods respectively of the original process. Thus

E(t) = V(t) , (2.8)

and

I(t) = B(t) . (2.9)

Using (2.1) and (2.2) we can express the recurrence relations

oo

(2.3), which define the orthogonal polynomial sequence (Wn(x))n=0 ’
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in terms of quantities associated with the original process:

uN—n Wn+l(x) - (x+uN—n+A —n)Wn(X) + >\N—an—l(x) = 0’

N
(%) (2.10)
n=1,2,3,...,

W) 21, Wi(x) =< (e

M

Combining (2.8) with (2.5) and (2.9) with (2.6) and (2.7) (and

again applying (2.1) and (2.2)) we have that

N
E(t) = 2 P, f1- eXp(yi ©] , t=o0, (2.11)
i=1
(Y AP
I(t) = (1 - exp(-Apt))
\ L %ew,) °
(2.12)
N [ P, Ao 1
. - >
+=2 (oryy BT oREE) e 220
if Ao # -y, for all i=1,2,...,N,
[ N Yipi>
I(t) = < (1~ -Aot
(t) \:Zl Tor, (1 - exp(-Aot))
Pt
7 [N 1
,:2 e - (1 - exply, t))J (2.13)
ifi
+ R [1 - exp(-dot)] - o hot exp(-Aot), t = 0,
if Ag = -, for some 3 (1 < j < N).
Theorem 4.1.2 gives also that ﬁ(t) and hence 1I(t) 4is never
hyperexponential.

(*)
For n > N-1 take A S U

to be any positive real numbers for
N—n N—n

the sake of the definition (2.10) of (Wn(x))oo 0" (Refer to the

footnote to (2.3).
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We can summarise the results of this section as follows:

4,2.1 Theoremn.

The distribution function of the length of an engaged period
for a finite birth-and-death process of N+1 states is a convex
linear combination of N exponential distributions.

Specifically,

E(t) =

I o~ 2

P, [1 - exp(yit)] , t =0, (2.14)
1

where {yi; i=1,2,...,N} is the set of zeros of W (x) and

_, )
S ——— i=1,2,...,N. 2.15

We note that E(t) is independent of the value of Ay.

4.2.2 Theoremn.

The distribution function for the length of an idle cycle

for a finite birth-and-death process of N+1 states is given by

/N ¥ pi\ “Apt
T(t) ={ ) - (1 -e )
\i-——l )\°+yi/
(2.16)
N 0. Ao
I ity
BN e 1 - i r = 4
+1=’:-(>\0+Yi) ( e )J t 0
if Ay # =¥ for all 1i=1,2,...,N,
and
N ¥ 6 _
I(t)=(12 A0+y -(1—ex°t1
N p. Ao
i yit
+ I[W (l - e ):| (2.17)
ifj
+ % (L - e_Aot) - % Aote-kot, t = 0,

if Ao = -y; for some j (1 < j <N,
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where {yi; i=1,2,...,N} is the set of zeros of lVN(x) and

Myt ;)

1
SR - Sel R 1% - JUUN | N 2.18
Ty G, ’ e

We note that 1I(t) is never hyperexponential.

We point out that Keilson [1971] also finds that the length
of an engaged period (or, as he terms it, "the sojourn time on
{1,2,...,N}") is hyperexponential. However our method, which is
essentially constructive, not only provides a simple procedure for
the numerical determination of the distribution, but also relates

to the methods and results of the previous sections thereby giving

greater insight into the structure of the process.
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4.3 THE TIME BETWEEN SUCCESSIVE ENTRIES TO AN INTERMEDIATE STATE.

As illustrated in section 3.2, a number of limited capacity
queueing models can be framed as finite birth-and-death processes.
The theory developed in the previous sections, which we recall
concerned overflows, entries to the full state, and entries to
the empty state, is of obvious relevance to the models being studied.
However in some gueueing models there may be some other states which
are of particular interest. For example, let us recall the
telephone trunking model with holding registers of section 3.2.2.

The theory which we have already developed concerns overflows, the
full state T{ + T,, and the empty state 0. Another state, of
interest in its own right, is the state T;, which is the state in
which all trunks are occupied but all holding registers are vacant.
For this reason we now turn our attention to the study of phenomena
associated with some (arbitrarily selected) intermediate state.

As in sections 4.1 and 4.2 we will consider a finite birth-and-
death process of N+1 states, labelled 0,1,2,...,N, with positive
birth rates An (n=0,1,...,N-1) and positive death rates U

(n=1,2,...,N). BAgain we will denote by {r%") < Tﬁ") < TE“) < ...,

& < A" < 5™ < ...}, for 0<n<N,

for 0<n <N, and {
the random epochs at which the system is in state n and a birth
and death occur respectively.

Let us arbitrarily select, but then fix, an intermediate state,
r say (0 < r < N). We define an r-cycle to be an interval of
time which commences as the system is just about to enter state «r
until it next is just about to enter state r. It is clear from

our definition that any instant of time belongs to exactly one

r-cycle, and the memoryless property 1.2.2 gives that the distribution
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of the length of any r-cycle is the same as that for any other
r-cycle. However, as the system may enter or leave state r with
a birth or a death, any particular r-cycle can have one of the
following four forms: (for some k =2 0, £ 2 0)

[T(r—l) (r-1)

O(r’fl) < T(r-—l) T(r—l) < (r+1)

(1) . Ty, Vo if O K < Tesr, pe1. 7
FEDIN Gl R IR gl e
(1i1) [0£r+1)’ i::l))' if T;r;l) = 0i:+1) 2 0;::%? . 21:1) .
tali [Ol({r+1) 'T;(Zr—l'))' e Tzr_l—l) <O£:+1) <T£r—l)<(’f¢::1)

The concept of r-cycle is illustrated in figure 4.3.1, which gives

an example for each of the four possible types.

2

State

Fig. 4.3.1

An illustration of the concept of r-cycles.

N
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Denote by Gr(t) the probability distribution function
for the length of an r-cycle. We now seek to find an expression
for G (t).

Denote by gh(t), 0 € n < N-1, the probability distribution

(n)

function for the time to the next entry to state r from Tk

- 0;
that is, from an epoch at which the transition n = (n+l) is just

about to occur. Trivially,
g _, (t) =u(t) , (3.1)

where u(t) is the unit-step or Heaviside function given by the
expression (1.2) of section 3.1. We write g_l(t) for the probability
distribution function for the time until the next entry into state

r from an arbitrary epoch at which the system is in state O and

no birth is just about to occur. The memoryless property 1.2.2

implies that the functions gn(t) (n=-1,0,1,...,N-1) are well-
defined; for the sake of notational brevity we have not explicitly
indicated the dependence of gn(tl on r.

We can again apply the technique used in the derivation of
equations (1.5) and (1.6) of section 3.1 to find recurrence
expressions for gn(t) (-1 €< n<r-1l, and r < n < N-1) simply
by replacing "overflow"” with "entry into state «r". For the case
n=r, if the next event subsequent to the initial transition
r >+ (r+l) 1is a death, then this event is the next entry into
state r. However, as we have that gr_l(t) = u(t), then the
expression for r < n < N-1 also holds for n=r. Noting that the
next event after a transition (N-1) -+ N must be a death, we also

have immediately an expression for gN_l(t). Thus,

t
-\
g, (t) = J g, (t-yle °y>\0dy , t 20, (3.2)
0
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2
J e"( An+i1tEn+1)Y [

gh(t) B 0 n+1gh+1(t_y) + un+lgh_1(t—y)]dy !
0<n<r2, t=0,
gr_l(ﬁ) = u(t) ,
(" —(Aps1tinen)
- - +1TEa+ )Y - .
9g(t) J e [Ah+1gn+1(t 5 & 1‘ln+1‘gn—1(’.t y)ldy ,

0
r<n<N-2, t=0,

t
- _ —UNY >
Iy (B JogN—2(t yle mdy, t>0.

In terms of the Laplace-Stieltjes transform of g (t)
n

(-1 < n < N-1), defined by

® _xt
g:(x) = Joe dg;{t) F

Re x = 0, n=-1,0,1,...,N-1,

these recurrence equations read

Ao
*- - *
g—l (X) X+)\0' gO(x) [
u
nt+1 +1
g (x) = x+A +H Ge1 ¥ 3 n+ Iy (X)
n+1 ‘n+1 n+1 Pper
0<n<ryr2,
g:—l(x) =i
n+1 +1
gy (x) = x+A +1 g:+1(x) + X+A n+ 9 1(x) y
n+1 ntl nt+1 un+1 o
r<ns<N-2,
g* (%) = L
N—1 x+uN N-2

Hence, on rearrangement, we have

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)
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Mogf (x) — (x+Xg)g* (x) =0, (3.13)

A Gy (B} - (x-+>\n+1+un

n+1l "n+1

L )oFx) +u o gx (x) =0, (3.14)

0<n<r-2,

gr  x) =1, (3.15)

Ar1 Ty ) - Getd L )90 W, o (x) =0, (3.16)

n+tl n+1l "n-1

r € n< N-2,

' —(x+pN)g§_l(x) + pNg§_2(x) =0 . ™~ (3.17)

[}

We fecall that the orthogonal polynomial sequence (pn(x))n

=0
was defined by
Ap ., (x - (x+A +u)p (x) +up  (x) =0, (3.18)
n=1,2,3,... ,
- 1
Po(x) =1, pi(x) = Yy (x+Xo)
(refer to equation (1.12) of section 3.1). Comparison of (3.18)
with (3.13) and (3.14) reveals immediately that
g:(x) = a(x)pn+l(x) , n=-1,0,1,...,r-1, (3.19)

where o(x) 1is independent of n. The condition (3.15) fixes o (x)

to be

and so from (3.19)

g:(x) , n=-1,0,1,...,r-1 . (3.20)
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[e ]

The orthogonal polynomial sequence (Wn(x))n=0 was defined

by

w.ooW (x) - (x+uN_n+AN_n)Wn(x) + XN_an_l(X) =0,

N-—n n+1
(3.21)
n=1,2,3,... ,

il

1
Wo (x) 1, Wi(x) = — (x+4)
1y oY

(refer to equation (2.10) of section 4.2). If we make the substitution

N-n-1 for n in (3.21), we see that

un+1 WN—n (x) - (x+,un+1+}\n+1)iWN—n—1 (x) + >\n+1,WN—n—2 ('x)‘ =0,
(3.22)
n=0,1,2,...,N-2,
= =
WN—(N—I)—I () =1 Wy (no2y (x) = My (i)
Comparison of (3.22) with (3.16) and (3.17) reveals that
gr(x) = B(xIWg_ _ (x) (3.23)

n=r-1,r, r+l,...,N-1,

where B(x) is independent of n. The condition (3.15) fixes B (x)

as

1
B(x) = .
Wy (%)
and so from (3.23)
W (%)
N—n-—1
g*(xX) = —-7—+— , (3.24)
n W ()
n=r-1,r ,r+l,...,N-1.

Combining (3.20) and (3.24) we thus have
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P (x)
-%i%§f_ ; -1<n<r-l
g*(x) = ' (3.25)
WN—-n—l (X)
—"'W-—(X')'—— ' r-1 < n < N-1
N—r

We now seek an expression for Gr(t) in terms of gn(t)
(-1 < n < N-1). Suppose that at time T an entry into state r
occurs. We require the probability that the next entry into
state r subsequent to time T+0 occurs by time T+t. Suppose
that the next event subsequent to time T+0 occurs in the time
interval (T+y, T+y+dy), where y+dy < t. The time which now
remains for the next entry into state r to occur in is t-y+0(dy),
and either the transition r =+ (r+l) (if the event is a birth) or
the transition r =+ (r-1) (if the event is a death) is just about
to occur. However we note that the future behaviour of the system
subsequent to a transition r - (r-1) is stochastically
indistinguishable from the future behaviour subsequent to a
transition (r-2) > (x-1) (or, in the case r=1, subsequent toan
arbitrary epoch when the system is in state 0 and no birth occurs) .

(Recall the memoryless property 1.2.2.) Thus we have that

t
I E I

G (t) = ] [A g (t-y) + 1 g _, (t-y)]ldy, > 0.(3.26)

0

In terms of the Laplace-Stieltjes transform of q_(t), defined by

Gx (x) = J[ e"”dc;r t) (3.27)
0

Re x 2 0 ,

expression (3.26) can be written as

_ 1
Gf(x) = TE:X::%:T-[Arg:(X) + urg:_z(x)] : (3.28)
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Using equation (3.25), we therefore have that

1
i A + U
(x+>\r U )i WN—r (x) rop (x)

G*(x) =
r

WN—r -1 (x) pr -1 (x) ]
e — (3.29)

Recalling lemma 3.1.1(iii), the following partial fraction

decompositions are immediate:

p._, (%) ) r): ! 3.30)
e AT - S S S r L]
pr(XJ i=1 (x-x(r))
where {x:r); i=1,2,...,r} is the set of zeros of R_(x) and
(r)
P (x ")
O(,_(r) _ r-t (:) >0,
1
p'(x ") (3.31)
i=1,2, ' T3
and
(x) N-r w.(N—r)
Ne—r —1 - z i (3.32)
r -
W, (%) is1 _y:N—r))
(N-r1) . .
where {yi ; i=1,2,...,N-r} is the set of zeros of WN_ (x)
and

(N-r)
(N=r) WN—r -1 yi
w

; - (N—t) >0
v' -
W ¥ ) (3.33)
i=1,2,...,N-r.
If we make the definitions
o
(r) i .
B. = T i=1,2,...,r , (3.34)
i (r)
X
1
and
(r)
(r) %
P. = = , i=1,2,...,r , (3.35)
i y,(r)

then substitution of (3.30) and (3.32) into (3.29) yields
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S

pl= 1 iy
1
G*(x) = _2 =
i=1 (x+>\r ) (x-y; )
(3.36)
fo-x gy
1 1 r
) 3
i=1 (x+)\r+ur)(x—xi )
Let j € {1,2,...,r}. Then, if AL F# —xlf') i
(r) (1) (r) (r)
X TB W B X, B W . (A +u)
(r) (r)
(x+A +u ) (x-x, ) (A 4+ )Y (A 4+ +x, ) (x+A +U )
r T ] ) o T r r ] r r
(3.37)
Bfr)u (-xfr))
J r ]
: * . . !
(A +u+x ) (x-x. ")
T T J ]
3 . (r)
while if A +u = -x then
r T j
(
L () O )
) =BJ. U e anm (3.38)
(x4A +u ) (x=x. ) (x+) +u )2
T r J I T

Similarly, a partial fraction decomposition can be found for the
summands in the first summation on the right-hand-side of (3.36).

Define

p")
1 I

(r) !
(>\r U +X, )

i=1,2,...,r , (3.39)

<
Il

) )
o xi(r Bfr ur
’Yi = (r) ' i=l,2,...,r r (3.40)
(A 1 ) (A +u +x ")
r r T T 1

pi(N—r)>\r
§ = e i=1,2,...,N-r , (3.41)
(A +u +y )

i

(N-r) (N-r)
i pi >\r

(N-1), '
(Ar +HL ) (kr Lty )

o>
]

i=1,2,...,N-r . (3.42)

i
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Then, using the partial fraction decomposition as illustrated in

(3.37) and (3.38), we can write (3.36) as

‘ =y e )
GX(x) = ] ¥, i ()Y )
i=1 (x—xi ) i=1 (x+>\r +ur)
(3.43)
N—r (-yi( Nl N—r (A +1)
* z ai (N-r) * (z 6i) !
i=1 (x—% ) i=1 (x+&-ﬂ£)
if X+ ;é—xf') for all i=1,2,...,r, and >\r+u‘r ;é-yi(N—') for
all i=1,2,...,N~-r;
- (-x ") e (L)
qf(x) = z Yi TN + ( z Y. )
i=1 (x—xi ) i=1 (x+Xr+ur)
i £ i £
Nif (- :N—r)) Nir R (Kr+u )
+ 8 + ( 8 ) —m ——
i=1 (x—y,(N_r)) i=1 (A 4U )
1 r r
(A +u )
PO SR T S 2SI (3.44)
! (x+) )2
if A+ = —xjr) for some j (L<j<r), but A+ # -yi(N“)
for all i=1,2,...,N-r;
r (—xi(r)) SN (A +u)
G (x) = ) Y; ——__?TT_'+ () v)
i=1 (x—xi ) i=1 (X+>‘r +pr)
N-ir (— i(NHI') ) Nil’ ()\r +]J )
+ S ( S )
i=1 | (x i(N—r)) i=1  (x+A )
i £k itk r
(A + )
s —— ; (3.45)
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_ _N-D)

if )\r +U for some k (1 < k < N-r), but )\r +HH # —x?r)
. 1

for all i=1,2,...,r;

r {_ fr)) r o ()\r+ur)
Gxix) = ] e (] )
i=1 (xm;-;i ) i=1 (x+>\r +ur)
it i1#i°
N—
Ner R N T (R
+ 6; + ( § )
(N-r)
i=1 (x-yi ) i=1 (x+}\r +H )
itk ifk
(A +u )
+ (£3j(')ur s ) ——— , (3.46)
(x+) +1 )2
T T
if )\r o= —xj(r) = —yiN—r) , where 1< j<r and 1<k < N-r .
By noting that Gr (0) = 0 we can immediately invert Gr*(x) as

given in equations (3.43), (3.44), (3.45) and (3.46) to yield Gr (t),
in the same fashion as we inverted B*(x) in section 4.1. We note,
for similar reasons as for B(t) in section 4.1, that Gl_ (t) is
never hyperexponential.

The functions Gr (t) have been defined for 0 < r < N. The

time between successive entries to state r for r=0 and r=N

* x%
has probability distribution function I(t)( ) and B(t)( )
respectively. Thus we define
Go(t) = I(t) , (3.47)
and
GN(t) = B(t) . (3.48)

(*)

See section 4.2.

(**)

See section 4.1.
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If we make the following natural interpretations

o =0 = A, , (3.49)

i
o
HH

W_,x p_,(x), (3.50)

then, recalling equations (2.9) of section 4.2 and (1.16) of section
4.1, we see that eguation (3.29), and hence all subsequent analysis,

is true also in the cases r=0 and r=N.
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4.4 FIRST PASSAGE TIME DISTRIBUTIONS.

In the preliminary analysis of the previous sections we
have made use of first passage time distributions, although we
have not explicitly stated them as such. 1In this section we
bring together these results and relate them to existing formulae.

For two distinct states i and j (0<i,j <N, 1i#3)
define the first passage time from 1 to J as the time from an
arbitrary epoch at which the process is in state i until the next
subsequent entry into state Jj. (We note that the first’passage
time is independent of the length of time the process has been in
state i befdre the initial epoch, by the memoryless property
1.2.2.) Denote by Fij(t) the probability distribution function
of the first passage time from i to Jj, and define its Laplace-

Stieltjes transform by

F* (x) = [e‘ ar . (t) , (4.1)
i1 J j
i# 3, Rex=>0.

Recall that in section 4.3 we made use of the functions

gn(t) (n=-1,0,1,...,N-1), which were defined as the probability

distribution function of the time from Ti")-o (some k = 0) wuntil

the next subsequent entry into state r, where r is some fixed

state. But the state of the process at Ti“)+0 is (n+l), and

SO

g, (&) = F . (8, (4.2)

N
K

n
N

ntl # r, -1 <n <N, O

In terms of the Laplace-Stieltjes transforms we can write (4.2) as
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g:(x), = F* (x) , (4.3)

ntl,r

ntl # r, -1 <n <N, 0<r <N.

Invoking equation (3.25) of section 4.3 for g:(x) (-1 < n < N-1)

we have
P (x)
1
n—+(‘£)—' ' -1 < n < r—l,
pl'
F* (x) =
1,
" ‘ WN—n—-l (X)
T e r-1 <n < N-1,
WN—: (X)

r=0,1,2,...,N,

or, more conveniently,

P, ()
<

P, (x) g : <3
F* (x) = (4.4)
Y W (x)

N—i .

7 j<isnN,

N—j

3=0,1,2,...,N.

We thus see that the functions gn(t) (n=-1,0,1,...,N-1) are
simply first passage time distribution functions. The functions
bn(t) {n=-1,0,1,...,N-1) used in section 4.1 are the special
cases when the first passage time is to the boundary state N.

Thig is also the case for the functions fn(t) (n=-1,0,1,...,N-1)
used in section 3.1, since whether the arrival in state N-1 causes
an overflow or a birth to some state N is irrelevant to the time
interval being considered.

‘ It is important to note that for the first passage time

from state i to some hAigher state Jj we do not need to know

anything about the states above Jj. Thus we may truncate the
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state space (as far as {0,1,2,...,3}) or extend the state space
(even to an infinite space) without affecting F:j(x) for i < j.
In chapter 2 it was mentioned that Karlin and McGregor [1959b]
gives a formula for Ffj(x) (i < j) for an infinite birth-and-
death process (equation (0.5) of chapter 2). Bearing in mind the
remarks of the previous paragraph, and recalling the relationship

[o2] (o]

between (pn(x))n o and the sequence (Qn(x))n o of Karlin and

McGregor (equation (1.25) of section 3.1), we see that our formula
(4.4) in the case 1 < 3j agrees with the formula of Karlin and
McGregor. Thus our previous analysis provides an alternative and
more direct dérivation of an existing formula for Ffj(x) in the
case i < j.

However, by approaching the problem directly from the point
of view of a finite birth-and-death process, rather than simply
truncating an infinite one, we find our analysis also gives a
formula for Ffj(x) when 1 > j.

Returning again to F;j(x) for i < j, the formula (4.4)

also provides an alternative derivation of some relevant results

of Keilson [1979]. Using our notation, theorem 5.1A of Keilson [1979]

reads
F* (x) = 6nlen2“'9nn (4.5)
on % (6 +x) (6 +x)...(0 +x) )
nl n2 nn
where an (j=1,2,...,n) are distinct and positive. This result
is however an immediate corollary to our formula (4.4):
p,. (x)
B o] = arme = e (4.6)
on P (x) P (x)

(recall p,(x) = 1). BAs the zeros of pn(x) are real, distinct
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and negative (lemma 3.1.1) we can write

pn(x) = kn(9n1+x)(9n2+x)...(enn+x), (4.7)

where an (3=1,2,...,n) are distinct and positive. However

;;(O) =1 (lemma 3.1.1) and so
k =1[6 6 ...6 17, (4.8)

thus giving the desired form (4.5). Moreover our analysis provides

a means of determining the an (j=1,2,...,n):

6 =—xj(") . 5=1,2,....n , (4.9)

nj

where xfn)

; 3=1,2,...,n} is the set of zeros of p (x). We point
out that yet another, but closely related, derivation of (4.5) can
be found in Keilson [1971] , in which the connection with the
orthogonal polynomials of Karlin and McGregor is noted.
Keilson [1979] (section 5.2) discusses the mean first passage
time from n to (n+l), denoted by 5:. By using a technigque
-+

—+
in which T; is expressed in terms of Tn . Keilson [1979] (p. 61)

obtains

et Vo, (4.10)

where

AoA1... A

Mg =1, 1 = ——"— (n>1) . 4.11
° S i R S

This result can also be derived from formula (4.4), since

e L (0] (4.12)
n dx n,n+1 ) ly=0 ° :

Applying (4.4) to (4.12), recalling that pn(O) =1 (lemma 3.1.1),

yields
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= 1 1
T =Py (0) - P (o) . (4.13)

(o]

From the recurrence relation for (pn(x))n (equation (1.12) of

=0

section 3.1) we have that
_ 31! » ' = v
p', (0) = A "[1+ (A +u)p (O)-W P (0)1
Thus,

p',, (0)-p!(0) = A '[1 + W (p!(0)-p!_ (O] ,

which, from (4.13), gives

T o= AL T 1. (4.14)

n 1

Equation (4.14) is precisely the relation used by Keilson [1979] to
derive (4.10).

We have seen that the approach adopted in section 3.1 which
in passing finds what essentially amount to first passage time
distributions leads quite naturally to the orthogonal polynomials
of Karlin and McGregor. This in turn provides alternative derivations
for a number of existing formulae concerning first passage times,

as shown in this section.
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CHAPTER 5. THE OVERFLOW

STREAM FROM CERTAIN QUEUEING

MODELS WITH RENEWAL INPUT.

Introduction.

Concerning the Overflow Stream from the

GI/M/1/(T2+1) Queue.

The Overflow Stream from the GI/M/1/2

Queue.

The Overflow Stream from the M/M/1/(T,+1)

Queue.
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5.1 INTRODUCTION.

In the preceding chapters, certain secondary processes
associated with finite birth-and-death processes have been
investigated, particularly the overflow process. In section 3.2
it was illustrated that these results can be applied to certain
finite capacity queueing models. However, many elementary
queueing models cannot be treated as birth-and-death processes, and
so the results of the previous chapters cannot be applied.

One of the most important elementary queueing models is a
generalisation of the telephone trunking model with holding registers
introduced in section 3.2.2. We recall that the arrival stream to
the model in section 3.2.2 was Poisson; that is, the distribution
of time between successive arrivals was negative exponential. The
obvious generalisation is to allow some other fixed distribution
as the distribution of time between successive arrivals. We would
therefore have a telephone trunking model with holding registers
with general renewal input.

In order to describe this queueing model succinctly we will
use a four part descriptor:

~/~/-/-

The first two symbols represent the inter-arrival time distribution
and holding time distribution respectively. The number of trunks
is given in the third part, and the total system capacity (the
number of trunks plus the number of holding registers) is given in
the fourth part. The symbols used for distributions are

M - negative exponential,

GI - general renewal,

D - deterministic.
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Thus the model in section 3.2.2 is the M/M/T:/(T;+T») queue, and
the generalisation which we are now considering is the GI/M/T;/(T1+7T,)
gueue.

The basic property of birth-and-death processes is the
memoryless property 1.2.2. This property was used extensively in
our analysis, particularly in the derivation of the recurrence
equations for the functions fn(t) (n=-1,0,1,...,N-1) of section
3.1. However a similar approach may be able to be used for
queueing models which exhibit a memoryless property not on the whole
time continuum but on a discrete subset thereof. For example, the
future behaviour of the GI/M/T;/(T;+T>,) queue subsequent to an
arrival instance depends only on the number then present in the system.
This is an immediate consequence of the renewal nature of the
arrival stream, remembering that the holding time distribution is
negative exponential. Thus this queue exhibits a memoryless
property at the set of arrival instances.

In this chapter, the GI/M/1/(T2+1l) queue will be used as
an illustration of how a similar analysis as to the one used for
birth-and-death processes can be made for certain gqueueing models
which exhibit a memcoryless behaviour at only a discrete subset of
the time continuum.

The GI/M/T;/T) queue (that is, the basic telephone trunking
model of section 3.2.1, except that the arrival process is a
general renewal stream) has been investigated by this approach.

(See Takacs [1959], syski [1960] (section 3.1 of chapter 5) and
potter [1979].) It has already been shown (section 3.2.1) that
these results, in the special case of Poisson arrivals, agree with
the results obtained by applying our analysis to the M/M/T;/T,

queue.
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5.2 CONCERNING THE OVERFLOW STREAM FROM THE GI/M/1/(T»+l) QUEUE.

Consider the GI/M/1/(T;+l) queue introduced in section
5.1, and denote the probability distribution function of the inter-~
arrival time by A(t). As in section 3.2.2 we will use a time
scale which takes as its unit the mean holding time. Denote by
{T%n) < Tﬁ“) < Tgn) < ...}, where 0<n < Tp+l, the random
epochs at which the system contains n calls and an arrival occurs.

. . To+1
Thus the set of overflow instances 1s {Ti & ); k =2 O}, and the

time between successive overflows is the length of the time interval

[(T2¥) T2+ D)

k ""k+1 ).

As mentioned in section 5.1, the future behaviour of the
system subseguent to an arrival instance depends only on the state
the system is then in. Thus, in particular, the behaviour
subsequent to an overflow instance is stochastically identical to
that subsequent to any other overflow instance. Hence the distribution

T T
of the length of the time interval [Ti 2+1), i+f+l)

) (that is,
the distribution of the inter-overflow time) is independent of k.
Accordingly, denote the corresponding probability distribution
function by F(t). We note in passing that, as an overflow is an

arrival which does not result in an increase to the number in the

system, F(t) is also the distribution function for the length of

. , . T To+1) () T '

the time interval [T; 2),Til2 )),)51nce at both Ti 2)+0 and
(Ty+1) .

o 40 the system contains T+l calls.

Define fn(t) (0 < n < T,+l) as the probability distribution

(n) _

function of the time until the next overflow from Tk 0. From
the remark in the previous paragraph,
F(t) = £ (t) . (2.1)
Ty

*
(*) LTt LT2) LT+
m—1 R m

Where
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We also have immediately that

fT2+1(t) = u(t) , (2.2)

where u(t) is the unit-step or Heaviside function defined by
equation (1.2) of section 3.1.

Thus far in our analysis we have not been impaired by the
fact that the memoryless behaviour only occurs at arrival instances.

However the method previously used to derive recurrence relations

for these functions considered the next event subsequent to Tin),

be it an arrival or a death. In our present situation, we are forced

to consider the next arrival subsequent to T(n).

k
Consider an epoch Tin) for some n (0 < n <T,). Then £ (t)
n
is the probability that the next overflow after T(n)—O occurs at or

k

before time T(“)+t. Since 0 < n < T,, the arrival which occurs

k
at Tin) cannot be an overflow, and so there would have to be at least
one more arrival by time Tin)+t. Suppose the next such arrival

(n) T(n)

occurs in the time interval (Tk ty, T, +y+dy), where vy+dy < t.

The time which now remains for the next overflow to occur in is
(n)

t-y+0(dy). However, since the arrival at T, promotes the

system to state (n+l), there could have been any number up to
n+l departures between the arrival at Tin) and the next subsequent
arrival.

Since we have a single trunk with negative exponential
holding times, the stream of departures from the trunk over any
period of time is Poisson, provided that the circuit is busy
continuously throughout the entire period, including the endpoints.

This Poisson stream has unit mean since the mean holding time has

been taken as one unit. Thus, the probability that J (0 < j < n+l)
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depart from the system during a period of length y+dy commencing

T(n)

is
at " i

e’ + o(dy) . (2.3).

¢<u

J!

The probability that all n+l calls depart during the same interval

is then of course simply

e’ + o(dy) . (2.4)

OJI

=
|

Nmab

Il p~ B
-

Should j (0 < j < n+l) calls depart during this period, then

the state of the system at the next arrival subsequent to Tin)+0

!

would be n+l-j.

Thus we have

n t j
e Y 7 -
£ (t) = EOL TS farry (VAW
i (2.5)
f. b f o
+ j [1 - )} e lfg(t-y)aa(y) , t>0,
0 j=o0 J:
n=O,l,2,...,T2.
In terms of the Laplace~Stieéeltjes transform of fn(t) (0 € n < Ty+l),
defined by
£% (%) = J e *tag (v) , (2.6)
n n
0
Re x 2 0, n=0,1,2,...,To+1,
the relations expressed by (2.5) can be written as
n l'°° = y.i -
* = * P S
f;(x) .zo fn+1fj(x) Jo e 31 e " dA(y)
i= (2.7)
[* —xv Yy
+E5G0 | eI - ) e laaty)
: J:
0 j=0

n=0,1,2,...,Ts5.
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Equation (2.2) can be written as

f; +l(x) =1, (2.8)
2

and so acts as a boundary condition.

For any given x, the recurrence equations (2.7), with
supplementary condition (2.8), form a system of T,+1 linear
and clearly independent equations in T+l unknowns. Thus these
equations can, in principle, be uniquely solved to yield f:(x)
(n=0,1,2,...,T2+1l) . This would then immediately give an expression

for the Laplace-Stieltijes transform of F(t), defined by

{e¢]

F*(x) = J[ e Xt ar(e), (2.9)
0

Re x = O,

since equation (2.1) implies that
F*¥(x) = £*¥ (x) . (2.10)
-

No attempt has been made to solve equations (2.7) for
general T, and A(t), but in the next two sections the special

cases GI/M/1/2 and M/M/1/(T,+l) will be discussed.
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5.3 THE OVERFLOW STREAM FROM THE GI/M/1/2 QUEUE.

Consider now the case of the GI/M/1/2 queue. The equations

(2.7) and (2.8) become

O

£500 = £ | e Y an(y)
+ £5(x) 0: e 7 aa(y) (3.1)
- £ (x) -”:’e_(XH)ydA(y) ,
B0 = () O: e DY aa(y)
+ £5(x) :, R INT (3.2)
+ £ (x) :o e 7an(y)
- £ (x) .: (1y)e” T aay)
£5(x) = 1 (3.3)
Define £(x;h), where h is some function of vy, as
L(x;h) = Jf‘: n(y)e T an(y) . (3.4)

Note that £ (x;h) is linear with respect to h. Then using

(3.4) and the Laplace-Stieltjes transform of A(t), defined by

A*(x) = Jo e tan(y) , (3.5)

Re x = 0,

we can write (3.1), (3.2) and (3.3) as



LOGDEN () + B (x) £F(x) - LD ER(x)

£r(x) =
£3(x) = L) £ (x) + L(x;y) £ (%)

+ BA*¥(x)£3(x) - L(x;1+y) £3(x)
f;(x) =1

Substitution of (3.8) into (3.7) y

ields

£ (x) = L(x:1) + L(x;y) £5(x) + A*(x) £¥(x)

- £(x;l+y)f:(x)

Expression (3.6) can be rearranged to read

_ L£(x;1)
e S TS

which, when substituted into (3.9) gives

f?(x) = L(x;1) + £(x;y)f§(X)

L(x;1) [A*(x) - L(x;1+y)]

£1(x) .

1 - A*(x) + £L(x

Rearrangement of (3.11) yields

1) fq(X)

L(x;1) [1-A*(x) +L (x;1) ]

fT(X)

However equation (2.10) implies that
F*(x) = ff(x) v

and so (3.12) provides an expression for

T L(x:1) [1-A* (x) +£ (x;1) ] +[1-A* (x) ] [1-£ (x;¥) ]

F*(x).
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(3.

(3.

(3

(3.

(3.

(3.

6)

7)

8)

.9)

10)

11)

.12)

13)
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\
B

We will now give an example of the application ofjihEgﬁi
result in the special case of deterministic arrivals, the D/M/1/2
queue. Suppose that the inter-arrival time is some constant T > O.
Since our time scale has as its unit the mean holding time, the
mean arrival rate in eguilibrium, and hence the offered traffic,
is I . (Recall definition 1.4.1.)

The probability distribution function for the time between

successive arrivals is given by
A(t) = u(t-1T) , (3.14)

where u(t) is the unit-step or Heaviside function defined by

equation (1.2) of section 3.1. Hence

A*(x) = eme : (3.15)
M =g, (3.16)
Lix;y) = Te—(x+l)7 . (3.17)

substitution of these quantities into equation (3.12), bearing in

mind result (3.13), yields

—(x+1) 7 -XT —(x+1) 7
F*(x) = = Lloe oS ] . (3.18)

e—(x+1)'r [l_e——XT +e—(x+l) 'r] - [l_e-—xv'] [l-T e—(x+l)‘r:l

Equation (3.18) does not afford any significant simplification.
The mean and variance of the inter-overflow time can be found

directly from F*(x), as

il
]

d
mean m) - a;—F*(x)I P (3.19)

2 a? o 2
=5z F (x) | -m? . (3.20)

]
Q
|

variance
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We note that

1 d

d ——4 ———— —
o Lo F*(x)] = ) ax P
and so from (3.19)
d
my = - F*(0) o= [log F*(x)]1] . (3.21)
x=0

Equation (3.21) provides an easier derivation of m; than (3.19),

and yields
my = Ter[eT—T] . (3.22)

The derivation of the variance is likewise straightforward but

tedious and so we will simply state the result:

o2 = 126" [T - 277 (T-1) + e (T+1) (T-3) + T] . (3.23)
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5.4 THE OVERFLOW STREAM FROM THE M/M/1/(T,+l) QUEUE.

Suppose now that the arrival stream is Poisson, with rate

A > 0; that is, the inter-arrival time distribution function is
A(t) =1 - e , t =0, (4.1)

As we are taking the unit of time to be the mean holding time, the
parameter A is the offered traffic. (Recall definition 1.4.1.)

The equations (2.7) and (2.8) of section 5.2 become

©
£5(x) = ) 02 £, I ¥

e—(x+}\+1) y
o J!

dy

j
L e_Y]e_'(x"'}\) yd

. y » (4.2)
OJ!

+ A EE(x) J [ -
’ 0

I~ 2

i

n=0,l,2,...,T2 '

f;2+l(x) = 1. (4.3)

j

The integral J ¥~
0

e—(x+A+1)y
J!

dy is simply the Laplace transform

: Yy —(a+1)y :
of the quantity ET-e , and so (4.2) can be written as
B 1
£r(x) = A ) EX (x) ———
n j=0 ntl—j (X+)\+l)1+1
n
1 1
+ A f*(x){———— y —————-} , (4.4)
0
A S0 (et R

n=0,1,2,...,T,

Note that, using the formula for the sum of a geometric series, we

have

. = L , (4.5)

o (x+a+1) T (k4N (xearD)" T

S
x+A

L =

]
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and so

£X(x) = ]

£*
j

A
+1 +1—](x) +
0 (x+)\+l)

£*x(x) , (4.6)
(x+A\) (x+>\+l)n+1 0

n=0,1,2 , Ty

As indicated in the discussion in section 5.1, the

M/M/1/(To+1)
is the special case of the telephone trunking model with holding
registers of section 3.2.2 for

Ty=1. Thus the results of section
3.1 apply to this queue; that is

i:'n+1{x}
f:(x) = e e n=0,1,2,...,Ts+1 , (4.7)
F’T2+2 X
where the orthogonal polynomial seguence (p;(x)):;o is defined by
>‘Pn+1 (x) - (X+)\+l)prl (x) +p _ (x) =0,
n=1,2,..., (4.8)
— x
po(x) =1, pi(x) =1+35 .
We now verify that f£*(x) (n=0,1,2,...,T2) as defined by (4.7)
is indeed the solution to (4.6)
5.4.1 Lemma. If {f:(x); n=0,1,...,T,+1} is defined by (4.7),
then
p (x)
AE*
n+

p .. (%)
(x) + —> £x(x) = (x4+A41) —22 £*  (x) (4.9)
1 P (x) "n : (%) "n+1 £ -
nt+1 nt+2
n=0,1,2,...,Ts.
Proof of 5.4.1

We note that we have immediately from (4.7)

P (x)
f*(x) _ n+1
n

2(x) f:+1(x)

’ (4.10)

n=0,l,2,. ,T2



Thus,

P (x)
P (%)

n+1

Xf:+l(x) + f:{x)

p (%)

n+1

Pl'I.-!'l {x} pn+2_(X)

P, (x)

lf:+1(x) +-
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£*
nt+1

(x)

using (4.8),

1
= —pn” ) £x  x)Dp (x) +p (x)]
P ., (%)
= (X+>\+l) _ % (x)
Pn+2(x) n+1
n=0,1,2,..

as required.

5.4.2 Lemma. If {f:(x);n=0,l,2,...,T2+l} is

then

A

o (x4r41) *

*
1 n+l:—]'

f: (x) (x)

)

i

A
(x+)) (x+A+1)"

+ fg(x)

+1

n=0,1,2,...

Proof of 5.4.2.

to show that

p (%)

-T2,

defined by (4.7)

' T2

We will use a descending induction argument on k

R
(x+A+1) pn+2_k(x) (4.11)
n
A A
- 2 i+ :+1_j(x) + 1 fS(X)'

i=k (x+A+1)
n=0,1,2,...,

k=0,1,2,..

The basis of the inductive argument is the case

side of (4.11) reads, for k=n,

(x+\) (_x+>\+1)n e

k=n:

Ta,

.,n.

the right-hand-
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St 1100 ——
(x+A+1) (x+A) (x+A+1)

+

: £ (x)

c b e

—— f*(x)]
(x+A+l)"+1 1 (x+A) "0

1
= ntl [AEx(x) + %%%z% £%(x) ] from (4.8)
(x+A+1)

_ 1 p1(x) £%(x) by lemma 5.4.1,

(x+r+1)" P2 (®)

which is the left-hand-side of (4.11l) for k=n.
Take as the inductive hypothesis the assumption that (4.11)
holds for k replaced by k+1 (0 <k < n); we now prove (4.11)

holds for k. The right-hand-side of (4.11) can be written as

n

A A
£x  (x) 4 ) ——m——— £*  (x)
(x+As1) <7 PEIE j= k+1 (x#Adl)’ TP
+ A N £* (x)
(x+X) (x+2+1)"
p . (%)
= N 2 k+1 f:+1—k(X) + X . k+1 = f:—k(X)
(x+A+1) (x+A+1) pn+l_k(x)
using the inductive hypothesis
p (x)
- : K = i ¥
(x+A+1)" p ., (%)

using lemma 5.4.1,

which is the left-hand-side of (4.11). Hence by the Principle of

Mathematical Induction (4.11) is true.
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By setting k=0 in (4.11), we have

P (%)
ntl f:+l (x)
Pn+2 (x)
n
A A
= ] N R TS T T f5 ()

i=0 (x+A+1) (x+X) (x+)\+1)_n+

n=0,l,2,...,T2.

But equation (4.10) states that

P ., (%
f*(x) = — £* (%) ,
n nt+1

Pn+2 (X)

n=0,1,2,...,T2,

and so the lemma is proved.

Lemma 5.4.2 verifies that the analysis of this chapter is

consistent with our previous work.
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CHAPTER 6. CONCLUDING

REMARKS .
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CHAPTER 6. CONCLUDING REMARKS.

our analysis of induced secondary processes has led us quite
naturally to the orthogonal polynomial sequence associated with
the birth-and-death process. The fact that the sequence played such
a key role in the analysis supports the claims made in the literature
that the sequence and the process have a very close relationship.

We have seen that our unified approach to the topic of
induced secondary processes has provided alternative derivations
of some existing results, and indeed has related them to a common
theme.

The results of chapter 3 demonstrate a new characterisation
of the hyperexponential family. This very strong result’complements
Khintchine's observation of the hyperexponential nature of the
overflow (recall section 3.2.1).

In section 4.2 a natural duality associated with the finite
birth-and-death process was set up and exploited to give some of
the results.

Finally we saw how a similar initial approach can be adopted
to analyse the overflow from certain related queueing models.

We have thus gained an insight into the structure of a finite
birth-and-death process by examining some of its fundamental induced

secondary processes...

Deus 1am ommia scit.
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APPENDIX I. LISTING OF COMPUTER PROGRAM FOR DETERMINATION OF THE

PARBMETERS AND WEIGHTS FOR THE INTER-OVERFLOW TIME

DISTRIBUTION FUNCTION.

The following program has been written in FORTRAN for the
Control Data Corporation (C.D.C.) FORTRAN extended version 4
compiler, and implemented on the C.D.C. Cyber 173 machine using a
NOS/BE operating system. The reference used when writing this

program was Wiley [1976].

PROGRAM BD2HYP (RATESsOUTPUT sPARAMSs TAPE1=RATESS |
#TAPE3=PARAMS)

PURPOSE s -
" GIVEN FINITE BIRTH-AND=-DEATH PROCESS OF N STATES
CALCULATES PARAMETERS AND WEIGHTS OF HYPEREXPONENTIAL
INTER=-OVERF| OW TIME DISTRIBUTION FUNCTION.

EXTERNAL REFERENCES:=-
REFERENCES T.MoSeLe ROUTINF ZPOLR = ZEROS OF A
POLYNOMIAL WITH REAL COEFFICIENTS (LAGUERRE) .

INPYT: -
NUMBER OF STATES (N)s ARRIVAL RATES OF STATES
0yls2%ceotlN~=19 DEATH RATES FOR STATES 192939¢0etN=-1
IN LIST-DIKECTED FORMAT (#*-FORMAT) ON FILE RATES.

QUTPUT: -
(1) INPUT DATA IS ECHOPRINTED TO QUTPUT, TABLE OF
* CUEFFICIENTS OF ASSOCIATED ORTHOGONAL POLYSs
PARAMETERS AND WEIGHTS ALSO WRITTEN TO OUTPUT.
(2) NUMBER OF STATES (N). PARAMETERS AND WEIGHTS WRITTEN
70 FILE PARAMS IN LIST-DIRECTED FORMAT (#~FORMAT).

INTEGEKR NoNMLIsNPloIsIPLaIP29sJsIERsISTAR

REAL LC10)sMUCLO) 9A(11)9B(11)9C(11)sAACLL) sLTsMUTy
#X(10)sALF (10) sBET(10) s XT9Z)922

COMPLEX 2Z2(10)
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DESCRIPTION OF PRINCIPAL VARIABLES:=-

N = NUMBER OF STATES. (INTEGER)

L(I) = ARRIVAL RATE FOR STATE I-1. (REAL)

MU(I) = DEATH RATE FOR STATE I-1l. (REAL)

A(J) 9B(J) 9C(J) = COEFFICIENT OF X##(J=1) IN (1+1)ST,
ITHy (I=1)ST DEGREE ORTHOGONAL POLYNOMIAL RESP.s
WHERE 0<I<N. (REAL)

X(I) = X IS ARRAY OF ZEROS OF NTH DEGREE ORTHOGONAL
POLYNUMIAL, (REAL)

ALF (1) = NUMERATORS TN PARTIAL FRACTION DECOMPOSITION
OF RATIO OF (N=1)ST AND NTH DEG. ORTHOG. POLY. (REAL)

RET(I) = WEIGHTS OF THE HYPEREXPONENTIAL. (REAL)

READ, ECHOPRINT AND CHECK INPUT DATA.

¥ ok x & X £ & % F X & F & F XX

REWIND 1

REWIND 3

READ (ly#) N

IF ((NoGTo0) «AND (NoLT,11))GOTO 30
PRINT®s###%c<<ERROR>>>##%  ILLEGAL NUMBER OF STATES#»
## IN BIRTH-AND=-DEATH PROCESS#

PRINT#9# NUMBER = #sNe# =MUST BE#s
#2 STRICTLY GREATER THAN 0 AND LESS THAN 11%

PRINT#9# #

PRINT#92$%5 PROGRAM ABORTED $$%#

PRINT#9# #

STOP #ILLEGAL INPUT#
30 PRINT 409N
40 FORMAT(1H192INPUT BIRTH~AND=-DEATH PROCESS:=#/1H0»
#2NUMBER OF STATES IN RIRTH~AND=DEATH PROCESS = #,13)
NMl=N=1
NPl=N+1
ISTAR=Z# st uy
READ(let) (L(I)eI=19sN)
IF(N.GT.1)GOTO 48
PRINT S0s (ISTARsI=149)sL (1)
IF(L(1) LE.0&)GOTO 56
GOTO 57
48 READ(Lls#) (MU(I)oI=24N)
PRINT S0 (ISTARsI=199) oL (1) e (I=1sL(I)sMU(I)sI=2eN)
50 FORMAT (1HO92Xo#2I#99Xe2ARRIVAL RATE#+9Xe2DEATH RATE#/
#1X9QAS/1Ke# O0#9S5Xe1PFLSo4/9(1XeI395Xe1PEL1S+495KXs
#1PE15.4/))
IF(L(1) LE«D.)GOTO 56
DO 85 I=2sN
IF(L(I) ,LE«Ds)GOTO 56
IF(MUCI) oLEL04)GOTO 56
55 CONTINUE
GO10 57
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56 PRINTH#yz###tcc<ERROR>> > H % ILLEGAL INPUT#

PRINTH#9o# RATES MUST BE POSITIVE#
PRINT®e# #

PRINT#9#%%% PROGRAM ABORTED $%%#

PRINT#ez #

STOP #ILLEGAL INPUT#

57 PRINT 609 (I-1s1=1s11) 9 (ISTARsI=1+26)

60 FOKMAT (1H0/1HO+#TABLE OF COEFFICIENTS OF NON-MONIC #,
#2ORTHOGONAL POLYNOMIALS:=#/1H0963Xs#POWER OF X#/
#1X92DEGREE#91Xs2%£911111/1X326A5)

COMPUTE ASSOCIATED ORTHOGONAL POLYNOMIALS FROM
RECURRENCE RELATION.

C(l)=100
B(l)y=1l.0
B(z2)y=1.07L(1)
PRINT 70+C(1)
70 FORMAT (1Xo# O0F9SXe2%£431X91PEL10.3)
PRINT 80,8(1)+B(2)
80 FORMAT(1Xe# 1#9SXe2tt292(1X91PEL10+3))
IF(N.,GT.1)GOTO 90
A(l)=1.0
Al2)y=1.0/L(1)
x{ly==L (1)
GOT0 650
90 DO 400 I=1o.nM1 -
IPl=1+l
LI=L(IP1)
MUI=MU(IPI])
A(1)=1.0
A(l+2)=B(I+1)/L1
A(I«1)=(B(I)+(LTI+MLUDI*B(T+1)) /L1

IF(I.EQ.1)GOTO 200

DO 100 J=2s1
100 A(u)=(B(J=1)+«(LI+MUI)#B(J)=MUI*#C(J))/LI
200 DO 300 J=1l,1P1

c(Jy)=8{J)
300 B(J)=A(J)

B(I+2)=A(]+2)

1P2=1+2

PRINT 350el«ls(A(J)9U=1s1P2)
350 FORMAT (1XeoI29e5Xe#%#s11(1Xs1PEL0L3))
400 CONTINUE

COMPUTE ZEROS OF NTH DEGREEF ORTHOGONAL POLYNOMIAL.
DO 500 I=1,NP1

500 AA(I)=A(N+2-1)
CALL ZFPOLR(AASNsZ2IER)
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DO 600 I=1sN

600 X(I)=2(1)

650 PRINT 7009Ns (X(I)9I=1sN)

700 FORMAT (1HO/1HO/1HO420UTPUT HYPEREXPONENTIAL#,
#2 DISTRIBUTION:=%/
#1H0 s 22EROS OF #+129#TH DEGREE ORTHOGONAL #9
#2POLYNOMIAL ARE:=#/1X.# (THESE ARE THE PARAMETERS #,
#2IN THE CONVEX COMBINATION OF EXPONENTIAL #9
#2DISTRIBUTIONS)#/1H0420(1Xe1PEL10.3))

COMPUTE ARRAYS ALF AND BET,

IF(N,GT.1)GOTO 750
ALF (1)=L (1)
BET(1)=1.0
GOTO 950

750 DO 900 1=1eN
XI=X(I) -
COMPUTE 21
AT X(I).
COMPYUTE 22 DERIVATIVE OF NTH DEGREE ORTHOG. POLY.
EVALUATED AT X(I).
21=C(N)
22=N#A(N+1)
DO 800 J=1le¢nNM1
Z1=2Z1#X1+C(N=J)

800 22=72%AI1+(N=-JYHA(N+1=)
ALF (1)=21747
BET(I)==ALF (I) /X (1)

900 CONTINUE

950 PRINT 10009sNM1oNs (ALF (1) 9sI=14N)

1000 FORMAT (1HO/Z1HO0 s #NUMERATORS IN PARTIAL FRACTION #o
#2DECOMPOSITION OF RATIO OF #sI2¢#2TH DEGREE POLYN#s
#20MTAL TO #+s129#TH DEGREE POLYNOMIAL ARE:-%#/
#1H0s10(1XelPFEL10,3))

PRINT 11005 (BET(I)sI=1oN)

1100 FORMAT(1HO/1HOs#RATIOS OF NUMERATOR TO MINUS THE#s
##¢ ZERO ARE:-#/1Xes# (THESE ARE THE WEIGHTS IN THE #»
#2CONVEX COMBINATION OF EXPON#»

(N-=1)ST DEGREE ORTHOG. POLY, EVALUATED

#2ENTIAL DISTRIBUTIONS)#/1H0s10(1Xs1PEL10,3))
WRITE N» PARAMETERS AND WEIGHTS TO FILE PARAMS,

WRITE (3,%) N

WRITE(3s#) (X(I)sI=1sN)
WRITE(3,#) (BET(I)sI=loN)
ENDFILE 3

REWIND 1

REWIND 3

STCP #HYPEREXPONENTIAL FOUND#
END
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APPENDIX II. LISTING OF COMPUTER PROGRAM FOR DETERMINATION OF THE

FINITE BIRTH-AND-DEATH PROCESS FOR WHICH THE GIVEN

HYPEREXPONENTIAL IS THE INTER-OVERFLOW TIME DISTRIBUTION

FUNCTION.

The following program has been written in FORTRAN for the

Control Data Corporation (C.D.C.) FORTRAN extended version 4

compiler, and implemented on the C.D.C. Cyber 173 machine using a

NOS/BE operating system. The reference used when writing this

program was Wiley [1976].

PROGRAM HYP2BD (PARAMS 4OUTPUTSsRATESs TAPEL1=PARAMS

#TAFE3=RATES)

PURPQOSE : =

GIVEN HYPEREXPONENTIALs COMPUTES RATES OF FINITE
BIRTH=AND=DEATH PROCESS FOR WHICH THE HYPEREXPONENTI AL
1S THE INTER=-OVERFLOW TIME DISTRIRUTION FUNCTION.

INPUT: =

NUMBER OF COMPONENT EXPONENTIAL OISTRIBUTIONS (N)»
PARAMETERS (X{(I)sI=LlsN) AND WEIGHTS (BET(I)sI=1sN) =
WHERE X(]) CORRESPONDS TO RBRET(I) = IN LIST=-DIRECTED
FORMAT (#=FQRMAT) ON FILE PARAMS,

oUTpUT:=-

(1)

(2)

INPUT DATA IS ECHOPRINTED TO OQUTPUT. TABLE OF
COEFFICIENTS OF ASSOCIATED MONIC ORTHOGONAL
POLYNUMIALSs ARRIVAL RATES AND DEATH RATES ALSO
WRITTEN TO OUTPUT.

NUMBEK OF COMPONENT EXPONENTIAL DISTRIBUTIONS (N)s
AKRIVAL RATES AND DEATH RATES WRITTEN TO FILE RATES
IN LIST-DIRECTED FORMAT (x#-FORMAT),

INTEGER NyNM1 oNP1sKgKKeKKM24 1o ISTAR

DESCRIPTION OF PRINCIPAL VARIABLES:-

N = NUMBER OF COMPONENT EXPONENTIAL DISTRIBUTIONS.
(INTEGER)
X(1) = X IS ARRAY OF PARAMFTERS. (REAL)

RET(I) = BET IS ARRAY OF WFIGHTS. (REAL)
ALI)eB(I)sC(I) ~ COEFFICIENT OF X##(I=1) IN (K+1)ST,
KTHs (K=1)5T DEGREE MONIC ORTHOGONAL POLY, RESP.s

WHERE 0O<K<No. (REAL)
L(I) = ARRIVAL RATE FOR STATE I-1. (REAL)
MUCT) = DEATH RATE FOR STATE I-1. (REAL)
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READ, ECHOPRINT AND CHECK INPUT DATA.

REWIND 1

REWIND 3

READ (1s#)N

IF ((N.GT40) cAND4 (NeLT.11))GOTO 20

PRINT#sz##2 c<<ERROR>>>%%##  ILLEGAL NUMBER OF #s

#2COMPONENT EXPONENTIAL DISTRIBUTIONS%

PRINT®92 NUMBER = #eNsz -MUST BE #»

#2STRICILY GREATER THAN O AND LESS THAN 11¢#

PRINTH*9z #

PRINT#925%% PROGRAM ABORTED $5%2
PRINT#ez 2

STOP #ILLEGAL INPUT#

NMl=N-1

NPl=Ne+l

READ(l9#) (X (I)9I=19N)

READ(Lo#) (BET(I)sI=14N)

ROUTINE CHECK PRINTS AND VERIFIES VALIDITY OF
PARAMETERS AND WEIGHTSe.
CALL CHECK(NeXsBET)

DETERMINE NTH AND (N=1)ST DEGREE MONIC ORTHOG, POLYS
AND OVERFLOW RATE.

CALL SETUP(NsX9sBETsA4BsL (N))

ISTARS#usty

PRINT QOa(I-le:loll)9(ISTAR01=1926)

FORMAT (1H0/1R0/1H0s#TABLE OF COEFFICIENTS OF MONIC #s

#20RTHOGONAL POLYNOMIALS:=#/1H0+63Xs#POWER OF X#/
#1X92DEGREE#1Xs#%##s11111/1X+26A5)

PRINT 250sNs (ACI)9I=15NP1)
PRINT 2509NM1s (B(I)sT=1sN)

CAN IMMEDIATELY DEAL wITH CASE N=1l:

IF(N.G1,1)G0TO 50

PRINT 1509 (ISTARsI=1s13)sL(1)
WRITE(3s%) N

WRITE(39#) L(1)

G010 160

DETERMINE MONIC ORTHOGONAL POLYS AND RATES RECURSIVELY.
AT EACH ITERATION ARRIVAL RATE FOR STATE K AND KTH AND
(K+1)ST DEGREE POLY. ARE KNOWNj3 DETERMINE DEATH RATE
FOK STATE K, ARRIVAL RATE FOR STATE K-1 AND (K=1)5T7
DEGREE POLYNOMIAL.

K=NM1
KK=N

o JFIK=2)1209110490



24
]

90

100

110

120

130
150

160

1lle.

K>=3:

XK=A (KK)=B(KK=1)

MU (KK) =XK=L (KK)
L(KK=1)=(B(KK=2)=A(KK=1)+B(KK=1)#XK) /MU (KK)
KKM2=KK=2

DO 100 1=2+sKKM2
C(I)=(B(I=-1)=A(1)+B(I)#XK)/(MU(KK)#*L(KK=1))
C(l)=(=A(1)+B(1)#XK)/ (MU(KK)#*L(KK=1))
C(K)=1le

PRINT 2509K=19(C(I)sI=19sK)

GOT0 200

K=A(3)=B(2)
Y(3)=XK=L (3)
L(2)=(B(1)=A(2)+B(2)#xK)/My(3)
c(2)=le.

C(l)=(=A(1)+B(1)=XK) /(MU(3)xL (2))
PRINT 2509K=19(C(I)sI=19K)

GOT0 200

K
X
M

K=1¢

XK=A(2) =B (1)

MU(2)=XK=L(2)
L(ly=(=A(l)+B(1)#XK)/MU(2)
C(l)=1o

PRINT 2509K=19(C(I)9sI=19K)
G010 200

K=0: PRINT RESULTS

PRINT 1509 (ISTAReI=19]13) 9L (1) e (KoL (Ke1)oMU(K+])9K=19NM])
FOKMATUIHO/1HO0/1H0s20UTPUT BIRTH-AND-DEATH PROCESS:=#/
#1092 K#9slOXs#ARRIVAL RATEZ919Xe2DEATH RATE#/1Xy
#13A5/1Xe2 0#910X9F20,6/1Xe9(I392(10XsF20,6)/1X))
WRITE(39%) n

WRITE(3e%) (L(I)sI=1sn)

WRITE(3e#) (MU(I)9I=24N)

ENDFILE 3

REWIND 1

REwWIND 3

STOP #BIRTH-AND~DEATH PROCESS FOUND#
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UPDATE FOR NEXT ITERATION
0O 210 I=19K

A(DY=B(1)

B(Iy=C(I)

A (KK) =B (KK)

KK=K

k=K=1

IF(K.GE.3)GOTO 90
IF(K=1)1130+1205110

FORMAT (1X9I1295Xs###911(1Xs1PE10.3))
END - B

YR R R R R R R E R SR E R R R R AR R R R R R AR R AR R LR RE LR L LR R LR AR R

#*
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SUBROUTINE CHECK(Ngx,RET)

ROUTINE PRINTS PARAMETERS AND WEIGHTS AND CHECKS THEIR
VALIDITY,

INTEGER NyNM1sI,J9ERR]»ERR2,ERR3,ERRS
REAL X(10)9RET(10)92Z
DATA TOL/1oE=4/

PRINT PARAMETERS AND WEIGHTS.

ERR1=0

ERKR2=0

ERR3=0

ERK4=0

PRINT 10¢Ne (X(I)sI=14N)

FORMAT (1H1s2INPUT HYPEREXPONENTIAL DISTRIBUTION:=#/1HO0,

#£NUMBER OF COMPONENT EXPONENTIAL DISTRIBUTIONS = #s15/

#1HO 9 2PARAMETERS ARE:~ 2910(1Xe1PEL10.3))
PRINT 209(BET(I)sI=1sN)
FORMAT (1HO9#WEIGHTS ARE:=- £910(1X41PE10.3))

CHECK THAT WEIGHTS ARE POSITIVE.

DO 30 I=1N

IF (BET(I) eLE«0)GOTO 40
CONTINUE

GOTO0 50

ERKl=1
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CHECK THAT PARAMETERS ARE POSITIVE.

50 DO 60 I=1,4N

IF (X (1) eGE«04)GOTO 70
60 CONTINUE

GOT10 80
70 ERR2=1

CHECK THAT PARAMETERS ARE DISTINCT.

80 IF(N.,EQ,1)GOTO 110
NMI=N-1
DO 90 I=1,NMl
1P1=T1¢1
DO 90 J=IP1l,N
IF(X(I)EQex (J))IGOTO 100
90 CONTINUE
G010 110
100 ERR3=1

CHECK THAT WEIGHTS SuM TO UNITy.

110 z=0,

DO 120 I1=1lsn
1?0 2=2+BET (1)
IF(ABS(Z—IOO)-GT.TOL,ERRQ:I

PRINT ERROR MESSAGESs IF ANY,

I=ERR1+ERRZ2+ERR3I«ERRY4

IF(I.EQ.0)RETURN

PRINTH#szue#c<<ERROR>>>#u ILLEGAL INPUT#
IF(ERRLEQe1)PRINT#y2 WE IGHTS MUST#4
#z BE POSITIVE#

IF(ERR2 (EQL 1 )PRINT# 42 PARAMETERS #9
#2MUST BE NEGATIVE#

IF(ERR3IEQe1)PRINT# 44 PARAMETERS #9
#2MUST BE DISTINCT#

IF(ERR4 ,EQe 1 )PRINTH# g2 SUM OF #9
#2WEIGHTS MUST BE 1.02

PRINTH#ez #

PRINT#92$%% PROGRAM ABORTED $%%%

PRINTH#e# #

STOP #1LLEGAL INPUT#

END
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#555355555555555555F555F555553855F55FPPPEPPIPPFPPPIPPE555553

#

£ & % & % %

10

20

30
40

50

SUBROUTINE SETUP (NeXsBETsA,BslL)

ROUTINE DETERMINES OVERFLOW RATE (L) AND NTH AND
(N=1)ST DEGREE MONIC ORTHOG. POLYS,

RECALL THAT LAPLACE=-STIELTJUES TRANSFORM OF HYPEREXP, =
L # ((N=1)ST DEGREE POLY,) 7/ (NTH DEGREE POLY,) .

INTEGER NoNMlolsd
REAL X(10)sgET(10)9A(11)9B(11)sC(11)oY(10)obLsZ

IF(N,EQ,1)GDTO 50
NM1=N=1

DETERMINE NTH DEGREE MONIC ORTHOG. POLY., =
(XX (1)) (X=X (2) ) ,, % (X=X(N))
CALL COEFF(NsX9op)

DETERMINE OVERFLOW RATE (L)s AND INITIALISE ARRAY B.

L=0.
DO 10 I=1,N
B(1)=0e

L=L=BET (1) #x(I)
DETERMINE (N=1)ST DEGREE MONIC ORTHOG. POLY.

DO 40 I=1yN

DO 20 J=1sN

Y(J)=X(J)

2=Y(1)

Y (I)=Y(N)

Y (N)=Z

CALL COEFF(NMl,ysYsC)

C CORRESPONDS TO:
(X=X (1)) ® oo (X=X (I=1) ) (X=X(I+1))Reae®(X=X(N)) o
==BET(I)®*X(I)/L '

‘DO 30 J=1lsN

Rl =B(Y)+2#C(Y)
CONTINUE
RETURN

DEALS WITH CASE N=1:

A(l)==x(1)
A(Z)’-‘-lo
B(l)=le.
L==X(1)
RETURN
END
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:$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$S$$$$$$$$$$$$$$$$ss
’ SUBROUTINE COEFF (KyXyA) |
0 DETERMINES POLYNOMIAL (X=X (1))#(X=X(2))*#¢qa® (X=X (K)) &
’ INTEGER KylyJ

REAL X(10)sA(11) 92

All)y==X(1)
A(2)=1.
IF(K,EQ,1)YRETURN

# AFTER EACH ITERATION A CORRESPONDS TO:
o (X=X{1))#(X=X(2))#oqa®(X=X(I)) &
DO 20 I=2sK
2=X(1)
A(I+1)=A(1)
J=1
10 AGU)=A(U=1)=2%A(J)
J=J-1
IF(J.6T,1)G0T0 10
A(l)==£%A(1)
20 CONTINUE
RETURN
END
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