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ABSTRACT

There has been considerable interest in engineering applications of fuzzy logic to data
processing by a fuzzy logic inference engine. This research explores the application of the
INMOS Transputer to the implementation of a data processing system that uses fuzzy logic
concepts, and details the design and implementation of the system. The research addresses the
important area of knowledge encapsulation and representation, and the method by which
knowledge is pre-processed into a form suitable for evaluation by the fuzzy logic inference
engine.

This thesis begins by examining the concepts of fuzzy and explores how they can be
applied in a parallel processing domain. This includes the representation of fuzzy rules, and
how the rule-base is pre-processed. Some additional aspects are examined and new operators
proposed.

An algorithmic structure is developed for the expert system. The inference engine for
the system uses fuzzy logic principles, and parallel processing algorithms for inferencing are
developed. The processing is performed on the INMOS Transputer, and the inferencing
algorithm is realised in the Occam 2 programming language.

The software package that has evolved from this research is collectively called
TransFuzien. This software, together with the associated hardware, has been developed to
perform rule-based fuzzy logic inferencing. TransFuzien comprises two parts. The first part is
written in C++, and runs under Microsoft Windows on a IBM Personal Computer (PC), and
the second part, which is written in Occam 2, runs on a Transputer target system. The former
part performs the data pre-processing necessary to configure the inference engine that executes
on the Transputer target system.

TransFuzien’s graphical user interface is described, together with various features of
the system, which includes the ability to select various inferencing strategies via the graphical
user interface.

Aspects of the processing performance are addressed, and key issues are identified.
Specialise electronic hardware has been developed to facilitate data exchange between the
expert system and peripheral systems. Finally, a number of case studies are presented that
apply the expert system developed herein. The results from these studies show that the

objectives of this research have been achieved.



L T

viii

DECLARATION

This thesis contains no material which has been accepted for the award of any other degree or
diploma in any University or other tertiary institution. To the best of the author’s knowledge
and belief, this thesis contains no material that has been previously published or written by

another person, except where due reference has been made in the text.

Signature

Date U -/0 76

NAME: COURSE: . MENGSC

I give consent to this copy of my thesis, when deposited in the University Libraries, being
available for photocopying and loan.

SIGNATURE: e, DATE: ..[258579oeoeieieieeiresineanns



ACKNOWLEDGMENTS

I would like to thank my supervisor Mr. Mike Liebelt (Senior Lecturer) of The University of
Adelaide, Department of Electrical and Electronic Engineering, for his supervision, valuable
guidance, and encouragement throughout this work. My thanks are also extended to Associate

Professor Doug Pucknell for his supervision in the early stages of this work.

I wish to thank Mr. Des Lamb, former Head of the Information and Signal Processing Group,
in the Electronic Warfare Division (EWD), Defence Science and Technology Organisation
(DSTO). Des has shown a great interest in my work, and has been a constant source of support

and encouragement throughout my studies.

I would like to thank Dr. Andrew Kulessa of the DSTO, for many long and enjoyable
discussions about this work, and for acting as a sounding board for some of my ideas, and
giving me valuable comments on my work. I also thank Andrew for helping in the review

process of this thesis and providing comment on my writing style and the technical content.

My thanks are extended also to Malcolm Brown (Head of the Information and Signal

Processing Group, EWD) who provided encouragement throughout my work.

I am very grateful for the support of the Electronic Warfare Division, Defence Science and
Technology Organisation, Salisbury, for making available computing resources and the

Transputer hardware and development system that was used in this work.

Finally, I wish to express my sincere thanks to my family and friends for their support and
prayers. In particular I want to thank my wife Judy, for her love, understanding and continued
support throughout the time I have been working on this thesis, especially as I spent many

long hours working in our study at home.



LIST OF FIGURES

Figure 1.1 The components of the fuzzy inferencing system comprise the host computer
with the graphical user interface and knowledge pre-processing program, the Inmos
Transputer sub-system and the inferencing software, and the Transputer interface
module that connects to external electronic hardware............ccoveiiiiiiiiniin 3

Figure 1.2 An expert system comprises a rule base where the rules are stored, and a
knowledge base which stores information about the inferencing strategy. The input
and output signals will require some normalisation ProCesSing. .....c.covervemniviiiniiinnnnnnns 4

Figure 2.1: Set of Membership Functions that describe a range of temperatures. The
position of the peaks and the spread of each function are chosen to suit the
APPIICALION. 2uiviisvevassiiviiisnronsvisiasisismitsmsivessasivs Sissssaisarss s obasssssNaaFUss o041 KSR EFASTORTF SR ERTS NS S 15

Figure 2.2: Set of Membership Functions generated by equation 2.4, with varying
PATAITIELETS. ...c.vevveeeevieresteseeiseseereeaesh e e eaeesess e s e b e s s e s e ee e oo b aE e e b e e e bbbt b b 16

Figure 2.3: The shape of a membership function can be modified by a linguistic hedge.
This figure shows the effect of both concentration (square) and dilution (square root)
operators on a membership fUNCHON. ..ottt 19

Figure 2.4: Two sets A and B define regions of interest in the parameter space. Data points
may belong to either A or B, or the intersection of A and B. The data may also lie
OULSIAE tHESE SELS. .uuisisvsacsassarssssurssonansssassnsssnsssarsrosnnsssrsosensaremsonssssrrnsossssssusresnysisyisisersasisss 21

Figure 2.5: With fuzzy classification, each data point has a membership to each set. In this
case, the memberships are denoted m and M. ... 21

Figure 2.6: An example of the interaction between two membership functions using
Weber’s definition of the AND operator and the OR operator. The degree of
fulfillment surfaces for a two input system is a useful visualisation tool for fuzzy
AT TGN s sasiviivasiuas e ns b s v s g e P AR PSSR T e 25

Figure 2.7a : The simplest fuzzy set operators to implement are those originally proposed

by Zadeh. Graph showing the outcome of the fuzzy set operations AND and OR.......... 26
Figure 2.7b : Graph showing Weber AND and OR functions........c.ccoenmiinn 26
Figure 2.7¢ : Graph showing Weber NOT function ... 26
Figure 2.7d : Graph showing Hamacher AND and OR functions..........cocoiiiienienns 26

Figure 2.7: There are several definitions for fuzzy set operators. The effects of each
operator vary, as shown in this sequence of graphs which depict the AND, OR and
INOT OPETALOTS. .....ccciemcsisisvtssesstorsssessesaisissessessesssonsonssssssssassstssassssesstsssassassssansassssssessssassass 26

Figure 2.8: Graphs showing Weber t-norm (M2) and t-conorm (N2) with both inputs

— - —varying from 0-to-I. This-interpretation of T-operators-is-quite-simple to-compute-and



Xi

from these surface plots, it can be seen that they conform to an intuitive definition of
AND and OR TOZIC. ..evetiieiieeireiieieee ettt 27

Figure 2.9: The NOT operator can be interpreted in at least two ways, as shown in this

Figure 2.10: Graph (a) showing an example of the proposed t-norm (M) and t-conorm (N).
The colours range 0 to 1, with blue representing the minimum, through to red,
representing the MAaXIMUINL ....c.oioiiieiii 29

Figure 2.11: Two examples where the proposed t-norm and t-conorm operate on functions

n(x) and s(x) for various values of 7. Function s(x) is changed to illustrate the affect

OF the OPETALOTS. ettt ittt b bbb 30
Figure 2.12: A Fuzzy Associative Memory. The inputs to the FAM are sets X and Y. The
membership labels are NL, NS, ZE, PS and PL. ..o 32

Figure 2.13: As the DOF of a rule varies, the consequent membership function will be
modified accordingly. Figure 2.15a shows the affect of scaling as the DOF varies, and
Figure 2.15b is the simple case of truncation. Figure 2.15¢ shows how the consequent
membership function is spread as the DOF InCreases. ... 35

Figure 2.14a : Fuzzy Inference by Product-Sum Method. The inputs are applied to the
antecedent membership functions, and the minimum (AND) of the two values is used
to scale the consequent membership function. Rule fusion occurs by superimposing
each resultant function on the same axes, and taking the maximum profile of each
TESUILANE FUNCHON « c.veevveeveeiuiniessssisssnssseissiisnsssssersssssnsssessansnsssssassansstssassnssssnsssnnessessnnasannss 36

Figure 2.14b : Fuzzy Inference by Truncation-Maximum Profile Method, for a three rule
system, with two premises per rule and one output. Center of gravity defuzzification is
used to determine the Crisp OUtPUL VAIUE. ......ooiiiiiiiiiiiiiiii e 36

Figure 2.15: A Rule Evaluation Node comprises a process to evaluate the degree of
fulfillment of a rule, and a process to evaluate the resultant membership function. ........ 37

Figure 2.16: The fusion functions combine data with varying effects as shown in this

Figure 2.17a: This diagram illustrates the ordered fuzzy sets that constitute the
membership functions that may be define for a particular inferencing system. ............... 42

Figure 2.17b: This diagram illustrates the ordered fuzzy sets where the RMFs have
varying amplitude and spread. Notice that sets 0, 1 and 2 overlap each other. .....ccceeueeee 42

Figure 2.18: This diagram illustrates the proposed fusion method, being applied to 3
Resultant Membership Functions. The arithmetic average of the 3 functions is also
SHOWN S & COMPATISOIL. ....eveuvivierciieiiiiete e ettt s 47

Figure 2.19: This diagram illustrates the second proposed fusion method, being applied to

— 3 Resultant Membership Functions- The-arithmetic-average-of the-3-functions-is-also— —- —

SHOWN aS & COMPATISON. ..uveuvieirentieeeriiaie st r et s et 49



Xil

Figure 2.20: These diagrams show examples of the defuzzification methods for a
particular final membership fUNCHON ... 52
Figure 3.1: A look-up table for a multiple input- multiple output fuzzy system...................... 61
Figure 3.2: A single inferencing node uses rules and other knowledge, contained in the
knowledge base, to process the input data. The Data Flow Diagram (DFD) does not
relate information about timing, just data transformation. ...........c.ccccoeveiiieniiiniiiee. 64
Figure 3.3: The inference node comprises a single rule evaluation node. The knowledge
base comprises the rules base and other system information. An additional source of
information is required that sets the inferencing options in the Rule node. ..................... 64
Figure 3.4: The rule node comprises lower level processes. The first is the antecedent
process, which calculates the degree of fulfillment (DOF) for the rule. The dof
determines the extent to which the consequent mf is modified. The result is the
resultant membership function for the Tule. ... 66
Figure 3.5: A parallel processing system may be achieved by calculating each fuzzy rule
simultaneously. This is achieved by assigning a single rule node process to each rule
in the rule base. For # rules this will require n processes running concurrently. ............. 68
Figure 3.6 : The DFD for fuzzy inferencing that is adopted in this study, evolves from the
logical sequence of events for processing a fuzzy rule, and defines the structure. Each
of the circles represents a stage of processing, whilst the directed lines represent the
flow of data between the processes. This DFD includes additional processes for; (1)
collecting the RMFs and fusing them, and (ii) transforming the fuzzy sets to crisp
output values (defuzzifiCation). ......ccccieeresiereineiesierssrreensss s 69
Figure 3.7: The proposed syntax for the fuzzy rule as used in this thesis comprises a
number of components. This form fully describes the legal rule structure which the
rule compiler can translate into an executable sequence of parameters for the inference
ETUZIMIC e vvosvisnssassrsnsanasisnssusse suesnssasassaersorsesssssessosasssensnensasasssssssesasssssressnarsesytsstssunssennasbiasissnonts 72
Figure 3.8: The rule list syntax describes the output from the rule compiler. For each rule
in the rulebase, there will be a corresponding rule list which is executed by the
INFEIENCE ENEINE wssissiorsassorssassossorvssassessuosiossssonsssnssosrossasnssosnssupssssmemmossassarsssssassarsuiasinsssissis 72
Figure 3.9: The rule lists produced by the rule compiler include information about the type
of operation to be performed, and parameters that specifies the input source and the
output destination. These parameters are used by the data management system of the
INTETENICE BIEIME. . vvivieeeriieeetitet ettt ettt seeas et et a ettt 75
Figure 4.1 : The control panel displays the input data and the results of processing, and
provides user access to external hardware resources connected to the Transputer
INterface MOQUIE.......coouieiriiiieeiieireesrressrissanessmsss e raae s eses s e e s e sss s s s ae s s be s s s asseas s rassssts 81
Figure 4.2 : This flow chart shows the sequence of events necessary to run the TransFuzien

SOEWALE PACKAZE. «.vvviviiiiiiiiiisiirisiseresbe st s e sb et a e n s 82



xiii

Figure 4.3 Listing of a typical Project file. ..o 83
Figure 4.4 : The Rule Editor dialog screen provides the functionality to compose fuzzy
rules. The present rule appears at the top of the screen, whilst completed rules are
listed DEloOW ;s iwisantrmmiss s s aide i s s s e o el AT e e R SRV os 85
Figure 4.5 : The input and output variables for the system to be modeled or controlled, are
entered with the variables dialog box. The name and physical source or sink are
defined here. ... orooseomsmmssimsissss wtomes ihim s i s B eSS s s e 86
Figure 4.6 : The membership function editor provides an equation building and display
facility. The equation is entered by either typing with the keyboard, or by using the
mouse t0 hit the Keypad. ........ceoviiiiiiiiiiiii s 87
Figure 4.7 : Dialog box that enables the selection various inferencing methods. .................... 88
Figure 5.1 : Top level data flow diagram for TransFuzien software suite. The ellipses
represent processes, the directed lines represent channels for communications, and
parallel lines above and below a label, represent data storage libraries. The data
packets have been excluded for Clarity.......ccovieiiiiiii s 92
Figure 5.2 : The DFD for the FIE indicates the various data that are required to be present
before processing can begin. The structures marked with the patterned rectangles
represent elements that need to be configured by the user. ... 93
Figure 5.3: The Supervisor process interprets messages from the PC process, and serves
each message as it arrives. The Occam CASE statement acts as a selector, to
distinguish which function is to be initiated. ......mnmmoisminmmmssiisinisonsmsionsssosis I |
Figure 5.4 :Flowchart for the rulebase evaluation phase of processing for a single processor
architecture. The evaluation of the RMF and WRMF occur in the Fuzzy Inference
Engine process labeled FIE. Processing continues if the system is in RUN state, but
will execute one pass through the rulebase otherwise. ......cooeeviieiniinii 101
Figure 5.5 :A Process Event Graph gives a graphical representation of process interactions.
The events between the markers X and Y are repeated for each rule in the rulebase. In
this study, circles are used to define event cycles. The time axis is not to scale............ 105
Figure 5.6 : Data Flow Diagram showing the two rule evaluation processes, each of which
runs on its own Transputer. The FIE now handles task scheduling between available
worker nodes. The FARMER process runs on Transputer TO and controls the
allocation of rule evaluation tasks to the WORKER processes. The additional worker
process runs on Transputer Tl ... 111
Figure 5.7: The processing hardware for this thesis comprises the personal computer, and
two T800 Transputers which are mounted on the BO08 motherboard. Transputer TO
accesses external data via the Transputer interface module. Transputers TO and T1 are

connected by aserial Tink. ..o 112



Xiv

Figure 5.8: Graphs showing (a) the rulebase processing performance, and (b) the total
processing performance. Processing time depends on the number of rules that are in
the rulebase and the number of processors available in the system.. ............ccoceninien 116

Figure 6.1 : Block diagram of the Transputer Interface Module, consisting of the micro-
controller, the link adapter, the peripheral adapter, and signal conditioning hardware.. 122

Figure 6.2 : Photograph of the Transputer Interface Module showing the micro-controller,

the Transputer link adapter and the PIA device........c.oooviiiiiiinniiiiniiii, 123
Figure 6.3 : The circuit diagram for the Transputer Interface Module. ... 124
Figure 6.3 Flow chart for reading data from the link adapter...........covevivineniiinicninnnnn, 125
Figure 6.4 Flow chart for writing data to the link adapter.........cconiiiii.. 125

Figure 7.1: Non-fuzzy outputs ZI, Z2, and Z3 are produced by a rulebase comprising six
fuzzy rules. Three sets of input data give rise to corresponding output data variations. 129
Figure 7.2 : Two regions are defined by the concentric circles shown in this figure. Class
B is the central region of the figure, whilst Class A is the annulus that surrounds Class
B. Data points which are defined by two coordinates (xI, x2), are classified by the rule
base, and will possess membership to both classes to some extent. ...........ccovveeiiiicnne 131
Figure 7.3 : Graph showing the degree to which data belongs to class A. and Class B. ........ 134
Figure 7.4 : The rule based model of the function z(x) = x closely matches the ideal case.
Triangular membership functions were applied in this example..........ccooiiiinnns 136
Figure 7.5 : Key features of the model are identified using a simple matrix approach that

maps the input space to the output space. The inputs to the matrix are x and y. The

membership labels are NL, NS, ZE, PS and PL. ..ot 137
Figure 7.6a : Calculated surface plot of the function z(x,y) = -y,

X=[-5.457a0d P =[-5.45] oo e s 139
Figure 7.6¢ : Calculated surface plot of the function z(x,y) = x - ¥'. Blue represents

negative numbers, green represents zero, and orange represents positive numbers........ 139
Figure 7.6b : Surface plot generated by the expert system using 13 rules. ... 139

Figure 7.6d : The surface plot generated by TransFuzien software shows a high degree of
correlation with the theoretical plot of Figure 7.7C. ..o 139
Figure 7.6 : Modeling relies on the identification of key features of a system, and then
encoding these with suitable rules. The rule based model of the function Z(x,y) = x -
y’ (Figure 7.7b) closely matches the ideal case. The scale is not relevant here, as the
expert system output can be adjusted to suit the application............cccoviniiiinnnn. 139
Figure 7.7 : The output for the low pass filter is affected by the choice of inferencing
TS 11703t TR T et pem— L ) |
Figure 7.8 : The output responses for two bandpass filters. The variation is due to the
—fusion method employed for each filter: i .....cviimmeimemisioessesmsssenoess 142
Figure 7.9 : The inverted pendulum apparatus is the plant in this control 100p. .........cc..c.... 143



XV

Figure 7.10 : Photograph of the inverted pendulum apparatus............c.coooiiininnn, 145
Figure 7.11 : Photograph of the Motor Control Module for the inverted pendulum motor. . 146
Figure 7.12 : Circuit diagram of the Motor, Control Module for the inverted pendulum
TEIOTEON: v om o wistemumschiaos o s 4 s 45 N AR ST A T SO A VST Rn F P AT RS R 147
Figure 7.13: The system output for the pendulum control is determined by the angular
displacement of the pole from the vertical. This figure shows the effect of selecting
different fUSION PrOCESSES:. uuitimsmismsiosssiissivessivssoscssmsressosossassnsssssisaissessasssrosansrasssses 150
Figure A.1 : Block diagram of the T800 Transputer Architecture. .........ccocovviiviniininiiinn 160
Figure A.2 : The four serial links allow various architectures to be created using the
Transputer. This ability to connect Transputers to each other directly’, without ‘glue’
logic, makes them particularly useful in building hardware architectures that best suit
a particular data processing algorithm .. ... 161
Figure A.3 : IMS B008 Motherboard Functional Block Diagram.. ... 162



XVi

LIST OF TABLES

Table 2.1: Linguistic hedges commonly used for modifying the shape of membership

T (5 D oo e e P TR T RIED /Bl 0 - 5 5 === 3 £ =« {3 « e EEEEEEE GG 18
Table 2.2: Properties of fUZZY SEtS.........coiiiiiiiiiiii e 23
Table 2.3: The fuzzy operators for AND, OR, and NOT have been expressed in varying

ways by different authors. ..........ccoiiiiiiiiii e 24
Table 2.4: Modifier functions commonly used for transforming resultant membership

Y0 (o5 1071 1T OO O TP OO PO OO PSPPI PTP TP PPFR 34
Table 2.5: This figure shows the definitions for five fusion functions..............cccoiniin 39

Table 2.6: The methods of defuzzification will impact on the computation required and

hence the time to produce the crisp output. The center of gravity method is widely

USE. c.vveerrenesnsannorsessessesssassassssssasssnsasssesnnsesnnsssessassransssssssnsassanaeshisssnsassasstsiasiessoessnssnssssnsarsass 51
Table 2.7: Defuzzification times for a 1000 point fuzzy Set..........ccooiiiiinini 51
Table 3.1: The components of the expert system each have specific functions to perform. .... 60
Table 3.2: There are 11 opcodes which the inference engine Interprets......oovivininiiiiinn 74
Table 4.1 : Software module definitions. .......cccceiviiiiiiinniii 78
Table 5.1: TransFuzien System Parameters.........ccoovvviieiiiiniiiiniii e 95
Table 5.2: List of variable declarations for the DBM Process .........cccooceveniiinniiiinn. 99
Table 5.3: Tag identifiers fOr SYSIEM PrOCESSES. ....ouririirriiriieteiriiic s 103
Table 5.4: Protocol of the RESULTS channels for the processes. ......o.ooeeeiiniiiiininnn. 104
Table 6.1: Truth table for TTL port bit CONIOL .....coouiiiviiiiiiii s 126
Table 7.1: There are 6 rules for this example, with 3 inputs and 3 outputs.........ccccccooivinnnn. 128
Table 7.2: The inferencing methods for the MIMO example.........ocoooiniiiiiiiiinnin 129
Table 7.3: The rule base that classifies the data comprises 22 rules that define the two

TEZIONS A N0 Bl iciviivosisrsssossssiassesssissansonssossssassessnerassussnanassessssssstssasssssssessassrasssssssysarsosss 132

Table 7.4: This table shows the improvement in discrimination between Class A and Class
B, from (79, 86) before, to (79, 19), after the addition of rules that define the class

regions more fully. A high value represents a good match, 100 being the maximum

N 22 L =TSO USROS PP PP PRP PR T 133

Table 7.5: Rule base that models the fUnCtion Y = Z....ccovviiiiiiiiiinii e 135
Table 7.6: Rule base that describes z, according to the I/O map. The rule base is derived

from this mapping and is shown in Figure 7.8b. ....cooiiniinimniiis 138

Table 7.7: Rule base for the low pass filter. ... 140

Table 7.8: Inference methods for the 3 low pass filters. ... .o 141

—Table 7.9: Rule base for the band pass filter..... s 142

Table 7.10: Rule base for the band pass filter. .......ocoiimmmmiiiiiiiii s 149



1(x,y)
t¥(x,y)
Teomms
Tdepuz
Thusion
T,

Tproc

GLOSSARY

Interval counter

Interval counter

Interval counter

Degree of Fulfillment of a fuzzy rule
Input data vector

Membership function

Agreement Matrix

Compensated Agreement Matrix

Contradiction factor

xvii

Number of Resultant membership functions per Final membership function

Discrete representation of Final Membership Function

Fusion adjustment factor

Fuzzy Information Measure
Maximum fuzzy operator

Minimum fuzzy operator

Fuzzy negation of x

Number of processors

Number of fuzzy rules in the rulebase
Fuzzy t-norm of x and y

Fuzzy t-conorm of x and y
Communications time between processes
Time to perform FMF defuzzification
Time to perform RMF fusion

Time to evaluate a single fuzzy rule

Total Processing time per output



Al
BCF
COG
DBM
DOF
EPLD
FAM

FMF
GUI

MF
MIMO
MISO
MOM
mS

PC
PED

TDS
TIM
TRAM
WRMF

ABBREVIATIONS

Artificial Intelligence

Bootable Code File

Center of Gravity defuzzification
Data Base Manager

Degree of Fulfillment
Electrically Programmable Logic Device
Fuzzy Associative Memory
Fuzzy Inference Engine

Final Membership Function
Graphical User Interface
Knowledge Base Manager
Membership Function

Multiple Input - Multiple Output
Multiple Input - Single Output
Mean of Maxima defuzzification
milli-second

Personal Computer

Process Event Diagram

Rule Evaluation Node

Resultant Membership Function
Transputer Development System
Transputer Interface Module
Transputer Module

Weighted Resultant Membership Function

xviii



Xix

PUBLICATIONS

1. Bowyer R.S., "Implementation of a Parallel Fuzzy Logic Controller”, ATOUG-4 The
Transputer in Australasia, IOS Press, Amsterdam, pp. 13-18, Sept. 1991.

2. Bowyer R. S., “TransFuzien - A Transputer Based Fuzzy Logic Inference Engine”, IEEE
ANZIIS-95, Proceedings of the Australian and New Zealand Conference on Intelligent
Information Systems, pp. 140-145, Nov. 1995.



Chapter | Introduction 1

Chapter I

INTRODUCTION

1.1 Motivation

Artificial intelligence (AI) systems [1, 2], and in particular rule-based expert systems, are being
applied at an ever increasing rate to the solution of information processing problems. One area
of Al which is gaining in popularity is Fuzzy Logic, the basic theory of which was first
described by Zadeh [3]. Fuzzy logic can be applied to the solution of a broad range of
computational problems. There are many accounts in the literature which describe uses for
fuzzy logic, ranging from an expert system for medical diagnosis such as MYCIN, CADIAC,
and SPERIL-II [4, 5], to the control of an electric passenger train in Japan [6].

The motivation for this research is to investigate fuzzy reasoning, and examine the issues
of knowledge representation, fuzzy inferencing strategies, and methods by which parallel
processing techniques can be applied to this area. A fuzzy logic rule-based expert system is
developed in this thesis to facilitate the investigation of these issues. It is a Transputer-based
fuzzy logic inferencing engine, implemented as a data processing workstation. The computer
workstation is a familiar concept, enabling a user to interact with a computer system via, in
most cases, a Graphical User Interface (GUI), operating under the Microsoft Windows'
operating system.

The user interface is a very important component of this and any expert system [7]. The
system should be simple to operate so the user can concentrate on transferring knowledge to
the knowledge base, and not worry about the details of the mechanism that under-lies that
transfer. A suite of software is developed that supports a number of the present interpretations
of fuzzy inferencing, thus providing a flexible and instructive environment for fuzzy
processing. It provides all the functionality to perform rule-based fuzzy logic inferencing.

The hardware for this system comprises a PC, an Inmos BO08 Transputer motherboard
[8], fitted with two T800 TRAM modules, and the hardware interface. Figure 1.1 shows how
the various system components fit together, whilst Figure 1.2 shows the top level structure for

a rule-based inferencing system.

! Microsoft Corporation
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The potential benefits of applying Transputers to this works are to be examined, and

include;

1. Simplifying the process of mapping algorithms to hardware.

2. Using multiple processors enables multiple connections between the processing
system and the external world via the serial links.

3. Processing performance as defined as the time taken to complete specific tasks, is
reduced according to the number of processors assigned to a task. This will be

explored in Chapter 5.

The software comprises the graphical user interface that runs on the PC, and the
inferencing software that runs on the Transputers. Each of these components is described in the
following sections.

The system that is developed, processes data sets by applying the rule base to each new
input data set, and computing the corresponding output(s). Both inputs and outputs may be
displayed on the GUL This is an open loop processing system, as is typical of expert systems
that provide some answer to a particular set of input conditions, such as in computer assisted
medical diagnosis or weather classification [7, 9].

Closed loop processing is required when an expert system is being used for continuous
processing of the input data, such as the for the control of the speed of an electric motor under
varying load conditions. A closed loop approach is required for systems that exhibit time
varying dynamics, particularly on a time scale that is short compared to the time a human
operator would need to effect some appropriate control action. (eg. increase motor current
when load increases, to maintain motor speed at some desired set point).

This second mode of operation is a challenge for expert systems, and places considerable
responsibility on the programmer (human expert), to construct a reasonable rule base, that
describes the dynamic behaviour of the system to be controlled. The objective of this research

is to produce an expert system, that fulfills both modes of operation.
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Figure 1.1: The components of the fuzzy inferencing system comprise the host computer
with the graphical user interface and knowledge pre-processing program, the Inmos
Transputer sub-system and the inferencing software, and the Transputer Interface Module

that connects to external electronic hardware.
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Figure 1.2: An expert system comprises a rule base where the rules are stored, and a
knowledge base which stores information about the inferencing strategy. The input and

output signals will require some normalisation processing.
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1.2 Review of the literature

There are a number of key concepts that are explored and developed in this thesis, which are as

follows;
1. Fuzzy logic processing,
2. Development of additional fuzzy operations for t-norm, t-conorm and fusion,
3. Development of an inferencing algorithmic structure,
4. Implementation of the inferencing algorithm,
5. Use of the Inmos Transputer to perform the inference processing,
6. Development of an expert system workstation, featuring a graphical user interface.
7. Software which supports a range of fuzzy operators.
8. Design and development of specialised hardware to assist in system integration.

Systems which use fuzzy logic in their processing can be divided into three broad
categories. The first category is that of commercial products which provide a user interface
(usually on a PC), and sometimes graphical in presentation. Typically, these development
systems implement fuzzy logic rules on a particular secondary platform, allowing a user to
enter rules and generate C source code for a micro-controller. Motorola have such a system for
their range of micro-controllers [10].

The second category is the commercial product which develops configuration code for
dedicated fuzzy processing chips. An example is the fuzzy correlator and fuzzy microprocessor
from Infra-Logix [11]. Some other examples are Seimens' Fuzzy Logic Co-processor chip, the
SAE 81C99[12], and the VY86CS500 12-bit Fuzzy Computational Accelerator from VLSI
Technology Inc.[13].

With these specialised components, the number of fuzzy inferences per second is very
high, but there are usually limitations to the number and syntax of rules, and the representation
of membership functions. These limitations are understandable as the devices have a fixed
architecture.

The third category is very common in industry, and represents the many different types of
embedded fuzzy process controllers. Typically, these are systems which run on common
micro-processor platforms, where the fuzzy algorithms are hard-coded into the software. The
fuzzy algorithms are written in languages such as C, Pascal, and even assembler. This makes
modifications more difficult, as the code must be changed, recompiled, and then linked with
the rest of the software system. Look-up tables are also often used with standard micro-

controllers.
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Each of these categories have their advantages. This study, however, adopts a flexible
approach to the fuzzy inferencing problem, by implementing a generic fuzzy algorithm, which
can be customised to suit the user's requirements, via the rule base and a choice of inferencing
strategies. ‘

Another common theme in the literature is the need for some form of accelerator or
specialised computing architecture, to improve the processing performance of fuzzy systems
implemented on a computer platform. The literature contains several references on the parallel
implementation of fuzzy inference processing. Some of these systems propose the use of
optical processing systems [14] to realise the parallel computation, but these lack the flexibility
of the proposed system. In a paper by Linkens and Hasnain [15], the authors describe fuzzy
logic implemented on the Transputer. The fuzzy rules are directly coded in Occam, and fuzzy
control in parallel, as a means to speed-up the processing, is examined by the authors. The
approach taken in this thesis differs from this approach, in that the rules are not coded n
Occam.

There are many references in the literature to 'expert system' shells and Al toolkits [5].
There are key papers [16, 17] which describe systems and ideas which combine one or more of
the features which are listed above. This work investigates methods which make an expert
system more flexible. These papers are listed below and comments made regarding their
content and relevance to this current work.

In work published by Marian S. Stachowicz [18], a hardware accelerator for fuzzy
inferencing is described. The inferencing and defuzzification techniques are fixed. The
universe of discourse is limited to 25 elements and the number of levels is 5. The processor
uses a pipeline architecture to achieve the parallelism, with a quoted performance of 800 k
Fuzzy Inferences per Second (kFIPS).

H. Ekerol and D.C. Hodgson in [17], describe a dedicated control system which uses
Transputers and fuzzy logic. The defuzzification method used is weighted average. The fuzzy
logic control algorithm uses 10 rules to control the intensity of an air-jet that is a component in
a sorting system involving a conveyor belt. The control actions are pre-calculated and stored in
a look-up table residing in the Transputer's memory.

There are examples in the literature of parallel implementations of fuzzy logic systems
[19, 20], which address specific applications, but do not address the combination of issues at

which this research is aimed.

1.3 Original Contributions

There is a lack of published work that focuses on using parallel processing architectures for the

implementation of rule-based inferencing systems. In particular, there is little work, to the best
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of the author's knowledge, that uses Transputer technology to implement flexible fuzzy expert

systems. This research examines the following areas;

1. Methods of fuzzy logic processing, iﬁcluding connectives, modifiers, fusion operators,
and defuzzification. Some new operations are proposed.

2. Application of parallel processing principles to fuzzy processing.

3. Development of a parallel inferencing algorithm.

4. Implementation of the algorithm using the Occam 2 programming language, and

running the software on the Inmos T800 Transputer.

Investigation into human-computer interfaces.

Development of a human-machine-interface (HMI) front end for an expert system.

Investigation into the effects of different inferencing options on data processing.

Demonstration of inferencing methodologies by way of a number of examples.

N S AN

Design and development of a Transputer Interface Module (TIM), that provides
control functions and data collection capability to the TransFuzien system. This

involved hardware, firmware, and software, design.

The system which is developed in this study, aims to be as flexible as possible. To
provide flexibility in the choice of inferencing options, and so on, impacts directly on the
development of the various processing algorithms. The INMOS Transputer has been selected
as the processing engine for this study as it has many desirable characteristics which make it

suitable for this work. These include:

1. Ease of mapping data flow description onto the architecture through the application of
Occam in writing the code.
2. A scaleable performance is achievable by devolving sections of the processing to

additional Transputers, or by applying multiple Transputers in a farm arrangement.

To achieve a multiple-input-multiple-output (MIMO) processor, a generic fuzzy
inferencing program is run on the T800 Transputer. This program is loaded onto the Transputer
system via a command issued by the user, and booted to establish communications with the
user interface program which is running on the PC.

The knowledge base interface which runs on the PC, is used to define the parameters of
the fuzzy processor. These parameters include, the rule base, the membership function

definitions, and the input and output names and mapping. When the fuzzy processor is running
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and processing input from what ever source, the user then has the option to alter the above
mentioned parameters.

The system which is developed can operate in one of two modes. The first mode, is
where input data is processed by a set of rufes, output calculated and displayed. This one-off
processing behavior is applicable in a system for assisting a person to come to a decision or
conclusion, such as in medical diagnosis, or data recognition/classification.

The second mode of operation, processes data continuously. The inputs are sampled at a
regular time interval, and the rule-base processes the data for each new interval. This is
applicable to control of processes, and requires an appropriate response time from the inference

engine, according to the time constants of the controlled plant.

1.4 Thesis Outline

This dissertation is set out in the following manner. Chapter 2 introduces fuzzy set theory, and
describes the membership function, various methods of fuzzy inferencing, and the
defuzzification process. Some of the advantages of using a fuzzy approach to information
processing are given. The union and intersection operations between fuzzy sets is examined
and several methods are presented that have been explored in the literature. At this stage,
additional operators for these connectives are proposed, with examples to illustrate their affect.
Likewise, the process of fusing information that is represented by multiple fuzzy sets, is
examined, and an information measure is derived. Further, two additional methods are
proposed to fuse fuzzy sets.

With the basic concepts covered, the next chapter examines the process of fuzzy
inferencing using IF-THEN production rules as the method of knowledge encapsulation. The
process is examined to explore how fuzzy inferencing can be performed in a parallel domain,
and to identify the driving issues and choices that must be considered. A software structure is
developed to perform fuzzy inferencing. The development of a structure for fuzzy inferencing
naturally leads to the requirement to configure, test, and apply this structure.

To obtain a physical realisation of the ideas developed in Chapter 3, they must be
implemented on the Transputer target system. This process is described in Chapter 4. A means
of user interaction is essential in this system, and the type and function of the interface are
described in Chapter 5.

This research has the requirement of being able to process data from a variety of physical
sources. The Transputer Interface Module (TIM) gives the system the ability to exchange data

with external electronic equipment. The TIM is described in Chapter 6.
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A number of case studies have been completed using the software and hardware
developed in this research. There are four of these studies which each exercise various aspects
of the system, and show the results of the fuzzy inferencing process. In Chapter 7, there is an

example of each of the following;

Multiple input-multiple output (MIMO) system,
Fuzzy pattern classification,

Fuzzy modeling of a function, and

A WD -

Fuzzy control.

The results for each example are given and discussed. Chapter 8 presents the conclusions of

this research, and identifies areas of further work.
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Chapter II

INTRODUCTION TO FUZZY SETS AND FUZZY LOGIC

2.1 Overview

In this chapter, fuzzy sets are introduced, together with the basic theory of fuzzy logic
operations. This chapter begins by making a comparison between ‘classical’ set theory, and
fuzzy set theory. This leads to a description of fuzzy set operators and membership functions,
followed by fuzzy logic, being the method by which fuzzy sets and operators interact. At this
stage, two operators are proposed by the author, with illustrative examples given.

In this discussion, the fuzzy rule is introduced as a means of encapsulating domain
knowledge'. A mathematical description of the inferencing mechanism is presented.

The process by which rules that relate to a common output are combined, is a form of
data fusion, and hence this process is called fusion in this work. There are a number of rule
fusion or aggregation methods [21] that are in common use, and some of these are presented.

The information content of fused data sets is addressed, and an Information Measure is
proposed. Then, two additional methods are proposed by the author, for fuzzy set fusion.

Some of the common defuzzification methods are presented, followed by a discussion
on adaptive fuzzy systems. Lastly, temporal aspects of fuzzy logic are considered, with a new

concept, in relation to the fuzzy rule, being proposed.

2.2 A Contrast of Styles - Boolean (Crisp) vs Fuzzy

Classical set theory is very clear about what it means to belong to a particular set of objects.
In classical set theory, there are no degrees of belonging or degrees of truth. With Boolean
logic there are no shades of gray, only black and white, true or false. However with fuzzy
logic, we are dealing with continuous-valued logic. There is a continuous transition between
one extreme and another, thus enabling us to assign degrees of truth to propositions, such as,

“it is quite cold in this room". Fuzzy logic allows such statements, and provides a

! Knowledge about a particular process or event
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mathematical framework by which it can be evaluated, providing a degree of truth or degree
of fulfillment for the statement.

Fuzzy logic is a powerful tool for dealing with information using approximate
reasoning. In fact, humans make subjective decisions all the time, based on minimal and
often vague information. We are, all of us, experts in fuzzy logic. In the expert system
developed herein, the processing of information is accomplished using linguistic descriptions
in the form of IF-THEN rules. These are the embodiment of the knowledge of a process or
event that is available for inferencing operations. These rules are derived from the knowledge
of a system's behavior.

The derivation of the fuzzy rules is an interesting field of study, and can be
accomplished by interviewing an 'expert, to derive a series of 'if-then’ statements that
reasonably cover the range of expected behaviour of the process that is to be modeled. The
rules comprise a particular syntax (and are linguistic in form) and a number of fuzzy
operators. These are described in the following sections.

An important aspect about conventional rule-based expert systems [2, 22] is that when
the system is evaluating its rule-base, it is searching for a match between its knowledge base
and the input data. In traditional binary logic, if a rule statement does not match exactly with
the input data, then the rule has no further effect on the outcome of the expert system. Hence,
if the input data is almost, say 99%, but not quite a match, then this information is lost to the
system.

In the case of fuzzy logic, every rule will contribute, to the degree of fulfillment of that
rule, to the outcome. Hence the 'quality'2 of the outcome is higher, as there is no loss of
information. This could be important where the quality and the quantity of available data is
limited. A system that uses fuzzy logic for inferencing uses all the information at its disposal,
and wastes nothing. This is one of the advantages of an expert system based on fuzzy
inferencing. By generating a list of behavioural rules for a particular system, and applying the
mathematics of fuzzy set operations, the linguistic rules of a knowledge base can be
translated into a flexible numerical domain [23].

The common approach to decision making or process control, is to define accurate
mathematical models of the plant or process and use the sensory data to monitor its
performance, and make appropriate control decisions. This points to one of the main
advantages of fuzzy processing. A system need not be described by an exact mathematical

model.

2 Defined by the author as the number of rules activated in a Boolean system, compared to the number of rules activated in
a fuzzy system, for the same rulebase.
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In the case where the model is known and comprises high order differential equations,
solving these equations in a real-time situation places considerable demand on the processing
architecture and software. A fuzzy approach allows complicated systems to be described with
linguistic rules. Also, where there is insufficient information® about the internal operation of
a particular system, then it can still be modeled based on the observed behaviour using the
fuzzy approach.

Put another way, fuzzy logic enables a system designer to incorporate qualitative and
non-linear behaviour into the system model. An example of this situation is where there are a
limited number of sensor outputs available to the processor, as in the case of some industrial
control situations [24].

In classical control theory, for example, a transfer function of the plant is required, and
exact data is used to control a plant of some description [25]. Data from the plant is applied
to a mathematical model of the plant to derive some new control inputs to the system. The
behaviour or response of the plant is determined by how well the mathematical model
represents the plant.

A rule-based fuzzy logic controller applies the input data to the rule base, with all rules
being processed in parallel. For each individual output their may be many contributing rules.
The outputs from these rules are then combined and de-fuzzified to produce a crisp output.
Consider the example where an air-conditioning plant must maintain the air temperature in a

room at a pre-defined setting. One rule to accomplish this may look like:

e IF outside temperature IS high AND inside temperature is (high and increasing}

THEN turn cooler on high

In the following sections the components of fuzzy inferencing are addressed. It is worth
noting at this point, that the fuzzy approach is just another tool to solve problems. As with
any method of scientific investigation, the tools are there to aid in the understanding of the

problem at hand.

? There may not be enough sensors within an apparatus to properly describe a required parameter of the system.
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2.3 The Membership Function

A membership function (MF) is a mathematical description of a linguistic model or class,
such as 'tall person'. It is not the presence of random variables, but the presence of vagueness
and imprecision which is the central theme when defining a membership function [3][4].
Membership functions are not probability distribution functions, but are descriptions of
linguistic terms or labels, that are relevant in the particular instance.

As an example of a membership function, consider an experiment where the
temperature of a room in a house is being measured. A thermometer is placed in the room
and allowed to stabilize before a reading is taken. The reading may be 30 degrees Celsius,
which is classified by most people as hot. If the temperature was 12 degrees, then this may be
classified as cool. The numerical range over which an input variable is defined is called the
Universe of Discourse [3]. In this case the universe of discourse may range of temperatures
tolerable to humans (10 degrees to 40 degrees).

Now consider if an air conditioner is turned on and a series of temperature
measurements are taken at regular intervals. As the temperature drops, the classification of
the temperature would change from hot to ‘not too hot’, to ‘warm’, to ‘slightly cool’, and
maybe further to ‘cold’ and finally, to ‘very cold’.

Each of the classifications mentioned above, are examples of classes in fuzzy logic
which are called membership functions. Consider the first temperature reading in our
example of 30 degrees. In fuzzy nomenclature, it has a high degree of membership to the
class 'hot', say 95%, but a lesser degree of membership to the class warm, say 60%, and an
even lower degree of membership to the class cold, say 5%. Figure 2.1 illustrates this idea.
The key point is, that a variable measurement (eg. temperature) can simultaneously belong to
other membership sets to varying degrees.

The definition of a membership function, that is, its shape, is an area worthy of some
explanation. Dubois and Prade [21] give an interesting discussion entitled, "Where do they
come from?". Where indeed! When an MF is defined, it is often representing some empirical
data. The MF can be thought of as a transform from crisp space to fuzzy space. The MF is
the 'handle' by which humans translate linguistic operators into the realm of mathematics
processes for use by computers. An analysis of this subject can be found in Chapter 6 of [4].

Membership functions are often mathematically modeled by a continuous or discrete
trigonometric function, polynomial, or linear expression. Some examples of membership
function profiles are;

1. Gaussian function
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Polynomial
Linear equation
Trigonometric function

S and IT functions

0o 2 P

Equation 2:1 generates functions with varying characteristics, dependent upon the parameters
A (maximum amplitude chosen to match the range of the input data), S (spread factor), and

C, which is the fuzzy number or center point of the fuzzy set.

(-S[--C1

H(x)=A-e (2.1)

and

A
heof

where x €[0,100], S €[1,100]

:8§5>0 (2.2)

p(x)=

Equation 2.2 is has been used to generate a default family of nine membership functions for
the expert system software developed in this work. These are shown in Figure 2.2. The GUI
is described in further detail in chapter five

In this work, a discrete representation of membership functions is adopted, as shown in

(2.3), with a range of /-50..+50].

4(®) ={fﬂ,ﬂ,‘...f‘ f—} (23)
xO xl xn—l xn
where “i is the value of the membership function at x;.
X,

The number of points that are used has a direct bearing on the time required to process the
function. As the number of points increases, so does the time required to perform transforms

on the membership functions.
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Figure 2.1: Set of Membership Functions that describe a range of temperatures. The

position of the peaks and the spread of each function are chosen to suit the application.
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2.4 Fuzzy Numbers

Just as the fuzzy sets for small or medium are represented by a membership function, so
numbers can also be described. For instance, a crisp real number N is converted to a fuzzy
number by specifying the form of a membership function, centered on N. An example of this

could occur as follows:

e IF temperature IS close_to 30 degrees THEN fan_speed IS HIGH

The premise ‘temperature IS close_to 30 degrees’, allows specific values to be used in the

rule base, compared with the more generic terms of small and high.

Fuzzy arithmetic can be performed between fuzzy numbers. An example of fuzzy
addition using the discrete fuzzy set representation, as introduced in the previous section, is

as follows:

0/0, 0/1, 012, 1/3, 2/4, 315, 5/6, 317, 2/8, 0/9 + 9/ 0, 8/1, 5/2,2/3, 0/4, 0/5 , 0/6, 0/7, 0/8, O/9

=9/0,8/1 ,5/2 ,2/3 ,2/4 ,3/5 ,5/6 ,3/7 ,2/8 ,0/9

Fuzzy multiplication and division can be performed, and Dubois and Prade give a detailed

treatment of this subject in Chapter 2 of [21].
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2.5 Linguistic Hedges

Linguistic modifiers or hedges [21, 26, 27] provide a means to emphasize or de-emphasize the
effect of a premise. Hedges add to the grammar for writing fuzzy rules, and enhance the ability
of the expert to express ideas in a rule form. Table 2.1 lists some of the definitions for hedges.

Figure 2.3 illustrates the effect of hedges on membership functions.

Hedges can be used in fuzzy rules to modify the membership functions; as shown in this

example:

e IF X11IS very large AND X2 IS quite small THEN Z1 IS zero

Hedge Description
normalisation: Hormnf( ) = Hy(w) / (sup [y,
concentration (eg. very) ucon(A)(u ) = (0 ]4
dilution: (eg. some-what) 'u'dil(A)(u) =[p,(u) ]1/2
contrast intensification: () ={ 240, 2w, (w) €[0,05 ],}
1-2(1- uA(u) )2 otherwise

Table 2.1: Linguistic hedges commonly used for modifying the shape of membership

functions.
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Figure 2.3: The shape of a membership function x(x) can be modified by a linguistic hedge.

This figure shows the effect of both concentration (square) and dilution (square root)

operators on a membership function.
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2.6 Fuzzy Set Operations

In this section the concepts of fuzzy set operation are reviewed. The original paper on fuzzy
sets by Zadeh [3], described the operations that can be performed between fuzzy sets. Fuzzy
sets share the same properties of associativity, distributivity, and commutativity, and so on,
as crisp sets. Figure 2.4 illustrates classical Boolean logic, where two sets A and B, intersect.
Further, the data points (denoted by +) that are scattered throughout the figure, may belong to
either set A, set B, both set A and B, or to neither set. In Figure 2.5 the same data points now
belong to both set A and B, with a degree of membership denoted ma and mg.

These definitions describe the standard operations for fuzzy sets. They make use of the
operators AND, OR, and NOT, all of which have clear definitions for crisp logic. In this
work, these operators are referred to as connectives. There are various interpretations of how
these connectives, AND, OR, and NOT are implemented. Dubois and Prade [23] discuss the
operations on fuzzy sets in detail, and define a number of alternatives. Klir and Folger [27]
give a good overview of some of the various operations on fuzzy sets, and include
mathematical proofs. A number of these methods have been incorporated into the
TransFuzien software, giving the user a more flexible system for fuzzy computation. This is
discussed in detail in Chapter 5.

The original paper on fuzzy sets by Zadeh, described the operations that could be
performed between fuzzy sets. The operations of union, intersection, and complement are

defined in this section.

Consider a function f,(x) and a variable x . [0, 1], and let 1,(x) and Ug(x) be fuzzy

sets on the interval [0, 1]. The complement of a fuzzy set is defined as:

o I-pu,x)
The fuzzy 'AND' function is the intersection of two or more sets, and is evaluated by
calculating the minimum of the membership grades within any of the subsets.

e 1(x) AND pylx) = MIN( p,(x) , piy(x) )
The 'OR' function is the union of two or more sets, and is evaluated by calculating the
maximum of the membership grades within any of the subsets.

e 1,(x) OR pyx) = MAX( py(x) , ps(x) )

Fuzzy sets posses the properties of associativity, distributivity, and commutativity [3].
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SetA
SetB
AB

Figure 2.4: Two sets A and B define regions of interest in the parameter space. Data points

may belong to either A or B, or the intersection of A and B. The data may also lie outside

these sets.

_Set A
+mgumy) | goi B
+(m,,my,) +(mg,n{,)
+(1h,,my,)
+(m,,my)
+myum,) +(my,my) +(m,,m,)

Figure 2.5: With fuzzy classification, each data point has a membership to each set. In this

case, the memberships are denoted m, and my,.
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The two fuzzy sets A and B obey the rules described in table 2.1. The range of the parameter
which is being classified is known as the 'Universe of Discourse'.

These definitions are the standard operations of fuzzy theory. There are however, other
definitions for the fuzzy set operators. Table 2.3 shows some of the fuzzy operators in current
use. Figures 2.6, 2.7, 2.8 and 2.9 illustrate examples of these operators. Some of the
operators listed in Table 2.3 have been incorporated into the inferencing kernel program that
runs on the Transputer system. These operators provide the user with a choice of inferencing
strategies for fuzzy computation.

The connectives, AND and OR are also called T-operators, or t-norm and t-conorm
respectively. Gupta and Qi in [28] summarized the properties of the t-norm and the t-conorm.

The definitions are as follows:

Definition 2.1: T-norm:
Lett: /0,1] x:[0,1] — [0,1] , then t is a T-norm iff the following are true:

1. #0,0) =0

2. tx,1) =x ,

3. twx) <=t(y,z) ifw<=1 and x <=2z (monotonicity)
4. txy) = ty,x) (symmetry)

5. 1x,t(y,z) = Ht(xy),2) (associativity)

Definition 2.2: T-conorm

Let t*: /0,1] x:[0,1] — [0,1] , then t* is a T-conorm iff the following are true:

1. 1%(0,0) = 0

2. t*(x,0) =x

3. t*w,x) <=t*y,z) ifw<=y and x <=z (monotonicity)
4. t*(x,y) = t*(y,x) (symmetry)

5. t*(x,t*(y,2)) = t*(t*(x,y),z) (associativity)

Definition 2.3: Negation
Let N:/0,1] — [0,1], N is a negation function iff the following conditions are true:
1. N(O) =1, N(I) =0
2. Nix) <=N(y), x>=y
3. N(x) is continuous
4. N(x) <N(y), for x >y for all x,y in [0,1]
5. N(N(x)) = x, for all x in [0,1]
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Property Description
Commutativity: AUB=BUA
Associativity: AUBUC)=(AUB)UC
Idempotency: AUA=A AnA=A
Distributivity: AUBNC)=(AUB)N(AUC)
DeMorgan Laws: (ANB)=AUB
(AUB)=ANB

Table 2.2 : Properties of fuzzy sets.
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Figure b: Membership function for ‘high’.

Figure d: Degree of fulfillment surface S2 for OR,

Figure c: Degree of fulfillment surface S2 for
AND, using Weber’s interpretation.

using Weber’s interpretation.

Figure 2.6: An example of the interaction between two membership functions using Weber’s
definition of the AND operator and the OR operator. The degree of fulfillment surfaces for a

two input system is a useful visualization tool for fuzzy inferencing.
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function.

Figure 2.7d: Graph showing Hamacher AND

and OR functions.

Figure 2.7: There are several definitions for fuzzy set operators. The effects of each

operator vary, as shown in this sequence of graphs which depict the AND, OR and NOT

operators. The input is shown as x and the result is depicted as fix).
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From table 2.3, it is clear that the choice of operators will impact on both the outcome
of the inferencing process, and the time required to calculate the outputs, due to the
calculations steps required for each method. Zadeh'’s operators are the simplest, whilst others

offer parameters that may be funed to suit the individual application.

M2 N2

Figure 2.8: Graphs showing Weber t-norm (M2) and t-conorm (N2) with both inputs
varying from O to 1. This interpretation of T-operators is quite simple to compute and
from these surface plots, it can be seen that they conform to an intuitive definition of
AND and OR logic.

100] ~

u(x) ‘ ‘/ f

0 20
— large

“" not large : u(1-x)

— notlarge . 1-u(x)

Figure 2.9: The NOT operator can be interpreted in at least two ways, as shown in this

figure.
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2.7 Proposed Fuzzy Set Operators

The OR operation is a union operation between sets. This t-conorm is based on a
product of the minimum of the variables x and y, modified by a factor dependent on the
absolute distance between x and y. The equation is modified by the parameter Y. The
calculations are simple to perform (especially if y = 1), comprising of comparison operators
MIN and MAX, and arithmetic operations, so they can be simply implemented in software.

The t-conorm and t-norm proposed in this work are shown in equations 2.4 and 2.7

respectively.

e y)=MIN|:M4X(x, y).(l + i ;y U, 1} (2.4)

where y=integer, =0 and x,y €[0,1]
A t-norm can be derived [9] from an appropriate t-conorm by applying equation (2.5). If
t*(x, y) is a t-conorm, then:

tx,y)=1-1 (1-x,1-y) (2.5)

Substituting (2.4) into (2.5) gives (2.6):

t(x,y)=1- [MIN {Aw'[a -x),0-y)]. [1 + (-2 -G-y) Hl} (2.6)

4

Expanding terms and simplifying gives (2.7).

f(x,y)=1—|:MIN|:M4X[(1— x), -] .{1+ Ix;yl H1] 2.7)

Figures 2.10 and 2.11 illustrate the effect of these operators. It can be shown that these new

operators possess the properties of Definitions 2.1 and 2.2 for y —> . They offer a

measure of tuning (enhance or diminish) by altering the parameter v, as is clearly illustrated in

Figure 2.11.
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Figure 2.10b: Proposed t-conorm as a function of
x and y. The values shown on the x and y axes are
the indices of the matrix.

| Figure 2.10a: Proposed t-norm as a function of x
and y. The values shown on the x and y axes are
the indices of the matrix.

Lo R -

. M x N .
Figure 2.10c: Contour plot of the t-norm. The Figure 2.10d: Contour plot of the t-conorm. The
actual values of x and y are shown on this plot. actual values of x and y are shown on this plot.

Figure 2.10: Graph (a) showing an example of the proposed t-norm (M) and t-conorm
(N). The colour blue represents the minimum of 0, and the colour red represents the

maximum of 1.
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Figure 2.11: Two examples where the proposed t-norm and t-conorm operate on functions n(x) and
s(x) for various values of Y (shown as g). Function s(x) is changed to illustrate the affect of the

operators.
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2.8 Knowledge Encapsulation

An expert system relies on the knowledge of the expert or experts who program it,
encapsulating the appropriate knowledge. The quantity and quality of knowledge and
information required for an expert system will vary according to the task, and according to
the standards by which the knowledge is collated, assessed, and represented in the system. In
other words, the standards by which information is judged are variable. With this in mind,
however, the work presented here assumes that a reasonable effort will be -made for each
task.

To fully model the behavior of a process by an expert system, the expert needs to be
able to transfer an accurate picture of their knowledge of the process. This impacts directly
on the specification for a user interface for an expert system. This knowledge must have a
framework in which to reside, and must offer the human expert sufficient flexibility and
features, to encode their knowledge accurately, and to allow a non-expert to make use of the
system for data analysis. This thesis develops such a framework which is described in
Chapter 4.

A secondary issue, but one that is still very important, is that of how knowledge is
manipulated and used in a system. There is secondary knowledge such as how numbers and
facts are represented in a system. This is called knowledge about knowledge, or meta-
knowledge [2.1], and is addressed at the implementation stage of developing an expert
system.

To encode an expert’s knowledge, the IF-THEN production rule model is often used, as
this provides a simple method of encoding knowledge in a linguistic form. That is, simple
textual rules are written to describe the knowledge, rather than mathematical expressions.
These rules are then processed in a mathematical way to arrive at an output. The rules used in

fuzzy logic have the form:

o IF (X1IS A1) AND (X2 IS A2) AND ..... AND (Xn IS An) THEN (Z11S B1)

where the left side of the rule is the antecedent and the right side is the consequent. The terms
on the left are the rule premises, the Xi are the crisp inputs, and the Ai are the membership
functions with labels such as high, low, medium. The terms (Xi IS Ai) are the rule premises.
The label can just as easily identify a fuzzy number such as 30. The membership functions

are selected according requirements of the system that is being modeled.
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Another useful concept is that of Fuzzy Associative Memories (FAMs) [23]. These are
usually illustrated as two dimensional maps between the input space and the output space.
Figure 2.12 shows an example of a FAM. The input variables are shown along the axes, and
the intersection of the inputs gives the appropriate output fuzzy set. FAMs can be used to
design models for simple systems, as is showﬁ later in chapter 8.

This thesis uses the fuzzy production rule (described in detail in chapter 4) as the
means of encapsulating the expert’s knowledge.

The membership function, whether specifically designed or selected from a range of
available functions, conveys further knowledge about the process in question. The expert
selects suitable functions that convey the desired meaning. The names, or linguistic labels,
given to MFs are important when generating a rule base. To say that ‘the voltage is high’ is

easier to interpret than ‘the voltage is function #3’.

Y
NL ZE; PL ZE
NS PS

ZE NL NS ZE NS NL

PS PS

PL ZE PL ZE

Figure 2.12: A Fuzzy Associative Memory. The inputs to the FAM are sets X and Y. The
membership labels are NL, NS, ZE, PS and PL.

2.9 Fuzzy Inferencing

Fuzzy inferencing is the process of applying expert knowledge, which has been encoded in
some way, to the processing of data, in order to obtain an output data set. There are a number
of methods [1, 23] of performing fuzzy inferencing. The inferencing process is really two
processes in series. The first process calculates a resultant fuzzy set which is the fuzzy
representation of the output variable. The next step, is to obtain a non-fuzzy (crisp) value

from this output set. This step is optional but is usually always implemented.
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As with the inferencing process, there are a number of methods to perform the
transformation from fuzzy-space to crisp-space. This process is called defuzzification, and is
described in section 2.10.

As previously stated, a fuzzy rule has a DOF determined by the inputs to the rule. After
the DOF has been calculated, the RMF‘ is calculated by modifying the consequent
membership function. Modifiers that are selectable with the GUI are shown in Table 2.4.
Some well known methods to evaluate fuzzy rules are correlation-minimum encoding - with
truncation, and correlation-product - with scaling [23]. An example of each method is shown
in Figure 2.13. The power method has the affect of spreading the influence of the consequent
membership function over a broader range.

The antecedent contains the conditional statements referring to the input variables, and
describes the degree of fulfillment of the rule. The consequent is modified by the antecedent
premise (see Figure 2.14).

Consider a single rule node [30] as shown in Figure 2.15. It can be seen that the
process of rule evaluation can be decomposed into two high-level processes, the model for
which directly follows the format of a fuzzy production rule. That is, there is an antecedent
and a consequent process. This data flow diagram also shows library modules for storing the
relevant membership functions for these components.

Function decomposition is a powerful method of analyzing a problem’s structure, and

hence determine data dependencies, and opportunities for parallel implementation.
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Modifier Description
(1) scaling : rmf[i] = z[i] X dof
z[i] = consequent MF
i = integer
(2) truncation : rmf [i]= z[i] if z[i1< dof

=dof if z[i]> dof
(popular with VLSI implementations [13]of fuzzy

Pprocessors)

(3) power: rmf [i]=z[i]9™%

where : dof €(0,1)

Table 2.4 :Modifier functions commonly used for transforming resultant membership

functions.
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Figure 2.13a : Scaling modifier- the function
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is scaled by the DOF .

Figure 2.13: As the DOF of a rule varies, the consequent membership function, pu(x), will
be modified accordingly. Figure 2.13a shows the affect of scaling as the DOF varies, and

Figure 2.13b is the simple case of truncation. Figure 2.13c shows how the consequent
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Figure 2.13b : Truncation modifier- the

function is truncated at the level of the DOF.
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Figure 2.13c : Power modifier- as the power

factor increases, the function spreads.

membership function is spread as the DOF increases.
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Figure 2.14a : Fuzzy Inference by Product-Sum Method. The inputs are applied to the antecedent

membership functions, and the minimum (AND) of the two values is used to scale the

consequent membership function. Rule fusion occurs by superimposing each resultant function

on the same axes, and taking the maximum profile of each resultant function .
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Figure 2.14b : Fuzzy Inference by Truncation-Maximum Profile Method, for a three rule system,

with two premises per rule and one output. Center of gravity defuzzification is used to determine

the crisp output value.

Figure 2.14: Examples of fuzzy inferencing using (a) scaling and (b) truncation methods.
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Figure 2.15:A Rule Evaluation Node comprises a process to evaluate the degree of

fulfillment of a rule, and a process to evaluate the resultant membership function.
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2.10 The Fusion Transform

2.10.1 A Summary and Description of Fusion Methods

The final membership function for a particular output variable, is determined by combining
the resultant membership functions of a set of related rules. The process of combination is a
data fusion operation.

When there are many RMFs to fuse, the output set may become congested, and the
particular biases that each RMF introduces into the final membership function (FMF) may be
swamped. This is the case where the maximum profile method is used to establish the
bounds for the FMF set. There are several RMF fusion methods to choose from, some of
which take this situation into account. The commonly used methods are described here, and
an additional fusion operator is introduced.

One simple method builds the FMF by simply placing one set on top of another, over
the selected universe of discourse. This method can lead to a i > 1 (fuzzy sets are usually
normalize to some maximum value, often 1). The defuzzification process which follows, will
take care of this anomaly. [Kosko p314]. This method is described in equation 2.8, illustrated
in Figure 2.4.

z(k) = 2 [2 U, (k)} (2.8)

k=

where &k =0,1,2,.... (integer)
N = number of intervals in the universe of discourse (integer)
r =0,1,2,.... (integer)
P = number of rules for this RMF

(k) = resultant membership function for rule r.

Another method to calculate the FMF is to form the union of the RMFs using the
maximum profile of the RMFs over the universe of discourse. This is expressed in equation

2.9.

P-1
z(k) = I_Joﬂr(k) (2.9)
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Table 2.5 summarizes these fusion operations, that are often used for combining the

modified consequent functions. The a; are the values of the resultant membership functions

at a particular value of k. Some examples of these methods are illustrated in Figure 2.16. (ai

= result of RMF; at value k). In the context of this research, the each a4; in these equations is

the value of the RMF for a single rule, and 7 is the number of rules that contribute to the

final membership function.

Fusion (Aggregation) Functions
Simple Summation
n—1
F;c(ao,‘ Apsevens a"_l) = z a;
i=0
Maximum Profile
/a8 (ao, gy ennns an_l) = max(a,.)
Generalized Means
k k k %{
+ +... .+
F (ag,ap,.....a,4) = [“O 4 “"-1] , keR (k=0)
n
Geometric Mean
b

F(ag,ay,.....a,,) = (a X aX...Xa, )" ; (n#0)
Arithmetic Mean

l
F(ay,ap,....,a,,) = — (ap + a,+...+a, ;) : (n # 0)

n
Harmonic Mean

n

F(ao,al,....,a”_l)z 1 1 i

—t —

a 4 a,
Weighted Generalized Mean

n-1 %x
F(ay,ay,....,a, L Wos Wisenens W) = ( w, af’) , (w,.>0,06;t0)
i=0

Table 2.5: This figure shows the definitions for five fusion functions.
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Figure 2.16: The fusion functions combine data with varying effects as shown in this

figure.
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2.10.2 A Method to Determine Information Measure

When information from various sources is combined to formulate a decision, one should be
aware of the origin of the information and thé degree to which the information segments may
either agree or contradict each other. From information theory [31] there are various methods
of measuring the information content of a system as new data is added.

With this present research, the fusion process that generates the Final Membership
Functions, is an example of a process which is sensitive to the degree of agreement in the
data. The greater the agreement between fuzzy sets, then the higher will be the information
content of the fuzzy set formed by the fusion of multiple fuzzy sets.

It is here proposed that the RMFs which are combined to generate a single output fuzzy
set, the FMF, should be treated with this premise as being central to developing a fusion
method. This section deals with the derivation of a measure of fuzzy information, and then

applies this to the formulation of an alternative fusion function for fuzzy sets.

Definition 2.1
Define a group of ordered fuzzy sets M= {lo(x), 1 (), L2 (X), ... ., 1 p1(x) }

where [y (x) isafuzzy set,and x € X

and X is the support of M . P = number of sets which divide the domain of X.

then set index i€ [0, P- l]

Figures 2.17 a & b show the representation used for this definition. Notice that each set
overlaps at most one other set in Figure 2.19a. This will not always be the case, as shown in
Figure 2.19b where the triangular functions have varying height and spread parameters. The
membership functions may also have different forms such as gaussian or S shape, in which

case these parameters will affect the outcome.
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Figure 2.17a: This diagram illustrates the ordered fuzzy sets that constitute the

membership functions that may be define for a particular inferencing system.

Set Index

H(x)

Degree of Membership

Figure 2.17b: This diagram illustrates the ordered fuzzy sets where the RMFs have

varying amplitude and spread. Notice that sets 0, 1 and 2 overlap each other.

This index is now used to compare how well sets agree with each other. In combining the

RMFs, the index of the modified consequent is now required.
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Definition 2.2

Define an Agreement Matrix 4;;, the elements of which are the degree to which set  and set

J agree in their respective propositions*.

A, = .[P_IL];_L’J (2.10)

where I,] € [0, P- l] are integers, and L is a vector that maps the RMF number , to its

location in X. A is a P x P matrix.

Definition (2.2) states that the closer that two set are to each other, the greater will be the

agreement factor A. Likewise, as the two sets move further apart, their mutual agreement

decreases. This leads to the definition of the inverse operator for 4, namely the Contradiction

Factor (.

Definition 2.3
Define a contradiction factor Cij=1-4,; (2.11)

Clearly, when i = j, the two sets agree exactly with 4; ; = 7 and C; j = 0.
This definition of the agreement matrix ignores the magnitude of the contribution of each set,
which is the outcome of the computation of the Degree of Fulfillment @ of the antecedent of

the fuzzy rule. This factor can be accounted for by weighting the elements of A accordingly.

a)O
a)l
Let

>
Il

a)Pl

Then a matrix A€ can be defined that compensates for the DOF of each RMF.

4 The situation here is illustrated as: OQutput is Low, compared with Output is High.
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Definition 2.4

Define a Compensated Agreement Matrix AC as follows:

P—|L,-a),—Lj-a)j
P

] (2.12)

o]

Equation (2.12) says the following:
1. If two sets i and j are to be combined, with | L - le > (0, that is, non-identical
propositions, and @, > @, then the agreement between 7/ and j will increase

because j is less dominant than . (ie. the opposition of j to 7 is weakened)

2. If o, = w, , then the agreement is determined by the relative distance between the

sets.

o [P-e L L
AC = 5

] (2.13)

1. As both @, — 0 and @ — 0 then even if they are mutually exclusive premises (eg.

ON vs OFF) then they will not decrease the agreement value.

2. If only @,— 0 and @, remains constant then agreement will increase, as set /

becomes less dominant and the contradiction decreases.

2.10.3  Important Properties of Fuzzy Information Measure

Let a and b be two fuzzy sets, then the similarity between a and b is defined as S(a, b).

Reflexivity

Aij =1iff i=j

Testing equation 2.3 against this property, gives:

o [P-|L 0, -1 o, |]
' P

Naturally if two sets are equal, then they are exactly similar.

=1

Symmetry
A=A



Chapter Il Introduction to Fuzzy Sets and Fuzzy Logic_ 45

With these definitions in place, the fuzzy information measure can be derived. A reasonable
assumption is that information is additive, hence;

Definition 2.5

Define Fuzzy Information Measure ( FIM ) as:

~y

-1

o
-

1
AS. (2.14)

FIM =—
NS S

Il
(=]
S,

1l
=]

where A is the compensated agreement matrix with N entries.

An Hlustrative Example

1.0 03 0l
Given A =l03 10 05|,
01 05 10
1
then FIM=§- (1.0+0.0+01+03+10+0.5+01+0.5+10) = 0.53

This number indicates a moderate level of confidence in the information. A value of 1 would

indicate the highest level of confidence and a value of 0, the lowest level.
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2.10.4  Proposed A-Matrix Based Fusion Method

Another method of performing data fusion is now described. In this method, proposed by the
author, the agreement matrix is applied to the RMFs. Discrete data sets are assumed in this
method. The key idea is to combine RMF data and accounting for the relationship between

the RMFs.

Algorithm 2.1 for RMF fusion

1. Form the compensated agreement matrix A € of Rank P
2. For each column j of the P x M data matrix

2.1 Form the column vector €
22Form ¢
2.3 Calculate yi= cT.AC
2.4 Track yjmax (to normalise Z)

3.Calculate Z=(Y/ymax).a

where a = scale factor
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Example 2.2
1.0 04 0.2
Given A€ =04 10 0.1],
02 01 10

The defuzzified output is calculated by the Center of Gravity method. The crisp output for
the proposed fusion method is 6.816. The crisp output for the arithmetic average method is
6.526.

Degree of membership

\
/

== = = =
0.1 — - = ” /(_.. . = =

0.05 = e AL~ L_
012345678 91011121314151617181920

Vd

Interval

S~ RMF3
- EMF calculated by Proposed method
— - FMF calculated by Average method

Figure 2.18: This diagram illustrates the proposed fusion method, being applied to 3
Resultant Membership Functions. The arithmetic average of the 3 functions is also shown

as a comparison.
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2.10.5  Proposed Sliding Window Averaging Based Fusion Method

This method is based on the idea of the simple moving average from statistics. This method
defines a window of width w (w < N/2), WiliCh slides across the data set. The data points
which lie within the window are averaged to produce a representative data point. The data
can further be weighted by a function W(x"). The complexity of this weighting function will
have a direct influence on the processing performance, and so it should be selected with this
constraint in mind.

Figure 2.19 illustrates the operation of the SWA algorithm. It can be seen that the
center of gravity for each FMF varies with the selection of window width and weighting
function, and becomes less sensitive to abrupt variations in the data (noise) as the window

width increases.

Algorithm 2.2 for SWA fusion

For P RMFs each with N intervals,

1. Form the data matrix D. Each row of D is the transpose of an RMF vector.

N
2. Select a window width w: O0< w < ?

3. Select a window weighting function W(x")

4. Fori=0to N-1:

' (i+w)-P
i+w P-l l‘___
Z Du'w | jl
i . j=i-w k=0 ) 2-w
else if w<i<N-w: FMF =
(2-w+1)-P
N Pl b
2 2D W 2_;1]
else: FMF, == im _
(w+N-—i)-P

End For Loop.
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Example 1 : W(x) =1
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Center of Gravity of FMF
by averaging = 6.526
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4 SWA, w=1

B SWA, w=2

4 SWA, w=4

S RMF1

©- RMF2

~©~ RMF 3

—~ Arithmetic Average

Example 2: W(x) = e

Figure 2.19: Two examples of the SWA fusion method being applied to 3 RMFs to form

the corresponding FMF. The window widths w, are as shown, and the weighting function
W(x), is set to unity for example 1, and ¢ for example 2. The arithmetic average of the 3

functions is shown as a comparison.
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2.10 Defuzzification

The process of converting data from the fuzzy domain to the crisp domain is called
defuzzification. The principle idea is to convert a fuzzy set representation of a number, to a
non-fuzzy value that best represents that fuzzy set. There are numerous methods that have
been proposed to achieve this transformation, the most common of which are listed in Table
2.6.

The center of gravity method is perhaps the most intuitive, and is most commonly used
for defuzzification. Other methods may be used based on their simplicity to implement in
hardware. The maximum method, where the crisp value is defined by the point at which the
fuzzy set reaches its maximum, is the simplest to implement in software.

If there are multiple maxima, then an average of the maxima is taken, and this value
then determines the crisp output. This method is known as the mean of maxima method.

Each method involves a different amount of processing, and so the computing time for
cach will vary accordingly. For a fuzzy expert system that processes data for a real-time
application, the choice of inferencing method, is an important consideration.

An example illustrates the defuzzification process. In this work, the processing times
for the defuzzification of a 1000 point5 final membership function, running on a single
20MHz T800 Transputer, have been determined and are shown in Table 2.7.

The center of gravity method performs multiplication, summation, and a division operation
to determine the crisp value. The maximum method however, simply compares each data
point of the fuzzy set with the previous value, keeping track of the maximum. This process
involves logical comparisons and storage operations. From Table 2.7, it can be seen that

there is significantly more processing required for the COG method.

* This refers to a discrete, rather than a continuous representation of a membership function.
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(1) Center of Gravity

N-1
N F(k).
7 = S
Sk
k=0
where F(k) = composite membership function

Z = center of gravity of I

k = interval value

(2) Maximum

z = k| Max [Fj(k)]
where Fj(k) = j’th Final membership function

z = value of k for which F is a maximum

(3) Mean of Maxima

kmax
= Zr’

where k™ are the values of k for which there are maxima.

r = number of maxima

Table 2.6 : The methods of defuzzification will impact on the computation required and

hence the time to produce the crisp output. The center of gravity method is widely used.

Defuzzification Time (mS)
Method
center of gravity 4.8
maximum 2.9

Table 2.7 : Defuzzification times for a 1000 point fuzzy set.
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Figure 2.20: These diagrams show examples of the defuzzification methods for a

particular final membership function.
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2.11 Adaptive Fuzzy Systems

An adaptive fuzzy system is defined here as one which modifies its behavior, based on a
feedback mechanism, according to a performance measure. In fuzzy control situations, the
difference between the desired system outputs and the actual system outputs are used to
adjust the controller to best match the desired outputs.

There are many methods of introducing adaptive behavior to a fuzzy system, among

which are the following;

modify the rule weights
modify the membership functions

adjust the parameters for the connectives

=P S

add or delete fuzzy rules from the rule base.

Rule weight adjustment is implemented by multiplying the DOF of each rule by a factor w. As
the processing progresses, the weights are adjusted for best effect (ie. reducing the error).

Adjusting thc membership functions is also a legitimate method of system tuning. It
could be argued that the membership functions should not be altered as they embody an
important component of the expert’s knowledge. However, it is just as valid to say that the
expert may not know the precise shape that will deliver the optimal performance. Certainly, it
would be reasonable to place limits on the degree to which a membership function, and indeed
a rule weight factor, may be changed.

As shown in section 2.3, the choice of connective has an effect on the inferencing

process.

2.12 Fuzzy Logic and Time

When one considers time in the processing of data, the concepts of past, present, and future
trends in the data are naturally introduced. A data processing system that uses feedback from
the output data to the input data space, is able to modify its behavior based on the outcome
of processing of the previous input data. If the controlling algorithms of such a causal system
are realised as a collection of fuzzy rules, which use the fuzzy verb IS, then this places a
limitation on the author of the rules, to constain their knowledge of the processing, to the

immediate time instant. A system that simply processes input data and produces an output
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data set, is an example of a non-causal system. That is, a system where there is no feedback®
and has no sense of time. A system that relies on direct feedback from a plant, is an example
of a causal system. This type of system is oftgn encountered in fuzzy control, and shows the
importance of the temporal aspect of a system’s behavior.

Consider now the fuzzy rule as introduced in section 2.7. The fuzzy rule operator ‘IS,
refers to the present and conveys no sense of history or future. The author of a rulebase will
have greater flexibility in expressing the desired controlling rules for a system, if the
grammar supports additional fuzzy linguistic operators. To this end, two additional operators
are introduced and their functions defined.

If a system is to make use of the past events of its behavior, then another operator is
required. This operator, here called a temporal fuzzy operator, is ‘WAS’. Likewise, to suggest
some predicted behavior, it would be useful to have an operator that conveys a sense of the
future. This operator is called ‘WILL BE’. At this point the operators are defined, with
definition 2.3 being the current interpretation of the IS operator, and definitions 2.6 and 2.7
being proposed by the author. The inferencing software has provision for implementing this
operator in the form of a history buffer that contains a record of the previous output results.
The WILLBE operator can be implemented as a separate process, where the calculations for
forecasting of future data can be done.

Definition 2.6
For a membership function fi4(x), then the fuzzy temporal operator IS is defined such that:
if the premise P;=X; IS A then:
o, = Ua( x; [k]), where k = integer,
is the k’th sampled input, and ¢ is the degree to which this premise P;
is satisfied.
Definition 2.7
For a membership function gi4(x), then the fuzzy temporal operator WAS is defined such that:
if the premise P; = X; WAS A then:
Oy = Ua ( xi [k-1]), where k = integer, > 0,
and ¢, is the degree to which this premise P; is satisfied.
Definition 2.8
For a membership function p4(x), then the fuzzy temporal operator WILLBE is defined such
that:
if the premise P;= X; WILLBE A then:

) It)is worth noting that the user of the system may modify the knowledge base of the processing system as the result of a
articular outcome, thus giving a form of feedback.
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o, = pa (X [k+1]), where x; [k+1] is the predicted value for the input x,.
ie. x;[k+1] = P(ua (x:i[k], k)
where P is a predicting or forecast function.

k = integer, > 0, and a, is the degree to which this premise P; is satisfied.

In the case of an expert system that encodes domain knowledge in the form of
production rules, these additional temporal operators are introduced to provide more
flexibility for the expert, so they may more freely encapsulate their knowledge, and express
temporal aspects of their experience of the system in question.

Examples of how these operators can be used are now examined. First consider the rule

that expresses the behavior of a temperature control system.

e TIF temperature IS high AND temperature WAS low THEN control IS low

This rule tests two premises;
1) temperature is at this moment high, and
tempsrature was low when the measurement was last made (ie. Apply previoas temperature

input to the low membership function.)

Another rule that considers two separate input variables is now considered.

e IF x1 is high OR x2 WILL BE low THEN z1 IS high

This rule tests two premises;
1) input variable x1 is at this moment high, and
2) input variable x2 will be low at interval k+1, one sample step into the future.
(ie. Apply input x2 to the forecast process to determine the value of @ for this

premise.)

The WILL BE operator provides a mechanism to forecast an event based on experience and
observation of established trends (as in the case of a control room operator for a power

station).
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The interpretation of the operator ‘WAS’ is defined here as being the previous value. To
achieve this, a history buffer of past outcomes is kept. For the operator ‘WILLBE’, the
interpretation is more complex. ‘

There are many ways of defining a look-ahead operator. A forecast [29] that is based on
a model that has been derived from previous data, is known as univariate. Methods that fall

into this category are:

e Extrapolation based on fitting a curve to the data, using polynomial, exponential, or power

CUurves.

X(N, k) = F(xy, Xy 1o Xpy_gs -+ ) (2.15)

where N is the time at which the forecast is made, and & is the number of time

intervals F is a function that models the data.

e Exponential Smoothing is used where there are no apparent trends in the data. A forecast

can be derived by taking a weighted sum of the previous data samples.
x(N,]) = c,xy +Cixp_) + 6 X5 5+ .. (2.16)

where {c,} are weights which are chosen to apply more weight to recent data and less

weight to older data. Chatfield [29] suggests a set of geometric weights having the

following form:

¢, = a(l-a) and i=0],... 2.17)
The calculation of a prediction will impact on the processing performance of the expert
system. As the model becomes more complicated, as in the case of a high order polynomial

curve fit, more processing effort is required.

temperature WAS high => U temp(k-1)

x2 WILL BE medium => u [(x2{predicted})]
where x2 {predicted} = Q . (x2(k-1) x2(k))

In a parallel processing architecture, the prediction of the next input value would be

done by a processor that handles all data transactions with the data source. In the architecture
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that is describe in this study, such a prediction process would map onto the Database
Manager (described in Chapter 5). This module would ideally be assigned to its own

Transputer.

2.13 Chapter Summary

This chapter has described the basic concepts of fuzzy logic. Fuzzy set operations, the
membership function, and methods for performing fuzzy inferencing have been presented. A
number of alternatives exist for fuzzy operators, and for combining fuzzy rules, and some
examples of the effects of these operators on fuzzy sets have been examined.

Their are many choices when it comes to implementing fuzzy logic to model a system,
and this chapter has provided an overview of the subject, so as to give an appreciation of the
effects of these various choices. A t-norm and a t-conorm operator have been proposed, and
examples have been used to illustrate their properties.

An information measure has been developed for fusing fuzzy sets. This measure has
been applied to develop another fusion operator, for which examples have been evaluated.

A second fusion operator has been illustrated which is based on a sliding window
average of the data. This method of fusing fuzzy sets has also been illustrated by way of an
example.

New operators have been introduced to attempt to handle temporal aspects in fuzzy
rule development. These operators have been proposed to add to the flexibility of knowledge

encapsulation.
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Chapter II1
DEVELOPMENT OF A FUZZY INFERENCING

ALGORITHMIC STRUCTURE

3.1 Introduction

This chapter builds on the concepts introduced in Chapter 2 about fuzzy logic, and presents
the development of a structure and algorithms that perform fuzzy inferencing in a parallel

domain. The structure refers to the data processing and data flow, not to a physical device.

3.2 Evolution of an Inferencing Algorithmic Structure

3.2.1 Operational Constraints and Requirements

Chapter 1 introduced an overview of the expert system that is developed in this thesis. There
are many parts to such a system, and it is necessary to develop a consistent and efficient
framework or structure in which these components can function.

The expert system will operate within particular constraints. Likewise, there are
particular requirements or expectations that should be realised. In formulating such
parameters, it is perhaps useful to consider how one person relays information to another in
order that some task may be performed. With this in mind, the following list presents issues

that are important in this context. The issues include:

1. the expert system requires a mechanism for interacting with the expert (visual
prompts), and can store the required expert knowledge in a flexibly manner
(memory)

2. knowledge can be changed or updated

3. the expert system has the task of processing data. (Once information is exchanged
and complete, it is acted upon.)

4. data processing should occur within a reasonable length of time'

5. a parallel processing paradigm is adopted

I'Relative to the time constants that are relevant to the system in question.
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6. various inferencing strategies may be employed and evaluated (experimentation)

7. results may be viewed in some convenient form.

The expert system requires configuration, if any choice is to be offered to the user in
the way that data is to be processed. There must be a means of user interaction with the
system, where rules can be generated and evaluated, and processing options selected. These
points are used to guide the development of the expert system. Knowledge transfer and
information display is dealt with in greater detail in Chapter 5.

Once the knowledge is entered into the system, it needs to be managed. This
knowledge will comprise the initial expert information plus the results of subsequent
processing of data. This is achieved by incorporating a process that manages the knowledge
flow in the system. Let this be called the Knowledge Base Module (KBM).

Next, the data from sensors, that is to be processed, needs to be managed. A process is
assigned to this task, and is called the Data Base Module (DBM). Once the data is available,
it is processed by the inference engine. Call this the Fuzzy Inference Engine (FIE). Table 3.1
summarises the major components of the this expert system. This table defines the function
of each of the components. This functional division seems logical, though other
interpretations would be possible.

The time taken to process the input data will depend on the method chosen. The basic
procedure here, is to apply the rule base to the input data, and determine an output. The two

methods of processing considered here are:

1. rule by rule evaluation

2. look-up table based evaluation

The first method evaluates each rule in turn, and requires the FIE to understand the text
of each rule. This leads to the concept of compiling the rule base, to produce an executable
list of instructions that the FIE can understand.

The second method, pre-calculates all possible outcomes, and stores the results in a
multi-dimensional look-up table. Clearly, the size of the table is affected by séveral factors
which include:

1. the number of inputs that may be referenced in the antecedent of each rule

2. the memory capacity of the host processor

3. the number of increments in the fuzzy sets - for a discrete fuzzy set as described in

Chapter 2, section 3.
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Component (Module) Function
User Interface  rulebase generation
e display data
e display inferencing options
e display results of processing
Supervisor e oversee and supervise data processing
e coordinate message transfers throughout the structure
Data Manager e store, collect, and disseminate data for processing
e store results of processing
Knowledge Manager e store, collect and disseminate knowledge of the process

to be modeled

Inference Engine

e process data according to the available knowledge

Rule Node

e calculate the RMF for the rule passed to it by the FIE

Table 3.1 : The components of the expert system each have specific functions to perform.
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The number of rules in the rule base does not influence the size of such a table, but does
impact on the time to calculate the outputs for the table. For a look-up table approach, as

illustrated in figure 3.1, the memory capacity m required may be calculated as follows:

Assume a multiple input- single output system:

Let p = number of inputs to the system
g = number of outputs to the system
s = support (range) of the fuzzy sets with x; (k) - kK € [0, 5]

b = number of bytes to represent the inputs and outputs (ie. 8 bit data gives rise to 256
levels to each input).

then, for each output:
m=s"-b (3.1)
and for a system with q outputs, (3.1) becomes

m=q-s"b (3.2)

System Look-up L » I System
Input Table : Output
|: Variables

Variables : Memory

Figure 3.1: A look-up table for a multiple input- multiple output fuzzy system.

Example 1: s = 100

p=2
q=1
b=1

from (3.2), m=1.100%. I= 10k bytes
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Example 2: s = 100

p=4
qg=1
b=1

from (3.2), m = 100 * = 100M bytes

Assume a multiple input- multiple output system:

Example 3: s = 100

p=4
q=4
b=1

from (3.2), m = 4. (100 *)= 400M bytes

Clearly, as the complexity of the system increases, by increasing s, p, ¢, or b, the memory
requirements for pre-calculated output values, increases exponentially.

Restricting the number of input variables that may be used in combination with each
other, limits the diversity and flexibility of the rule representation. The user of the system
would have to reformulate their knowledge in terms of the restrictions. For example
consider a case where three or more inputs are required to properly describe the experience of

the expett.
Example:

X11S Al AND X2 IS A2 AND X3 IS A3 AND X4 1S A4 THEN Z 1S B

The system may not exhibit behavior that the expert can simply decompose into a number of
rules with only two inputs per rule. Thus the structure needs to retain a high degree of

knowledge representation flexibility. Hence rule by rule evaluation is suitable.

3.3 An Algorithm for Rule Evaluation

Given that the expert system accepts rules in the form shown above, a processing

structure is required that supports this form. A simple single rule processing node [30] is
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shown in Figure 3.2, where input data is processed by the inference engine, according to the
knowledge contained in the knowledge base.

Figure 3.3 shows how the knowledge base can be split into two separate modules. The
first contains the rules to process the data, and the second contains information about how
the inference engine will actually perform that processing. The inferencing structure must be
able to support a method for altering these options. This also impacts upon the design of the
GUL described later in Chapter 5, as it must provide a mechanism for offering the user a
selection of inferencing proceduresz.

The rule node is now examined to define the data transformations that occur. This top-
down decomposition of process function is used as a method to develop the inferencing
structure. By using the fuzzy production rule as the model, the rule node is split into two
processes, one to handle the antecedent part of the rule, and the other to handle the

consequent part of the rule.

2 As described in chapter 2.
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Knowledge
Base

Inputs ;( Outputs Z

Figure 3.2: A single inferencing node uses rules and other knowledge, contained in the
knowledge base, to process the input data. The Data Flow Diagram (DFD) does not relate

information about timing, just data transformation.

Rule Base

Inputs % Outputs Z

Evaluation

Options

Figure 3.3: The inference node comprises a single rule evaluation node. The knowledge base
comprises the rules base and other system information. An additional source of information

is required that sets the inferencing options in the Rule node.
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With reference to Figure 3.4, there are sets of data that are required by the antecedent
and consequent processes. This data is derived from the expert who initially defines the rule
base, and the user, who selects various inferencing options to process their data according to
their requirements. This data is stored in ‘separate locations, depending on where it is
required. The output from the rule evaluation process is the resultant membership function
for each rule as it is read from the rule base.

It would be desirable to evaluate all the rules in a rule base concurrently. If there are N
rules, this would require N processing elements capable of evaluating a fuzzy rule each.
Figure 3.5 shows a data flow diagram where all rules belonging to the same .output set’, are
evaluated, and then combined to produce an output. The input data is distributed to each rule
node, where the resultant membership function is calculated. These functions are then
combined by the fusion node, to form the final membership function. Lastly, defuzzification
gives the crisp output value for the rule set.

The FMF is a fuzzy set that represents the outcome of processing the input data by the
rule base. The next step is to transform this fuzzy set into a crisp number. This is achieved by
the defuzzification process. There are many methods of performing the fusion and
defuzzification transformations. Each of these processes requires a store to contain
configuration information, and these are shown in the DFD.

With the Occam programming language, the data flow diagrams are readily
implemented, whereby each process bubble of the DFD becomes an Occam process, and
each data channel becomes an Occam channel

Each rule will be represented by its own process. This approach will require that the
number and form of each rule is known before compiling the source code, as Occam is a
static programming language. This would be less of a concern in the case of a static rule
base, where the rules remain constant. An example of such a system, is in an embedded
controller application, where the processor performs the same task repeatedly, and the
environment is well understood.

For the case where the rulebasc is dynamic, as is often the case with systems which
adapt to their environments, then an alternative approach, is a more appropriate choice. This
alternative approach involves a single fuzzy rule node which can access a rule base. It
accepts input data as before, but now it applies all the rules in its rule base to that data, before

accepting the next input data.

3 A set of fuzzy rules that applies to a particular output.
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Rule Base
Degree of
= fulfilment i Resultant
Inputs X | g %’“;"q?c“l Membership
pagracten Function

Membership Evaluation Membership Evaluation
Functions Options Functions Options

Figure 3.4: The rule node comprises lower level processes. The first is the antecedent
process, which calculates the degree of fulfillment (DOF) for the rule. The DOF determines

the extent to which the consequent mf is modified. The result is the resultant membership

function for the rule.
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The structures developed in this chapter comprise processes, data path ways, and data
storage elements. The data storage elements perform two functions. The first is to store the
appropriate configuration information required for each processing element. The second is to
store the results of processing.

The support structure which is developed and described in Chapter 5, must allow the
user to manipulate all resources of this structure.

Algorithm 3.1 defines the processing stages, the output of which are the RMFs for the
rule base. These RMFs are then combined to form the final membership function. Figure 3.4
shows a DFD where there are multiple rule processes. Indeed, there could be as many
processes as rules. The fusion process collects all the RMFs and generates the FMF.

This processing strategy relies on presenting the fuzzy rules to the inferencing engine
in a particular format. The next section describes this format and the tool by which linguistic

rules are transformed.
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Membership
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Figure 3.5: A parallel processing system may be achieved by calculating each fuzzy rule
simultaneously. This is achieved by assigning a single rule node process to each rule in the

rule base. For n rules this will require n processes running concurrently.
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Figure 3.6 : The DFD for fuzzy inferencing that is adopted in this study, evolves from the
logical sequence of events for processing a fuzzy rule, and defines the structure. Each of the
circles represents a stage of processing, whilst the directed lines represent the flow of data
between the processes. This DFD includes additional processes for; (i) collecting the RMFs

and fusing them, and (ii) transforming the fuzzy sets to crisp output values (defuzzification).
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Algorithm 3.1: Rule base evaluation

BEGIN

while the processor is in run mode
SEQ
Get input data vector X = Xy, X, . ..., X,
SEQ i = 0 for Number of rules in the rulebase
... calculate dof; for this rule
.. calculate the weighted dof for this rule
.. calculate resultant membership function (RMF)
... calculate weighted resultant membership function (WRMF)
.. store RMF in data base
.. store WRMEF in data base
SEQ j = 0 for Number of outputs
... calculate final membership (FMF))
.. store FMF; in data base

.. defuzzify FMF;

... send crisp outputs to DBM
... check system state, held in KBM

END.
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3.4 The Fuzzy Rule and the Rulebase Compiler

3.4.1 Description

To facilitate the process of generating fuzzil rules, a rule editor has been developed that
allows the user to compose textual rules for the rule base. The syntax of the rule has been
developed to be simple, yet capable of expressing and encapsulating the user’s logic. This
syntax is shown in Figure 3.7. The linguistic rule is translated (compiled) to a form that has
been developed for processing by the inferencing machine.

The syntax of the rule in Backaus-Naur [32] form is as shown in Figure 3.8. This leads
to the format of the rule data (which is a representation of the textual rule) that is processed
by the fuzzy inference module.

The strategy for processing the rulebase is to evaluate the degree of fulfillment, and
then calculate the resultant membership function (RMF), for each rule. The RMF’s which
belong to the same output function are combined by another process, to create the final final
membership function. This function is defuzzified to form the crisp output value.

This strategy led to the idea of using a postfix representation of each rule. The major

advantages of this method are;

1. the inference machine can accommodate any length of rule.
2. the syntax of the textual rule is very flexible

3. this strategy enables farming of rule evaluation to multiple processors.

A simple rulebase comprising two rules is shown in Figure 3.4. The output from the
rule compiler shows how the text of each rule has been transformed. This example
incorporates the use of brackets and linguistic hedges, and shows how these rules are
analysed.

This new representation of the rule is now in a form that can be processed in a serial
manner by the FIE. The FIE executes each sub-statement as it is encountered, and stores the

results in an internal stack. The output of the FIE is a Resultant Membership Function.

3.4.2 Operation of the Rule Compiler

As described in the previous section, the rule compiler translates the textual rules into a
form that is suitable for processing by the inference engine. The rules must obey the syntax

as described in Figure 3.7.
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<rule> := <rule no.> IF <antecedent> THEN <consequent>
<rule no.> = <integer>
<antecedent> := <premise> | <premise> <connective> <antecedent>
<premise> := <input variable> <temporal operator> <hedge> <membership>

<temporal operator> := {WAS IS | WILL BE}

<consequent> = <output variable> IS <hedge> <membership>

<hedge>  := { Absolutely | Very | Almost | Quite INOT }

<connective> = { ANDIOR}

Figure 3.7: The proposed syntax for the fuzzy rule as used in this thesis comprises a number
of components. This form fully describes the legal rule structure which the rule compiler can

translate into an executable sequence of parameters for the inference engine.

<Rule List> -= <rule number> <output number> <operator list>
<rule number> = <integer>
<output number>  := <integer>

<operator list>  := <operator type> <operator value> <operator list>
<operator type> = <integer>
<operator value> = <integer>

Figure 3.8: The rule list syntax describes the output from the rule compiler. For each rule in

the rulebase, there will be a corresponding rule list which is executed by the inference engine.
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TransFuzien can process compound fuzzy rules, such as:

e IF(X1IS A1) AND ((X21S A2) OR (X31S A3)) THEN ZIS Bl

which then becomes:

e X1 Al iS X2 A2 IS X3 A3 IS OR AND Z BILIS.

Another example is:

e If (angle IS small) and ((position is zero) or (position 18 small)) then force is medium

after parsing (the first stage of rule compilation) this becomes:

e If angle small IS position zero IS position small IS or and force medium IS then

Hence, a compound fuzzy rule can be represented in a postfix notation.

To illustrate how this process works, the Rule Editor has been used to produce four fuzzy
rules with varying degrees of complexity. These rules have then been processed by the Rule
Compiler to produce the corresponding rule lists. The results are shown in Figures 3.8(a) to
(d). The first rule is a simple example of a single input-single output statement, incorporating
a linguistic hedge. The second rule (b), comprises multiple inputs and a linguistic hedge.

The next two rules incorporates brackets, and are examples of compound rule
statements. The corresponding rule list shows how the brackets have been accounted for in
the rearrangement of the logic representation.

Each rule in the rule base is compiled and converted to a Postfix [32] representation.
This new form eliminates the need for brackets that would otherwise be required to define
the scope of logical operations. The Postfix fuzzy rules then become a part of the knowledge
base, where they are available to the Inference Engine for later processing. This compiling
process preserves the fuzzy logical properties of the rules and their operators.

The input and output variables, and the membership functions are each assigned unique
identifiers by the software as each rule is compiled. An ordered postfix rule list formed, that
is then passed to the inference engine for evaluation.

The OPCODEs are derived from the syntax for the fuzzy rule. The first number

represents the opcode for the inference engine, and the second part represents additional
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information for the opcode. This is similar to micro-code for conventional microprocessors

[33]. Each opcode has a data field that is used to identify particular membership functions, or

I/O variable mapping. An entry of 99 indicates a fuzzy operator such AND, OR, and NOT.

OPCODE | DATA Description
0 99 IF
1 n input, source
2 99 IS
3 n input membership function
4 n hedge, type 3
5 99 AND
6 99 OR
7 99 NOT
8 99 THEN
9 n output, sink
10 n output membership function

Table 3.2 : There are 11 opcodes which the inference engine interprets.
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Rule List | Textual Interpretation
0 => 99 | IF Rule List Textual Interpretation
1 =>0 |[inputO 0 => 99 |IF
3 => 1 | membership 1 1 =>0 input 0
4 => 2 | hedge?2 4 => 1 membership 1
2 =>99 (IS 3 =>2 hedge 2
9 =>0 |outputO 2 => 99 |IS
10 => 3 | output membership O 1 = 2 input 2
4 => 3 | hedge3 4 =>4 membership 4
2 => 99|15 2 =>99 |IS
8 => 99 | THEN 5 => 99 | AND
9 =>0 output 0
10=> 0 output membership 0
(a) IF x0 IS Very Big+ THEN y IS Quite Small+ 2 => 99 IS
8 => 99 | THEN

(b) IF x1 IS Very Big+ AND x2 IS Zero

Rule List Textual Interpretation THEN z1 IS Large+
0 =>99 |IF
1 =20 input0 Rule List | Textual Interpretation
g i> ;9 Irgembersh|p1 0 => 99 |IF
1 :> ; ! 5 1 =>0 input O
=> input : 3 => 2 membership 2
4 =>4 membership 4 -
4 =>4 hedge 4
2 =>99 |18
! 2 => 99 |IS
1 =>4 input 4 _ 1 => 1 input 1
4 => 2 membership 2 3 => 4 membership 4
2 =>99 |IS 4 => 5 hedge 5
6 => 99 | OR 2 => 99 |IS
g = 5199 AND 1 1 =>0 |input0
=> output : 3 => 1 membership 1
10=> 3 output membership 3 2 —> 99 | 1S
2 => 99 IS 6 => 99 OR
8 => 99 [ THEN 5 => 99 [ AND
9 => 0 output 0
(c) IF x1 IS Big+ AND (x2 IS Zero OR x3 IS 10=> 0 output membership 0
Med+) THEN z2 IS Small+ 2 => 99 [IS
8 => 99 | THEN

(d) IF x1 IS Slightly Medium+ AND
(x1 IS Almost Zero OR x3 1S Big+)
THEN y IS Large+

Figure 3.9: The rule lists produced by the rule compiler include information about the type of
operation to be performed, and parameters that specifies the input source and the output

destination. These parameters are used by the data management system of the inference engine.
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3.5 Chapter Summary

In this chapter, a method has been proposed for representing the fuzzy production rule in the
form specified by the syntax of Figure 3.7. The advantages of this form have been discussed,
and sample outputs that were generated by the compiler are included. The issue of how best
to process a rule base has been addressed, and a solution proposed. This is described by
algorithm 3.1.

Processing performance can be enhanced by suitable selection of a repetitious
component of the data processing, and farming this component to as many available

Transputers as possible.
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Chapter IV

THE GRAPHICAL USER INTERFACE

4.1 Chapter Purpose

This chapter describes the Graphical User Interface (GUI) that has been developed to provide
configuration and control of the software suite, and of the hardware resources introduced in

Chapter 1. The preprocessing of data is addressed and each of the dialog screens are described.

4.2 Function of the GUI

The functional development of the GUI was guided by the requirements of the inferencing
structure, and ease of use. The GUI provides the means to:

. compose fuzzy rules for the rule base,

. compile the rule base,

. create membership functions,

1
2
3
4. select inferencing options for the inference engine,
5. view results and,

6

. control resources attached to the transputer interface module.

The GUI is written in C++ [34], and runs on an IBM compatible PC under the Microsoft
Windows operating system. This program is event driven from the user’s perspective. That is,
an event is generated by the program each time the user interacts with the GUI via the mouse
or keyboard. The subsequent command packet is transmitted to the Transputer network via the
link interface on the BO0S motherboard. The GUI is served by the program running on the
Transputer network.

The GUI comprises several software modules, each of which performs a specific task.
The names of the files and their description are listed in Table 4.1.

There are several dialog boxes that the user can interact with, to enter the fuzzy rules,
and to configure the system. Some of the most important features will be described here. The
GUI has been designed to keep the process of interacting with the inferencing system as simple
as possible.

The main control panel of the GUI, shown in Figure 4.1, displays the following

information;
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The DOFs of each rule are displayed.

The values of the inputs are displayed.

The rule weights are displayed.

Graphs of the resultant membership functions can be selected for display.
Graphs of the final membership functions can be selected for display.
The output variable names and their crisp values are displayed.

The inferencing process can be stopped, and then continued.

Hardware resource controls (via the Transputer Interface Module).

Module Name | Description

fuzzyapp.cpp | the main module

details.cpp generates a window for entering textual information about the current
project

b008cdlg.cpp | generates the control window and handles the communications with the
Transputer system

iodlg.cpp generates the input and output variables definition window

ruldlg.cpp generates the rule editor window and contains the rule structure definitions

rcomp.cpp generates the compiler window, and compiles the rulebase

equtndlg.cpp the membership function editor

infrncmd.cpp | generates the inference methods selection window

Table 4.1: Software module definitions.

Listings’ 4.1 and 4.2 illustrate how the program responds to events generated by the user.

The Inferencing methods can be transmitted at any time, even whilst the inference engine is

processing the rulebase. The current cycle is completed first, then the new methods are

employed. There are some lines of code, commented out, which were used during the

commisioning of the software. These lines generated message boxes on the screen of the PC,

that indicated the progress of the processing.

A full listing of the GUI program software was not included, for clarity, due to the large size of the files.
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void BO08CommDlg::BNLoadRulesClicked ()
!
inti, j;
int comms_status = 0;
/[Tell the system how many rules there are.
comms_status = OutByte(t_number_of_rules); // Send message header followed by
OutWord(NumberOfRules);  // the number of rules
// MessageBox("NUMBER OF RULES SENT", "Information”, MB_OK);
/[Tell the system how many outputs there are.
comms_status = OutByte(t_number_of_outputs); // Send message header followed by
OutWord(NumberOfOutputs);  // the number of outputs
/! Send the rulebase record
for(i=0; i<NumberOfRules; i++)
{
comms_status = QutByte(t_add_rule); //add arule
// MessageBox("ADD RULE TOKEN SENT", "Information”, MB_OK);
comms_status = OutWord(i); // send rule identity number
comms_status = OutWord(80); // send size = 2*40
//These 40 pairs of integers comprise a single rule list
comms_status = QutWord(i);/*send rule number*/
comms._status = OutWord(RuleBase[i].RuleOutput);/*send output number*/
for(j=0; j<39; j++)
{
comms_status = OutWord(parsed_rule_buffer{i].symbol[j]);/*send data*/
comms_status = OutWord(parsed_rule_buffer{i].value[j}); /*send data*/
}
}

if( comms_status < -290)

{
MessageBox("COMMUNICATIONS FAILURE !!!!", "Information”, MB_OK);

}

else

{
MessageBox("RULEBASE SENT", "Information", MB_OK);
}

}

Listing 4.1: The “load rulebase” routine.

void B008CommDIlg::BNConfigureEngineClicked ()
{
int comms_status = 0;
comms_status = OutByte(t_inference_methods); /* send config. selections */
comms_status = OutWord(ProjectInfo.ConnectiveMethod);  // send connective
comms_status = OutWord(ProjectInfo.RuleModifietMethod);  // send modifier
comms_status = OutWord(ProjectInfo.RuleFusionMethod);  // send fusion
comms_status = OutWord(ProjectInfo.DefuzzificationMethod); // send defuzzification
if( comms_status < -290)
{
MessageBox("COMMUNICATIONS FAILURE !!!!", "Information", MB_OK);
}
else
{
MessageBox("INFERENCE ENGINE CONFIGURED","Information”, MB_OK);
1
}

Listing 4.2: The “configure inference engine” routine.
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The procedure in using TransFuzien is outlined in Figure 4.2. Firstly, establish the
requirements of the task, and then use the graphical user interface to create a knowledge base.
The knowledge base is then converted to a form suitable for interpretation by the inferencing
software, that operates by processing a single rule at a time. The user can select an appropriate
inferencing method for the task in hand, by using the inference selection dialog box.

In a typical session with the package, the user can produce a new Project File that has
facilities for entering the name and a brief description of the project (Figure 4.3). There are a
number of pre-defined membership functions and hedges, but input and output variables must
be entered before rules can be created by the Fuzzy Rule Editor (Figure 4.4). This editor allows
rules to be built by a simple point-and-click method. A Membership Function Generator (Figure
4.5) is available to the user, to create their own discrete membership functions.

Once again, this is achieved by entering an equation by a point-and-click method. The
equation is displayed for verification purposes. The function is normalised so the maximum
value is one.

As pointed out in Chapter 2, there are a number of methods for interpreting fuzzy
operators. TransFuzien provides a number of these methods for the user to select. Figure 4.4
shows a dialog box that lists methods for;

1. interpreting fuzzy AND, OR, and NOT,
2. modifying the consequent membership function,
3. combining or fusing rules that belong to the same rule set, and

defuzzification.
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Figure 4.1: The control panel displays the input data and the results of processing, and

provides user control over external hardware resources connected to the Transputer Interface

Module.
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Figure 4.2 : This flow chart shows the sequence of events necessary to run the TransFuzien
software package.
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| File Contents | Description I
Linear Function Project name
Richard Bowyer : Author
1.0 Version
1995 Date
Linear function modeling using fuzzy rules. Description of the project
0 Connective type
0 Modifier type
0 Fusion type
0 Defuzzification type
1 Input variable source identifier
X Input variable name
1 Output Variable sink identifier
y Output variable name
9 Number of rules in the rule base
0 Input variable
R>0:IF x IS Large- THEN y IS Large- Rule text
1>0,5,~8,T,<0,S,&8, Parsed rule text
0 Output number

R>1:IF x IS Big- THEN y IS Big-
1,>0,S,~7,T,<0,S,&7,

0

R>2:IF x IS Medium- THEN y IS Medium-
1,>0,S,~6,T,<0,S,&6,

0

R>3:IF x IS Small- THEN y IS Small-
1,>0,S,~5,T,<0,S,&S5,

0

R>4:IF x IS Zero THEN y IS Zero
1,>0,S,~4,T,<0,S,&4,

0

R>5:IF x IS Small THEN y IS Small
1,>0,S,~3,T,<0,S,&3,

0

R>6:IF x IS Medium+ THEN y IS
Medium+

1,>0,S,~2,T,<0,S,&2,

0

R>7:IF x IS Big+ THEN y IS Big+
1,>0,5,~1,T,<0,5,&1,

0

R>8:IF x IS Large+ THEN y IS Large+
1,>0,S,~0,T,<0,S,&0,

0

Figure 4.3 Listing of a typical Project file. The membership tables are aslo written to this file

but are excluded for clarity.
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4.3 Description of the Operator Interface Dialog Boxes

This section explains the function of each screen, and provides bitmap images of each
dialog box. At present there are several redundant sections of code present, which were used
during development and debugging of the software suite. These were useful for diagnostic
work, but could be removed for the next version of the software. One of these features is a
dialog box which displays a confirmation message when certain commands are initiated by
the operator. For example, when the rule base, or the membership functions, or the
inferencing configuration is loaded to the transputer network, a confirmation dialog box is
displayed.

The rule editor, shown in Figure 4.4, has been designed such that when entering a
fuzzy rule, using the mouse ( a single click of the left mouse button for buttons, and a double
click of the left mouse button for listbox items), the operator is moving from left to right.
Also, items have been grouped in a logical manner, such as the placement of the hedge list
box, being adjacent to the membership listbox.

The input and output names, must be entered prior to generating the rule base. They are
then displayed in their own listboxes. As rules are composed and added to the rule base, they
are displayed in the Rule Base dialog box.

The inferencing options for connectives, consequent function modification, rule fusion,

and defuzzification, are selectable from the Inference Method dialog box.
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Figure 4.4: The Rule Editor dialog screen provides the functionality to compose fuzzy
rules. The present rule appears at the top of the screen, whilst completed rules are listed

below.
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4.4 Chapter Summary

This chapter has described the graphical user interface of the TransFuzien software suite. This
software has been written in C and runs under the Microsoft Windows operating system. There

are several features that were used for diagnosis and debugging that can be removed in the next

version of the software.
The various dialog boxes for system configuration have been described. The

development of this GUIL and the functionality, have been governed by the need to first

develop a knowledge base, to configure the inference engine, and then to display results of

processing in a graphical manner.
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Chapter V
THE EXPERT SYSTEM FRAMEWORK

AND ALGORITHM IMPLEMENTATION

5.1 Introduction

5.1.1 Chapter purpose

This chapter presents the implementation of the inferencing algorithm that was described
previously in Chapter 4, and covers the mapping of the software to the hardware resources.
The various processing algorithms do not exist in isolation. There must be a support
framework upon which the expert system is built and run. The software and hardware to
achieve this are described. The various processes and the data flow through the system are
described.

The software routines are written in Occam 2 [35, 36], and were compiled using the

Inmos Transputer Development System (TDS) [37].

5.1.2 Chapter overview

The software that resides on the Transputer target system, has a variety of functions to
perform. This chapter describes those functions and the interactions that occur throughout the
system. In section 5.2, the process functionality is described, together with the
communications protocols that are a key feature of Transputer based processing.

The software that implements the inferencing algorithrn1 is first developed to run on a
single Transputer. Next, additional processes are added to the code to enable the farming out
of the fuzzy rule evaluations. This code is configured to run on a single Transputer.

The final stage is to configure the code to run on a network of Transputers which reside

on the BOO8 motherboard. This is described in section 5.3.

! This is the algorithm that interprets the fuzzy rules and calculates the crisp outputs.
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5.2 Process Function and Communications

To best understand the implementation of the algorithm, it is helpful to consider the data
transformations and data flows within the system. Data flow diagrams (DFDs) provide a
powerful method for visualizing process interactions and data transformations, and have been
used to describe each of the component processes in this algorithm.

The expert system framework consists of software that allows the user to configure all
aspects of the expert system, and to examine data during the processing phase. The graphical
user interface is a key component of the support structure, and is described in detail in the
following chapter. Likewise, there are software routines that manage data interactions
between the system and the external environment. These process supply the information
required by the inferencing process.

The software that implements the inferencing algorithm is organized as a number of
Occam processes, as shown on Figure 5.1, where each of the processes run concurrently on
the Transputer target system. The data packets have been omitted from the figure for the sake
of clarity. However, these packets are described in tables later in the chapter which list define
the PROTOCOLS of the data flowirg along each channel.

A bootable code file (BCF) is extracted by the file handling utility of the TDS, and
saved as a .bcf file. This file is accessed by the GUI file Project management procedure, and
loaded to the Transputer network via the C012 link adapter.

The B008 motherboard links were re-arranged to allow the network to be booted from
the links. (The details of the BOO8 motherboard are described in Appendix A.) Following
compilation of the Occam source code, the TDS is used to extract a description of the boot

path for the network as described in the configuration statement. This is shown below.



Chapter V. The expert system framework and algorithm implementation 92

OPERATOR |-

N \

KNOWLEDGE

5 o T paTA SOURCE
BASE & m . BASE
[ _%; SUPERVISOR
& 7 STORE
5 O
7 & ]
KBM.SUPER SUPER.DBM m
-
KBM
- -
SUPER.KBM DBM.SUPER \_/
FIE.SUPER SUPER.FIE A
SINK
KBM.FIE FIE.DBM
—
FIE.KBM DBM.FIE
FIE

STORE
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The process that performs the inference calculations resides on the FIE process. The
folding editor of the TDS is very useful for developing code in a top-down fashion. Folds are
created which can be labeled according to their function. These folds are then entered, and
either further folds can be create or Occam source code can be written (or a combination of
the two). This segment of code? describes the operation of the FIE process. Notice the Occam

key words WHILE and SEQ, and the folds which are identified by the three dots.

5.2.1 The PC process function

The PC process resides on the host computer (IBM PC) is written in C, and has two main
functions. Firstly, it provides a graphical interface by which the operator interacts with the
system. Secondly, it performs the necessary pre-processing of the information that the
operator enters into the system.

Operator interaction is facilitated by a number of dialog boxes that may be displayed by
selecting the appropriate function from the main menu located at the top of the display
screen. These dialog boxes have been described in Chapter 5.

Each dialog box has associated with it software routines that handle the user interaction
for that box. The rule editor, for example, has code to generate, save, and view the fuzzy
rules. There are routines to establish communications between the PC, and the BO0OS8
motherboard.

The system parameters for the current version of the software are listed in Table 5.1.
These parameters determine the limitations of the software suite, and highlight where future

improvements may be made. (eg. increase the number of rules)

2 A full listing of the software is contained in appendix A
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System Parameter Value
1. Maximum number of rules that can be processed 100
2. Number of membership functions 9
3. Number of intervals per membership function 100
4. Number of Inferencing Connectives supported 6
5. Number of Fusion Methods supported 4
6. Number of Defuzzification Methods supported 3
7. On-line inference method variation® yes

Table 5.1: TransFuzien System Parameters

3 Ability to change the inferencing strategies via the GUI whilst in the continuous processing loop mode.
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The system parameters were determined by a consideration of several factors. These

included:

1. Number of rules: 100 was thought to be sufficient for modeling typical problems
encountered by the author.

2. Number of membership functions: Again, typical domains are divided into 5to 9
regions.

3. Number of intervals per membership function: The number of intervals impacts
directly on the processing time to evaluate a fuzzy rule (see later). The final choice
allows for good byte size data representation, which simplifies implementation,
whilst providing a reasonable dynamic range for the input data.

4. Inferencing methods: Provide typical methods.

5. Size of memory required on both the PC and the Transputer modules. As these

numbers increase, the memory requirements will increase.

The final numbers being a trade-off between flexibility and system (and code) complexity.

5.2.2 The Supervisor (SUPER) process function

The Supervisor process is written in Occam, and resides on the Transputer target. It responds
to commands from the operator via the GUI, and co-ordinates their execution on the
Transputer system. Commands from the PC must belong to the protocol for the channel
connecting the PC to the Super process (these protocols are described later.), and are routed
to the appropriate destination.

There are three other input channels to the SUPER process, each of which is monitored
for messages. Figure 5.3 shows how this process responds to messages. The SUPER process

acts as a gate-way for messages to and from the rest of the system.
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Figure 5.3: The Supervisor process interprets messages from the PC process,
and serves each message as it arrives. The Occam CASE statement acts as a

selector, to distinguish which function is to be initiated.
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5.2.3 The Knowledge Base Module (KBM) function

The knowledge base module stores information for the inference engine, and distributes this

information to the other processes as required. The information that is managed includes:

1. the rule base
inferencing configuration information
the present state

number of rules

Ul

number of inputs and outputs

The contents of the KBM may be updated as the software is running, which adds to the
flexibility of the system.

5.2.4 The Data base (DB) process function

The Database Module (DBM) controls communications with the data source and sink, and
stores results from current and previous (history) calculations. Data can originate from the
TIM or from the PC, or it can receive the results of calculations performed by the FIE.

The calculation of the resultant membership functions and the final (composite)
membership functions are computationally intensive processes within the software suite. The
results from each process are transmitted to the database manager and stored. When the GUI
issues a request for data, then the DBM will receive the request via the SUPER process, and

send the data stored in the appropriate data structure.
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Type Variable name

BOOL manager.running:

INT output.number, output.value, vector.length, status:
INT input.source:

[20]1 BYTE PC.input.vector:

[20] INT PC.history.buffer: -- store previous vector
[20] BYTE Plant.input.vector:

[20] INT Plant.history.buffer: -- store previous vector
[20] BYTE output.name:

INT size, stop.char:

INT input.number, input.value:

BYTE pwm.value:

Table 5.2. List of variable declarations for the DBM Process
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5.2.5 The Fuzzy Inference Engine (FIE) process function

The Fuzzy Inference Engine (FIE) calculates the resultant membership function for each rule
in the rule base. The results from each process are transmitted to the database manager and
stored.

Figure 5.4 describes the processing of the rulebase, and shows the sequence of events
involved in evaluating the RMF and WRMEF sets®. The flowchart shows that after these sets
have been evaluated, the system calculates the FMF and finally the crisp output. The

evaluation of a single rule is described in Algorithm 5.1.

Algorithm 5.1 for Rule List Evaluation

While more rules to process

Do
Read rule list Opcode and Data
CASE Opcode
IF :continue
X :read input vector X
Minput :lookup m(x)
H :apply hedge - calculate h(lu(x))
IS :Place results on stack

stack pointer = stack pointer + 1
AND, OR :pop last 2 entries from stack
apply connective
THEN :set more flag = False
(DOF is now on stack)
Woutput :Calculate Resultant membership function
7Z  :calculate weighted DOF and store results
End.

* These sets comprise 101 integer values.
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Figure 5.4 :Flowchart for the rulebase evaluation phase of processing for a single
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Inference Engine process labeled FIE. Processing continues if the system is in RUN

state, but will execute one pass through the rulebase otherwise.
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5.2.6 Process communications

The communications between processes is an important area in this work. The method
adopted here is to define a number of commands, which may include some data, that are
recognized by the processes. The commands and data are passed between processes in an
ordered manner, that must ensure that each communication can complete, and that deadlock
does not occur. Channel protocols are defined for each Occam channel, which fully defines
the message type and the data types that are permitted.

A Client-Server approach is taken to the communications between processors. As one
process (the Client) issues a message (eg. a request for data) then the process that receives
that request (the Server) will attend to the request.

All command packets that are issued from the GUI are routed through the Supervisor
process (SUPER), which directs the command to the appropriate destination. The destination
of each packet is determined by the tag that begins the packet. The tags are defined in the
PROTOCOL statement. Table 5.3 shows the protocols that are used.

The commands include initialization processes with information about inferencing
methods, membership function data, and so on. Each command causes a particular sequence
of events within the inferencing processes, and, depending on the command, a particular
reply is expected by the GUL

In order to keep track of the many commands and their effects, a graphical
representation of process interactions has been used. These graphs are called Process Event
Graphs (PEGs), and show the temporal dependencies that exist between processes. PEGs can
be quite complex, and are particularly useful in highlighting the interactions between
processes that are operating in parallel. PEGs also help to develop code that is not susceptible
to deadlock. That is, the PEG provides a visual tool for planning and analysing
communications events. Figure 5.6 shows an example of a PEG which illustrates the
initiation of a process rulebase command from the GUL

The Process Event Graph comprises a column containing boxes for each process, with
horizontal lines drawn from each box. The line represents a time axis. Directed lines are then
drawn from one horizontal line (the source), to the destination line. The nature of the process

interaction is shown by labels on the directed line.

3 The GUI is running on the PC under Microsoft Windows.
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Process Tag Identifier Data Description
All 0 tstop
1 t.execute
2 t.report.type INT
SUPER 3 t.system.mode INT -- mode
4 t.Super.status
5 t.supervisor.response BYTE
6 t.dof.information INT::[IBYTE --length, dofs
7 t.evaluate.rulebase
DBM 8  tsend.crisp.data INT --output number
9 t.send.fmf.data INT --output number
10 t.DBM.reply
11 tinput.name INT:[IBYTE
12 t.output.data INTZ[JINT; INT=[JINT
13 t.file.input.vector INT:[IINT --file
14 t.DBM.ack.stop
15 t.getinput.vector
16  t.input.vector INT=[JINT --size, data
17  t.request.input.vector INT --input number
18  t.the.inputvalue INT::[JINT --size, Plant input vector
19 t.PC.input.vector INT:[JINT --user supplied input
20 t.send.dof.data --send dofs to GU!
21 tsend.rmf.data INT --send rmfs to GUI
KBM 22 t.KBM.status
23 t.knowledgebase.ping INT
24  t.number.of.rules INT
25 t.add.rule INT;INT;INT::[JINT --rule,output,size,data
26 t.delete.rule INT --rule.no
27 t.add.member iNT; INT:[JINT --member no, size, array
28 t.set.rule.weight INT; INT --rule no, weight
29 t.rule.on INT -- rule no, evaluate
30 t.rule.off INT -- rule no, don't evaluate
31  trule.list INT; INT; INT:[JINT --rule, o/p, size, data
32 t.rule.info INT::[IBYTE
33 t.send.rules.in.rulebase
34 t.send.rule INT --send rule list for this rule
35 t.request.membership.value INT; INT -- member.number, x.value
36 t.send.mfs.to.FIE
37 t.number.of.outputs INT
FIE 38 t.inference.ping INT
39 t.FIE.stalus INT
40 trequest.status INT
41 t.inference.methods INT: INT; INT; INT
42  t.forced.rule INT; INT=[JINT --rule.no, size, rule.list
43  t.rule.data INT; INT:[JINT --rule.no, size, rule.list
44  t.evaluate.rule --tell FIE to evaluate a rule
45 t.membership.value INT; INT --member id, member value
46 t.membership.functions INT:[JINT -- Array of MFs.
TIM 47 t.reset.plant
48  t.shutdown.plant
49 t.set.pwm BYTE
50 t.pulse.width.mod BYTE -- 0 = 100% on, 255 = off
51 tsetoutput INT; INT -- output number, value
52. tinput.data INT:[JINT
53. t.request.state

Table 5.3 : Tag identifiers for system processes.
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Tag ldentifier

Data Description

t.rmf.data INT; INT::[JINT  --rule number, size, array
t.fif.data INT; INT::[JINT --output number, length, values
t.weighted.dof.data INT::[JINT --dofweighted

t.dof.data INT::[JINT

t.crisp.data INT --crisp output

t.error BYTE -- error tag followed by error type
t.send.input.data INT -- source

t.input.data INT::[JINT

t.crisp.data INT::[JINT; INT::[JINT

t.crisp.value INT

Table 5.4 : Protocol of the RESULTS channels for the processes.
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axis is not to scale.
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5.3 Processing on Multiple Transputers

5.3.1 Requirements

In a given rule base, there may be only a few rules, or there may be hundreds of rules to
evaluate. If each rule is assigned to its own processing element, then this would require
hundreds of processors which is clearly not practical in most cases. Another method must be
found to evaluate the rule base, whilst using the available number of processing elements in an
efficient manner.

The solution adopted in this work is that of process farming [38, 39, 40, 41, 42]. With this
system, each processor is given a task to perform, being the evaluation of a single rule. When it
is complete, it hands the result to a supervisor process, and accepts another task. This system
allows for a performance increase as the number of processors is increased.

Farming leads to a near linear speed-up, as more worker processors are added to the
architecture. However, a point is reached where the communications bottle neck becomes
significant compared with the processing time. The T800 Transputer only has four
communications links and so the direct connectivity is limited. The B0OO8 motherboard has a
programmable cross bar switch that can be used to connect Transputers into various physical
architectures (see Appendix A).

An important issue in parallel processing is that of data dependency. Consider two
processes P1 and P1, that both connect to a third process P3. P1 and P2 are assigned tasks by
P3, and required data from P3 to complete their individual tasks. Further, the results of the tasks
on P1 and P2 are required by P3 to perform a calculation. Clearly, this is a situation where the
availability of data controls the flow of events.

To minimise the data dependency in the architecture being developed in this work, as
much information as possible, that is required by the worker processes, is distributed to them
prior to the run-time phase. For example, the membership function tables are loaded to each

worker before execution.

5.3.2 Process Timing

At this stage it is worth considering which factors influence the processing time for a
given task. With reference to figure 5.2, and limiting the number of Transputers to one, the

following factors are relevant:
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1. The communications over-head per rule, Teomms, to send commands from the GUI to
update the information display.

2. The number of rules in the rule base, N,.

3. Time to perform the Fusion of the RMFs, Tysion-

4. Time to perform the Defuzzification of the FMF, T yef,.

The communication time Tpomms » Will increase as the number of tasks increases. Clearly, the
strategy that is adopted for updating the information displayed by the GUI, will impact on the
communications over-head. The more often results are updated on the GUI, the more time
will be spent passing the result data from the DBM to the SUPER process, onto the GUL
This is one reason why a facility has been developed (the Transputer Interface Module,
described in Chapter 6) to interact directly with peripheral electronic hardware. Obviously,
the nature of the processing task, dictates how sensitive or crucial timing will be, and this
will be a deciding factor in the way the GUI is operated.

The total processing time Tpy,c, per output is the sum of all the component times. The
Occam code may be written with PAR constructs, but as the Transputer is time-slicing these
parallel segments of code, the outcome is much the same as if purely sequential code was

used. Hence, the total time is described by equation (5.1).
Nr
T};mc = Tcomnu'r + Zl Tpi + Tu:ion + ]:IEfuz (51)

Equation 5.1 shows that as N, increases, the processing time for evaluating the RMFs of the

rules, becomes a larger proportion of the total time. T}, is the time required to evaluate a
single rule and pass the results to the DBM, and will vary with the form of each rule. This
will be the case if each rule in the rulebase has the same number of premises in the
antecedent, and further, each premise comprises the same number of fuzzy operators. To

illustrate this point consider the three cases below:

Case 1:
IF x1 IS large AND x2 is small THEN z/ IS zero

O There are 3 operations to perform.
Case 2:
IF xI IS VERY large AND x2 is small THEN z/ IS zero
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0 There are 4 operations to perform.

Case 3:
IF (x1 IS large AND x2 is small) AND (x3 IS small OR x4 IS medium) THEN z/ IS small

O There are 7 operations to perform.

Clearly, the total processing time will be determined by the longest processing interval. In
order to increase the processing through-put of the system, a process farm is proposed, that will
allow the rule evaluation process to be replicated on additional Transputers. One of the
advantages of the rule representation which has been developed in this work, is that it enables
rules to be evaluated by other processes, then combine the Resultant Membership Functions to
form the Final Membership Functions.

The algorithm that is developed in chapter 4, is suitable for mapping onto multiple
Transputers. By decomposing the fuzzy inferencing process into the component parts, it has
been shown that the rule evaluation is one area where multiple processors can be used to
enhance processing through-put.

To run the code developed for a single Transputer (see previous section) on a network of
Transputers, several changes need to be made. The first change involves process mapping.
There are two T800 Transputer modules available to the system, the first of which has been
used up to this point for all processing. The second rule evaluation process is now mapped to
the second T800 Transputer. This is accomplished by altering the configuration statements as
shown in the code segment below. An additional PROCESSOR statement has been added,

together with the name of the process that is to run on this processor, as shown in Listing 5.1.
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PLACED PAR
PROCESSOR 0 T8

PLACE from.C012 AT linkOin:

PLACE t0.C012 AT linkOout:

PLACE Plant. DBM AT linklin:

PLACE DBM.Plant AT linklout:

PLACE FIE.Node AT link2out:

PLACE Node.FIE AT link2in:

FuzzienProg(from.C012, to.C012, FIE . Node0, NodeO.FIE,
FIE.Node1, Nodel.FIE, DBM.Plant, Plant. DBM)

PROCESSOR 1 T8
PLACE FIE.Node AT linkOin:
PLACE Node.FIE AT linkOout:
RuleNodel(FIE.Nodel, Nodel.FIE)

Listing 5.1: Process mapping to processors.

The next change involves the communications channels between processes. Two additional
Occam channels have been created to handle communications between the new rule node and
the rest of the processes. The data flow diagram for this configuration is shown in Figure 5.6.

A further change is required to the FIE process to incorporate a task scheduler, or
farmer, which allocates rule lists to each Rule Evaluation Node (REN). The scheduler also
distributes the configuration information to the RENs which includes the membership

function tables, the inferencing options, the input vector, and the system mode.

5.3.3 Task Scheduling

There are many possible methods of assigning tasks to processing resources. The method
adopted in this work is to allocate tasks to each available processor in the network. In this case,
the network consists of two processors connected in a tree configuration.

In this work a flag called the RuleNodeState is defined for each REN. This flag defines
the present activity state of the process. A ‘0’ represents idle and a ‘1’ represents busy. The
farmer initially allocates a task to each REN, and the corresponding flag is set to indicate Busy
status. As the results (RMF) returns from each REN the farmer collects the data (harvest) and

allocates the next task to that REN. This process repeats until all rules in the rulebase have been
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processed. Algorithm 5.2 describes the scheduling process, which can be extended to N
Transputers.

Consider the hardware architecture of a multiple Transputer system as shown in Figure
5.7. The processes, as described previously in Figure 5.6, are mapped onto this architecture. All
of the processes, excluding the second rule evaluation node, are mapped onto Transputer TO.
The second rule evaluation node is mapped onto Transputer T1.

There are two processes that evaluate the degree of fulfillment and the resultant
membership function for each rule that is input to that process. This division has been used for
the following reasons;

1. There are often many rules in a rule base that must be evaluated. This method is one

way to utilize available Transputer resources.

2. The fusion and defuzzification processes occur less frequently. That is, there are

usually multiple rules that contribute to a single output.

Algorithm 5.2 for Task Scheduling for Two Processing Nodes
While more.work
Do
If
(Node 1 is free) AND (rules to evaluate > 0)
Get the next rule from the KBM
Send the rule to Node 1
Set the busy flag for Node 1
Decrement the number of rules to evaluate
Increment the rule counter
else if
(Node 2 is free) AND (rules to evaluate > 0)
Get the next rule from the KBM
Send the rule to Node 2
Set the busy flag for Node 2
Decrement the number of rules to evaluate
Increment the rule counter
t If both Nodes are busy OR work all tasks allocated
,' Read a data packet from the first Node to send its results
: | If all work has been collected
more.work = FALSE.
End.
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SUPERVISOR

‘ DBM.SUPER

FIE.SUPER
SUPER.FIE

DBM.FIE

Y

KBM.FIE \ FIE.DBM
—J»-| FUZZY INFERENCE
KBM ENGINE- DBM
L FARMER
FIE.KBM ‘ FIE.DBM
WORKER.FARMER FARMER.WORKER
FUZZY
INFERENCE
ENGINE-

WORKHR FARMER.WORKER WORKER.FARMER

TO T1

Figure 5.6 : Data Flow Diagram showing the two rule evaluation processes, each of
which runs on its own Transputer. The FIE now handles task scheduling between
available worker nodes. The FARMER process runs on Transputer TO and controls
the allocation of rule evaluation tasks to the WORKER processes. The additional

worker process runs on Transputer T1.
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Figure 5.7: The processing hardware for this thesis comprises the personal

computer, and two T800 Transputers which are mounted on the BO0O8 motherboard.

Transputer TO accesses external data via the Transputer interface module.

Transputers TO and T1 are connected by a serial link.
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5.3.4 Process Timing Re-visited

The processing time for a multiple Transputer network will depend on a number of factors,
and can be characterized by the times required to perform specific tasks within the processing

cycle. These include the following factors:

1. The number of Transputers available, N,.

2. The communications over-head to send requests between processes via the channels,
and to receive responses, Tcomms-

3. The number of rules in the rule base, N,. As N, increases, the processing time for the
rules becomes a larger proportion of the total time. 7, is the time required to
evaluate a single rule. With each rule evaluation being a sequential operation, the
speedup factor is limited in theory (Amdahl’s law [38]) to 1/ Tp./ Tpmc).

4. Time to perform the Fusion of the RMFs, Tyusion increases with the number of
RMFs, and the method of defuzzification that has been selected by the operator.

5. Time to perform the Defuzzification of the FMF, Tgef.,- This is a fixed time that

depends only on the method of defuzzification that has been selected by the

operator.

Equation 5.1 defined the rulebase processing time for the case of a single Transputer. All
times are added in sequence to arrive at a final total, even if the code is written using parallel
constructs. With Ny, > I, the benefits of parallel processing can be realised. Equation 5.1 is

now modified to account for the multiple processor network.

, [N, xT,]

proc = L comms N Jusion + ]:kfuz
P

(5.2)

The adoption of the rule syntax described in Chapter 3, has provide greater flexibility
in representing an expert’s knowledge, however, this also means that the times 7p,; , are not
necessarily equal (Equation 5.2 assumes they are equal), yet the communication time for
each link is the same due to the channel protocol (RESULTS) being identical for each
Transputer. This is not always the case as illustrated previously in Section 5.3.2. T, and T},

are not generally equal. It is worth noting that for the case where there are only 2 rules to
evaluate, and two processors available, then the rule that has the most number of operations
will determine the processing time. Also, as the results are being collected by a single farmer

process, there will be competition between worker processes to deliver their results. The
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farmer process de-multiplexes the incoming channels, and hence there is an additional factor
introduced, being (N, X Tresulrs), Where Treguns is the time required to receive the results from

6 . . . .
a remote’ worker process, and includes a component for link communications. Therefore, the

processing time for equal length tasks becomes:

Np

2,

=T + (Nr X Tre.vuh.r) + f=11v +1,

proc comms Jusion

+ Tl‘lefuz (5 3)

p
Taking this analysis one step further, where the task times are not all equal, requires a
statistical approach. Stone [42] addresses this situation and derives a stochastic mode] for the
execution times for multiple tasks assigned to multiple processors. He states that the
execution time depends on the Expected value of the maximum of the sum of task processing
times.
To investigate the timing of the system, six rulebases were written comprising 1, 2, 4,
8, 16 and 32 rules. Figure 5.8a shows the times required to evaluate the rulebase only, for a
single Transputer, and using a farm of the two Transputers. Figure 5.8b shows the total
processing times (the time to produce the crisp output) for three cases. These are;
1. All of the processing is mapped onto the root Transputer TO (see Figure 5.7),
2. All rule evaluation is performed on the additional Transputer T1, with subsequent
processing handled by TO,
3. The rule evaluation tasks are farmed out to both Transputers TO and T1, according
to scheduling algorithm 5.2.
Figure 5.8a shows that the farming strategy delivers improved performance, with a reduction
in the time of about 30% over the single processor implementation. Figure 5.8b shows the
following;
e In Case 1 shows that the processing time increases linearly with an increase in the size of

the rulebase. This timing follows the single processor model described by equation 5.2,
with N, = 1. The link communication is minimised, which saves time.

e In Case 2, it can be seen that the over-head of the additional channel communications
between TO and T1 has caused a degradation of performance relative to case 1. This is in
accordance with equation 5.3, with N, = 1, where the results arrive from the remote

processor. In this figure, the times start at a nominal value of about 8mS to process a

single rule, which includes communications overhead, fusion, and defuzzification times.

¢ A remote process is defined as one that is mapped to its own processor.
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For the single Transputer case, as the number of rules increases, the processing time
increases linearly, as expected from equation 5.1.

The third case shows some improvement in performance by farming the rule evaluation to
both Transputers. After the RMFs have been collected from the workers, the data is
further processed to make it ready for the fusion process. This post processing of the
RMFs, together with the calculation of the FMF data, are computationally intensive, and
could be improved in future versions of this software. They contribute significantly to the
processing time, and prevent significant performance improvements by farming the rule
cvaluation tasks alone. Again, this is illustrated in Figure 5.8, where the processing time
for the farming case is less than for the case where the farmer would not be performing
any substantial, additional processing. In this case, the processing time would be closer to
half that for a single processor.

This investigation has identified several key points in relation to developing an

architecture based on parallel processing concepts. These include;

L.

Communications Bandwidth - The Transputer has four serial links that can be used to

connect to other Transputers, creating a variety of architectures. As the number of
Transputers (or processors in general) increases, the communications between processors

becomes a larger over-head, compared with the actual processing time.

_ Process Identification - The overall process usually has some granularity [42], where it

can be decomposed into smaller sub-processes. The nature of the data will often determine
how process identification and division is done. This will also assist in determining what
type of parallelism can be employed (eg. pipeline, farming, tree), so that processes can be

executed concurrently.

. Process Mapping - When the individual processes have been identified, the associations

that exist between them will suggest some logical mapping onto the available processor
architecture, or indeed, motivate the development of a specific, purpose-built architecture.
Issues that arise at this stage include the communications bandwidth. Moving data around
between processors is expensive in time, and should be minimised if possible. Processes
that use the same data should be located close to each other, geographically, in the

network.

_ Synchronisation - This issue relates to the scheduling algorithm that is employed to

distribute work packets to remote processors. It must be able to handle multiple channels,
and guarentee to service each worker as results arrive. Workers need not be tightly
coupled, and it is better that they are not for reasons of flexibility, but the communications

between the worker and the farmer must be free of the possibility of deadlock.
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5. Adaptibility - The problem that is to be solved may be just one of many classes of
computational problem. The architecture may need to adapt to different data flows
generated by different problems. Purpose-built architectures have the advantage of being
optimised for their particular task. Adding flexibility to a system may compromise the

computational efficiency of that system.
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Figure 5.8: Graphs showing (a) the rulebase processing performance, and (b) the
total processing performance. Processing time depends on the number of rules that
are in the rulebase and the number of processors available in the system. (Transputer

1 corresponds to TO and Transputer 2 corresponds to T1 in Figure 5.7.)
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5.4 Process Interactions

The knowledge base manager (KBM) is loaded with all the rules for the present project. The
FIE is configured by the SUPER process, to perform the appropriate inferencing strategies as
selected by the user. When all system parameters have been loaded, the user sends a
command via the GUL to the Supervisor, to commence execution. The SUPER process will
then perform all functions necessary to complete the processing of the rulebase.

To assist in the planning and development of the process communications and
functionality, a chart has been developed that describes the events that occur between
processes. This chart is simply called a Process Event Graph, an example of which is shown
in Figure 5.3.

The PEG shows the concurrent processes along the left hand side, with lines extending
from each label. These lines represent a time axis. Directed lines from one time line to
another, indicate the flow of a message. This diagram is useful for visualizing the data
interactions between processes.

When execution has been initiated, the FIE requests the latest input data from the
DBM. This data is transmitted to the worker nodes. The FIE then enters a loop where it
requests the next rule from the KBM and assigns the task to an available worker node.

The worker nodes calculate the RMF for the rule and send it to the FIE, where it is
stored in an array of RMFs. The RMFs are also sent to the Supervisor process where they can
be accessed and displayed by the GUL

When all rules have been processed by the FIE, the Supervisor calculates the Final
Membership Function (FMF) for each output. These FMFs are then defuzzified according to
the selected defuzzification method. The FIE requests the state of the inference methods from
the KBM (in the event that the operator has changed them) and updates the current
parameters.

If the system is in the closed loop mode, the process is repeated. The FIE will check the
mode parameter at the end of each pass.

The KBM maintains the rule base and other configuration information for the system.
As information is accessed by the FIE and the Supervisor, this separate process manages this
interaction. Likewise for the DBM. The DBM has the additional duty of managing data to
and from the TIM. It also keeps a copy of all results so that history data can be used in a

feedback situation.
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5.5 Running the software suite

5.5.1 The configuration process

The TransFuzien software suite runs on the PC. The program is started by double clicking on
the program’s icon. The user is then presented with a screen with a number of menu options
displayed along the top of the screen. By selecting these menus various aspects of the
software suite can be configured.

To begin a new project, select the project menu and click on New. This will display a
dialog box for entering information about the project. When this is completed, press OK or
Cancel to close, and proceed to define the input and output configuration of the project. This
is done by selecting the Data /O menu, or clicking on the speed button situated just below
the menu items. The data definition dialog box is now displayed which enables the user to
define the sources and sinks and their names. Again, press OK or Cancel to finish.

Next, select the inferencing options menu where the methods for modifying resultant
membership functions, connection logic, rule fusion, and defuzzification are selected.

Finally selecting the Rulebase menu, and clicking on New, will display the rule base
editor. The composition of rules is simply a matter of using the mouse to point and click on
the items displayed in the list boxes, and the dedicated buttons, to create the rule of choice.
As each rule is generated, click Add Rule, which causes the present rule to be appended to
the current rule base.

When the rule base is complete, it may be saved to a separate file for later examination
or printing, but this is not essential. Pressing OK will complete the composition phase. At
this point the project can be saved to a file by again selecting the Project menu item and
selecting Save Project. A prompt appears for the name and directory for the file.

The final step is to compile the rulebase. This is accomplished by selecting the
Rulebase menu and selecting Compile. The compiler dialog box appears. Pressing the
Compile button will process the rule base, displaying the results in the box. Press OK to
complete the process.

To run the software, select the Control menu item, and then select ‘B008
Communications’. The TransFuzien Command and Control Panel is now displayed. This
dialog screen contains the controls to load the kernel file to the Transputer system, to start
processing, and to display results of the processing. The kernel program is down-loaded by

pressing the ‘Load Kernel’ button, situated at the bottom left of the screen. This will display
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a file selection box where the appropriate bootable code file (.bcf) may be selected. Pressing
OK will initiate the down-load process.

After the kernel file is loaded, the Transputer network will execute the code, and will
be awaiting commands from the user. The inference engine, data base manager, and
knowledge manager processes need to be configured at this point. To load the rulebase, press
the ‘Load Rule Base’ button. To load the inferencing options, press the Configure button, and
to load the membership functions, press the ‘Load Membership Functions’ button. As each
button is pressed, an acknowledgment is displayed on the screen. The system is now ready to

process data.

5.5.2 Run-time operation

This software suite operates in one of two modes. The first is a single step mode where the
input data is processed once, and then the processing stops. Pressing the Process Input Data
button (located at the top left of the screen) will perform the single step processing. This is
the default state.

The other mode is a continuous mode of processing. To enter this mode, the mode
check box is checked, and then the Process Input Data button is pressed. In this mode, the
software will continually process the selected inputs until requested to stop. This mode is
useful in control applications.

The degree of fulfillment of each rule may be displayed by double clicking on any rule
in the rule list box. The resultant membership function for the particular rule selected is
displayed in graphical form. Similarly, the final membership functions may be displayed by
double-clicking in the output list box.

There are other controls in this dialog screen for sending messages to the Transputer
interface module (TIM), for reading analog data, and setting the pulse width modulation
output of the TIM. These controls were incorporated at the early stages of the system’s
development to assist in hardware and software testing. They may be removed or enhanced in
a later version of the software.

The operation of the system is more fully explored and described in Chapter 7 of this

thesis.
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5.6 Chapter Summary

This chapter has described the implementation of the algorithm for fuzzy rule evaluation.
The inter-process communication channels and their protocols have been described. Data
flow diagrams have been used to design and visualize the process interactions.

The process event graph shows the communication interactions between processes as a
function of time. This graphical method is a useful tool that helps one to avoid the problem
of communication deadlock. The usefulness of the PEG is evident from the examples given
in this chapter.

The timing of process events has been examined for the single processor case, and for a
multiple processor case. The algorithm has been mapped onto single and multiple Transputer
architectures, and tests performed to determine advantages and problems associated with the
two cases. The results show that the farming approach provides an improvement in
processing time, however, the time to perform the RMF fusion and the subsequent
defuzzification, over-shadow this to a large degree. Improvements in the fusion process in
particular, would lead to improvements in performance.

Important issues have been identified that impact on the development of a processing
architecture. A scheduling algorithm has been presented and implemented.

The individual processes that comprise the TransFuzien software package have been

described.
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Chapter VI

THE TRANSPUTER INTERFACE MODULE

6.1 Introduction

This chapter describes the design of the Transputer Interface Module (TIM), which provides a
means of connecting the expert system to external digital and analog equipment. The block
diagram of the TIM is shown in Figure 6.1. It has been designed to function as an embedded
control processor, providing a mechanism for data transfer between external experimental

apparatus and the expert system.

6.2 Description

The TIM is a self contained processing module that has its own on-board micro-controller,
which communicates with the host Transputer via an Inmos C012 Link Adapter [43]. The
C012 is configured to connect directly to port 0 of the Philips 87C752 [44], which is a low
cost, 8 bit processor, that includes digital /O, an on-chip 5 channel A/D converter, and a
digital output that can be programmed to produce continuous digital pulses of variable pulse
width. The program for the micro-controller is contained in an on-chip 1k EPROM. A
number of routines have been programmed into this memory, which allow the 87C752 to

perform a variety of tasks that include the following;

1. read the analog to digital converter channels
2. output a particular pulse width modulation to the PWM pin
3. data I/O to the designated port

The schematic design of the TIM is shown in Figure 6.3. The CO12 link adapter translates
between the serial protocol of the Transputer links, and a parallel 8 bit word that is used for
communicating with peripheral devices. Restricting the system to 8 bits limits the dynamic
range achieveable, but the TIM can be modified at a later date to provide 10 or 16 bit

resolution.
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Figure 6.1 : Block diagram of the Transputer Interface Module, consisting of the micro-

controller, the link adapter, the peripheral adapter, and signal conditioning hardware.
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Figure 6.2 : Photograph of the Transputer Interface Module showing the micro-controller,

the transputer link adapter and the PIA device.
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Figure 6.3 Flow chart for reading data from the link adapter

Sel Regisiers
for Read Operation

Read Status
Registers

Status
Bit Set?

f

Set Registers
for Write Operation

Y

Put Acculmulator
contents on port 3

‘

Figure 6.4 Flow chart for writing data to the link adapter
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6.3 Operation of the TIM

When the micro-controller is reset, it executes a set of initialisation tasks, after which it waits
for a command sequence to arrive from the transputer system via the C012 link adapter. The
command is sent by the data base manager process, which in turn, received a command request
from either the GUI, the FIE, or the Supervisor module.

The command comprises two bytes, sent consecutively to the TIM. The first byte
identifies the type of command to be executed, and the second byte, holds relevant data such as
the PWM duty cycle or the port settings for TTL outputs.

On receipt of the command, the TIM executes one of the following sub-routines;

I. Reset

2. Read the analog inputs to the micro-controller.

3. Set the pulse width modulation output

4. Set the TTL outputs P1.5, P1.6, and P1.7, to the desired state (see table 6.1)
5. Read the state of port 1

These routines provide a basic set of operations to interact with hardware that is
attached to the TIM. Port 1 provides the 5 analog inputs and 3 digital outputs, and the PIA
provides additional digital I/O for the system.

Data TTL Port Bits
Byte
R2 P1.7 | PL6 P1.5

0 X X 0
1 X X 1
2 X 0 X
3 X 1 X
4 0 X X
5 1 X X

Table 6.1 Truth tablc for TTL port bit control
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6.3 Chapter Summary

This chapter has described the Transputer Interface Module (TIM), which provides an
electronic data connection between the cxjpert system hardware and external peripheral

electronic devices. The TIM provides the facilities to;

1. read the analog to digital converter channels
2. output a particular pulse width modulation to the PWM pin

3. read data from, and write data to the designated port of the micro-controller.
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Chapter VII

APPLICATIONS OF FUZZY PROCESSING - CASE STUDIES

7.1 Introduction

In this chapter, the TransFuzien system is used to demonstrate fuzzy processing of data for a
number of different cases. These include pattern classification, system modeling, and fuzzy
control. In the first section, TransFuzien is used in the open loop mode, where various transfer
functions are realised. In the second section, TransFuzien is operating in the closed loop mode,

performing fuzzy control of an inverted pendulum apparatus.

7.2 Fuzzy Data Processing for a Multiple Input - Multiple Output System

In this section, the TransFuzien system has been programmed to evaluate output values for a
multiple input - multiple output (MIMO) system [42]. In this case, there are four input
variables X1, X2, X3, and X4, and three output variables Z1, 72, and Z3. The rule base is
shown in Table 7.1 and the inference methods employed are listed in Table 7.2. The results for
three sets of input variables (4, B, and C) are shown in Figure 7.1.

The objective is to present an example of a MIMO configuration with an arbitrarily

defined rule base to demonstrate how the outputs vary according to varying inputs.

Rule Rule Text
Number
0 IF x1 1S SmallPos THEN z1 IS SmallPos
1 IF x3 IS MediumPos THEN z1 IS MediumPos
2 IF x3 IS BigPos THEN z3 IS BigPos
3 IF x1 1S SmallPos AND x3 IS BigPos THEN z1 IS MediumPos
4 IF x2 IS LargePos AND x2 IS BigPos THEN z2 IS Zero
5 IF x3 IS Zero OR x2 IS MediumPos THEN z3 IS SmallPos

Table 7.1 There are 6 rules for this example, with 3 inputs and 3 outputs.
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Inference Method

Type

Connectives

Zadeh (MIN - MAX)

Consequent Modifier

Scaling

RMF Fusion

Arithmetic Average

Defuzzification

Center of Gravity

Table 7.2 The inferencing methods for the MIMO example.

Crisp Output Value

Figure 7.1: Non-fuzzy outputs ZI, Z2, and Z3 are produced by a rulebase
comprising six fuzzy rules. Three sets of input data give rise to
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7.3 Fuzzy Data Classification

In this section, data items are classified into classes. Each item is described by a vector of
two features, X1 and X2. There can be more dimensions to the feature, but the results are not
easily visualized beyond 3 dimensions. The feature space comprises a number of regions that
each represent a prototype pattern. A set of fuzzy rules is applied to each feature, to map that
feature to a particular partition of the feature space.

When writing a rulebase for pattern classification, the regions that form the class are
described by rules. However, just as important are the rules that describe what regions do not
belong to the classes of interest. These rules help to excise unwanted data, that may be
considered as noise. This requirement is demonstrated particularly well in the rulebase for
the torus example.

The sharpness of the classification process can be improved by using linguistic hedges
to alter the shape of the membership values. The data for this example has been read from the

transputer interface module’s analog voltage inputs.

7.3.1 The Torus

This example has two classes A and B, that are concentric, with class A surrounding
class B (see Figure 7.2). The rule base for this example is shown in Table 7.8. Rules 0 to 4

define membership of classes, and rules 5 to 21 specify exclusion from those classes.

7.3.2 Discussion

The rulebase has classified the two classes quite well. As the number of rules that govern the
description of each class, the discrimination between classes improved. This is demonstrated
in Table 7.9, where the output values for each class are shown before, and after the addition
of more rules to exclude regions.

The results of the processing are displayed in Figure 7.3, where the two outputs (Class
A and Class B) are plotted. Figure 7.3a shows the output for the Class A classifier, whilst
Figure 7.3b shows the output for the Class B classifier. The inverse relationship is evident
from these figures, showing that data that more fully belongs to one class, will belong to the
other class with a smaller membership grade.

This case study demonstrates the ability of the system to classify data.
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Figure 7.2 : Two regions are defined by the concentric circles shown in this figure.

Class B is the central region of the figure, whilst Class A is the annulus that

surrounds Class B. Data points which are defined by two coordinates (x1, x2), are

classified by the rule base, and will possess membership to both classes to some

extent.
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Rule Number

Rule Text

0 IF x1 1S Small+ AND x2 IS Medium+ THEN classA IS Large+
1 IF x1 1S Big+ AND x2 IS Medium+ THEN classA IS Large+
2 IF x11S Medium+ AND x2 IS Big+ THEN classA IS Large+
3 IF x11S Medium+ AND x2 1S Small+ THENclassA IS Large+
4 IF x1 1S Medium+ AND x2 IS Medium+ THEN classB IS Large+
5 IFx1 1S Small+ AND x2S Small+ THEN classA IS Zero
6 IF x11S Large+ ANDx2IS Large+  THEN classA IS Zero
7 IF x11S Small+ AND x2 IS Large+ THEN classA IS Zero
8 IF x11S Large+ ANDx21S Small+ THEN classA IS Zero
9 IF x1 1S Small+ ANDx21S Small+  THENclassB IS Zero
10 IFx1 1S Small+ AND x2S Large+ THENclassB IS Zero
11 IFx11S Large+ ANDx2!S Small+  THEN classB IS Zero
12 IF x11S Large+ ANDx21S Large+  THEN classB IS Zero
13 IF x1 1S Medium+ AND x2 IS Medium+ THEN classA IS Zero
14 IF x1 1S Medium+ AND x2 IS Large+ THEN classB IS Zero
15 IF x1 IS Medium+ AND x2 IS Zero THEN classB IS Zero
16 IF x11S Zero AND x2 IS Medium+ THEN classB IS Zero
17 IF x1 1S Large+ AND x21S Medium+ THEN classB IS Zero
18 IF x1 IS Medium+ AND x2 IS Big+ THEN classB IS Zero
19 IF x1 1S Medium+ AND x2 IS Small+  THEN classB IS Zero
20 IF x11S Small+ AND x2 IS Medium+ THEN classB IS Zero
21 IF x11S Big+ AND x2 IS Medium+ THEN classB IS Zero

Table 7.3: The rule base that classifies the data comprises 22 rules that define the two regions

A and B.
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X1 X2 _Actual Class A Class B
Class Indicator | Indicator
Before
exclusion 60 7 Class A 79 86
rules
After
exclusion 60 72 Class A 79 19
rules

Table 7.4 : This table shows the improvement in discrimination between Class A and Class B,
from (79, 86) before, to (79, 19), after the addition of rules that define the class regions more

fully. A high value represents a good match, 100 being the maximum value.

Lo S -
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Figure 7.3a : Plot of the Class A output.

DOM

Figure 7.3b : Plot of the Class B output.

B Class A data
Bl Class B data

Figure 7.3 : Graph showing the degree to which data belongs to class A and Class B.
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7.4 Modeling of a function using a fuzzy rule base.

Modeling of processes can involve complex non-linear equations, that must be solved, often
in real-time. A fuzzy rule based system can be used to model these complex processes,

provided sufficient care is taken in constructing the rulebase.

7.4.1 Linear Approximator

In this example, a rulebase, shown in Table 7.4, describes the behaviour of a simple
linear function, y = x. Figure 7.4 shows the results of the data processing for several points
between 0 and 100. The output values show good agreement with the ideal case. This is an

example of a single input - single output (SISO) system where x is the input, and y is the

output.
Rule Number Rule Text

0 IF xIS Large+ THENYyIS Large+

1 IF x IS Big+ THEN y IS Big-

2 IF x IS Medium+ THENy IS Medium+
3 IF xIS Small+ THENyIS Small+
4 IF xS Zero THEN Yy IS Zero

5 IF xIS Small- THENYyIS Small-
6 IF x IS Medium- THENYy IS Medium-
7 IF x IS Big- THEN y IS Big-

8 IF x IS Large- THEN y IS Large-

Table 7.5: Rule base that models the function y(x) = X.
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Figure 7.4 : The rule based model of the function y(x) = x closely matches the ideal case.

Triangular membership functions were applied in this example.
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7.4.2 Complex Function Approximator

More complex functions can be modeled using fuzzy logic, in this case, the function is
Wxy) = x - y* . A useful method for developing models with fuzzy sets, that have a two
input-one output relationship, is to use input-output maps, or FAM. The corresponding FAM
is shown in Figure 7.5, from which a rulebase is derived. The rules are then read directly
from this map and are shown in Table 7.10.

From the resulting plots (see Figures 7.6a-d), it can be seen that there is a close
correlation between the theoretical and modeled plots. A finer resolution may be obtained by
using additional rules to model the function, but this involves a trade-off between
complexity, and speed of processing (if speed is an issue).

The major features match those of the theoretical plot for z. The scale can be adjusted by

the system that uses the output values.

X NL NS ZE PS PL
Y
NL ZE PL ZE
NS PS

ZE NL NS ZE NS NL

PS PS

PL ZE PL ZE

Figure 7.5 : Key features of the model are identified using a simple matrix approach that
maps the input space to the output space (I/O Map). The inputs to the matrix are x and y.
The membership labels are NL, NS, ZE, PS and PL.
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Rule Number Rule Text
0 [FxIS Zero AND y IS Zero THEN z IS Zero
1 IFxIS Large- ANDYyIS Large- THENzIS Zero
2 IF xS Large+ ANDYyIS Large- THENZIS Zero
3 IFxIS Large- ANDyIS Large+ THENZ IS Zero
4 IFxIS Large+ ANDyIS Large+ THENzIS Zero
5 IF x 1S Large- ANDYyIS Zero THEN z IS Large-
6 IF x IS Large+ ANDyIS Zero THEN z IS Large-
7 IFx IS Zero AND y IS Large- THEN z 1S Large+
8 IFx IS Zero ANDy IS Large+ THENzIS Large+
9 IFxIS Zero  ANDy IS Medium- THEN z IS Small+
10 IF xIS Zero ANDY IS Medium+ THEN z IS Small+
11 IF x IS Medium- ANDy IS Zero THEN z IS Small-
12 IF x IS Medium+ AND y IS Zero THEN z IS Small-

Table 7.6 : Rule base that describes z, according to the /O map. The rule base is derived from

this mapping as shown in Figure 7.5.
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Figure 7.6a : Calculated surface plot of the function

axy) = -y, x=[5.45]andy = [-5.43]. Figure 7.6b : Surface plot generated by the expert

system using 13 rules.

Z

Figure 7.6c : Calculated surface plot of the N
function z(x,y) = X' - y’. Blue represents negative
numbers, green represents zero, and orange
represents positive numbers.

Figure 7.6d : The surface plot generated by
TransFuzien software shows a high degree of
correlation with the theoretical plot of Figure 7.7c.

Figure 7.6 : Modeling relies on the identification of key features of a system, and then
encoding these with suitable rules. The rule based model of the function Z(x,y) = ¥ - ¥’
(Figure 7.6b) closely matches the ideal case. The scale is not relevant here, as the expert
system output can be adjusted to suit the application.
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7.5 Signal Processing

This example illustrates how a fuzzy rule base may be used to perform filtering of
information. For the purposes of this case study, the filters perform a bounds classification
on the input data. Two types of filter are tested, being a low pass filter and a band pass
filter. A filter has a number of important characteristics such as the cut-off point, the roll-
off, the band bass and band gap ripple, the band stop rejection, and the insertion loss.

The input and output variables for this case have the following ranges;

Input variable :x1 Range =[0..100]
Output variable :z1 Range =[0..100]

Linguistic hedges are one method by which the sharpness of a filter can be altered.
Another is to adjust the shape of the membership functions. The membership sets are fuzzy
numbers and can be defined to suit the filter characteristics that are desired. (ie. cut-off
value, half power point) In this case, generic terms are used only such as low, medium and
high.

7.5.1 A Low Pass Filter

The rule base for the low pass filter is shown in Table 7.11. These rules are derived

by considering the desired low pass filter characteristics. Figure 7.7 shows the output from
the inferencing process as a function of the input variable X. This figure highlights the

influence of the choice of inferencing strategy on the output.

Rule Number Rule Text
0 IF x1 1S low THEN z1 1S large
1 IF x1 1S small THEN z1 IS large
2 IF x1 IS medium THEN z1 IS small
3 IF x1 1S large THEN z1 IS zero

Table 7,7 Rule base for the Tow pass filter:
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Figure 7.7 : The output for the low pass filter is affected by the choice of
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inferencing methods.

FILTER Connective Modifier Fusion | Defuzzification
Low pass 1 min-max (Zadeh) truncation peak Center of gravity
Low pass 2 min-max (Zadeh) truncation mean Center of gravity
Low pass 3 min-max (Zadeh) scale peak Center of gravity

Table 7.8: Inference methods for the 3 low pass filters.

7.5.2 A Band Pass Filter

The rule base for the band pass filter is shown in Table 7.12. These rules are derived

by considering the desired low pass filter characteristics. Figures 7.8 shows the output

from the inferencing process as a function of the input variable x, and highlights the

influence of the choice of inferencing strategy on the output.
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Rule Number Rule Text
0 IF x1 1S low THEN z1 IS zero
1 IF x11S small  THEN z1 IS large
2 IF x1 IS medium THEN z1 IS large
3 IF x1 IS large THEN z1 IS zero

Table 7.9 Rule base for the band pass filter.
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Figure 7.8 : The output responses for two bandpass filters. The variation is due to

the fusion method employed for each filter.

The two data sets are the result of applying the same rulebase to identical input data.
Bandpass filter #1 used the maximum profile, whilst bandpass filter #2 used averaging for the

fusion method. These results show that the fusion method affects the response of the filters.
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7.6 Real Time Control - The Inverted Pendulum

To achieve real-time control of a dynamic system, the relevant time constants must be
considered. Control decisions based on the sensor input, need to be made quickly enough that
the system under control is receiving command inputs that result in the desired behaviour. That
is, the bandwidth of the decision making system is large enough to accommodate the time
constants of the plantl.

There are many instances in the literature that describe the inverted pendulum [23, 45,
46] and show the complexity of the equations of motion for this system. In this study, the
variable that is measured is the angle of the pendulum. The angle sensor is read by channel O
of the analog to digital converter on the Transputer Interface Module. More elaborate sensing

and rules can be implemented as an extension to this study. The system diagram is shown in

Figure 7.9.
Plant
Control Signal to Motor
» Sensor outputs
Fuzzy Rule Based

— Inferencing System <
Desired =
behaviour — -
defined by [—— o
Rulebase |——1

T

Controller

Figure 7.9 : The inverted pendulum apparatus is the plant in this control loop.

! The plant is the controlled system.
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7.6.1 Description of the Apparatus

The inverted pendulum apparatus has been totally designed and built by the author as a
test-bed for the real-time control section of this study. Figure 7.10 shows the relevant features
of the apparatus. It comprises a small trolley with 8 wheels, that engage a level linear track on
each side of the trolley. The pendulum is mounted on the trolley, and 1s free to rotate about the
pivot point.

The position of the trolley on the track, and the angle of the pendulum, are sensed by
linear potentiometers. The outputs are connected to the analog nputs on the TIM. The motor is
a 24 volt DC servo motor. The motor voltage is controlled by the motor control card (see
Figure 7.11), the circuit diagram of which is shown in Figure 7.12.

The pole is of length 2L, the mass of the cart is m,, and the additional load mass 18 my.

The force f applied to the cart is regulated by the PWM output from the TIM, and an additional
TTL signal, also from the TIM, which switches the direction of the motor. The rulebase used

in this experiment is very simple as shown in Table 7.13.

7.6.2 Pendulum Motor Drive and Sensor Card

The pendulum motor drive and sensor card, receives commands from the fuzzy
processing system and converts them info the appropriate electrical signals for the motor. Data
from the angle sensor, the linear position sensor, and the end sensors, are conditioned, then
sent to the generic module for processing.

This hardware comprises an H-bridge circuit, and motor current monitoring circuitry.
Four IRLZ14 logic level N-channel MOSFETs are used for the H-bridge. Each MOSFET is
rated at Id = 10A continuous (40A pulsed). The logic signals required for the H-bridge are
generated by an ALTERA 7032 EPLD.

A separate power supply is used for the motor. This supply 1s isolated from the digital
supply by opto-couplers. The PLD output are buffered by an open collector buffer chip (7407),
which in turn drive the opto-coupler LEDs.

The angle sensor comprises a 10k linear potentiometer. The end sensors are photo-
electric transmitter-receiver devices, which detect an interruption to the beam, however these

were not used in this case study.
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Figure 7.10 : Photograph of the inverted pendulum apparatus.
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Figure 7.11 : Photograph of the Motor Control Module for the inverted pendulum motor.

Description of components:
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Figure 7.12 : Circuit diagram of the Motor Control Module for the inverted pendulum motor.
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7.6.3 Experimental procedure and results

The Rulebase
Rule Number Rule Text
0 IF angle IS Zero THEN force IS Zero
1 IF angle IS Large THEN force IS Large+
2 IF angle IS Medium+ THEN force IS Large+
3 IF angle IS Small- THEN force IS Large-
4 IF angle IS Medium- THEN force IS Large-

Table 7.13 : The Rulebase for the inverted pendulum.
.7 , (‘/\

Static Performance

In the first phase of the experiment, the system was loaded with the pendulum project and
run in loop mode. The time taken to evaluate the rulebase and generate the required output
signals for the apparatus was 98 mS. The motor current was switched off, and the angle of
the pendulum was adjusted. For each increment from the vertical, the output was recorded.
The measurements were repeated for two fusion methods, being the arithmetic mean and the
peak follower. The measurements are shown in Figure 7.13.

The graph shows that as the angle from the vertical increases from zero, to either side,
the force applied to the cart is increased so as to correct the imbalance. Both methods of rule
fusion produce the predicted result, with little difference between them. The processing times

for this casc are shown in Table 7.2.

Dynamic Performance

The second phase of the experiment tested the dynamic performance of the inverted
pendulum controller. The same project file was Joaded and the system was then run in the

closed loop mode for two situations.

Restrained Test:

The Pendulum was supported in the vertical position (angle = 0) and the motor supply
_switched-on. The-pendulum.was.-held-in-an upright position, then moved to either side, and

the motion of the cart observed.
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Unrestrained Test:

The next step was to support the pendulum in the upright position, with the cart at the center
point of the track, and then release the pendulum and allow the system to control the

apparatus.

7.6.4 Observations

Restrained Test:

1. As the angle from the vertical increased, the duty cycle of the drive voltage to the
motor increased. The duty cycle output from the TIM was monitored with an
oscilloscope.

2. The cart was subsequently driven to correct the error in the angle as detected by the
system.

3. This behaviour of the cart was consistent with the behaviour encoded in the rule
base file.

Unrestrained Test:

1. When the pendulum was released, it tended to stay in an upright position due to the
friction of the pivot and the lack of external disturbance. In this state the motor
current was zero, as expected from the rulebase. Again the motor drive modulation
was monitored on an oscilloscope, together with the direction outputz.

2. The pendulum was then perturbed to one side to initiate the control action. In this
state the cart was driven in accordance with the angular displacement of the
pendulum.

3. The best performance, defined as a balanced upright pendulum, was achieved using
Zadeh connectives, scaling as the modifier, arithmetic mean as the fusion process,
and center of gravity defuzzification. This state was only achievable for a maximum
of 8 seconds before the system became unstable (ie. the pole could no longer be kept

upright).

2 The direction output is a digital signal that connects to the EPLD on the motor control board. It controls the
switching of the FET H-bridge.
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Figure 7.13 : The system output for the pendulum control is determined by the angular
displacement of the pole from the vertical. This figure shows the effect of selecting different

fusion processes.

7.6.5 Comments

A performance improvement could be obtained by using an additional input that detects the
angular velocity of the inverted pendulum. Some mechanical improvements to the pivot
bearing would also reduce undesirable movement of the pendulum in the direction
perpendicular to the direction of the cart motion.

During development of the test-bed, and subsequent testing, the sensors were placed
under considerable mechanical stress, and their performance eventually become somewhat
degraded. This is an area that will require attention in future experiments with this test-bed.

There were noticeable changes in operation when different inferencing methods were
applied to the closed loop system. This ability of the GUI software to apply changes whilst
processing data, proved useful, and was a positive result from this case study.

Further experimentation3 with inference settings and with the shapes of membership

functions, would be useful in exploring the dynamic behaviour of the controller.

3 However time did not permit further development at this stage.
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7.7 Chapter Summary

This chapter has presented a number of case studies that show how fuzzy inferencing may be
employed in a variety of data processing tasks. The results for each case testify to the
usefulness of the fuzzy approach to information processing, and demonstrate that the
TransFuzien system provides a useful research tool for investigating fuzzy inferencing.

Some problems with the mechanical structure of the inverted pendulum apparatus need
to be resolved to investigate this real time experiment further. The pulse width modulation of
the electric motor could be replaced with a linear power amplifier, which would reduce the
harmonics generated in the motor coil by the modulating square wave. Also, velocity sensors
can be added to the apparatus to provide an additional input to the expert system. The rule

base would be change accordingly to reflect the new input data.
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Chapter VIII

THESIS SUMMARY

8.1 Discussion

This research has set out to explore the concepts of fuzzy logic, and to investigate how an
inferencing system can be developed using parallel processing concepts. The principles of
fuzzy logic have been introduced, and a number of new concepts have been proposed. These

include;

1. t-norm and t-conorm operators for fuzzy set interaction
2. operators for handling temporal aspects of knowledge representation

3. fusion operators

As the outcomes in the form of resultant membership functions, are calculated, the
inherent information content which is represented by the RMF, will vary according to the
degree to which each rule is satisfied. A method for calculating an information measure for
fused fuzzy sets has been developed and presented.

The fusing of fuzzy sets has been addressed, with common methods presented, and two
alternatives proposed. The first method is based on the proposed information measure, and the
second method is based on a sliding window average. Examples of each method have been
presented.

In considering a parallel implementation of fuzzy inferencing, it has been shown that a
suitable representation of knowledge is important, and has been achieved using fuzzy rules
which have the IF-THEN format. A fuzzy rule compiler has been presented that translates
textual rules into a format suitable for processing by the Inference Engine.

The INMOS Transputer has been used to implement the inferencing strategy proposed
in this research. A number of special factors relating to parallel processing systems have been
explained. These include data flow processing, and methods for avoiding deadlock in a multi-
processor architecture, which include the use of formal protocols for communications. The

‘inferencing modules have been successfully mapped onto a two-Transputer systen.
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The various software components that have been developed, comprise a complete fuzzy
inferencing expert system. This package has been given the name TransFuzien, which stands
for Transputer-based Fuzzy Logic Inference Engine. The system comprises a number of
components that includes, a Graphical User Interface that is designed to facilitate easy
composition of fuzzy rules, membership functions, and inferencing strategies. A number of the
dialog boxes of the GUI are shown. The GUI provides the human-computer interface to
TransFuzien, and it has been shown how the GUI is used to encapsulate and pre-process
domain knowledge, configure the inferencing module, and monitor run-time results. The GUI
adds to the ability to experiment with different inferencing strategies, and directly observe the
results.

Algorithms have been developed and presented which form the basis for fuzzy
inferencing, together with a parallel processing architecture, based on the Inmos Transputer.
The algorithms that run on the Transputer system are realised in the Occam 2 programming
language.

An electronic interface has been designed and constructed by the author to facilitate an
electronic connection between the expert system and external equipment. This interface
provides a means for reading analog and digital data, and for writing digital data to peripheral
devices.

Evaluation of the system has shown the operation of the components of the pre-
processing algorithms that form an important part of the graphical user interface. The overall
performance of this system has been demonstrated with specific examples. These include fuzzy
modeling, fuzzy pattern classification, and fuzzy control.

The results from this research obtained are positive, firstly from the point of view that a
working inferencing system using parallel processing concepts, has been developed, and
secondly, by demonstrating the outcomes of the research by the above mentioned case studies.
A performance enhancement has been demonstrated by applying parallel processing concepts.
The limitations of the system, including a limit on the number of rules to 100, and the current
number of Transputers to 2, need to be addressed in further developments. There is scope for
experimenting with various process farming strategies, which will be particularly relevant for
mapping the software to larger transputer networks. Also, the algorithms developed herein
could be applied to other types of processor target systems, apart from the Transputer.

This work has shown the importance of taking a systems approach to the investigation,

development and implementation of solutions to complex engineering problems.
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8.2 Further Work

As the system has evolved, it has become apparent to the author how this current
version of the software can be improved in many areas. This is the case with most research and
engineering projects, where subsequent improvements are made, based on the things that are
discovered during the first phase of development.

Further developments of the system can focus on a number of areas. The first is the
processing performance, which may be improved with the use of the T9000 Transputer [47].
The existing Occam code would need to be re-compiled for the T9000, and some other
changes made to the hardware interface, including the addition of an IMSC100 Parallel DS-
Link Adapter [48]. This device converts the T9000 serial protocol to the T800 serial protocol.

The second area that can be addressed, is the Graphical User Interface. It could be
modified to reflect operator preferences, such as the colours used for the various screen
displays. Also, the range of inferencing options could be enhanced. The rule compiler can be
extended to accommodate multi-consequent rules.

Next, the measure of fuzzy information is a useful quantity to calculate. It could be
displayed by the graphical user inteiface, to give an indication of the quality of the outcomes of
the expert system. This would be a subjective measure, but would be relevant and useful to
further research into fuzzy information processing.

In Chapter 2, new linguistic operators have been introduced called WAS and WILLBE.
Further analysis using these operators is required, and particularly in the area of the forecasting
methods that may be employed.

The TransFuzien system has provided a means of exploring the affects of the choice of
inferencing strategies for particular applications. The TransFuzien system could be used to
derive a method for recommending the inferencing strategy (perhaps a heuristic method) that is
best suited for the task at hand.

Further research would prove fruitful in the area of real-time data processing. The
inverted pendulum experiment is a good test-bed for exploring various inferencing
methodologies, however, particular attention needs to be given to the mechanical components
of such a system.

Increasing the number of Transputers in the system would be useful. This would
require some further effort to address the problems raised by an increase in communication

complexity, and task assignment between processors.
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Appendix A

INTRODUCTION TO THE TRANSPUTER AND OCCAM

A.1 Purpose

The purpose of this appendix is to introduce the Inmos Transputer] [43], and the Occam 2
programming language. In the first section, the architecture and the performance specifications
of the Transputer are presented. The next section explains key aspects of the Occam 2 which is
the native language of the INMOS Transputer.

A parallel processing paradigm is central to this study, and this chapter explains why

Occam is useful in developing parallel algorithms.

A.2 The Transputer

The T800 Transputer is a 32 bit microcomputer combining features such as 4K bytes of on-
chip memory, four serial links, a 32 bit floating point unit, and event handling hardware. The
block diagram of the T800 Transputer is shown in figure A.1. The serial communications links
on each processor allow for a high degree of inter-connectability, giving the system designer
the ability to hardwire a variety of topologies. Figure A.2 shows some of the possible
configurations.

Additional architectural ﬂcxiBility can be achieved by using a 32 way programmable
cross-bar switch, that allows Transputers to be connected to one another in a more dynamic
structure. This facility is not being used in this research. The links of the Transputer connect
directly to the C004 device, and the switch is programmed via it’s own serial channel.

One of the development products manufactured by Inmos, is the BOO8 Motherboard [49],
which provides ten positions for Transputer modules (TRAMs). Each TRAM contains a
Transputer, local memory, and some interface logic. The B008 is a 3U size card that plugs into
one of the slots of an IBM compatible personal computer.

The Transputer links enable processing architectures to be developed that can closely map

the data flow requirements of the problem.

'In this study, T800 Transputers are used. The T9000 Transputer has a different architecture to the T800, and
will not be described herein.
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Figure A.1: Block diagram of the T800 Transputer Architecture
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T 1Y T
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T T 1

Figure A.2 : The four serial links allow various architectures to be created using the
Transputer. This ability to connect Transputers to each other directly?, without ‘glue’ logic,
makes them particularly useful in building hardware architectures that best suit a particular
data processing algorithm .

2 Within the limitation of the four serial links.
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A.3 The Occam programming Language

The Occam programming language [35] was developed specifically for the INMOS
Transputer. Occam is a concurrent language, as distinct from C, FORTRAN, PASCAL, and
other common languages which are designed for Von Neumann processing architectures.

An important point to be made here, is that Occam is a static language [50], in that all of
the storage structures must be defined before compiling the code. This fact impacts on this
work, as will be pointed out in a later chapter.

In Occam, the fundamental unit is the process. A process is a module which performs
some specific task of data transformation (eg. calculate the sum of a series of numbers and
output the result). A process P must be able to communicate with it’s neighbourhood, and this
is done via channels. A process can have any number of logical channels declared, but let us
consider for now a simple case of one input channel and one output channel. In our example,
P receives the numerical data on it's input channel, performs the sum, and when all input data
has been received, outputs the result on it's output channel.

There are some fundamental constructs in Occam, being PAR and SEQ. The SEQ
statement means perform the following processes in sequence. The PAR statement means

perform the following processes in parallel.

For example:

SEQ PAR
process A process A
process B process B

Communication between processes is synchronous and is accomplished by channels
which must be declared. Communication protocols can be established for each channel. The
CHAN statement declares a communication channel for passing data between two processes.

For example, CHAN input INT, declares a channel which can pass only integers.
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A simple example illustrates how channels interact with processes. Here, an integer is

read from the input channel, and is then sent out along the output channel.

SEQ
input.channel.name ? the.number

output.channel.name ! the.number

Particular attention must be payed to the scope of a statement. The SEQ or PAR constructs
define the beginning of a sequence of process statements. The scope 1is defined by using

indenting. For example,

PAR
SEQ -- Block A
input.channel ? the.number
output.channel ! the.number
SEQ -- Block B
variable := 42

This code segment defines two process blocks, A and B, which are performed in parallel. Each
block is indented by two spaces from the PAR statement.

With Occam it is possible to define the type associated with a channel. This is called the
channel protocol. The protocol statement appears in the channel declaration, and defines the
type of data which is permitted to flow in this channel. More than one data type can be
associated with a channel, as long as the types are listed in the protocol statement. For

example, consider a process with two input channels, channell and channel?.

CHAN OF INT channell;
CHAN OF BYTE channel2;
PAR
INT x,y:
BYTE z;
SEQ
--- do some processing
channell ! x; -- output the results
channel2 !y;
channel2 ! z;

This section of code can be simplified, and made more readable, by using the PROTOCOL

statement to combine all communications into one channel.
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PROTOCOL special IS INT; INT; BYTE;
CHAN OF special channel;
PAR
INT x,y:
BYTE z;
SEQ
--- do some processing
channel ! x,y, z; -- output the results

Another special communication feature of Occam is the Tagged Protocol. This protocol
allows a channel to carry any one of a list of data types which have been declared by the
Protocol statement. Protocols are used extensively in this study. An example of a protocol

statement is the following;

PROTOCOL mix
CASE
data; INT; INT; BYTE; REAL32
control; [2]BYTE
stop.signal

Channel can be declared to carry mixed protocols.

CHAN OF mix forward, backward;
[4]CHAN OF distributor;

Each message is tagged by a meaningful name. There is no value associated with a tag. Tagged
protocols are used in this system as a means of identifying the various messages which flow

from one process to another.

Repetition and loops are supported in Occam using the SEQ and WHILE constructs. These

have the following form:

SEQi=0FORn SEQ
SOmMe.process i:=0
sum := 0
WHILEi<n
SEQ

sum ;= sum + i
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The ALT construct provides a method to select an input from a number of inputs. The
input that is the first to have data ready, is the one which is read by the process. A multiplexer

is an example of the use of the ALT construct.

ALT i = (0 FOR number.of.inputs)
multiplexer.input.channels[i] 7 x
multiplexer.output.channel ! x

Shared variables, or global variables, can only be read in Occam. This avoids possible
indeterminate results if two or more parallel processes tried to write to the same variable at the
same time.

A major advantage of Occam is it’s ability to be used to implement algorithms that have
been designed using structure software techniques. In particular, processing systems that are
specified using data flow diagrams (DFDs) can readily be coded in Occam. The data flow is

represented by channels connecting processes

A.4 Summary

This appendix has introduced the Transputer and its programming language, Occam. The
architecture of the Transputer provides many features that make it attractive for multi-
processor networks, and for implementing parallel algorithms using Occam.

Occam as a programming language does not provide the flexibility of other high level
languages such as C, but as it has been designed specifically to run on the Transputer
architecture, it is efficient. Occam also provides a means of implementing processing
algorithms, which have been specified using data flow techniques, in a straight forward

manner. This is an advantage when writing software.

=y
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Appendix B

Listing of the Main OCCAM Software Routines

for the Inference Engine.
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Protocols for Channel Communications

--NOTE This list of protocols is divided into DESTINATION headings.
--The protocols are listed according to where the message is going.

PROTOCOL MESSAGE

CASE
--*%* messages for all modules ***
t.stop
t.execute
t.report.type; INT
--**%* megsages for supervisor ***
t.system.mode; INT --open loop or control loop mode

t.Super.status

t.supervisor.response;  BYTE

t.dof.information; INT::[JBYTE --length, list of dofs originating from FIE module.
t.evaluate.rulebase --tell the SUPER to evaluate rulebase

--**¥ messages for data base ***

t.send.crisp.data; INT --request crisp data for this output
t.send.fmf.data INT --request fmf data for this output
t.DBM.reply

t.input.name, INT::[]BYTE

--t.output.data; INT::[IBYTE

t.output.data; INT::[JINT; INT::[JINT

t.file.input.vector; INT:[JINT --data vector from a file
t.DBM.ack.stop

t.get.input.vector --get input vector from plant
--t.input.vector; INT; INT::[JINT --time stamp, size, vector data
t.input.vector, INT::[JINT --size, vector data
t.request.input.vector;  INT --send request to read an input
t.the.inputvalue; INT::[JINT --size, Plant input vector
t.PC.input.vector; INT::[JINT --user supplied input vector
t.send.dof .data; INT --rule number

t.send.rmf.data; INT --send rmfs to GUI

--*¥* messages for knowledge base ***

t. KBM.status

tknowledgebase.ping; INT --can return the number sent by PC
t.number.of.rules; INT --Tell KB how many rules there are.
t.add.rule; INT;INT;INT::[]INT --rule.no, output.id, size, array
t.delete.rule; INT --rule.number

t.add.member; INT; INT::[JINT --member no, size, array
--add a membership function to the membership store

t.set.rule.weight; INT; INT --rule number, weight

--rule number, followed by percentage, 0 to 100%

t.rule.on; INT  -- rule number, evaluate

t.rule.off; INT  -- rule number, don't evaluate

t.rule.list; INT; INT; INT::[JINT --rule no., output no., size, array
t.rule.info; INT::[IBYTE

t.sendrules.in.rulebase  --a command to tell the KBM to tell the FIE how many rules there are to process.
t.send.rule; INT --send rule list for this rule number

--arequest to send a rule, received from the inference engine
t.request.membership.value; INT; INT - member.number, x.value
-- lookup a membership value with this x value

t.send.mfs.to.FIE --t.request. membership.functions
t.number.of.outputs; INT

-k messages for inference engine ***

t.inference.ping; INT

tFIEstatus; INT

t.request.status; INT

t.inference.methods; INT; INT; INT; INT --connective, modifier, fusion, defuz
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t.forced.rule;
t.rule.data;

t.evaluate.rule
t. membership.value;

t.membership.functions;

t.reset.plant
t.shutdown.plant
t.set.pwm;
t.pulse.width.mod;
t.setoutput;

INT; INT::[JINT --rule.number, size, rule.list

INT; INT::[JINT --rule.number, size, rule.list

—-Data sent from the knowledge base in response to a request
--sent by the inference engine.

--This data is a single rule from the rule store.

—tell the inference engine to evaluate a rule

INT; INT --membership value from the knowledge store
--member id, member value

INT::[JINT -- Array of MFs.

-- First 100 values are MF zero

--Second 100" " MF one etc.

BYTE
BYTE  -- 0=100% on, 255 = off
INT; INT  -- output number, value

t.input.data; INT::[JINT
t.request.state

t.actual.output.id; INT::[JINT
t.rules.per.output; INT::[JINT
t.rule.output.map; INT::[JINT

t.send.inference.methods
--These messages are then acted upon by the destination process.

PROTOCOL RESULTS --Results sent by rule node back to communicator
CASE

-- tag followed by information

t.get.input.data
t.rmf.data;
t.fmf.data;
t.dofs.data;
t.weighted.dof.data;
t.dof.data;

t.error,
t.send.input.data;
t.input.data;
t.crisp.data;
t.crisp.value;
t.output.destinations;

INT; INT::[JINT --rule number, size, array
INT; INT; INT::[JINT --output #, crisp value, length, array
INT::[JINT --dofs

INT::[JINT --dofweighted

INT

BYTE -- error tag followed by error type
INT -- source

INT::[JINT

INT::[JINT

INT

INT::[JINT --sink ids.
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VAL linkOout IS O :

VAL linkloutIS 1 :

VAL link2out IS 2 :

VAL link3out IS 3 :

VAL linkQOin 1S4 :

VAL linklin IS5 :

VAL link2in IS 6 :

VAL link3in IS 7 :

CHAN OF RESULTS DBM.Super, FIE.DBM, DBM.FIE, Nodel FIE, Node2.FIE:
CHAN OF MESSAGE Super.KBM, KBM.Super, Super.FIE, FIE.Super, Super.DBM,

FIE.KBM, KBM.FIE, FIE.Nodel, FIE.Node2:

VAL number.of.sensors IS 5:
VAL PC.module IS 100:

VAL DBM.module IS 101:
VAL KBM.module IS 102:
VAL FIE.module IS 103:

VAL acknowledge.stop IS 200:
VAL DBM.ack.stop IS 205:
VAL default.rule.length IS 80:
VAL default.rmf.size IS 101:
VAL default.fmf.size IS 101:

VAL ID.very IS 0:

VAL ID.slightly IS 1:

CHAN OF MESSAGE from.C012: -- internal 'logical’ channels
CHAN OF ANY t0.C012: -- internal 'logical' channels

CHAN OF BYTE DBM .Plant, Plant. DBM:

#USE userio

#USE snglmath

--NOTE This list of protocols is divided into DESTINATION headings.
--The protocols are listed according to where the message is going.

PROC FuzienProc(CHAN OF MESSAGE from.C012, CHAN OF ANY t0.C012,
CHAN OF BYTE DBM.Plant, Plant DBM,
CHAN OF MESSAGE FIE.Node2,
CHAN OF RESULTS Node2.FIE)
VAL linkOout IS O :
VAL linkloutIS 1 :
VAL link20ut IS 2 :
VAL link3out IS 3 :
VAL linkOin 1S4 :
VAL linklin IS5 :
VAL link2in IS 6 :
VAL link3in IS 7 :
CHAN OF RESULTS DBM.Super, FIE.DBM, DBM FIE, Nodel.FIE, Node2.FIE:
CHAN OF MESSAGE Super.KBM, KBM.Super,
Super.FIE, FIE.Super,
Super.DBM,
FIE.KBM, KBM.FIE,
FIE.Nodel, FIE.Node2:

VAL number.of.sensors IS 5: --ditto
VAL PC.module IS 100:

VAL DBM.module IS 101:

VAL KBM.module IS 102:

VAL FIE.module IS 103:

VAL acknowledge.stop IS 200:
VAL DBM.ack.stop 1S 205:
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VAL default.rule.length IS 80:
VAL default.rmf.size IS 101:
VAL default.finf.size IS 101:

VAL ID.very IS 0:

VAL ID.slightly IS 1:

CHAN OF MESSAGE from.C012: -- internal ‘logical’ channels
CHAN OF ANY 10.C012: -- internal 'logical' channels

CHAN OF BYTE DBM.Plant, Plant. DBM:

PLACE from.C012 AT linkQin :
PLACE t0.C012 AT linkQout :
PLACE DBM.Plant AT linklout:
PLACE Plant.DBM AT linklin:

PLACE Node2 . FIE AT link2in:
PLACE FIE.Node2 AT link2out:
PROC delay (VAL INT delay)
TIMER clock:
INT current.time:
SEQ
clock ? current.time
clock ? AFTER current.time PLUS delay
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PROC Supervisor(CHAN OF MESSAGE f{rom.C012, CHAN OF ANY t0.C012,
CHAN OF MESSAGE Super.DBM, Super.FIE, FIE.Super,
Super. KBM, KBM.Super,
CHAN OF RESULTS DBM.Super )
VAL INT TIM.P1.7 IS O:
VAL INT TIM.P1.6 IS I:
VAL INT TIM.P1.5 IS 2:
VAL INT TIM.PORT3 IS 3:
VAL INT TIM.PWM IS 4:
VALINTPC.GUI IS 5:
VAL INT PCFILE IS 6:
VAL INT size.of.Plant.vector IS 20:
VAL INT length.of.rule 1S 80:
VAL INT size.of pipeline 1S 1:
VAL INT max.message.length IS 4000:
VAL INT data.size IS 101:
BOOL running:
INT  system.mode:
INT dof, pointer, op, crisp.index, index1, index2, base.index:
INT v,k stop.char, report.type, status, ping.number, N:
INT connective, modifier, fusion, defuz:
INT m.size, member.number, number.of.outputs:
[101]INT membership.data:
INT length, status, name.size, temp1, temp2:
INT rule.number, rule.weight, list.length, dumm, output.id:
[8OJINT rule.list:
[20]BYTE input.name:
[20]INT output.data:  --holds crisp results of inferencing
[100]{101]INT rmf.store: -- [rule.number][index]
[100][101]INT cmf: -- [rule.number][index]
[101JINT fmf:
[20]INT crisp.output:
[10JINT output.destination:
BYTE dummy, pwm.value, temp:
INT input.source, output.number, output.value, output.id:
[201INT PC.input.data:
[20]INT file.input.data:
[20]INT Source.input.vector: -- vector of 20 input sensor values
INT number.of.rules, rule.id:
[100]INT weighted.dof.array: -- 0% to 100%
[100]INT dof.store:
INT size, sizel, size2, crisp.value:
[101]INT rmf.from.DBM:
[100]BYTE dof.information:
BYTE input.label:
[SIBYTE analog.data:
SEQ
-~ There are 4 bi-directional I/O channels
-- PC, KnowledgeBase, DataBase, FuzzyEngine
running := TRUE
number.of.rules := 0
list.length := 80
SEQi=0FOR 20
Source.input.vector[i] := 0
SEQi=0FOR 101
rmf.from.DBM[i] :=0
SEQi=0FOR 100
SEQj=0FOR 101
rmf.store[i](j] := 0
SEQi=0FOR 100
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weighted.dof.array[i] := 0
SEQi=0FOR 101
fmffi] :=0
SEQi=0FOR 20
crisp.output[i] :=0
WHILE running
SEQ
from.C012 ? CASE --get data from end of pipeline
t.stop
SEQ
--Super.Com ! acknowledge.stop --send acknowledge back to PC
Super.FIE ! t.stop
Super.DBM ! t.stop
Super.KBM ! t.stop
t.execute
SKIP
t.system.mode; system.mode
Super.KBM ! t.system.mode; system.mode
t.Super.status
SKIP
t.supervisor.response; dummy
SKIP
t.number.of.rules; number.of.rules
Super.FIE ! t.number.of.rules; number.of.rules
t.evaluate.rulebase -- START processing
Super.FIE ! t.evaluate.rulebase
t.send.dof.data; rule.number -- send the dofs to the GUI
SEQ
Super.DBM ! t.send.dof.data; rule.number
DBM.Super ? CASE
--receive dof
t.dofs.data; size::dof .store
SKIP
SEQ i = 0 FOR number.of .rules
t0.C012 ! dof.store[i]
t.send.rmf.data; rule.number -- send rmf for this rule
SEQ
Super.DBM ! t.send.rmf.data; rule.number
DBM.Super ? CASE
t.rmf.data; rule.number; length::rmf.from. DBM
SKIP
--NOW SEND CORRESPONDING RMF
SEQ j=0FOR 101
t0.C012 ! rmf.from.DBM([j]
t.send.fmf.data; output.number
SEQ
Super.DBM ! t.send.fmf.data; output.number
DBM.Super ? CASE
t.fmf.data; output.number; crisp.value; length::fmf
SKIP
--Send FMF to the GUI
t0.C012 ! crisp.value
SEQi=0FOR 101
t0.C012 ! fmfi]
t.send.crisp.data; output.number
SEQ
Super.DBM ! t.send.crisp.data; output.number
DBM.Super ? CASE
t.crisp.data; size::crisp.output
SKIP



ot
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SEQ i = 0 FOR number.of.outputs
SEQ
t0.C012 !
t0.C012 ! crisp.output][i]
t.input.name; name.size::input.name
SKIP
t.file.input.vector; length::file.input.data
SKIP
t.sctoutput; output.number; output.value
Super.DBM ! t.setoutput; output.number; output.value
t.get.input.vector -- Read input vector independantly

SEQ
Super.DBM ! t.get.input.vector --REQUEST INPUT VECTOR
DBM.Super ? CASE --WAIT HERE FOR REPLY
t.input.data; length::Source.input.vector
SKIP

SEQ i = 0 FOR size.of Plant.vector --SEND PLANT VECTOR TO GUI
t0.C012 ! Source.input.vector[i]
t.PC.input.vector; length::PC.input.data
Super.DBM ! t.PC.input.vector; length::PC.input.data
t.KBM.status
Super.KBM ! t KBM.status
t.knowledgebase.ping; ping.number
SKIP
t.inference.methods; connective; modifier; fusion; defuz
Super. KBM ! t.inference.methods; connective; modifier; fusion; defuz
t.add.rule; rule.number; output.id; list.length::rule.list
Super. KBM ! t.add rule; rule.number; output.id; list.length::rule.list
t.delete.rule; rule.number
Super.KBM ! t.delete.rule; rule.number
t.rule.on; rule.number
SKIP
t.rule.off; rule.number
SKIP
t.send.mfs.to.FIE
Super.KBM ! t.send.mfs.to.FIE
t.number.of .outputs; number.of.outputs
SEQ
Super. KBM ! t.number.of .outputs; number.of.outputs
Super.FIE ! t.number.of.outputs; number.of.outputs
t.FIE.status; status
Super.FIE ! t.request.status; status --request FIE status
t.set.rule.weight; rule.number; rule.weight
SKIP
t.add.member; member.number; m.size::membership.data --id=0,1,2
Super.FIE ! t.add.member; member.number; m.size::membership.data
t.pulse.width.mod; pwm.value
Super.DBM ! t.pulse.width.mod; pwm.value --set the pwm
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PROC DataManager(CHAN OF MESSAGE Super.DBM,

CHAN OF RESULTS DBM.Super, FIE.DBM, DBM.FIE,
CHAN OF BYTE Plant.DBM, DBM.Plant)

—-These constants identify the source of data vectors that flow

--into the Data manager.

--Data may come from a file, the plant, the printer port Iptl,

--or the serial port com1.

--Other sources can be added later.

VAL INT data.size 1S 101:

VAL INT length.of.dof.store IS 100:

VAL INT maximum.input.store.depth IS 5:
VAL INT second IS 5000:

VAL INT file.source IS O:

VAL INT plant.source IS 1:

VAL INT Iptl.source IS 2:

VAL INT coml.source IS 3:

VAL INT PC.source IS 4:

VAL INT TIM.PORT.1.7 IS O:

VAL INT TIM.PORT.1.6 IS 1:

VAL INT TIM.PORT.1.5 IS 2:

VAL INT TIM.PORT3 IS 3:

VAL INT TIM.PWM IS 4:

VALINTPC.GUI  IS5:

VAL INTPCFILE ISé6:

VAL INT HISTORY IS7:

BOOL manager.running:

INT system.mode:

TIMER dbm.time:

INT i, j, k, dof, number.of.outputs, number.of.rules:

INT sink, sink.word, output.number, output.value, vector.length, status:
-- store input vectors of length 20, from up to 4 sources

- eg. file, plant, Ipt1, com1

INT input.source, data.word:

[20] INT PC.input.vector:

[20] INT history.buffer: -- just store previous vector

-- 20 input channels

[20][maximum.input.store.depth] INT input.vector.store:
[20] INT Source.input.vector:

[20] INT Source.history.buffer: -- just store previous vector
[20] INT output.data: -~ value

[10] INT output.destination: -- destination

INT size, data.size, destination.size, stop.char, store.pointer:
INT input.number, input.value, rule.number:

BYTE pwm.value:

BYTE data.byte:

[100]INT weighted.dof.array:

[100]INT dof.store:

(1017INT rmf: -- [output number][index]
[1001[101]INT rmf.store: -- [rule.number][index]
[101]JINT fmf: -- {output number][index]

[10][101]INT fmf.store: -- [output number][index]
[1O1]INT transmit.buffer:
[5IBYTE analog.data:
[20]INT crisp.data:
SEQ
manager.running := TRUE
number.of.rules :=0
output.value := 0
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data.byte := 0(BYTE)
SEQi=0FOR 20
Source.input.vector[i] := 0
-- Initialsie dofs for rules.
SEQi=0FOR 100
dof.store[i] := 0
SEQi=0FOR 100
SEQj=0FOR 101
rmf.store[i][j] :==0
SEQi=0FOR 100
weighted.dof.array[i] := 0
SEQi=0FOR 20
output.data[i] := 0
SEQi=0FOR 10
output.destination[i] := 0
SEQi=0FOR 101
fmffi] :=0
SEQi=0FOR 10
SEQj=0FOR 101
fmf.store[i](j] := 0
SEQi=0FOR 20
crisp.datali} := 0
SEQi=0FOR 101
transmit.buffer(i] := 0
WHILE manager.running
PRIALT -- monitor the incoming channels
--The storage structures can be updated by any of
--the following channels as this is a sequential operation.
Super.DBM ? CASE
t.system.mode; system.mode
SKIP
t.number.of .outputs; number.of.outputs
SKIP
t.get.input.vector
—- Command '2' is the Read Analog command for the 87C752.

SEQ
DBM.Plant ! 2(BYTE) -- Send analog value
DBM.Plant ! 0(BYTE) -- Analog channel number {0,1,2,3,4}
Piant. DBM ? data.byte
DBM.Plant ! 2(BYTE) -- Send analog value
DBM.Plant ! 0(BYTE) -- Analog channel number {0,1,2,3,4}

Plant.DBM ? data.byte

-- data.byte = [0..255]

--Read the value, then scale it to [-50..+50]
Source.input.vector[0]:=(( (INT data.byte) *100)/255)-50
--Plant.input.vector[0] := 20(BYTE)-- Read from C012 link

DBM.Plant ! 2(BYTE) -- Send analog value

DBM.Plant ! I(BYTE) -- Analog channel number {0,1,2,3,4}
Plant.DBM ? data.byte

DBM.Plant ! 2(BYTE) -- Send analog value

DBM.Plant ! 1(BYTE) -- Analog channel number {0,1,2,3,4}

Plant.DBM ? data.byte
--Read the value, then scale it to [-50..+50]
Source.input.vector[1}:=((INT data.byte )*100)/255)-50

DBM.Plant ! 2(BYTE) -- Send analog value

DBM.Plant ! 2(BYTE) -- Analog channel number {0,1,2,3,4}
Plant.DBM ? data.byte

DBM.Plant ! 2(BYTE) -- Send analog value

DBM.Plant ! 2(BYTE) -- Analog channel number {0,1,2,3,4}

Plant.DBM ? data.byte
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_-Read the value, then scale it to [-50..4-50]
Source.input.vector[2] := ((INT data.byte )*100)/255)-50

DBM.Plant ! 2(BYTE) -- Send analog value

DBM.Plant ! 3(BYTE) -- Analog channel number {0,1,2,3,4}
Plant.DBM 7 data.byte

DBM.Plant ! 2(BYTE) -- Send analog value

DBM.Plant ! 3(BYTE) -- Analog channel number {0,1,2,3,4}

Plant.DBM 7 data.byte
--Read the value, then scale it to [-50..450]
Source.input.vector[3] := (((INT data.byte)*100)/255)-50

DBM.Plant ! 2(BYTE) -- Send analog value

DBM.Plant ! 4(BYTE) -- Analog channel number {0,1,2,3,4}
Plant.DBM ? data.byte

DBM.Plant ! 2(BYTE) -- Send analog value

DBM.Plant ! 4(BYTE) -- Analog channel number {0,1,2,3,4}

Plant.DBM ? data.byte
__Read the value, then scale it to [-50..450]
Source.input.vector[4] := ((INT data.byte)*100)/255)-50
DBM.Super ! t.input.data; 20(INT)::Source.input.vector
t.setoutput; output.number; output.value --come her to test TIM
--The output.value defines the bit address and it's state.
SEQ
IF
(output.number = TIM.PORT.1.5) AND ( output.value = 0)
SEQ
DBM.Plant ! 8 BYTE) -- Send command type 2/3=8
DBM.Plant ! O(BYTE) -- Send command value
(output.number = TIM.PORT.1.5) AND ( output.value = 1)
SEQ
DBM.Plant ! 8 BYTE) -- Send command type 273=8
DBM.Plant ! I(BYTE) -- Send command value
(output.number = TIM.PORT.1.6) AND ( output.value = 2)
SEQ
DBM.Plant ! 8 BYTE) -- Send command type 273=8
DBM.Plant ! 2(BYTE) -- Send command value
(output.number = TIM.PORT.1.6) AND ( output.value = 3)
SEQ
DBM .Plant ! §(BYTE) -- Send command type 273=8
DBM.Plant ! 3(BYTE) -- Send command value
(output.number = TIM.PORT.1.7) AND ( output.value = 4)
SEQ
DBM.Plant ! 8 BYTE) -- Send command type 2"3=8
DBM Plant ! 4BYTE) -- Send command value
(output.number = TIM.PORT.1.7) AND ( output.value = 5)
SEQ
DBM.Plant ! 8(BYTE) -- Send command type 2/3=8
DBM.Plant ! 5(BYTE) -- Send command value
output.number = TIM.PWM
-~ Command '4' is the PWM command for the 87C752.
SEQ
DBM.Plant ! 4BYTE) -- 0 = 100% on, 255 = off
DBM.Plant ! (BYTE output.value) -- 0 = 100% on, 255 = off
TRUE
SKIP
t.stop
SKIP
t.PC.input.vector; vector.length::PC.input.vector
SEQ
--Increment store pointer
store.pointer := store.pointer + 1
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IF
store.pointer > maximum.input.store.depth
store.pointer := 0
TRUE
SKIP
SEQ i =0 FOR vector.length :
input.vector.store[i][store.pointer] := PC.input.vector[i]
t.reset.plant
SKIp
t.shutdown.plant
SKIP
t.pulse.width.mod; pwm.value --0=100% on, 255 = off
-- Command '4' is the PWM command for the 87C752.
SEQ
DBM.Plant ! 4(BYTE) -- 0 = 100% on, 255 = off
DBM.Plant ! pwm.value -- 0 = 100% on, 255 = off
t.send.dof.data; rule.number
SEQ
DBM.Super ! t.dofs.data; 100(INT)::dof.store
.send.rmf.data; rule.number
SEQ
SEQi=0FOR 101
transmit.buffer(i] ;= rmf.storefrule.number][i]
DBM.Super ! t.rmf.data; rule.number; 101(INT)::transmit.buffer
t.send.fmf.data; output.number
SEQ
SEQi=0FOR 101
transmit.buffer[i] := fmf.store[output.number]{i]
output.value := output.data[output.number]
DBM.Super ! t.finf.data; output.number;output.value; 101(INT): :transmit.buffer
t.send.crisp.data; output.number
DBM.Super ! t.crisp.data; 20(INT)::output.data

FIE.DBM ? CASE
t.get.input.data
SEQ
—- Command '2' is the Read Analog command for.the 87C752.
DBM.Plant ! 2(BYTE) -- Send analog value
DBM.Plant ! O(BYTE) -- Analog channel number {0,1,2,3,4}
Plant.DBM ? data.byte
DBM.Plant ! 2(BYTE) -- Send analog value
DBM.Plant ! 0(BYTE) -- Analog channel number {0,1,2,3,4}
Plant.DBM ? data.byte -- data.byte = [0..255]

--Read the value, then scale it to [-50..+50]
Source.input.vector[0]:=(( (INT data.byte) *100)/255)-50

DBM.Plant ! 2(BYTE) -- Send analog value

DBM.Plant ! 1(BYTE) -- Analog channel number {0,1,2,3,4}
Plant. DBM ? data.byte

DBM.Plant ! 2(BYTE) -- Send analog value

DBM.Plant ! 1(BYTE) -- Analog channel number {0,1,2,3,4}

Plant.DBM ? data.byte
--Read the value, then scale it to [-50..+50]
Source.input.vector[1]:=((INT data.byte )*100)/255)-50

DBM.Plant ! 2(BYTE) -- Send analog value

DBM.Plant ! 2(BYTE) -- Analog channel number {0,1,2,3,4}
Plant. DBM ? data.byte

DBM.Plant ! 2(BYTE) -- Send analog value

DBM.Plant ! 2(BYTE) -- Analog channel number {0,1,2,3,4}

Plant.DBM 7 dafa.byte
--Read the value, then scale it to [-50..4+50]
Source.input.vector[2] := ((INT data.byte )*100)/255)-50
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DBM.Plant ! 2(BYTE) -- Send analog value

DBM.Plant ! 3(BYTE) -- Analog channel number {0,1,2,3,4}
Plant. DBM ? data.byte

DBM.Plant ! 2(BYTE) -- Send analog value

DBM.Plant ! 3(BYTE) -- Analog channel number {0,1,2,3,4}
Plant.DBM 7 data.byte :

--Read the value, then scale it to [-50..+50]

Source.input.vector[3] := (((INT data.byte)*100)/255)-50

DBM.Plant ! 2(BYTE) -- Send analog value

DBM.Plant ! 4(BYTE) -- Analog channel number {0,1,2,3,4}
Plant.DBM ? data.byte

DBM.Plant ! 2(BYTE) -- Send analog value

DBM.Plant ! 4(BYTE) -- Analog channel number {0,1,2,3,4}

Plant. DBM ? daia.byte
--Read the value, then scale it to [-50..450]
Source.input.vector[4] := ((INT data.byte)*100)/255)-50
DBM.FIE ! t.input.data; 20(INT)::Source.input.vector
t.send.input.data; input.source
--send value in the data buffer
IF
input.source = plant.source
DBM.FIE ! t.input.data; vector.length::Source.input.vector
input.source = PC.source
DBM.FIE ! t.input.data; vector.length::PC.input.vector
TRUE
SKIP
IF
input.source = history
--send the data stored in the history buffer
DBM.FIE ! t.history.vector; vector.length::history.buffer
t.dofs.data; size::dof.store
SKIP
t.weighted.dof.data; size::weighted.dof.array
SKIP
t.rmf.data; rule.number; size::rmf
SEQ i= 0 FOR size
rmf.store[rule.number][i]:=rmf[i]
t.fmf.data; sink.word; data.word; size::fmf
SEQ
output.data[sink.word] := data.word
SEQ i= 0 FOR size
fmf.store[sink.word][i]:=fmfli]
history.buffer{sink.word]:= output.data|sink.word] --store previous vector
--The output.value defines the bit address and it's state.

SEQ
sink := output.destination[sink.word]
output.value := data.word

IF -

(sink = TIM.PORT.1.5) AND ( output.value = 0)
SEQ
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DBM.Plant ! 8 BYTE) -- Send command type 2"3=8
DBM.Plant ! 0(BYTE) -- Send command value
SKIP
(sink = TIM.PORT.1.5) AND ( output.value = 1)
SEQ
DBM.Plant ! 8 BYTE) -- Send command type 23=8
DBM.Plant ! 1(BYTE) -- Send command value
SKIP
(sink = TIM.PORT.1.6) AND ( output.value = 2)
SEQ
DBM.Plant ! 8 BYTE) -- Send command type 2/3=8
DBM.Plant ! 2(BYTE) -- Send command value
(sink = TIM.PORT.1.6) AND ( output.value = 3)
SEQ
DBM.Plant ! 8 BYTE) -- Send command type 2"3=8
DBM.Plant ! 3(BYTE) -- Send command value
(sink = TIM.PORT.1.7) AND ( output.value = 4)
SEQ
DBM.Plant ! 8 BYTE) -- Send command type 2"3=8
DBM.Plant ! 4 BYTE) -- Send command value
(sink = TIM.PORT.1.7) AND ( output.value = 5)
SEQ
DBM.Plant ! 8 BYTE) -- Send command type 2/3=8
DBM.Plant ! 5(BYTE) -- Send command value
sink = TIM.PWM
-- Command '4' is the PWM command for the 87C752.
SEQ
DBM.Plant ! 4(BYTE) -- 0 = 100% on, 255 = off
DBM.Plant ! BYTE (output.value) -- 0 = 100% on, 255 = off
TRUE
-- Command '4' is the PWM command for the 87C752.
SEQ
DBM.Plant ! 4BYTE) -- 0 = 100% on, 255 = off
DBM.Plant ! 45(BYTE) -- 0 = 100% on, 255 = off
SEQ
DBM.Plant ! 8(BYTE) -- Send command type 2"3=8
DBM.Plant ! 1I{BYTE) -- Send command value
SEQ
DBM.Plant ! 8 BYTE) -- Send command type 2*3=8
DBM.Plant ! OBYTE) -- Send command value
t.output.destinations; size::output.destination
SKIP
t.crisp.data; size::output.data
SEQ
SEQi=0FOR size
history.buffer[i]:= output.data[i] -- just store previous vector
--The output.value defines the bit address and it's state.

-- | vAaLUE | PORT 1.7

= | ' x| x| o -
< | 2 R o | x
- | i x TR T x
I .| o | x| x
el 5 'S x | x

SEQ

output.number := output.destination[i]
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output.value := output.datafoutput.number]
IF
(output.number = TIM.PORT.1.5) AND ( output.value = 0)
SEQ
DBM.Plant ! § BYTE) -- Send command type 2"3=8
DBM.Plant ! OBYTE) -- Send command value
(output.number = TIM.PORT.1.5) AND ( output.value = 1)
SEQ
DBM.Plant ! 8 BYTE) -- Send command type 2"3=8
DBM.Plant ! [(BYTE) -- Send command value
(output.number = TIM.PORT.1.6) AND ( output.value = 2)
SEQ
DBM.Plant ! 8 BYTE) -- Send command type 2*3=8
DBM.Plant ! 2BYTE) -- Send command value
(output.number = TIM.PORT.1.6) AND ( output.value = 3)
SEQ
DBM.Plant ! 8 BYTE) -- Send command type 23=8
DBM.Plant ! 3(BYTE) -- Send command value
(output.number = TIM.PORT.1.7) AND ( output.value = 4)
SEQ
DBM.Plant ! 8(BYTE) -- Send command type 2/3=8
DBM.Plant ! 4BYTE) -- Send command value
(output.number = TIM.PORT.1.7) AND ( output.value = 5)
SEQ
DBM.Plant ! 8(BYTE) -- Send command type 2"3=8
DBM.Plant ! 5(BYTE) -- Send command value
output.number = TIM.PWM
-~ Command '4' is the PWM command for the 87C752.
SEQ
DBM.Plant ! 4(BYTE) -- 0 = 100% on, 255 = off
DBM.Plant ! BYTE output.value -- 0 = 100% on, 255 = off
TRUE
-- Command '4' is the PWM command for the 87C752.
SEQ
DBM.Plant ! 4BYTE) -- 0 = 100% on, 255 = off
DBM.Plant ! 45(BYTE) -- 0 = 100% on, 255 = off
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PROC KnowledgeManager(CHAN OF MESSAGE Super. KBM, KBM.Super,
FIE.KBM, KBM.FIE)
--The knowledge manager stores all the information required to
--describe the system that is being controlled, or the data that
--is being processed.

—-The FIE is loaded with a complete set of membership functions
--during the configuration phase.

--In this way, the movement of data is kept to a minimum, and
--the communication protocols are simplified.

--The FIE is sent one rule list at a time.
VAL INT idle.state IS 0:
VAL INT run.state IS 1:
VAL INT ready.state IS 4:

VAL INT data.size IS 101:

VAL INT default.rule.length IS 80:

VAL INT TIM.P1.7 IS O:

VAL INT TIM.P1.6 IS 1:

VAL INT TIM.P1.5 IS 2:

VAL INT TIM.PORT3 IS 3:

VAL INT TIM.PWM IS 4:

VAL INT PC.GUI IS 5:

VAL INT PC.FILE IS 6:

INT system.mode, member.number, x.value:
INT connective, modifier, fusion, defuz:
BOOL running:

INT i,j, k, temp, r.size, m.size, m.value:
INT rule.number, number.of.rules, rule.weight:

INT rule.to.delete:

INT output.id:

[80]INT rule.list:

INT member.id: --identifies the function

[100}INT rule.output.map: --Associates rule a number to an output number

[10]INT rules.per.output:
[10]INT output.flag:
[10]INT actual.output.id:

INT number.of .outputs:

INT rules.in.rulebase: --The number of rules actually stored in the transputer's memory.
[4]BYTE inference.method: --array to store the selected inference methods
[100][80TINT rulebase.store: --array to store 100 rules

[I00]INT rule.output.map: --association between rule and output
[8O]INT transmit.buffer: --array used for transmitting a rule
[100][8O]INT rulebase.image:  --array to store image of rulebase
[25]1[101]INT membership.store: --array to store 25 functions

[10]INT io.map: --array to store i0 mapping

BYTE pwm.value:

SEQ

running := TRUE
system.mode:= idle.state
connective:=0
modifier:=0

fusion:=0

defuz:=0

--initialisation
number.of.rules := 0
number.of.outputs := 0
SEQi=0FOR 100
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rule.output.mapli] :=0
SEQi=0FOR 10
SEQ
rules.per.output{i] := 0
output.flag[i] :=0
actual.output.id[i] := 0
WHILE running
PRI ALT -- monitor incoming channels
Super.KBM ? CASE
t.system.mode; system.mode
SKIP
t.inference.methods; connective; modifier; fusion; defuz
SKIP --FIE will interogate KBM to get methods
t.number.of rules; number.of.rules
SKIP
t.number.of.outputs; number.of.outputs
SKIP
t.add.rule; rule.number; temp; r.size::rule.list
SEQ
--number.of .rules ;= number.of.rules + 1
rule.output.map[rule.number] := rule.list{1] --output id is second item
SEQ i=0FORr.size
rulebase.store[rule.number][i] := rule.list[i]
output.id := temp
rule.output. mapfrule.number] := output.id --output id is second item
--This code determines what the output sinks are.
IF
output.id = TIM.P1.7
SEQ
rules.per.output[0] := rules.per.output[0] + 1
output.flag[0] := 1 --if this output is used, set flag
output.id = TIM.P1.6
SEQ
rules.per.output[1] := rules.per.output[1] + 1
output.flag[1] := 1 --if this output is used, set flag
output.id = TIM.P1.5
SEQ
rules.per.output[2] := rules.per.output[2] + 1
output.flag[2] := 1 --if this output is used, set flag
output.id = TIM.PORT3
SEQ
rules.per.output[3] := rules.per.output[3] + 1
output.flag[3] := 1 --if this output is used, set flag
output.id = TIM.PWM
SEQ
rules.per.output[4] := rules.per.output[4] + 1
output.flag[4] := 1 --if this output is used, set flag
output.id = PC.GUI
SEQ
rules.per.output[5] := rules.per.output[5] + 1
output.flag[5] := 1 --if this output is used, set flag
output.id = PC.FILE
SEQ
rules.per.output[6] := rules.per.output[6] + 1
output.flag[6] := 1 --if this output is used, set flag
output.id =7
SEQ
rules.per.output[7] := rules.per.output[7] + 1
output.flag[7] := 1 --if this output is used, set flag
output.id = 8
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SEQ
rules.per.output[8] := rules.per.output[8] + 1
output.flag[8] ;= 1 -—-if this output is used, set flag
output.id =9
SEQ
rules.per.output[9] := rules.per.output[9] + 1
output.flag[9] := 1 --if this output is used, set flag
TRUE
SKIP
-.NOW CHECK WHICH OUTPUTS ARE USED BY TESTING WHICH FLAGS ARE SET
j:=0
SEQi=0FOR 10
IF
output.flag[i] = 1
SEQ
actual.output.id(j} ;=1
j:=j+1 --j will equal the number of outputs
TRUE
SKIP
KBM.FIE ! t.rules.per.output; 10(INT)::rules.per.output
KBM.FIE ! t.actual.output.id; 10(INT)::actual.output.id
KBM.FIE ! t.rule.output.map; 100(INT)::rule.output.map
t.delete.rule; rule.to.delete
SEQ
--update number of rules
number.of.rules := number.of.rules - 1
INT16 k:
SEQ i = 0 FOR number.of.rules
IE
i <> rule.to.delete
SEQ k=0FOR 50 --length of a rule list
rulebase.image[i][k] := rulebase.store[i] (k]
TRUE -- don't copy this rule
SKIP
SEQ i = 0 FOR number.of.rules
SEQ k=0 FOR 50 --length of a rule list
rulebase.store[i][k] := rulebase.image[i][k]
t.rule.on; rule.number
SKIP --turn this rule on if it is off (set weight to 100%)
t.rule.off; rule.number
SKIP --turn this rule off if it is on (set weight to 0%)
t.send.mfs.to.FIE
SEQ --send a copy of the 25 membership functions to FIE
k=0
-- Fill read transmit buffer
SEQi=0FOR 25
SEQj=0FOR 101
SEQ
transmit.buffer[k]:=membership.store[i][]]
k=k+1
—-buffer is filled, so now transmit to FIE
KBM.FIE ! t. membership.functions; k::transmit.buffer
FIE.KBM ? CASE
t.send.rules.in.rulebase
KBM.FIE ! t.number.of.rules; number.of.rules
--tell FIE how many rules there are
t.send.inference.methods
KBM.EIE ! t.inference.methods; connective; modifier; fusion; defuz
t.send.rule; rule.number
--forces KBM to send a rule to FIE
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SEQ
SEQ i =0 FOR 80(INT)
transmit.buffer[i] := rulebase.store[rule.number][i]
KBM.FIE ! t.rule.data; rule.number; default.rule length::transmit.buffer
t.request. membership.value; member.number; x.value
SEQ - ‘
--lookup the value requested
m.value := membership.store[member.number][x.value]
--now send the value
KBM.FIE ! t. membership.value; member.number;, m.value
t.request.state
KBM.FIE ! t.system.mode; system.mode
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PROC InferenceEngine(CHAN OF MESSAGE Super FIE, FIE.Super,
KBM.FIE, FIE.KBM, FIE.Nodel, FIE.Node2,
CHAN OF RESULTS Nodel.FIE, Node2.FIE,
CHAN OF RESULTS FIE.DBM, DBM.FIE)
VAL Process.Stopped IS O:

VAL Process.Idle IS 1:

VAL Process.Running IS 2:

VAL size.of rmf 1S 101:
VAL AND.logic 1So:

VAL OR.logic IS 1:

VAL NOT.logic 1S 2:

VAL Zadeh.name 1S 0:

VAL Giles.name IS 1:

VAL Weber.name IS 2:

VAL Hamacher.name IS 3:

VAL Yager.name IS 4:

VAL Dubois.name IS 5:

VAL INT default.rmf.size IS 101;
VAL INT default.fif.size IS 101:
VAL NumberOfTransputers IS 2:
VAL INT data.size IS 101:
VAL INT idle.state IS O:

VAL INT run.state IS 1:

VAL INT ready .state IS 4:

VAL INT t.IF IS 0:

VAL INT t.INPUT IS 1.

VAL INT t.IS IS 2.

VAL INT t MEMBER IS 3:
VAL INT t HEDGE IS 4:

VAL INT t AND IS 5:
VAL INT t.OR 1S 6:
VAL INT t NOT IS7:
VAL INT t THEN IS 8:

VAL INT t OUTPUT IS 9:
VAL INT t OUTPUT.MEMBER IS 10:
VAL INT tINPUT.MEMBER IS 11:

[100]INT dof.store:

INT system.mode, i, index, temp2, length, data.value: --Idle, Running, Stop
INT connective, modifier, fusion, defuz:

BOOL running, DONE.FLAG:

INT connective, modifier.type, fusion, defuzzify:

INT  vector.time.stamp, vector.length:

[207INT input.vector.data:

INT number.of.rules, rule.id, rule.count, FIE.rule.count, output.id:

[B80]INT Rule.Array:

[201BYTE Input.Vector: -- used by procedure "CalcRuleList"
[100]INT rule.weights: -- stores the rule weights set by the GUI
[100]JINT weighted.dofs: -- stores weighted degrees of fulfilment
INT rule.weight: -- stores weight for this rule

INT rule.number, r.size:

INT member.value, member.id:

INT m.size: -- m.size = number.of. MFs x 100
[2525]INT receive.buffer: -- accepts membership functions
[25][101]INT membership.store: -- local copy of the membership functions
INT size, number.of.outputs:

[101]INT transmit: --transmit buffer

[20]INT crisp.output:

[101]INT defuz.array:

[101]INT fuze.array:
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INT  templ, index], index2, pointer, N, base.index, k, j:

[10]INT rules.per.output:

[10]INT actual.output.id:

[100]INT rule.output.map: --Associates rule a number to an output number

INT op:

[100]INT rule.weight.store: -- array to store rule weights

[101JINT rmf: -- storage array for rmf for this process
[1001[101]INT rmf.store: -~ [rule.number]{index]

[100][101]INT cmf: -- [rule.number][index]

[10][101]INT fmf: -- [output.number][index]

[101]INT r.member: -- receive buffer for membership function

-- It then gets stored in the membership store array.
[NumberOfTransputers]INT RuleNodeState:
INT count, m, temp:
INT xvalue,dof, index, u, output.number:
INT operator.type, operator.value, membervalue:
INT  stack.pointer, u.of.x, u.x.take.1, u.x.take.2:
INT x.take.l, x.take.2:
BOOL more:
[20]INT result.stack: --Place to keep interim results
INT output.member.id:
INT rule.sent:
[2]INT RuleNodeState:

SEQ
running := TRUE
system.mode := run.state
number.of.rules := 0
RuleNodeState[0] ;=0 --T800 number 0
RuleNodeState[1] := 0 --T800 number 1
SEQi=0FOR 100
rule.output.mapli] :=0
SEQi=0FOR 10
SEQ
rules.per.output[i] := 0
actual.output.id[i] := 0
SEQi=0FOR 100
rule.weights[i] := 1
SEQi=0FOR 100
dof.store[i] :=0
SEQi=0FOR 100
weighted.dofs[i] := 1
SEQ j =0 FOR 25(INT)
SEQi=0FOR 101
membership.store[j][i]:=0 -- local copy of the membership functions
connective:=0
modifier.type:=0
fusion:=0
defuzzify:=0
SEQi=0FOR 20
Input.Vector[i] := 0(BYTE)
SEQi=0FOR 101
rmf[i] :=1
SEQi=0FOR 10
SEQj=0FOR 101
fmffi]{j] =1
SEQi=0FOR 20
crisp.outputfi] :=0
SEQi=0FOR 101
transmit[i] := 0



Appendix B  Listing of the Main Occam Software Routines for the Inference Engine

188

SEQ i=0FOR 101
SEQ
fuze.array[i} := 0
defuz.array[i] := 0
FIE.KBM ! t.send.inference.methods
KBM.FIE ? CASE
t.inference.methods; connective; modifier.type; fusion; defuz
SEQ
FIE.Nodel ! t.inference.methods; connective; modifier.type; fusion; defuz
FIE.Node2 ! t.inference.methods; connective; modifier.type; fusion; defuz
WHILE running
ALT
Super.FIE ? CASE -- get a message from the SUPERVISOR
t.stop
SEQ
FIE.Nodel ! t.stop
FIE.Node2 ! t.stop
SEQ
running := FALSE
t.inference.methods; connective; modifier.type; fusion; defuz
SEQ
FIE.Nodel ! t.inference.methods; connective; modifier.type; fusion; defuz
FIE.Node2 ! t.inference.methods; connective; modifier.type; fusion; defuz
t.set.rule.weight; rule.number; rule. weight
rule.weight.store[rule.number] := rule.weight --store weight
t.add. member; member.id; m.size::r.member
SEQ
FIE.Nodel ! t.add.member; member.id; m.size::r.member
FIE.Node2 ! t.add. member; member.id; m.size::r.member
SEQi=0FOR m.size
membership.store[member.id][i] := r.member{i]
t.number.of.outputs; number.of.outputs
SEQ
FIE.Node! ! t.number.of.outputs; number.of.outputs
FIE.Node2 ! t.number.of.outputs; number.of.outputs
t.rule.on; rule.number --master instruction to FIE
rule.weight.store[rule.number] := 100 (INT) --store weight
trule.off; rule.number --master instruction to FIE
rule.weight.store[rule.number] := 0 (INT) --store weight
t.input.vector; size::input.vector.data  --receive the input vector
SEQ
FIE.Nodel ! t.input.vector; size::input.vector.data
FIE.Node2 ! t.input.vector; size::input.vector.data
t.number.of .rules; number.of.rules
SEQ
FIE.Nodel ! t.number.of.rules; number.of .rules
FIE.Node2 ! t.number.of rules; number.of.rules
t.system.mode; system.mode
SEQ
FIE.Nodel ! t.system.mode; system.mode
FIE.Node2 ! t.system.mode; system.mode
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t.evaluate.rulebase
SEQ
system.mode := run.state

WHILE system.mode = run.state
SEQ
--Get latest input vector from the DBM
FIE.DBM ! t.get.input.data
DBML.FIE ? CASE
--the Plant input vector contains data from source
t.input.data; length::input.vector.data
SKIP
FIE.Nodel ! t.input.vector; length::input.vector.data
FIE.Node2 ! t.input.vector; length::input.vector.data
rule.count := 0
ResultsToCome := number.of.rules
TasksToDo := number.of.rules
RuleNodeState0 :=0
RuleNodeStatel := 0
more.work := TRUE

WHILE more.work
SEQ
IF
(RuleNodeState0 = 0) AND (TasksToDo > 0)
SEQ

--Get a rule from the KBM

FIE.KBM ! t.send.rule; rule.count
KBM.FIE ? CASE

t.rule.data; rule.id; r.size::Rule.Array
SKIP

FIE.Nodel ! t.rule.data; rule.id; r.size::Rule.Array

RuleNodeState0 :=1
TasksToDo := TasksToDo - 1
rule.count := rule.count + 1
(RuleNodeState0 = 0) AND (TasksToDo > 0)
SEQ
... Get next rule from KBM

FIE.Nodel ! t.rule.data; rule.id; r.size::Rule.Atray

RuleNodeState0 :=1
TasksToDo := TasksToDo - 1
rule.count := rule.count + 1
TRUE
SKIP

ALT
Nodel.FIE 7 CASE
SEQ
... Collect Results
... Send results to DBM
RuleNodeState0 := 0
ResultsToCome := ResultsToCome-1
IF
ResultsToCome =0
more.work := FALSE
TRUE
SKIP
Node2.FIE 7 CASE
SEQ
... Collect Results
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... Send results to DBM
RuleNodeStatel := 0
ResultsToCome ;= ResultsToCome-1
IF

ResultsToCome = 0

more.work := FALSE

TRUE

SKIP

--Calculate the Final Membership Function

--Fuse all rules that belong to the same output variable

--RMFs are in rmf.store[][] array

--SEQ i = 0 FOR number.of.outputs

--Each rule belongs to a particular output variable.

--We have a rule map array that identifies which output a particular

--rule belongs to. This is supplied by the pre-processing software.

--initialise cmfs

__SELECT RMFs FOR EACH OUTPUT, AND PUT INTO A MATRIX THAT IS THEN
FUZED.

--Should be able to delete this step by using intelligent pointers

--SORT ACCORDING TO OUTPUT

index! :=0

--MUST COMPARE AGAINST THE ACTUAL OUTPUT SINK, NOT JUST THE

SEQ i = 0 FOR number.of.outputs
SEQ
--NOW GET THE NEXT OUTPUT NUMBER IN THE LIST OF OUTPUTS
--EG0,1,2,4,6 NOTE..NOT CONSECUTIVE ORDER !!!!
temp?2 := actual.output.id[i]
SEQ j = 0 FOR number.of.rules
SEQ
--GET THE OUTPUT ID. FOR THIS RULE
temp]1 := rule.output.map[j]
IF -- this rule belongs to this output, then...
templ = temp2
--cmf is an array of rmfs, placed in output order
SEQ
SEQ k=0 FOR 101 --PLACE THIS RMF INTO THE ARRAY
cmf[index1]{k] := rmf.store[j][k]
index1 :=index1 + 1
templ <> temp2 -- if it does not belong, then do nothing
SKIP
TRUE -- placed here to cover all possibilities
SKIP
op:=0
index1 :=0
index2 =0
N:=0
base.index := 0
k:=0
pointer := 0
SEQ i = 0 FOR number.of.outputs -- FOR EACH OUTPUT, CALCULATE FMET(]
SEQ
pointer := actual.output.id[i] --added pointer will equal the output sink number
--Pointer must be going larger than 9 for this to fail.
--There can be up to 100 rules for a single output, and there can be
~-upto 10 outputs. Therefore, dimension of rules.per.output is [0-.9]
--N can have a value between 0 and 99.
N := rules.per.output[pointer] --was i GET NUMBER OF RULES FOR THIS OUTPUT
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_-GET THE DESTINATION FOR THIS OUTPUT
SEQj=0FOR 101
SEQ
--N = number of rules to this output
SEQ k=0FORN -- LOAD THE FUZE ARRAY
SEQ - :
fuze.array[index1] ;= cmf[index2][j]
index1 := index1 + 1
index2 := index2 + 1
index1 := 0 -- reset fuze array pointer
index2 := base.index
fmf[i][j] := Fuze(fuze.array, N, fusion) --save fmf results

--LOAD ARRAY WITH THE FINAL MEMBERSHIP FUNCTION FOR THIS OUTPUT

SEQn=0FOR 101
defuz.array[n] := fmf[i][n]
--CALCULATE THE CRISP. OUTPUT and STORE in array

--LOAD CRISP VALUE INTO THE CORRECT POSITION IN THE CRISP ARRAY

data.value := (Defuzzify (defuz.array, defuz)) - 50
crisp.output[pointer] := data.value
base.index := base.index + N -- calculate the new base index
FIE.DBM ! t.output.destinations; 10(INT)::actual.output.id
SEQ i = 0 FOR number.of.outputs
SEQ
--Load transmit buffer
SEQj=0FOR 101
transmitfj] := fmffi]{j]
--Send to DBM
FIE.DBM ! t.fmf.data; i; data.value; 101(IN'T)::transmit
--NOW SEND DATA TO DBM TO UPDATE ACTUAL OUTPUTS
--The crisp.output array contains the defuzzified data. The order within
—-this array relates to the order of the output listbox in the GUL
--Therefore, sink identifiers are not required at this point.
FIE.KBM ! t.send.inference.methods
KBM.FIE ? CASE
t.inference.methods; connective; modifier.type; fusion; defuz
SKIP
FIE.KBM ! t.request.state
KBM.FIE ? CASE
t.system.mode; system.mode
SKIP
KBM.FIE ? CASE
t.number.of.rules; number.of.rules
SKIP
t.actual.output.id; size::actual.output.id
SKIP
t.rules.per.output; size::rules.per.output
SKIP
t.rule.output.map; size::rule.output.map
SKIP
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Worker Node ( Node 2 has the same code.)

PROC Nodel(CHAN OF MESSAGE FIE.Nodel, CHAN OF RESULTS Nodel.FIE)
VAL Process.Stopped IS 0:
VAL Process.Idle IS I:
VAL Process.Running IS 2:
VAL size.of. rmf IS 101:
VAL AND.logic IS O:
VAL OR.logic IS 1:
VAL NOT.logic IS 2:
VAL Zadeh.name IS O:
VAL Giles.name IS 1:
VAL Weber.name 1S 2:
VAL Hamacher.name IS 3:
VAL Yager.name IS 4:
VAL Dubois.name IS 5:
VAL INT default.rmf.size IS 101:
VAL INT default.fmf.size IS 101:
VAL NumberOfTransputers IS 2:
VAL INT data.size IS 101:
VAL INT idle.state IS O:
VAL INT run.state IS 1:
VAL INT ready.state IS 4:
VAL INTtIF ISO:
VAL INT t.INPUT IS 1:
VAL INTtIS IS 2:
VAL INT t MEMBER IS 3:
VAL INT t.INPUT.HEDGE IS 4:
VAL INT t.AND IS 5:
VALINTtOR IS6:
VAL INTtNOT IS7:
VAL INT t.THEN IS 8:
VAL INT t.QOUTPUT IS 9:
VAL INT t.OUTPUT.MEMBER IS 10:
VAL INT t.INPUT.MEMBER IS 11:
VAL INT t.OUTPUT.HEDGE IS 12:

[100]INT dof.store:

INT system.mode, i, index, temp2, length, data.value: --Idle, Running, Stop
INT connective, modifier, fusion, defuz:

BOOL running, DONE.FLAG:

INT connective, modifier.type, fusion, defuzzify:

INT  vector.time.stamp, vector.length:

[20]INT input.vector.data:

INT number.of.rules, rule.id, rule.count, FIE.rule.count, output.id:
[80]JINT Rule.Array:

[20]BYTE Input.Vector: - used by procedure "CalcRuleList"
[100]INT rule.weights:  -- stores the rule weights set by the GUI
[100JINT weighted.dofs: -~ stores weighted degrees of fulfilment
INT  rule.weight: -- stores weight for this rule

INT rule.number, r.size:

INT member.value, member.id:

INT m.size: -- m.size = number.of. MFs x 100

[25][101]INT membership.store: -- local copy of the membership functions
INT size, number.of.outputs:

INT templ, index1, index2, pointer, N, base.index, k, j:

INT—op:

[100]INT rule.weight.store: -- array to store rule weights

{101]INT rmf: -- storage array for rmf for this process
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[100][101]INT rmf.store:  -- [rule.number][index]
{101]INT r.member: -- receive buffer for membership function
-- It then gets stored in the membership store array.
[NumberOfTransputers]INT RuleNodeState:
INT count, m, temp:
INT xvalue,dof, index, u, output.number:
INT operator.type, operator.value, membervalue:
INT  stack.pointer, u.of.x, u.x.take.1, u.x.take.2:
INT x.take.l, x.take.2:
BOOL more:
[20]INT result.stack: --Place to keep interim results
INT output.member.id:
INT FUNCTION modifier (VAL INT a, b, type)
INT modvalue:
VALOF
IF
type =0
modvalue := (a*b)/100 -- could be 100*100/100 !
type =1
SEQ
IF
a>b
modvalue ;= b --truncate
a<b
modvalue := a --below cut-off value
a=b
modvalue :=a
(type <> 0) OR (type <> 1)
modvalue :=a  -- catch anything else
RESULT modvalue

INT FUNCTION MIN (VAL INT a, b)
INT min:
VALOF

IF
a<b
min:=a
b<a
min :=b
a=b
min :=a
RESULT min

INT FUNCTION MAX (VAL INT a, b)
INT max:
VALOF

IF
a>b
max :=a
b>a
max :=b
a=b
max :=a
RESULT max
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INT FUNCTION Connective (VAL INT x, y, gamma, logic.type, name)
INT min, max, temp, answer:
VALOF
IF
logic.type = AND.logic
CASE name
Zadeh.name
SEQ
IF
X<=y
min ;= X
y <=X
min =y
TRUE
SKIP
answer ;= min
Giles.name
SEQ
answer := MAX ((x+y)-100, 0) --x,y could be 0..100
Weber.name
answer = (x*y)/100 --Normalise
Hamacher.name
answer:=((x+y)-((2-gamma)*(x*y)))/(1-((1-gamma)*(x*y)) )
Yager.name
answer = 100-MIN(1, ((1-x) ))
Dubois.name
answer = (x*y)/( MAX(x, MAX(y, gamma) ) )
ELSE
SEQ
IF
X<=y
min =X
y <=X
min =y
TRUE
SKIP
answer = min
logic.type = OR.logic
CASE name
Zadeh.name
SEQ
IF
X>=y
max := X
y>=Xx
max =y
TRUE
SKIP
answer := max
Giles.name
answer := MIN(x + y, 100)
Weber.name
answer := (x+y)-((x*y)/100)
Hamacher.name
SEQ
temp := x*y
answer := temp / ( gamma-+((1-gamma)*((x+y)-temp)) )
Yager.name -
answer := (x+y) - ((x*y)/100)
Dubois.name
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SEQ
temp := 100- (((100-x)*(100-y))/100)
answer :=temp / ( MAX(100-x, MAX(100-y, gamma) ))
ELSE
SEQ
IF
X>=y
max := X
y >=X
max =y
TRUE
SKIP
answer := max
logic.type = NOT.logic
CASE name
Zadeh.name
answer := (1 - x)
Giles.name
answer = (1 - x)
Weber.name
answer := (I - x)/(1+(gamma*x))
Hamacher.name
answer := (1 - x)
Yager.name
answer := (1 - x)/(1 + (gamma*x) )
Dubois.name
answer :=1-x
ELSE
answer := (1 - x)
TRUE
SKIP
RESULT answer

SEQ
- Initialisation
running := TRUE
system.mode := run.state
number.of.rules := 0
SEQi=0FOR 100
rule.weights[i] := 1
SEQi=0FOR 100
dof.store[i] :=0
SEQi=0FOR 100
weighted.dofsli] := 1
SEQ j = 0 FOR 25(INT)
SEQi=0FOR 101
membership.store[j]{i]:=0 -- local copy of the membership functions
connective:=0
modifier.type:=0
fusion:=0
defuzzify:=0
SEQi=0FOR 20
input.vector.data[i] :== 0
SEQi=0FOR 101
rmffi] ;=1
WHILE running
FIE.Nodel ? CASE
tstop
running := FALSE
t.inference.methods; connective; modifier.type; fusion; defuz



Appendix B Listing of the Main Occam Software Routines for the Inference Engine 196

SKIP
t.set.rule.weight; rule.number; rule.weight
rule.weight.store[rule.number} := rule.weight --store weight
t.add.member; member.id; m.size::r.member
SEQ i =0 FOR m.size
membership.store[member.id][i] := r.member|1]
t.number.of .outputs; number.of.outputs
SKIP
t.rule.on; rule.number
rule.weight.store[rule.number] := 100 (INT) --store weight
t.rule.off; rule.number
rule.weight.store[rule.number] := 0 (INT) --store weight
t.input.vector; size::input.vector.data --receive the input vector
SKIP
t.number.of.rules; number.of.rules
SKIP
t.system.mode; system.mode
SKIP
t.rule.data; rule.id; length::Rule.Array
SEQ
--The procedure is passed the rule list that is to be evaluated, together with the input vector data.
--The procedure calculates the dof, and the weighted dof of the rule, and the rmf of the rule.
—These results are stored in FREE variables that are declared outside of the PROC, and therefore have
scope that covers the procedure.
—- Rule.Array is passed to the knowledge base for storage, and is
-- then passed to the inference engine during the evaluation phase.
-- Rule.Array has the following format:

-- <Rule.Array> = <rule number><output number><operator list>
-- <rule number> = <integer>

-- <output number> = <integer>

-- <operator list> = <operator type><operator value><operator list>
-- <operator type> = <integer>

-- <operator value> = <integer>

-- Example:

-- Rule Text : if v1 is zero and v0 is small then z2 is zero

--  After parsing this becomes:

— #outvl zero is vO small is AND z2 zero is then

-- [2,2][1,1][4,6][2,99][1,0][4,4][2,99][5,99][9,2][4,6][2,99][8,99]

—- When the rule evaluator reads the output identifier, it knows to

-- stop processing the rule and pass the dof to the next phase of processing.
-- This will multiply the dof by the weight for this rule, then calculate

—- the resultant membership function for the rule.

SEQ
stack.pointer := 0
more := TRUE

--same as rule.id
rule.number := Rule.Array[0] --first element of array
output.number := Rule.Array[1]

count ;=2  --start at the second data pair of array
WHILE more
SEQ

--process the list, return the dof for the antecedent part
operator.type := Rule.Array[count]
operator.value := Rule.Array[count+1]
CASE operator.type
tIF
SKIP
t.INPUT
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SEQ
xvalue := INT(input.vcctor.data[opcrator.value])
t.MEMBER
--access the local membership store
SEQ
index := xvalue + 50
v.of.x == membership.store[operator.va]ue][index]
t INPUT.HEDGE
--pop X
SEQ
u = (wof.x * u.ofx)/100  -- VERY ( could be 100x100 )
wof.x :=u --re-assign u.of.x ready to be pushed onto the stack

t.IS
' SEQ
result.stack[stack.pointer] := n.of.x -- put value onto stack
stack.pointer := stack.pointer + I~ - increment pointer
t.AND, t OR -- t.not
SEQ

stack.pointer := stack.pointer - 1
u.x.take.1 = result.stack[stack.pointer]
stack.pointer := stack.pointer - 1
u.x.take.2 := result.stack[stack.pointer]
temp := Connective (u.x.take.1, u.x.take.2, 1, operator.type, connective)
result.stack[stack.pointer] := temp
stack.pointer := stack.pointer + 1
t. THEN
_-This is the end of the list
—The rmf array has been calculated.

more = FALSE
t.OUTPUT.MEMBER
SEQ

output.member.id := operator.value
- CALCULATE THE RESULTANT MEMBERSHIP FUNCTION
SEQ m =0 FOR 101
SEQ
—-member{][] is the local store for all membership functions
membervalue := membership.storc[output;member.id] [m]
--The value becomes modified by this function
rmf[m] := modifier(membervalue, dof,modifier.type)
more := FALSE
t.OUTPUT
--get the dof and apply weighting factor w
- The last item pushed onto the stack was the result of the Fuzzy
-- Logical Operators (AND, OR, ...). This last one will be the
-- Degree of Fuifilment (dof) for this rule.
SEQ
stack.pointer := stack.pointer - 1 -- adjust the stack pointer
IF
stack.pointer <0
stack.pointer := 0
stack.pointer >=0
dof := result.stack[stack.pointer] -- get the dof
TRUE
SKIP
--Now calculate the weighted dof for this rule, and store it.
L weighted.dofs[rule.number] := dof * rule.weights[rule.number]
dof.store[rule.id] := dof
weighted.dofs[rule.id] := dof * rule.weights[rule.id]
t.OUTPUT.HEDGE
—-This will follow IMMEDIATELY after rmf[] calculation
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SEQ
u := (rmf[m]} * rmf{m])/100 --VERY ( could be 100x100 )
rmf[m] :=u --re-assign
ELSE
more := FALSE
count :=count + 2 -- while loop
Nodel.FIE ! t.rmf.data; rule.id; 10L(INT)::rmf
Nodel.FIE ! t.dofs.data; 100(INT)::dof .store
Node1.FIE ! t.weighted.dof.data; 100(INT)::weighted.dofs

--RMF.matric is the column vector from the cmf array
—-The column contains data values for contributing rmfs.

INT FUNCTION Fuze(VAL [JINT RMF.matrix, VAL INT Num, type.of.fusion)
INT answer, m:
REAL32 temporary, temp, Div, sum:
REAL32 temp1,temp?2.
VAL Arithmetic.Mean.Type IS 0:
VAL Harmonic.Mean.Type IS I:
VAL Geometric.Mean.Type IS 2:
VAL Peak.Follower.Type 1S 3:
VALOF
SEQ
sum := 0.0(REAL32)
temporary := 0.0(REAL32)
Div := (REAL32 ROUND Num)
IF
Num <=0
Div := 1.0(REAL32)
TRUE
SKIP
IF
type.of.fusion = Arithmetic.Mean.Type
SEQ
SEQ m =0 FOR Num -- N = number of rules for this output
sum := sum + (REAL32 ROUND RMF.matrix[m]) --sum items in column
answer := (INT ROUND (sum / Div)) --divide by number of items to get average
type.of.fusion = Harmonic.Mean.Type
SEQ
SEQm=0FORNum  -- N =number of rules to this output
~ SEQ
temp := (REAL32 ROUND RMF.matrix[m]) --get the data
1F
temp = 0.0(REAL32) --test for divide by zero
SKIP
temp >= 1.0(REAL32)
temporary := temporary + (1.0(REAL32)/temp)
TRUE
SKIP
temporary := temporary / (REAL32 ROUND Num)
answer := (INT ROUND temporary)
type.of.fusion = Geometric.Mean.Type
SEQ
temporary := (REAL32 ROUND RME.matrix[0])--initialise
templ := REAL32 ROUND Num
temp?2 := 1.0(REAL32) / temp1
SEQ m = 1 FOR Num
temporary := temporary * (REAL32 ROUND RMEF.matrix[m])
temporary := POWER(temporary, temp2)
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answer := (INT ROUND temporary) --convert to integer
type.of.fusion = Peak.Follower.Type
SEQ
answer := RMF.matrix[0] -- initialise
SEQ m = 1 FOR Num-1 -- N = number of rules for this output
IF :
RMF.matrix[m] > answer
answer ;= RMF.matrix[m]
TRUE
SKIP
TRUE
SEQ
SEQ m = 0 FOR Num -- N = pumber of rules for this output
sum ;= sum + (REAL32 ROUND RMF.matrix[m]) --sum items in column
answer := (INT ROUND (sum / Div)) --divide by number of items to get average

RESULT answer

INT FUNCTION Defuzzify (VAL [JINT final.mf, VAL INT type.of.defuz)
INT Centre.of.Gravity, numerator, denominator:
INT Maximum, answer:

VALOF
SEQ
answer =0
numerator ;=0
denominator := 0
Maximum := 0
IF --can add other methods here.
type.of.defuz =0
SEQ
SEQ n = 0 FOR default.fimf.size
SEQ
numerator := numerator + (n * final. mf[n])
denominator := denominator + final. mf[n]
IF
denominator =0 --case where the CMF is zero set
denominator := 1
TRUE
SKIP
Centre.of Gravity := numerator / denominator
answer := Centre.of Gravity
type.of.defuz =1
SEQ
SEQ i= 0 FOR default.fmf.size
IF
final.mf[i] >= Maximum
Maximum := i -- value at which function is a maximum
TRUE
SKIP
answer := Maximum
type.of.defuz =2
SEQ
SEQ i = 0 FOR default.fmf.size
IF
final.mffi] >= Maximum
Maximum := i
TRUE
SKIP
answer := Maximum
TRUE
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SEQ
SEQ n = 0 FOR default.finf.size
SEQ
numerator := numerator + (n * final.mf[n])
denominator := denominator + final.mf[n]
IF . .
denominator =0 --case where the CMF is zero set
denominator =1
TRUE
SKIP
Centre.of.Gravity := numerator / denominator
answer := Centre.of.Gravity
RESULT answer
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Channel Declarations

CHAN OF ANY  t0.C012:
CHAN OF RESULTS DBM.Super, FIE.DBM, DBM.FIE, Nodel.FIE,
Node2 .FIE: )
CHAN OF MESSAGE Super.KBM, KBM.Super,
Super.FIE, FIE.Super,
Super.DBM, from.C012,
FIE.KBM, KBM.FIE,
FIE.Nodel, FIE.Node2:
CHAN OF BYTE DBM.Plant, Plant. DBM:

FuzienProc Process inter-connection

PAR -- These processes run concurrently on the BO0O8 board
Supervisor(from.C012, t0.C012, Super.DBM, Super.FIE,

FIE.Super, Super. KBM, KBM.Super, DBM.Super)
KnowledgeManager(Super. KBM, KBM.Super, FIE.KBM, KBM.FIE)
DataManager(Super. DBM, DBM.Super, FIE.DBM, DBM FIE, Plant. DBM, DBM.Plant)
InferenceEngine(Super.FIE, FIE.Super, KBM.FIE, FIE.KBM,

FIE.Node1, FIE.Node2, Node1.FIE, Node2.FIE, FIE.DBM, DBM.FIE)
Nodel(FIE.Nodel, Nodel.FIE)

Process Mapping

PLACED PAR
PROCESSOR 0 T8
PLACE from.C012 AT linkOin:
PLACE t0.C012 AT linkOout:
PLACE Plant.DBM AT linklin:
PLACE DBM.Plant AT linklout: —-interface to card
PLACE FIE.Node2 AT link2out:
PLACE Node2.FIE AT link2in:

FuzienProc(from.C012, to.C012,
DBM.Plant, Plant. DBM, FIE.Node2, Node2.FIE)

PROCESSOR 1 T8
PLACE FIE.Node2 AT linklin:
PLACE Node2.FIE AT linklout:

Node2(FIE.Node2, Node2.FIE)
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Appendix C

Listing of the Control Software for the

Transputer Interface Module Micro-controller.
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.*********************t*****iﬂlﬂ*ilt'tti‘t*****!1**iti*tlt!‘wwttilt***t****
1

: This program controls the interface between the plant, in this case,

: the inverted pendulum, and the transputer system.

. This program first reads all five A/D channels and stores the values in
: on-chip memory. This process is repeated continuously.

.t*iiii***********tttitt#***tt**i****ktttt****l*ﬁ!ikt!it****t*ii**#*ii*!*li
]

$Title(C012 Interface control)

$MOD752

PWMVal DATA  13h ‘Holds next value for updating PWM
Flags DATA  20h

ADFlag BIT Flags.1 :A/D conversion complete flag.

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

: ANALOG CHANNEL STORAGE

AnCho DATA 13h ;Store for analog channel 0 value
AnCh1 DATA 14h ;Store for analog channel 1 value
AnCh2 DATA 15h ;Store for analog channel 2 value
AnCh3 DATA 16h ;Store for analog channel 3 value
AnCh4 DATA 17h ;Store for analog channel 4 value

.*t***************************ttk***wwttitii**tt*it*****ilivtwr************
L}

outdata DATA 18h ;store for output data value
; PORT ASSIGNMENT

:P0.0 TTL OUT CS/C012

:P0.1 TTL OUT R/W C012

:P0.2 TTL OUT A1 C012

:P0.3 TTL OUT A2 C012

:P0.4 TTL OUT PWM

;P1.0 A/D Input
;P1.1 A/D Input
;P1.2 A/D Input
;P1.3 A/D Input
:P1.4 A/D Input
:P1.5 TTL OUT
;P1.6 TTLOUT
;P1.7 TTLOUT

:P3.0 TTL IN/OUT/DO
:P3.1 TTL IN/OUT/D1
;P3.2 TTL INJOUT/D2
;P3.3 TTL IN/OUT/D3
:P3.4 TTL IN/OUT/D4
:P3.5 TTL IN/OUT/D5
;P3.6 TTL IN/OUT/D6
:P3.7 TTL INJOUT/D7
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,tltﬁ*k***nlxliililwlnnti****iiniitbtii*i*i*iiliilil***********************
'

; Interrupt Vectors
ORG 0 ‘Reset vector.
AJMP  Reset

.*******************k*wlitiiiiiiiitttftit***liillltnlll*t’**)tl***************
]

Reset: MOV SP,#30h

MOV Flags,#0 ;Clear flags.

MOV TCON,#00h ;Set up timer controls.
MOV [E,#82h :Enable timer O interrupt.
SETB PO.0 ;notCS =1

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

ACALL CO012Read :Command returned in A

MOV  R1,A :Put command into R1 for now
ACALL CO012Read :Get data to go with this command
MOV  R2A :Put data into R2 for now.

.**i***************t*in*tti**ttt*t*****tt*t*ki***w*wtiiitt*‘t«*tit***i*ii*iti’
’

- NOW INTERPRET THE COMMAND THAT ISINR1 = 1 OF 8 COMMANDS =

.t*tttt**t********ﬁ**************‘tfi*******t*********************************
L

MOV ARt :Get the command into acc.
JB  ACC.0,COMD_O ;lf bit O set, jump to command 0 :Reset
JB  ACC.1,COMD_1 ;lf bit 1 set, jump to command 1 :read A/D channel #data
JB ACC.2,COMD_2 ;lf bit 2 set, jump to command 2 :set PWM to #data
JB  ACC.3,COMD_3 :lf bit 3 set, jump to command 3 :set P.15,P1.6,P1.7 to [0,1]
JB  ACC.4,COMD_4 ;If bit 4 set, jump to command 4 :read port P1
- IF NO COMMANDS MATCH THEN JUMP BACK TO THE START
JMP  START

,ﬁ****iii*****ﬂ*i*ii*!***i!***!*ittit*tf'tttt*ittt*wk***t********i************
’

: Command 0 = Reset
COMD_0: JMP  Reset

.w*i****ki**wtttwnwtht*ﬁiilwnttttttanl*twi**if&&nrwtt*********i**************
L]

: COMMAND 1 = SEND ANALOG VALUE TO C012
; Sample the A/D input identified by data in R2.
; ADConv returns after completion of the conversion.

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

MOV AR2 :Set A/D channel to #data.
ACALL ADConv :Start A/D conversion.
MOV AnChO,A :Store A/D value

MOV A AnChO :Put A/D channel value into A
ACALL CO12Write :Send data to C012
JMP  START :Begin loop again

xxxxx e e e o oy e ol e e e e e e o e o ok e

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
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; COMMAND 2 = SET PWM

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

COMD_2:
MOV PWMP,#80h :Set up PWM prescaler.
MOV PWCM,R2 -Set PWM value, data for which is in R2.
MOV PWENA #01h ;Start PWM.
JMP START

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

: COMMAND 3 = DIGITAL OUT , set a TTL output P15P1.6P1.7to0o0r 1.

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn R ERRRRRR R AR ARk kA kA kk

: data byte tells which bit and its' state.
; R2 P1.7 P1.6 P15
; 0 X 0

AW N =
© X X X
X =4 o X X
X X X =

¢+ 5 1 X X

chkk kR Rk kit P S T T T T T s a s s e e i S Fhkhkhkrkk kR kdAkhhhkkrrkhkrkrk

COMD_3:

MOV  ARZ2
CJNE A #00h,NOT_CP15
CLR P15

NOT_CP15:
CJNE A #01h,NOT_SP15
SETB P1.5

NOT_SP15:
CJNE A #02h,NOT_CP16
CLR P16

NOT_CP16:
CJNE A,#03h,NOT_SP16
SETB P1.6

NOT_SP16:
CJNE A #04h,NOT_CP17
CLR P17

NOT_CP17:
CJNE A #05h,NOT_SP17
SETB P17

NOT_SP17:
JMP  START

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

- Command 4 = TTL INPUT ; get state of port 1

COMD_4:
MOV  P1,#0FFh ;Put port into read mode
MOV  AP1 ;Put port 1 data into A

ACALL CO012Write :Send data to C012
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JMP  START

.R***k**ti***i**‘ttwtttt'ttittﬂtttit‘ltlii*iiiiii‘lt‘*************************
]

: Command 5 =

.ittttitt****ttt**tti*itiiii*t**AiI"atttt*tt**t*i!t*****ii‘i*itii*****&*filii
1

;COMD_5: JMP  START

.************************************t*x***tI****Ii*i*kk********itit**********
"

; Command 6 =

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

;COMD_6: JMP  START

,*****tt*ltii!**t*t****t*i****k**k*******ttlt!itt*i***ktittitiliiit****i******
1

: COMMAND 7 = TEST ROUTINE

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

: C012 Link Adaptor Initialise Routine
CO12Init:
RET

.************************ii*i!**i*****ii\**!t*tti*****klilklﬁt****************
1

: C012 Link Adaptor Read Routine
- This routine reads data from the C012 data port, that is connected
: to port 3 of the 87C752, and places it into A.
p If data present bit of READ INPUT STATUS REGISTER is set then
; (bit 0) [refer figure 5.3 on p453.]
; data is present, so read
C012Read:
‘Write #OFFH to port 3 so it can read data
MOV  P3,#0FFH
:First test the input status register

SETB PO.0 :notCS =1

NOP

CLR P0.3 ‘RSO =0 - Select input status register

SETB P0.2 ;RS1 =1

SETB PO.1 ;RnotW =1

NOP :allow for settling time
READ_STATUSH1:

SETB PQ.0 :notCS =1

CLR P0.0 ‘notCS = 0 - Latch address selection

NOP :allow for settling time

-Status register contents appear on data bus, so check status bit.
‘Now test if the Input Ready Flag (bit 0) is set
JNB  P3.0,READ_STATUST ;Data not present so loop until ready
:Ready, put C012 into READ mode

READ_DATA:
SETB P0.0 :notCS =1
NOP ;allow for settling time
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CLR P03 :RSO =0 - Select read data

CLR P0.2 :RS1 =0

CLR PO.O :notCS = 0 - Latch address selection
NOP ;allow for settling time

NOP -allow for settling time

:Data now appears on data bus
:Move data from port 3 into Acc

MOV  APS :Put port data into A
SETB PO0.0 :notCS =1
RET

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

: C012 Link Adaptor Write Routine
; This routine writes data contained in A, to the C012 data port.
C012Write:

:Write Off to port 3 so it can read data

MOV  P3,#0FFH

:First test the output status register

SETB P0.0 ;notCS = 1

NOP

SETB P0.3 ‘BRSO =1 - Select output status register

SETB P0.2 ;RS1 =1

SETB PO.1 ;RnotW =1

NOP :allow for settling time
READ_STATUS2:

SETB P0.0 ;notCS =1

CLR PO.0 :notCS = 0 - Latch address selection

NOP :allow for settling time

-Status register contents appear on data bus; so check status bit.

‘Now test if the Output Ready Flag (bit 0) is set

JNB P3.0,READ_STATUS2 :Data not present so loop until ready
;READY, put C012 into WRITE mode

WRITE_DATA:
SETB PO0.0 ;notCS =1
NOP :allow for settling time
SETB PO.3 :RSO =1 - Select write data
CLR PO0.2 :RS1 =0
CLR PO.1 ;RnotW =0
NOP :allow for settling time
CLR P0.0 'notCS = 0 - Latch address selection
NOP -allow for settling time
:so send the data
MOV P3,A ;Put A into port
NOP ;:allow for settling time
SETB PO0.0 ;notCS =1

RET
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kAR AAR AR AR A AR AR R e e o e o e ke b e e o A e e e o e ke
]

: Micro Synchronisation Routine

; This routine synchronises communications between the micro-controller
- and the transputer system. This code looks for a'sequence of #FFH, #00H.
: Return when synchronisation is established.

MSynch:

NOT_EQ:
ACALL C012Read :Data returned in A
CJNE A #O0FFh,NOT_EQ :Wait for #ffh to appear
ACALL C012Read :Now chech for #00h
CJINE A,#00h,NOT_EQ :If no, start again
RET :Synchronised, so return!

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

; A/D Conversion Routine.

. This is an alternative version of the A/D routine which

- starts the conversion and then waits for it to complete before
. returning. A/D data is returned in the ACC.

. ACC contains channel number [0..4]

ADConv:
ORL A #28h :Add control bits to channel #.
MOV  ADCON,A :Start conversion.

ADC1: MOV  AADCON
JNB ACC.4,ADCA1 :Wait for conversion complete.
MOV  AADAT ;Read A/D.
RET

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
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TITLE "Motor Control Logic";

DESIGN IS Motor
BEGIN

DEVICE "EPM5032";
END;

SUBDESIGN encode

(
enable, direction, brake
gateA, gateB, gateC, gateD

BEGIN
TABLE
enable, direction,

0 0
0; % stop %

0 0
0; % stop %

0 1
0; % stop %

0 1
0; % stop %

i 0
0; % forward %

1 0
1; % brake %

1 1
1; % reverse %

1 1
1; % brake %
END TARBLE;

END;

brake =>

INPUT;
OUTPUT;

0

0

0

0

gateA, gateB, gateC, gateD;

0

0





