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SUMMARY

The aím of this thesis is to present a unified study of some

of the fr¡rdamental secondary processes índuced by a finite bírth-

and-death process. The motivation for the study comes from queueing

theory, since a number of elementary queueing models of finite

capacíty can be viewed as finite birth-and-death processes. However,

so as noÈ to l-irnit the scope of the analysis, the study is approached

more abstractly using the formal stochastic process, the finite

birth-and-death process.

The overflow process is an obvious, and very important, induced

secondary process, and the early portion of the thesis is devoted to

its study. Orthogonal polynomial theory is used extensively in the

analysis of the inter-overffow time distribution, and applications

of the results to queueing tlreory are discussed.

A feature of the thesis is the discovery in the final section

of chapter 3 of a new characterisation of the hyperexponential

family of distributions.

In chapter 4 we regard arrivals which cause the process to

enter some prescribed state as constituting a secondary process.

The analysis thus reveals results concerning the time between

successive entries to the boundary states and also Íntermediate states.

The final section of chapter 4 demonstrates how a number of

isolated results in the literature concerning first passage times

can be derived as corollaries to our analysis.

A simiLar initial approach can be adopted to analyse the

overflow from certain queueing models which are not finite birth-

and-death processes. This is demonstrated in chapter 5 where the

overflow from the single server queue with finite waiting space and

renewal input is discussed.

iv.
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I.I INTRODUCTTON .

It ís appropríate to begin a study of secondary processes

induced by finite birth-and-death processes by discussing the

motivation for such a study. A number of questions concerning

gueueing models of finite capacity can be interpreted as or related

to secondary processes. !{hen considering a finite capacity queueing

model there is the inevitabte question of overflow: what is its

nature and how is it affected by the parameters of the model?

Hovtever the overflow is a secondary process induced by the queueing

Process. t

Aside from this obvious example, there are several more subtle

applícations. One can regard the arrivals which cause the model to

enter some prescribed state (or set of states) as evenÈs of a

secondary process. Thus problems related to firsÈ passage times,

sojourn times, busy periods and so on can be viewed in the light of

induced secondary processes.

Hohrever the scope of the study would be restricted were it

approached simply from a queueing theory víewpoint. Thus, although

we dravr on queueing theory considerations for motivation (and at

times terminologyl ¡ the study is approached more abstractly using

a formal stochastic process, the finite birth-and-death process.

The aim of the thesis is therefore to present a unified study of

some of the fundamental secondary processes induced by a finite

birth-and-death process. The specific queueing theoretic applications

will only be mentioned, or at most used as iLlustrations or examples.

The only exception to this occurs in chapter 5 where a reÌated

problem is in fact approached from the queueing theory aspect.
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Throughout this thesis formal statements of definitions,

theorems, proofs, et cetera, are terminated with the symbol I t

so as to distinguish them from the main text-

The remainder of this chapter is devoted to discussions

of certain preliminary concePÈs.
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r.2 THE BIRTH-AND-DEATH PROCESS.

The analysis of a specific queueing model can often be achieved

by assocíating it with some class of formal processes within the

general theory of stochastic processes. Results proved for the general

class of processes can then be directly applied to the model.

Birth-and-death processes form one important class of stochastic

processes, and a substantial portion of this thesis is devoted to

investigating certain secondary processes associated with finite

birth-and-death processes. Examples are given in section 3.2 to

illustrate how the general theory which we will develop can be applied

to certain specific queueing models. The principal reference for this

section is FeIIer [1968].

I.2.L Definítion. I bírth-and-death ppocess is a continuous time,

discrete state process which obeys the following postulates:

Denote the state space of the system by 
^J 

(as Ñ must be finite

or countably infinite we can without foss of generality take

N = {o ,L,2,...,N} or l\J = {o ,L,2, -..} respecÈively) . suppose at

some time t the process is in state j e Ñ.

(i) The conditional probability Èhat during the period (t't+h)

the transition i -+ (j+1) occrrrs equals

À. h + o(h), as h -+ 0,
,

if j+l € Ñ, where À, > O depends only on j.

(ii) The conditional probability that during the period (t,t+h)

the transition i -+ (j-1) occurs equals

1-trh+o(h), as h+0,

if j-I € Ñ, where Uj > O depends only on j



5

(Íii) The probability that during the period (t,t+h) the

transition j*f occurs (where k€N, kl)+L'kli-Ll is

o(h), as h+0.

We catt the elements of the set {Àr;j,j+f € N} birth tates and

those of the set {Ur ;j,j-f € fi/} death ?ates. we will use Èhe term

finite birth-ond-death proeess to indicate that the state space of

the process is fínite. I

The most important property of a birth-and-death process is

that it exhiJcíts a memoryless nature' The future behaviour of the

system subsequelt to time t depends only on the staÈe of the system

at tíme t+0. (Ife have written t+O to cover the cases when an event

occurs at t.) V,te shall now wriÈe this property formally for later

reference.

L.2.2 The Memoryless Propertv. The future behaviour of a birth-and-

depends only on the state of thedeath process from some time t

process at time t+0.
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I.3 ORTTIOGONAL POLYNOMIALS.

In later chapters we will make use of orthogonal polynomials and

their properties as a tool in the analysis. In this section some

elementary theory of orthogonal polynomials will be discussed as a

preliminary to this later work. The principat references for this

discussion are Szegö [1939], erdélyi, êt. ê1., [1953] and Chihara [fglg].

1.3.I Definition. (see szegö [1939], section 2.2)

Let rl(x) be some given non-decreasing function, with infinitely

many points of increase, and, suppose E}:e moments

n
m

n
x dú(x), D=0,L12r..., (3.r)

exist as real numbers. Then a sequence of polynomials (Pr, (x) )- 
o

is an orthogonaL poLynoniaL sequenee for tbe disttibution functíon rf(x)

if ancl only if

(i) pn (x)

P (x)
m

(ii)

is a polynomial of exact degree n, n=Orl r2r...,

f:_
p,, (x) dtl,r (x) = 0, for m I n,

(iii) r
J__

[n"(x)]'arl,(*) I o, n=o,l ,2,..-
¡

The condition that rf(x) has infinitely many points of increase

is equivalent to Èhe condition that the set

G(ú)={x;rf,r(x+6)-rl(x-6) >O forall ô>O}, ß.2)

called Ljne spectrum of ,þ, be infinite (see Chihara [Ig7g,], p. 5I).

Given any distribution function tf (x) , then there exists a

sequence of polynomials (n" (x) )- o which is orthogonal with respect

to ú(x) (szego [rg:g], section 2.2(L)), and each Pn (x) is uniquely

determined up to an arbitrary non-zero factor (Chihara [fOZa], p. 9).



Thar is, Íf tñ" txl I

with respect to tl (x) ,

Þ-n (x)

at aII com¡non points of continuity.

sztbstantiaLLy equaZ (chitrara ÍL9781 '

7.

is also an orthogonal polynomial seç[uence

then there exist constants K- / O such that

= Knprr(x), n=Orlr2r---, (3-3)

æ

n=0

æ

and conversely given.any sequence of constants (Kn iK / o)
n n=O

then

("rrpn (x) )"=o is an orthogonal polynomial sequence with respect to

ü(x).

Vte note that, íf the sequence (P,, (x) )- o is orthogonal with

respect to rJ.r(x), then it is also orthogonal with respect to rÛ(x)

for any positive constant r< (chihara [lsza], p. 10). However, since

rf (x) is non-decreasing and has infíniÈely many points of increase, \^¡e

have that

r_ dú(x) > 0

and so there exists K - > 0 such that

J: dlrcÛ(x) ] = I

Thus, without loss of generalitYr w€ can demand ü(x) to be such that

J: dtf (x) - I (3.4)

in the definition 1.3.1 of orthogonal polynomials. In the remainder

of this thesis we shall therefore assume that (3.4) holds when referring

to a distribution function.

Suppose 0t"l is a distributíon function for which there exists

a constant c such that

üt"l =r!(x) +c

We say that t! (x) and

p. 521 , since tl.t (x)

ú (x)

can be

are
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replaced by i,t"l in any Lebesgue-Stieltjes integral over (--,-)

with respect to ,.f.r(x), for a continuous integrand, wiÈhout affecting

the value of the integral. For this reason, if the sequence (P,, (x) )- 
o

is orthogonal with respect Èo Ú(x) , then it is, afso orthogonal with

respect to tl (x) .

A sequenc" (p,. (*) )- o of orthogonal polynomials is ca1led

determinate if all distributíon functions with respect to which it is

orthogonal are substantially equal. The question of determinacy is

related to the "problem of moments" which is extensively discussed in

the líterature. Vle shall not investigate the matter further' save

pointing out that there do exist sequences (n" (x) )- o which are

orthogonal with respect to (infinitely many) substantially unequal

distribution functions (Chihara ItSZg], p. 58) -

It shc¡uld be pointed out that Chihara [1978] uses a more general

approach to orthogonal polynomials by replacing the Lebesgue-Stieltjes

integral in definition I.3.I with a general linear functional with

finite moments. Our definition of orthogonal polynomials corresponds

precisely to a subclass of such linear functionals which Chihara calls

"positive-definite" (Chihara [fgZS], chapter 2).

orthogonal polynomíals have a wealth of properties, particularly

involving their zeros. The particular propertíes and results which we

will require for our analysis will be stated and referenced in the text

where they are used.
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L.4 THE CONCEPT OF TRAFFTC.

when considering queueing models one is concerned with the

ínteraction of an arriving stream of.a11t(*) and a group of trunks(*)

to which it ís offered. It is thus desirable to have some measure of

the exÈent to which the arriving calls attempt to "work" the system,

and also a measure of the system's ability to handle this "work".

Intuitively, one would think of these two related concepÈs as Èhe

"traffic" offered to the system, and the "traffic" carried by the

system respectively. This section formalises the concept of traffic.

It is imporÈant to realise that any concept of traffic is not

inherent to the arriving stream of calls. Moreover, traffic is brought

about by the arrivíng callsl interaction with the equipment installation,

and so must be dePendent on both-

We will restrict our attention to queueing processes which possess

ar¡d are in statistical eguilibrium. That is, all transient effects can

be ignored.

L.4.I Definítion. th.e offered tnaffic a Èo the system in eguilíbrium

is the mathematical expectation of the number of arrivals during a time

period equal to the average holding time- That is,

Àa=-
u

(4. 1)

where À is the mean arrivaf rate to the system, and is the mean

holding time.

(*) fn this section we will use the term "calls" to represent the

Components of the input process, and the term "trunks" to represent

the components of the service install-ation.

I
u
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L.4.2 Definition. rlne earried tt'affie a' by the system in

equilibrium is the mathematical expectation of the number of busy

trunks. That is,

(4.2)

where p. is the probability of k trunks being occupied at a
k

randomly sel-ected time Point. r

Both these definitíons seem reasonable ín terms of the intuitive

ideas they endeavour to formalise. However, although one would expect

there to be a simple relationship between offered and carried traffic,

the definitions of these two quantities, in their present form, do not

índícate any such relaÈionshiP.

The definítions have been presented in the forms in which they

are most commonly used. Intuitively, one would expect the carried

traffic to be the proportion of offered traffic that is not 1ost. This

statement appears tautological, but, as the definitíons stand, requires

proof.

I.4.3 Lemma. For a queueing process in equilibrium

a'=(1-PL)4, (4.3)

where p" is the probability that an arrivíng caII is lost.

The proof of Èhís lemma follows readily from Littlers Result,

which states that, in any equilibrium process,

Ñr=ÀrTr, (4.4)

where ÑS is the mean number of calls in the system, À, is the mean

rate At which calls enter the system, and Ta is the mean time spent

in the system by a call. This result has existed for many years, but

was first rigorously proved by Little [fg6f]. The exact definition of

KP
kar=l

k
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,'system" is left flexible, provided aII three parameters are for the

same ttsystem".

proof of 1.4.3. Consider the group of trunks, and let this be

the "system" of Little's Result. we have immediately a' = Ns (by

definition) and I = t^. The mean rate at which calls arrive at theus
,'system" is the mean rate at which SUceeSSfuL caLLs arrive, since the

"system" is just the trunk group. That is,

l. = À(t-PL)

Strbstitution into Líttle's Result yields

I- P")=|ta

and so, by definition I.4.I'

_, _ a(I_p_ )dLa

It is worth noting that Little's Result can be similarly used

to show that the offered traffic ís egual to the expected number of

occupied trunks, if there \^/ere infinítely many trunks avaíIable.



I2

CHAPTER 2. A SURVBY OF

RELATED LITERATURE.
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CHAPTER 2. A SURVEY OF RELATED LITERATURE .

As previously indicated, the study of secondary processes

induced by finite birth-and-death processes has applications to a

wide class of finite capacity queueing models' particularly concerníng

their overflow stream. This will be demonstrated in later chapters,

but ít is appropriate to begin with a brief overview of some of the

principal \^/orks whích deal with the overflow problem from a queueing

theory viewpoint.

One of the pioneering analytical investigations into the overflow

from finite capacíty gueueing rnodels appeared in Kosten Irg¡z]

Kosten [1937] considers two groups of identicat trunks with negative

exponential holding times. The first or primary group is finite and

is offered a poisson stream of arriving calls. Calls which cannot be

accommoclated on this primary group engage a trr.nk on the secondary or

overffow group, which is ínfínite. Kosten [1937] obtains an explícit

formul-a for the joint distribution of occupancy on the primary and

secondary groups, from which is obtained the marginal distribution

and the first two moments of the occucancy on the secondary group.

A version of the analysis of Kosten lfggZ] in Engtish can be found

in Cooper ltgtz) (pp. 113-119).

Brockmeyer [fgS¿] examines the model of Kosten [1937] in the case

when the overflow group is finite, and obtains the joint probability

distribution for this case. A summary of the results of Kosten [lgZ'l]

and Brockmeyer [1954] and some additional formufae are given in

Waltström [1966] (pp. 2O2-2O9). Chastang [fS6¡] also examines

questíons related to the Kosten and Brockmeyer models.

A direct derivation of the mean and variance of the occupancy

on the overflow group for the Kosten model is given in Riordan's
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appendix to !ùilkinson [f956]. These formulae form the basis for

Vtilkinson's EquivalenÈ Random Method first proposed in Wilkinson [1956].

Schehrer ÍtglOl, also using a joint proba-bility distribution approach,

determines the higher order moments of the overflow from the Kosten

and Broclqneyer models.

Investigations of the overflow stream and its effect on the

overflow group for the Kosten and Brockmeyer models with general

renewal input have been made by takács [1959] and Potter [fSZg]. a

srutmary of some of the maín formulae can be found in Pearce and Potter

llig77].SeealsoPalm[1943]andsyski[1960](section3.lofchapter

s).

Kuczura [1973] approximates Èhe overflow from a system with

Poisson input by an "interrupted Poisson process"; this is a process

consisting of a Poisson stream which is alternately switched on for

a negative exponentially dístributed time and then switched off for an

independent negative exponentíally distributed time.

Numerous Studies of the overflow problem from a queueing theory

viewpoint, both analytical and approxímate, have appeared in the

literature. Our discussion here attempts only to mention some of

the more relevant studies.

As mentioned earlier, $/e will be using a sequence of orthogonal

polynomials associated with a finite birth-and-death process as a

tool in the analysis. Karlin and McGregor, in a series of papers,

also use an orthogonal polynomial sequence in their analysis of a¡t

infinite birth-and-death process, and. related problems. A number of

compariSOns and commentS Can be made, and SO hre no\^/ give a Survey Of

these papers.

KarLin and McGregor [1955] serves mainly as an introduction and

a promise of results to come. Karlin and McGregor [1957a] develops the
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basic theory on which the later work rests, and so is of fundamental

importance to the series of papers. Using theír notation, define

p.. (t) to be the probability that the process wil] be in state j
rt

at tíme T+t, given that the state at time T üras i' Then,

recalling definition L.2.L,

Pr,r*r(t)

P (r)

À. t + o(t)
t

U. t + o(t)
I

Pti (t) = ] - (À.+P )t + o(t)

i,i.l

as t + 0, i=0 ,Lr2,..

(A number of the results in the series of papers can allow Io > 0,

and the transition 0 + -I is interpreted as an absorption into some

state -1.) Elementary theory of Markov Processes results in the

following matrix equation for the infinite matrix f(t) = (P.- (t)):

P'(t) = AP(t) r>0 (o. r)

where A is the (infínite) matrix

- (Ào+Uo )

Ur

0

ls o

Àr

- (Àz+Uz)

0

-()'¡+Y¡) 0

[= \,2 
,

(o.2)

(Equation (1.1) of Karlin and McGregor [19574] -)

Other equations involving P(t) also follow from elementary

theory. The main thrust of this paper is to look for an integral

representation of P(t) in terms of the eigenvectors of A.

lz
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Karlin and McGregor introduce an orthogonal polynomial sequence

(9- (x))- o by means of the equation

-XQ = AQ Qo (x) (0. 3)

where A - [Qo (*) Qr (x) Qz (x) . . . ]

=l t

T

following íntegral representation for

Æ
fP..(t)=TT. ltJ J JO

The paper derives the

P.. (r):tt

(x) dil (x) , (0.4)- xte Q. (x) Qj

where tl.t(x)

sequence (

is a distributíon function with respect to which the

Q,, (x) )- o is orthogonal, and

'rTo = r, 1Í, = ## _ +- ( j=1, 2,3, - . .)

In order to establish (0.4), and also to ans\^ter questions related to

the existence and uniqueness of P(t), the paper analyses in depth

the orthogonal polynomial sequencu (Qr, {x) )l=o and its associated

Stieltjes moment problem. Some of the results are also of independent

analytical interest.

Karlin and McGregor [I957b] uses the results of Karlin and

Mccregor IfgSZa] "to establish equivalences between properties of

the stochastic process and properties of the sequences {Àn},{U^} ,

and to eval,uate, in terms of these sequences, some of the interesting

probabilístic quantities associated with the process". Certain

ergodic theorems are proved, and the problem of computing tl.t (x),

given the matrix A, is díscussed.

Karlin and McGregor [I958a] appties the theory developed in

the previous cases to many Server queueing processes with Poisson

input and exponential service times (with infinite waiting space for

blocked customers). Some of the problems tackled are as follows:
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" (I) to obtain a usable formula for the transition probability

P. . (r);rJ

(2) to compute the distribution of the length of a busy

period;

(3) to compute the distribution of the number of customers

served during a busy Period;

(4) to compute the distribution of the maximum length of

the queue during a busy period; and similar questions- "

Karlin and McGregor [1958b] and. IfgSSa] consider linear growth

birth-and-death processes and random walks respectively-

Karlin anQ McGregor [1959b] proves a theorem which finds

conditions expressed in terms of the analytic properties of the

transítion probability fr.rnction which are eguivalent to contínuity

of the path functions for a wide class of stationary Markov processes

whose state space is the set of non-negative integers. As a side

remark the paper mentions that, in the special case of a birth-and-

deaÈh process, the Laplace-Stieltjes transform F.*. (s) of the

distribution function for the length of time unÈil the next entry to

state j from an epoch at which the system is in state i, where

i < j, (the "first passage time from i to j") ís given by

(o. s)F.*. (s)
rJ

i<j

Karlin and McGregor [1959b] finds this result as a corollary to some

formulae of Karlin and McGregor [1957a] involving P. . (t). However

as a bye-product of some of our preliminary analysis we will find

a more direct derivation of formula (0.5). Thís will be discussed

ín section 4.4.

In section 3.1 we will observe a símple relationship between

the orthogonal porynomiar sequenc" 1er, (*) )- o and the orthogonar
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polynomial sequence which we will introduce. For the moment we note

that equation (0.3) (assuming Uo=O) can be wriÈten as

(0.6)

Karlin and McGregor [I959c] and its companion paper [1959d]

consider coincidence properties of birth-and-death processes-

Finally, we discuss some work of Keilson which relates both to

some of our an,alysis and to the work of Karlin and McGregor. Keilson

ÍL979) (section 3.3) obtains a spectral representation for the

transition probabílitÍes in a time-reversible ergodic chain. A birth-

and-death pïocess is one of the simplest examples of a time-reversible

ergodic chain, and so this work is seen to be an extension of the

ideas of Kar1in and McGregor.

Keilson [1979] (section 3.58), using his spectral representation,

finds an expression for the first passage time density from a state

n to its neíghbouring state n+I for a birth-and-death process.

This expression is a weighted sum of exponentials. As with the

expression (0.5) of Karlin and McGregor, our analysis in section 3.1

will provide an alternative derivation of this result.

Keilson ltglgl again considers first passage time densities for

birth-and-death processes in his chapter 5. The connection between

this work and our approach will be indicated in the text of section

3.1 and also in section 4.4.

À,rQr,*, {*) + (x-Àr,-u,r)Qr, (x) + u,rQ,r-, (x) = 0,

n=L1213t.-.,

Qo(x) 1L, gr(x) = + (-x+Ào)
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CHAPTER 3. THE O\TERFLOW

FROM A FIN]TE BIRTH-AND-DEATH

PROCESS.

3.1 The Overflow from a Finite Birth-and-Death Procebs"

3.2 Applicatíons in Queueing TheorY.

3.2.L Telephone Trunking Model.

3.2.2 Telephone Trunking Model with

Holding Registers.

3.2.3 Finite Source Models.

3.2.4 Other Models.

3.3 Some Notes on the Associated Orthogonal Polynomials.

3.4 The Hyperexponential Distribution as an Overflow.



20.

3.1 THE OVERFLOW FROM A FINITE BIRTH-AND-DEATH PROCESS.

In this section we consider a stream of secondary evenÈs

associated with a general finite birth-and-death process. The system

is characterised by N states (where N is a positíve integer),

Iabelled O,Lr2r...rN-I. When the system is in some state n

(o < n < N-1) births occur at a rate Àr,, and inclependently deaths

occur at a rate Un. The system must stay within the prescribed staÈe

space, and so in state O only births may occur, with rate À0, and

in state N-I only deaths may occur, with rate !N- r, We assume

Àr, > O for O ( n < N-t and !n > O for O < n < N-l -

We will impose an additional- structure on the birth-and-death

process by allowing oÐerfloü' to occur, with rate À*-, ;' 0, when

tl. e system is in state N-1. These overflows do not cause a change

of state, but merely constitute a stream of secondary events, which

we wilL refer to as the oUerfLoü stTearn from the finite birth-and-

death process. It should be noted that this secondary stream is not

simply a Poisson stream, since overflows can only occur when the

system is in state N-I. lVe note also that the occurrence of overflows

in state N-I in no way affects the behaviour of the unclerlying

bírth-and-death process .

For reasons of the obvious physical interpretations, we shall

refer to births and overflows collectively as ATI,|Da.LS, and so

Ào rÀ1,. . . ,ÀN_ r are the a.r'z'iuaL Í'ates. The nature and properties

of the overflow stream wilf now be studied.

An important initial observation is that the overflow stream'

although not Poisson, is in fact renewal. This can be readily seen

by noting that the future behaviour of the system subsequent to an

overflow event is dependent only on the fact that the system is in
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state N-l (recall the memoryless property L.2.2). The overflow

stream can thus be characterised by the probability distribution

function of the inter-event time, which we wiII denote by F(t).

Our examination of the overflo\4t stream can be achieved by investigating

F(r).

Denore by {r(0") . .1") . rt") < ...}, where o ( n ( N-r,

the random epochs when the system is in state n and an arrival

occurs
(*) . Define f (t) (n=0,I,...,N-I) to be the probability

distribution function for the time to the next overflow from an

I nlinstant tl" - O. (The memoryless property L.2.2 gives that fn (t)

(n=0,1r...,N-1) is índependenÈ of k.) Then we have trivially

that

fN-r(t). =u(t) (1.1)
I

where u(t) is the unit-step or Heaviside function defined by

u (t) Io '
lr,

if r<0

if L> o

(1. 2)

We write f- I (t) for the probability distribution function for the

time until the next overflow from an arbitrary epoch at which the

system is in state o and no arrival is just about to take place.

The memoryless properÈy L.2.2 gives that f- t (t) is also well-defined.

Suppose that the system is in state n (0 ( n < N-1) and

consider an epoch .1" (some k > O). Note that the system will be

in state n*l- at time T(") + o. !{e are to find an expression for

(*) 
Thus the inter-overflow time is the length of the time interval

-(N-rl (N-r)) (some k>O).lru ' 
T¡+ 

I
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fn (t), which is the probability of the event that the next overflow

subsequent to time tl"' - o occurs by time .1" + t. since

the overflow itself corresponds to an arrival, and moreover cannot

be the arrival at .lt' itself (recall that O ( n < N-l), then

Èhe desired event can only occur if there is at least one arrival

or death subsequent to time ,:"' + O but by time .:"' + t.

frle shall consider separately the two cases corresponding to which

occurs first.

Suppose thaÈ the next event to occur subsequent to time T( ") + 0k

is an arrivar in the time interval {tl') *y,tln) +y+ay¡, where

y+dy < t The probability of this occurrence, noting the independence

of arrivafs and deaths, is simPlY

À exp ( -T Y-u,r+, v) dv + o (dy)
n+l n*l

The time which now remains for the next overflow to occur in is

t-y+o (dy) , and the system, having been in state n+I since time

al"' * O, is just about to have an arrival occur. Thus the probability

that the first event subsequent to time al"' + O is an arrival and

the next overfrow occurs by time .1"' + t is given by

¿t

I

I exp(-Àn*ry-xr,*ry) Àn*l fn+r (t-y)dy,
(r' 3)

n=0rIr... rN-2.

Similarly, suppose that the first event_ subsequent to tíme

T(') + o is a death occurring in the time intervat t.[") +y,tl") +y+ay¡,

where y+dy < t. The system, having been in state n*l since time

al"' * O, no\Át is just about to return to state n. But the time

from this epoch until the next overflo\^/ is stochastically

indistínguishable from the time until the next overffow from an epoch
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at which the system is in state n-l and an arrival is just about

to occur (or, in the case of r=0, from an epoch at which the system

is in state 0 and no arrival is just about to occur); this follows

from the memoryless property L.2.2 since Èhe future behaviour after

either the transition (n+I) + n or the transition (n-I) -+ n

depends only on the fact that the system is now in state n. Thus

the probability that the first event sdrseguent to time .1" + 0 is

a death and the next overflow occurs by time a:") + t is gÍven
k

by

tl
I

I exp(-À,r*ry-Un*r y)X,r*r fn. r,(t-y)ay,
,Jo (I.4)

n=0r1r... rN-2

The probabilities (1.3) and (1.4) correspond to two mutually

exclusive but exhaustive events, and so

exP(-Àrr*ly-urr+ly)r
Jo

f (r)
n

(1.s)

L>- O,

n=0rIr... rN-2.

consider now an epoch at which the system is in state 0 and

no arrival is just about to occur. In this case the next subsequent

event must be an arrival, and so

[tr,*r fr,*, (t-Y)*un+r fn- l (t-Y) ]dY

f (r)

we note that Keilson [1979] (p. 58) obtaíns an expression for

the Laplace transform of the first passage time density from state

n to state (n+1) in terms of thaÈ from state (n-1) to state n.

Keilson's approach can thus be seen to be a special case of our method-

J,
exp(-Àoy) Àofo (t-y) dy, t >- o. (1.6)
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Although the nature of the overflow from the finite birth-and-death

process can be deduced from a consideration of first passage tÍme

densities from states to theír higher neighbour' we have adopted

the more general approach for two reasons:

(I) it will facilitate our later analysis;

(2) it wiII províde Èhe key for the connection of the result (0.5)

of chapter 2 with other results concerning first passage times.

(tfris will be dealt with in section 4.4-)

Note that the integrals on the right-hand-side of equations

(I.5) and (I.6) are (Lebesgue-Stieltjes) convolutions, and so, ín

terms of the Laplace-stieltjes transforms

f* (x)
n

these equations read

f* (x)

f* (x)

Í1"*(-xt)drn 
(t)

#r rf (x) (Rex)0)

lr,+r f**, (x) *urr+l r*- , (x) J

Re x Þ 0, n=-I ,O ,L r. . . ,N-1,

1

n+l +u +x' n+ I

(1.7)

(1.8)

(1. e)
n

Re x Þ 0, n:0,Lr2,...,N-2

A simple rearrangement of equations (I.8) and (1.9) gives the following

system of recurrence relations:

Àsff(x) (x+Ào ) f * (x) =Q (Rex)0) (r.10),

À **, (*) (x+À,r*r *un*, ) f*(x) *ilr,+r ff;. , (x) = Q (1.1r)
n+ n

Re xÞ O, n=0,L,2,...rN-2

Favard,s Theorem (see Favard [1935] or Chihara [fgZe], PP.2L-2)

r.

states that a set of relations of the form
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Prr*, (x) (Anx+Bn)trr (x) + cnpn- t (x) = Q,

n=L1213t...,

with An rCr, > O and initial specifications

po (x) = I , p: (x) = Aox*Bo (Ao > 0)

defines a sequenc" (Pn (x) )r,-o

being of exact degree n in x

Po (x)

define such a sequence

of orthogonal polynomials, P,, (x)

. Thus the relations

(*)
lrrPn*, (*) (x+À,r+urr)P,, (x) + u,rPrr-, (x) = Q

n=L12r...r
=1- L¡ Pr (x)

fr(x+ls ¡ ,

(r. 12)

(r. 13)

(1. 14)

(Pn
o

- of orthogonal polynomials.
n=O

(x) )

andFrom equations (1.10) (1.1I) we therefore have that

f* (x) = cr(x) p,r*, (x) ,

n=-I ,0 , I , . . . , N-I

for some function c¡(x) independent of n. The supplementary

condition (1.1), or equivalently the condition

f$.r(x) = | ,

acts as a boundary condition which fixes

Io(x)
P* (x)

The relation (1.13) therefore reads

Prr* t (x)
f* (x)

n P*(x) |

n=-1, O rL, .. . ,N-I

(*)ror n > N-l take Àn rÈr, to be any positive real numbers for the

sake of the definition (1.12) of (P,, (x) )- o " The polynomials

P**, (x), PN* r(x) r--. are irrelevant to the problem'
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The purpose for the introduction of the functions fn (t)

(-l < n ( tq-t) can be seen by expressing the probability distribution

function for the time between successive overflows, which we have

denoted by F(t), in terms of fn (t) (-r < n ( l¡-t). consider an

. (N- r)epoch ti'- " (some k > 0). The distribution of time from

tl"'t) - o until the next overfrow subsequent to time t:*'t) + o

(that is, the inter-overflow time) is the same as the distribution
r N' 2) - o (some t' > o) until the next subsequentof time from ri

overflow. This follows from the memoryless property L.2.2, since at
lN-rl (N-2)

both ti"- " + O and T;..- -' + 0 the system is in state N-I-

(Recall that án overflow does not cause a change of state.) Hence

F(t) = f*-, (t) (1'15)

If we denote by r*(x) the Laplace-stiel.tjes transform of F(t),

given by

r'* (x) |.-
Jo

exp(-xt)dF(t),

RexÞ0,

( r. r6)

( r.17 )

then equations (I.14) and (1"15) imply that

r'* (x)

The orthogonality of the polynomials Pn (x) gives rise to

some importanÈ results, which are sunmarised in the following lemma.

3.1.I Lemma.

(i) p (0) - 1 , D=0,L,2,...-n

(ii) The polynomial Pr, (x), where n is a non-negative integer,

possesses n distinct negative real zeros. Denote these zeros by

(n) (n) (n)
xl txz r...rXn
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(iii) The following decomposition into partial fractions holds

Pn- , (x)

P,. (x)

negative.

Denote the zeros of

the zeros of p (x) bY
n

ordered so that

(n'1) - (
x1x

P,,-, (x) bY

( 
") 

( n)
Xl ,XZ t...,

f

( ")x where the zeros are
n

i
I

( n)
o¿
i
(n)

x-x.
I

n=L1213r...,

where { x.
¡

(n) i=L,2,...,n) is the set of zeros of p_ (x) and

( n)
d,
i

> 0 , i=l ,2r...r1

Proof of 3.1.1.

tíl The proof uses (I.12) and induction on n. v'Ie have

po(O) = p1(O)'= l, and the inducti-ve hypothesis is the assumption

that p. (o) - 1 (i=0,1,...,n). setting x = o in (1.12) immediately

yields pn*l (O) = 1, and so, by the erinciple of Mathematical

Induction, the result is Proved.

(ii) The fact that the zeros of P,, (x) are real and distinct is a

standard property of sequences of orthogonal polynomials (see SrdéIyi,

et a1., [1953], p. 158) . Another property common to orthogonal

potynomials is that between any two consecutive zeros of Pn-, (x)

there lies exactly one zero of Pr, (x), and conversely, (see Szegö

[fS:g], sec. 3.3). We will use this to prove that all the zeros of

pr, (x) are negative, proceeding by induction on n.

Note that the zero of Pr (x) is negative, and take as the

inductive hypothesis the assumption that the zeros of P,r-, (x) are

(n- l) (n- l)xt ,x2
( n- 1)

x r and
n

n I n, 2

(n-l) - (n-1)
x2 'Xl
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and

x
n

Then the orthogonality of the polynomials implies that

(n) a *(t't) a *(
n)

> O then a contradiction follows.

(n) - ( ")<x
n-1

(n) - (n)
x2 'Xlx

n

n-I nr

( n)xl

I
*!"' . *(n't) . *tr")

and so, from the inductive hypothesís we concfude that

*( 
t) < o , i=213r. .. rn

!{e now show that if

suppose *(t) > o. Then

p (o)
n

n

II(-
i =1

(n)
x.

I
) <o

which contradicts (i) of this lemma. Thus, *(t) ( O, and so

*(t) < o , i=r,2r...rn

Hence, by the Principle of Mathematical Induction, the resulÈ is

proved.

(iii) The decomposition into partial fractions of this type is also

a direct consequence of the orthogonality of the polynomials (see

Szegö [1939], theorem 3.3.5). It should be noted that Szegö is more

restrictive than most authors in his definition of orthogonal

polynomials in that he requires the polynomials to be normalised in

such a way that the leading coeffj"cient is positive. This is the

case for our polynomials (n" (x) )1o , and so Szegö's theorem

3.3.5, which relies on this facL, does apply. t

Applying lemma 3.1.1 to eguation (1.I7) yields

N

I
i =r

c[.
I

x-x.
I

F* (x) (1.18)
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where {*, = *Í*; i=r,2r...rN} is the set of zeros of P*(x) and

o, = oÍ* > o (i=r,2,...,N). Note that if the Laprace-stiertjes

transform of a function f(t) is , for some constant K, then

t> o (1.1e)

K

x+K

f (r) f (0) (I - exp(-Kt) ) L> o

fhus, as F(O) = O, lve can invert (1'fB) to yield

N

r (r) I
CI

(- -j-) [1 - exp(x. t¡]
x. I

Ii =r

A hyperexponential distribution is defined to be a convex linear

combination of exponential distributions. Applying lemma 3.1.1(i) to

equation (1.17) reveals that

F*(0) = f ,

and hence, using (1.18),

Not
I t- -l = f (r.20)

i jl i

We have also shown that x. < 0 and o, ) O, and so

ct
(- 

-J 
) 0 , í=Lt2,...,N . (f.21)

i

The resutts (1.20) and (1.21) imply that the probability distribution

function for the time between successive overflows, which is given

by relation (I.19), is hyperexponential.

The theory of partial fractions entails an explicit expression

for 0¡ (see Kreyszíg ILgl2), P- 158) :

P*- , (x, )
i=Lr2r... rN, (L.221c.

I ni(x, )

where ' implies differentiation with respect to x. Thus the

weights, $. (i=lr2r... rN), in the convex linear combination of
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exponential distributions are given by

c[t P*- , (x, )

*, x, ni(x, )
ß.I

t (1.23)

i=L12 r. .. rN.

The results of this section can be summarised in the following

theorem:

3.1.2 Theorem.

The distribution function of the time between successive

overflows from a finite birth-and-death process of N states, with

associated overflow process, is a convex linear combination of N

exponential- distributions. Specifically'

N

F (r) I O, tr - exp(xi t)l L> o (L.24)
i =l

The parameters *i (i=1r2r... rN) of the component exponential

distributions and the weights ß¡ (i=1r2,...rN) of the convex linear

combination are uniquely determined by the birth-and-death process

through the sequence of orthogonal polynomials (f. (x))10 , given

by the recurrence relations (1.12). The Parameters are simply the

zeros of n*(x) r âIrd the weights can be computed by equation (1.23).

VIe will now note the relationship between the orthogonal

polynomial seguence (p_ (x) )l_^ and the orthogonal polynomiar-n n=u

sequence {Q,, {*) )- o used by Karlin and McGregor in their series

of papers. (See chapter 2.) Comparison of (1.12) of this section

and relation (0.6) of chaptet 2 teveals that

p
n

(x) A (-x)
n

n=0r1t2r... (1.2s)

The fact that our analysis has generated (essentially) the same
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orthogonal polynomial sequence as that found by Karlín and McGregor

when considering the eígenvectors of the matrix A (recal1 chapter

2, equation (0.2)) gives a further insight into the fundamental

relationship which exists between the birth-and-death process and

the orthogonal polynomial sequence. We wiII discuss this connection

further in section 4.4.

In chapter 2 iE was mentioned that Keilson lL979l (p. 40) writes

the first passage time density frorn a staÈe to its higher neighbour

as a weighted sum of exponentials, using his specÈral representation

for the transition probabitities. Since the state of the process at

T(N'2) + O (some k > o) is (N-r), it is thus evident that
k,

fN- 2 
(t) is simply the first passage time distribution from state

(x-r¡ to some state N, were there such a state. Thus the analysis

leading to theorem 3.1.2 provides an afÈernative derivation of the

formula of Keilson, without making reference to the transition

probabilities.
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3.2 APPLICATIONS IN OUEUEING THEORY.

It is well known that many elementary gueueing models can be

framed as birth-and-death processes. (See, f.or example, Cooper ÍlglZ)

or Kleinrock [1975]. ) Thus the theory developed in the previous

section can be appJ-ied to a wide family of queueing models of finite

capacity to examine the nature of the time between successive overflows

An overflow here refers to an arrÍva1 at the service installatíon when

there are no vacant positions, and which is consequently rejected.

This particularly applies to models in telephony.

3.2.I TeI Mode1.

Consider the following basic telephone trunking model: a

Poisson stream of ca]ls of intensity I arrives at a group of T1

identical trunks. A caII which arrives when the group is not at

capacity engages one of the vacant trunks for a time, ca]led its

hoJ-ding time, which is distributed according to some (fixed)

negative exponential dístributíon. For convenience, we will use a

time scale which has as its r¡nit the mean holding time.

If we define the state of the system to be the number of calls

engaged, then the model is a bírth-and-death process of T¡ + I states

(uiz. O,L,2,... rTr) with rates

À =À
n

Ur, =11 t

n=0r112r...rTy

n=I ,2r3r...rTì
(2.1.r)

(Note that the call termination rate for each occupied trunk is

unity, and so the total call- termination rate is n; hence Ur, = n' )

The recurrence relations for the orthogonal polynomials Pr, (x)

(n=0rLt2,...) become
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Àp (x+tr+n)p,, (x) + np,r-, (x) = o,

n=I ,2r...,

(*)

x
Po(x) = I pr(x) = I +

T

The recurrence relations which define the Charlier polynomials

c,, (x; À) (see Erdélyi, et. ërr- , [rgs:] , section 10.25) are

Àc *, (x;À) + (x-À-n)c,, (x;À) * ..r,-, (x;À) = Q ,

n+ r (x)

n

(2.r.2)

(2.1.3)

(2 . L.4)

n=L,2, .

co(x;À) = I cl(x;À) = 1- 
T

Comparison of..(2.I.2) and (2-I.3) reveals that

Pn (x) = cr, (-x;À) ,

n=0r112r...

' The Charlier polynomials are a well-established family of

orthogonal polynomials associated with Poisson's distribution of

rare events. The occurrence of these charlier polynomials in

investigations of this basic telephone trunking model has also been

noted by Kar1in and McGregor [fSSea] (section 3), and Potter lL979l

(sectíon 2.3.I). In fact, the result (2.L.4) agrees with the results

of section 2.3.I of Potter II979l, which discovers that the Laplace-

Stieltjes transform of the inter-overflow tíme distribution function

is given by

c (-x; À)

¡'* (x) T (2. 1. s)
c (-x;

T +l

Potter derives the result (2.L.5) as a special case of a formula for

(*)th. natural extension of tr-rU' f.or n ) Tr has been used (refer

to the footnote to equation (1.12) of section 3.1).
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the Laplace-Stieltjes transform of the inter-overflow time distribution

function for the telephone trunking model offered a general renewal

ínput process.

The hyperexponential nature of the overflow from the basic

telephone trunking model has previously been noted by Khintchine [1969]

in his investigations of the Pal-m functions ç (t) associated with

the model. (See pp. 87-95 of Khintchine [1969]. ) Potter ÍL9l9l

(p. 19) shows that Khintchine's formula for the PaIm function Ql(t)

is consistent with the results stemming from equation (2.1.5) in the

CaSeTl=I.

3.2.2 TeI Trunk Mode] with Holdin isters.

The teLephone trunking model of section 3.2.1 can be readily

generalised to allow a finite number of holding registers which store

incoming calls when all trunks are engaged. These calls remain on

the holding registers until a trunk becomes vacant. Thus ca1ls are

only rejected when both the trunk group and the holding register

group are at capacitY.

If we assume that there are T2 hoJ-ding registers then the

rates of the birth-and-death process are

À =À
n

n=0rl ,2,. .. ,T1*T2 ,

n:0r1,2r...rT1 ,

n=Tt,T1*Ir... rT1*T2
,un

(2.2.L)

(2 .2 .2)

The recurrence rel-ations for the associated orthogonal polynomials

P,, (x) (n=0, L t2 , - - -) become

Àpn*, (x) - (x+À+n)pn (x) + nP,r_, (x) - 0 t

n=Lr2r...rTl ,

Àpn*, (x) - (x+À-rrr)nn (x) + TrP,r- , (x) - 0 '

D=TlrT1*Ir...r(*)

(*) The natural extension of Àr,,þ, fot n > T¡*T2 has been used

(refer to the footnote to equation (I.L2) of section 3.I).
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Po (x) Pr(x) = t * T

= c (-x; À)
n

n=Ori ,2r... ¡T¡*I

=I,

We note that

Pn (x) f (2.2 .3)

but for n ) Tr+I this relaÈionship does not hold.

3.2.3 Finite Source Models.

Implicit in the previous two models has been the assumption

that there is an infinite population from which service requests

originate. In many practicat applications such as an assumption

serves as a reasonabfe approximation in situations where the

population is,very large ín relation to the size of the service

installation. However, in some applications account must be made of

the fact that a customer in service cannot generate another service

request until it has again left the system.

In these cases we consider each customer to be an identical

source of service requests. When not in service, the source generates

service requests at a rate \, say. The rate when the source is in

service is, of course t ze]ro. If we suppose there are M such

sources, and s (s < M) servers (with no waiting room) then the

rates for the birth-and-death process are

À., = (M-n)y , D=o,rr...rs ,
(2.3.r)

un = ¡l r n=Lr2r...rS

To itlustrate the construction of the parameters and weights

of the inter-overflow time distribution function let us consider the

case of two sources (M:2) and one server (S=1). From (2-3.1) we

Àl=Y, Ut=I

have

Xo=2Y , (2.3.2)
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The associated orthogonal polynomials P,. (x) are easily found from

the recurrence relations (1.I2) of section 3.1 to be

Po(x) = I '
pr(x) =fi&+21 , (2.3.3)

pz(x) = # [x2+(3Y+t) x+2y2)

Accordíng to theorem 3.1.2, E}:e parameters of the two component

exponentiat distributions are the two zeros of Pz (x) , which are

*r = ä[-(sy+r) +/yz+øy+L] (2.3.4)

and

*, = |[- (¡y+r) - (2. 3. s)

We note that

x1x2 = )Y2 (2.3.6)

Now

and

From equation (1.23) of section (3.1)

ß,=-*'

pi(x¡) = + Lhq+Ll

t-pi(x2) =-#llyz+øy+tl

fit"tzt)

(2.3.7)

(2. 3.8)

1
xt I +6y+1

usíng (2.3.71
2y

using (2.3.6)
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I=r+ (2 .3.e)

Similarly,

(2 . 3. 10)
2 +6Y+I

Thus the distribution function of the time between successive

unsuccessful requests for service ís

+1 [1 - exp(
+6 I r)lF (r) +

Br=\- Y+1

è
1

2
2 +6y+1

+ t)1,(2.3.11-)

t)- O.

3.2.4 Other Models -

The scope for inventing models to which our theory applies is

quite endlessr ârid only the most important basic models have been

presented here. More involved models can be achieved by combining

some of the simpler ones, and also by adjusting the birth and death

rates to allow for such phenomena as baulking or discouraged arrivals

(arrival rate decreases as the nu¡nber in the system increases) and

accelerated servíce (service rate per server increases as the number

in the system increases).

Gíven the rates for a fínite bírth-and-death process, it is a

simple procedure to find the numerical vafues of the parameters and

weights of the hyperexponential inter-overffow time distribution

function. A computer program to achieve these computations is given

in appendix I.

$- -þtrr - exp6!!4@
" z/y2+øy+t



38.

3.3 SOME NOTES ON THE ASSOCIATED ORTHOGONAL POLYNOIVTALS.

For the sake of completeness \Àte now make some notes and

observations regarding the orthogonality of the polynomials Pn (x)

(n=0,L,2,...) associated with the finite birth-and-death process.

We.reca1l that in chapÈer 2 it was mentioned that Karlin and McGregor,

in their series of papers, make use of the orthogonal polynomial

seguence (e"(x))l=o , which we observed in section 3.r (equation

(I.25) ) is sirnpty the sequence (r" (-x) )10 The properties of the

polynomials Q(x) (n=0,L,2¡.--), and hence those of Pn(x)

(n=0rL,2r...), from an orthogonal polynomial theory viewpointf are

discussed at length in Karlin and McGregor [1957a] an¿ ltgszb], and

sor in this section, only some additional observations of specific

interest will be made.

ft has been noted in section 3.2.I that for the telephone trunking

model the polynomials P,, (x) are simply related to the Charlier

polynomials. fn the telephone trunking model with holding registers

of section 3.2.2 the recurrence relations (2.2.2) for the P,, (x) are

also quite simple, particularly in the case when the number of trunks,

Tl, is unity. It is the fatter special case which we wiII investigate.

The recurrence relations (2.2.2) for the case Tt = I are

(x+À+l)l,r (x) + pn- l (x) = Q,

n=L12,3r---,

i1, pr(x) =t*T

(3.r)

Po (x)

Define the generating function

ÀPn*, (x)

æ

G(x rz)

By multiplying (3.1) bY

we obtain

I p (x)2"þ -n l"l <1 (3.2)
il=O

¡+l
z and summing over n from I to oo
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0À [c(x ,zl-r- tr+f I z1 (x+À+t) zfe(x,z)-L) + ,2c(x,z)

which yields' on rearrangement,

),-zG(xrz) - (x+ +I) z+z

The generating function of the Chebyshev polynomials of the

second kind, un (x) , is

(3. 3)

(3.4 )

(3.s)

n

æ

T
n(x) 6U

U

n
n=O

(see Abramowitz and Stegun [fge¿], p. 783). Comparison of (3.3) and

(3.4) reveals.that

p
n

n=I ,2r...

Proof of Relation (3.5) .

Consider the right-hand-side of (3.5). Multiplying by

and summing over n from I to æ we obtain

co

1

7t Un-1

x+À+1.
-rzd)

n

(x) = i1

z

T
n= I

i U

n=O

x+À+I.
2'7À)

n
z

n.

n11
2ir

n--l

n
Àãu

n

,iì" - u,(=#, - i "I. 
u"t$fr çr,"

îì"-l

æ

(t - i)."=I, u" t$f^ I t

(r- z
=

since Uo (x) I

using (3.4)
r - 2rffirfri

)'-z= À- (x+À+L) z+zz -

= G(x,z) I

I

+
zz
À

I

using (3.3)
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I p (x)2" - IÞ -n using (3.2)
æ

n=O

æ

sínce po (x) - I
n= I

This last expression is the left-hand-side of (3.5) after multiplication

by ,n and summing from n=I to æ. Thus expression (3.5) is true.

We shalt now investigate further the relationship between Pn (x)

and the Chebyshev polynomials. We note that the Èwo orthogonal

polynomial sequences (pn (x) )' o and (*'Pn (o1x+o2) )i=o (where

Kn I O and O: I O) are essentially the same. If we picture the

polynomials p,, (x) graphically then *r, provides a vertical dilation

while çi1 and a2 provide a horizontal dilation and shift respectively.

Thus, knowing any result concerning (P,, (x) )--o , the corresponding

result for (*,.,P,, (Olx+Oz) )i=o can be found irnmediately. However,

the recurrence relations of Èhese two systems may be markedly

different on first insPection.

Bearing this in mind, and recalling the result (3.5), let us

define the orthogonal polynomial sequenc" (rr,(x))- o bY

I n (x)zn

Then from (3.1)

r (x)
n

XT n" (zÀL.x-À-r¡
n

(3.6)

(3.7)

we obtain the recurrence relations

t (x) = 2xr (x) - rn-r,(x)
n+ I n

n=\ 12r...,

ro (x) =- L, rr(x) = r* - h

Proof of ( 3.7).
n+l

( zÀàx-À-I) using (3.6)D-n*1

= 
^+ 

[çz]'\x-X-1+À+1)rn (zÀLx-l-r) - pn-, (zÀbx-À-l)J usins (3.r)
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= z*XT rn (zÀLx-À-r) D
n- I

(zÀlx-À-r)
n'l

-F

@

using (3.6)= 2xrn (x) - r,r- , (x) I

(3.8)

Note that the recurrence relation (3.7) is simply the Chebyshev

recurrence relation (Abramowitz and Stegun [f90a] ' p. 782i 22.1.4 and

22.7.5) . The two "kinds" of Chebyshev polynomials, T,, (x) and Un (x),

both satisfy the same recurrence relation, differing only in the

initial specifications.

Chihara [1978] (p. 2O4) guotes a result of Geronimus [1930]

which states that a sequence of orthogonal polynomials tl" (x) )l-o

satisfying the Chebyshev recurrence relation, but with general

initial specifications

Po (x) I 1, Pr (x) = ax-b (al0)

can be represented bY

P (x) -ãm- 4r (x) + (a-I) U , (x) -bu (x) t
n n

Thus the sequence (r (x) )
n n=0

n- n-

n=213,...

can be written as

r (x)
n

= 2Tr, (x) + un- 2 
(x) åu"-,t*''

n=213,...

It should be pointed out that this does not conflict with the result

(3.5), as can be seen from the following argument.

Proof that (3.8) is consistent with (3.5).

Equation 22.5.6 of Abramowitz and Stegun [1964] reads

T (x) = [J (x) -xU
n n n- , (x)
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Thus

= 2U (x) -u(x) I
7T

2r(x)+U (x)
n n- 2

n

t
7T Un- I

(x)

- z|un (x) -xu,,- , (x) J + un- 2 
(x) I

7l U , (x)
n-

= 2tJ (x) [2xUn- , (x) - Un- , (x) ì
I

7X U
n , (x)

n

n
U (x)

using the Chebyshev recurrence relation

n-

-U(x)n

I- 7X' un' , (x)

If we use (3.6) to write (3.5) in terms of r (x) we obtain

t (x) = fJ (x)nn Un- I
(x)

and so the two results (3.5) and (3.8) are consistent. r

chihara [rgsz] investigated the distribution functíon, ü(x),

for orthogonal polynomial sequences (P- (x) ):-^ satisfying the
n n=(,

Chebyshev recurrence relatíon but with initial specifications

Po (x) I I, Pr(x) = 2x-b , (b r' O).

Using his result for the case b = + we find that the distribution

function {., (x) corresponding to the orthogonal polynomial sequence
'f

t
n

(x) )rr=s is given by

I
7X

while tf (x) is constant on

when À < I in which case Ú,

1-À at the point * = yÈx

dt for -t(x(l (3. e)

(--r-1] and also on [1r-), except

(x) has a single jump of magnitude

tf, (x) 2^
I'tf

We must comment on the determinacy of (r (x) )i ^ (recall¿ - n -n=o
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section I.3). !ùe note that there exist finite a,b such that [a,bl

contains the spectrum of rl(x). Chihara [1978], p. 29, defines a

set he calls t:he true íntez'uaL of oz'thogond.Lit7, and his theorem

3.2, p.58, gives that thís interval is a subset of [arb]' and is

thus bounded. Chapter 2, section 5 of Chihara [1978] shows that if

the true interval of orthogonality is bounded then the system is

determinate. Thus rf (x) as given is unique' save for distribution

functions which are substantially equal to tf (x).

lrte have defined tl (x) to be the distribution functíon

corresponding to the orthogonal polynomial sequenc" (rn (*))* o '
which means that

r
J__

r (x)r (x)dtf (x) = Q fot m I n,
mnr

(3. 10)

and

[r,, (x) 12ar¡. {x) I O, n=0r1.2r... (3.1r)

By using (3.6) to express the statements (3.f0) and (3.1I) in terms

of pr, (x) (n=0, L,2, . . .) , we obtain

f n-(2ÀLx-À-I)pn (zÀ%x-À-r)drl (x) - 0 (3.I2)
J.. 

for m/n,

and

lo,
n=0r112r...

A simple linear change of variable in (3.12) and (3.13) gives

j: [n, (z).+x-À-r) ] 2¿r, (*) (3.13)

=Q

and

I: "-(x)P,, 
(x)dú ,ïi*,

for m/n,

(3.14)
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lo,
n=0r112r...

(3. rs)

Thus, denoting the distribution function corresponding to the

orthogonal polynomial sequence (p,, (x) )- o by rfo {x) , the results

(3.14) and (3.15) imply by definition that

f]- tn,' t*r l'dû. (ïts^ )

üo {*) = V, (5+*) (*)

Thus from equation (3.9) we have

x+À+l

(3.16)

(3.17)

(3.18)

üo(x) =-+ 2./À

-l

f_" 
^

+À+l

for -z¡.L-¡,-r ( x ( zx\-x-t,

which is the same as

Vo {x)

úo{*) =-+f;"^.^.,
( -Èl

I
2T

Proof of equation (3.f8).

If we make the linear change of variable t * È

in (3.17) we obtain

= -zÀLt+À+t

II ¡.+r-È) 2l à
frr

+}i'+1

It¿r-(À+r-È)'l\ ai
t

+l+l I
t¿ã- tÈ-À+1) 2l à di

t,

Note that the determinacy of (r,, (x) ),r=o implies the

determinacy of (pr, (x) ) 
- 

o

r ''\
J_*

r 'ft\

J_*

I
n

I
2Tr

(*)
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and thus (3.I8) holds. '

Also from (3.9) we have that üo (x) is constant on

Lt
1--, -2\'-I-I] and also on [zÀ'-À-r, -), except when À < I in

which case üo {x) has a single jump of magnitude t-À at the

point x = 0.

Thus, to summarise, the orthogonal polynomial sequence (pr, (x) )

associated with the telephone trunking model with holding registers

but only one tru¡k is simply related to the Chebyshev pol.ynomia1s,

specifically

p,, (x) = t'i tu" t$f^ I - fi u"-, tfflt , (3.1e)

n=I ,2r...

+ r\+ I /qr- r-À+1 2

drür (x)'p t

for -z\\-^-t ( x ( z\\-^-t

ø

n=O

The distribution function rfo (x) with respecÈ to which the polynomial

sequence (pr, (x))--o is orthogonal is given by

r,rì\
J_*

I
n (3. 20)

t
while ú (x) is constant on (--, -2À1-À-1] and aLso on'p

t
[zÀ'-À-f , -), except when À < 1 in whích case tl,o {") has a single

jump of magnitude I-À at the point x = 0.

we note, since the unit of time has been taken as the mean

holding time, that À is the offered traffic to the system. (Recall

section L.4.) Tf, in queueing systems with infinite waiting room,

the offered traffic per server equals or exceeds unity, then the

system is unstable, with queues growing beyond bound. Since in our

model there is only one server, the offered traffic per server is

simply À, and, although there cannot be any instability since the

system is finite, we nonetheless see from our formula for tl- (x) that'p

l.=I is stil-I a "critical" value.
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3.4 THE HYPEREXP ONE}]TTAL DISTRTBUTION AS AN OVERFLOW.

Theorem 3.I.2 states that the overfl0w from a finite birth-

and-deaÈh process of N states is a hyperexponential distribution

wÍth N component exponentiat distributions. we now seek to

establish its converse: that any hyperexponential distribution with

N component exponential distributions can be interpreted as the

overflo\^¡ from a finite birth-and-death process of N states.

Consider the sequence (n,. (*) )10 of orthogonal potynomials

introduced in section 3.I. Associated with this sequence is the

sesuence (q (x))- ^ of monic orthogonal polynomials defined by
---¿_.. .tn ,,n=o

q (x) = Ào À t\2. .. Àr,- r P,, (x) n=I ,2r...,
(4. r)

go(x) = po(x) = I

This sequence is simply a renormal-isation of the original seçluence'

and using (4.1) in (I.12) we obtain the recurrence relations

1,*, (*) = (x+À,.+un)q,, (x) - ),,r- rUn9r,-, 
(*) r

(4.2)
rl=Lr2r...,

qo(x) = I , qr(x) = x*Ào

(We note that a simple induction argument using (4.2) gives that

gn (x) is in fact monic.) Egpation (I.17) of section 3.1 can thus

be written as

r'*(x) = À*., l# (4.3)

Suppose we are given some arbiLrary hyperexponential distribution

defined by its probabiliÈy distribution functionr sâY
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F(t) =

N

I ß, ft - exp(x. t) l t2 o,

where 4 <Or 4 alldistinct, ß, )0, and
tl

I

RexÞ0,

(4.4)

(4. 5)

(4. 6)

(4.7)

ß,

f* (x) =

ct, = -*, 4

N

I -1

If we denote by F*(x) the Laplace-Stieltjes transform of F(t) '

then (4.4) implies that

N

I
I

q
x-x.

I

where

>0,

Expression (4.6) can be wrítten in the form

f* (x) = À
N-I

g*_ , (x) (*)
9" (x)

where
N

ÀN-I I o, >0,
i =r

9* (x) = (x-x. ) ,
¡

and

N

I to. (x-x. ) l
Ji =I

i=Lr2r...rN .

(4.8)

(4.e)

(4. 1o)

(4. 11)

A*(x) are monic PolYnomials in x of

respectively, and that À*-, t 0:

t

N

il
t

I
ç_, (x) = 

\-,

N

]I
=1

fi

Vle note that q"- 
,

exact degree N-I

(x) and

and N

(*)
c f. equation (4.3).
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In order to establish the converse of theorem 3.I.2 we must

find positive real numbers ÀorÀr '...rÀl¡_r, Ir,Uzr...rU*-, such

that the sequence of orthogonal polynomials

by (4.2) has e*-, (x) and 9*(x) as its

respectively.

The zeros of A (x) are xr txz, . . . ,xN

ordered so that

where

q.. >0
I

zero to the next.)

see that

(q (x) )
n

(N-1) st

@ , defined
n=O

and Nth members

and suppose they are

x
N

xN-r
( xz ( xl

implies differentiation with respect to x. As À*-,

(i=I,2,...,N), then equation (4.L2) implies that

The theory of partial fractions (see Kreyszig LlglZi, p- I58)

gives that

0, = \., k# , (4.12'ì

í=Lr2r... rN,

1n- , (*, )
(4 .13)

øi(x, )
>0

í=Lr2r...rN.

Now e" (x) is a polynomial- of exact degree N with N distinct

zeros, and so

s,l, (*, ) eft (x, *, ) < o (4.l-4)

L=Lr2r...rN-I.

(That is, the gradient of the polynomial changes in sign from one

;' 0r

Combining the inequalities (4.13) and (4.I4) we
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Q*-, (*, )9*-, (*,*r) < o t

í=Lr2r... rN-It

and so, by the Intermediate value Theorem, there is at least one

zero of ç. , (,x) in the interval (x, , x, *, ) , í=L,2,...,N-1. But

g*_, (x) has at most N-I real zeros, and there are N-I such

intervals. Hence all the zeros of q^-, (*) are real and distinct,

with exactly one in each of the intervals (*r, *r*r), i=I¡2,...,N-l'

If we denote the zeros of g*_, (x) by Y1tY2r.-.rY*.r, and

suppose they are ordered so that

(4. rs)

(4.L7)

Yr,r- , ' Y*-, t Yr'Y,

%*, (*) (x-c., ) ør, (x) -dq.(x),n n- I

n=0r112r...,

then Èhe above result gives that

** ' Y"- , ' **- r'' Y*-, <yz1*z(yr <x I
(4. r6)

The string of inequalities (4.16) enables us to invoke a

theorem of wendroff I196I], which guarantees the existence of a

sequence of monic orthogonal polynomials in x with 9*-, (x) and

ç(x) as the (N-l)st and Nth members respectively. These

polynomials satisfy a recurrence relation of the form

where "., is real , dr, > O (n=OrL,2r.-.) and 9-t(x) = 0

We now use a descending inductive argument (for n=N-I.N-2r "'rl)

to show that (4.L1) can be written in the form of (4.2), with

ÀorÀl r...rÀN. r, ÞrrUzr...ril¡-, all positive, and also that

1*, (o) = À. q (o) , i=o,l ,2, " ',N-1 (4. 18)

As a basis for the induction (the case n=N-I) r wê note that À*-,
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exists and is positive. Substituting G.7) into (4.5) we see that

(-
ü.
l-)

N

I =]tx.
I

and so, combining (4.6) and (4.8) 
'

qN- r (o)
-1TN-r sN (o)

That is,

qN(o) = l*_ rqN- r (o)

Take as the inductive hypothesis, for n e {n-t,N-2,...,1},

the assumptiori that Àr, rÀn+r ,... rÀw_ r. and !n+r ,l¡+2r...,UNI_, all

exist and are positive, and also that

%*, (o) = Àr,g,, (o) (4. re)

Comparison of (4.2) and (4.I7) reveals that

un =-c-Ànn

-c >À
n n

-Àc >À2
nn n

(4.20)

(4.2L)

exists. In order to show Un > O it is thus necessary and sufficient

to show that

which is also equivalent to the conditíon

since Àn > O by the inductive hypothesis,

Denote the zeros of grr*, (x) by Es,,Ez,...,En*, . Then the

orthogonality properties (see szegö [1939], theorem 3.3.5) give that

À
n

where ni > 0 (1:I,2,...,n+1). Let

(4.22)
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0,
Ei

i=L 12 ,3, . .. rn+I ,

and so, by setting x=o in (4.221 and using the relation (4.I9),

we see that

\2=(

n¡

o, E, )'

(4.23)

(4.26)

(4.27)

(4.28)

(4.2e)

(4.30)

n +l
T
=l

or= I (4.24)

Now from (4.22), sínce { (x) is a monic polynomial, we have

n+l
I

n In, (4.2s)
i =l

and so, using (4.23) |

and hence also

Ç*, (*)

and

grr-, (x)

n*1
\,2= (- I g.g. l',

n-tl
t =l

+T

I
=l

n

n

Write
n+ I=x n

¡t n-

and

Nor,v from relation (4.22) we see that

q (x) = *t +brr- 
r nn- 

t 
*brr, 

z 
*n' '*. . . +br x+bo

+ax+a n-l
x1' +.. .+al x+ao

q (x)
-lr

n+f
= II '(x-

i =l
Ei)

n+l
II (x-

j =t
tfl

I

I

I
¡

I

i

I

I n+ I

In,
¡ =rn

À
Er)

Comparison of (4.27) and (4.29) reveals that
n*l

IEa
n t =1

(4. 3r)
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and likewise comparison of (4.28) and (4.30) reveals that

I n+l
b In, (-Ej )=-rÀ

n i =l

n+l
In-

n+ I

In, n. 6.t¡

(4.32)

(4.33)

(4.34')

tfi

Now from (4.31) we have that

(-Ej) = "r, 
+ Ç

j Éi

which, on substitution into (4.32), gives

n+l

I
j =t

,

i=Lr2r... rn*l ,

b
n+ I

I
i =1

1r-
n

n. (a +[. ¡ln!n- I

Rearrangement of (4.33) Yields

n +1

i
=l

abn-IÀ
n n i =1

which, by virtue of Ø.25) and (4-23), can be written as

À(b -a)=-ln E:n-

But by equating the coefficients of
n

x

c b
n n-I

arrd so, substituting into (4.34), we have

+l

n I o,E'

+1

i
=t

n

0
I

in G.L7) we see that

-a ,n

-À c
n

n

rl
(4. 35)

Nov¡ a theorem of Mitrinovió [1970] (theorem l, P. 76) gives, by

vÍrtue of (4.24'), that

n+1+1

i
=t

n

o,E', ( i 0.6,)' ,
i =1

and so, by (4.26) and (4.35),
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It has already been demonstrated that (4.36) is equivalent to the

statement that

urr>o

Thus

n

c
n

>x2À
n n

À
n-

(4.36)

(4.31)
d

u,,

(Àr,*ur,)q (o) - Àn_ ru,,er,-, 
(o)

1

exists and is positive, since dr, > 0.

Setting x = O in the recurrence relation (4.2) gíves

4*, (o)

and so, using (4.L9),

À,ron(o) = (Àn+u,r)q(o) - Àn-rHr,er,-r(0) (4.38)

Rearrangement of (4.38) yields

q (ol = Àn- r 
qn- r (0) , (4.39)

which completes the inductive argument.

A1I that remains to be shown is the initial specifications

øo (x) r 1, ø¡ (x) = x+Ào (4.4O)

The fact that the polynornials are monic gives immediately that

ge (x) = 1. Now equation (4.39) in the case n=l states

9r (0) = Àoqo (0) = Ào ,

and hence, as gr (x) is a monic first degree polynomial,

gl (x) = x*Ào t

as required.
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Thus we have established the existence of positive real numbers

ÀorÀr,...,ÀN_ r, þr,I.lz,'..rU*_, such that

1,*, (*) = (x+Àn+u,r)q,, (x) - À,,_, u'%., (*) , (4-4r)

n=I ,2

with 9o (x) = 1, ql (x) = x*Ào

!{e note that, from the given hyperexponential distribution, q*_, (x),

e*(x) and À"., are uniquely determined. By equating coefficients

of powers of x in (4.4L) for the case n=N-I, and noting that

g*_, (x) is monic, we see that À*_ r rU*-, and 9*-, (x) are all

uniquely determined, and so inductively aII the rates and polynomials

are likewise uniquely determined.

We can no\^/ sunmaríse the results of the investigation of the

converse of theorem 3.L.2 as follows

3.4.I Theoren .

A hyperexponential distribution with N component exponential

distríbutions can be interpreted as the overflow from a finite

birth-and-death process of N states, with associated overflow

process. The rates of the process are uniquely deÈermined, and can

be computed recursively from (4.4L), using equations (4.6) and (4.8)

to provide a starting Point. '

Theorem 3.I.2 and its converse, theorem 3.4.1-, establish a

one-to-one correspondence between finite birth-and-death processes

of N states, with associated overflow process, and hyperexponential

distributions with N component exponential distributions. This

correspondence is achieved via the overflow from the finite birth-

and-death process.

Given the parameters and weights of a hyperexponentíal distribution,

it is a simple procedure to find the numerical values of the arrival
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and death ratesr and a computer program to achieve this is given

in appendíx 2.
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4.L

4.2

4.3

4.4

CHAPTER 4. OTHER SECONDARY PROCESSES

ASSOCIATED WITTT F]NTTE BTRTH-AND-DEATH

PROCESSES.

The Time Bet\,teen Successive Entries to the

FUII State.

The Time Between Successive Entries to the

Enpty State.

The Time Betvteen Successive Entries to an

Intermediate State.

First Passage Time Distributions.
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4.L THE TIME BETV,IEEN SUCCESSIVE ENTRIES TO THE FULL STATE.

we have examined, in the prev.ious chapter, the nature of the

overflow stream from a finite birth-and-death process. we may

however also be interested in questions reÌating to the length of

tíme between entries to the boundary state, and also, having left

the boundary state, the length of time the system spends in other

states before it again enters the boundary state.

Consider a birth-and-death process with N+I states (where N

ís a positive integer), IabelLed o,L'2,...,N. (uote that in the

previous chapter we considered a birth-and-death process with N

states , O rL 12, .. . ,N-1; we now consider a process with N+f states,

o,I,2r... rN, merely to facilitate compat:isons between resul-ts of

this section and results from the previous chapter. ) When the system

is in state n (0 < n < N) births' occur at a rate Àrr, and

independently deaths occur at a rate Un. When the systent is in

state o only births may occur, with rate tr0, and when in state N

onty deaths may occur, with rate UN- We again assume Àn > 0 for

O(n<N and Un >O for O<n(N. Forourpresentdiscussion

it will not be necessary to impose an overflow structure on the

finite birth-and-death Process.

Denoteby {r(o^).t(rn) aa(rn) a...}, $Ihere o(n(N¡ the

random epochs at which a birth occurs when the system is in state n'

and arso denote by {o(0") . ot") . o!') a ...}, where o < n ( N,

the random epochs when the system is in state n and a death occurs'

For obvious intuitive reasons we will refer to the boundary

state N as the fuLL state, and on entering the ful-l- state the

system becomes bLocked. Define a bLocking per¿od to be the time
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from when the system is just about to become blocked until it next

is just about to leave the full state. e' bLocking cgcL¿ will be

the period of time from when the system is just about to become

blocked until, after leaving the full state, the system is again

just about to become blocked. That is, a blocking cycle is the

tíme intervar I.l*- t' ,tll;t',, for some k > o. Note that at an

instant when one bJ-ocking cycle ends the next blocking cycle begins.

Vüe will refer to the time from when the system is jusÈ about to leave

the full state until it next is just about to become blocked as a

ÐaeaneA per,íod. Thab is, a vacancy period is the time interval

tol*' ,.li;t) ) Í*), for some k > o. rhus a blocking cvcle consists

of two parts: a blocking cycle conìmences wíth a blocking period ancl

is then foflowed by a vacancy period. These concepts are illustrated

in figure 4.1.1.

Blocking Cycle
f-

1 B lock ing Cyc le ?' Y----_ I
)

Vac ancy
Pe riod 2r

) )N*

N- l-

P*-r-
o

ö *-.-

Tim e

Fig. 4. l. I
An illustration of blocking cycles and vacancy periods.

(*) rf the process originally starte<l in state N this interval

shoul-d read toÍ.t ,.1*' t' ) .



59

The fength of any blocking cycle has the same distribution as

thaÈ of any other blocking cycle (recall the memoryless property

L.2.2). The analogous observations for blocking periods and vacancy

periods likewise appties. Accordingly we will denote the probability

distribution function for the length of a blocking cycle by B (t) and

that for the length of a vacancy period by V(t). Of course, the

distribution function for the length of a blocking period is simply

r-ePNt (t>o).

Denote by bn (t), 0 ( n ( N-I, the probability distribution

function for the time to the next entry into the fuII state from

I n)T;"' - O; that is, from an epoch at which the transitíon ¡ + (n+1)

is just about to occur. (Compare with the functions fn (t) of

section 3.I.) The system becomes blocked im¡nediately upon the transition

(u-1¡ -+ 5, and so trivially

b*-, (t) = u(t) ( r.1)

where u(t) is the unit-step or Heaviside function given by the

expression (1.2) of section 3.I. vÍe write b_t(t) for the probability

distribution function for the time until the next entry into state N

from an arbitrary epoch at which the system is in state 0 and no

birÈh is just a-bout to occur. These functions bn (t) (n=-1 ,O,Ir... rN-l)

are well-defined due to the memoryless property I.2.2. V,Ie now use

the same procedure as in section 3.I to find ex-oressions for these

functions bn (t) (n=-l rO,I,. ". rN-l) .

Suppose that the system is in state n, 0 ( n < N-I, and

consider an epoch .1"' (some k > O). Note Èhat the system wiII

be in state n*1 at time .:'' + 0. Thus bn (t) is the probability

of the event that the system next enters state N by time
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.1", + t. since the entry into state N must itself be a birth,

then the desired event can only occur if there is at least one

birth or death subsequent to time ,1"' + 0 but by time r(n) + t-
k

If we refer to the derivation in section 3.I of the equations

(I.3) and (1.4) which lead to the expressions(I-5) and (1.6) for

fn (t), wê see that exactJ-y the same argument applies to bn (t)

with "overflov¡" replaced by "entry into state N". Since fn (t)

and bn (t) (¡=-1 ,OrLr... rN-I) satisfy the same recurrence relation

and have the same boundary condition, we thus conclude that

, br, (t) = fr, (t), n=-I ,orl,... rN-I- (I.2)

This result, although it may be surprising at first glance,

is actually to be expected. Both these distribution functions relate

to time intervals which commence as a transition ¡ + (n+1) is just

about to occur and end at the instant of the next subsequent arrival

in state N-l. V'Ihether this arrival constitutes an overflow or

causes a transition to Some state N is of no consequence to the

time interval being considered. In particular we noÈe that bn (t),

n=-lrOrlr...,N-I, is independent of the value of UN'

Thus, from equation (I.14) of section 3.1, the Laplace-stieltjes

transform of b
n

(t), defined by

b* (x) e db (r) (r.3)
n n

Re x ) O, n=-1,O,L,... rN-I,

ís given by

x[-
Jo

b* (x) (1.4)

n=-1 ,0 , f , . . . , N-l ,

where (f" (x) ) o is the sequence of orthogonal polynomials defined
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(I.12) of section 3.I and its footnote)

- (x+Àn+p,r)pr, (.x) + r,rPn,, (x) = o,

n=Lt2r...,

Àt Prr*, (x) (1. s)

po (x) i L, pr (x) x+Ào-ñ-

Consider an epoch olt' (some k > O) at which a vacancy

period commences. Now the distribution of time from ol*' - o

until the next entry into the full state (that is, the length of

the vacancy period) is the same as the distribution of time until

the next entry into state N from an epoch .[*'" - O (some 9'> o).

This foll-ows immediately from the memoryless property I.2"2, since

rNl (N-2)
at both o;"' + O and r).' -' + 0 the system is in state N-1.

That is,

V(t) = b*_r(t) , (I.6)

which implies, when combined with result (I.2) of this section and

expression (1.15) of section 3.I, that

v(t) = F(t) , (I.'1)

where F(t) is the inter-overflow time distribution function for

the corresponding birth-and-death process of N states with

associated overflow process. Thus equation (L.24) of section 3.1

gives also an expression for V(t).

üle can summarise the results concerning the vacancy period

as follows:

4. I. t Theorem.

The distribution function of the length of a vacancy period

for a finite birth-and-death process of N+I states is a convex

Iinear combination of N exponential distributions, Specifically'
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v(r)

ß.I

If we denote by

transforms of B(t)

i q tr- - exp(x. t)l
N

i =1
f tÞ o, (1.8)

(r. s)

(1. ro)

where {*.
I

i=1,...,NÌ is the set of zeros of n*(x) and

We note that V(t) is independent of the value of Ux, and

also is exactly the same as the distribution function for the time

between successive overflows from the corresponding birth-and-death

process of N states formed by deleting state N and considering

births in state N-I as overflows. I

Now the length of a blocking cycle is egual to the sum of the

length of the blocking period and the lengLh of the following

vacancy period. Thus the distribution function of the length of a

blocking cycle, B(t), is the (Lebesgue-stieltjes) convolution of

the dístribution function of the time spent in state N with that

of the length of a vacancy period, V(t) - That is,

l:B (r) v(t-y) dIr-e Pnv 
1

l"

n* (x) and

and V (t)

i=Lr2r... rN.

v(t-y) u"e PNY do E>O.

V* (x) the Laplace-Stieltjes

respectively, given by

B* (x)
['

*t¿e(t) , Re x)- o, (r. 1r)

and

v* (x)
[t 

"' av(t) , Rê x Þ o,

then equation (I.10) imPlies that

(r.12)
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(r. r3)

(1.14)

( 1. ls)

(r. 17 )

(1.18)

Combining (I.14) and (1.15) and substituting into (I.f3) reveals

that )

UN P*- , (x)
(r. 16)

"* 
(x) *+UN p* (x)

UsÍng the notation and results of lemma 3.1.1, we can write equation

(1. 16) as

from (1.7) we have

V* (x) = F* (x)

and eguation (1.17) of section 3.I gives that

F* (x)

c[.
I

B* (x)
, (x-x. )

Recalling equation (I.23) of section (3.1), which defines q

(i=Ir2r...rN) aS

cx.
-t
ß. = _ -_:-, i=It2t...rN,rx

I

r¡/e can express equation (I.17) as

B* (x)
N

I
i =1

N

I

-x, ß, u*
(x+p*¡ (x-x, )

In order to invert the Laplace-stieltjes transform we must

decompose the expression (1.18) for B*(x) into partial fractions.

lrle note that if U* I -x, for some i (I < i < N) then
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-xßui i'N
=(x+P*¡ (x-x. )

Thus from (1.I8) we have

B* (x) =

and

B* (x) =

x.ß. \ttl
u+x I'N i¿

[ ß,x* (-*i)l
l_ {u*+*, ¡ 1x-x. ) I

if U* I -1 for all í=I ,2, - . . ,N,

/ *rß, \ Ulr /ß, Þ* 1 (-x. )
t-¡ 

- 

r ¡-

\uf*" ./ {**i.,"¡ ' \u***. / (x-x. )

4u*I
L

(u*+x. )

(r. 1e)

(r. 2o)

(r.21)

(
\

N

]

N

¡

(
\,

N

I
x.ß. \rrl
u"n/

U,N

(x+P*¡

ifj

N

I
=l
fi

+

if 1t*=-*j forsome j tf<j<N).

(Recall that the zeros of p"(x) are distinct, and so UN can equal

-x. foraÈmostone j tf<j<N).)
J

Now if the Laplace-Stieltjes transform of some function f(t)

is +- , for some constant K, then
x+K

f(t) -f(o) = {t-e*t¡ t> o.

AIso íf the Laplace-Stiettjes transform of some function S(t) is

K

G+K)z ' then

g(t) -s(o) =-te'*t +l1t-e"t) , tÞo.
K.
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However,

B(0) =Q '

and so, inverting (1.20) and (f.21), we have

B(r) = (i,
x.ß. \trì

\*", /
l¡ Nt(1 -e )

(L.22)

4u"
I =1 \o**, )

'(1 -.*tt) t2 0,

N

if U* / -x, for aII i=L,2'... rN'

(t-ePNt)

and

B(È) =

+

(
\

I
N

"'4\
u+x /'N i.

I
I

rfi

(l - e*lt, (r.23)

* ß, (r - e p¡rt ) - ß, uNre 'rNt E>- O,

if þr = -*j for some j (r < j < N)'

It is sel-f-evident that the latter expression for B(t) (for

= -x. for some j tf ç i ( N) ) is not hyperexponential.
J

Ì.lro I -x, for aII i=I ,2r... 'N' so that expression

B(t) applies.

ß,}k

Define Yt (i=I,2t...'N+I) bY

Yr =çq-' í=Lr2r...rN,

(r.24)

lN+ I
"r4

, u"**,

N

T

Then, from (L.22) ,
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(1.2s)

E > o, u* I -x, for all i=L,2, . . . ,N.

Thus, in this case, B(t) is a weighted sum of exponential

distributions, and these weights of course sum to unity since B(t)

is a distribution function. For B(t) Èo be hyperexponential we

require in addition Èhat the weights be positive. Now I > 0

(i=1,2,...,N) if and only if (U***, ) > 0 (i=1,2,...,N) , since

ß, > 0 (i=I,2,...,N) and Þ* t 0. But if (lr***, ) > 0 for all

í=Lt2r... rNr 
,then 

Y**, 4 Or since *i < 0 (i=Ì,2r " ' rN) ' Thus

we will have always at least one negative weight, and so B(t) is

not hyperexponential.

We can summarise the results concernÍng the blocking cycle as

follows:

4.L.2 Theorenr .

The distribution function of the length of a blocking cycle for

a finite birth-and-death process of N+I states is given by

(I - e rNt 
)

(L.26)

N

B(t) = y**, (r - "'*t ) + I v, (l - e*it ¡,
i =1

I
I

B(r) = (Ï

and

x.ß. \rrì
u*+"J

x.$. \rrì
u"+"r i

(I - s*it¡ tÞ o,

if I.l" I -x, for aII i=L,2,. -. rN,

(1 - e ,, Nt
(

N

i
i =1
lfj

+

N

I
iÉj

(1 - s*i t ¡
I
I

B (r)

+ ßj (r - e ¡'¡rt ) - ß, \ad 
u*t 

, L>- Ot

(r.27 )
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if uN=-*j forsome j tr<j<N)'

where {x, ; i=L,2,...,N} is the set of zeros of Pon(x) and

n*_, (r )
L=Lr2r...rNß.I

, (1. 28)
x, ri(x, )

lVe note that B(t) ís never hyperexponential.
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4.2 THE TIME BET\¡iIEEN SUCCESSIVE ENTRIES TO THE EMPTY STATE.

In this section we wil-I examine the same birth-and-death

process of N+l states, but we will nohl concentrate on phenomena

associated with the 0 boundary state. Again we will denote by

{.1") a.(rn) a,!") <...}, where o(n<N, therandomepochs

at which a birÈh occurs when the system is in state n, and' also

denoreby {o[') .ot") .o!") a...], where o<n(N, the

random epochs when tl-e system is ín state n and a death occurs.

We shall now make some definítions related to the boundary

state 0 which are analogous to the definitions of section 4,1

concerning the boundary state N. We wiII refer to the boundary

state 0 as t]ne ernpta state, and on entering the empty state the

system becomes ídLe. Define an idLe pez"Lod to be the time from

when the system is just about to become idle untíI it next is just

about to leave the empty state. An idle egcl¿ will be the period

of time from when the system is just about to become idle until'

after leaving the emnty state, the system is again just about to

become id1e. That is, an idle cycle is the time j-nterval

toft) ,ofll l, for some k > o . Note that at an instant when one

idle cycle ends the next idle cycle begins. We will refer to the

time from when the system is just about to leave the empty state

until it next is just about to become idle as an engaged period-

rhat is, an engaged period is the time interval tr:o', ollì, t.' for

some k > O. Thus an idle cycle consists of two parts: an idle

cycle conìmences with an idle period and is then followed by an

engaged period. These concepts are illustrated in figure 4.2.L-

(*) rt the process originally started in state O this interval

shourd read t.lo) ,oft) l.
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Engaged

Peri od 2
r r I

)

Time

Fig.4.2.I

An iÌlustration of idle cycles and engaged periods.

The length of any idle cycle has the same distribution as

that of any other idle cycle (recall the memoryless property L.2.2).

The analogous observations for idle periods and engaged periods

Iikewise applies. Accordíng1y we wiLl denote the probability

distríbution functíon for the length of an idle cycle by I (t)

and that for the length of an engaged period by E(t). Of course,

the distribution function for the length of an idle period is

simpty r-.-Àot (t>o).

Consider a birth-and-death process of N+l states, labelled

^^^^^O,Ir2r... f N, with birth rates ÀO (n=OrI,...,N-I) gíven by

)

4

3

2

I

0

o
o

tt,

.. ---)

I u'N-nn
n=0rI,2,...,N-I, (2.L)



and death rates un̂
(n=Ir2,.., rN) given by

ÀN-n
rt=Lr2r3r...rN.un̂

(t/i (x) )

æ
bv

n=O

70.

(2.2)

(2. 3)

and define

(2.4)

Define the orthogonal polynomial sequence

n=I ,213r...,

n

^^ 
w (x)

n n+l

tlo G) 7 L,

(x+1^ +ûa ) Ø,, (*) + un̂
(x) = o,W

n-l

(*)

rr'r(x) = + 1x+î6)
À6

Let {"r, í=I ,2,...,N} be the set of zeros of il*(x)

q (i:1,2,...,N) by

fll (y. )
IN-1

p.
I y, l'/ 'N v

Let Vttl be the probabitity distríbution function for the length

of a vacancy period, and let âttl be that for the length of a

blocking cycle, for this birth-and-death process.

Applying theorems 4.I.1 and 4.1.2 to this new process \¡7e

have immediately that

,*ì ^U For n > N-l take I^ and
n

u^ to be anv positive real
n

numbers for the sake of the definition (2.3) of (il" (x))10

The polynomials [y'**, (x) , Ø** ,(x) ,... , are irrelevant to

the analysis.
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B(t) =

(2.5)

(2.6)

(2.1)

v(t) =

N

i =l
I p, [r - exp(y. t) ] E)- O,

N

I
t

â r.r =( i,
YiPi\

il;J
(1 - exp(-UOtl )

pi
(1 - exp(y. t) ) EÞ O,

N

I
u¡

+

(,

(u¡+v, )

if 4/-", for alL i=L,2,...,N,

(I - exp(-Uñt) )

N
I
t.

I
I

pi uñ
+ T

(l - exp(v. t) )- -t
(u¡+v, )

ifi

+ p. [r-exr(-ûOtl J-0, û¡t exp{-iOt) , t 2 o,

íf û,ç=-t, forsome j (I< j<N).

Now if we associate state â of the new process with state

N-n of the original pïocess (n=OrLr2,... rN), then, by virtue of

relations (2.L) and (2.2), we have that the two processes are

stochastically identical. However the blocking cycles and vacancy

periods of the new process are precisety the idle cycles and engaged

periods respectively of the original process- Thus

E(t) = V(t) (2.8)

and

r(r) = â(t) (2.e)

Using (2.I) and (2.2) we can express the recurrence relations

(2.3),whích define the orthogonal polynomial sequenc" (Wn(*))- o t
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ín terms of quantities associated with the original process:

}ç_r, Øn*, (*) - (x+uN_r,*À*_r,)Irzr, (x) * À*_r, Iy'n_, (x) = 0,

(*)

Combining (2.8) with (2.5) and (2.9) with (2.6) and (2.7) (and

again applying (2.L) and (2.2) ) we have that

N

E(t) = IO,tr-exp(rt)l , tÞo, (2.1I)
¡ =r

n=L1213t...,

Øo (x) 1 L, WtQ) 
l= uN 

(x+uN)

v.p.\
t#) 'ft - exp(-Àot))
,ru'Ii/

zN
r(t) = I I\=r

r(t) =
YrP¡\

ri.y, /

(2.r0)

(2.L2)

( 2.13)

N

I
t
I

L

9, Ào

o*Y, )
(1 - exp(y. t))

I
I
I

þÞ o,

j tr<j<N).
and hence I (t) is never

l,¡
n

+
(

if

N

I

Ào / -yi for all j---l- ,2,...,N,

(I - exp(-Àot) )(ï,
ifi

+

if Àn = -v- for some- -j

Theorem 4.L.2 gives also that Êttl

(*)

the sake of the definition (2.f0) of (

footnote to (2.3) .

r 0. Ào

lnffi'(1 - e*P(vit))]
i =1
ifi

+ p. [1 - exp(-Àot)] - o, À¡t exp(-Àot), tÞ o,

hyperexponential.

For n)N-l take À-, ,U-- to be any positive real numbers forN-n '' N-n
æ

(x) ) n=0
(Refer to the
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Vüe can summarise the results of this section as follows:

4.2.L Theorem

The distribution function of the length of an engaged period

for a finite birth-and-death process of N+I states is a convex

Iinear combination of N exponential distributions.

Specifically,

N

E(t) = I O,[1 -exp(v,t¡ì , t>zo, (2.L4)
i =1

where {t, r i=L,2r...,N} is the set of zeros of Ø*(x) and

pi
Ø"-, (Y, )

= - 
", 

øi{v, )
i=I ,2r... rN (2.1s)

(2.L6)

Vte note that E (t) is independent of the value of À0.

4.2.2 Theorem.

The distributíon function for the length of an idle cycle

for a finite birth-and-death process of N+l states is given by

f (t) (t-e -Àot
N

I
Y'Pt\

ñ.\ )
(
\,

N

I

zNt-r(r) = { ).
\=r

+

+

P, Ào

(Às+Y. ¡

I
I

L

(1 - syit¡ t Þ o,

\o / -yi for all i=L,2,... 'N,

I
J

and

if

ifj

N

it:

+ P. (r - s-òst

(t-e -Àot

(1 - syit¡

)-p.Àote-Àot, t2o,
J

for some j tf -< j < N),

Yrot\

-t

\o+yi )

I
Pt Ào

(Ào+Y. )

íf Ào = -y,

(2.L7)
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where {v, ; í=Lr2r... rN} is the set of zeros of tr/*(x) and

pi
Ø*-, (Y, )

= - ,, øit4 )
í=I ,2 r.. . ,N .

Vte note that I(t) is never hyperexponential.
I

We point out that Keilson [197f-] also finds that the length

of an engaged period (or, as he terms it, "the sojourn time on

{L,2,...,N}") is hyperexponential. However our method, which is

essentially constructive, not only provides a simple procedure for

the numerical determinatíon of the distribution, but also relates

to the methods and results of the previous sections thereby giving

greater insight into the structure of the process.
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4.3 THE TIME BETWEEN SUCCESSTVE ENTR]ES TO AN INTERI"IEDTATE STATE

As illustrated in section 3.2, a number of limited capacity

queueing models cän be framed as finite birth-and-death processes.

The theory developed in the previous sections, which we recall

concerned overflo\,ts, entries to the fuII state, and entries to

the empty state, is of obvious relevance to the models being studied.

Ho\^¡ever in some queueing models there may be some other States which

are of particular interest. For example, Iet us recall- the

telephone trunking model with holding registers of section 3.2.2.

The theory which we have already developed concerns overflows, the

full state Tr * Tìz, and the empty state 0. Another state, of

interest in its own right, is the state 1r, which is the state in

which aII trunks are occupied but all hoÌding registers are vacant.

For this reason I^/e now turn our attention to the study of phenomena

associated with some (arbitrarily selected) intermediate state.

As in sections 4.1 and 4,2 we will consider a finite birth-and-

death process of N+l states, labelled O,I12, . . - ,N, with positive

birth rates Àn (n:0,I,...,N-I) and positive death rates Un

(n=1,2,...,N). Again we wirr denote by {.1') . .(r') ' .t") ¡ ...},

for o(n(N, and {o(0") .otn) .ot") <...}, Íor o(n(N,

the random epochs at which the system is in state n and a birth

and death occur respectivelY.

Let us arbitrarily select, but then fix, an intermediate state,

r say (O < r < N). We define an T'-cAcLe to be an interval of

time which commences as the system is just about to enter state r

u¡rtil it next is just about to enter state t. It is cfear from

our definition that any instant of time belongs to exactly one

r-cycle, and the memoryless property L.2.2 gives that the distribution
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of the length of any r-cycle ís the same as that for any other

r-cyc1e. Ho¡^rever, as the system may enter or leave state x with

a birth or a death, any particular r-cycle can have one of the

following four forms: (for some k > 0, L> O)

(i) t.['-" ,.(r-r)k+1
rt

ifr

f oÍ'*') ..(r-t) ..ll;" . o[:i"

(ii) ttÍ.'-t' ,ol"*t) ), if

(iii) tol'*" ,o|1i" ,,

O(r+1)
Q-1

(¡-l)
T

k
.o(

e

(r+t)
ok+l

r+1) (¡-1)
k+1

<T

o "(r-I)' -p+l
(¡-1 )
e

(iv) tol'*t' ,.Í'-t) ) , if T
(¡-I)
Q-r

r+1)
+lol'*t'..['-t'.ol

The concept of r-cycle is illustrated in figure 4.3.L, whích gives

an example for each of the four possible types.

t.t rv

r+l

r-l

Fig.4.3.1

en illustration of the concept of r-cycles.

¡

Í

o
o

.n

o
Time
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Deuote by Gr (t) the probability distribution function

for the length of an r-cycle. lVe no\^¡ seek to find an expression

f.or cr (t) .

Denote by g,, (t), 0 ( n ( N-l-, the probability disÈribution

function for the time to the next entry to state t from -1"' - O;

that is, from an epoch at which the transition ¡ -+ (n+I) is just

about to occur. TriviallY'

s (t) = u(t)-1 -1
(3. r)

where u(t) is the unit-step or Heaviside function given by the

expression (L:2) of section 3.I. v'Ie write S_1 (t) for the probability

distribution function for the time until the next entry into state

r from an arbitrary epoôh at which the system is in state 0 and

no birth is just about to occur. The memoryless property L.2-2

implies that the functions gn (t) (n=-1,0,I,...,N-1) are well-

defined; for the sake of notational brevity we have not explicitly

indicated the dependence of gr, (t), on r.

hle can again apply the technique used in the derivation of

eguations (f.5) and (1.6) of section 3.1 to find recurrence

expressionsfor gr,(t) (-1<n(r-1, and r<n<N-l) simply

by replacing "overfl-ow" with "entry into state r" - For the case

\=T, if the next event subsequent to the initial transition

a + (r+1) is a death, then this event is the next entry into

state r. However, as ',r¡e have that gr_, (t) = u(t), then the

expression for r ( n < N-l also hol-ds for n=r. Noting that the

next event after a transition (N-1) + N must be a death, we also

have immediately an expression for gN_l (t). Thus,

= Jrr, 
(t-y) 

"-^0" Àodys_l (t) t2 0, (3.2)



gn (t) = J(r,,*1+f"'+r)vIÀn*r9n+r (t-y) * rrr*r9rr-r (t-y)]dy ,

r(n<N-2 , tÞO,

gn (t) = r
),

l:

g* (x) = l-t Jo
e

these recurrence equations read

-(Àn+i+Fn+r)v [Àn*r9n+1 (t-y) * ur,+,rq-, (t-v)]ay ,

O(n(r-2 , t)'0,
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Re x ) 0, n=-IrOrLr...rN-I,

(3.3)

(3.4)

(3. s)

( 3.6)

(3.7)

(3.8)

(3.e)

(3.10)

( 3. rr)

t > o.

In terms of the Laplace-Stieltjes transform of 9- (t)

(-r<n(u-ti, defined by

l.sN_r (t) = s"-, (t-v)e-&NYuNdy,

-x

sl, (x) = ;s sf (x) f

9f (x) = x+À +un+l 'n+1

u
sf;*, (x) + **1--i+- øf-, (x)^

n+ I

0(n(r-2 t

gl ,(x)=fl

g*
n

(x) x+À +un*l 'ntl

u
sf;*, (x) + x+f.. trl e*-, (x)

À
n +1

,

r(n<N-2,

efi-, (x) = + eft-, (x)

Hence, on rearrangementr we have

(3.12)
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Àosä (x) - (x+Ào) s*' (x) = o , (3.13)

Àn*rsf*, (x) - (x*À,r*riuo*, )sf (x) * ur,*rvf;-, (x) = Q ' (3-14)

O(n4r-2,

g-*'(x)-r,

Àr,*r9Í*r (*) - (x+),n*r*Fr,*, )g*(x) * ilr,*rgi-, (*) = 0,

r(n(N-2,

, - (x+\) 9fr_, (x) + U*vft_, (x) = Q . \

we iecalI that the orthogronal polynomial sequence (P,,

was defined by

Ànpn*, (x) - (x+À,r+1.tn)p,, (x) * þ'Pn_, (x) = o ,

n=Lt2¡3¡-.. ¡

ps(x) = I , P¡(x) = + (x+Ào)

( 3. rs)

( 3. 16)

( 3. 17)

æ
(x) )

(refer to equation (I.L2) of section 3.1). comparison of (3.r8)

with (3.13) and (3.14) reveals immediately that

and so from (3.19)

g*(x) = cr(x)Pn*, (x) , n=-I ,orlr.. - rr-1, (3'19)

where a(x) is independent of n. The condition (3.I5) fixes cl(x)

to be

o(x) = il*, r

n=O

( 3. 18)

(3. 20)
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6
(W (x) ) was defined

n=0n

by

þ*_nffn*, (*) - (x+u"_n*À*_n)Fr, (x) + À*_'Øn_, (x) = o ,

n--L12t3r...

1
Wo fu\ llt G) (x+\)=1_I,

(3. 2r)

(3.24)

uN

(refer to equation (2.10) of section 4.2). Iî. we make the sr:bstitution

N-n-l for n in (3.2L)., we see that

u,r+1ffN-n (x) - (x+\*r*l'*, ) il*-r,-l (*) * Àn*, K-r,-, (x) = 0 '
(3.22)

n=0r112r... rN-2,
1Ø*-(*-r) -, 

(*) f l' tr"-( 
"-r) -., 

(x) =-u.N
(x+urs)

Comparison of (3.22) with (3.16) and (3.17) reveals that

sf (x) = ß(x) il*-o_, (*) (3. 23)

n=r-I ,rrtllr...rN-l,

where ß(x) is independent of n. The condition (3.15) fixes ß(x)

ß(x)

and so from (3.23)

as

il*-rr-, (*)
g* (x) = r *_, (") |

n=f-I ,t ,t*L r. . . ,N-l.

Combining (3;20) and (3.24) we thus have
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Pn*, (x)
-I(n(r-I

s* (x)
n

(3. 2s)

r-I(n(N-lil*-, (x)

we now seek an expression for g (t) in terms of 9,, (t)

(-I < n ( U-1). Suppose that at time T an entry into state r

occurs. !{e require the probability that the next entry into

state T subsequent to time T+O occurs by time T+t. Suppose

that the next event subsequent to time T+0 occurs in the time

interval ('r+y, T+y+dy) , where y+dy < t. The time which now

remains for the next entry into state r to occur in is t-y+O (dy) 
'

and either the transition ¡ + (r+I) (if the event is a birth) or

the transition s + (r-I) (if the event is a death) is just about

to occur. However we note that the future behaviour of the system

subsequent to a transition a -+ (r-l) is stochastically

indistinguishable from the future behaviour subsequent to a

transition (r-2) -+ (r-I) (or, in the case Y=I , subsequent toan

arbítrary epoch when the system is in state 0 and no birth occurs)

(Recall the memoryless property I-2-2.) Thus we have that

n, (x)

il*-r,-, (*)

G (r) t > o.(3.26)

In terms of the Laplace-Stieltjes transform of G
r

(t), defined by

ft.-,^.+¡'r)v[\s {t-y) + 4s _r(r-v)Jdv,
JO r r t r-t ¡

f* -*G*(x) = jo"
t dG (r) (3.27)

f

expressíon (3.26) can be written as

RexÞ0

G* (x) t
(x+À +P ¡rrÍ [\ ør* (x) + ¡t g.*_, (x) J (3.28)



82.

Using equation (3.25), we therefore have that

I il*-r 
-, 

(*)
G* (x)

f (x+ +u t/ (x) +u
f

N-rf

(r)
0

¡

N-¡ -l

(3.2e)

(3.30)

( 3. 3r)

( 3. 32)

( 3. 33)

(3.34)

À

f

Recalling lemma 3.1.I(iii), the folLowing partial fraction

decompositions are immediate:

(r)
q.

I

, (*_*Í') )

where {*f') , í=L,2,-..,r\ is the set of zeros of p- (x) and

n,-, t*f') I

= 
n'{*f') )

>0,

L=L12t... rti

and

and

TT (x) N-r

I
i =t

(N-¡),,
. (N-r).(x-y¡ )

where {V
(N-r) í=L,2r...,N-rÌ is the set of zeros oî. [y'*_, (x)

and

Ø*-r 
-, 

(
(N-r)

(N-r)
0J.

I
>0

wtN-r

N-r

If we make the definitions

í=Lr2r...rN-r.

i=L12,-..rt

L=L12r...,t ,

l'/

ßÍ"

oÍ"

(x)

y,

tvf 
*-') 

I

(r)
q.

I=-- (r)
x

I

(r)
ûJ

i=-- (r) r
yr

then substitution of (3.30) and (3.32) into (3.29) yields

( 3. 3s)
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N-r
(N-¡) (N-r).

-Yi Pi n,

(x+À +4 ) (x-y( N-' ) 
)

G* (x) I
i =1

r

+
f

I
i =l

(¡) ^(r)-x. þ. utrf

(x+À +u ) {*-*!') ¡

ßÍ') utr
(r)

x.
J

( 3. 36)

(3.37)

( 3. 38)

( 3. 3e)

( 3.40)

( 3. 41)

Let j e {r t2,. .. ,r}. Then, if À+u
11 I (

-x.
J

r)

(À+Y¡
tr

(x+À +U ) ( ) (À, +u, ) (\ *q **f'' ) (x+À +p ¡
(r)x-x.
J

-*Í') ßÍ') uttr

while if \ *4

(\ *u, **Í'' ) (*-*Í') )

*Í') ßÍ') uttf

(-
+ ,

(À +P ¡
,ff

(x+À +P ¡ 2
ff

(¡)
-x.

J

then

ur

ßÍ') uJ1

Similarly, a partial fraction decomposition can be found for the

summands in the first summation on the right-hand-side of (3.36) .

Define

ß(' 
)

Y.
I

Y.
I

(À +p **Í') )
frl

*Í') ßÍ') utlr

(\ *q ) (À. +p **f') I

o(N-t) 
^

'i r

(\ *q *vÍ *-') )

(N-r)
p.

I
À

i=L12r...rr

í=L12r...rt

í=Lr2r...rN-r6.
I

v
(N-¡)
i r

ôt (À +u ) (À +p *yÍ*-') )r¡¡rl

i=I,2r...,N-r (3.42)
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using the partial fraction decomposition as illustrated in

and (3.38), we can write (3.36) as

Then,

(3. 37)

G* (x)
Í

(À+p¡
ff

(x+À +U )

Yr)

o

(I Yi)

iti

ô.
I

+ ßÍ
t

uI

r

I
1

f(I
i =l

ff

( 3.43)

+
N-r+i
i =r

t-"Í N-r ) ) N-. (l+p¡
r 'f

("_yÍ N-¡ )

(À +P ¡rf

(x+À +u )11

(N-r)

(l ô.)
I

) i =r (x+À +p ¡

íf. À, *U, I -{" for arr i=L,2 ¡. . . ¡r, and \ *q I -vf 
*-'l for

all L=L,2r...rN-ri

-x.
I

G* (x)

(r)
Í
I Y.

I
+

f (x- (')
x

I
) i =t

ifi

N-¡+I
i =r

(-y

, (N-r)
(x-y.

I

(À +P ¡tl

(x+À +u ) 2

Ít

) rq-" (À+p¡
fr

(x+À +p ¡

+(I ô.)
I

) i =t r r

r)

if À
r

+u
r

(r)
)

forsome j tf(j(r), but +uT
f

(3.44)

, (N-r)I -v.
¡f

for aII í:L,2,...,N-r;

G* (x)
f

r (-*Í') ) 1ï ". (l
lrt (*-*(')) i=r

Y.)
(À +¡r ¡

ff

(x+À +U )¡ r

N-r (-rrÍ""') )
-l

(À+p¡
1r

(x+À +U )rf

N-r(I++ I 6.
I

6.)
I(x (

-v.
I

N-r )
)i

i f k

(N-r)
k

À

(À+p¡
rr

'1x+À +u )2rf

+p

i Êk

( 3. 4s)



if À+Utr

for all

G* (x)

(N-r)
=-W ,k

t=I ,2r...rli

(')
-x.

I
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for some k (1 < k ( U-r), but À, *U, I -

(À +¡r ¡rÍ

(¡)
x.

I

f

f

I (lf
i =1

Yt)
(x+À +U )

f f
ifi tti

N-¡
(N-r) (À+u)(-y N-r

+ i I ô.)
I

fr
ô +((N-r)(x-v )i (x+À +p ¡

ifk

+ rß1') u *pÍ"-') À )
,rKf

t ¡Êk

(À +p ¡¡ f
( 3 .46)

(x+À +u ) 2

ff

. (r) (N-r)
if \*q =-x"'=-yi"", where I(j(r and I<k(N-r

By noting that G (0) = Q we can immediately invert c* (x) as

given in equations (3.43), (3.44), (3.45) and (3.46) to yield Gr (t),

in the same fashion as we inverted e*(x) in section 4.1. We ñote,

for similar reasons as for B(t) in section 4.1, that Gr (t) is

never hyperexponential.

The functions G (t) have been defined for 0 < r < N. The

time between successive entries to state r for r:0 and r=N

has probability distribution function r(t) (*) and B(t) (**)

respectively. Thus we define

Go(t) : t(t) (3.47)

and

(*)

(**)
See section 4.2.

See section 4.I.

cN(t) = B(t) (3.48)



If we make the following natural interpretations

uo=o=À¡¡

and

W -(x) = 0 = p .(x)
--l -l

then, recalling equations

4.I, we see that equation

is true also in the cases

86

( 3.4e)

(3.50)

(2.9) of section 4.2 and (I.16) of section

(3.29), and hence all subsequent analysis,

r=0 and r=N.
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4.4 FTRST PASSAGE TIME DISTRIBUTIONS.

In the preliminary analysis of the previous sectj-ons we

have made use of first passage time distributions, although we

have not expticiÈIy stated them as such. In this secÈion we

bring together these results and relate them to existing formulae.

For two distinct states i and j tO ( i,j ( u, L I ll

define the first passage time from i to j as the time from an

arbitrary epoch at whích the process is in state i until the next

subsequent entry into state j. (Ìle note that the first passage

time is independent of the length of time the process has been in

state i befcjre the initial epoch, by the memoryless property

L.2.2.\ Denote by F.. (t) the probability distribution function

of the first passage time from i to j, and define its Laplace-

Stieltjes transform by

t ar., {t)f- -*(x)=le
Jo

F*

i/), RêxÞo.

Recatl that in section 4.3 we made use of the functions

gn (t) (n=-l ,o,L,... rN-l) , which were defíned as the probability

distribution function of Èhe time from tl" -O (.some k Z O) until

the next subsequent entry into statê Y t where r is some fixed

state. But the state of the process at ,1") *O is (n+1) , and

(4. 1)

(4.2)

so

-F n+ 1, r
(r)

n*L f r, -1 ( n < N, O ( r ( s.

gr, (t)

In terms of the Laplace-Stiettjes transforms we can write (4.2) as
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9*(x) = uj*r,. (*)

p- (x)

n+L/r,-l(n(Nr0(r(U.

9*(x) (-r < n ( n-1)

-1(n1r-L,

r-I(n(N-1,

0<i<j

, (4. 3)

(4.4)

Invokíng equation (3.25) of section 4.3 for

we have

P"* 
' 

(x)

n, (x)

F*
¡* l, I

(x)
il*-'-, (*)

H*_, (x) |

r=0rI,2,...tN,

or, more convenientlY,

p. (x)
f

r.*. (x)

j<i<N

j=0rIr2r.. - rN.

We thus see that the functions Sn (t) (n:-1 ,O,L,... rN-I) are

simply first passage time distribution functions. The functions

bn (t) (n=-I ,OrI,... rN-I) used in section 4-I are the special

cases when the first passage time ís to the boundary state N.

This is also the case for the functions fn (t) (n=-l ,O,L, - -. 'N-1)

used in section 3.I, since whether the arrival in state N-I causes

an overflow or a birth to some state N is irrelevant to the time

interval being considered.

It is important to note that for the first passage time

from state i to some higher state j we do not need to know

anything about the states above j. Thus we may truncate the
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sÈate space (as far as {0,I,2,...,i}) or extend the state space

(even to an infinite space) without affecting FI. (x) for i < j '

In chapter 2 i-t was mentioned that Karlin and McGregor [I959b]

gives a formula for F.*- (x) (i < j) for an infinite birth-and-

death process (equation (0.5) of chapter 2). Bearing in mind the

remarks of the previous paragraph, and recalling the relationship

between (p,, (x) )- o and the seguence {Qn {*) )1o of Karlin and

McGregor (equatíon (1.25) of section 3.1) ' I^le see that our formula

(4.4) in the case i < j agrees with the formula of Karlin and

McGregor. Thus our previous analys,is provides an alternative and

more direct derívation of an existing formula for FI. (x) in the

case i < j.

However, by approaching the problem directly from the point

of víew of a finite birth-and-death process, rather than simply

tnrncating an infinite one, we find our analysis also gives a

formula for F.*. (x) when i > j.
U

Returning again to f'f, (x) for i < j, the formula (4.4)

also provides an alternative derivation of some rel-evant results

of Keilson ltglgl. Using our notation, theorem 5.IA of Keilson 1L979)

reads

0 0
¡l nn (4.5)F* (x)

0n

where 0r, j (j=L ,2 , . . . ,n) are distinct and positive. This result

is however an immediate corollary to our formula (4-4t.:

0

(0,r, **) (0,r, **) . . . (onn +x)
n2

Po (x) I
F* (x)

0n
(4.6)

Pr, (x) Pr, (x)

(recall no (x) = l). As the zeros of P,, (x) are real , distinct



and negative (lemma 3.1.1) we can write

p(x)-k(0-+x)(0-n n nl +x)... (0 *x) r

where 0 (j=I,2,...,n) are distinct and positive-

(lemma 3.f.1) and so

n

nn¡2
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However

(4.7)

p(0)-1
n

thus giving the desired form

a means of determining the 0

(4.8)

(4.5) . Moreover our analysis provides

. (j=I ,2,...,ri):nJ

, j=I ,2r... t\ t Ø.9)

. By using a technique

r:_, , Keilson [1979] (p.

k [0rrr 0r,r " ''rrn]-tn

0
(n)

x.
JnJ

- . (n)
\^rnere tx. i l=1 ,2r...rnj is the set of zeros or. r- (x). we point- j n

out that yet another, but closely related, derivation of (4.5) can

be found in Keilson [fgZf] , in which the connection wiÈh the

orthogonal polynomials of Karlin and McGregor is noted-

Keilson [tglg] (section 5.2) discusses the mean first passage

time from n to (n+1), denoted by

-+in which T' is expressed in terms of
n

obtains

-+
T

n

6r)

n

T.
t

,
j =o

where

ÀoÀr ...Àr,_l
(n>I)fio = 1, T

n Þr'}]2...U n

This result can aÌso be derived from formula (4.4), since

d-+

-+1m
n ÀITnn

I

dx FÍ, n*, (*) l*=o

(4. r0)

(4.1r)

(4.L2)T
n

Applying (4.4) to (4.L2), recalling that p,, (0) - 1 (Iemma 3.1.1),

yields
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T: = p'+r (o) - pn' (o) (4. r3)

(4.L4)

@

From the recurrence relation for (P, (x))r,_o (equation (1.12) of

section 3.I) we have that

p;+r (o) = À,,-l[r + (À,,*U,,)nj(o)-U''rj-, (o)J

Thus,

p;+r (o)-p'(o) = 
^;t 

[1 + u,. (rj (o)-n (0))lI

n -1

which, from (4.I3) ' gives

-+
T

n

-t -+- À '[t + u r' .]n n n-l

Equation (4.L4) is precisely the relation used by Keil-son lL9l9l to

derive (4.f0).

Vle have seen that the approach adopted in section 3.1 which

in passing finds what essentially amount to first passage time

distributions leads quite naturally to the orthogonal polynomials

of Karlin and McGregor. This in turn provides alternative derivations

for a nu¡nber of existing formulae concerning fírst passage times,

as shown in this section.
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CHAPTER 5. THE OVERT'LOW

STREAM FROM CERTAIN QUEUETNG

MODELS !{ITH RENEWAL INPUT.

5.1 Introduction.

5.2 Concerning the Overflow Stream from the

GL/M/L/ (Tz+I) Queue.

5.3 The overflow Stream from the GT/M/L/2

Queue

5.4 The overflow Stream from the M/M/L/ (T2+1)

Queue.
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5.I INTRODUCTION

In the preceding chapters, certain secondary processes

associated with finite birth-and-death processes have been

investigaÈed, particularly the overflow process. In section 3.2

it was illustrated that these results can be applied to certain

finite capacity queueing models. However' many elementary

queueing models cannot be treated as birth-and-d.eath processes, and

so tire results of the previous chapters cannot be applied-

One of the most important elementary queueing models is a

generalisatio4 of the telephone trunking model with holding registers

introduced in section 3.2.2. Vle recall that the arrivaf stream to

the model in section 3.2.2 was Poissoni that is, the distribution

of time between successive arrivals was negative exponential. The

obvíous generalisation is to allow some other fíxed distribution

as the distributíon of time between successive arrivals. ble would

therefore have a telephone trunking model with holding registers

with general renewal input.

In order to describe this queueing model succinctly ,we will

use a four part descríPtor:

-/-/-/-

The first two symbols represent the inter-arrival time distribution

and holdíng time distribution respectively. The number of trunks

is given ín the third part, and the total system capacity (the

number of trunks plus the number of holding registers) is given in

the fourth part. The s1'rnbols used for distributions are

M - negative exponential,

GI - general renewalt

D - deterministíc.
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Thus the model in section 3.2.2 is the M/M/T¡/(r¡rr¡

the general-isation which we are now considering is the

queue.

queue, and

Gr/Nr/Tt/ (r1+r2 )

The basic property of birth-and-death processes is the

memoryless property I.2.2. This property was used extensively in

our analysis, particularly in the derivation of the recurrence

equations for the functions fn (t) (¡=-I ,O,Lr... rN-l) of section

3.1. However a similar approach may be abl-e to be used for

queueing modefs which exhibit a memoryless property not on the whole

time continuum but on a discrete subset thereof. For example, the

future behaviour of the GT./N|/Ty/ (Tr+T2) queue subsequent to an

arrival instance depends only on the number then present in the system.

This ís an immediate consequence of the renewal nature of the

arrival stream, remenibering that the hol-ding time distribution is

negative exponential. Thus this gueue exhibits a memoryfess

property at the set of arrival instances.

In this chapter, the GL/M/L/ (rz+l-) queue will be used as

an ilLustration of how a simifar analysis as to the one used for

birth-and-death processes can be made for certain queueing models

which exhibit a memoryless behaviour at only a discrete subset of

the time contínuum.

The Gf/M/Tt/Îl gueue (that is, the basic telephone trunking

model of section 3.2.I, except that the arrival process is a

general renewal stream) has been investigated by this approach.

(See Takács [fSSg], Syski [fg6o] (section 3.I of chapter 5) and

Potter [1979].) It has already been shown (section 3.2.L) that

these results, in the special case of Poisson arrivals, agree with

the results obtained by applying our analysis to the M/14'/1r/Tt

queue.
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5.2 CONCERNING THE OVERFLOVÍ STREAM FROM THE GT/M/TI 2+1) QUEUE

consider the GL/M/L/ (Tz+I) queue introduced in section

5.1, and denote the probability distribution function of the inter-

arrival time by A(t). As in section 3.2.2 we will use a time

scale which takes as its unit the mean holding time. Denote by

{.[") . .1") . .!n' < ...], where o ( n ( tr+l-, the random

epochs at which the system contains n calls and an arrival occurs.

Thus the set of overfrow instances is {1(rz*t), k > o}, and the

time between successive overflows is the length of the time interval

¡_(T2+t¡ _(T2+l)tr; " ,ri*í ').
As mentioned in section 5.1, the future behaviour of the

system subsequent to an arrival instance depends only on the state

the system is then in. Thus, in particular, the behaviour

subsequent to an overflow instance is stochastically identical to

that subsequent to any other overflow instance" Hence the distribution

of the tensth of the time intervar tt:tt t',.11?*t', (that is,

the distribution of the inter-overflow time) is independent of k.

Accordingly, denote the corresponding probability distribution

function by F(t). we note in passing that, as an overffow is an

arrival which does not result ín an increase to the number in the

system, F(t) is also the distribution fu¡ction for the length of

tlie time interval tr[t" ,r:,:'*I) Í:)since at both ,[t" *o and

a(Tz+t) *o the system contains T2+r carls-
k

Define fn (t) (O ( n < T2+I) as the probability distribution

function of the time until the next overflow from -:"'-0. From

the remark in the previous paragraph,

F (r) fr2 (r)

(*) lrthere T(r2+1)
rn- I

, ,('r) < .r(Tz*r)
Qm

(2.L)
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We also have immediately that

frr*, (t) = u(t) (2.2)

where u(t) is the unit-step or Heavíside function defined by

equation (L.2) of section 3.I.

Thus far in our analysis we have not been impaired by the

fact that the memoryless behaviour only occurs at arrival instances.

However the method previously used to derive recurrence relations

for these functions considered the rlext eÐenú subsequent to alt' ,

be it an arrival or a death. In our present situation, \{e are forced

to consider the nexl arrLuaL subsequent to tl"' .

consider an epoch t[t' for some n (O ( n ( tr). Then f,, (t)

is the probability that the next overflow after t["'-O occurs at or

f n)before time r;"'+t. Since 0 ( n ( Tz, the arrivat which occurs

I n)at Ti"' cannot be an overflow, and so there would have to be at least

one more arrival by time t[t) +t. Suppose the next such arrival

occurs in the time interval {.[") *y, ,[") *y*ay) , where y+dy < t.

The time which now remains for Èhe next overflow to occur in is

t-y+o(dy). However, since the arrival at alt' promotes the

system to state (n+1), there could have been any number up to

n*I departures between the arrival at al"' and the next subsequent

arrival.

Sínce we have a single trunk with negaÈive exponential

holding times, the stream of departures from the trunk over any

period of time is Poisson, provided that the circuit is busy

continuously throughout the entire period. including the endpoints.

This Poisson stream has unit mean since the mean holding time has

been taken as or.re unit. Thus, the probability that j tO ( j < n+I)
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depart from the system during a period of length y+dy commencing

. (n)
af Tu as

,;
!:"'+o(dy) (2.3)
l!

The probability that all n*l calls depart during the same interval

is then of course simply

I-
j

vi e-Y + o (dy) (2.4)

then

n
+0

(2 .5)

(t) (0(n(t2+1),

(2.6)

j
0t

Should j tO ( j ( n+J-) calls depart during this period,

the state of the system at the next arrival subsequent to

would be n+I-j.

Thus we have

fn+r_j (t-y)aa(y)

.l )

nett
I I h.-"
=0 rO

r* 
Jo

(r)f
n

rr - I .-tlfo(t-y)da(y) t 2 0,
j =o

j!

n=0r112r... ¡12.

In terms of the Laplace-Stieltjes transform of f'

defined by

n i
v

f;
-xtf* (x) e df (t)

n n

-xy

,

Re x Þ O, n=O rL,2r... rT2*1 ,

the relations expressed by (2.5) can be written as

f* (x) ç*
L

n+ I -jI
t

Y= "-t dA (v)
al

(x)

+ ff (x) Í: t."rr -,i,

f-
Jo

ï .-' I dÀ (y)

n
0

n=0rI12r...rTz.

(2.7)
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Eguation (2.2) can be written as

flr*r(*) - r '
(2.8)

and so acts as a boundary condition.

For any given xt the recurrence equations (2-7), with

supplementary condition (2.8), form a system of 12+L linear

and clearly independent equations in T2+l unknowns. Thus these

equations can, in principle, be uniquely solved to yield f* (x)

(n=0rL12,...¡T2*I) . This would then immediately give an expression

for Èhe Laplace-Stieltjes transform of F(t) ' defined by

F* (x) -xt (2.e\e dF(r) ,

Rex)0,

sínce equation (2.L) implies that

¡'* (x) f*
T

(2.10)

No attempt has been made to solve equations (2.7) for

general T2 and A(t), but in the next two sections the special

cases cr/M/I/2 and M/M/L/ (T2+1) wiII be discussed-

r
Jo

(x)
a
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5.3 THE OVERFLOW STREAM FROM THE GT/M/L/2 OUEUE

Consider now the case of the GL/NI/L/2 queue. The equations

(2.7) and (2.8) become

ff (x) = fT(x) "-(*+t) 
tUo(y)

+ ff (x) .-* t da (y)

- fi (x) -(x+r) Y
e da(y)

f;

f-
Jo

f-
Jo

j; .-tx+1) YdA(v)

[ "tt 
x+ 1) Y 

¿e (y)

J; "-,."dA(y)

[ 
(r+y) .-( x+ I ) Y aa (y)

f!(x) = f!(x)

+ ff (x)

(3.1)

(3.2)

(3.:¡

(3.4)

+ ff (x)

- ff (x)

Define J(x;h), where h is some function of Yt as

n(x;h) = [ r(v)J(x+r)Yda(y)

Note that J (x;h) is linear with respect to

(3.4) and the Laplace-Stieltjes transform of

h. Then using

A(t) , defined by

e* (x) = e
J;

-xt dA(r)

\^¡e can write (3.I), (3.2) and (3.3) as

RexÞ0,

(3.s)
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ff (x) = l(x¡1)fi(x) + A*(x)ff (x) - l(x¡r)ff (x)

f{ (x) = t (x¡ I) f} (x) + J (x;y) ff (x)

+ A*(x)ff (x) - ß(x¡I+y)ff (x)

f! (x)

(3.6)

(3.7)

( 3.8)

(3.e)

( 3.10)

(3.1r)

(3.L2)

=f

Snbstitution of (3.8) into (3.7) yields

ff (x) = J(x;1) + l(x¡y)f{(x) + A*(x)ff (x)

- ! (x¡ 1+y) f* (x)

Expression (3.6) can be rearranged to read

ff(x)

which, when substituted into (3.9) gives

ff (x) = J (x;I) + "C 
(x;y) ff (x)

+
J (x;1) [a* (x) - I (x¡ 1+v) l

1-A*(x)+f(x;I) fi(x)

Rearrangement of (3.If) yields

J (x; r) [t-a* (x) +J (x;1) ]f! (x)
J (x; r) [r-e* (x) +J (x;1) ] +[1-A* (x) ] [l-J (x; y) ]

Hov¡ever equation (2.I0) implies that

r* (x) = ff (x)

J (x; I)= r-A*iõÉ (x;rt rf (x)

f

and so (3.12) provi-des an expression for F*(x).

( 3. r3)



Vùe will now give an example of the application of ,tè¡$,t.,

result in the special case of deterministic arrivals, the D/M/L/2

gueue. Suppose that the inter-arrival time is some constant T > 0-

Since our time scale has as its unit the mean holding time, the

mean arrival rate in equilibrium, and hence the offered traffic,

IS . (Reca1l definition 1.4.I.)

The probability distrjlcution function for the time between

successive arrivals is given by

A(t)=u(t-r), (3.I4)

where u(t) is the unit-step or Heaviside function defined by

eguation (L.2) of section 3.1. Hence

A*(x) = e *" ' 
(3'I5)

"C 
(x;1) =e -(x+r)r (3.16)

I (x¡y) =Te-(x+r)r (3.17)

Substitution of these quantities into equation (3.12), bearing in

mind result (3.13), yields

-(x+I)2.- -xÍe [r-e -(x+r)z

1
T

F* (x) +e (3.18)
.-( x+t ) t ¡I_e-*" *.-( x+ l) r, [r-e-" -] [r-. "-( 

x+ r ) r ,+

Equation (3.fS) does not afford any significant simplification-

The mean and variance of the inter-overflow time can be found

dírectly from r* (x) , âS

l

mean = ml = - + r'*(x) I
ctx x=O

(3.le)

- 'nlx=O
variance = 02 = =u1 u. r*l Id,x'

(3.20)
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Vle note that

and so from (3.19)

fr tt"n r'* (x) l *tu S r*r,r

mr = - F*(0) fr tt.n n* (x)J 
I

I

(3.21)
x=0

Equation (3.2I) provides an easier derivation of rr1 than (3.19).

and yíelds

In¡ = Tet [et -tJ ( 3'22')

The derivatiori of the variance is likewise straightforward but

tedious and so we will simply state the result:

o2 = T2e', le3' - 2e2' (t-r) + eî ('r+r) (t-3) + Tl (3.23)
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5.4 THE OVERFLOW STREA.[4 FROM THE M/M/L/ (T2+1) QUEUE

Suppose now that the arrival stream ís Poisson, with rate

À > O; that is, the inter-arrival time distributlon function is

A(t)=r-.-Àt , EÞo. (4.1)

As we are taking the unit of time to be the mean hol-ding tíme, the

parameter À is the offered traffic. (Recall definition I.4.1.)

The equations (2.7) and. (2.8) of section 5.2 become

f*(x) - À
n

of the quantity

ï F*
n+ l:i

-( x+À+ r ) y(x) [+" dy
t

+ À ff (x) lr-
n

I
j

v -v, -(x+À)y-e Je oy (4.2)
J; j

o

rheintesrar [*"

f*
'1 2+t

(x) = f .

-(x+À+1) y
dy

e-(À+r)y
j!

I
(x+À+r) i +t

n=0rI 12r... r12

(4. 3)

is simply the Laplace transform

and so (4.2) can be written as
t

v

f*(x) - À
n

n

I f*(x)
n+ I -jo

+ À ff (x) Io 1x+À+r¡j 
+l (4.4)1

n=0rI12¡...¡T2

Note that, using the formula for the sum of a geometric series, we

have

I

It
lx+À

I
It

i
I

"+r o (x+tr+l)
j +r

(4. s)
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and so

n

f* (x) I f*
n+l-j

À
j +1

(4.6)

(4.7)

(4.8)

(4.7)

(4.7) ,

j =o (x+À+t)

n=OrI¡2¡...rT2

As indicated in the discussion in section 5.1, the M/M/L/ (T2+I)

is the special case of the telephone trunking model with holding

regisÈers of section 3.2.2 for Tl=I. Thus the results of section

3.1 apply to this queue; that is

fÌ (x)
n

n=0r112r...1T2*L

ø
where the orthogonal polynomial seguence (Pn (x) ),r_o is defined by

(x+À+t)p,, (x) + p,r_, (x) - oÀP,'*, (x)

Po (x) ] I,

n=L12r...,

Pr(x) = t * T

we now verify that f* (x) (n=0,I,2, ... ,T2) as defined by

ís indeed the solution to (4.6).

5.4.L Lemma. rf {f*(x); n=0,L,...,Tz+L} is defined by
n

then

(x+À+1) (x) (4.e)

n=0rI,2r... rT2.

Proof of 5.4.1. We note that we have immediately from (4.7)

Pn*, (x)
f*(x)

n+ If*(x)

P (x)

^f*+r 
(x) .4i--- f*(x)

I

Pn*, (x)n

n=0rI,2r... rT2

(4. r0)
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Thus,

Àr* (x)+l

as required

f* (x)
n

= Àf* (x)
n+ I

f* (x)
n*1

*
n+ I

(x) [Àp,r*, (x) + pr, (*)]

(x+À+t¡
P'r*, (x)

f* (x) using (4.8) ,x) n+1

n=0r112r... ,T2t

o (x+À+r/ +1
ç't
n+ I -j

(x)

Prr+ z 
(

I

5.4.2 Lemma. If {r; Cxt ; n=o ,L,2,.. . ¡Tz+r} is defined by (4.71

then

i T

l+ _____-_ 1 ff (x)
(x+À) (x+À+1)'*

,

n=0rI ¡2¡... ¡T2
¡

Proof ot 5-4.2. We will use a descending induction argument on k

to show thaÈ

1 Pn+r-n (*)
f* (x)

(x+À+l)* n,*r_u (*) 
n+l-k

(4.11)

I f.*. . . (x)n+t-j ' (x+À) (x+À+r)"*1 o'

n=0r112r...r!2,

k=0r1 ,2,... ,n.

k (x+À+1)
j +1

The basis of the inductive argument is the case k=n: the right-hand-

side of (4.1I) reads, for k=n,

n

]

:

i

I
I

I

i

I

l
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À +fäff(x) (x)
(x+À+1) 

n * I

I
(x+À+I) nÌ1

=1
(x+À+I)n+r

À
f--' (x+À)tÀri txt ff(x)J

tÀr1txr . Ë#* rf (x)1 from (4.8)

n

f*(x)+I
n+l-k b

j= k+r

À

f{ (x) by lemma 5.4.L,Pr(x)
Pz (x)

which is the left-hand-side of (4.11) for k=n.

Take as the ínductive hypothesis the assumption that (4.fl)

holds for k replaced by k+I (0 < k < n); h/e now prove (4.1I)

holds for k. The right-hand-side of (4.I1) can be written as

À À

k+ I j +r f* - (x)
n+ I -j(x+À+t¡ ( x+).+t ¡

f* (x) +
- k+l n+l-k(x+À+1 )

T+ -------------- 

-- 
rf (x)

(x+À) (x+À+r¡"*

I p
n -k

(x)

k+l(x+À+t) Pn+r-r (x)
f * (x)
n-k

using the inducÈive hypothesis

I P,.+ r -t 
(x)

fJ* 
r -u 

(*)
k(x+À+I) Pn*2-¡ (x)

using lemma 5.4.I1

which is the left-hand-side of (4.11). Hence by the Principle of

Mathematical Induction (4.11) is true.
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Prr*, (x)

Prr*, (x)

(x+À+t)

But eguation [4.f0) states that

By setting k=0 in (4.1I), we have

rf;*, (x)

I
j +r f* .(x) +

n+ I -jI
=0

À

n*1 ff (x) ,
(x+À) (x+À+1)

n=0r112r...¡!2.

n=Or112r...rT2,

and so the lemma is proved.
¡

Leruna 5.4.2 verifies that the analysis of this chapter is

consistent with our previous work.
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CHAPTER 6. CONCLUD]NG

REMÀRKS
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CIIAPTER 6. CONCLUDING REMARKS.

Our analysis of induced secondary processes has led us quite

naturally to the orthogonal polynomial sequence associated with

the birth-and-death process. The fact that the sequence played such

a key role in the analysis supports the claims made in the literature

that the sequence and the process have a very close relationship.

!{e have seen that our unified approach to the topic of

induced secondary processes has provided alternative derivations

of some existing results, and indeed has related them to a common

theme.

The results of chapter 3 demonstrate a new characterisation

of the hyperexponentiaf family. This very strong result complements

Khintchiners observation of the hyperexponential nature of the

overflow (recall section 3.2.L).

In section 4.2 a natural dualíty associated with the finite

birth-and-death process was set up and exploited to give some of

the resul-ts.

Fína1ly we saw how a simitar initial approach can be adopted

to analyse ttre overflow from certain related queueing models.

Î¡'te have thus gained an insight ínto the structure of a finite

birth-and-death process by examining some of its fundamental induced

secondary processes. . .

Deus iam onnia. seit.
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APPEND]X I LISTING OF COMPUTER PROGRAM FOR DETERMINATION OF THE
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PARAMETERS AND V'IEIGHTS FOR THE INTER-OVERFLOVT TIME

DISTRIBUTION FUNCT]ON.

The following program has been written in FORTR.AN for the

Control Data Corporation (C.D.C.) FORTRAN extend,ed version 4

compiler, and implemented on the c.D.c. cyber I73 machine using a

NOS/BE operating system. The reference used when writing this

program was wiley lrgzo].

PROGRAþl BDZHYP (RATESçOUTPUT TPARAMSI TAPEI=RATESI
+f T APE3=PARAl'jlS )

PURPOSE: -'GIVEN FINIT[ tsIRTH-AND-DËATH PROCESS OF N SÏATESI
CALCULATES PARAMETERS AND I,IEIGHTS OF HYPEREXPONENTIAT

INTER-OVERFLOl{ TIME DISTRI[lUTION FUNCTION.

EXTFRNAL REFERENCES:-
R€FEREI\CES I NF4US'L' ROUTINÊ- ZPOLR ZEROS OF A

pg¡y¡oF{t¡L r¡iITH REAL coEFFICIENTS (LAGUERRE ) .

INPUTs-- -NUI,IBER 
OF STATES (N ) I ARRIVAL RATES OF STATES

0rlr2en..rÌ!-IçDEATHRATESFORSTATESIç?ç3;...rN-l
IN LISI-DIRECTED F0R¡¡¡T ("-F0RMAT ) 0N FILE RATf S.

0uI PlrT : --lrl 
INpUT DATA IS ECHOPeINTED To 0UTPUT. TABLË. 0F

COEFFICIENTS OF ASSOCIATED gP1¡Q6ONAL POLYSI

PARAMËTER5 AND IßEIGHTS AL.SO bJRITTEN TO OUTPUT '(2) NUMBER óT STATES (N). PARAilETERS AND 
'.lEIGHTS 

t,JiìITTEN
TO FILE PARAMS IN LTST-DIRECTED FORMAT (J¡-FOR14AT ) '

INIEGER NINI'1I INPI T I T IPI I IP2¡J' IERç ISTAR
REAL L (I0) rl'{U ( IO ) rA ( I I ) rB (ll ) rC(II ) rAA(lI ) TLITMUIT

+X(IO) rALF (I0) rBET (10) rXIrZlç7?
c0MPLEX Z(10)

+f



It
lf
{1

*
{
+
*
ö
*
*
{t
#

+
*
{
{t

rtl.

DESCRIPTIO¡{ OF PRINCIPAL VARIABLES:-
N NUI'lBER OF STA'TES. ( INTEGER)
L ( I ) ARRIVAL RATE FOR STATE I-I. (REAL )
MU(I) - DEATH RATE FOR STATE I-I. (REAL)

Àr¡iret¡irc(J) - coEFFIcIEI',rT 0F Xë#(J-I) IN (I+l)sTr
ITHI (I-I)ST DEGREE ORTHOGONAL POLYNOMIAL RISP.T
I,/HERE O<I<N. (REAL)

X(I' X IS ¡RRAY OF ZEROS OF NTH DEGREE ORTHOGONAL

POLYNOM I AL. ( REAL )
ALF ( I ) NUMERATORS IN PARTIAL ¡P4çTtON DECOMPOSITION

OF N¡IIO OF (N-I)ST ÀND NTH DEG. ORTHOG. POLY" (REATI

BEI(I) t^¡E.IGHTS OF THE t¡YPEREXP0NENTIAL. (RtaLl

READ? ÉCHOPRINT AND CHECK INPUT DATA.

REl|IND I
REtr IND 3
READ(Irf) N

IF( (N"GT.0).ANO. (N.LT'Il) )G0T0 30
pRINT*f1++*<<<ERR0R>>>rs#ls ILLEGAL

{T# IN EIRTH'ANO-DEATH PROCESS#
PiìlNT*r* NUMBER

+* 5TR ICTLY GREATER THA¡.I O NND LESS
PRltlT+rl *
pRINT*r¡$$$ pR0GRAM ¡g0RTE0 SS$*
PRINTë¡É I

NUMArit

= #rNr*
THAN I I*

0F STATESIt

-MUST BEIç

30
40

SToP ÉILLEGAL ¡¡PUTI
PRINT 40¡N
FORM4T ( IhI T # INPTJT B IRTH-ÁND-DEATH PROCESS:.* /LHO ç

It*¡II.IMBER OF STATES IN I]IRTH-AND-DEAÏH PROCESS = Éç I3)
1r¡i'lI =N- I
NPI=N+I
I Sï AR=trt{r.*#{r#
READ(1r+) (L(I) çI=lrN)
IF (N.GT. I ) GOTO 48
PRINT 50e (ISTARçI=lr9) rL(1)
IF (L ( I ) .LE. O. ) GOTO 5ó
Gol0 57
READ ( I ¡*) (l'lu ( I ) r I=2rN)
PRINT 50r (ISTARTI=Ir9) rL(l) r (I-IrL(I) rMU(I) rI=2çN)
FORMAT ( IXO I ¿XT*I*o9XçTARRIVAL RATE*I9XI ÉDEAT}-I RATEf/

+ I X r 9A5/ IX r * 0* r 5X r I PEIS "4/ 9 ( 1X r I3 r 5X r lPEl5.4 r 5X r
+IPË15.4/ll
IF(L(I).LE.o.)Golo 56
D0 55 I=?rN
IF(¡(I).LE.o.)GoTO 56
IF (MU( I),LE.o. )coTo 56
CONT I NIJE
Gol0 57

4B

50

55
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5ó PRINTltr#{tf{<<<ERROR>>>s{t* ILLEGAL INPUT+
PR INT+ ¡ * RATES MUST RE PoS IT M/
PRlNTnt# *
PR INT* r *$$$ PROGRA¡,r ABORTED $5$t
PRINTçr* I
STOP #ILLEGAL INPUT#

5? PRINT ó0r (I-IrI=lrIl) ç (ISTA.R¡I=Lç261
60 FoÊ(h'tAritrrozlH0r*TABL.E oF COEFFICIENTS 0F N0N-U0NIC *¡

+l0RTHOGONAL POLYT\OMIALS i-*/ lH0r63xçÉPol.lER 0t x*/
+l xr tDEGREEf r lx r1+¿r I I I t I/l Xç?6A51

COMPUTE ASSOCIATED ORThOCONAL POLYNOMIALS FROM

RECURRÊNCE RELATION.

C(l)=I.0
B(I)=I.0
B(2)=l.ozL(I)
PRINT 70rC(t )

7o FoF(\,'tAI ( IXr* 0*r5xçÉ**r lXr lPEl0'3)
PRINT 80rB(I)rB(2)

B0 FORMAf (|Xr# I#r5Xr*+*r2(lXçlPEl0.3) )

{1

s
{t
It

It
tl
It

IF (N.
A(l)=
A(2)=
X(I)=
GOT O

90 D0 40
IPI=I

"llGoTo 90
0
0/L(I)
(I)
0
I=l rNMl '

GÏ
I.
I.
-L
65
0
+I

100
200

300

350
400

LI=L(IPI)
HUI=MU ( IPt )

A(l)=1.0
A(I+?r=B(I+l)/LI
A ( I+I )= (B ( I ) + (LI+MLrI) sB (I+I) ) /LI

IF(I.EGoÌ)GoTo 200
D0 ¡90 J=ZrI
A (J) - (ts (J-I ) + (L I+MUI ) #B ( J) -t4UInC ( Jrl- /LI
D0 300 J=I r IPI
c(J)=ts(J)
ts(J)=A(J)
B(I+2)=A(I+2)
lP7=l+2
PRlr.¡T 350rI+Ir (A(J) rJ=Ir IP2)
F0Rr'tAT ( lXr I2r5Xç *q'Ér I I ( IX ç lPEl0.3) )

COf\T I NIJE

cot4PuTE zERoS OF NIH DEGREE 0RTH0G0NAL POLYN0MIAL.

D0 500 I=l rNPI
500 AA ( I ) =A (N+2-I )

CALL ZFOLR (AATNIZI IER)
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D0 ó00 I=lrN
600 X(I)=Z(I)
650 PRINT 7OO¡Nç (X(I) II=IIN)
700 F0Rl,lAT ( tH0,/ LH}/lH0 rl0uIPUT HYPEREXPONENTIALÉr

+*, DISTRIBUTION:-Il
flH0e*ZEROS 0F lçl2rdTH DEGREE 0RTH0G0NAL t¡
**POLYNOMIAL ARE: -T/T\¡* (THESE ARE THE PARA¡4ETERS
+'II\ THE CONVEX COMBINqT ION OF EXPONENÏIAL Iç
{r#DISTFìIBtJTI0NS} t/LHO r l0 ( lxr tPEl'0.3) )

COMPUTE ARRAYS ALF AIJD BET.

t;

It
#
.t+

$
#
*
1r

s
#
It

7s0

800

900
950

I000

lI00

IF (N.GÏ. I ) GOTO 750
ALF(1)=L(I)
BET(l)=I.0
GoTo 950
00 900 I=IrN
XI=X(I),
COIqPUTE ZT = (N-I }ST DEGREE ORTHOG. POLY' EVALUATED
AT X ( I ) .
COI4PIJTE Z? = 0ERIVATIVE 0F NTH DEGREE ORTHOG' POLYo

EVALUA1ED AT X(I).
Zl=C(N)
Z2=N+A(N+l)
DO 800 J=l rNMI
¿L=ZlrÔXI+C (N-J)
22=7?* AI + ( t\¡-J ) +¡A ( N+ I -J )

ALF ( f.I=Z.L/Z?
Bti't ( I ) =-ALF ( I ) /X ( I )

CONT INIJE
PRINT I000 rNÞ{l rNr (ALF ( I ) I I=l çN)
FORI'1AT (TTrO/IHOçINUþiERATORS IN PARTIAL FRACTIO\I *ç

+?âDÉCOMPOSITI0N OF RATI0 OF *çI2r#TH 0EGFIEE P0LVI't*ç
+¡Oh'lIAL TO IqI?I*TH DEGREE POLYNOMIAL AREs-*/
{rtH0 ¡ I0 ( lXr IpEI0.3) )

P.liNT ll00¡ (BET (I) rI=lrN)
FORMAT (1HO/II-rOIÉRATIOS OF NUMERATOR TO \'!INUS T¡IE*ç

+f ZERO ARE:-*/lXc* (THESE ARE THE |./EIGHTS IN THE *ç
+lC0NVÊX CO¡4BINAT I0r{ 0F f XP0NÉ I

+IENT I AL DISTRIBIJÌ IONS I */LHO I I O ( IX I IP6IO. 3) )

PARAMETERS AI.ID lllEIGHTS TO FILE PARAMS.WRITE NT

t,lRITE(3r*¡
þ/rlITf (3r#)
trRlTE (3rrl)
ENDFILE 3
RE!l II.ID }
R El,i I l,jD 3

I=1rÀ))
¡el=|rlrl)

N
(x (

(BE
I)r
T(I

+.

STOP #hYPEREXPONENTIÂL FOUNDI
END
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APPENDIX TI. LISTING OF COMPUTER PROGRAM FOR DETERMINATION OF THE

FINITE BTRTH-AND-DEATH PROCESS FOR WHTCH THE GIVEN

HYPEREXPONENTIAL TS THE INTER_OVERFLO!{ TTME DISTRTBUTTON

FUNCTION.

The following program has been written in FORTRAN for the

controf Data corporation (c.D.c.) FoRTRAN extended version 4

compiler, and implemented on the c.D.c. cyber 173 machine using a

NOS/BE operating system. The reference used when writing this

program was Wiley ll'glOl.

PROGRA¡t hYP2tsD ( PARAMS ç OUÌ PI.JT I RATES T I-4PF- i =PARA¡'1S I
+TAPE3=RATËS )

It
l1

{t

*
+
{*

å
ll
tl
l1

#
tt
{t
t+

lf
f
It
JS

l¡
+1

tt

RAY OF
S ARRA

c0E
DEGIìE E

ilìE A1_

RA ÏE
Ra'tr ¡?

X

)-
ts(Il

(X*
E 0<

AR
-L)

{t
+
#
It
ü.

l1

tl
lr
lr
#
l1

PURPOSE: -
G I VEN hYt.ìT:REXPONENT I AL T

BIRTH-AND-DEATH PROCESS
IS THE INTE.II.OVËRFI.-O[.I II

COMPUTES RATES OF F II.I I TË

FOR hJHICH THE. HYPEREXPON¡N1¡ ¡¡
ME D I STR I8UÏ I OI'¡ FUNCT J ON.

INPUT!-
NUMBËR Of: COMPONENT EXPONENTIAL DISTRIË]UTIONS (N) I
PTIRAMF-IÊ.RS (X ( 1¡ r I=l rfl) AND llEIGliTS (BF-T ( I ) ¡ I=l rltl)
I{HE.RE XtII CORIìfSPONI]S TO NET(1¡ IN LIST-DIRECTT.D
Fi]RMAT (+-FORMAT) ON FTLE PARAMS.

OUT PUT : -(ll INPUT OnTR IS ECH0PRINTED T0 0UTPUT" TnBLE 0F
COEFF ICIEI..¡TS 0F ASSOCIATãD fi0NIC 0RTHOG0NAL
POLYNOI.4I ALS ç ARR IVN¡ RATES AND DEATH RATES ALSO

¡¡¡¡¡¡Tt"[J T0 0UTPIJT.
l¿t NUMBER OF C0MP0NEN1 ¡.XPONENTIAL DISTRITJUTIONS (N) r

ARRIV/ÀL RATES Af\D DF.ATH RNTTS WiTITTEN TO FILE RATHS

iI\ LIST*DIRECTED FOEiqAT ('*-FORNlAT } '
INTEGEfi IqcNi.4I rI'IPI çKçKKçKI(M2o I ç ISTAR
REAL x(I0) pRËT (tO) rA ( |I ) çtl ( l1) rc ( ll) rL ( I0) rMU ( I0) tX,K¡l

DÊ.SCRiPTIOI¡ OF PRINCIPAL VARIAI¡LF-S:-
f\ - NUI'188R OF COMPONE.:NT EXPONE.NTIAL DISTRIBUTIONS.

( i NTEG[iR )

x(l)
flËI ( i
4(I)r

KTHr
ir,hËR

¡(I)
MU(1¡

IS AR
BET I
cC(I)
I ) !,7
K<l'1.
It i VAL
F.ATH

PARAI',1Ê-TE.RS. (RE/\L)
Y OF I'J¡:TGHTS. (IìEAL)
FFiCIEl..rT oF x#n(i-I) IN

MOI'J i C OR THOGONAL POLY .
)

t- Otì STnTE I- I . ( REAL )

OR STnTE. I-Io (rrì[AL)

( K + I ) ST ç

RESP. r

ll



4f

IT READ' EChOPRINT AND CHECK INPUT DAÏA'
It

REU¡ I ND I
REwIND 3
READ(IT+)N
¡F ( (N.GT.O) .AND. (N.LT.I I ) ) GOTO ?O
pntñf?¡rf+nlr<<<ERROR¡¡¡,rrråÞ ILLEGAL NIJMBER

+*COMPONENT EXPONENTI^L DISTRIBUTIONS*
pRINTrr* NUMBER = ÉrNrt

*lSIRIC]LY GREATER T¡I¡I'I O AruO LESS TH¡N III
PRINT*r¡ *
PRTNT*r¿$$$ PR0cRAM a60RTED $s$É
PRINT+'* *
STOP #ILLEGAL INPUÍ#

20 f"¡þ'l i =N- I
NPi=N+I
READ(lri) (X ( I¡ r1=!¡N)
READ( Ir+! (BET ( I ) r I=I rN)

ROUTINE CHECK PRINTS ¡ND VERIFIES VALIDITY OF

PARAMEIERS At\D l{EIGHTS.
CALL ChECK(I'iTXIBET}

DEI ERM INE I'.¡TH AND ( N- I } ST DEGREE MCIN I C ORÏHOG '
AND OVERFL0t/ RATE.

tr
ts

lå

It
Jl

*

115.

0F *ç

-MUSÏ ËJE T¡

POL YS

CALL SETUP (NTXIBETTATBIL (N) )

I ST AR=**+rstl +tt
pn¡r.rr 40ç (I-lrI=Irlt) q (ISTARTI=1r26)

40 fotUaT(tnOzIh0/Ih0qÉTABLE OF C0EfFICIENTS
+/ORTHOGONAL POLYNOMIALS 2-f /lH0 ré3XrlP0wER
+IXr*OEOREE#e IXe*+Ér I I lLL/ lX'2645)

PRINT ?5()çNç (A ( I ) r I=l rNtrl )

PRll'lT 250rNMI I tg( I ) r l=l rN)

CAN IMIlEDIATELY DEAL r¡ITH CASE N=I3

OF
OF

MONIC *ç
x*/

#
ll
l1

ts

It
tr

tt
11

+

IF (N.Gì. I ) GOTO 5O
PRINT 150 r ( tSTART I=I r l3) rL ( t )

14RITE (3r*) N

tllRITf-(3r+) L(l)
GoIo I60

DÊT ERM I NE t'l0N I C g¡¡1¡1g60NAL PoLYs AND RATES Re CUXS I VEL Y.

ÃT EnCIr ¡TEH¡T iOT.'¡ ¡¡¡PlVAL RATE FOR STATE K AND KTH A¡VD

(K+I)51 DEGREE POLY. ARE KN0t'rNi DËTERMINE DEATH RATE

FOR STÃTC KT ARRIVAL RATE FOR STATE K-I ANTJ (K-1}ST
DE(JREE POLYNOM I AL.

tt
50 K=tt¡Ml

KK=N

-- I E tK--?-l t 2.Q r l l 0 ¡ e0
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#
*

*
+

{f
+

s
+

K>=3:
90 XK=A(KK)-B(KK-l)

MU(KK)=XK-L(KK)
L (KK-I ) - (B (KK-2) -A (KK-l ) *B (KK-l ) nXK) /MU (KK)

66¡ll=KK-Z
00 100 I=2rKKM2

I00 C ( I ) = (ti ( I-I ) -A ( I ) +B ( I ) *xll / (MU (KK ) 'tL ( KK-1) )

C (l ) = (-A (I ) +B( I ) nXK¡ ¡ (laU(KK)rrL(KK-I ) )
C(K)=I.
PiìiNT250sK-l r (C( I) t I=lrK)
G0T0 200

K=2 3

tl0 ¡K=A13)-B(2)- MrJ(3)=xK-L(3)
L(?t = (B ( I ) -A (2) +B (2) r¡xK) zMu tg)
c(2)-1.
c (I )=(-A (l ) +B( I )$XK)/ (t'{U13¡ +L (2) )

PRINT 250rK-Ir (C(I) rI=IrK)
Gor0 200

K=l:

I?0 XK=A(2)-B(I)
Mu(2)=XK-L(2)
L ( t ) =(-A ( I ) +B ( I ) +XK) /Mtr (2)
C ( I ) =1.
PRINT 250rK-lr (C(I) ¡l=lrK)
Ggl 0 200

I60

130
t50

K=O : Pf< IruT RESULTS
pRINT l50r (ISTARçI=IrI3) rL(I) r (KrL(K+!) çMU(K+l) rK=lrNMt¡
FORM¡I ( tH0/ LHo,/Ih0r*OLIIPUT BIRTH-AND-DEqTH PR0CESS.-é/

+lrr0 rl Klr IgxrlaRRIV¡L RATEIT l9Xçf 0ERTH RATEI /lì\ç
+13A5/ IXr# 0*r I0XrF20.6/ lXç9 ( J3r2 ( I0X çF?0.6, /lK't I

y¿RITE(3r+) N

tr¡RITE(3r+) 1¡( I ) ¡¡=Ie¡1)
|tJRITE(3ç{) (MU(I) rI=2rN)
ENDFILE 3
REti IND I
REh IND 3
STOP *BIRTH-AND-DEATH PROCESS FOUNDÉ

{t
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lf UPDATE FOR NEXT ITERATION
200 o0 2I0 l=trK

A(I)=Él(I)
210 6(Il=C(I)

A(KK)=B(KK)
KK=K
K=K-I
¡FtK.GÊ.3)G0To 90
IF (r-I) I30rl20rl10

250 FoRM4T ( I x¡l?r5xr t+tçlI ( Ixr IPEl0.3) I

END

+

s
rs$$ $$$$ $$ $$$$$SSS $$S$S $ $$$$$$ S S$$$$$$$S$$5$$$ s$$ $ $$ $$$$$$ b$ s
*

SUtsROUI II\E CHECK (NrX rBËT }

ROUTINE PRINTS PARAMETERS AND !'JEIGHTS AND CHECI(S THEIR
VALIDIIY.

INTEGER N¡'NMI I I TJIERRT TERR?'ERR3?ERR4
REAL X(t0)r[ìET(I0)rZ
DAT A \OtII 'E-4/
PRINT PARAMETERS AND t,lEIGHTS.

It
11

1l

I

f
It
#

T ( IHI ¡*INPUT

!=
l=
l=
t¡=
Nt
MAIO FOR

0
0

0

0

ERR
ERR
ERR
ERR
PRI l0rNr(X(I)rI=lrNJ)

+
*
#

#INUMBER OF COMPONE
#IHO 

'#PARAMETERS 
AR

PRINî Z0r(BET(I)rI
20 F0Rt',tpT ( lH0 r #þ¡EIcHT

00 30 I=l rN
IF (BET ( I) .LE.O. ) GOTO 40

3o coNT 1NL'tE
GOT0 50

40 ERRI=l

HYPEREXPONENT IAL DISTEIBUTIQITI!-*,ZIHt) I
NT EXPONENTIAL DISTRIBUTIONS = fçT.5/
E:- Érl0(lXrlPEI0.3))
=l çN)
5 ARE:- #rI0(lXrlPEI0.3) )

CHECK I ¡IRT þ¡E I GHT S ARE POS I T I VE '

¿t



It
{+

CHECK lHAT PARAMETERS ARE POSITIVE.

50 D0 60 I=ÌrN
IF(X(I) "GE.O.IGOTO 7O

60 CoNT INtrE
GoTo 80

70 ERR2=I

CHECK 
.I 
N¡T PARAMETERS ARE DISTINCT "

BO IF(N.EO.I)GOTO ITO
Nt4l =N- I
D0 90 I=I rNMl
IPI=I+I
DO 90 J=JPl rN
IF(X(I).EO.X(J) )GOTo I00

90 c0NT I NtrE
Got0 lI0

I 00 ERR3=l
It
+ CHECK I NAT UJE I GHT S SUI-| TO tJN I TY.
{f

tI0 Z=0.

D0 120 I=lrN
l?0 7=Z+BË.'t (I)

JF ( ABS l7-1,.0 ) . GT. Tg¡ ¡ ERR4=l

1r8.

ILLEGAL INPUT*
WE IGHTS MUSTÉ ç

PARAF4ETERS Iç

PARAMETERS * T

SUM 0F *s

{f
{*

It

s
It
*

PRINT ERROR MESSAGES' IF ANY.

I=ERR I +ERRZ+ERR3+ËRR+
IF(I"EQ.O)RETURN
pR lNTrf , É#l+r1<<<ERR0R¡ ¡¡##$
IF (ERRI .EQ. I ) PR Il'rÏ+ r I

#*, ËE PÖSITIVEt
IF ( ERRZ "Ê,Q. I ) PR TNTf r *

*1MUST BE NEGAÏIVË#
IF (ERR3 nEù. I ) PRINT* r f

{}TMIJST BF. D I SÏ I NC] I
IF ( ERR4 nEQ. 1 ) PR lNT* ç f

IrtþlE I GHI S MUSt BE I .0¡
P¡IINTSTÉ #
PRINT+ r ¡$5$ PR0GRAM 4g0RTEt)
PRINTSTI *
STOP TILLEGAL INPUT#
END

$ $$/



119.

s
+ $$$$s$ $$ $$$$$$S$$$$$5$ $SsSS$ $$ 5$$$$$$$ $$$,$$$ $ $$$$$ $S$$S$$$ $

{t

SUBROUT IÌ\E SETUP (NIXIBETTATBçL)
+t

*
f
+
*
+

l1

ROUTINE DETERMINES OVERFLO'¿J RATE (L ¡ AND
(N-I ) S1 DEGREE MONIC ORThOG. POLYS.
RË,CALL THAT LAPLACE-STIELTJES TRANSFORM

L * ((N-l¡ST DEGREE p0Ly.¡ / (NTH DECREE

NTH AND

OF HYPERËXP.
POLY. ¡ ¡

INIEGER lvrNMl r
REAL X(I0) ysET

Ir
(I

J
0) rA(tl) rB(tl) rC(lI) rY (l0l tL¡Z

It
f
{¡

JT

s
It

IF(N.EQ.I)GOTO 5O
NMI=N-I

DETERMINE NTH DEGREË I''IONIC ORTHOG. POLY,
(x-x(I ) ) t' (x-X (2) ).t'. n.* (X-X (N) )

CALL COENF (NIXTA)

DËTERMINE OVERFLOW R¡TE (L¡I AND INITIALISE ARRAY B.

L=0"
DO I0 I=lrN
g1l)=0o

l0 L=L-BET(I)nX(I)
{t
If DETERI'IINE (N-I ) ST DEGREE MOI{IC ORTHOGN POLY'
+

D0 40 l=l rN
DO 20.1=lrN

?0 Y(J)-x(J)
Z=Y(I)
y(I)=y(N)
Y(N)=Z
CALL C0EFF(NMITYTC)

I} C CORRESPOI\¿DS TO ¡
+ (x-x(l))11¡ro*(x-x(I-I))r+(x-x(I+I))s...rs(x-x(N))

z=-BEÏ(I)nx(I't/L
D0 30 J=I¡l"¡

30 Lì(J)=B(J)+ZìtC(J)
40 C0h¿T I N1.,,Ê

RT"I URN

DE.ALS h¡TH CASE IT=I!

50 A(t)=-Å(I)
¡1t)=lo
g 1] ¡ =I r
L=-X(l)
RETURN
ÊN0

a

#
+
'tt
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,f
Ir $$ s$$$$$$$s$$$$$s$$$$$ $$$s$$ s$$$sss$$$$$5$$$s$$$ ss $$$$$$$ $5
+

SUBROUJ INE COEFF (K,X I A )
{
+ DETERMINES POLYNOMIAL (X-X(I) )+(X-X(2''Il}...*(X-X(K) ) .
+

INTECER Kr I rJ
REAL X(IO)rA(ILI¡7

s
A(l)=-x(1)
A(2)=I.
IF(K"EQ.l)RrTURt'l

AFTER EACH ITERATION A CORRESPONDS TO:
(X-X ( I ) )tt(X-X (A) ) +...Õ (X-X ( I) ) .

D0 ?0 I=ZrK
Z=À(I)
A(I+I)=A(L
J=l

l0 A (J) =A (J-Ll -zrlA (J)
J=J- I
IF(J.GI.I'GOTO l0
A(l)=-ZnA(l)

?O CONTINIJE
REl URN
END

tl
s
+
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