
¡"1 /

to- 6^.,(?

A Transputer-Based Inferencing

System [Jsing ßuzzy Logic Concepts

- Design and Implementation

Richard Scott Bowyer

Thesis submitted for the degree of

Master of Engineering Science

The University of Adelaide

Faculty of Engineering

Department of Electrical and Electronic Engineering

by

October, 1996

To my loving wife,

Judy

TABLE OF CONTENTS

Table of Contents ut

Declaration vnl

Acknowledgments tx

List of figures .x

List of tablesxvt

Glossary xvll

Abbreviations xvllt

1.1 Motivation

i.2 Review of the Literature

1.3 Original Contributions .

1.4 Thesis Outline.......

2.1 Overview...

2.2 A Contrast of Styles - Boolean (Crisp) vs Fuzzy ...

2.3 The Membership Function

2.4 Fuzzy Numbers...

2.5 Linguistic Hedges

2.6 Ftzzy Set Operations..............

2.1 Proposed Ftzzy Set Operators

2.8 KnowledgeEncapsulation.

2.9 Fuzzy Inferencing

1

6

8

5

2 Introduction to ßuzzy Sets and ßuzzy Logic........10

.............10

.............10

.............13

.............fl

.............18

.............20

.............28

.............3 1

.............32

2.10 The Fusion Transform ..38

IV

2.t0

2.ll
2.r2

2.13

3 Development of aFuzzy Inferencing Structure

3. 1 Introduction...............

2.lO.I Summary and Description of Fusion Methods

2.10.2 A Method to Determine Information Measure

2.10.3 Important Properties of Fuzzy Information Measure

2.10.4 Proposed A-Matrix Based Fusion Method

2.10.5 Proposed Sliding Window Averaging Based Fusion Method.

Defuzzification

Adaptive Ftzzy Systems

Fuzzy Logic and Time

Chapter Summary

48

50

53

53

51

38

41

44

46

58

77

76

77

7l
77

3.2 Evolution of an Inferencing Algorithmic Structure

3.2.1 Operational Constraints

3.3 An Algorithm for Rule Evaluation

3.4 The Fuzzy Rule and the Rulebase Compiler

3.4.1 Description

3.4.2 Operation of the Rule Compiler......

3.5 Chapter Summary

4 The Graphical User Interface..........

4.1 Chapter purpose

4.2 Function of the GUI..........

4.3 Description of the Operator Interface Dialog Boxes..

,..58

...58

...58

...62

...71

...71

4.4 Chapter Summary...

5 The Expert System Framework and Algorithm Implementation.......

5.1 Introduction......

5.2

5.1.1 Chapter purpose

5.1.2 Chapter overview

Process Function and Communications

5.2.1 The PC process function

5.2.2 The Supervisor (SUPER) process function.......

5.2.3 The Knowledge Base Module (KBM) function

5.2.4 The Data base (DB) process function

84

89

90

90

90

90

9l

94

96

98

98

5.2.5 The Fuzzy Inference Engine (FIE) process function...... 100

5.3

5.2.6 Process communications

Processing on Multiple Transputers...

5.3.1 Requirements

5.3.2 Process Timing

5.3.3 Task Scheduling

5.3.4 Process Timing Re-visited

Process Interactions.......................

R.unning the software suite............

5.5.1 The configuration process

5.5.2 Run-time operation

5.6 Chapter Summary

l.l Introduction.......

1.4

v

102

106

106

106

109

113

ttl
118

118

119

120

5.4

5.5

6 The Transputer Interface Module .-.-.-.-121,

6.I Introduction...............12I

6.2 Description-'........127

6.3 Operation of the TIM.......... ..-....'....126

6.3 Chapter Summary

7 Applications of ßuzzy Processing - Case Studies.....128

127

7.2 Ftzzy Data Processing for a Multiple Input - Multiple Output System....

7.3 Fuzzy Data Classification

7.3.1 The Torus

7.3.2 Discussion

Modeling of a function using afuzzy rule base.....

'1 .4.1 Linear Approximator........

7 .4.2 Complex Function Approximator....

7.5 Signal Processing

7.5.1 A Low Pass Filter.......

7.5.2 ABand Pass Filter.....

1.6 Real Time Control - The Inverted Pendulum.........

7.6.1 Description of the Apparatus

7.6.2 Pendulum Motor Drive and Sensor Card..

7.6.3 Experimental procedure and results

........t28

........t28

........130

........130

........130

........135

........135

........131

........140

.............140

.............141

.............143

.............r44

.............144

............. 148

7.6.5 Comments

7.7 Chapter Summary

I Thesis Summary

8.1 Discussion......

8.2 Further Work..

v¡

152

154

References

A Introduction to the Transputer and Occam.....

4.1 Chapter purpose

A2 The Transputer...........

4.3 The Occam programming Language..............

4.4 Summary

B Listing of the Main Occam Software Routines for the inference engine

C Listing of the Control Software for the TIM Micro-controller

D ALTERA Design File for the Motor Control EPLD

155

159

159

159

t63

166

167

202

209

vll

ABSTRACT

There has been considerable ínterest in engineering applications of fuzzy logic to data

processing by a fuzzy logic inference engine. This research explores the application of the

INMOS Tlansputer to tlie implementation of a data processing system that uses fizzy logic

concepts, and details the design and implementation of the system. The research addresses the

important area of knowledge encapsulation and lepresentation, and the method by which

knowledge is pre-processed into a forrn suitable for evaluation by the fuzzy logic inference

engine.

This thesis begins by examining the concepts of fuzzy and explores how they can be

applied in a parallel processing domain. This includes the representation of fttzzy rules, and

horv the rule-base is pre-processed. Some additional aspects are examined and uew operators

proposed.

An algorithmic structure is developed for the expert system. The inference engine for

the system uses fuzzy logic principles, and parallel processing algorithms for inferencing are

developed. The processing is performed on the INMOS Transputer, and the inferencing

algorithm is realised in the Occam 2 plogramming language.

The software package that has evolved from this research is coilectively called

TransFuzien. This software, together with the associated hardware, has been developed to

perform rule-based fuzzy logic inferencing. TransFuzien comprises two parts. The first part is

written in C++, and runs under Microsoft Windows on a IBM Personal Computer (PC), and

the second part, which is written in Occam 2, runs on a Transputer target system. The former

part pelforms the data pre-processing necessary to configure the inference engine that executes

on the Transputer target system.

TransFuzien's graphical user interface is described, together with various features of

the system, which includes the ability to select various inferencing strategies via the graphical

user interface.

Aspects of the processing performance are addressed, and key issues are identified.

Specialise electronic hardware has been developed to facilitate data exchange between the

expert system and peripheral systems. Finally, a number of case studies are presented that

apply the expert system developed herein. The results from these studies show that the

objectives ofthis research have been achieved.

vill

DECLARATION

This thesis contains no material which has been accepted for the award of any other degree or

diploma in any University or other tertiary institution. To the best of the author's knowledge

and belief, this thesis contains no material that has been previously published or written by

another person, except where due reference has been made in the text.

Signature

Date \l - to-g(

,I
U
1ç

.¡

I give consent to this copy of my thesis, when deposited in the University Libraries, being

available for photocopying and loan.

I

SIGNATURE: DATE: ../.2.-- .?....

I

lx

ACKNOWLEDGMENTS

I would like to thank my supervisor Mr. Mike Liebelt (Senior I-ecturer) of The University of

Adelaide, Department of Electrical and Electronic Engineering, for his supervision, valuable

guidance, and encouragement throughout this work. My thanks are also extended to Associate

Professor Doug Pucknell for his supervision in the early stages of this work.

I wish to thank Mr. Des Lamb, former Head of the Information and Signal Processing Group,

i¡ the Electronic Warfare Division (EV/D), Defence Science and Technology Organisation

(DSTO). Des has shown a great interest in my work, and has been a constant source of support

and encouragement throughout my studies.

I would like to thank Dr. Andrew Kulessa of the DSTO, for many long and enjoyable

discussions about this work, and for acting as a sounding board for some of my ideas, and

giving me valuable comments on my work. I also thank Andrew for helping in the review

process of this thesis and providing comment on my writing style and the technical content'

My thanks are extended also to Malcolm Brown (Head of the Information and Signal

Processing Group, EWD) who provided encouragement throughout my work.

I am very grateful for the support of the Electronic Warfare Division, Defence Science and

Technology Organisation, Salisbury, for making available computing resources and the

Tlansputer hardware and development system that was used in this work'

Finally, I wish to express my sincere thanks to my family and friends for their support and

prayers. In particular I want to thank rny wife Judy, for her love, understanding and continued

support throughout the time I have been working on this thesis, especially as I spent many

long hours working in our study at home.

.¡
!d
',tì

¡

f
I

;

*

x

LIST OF FIGURES

Figure 1.1 The components of tbe fuzzy inferencing system complise the host computer

with the graphical user interface and knowledge pre-processing program, the Inmos

Transputer sub-system and the inferencing software, and the Transputer interface

module that connects to external electronic hardware ."............-... 3

Figure 1.2 An expert system comprises a rule base where the rules are stored, and a

knowledge base which stores information about the inferencing strategy. The input

and output signals will require some normalisation processing -.-------.--.....'.'..'.4

Figure 2.1: Set of Membership Functions that describe a range of temperatures. The

position of the peaks and the spread of each function are chosen to suit the

application

Figure 2.2: Set of Membership Functions generated by equation 2.4, with varying

parameters-. 16

Figure 2.3: Tl.rc shape of a membership function can be modified by a linguistic hedge.

This figure shows the effect of both concentration (square) and dilution (square r:oot)

15

operators on a membership function....

Figure 2.4'.Two sets A and B define regions of interest in the parameter space. Data points

may belong to either A or B, or the intersection of A and B. The data may also lie

outside these sets. 2l

Figure 2.5: 'With ltzzy classification, each data point has a membership to each set. In this

case, the memberships are denoted m,and mb. ---.......'......21

Figure 2.6: An example of the interaction between two membership functions using
'Weber's definition of the AND operator and the OR operator. The degree of

fulfillment surfaces for a two input system is a useful visualisation tool for fizzy

inferencing 25

Figure 2Ja: The simplestfuzzy set operators to implement are those originally proposed

by Zadeh. Graph showing the outcome of the fuzzy set operations AND and OR.'-.26

Figure 2.7b: Graph showing'Weber AND and OR functions.............. .'........-..""'26

Figure 23c: Graph showing Weber NOT function............ -.-.'.'..."""'26

Figure 2.1d,: Graph showing Hamacher AND and OR functions """"26
Figure 2.7: There are several definitions for fuzzy set operators. The effects of each

operator vary, as shown in this sequence of graphs which depict the AND, OR and

NOT operators...... .26

Figure 2.8: Graphs showing Weber t-norm (M2) and t-conorm (N2) with both inputs

varying{rom 0 to lJhis interpretation of{-operators is quite simple to computo and

r9

'l

!'l

I

t
I
I

I

r

xl

from these surface plots, it can be seen that they conform to an intuitive definition of

AND and OR logic.

Figure 2.9: The NOT operator can be interpreted in at least two ways, as shown in this

figure........

Figure 2.10: Graph (a) showing an example of the proposed t-norm (M) and t-conorm (N).

The colours Íange 0 to 1, with blue representing the minimum, through to red,

representing the maximum.

Figure 2.11: Two examples where the proposed t-norm and t-conorm operate on functions

n(x) and s(x) for various values of y. Function s(x) is changed to illustrate the affect

of the operators.

Figure 2.I2: AFuzzy Associative Memory. The inputs to the FAM are sets X and Y. The

membership labels are NL, NS, ZE, PS and PL'.'....'....

Figure 2.13: As the DOF of a rule varies, the consequent membership function will be

modified accordingly. Figure 2.15a shows the affect of scaling as the DOF varies, and

Figure 2.15b is the simple case of truncation. Figure 2.I5c shows how the consequent

membership function is spread as the DOF increases.

Figure 2.74a : Ftzzy Inference by Product-Sum Method. The inputs are applied to the

antecedent membership functions, and the minimum (AND) of the two values is used

to scale the consequent membership function. Rule fusion occurs by superimposing

each resultant function on the same axes, and taking the maximum profile of each

21

21

resultant function 36

Figure 2.14b : Fuzzy Inference by Truncation-Maximum Profile Method, for a three rule

system, with two premises per rule and one output. Center of gravity defiizzilication is

used to determine the crisp output value. """""""""' 36

Figure 2.15: A Rule Evaluation Node comprises a process to evaluate the degree of

fulfillment of a rule, and a process to evaluate the resultant membership function.'31

Figure 2.16: The fusion functions combine data with varying effects as shown in this

figure........'.."40

Figure 2.I7a This diagram illustrates the ordered finzy sets that constitute the

membership functions that may be define for a particular inferencing system.'.----....42

Figure 2.llb: This diagram illustrates the ordered fuzzy sets where the RMFs have

varying amplitude and spread. Notice that sets 0, 1 and 2 overlap each other.--.....--..42

Figure 2.18: This diagram illustrates the proposed fusion method, being applied to 3

Resultant Membership Functions. The alithmetic average of the 3 functions is also

shown as a comparison. """""47
Figure 2.19: This diagram illustrates the second proposed fusion method, being applied to

3 Resultantlvlembership Functions;The arithmetic average of the 3 funetisns is also

shown as a comparison.......... -......-...-..--...49

30

35

xll

Figure 2.20: These diagrams show examples of the defuzzification methods for a

particular final membership function.... .----------------.---.52

Figure 3.1: A look-up table for a multiple input- multiple output fuzzy system......................61

Figure 3.2: A single infelencing node uses rules and other knowledge, contained in the

knowledge base, to process the input data. The Data Flow Diagram (DFD) does not

relate information about timing, just data transformation.'-.-..64

Figure 3.3: The inference node comprises a single rule evaluation node. The knowledge

base comprises the rules base and other system information. An additional source of

information is required that sets the inferencing options in the Rule node.64

Figure 3.4: The rule node comprises lower level processes. The first is the antecedent

process, which calculates the degree of fulfillment (DOF) for the lule. The dof

determines the extent to which the consequent mf is modified. The result is the

resultant membership function for the ru1e........... .""'66

Figure 3.5: A parallel processing system may be achieved by calculating each fuzzy tule

simultaneously. This is achieved by assigning a single rule node process to each rule

in the rule base. For n rules this will require /? processes running concurrently.' 68

Figure 3.6 : The DFD for fizzy inferencing that is adopted in this study, evolves from the

logical sequence of events for processing afuzzy rule, and defines the structure. Each

of the circles represents a stage of processing, whilst the directed iines represent the

flow of data between the processes. This DFD includes additional processes for; (i)

collecting the RMFs and fusing them, and (ii) transforming the fazzy sets to crisp

output values (deftizzification). 69

Figure 3.7: The proposed syntax for the fuzzy rule as used in this thesis comprises a

number of components. This form fully describes the legal rule structure which the

rule compiler can translate into an executable sequence of parameters for the inference

englne 12

Figure 3.8: The rule list syntax describes the output from the rule compiler. For each rule

in the rulebase, there will be a corresponding rule list which is executed by the

inference engine. 72

Figure 3.9: The rule lists produced by the rule compiler include information about the type

of operation to be performed, and parameters that specifies the input source and the

output destination. These parameters are used by the data management system of the

inference engine.'......"""""75

Figure 4.1 : The control panel displays the input data and the results of processing, and

provides user access to external hardware resources connected to the Transputer

Interface Module...... 81

82software package. .

xilr

Figure 4.3 Listing of a typical Project fi1e............ 83

Figure 4.4 : The Rule Editol dialog screen provides the functionality to compose fuzzy

rules. The present rule appears at the tpp of the screen, whilst completed rules are

listed below 85

Figure 4.5 : The input and output valiables for the system to be modeled or controlled, are

entered with the variables dialog box. The name and physical source or sink are

defined here. ...

Figure 4.6 : The membership function editor provides an equation building and display

facility. The equation is entered by either typing with the keyboard, or by using the

mouse to hit the keypad. .-.......87

Figure 4.7 :Dialog box that enables the selection various inferencing methods.88

Figure 5.1 :Top level data flow diagram for TransFuzien software suite. The ellipses

replesent processes, the directed lines represent channels for communications, and

parallel lines above and below a label, represent data storage libraries. The data

packets have been excluded for clarity

Figure 5.2 : The DFD for the FIE indicates the various data that are required to be present

before processing can begin. The structures marked with the patterned rectangles

represent elements that need to be configured by the user. --.................93

Figure 5.3: The Supervisor process interprets messages from the PC process, and serves

each message as it arrives. The Occam CASE statement acts as a selector, to

distinguish which function is to be initiated...... 97

Figure 5.4 :Flowchart for the rulebase evaluation phase of processing for a single processor

architecture. The evaluation of the RMF and WRMF occur in the Fuzzy Inference

Engine process labeled FIE. Processing continues if the system is in RUN state, but

will execute one pass through the rulebase otherwise'.........101

Figure 5.5 :A Process Event Graph gives a graphical representation of process interactions.

The events between the markers X and Y are repeated for each rule in the rulebase. In

this study, circles are used to define event cycles. The time axis is not to scale............105

Figure 5.6 : Data Flow Diagram showing the two rule evaluation processes, each of which

runs on its own Transputer. The FIE now handles task scheduling between available

worker nodes. The FARMER process runs on Transputer T0 and controls the

allocation of rule evaluation tasks to the WORKER processes. The additional worker

process runs on Transputer T1............. ... 111

Figure 5.7: The processing haldware for this thesis comprises the personal computer, and

two T800 Transputers which are mounted on the 8008 motherboard. Transputer T0

accesses external data via the Transputer interface module. Transputers T0 and T1 are

86

92

Figure 5.8: Graphs showing (a) the rulebase processing performance, and (b) the total

processing performance. Processing time depends on the number of rules that are in

the rulebase and the number of processors available in the system.. 1 16

Figure 6.1 : Block diagram of the Transputer Interface Module, consisting of the micro-

controller, the link adapter, the peripheral adapter, and signal conditioning hardware..I22

Figure 6.2: Photograph of the Transputer Interface Module showing the micro-controller,

the Transputer link adapter and the PIA device t23

Figure 6.3 : The circuit diagram for the Transputer Interface Module. .---.---.-.-....I24

xrv

139

Figure 6.3 Flow chart for reading data from the link adapter.....

Figure 6.4 Flow cliart for writing data to the link adapter..........

r25

125

Figure 7.1: Non-fuzzy outplts ZI,22, and 23 are produced by a rulebase comprising six

flzzy rules. Three sets of input data give rise to corresponding output data variations. 129

Figure 7.2:Two regions are defined by the concentric circles shown in this figure. Class

B is the central region of the figure, whilst Class A is the annulus that sumounds Class

B. Data points which ale defined by two coordinates (xl, x2), are classified by the rule

base, and will possess membership to both classes to some extent..

Figure 7.3 : Graph showing the degree to which data belongs to class A. and Class B.134

Figure I .4 : The rule based model of the function z(x) = x closely matches the ideal case'

Triangular membership functions were applied in this example. i36

Figure 7.5 : Key features of the model are identified using a simple matrix approach that

maps the input space to the output space. The inputs to the matrix are x and y. The

membership labels are NL, NS, ZE, PS and PL.

Figure 7 .6a: Calculated surface plot of the function z(x,y) = x' - !',
x - [-5..+5] and y =[-5..+5].

Figure 7.6c : Calculated surface plot of the function z(x,y) = x' - y'. Blue represents

negative numbers, green represents zeto, andorange represents positive numbers.139

Figure 1.6b : Sulface plot generated by the expert system using 13 rules.139

Figure I .6d : The surface plot generated by TransFuzien software shows a high degree of

correlation with the theoretical plot of Figure 7 .7c.'. 139

Figure 7.6 : Modeling relies on the identification of key features of a system, and then

encoding these with suitable rules. The rule based model of the function Z(x,y) - x' -

y' lFigure 7.7b) closely matches the ideal case. The scale is not relevant here, as the

expert system output can be adjusted to suit the application.....'.....-..--..I39

Figure 7.'7 : The output for the low pass filter is affected by the choice of inferencing

methods....

Figure 7.8 : The output responses for two bandpass filters. The variation is due to the

iusion method employed for each filter-;

131

t37

l4l

Figure 1.9 :The inverted pendulum apparatus is the plant in this control loop.143

xv

Figure I .IO : Photograph of the inverted pendulum apparatus.. -------.145

Figure 7 .ll : Photograph of the Motor Control Module for the inverted pendulum motor. . 146

Figure l.l2 : Circuit diagram of the l{otor. Control Module for the inverted pendulum

t41

Figure 7.13: The system output for the pendulum control is determined by the angular

displacement of the pole from the vertical. This figure shows the effect of selecting

different fusion processes 150

Figure 4.1 : Block diagram of the T800 Transputer Architecture.'..... i60

Figure A.2 : The four serial links allow various architectures to be created using the

Transputer. This ability to connect Transputers to each other directlyr, without 'glue'

logic, makes them particularly useful in building hardware architectures that best suit

a particular data processing algorithm' 161

Figure 4.3 : IMS 8008 Motherboard Functional Block Diagram'. -..162

xvt

LIST OF TABLES

Table 2.1: Linguistic hedges commonly used for modifying the shape of membership

functions.'.... 18

Table Z.Z:Properties of ftzzy sets............ .-......23

Table 2.3: The fuzzy operators for AND, OR, and NOT have been expressed in varying

ways by different authors. --..'.24

Table 2.4: Modifier functions commonly used for transforming resultant rnernbership

functions. --.'...".."'34

Table 2.5: This figure shows the definitions for five fusion functions...-......'..39

Table 2.6: The methods of defuzzification will impact on the computation required and

hence the time to produce the crisp output. The center of gravity metliod is widely

used. .51

Table 2.7:Defuzzification times for a 1000 pointfuzzy set.........'...'....'.."""" 51

Table 3.1: The components of the expert system each have specific functions to perform. ..'. 60

Table 3 .2: There are 1 1 opcodes which the inference engine interprets. -. '.....1 4

Table 4.1 : Software module definitions '......."' 78

Table 5. 1 : TransFuzien System Parameters ' 95

Table 5.2: List of variable declarations for the DBM Process""""99

Table 5.3: Tag identifiers for system processes..'."""' 103

Table 5.4: Protocol of the RESULTS channels for the processes.104

Table 6.1: Truth table for TTL port bit control'..""'126

Table 7.1: There are 6 rules for this example, with 3 inputs and 3 outputs................'.'.........128

Table 7.Z:The inferencing methods for the MIMO example.'-.""'I29

Table 7.3: The rule base that classifies the data comprises 22 rules that define the two

regions A and B

Table 7.4: This table shows the improvement in discrimination between Class A and Class

B, from (19,86) before, to (79, 19), after the addition of rules that define the class

regions more fully. A high value represents a good match, 100 being the maximum

132

value..

Table 7.5: Rule base that models the function | = 2..-.-.....'..-.-

Table 7.6: Rule base that describes z, according to the VO map. The rule base is derived

138

.t33

. 135

t40
from this mapping and is shown in Figure 7.8b. ..

Table 7.7: Rule base for the low pass filter.

Table 7.8: Inference methods for the 3 low pass filters

TabTe'|l9^: RuleRasstorlhe b¿nd pass filter.

t4l

Table 7.10: Rule base for the band pass filter .t49

xv¡l

i
j
k

a
x

lt(k)
A
A.

C

P

ztkl

v
Inf

MAX
MIN
N(x)

NP

N,

t(x,y)

t*(x,y)

Trorr*,

Td"¡,,

T¡urio,,

Tp

Tproc

GLOSSARY

lnterval counter

Interval counter

Interval counter

Degree of Fulfillment of afuzzy rule

Input data vector

Membership function

Agreement Matrix

Compensated Agreement Matrix

Contradiction factor

Number of Resultant membership functions per Final membership function

Discrete representation of Final Membership Function

Fusion adjustment factor

Ftzzy Information Me asure

Maximum fuzzy operator

Minimum fizzy operator

Fuzzy negation of x

Number of processors

Number of fuzzy rules in the rulebase

Ftzzy t-norm of x and y

Fuzzy t-conorm of x and y

Communications time between processes

Time to perform FMF defuzzificatio

Time to perform RMF fusion

Time to evaluate a single fiizzy lule

Total Processing time per output

xvllt

AI
BCF

COG

DBM

DOF

EPLD

FAM

FIE

FMF

GUI

KBM
MF

MIMO

MISO

MOM

ms

PC

PED

REN

RMF

TDS

TIM

TRAM

WRMF

ABBREVIATIONS

Artificial Intelligence

Bootable Code File

Center of Gravity defuzzification

Data Base Manager

Degree of Fulfillment

Electrically Programmable Logic Device

Fuzzy Associative Memory

Fuzzy Inference Engine

Final Membership Function

Graphical User Interface

Knowledge Base Manager

Membership Function

Multiple Input - Multiple Output

Multiple Input - Single Output

Mean of Maxima defuzzification

milli-second

Personal Computer

Process Event Diagram

Rule Evaluation Node

Resultant Membership Function

Transputer Development System

Transputer Interface Module

Transputer Module

V/eighted Resultant Membership Function

xrx

PUBLICATIONS

1. Bowyer R.S., "Implementation of a Parallel Fuzzy Logic Controller", ATOUG-4 The

Transputer in Australasia, IOS Press, Amsterdam, pp. 13-18, Sept. 1991.

2. Bowyer R. S., "TransFuzien - A Transputer Based Fuzzy I-ogic Inference Engine", IEEE

ANZtrS-gs, Proceedings of the Australian and New Zealand Conference on Intelligent

Information Systems, pp.140-145, Nov. 1995.

1Chaoter I lntroduction
l

Chapter I

INTRODUCTION

L.L Motivation

Artificial intelligence (AI) systems [1, 2], and in particular rule-based expert systems, are being

applied at an ever increasing rate to the solution of information processing problems. One area

of AI which is gaining in popularity is Fuzzy Logic, the basic theory of which was first

described by Zadeh l3l. Flzzy logic can be applied to the solution of a broad lange of

computational problems. There are trtany accounts in the literature which describe uses for

fuzzy logic, ranging from an expert system for medical diagnosis such as MYCIN, CADIAC,

and SPERIL-II [4, 5], to the control of an electric passenger train in Japan [6].

The motivation for this research is to investigate fiizzy reasoning, and examine the issues

of knowledge representation, fiizzy inferencing strategies, and methods by which parallel

processing techniques can be applied to this area. A fuzzy logic rule-based expert system is

developed in this thesis to facilitate the investigation of these issues. It is a Transputer-based

fuzzy logic inferencing engine, implemented as a data processing workstation. The computer

workstation is a familiar concept, enabling a user to interact with a computer system via, in

most cases, a Graphical User Interface (GUt), operating under the Microsoft Windowsl

operating system.

The user interface is a very important component of this and any expert system [7]. The

system should be simple to operate so the user can concentrate on transferring knowledge to

the knowledge base, and not worry about the details of the mechanism that under-lies that

transfer. A suite of software is developed that supports a number of the present interpretations

of fuzzy inferencing, thus providing a flexible and instructive environment fot fi'nzy

processing. It provides all the functionality to perform rule-base d fizzy logic inferencing.

The hardware for this system comprises a PC, an Inmos 8008 Transputer motherboard

[8], fitted with two T800 TRAM modules, and the hardware interface. Figure 1.1 shows how

the various system components fit together, whilst Figure 1.2 shows the top level structure for

a rule-based inferencing system.

I Microsoft Corporation

Chapter I lntroduction

The potential benefits of applying Transputers to this works are to be examined, and

include;

1. Simplifying the process of rnapping algorithrns to hardware.

2. Using multiple processors enables multiple connections between the processing

system and the external world via the serial links.

3. Processing performance as defined as the time taken to complete specific tasks, is

reduced according to the numbel of processors assigned to a task. This will be

explored in Chapter 5.

The software comprises the graphical user interface that runs on the PC, and the

inferencing software that luns on the Transputers. Each of these components is described in the

following sections.

The system that is developed, procosses data sets by applying the rule base to each new

input data set, and computing the conesponding output(s). Both inputs and outputs may be

displayed on the GUL This is an open loop processing system, as is typical of expert systerns

that plovide solne answer to a particular set of input conditions, such as in computer assisted

rnedical diagnosis or weather classification [7, 9].

Closed loop processing is required when an expert system is being used fol continuous

processing of the input data, such as the for the control of the speed of an electric motor under

varying loati conditions. A closed loop approach is required fol systems that exhibit tirne

valying dynamics, particularly on a time scale that is short compared to the time a human

operator would need to effect some appropriate control action. (eg. increase motor current

when load increases, to maintain motor speed at some desired set point).

This second rnode of operation is a cliallenge for expert systems, and places considerable

responsibility on the programmer (human expert), to construct a reasonable rule base, that

describes the dynamic behaviour of the system to be controlled. The objective of this research

is to produce an expert system, that fulfills both modes of operation.

2

3Chaoter I I ntroduction

8008 Transputer
Motherboard

(resides in PC slot)

lnference
Engine

Software

GUI and
Knowledge

Pre-processing
Software

Transputer
lnterface
Module

Data connection
to external

electronic devices

Figure 1.1: The components of the fuzzy inferencing system comprise the host computer

with the graphical user interface and knowledge pre-processing program, the Inmos

Transputer sub-system and the inferencing software, and the Transputer Interface Module

that connects to external electronic hardware.

Chapter I lntroduction 4

Data Sink

Output Data
Conditioning and
De-normalisation

Rule Base Expert
System

Knowledge
Base

lnput Data
Conditioning and

Normalisation

Data Source

Figure 1.2: An expefi system comprises a rule base where the rules are stored, and a

knowledge base which stores information about the inferencing strategy. The input and

output signals will require some normalisation processing.

Chapter I lntroduction 5

L.2 Review of the literature

There are a number of key concepts that are explored and developed in this thesis, which are as

follows;

1. Fuzzy logic processing,

2. Development of additi onal flzzy operations for t-norm, t-conorm and fusion,

3. Development of an inferencing algorithmic sffucture,

4. Implementation of the inferencing algorithm,

5. Use of the Inmos Transputer to perform the inference processing,

6. Development of an expert system workstation, featuring a graphical user interface.

7. Software which supports a range of frtzzy operators.

8. Design and development of specialised hardware to assist in system integration.

Systems which use fuzzy logic in their processing can be divided into three broad

categories. The first category is that of commercial products which provide a user interface

(usually on a PC), and sometimes graphical in presentation. Typically, these development

systems implement fuzzy logic rules on a particular secondary platform, allowing a user to

enter rules and generate C source code for a micro-controller. Motorola have such a system for

their range of micro-controllers [10].

The second category is the commercial product which develops configuration code for

dedicated fuzzy processing chips. An example is the flzzy corelator andfizzy microprocessor

from Infra-Logix [11]. Some other examples are Seimens'Ftzzy Logic Co-processor chip, the

SAE 81c9glI2l, and the VY86C500 Iz-bit Fuzzy Computational Accelerator from VLSI

Technology Inc.[13].

With these specialised components, the number of fuzzy inferences per second is very

high, but there are usually limitations to the number and syntax of rules, and the representation

of membership functions. These limitations are understandable as the devices have a fixed

architecture.

The third category is very common in industry, and represents the many different types of

embedded fuzzy process controllers. Typically, these are systems which run on common

micro-processor platforms, where the flzzy algorithms are hard-coded into the software. The

fuzzy algorithms are written in languages such as C, Pascal, and even assembler. This makes

modifications more difficult, as the code must be changed, recompiled, and then linked with

the rest of the software system. Look-up tables are also often used with standard micro-

controllers.

Chaoter I lntroduction

Each of these categories have their advantages. This study, however, adopts a flexible

approach to the fuzzy inferencing problem, by implementing a generic fuzzy algorithm, which

can be customised to suit the user's requirements, via the rule base and a choice of inferencing

strategies.

Another common theme in the literature is the need for some form of acceleratot or

specialised computing architecture, to improve the processing pelformance of frtzzy systems

implemented on a computer platform. The literature contains several references on the parallel

implementation of fuzzy inference processing. Some of these systems propose the use of

optical processing systems [14] to realise the parallel computation, but these lack the flexibility

of the proposed system. In a paper by Linkens and Hasnain [15], the authors describe fuzzy

logic implemented on the Transputer. The fuzzy t'ules are directly coded in Occam, and fazzy

control in parallel, as a lneans to speed-up the processing, is examined by the authors. The

approach taken in this thesis differs from this approach, in that the rules are not coded in

Occam.

There are many references in the literature to 'expert system' shells and AI toolkits [5].

There are key papers U6,lll which describe systems and ideas which combine one or more of

the features which are listed above. This work investigates methods which make an expert

system more flexible. These papers are listed below and comments made regarding their

content and relevance to this current work.

In work published by Marian S. Stachowicz [18], a hardware accelerator fot finzy

inferencing is described. The inferencing and defuzzification techniques are fixed. The

universe of discourse is limited to 25 elements and the number of levels is 5. The processor

uses a pipeline architecture to achieve the parallelism, with a quoted performance of 800 k

Flzzy Inferences per Second (t¡'ps).

H. Ekerol and D.C. Hodgson in [17], describe a dedicated control system which uses

Transputers and fuzzy logic. The defuzzification method used is weighted avetage. The fuzzy

logic control algorithm uses 10 rules to control the intensity of an air-jet that is a component in

a sorting system involving a conveyor belt. The control actions are pre-calculated and stored in

a look-up table residing in the Transputer's memory.

There are examples in the literature of parallel implementations of fuzzy logic systems

lIg,20l, which address specific applications, but do not address the combination of issues at

which this research is aimed.

1.3 OriginalContributions

6

There is a lack of published work that focuses on using parallel processing architectures for the

implementation of rule-based inferencing systems. In particular, there is little work, to the best

Chapter I lntroduction

of the author's knowledge, that uses Transputer technology to irnplement flexible fiizzy expert

systems. This research examines the following areas;

L Methods of fizzy logic processing, including connectives, modifiers, fusion operators,

and defuzzification. Some new operations are proposed.

2. Application of parallel processiug principles to fazzy processing.

3. Development of a parallel inferencing algorithm.

4. Implementation of the algorithm using the Occam 2 programming language, and

running the software on the Inmos T800 Transputer.

5. Investigation into human-computer interfaces.

6. Development of a human-machine-interface (HMI) front end for an expert system.

7. Investigation into the effects of different inferencing options on data processing.

8. Demonstration of inferencing methodologies by way of a number of examples.

9. Design and development of a Transputer Interface Module (TIM), that provides

control functions and data collection capability to the TransFuzien system. This

involved hardware, firmware, and software, design.

The system which is developed in this study, aims to be as flexible as possible. To

provide flexibility in the choice of inferencing options, and so on, impacts directly on the

development of the various processing algorithms. The INMOS Transputer has been selected

as the processing engine for this study as it has many desirable characteristics which make it

suitable for this work. These include:

1. Ease of mapping data flow description onto the architecture through the application of

Occam in writing the code.

2. A scaleable performance is achievable by devolving sections of the processing to

additional Transputers, or by applying multiple Transputers in a farm arrangement.

To achieve a multiple-input-multiple-output (MIMO) processor, a generic fitzzy

inferencing program is run on the T800 Transputer. This program is loaded onto the Transputer

system via a command issued by the user, and booted to establish communications with the

user interface program which is running on the PC.

The knowledge base interface which runs on the PC, is used to define the parameters of

the fi,nzy processor. include, the rule base, the membership function

7

definitions, and the input and output names and mapping. When the fizzy processor is runnrng

Chapter I lntroduction

and processing input frorn what ever source, the user then has the option to alter the above

mentioned parameters.

The systern which is developed can operate in one of two modes. The first mode, is

where input data is processed by a set of rulLs, output calculated and displayed. This one-off

processing behavior is applicable in a system for assisting a person to come to a decision or

conclusion, such as in medical diagnosis, or data recognition/classification.

The second mode of operation, processes data continuously. The inputs are sampled at a

regular time interval, and the rule-base processes the data for each new interval. This is

applicable to control of processes, and requires an appropriate response time from the inference

engine, according to the time constants of the controlled plant.

1.4 Thesis Outline

This dissertation is set out in the following manner. Chapter 2 introduces fiizzy set theory, and

describes the membership function, various methods of lazzy inferencing, and the

defuzzification process. Some of the advantages of using a fuzzy approach to information

processing are given. The union and intersection operations between fiizzy sets is examined

and several methods are presented that have been explored in the literature. At this stage,

additional operators for these connectives are proposed, with examples to illustrate their affect.

Likewise, the process of fusing information that is represented by multiple fiizzy sets, is

examined, and an information measure is derived. Further, two additional methods are

proposed to fuse fuzzy sets.

V/ith the basic concepts covered, the next chapter examines the process of fuzzy

inferencing using IF-THEN production rules as the method of knowledge encapsulation' The

process is examined to explore how fuzzy inferencing can be performed in a parallel domain,

and to identify the driving issues and choices that must be considered. A software structure is

developed to perform fuzzy inferencing. The development of a structure for luzzy inferencing

naturally leads to the requirement to configure, test, and apply this structure.

To obtain a physical realisation of the ideas developed in Chapter 3, they must be

implemented on the Transputer target system. This process is described in Chapter 4. A means

of user interaction is essential in this system, and the type and function of the interface are

described in Chapter 5.

This research has the requirement of being able to process data from a variety of physical

sources glves

8

,.I

ld

¡

k

with external electronic equipment. The TIM is described in Chapter 6.

Chapter I lntroduction

A number of case studies have been completed using the software and hardware

developed in this research. There are four of these studies which each exercise various aspects

of the system, and show the results of the fuzzy inferencing process. In Chapter 7, there is an

example of each of the following;

1. Multiple input-multiple output (MIMO) system,

2. Fuzzy pattern classification,

3. Ftzzy modeling of a function, and

4. Fuzzycontrol.

The results for each example are given and discussed. Chapter 8 presents the conclusions of

this research, and identifies areas of further work.

I

r,

'I

ü¡&
T

I

T
I

I

r
I

Chapter ll lntroduction lo Fuzzv Sets and Fuzzv Loqic 10

Chapter II

INTRODUCTION TO FUZZY SETS AND ßUZZY LOGIC

2.1, Overview

hr this chapter, fuzzy sets are introduced, together with the basic theory of fuzzy logrc

operations. This chapter begins by making a comparison between 'classical' set theory, and

fizzy set theory. This leads to a description of fuzzy set operators and membership functiotts,

followed by fuzzy logic, being the method by which fuzzy sets and operators interact. At this

stage, two operators are proposed by the author, with illustrative examples given.

In this discussion, the fuzzy rule is introduced as a means of encapsulating domain

knowledgel. A mathematical description of the inferencing mechanism is presented-

The process by which rules that relate to a common output are combined, is a form of

data fusion, and hence this process is called fusion in this work. There are a number of rule

fusion or aggregation methods [21] that are in common use, and some of these are presented.

The information content of fused data sets is addressed, and an Information Measure is

proposed. Then, two additional methods are proposed by the author, for fuzzy set fusion.

Some of the common definzification methods are presented, followed by a discussion

on adaptive fazzy systems. Lastly, temporal aspects of fitzzy logic are considered, with a new

concept, in relation to the fiizzy rule, being proposed.

2.2 A Contrast of Styles - Boolean (Crisp) vs Fuzzy

Classical set theory is very clear about what it means to belong to a particular set of objects'

In classical set theory, there are no degrees of belonging or degrees o.f truth. With Boolean

logic there are no shades of gray, only black and white, true or false. However with luzzy

logic, ìwe are dealing with continuous-valued logic. There is a continuous transition between

one extreme and another, thus enabling us to assign degrees of truth to propositions, such as,

"it is quite cold in this roonx". Fuzzy logic allows such statements, and provides a

r,l

,,

i

r
I Knowledge about a particular process or event

ii
I

.i
l

Chapter ll lntroduction to Fuzzv Sets and Fuzzv Loqic 11

mathematical framework by wliich it can be evaluated, providin g a degree of truth or degree

of fulfillmentfor the statement.

Fuzzy logic is a powerful tool for dealing with information using approximate

reasoning. In fact, humans make subjective decisions all the time, based on minimal and

often vague information. We are, all of us, experts in fuz.zy logic. In the expert system

developed herein, the processing of informatiolt is accomplished using linguistic descriptions

in the form of IF-THEN rules. These are the embodiment of the knowledge of a process or

event that is available for inferencing operations. These rules are derived from the knowledge

of a system's behavior.

The derivation of the fuzzy rules is an interesting field of study, and can be

accomplished by interviewing an 'expert', to derive a series of if-then' statements that

reasonably cover the range of expected behaviour of the process that is to be modeled. The

rules cornprise a particular syntax (and are linguistic in form) and a number of fuzzy

operators. These are described in the following sections.

An important aspect about conventional rule-based expert systems 12,221is that when

the systern is evaluating its rule-base, it is searching fol a match between its knowledge base

and the input data. In traditional binary logic, if a rule statement does not match exactly with

the input data, then the rule has no further effect on the outcome of the expert system. Hence,

if the iriput data is almost, say 997o, but not quite a match, then this information is lost to the

system.

In the case of fizzy logic, every rule will contribute, to the degree of fulfillment of that

rule, to the outcome. Hence the 'quality'2 of the outcome is higher, as there is no loss of

information. This could be important where the quality and the quantity of available data is

limited. A system that uses fizzy logic for inferencing uses all the information at its disposal,

and wastes nothing. This is one of the advantages of an expert system based on fuzzy

inferencing. By generating a list of behavioural rules for a particular system, and applying the

mathematics of fuzzy set operations, the linguistic rules of a knowledge base can be

translated into a flexible numerical domain [23].

The common approach to decision making or process control, is to define accurate

mathematical models of the plant or process and use the sensory data to monitor its

performance, and make appropriate control decisions. This points to one of the main

advantages of fuzzy processing. A system need not be described by an exact mathematical

model.

t
I

;

þ
afuzzy system, tbr the same rulebase.

number of rules activated in2 Defined by the author as the number of rules activated in a Boolean system, compared to the

Chapter ll lntroductionlo Fuzzv Sets and Fuzzv Loqic 12

In the case where the model is known and comprises high order differential equations,

solving these equations in a real-time situation places considerable demand on the processing

architecture and software. Afuzzy approach allows complicated systems to be described with

linguistic rules. Also, where there is insufficient information3 about the intemal operation of

a particular system, then it can still be modeled based on the observed behaviour using the

fuzzy approach.

Put another way, fuzzy logic enables a system designer to incorporate qualitative and

non-linear behaviour into the system model. An example of this situation is where there are a

limited number of sensor outputs available to the processor, as in the case of some industrial

control situations [24].

In classical control theory, for example, a transfer function of the plant is required, and

exact data is used to control a plant of some description 1251. Data from the plant is applied

to a mathematical model of the plant to derive some new control inputs to the system. The

behaviour or response of the plant is determined by how well the mathematical model

represents the plant.

A rule-base d fizzy logic controller applies the input data to the rule base, with all rules

being processed in parallel. For each individual output their may be many contributing rules.

The outputs from these rules are then combined and de-fuzzified to produce a crisp output'

Consider the example where an air-conditioning plant must maintain the air temperature in a

room at a pre-defined setting. One rule to accomplish this may look like:

o IF outside temperature IS high AND inside is lhish and increasins)

THEN turn cooler on hieh

In the following sections the components of fizzy inferencing are addressed. It is worth

noting at this point, that the fuzzy approach is just another tool to solve problems. As with

any method of scientific investigation, the tools are there to aid in the understanding of the

problem at hand.

3 Th"r" may not be enough sensors within an apparatus to properly describe a required parameter of the system.

Chapter ll lntroduction to Fuzzy Sets and Fuzzy lc 13

2.3 The Membership Function

A membership function (MF) is a mathematical description of a linguistic model or class,

such as 'tall person'. It is not the presence of random variables, but the presence of vagueness

and imprecision which is the central theme when defining a membership function t3lt4l.

Membership functions are not probability distribution functions, but are descriptions of

linguistic terms or labels, that are relevant in the particular instance.

As an example of a membership function, consider an experiment where the

temperature of a room in a house is being measured. A thermometer is placed in the room

and allowed to stabilize before a reading is taken. The readin g may be 30 degrees Celsius,

which is classified by most people as hot. If the temperature was 12 degrees, then this may be

classified as cool. The numerical range over which an input variable is defined is called the

Universe of Discourse [3]. In this case the universe of discourse may range of temperatures

tolerable to humans (10 degrees to 40 degrees).

Now consider if an air conditioner is turned on and a series of temperature

Íteasurements are taken at regular intervals. As the temperature drops, the classification of

the temperature would change from hot to 'not too hot', to 'warm', to 'slightly cool', and

rnaybe further to 'cold' and finally, to 'very cold'.

Each of the classifications mentioned above, are examples of classes in luzzy logic

which are called membership functions. Consider the first temperature reading in our

example of 30 degrees. In fuzzy nomenclature, it has a high degree of membership to the

class'hot', saygíTo,butalesserdegreeof membershiptotheclasswarm, say607o, andan

even lower degree of membership to the class cold, say 5Vo.Figue 2.1 illustrates this idea.

The key point is, that a variable measurement (eg. temperature) can simultaneously belong to

other membership sets to varying degrees.

The definition of a membership function, that is, its shape, is an area worthy of some

explanation. Dubois and Prade [21] give an interesting discussion entitled, "'Where do they

come from?". Where indeed! V/hen an MF is defined, it is often representing some empirical

data. The MF can be thought of as a transform from crisp space to fuzzy space. The MF is

the 'handle' by which humans translate linguistic operators into the realm of mathematics

processes for use by computers. An analysis of this subject can be found in Chapter 6 of [4].

Membership functions are often mathematically modeled by a continuous or discrete

trigonometric function, polynomial, or linear expression. Some examples of membership

1. Gaussian function

Chapter ll lntroduction to Fuzzv Sets andFuzzy Looic 14

2. Polynomial

3. Linear equation

4. Trigonometric function

5. S and II functions

Equation 2:1. generates functions with varying characteristics, dependent upon the parameters

,4 (maximum amplitude chosen to match the range of the input data), S (spread factor), and

C, which isthefuzzy number or center point of the fuzzy set.

, t-s[r- x)-c)2]
p(x) -- A.e' \L r) ' (2 I)

and

A
^s> 0

(2.2)p(x):

['
. [] t'- '']]

wheie x e[0,100], .l e [t.too]

Equation 2.2is has been used to generate a default family of nine membership functions for

the expert system software developed in this work. These are shown in Figure 2.2. The GUI

is described in further detail in chapter five

In this work, a discrete representation of membership functions is adopted, as shown in

(2.3), with araîge of [-50..+SO].

P(î) =
Po ltt
xo rt

Fn-t

)cn-l

(2 3)

where I' is the value of the membership functio n at x¡.
xi

The number of points that are used has a direct bearing on the time required to process the

function. As the number of points increases, so does the time required to perform transforms

on the membership functions.

Chapter ll lntroduction to Fuzzy Sets and Fuzzy Logic 15

I

09

Llcool

lJcou 9.1

fIw",.

Lluo,

Degree of
Membership

0.ú

0.5

0.4

0.3

0.3

0.1

0
+ s l1 ld îf] 2+ ?8 31 3ú 40

Temperature (degrees Celcius)

Figure 2.1: Set of Membership Functions that describe a range of temperatures. The

position of the peaks and the spread of each function are chosen to suit the application.

û

Chaoter ll lntroduction to Fuzzv Sets and Fuzzv Looic 16

I
100

90

80

70

ó0

50

Æ

30

20

l0

0

50

P{x)

-5r -4J -4) 45 -30 -25 -20 -15 -10 -5 0 J l0 15 20 25 30 35 ¿m 4J 50

- Negative large

- Negative bþ

- Negative mediwn
-- Negative small

LeÍo
' Positive small
- - Positive medium
- - Posrtive bþ
- - Posihve large

Figure 2.2: Set of Membership Functions generated by equation 2.4, with varying

parameters.

x

<_:

(

\
\I\I

I
I

t\

\
I
I

I

\\I\
I

t¡
T
L[;,

I
Y

I
I

I/I

I
I

l
\

II
I

I

,

\I
¡\\

l,'',I
\I50

\

Chapter ll lntroduction to Fuzzv Sets and Fuzzv Loqic 17

2.4 Fnzzy Numbers

Just as the fuzzy sets for small or medimn are represented by a membership function, so

numbers can also be described. For instance, a crisp real number N is converted to a fuzzy

number by specifying the form of a membership function, centered on N. An example of this

could occur as follows:

IF temperature IS close-to 30 degrees THEN fan-speed IS HIGHO

The premise'temperature IS close-to 30 degrees', allows specific values to be used in the

rule base, compared with the more generic terms of small and high.

Flzzy arithmetic can be performed between finzy numbers. An example of fuzzy

addition using the discrete fuzzy set representation, as introduced in the previous section, is

as follows:

0/0, On,0/2, 113,214,315, 516,31'l ,2/8, O/9 + 91 0,8/1, 512,213, O/4,0/5 ,016, O/1,018, O/9

=9lO,8ll ,5/2 ,213 ,214 ,315 ,516 ,3/1 ,2/8 ,019

Flzzy multiplication and division can be performed, and Dubois and Prade give a detailed

treatment of this subject in Chapter 2 of 1211.

Chapter ll lntroduction to Fuzzv Sets andFuzzv 18

2.5 Linguistic Hedges

Linguistic modifiers or hedges [21,26,27) provide a means to emphasize or de-emphasize the

effect of a premise. Hedges add to the grammar for writing fiizzy lules, and enhance the ability

of the expert to express ideas in a rule form. Table 2.1 lists some of the definitions for hedges.

Figure 2.3 illustrates the effect of hedges on membership functions.

Hedges can be used in fiizzy rules to modify the membership functions; as shown in this

example:

. IF X1 IS very large AND X2IS quite small THEN ZIIS zero

It,n,ro,fu) 2.Lro2(u) :¡tn(u) s I o, o.t],]
1 - 2.(I - ltofu))2 otherwise

contrast intensification:

t oaolu) = [ltofu)]'"dilution: (eg. some-what)

z

lr,.ølu) =[tt/u)]concentration (eg. very)

It,ror*¡o¡fu) = ltofu) / (suP P¡)normalisation

DescriptionHedge

Table 2.1: Linguistic hedges commonly used for modifying the shape of membership

functions

Ghapter ll lntroduction Io Fuzzy Sets and Fuzzy Looic 19

tt(x)

00

90

8Ð

70

6¿

JD

4¡

30

]D

t0

0 2 4 6 8 l0 l2 la ló 18 20 n u x z n n 34 % lt 0'-€ 4 4 4 50

Þ¡84
vry¡ùF

- smewh¡t ltrg¿ x

Figure 2.3: The shape of a membership function p(x) can be modifieJ by a linguistic hedge.

This figure shows the effect of both concentration (square) and dilution (square root)

operators on a membership function.

¿f,

Chapter ll lntroduction to Fuzzv Sets and Fuzzv tc 20

2.6 Fuzzy Set Operations

In this section the concepts of fuzzy set operation are reviewed. The original paper onfuzzy

sets by Zadeh [3], described the operations that can be performed between fuzzy sets. Fuzzy

sets share the same properties of associativity, distributivity, and colnmutativity, and so on,

as crisp sets. Figure 2.4 illustrates classical Boolean logic, whele two sets A and B, intersect.

Further, the data points (denoted by +) that are scattered throughout the figure, may belong to

either set A, set B, both set A and B, or to neither set. In Figure 2.5 the same data points now

belong to both set A and B, with a degree of membership denoted ma and m3.

These definitions describe the standard operations for fuzzy sets. They make use of the

operators AND, OR, and NOT, all of which have clear definitions fol clisp logic. In this

work, these operators are referred to as connectives. There are various interpretations of how

these connectives, AND, OR, and NOT arc implemented. Dubois and Prade [23] discuss the

operations on fizzy sets in detail, and define a number of alternatives. Klir and Folger [27]

give a good overview of some of the various operations on fuzzy sets, and include

mathematical proofs. A number of these methods have been incorporated into the

TransFuzien software. giving the user a more flexible system for finzy computation. This is

discussed in detail in Chapter 5.

The original paper on fizzy sets by Zadeh, described the operations that could be

performed between fazzy sets. The operations of union, intersection, and complement are

defined in this section.

Consider afunction ¡to@) and a variable x ! [0, 1], andlet ¡to@) and ¡t"(x) befuzzy

sets on the interval [0,]1. The complement of afuzzy set is defined as:

. I _ ltt?)
The fuzzy 'AND' function is the intersection of two or more sets, and is evaluated by

calculating the minimum of the membership grades within any of the subsets.

. ¡to6) AND ptn6) = MIN (lto@) , [t¡(x))

The 'OR' function is the union of two or more sets, and is evaluated by calculating the

maximum of the membership grades within any of the subsets

. ¡to@) oR lto6) = MAX (ttoþ) , ¡rn@))

Fuzzy sets posses the properties of associativity, distributivity, and commutativity [3].

Chapter ll lntroduction to Fuzzv Sets and Fuzzy Looic 21

Set A
Set B

ANB

+

Figure 2.4-. Two sets A and B define regions of interest in the parameter space. Data points

may belong to either A or B, or the intersection of A and B. The data may also lie outside

these sets.

+(m"rm5)

+(m"rm5)
+(m"rm6)+(m"rm6)

+(m"rm6)

+(m"rm6)

Figure 2.5: With fuzzy classification, each data point has a membership to each set. In this

case, the memberships are denoted mu and m5.

Chapter ll lntroduction to Fuzzv Sets and FuzzY Looic 22

The two fuzzy sets A and B obey the rules described in table 2.1. The raîge of the parameter

which is being classified is known as the'Universe of Discourse'.

These definitions are the standnrd operations of fuzzy theory. There are however, other

definitions for the fr"ry set operators. Table 2.3 shows some of thefuzzy operators in current

use. Figures 2.6,2.7,2.8 and 2.9 illustrate examples of these operators. Some of the

operators listed in Table 2.3 have been incorporated into the inferencing kernel program that

runs on the Transputer system. These operators provide the user with a choice of inferencing

strategies for fuzzy computation.

The connectives, AND and OR are also called T-operators, or t-norm and t-conorm

respectively. Gupta and Qi in [2S] summarized the properties of the t-norm and the t-conorm.

The definitions are as follows:

Defïnition 2.L: T-norm:

Lett: [0,IJ x:[0,IJ + [0,IJ ,thent is a T-norm iffthe following are true:

1. t(0,0) : 0

2 r(x,I) -- x

3. t(u,,x) <: t(y,t) if w <:), and x 1: z (monotonicity)

4. t(x,y) : t(y,x) (sYmmetry)

5. t(x,t(y,z)) : t(t(x,y),2) (associativity)

Definition 2.2: T-conorm

Lett*: [0,1] x:[0,lJ -+ [0,IJ ,thent* is a T-conorm iffthe following are tnre.

r. t*(o,o) : 0

2, t*(x,0) : x
3. t*(tu,x) <: t*(y,z) if w <: y and x 1: z (monotonicity)

4. t*(x,y) : t*(y,x) (symmetry)

5. t*(x,t*(y,z)) : t*(t*(x,y),2) (associativity)

Definition 2.3: Negation

LetN:[0,lJ --+ [0,1J, Nis a negation function iffthe following conditions are true

r. N(o) : r, NQ) : o

2. N(x) <: N(y), x>: y
3. N(x) is continuous

a. N$) <N(y), for x > y for all x,y in [0,]J

S. N(ltt(x)) : x, for all x in [0,1J

Chapter ll lntroduction To Fuzzv Sets and Fuzzv Looic 23

(AnB)=AuB

(AuB) = AnB

DeMorgan Laws:

Au(BôC)=(AuB)rt(AuC)Distributivity:

AUA=A AnA=AIdempotency:

Au(BuC) - (AuB)uCAssociativity:

AUB = BUACommutativity

DescriptionProperty

Table 2.2 : Properties of fuzzy sets.

Yu Yandong

t1e8sl

Dombi [1980]

Dubois &Prade
[1980]

Yager [1980]

Frank [1979]

Hamacher t19851

Weber [1983],
Bandler et al

t19801

Lukasiewicz
Logics

Giles [1976]

Zadehll9l3l

Schweitzer &
Sktar [1961]

Type

max((1+ î,)(x + y - 1) - (l..x.y), 0)

I

1+[(l/x - 1)À + (l/y - t; r1-trr

t-min[{t, (1-x)* + (t-y)*)t'"]

togr[t + ß.il-GY--D]
(s-1)

X.Y

y +(1 -yXx+y-x.y)

x.y

max(x+y-1,0)

min(x, y)

max(0, *-P * t-P -1¡-l/P

Fuzzy Intersection : t-norm (AND)

min(x+y+À.x.y, 1)

1

1+[(1/x - 1)-r+ (tly - 1)
-r]-1lÀ

1- 11-x)(1-v)
max(1-x, 1-y,1")

. w w. l/w,mln(I,(x +y))

t - logrf 1 + ß*--1)ls(t-tl-Ð]
(s-1)

x+y-x.y

x+v-2.x.v
(1 x.y)

min(x + y, 1)

max(x, y)

1- max(O, (1-x)P + (t-y)P- t)r/P

Fuzzy Union : t-conorm (OR)

1-x

1-x

1-x

1-x

1-x

1-x

1-x

1-x

Fuzry NOT

)" >-l

0<Â<-

v+0
0 <)"<*

y >_0

Range

oJ
g)
o
o
a

f
o
o-c
o
=.o
f

o
-t't
c
N
N

U)o
(t
D
=o-
T]c
N
N

Nè

drl

Ëjo
i'd' N)
du)

ão
oC'
!-t NY'N

CD4
Ê0

È-t
U)

õ'
>1

z

Þ

ø
?
r{

(D

CD
(D

ox:ó
Fl
CD(u
(t)
CD

a-

H

oq

v)

Chapter ll lntroduction to Fu Sets and Fuzzv 25

\I
I

I

\I
0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.9

0.8

0.7

0.6

0.J

0.4

0.3

0.2

0.t

0

tt(x) t4x)

0Jl015Ã253035tû¿Ufl 0 J l0 lJ m 25 fr 35 ¿Íl 45J0

x JC

Figure a: Membership function for 'low'. Figure b: Membership function for 'high'

dof
4

t0 14x)ø, 14x)¡¡rn

14x)ø*

20

14x)n¡tn

S2

SI

Figure c: Degree of fulfillment surface 52 for

AND, using rùy'eber's interpretation.

Figure d: Degree of fulfillment surface 52 for OR'

using Weber's interPretation.

Figure 2.6: Anexample of the interaction between two membership functions using Weber's

definition of the AND operator and the OR operator. The degree of fulfillment surfaces for a

two input system is a useful visualization tool for finzy inferencing.

l

ìI

\
II

Chaoter ll lntroduction to Fuzzv Sets and Fuzzv Looic 26

\

flx)

flx)

09

ß3

0.1

0t

f]J

0.4

l)J

0t

0.1

flx)

0.9

0t

OJ

0ß

OJ

0.4

03

0.2

0.1

010ãlî4)f)ó0711$mlm

flx)

t09

+.AND
--' oR

- (x)
' e(")

l0

æ3 nt 06 JoJ ó0.4 m3 m: m I m

x
x--'ÂND

-oR

Figure 2.7a: TIte simplest fuzzy set operators to

implement are those originally proposed by Zadeh.

Graph showing the outcomes, of the fuzzy set

operations AND and OR .

Figure 2.7b: Graph showing rüeber AND and OR

functions.

0.9

03

0.1

06

0.J

0.1

OJ

D2

B.l

0.9

0.8

8.7

ET

0.J

0¿

03

0l

0.1

{îm Í
x

flt0æ90100
010203f)1) J0æm80ql

x
+ flANDf2
+ fl oRf2
--'fl

12

- not (x))
---(Ð

Figure 2.7c: Graph showing Weber NOT

function.
Figure 2.7d: Graph showing Hamacher AND

and OR functions.

Figure 2.7: There are several definitions for luzzy set operators. The effects of each

ì\

d
d

É
lt

d

Þ
É

of which the AND, OR and NOT

operators. The input is shown as r and the result is depicted asflx).

Chaoter ll lntroduction to Fuzzv Sets and Fuzzv 27

From tab\e2.3, it is clear that the choice of operators will impact on both the outcome

of the inferencing process, and the time required to calculate the ouþuts, due to the

calculations steps required for each method. Zadeh's operators are the simplest, whilst others

offer parameters that may be tuned to suit the individual application.

M2 N2

Figure 2.8: Graphs showing V/eber t-norm (M2) and t-conorm (N2) with both inputs

varying from 0 to 1. This interpretation of T-operators is quite simple to compute and

from these surface plots, it can be seen that they conform to an intuitive definition of

AND and OR logic.

0

0

l0u

-a-

t
/

I

u(x)

0

x 20

u(1-x)
1-u(x)

Figure 2.9: Tlne NOT operator can be interpreted in at least two ways, as shown in this

0

large
- -' not large

nor lafge

Ïlgure.

Chapter ll lntroduction to FuzzY Sets and Fuzzv Loqic 28

.i

2.7 Proposed Fuzzy Set OPerators

The OR operation is a union operation between sets. This t-conorm is based on a

product of the minimum of the variables x'and y, modified by a factor dependent on the

absolute distance between r and y. The equation is modified by the parameter y. The

calculations are simple to perform (especially if y : l), comprising of comparison operators

MIN and MAX, and arithmetic operations, so they can be simply implemented in software.

The t-cononn and t-norm proposed in this work are shown in equations 2.4 and 2.7

respectively.

*
t (s.y)=l¡[l¡t¡ MAX(,,y) ('.1-1,),']

(2 4)

,'j

id
,i;

¡

where f:integer,f+0 and x,Y e[0,1]

A t-norm can be derived [9] from an appropriate t-conorm by applying equation (2.5). If

i (*,y) is a t-conorm, then:

t(x'Y)=I- r* (1 -''I-Y') (2 5)

SubstitutingQ.4) into (2.5) gives (2.6):

r-x)-(t-
ll'l (2 6)t(x,y)=1- (1- x), (l - y)] 1+

v

Expanding terms and simplifying gives (2.7)

t(x,v)=¡-l*-l^(r-x),(r-l)l lr.+l],'] Q7)

Figures 2.lO and2.11 illustrate the effect of these operators. It canbe shown that these new

operators possess the properties of Definitions 2.I and 2'2 for y-)@. They offer a

measure of tuning (enhance or diminish) by altering the parameter y, as is clearly illustrated in

Figure 2.11.

r

Chapter ll lntroduction to Sets and Fuzzv 29

=-
l8

12

Figure 2.10a: Proposed t-norm as a function of x
and y. The values shown on the x and y axes are

the indices of the mahix.

o o.25 0.5 0.75 1

M

Figure 2.10c: Contour plot of the t-norm. The

actual values of x and y are shown on this plot.

t2

x

Figure 2.10b: Proposed t-conorm as a function of
x and y. The values shown on the x and y axes are

the indices of the matrix.

0 0.25 0.5 0.75 1

N

Figure 2.10d: Contour plot of the t-conorm. The

actual values of x and y are shown on this plot.

v 18x

v
M

N

I

!ü
'¡ti

J

v v

)cx

Fþre 2.10: Graph (a) showing an example of the proposed t-norm (M) and t-conorm

(N). The colour blue represents the minimum of 0, and the colour red represents the

maximum of 1.

I
I

r

Chapter ll lntroduction to Fuzzy Sets and Fuzzv Loqic 30

Y

-\
I
/

\
It
I
I /

\\ p-I
\ ¿

I

0.8

o;l

ÞE 0.6
e
.8
É

¿ 0.5
o

u
A 0.4 Example I

Example 2

03

0.2

0.1

0
0 01 02 03 04 0.5 06 0'l 08 09

x

08

o'l

.t

¡'l
'1j
I

0.5

0.4

0.3

0.2

0.1

.3
!
e
3
E

b
.¡l

0r 02 03 04 0.5 06 0'l 08 09

x

0
0

+ ANo,g:8+ ANo,g:4+ ANo,g:2+ ANo,g:l
-- n(x)
- - s(x)+ on,g:8+ oR,g:4+ oR,g:2+ oR,g:l+ oR, g:-2-+ oR. s--4

\=--
\\o\ -+--Ë-

\

tl \
\

rg--g \
\\

\
ç

\

I \
\ø'

\

I

f
I

;

Figure 2.11: Two examples where the proposed t-norm and t-conorm operate on functions n(x) and

s(x) for various values of T (shown as g). Function s(x) is changed to illustrate the affect of the

operators.

*

Chapter ll lntroduction to Fuzzv Sets and Fuzzy Lo 31

',I

I\!

2.8 Knowledge Encapsulation

An expert system relies on the knowledge of the expert or experts who program it,

encapsulating the appropriate knowledge. The quantity and quality of knowledge and

infor.mation required for an expert system will vary according to the task, and according to

the standards by which the knowledge is collated, assessed, and represented in the system. In

other words, the standards by which information is judged are variable. With this in mind,

however, the work presented here assumes that a reasonable effort will be'made for each

task.

To fully model the behavior of a process by an expert system, the expert needs to be

able to transfer an accurate picture of their knowledge of the process. This impacts directl¡r

o1 the specification for a user interface for an expert system. This knowledge must have a

framework in which to reside, and must offer the human expert sufficient flexibility and

features, to encode their knowledge accurately, and to allow a non-expert to make use of the

system for data analysis. This thesis develops such a framewolk which is described in

Chapter 4.

A secondary issue, but one that is still very important, is that of how knowledge is

manipulated and used in a system. There is secondary knowledge such as how numbers and

facts are represented in a system. This is called knowledge about knowledge, oL meta-

knowledge [2.1], and is addressed at the implementation stage of developing an expert

system.

To encode an expert's knowledge, the IF-TIIEN production rule model is often used, as

this provides a simple method of encoding knowledge in a linguistic form. That is, sirnple

textual rules are written to describe the knowledge, rather than mathematical expt'essiotls.

These rules are then processed in a mathematical way to anive at an output. The rules used in

flzzy logic have the form:

. IF (Xl IS A1) AND (X2IS A2) AND AND (XN IS AN) THEN (21 IS B1)

where the left side of the rule is the antecedent and the right side is the consequent. The terms

on the left are the rule premises, the Xi are the crisp inputs, and the Ai are the membership

functions with labels such as high, low, medium. The terms (Xi IS Ai) are the rule premises.

The label can just as easily identify a fuzzy number such as 30. The membership functions

L^ ^-,^+^* +L^+ i. k^;--
-^.lolor{

I

þ

¿1Iti sttlçL;LttLl (lutvurLrulË lçglllrvurvrlLù vl lllv ùJ ùrvrrr Lr¡qr rÙ

f
I

l

Chapter ll lntroduction to Fuzzv Sets and Fuzzv Looic 32

Another useful concept is that of Ftzzy Associative Memories (FAMs) [23]. These are

usually illustrated as two dimensional maps between the input space and the output space.

Figure 2.12 shows an example of a FAM. The input variables are shown along the axes, and

the intersection of the inputs gives the appropriate output fuzzy set. FAMs can be used to

design models for simple systems, as is shown later in chapter 8.

This thesis uses the fuzzy production rule (described in detail in chapter 4) as the

means of encapsulating the expert's knowledge.

The membership function, whether specifically designed or selected from a range of

available functions, conveys further knowledge about the process in question. The expert

selects suitable functions that convey the desired meaning. The names, or linguistic labels,

given to MFs are impoltant when generating a rule base. To say that 'the voltage is high' is

easier to interpret than 'the voltage is function #3' .

Æ,PLZEPL

PSPS

NLNSZENSNLZE

PSNS

ZEPLZENL

PLPSZENSNLX

Y

Figure 2.12: AFlzzy Associative Memory. The inputs to the FAM are sets X and Y. The

membership labels are NL, NS, ZE, PS and PL.

2.9 ßttzzy Inferencing

Fuzzy inferencing is the process of applying expert knowledge, which has been encoded in

some way, to the processing of data, in order to obtain an output data set. There are a number

of methods [1, 23] of performing fuzzy inferencing. The inferencing process is really two

processes in series. The first process calculates a resultant fuzzy set which is the fiizzy

representation of the output variable. The next step, is to obtain a non-fuzzy (crisp) value

from this output set. This step is optional but is usually always implemented.

I

Chapte r ll lntroduction to Fuzzv Sets and Fuzzv Loqic 33

As with the inferencing plocess, there are a number of methods to perform the

transformation from fuzzy-space to crisp-space. This process is called defuzzification, and is

described in section 2.10.

As previously stated, afuzzy rule has a DOF determined by the inputs to the rule. After

the DOF has been calculated, the RMF is calculated by modifying the consequent

membership function. Modifiers that are selectable with the GUI are shown in Table 2.4.

Some well known methods to evaluate fuzzy rules are correlation-minimum encoding - with

truncation, and correlation-product - with scaling 1231. An example of each method is shown

in Figure 2.I3.The power method has the affect of spreading the influence of the consequent

membership function over a broader range.

The antecedent contains the conditional statements referring to the input variables, and

describes the degree of fulfillment of the rule. The consequent is modified by the antecedent

premise (see Figure 2.I4).

Consider a single rule node [30] as shown in Figure 2.15. h can be seen that the

process of rule evaluation can be decomposed into two high-level processes, the model for

which directly follows the format of a finzy production rule. That is, there is an antecedent

and a consequent process. This data flow diagram also shows library modules for storing the

relevant membership functions for these components.

Function decomposition is a powerful method of analyzing a problem's structure, and

hence determine data dependencies, and opportunities for parallel implementation.

Chapter ll lntroduction lo Fuzzy Sets and Fuzzy Logic 34

rmf lif = zl¡lt-att
where : dofe (O,t)

(3) power:

rmf lil= zlil if z[i]S dof

= dof if zÍil> dof

(popular with VLSI implementations [13]of fuzzy

processors)

(2) truncation

rmflíl: z[i]x dof

zlil = consequent MF

i = integer

(1) scaling

DescriptionModiflrer

Table 2.4 :Modifier functions commonly used for transforming resultant membership

functions.

Chapter ll lntroduction lo Fuzzy Sets and Fuzzy Loqic 35

\
I\\I

il.

I

\\\\Iilt

\\\I
\\\I
\\I

1I

I

\

\I

tt(x)

Figure 2.13a: Scaling modifier- the function

is scaled by the DOF

rigi." 2.13b :t-n"utiãn modifier- the

function is truncated at the level of the DOF

.læ-x .t00-

p(x)

.tm.

.x

Figure 2.13c : Power modifier- as the power

factor increases, the function spreads.

Figure 2.13: As the DOF of a rule varies, the consequent membership function, p(x), will

be modified accordingly. Figure 2.13a shows the affect of scaling as the DOF varies, and

Figure Z.l3b is the simple case of truncation. Figure 2.13c shows how the consequent

membership function is spread as the DOF increases.

Chaoter ll lntroduction to F Sets andFuzzv 36

ll r¡r"tG)

z

u^(x) u"(y)
u,(z)

x1 x2

u"(x) u"(y)

x1 x2

Figure 2.14a: Fuzzy Inference by Product-Sum Method. The inputs are applied to the antecedent

membership functions, and the minimum (AND) of the two values is used to scale the

consequent membership function. Rule fusion occurs by superimposing each resultant function

on the same axes, and taking the maximum profile of each resultant function '

RULE 1

F¡(x) Þ¡(x)

OR

DOF

RULE 2

tt"(x)

RULE 3

lrr(x)

xlx

xl
x

x

x

p^(z)

Fo(z)

DOF

z

u(x)

AND

x
x4x2

x

Po(*)

AND

Þ¡un(z)

Consequent MembershiP
Functions are modified
to produce the RMFs

,

COG

Final Membership
Function

z

DOF

x5
z

Antecedent MembershiP Functions

Figure 2.I4b : Fuzzy Inference by Truncation-Maximum Profile Method, for a three rule system,

with two premises per rule and one output. Center of gravity defuzzification is used to determine

the crisp output value.

/T\
u,(z) \/

I I\ /
t\ \

-

/\A

I \
/\P"(z)

I A

Figure 2.I4:Examples of fuzzy inferencing using (a) scaling and (b) truncation methods.

Chapter ll lntroduction to Fuzzy Sets and Fuzzv Loqic 37

Normalised
Input Data

Consequent
Node

Antecedent
Node

DOF

P"(z)

Resultant
Membership

Function
F"(x)

Figure 2.I5:A Rule Evaluation Node comprises a process to evaluate the degree of

fulfillment of a rule, and a process to evaluate the resultant membership function.

X

zX

Chapter ll lntroduction to Fuzzv Sets and Fuzzv Logic 38

z.LDThe Fusion Transform

2.10.1 A Summary and Description of Fusion Methods

The final membership function for a particular output variable, is determined by combining

the resultant membership functions of a set of related rules. The process of combination is a

data fusion operation.
'When there are many RMFs to fuse, the output set may become congested, and the

particular biases that each RMF introduces into the final membership function (FMF) may be

swamped. This is the case where the maximum profile method is used to establish the

bounds for the FMF set. There are several RMF fusion methods to choose from, some of

which take this situation into account. The commonly used methods are described here, and

an additional fusion operator is introduced.

One simple method builds the FMF by simply placing one set on top of another, over

the selected universe of discourse. This method can lead to a p > I (fuzzy sets are usually

normalize to some maximum value, often 1). The defuzzification process whicli follows, will

take care of this anomaly. lKosko fila]. This method is described in equation 2.8, illustrated

in Figure 2.4.

z(Ð-> L p,(t')
N-l P-l

k=0 r=0
(2.8)

where k = 0,I,2,.... (integer)

N = number of intervals in the universe of discourse (integer)

r -- 0,1,2,.... (integer)

P = number of rules for this RMF

l-tr&) = resultant membership function for rule r.

Another method to calculate the FMF is to form the union of the RMFs using the

maximum profile of the RMFs over the universe of discourse. This is expressed in equation

2.9.

P-l
z(k) = U lt,(k) e.e)

r=0

Chapter ll lntroduction to FuzzvSets andFuzzv 39

Table 2.5 summarizes these fusion operations, that are often used for combining the

modified consequent functions. 'the a¡ are the values of the resultant membership functions

at a particular value of k. Some examples of these methods are illustrated in Figure 2-16. (a¡¡

= result of RMF' at value k). In the context of this research, the each a¡ in these equations is

the value of the RMF for a single rule, and n is the number of rules that contribute to the

final membership function.

Weighted Generalized Mean

)=t
n-1

T
i=0

t/
/a

Fo(oo, at,...., an-t i wo,wlt...' ¡wn-l w d
a.

I , (*,, o,a + o)

Harrnonic Mean

F (oo, al,. . .., au-r) =
n

11
- + -+.ao al

i.+_
an-l

Arithmetic Mean

F (oo, at,. . .. , on-r) L (o, * a,*
n

+ar-r) @+o)

Geometric Mean

F (oo, at,. . .., au-r) = (ao x arx....ro^-r)% t (n*o)

Generalized Means

a[+ al+....+ol-,
t//k

Fo(oo,at,....,on-r) , keR (ft+0)
n

Maximum Profile

Fo (oo, a.,...., on-r) = max(ø,)

Simple Summation

Fu(o,,at,....,a,,-l):2"*
i=0

Fusion (Aggregation) Functions

T^1^l^ ô <. rFL:^ f:-,,-^ ^L^.,,^ +l-^ .¡^f:-:f:^-. f^- fi.'o f..oinn frrnnfinnc
I 4UlV L.J. L lllù lléUlv ùllv YY ù rllv uvrrrrrr¡

Chapter ll lntroduction to Sets and Fuzzv 40

\It I
\I

\
IIa

I

\ft
\/

f,

J'

0.9

0.8

0.7

0.6

0.5

0.4

0.3

o.2

0.1

0 01020304/i-506070
x

-fl
-n4 Generalized mean I
* Geometric mean
+ Harmonic mean
+ Arithmetic mean

k=])

Figure 2.16: T]¡e fusion functions combine data with varying effects as shown in this

figure.

80 90 100

Chapter ll lntroduction lo Fuzzy Sets and FuzzY Loqic 41

2.10.2 A Method to Determine Information Meqsure

'When information from various sources is combined to formulate a decision, one should be

aware of the origin of the information and the degree to which the information segments may

either agree or contradict each other. From information theory [31] there are various methods

of measuring the infolrnation content of a system as new data is added'

With this present research, the fusion process that generates the Final Membership

Functions, is an example of a process which is sensitive to the degree of agreement in the

data. The greater the agreement between fuzzy sets, then the higher will be the information

content of the finzy set formed by the fusion of multiple fuzzy sets.

It is here proposed that the RMFs which are combined to generate a single output fuzzy

set, the FMF, should be treated with this premise as being central to developing a fusion

method. This section deals with the derivation of a measure of luzzy information, and then

applies this to the formulation of an alternative fusion function for fuzzy sets.

DefTnition 2.1-

Define agroup of ordered fizzy sets M= {þ o@), lt t (x), þ z @),

where ll ¡ (x) is afuzzy set, and x e X

and X is the supp ort of M . P = number of sets which divide the domain of X.

then setindex ; e [0, P-1]

trigures 2.Il a & b show the representation used for this definition. Notice that each set

overlaps at most one other set in Figure 2.I9a. This will not always be the case, as shown in

Figure 2.19b where the triangular functions have varying height and spread parameters. The

membership functions may also have different forms such as gaussian or S shape, in which

case these parameters will affect the outcome.

Chapter ll lntroduction to Fuzzy Sets and Fuzzy Loqic 42

0 z p-2 p-l

p-2 p-l

lt (x)

x

Figure Z.lla: This diagram illustrates the ordered fuzzy sets that constitute the

mernbership functions that may be define for a particular inferencing system.

Set Index

o.

ro
-o
0)

z
o
a)
(.)

br)
0)o

0

10 2

1

tt (x)

x

Figure 2.71b: This diagram illustrates the ordered fuzzy sets where the RMFs have

varying amplitude and spread. Notice that sets 0, 1 and 2 overlap each other.

This index is now used to compare how well sets agree with each other. In combining the

RMFs, the index of the modified consequent is now required.

oi

!()
F

o
¿
o
{)o
booâ

0

Chapter ll lntrod uction to Fuzzy Sets and FuzzY Loqic 43

Definition 2.2

Define an Agreement Matrix A¡,¡ , the elements of which are the degree to which set í and set

j agreein their respective propositionsa.

A
P -l L,- L,l

P
(2.10)

where i, j e [0, ¡' - 1] a.e integers, and L is a vector that maps the RMF number i, to its

location inX. Ais a P x P matrix.

Definition (2.2) states that the closer that two set are to each other, the greater wili be the

agreement factor A. Likewise, as the t\ilo sets move further apart, their mutual agreement

decreases. This leads to the definition of the inverse operator for A, namely the Contradiction

Factor C.

Definition 2.3

Define a contradiction factor : C¡,j:1-4,j (.2.tr)

Clearly, wheni:j, thetwo sets agreeexactly rwrthA¡,¡: I andC¡,¡:0'

This definition of the agreement matrix ignores the magnitude of the contribution of each set,

which is the outcome of the computation of the Degree of Fulfillment at of the antecedent of

the fuzzy rule. This factor can be accounted for by weighting the elements of A accordingly.

cùo

cÐl

Ct)

Ø-,

Then a matrixAC can be defined that compensates for the DOF of each RMF

Lef

The situation here is illustrafed as: Output is Low, compared with Output is High.

Chapter ll lntroduction to FuzzY Sets and Fuzzv Loqic 44

Definition 2.4

Define a Compensated Agreement MatrixA' as follows

At,,¡ :
P-lL,-a¡-L,.r,l

(2 12)

Equation (2.12) says the following:

1. If two sets I and j are to be combined, with lt,- t,l¡Q, that is, non-identical

propositions, and Ø,) @¡, then the agreement between i and 7 will increase

because j is less dominant than i. (ie. the opposition ofj to I is weakened)

2. If a. = @j, then the agreement is determined by the relative distance betrveen the

sets

P

At,.¡ =
lr-r,-lr,-L, ll

P
(2.t3)

1. As both 6,-+ 0 and at,->O then even if they are mutually exclusive premises (eg.

ON vs OFF) then they will not decrease the agreement value.

2. If only a,-+ 0 and alj remains constant then agreement will increase, as set i

becomes less dominant and the contradiction decreases.

2.10.3 Important Properties of Fuzzy Information Meosure

Let a and b be two fuzzy sets, then the similarity between a and b is defined as S(a, b)

ReflexiviU

A¡j I itr t:j
Testing equation 2.3 against this property, gives:

I p-
Ac,,,= L = 1

Naturally if two sets are equal, then they are exactly similar.

S)tnmtetr:t

4,,¡: A¡,,

Chapter ll lntroduction to Fuzzv Sets and Fuzzv Looic 45

With these definitions in place, the fizzy information measuro can be derived. A reasonable

assumption is that information is additive, hence;

Definition 2.5

Define Ftzzy Information Measure (FIM) asl.

FIM (2.t4)

whereAc is the compensated agreement matrix with N entries.

An Illustrative Example

:*; îo:,

Given AC:
0.3

1.0

0.5

0.1

0.5

1.0

then FIM=l .(t.o+0.0+0.1+0.3+1.0+0.5+0-1+0.5+1.0) = 0.53
gt

This number indicates a moderate level of confidence in the information. A value of 1 would

indicate the highest level of confidence and a value of 0, the lowest level'

Chapter ll lntroduction to Fuzzv Sets and Fuzzv Loqic 46

2.10.4 Proposed A-Matrix Based Fusion Method

Another method of performing data fusion is,now described. In this method, proposed by the

author, the agreement matrix is applied to the RMFs. Discrete data sets are assumed in this

method. The key idea is to combine RMF data and accounting for the relationship between

the RMFs.

Algorithm2.l for RMF fusion

1. Form the compensated agreement matri x Ac of Rank P

2.For each column j of the P x M data matrix

2.1 Form the column vector c

2.ZRorm cT

2.3 Caìculat" li = cr . Ac

2.4'lrack yjmax (to normalise Z)

3.Calculate Z - (Y/Ymax). a

where a=scalefactor

Chapter ll lntroduction to Sets andFuzzv 47

C

al

Example2.2

Given A

(t.o

=l o.o

Io.t

The defuzzified ouþut is calculated by the Center of Gravity method. The crisp ouþut for

the proposed fusion method is 6.816. The crisp ouþut for the arithmetic average method is

6.526.

I
0.95
0.9

0.85
0.8

o.75
o.7

0.65
0.6

0.55
0.5

0.45
o.4

0.35
0.3

o.25

À¡
co¡
EJo
É
o
oo
il
oâ

0.15
0.1

0.05
0 o | 2 3 4 5 6 7 I 9 l0 11 12 t3 t4 15 16 17 18 19 20

Intewal

€- RMF1
+ RMFZ
-€- RMF3
+ FMp calculated by Proposed method

- - FMF calculated by Average method

Figure 2.18: This diagram illustrates the proposed fusion method, being applied to 3

Resultant Membership Functions. The arithmetic average of the 3 functions is also shown

as a comparison.

Chapter ll lntroduction lo Fuzzy Sets and Fuzzv Loqic 48

¿l

2.10.5 Proposed Stidíng Window Averaging Based Fusion Method

This method is based on the idea of the simple moving average from statistics. This method

defines a window of width w (w < N/2), which slides across the data set. The data points

which lie within the window are aveÍaged to produce a representative data point' The data

can further be weighted by a function W(x'). The complexity of this weighting function will

have a direct influence on the processing performance, and so it should be selected with this

constraint in mind.

Figure 2.19 illustrates the operation of the SV/A algorithm. It can be seen that the

center of gravity for each FMF varies with the selection of window width and weighting

function, and becomes less sensitive to abrupt variations in the data (noise) as the window

width incleases.

Algorithm 2.2 for SWA fusion

For P RMFs each with N intervals,

1. Form the data matrix D. Each row of D is the transpose of an RMF vector'

2. Select a window width w: 0< w 3 7

3. Select a window weighting run",ionI(^')

4. For i= 0 to N-l ;

L

ld

:,,

if i<w: FMF.=

elseif w1i1N-w: FMF-=

(i+w).P

(2.w +r)' P

I

?

End For Loop.

else: FMF. = (w+N-i).P

Chaoter ll lntroduction to Fuzzv Sets and Fuzzv Looic 49

I
0.9s
0.9

0.85
0.8

0.7s
0.7

0.55
0.5

0.45
o.4

o
É

3
É

o
I
Ð
A 0.35

0.3

0.25
o.2

0.15

0.1

o12345678910 ll12 13t4l5 1617 18 1920

x

Examplel:W(x)=l

Center of Gravity of FMF
by averaging :6.526

Width : Center of Gravity

w:l 5.994
6.34'l
6.794

w:2
w:4

Center of Gravity of FMF
by averaging :6.526

Width :Center of Gravity

w:l
w:2
w:4

5.898
5.996
6.693

0

09
0.95

0.8

0

- o'7

E o.6s
g 0.6

$ o.ss
¿ 0.5

3 0.4s
g 0.4Ð
Ä 0.3s

0.3

0.

0.1
0.05

0

I

o | 2 3 4 5 6 7 8 9 l0llt2l3l4l5l6l7l8l920
x

+ swA, w:l+ SwA,w:2+ swA, w:4
+ RMFI
-€- RNF2
-€- RMF3
- - Arithmetic Average

ExamPIe 2: W(x) = s-x

Figure 2.19: Two examples of the SWA fusion method being applied to 3 RMFs to form

the corresponding FMF. The window widths w, are as shown, and the weighting function

W(x), isset to unity for example l, and e-x for example 2.The arithmetic average of the 3

!

.'l
,[J

functions is shown as a comparison.

Chapter ll lntroductio n to Fuzzv Sets and Fuzzy Loqic 50

:.t
If

2.10 Defuzzification

The process of converting data from the fuzzy domain to the crisp domain is called

defuzzification. The principle idea is to convert afuzzy set representation of a number, to a

non-fuzzy value that best represents that fuzzy set. There are numerous methods that have

been proposed to achieve this transformation, the most common of which are listed in Table

2.6.

The center of gravity method is perhaps the most intuitive, and is most commonly used

for defuzzification. Other methods may be used based on their simplicity to implement in

þardware. The rnaximum method, where the crisp value is defined by the point at which the

luzzy set reaches its maximum, is the simplest to implement in software'

If there are multiple maxima, then an average of the maxima is taken, and this value

then determines the clisp output. This method is known as the mean of maxima method.

Each method involves a different amount of processing, and so the computing time for

each will vary accordingly. For a fiizzy expert system that processes data for a real-tin'te

application, the choice of inferencing method, is an important consideration.

An example illustrates the defuzzilication process. In this work, the processing times

for the defuzzification of a 1000 points final membership function, running on a single

20MHzT800 Transputer, have been determined and are shown inTable2-1.

The center of gravity method performs multiplication, summation, and a division operation

to determine the crisp value. The maximum method however, simply compares each data

point of the fiizzy set with the previous value, keeping track of the maximum. This process

involves logical comparisons and storage operations. From Table 2.7, it can be seen that

there is signiticantly more processing required for the COG method.

I

!
This refers to a discrete, rather than a continuous representation of a membership function.

Chapter ll lntroduction to Fuzzv Sets and Fuzzv Loqic 51

I

I

I

{

- : I ¿'*u*

&r

where fri'* are the values of k for which there are maxima'

r = number of maxima

(3) Mean of Maxima

z - klMaxtFlHl
where Fj (k) = j'th Final membership function

z = value of k for which F is a maximum

(2) Maximum

N-l

)nlt;'t
Z

k=O
N-t

*
k=0

where F(k) = composite membership function

z = centerofgravityofF

k = interval value

(1) Center of Gravity

Table 2.6 :'lhe methods of defuzzification will impact on the computation required and

hence the time to produce the crisp output. The center of gravity method is widely used.

2.9maxlmum

4.8center of gravity

Time (mS)Defuzzlfication

Method

I

I

Table 2.'l :Defiizzification times for a 1000 point fuzzy set.

Chapter ll lntroduction To FuzzY Sets and Fuzzv Logic 52

m

I5

m

8J

s
15

70

65

æ

55

lt(') f
ö
4

î
ü
m

l0

)

0

r',!(Ð

1ü

I5

rc

BJ

80

7t

10

65

ó0

55

r
4

1J

æ

25

Ã

IJ

l0

5

0

0 5 r0 lJ m 25 n 35 4 ö fi 55 60 65 70 7J æ 8J rc 9Jlm 0J1015m25Tlt44fr55

óJ ?0 7J æ 8J m gjlm

ú5 10 75 n 8J m gjlm

a) Center of gravity method b) Mean of maxima method: The algorithm

averages the maximum values, hence the result

coincides with the mid-point of the peak.

trllc)

m

9J

m

EJ

80

15

70

65

60

Í
4
4
35

r
25

m

t5

t0

5

0 nJl0lJm2tT354öfi55

c) Maximum method: The algorithm tracks the largest

value of the discrete fuzzy set and returns the value of

r at which it occurred..

Figure 2.20: These diagrams show examples of the defuzzification methods for

particular final membership function.

a

Chapter ll lntrodu ction to Fuzzv Sets and FuzzY Loqic 53

2.ll Adaptive Fuzzy Systems

An adaptiv e fuzzy system is defined here as one which modifies its behavior, based on a

feedback mechanism, according to a performance measure. In fuzzy control situations, the

difference between the desired system outputs and the actual system outputs are used to

adjust the controller to best match the desired outputs.

There are many methods of introducing adaptive behavior to a fuzzy system, among

which are the following;

1. modiS the rule weights

2. modify the membership functions

3. adjust the parameters for the connectives

4. add or delete furry rules from the rule base.

Rule weight adjustment is implemented by multiplying the DOF of each rule by a factor w. As

the processing progresses, the weights are adjusted for best effect (ie. reducing the error).

Adjusting thc membership functions is also a legitimate method of system tuning. lt

could be argued that the membership functions should not be altered as they embody an

important component of the expert's knowledge. However, it is just as valid to say that the

expert may not know the precise shape that will deliver the optimal perfiormance. Certainly, it

would be reasonable to place limits on the degree to which a membership function, and indeed

a rule weight factor, may be changed.

As shown in section 2.3, the choice of connective has an effect on the inferencing

process.

2.12 Fuzzy Logic and Time

When one considers time in the processing of data, the concepts of past, present, and future

trends in the data arenaturally introduced. A data processing system that uses feedback from

the output data to the input data space, is able to modify its behavior based on the outcome

of processing of the previous input data. If the controlling algorithms of such a causal system

are realised as a collection of fuzzy rules, which use the fuzzy verb IS, then this places a

limitation on the author of the nrles, to constain their knowledge of the processing, to the

immediate time instant. A system that simply processes input data and produces an output

Chapter ll lntroduction Io Fuzzy Sets and Fuzzv Loeic 54

data set, is an example of a non-causal system. That is, a system where there is no feedback6

and has no sense of time. A system that relies on direct feedback from a plant, is an example

of a causal system. This type of system is often encountered in fuzzy control, and shows the

importance of the temporal aspect of a system's behavior.

Consider now the fuzzy rule as introduced in section 2.1 . The fiizzy rule operator '.1S',

refers to the present and conveys no sense of history or future. The author of a rulebase will

have greater flexibility in expressing the desired controlling rules for a system, if the

grammar supports additional fizzy linguistic operators. To this end, two additional operators

are introduced and their functions defined.

If a system is to make use of the past events of its behavior, then another operatol is

required. This operator, here called a temporal fuzzy operator, is 'IVAS'. Likewise, to suggest

some predicted behavior, it would be useful to have an operator that conveys a sense of the

future. This operator is calle d 'WILL BE'. At this point the operators are defined, with

definition 2.3 being the current interpretation of the IS operator, and definitions 2.6 and 2.7

being proposed by the author. The inferencing software has provision for implementing this

operator in the form of a history buffer that contains a record of the previous output fesults.

The WILLBE operator can be implemented as a separate process, where the calculations for

forecasting of future data can be done.

Defïnition 2.6

For a membership function lts@), then the fiizzy temporal operator 15 is defined such that:

if the premise P¡= x¡ lS A then:

dt= ltA(x¡ [k]), where k = integer,

is the k'th sampled input, and otris the degree to which this premise P¡

is satisfied.

Definition 2.7

For a membership function lt¡(x), then the fiizzy temporal operator IVAS is defined such that:

if the premise P¡ - X¡ WAS A then:

0,t= IL¡(x¡ [k-1]), where k = integer, > 0,

and d,ris the degree to which this premise P¡ is satisfied'

DefTnition 2.8

For a membership function lr¡(x), then the fuzzy temporal operator WILLBE is defined such

that:

if the premise P¡ = X¡ WILLBE A then:

noting that the user of the system may modify the knowledge base of the processing system as6
{ is worttr

þarticular outcome, thus giving a form of feedback'

the result of a

Chapter ll lntroduction to Fuzzv Sets andFuzzy Looic 55

d, : lrA(x, [k+ Il, where x, [k+ IJ is the predicted value for the input x¡'

ie. x¡ [k+ IJ : P(pu (x, [k], k)

where P is a predicting or forecast function

k : integer,) 0, and ø, is the degree to which this premise P¡ is satisfied.

In the case of an expert system that encodes domain knowledge in the form of

production rules, these additional temporal operators are introduced to provide more

flexibility for the expert, so they may more freely encapsulate their knowledge, and express

temporal aspects of their experience of the system in question.

Examples of how these operators can be used are now examined. First consider the rule

that expresses the behavior of a temperature control system.

o IF temperature IS high AND temperature WAS low TIIEN control lS low

This rule tests two premlses;

1) temperature is at this moment high, and

temperature was low when the measurement was last made (ie. Apply previors temperature

input to the low membership function.)

Another rule that considers two separate input variables is now considered'

¡ IF xl is high ORx2 WILL BE low THEN z1 IS high

This rule tests two premises;

1) input variable xl is at this moment high, and

2) input variable x2 will be low at interval lç+ I, one sample step into the future.

(ie. Apply inputx2 to the forecast process to determine the value of ø for this

premise.)

The WrILL BE operator provides a mechanism to forecast an event based on experience and

observation of established trends (as in the case of a control room operator for a power

station).

Chapter ll lntroduction to Fuzzv Sets and FuzzY Looic

The interpretation of the operator 'WAS' is defined here as being the previous value. To

achieve this, a history buffer of past outcomes is kept. For the operator 'WILLBE', the

interpretation is more complex.

There are many ways of defining a look-ahead operator. A forecast l2glthat is based on

a model that has been derived from previous data, is known as univariate. Methods that fall

into this category are:

o Extrapolation based on fitting a curve to the data, using poþomial, exponential, or power

curves

x(N, k) = F(xy, r¡r-1, x¡y-2,) (2.ts)

where ,À/ is the time at which the forecast is made, and k is the number of time

intervals F is a function that models the data.

o Exponential Smoothing is used where there are no apparent trends in the data. A forecast

can be derived by taking a weighted sum of the p.revious data samples.

x(N,l) = coxw + cJcN-r + cJcN-2+... (2'16)

where {r,} are weights which are chosen to apply more weight to recent data and less

weight to older data. Chatfield l29l suggests a set of geometric weights having the

following form:

c¡ = d(l - a)' and I = 0,1,. ,. (2.17)

The calculation of a prediction will impact on the processing performance of the expert

system. As the model becomes more complicated, as in the case of a high order polynomial

curve fit, more processing effort is required.

56

temperature WAS high

x2 \ryILL BE medium

:> H rcmp&-I)

:> H [ft2þredicted])J

where x2 þredicted.] ':8. &2(k-I) x2(k))

In a parallel processing architecture, the prediction of the next input value would be

done by a processor that handles all data transactions with the data source. In the architecture

Chapter ll lntrod uction lo Fuzzy Sets and Fuzzy Logic 57

that is describe in this study, such a prediction process would map onto the Database

Manager (described i¡ Chapter 5). This module would ideally be assigned to its own

Transputer

2.L3 Chapter SummarY

This chapter has described the basic concepts of fizzy logic. Fuzzy set operations, the

membership function, and methods for performing fuzzy inferencing have been presented' A

number of alternatives exist for +,tzzy operators, and for combining fizzy rules, and some

examples of the effects of these operators onfuzzy sets have been examined'

Their are many choices when it comes to implemenfingfuzzy logic to model a system,

and this chapter has provided an overview of the subject' so as to give an appreciation of the

effects of these various choices. A t-norm and a t-conorm operator have been proposed, and

examples have been used to illustrate their properties.

An information measure has been developed for fusing fuzzy sets. This measure has

been applied to develop another fusion operator, for which examples have been evaluated'

A second fusion operator has been illustrated which is based on a sliding window

average of the data. This method of fusing fuzzy sets has also been illustrated by way of an

example.

New operators have been introduced to attempt to handle tempolal aspects in Ïtzzy

rule development. These operators have been proposed to add to the flexibility of knowledge

encapsulation.

Chaoter lll Develooment of a lnferencinq Structure 58

Chapter III

DEVELOPMENT OF A FUZZY INFERENCING

ALGORITHMIC STRUCTURE

3.L Introduction

This chapter builds on the concepts introduced in Chapter 2 about fuzzy logic' and presents

the development of a structure and algorithms that perform fuzzy inferencing in a parallel

domain. The structure refers to the data processing and data flow, not to a physical device'

3.2 Evolution of an Inferencing Algorithmic Structure

3.2. 1 Operational Constraints and Requirements

Chapter 1 introduced an overview of the expert system that is developed in this thesis. There

are many parts to such a system, and it is necessary to develop a consistent and efficient

framework or structure in which these components can function'

The expert system will operate within particular constraints. Likewise, there are

particular requirements or expectations that should be realised. In formulating such

parameters, it is perhaps useful to consider how one person relays information to another in

order that some task may be performed. With this in mind, the following list presents issues

that are important in this context. The issues include:

1. the expert system requires a mechanism for interacting with the expert (visual

prompts), and can store the required expert knowledge in a flexibly manner

(memory)

2. knowledge can be changed or updated

3. the expert system has the task of processing data. (Once information is exchanged

and complete, it is acted uPon.)

4. ðataprocessing should occur within a reasonablelengthof timel

5. a parallel processing paradigm is adopted

I Relative to the time constants that are relevant to the system in question.

Chapter lll DeveloÞment ol aFuzzv lnferencinq Aloorithmic Structure 59

6. various inferencing strategies may be employed and evaluated (experimentation)

7. results may be viewed in some convenient form.

The expert system requires configuration, if any choice is to be offered to the user in

the way that data is to be processed. There must be a tneans of user interaction with the

system, where rules can be genelated ancl evaluated, and processing options selected' These

points are used to guide the development of the expert system. Knowledge transfer and

information display is dealt with in greater detail in Chapter 5.

Once the knowledge is entered into the system, it needs to be managed. This

knowledge will comprise the initial expert information plus the results of subsequent

processing of data. This is achieved by incorporating a process that manages the knowledge

flow in the system. Let this be called the Knowledge Base Module (KBM).

Next, the data from sensors, that is to be processed, needs to be managed. A process is

assigned to this task, and is called the Data Base Module (DBM). Once the data is available,

it is processed by the inference engine. Call this theFazzy Inference Engine (FE). Table 3.1

summarises the major components of the this expert system. This table defines the function

of each of the components. This functional division seems logical, though other

interpretations would be possible.

The time taken to process the input data will depend on the method chosen. The basic

procedure here, is to apply the rule base to the input data, and determine an output. The two

methods of processing considered here are:

1. rule by rule evaluation

2. look-up table based evaluation

The first method evaluates each rule in turn, and requires the FIE to understand the text

of each rule. This leads to the concept of compiling the rule base, to produce an executable

list of instructions that the FIE can understand.

The second method, pre-calculates all possible outcomes, and stores the results in a

multi-dimensional look-up table. Clearly, the size of the table is affected by séveral factors

which include:

1. the number of inputs that may be referenced in the antecedent of each rule

2. the memory capacity of the host processor

3. the number of increments in the fuzzy sets - for a discrete fuzzy set as described in

Chapter 2, section 3.

Chaoter lll Develooment of a lnferenci no orithmic Structure 60

. calculate the RMF for the rule passed to it by the FIERule Node

. process data according to the available knowledgeInference Engine

o store, collect and disseminate knowledge of the process

to be modeled

Knowledge Manager

o store, collect, and disseminate data for processtng

o store results of processing

Data Manager

. oversee and supervise data processlng

. coordinate message transfers throughout the structure

Supervisor

. rulebase generation

. display data

. display inferencing options

. display results of processing

User Interface

FunctionComponent (Module)

Table 3.1 : The components of the expert system each have specific functions to perform'

Chapter lll Developmenlol aFuzzy I nferencinq Alqorithmic Structu re 61

The number of rules in the rule base does not influence the size of such a table, but does

impact on the time to calculate the outputs for the table. For a look-up table approach, as

illustrated in figure 3.1, the memory capacity mrequired may be calculated as follows:

Assume a multiple input- single output system

L,et p = number of inputs to the system

4 = number of outputs to the system

,s = support (range) of the fuzzy sets with x¡ (k) : k t [0' s]

b = number of bytes to represent the inputs and outputs (ie. 8 bit data gives rise to 256

levels to each input).

then, for each output:

m=st.b (3.1)

and for a system with q outputs, (3.1) becomes

m:q'sP.b Q.2)

xl

System

Output
Variables

x-
o

System

Input
Variables

zo

zq-z

z1

z,rl
x

Figure 3.1: A look-up table for a multiple input- multiple output fuzzy system.

Examplel:s=100

P=2
Q= I
b= l

from(3.2), m= l.1002.l= l2kbytes

Look-up
Table

Memory

Chapter lll Development of a Fuzzv lnferencinq Structure 62

Example2:s=100

P=4
Q= l
b=l

from(3.2), m= l00a = l00Mbytes

Assume a multiple input- multiple output system:

Example3:s=100

P=4
Q=4
b= l

from(3.2), m=4. (1000)= 400Mbyt"t

Clearly, as the complexity of the system increases, by increasiîE s, P, q, oÍ b, the memory

requirements for pre-calculated output values, increases exponentially'

Restricting the number of input variables that may be used in combination with each

other, limits the diversity and flexibility of the rule representation. The user of the system

would have to reformulate their knowledge in terms of the restrictions. For example

consider a case where three or more inputs are required to properly describe the experience of

the expert.

Example

Xl IS A1 AND X}TS A2 AND X3 IS A3 AND X4IS A4 THEN Z IS 81

The system may not exhibit behavior that the expert can simply decompose into a number of

rules with only two inputs per rule. Thus the structure needs to retain a high degree of

knowledge representation flexibility. Hence rule by rule evaluation is suitable.

3.3 An Algorithm for Rule Evaluation

Given that the expert system accepts rules in the form shown above, a processlng

structure is required that supports this form. A simple single rule processing node [30] is

Chapter lll Developmenlot aFuzzv I nferencino Alqorithmic Structu re 63

shown in Figure 3.2, where input data is processed by the inference engine, according to the

knowledge contained in the knowledge base.

Figure 3.3 shows how the knowledge base can be split into two separate modules. The

first contains the rules to process the data, and the second contains information about how

the inference engine will actually perform that processing. The inferencing structure must be

able to support a method for altering these options. This also impacts upon the design of the

GUI, described later in Chapter 5, as it must provide a mechanism for offering the user a

selection of inferencing procedures2.

The rule node is now examined to define the data transformations that occur. This top-

down decomposition of process function is used as a method to develop the inferencing

structure. By using the fuzzy production rule as the model, the rule node is split into two

pfocesses, one to handle the antecedent part of the rule, and the other to handle the

consequent part of the rule.

2 As described in chapter 2.

Chapter lll Developmenlol aFuzzY lnf erencinq Alqorithmic Structu re 64

Engine

Knowledge
Base

Inputs X Outputs Z

Figure 3.2: A single inferencing node uses rules and other knowledge, contained in the

knowledge base, to process the input data. The Data Flow Diagram (DFD) does not relate

information about timing, just data transformation.

Inputs X Outputs Z

Figure 3.3: The inference node comprises a single rule evaluation node. The knowledge base

comprises the rules base and other system information. An additional source of information

is required that sets the inferencing options in the Rule node.

Evaluation
Options

Rule
Evaluation

Rule Base

r lll ofaFu lnferen AI rithmic 65

With reference to Figure 3.4,there are sets of data that are required by the antecedent

and consequent processes. This data is derived from the expert who initially defines the rule

base, and the user, who selects various inferencing options to process their data according to

their requirements. This data is stored in 'separate locations, depending on where it is

required. The output from the rule evaluation process is the resultant membership function

for each rule as it is read from the rule base.

It would be desirable to evaluate all the rules in a rule base concurrently. If there are N

rules, this would require N processing elements capable of evaluating a luzzy rule each.

Figure 3.5 shows a dataflow diagram where all rules belonging to the same output set3, are

evaluated, and then combined to produce an output. The input data is distributed to each rule

node, where the resultant membership function is calculated. These functions are then

combined by the fusion node, to form the final membership function. Lastly, defuzzification

gives the crisp output value for the rule set.

The FMF is a fuzzy set that represents the outcome of processing the input data by the

rule base. The next step is to transform this fuzzy set into a crisp number. This is achieved by

the defuzzilication process. There are many methods of performing the fusion and

defuzzification transformations. Each of these processes requires a store to contain

configuration information, and these are shown in the DFD.

V/ith the Occam programming language, the data flow diagrams are readily

implemented, whereby each process bubble of the DFD becomes an Occam process, and

each data channel becomes an Occam channel

Each rule will be represented by its own process. This approach will require that the

number and form of each rule is known before compiling the source code, as Occam is a

static programming language. This would be less of a concem in the case of a static rule

base, where the rules remain constant. An example of such a system, is in an embedded

controller application, where the processor performs the same task repeatedly, and the

environme nt is w e lI und e r s to o d.

For the case where the rulebase is dynamic, as is often the case with systems which

adapt to their environments, then an alternative approach, is a more appropriate choice. This

alternative approach involves a single fuzzy rule node which can access a rule base. It

accepts input data as before, but now it applies all the rules in its rule base to that data, before

accepting the next input data.

3 A set offuzzy rules that applies to a particular output.

Chapter lll Develooment of a Fuzzv lnferencing Structure 66

;iL

I

i'

4
'ls

i

I

Figure 3.4: The rule node comprises lower level processes. The first is the antecedent

process, which calculates the degree of fulfillment (DOF) for the rule. The DOF determines

the extent to which the consequent mf is moditied. The result is the resultant membership

function for the rule.

I

i
I

I

I

Membership
Functions

Evaluation
Options

Membership
Functions

Evaluation

Evaluation
Inputs X

Resultant
Membership

Function

Antecedent
Evaluation

Degree of
fulfilment

Rule Base

I
f

Chapter lll Develoomenl of aFuzzv lnferencinq Structure 67

The structures developed in this chapter comprise processes, data path ways, and data

storage elements. The data storage elements perform two functions. The first is to store the

appropriate configuration information required for each processing element. The second is to

store the results of processing.

The support structure which is developed and described in Chapter 5, must allow the

user to manipulate all resources of this structure.

Algorithm 3.1 defines the processing stages, the output of which are the RMFs for the

rule base. These RMFs are then combined to form the final membership function. Figure 3.4

shows a DFD where there are multiple rule processes. Indeed, there could be as many

processes as rules. The fusion process collects all the RMFs and generates the FMF.

This processing strategy relies on presenting the fizzy rules to the inferencing engine

in a particular format. The next section describes this format and the tool by which linguistic

rules are transformed.

,l
rld

t
I

;

t

Chapter lll Development of a Fuzzy lnfere ncinq Alqorith mic Structure 68

Membership
Functions

Inferencing
Options

I

I

il
'ltl

T

.T

I

I

I

I

I

r
I

Figure 3.5: A parallel processing system may be achieved by calculating each fiizzy rute

simultaneously. This is achieved by assigning a single rule node process to each rule in the

rule base. For nrules this will require ¡4 plocesses running concurrently.

n
Process

4
Process

XInputs Ouþuts Z

J

Evaluation
Process

Data
Manager

Fusion
Process

Defizz
Process

)
Process

1

Evaluation
Process

Chapter lll Developmenlol aFuzzY I nferencinq Alqorithmic Structu re 69

Rule
Weighting

Factors

w

x

Postfix Rule List

dof*

p.c

Consequent
Membership
Functions

Gonnectives
Defuzzification
Configuration

dof

RMF FMF

dCm

Rule

Figure 3.6:The DFD for fuzzy inferencing that is adopted in this study, evolves from the

logical sequence of events for processing afuzzy rule, and defines the structure. Each of the

circles represents a stage of processing, whilst the directed lines represent the flow of data

between the processes. This DFD includes additional processes for; (i) collecting the RMFs

and fusing them, and (ii) transformin gthefi;øzy sets to crisp output values (defuzz\fication).

I

I

DOF
Evaluation

RMF
Generator
T(dof,type)

Defuzz
Process

D

lnter Rule
Connective

Process

Data
Sink

Data Source
Rule

Weight
Modifier
Process

Chapter lll Developmenl of a Fuzzv lnferencing Structure 70

Algorithm 3.1: Rule base evaluation

BEGIN

while the processor is in run mode

SEQ

Getinputdatavector i = xo, xt,. . .., xn-l

SEQ i = 0 for Number of rules in the rulebase

... calculate dof¡ for this rule

. .. calculate the weighte d dof for this rule

... calculate resultant membership function (RMÐ

... calculate weighted resultant membership function (WRMÐ

... store RMF in data base

... store WRMF in data base

SEQi = 0 for Number of outputs

... calculate final membership (FMF1)

... store FMF1 indatabase

... detuzzify FMF¡

... send crisp outPuts to DBM

... check system state, held in KBM

END.

Chapter lll Development of aFuzzv I nferencinq Alqorithmic Structu re 71

3.4 The ßuzzy Rule and the Rulebase Compiler

3.4.1 Description

To facilitate the process of generating fuzzy rules, a rule editor has been developed that

allows the user to compose textual rules for the rule base. The syntax of the rule has been

cleveloped to be simple, yet capable of expressing and encapsulating the user's logic. This

syntax is shown in Figure 3.7.The linguistic rule is translated (compiled) to a form that has

been developed for processing by the inferencing machine.

The syntax of the ru|e in Backaus-N aur l32l form is as shown in Figure 3-8. This leads

to the format of the rule data (which is a representation of the textual rule) that is processed

by the fuzzy inference module.

The strategy for processing the rulebase is to evaluate the degree of fulfillment, and

then calculate the resultant membership function (RMF), for each rule. The RMF's which

belong to the same output function are combined by another process, to create the final final

membership function. This function is defuzztfied to form the crisp output value.

This strategy led to the idea of using a postfix representation of each rule. The ma.ior

advantages of this method are;

1. the inference machine can accommodate any length of rule'

2. the syntax of the textual rule is very flexible

3. this strategy enables farming of rule evaluation to multiple processors.

A simple rulebase comprising two rules is shown in Figure 3.4. The output from the

rule compiler shows how the text of each rule has been transformed. This example

incorporates the use of brackets and linguistic hedges, and shows how these rules ale

analysed.

This new representation of the rule is now in a form that can be processed in a serial

manner by the FIE. The FIE executes each sub-statement as it is encountered, and stores the

results in an internal stack. The output of the FIE is a Resultant Membership Function.

3.4.2 Operation of the Rule Compiler

As {escribccl i¡r the previous section, the rule compilcr translates the textual rules into a

form that is suitable for processing by the inference engine. The rules must obey the syntax

as described in Figure 3.7.

Chapter lll DeveloomenT of a Fuzzv lnferencinq Structure 72

<rule> := <rule no.> IF <antecedenÞ THEN <consequent>

<rule no.> := <integer)

<antecedent> ;= <premiSe> I <premise> <connective> <antecedent>

<premise> := <input variable> <temporal operator> <hedge> <membership>

<temporal operator> ;= {WAS I IS IWILL BE}

<consequent> := <output variable> IS <hedge> <membership>

<hedge> ;= { Absolutely I Very I Almost I Quite INOT }

<connective> ;= { AND IOR }

Figure 3.7: The proposed syntax for the fuzzy rule as used in this thesis comprises a number

of components. This form fully describes the legal rule structure which the rule compiler can

translate into an executable sequence of parameters for the inference engine.

<Rule LisÞ := <rule number> (output number> <operator list>

<rule number> := <integer>

<output number> := <integer>

<operator lisÞ := <operator type> <operator value> <operator list>

<operator type> := <integer>

<operator value> := <integer>

Figure 3.8: The rule list syntax describes the output from the rule compiler. For each rule in

the rulebase, there will be a corresponding rule list which is executed by the inference engine.

ofa Fuzzv lnferenci no Aloorithmic Structure 73Chaoter lll

TransFuzien can process compoun dfuzzy rules, such as

. IF (Xl IS A1) AND ((X2IS A2) OR (X3 IS A3)) THEN Z IS 81

which then becomes

. Xl A1 iS X2 A2 IS X3 A3 IS OR AND Z B1IS

Another example is

. If (angle IS small) and ((position is zero) or (position is small)) then force is medium

after parsing (the filst stage of rule compilation) this becomes

o If angle small IS position zero IS position small IS or and force medium IS then

Hence, a cofiìpoun d fizzy rule can be represented in a postfix notation.

To illustrate how this process works, the Rule Editor has been used to produce four fuzzy

rules with varying degrees of complexity. These rules have then been processed by the Rule

Compiler to produce the corresponding rule lists. The results are shown in Figures 3.8(a) to

(d). The first rule is a simple example of a single input-single output statement, incorporating

a linguistic hedge. The second rule (b), comprises multiple inputs and a linguistic hedge.

The next two rules incorporates brackets, and are examples of compound rule

statements. The corresponding rule list shows how the brackets have been accounted for in

the rearrangement of the logic representation.

Each rule in the rule base is compiled and converted to a Postfix [32] representation.

This new form eliminates the need for brackets that would otherwise be required to define

the scope of logical operations. The Postfix fuzzy rules then become a part of the knowledge

base, where they are available to the Inference Engine for later processing. This compiling

process preserves the fuzzy logical properties of the rules and their operators'

The input and output variables, and the membership functions are each assigned unique

identifiers by the software as each rule is compiled. An ordered postfix rule list formed, that

is then passed to the inference engine for evaluation.

The OPCODEs are derived from the syntax for the fiuzy rule. The first number

represents the opcode for the inference engine, and the second part represents additional

Chaoter lll Develooment of a Fuzzv lnfe rencino Aloorithmic Structure 74

information for the opcode. This is similal to micro-code for conventional microprocessors

[33]. Each opcode has a data field that is used to identify particular membership functions, or

VO variable mapping. An entry of 99 indicates afuzzy operator such AND, OR, and NOT.

output membershiP functionn10

output, sinkn9

THEN998

NOT997

OR996

AND995

hedge, type 3n4

input membership functionn3

IS992

input, sourcen1

IF990

DescriptionDATAOPCODE

Table 3.2:There are 11 opcodes which the inference engine interprets.

Chaoter lll D ofa Fuzzv lnferencinq Al mic Structure 75

THENI =>99
IS2 =>99
hedqe 34=>3
output membership 010 => 3
output 09 =>0
IS2 =>99
hedqe 24 =>2
membership 13 =>1
input 01=>0
IF0 =>99
Textual I nterpretationRule List

(a) IF x0IS Very Big+ THEN y IS Quite Small+

THENI =>99
IS2 =>99
output membersh¡p 310 => 3
output 19 =>1
AND5 =>99
OR$=¡ 99
IS2 =>99
membership 24=>2
input 41=>4
IS2 =>99
membership 44 =>4
input 21=>2
IS2 =>99
membership 14 =>1
input 01=>0
IF0 =>99
Textual lnterpretationRule List

(b) IF xl IS Very Big+ AND x2IS Tnro

TmN zl IS Large+

(c) IF xl IS Big+ AND (x2IS Zero OR x3 IS

Med+) THEN z2IS Small+

(d) IF xl IS Slightly Medium+ AND
(x1 IS Almost Zero OR x3 IS Big+)
TIIEN y IS Large+

Figure 3.9: The rule lists produced by the rule compiler include information about the type of

operation to be performed, and parameters that specifies the input source and the output

clestination. These parameters are used by the data management system of the inference engine'

THEN8 =>99
IS2 =>99
output membership 010 => 0
output 09 =>0
AND5 =>99
IS2 =>99
membership 44 =>4
input 21=>2
IS2 =>99
hedqe 23 ->2
membership 14 =>1
input 01=>0
IF0 =>99
Textual I nterpretationRule List

THENI =>99
IS2 =>99
output membershiP 010 => 0
output 09 =>0
AND5 =>99
OR$=¡ 99
IS2 =>99
membership 13=>1
input 01=>0
IS2 =>99
hedqe 54 =>5
membership 43 =>4
input 11=>1
IS2 =>99
hedqe 44=>4
membership 23 =>2
input 01=>0
IF0 =>99
Textual I nterpretationRule List

Chaoter lll ofa Fuzzt lnferencino Al mic Structure 76

3.5 Chapter Summary

In this chapter, a method has been proposed for representing the fuzzy production rule in the

form specified by the syntax of Figure 3.7. The advantages of this form have been discussed,

and sample outputs that were generated by the compiler are included. The issue of how best

to process a rule base has been addressed, and a solution proposed. This is described by

algorithm 3.1.

processing performance can be enhanced by suitable selection of a repetitious

component of the data processing, and farming this component to as many available

Transputers as possible.

Chapter lV The Graph ical User lnterface 77

Chapter IV

THE GRAPHICAL USER INTERFACE

4.1 Chapter Purpose

This chapter describes the Graphical User Interface (GUÐ that has been developed to provide

configuration and control of the software suite, and of the hardware resources introduced in

Chapter 1. The preprocessing of data is addressed and each of the dialog screens are described.

4.2 Function of the GUI

The functional development of the GUI was guided by the requirements of the inferencing

structure, and ease of use. The GUI provides the means to:

1. compose fuzzy rules for the rule base,

2. compile the rule base,

3. create membershiP functions,

4. select inferencing options for the inference engine,

5. view results and,

6. control resources attached to the transputer interface module.

The GUI is writteir in C++ [34], and runs on an IBM compatible PC under the Microsoft

'Windows operating system. This program is event driven from the user's perspective. That is,

an event is generated by the program each time the user interacts with the GUI via the mouse

or keyboard. The subsequent command packet is transmitted to the Transputer network via the

link interface on the 8008 motherboard. The GUI is served by the program running on the

Transputer network.

The GUI comprises several software modules, each of which performs a specific task'

The names of the files and their description are listed in Table 4.1.

There are several dialog boxes that the user can interact with, to enter the fuzzy rules,

and to configure the system. Some of the most important features will be described here. The

GUI has been designed to keep the process of interacting with the inferencing system as simple

as possible.

The main control panel of the GUI, shown in Figure 4.I, displays the following

information;

Chapte r lV The Graphical User lntedace 78

1. The DOFs of each rule are displayed.

2. The values of the inputs are displayed.

3. The rule weights are displaYed.

4. Graphs of the resultant membershlp functions can be selected for display

5. Graphs of the final membership functions can be selected for display'

6. The output variable names and their crisp values are displayed.

7. The inferencing process can be stopped, and then continued.

8. Hardware fesoufce controls (via the Transputer Interface Module).

Table 4.1: Software module definitions.

Listingsl 4,1 and 4.2 illustrate how the program responds to events generated by the user'

The Inferencing methods can be transmitted at any time, even whilst the inference engine is

processing the rulebase. The current cycle is completed first, then the new methods are

employed. There are some lines of code, commented out, which were used during the

commisioning of the software. These lines generated message boxes on the screen of the PC,

that indicated the progress of the processing.

infrncmd.cpp generates the inference methods selection window

equtndlg.cpp the membership function editor

rcomp.cpp generates the compiler window, and compiles the rulebase

ruldlg.cpp generates the rule editor window and contains the rule structure definitions

iodlg.cpp generates the input and output variables definition window

b008cdlg.cpp generates the control window and handles the communications with the

Transputer system

details.cpp generates a window for entering textual information about the current

project

fiizzyapp.cpp the main module

Module Name Description

I A full listing of the GUI program software was not included, for clarity, due to the large size of the files

Chapte r lV The Graphical User lntedace 79

void B00SCommDlg: :BNLoadRulesClicked 0
t
int i, j;
int comms-status = 0;

//Tell the systom how many rules there are.

comms_status = OutByte(t-number-of-rules); // Send message header followed by

OutWord(NumberOfRules); // the number of rules

// MessageBox("NUMBER OF RULES SENT", "Information"' MB-OK);
/Æell the system how many outputs there are.

comms_status = OutByte(t-number-of-outputs); // Send message header followed by

OutWord(NumberOfOutputs); // the number of outputs

// Send the lulebase record

for(i=O; i<NumberOfRules; i++)

{
comms-status = OutByte(t-add-rule); ll add arule

// MessageBox("ADD RULE TOKEN SENT", "Information", MB-OK);
comms-status = OutWord(i); ll sendrule identity number

comms-status = OutWord(80); // send size = 2*40

//These 40 pairs of integers comprise a single rule list
comms-status = OutWord(i);/*send rule number*/

comms_status = outword(RuleBase[i].RuleOutput);/*send output number*/

for(=o'j<39; j++)
{
comms-status = Out'Word(parsed-rule-buffer[i].symbol[]);/*send data*/

comms-status = OutWord(parsed-rule-buffer[i]'value[]); /*send data*/

)

ì
if(comms-status < -290)

{
MessageB ox("COMMUNICATIONS FAILURE ! ! ! ! ", "Information", MB-OK) ;

Ì
else

{
MessageBox("RIILEBASE SENT", "Information", MB-OK);

)

Listing 4.1: The "load rulebase" routine

void B 00SCornmDlg: :BNConfigureEngineClicked 0
{
int comms-status = 0;

comms_status = outByte(t_inference_methods); /* send config. selections */

comms-status = OutWord(Projectlnfo.ConnectiveMethod); // send connective

comms-status = OutWord(Projectlnfo.RuleModifierMethod); // send modifier

comms_status = OutWord(Projectlnfo.RuleFusionMethod); // send fusion

comms_status = OutWord(Projectlnfo.DefuzzihcationMethod); // send defuzzihcation

if(comms-status < -290)

t
Mes sageB ox(" COMMUNICATIONS FAILURE ! ! ! ! ", "Information", MB-OK) ;

)

else

{
MessageBox("INFERENCE ENGINE CONFIGURED","Information", MB-OK);

I

Listing 4.2:'îhe "configure inference engine" routine.

Chapter lV The Graphical User lnterface 80

The procedure in using TransFuzien is outlined in Figure 4.2. Firstly, establish the

requirements of the task, and then use the graphical user interface to create a knowledge base.

The knowledge base is then converted to a form suitable for interpretation by the inferencing

software, that operates by processing a sinþle rule at a time. The user can select an appropriate

inferencing method for tlie task in hand, by using the inference selection dialog box.

In a typical session with the package, the user can produce a new Project File that has

facilities for entering the name and a brief description of the project (Figure 4.3). There are a

number of pre-defined membership functions and hedges, but input and output variables must

be entered before rules can be created by the Fuzzy Rule Editor (Figure 4.4). This editor allows

rules to be built by a simple point-and-click method. A Membership Function Generator (Figure

4 5) is available to the user, to create their own discrete membership functions.

Once again, this is achieved by entering an equation by a point-and-click method. The

equation is displayed for verification purposes. The function is normalised so the maximum

value is one.

As pointed out in Chapter 2, there are a number of methods for interpreting fuzzy

operators. TransFuzien provides a number of these methods for the user to select. Figure 4.4

shows a dialog box that lists methods for;

f . interpretingfuzzy AND, OR, and NOT,

2. modifying the consequent membership function,

3. combining or fusing rules that belong to the same rule set, and

defuzzification.

Chapter lV The Graphical User lnterface 81

{a li
t4 lao
I lat
a ltl
a ,10ô

a lot
a llt

2
I

1
6
3
f
I

t* '..'f-, -[**;i*,***

ilt]iulil ll ,ll l..l (rrlJlJ,',¡llì ,i¡lli f (ìl'l llt(ìl

.\'l /i !/ /;f!,'' ()/,'

i
!

{

j

I

i

i

i

Figure 4.1: The conüol panel displays the input data and the results of processing, and

provides user control over external hardware resources connected to the Transputer Interface

Module.

Chapter lV The Graphicaf User lnterface 82

Evaluate
Rulebase

Load Rule
Weights

Load
Membershíp
Functions

Load Inference
Methods

Load Rulebase

Load Kernel
Program (*.bcf)

Compile Rulebase

Select
a Proj

and Load
ect Fíle

Generate
Rulebase

Set
Inferencing

Options

Creête CusCom
Membership
Functions

Entêr
Input & output

Variables

Enter PrÒject
rnformation

Open a Project
FiIe (*.fuz)

Create a New
Proj ect

Figure 4.2 : This flow chart shows the sequence of events necessary to run the 'fransFuzien

software package.

Chapte r lV The Graphical User lnterface 83

File Contents on

Linear Function
Richard Bowyer
1.0

r995
Linear function modeling using finzy rules.

0
0

0
0
1

X

I

v
9

0

R>0:IF x IS Large- TIIEN Y IS Large-

I,>0,s,-8,T,<0,s,&8,
0
R>l:IF x IS Big- THEN Y IS Big-
I,>0,s,-7,T,<0,s,&7,
0
R>2:IF x IS Medium- THEN Y IS Medium-
I,>0,s,-6,T,<0,s,&6,
0
R>3:IF x IS Small- THEN Y IS Small-

I,>0,s,-5,T,<0,S,&5,
0
R>4:IF x IS Zero THEN Y IS Zero

I,>0,S,-4,T,<0,S,&4,
0
R>5:IF x IS Small THEN Y IS Small

I,>0,s,-3,T,<0,s,&3,
0
R>6:IF x IS Medium+ THEN Y IS

Medium+
I,>0,s,-2,T,<0,s,&2,
0

R>7:IF x IS Big+ THEN Y IS Big+
I,>O,s,- 1,T,<0,s,&1,
0
R>8:IF x IS Large+ TFIEN Y IS Lalge+

I,>0,s,-0,T,<0,s,&0,
0

Project name

Author
Version
Date
Description of the Project
Connective tYPe

Modifier type
Fusion type
Defuzzification tYPe

Input variable source identifier
Input variable name

Output Variable sink identifier
Output valiable name

Number of rules in the rule base

Input variable
Rule text
Parsed rule text
Output number

Figure 4.3 Listing of a typical project file. The membership tables are aslo written to this file

but are excluded for claritY.

Chapte r lV The Graphical User lnte¡Jace B4

4.3 Description of the operator Interface Dialog Boxes

This section explains the function of each screen, and provides bitmap images of each

dialog box. At present there are several redundant sections of code present, which were used

during development and debugging of the software suite. These were useful for diagnostic

work, but could be removed for the next version of the software. One of these features is a

dialog box which displays a confirmation message when certain commands are initiated by

the operator. For example, when the rule base, or the membership functions, or the

inferencing configuration is loaded to the transputer network, a confirmation dialog box is

displayed.

The rule editor, shown in Figure 4.4, has been designed such that when entering a

fitzzy rule, using the mouse (a single click of the left mouse button for buttons, and a double

click of the left mouse button for listbox items), the operator is moving from left to fight'

Also, items have been grouped in a logical mannef, such as the placement of the hedge list

box, being adjacent to the membership listbox.

The input and output names, must be entered prior to generating the rule base. They ale

then displayed in their own listboxes. As rules are composed and added to the rule base, they

are displayed in the Rule Base dialog box.

The inferencing options for connectives, consequent function modification, rule fusion,

and defuzzification, are selectable from the Inference Method dialog box'

Chapter lV The GraohicalUser 85

l8 Zsro pffi ls Zêto

l.r¿s,"6.T.32.S.-ñ,

R>t fF pooilion lS Zero THEN pnn lS Zero

Figure 4.4 : Ttre Rule Editor dialog scfeen provides the functionality to compose frnzy

rules. The present rule appears at the top of the screen, whilst completed nrles are listed

below.

I

I

I

I

I

I

j

I

I

Chaoter lV The Graohical User lnterface 86

Bulc

Figure 4.5 : The input and output variables for the system to be modeled or controlled, are

entered with the variables dialog box. The name and physical source or sink are defined

here.

Chapte r lV The Graohical User lnterface 87

Dara llo

Rdiålc

0(t'ts@

function (ìcncMcnrbcl lor

I¡EJI¡IJIT@JE!

fiffi:Iflf"rlt

j EnÞr ù mÊmbBrÉhlþ funcllon squ6[on

Figure 4.6 : The membership function editor provides an equation building and display

facility. The equation is entered by either typing with the keyboard, or by using the mouse to

hit the keypad.

Chaoter lV The GraohicalUser lnterface 88

l¿
Jri

t,

ü
''r
I

I
{

I

i

)

,i

Figure 4.7 : Dialogbox that enables the selection various inferencing methods.

!

:H¡r-l

f, PrfldR

lrDül'

Chapter lV The Graphical User Interface 89

r,

4.4 Chapter Summary

This chapter has described the graphical user interface of the TransFuzien software suite. This

software has been written in C and runs undei the Microsoft Windows operating system. There

are several features that were used for diagnosis and debugging that can be removed in the next

version of the software.

The various dialog boxes for system configuration have been described. The

development of this GUI, and the functionality, have been govemed by lhe need to first

develop a knowledge base, to configure the inference engine, and then to display results of

processing in a graphical manner.

ü
!ç
¡

,I

i

i

i

{

I
!

T
I

I

r
I

Chapter V The expert syste m framework and algorith m implementation 90

.!

rt

Chapter V

THE BXPBRT SYSTEM FRAMEWORK

AND ALGORITHM IMPLEMENTATION

5.L Introduction

5.1.1 Chapter purpose

This chapter presents the irnplementation of the inferencing algorithm that was described

previously in Chapter 4, and covers the mapping of the software to the hardware resources.

The various processing algorithms do not exist in isolation. There must be a support

framework upon which the expert system is built and run. The software and hardware to

achieve this are described. The various processes and the data flow through the system are

described.

The software routines are written in Occam 2135,36], and were compiled using the

Inmos Transputer Development System (TDS) t371.

5.1.2 Chapter overview

The software that resides on the Transputer target system, has a variety of functions to

perform. This chapter describes those functions and the interactions that occur throughout the

system. In section 5.2, the process functionality is described, together with the

communications protocols that are a key feature of Transputer based processing.

The software that implements the inferencing algorithml is first developed to run on a

single Transputer. Next, additional processes are added to the code to enable the farming out

of the fuzzy rule evaluations. This code is configured to run on a single Transputer.

The final stage is to configure the code to tun on a network of Transputers which reside

on the 8008 motherboard. This is described in section 5.3.

f
I

,

I
I This is the algorithm that interprets the fuzzy rules and calculates the crisp outputs.

Chapter V The expe rt system framework and alg orithm implementation 91

5.2 Process Function and Communications

To best understand the implementation of the algorithm, it is helpful to consider the data

transformations and data flows within the system. Data flow diagrams (DFDs) provide a

powerful method for visualizing process interactions and data transformations, and have been

used to describe each of the component processes in this algorithm.

The expert system framework consists of software that allows the user to configure all

aspects of the expert system, and to examine data during the processing phase. The graphical

user interface is a key component of the support structure, and is described in detail in the

following chapter. Likewise, there are software routines that manage data interactions

between the system and the external environment. These process supply the information

required by the inferencing process.

The software that implements the inferencing algorithm is orgatttzed as a number of

Occam processes, as shown on Figure 5.1, where each of the processes run concurrently on

the Transputer target system. The data packets have been omitted from the figure for the sake

of clarity. However, these packets are described in tables later in the chapter which list define

the PROTOCOLS of the data flowiig along each channel.

A bootable code file (BCF) is extracted by the file handling utility of the TDS, and

saved as a .bcf frle. This file is accessed by the GUI file Project management procedure, and

loaded to the Transputer network via the C0l2link adapter.

The 8008 motherboard links were re-arranged to allow the network to be booted from

the links. (The details of the 8008 motherboard are described in Appendix A.) Following

compilation of the Occam source code, the TDS is used to extract a description of the boot

path for the network as ciescribed in the configuration statement. This is shown below.

I

I

Chapter V The expert system framework and algorithm implementation 92

KNOWLEDGE
BASE

\

KBM.SUPER

SUPER.KBM

&
frl
or

q.

H

DATA
BASEOq

&
r!ì
A
Þ
cn

SUPERVISOR
STORE

FIE.SUPER

SUPER.DBM

DBM.FIE

STORE

KBM.FIE

FIE.KBM

FIE

Figure 5.1 :Top level data flow diagram for TransFuzien software suite. The ellipses

represent processes, the directed lines represent channels for communications' and

parallel lines above and below a label, represent data storage libraries. The data packets

have been excluded for claritY'

i

ENGINE
INFERENCE

FUZZY

SINK

FIE.DBM

SUPER.FIE

DBM.SUPER

KBM SUPER
DBM

SOURCE

OPERATOR

system framework and algorithm implementation 93ChapterV The exPeft

Postfix
Rule List

Membership
Functions

Fusion
Operators

Defuzzification
Operators

Process

Rule
DOF

Evaluation

RMF
Generator

Process

Inter-Rule
Fusion
Process

Defiizz\fy
Process

Data Source
Data Sink

Rule
Weight

Modifier
Process

Rule Weight
Factors

X DOF DOFw z

RMF FMF

Pa Pc
f d

Figure 5.2 : The DFD for the FIE indicates the various data that are required to be

pfesent before processing can begin. The structures marked with the patterned

fectangles fepresent elements that need to be configured by the user'

Chapter V The expert syste m framework and algorithm implementation 94

The process that performs the inference calculations resides on the FIE process. The

folding editor of the TDS is very useful for developing code in a top-down fashion. Folds are

created which can be labeled according to their function. These folds are then entered, and

either further folds can be create or Occam source code can be written (or a combination of

the two). This segment of code2 describes the operation of the FIE process. Notice the Occam

key words WHILE and SEQ, and the folds which are identified by the three dots.

5.2.1 The PC process.function

The PC process resides on the host computer (IBM PC) is written in C, and has two main

functions. Firstly, it provides a graphical interface by which the operator interacts with the

system. Secondly, it performs the necessary pre-processing of the information that the

operator enters into the sYstem.

Operator interaction is facilitated by a number of dialog boxes that may be displayed by

selecting the appropriate function from the main menu located at the top of the display

screen. These dialog boxes have been described in Chapter 5'

Each dialog box has associated with it software routines that handle the user interaction

for that box. The rule editor, for example, has code to generate, save, and view the luzzy

rules. There are routines to establish communications between the PC, and the 8008

motherboard.

The system parameters for the current version of the software are listed in Table 5.1.

These parameters determine the limitations of the software suite, and highlight where future

improvements may be made. (eg. increase the number of rules)

'A full listing of the software is contained in appendix A

Chapter V The expert system framework and algorith m implementation 95

7. On-line inference method variation3 yes

6. Number of Defuzztfication Methods supported -̂)

5. Number of Fusion Methods supported 4

4. Number of Inferencing Connectives supported 6

3. Number of intervals per membership function 100

2. Number of membershiP functions 9

1. Maximum number of rules that can be processed 100

System Parameter Value

Table 5.1: TransFuzien System Parameters

3 Rbitity to change the inferencing strategies via the GUI whilst in the continuous processing loop mode'

Chapter V The expert system framework and algorithm implementation 96

The system parameters were determined by a consideration of several factors. These

included:

1. Number of rules: 100 was thought to be sufficient for modeling typical problems

encountered by the author.

2. Number of membership functions: Again, typical dornains are divided into 5 to 9

regions.

3. Number of intervals per membership function: The nurnber of intervals impacts

directly on the processing time to evaluate afuzzy rule (see later). The final choice

allows for good byte size data representation, which simplifies implementation'

whilst providing a reasonable dynamic range for the input data.

4. Inferencing methods: Provide typical methods.

5. Size of memory required on both the PC and the Transputer modules. As these

numbers increase, the memory requirements will increase'

The final numbers being a trade-off between flexibility and system (and code) complexity

5.2.2 The Supervisor (SUPER) process function

The Supervisor process is written in Occam, and resides on the Transputer target. It responds

to commands from the operator via the GUI, and co-ordinates their execution on the

Transputer system. Commands from the PC must belong to the protocoi for the channel

connecting the PC to the Super process (these protocols are described later.), and are routed

to the appropriate destination.

There are three other input channels to the SUPER process, each of which is monitored

for messages. Figure 5.3 shows how this process responds to messages. The SUPER process

acts as a gate-way for messages to and from the rest of the system.

Chapter V The expert system framework and algo rithm implementation 97

Set nrle weight to
original value

Set rule weight to
zefo

Supervisor module
initiates evaluate

of input data

Add rule to the
KBM

Add member
function to KBM

Send weights to

knowledge base

Send methods to
FIE

Retransmit STOP
to all processes

SUPER ? CASE

t.stop

t.inference.methods;
connective, modifier,
fusion, defuzzlfy

t.set.rule.weights;
rule.number,
rule.weight

t.add.member;
member.id,
m.size::data

t.add.rule;
rule.list

t.evaluate.rulebase

t.rule.off;
rule.number

t.rule.on;
rule.number

Figure 5.3: The Supervisor pfocess interprets messages from the PC process,

and SerVeS each message aS it arrives. The Occam CASE Statement acts as a

selector, to distinguish which function is to be initiated.

Chapter V The expert sYstem framework and algorith m implementation 98

5.2.3 The Knowledge Base Module (KBM) function

The knowledge base module stores information for the inference engine, and distributes this

information to the other processes as required. The information that is managed includes:

1. the rule base

2. infercncing configuration information

3. the present state

4. number of rules

5. number of inputs and outPuts

The contents of the KBM may be updated as the software is running, which adds to the

flexibility of the system.

5.2.4 The Data base (DB) process function

The Database Module (DBM) controls communications with the data source and sink, and

stores results from current and previous (history) calculations. Data can originate from the

TIM or from the PC, or it can receive the results of calculations performed by the FIE.

The calculation of the resultant membership functions and the final (composite)

membership functions are computationally intensive processes within the software suite' The

results from each process are transmitted to the database manager and stored. When the GUI

issues a request for data, then the DBM will receive the request via the SUPER process' and

send the data stored in the appropriate data structure.

Chapter V The expe ft system framework and algorithm implementation 99

pwm.value:BYTE

input.number, input.value:INT

size, stop.char:INT

output.name:[20]BYTE

Plant.history.buffer: -- store previous vector[20] rNT

Plant.input.vector:[20] BYTE

PO.history.buffer: -- store previous vector[20] rNT

PC.input.vector:[20] BYTE

input.source:INT

output. nu mber, output.value, vector. length, status:INT

manager.runningBOOL

Variable nameTVpe

Table 5.2. List of variable declarations for the DBM Process

Chapter V The expert syste m framework and algorithm implementation 100

5.2.5 The Fuzzy Inference Engine (FIE) process function

Thequzzy Inference Engine (FIE) calculates the resultant membership function for each rule

in the rule base. The results from each process are transmitted to the database manager and

stored.

Figure 5.4 describes the processing of the rulebase, and shows the sequence of events

involved in evaluating the RMF and WRMF setsa. The flowchart shows that after these sets

have been evaluated, the system calculates the FMF and finally the crisp output. The

evaluation of a single rule is described in Algorithm 5.1.

Algorithm 5.1for Rule List Evaluation

While more rules to process

Do

Read rule list Opcode and Data

CASE Opcode

IF :continue

X :read inPut vector x

Pinput :lookuP m(x)

H :apply hedge - calculate h(P(x))

IS :Place results on stack

stack pointer = stack Pointer + 1

AND, OR :pop last 2 entries from stack

apply connective

THEN :set more flag= False

(DOF is now on stack)

$output :CalculateResultantmembershipfunction

Z :calculate weighted DOF and store results

End.

o These sets comprise 101 integer values.

Chapter V The expe rt system framework and algorithm implementation

RUN State?

Request State f¡om KBM

data to DBM

Defiizzify FMFs and Store

Calculate FMFs ffor disPlaYl

More
Rules?

SendWRMF to DBM

SENd RMF tO DBM

Store RMF and WRMF

Calculate RMF and V/RMF

Get a Rule from KBM

Get Data InPuts

Yes

No

Yes

No

Figure 5.4 :Flowchart for the rulebase evaluation phase of processing for a single

processor architecture. The evaluation of the RMF and WRMF occur in the Ftzzy

Inference Engine process labeled FIE. Processing continues if the system is in RUN

state, but will execute one pass through the rulebase othelwise.

Chapter V The expert system framework and algo rithm implementation 102

5.2.6 Process communicatiotxs

The communications between processes is au important area in this work. The method

adopted here is to define a number of commands, which may include some data, that are

recognized by the processes. The commands and data are passed between pfocesses in an

ordered manner, that must ensure that each communicatiou can complete' and that deadlock

does not occur. Channel protocols are defined for each Occam channel, which fully defines

the message type and the data types that are permitted.

A Client-Server approach is taken to the communications between processors. As one

process (the Client) issues a message (eg. a request fof data) then the pfocess that receives

that request (the Server) will attend to the request.

All command packets that are issued from the GUI5 ate routed through the Supervisor

process (SUpER), which directs the command to the appropriate destination. The destination

of each packet is determined by the tag that begins the packet. The tags are defined in the

PROTOCOL statement. Table 5.3 shows the protocols that are used.

The commands include initialization processes with information about inferencing

methods, membership function data, and so on. Each command causes a particular sequence

of events within the inferencing processes, and, depending on the command, a particular

reply is expected by the GUI.

In order to keep track of the many commands and their effects, a graphical

representation of process interactions has been used. These graphs are called Process Event

Graphs (PEGs), and show the temporal dependencies that exist between processes. PEGs can

be quite complex, and are particularly useful in highlighting the interactions between

processes that are operating in parallel. PEGs also help to develop code that is not susceptible

to deadlock. That is, the PEG provides a visual tool for planning and analysing

communications events. Figure 5.6 shows an example of a PEG which illustrates the

initiation of a process rulebase command from the GUI.

The Process Event Graph comprises a column containing boxes for each process, with

horizontal lines drawn from each box. The line represents a time axis. Directed lines are then

drawn from one horizontal line (the source), to the destination line. The nature of the process

interaction is shown by labels on the directed line.

5 The GUI is running on the PC under Microsoft Vy'indows'

Chapter V The expert syste m framework and algorithm implementation 103

53. t.request.state

BYTE 255 =

INT
INT

--0=1
nu ue

52. t.i
I

50 t.pulse. .mod
49 t.set.pwm
48 t.shutdown.Plant

TIM 47 t.reset.plant

I NT of MFs.46 t.membershiP.functions

I INT --member member value45

INT INT
INT: NT rule.

INT NT --rule rule.list
--tell to evaluate a44 t.evaluate.rule

43 t.rule.data
42 t.forced.rule
4l t.inference.methods

INT40 t.

INT39 t.

INT38 t.inference.pingFIE
37 t.number.of.outPuts
36 t.send.mfs.to.FlE

INT --send list for this

INT -- member.num x.value35 t.request.membership.value
34 t.send.
33 t.send.rules.in.

I BYTE32 t.rule.info

INT INT: INT slze data3l t.rule.list

INT -- rule no do evaluate30 t.rule.off

no evaluate29 t.rule.on
28 t.set.rule.weiqht

INT: INT::tìlNT --member no, srze, arravn .member
INT --rule.no26 rule

INT25 t.add.rule
24 t.number.of.rules

INT23 t.knowledqebase.Pinq
22 t.KBM.statusKBM

INT rmfs to GUI2l t.send.rmf.data
-send to GUI20 t.send.dof .data

NT --user19 t. vector
l8 t.the.inputvalue I INT Plant input vector

INT --input number17 t.request.inPut.vector

INT::[]lNT --size, data16 t. vector
15 t. vector
14 I.DBM

INT::flNT -Jile13 t.file.in vector

INT;lNT:: NT12

INT: BYTE11 t.input.name
10 t.DBM.replY

INT number9 t.send.fmf .data

INT o num I8 t.send dataDBM

7 t.evaluate.rulebase

INT:: E , dofs6 t.dof .information

BYTE5 t.su response
4 t.s r.status

-- modeINT3 t.system.modeSUPER

INT2 t.report.type
1 t.execute
0Alt

Data DescriptionTag ldentifierProcess

Table 5.3 : Tag identifiers for system processes.

Chapter V The expeft system framework and algorith m implementation 104

INTt.crisp.value

INT: INTt.crisp.data

INT: INTt.input.data

INT -- sourcet.send.input.data

BYTE -- efïor followed errort.effor
INT out.crisp.data

INTt.dof.data

INT::t.weighted.dof.data

INT;INT:: number valuest.frnf.data

--rule number, size, ataYINT;INT::[]NTt.rmf.data

Data DescriptionTag ldentifier

Table 5.4 : Protocol of the RESULTS channels for the processes.

ChapterV The expeft system f ramework and algorithm implementation 105

ú
frl
êr
(t)

à
cq
M FFA

A

'lndql.?ql
l.

á\sl er¿n191? l
ls¡l:o\!q

tl^tru ârols

{oc ero¡s

'Q1t .

'9l3ua¡

o
E
F

JOICã^

Ø
Øo
(.)
o
Oi

Figure 5.5 :A Process Event Graph gives a graphical representation of process

interactions. The events between the markers X and Y are repeated for each rule

in the rulebase. In this study, circles are used to define event cycles. The time

axis is not to scale.

Chapter V The expefi system framework and algorith m implementation 106

5.3 Processing on Multiple TFansputers

5.3.1 Requirements

In a given rule base, there may be only a few rules, or there may be hundreds of rules to

evaluate. If each rule is assigned to its own pfocessing element, then this would require

hundreds of processors which is clearly not practical in most cases. Another method must be

found to evaluate the rule base, whilst using the available number of processing elements in an

efficient manner.

The solution adopted in this work is that of process farming [38, 39, 40,4I,42]. 'With this

system, each processor is given a task to perform, being the evaluation of a single rule. 'When it

is complete, it hands the result to a supervisor process, and accepts another task. This system

allows for a performance increase as the number of processors is increased.

Farming leads to a neaf linear speed-up, as mofe worker processors are added to the

architecture. However, a point is reached where the communications bottle neck becomes

significant compared with the processing time. The T800 Transputer only has four

communications links and so the direct connectivity is limited. The 8008 mothelboard has a

programmable cross bar switch that can be used to connect Transputers into various physical

architectures (see Appendix A).

An important issue in parallel processing is that of data dependency. Consider two

processes p1 and Pl, that both connect to a third process P3. Pl and P2 are assigned tasks by

p3, and required data from p3 to complete their individual tasks. Further, the results of the tasks

on pl and.p2 are required by P3 to perform a calculation. Clearly, this is a situation where the

availability of data controls the flow of events.

To minimise the data dependency in the architecture being developed in this work, as

much information as possible, that is required by the worker processes, is distributed to them

prior to the run-time phase. For example, the membership function tables are loaded to each

worker before execution.

5.3.2 Process Timing

At this stage it is worth considering which factors influence the processing time for a

given task. V/ith reference to figure 5.2, andlimiting the number of Transputers to one, the

following factors are relevant:

Chapter V The expert system f ramework and algorithm implementation 107

1. The communications over-head per rule, T"o^nrr, to send commands from the GUI to

update the information display.

2. The number of rules in the rule base,.Nr.

3. Time to perform the Fusion of the RMFs, T¡usiotr.

4. Time to perform theDefizzification of the FMF, T¿"frr'

The communication time Tro^*, , will increase as the number of tasks increases. Clearly, the

strategy that is adopted for updating the information displayed by the GUI, will impact on the

communications over-head. The more often results are updated on the GUI, the more time

will be spent passing the result data from the DBM to the SUPER process, onto the GUI.

This is one reason why a facility has been developed (the Transputer Interface Module,

described in Chapter 6) to interact directly with peripheral electronic hardware. Obviously,

the nature of the processing task, dictates how sensitive or crucial timing will be, and this

will be a deciding factor in the way the GUI is operated.

The total processing time Tproc, per output is the sum of all the component times. The

Occam code may be written with PAR constructs, but as the Transputer is time-slicing these

parallel segments of code, the outcome is much the same as if purely sequential code was

used. Hence, the total time is described by equation (5.1).

* Tr"ru,

Equation 5.1 shows that as N," increases, the processing time for evaluating the RMFs of the

rules, becomes a larger proportion of the total time. Q is the time required to evaluate a

single rule and pass the results to the DBM, and will vary with the form of each rule. This

will be the case if each rule in the rulebase has the same number of premises in the

antecedent, and further, each premise comprises the same number of fuzzy operators. To

illustrate this point consider the three cases below:

Case 1:

IFxl IS larse AND x2 is small THEN zl IS zerc

0 There are 3 operatiotts to perform.

Case 2:

IF x1 IS VERY laree AND.x2 is small THEN zl IS zeto

Tro^r,Tpro, -- + T, +T¡^*n
&

i=1

(s.1)

Chapter V The expert sYstem framework and algorithm implementation 108

0 Tlrcre are 4 operatiotzs to perform.

Case 3:

IF @l_ISIA¡ge AND -x2 is small) AND (x3IS small ORx4IS medium) THEN z1 IS small

0 There are 7 operations to perþrm.

Clearly, the total processing time will be determined by the longest processing interval. In

order to increase the processing through-out of the system, a process farm is proposed, that will

allow the rule evaluation process to be replicated on additional Transputers. One of the

advantages of the rule representation which has been developed in this work, is that it enables

rules to be evaluated by other processes, then combine the Resultant Membership Functions to

form the Final Membership Functions.

The algorithm that is developed in chapter 4, is suitable for mapping onto multiple

Transputers. By decomposing the fiizzy inferencing process into the component parts, it has

been shown that the rule evaluation is one area where multiple processors can be used to

enhance processing through-Put.

To run the code developed for a single Transputer (see previous section) on a network of

Transputers, several changes need to be made. The first change involves process mapping.

There are two T800 Transputer modules available to the system, the first of which has been

used up to this point for all processing. The second rule evaluation process is now mapped to

the second Tg00 Transputer. This is accomplished by altering the configuration statements as

shown in the code segment below. An additional PROCESSOR statement has been added,

together with the name of the process that is to run on this processor, as shown in Listing 5.1.

Chapter V The expert system framework and algo rithm implementation 109

PLACED PAR

PROCESSOR O T8

PLACE from.C012 AT link0in:

PLACE to.C012 AT linkOout:

PLACE Plant.DBM AT linklin:
PLACE DBM.Plant AT linklout:
PLACE FIE.Node AT link2out:

PLACE Node.FIE AT link2in:

FuzzienPro g (from. C0 1 2, to.CO72, FIE.Node0, NodeO:FlE,

FIE.Nodel, Nodel.FIE, DBM.Plant, Plant'DBM)

PROCESSOR 1 T8

PLACE FIE.Node AT linkOin:

PLACE Node.FIE AT linkOout:

RuleNodel (FIE.Nodel, Nodel.FIE)

Listing 5.1: Process mapping to processors

The next change involves the communications channels between processes. Two additional

Occam channels have been created to handle communications between the new rule node and

the rest of the processes. The data flow diagram for this configuration is shown in Figure 5'6'

A further change is required to the FIE process to incorporate a task scheduler, or

farmer, which allocates rule lists to each Rule Evaluation Node (REN). The scheduler also

distributes the configuration information to the RENs which includes the membership

function tables, the inferencing options, the input vector, and the system mode'

5.3.3 Task Scheduling

There afe many possible methods of assigning tasks to processing resources' The method

adopted in this work is to allocate tasks to each available processor in the network. In this case,

the network consists of two plocessofs connected in a tree configuration'

In this work a flag called the RuleNodestate is defined for each REN. This flag defines

the present activity state of the process. A'0'represents idle and a'l' represents busy' The

farmer initially allocates a task to each REN, and the corresponding flag is set to indicate Busy

status. As the results (RMF) returns from each REN the farmer collects the data (harvest) and

allocates the next task to that REN. This process repeats until all rules in the rulebase have been

.t

tü

t
t
I

I

*

Chapte r V The expert system framework and algo rithm implementation 110

processecl. Algorithrn 5.2 describes the scheduling process, which can be extended to N

Transputers.

Consider the lrardw¿rre architecture of a multiple Transputer system as shown in Figule

5.7. Tlie processes, as described previously in Figure 5.6, are mapped onto l"his architecture. All

of the pl'ocesses, excluding the second rule evaluation node, are mapped onto Transpr-rter T0.

The second rule evaìuation node is mapped onto Transputer Tl.

Thele are trvo processes tl'rat evaluate the degree of fulfillment ancl the resultant

membership function fbr each rule that is input to that process. This division has been used for

the following reasons;

l. Thele are often many rules in a rule base that must be evaluated. This method is one

way to utilize available Transputer resources.

2. The fusion and deftzzification processes occur less frequently. That is, there are

usually multiple rules that contribute to a single output.

Algoritlmt 5.2 for Task Scheduling for Two Processitxg Nodes

While more.work

Do

If
(Node 1 is free) AND (rules to evaluate > 0)

Get the next rule from the KBM

Send the rule to Node 1

Set the busy flag fbr Node 1

Decrement the number of rules to evaluate

Increment the rule counter

else if
(Node 2 is free) AND (rules to evaluate > 0)

Get the next rule from the KBM

Send the rule to Node 2

Set the busy flag for Node 2

Decrement the number of rules to evaluate

Increment the rule counter

If both Nodes are busy OR work all tasks allocated

Read a data packet from the first Node to send its results

If all work has been oollected

more.work = FALSE.

End.

I

r

ChapterV The exped system framework and algorithm implementation 111

FVZZY
INFERENCE

ENGINE-
WORKER

ßUZZY
INT'ERENCE

ENGINE.
WORKER

FARMER

FUZZYINFERENCE
ENGINE-KBM DBM

DBM.SUPER

DBM,FIE

KBM.FIE FIE.DBM

FIE.KBM FIE.DBM

WORKER.FÄRMER FARMER.WORKER

FARMER.WORKER WORKER.FARMER

T1

Figure 5.6 : Data Flow Diagram showing the two rule evaluation processes, each of

which runs on its own Transputer. The FIE now handles task scheduling between

available worker nodes. The FARMER process runs on Transputer T0 and controls

the allocation of rule evaluation tasks to the WORKER processes. The additional

worker process runs on Transputer T1.

ç¡ìF
l¡r
ú
Fì
Þ
v)

ú
Fr

Þ
u)
t¿
ç1

r{
tu
'1:
l

TO

t
I
I

I

r

Chapter V The expeft system framework and algorithm implementation 112

j

I

I

parallel

serial

serial
serial digital

analog

Figure 5.7: The processing hardware for this thesis comprises the personal

computer, and two T800 Transputers which are mounted on the 8008 motherboard.

Transputer T0 accesses external data via the Transputer interface module-

Transputers T0 and T1 are connected by a serial link.

link

link

I

I

I
i
l
I
j

,t

rl
'I

{

Ij
q

'i
ì

,

I.

j,1i

I

I

I

I

I

I

I

I

I

I

I

i

I

i

{

I

r
I

I

link
and

link

link

t
¡

T800

I

/

T800 TIM External
Devices

/

PC

COL2
Link

Adaptor

Chapter V The exped sYstem framework and algorith m implementation 113

5.3.4 Process Timing Re-visited

The processing time for a multiple Transputer network will depend on a number of factors,

and can be characterized,by the times required to perform specific tasks within the processing

cycle. These include the following factors:

1. The number of Transputers available, No.

2. Thecommunications over-head to send requests between processes via the channels,

and to receive responses, Tro^^r.

3. The number of rules in the rule base, Nr. As N,, increases, the processing time for the

rules becomes a larger proportion of the total time. Ç is the time required to

evaluate a single rule. With each rule evaluation being a sequential operation, the

speedup factor is limited in theory (Amdahl's law [38]) to l/(Tp.lTp*,).

4. Time to perform the Fusion of the RMFs, T¡rrion, increases with the number of

RMFs, and the method of defuzzification that has been selected by the operator.

5. Time to perform the Defazzification of the FMF, T¿"fur.This is a fixed time that

depends only on the method of defuzzificat\on that has been selected by the

operator.

Equation 5.1 defined the rulebase processing time for the case of a single Transputer. All

times are added in sequence to aruive at a final total, even if the code is written using parallel

constructs. With Np > 1, the benefits of parallel processing can be realised' Equation 5.1 is

now modified to account for the multiple processor network'

(s.2)

The adoption of the ru|e syntax described in Chapter 3, has provide greater flexibility

in representing an expert's knowledge, however, this also means that the times Tpi , are not

necessarily equal (Equation 5.2 assumes they are equal), yet the communication time for

each link is the same due to the channel protocol (RESULTS) being identical for each

Transputer. This is not always the case as illustrated previously in Section 5.3.2' T¡, and T,

are not generally equal. It is worth noting that for the case where there are only 2 rules to

evaluate, and two processors available, then the rule that has the most number of operations

will determine the processing time. Also, as the results are being collected by a single farmer

process, there will be competition between worker processes to deliver their results. The

+T¡uno,iTo4'Toro, = Tro^., I

Chapter V The expeft sYstem framework and algorithm implementation 114

farmer process de-multiplexes the incoming channels, and hence there is an additional factor

introduced, being (Nrx Tr"ru¡¡r), where Trurult, is the time required to receive the results from

a remote6 worker process, and includes a component for link communications. Therefore' the

processing time for equal length tasks becomes:

Nr

Zrn,
Tn,o,=T,,,n,r(N,xT,,,,,,,,)*];* T¡u,io,+T,t"¡, (5'3)

Taking this analysis one step further, where the task times are not all equal, requires a

statistical approach. Stone [42] addresses this situation and derives a stochastic model for the

execution times for multiple tasks assigned to multiple processors. He states that the

execution time depends on the Expected value of the maximum of the sum of task processing

times.

To investigate the timing of the system, six rulebases were written comprising 1,2, 4,

8, 16 and 32 ru|es. Figure 5.8a shows the times required to evaluate the rulebase only, for a

single Transputer, and using a farm of the two Transputers. Figure 5.8b shows the total

processing times (the time to produce the crisp output) for three cases. These are;

1. All of the processing is mapped onto the root Transputer T0 (see Figure 5.7),

Z. All rule evaluation is performed on the additional Transputer T1, with subsequent

processing handled bY T0,

3. The rule evaluation tasks are farmed out to both Transputers T0 and T1, according

to scheduling algorithm 5.2.

Figure 5.8a shows that the farming strategy delivers improved performance, with a reduction

in the time of about 30Vo over the single processor implementation. Figure 5.8b shows the

following;

. In Case I shows that the processing time increases linearly with an increase in the size of

the rulebase. This timing follows the single processor model described by equation 5'2,

with No = 1. The link communication is minimised, which saves time.

. In Case 2, it can be seen that the over-head of the additional channel communications

between T0 and T1 has caused a degradation of performance relative to case 1. This is in

accordancewithequation5.3,withNo=l,wheretheresultsarrivefromtheremote

processor. In this figure, the times starl at a nominal value of about 8mS to process a

single rule, which includes communications overhead, fusion, and defuzzification times.

6 A remote process is defined as one that is mapped to its own processor

Chapter V The exped system framework and algo rithm implementation 115

For the single Transputer case, as the number of rules increases, the ptocessing time

increases linearly, as expected from equation 5.1.

. The third case shows some improvement in performance by farming the rule evaluation to

both Transputers. After the RMFs have been collected from the workers, the data is

further processed to make it ready for the fusion process. This post processing of the

RMFs, together with the calculation of the FMF data, are computationally intensive, and

could be improved in future versions of this software. They contribute significantly to the

processing time, and prevent significant performance improvements by farming the rule

evaluation tasks alone. Again, this is illustrated in Figure 5.8, where the processing time

for the farming case is less than for the case where the farmer would not be performing

any substantial, additional processing. In this case, the processing time would be cioser to

half that for a single processor.

This investigation has identified several key points in relation to developing an

architecture based on parallel processing concepts. These include;

1. Communications Bandwidth - The Transputer has four serial links that can be used to

connect to other Transputers, creating a variety of architectures. As the number of

Transputers (or processors in general) increases, the communications between processors

becomes a larger over-head, compared with the acfual processing time'

2. process Identification - The overall process usually has some granularity [42], where it

can be decomposed into smaller sub-processes. The nature of the data will often determine

how process identification and division is done. This will also assist in determining what

type of parallelism can be employed (eg. pipeline, farming, tree), so that processes can be

executed concurrentlY.

Ĵ Process Maopins - When the individual processes have been identified, the associations

that exist between them will suggest some logical mapping onto the available processor

architecture, or indeed, motivate the development of a specific, purpose-built architecture'

Issues that arise at this stage include the communications bandwidth. Moving data around

between processors is expensive in time, and should be minimised if possible' Processes

that use the same data should be located close to each other, geographically, in the

network.

4. Svnchronisation - This issue relates to the scheduling algorithm that is employed to

distribute work packets to remote processors. It must be able to handle multiple channels,

and guarentee to service each worker as results arrive. 'Workers need not be tightly

coupled, and it is better that they are not for reasons of flexibility, but the communications

between the worker and the farmer must be free of the possibility of deadlock.

Chapter V The expert system framework and algorithm implementation 116

5. Adaptibilitv - The problem that is to be solved may be just one of many classes of

computational problem. The architecture may need to adapt to different data flows

generated by different problems. Purpose-built architectures have the advantage of being

optimised for their particular task. Adding flexibility to a system may compromise the

computational efficiency of that system.

100

?eo
o80
Ê,Ë70
P60
ß50o940À
o30
€20
Ero

0
rø

r

f)

)
/.2

/t

o 2 4 6 8 10121416182022242628303234

Number of Rules

+ Single Transputer
+ Farming to both TransPuters

(a) Rulebase processing times for a single Transputer and with two Transputers

Ø
E

o
E
F
Ð

ooo
À

oF

140

130

120

110

100

90

80

70

60
50

40
30

20
l0
0 o 2 4 6 8 101214161820222426 28 30 32 34

Number of Rules Processed

+ Transputer 2 alone
-è Transputer 1 alone
+ Farming to both Transputers

(b) Total processing times for a single Transputer and with tvvo Transputers-

Figure 5.8: Graphs showing (a) the rulebase processing performance, and (b) the

total processing performance. Precessing time depends on the number of rules that

are in the rulebase and the number of processors available in the system. (Transputer

1 corresponds to T0 and Transputer 2 corresponds to T1 in Figure 5.7.)

Chapter V The expert sYstem framework and algorithm implementation 117

5.4 Process Interactions

The knowledge base manager (KBM) is loaded with all the rules for the present project. The

FIE is configured by the SUPER process, to perform the appropriate inferencing strategies as

selected by the user. 'When all system parameters have been loaded, the user sends a

command via the GUI, to the Supervisor, to commence execution. The SUPER process will

then perform all functions necessary to complete the processing of the rulebase'

To assist in the planning and development of the process communications and

functionality, a chart has been developed that describes the events that occut' between

pfocesses. This chart is sirnply called a Process Event Graph, an example of which is shown

in Figure 5.3.

The PEG shows the concurrent processes along the left hand side, with lines extending

from each label. These lines represent a time axis. Directed lines fi'om one time line to

another, indicate the flow of a message. This diagram is useful for visualizing the data

interactions between Processes.

When execution has been initiated, the FIE requests the latest input data from the

DBM. This data is transmitted to the worker nodes. The FIE then enters a loop where it

requests the next rule from the KBM and assigns the task to an available worker node.

The worker nodes calculate the RMF for the rule and send it to the FlE, where it is

stored in an array of RMFs. The RMFs are also sent to the Supervisor process where they can

be accessed and displayed by the GUI.

When all ru1es have been processed by the FIE, the Supervisor calculates the Final

Membership Function (FMF) for each output. These FMFs are then defuzzified according to

the selected defuzzification method. The FIE requests the state of the inference methods from

the KBM (in the event that the operator has changed them) and updates the current

parameters.

If the system is in the closed loop mode, the process is repeated. The FIE will check the

mode parameter at the end of each pass.

The KBM maintains the ru|e base and other configuration information for the system.

As information is accessed by the FIE and the Supervisor, this separate process manages this

interaction. Likewise for the DBM. The DBM has the additional duty of managing data to

and from the TIM. It also keeps a copy of all results so that history data can be used in a

feedback situation.

Chapter V The exPert sYstem framework and algorithm implementation 118

5.5 Running the software suite

5.5.1 The configuration process

The TransFuzien software suite runs on the PC. The program is started by double clicking on

the program's icon. The user is then presented with a screen with a number of menu options

displayed along the top of the screen. By selecting these Inenus various aspects of the

software suite can be configured.

To begin a new project, select the project menu and click on New' This will display a

dialog box for entering information about the project. When this is completed, press OK or

Cancel to close, and proceed to define the input and output configuration of the project. This

is done by selecting the Data VO menu, or clicking on the speed button situated just below

the menu items. The data definition dialog box is now displayed which enables the user to

define the sources and sinks and their names. Again, press OK or Cancel to finish.

Next, select the inferencing options menu where the methods for modifying resultant

membership functions, connection logic, rule fusion, and defuzzification are selected.

Finally selecting the Rulebase menu, and clicking on New, will display the rule base

editor. The composition of rules is simply a matter of using the mouse to point and click on

the items displayed in the list boxes, and the dedicated buttons, to create the ruie of choice'

As each rule is generated, click Add Rule, which causes the present rule to be appended to

the current rule base.

When the rule base is complete, it may be saved to a separate file for later examination

or printing, but this is not essential. Pressing OK will complete the composition phase. At

this point the project can be saved to a file by again selecting the Project menu item and

selecting Save Project. A prompt appears for the name and directory for the file.

The final step is to compile the rulebase. This is accomplished by selecting the

Rulebase menu a¡d selecting Compile. The compiler dialog box appears. Pressing the

Compile button will process the rule base, displaying the results in the box. Press OK to

complete the process.

To run the software, select the Control menu item, and then select '8008

Communications'. The TransFuzien Command and Control Panel is now displayed. This

dialog screen contains the controls to load the kernel file to the Transputer system, to start

processing, and to display results of the processing. The kernel program is down-loaded by

pressing the 'Load Kernel' button, situated at the bottom left of the screen. This will display

Chapter V The expeft system framework and algorithm implementation 119

a file selection box where the appropriate bootable code file (.bcf) may be selected. Pressing

OK will initiate the down-load process.

After the kernel file is loaded, the Transputer network will execute the code, and will

be awaiting commands from the user. The inference engine, data base manager, and

knowledge manager processes need to be configured at this point. To load the rulebase, press

the 'Load Rule Base' button. To load the inferencing options, press the Configure button, and

to load the membership functions, press the 'Load Membership Functions' button. As each

button is pressed, an acknowledgment is displayed on the screen. The system is now ready to

process data.

5.5.2 Run-time operation

This software suite operates in one of two modes. The first is a single step mode where the

input data is processed once, and then the processing stops. Pressing the Process Input Data

button (located at the top left of the screen) will perform the single step processing. This is

the default state.

The other mode is a continuous mode of processing. To enter this mode, the mode

check box is checked, and then the Process Input Data button is pressed. In this mode, the

software will continually process the selected inputs until requested to stop. This mode is

useful in control applications.

The degree of fulfillment of each rule may be displayed by double clicking on any rule

in the rule list box. The resultant membership function for the particular rule selected is

displayed in graphical form. Similarly, the final membership functions may be displayed by

double-clicking in the output list box.

There are other controls in this dialog screen for sending messages to the Transputer

interface module (TnvÐ, for reading analog data, and setting the pulse width modulation

output of the TIM. These controls were incorporated at the early stages of the system's

development to assist in hardware and software testing. They may be removed or enhanced in

a later version of the software.

The operation of the system is more fully explored and described in Chapter 7 of this

thesis.

Chapter V The exped system framework and algorithm implementation 120

5.6 Chapter Summary

This chapter has described the implementation of the algorithm for fuzzy rule evaluation.

The inter-process communication channels and their protocols have been described. Data

flow diagrams have been used to design and visualize the process interactions.

The process event graph shows the communication interactions between processes as a

function of time. This graphical method is a useful tool that helps one to avoid the problem

of communication deadlock. The usefulness of the PEG is evident from the examples given

in this chapter.

The timing of process events has been examined for the single processor case, and for a

multiple processor case. The algorithm has been mapped onto single and multiple Transputer

architectures, and tests perfolmed to determine advantages and problems associated with the

two cases. The results show that the farming approach provides an improvement in

processing time, however, the time to perform the RMF fusion and the subsequent

defizzification, over-shadow this to a large degree. Improvements in the fusion process in

particular, would lead to improvements in performance.

Important issues have been identified that impact on the development of a processing

architecture. A scheduling algorithm has been presented and implemented'

The individual processes that comprise the TransFuzien software package have been

described.

121r lnlprfanc Modtf)hanter \/l Tho Trans

Chapter VI

THE TRANSPUTER INTEREACE MODULE

6.1 Introduction

This chapter describes the design of the Transputer Interface Module (Tnú), which provides a

means of connecting the expert system to external digital and analog equipment' The block

diagram of the TIM is shown in Figure 6.1. It has been designed to function as an embedded

control processor, providing a mechanism for data transfer between external experimental

apparatus and the exPert sYstem.

6.2 Description

The T1¡4 is a self contained processing module that has its own on-board micro-controller,

which communicates with the host Transputer via an Inmos COlz Link Adapter [43]' The

C¡IZ is configured to connect directly to port 0 of the Philips 87C'752 [44], which is a low

cost, 8 bit processor, that includes digital IJO, an on-chip 5 channel A/D converter, and a

digital output that can be programmed to produce continuous digital pulses of variable pulse

width. The program for the micro-controller is contained in an on-chip lk EPROM' A

number of routines have been programmed into this memory, which allow the 81C752 to

perform a variety of tasks that include the following;

1. read the analog to digital converter channels

2. output a particular pulse width modulation to the PWM pin

3. data VO to the designated Port

The schematic design of the TIM is shown in Figure 6.3. The COlzlink adapter translates

between the serial protocol of the Transputer links, and a parallel 8 bit word that is used for

communicating with peripheral devices. Restricting the system to 8 bits limits the dynamic

range achieveable, but the TIM can be modified at a later date to provide 10 or 16 bit

resolution.

Chaoter Vl The Transnr rter lnterface Module 122

c012
Link

Adacptor

Mlcrocontroller

Peripheral
lnterface
Adaptor

Data and
control bus

Links to
transputer
system via 8008
connector.

Figure 6.1 : Block diagram of the Transputer Interface Module, consisting of the micro-

controller, the link adapter, the peripheral adapter, and signal conditioning hardware.

Chanter Vl The Transnr lter lnterface Modrlle 123

1 . 87 C7 52 Micro-controller

2. C012 Transputer Link Adapter

3. 8008 Motherboard to TIM connector

4. Digital and analog inputs, and digital outputs connector

5. Peripheral Interface Adapter (PIA)

6. Euro connector for +5 volt supply

Figure 6.2 : Photograph of the Transputer Interface Module showing the micro-controller,

the transputer link adapter and the PIA device.

o
q)
!
o

=-{
=o
-l
Ð
=g,
!c
o

=o
9)o
o

o
o-
c_
o

JPI

HEADER:4X]

D

T

t_
GND

4

'L)

0c
F1
CD

I
!+
o
Haç
ã
Ê0

oc
ÞÞ

H

+)

o
tl
,-t
ÊÞ

v)

or_t

o+Þ()
CD

r>o
o.

o

lNr423

cl
PBI

v2
DIODE

¡u5

0 0.t

f

DO

D1

o2
D3
D4
D5
D6
07

P17tfllD1

Pl4lAOCltD4
P1 5¡NTl/D5
Pf 6¡NT1D6

õs
FESET

AO
WR
RD

o7
D6
0s
D4
D3
o2
D1
DO

INT IN
INT OUf

vcc

LNK RATE

x2

vss

RSO

RS1

NOT CS

P87
PÊ6
Pgs
P84
P83
P82
PBl
PBO

PC7
PC6
PC5
PC4
PC3
PC2
PCl
PC0

- CAP

RESEf

CLK IN

Pl o/Àoco/Do
Pl l/ADC1Æ1
P12JAOCD2
Pl SADC@3

P0o/scuÂsEL P3.0/AC/48
Po.1/SOA/OE+Gìt3,1/41/49
Po2Npp P32lA2J^1o
PO-3 P3 3/A3
P0 4/PWM OUT P3.4lA4

P3,5/45
RESET P3 6/46

P37l^7
x1

PA5

PÂ3
PA2

HOLDTOGND
HOLDTOGND

LINK IN
LINK OUT

12
34
56
9 10
11 12
13 14
15 16
17 18
19 20
21 2
23 24
25 26

31
56
78
I 10
11 12
13 14
15 16
17 1A

19 20
21 2
25 26
27 2A

29 30
31 32
33 34
35 36
37 3A
39 40
41 42
43 11
45 46
47 48

R2 56R

Chanter Vl The T lnforface Module '125

Rehrm

Store Port 3 stâte

in Acculmulator

for Read

Status
Bir set?

Read Status
Registem

for Rmd

Adaptor
Link
Read

Figure 6.3 Flow chart for reading data from the link adapter

Retum

Put Acculmulator
contents on port 3

Write

Status

Bit Set?

Reâd Status

Registers

for Read

Write
Link

Adaptor

Figure 6.4 Flow chart for writing data to the link adapter

Chantcr Vl The Tranqnr rter lntcrface Modl lle '126.

6.3 Operation of the TIM

When the micro-controller is reset, it executes a set of initialisation tasks, after which it waits

for a command sequence to arrive from the transputer system via the C012link adapter. The

command is sent by the data base manager process, which in turn, received a command request

from either the GUI, the FIE, or the Supervisor module.

The command comprises two bytes, sent consecutively to the TIM. The first byte

identifies the type of command to be executed, and the second byte, holds relevant data such as

the PV/M duty cycle or the port settings for TTL outputs.

On receipt of the command, the TIM executes one of the following sub-routines;

l. Reset

2. Read the analog inputs to the micro-controller.

3. Set the pulse width modulation output

4. Set the TTL outputs P1.5, P1.6, and P1.7, to the desired state (see table 6.1)

5. Read the state of port 1

These routines provide a basic set of operations to interact with hardware that is

attached to the TIM. Port 1 provides the 5 analog inputs and 3 digital outputs, and the PIA

provides additional digital VO for the system.

XX15

XX04

XIXJ

X0X2

1XX1

0XX0

Pl.5P1.6Pt.1R2

TTL Port BitsData

Byte

Table 6.1 Truth tablc for TTL port bit control

Transouter lntedace le 't27

6.3 Chapter Summary

This chapter has described the Transputer Interface Module (TnvI), which provides an

electronic data connection between the expert system hardware and external peripheral

electronic devices. The TIM provides the facilities to;

1. read the analog to digital converter channels

2. output a particular pulse width modulation to the P.WM pin

3. read data from, and write data to the designated port of the micro-controller

I

I

Chapter Vll Applications of Fuzzv Processinq - Case Studies 128

Chapter VII

APPLICATIONS OF FUZZY PROCESSING. CASE STUDIES

7.1. Introduction

In this chapter, the TransFuzien system is used to demonsttate fuzzy processing of data for a

number of different cases. These include pattern classification, system modeling, and fiizzy

control. In the first section, TransFuzien is used in the open loop mode, where various transfer

functions are realised. In the second section, TransFuzien is operating in the closed loop mode,

performing fuzzy control of an inverted pendulum apparatus.

7.2 Fazzy Data Processing for a Multiple Input - Multiple Output System

In this section, the TransFuzien system has been programmed to evaluate output values for a

multiple input - multiple output (MIMO) system 1421. In this case, there are four input

variables Xl,X2, X3, and X4, and three output variables Zl,Z2, andZ3' The rule base is

shown in Table 7 .l and,the inference methods employed are listed in Table 1 .2. The results for

three sets of input variables (A, B, and C) are shown in Figure 7' 1'

The objective is to present an example of a MIMO config¡rration with an arbitrarily

defined rule base to demonstrate how the outputs vary according to varying inputs'

lF x3 lS Zero OR x2 lS MediumPos THEN z3 lS SmallPos5

lF x2 lS LargePos AND x2 lS BigPos THEN z2lS Zero4

lF x1 lS SmallPos AND x3 lS BigPos THEN z1 lS MediumPos3

lF x3 lS BigPos THEN z3lS BigPos2

lF x3 lS MediumPos THEN z1 lS MediumPos1

lF x1 lS SmallPos THEN z1 lS SmallPos0

Rule TextRule

Number

Table 7.1 There are 6 rules for this example, with 3 inputs and 3 outputs

Chapter Vll Aoolications of Fuzzv - Case Studies 129

i'

Center of GravitYDefuzzification

Arithmetic AverageRMF Fusion

ScalingConsequent Modifier

Zadeh (MlN - MAX)Connectives

Typelnference Method

Table 7.2 The inferencing methods for the MIMO example'

ABC

Figure 7. 1: Non-fuzzy ouþut s ZI , 22, and 23 are produced by a rulebase

comprising six fuzzy rules. Three sets of input data give rise to

corresponding ouþut data variations.

100

90

o80
fõTo
Ë60
9soo40
o--2 so
o20

l0
0

azt
a22
azs

Applications of Fuzzy Processing - Case Studies 130
Chapter Vll

7.3 Fnzzy Data Classification

In this section, data items are classified into classes. Each item is described by a vector of

two features, X1 and X2. There can be more dimensions to the feature, but the results are not

easily visualized beyond 3 dimensions. The feature space comprises a number of regions that

each represent a prototype pattern. A set of fuzzy rules is applied to each feature, to map that

feature to a particular partition of the feature space'

When writing a rulebase for pattern classification, the regions that form the class are

described by rules. However, just as important are the rules that describe what regions do not

belong to the classes of interest. These rules help to excise unwanted data' that may be

considered as noise. This requirement is demonstrated particularly well in the rulebase for

the torus example.

The sharpness of the classification process can be improved by using linguistic hedges

to alter the shape of the membership values. The data for this example has been read from the

transputer interface module's analog voltage inputs'

7.3.1 The Torus

This example has two classes A and B, that are concentric, with class A surrounding

class .B (see Figure 7.2). The rule base for this example is shown in Table 7'8' Rules 0 to 4

define membership of classes, and rules 5 to 21 specify exclusion from those classes'

7.3.2 Discussion

The rulebase has classified the two classes quite well. As the numbel of rules that govern the

description of each class, the discrimination between classes improved' This is demonstrated

in Table 7.9, where the output values for each class are shown before, and after the addition

of more rules to exclude regions.

The results of the processing are displayed in Figure7.3, where the two outputs (Class

A and class B) are plotted. Figure 7.3a shows the output for the class A classifier, whilst

Figure 7.3b shows the output for the Class B classifier. The inverse relationship is evident

from these figures, showing that data that more fully belongs to one class, will belong to the

other class with a smaller membership grade'

This case study demonstrates the ability of the system to classify data'

Applications of Fuzzv P - Case Studies 131
Chapter Vll

100

95

90

óJ

80

75

70

D)

60

))

JO

45

Æ

s)

30

0

x2

I
¿i

25

20

15

10

5

0 5 l0 lJ 20 25 3i 35 40 45 50 55 óÛ 65 70 75 80 8J 90 95 100

X1

Figure i.2 : Two regions are defined by the concentric circles shown in this figure'

Class B is the central region of the figure, whilst Class A is the annulus that

surrounds class B. Data points which are defined by two coordinates (xI, x2), arc

classified by the rule base, and will possess membership to both classes to some

extent.

nnì
00

Aoolications of Fuzzv Process ino - Case Studies 132

I

Chapter Vll

Table 7.3: The rule base that classifies the data comprises 22 rules that define the two regions

'L

u
1ç

I

ì

21 lF x1 lS Big+ AND x2 lS Medium+ THEN classB lS Zero

20 lF x1 lS Small+ AND x2 lS Medium+ THEN classB lS Zero

19 lF x1 lS Medium+ AND x2 lS Small+ THEN classB lS Zero

18 lF x1 lS Medium+ AND x2 lS Big+ THEN classB lS Zero

17 lF x1 lS Large+ AND x2 lS Medium+ THEN classB lS Zero

16 lF x1 lS Zero AND x2 lS Medium+ THEN classB lS Zero

15 lF x1 lS Medium+ AND x2 lS Zero THEN classB lS Zero

14 lF x1 lS Medium+ AND x2 lS Large+ THEN classB lS Zero

13 lFxllSMedium+ANDx2lSMedium+THENclassAlSZero

12 lF x1 lS Large+ AND x2 lS Large+ THEN classB lS Zero

11 lF x1 lS Large+ AND x2 lS Small+ THEN classB lS Zero

10 lF x1 lS Small+ AND x2 lS Large+ THEN classB lS Zero

9 lF x1 lS Small+ AND x2 lS Small+ THEN classB lS Zero

I lF x1 lS Large+ AND x2 lS Small+ THEN classA lS Zero

1 lF x1 lS Small+ AND x2 lS Large+ THEN classA lS Zero

6 lF x1 lS Large+ AND x2 lS Large+ THEN classA lS Zero

5 lF x1 lS Small+ AND x2 lS Small+ THEN classA lS Zero

4 lF x1 ls Medium+ AND x2 lS Medium+ THEN classB ls Large+

3 lF x1 ls Medium+ AND x2 lS small+ THEN classA ls Large+

2 lF x1 lS Medium+ AND x2 lS Big+ THEN classA lS Large+

lF x1 lS Big+ AND x2 lS Medium+ THEN classA lS Large+

0 lF x1 ls small+ AND x2 lS Medium+ THEN classA ls Large+

Rule Number Rule Text

AandB

l

Chapter Vll Aoolications of Fuzzv Processinq - Case Studies 133

1,

d'r

1979Class A7260

After

exclus¡on

rüles

8679Class A7260

Before

exclus¡on

rules

Class B

lndicator

Class A

lndicator

Actual

Class

x2x1

Table 7.4 : This table shows the improvement in discrimination between Class A and Class B,

from (79, g6) before, to (79, 19), after the addition of rules that define the class regions more

fully. A high value represents a good match, 100 being the maximum value.

I

I

I
I

Chaoter Vll Aoolications of Processino - Studies 134

1m

m

60

DOM
,10

m

tm

m &

ilo d

40ya X1

d) n

100

1m

Figure 7 .3a Plot of the Class A ouþut.

100

DOM

40

20

0

20

20

x2

40

40

60

x1
80

100

Figure 7.3b Plot of the Class B ouþut.

Class A data

I Class B data

T

lr
Figure 7.3 : Graph showing the degree to which data belongs to class A and Class B.

r

oÍ Fuzzy Processinq - Case Studies 135

:,1

rlJ

'l

1

Chapter Vll Applications

7.4 Modeling of a function using a fiizzy rule base'

Modeling of processes can involve complex.nonlinear equations, that must be solved' often

in real-tim e. A, fuzzy rule based system can be used to model these complex processes,

provided sufücient care is taken in constructing the rulebase.

7. 4. I Lineor Ap7roximator

In this example, a rulebase, sholvn in Table 7.4, descr\bes the behaviour of a simple

linearfunction, y: x.Figure 7.4 shows the results of the data processing for several points

between 0 and 100. The output values show good agreement with the ideal case' This is an

example of a single input - single output (SISO) system where x is the input, and y is the

output.

lF x lS Large- THEN Y lS Large-I

lF x lS Big- THEN Y lS Big-7

lF x lS Medium- THEN Y lS lr4edium-6

lF x lS Small- THEN Y lS Small-5

lF x lS Zero THEN Y lS Zero4

lF x lS Small+ THEN Y lS Small+3

lF x lS Medium+ THEN Y lS Medium+2

lF x lS Big+ THEN Y lS Big-1

lF x lS Large+ THEN Y lS Large+0

Rule TextRule Number

Table 7.5: Rule base that models the function y(x) : x

t
I

l

!

Aoolications of Fuzzv - Case Studies 136
Chaoter Vll

y(x)

tm

90

Í)

7It

d)

fì

¿tl

tl

ït

l0

t0ãtÐ¿trdtm90 100

,:t
-ê- nfe basc

)c

Figure7.4:Therulebasedmodelofthefunctiony(x)=xcloselymatchestheidealcase.

Triangular membership functions were applied in this example.

osf
t,

"4

2

,/

,ol

,'t/

,ti
,P

g

.Þ

i

I

I

ì
ì

i

Chapter Vll Applicati ons of Fuzzv Processinq - Case Studies 137

7.4.2 Complex Futtction Approximator

More complex functions can be modeled using fuzzy logic, in this case, the function is

z(x,y) = ,' - y2 . A useful method for develôping models with fuzzy sets, that have a two

input-one output relationship, is to use input-output maps, or FAM. The corresponding FAM

is shown in Figure 7.5, from which a rulebase is derived. The rules are then read directly

from this map and are shown in Table 7.10.

From the resulting plots (see Figures 7.6a-d), it can be seen that there is a close

correlatio¡ between the theoretical and modeled plots. A finer resolution may be obtained by

using additional rules to model the function, but this involves a trade-off between

complexity, and speed of processing (if speed is an issue)'

The major features match those of the theoretical plot for z. The scale can be adjusted by

the system that uses the output values.

ZEPLZEPL

PSPS

NLNS7ß,NSNLZE

PSNS

ZEPLZENL

PLPSZENSNLX

Figure 7.5 : Key features of the model are identified using a simple matrix approach that

maps the input space to the output space (VO Map). The inputs to the matrix are x and y'

The membership labels are NL, NS, ZE, PS and PL.

Vlt Applications of Fuzzy Processing - Case Studies 138
Chapter

Table 7.6 : Rule base that describes z, according to the vo map. The rule base is derived fron

this mapping as shown in Figure 7.5.

12 lF x lS Medium+ AND y lS Zero THEN z lS Small-

11 lF x lS Medium- AND y lS Zero THEN z lS Small-

10 lF x lS Zero AND y lS Medium+ THEN z lS Small+

9 lF x lS Zero AND y lS Medium- THEN z lS Small+

I lF x lS Zero AND y lS Large+ THEN z lS Large+

7 lF x lS Zero AND y lS Large- THEN z lS Large+

6 lF x lS Large+ AND y lS Zero THEN z lS Large-

5 lF x lS Large- AND y lS Zero THEN z lS Large-

4 lF x lS Large+ AND y lS Large+ THEN zlS Zero

3 lF x lS Large- AND y lS Large+ THEN zlS Zero

2 lF x lS Large+ AND y lS Large- THEN zlS Zero

lF x lS Large- AND y lS Large- THEN zlS Zero

0 lF x lS Zero AND y lS Zero THEN zlS Zero

Rule Number Rule Text

Chapter Vll Aoolications of Fuzzv no - Case Stud 139

Z

Figure 7.6a : Calculated surface plot of the function

z(x,y) = *' - y', x- t-5..+51 andy - [-5..+5].

Z

Figure 7.6c : Calculated surface plot of the

function z(x,y) = rr' f ' Blue represents negative

numbers, green represents zero, and orange

represents positive numbers.

Figure 7.6b : Surface plot generated by the expert

system using 13 rules.

N

Figure 7.6d : The surface plot generated by

TransFuzien softwa¡e shows a high degree of
correlation with the theoretical plot of Figure 7.7c.

N

Figure 7.6 : Modeling relies on the identification of key features of a system, and then

(Figure 7.6b) closely matches the ideal case. The scale is not relevant here, as the expert

system output can be adjusted to suit the application.

Aoplications of Fuzzv Processino - Case Studies 140
Chapter Vll

7.5 Signal Processing

This example illustrates how a fuzzy rule base may be used to perform filtering of

information. For the purposes of this case study, the filters perform a bounds classification

on the input data. Two types of filter are tested, being a low pass filter and a band pass

filter. A filter has a number of important characteristics such as the cut-off point, the roll-

ofi the band bass and band gap ripple, the band stop rejection, and the insertion loss'

The input and output variables for this case have the following ranges;

Input variable :xl

Output variable '.zl

Range : [0..100]

Range : [0..100]

Linguistic hedges are one method by which the sharpness of a filter can be altered.

Another is to adjust the shape of the membership functions. The membership sets are fu"y

numbers and can be defined to suit the filter characteristics that are desired. (ie. cut-off

value, half power point) In this case, generic terms are used only such as low, medium and

high.

7.5.1 A Low Pass Filter

The rule base for the low pass filter is shown in Table 7.11. These rules are derived

by considering the desired low pass filter characteristics. Figure 7.7 shows the output from

the inferencing process as a function of the input variable x. This figure highlights the

influence of the choice of inferencing strategy on the output'

3 lF x1 lS large THEN z1 lS zero

2 lF x1 lS medium THEN z1 lS small

1 lF x1 lS small THEN z1 lS large

0 lF x1 lS low THEN z1 lS large

Rule Number Rule Text

Chapter Vll Aoolications ol Fuzzv Processinq - Case Studies 141

lowrsg.

fl
4
#
4
12

,fl

38

u
n
T)

tp."or' tr
.. ^za

lprcibk 22

+m
l8

l6

l4

t2

t0

6

4

2

0 r 2 4 6 8 l0 12 l¿t L6 ß n 22 2426 n n n 34 36 n 4 n 4A 4ri 48 J0

lowpôrrr*

' Lowpass r
'" Low pase 2
+ Lowpass 3

Figure 7.7 : The output for the low pass filter is affected by the choice of

inferencing methods.

Table 7.8: Inference methods for the 3 low pass filters.

7.5.2 A Band Pass Filter

The rule base for the band pass filter is shown in Table 7.12. These rules are derived

by considering the desired low pass filter characteristics. Figures 7.8 shows the output

from the inferencing process as a function of the input variable x, and highlights the

influence of the choice of inferencing sfategy on the ouþut'

Center of gravitypeakscalemin-max (Zadeh)Low pass 3

Center of gravitymeantruncationmin-max (Zadeh)Low pass 2

Genter of gravitypeaktruncationmin-max (Zadeh)Low pass 1

DefuzzificationFusionModifierConnectiveFILTER

Chapter Vll Applicatio ns of Fuzzv Processing - Case Studies 142

lF x1 lS large THEN z1 lS zero3

lF x1 lS medium THEN z1 lS large2

lF x1 lS small THEN z1 lS large1

lF x1 lS low THEN z1 lS zero0

Rule TextRule Number

Table 7.9 Rule base for the band pass filter

T"
BP22I

+

100

90

80

7i

6g

JO

40

30

20

10

0 0 2 4 6 I l0 12 14 1ó 18 20 22 24 26 28 30 32 34 36 38 Æ 42 M ¿ß ß50

EPl
+ Bandpassfilier 1

+ Sandpass filter 2

Figure 7.8 : The output responses for two bandpass filters. The variation is due to

the fusion method employed for each filter.

The two data sets are the result of applying the same rulebase to identical input data.

Bandpass filter #1 used the maximum profile, whilst bandpass fllter #2 used averaging for the

fusion method. These results show that the fusion method affects the response of the filters.

-,Y..

)C\

\\g
\\

Chapter Vll Apolications of Fuzzv Processino - Case Studies 143

7.6 Real Time Control - The Inverted Pendulum

To achieve real-time control of a dynarr-ric system, the relevant time constants must be

considered. Control decrsions based on the sensor input, need to be made quickly enough that

[he system under contlol is receiving command inputs that result in the desirecl behaviour. That

is, t¡e bandwidth of the decision rnaking system is large enough to accommodate the time

constants of the plantl.

There are many jnstances in the literature that describe the inverled pendulum 123,45,

46] and show the complexity of the equations of motion for this s)'stetn. ln this study, the

variable that is measured is the angle of the pendulum. The angle sensor is read by channel 0

of the analog to digital converter on the Transputer Interface Module. More elaborate sensing

and rules can be implernented as an extension to this study. The s1'stetn diagram is shown in

Figure 7.9.

Plant

Control Signal to Motor

mL

Sensor outputs

L

I

Fuzzy Rule Based

lnferencing System

Controller

Figure 7.9 : The inverted pendulum apparatus is the plant in this control loop

Desired
behaviour
defined by
Rulebase

I The plant is the controlled system.

Chapter Vll Applications of Fuzzv Processing - Case Studies 144

7.6.1 Description o.f the Ap¡tctratus

The inverted pendulutn apparatus has becn totall¡, designed artcl built by the author as ¿i

test-bed for the real-time control section of this study. Figurc 7.10 shorvs the relevant features

of the apparatus. It comprises a small trolley rvith 8 wìreels, that engage a level Iineal track on

each side of the troliey. Tlie pendulum is mounted on the trollc¡,, ancl is fr-ee to rotale about the

pivot point.

The position of the trolley on the track, and the angle of tl'ie pendulurì, are sensed by

linear potentiometel's. The outputs are connected to the analog inpr-rts olt the TiM- The motor is

a24 volt DC servo motor. The motor volta-9e js controllecl b1' 111" rtr(rtoL colltrol card (see

Figure I .Il), the circuit diagrarn of which is shown in Figure 7.12'

The pole is of length 2L, the mass of the cart is n'Ir, and tl-ie additional load mass is ttt¡.

The force/applied ro the calt is regulated by the PWM output from the TIM, and an additional

TTL signal, also fiom the TIM, u,hich su,itches the directiou of tlle motor. The rulebase used

in this expeliment is very simple as shown in Table 7.13.

7.6.2 Pendulunr Motor Drive ond Sensor Card

The pendulum motor drive and sensor card, receives commands from the fuzzy

processing system and converts them into the appropriate electrical signals for the motor. Data

from the angle sensor, the linear position sensor, and the end sensors, are conditioned, then

sent to the generic module for processing.

This hardware comprises an H-bridge circuit, and motor cutrent rnonitoring circuitry.

Four IRLZ14 logic level N-channel MOSFETs are used for the H-bridge. Each MOStrET is

rated at Id = 104 continuous (404 pulsed). The logic signals required for the H-bridge are

generated by an ALTERA 1O32EPLD.

A separate power supply is used for the motor. This supply is isolated from the digital

supply by opto-couplers. The PLD output are buffered by an open collector buffer chip (7407),

which in turn drive the opto-couplel LEDs.

The angle sensor comprises a 10k lineal potentiometer. The end sensors are photo-

electric transrnitter-receiver devices, wliich detect an interruption to the beam, however these

were not used in this case studY.

Chapter Vll Applications of Fuzzv Processinq - Case Studies 145

Description of components.

l. Control electronics

2. Infrared sensor

3. Trolley assembll'

4. An-gle sensol'

-5. Aluminitrm rocl

6. Cylindricaìrvei-uht

1. Electric tlrotor

8. Position setlsor

9. Aluminiurll tr'¿rck for the trolley

10. hlfrared sellsol

Irigure 7.10 : Photogrâph o1'the inverted pendulun ¿ìpparal-us

Chapter Vll Apolications of Fuzzv Processinq - Case Studies 146

Figure I .11 : Photograph of the Motor Control Module for the invertecl pendulum motor

Descriptiort of comPonents:

L Opto-coupler

2 Motol' Power connector

3. Hcatsink

-J. Mosl'et

-5 EPLD

(r Signal attcl power collnector

Chapter Vll Applications of Fuzzy Processing - Case Studies 147

o

.*

iå

p,t

pË

ts

F

o-
N
N.

l

<ooo
oooo

Oo o o o Ooz>.6o
-69:9ã

Figure 7 .I2 : Circuit diagram of the Motor Control Module for the inverted pendulum motor.

Chapter Vll Aoplications of FuzzY Processinq - Case Studies 148

7.6.3 Experimentctl procedure and results

The Rulebase

lF angle lS Medium- THEN force lS Large-4

lF angle lS Small- THEN force lS Large-3

lF angle lS Medium+ THEN force lS Large+2

lF angle lS Large THEN force lS Large+1

lF angle lS Zero THEN force lS Zero0

Rule TextRule Number

Table 7.13 : The Rulebase for the inverted pendulum.
-t,'1

Static Performance

In the first phase of the experiment, the system was loaded with the pendulum project and

run in loop mode. The time taken to evaluate the rulebase and generate the required output

signals for the apparatus was 98 mS. The motor current was switched off, and the angle of

the pendulum was adjusted. For each increment from the vertical, the output was recorded'

The measurements were repeated for two fusion methods, being the arithmetic mean and the

peak follower. The measurements are shown in Figure 7'13'

The graph shows that as the angle from the vertical increases from zero, to either side,

the force applied to the caft is increased so as to correct the imbalance. Both methods of rule

fusion produce the predicted result, with little difference between them' The processing times

for this casc are shown inTable7.2.

Dynamic Performance

The second phase of the experiment tested the dynamic performance of the inverted

pendulum controller. The same project file was loaded and the system was then run in the

closed loop mode for two situations.

Restrained Test:

The pendulum was supported in the vertical position (angle = 0) and the motor supply

the motion of the cart observed.

and

Chapter Vll Applications of Fuzzv Processing - Case Studies 149

Unrestrained Test:

The next step was to support the pendulum in the upright position, with the cart at the center

point of the track, and then release the pendulum and allow the system to control the

apparatus.

7.6.4 Observations

Restrained Test:

1. As the angle from the vertical increased, the duty cycle of the drive voltage to the

motor increased. The duty cycle output from the TIM was monitored with an

oscilloscope.

2. The cart was subsequently driven to correct the enor in the angle as detected by the

system.

3. This behaviour of the cart was consistent with the behaviour encoded in the rule

base file.

Unrestrained Test:

1. When the pendulum was released, it tended to stay in an upright position due to the

friction of the pivot and the lack of external disturbance. In this state the motor

current was zero, as expected from the rulebase. Again the motor drive modulation

was monitored on an oscilloscope, together with the direction output2.

2. The pendulum was then perturbed to one side to initiate the control action. In this

state the cart was driven in accordance with the angular displacement of the

pendulum.

3. The best performance, defined as a balanced upright pendulum, was achieved using

Zadeh connectives, scaling as the modifier, arithmetic mean as the fusion process,

and center of gravity defuzzification. This state was only achievable for a maximum

of 8 seconds before the system became unstable (ie. the pole could no longer be kept

upright).

2 The direction output is a digital signal that connects to the EPLD on the motor control board. It controls the

switching of the FET H-bridge.

Chapter Vll Aoolications of Fuzzv Processinq - Case Studies 150

A rilhnìct¡c M c¡n
Pcak Followcr

50

0

25

L

-25

-50
4-40

A nglc

Figure l.l3 : The system output for the pendulum control is determined by the angular

displacement of the pole from the vertical. This figure shows the effect of selecting different

fusion processes.

7.6.5 Comments

A performance improvement could be obtained by using an additional input that detects the

angular velocity of the inverted pendulum. Some mechanical improvements to the pivot

bearing would also reduce undesirable movement of the pendulum in the direction

perpendicular to the direction of the cart motion.

During development of the test-bed, and subsequent testing, the sensors were placed

under considerable mechanical stress, and their performance eventually become somewhat

degraded. This is an area that will require attention in future experiments with this test-bed.

There were noticeable changes in operation when diffelent inferencing methods were

applied to the closed loop system. This ability of the GUI software to apply changes whilst

processing data, proved useful, and was a positive result from this case study'

Further experimentation3 with inference settings and with the shapes of membership

functions, would be useful in exploring the dynamic behaviour of the controller.

3 Ho*"ver time did not permit further development at this stage'

Chapter Vll Apolications o'f Fuzzv Processinq - Case Studies 151

7.7 Chapter Summary

This chapter has presented a number of case studies that show how fuzzy inferencing may be

employed in a variety of data processing tasks. The results for each case testify to the

usefulness of the fizzy approach to information processing, and demonstrate that the

TransFuzien system provides a useful research tool for investigatin g fuzzy inferencing.

Some problems with the mechanical structure of the inverted pendulum apparatus need

to be resolved to investigate this real time experiment further. The pulse width modulation of

the electric motor could be replaced with a linear power amplifier, which would reduce the

harmonics generated in the motor coil by the modulating square wave. Also, velocity sensors

can be added to the apparatus to provide an additional input to the expert system. The rule

base would be change accordingly to reflect the new input data'

152Chaoter Vlll Thesis Summary

Chapter VIII

THESIS SUMMARY

S.L Discussion

This research has set out to explore the concepts of fuzzy logic, and to investigate how an

inferencing system can be developed using parallel processing concepts. The principles of

fuzzy logic have been introduced, and a number of new concepts have been proposed. These

include;

1. t-norm and t-conorm operators for fuzzy set interaction

2. operators for handling temporal aspects of knowledge representation

3. fusion operators

As the outcomes in the form of resultant membership functions, are calculated, the

inherent information content which is represented by the RMF, will vary according to the

degree to which each rule is satisfied. A method for calculating an information measure for

fused fuzzy sets has been developed and presented.

The fusing of fizzy sets has been addressed, with common methods presented, and two

alternatives proposed. The first method is based on the proposed information measure' and the

second method is based on a sliding window average. Examples of each method have been

presented.

In considering a parallel implementation of fuzzy inferencing, it has been shown that a

suitable representation of knowledge is important, and has been achieved using fuzzy rules

which have the IF-THEN format. A f\zzy rule compiler has been presented that translates

textual rules into a format suitable for processing by the Inference Engine'

The INMOS Transputer has been used to implement the inferencing strategy proposed

in this research. A number of special factors relating to parallel processing systems have been

explained. These include data flow processing, and methods for avoiding deadlock in a multi-

processor architecture, which include the use of fonnal protocols for communications. The

ve

Chapter Vlll Thesis Summary 153

The various software components that have been developed, comprise a compleLe luzzy

infer-encing expert system. This package has been given the na¡ne TransFuzien, which stands

for Trans¡tuter-based FuzZy Logic Inference Engùrc. The system comprises a number of

components that includes, a Graphical User Interface that is designed to facilitate easy

compositio n of fuzzy rules, membership functions, and inferencing strategies. A number of the

dialogboxesof theGUlareshown. The GUI provides the human-computer interface to

TransFuzien, and it has been shown how the GUI is used to encapsulate and pre-process

clornain knowledge, configure the inferencing module, and monitor run-time results. The GUI

adds to the ability to experiment with different inferencing strategies, and directly observe the

results.

Algorithms have been developed and presented which fonn the basis for fuzzy

inferencing, together with a parallel processing architecture, based on the Inmos Transputer'

The algorithms that run on the Transputer system are realised in the Occam 2 prograrnming

language.

An electronic interface has been designed and constructed by the author to facilitate an

electronic connection between the expert system and external equipment. This interface

proyides a means for reading analog and digital data, and for writing digital data to pelipheral

devices.

Evaluation of the system has shown the operation of the components of the pre-

processing algorithms that form an important part of the graphical user interface. The overall

performance of this system has been demonstrated with specific examples. These include fuzzy

rnodeling, fuzzy pattern classification, and fuzzy control'

The results from this research obtained are positive, firstly from the point of view that a

working inferencing system using parallel processing concepts, has been developed' and

se.conclly, hy clemonstrating the outcomes of the research by the above mentioned case studies'

A performance enhancement has been demonstrated by applying parallel processing concepts'

The limitations of the system, including a limit on the number of rules to 100, and the current

number of Transputers to 2, need to be addressed in further developments. There is scope for

experimenting with various process farming strategies, which will be particularly relevant for

mapping the software to larger transputer networks. Also, the algorithms developed herein

could be applied to other types of processor target systems, apart from the Transputer'

This work has shown the importance of taking a systems approach to the investigation,

development and implementation of solutions to complex engineering problems'

\f

r

Chapter Vlll Thesis Summary 154

8.2 Further Work

As the system has evolved, it has become apparent to the author how this current

version of the software can be improved in many areas. This is the case with most research and

engineering projects, where subsequent improvements are made, based on the things that are

discovered during the first phase of development.

Further developments of the system can focus on a number of areas. The first is the

processing performance, which may be improved with the use of the T9000 Transp'-rter [47].

Tl-re existing Occam code would need to be re-compiled for tl-re T9000, and some other

changes made to the hardware interface, including the addition of an IMSC100 Parallel DS-

Link Adapter [48]. This device converts the T9000 serial protocol to the T800 serial protocol.

The second area that can be addressed, is the Graphical User Interface- It could be

modified to reflect operator preferences, such as the colours used for the various screen

displays. Also, the range of inferencing options could be enhanced. The rule cornpiler can be

extended to accommodate multi-consequent rules.

Next, the measur e of llzzy information is a useful quantity to caiculate. It could be

displayed by the graphical user interface, to give an indication of the quality of the outcomes of

the expert system. This would be a subjective measure, but would be relevant and useful to

further research into fuzzy information processing.

In Chapter 2,new linguistic operators have been introduced called I4¡AS and WILLBE'

Further analysis using these operators is required, and particularly in the area of the forecasting

methods that may be emploYed.

The TransFuzien system has provided a means of exploring the affects of the choice of

inferencing strategies for particular applications. The TransFuzien system could be used to

derive a method for recommending the inferencing strategy (perhaps a heuristic method) that is

best suited for the task at hand.

Further research would prove fruitful in the area of real-time data processing. The

i¡verted pendulum experiment is a good test-bed for exploring vadous inferencing

methodologies, however, particular attention needs to be given to the nechanical components

of such a system.

Increasing the number of Transputers in the system would be useful. This would

require some further effort to address the problems raised by an increase in communication

complexity, and task assignment between processors.

.lr
ï,{
,l
I

f
I

;

þ

References 155

tll Charniak E,.

'Wesley, 1985

References

alld McDermott D., "Introduction to Artificial Intelligence", Addison-

12) Rich E., "Artificial Inteligence", McGraw Hill, 5th printing, 1986

t3l Zad3hl. 4., "Flzzy Sets", Information and Control, Vol. 8, No. 3, pp.338-353, 1965

14) Zimmennann J.,"Füzzy Sets, Decision Making, and Expert Systems"' Kluwer Academic

PubUsers,1987

t5] Hopgood A. 4., "Knor¡,ledge-Based Sytems for Engineers and Scientists", 1993

t6] Yasunobu, S. a¡d Miyamoto, S., "Automatic Train Operation Systern by Predictive

Fuzzy Control", in "Industrial Applications of Fuzzy Control", Sugeno M. editor',

Elsevier Science, 1 985.

l1) Harbison-Briggs K. and McGraw K., "Knowledge Acquisition

Guidelines", Prentice Hall, 1989.

Principles and

tB] INMOS, "The Transputer Development and iq Systems Databook", lst edition, i989

t9l Bardossy A. and Ðuckstein L., "Fûzzy Rule-based Modeling with Applications to

Geophysical, Biplogical and Engineering Systems", CRC Press' 1995.

t10] Motorola Semiconductor Products, "MotorolaFuzzy Logic Data Sheet", 1996

[11] Infra-Logix Data Sheet.

ll2) Seimens Data Sheet "Fuzzy Logic Coprocessor, SAE 81C99"

t13l VLSI TechnologY Inc

Accelerator" , 1993.

Data Sheet "VY86C500 i2-bit Fuzzy Computational

'I

u
''9
¡

I t14l Liu L, "Optical Implementation of Parallel Fuzzy Logic", Optics Communications,

I

.:ì
r'ì

References 156

t15l Hasnain S. B.and Linkens D. A., "The Use of AI Methodology in control Applications

of Transputers", IEE Colloquium on Recent Advances in Parallel Processing for

Control", Volume 1 ,PP l-10, 1988'

tl6l stacliowicz M. s., "parallel Architecture for a Multi-Inpul Fuzzy Logic controller",

SpIE Vol. 17e7, Applications of Artificial Intelligence X: Knowledge-Based Systems,

pp. 131-145,1992.

Ujl Ekerol II aucl Hodgson D. C., "Angular position control of objects using a transputer-

based 'ision system and fuzzy logic techniques", Proceedings of Institution of

Mechanical Engineers , Y ol- 201 , 1993 -

tlg] Stachowicz M. S., "A hardware accelerator for linguistic data processing", SPIE Vol'

1607, Intelligent Robots and computer vision X: Algorithms and Techniques,pp' 439-

445, 1991.

t19l zapataE. L., Rivera F. F, Plata O. G. and Ismail M.4., "Parallel Fuzz,y clustering on

Fixed Size Hypercube SIMD Computers", Parallel Computing II,pp' 289-303' 1989'

l20l Liu L., "Optical Pattern Fuzzy Logic", Japanese Journai of Applied Physics' YoL 29'

No. 7, ppLI2SI-Li283, JulY 1990.

l21l Dubois D. and Prade H.,"Fuzzy Sets and Systems: Theory and Applications", Academic

Press, 1980.

l22l Estathiou J., "Expert Systems in Process control", Longman, 1989'

123) Kosko B, "Neural Networks andFuzzy systems", Prentice Ilall,1992'

l24l Yagishita, O. Itoh, O. and Sugeno M., "Application of Fuzzy Reasoning to 'Water

Purification Process", in "Industrial Applications of Fuzzy control", pp. 19-39, Sugeno

M. editor, Elsevier Science, 1985.

l25l D'AzzoJ. J. andHoupis C. H., "FeedbackControl SystemAnalysis & Synthesis",2nd

edition, McGraw Hill, 1982.

,-I

ru
!¡?
j

I

Hallll

!

1988

I

References 157

lyil Zadeh, L., "Fuzzy languages and their Relation to Human and Machine Intelligence",

1910

l28l Gupta M. M. and Qi J.,"Connectives (AND, OR, NOT) and T-Operators in Ftzzy

Reasoni¡g",pp.2ll-233, in "Conditional Logic in Expert Systelns", Elsevier Science

B.V. (North Holland), 1991.

l2gl Chatfield, C., "The Analysis of Time Series", 4th edition, Chaptnan Hal, 1989

t30l Bowyer R.S., "Implementation of a Parallel Fuzzy Logic Controller', ATOUG-4 Tlie

Tlansputer in Australasia, IoS Press, Arnsterdam, pp. 13-18, Sept. 1991.

t31] Ha1'¡ir-, S., "Communications Systems",2nd edition, Wiley' 1983

l32l Aho 4., Sethi R. and ullman J., "Compilers : Principles, Techniques, and Tools",

Addison Wesley, 1977.

133l Mick J. ald Brick J., "Bit-slice Microprocessor Design", McGrarv-Hill, 1980

t34] Borland, "C++ Programmer's Guide", Version 4.0,1993'

t35l pountain D. and May D., "A Tutorial Introduction to OCCAM Programming", BSP

Professional Books, 1987.

136l INMOS, "OCCAM 2 Reference Manual", Hoare C' A' ed', 1988

l3ll INMOS, ,'Transputer Development System", Prentice Ifall, 1988

t38] Fox G., Johnson M., et al., "Solving Problems on Concurrent Processors, Volume 1,

General Tech¡iques and Regular Problems", Prentice Hall, 1988.

t39l Sturrock S. S. and Salmon I., "Application of Occam to Biological Sequence

Comparisons", in "Occam and the Transputer", Edwards J. ed', IOS Press 1991'

I
I

I

I

t40l Jones G. and Goldsmith M., "Programming in Occam 2", Prentice Hall, 1988

References
158

t41] INMOS, "The Transputer Applications Notebook, Architecture and Software"' 1st

Edition, 1989

Í42] Stone H. S., "High-Pe.tformance Computer Architectures", Addisori-'Wesley' 1987

l43l INMOS, "The Transputer Databook", 7992'

l44l Philips, "Microcontroller Data Book", 1992'

l45l Chen Y., "stability Analysis of Fuzzy Control - A Lyapunov Approacl.ì", Proceedings of

the IEEE lnternational Conference on Systems, Man, and Cybernetics, pp. IO2l-1031,

1981.

146l Yamakawa T. ,"stabilisation of all Inverted Pendulum by a High-Speed Fuzzy Logic

Controller Hardware Systelì-¡", In "Fuzzy Sets and S)'stems", 32, pp'161-180' North

Hoiland, 1989.

l47l INMOS, "The T9000 Transputer Hardware Reference Manual", lst edition, i993

t, t4g] INMOS, "The T9000 Transputer Product Overview Manual", ist edition, 1991

l4g] INMOS, ..IMSB008 User Guide and Reference Manual,,, 1988

t50] Dowsing R. D.,"Introduction to concurrency using occam", p15, 1988

Appendix A

INTRODUCTION TO THE TRANSPUTERAND OCCAM

4.1 Purpose

The purpose of this appendix is to introduce the Inmos Transputerl 1431, and the Occam 2

programming language. In the first section, the architecture and the performance specifications

of the Transputer are presented. The next section explains key aspects of the Occam 2 which is

the native language of the INMOS Transputer.

A parallel processing paradigm is central to this study, and this chapter explains why

Occam is useful in developing parallel algorithms.

4.2 The Transputer

The T800 Transputer is a32 bit microcomputer combining features such as 4K bytes of on-

chip memory, four serial links, a32bit floating point unit, and event handling hardware' The

block diagram of the T800 Transputer is shown in figure ,{.1. The serial communications links

on each processor allow for a high degree of inter-connectability, giving the system designer

the ability to hardwire a variety of topologies. Figure 4.2 shows some of the possible

configurations.

Additional architectural flexibility can be achieved by using a 32 way programmable

cross-bar switch, that allows Transputers to be connected to one anothel in a more dynamic

structure. This facility is not being used in this research. The links of the Transputer connect

directly to the C004 device, and the switch is programmed via it's own serial channel.

One of the development products manufactured by Inmos, is the 8008 Motherboard [49],

which provides ten positions for Transputer modules (TRAMs). Each TRAM contains a

Transputer, local memory, and some interface logic. The 8008 is a 3U size card that plugs into

one of the slots of an IBM compatible personal computer'

The Transputer links enable processing architectures to be developed that can closely map

the data flow requirements of the problem.

will not be described heretn.

arcl.ritecture to theI In this study, T800 Transputers are used. The T9000 Transputer has a different

Occam and the Transouter 160AI

32
External
Memory
lnterface

Link
lntedace

Link
lntedace

4k bytes
of

On-chip
RAM

Link
lnterface

Link
lnterface

32 bit
Processor

Floating Point Unit

System
Services

Timers

Link
Seruices

Event

Figure 4.1 : Block diagram of the T800 Transputer Architecture

Figure A.2 : The four serial links allow various architectures to be created using the

Transputer. This ability to connect Transputers to each other directly2, without 'glue' logic,

makes them particularly useful in building hardware architectures that best suit a particular

data processing algorithm .

t Withitt the limitation of the four serial links.

Reset

5MHz Clock

Þ
c
o
o
l
o-t'
Þ

+

=.c
J
o

3
Ð

c-
+
J
o
-{

Up (Reset etc.)

Patchlinkl

Slot3 Link2

Slot4 Linkl

Reset

JPl Down (Reset etc.)

Subsystem (Reset etc.)

PipeTail

3

Links

Subsystem from TRAM 0

I
Reset etc. to
TRAMs 1 to 9
and IMS T212

TP2

2222

3 0
Patch area

for links
(24pinDTI'
header)

8

J

Config

O Signals brought to the 37 way D Connector

Connections made for system

0

2

J

o)
t\)

rMs c0l2
Link

IBM PC BUS

Slot 0 Slot 1 Slot 2

Slave, Interrupt, DMA and Reset logic

IMS T212

Power-on
Reset

Slot 9

IMS C004 Link Switch

Patchlink0
ConfigDown

Annendix A lnlrndr rntion lo Oecam a lhê Trânsniller 163

4.3 The Occam programming Language

The Occam programming language t35l was developed specifically for the INMOS

Transputer. Occam is a concurrent language, as distinct from C, FORTRAN, PASCAL, and

other common languages which are designed for Von Neumann processing architectures.

An important point to be made here, is that Occam is a static language [50], in that all of

the storage structures rrrust be defined before compiling the code. This fact impacts on this

work, as will be pointed out in a later chapter.

In Occam, the fundamental unit is the process. A process is a module which performs

some specific task of data transformation (eg. calculate the sum of a series of numbers and

output the result). A process P must be able to communicate with it's neighbourhood, and this

is done via channels. A process can have any number of logical channels declared, but let us

consider for now a simple case of one input channel and one output channel. In our example,

p receives the numerical data on it's input channel, performs the sum, and when all input data

has been received, outputs the result on it's output channel'

There are some fundamental constructs in Occam, being PAR and SEQ' The SEQ

statement means perfonn the following processes in sequence. The PAR statement means

perform the following processes in parallel.

For example:

SEQ

process A

process B

PAR

process A

process B

Communication between processes is synchronous and is accomplished by channels

which must be declared. Communication protocols can be established for each channel. The

CHAN statement declares a communication channel for passing data between two processes'

For example, CHAN input lNT, declares a channel which can pass only integers.

A simple exarnple illustrates how channels interact with processes. Here, an integer is

read from the input channel, and is then sent out along the output channel'

SEQ

input.channel.name ? the.number

output.channel.name ! the.number

Particular attention must be payed to the scope of a statement. The SEQ or PAR constructs

define the beginning of a sequence of process statements. The scope is defined by using

indenting. For example,

PAR
SEQ
input.channel ? the.number

output.channel ! the.number

SEQ
variable'.= 42

-- Block A

-- Block B

This code segment defines two process blocks, A and B, which are performed in parallel. Each

block is indented by two spaces from the PAR statement'

'With Occam it is possible to define the type associated with a channel. This is called the

channel protocol. The protocol statement appears in the channel declaration, and defines the

type of data which is permitted to flow in this channel. More than one data type can be

associated with a channel, as long as the types afe listed in the protocol statement' For

example, consider a process with two input channels, channell and channel2'

CHAN OF INT channell;
CHAN OF BYTE channel2;
PAR

INT x,y:
BYTE Z;

SEQ
--- do some processing
channell ! x; -- outPut the results

channel2 ! y;
channelZ ! z;

This section of code can be simplified, and made more readable, by using the PROTOCOL

statement to combine all communications into one channel

PROTOCOL special IS INT; INT;BYTE;
CHAN OF special channel;
PAR

INT x,y:
BYTE Z;

SEQ
--- do some processing
channel ! x1, z; -- outPut the results

Another special communication feature of Occam is the Tagged Protocol. This protocol

allows a channel to carry any one of a list of data types which have been declared by the

protocol statement. Protocols are used extensively in this study. An example of a protocol

statement is the following;

PROTOCOL mix
CASE

data; INT; INT; BYTE; REAL32
control; [2]BYTE
stop.signal

Channel can be declared to carry mixed protocols

CHAN OF mix forward, backward;

[4]CHAN OF distributor;

Each message is tagged by a meaningful name. There is no value associated with a tag. Tagged

protocols are used in this systern as a means of identifying the various messages which flow

from one process to another.

Repetition and loops are supported in Occam using the SEQ and WHILE constructs. These

have the following form

SEQi=0FORn
some.process

SEQ
i:=0
SUm i= 0
WHILE i < n

Sum := SUm + r

1

The ALT construct provides a method to select an input from a number of inputs. The

input that is the first to have data ready, is the one which is read by the process. A multiplexer

is an example of the use of the ALT construct.

ALT i = (0 FOR number.of.inputs)
multiplexer.input.channels[i] ? x
multiplexer.output.channel ! x

Shared variables, or global variables, can only be read in Occam' This avoids possible

indeterminate results if two or more parallel processes tried to write to the same variable at the

same time.

A major advantage of Occam is it's ability to be used to implernent algorithms that have

been designed using structure software techniques. In particular, processing systems that are

specified using data flow diagrams (DFDs) can readily be coded in Occam. The data flow is

represented by channels connecting processes

4.4 Summary

This appendix has introduced the Transputer and its programming language, Occam' The

architecture of the Transputer provides many features that make it attractive for multi-

pfocessor networks, and for implementing parallel algorithms using Occam'

Occam as a programming language does not provide the flexibility of other high level

languages such as C, but as it has been designed specifically to run on the Transputer

architecture, it is efficient. Occam also provides a means of implementing processing

algorithms, which have been specified using data flow techniques, in a straight forward

manner. This is an advantage when writing software'

F

Append ix B Listing of the Main Occam Software Routines for the lnference Engine 167

Appendix B

Listing of the Main OCCAM Software Routines

for the Inference Engine.

Appendix B Listing of the Main Occam Software Routines for the lnference Engine 168

Protocols for Channel Communications

--NOTE This list of protocols is divided into DESINATION headings'

--The protocols are listed according to where the message is going'

PROTOCOL MESSAGE
CASE
--*** messages for all modules ***
t.stop
t.execute
t.report.type; INT
--x*{< messages for supervisor *{<t'

t.system.mode; INT --open loop or control loop mode

t.Super.status
t.supervisor.response; BYTE
t.dof.information; INT::I]BYTE --length, list of dofs originating from FIE rnodule'

t.evaluate.rulebase --tell the SUPER to evaluate rulebase

--*** messages for data base ***
t.send.crisp.data; INT --request crisp data for this output

t.send.fmf.data INT --request fmf data for this output

t.DBM.reply
t.input.name; INT::[]BYTE
--t.output.data; INT::[]BYTE
t.output.data; INT::[]INT; INT::[]INT
t.file.input.vector; INT::[]INT --data vector from a file
t.DBM.ack.stop
t.get.input,vector --get input vector from plant

--t.input.vector; INT; INT::[]INT --time stamp, size, vector data

t.input.vector; INT::[]INT --size, vector data

t.request.input.vector; INT --send request to read an input

t.the.inputvalue; INT::[]INT --size, Plant input vector

t.PC.input.vector; INT::[]INT --usersuppliedinputvector
t.send.dof.data; INT --rule number

t.send.rmf.data; INT --send rmfs to GUI
--*** messages for knowledge base x**
t.KBM.status
t.knowledgebase.ping; INT --can return the number sent by PC

t.number.of.rules; INT --Tell KB how many rules there are'

t.add.rule;INT;INT;INT::I]INT--rule.no,output'id,size'array
t.delete.rulel INT --rule.number

t.add.member; INT; INT::[]INT --member no' slze' alray

-add a membership function to the membership store

t.set.rule.weight; INT; INT --rule nutnber, weight

--rule number, followed by percentage,0 to IO)Vo

t.rule.on; INT -- rule number, evaluate

t,rule.off; INT -- rule number, don't evaluate

t.rule.list; INT; INT; INT::[]INT --rule no., output no', size, array

t.rule.info; INT::[]BYTE
t.send.rules.in.rulebase --a command to tell the KBM to tell the FIE how many rules there are to process.

t.send.rule; INT --send rule list for this rule number

--a request to send a rule, received from the inference engine

t.request.membership.value; INT; INT -- member.number, x'value

-- lookup a membership value with this x value

t.send.mfs.to.FIE --t.request'membership.functions

t.number.of.outputs; INT
--]ß** messages for inference engine x**

t.inference.ping; INT

t.request.status; INT
t.inference.methods; INT;INT;INT;INT --connective, modifier, fusion, defuz

Appendix B Listing of the Main Occam Software Routines for the lnference Engine 169

t.forced.rule;
t.rule.data;

t.evaluate.rule
t.rnembership.value;

t.membership.functions ;

t.reset.plant
t.shutdown.plant
t.set.pwm;
t.pulse.width.mod;
t.setoutput;
t.input.data;
t.request.state
t.actual.output.id;
t.rules.per.output;
t.rule.output.map;
t.send.i nference.methods

INT; INT::[]INT --rule.number, size, rule.list
INT; INT::[]INT --rule.number, size, rule.list
--Data sent from the knowledge base in response to a request

--sent by the inference engine.

--This data is a single rule from the rule store.

-tell the inference engine to evaluate a rule

INT; INT --membership value from the knowledge store

--member id, member value

INT::[]INT -- Array of MFs.
-- First 100 values are MF zero

-- Second 100 " " MF one etc.

BYTE
BYTE --O=7OO7o on,255 = off
INT; INT -- output number, value

INT::[]INT

INT::[]INT
INT::[]INT
INT::[]INT

--These messages are then acted upon by the destination process'

PROTOCOL RESULTS --Results sent by rule node back to communicator

CASE
-- tag followed by information
t.get.input.data
t.rmf.data; INT; INT::[]INT --rule number, size, array

t.fmf.data; INT;INT;INT::[]INT --output#,crispvalue,length,array
t.dofs.data; INT::[]INT --dofs

t.weighted.dof.data; INT::[]INT --dofweighted

t.dof.data; INT
t.error; BYTE -- error tag followed by error type

t.send.input.data; INT -- source

t.input.data; INT::[]INT
t.crisp.data; INT::[]INT
t.crisp.value; INT
t.output.destinations; INT::[]INT --sinkids-

Appendix B Listi nq of the Main Occam Software Routines for the lnference Engine 170

VAL linkOout IS 0 :

VALlinkloutIS 1 :

VAL link2out IS 2 :

VAL link3out IS 3 :

VAL linkOin IS 4 :

VAL linklin lS 5 :

VAL link2in IS 6 :

VAL link3in IS 7 :

CHAN OF RESULTS DBM.Super, FIE.DBM, DBM.FIE, Nodel.FIE, Node2.FIE:

CHAN OF MESSAGE Super.KBM, KBM.Super, Super'FIE, FIE'Super, Super'DBM'

FIE.KBM, KBM.FIE, FIE.Nodel, FIE.Node2:

VAL number.of.sensors IS 5:

VAL PC.module IS 100:

VALDBM.moduleIS 101:

VAL KBM.module IS 102:

VAL FlE.module IS 103:

VAL acknowledge.stop IS 200:

VAL DBM.ack.stop IS 205:

VAL default.rule.length IS 80:

VAL default.rmf.size IS 101:

VAL default.fmf.size IS 101:

VAL ID.very IS 0:

VAL lD.slightly IS 1:

CHAN OF MESSAGE from.C012: -- internal'logical'channels

CHAN OF ANY to.CO12: -- internal'logical' channels

CHAN OF BYTE DBM.Plant, Plant.DBM:

#USE userio
#USE snglmath
--NOTE thir tirt of prorocols is divided into DESTINATION headings.

--The protocols are listed according to where the message is going'

PROC FuzienProc(cHAN OF MESSAGE from.c012, CHAN OF Al'[Y to.C012'

CHAN OFBYTE DBM'Plant, Plant.DBM,
CHAN OF N{ESSAGE FIE.Node2'
CHAN OF RESULTS Node2'FIE)

VAL linkOout IS 0 :

VAL linklout IS 1 :

VAL link2out IS 2 :

VAL link3out IS 3 :

VAL linkOin IS 4 :

VAL linklin IS 5 :

VAL link2in IS 6 :

VAL link3in IS 7 :

CHAN OF RESULTS DBM.Super, FIE.DBM, DBM.FIE, Nodel.FIE, Node2.FIE:

CHAN OF MESSAGE Super.KBM, KBM.Super,

Super.FIE, FIE.SuPer,
Super.DBM,
FIE.KBM, KBM.FIE,
FIE.Nodel, FIE.Node2:

VAL number.of.sensors IS 5: --ditto
VAL PC.module IS 100:

VAL DBM.module IS 101:

VAL KBM.module IS 102:

VAL FlE.module IS 103:

VAL acknowledge.stoP IS 200:

VAL DBM.ack.stop IS 205:

Appendix B Listing of the Main Occam Software Routines for the lnference Engine 171

VAL default.rule.length IS 80:

VAL default.rmf.size IS 101:

VAL default.fmf.size IS 101:

VAL lD.very IS 0:

VAL ID.slightly IS 1:

CHAN OF MESSAGE from.C012: -- internal 'logical' channels

CHAN OF ANY to.C0l2: -- internal'logical'channels
CHAN OF BYTE DBM.Plant, Plant.DBM:

PLACE from.C012 AT linkOin :

PLACE to.C012 AT linkOout :

PLACE DBM.Plant AT linklout:
PLACE Plant.DBM AT linklin:

PLACE Node2.FIE AT link2in:
PLACE FIE.Node2 AT link2out:
PROC delay (VAL INT delaY)

TIMER clock:
INT current.time:
SEQ
clock ? current.time
clock ? AFTER current.time PLUS delay

Appendix B Listing of the Main Occam Software Routines for the lnference Engine 172

PROC Supervisor(cHAN OF MESSAGE ftom.C012, CHAN OF ANY to.C012'

CHAN OF MESSAGE Super'DBM, Super'FIE, FIE'Super'

SuPer'KBM, KBM.SuPer'

CHAN OF RESULTS DBM'SuPer)

VALINTTIM.PI.T IS O:

VALINTTIM.P1.6 IS 1:

VALINTTIM.P1.5 IS 2:

VAL INT TIM.PORT3 IS 3:

VALINTTIM.PWM IS 4:

VAL INT PC.GUi IS 5:

VAL INT PC.FILE IS 6:

VAL INT size.of.Plant.vector IS 20:

VAL INT length.of.rule IS 80:

VAL INT size.of.PiPeline IS 1:

VAL INT max.message'length IS 4000:

VAL INT data.size IS 101:

BOOL running:
INT system.mode:
INT dof, pointer, op, clisp'index, indexl, index2, base'index:

INT v,ii,k, stop.char, report.type, status, ping'number, N:

INT connective, modifier, fusion, defuz:

INT m.size, member.number, number'of'outputs:

t101lINT membershiP'data:

INT length, status, name'size, temp1, temp2:

INT rule.number,rule'weight' list.length, dumm, output'id:

[80UNT rule.list:

[20]BYTE input.name:

t2OlINT output.data: --holds crisp results of inferencing

t100lt101IINT rmf.store: -- [rule'number]lindex]
[100][101]INT cmf: -- [rule.number][index]

[101]INT fmf:

[20UNT crisp.outPut:

t1OUNT output.destination:
BYTE dummY, Pwm.value, temP:

INT input.source,output'number,output'value,output'id:

t20lINT PC.inPut.data:

[20UNT file.input.data:

I2OUNT Source.input.vector: -- vector of20 input sensor values

INT number.of.rules, rule.id:

t100lINT weighted.dof.array: -- 07o to 7007o

llOOllNT dof.store:

INT size, sizel, size2, crisP.value:

[101UNT rmf.from.DBM:

t 1 001 BYTE dof.information:
BYTE input.label:

[5]BYTE analog.data:

SEQ
-- There are 4 bi-directional VO channels

-- PC, KnowledgeBase, DataBase, FuzzyEngine

running := TRUE
number.of.rules := 0

list.length := 80

SEQi=0FOR20
Source.inPut.vector[i] := 0

SEQi=0FOR101
rmf.from.DBM[i] := 0

SEQi=0FOR100
SEQj=0FORl0I
rmf.store[i][] := 0

SEQi=0FOR100

Appendix B Listing of the Main Occam Software Routines for the lnference Engine 173

weighted.dof.arraY[i] := 0

SEQi=0FORl0l
fmflil := 0

SEQi=0FOR20
crisp.output[i] := 0

WHILE running
SEQ
from.COl2 ? CASE --get data from end of pipeline

t.stop
SEQ
--Super.Com ! acknowledge.stop --send acknowledge back to PC

Super.FIE !t.stop
Super.DBM !t.stoP
Super.KBM ! t.stoP

t.execute
SKIP

t.system.mode; sYstem.mode
Super.KBM ! t.system.mode; system.mode

t.Super.status
SKIP

t.supervisor.response; dummY

SKIP
t.number.of .rules; number.of.rules

Super.FIE ! t.number.of.rules; number.of.rules

t.evaluate.rulebase -- START processing

Super.FIE ! t.evaluate.rulebase
t.send.dof.data; rule.number -- send the dofs to the GUI

SBQ
Super.DBM ! t.send.dof'data; rule'number

DBM.Super ? CASE
--receive dof
t.dofs.data; size: :dof.store

SKIP
SEQ i = 0 FOR number.of.rules

to.C012 ! dof.storelil
t.send.rmf.data; rule.uumber -- send rmf for this rule

SEQ
Super.DBM ! t.send.rmf.data; rule.number

DBM.Super ? CASE
t.rmf.data; rule.number; length : :rmf.from'DBM

SKIP
--NOW SEND CORRESPONDING RMF
SEQj=0FOR101
to.C012 ! rmf.from.DBM[j]

t. send.fmf.data; outPut.number
SEQ

Super.DBM ! t.send.fmf.data; output.number
DBM.Super ? CASE
t.fmf.data; output.number; crisp. value; len gth : :fmf

SKIP
--Send FMF to the GUI
to.C012 ! crisP.value

SEQi=0FOR10l
to.C012 !fmflil

t.send.crisp.data; output.number
SEQ
Super.DBM ! t.send.crisp.data; output.number
DBM.Super ? CASE

t.crisp.data; size: :crisp.outPut
SK]P

Appendix B Listi ng of the Main Occam Software Routines for the lnference Engine 174

SEQ i = 0 FOR number.of.outPuts

SEQ
to.C012 !i
to.C012 ! crisP.outPut[i]

t.input.name; name.size: :input.name

SKIP
t.fi le.input.vector; length : :file.input.data

SKIP
t.setoutput; output.number; output'value

Super.DBM ! t.setoutput; output.number; output'value

t.get.input.vector -- Read input vector independantly

SEQ
Super.DBM ! t.get.input.vector --REQUEST INPUT VECTOR

nÉM.Super ? CASE --WAIT HERE FOR REPLY

t.input.data; length: :Source.input'vector
SKIP

SEQ i = 0 FOR size.of.Plant.vector --SEND PLANT VECTOR TO GUI

to.C012 ! Source.input'vector[i]
t.PC.input.vector; length: :PC.input.data

Super.DBM ! t.PC.input.vector; length::PC'input'data

t.KBM.status
Super.KBM ! t.KBM.status

t.knowledgebase.ping; ping.number

SKIP
t.inference.methods; connective; modifier; fusion; defuz

Super.KBM ! t.inference'methods; connective; modiher; fusion; defuz

t.add.rule; rule.number; output'id; list.length::rule'list

Super.KBM ! t.add,rule; rule.number; output'id; list'length: :rule'list

t.delete.rule; rule.number
Super,KBM ! t.delete.rule; rule.number

t.rule.on; rule.number
SKIP

t.rule.off; rule.number
SKIP

t.send.mfs.to.FIE
Super.KBM ! t.send.mfs.to.FIE

t.number.of.outputs ; number'of.outputs
SEQ

Super. KBM ! t.number. of'outputs ; number.of 'outputs
Super.FIE ! t.number'of.outputs; number'of'outputs

t.FIE.status; status

Super.FIE ! t.request.status; status --request FIE status

t.set.rule.wei ght; rule.number; rule.weight

SKIP
t.add.member; member.number; m.size::membership'data --id=O' 1'2

Super.FIE ! t.add.member; member.number; m'size: : membership'data

t.pulse.width.mod ; Pwm. value

Super.DBM ! t.pulse.width.mod; pwm.value --set the pwm

',I

IJ

Í

I

Appendix B Listing of the Main Occam Software Routines for the lnference Engine 175

PROC DataManager(CHAN OF MESSAGE Super'DBM,

CHAN OF RESULTS DBM.Super, FIE'DBM, DBM'FIE'
CHAN OF BYTE Plant.DBM, DBM'Plant)

--These constants identify the source of data vectors that flow

--into the Data manager.

--Data may come from a file, the plant, the printer port lptl,
--or the serial port com1.

--Other sources can be added later'

VAL INT data.size IS 101:

VAL INT length.of.dof.store IS 100:

VAL INT maximum.input'store.depth IS 5

VAL INT second IS 5000:

VAL INT file.source IS 0:

VAL INT plant.source IS l:
VAL INT lptl.source IS 2:

VAL INT coml.source IS 3:

VAL INT PC.source IS 4:

VAL INT TIM.PORT.1.7 IS O:

VAL INT TIM.PORT.1.6 IS 1:

VAL INT TIM.PORT.1.5 IS 2:

BOOL manager.runnlng:
INT system.mode:
TIMER dbm.time:
INT i, j, k, dof, number.of.outputs, number'of'rules:

nrrr sink, sink.word, output.number, output.value, vector.length, status

-- store input vectors of length 20, from up to 4 sources

-- eg. file, plant, lPtl, coml
INT input.source, data.word:

[20] INT PC.inPut.vector:

t20l INT history.buffer: -- just store previous vector

-- 20 input channels

[20]lmaximum.input.store.depth] INT input.vector'store:

[20] INT Source.inPut.vector:

t20l INT Source.history.buffer: --just store previous vector

l20l INT output.data: -- value

t10l INT output.destination: -- destination

INT size, data.size, destination'size, stop.char, store'pointer:

INT input.number, input.value, rule.number:

BYTE pwm.value:
BYTE data.byte:

t 1 00UNT weighted.dof.arraY :

UOOUNT dof.store:

[101]INT rmf: -- [output number][index]

t100lt101IINT rmf'store: -- [rule.number]lindex]

[101]INT fmf: -- [output number][index]

t10lt101UNT fmf.store: -- [output number][index]

[1 0 lUNT transmit.buffer:

[5]BYTE analog.data:

[20UNT crisp.data:
SEQ

VAL INT TIM.PORT3 IS 3

VAL INT TTM.PWM IS 4:

VAL INT PC.GUI IS 5:

VAL INT PC.FILE IS 6:

VAL INT HISTORY IS 7:

,.I

!d
'ú

I

manager.running := TRUE
number.of.rules := 0
output.value := 0

!

Appendix B Listing of the Main Occam Software Routines for the lnference Engine 176

.I

il,l

¡

data.byte := O(BYTE)
SEQi=0FOR20

Source.input.vector[i] := 0

-- Initialsie dofs for rules.

SEQi=0FOR100
dof.store[i] := 0

SEQi=0FOR100
SEQj=0FOR101
rmf.store[i][j] := 0

SEQi=0FOR100
weighted.dof.arraY[i] := 0

SEQi=0FOR20
output.data[i] := 0

SEQi=0FOR10
output.destination[i] := 0

SEQi=0FOR101
frnf[i] := 0

SEQi=0FOR10
SEQj=0FOR101
fmf.store[i][] := 0

SEQi=0FOR20
crisp.data[i] := 0

SEQi=0FOR101
transmit.buffer[i] := 0

WHILE manager.running
PRI ALT -- monitor the incoming channels

--The storage structures can be updated by any of
--the following channels as this is a sequential operation'

Super.DBM ? CASE
t.system.mode; sYstem.mode

SKIP
t.number.of.outputs ; number.of.outputs

SKIP
t.get.inPut.vector

-- Command '2'is the Read Analog command for the 81C'752'

SEQ
DBM.Plant I 2(BYTE) -- Send analog value

DBM.Plant ! 0(BYTE) -- Analog channel number {0'I'2'3'4}
Plant.DBM ? data.bYte

DBM.Plant ! 2(BYTE) -- Send analog value

DBM.Plant ! 0(BYTE) -- Analog channel number I0'l'2'3'4\
Plant.DBM ? data.byte

data.bYte = [0..255]
--Read the value, then scale it to [-50..+50]
Source.input.vector[0]:=(((INT data'byte) *tgtr"ttr-tt
--Plant.input.vector[0] := 20(BYTE)-- Read from C012 link

DBM.Plant !2(BYTE) -- Send analog value

DBM.Plant ! I(BYTE) -- Analog channel number {0'1'2'3'41
Plant.DBM ? data.bYte

DBM.Plant !2(BYTE) -- Send analog value

DBM.Plant ! 1(BYTE) -- Analog channel number {0'l'2'3'4)
Plant.DBM ? data.byte

--Read the value, then scale it to [-50..+50]
Source.input.vector[1] :=(((INT data'byte)* I 00)/255)-50

DBM.Plant ! 2(BYTE) -- Send analog value

DBM.Plant I 2(BYTE) -- Analog channel number {0'l'2'3'41
Plant.DBM ? data'bYte

I

DBM.Plant !2(BYTE)
DBM.Plant !2(BYTE)
Plant.DBM ? data.byte

-- Send analog value
-- Analog channel number {0,1,2'3,4\

I

Appendix B Listing of the Main Occam Software Routines for the lnference Engine 177

!,1

j

--Rcad the value, then scale it to [-50-'+50]
Source.input.vector[2]'= (((INT data.byte)*100y255)-50
DBM.Plant ! 2(BYTE) -- Send analog value

DBM.Plant I 3(BYTE) -- Analog channel number {O,l'2'3'4}
Plant.DBM ? data.bYte

DBM.Plant I 2(BYTE) -- Send analog value

DBM.Plant ! 3(BYTE) -- Analog channel number \0,1'2'3'41
Plant.DBM ? data.bYte

--Rcad the value, then scale it to [-50..+50]
Source.input.vector[3] := (((INT data.byte)x100y255)-50

DBM.Plant ! 2(BYTE) -- Send analog value

DBM.PIant ! 4(BYTE) -- Analog channel number {0,1'2'3'4)
Plant.DBM ? data.bYte

DBM.Plant I 2(BYTE) -- Send analog value

DBM.Plant ! 4(BYTE) -- Analog channel number l},l'2'3'41
Plant.DBM ? data.bYte

--Read the value, then scale it to [-50..+50]
Source.input.vector[4] := (((INT data'byte)*100y255)-50

DBM.Super ! t.in 'vector

t.setoutput; output.n to test TIM

--The output.value fale'

SEQ
IF

(output.number = TIM.PORT.1.5) AND (output'value = 0)

SEQ
DBM.Plant ! S(BYTE) -- Send command type 2^3=8

DBM.Plant ! 0(BYTE) -- Send command value

(output.number = TIM.PORT.1.5) AND (output'value = 1)

SEQ
DBM.Plant ! 8(BYTE) -- Send command typeZ 3=8

DBM.Plant ! I(BYTE) -- Send command value

(output.number = TIM.PORT.l'6) AND (output'value = 2)

SEQ
DBM.Plant ! S(BYTE) -- Send command type 2^3=8

DBM.Plant ! 2(BYTE) -- Send command value

(output.number = TIM.PORT.1.6) AND (output'value = 3)

SEQ
DBM.Plant ! 8(BYTE) -- Send command type 2^3=8

DBM.Plant ! 3(BYTE) -- Send command value

(output.number = TIM.PORT.1.7) AND (output'value = 4)

SEQ
DBM.Plant ! 8(BYTE) -- Send conìmand type2 3=8

DBM.Plant !4(BYTE) -- Send command value

(output.number = TIM'PORT.1.7) AND (output'value = 5)

SEQ
DBM.Plant ! 8(BYTE) -- Send command type 2^3=8

DBM.Plant ! S(BYTE) -- Send command value

output.number = TIM.PWM
-- Command'4'is the PWM command for the8lC752'
SEQ
DBM.Plant I 4(BYTE) -- 0 = lO\Vo on, 255 = off
DBM.Plant ! (BYTE output.value) -- O -- IO07o on, 255 = off

TRUE
SKIP

t.stop
SKIP

t.PC.input.vector; vector.length: :PC'input.vector

I
I

I

SEQ
--Increment store Pointer
store.pointer := store.Pointer + 1

k

of the Main Occam Software Routines for the lnference Engine 178Appendix B Listing

t
I

;

IF
store.pointer > maximum.input.store.depth

store.Pointer := 0

TRUE
SKIP

SEQ i =0 FOR vector.length
input.vector.storeIi] [store.pointer] := PC'input'vectorIi]

t.reset.plant
SKIP

t.shutdown.plant
SKIP

t.pulse.width.mod; pwm.value -- 0 = 1007o on, 255 = off
-- Command '4' is the PWM command for the 81C152'

SEQ
DBM.Plant ! 4(BYTE) - 0 = lO)Vo on, 255 = off
DBM.Plant ! pwrn.value -- O = l00%o on, 255 = off

t.send.dof.data; rule.number
SEQ
DBM.Super ! t.dofs.data; I 00(INT): : dof. store

t.send.rmf.data; rule.number
SEQ
SEQi=0FOR101
transmit.buffer[i] := rmf.store[rule.number][i]

DBM. Super ! t.rmf.data; rule'number; 1 0 1 (INT) : :transmit'buffer

t. send.fmf.data; outPut.number

SEQ
SEQi=0FOR101
transmit.bufferIi] := fmf. storeIoutput.number] [i]

output.value := output.data[output-number]
DBM.Super I t.fmf.ãata; output.number;output.value;101(INT)::rransmit.buffer

t. send.crisp.data; output.number
DBM.Super ! t.crisp'data; 20(INT) : :output'data

FIE.DBM ? CASE
t.get.input.data

SEQ
-- Command'2' is the Read Analog command for'the 87C752'

DBM.Plant ! 2(BYTE) -- Send analog value

DBM.Plant ! O(BYTE) -- Analog channel number {O'I'2'3'41
Plant.DBM ? data.bYte

DBM.Plant ! 2(BYTE) -- Send analog value

DBM.Plant ! 0(BYTE) -- Analog channel number {0'l'2'3'41
Plant.DBM ? data.byte -- data.byte =Í0'.2551
--Read the value, then scale it to [-50..+50]
Source.input.vector[0]:=(((INT data.byte) *100)/255)-50

DBM.Plant ! 2(BYTE) -- Send analog value

DBM.Plant ! I(BYTE) -- Analog channel number {0,1,2'3'4}
Plant.DBM ? data.bYte

DBM.Plant !2(BYTE) -- Send analog value

DBM.Plant I I(BYTE) -- Analog channel number {0'l'2'3'41
Plant.DBM ? data.bYte

--Read the value, then scale it to [-50"+50]
Source.input.vector[1] :=(((INT data'byte)*' t6Or"ttr-tO
DBM.Plant I 2(BYTE) -- Send analog value

DBM.Plant ! 2(BYTE) -- Analog channel number IO,l,2'3'41
Plant.DBM ? data.bYte

DBM.Plant ! 2(BYTE) -- Send analog value

DBM.Plant I 2(BYTE) -- Analog channel number {0,1,2,3,4}
Plant.DtsM'l data.byte
--Read the value, then scale it to [-50..+50]
Source.input.vector[2]'= (((INT data.byte)*100y255)-50

I

Appendix B Listing of the Main Occam Software Routines for the lnference Engine 179

DBM.Plant ! 2(BYTE) -- Send analog value

DBM.Plant ! 3(BYTE) -- Analog channel number {0,1,2,3'4)
Plant.DBM ? data.byte
DBM.Plant ! 2(BYTE) -- Send analog value

DBM.Plant ! 3(BYTE) -- Analog channel number {0,1,2'3,4}
Plant.DBM ? data.byte
--Read the value, then scale it to [-50..+50]
Source.input.vector[3] := (((INT data.byte)* 100y255)-50

DBM.Plant ! 2(BYTE) -- Send analog value

DBM.Plant ! 4(BYTE) -- Analog char.rnel number {0'1'2'3'4)
Plant.DBM ? data.byte
DBM.Plant ! 2(BYTE) -- Send analog value

DBM.Plant ! 4(BYTE) -- Analog channel number l},l,2'3'41
Plant.DBM ? data.bYte

--Read the value, then scale it to [-50'.+50]
Source.input.r'ector[4] := (((INT data.byte)* 100y255)-50

DBM.FIE ! t.input.data; 20(INT)::Source'input.vector
t.send.input.data; inPut.source

--send value in the data buffer
IF

input.source = plant.source

DBM.FIE ! t.input.data; vector.length: :Source.input'vector

input.source = PC.source
DBM.FIE ! t.input.data; vector.length::PC.input.vector

TRUE
SKIP

IF
input.source - historY
--send the data stored in the history buffer
DBM.FIE ! t.history.vector; vector.length::history'buffer

t.dofs.data; size: :dof.store
SKIP

t.\Ä,eighted.dof.d ata; size: : weighted.dof'array
SKIP

t.rmf.data; rule.number; size : :rmf
SEQ i= 0 FOR size
rmf. store[rule.number] [i] :=rmf[i]

t.fmf.data; sink.word; data.word; size::fmf
SEQ
output.data[sink.word] := data.word

SEQ i= 0 FOR size

fmf.store[sink.word] [i] : =fmfl il
history.bufferIsink.word]:= output.dataIsink.word] --store previous vector

--The output.value defines the bit address and it's state.

I ver,ua I ronr t.r I PoRr 1-6 | eonr r's
I

x X 00

1 X X 1

2 X 0 x

t X l- X

4 0 X X

5 I x

SEQ
sink := output.destinationIsink'word]
output.value := data.word
IF

(sink = TIM.PORT.1.5) AND (output.value = 0)

SEQ

Appendix B Listing of the Main Occam Software Routines for the lnference Engine 180

DBM.PIant I 8(BYTE) -- Send cotnmaud type2 3=8

DBM.Plant I O(BYTE) -- Send cotnmand value

SKIP
(sink - TIM.PORT.l.5) AND (output.value = 1)

SEQ
DBM.Plant ! 8(BYTE) -- Send cornmand type2^3=8

DBM.Plant ! I(BYTE) -- Send command value

SKIP
(sink = TIM.PORT.l.6) AND (output.value = 2)

SEQ
DBM.Plant I 8(BYTE) -- Send command type2 3=8

DBM.Plant I 2(BYTE) -- Send command value

(sink = TIM.PORT.1.6) AND (output.value = 3)

SEQ
DBM.Plant ! 8(BYTE) -- Send command type 2^3=8

DBM.Plant ! 3(BYTE) -- Send command value

(sink = TIM.PORT.1.7) AND (output.value = 4)

SEQ
DBM.Plant ! S(BYTE) -- Send command type 2^3=8

DBM.Plant ! 4(BYTE) -- Send command value

(sink = TIM.PORT.1.7) AND (output.value = 5)

SEQ
DBM.Plant I 8(BYTE) -- Send command type2 3=8

DBM.Plant ! 5(BYTE) -- Send command value

sink= TIM.PWM
-- Command '4' is the PWM command for tbe 81C'752'

SEQ
DBM.Plant ! 4(BYTE) -- O = 1007o on, 255 = off
DBM.Plant ! BYTE (output.value) -- 0 = l\}%'t on,255 = off

TRUE
-- Command'4'is the PWM command for the81C752'

SEQ
DBM.Plant I 4(BYTE) - O = l00o/o on, 255 = off
DBM.Plant ! 45(BYTE) -- O = IO\Vo on, 255 = off

SEQ
DBM.Plant ! 8(BYTE) -- Send command typeZ 3=8

DBM.Plant ! I(BYTE) - Send command value

SEQ
DBM.Plant ! 8(BYTE) -- Send command typeZ 3=8

DBM.Plant ! O(BYTE) -- Send command value

t.output.destinations; size: :output.destination
SKIP

t.crisp.data; size: :outPut.data

SEQ
SEQi=0FORsize
history.buffer[i]:= output.datali] -- just store previous vector

__rheouþur.":],="=g="j,1"=:,5j,=,=:11':::11

I vAr,uE I ront t. r I

it's state.

PORr 1. 6 I PoRr 1. s
I

00 X X

1 x x 1

2 x 0 x

3 X 1 X

4 0 X x

1 X

SEQ i = 0 FOR number.of.outPuts

SEQ
output.number := output.destination[i]

of the Main Occam Software Routines for the lnference Engine 181Appendix B Listing

output.value := output.data[output.number]
IF

(output.number = TIM.PORT.1.5) AND (output'value = 0)

SEQ
DBM.Plant ! 8(BYTE) -- Send command type 2^3=8

DBM.Plant ! O(BYTE) -- Send command value

(output.number = TIM'PORT.1.5) AND (output'value = 1)

SEQ
DBM.Plant ! 8(BYTE) -- Send command rype2 3=8

DBM.Plant ! I(BYTE) -- Send command value

(output.number = TIM.PORT'1.6) AND (output'value = 2)

SEQ
DBM.Plant ! S(BYTE) -- Send command type2 3=8

DBM.Plant I 2(BYTE) -- Send command value

(output.number = TIM'PORT'1'6) AND (output'value = 3)

SEQ
DBM.Plant I 8(BYTE) -- Send command type 2^3=8

DBM.Plant I 3(BYTE) -- Send command value

(output.number = TIM.PORT'1'7) AND (output'value = 4)

SEQ
DBM.Plant ! 8(BYTE) -- Send command type2 3=8

DBM.Plant ! 4(BYTE) -- Send command value

(output.number = TIM'PORT.1.7) AND (output'value = 5)

SEQ
DBM.Plant ! 8(BYTE) -- Send command Íype2 3=8

DBM.Plant !5(BYTE) -- Send command value

output.number = TIM'PWM
-- Conrmand '4' is the PWM command for the 87C'752'

SEQ
DBM.Plant ! 4(BYTE) -- 0 = I00Vo on, 255 = off
DBM.PIant ! BYTE output'value -- O = IOOVo on, 255 = off

TRUB
-- Command'4'is the PWM command for the87C752'

SEQ
DBM.Plant ! 4(BYTE) -- O = 1007o on, 255 = off
DBM.Plant I 45(BYTE) -- O = I00Vo on, 255 = off

Appendix B Listing of the Main Occam Software Routines for the lnference Engine 182

PROC KnowledgeManager(CHAN OF MESSAGE Super.KBM, KBM'Super,
FIE.KBM, KBM.FIE)

--The knowledge manager stores all the information required to

--describe the system that is being controlled, or the data that

--is being processed.

--The FIE is loaded with a complete set of membership functions

--during the configuration phase

--In this way, the movement of data is kept to a tninimum, and

--the communication protocol s are si mplified.

--The FIE is sent one rule list at a time.

VAL INT idle.state IS 0:

VAL INT run.state IS 1:

VAL INT ready.state IS 4:

VAL INT data.size IS 101:

VAL INT default.rule.length IS 80:

VAL INT TIM.Pl.7 IS O:

VALINTTIM.PI.6 IS 1:

VALINTTIM.P1.5 IS 2:

VALINTTIM.PORT3 IS 3:

VAL INT TIM.PWM IS 4:

VAL INT PC.GUI IS 5:

VAL INT PC.FILE IS 6:

INT system.mode, member.number, x.value:

INT connective, modifier, fusion, defuz:

BOOL running:
INT ij, k, temp, r.size, m.size, m.value:

INT rule.number, number.of.rules, rule.weight:

INT rule.to.delete:
INT output.id:

[80]INT rule.list:
INT member.id: --identifies the function

I100UNT rule.output.map: --Associates rule a number to an output number

[10]INT rules.per.output:

[1O]INT output.flag:

[10]INT actual.output.id:
INT number.of.outputs:
INT rules.in.rulebase: --The number of rules actually stored in the transputer's memory

t4lBYTE inference.method: --anay to store the selected inference methods

t100lI8OUNT rulebase.store: --aray to store 100 rules

tlOOIINT rule.output.map: --association between rule and output

lS0lINT transmit.buffer: --anay used for transmitting a rule

t100lI8OUNT rulebase.image: --aûay to store image of rulebase

t25lt101IINT membership.store: --array to store 25 functions

llOlINT io.map: --array to store io mapping

BYTE pwm.value:
SEQ
running := TRUE
system.mode:= idle.state
connective:=0
modif,ter:=0
fusion:=0
defuz:=0
--initialisation
number.of.rules := 0
number.of.outputs := 0

SEQi=0FOR100

Appe ndix B Listing of the Main Occam Software Routines for the lnference Engine 183

rule.output.map[i] := 0

SEQi=0FORl0
SEQ

rules.per.output[i] := 0

output.flag[i] := 0
actual.output.id[i] := 0

WHILE running
PRI ALT -- monitor incoming channels

Super.KBM ? CASE
t.system.mode; system.mode

SKIP
t.inference.methods; connective; modifier; fusion; defu z

SKIP --FIE will interogate KBM to get methods

t.number. of.rules ; number.of.rules
SKIP

t.number.of.outputs ; number.of.outputs
SKIP

t.add.rule; rule.number; temp; r.size::rule'list
SEQ
--number.of.rules := number.of.rules + 1

rule.output.map[rule.number] := rule.list[1] --output id is second item

SEQi=0FORr.size
rulebase.store[rule.number][i] := rule.listIi]

output.id := temP
rule.output.map[rule.number] := output.id --output id is second item

--This code determines what the output sinks at'e.

IF
output.id = TIM.P1.7

SEQ
rules.per.output[0] := rules.per'outputlO] + 1

output.flag[0] := 1 -if this output is used, set flag
output.id = TIM.P1.6

SEQ
rules.per.output[1] := rules.per.outputl 1] + 1

output.flag[1] := 1 -if this output is used, set flag
output.id = TIM.PI.5

SEQ
rules.per.output[2] := rules.per.outputl2] + 1

output.flag[2] := 1 -if this output is used, set flag
output.id = TIM.PORT3

SEQ
rules.per.output[3] := rules.per.output[3] + 1

output.flag[3] := 1 --if this output is used, set flag
output.id = TIM.PTWM

SEQ
rules.per.output[4] := rules.per.outputl4] + 1

output.flag[4] := 1 --if this output is used, set flag
output.id = PC.GUI

SEQ
rules.per.output[5] := rules'per.output[5] + i
output.flag[5] := 1 --if this output is used, set flag

output.id = PC.FILE
SEQ
rules.per.output[6] := rules.per.output[6] + 1

output.flag[6] := I --if this output is used, set flag
output.id = 7

SEQ
rules.per.output[7] := rules.per.outputl /l + I
output.flag[7] := 1 -if this output is used, set flag

output.id = 8

Appendix B Listinq of the Main Occam Software Routines for the lnference Engine 184

SEQ
rules.per.output[8] := rules.per.output[8] + 1

output.flag[8] := I -if this output is used, set flag
output.id = 9

SEQ
rules.per.output[9] := rules.per'output[9]'+ 1

output.flag[9] := I --if this output is used, set flag
TRUE

SKIP
--NOV/ CHECK V/HICH OUTPUTS ARE USED BY TESTING WHICH FLAGS ARE SET

j:=o
SEQi=0FOR10
IF

outPut.flag[i] = 1

SEQ
actual.outPut.id[j] := i
j := j + 1 --j will equal the number of outputs

TRUB
SKIP

KBM.FIE ! t.rules.per.output; 1 0(INT) : :rules.per.outpu t

KBM.FIE ! t. actual.output.id; I O(INT) : : actual.output'id

KBM.FIE ! t.rule.output.map; 100(INT): :rule'output.map

t.delete.rule; rule.to.delete
SEQ
--update number of rules

number.of.rules := number'of.rules - 1

INT16 K:

SEQ i = 0 FOR number.of.rules
IF
i <> rule.to.delete

SEQ k = 0 FOR 50 --length of a rule list
rulebase.image[i][k] := rulebase'storeli][k]

TRUE -- don't coPY this rule
SKIP

SEQ i = 0 FOR number.of.rules
SEQ k = 0 FOR 50 -length of a rule list

rulebase.store[i] [k] := rulebase.image[i] [k]
t.rule.on; rule.number
SKIP --turn this rule on if it is off (set weight to lo07o)

t.rule.off; rule.number
SKIP --turn this rule off if it is on (set weight to)Eo)

t.send.mfs.to.FIE
SEQ --send a copy of the 25 membership functions to FIE

k:=0
-- Fill read transmit buffer
SEQi=0FOR25
SEQj=0FOR101

SEQ
transmit.buffer[k] :=membership'store[i] []
k:=k+1

--buffer is filled, so now transmit to FIE
KBM.FIE ! t.membership'functions; k: :transmit.buffer

FIE.KBM ? CASE
t. send.rules.in.rulebase
KBM.FIE ! t.number.of.rules; number'of'rules
-{ell FIE how many rules there are

t.send.inference.methods
KBM.FIE ! t.intþrence.methods; connectrve; modrller; tuslon; oeruz

t.send.rule; rule.number
--forces KBM to send a rule to FIE

Appendix B Listing of the Main Occam Software Routines for the lnference Engine 185

SEQ
SEQi=0FOR80(INT)
transmit.buffer[i] := rulebase. store[rule.number] [i]

KBM.FIE ! t.rule.data; rule.number; default'rule.length::transmit.buffer

t.request.membership.value; member.number; x.value

SEQ
-Jookup the value requested

m.value := membership. store[member.number] [x'value]
--now send the value
KBM,FIE ! t.membership.value; member.number; m.value

t.request.state
KBM.FIE ! t.system.mode; system.mode

Appendix B Listing of the Main Occam Software Routines for the lnference Engine 186

PROC InfelenceEngine(CHAN OF MESSAGE Super.FIE, FIE.Super'

KBM.FIE, FIE.KBM, FIE.Nodel, FIE'Node2,

CHAN OF RESULTS Nodel.FIE, Node2.FIE'

CHAN OFRESULTS FIE.DBM, DBM.FIE)
VAL Process.Stopped IS 0:

VAL Process.Idle IS 1:

VAL Process.Running IS 2:

VAL size.of.rmf IS 101:

VAL AND.logic IS 0:

VAL OR.logic IS l:
VAL NOT.logic IS 2:

VAL Zadeh.name IS 0:

VAL Giles.name IS 1:

VAL Vy'eber.name IS 2:

VAL Hamacher.name IS 3:

VAL Yager.name IS 4:

VAL Dubois.name IS 5:

VAL INT default.rmf.size IS 101:

VAL INT default.fmf.size IS 101:

VAL NumberOfTransputers IS 2:

VAL INT data.size IS 101:

VAL INT idle.state IS 0:

VAL INT run.state IS 1:

VAL INT ready.state IS 4:

VAL INT t.IF IS O:

VALINTT.INPUT IS 1:

VAL INT t.IS IS 2:

VAL INT t.MEMBER IS 3:

VAL INT t.HEDGE IS 4:

VAL INT t.AND IS 5:

VAL INT t.OR IS 6:

VAL INT t.NOT IS 7:

VAL INTt.TT{EN IS 8:

VAL INT t.OUTPUT IS 9:

VAL INT T.OUTPUT.MEMBER IS 10:

VAL INT t.INPUT.MEMBER IS 11:

[100]INT dof.store:
INT system.mode, i, index, Íemp},length, data.value: --Idle, Running, Stop

INT connective, modifier, fusion, defuz:

BOOL running, DONE.FLAG:
INT connective, modifier.type, fusion, defuzzify'.

INT vector.time.stamp, vector.length:

[20UNT input.vector.data:
INT number.of.rules, rule.id, rule.count, FIE.rule.count, output'id:

[80UNT Rule.Array:

[2OIBYTE Input.Vectori -- used by procedure "CalcRulelist"

t1OOIINT rule.weights: -- stores the rule weights set by the GUI

t100lINT weighted.dofs: -- stores weighted degrees of fulfilment

INT rule.weight: -- stores weight for this rule

INT rule.number,r.size:
INT member.value,member.id:
INT m.size: -- m.size = number.of.MFs x 100

t2525lINTreceive.buffer: --acceptsmembershipfunctions

l25lt101uNT membership.store: -- local copy of the membership functions

INT size,number.of.outputs:

I101UNT transmit: - transmit buffer

[20]rNT cnsp.output:

[101UNT defuz.array:

[101]INT fuze.auay:

Appendix B Listi ng of the Main Occam Software Routines for the lnference Engine 187

INT templ, indexl, index2, pointcr, N, base.index, k, j:

I IOUNT rules.per.output:

[1O]INT actual.output.id:

llOOIINT rule.output.map: --Associates rule a number to an output number

INT op:

tlOOIINT rule.weight.store: -- array to store rule weights

[101]INT rmf; -- storage array for rmf for this process

t100ll101UNT rmf.store: -- [rule.number][index]
tl00lt101UNTcmf: --[rule.number]lindcx]

[10][01]INT fmf: -- [output.number][index]
t101lINT r.member: -- receive buffer for membership function

-- It then gets stored in the membership store anay'

[NumberOfTransputers]INT RuleNodeState:

INT count, m, temp:
INT xvalue,dof, index, u, output.number:

INT operator.type, operator.value, membervaltte:

INT stack.pointer, u.of.x, u.x.take.1, u.x.take-2:

INT x.take.1, x.fake.Z'.

BOOL more:

t2OlINT result.stack: --Place to keep interim results

INT output.member.id:
INT rule.sent:

[2]INT RuleNodeState:

SEQ
running := TRUE
system,mode := run.state
number.of.rules := 0
RuleNodestate[O] := 0 --T800 number 0

RuleNodestatefl] := 0 --T800 number 1

SEQi=0FOR100
rule.output.maP[i] := 0

SEQi=0FOR10
SEQ

rules.per.output[i] := 0
actual.output.id[i] := 0

SEQi=0FOR100
rule.weights[i] := 1

SEQi=0FORl00
dof.store[i] := 0

SEQi=0FOR100
weighted.dofs[i] := I

SEQj=0FOR25(INT)
SEQi=0FOR101
membership.store[j][i]:=0 -- local copy of the membership functions

connective:=0
modifier.type:=0
fusion:=0
defuzzifY:=0
SEQi=0FOR20
Input.Vector[i] := O(BYTE)

SEQi=0FOR101
rmf[i] := I

SEQi=0FOR10
SEQj=0FOR10l
fmf[i][] := 1

SEQi=0FOR20
crisp.output[i] := 0

SEQi=0FOR10l
transmit[i] := 0

Appendix B Listing of the Main Occam Software Routines for the lnference Engine 188

SEQ i= 0 FOl{ 101

SEQ
fuze.array[i] := 0

defuz.array[i] := 0
FIE.KBM ! t.send.inference.methods
KBM.FIE ? CASE

t.inference.methods ; connective; modifier.type ; fusion ; defuz

SEQ
FIE.Nod e 1 ! t. i nference.method s ; con nective ; m odifier'type; fusion; defuz

FIE.Node2 ! t.inference.rnethods; connective, modifier.type; fusion; defuz

WHILE running
ALT

Super.FIE ? CASE -- get a message from the SUPERVISOR

t.stop
SEQ
FIE.Nodel !t.stop
FIE.Node2 !t.stop
SEQ
running := FALSE

t.inference.methods; connective; modifier.type; fusion; defuz

SEQ
FIE.Nodel ! t.inference.methods ; connective; modiher'type; fu sion; defuz

FIE.Node2 ! t.inference.methods; connective; modifier.type; fusion; defuz

t.set.rule.weight; rule.number; rule.weight

rule.weight.store[rule.number] := rule.weight --store weight

t.add.member; member.id; m.size: :r.member

SEQ
FIE.Node 1 ! t. add.member; member.id; m. size: :r.member

FIE.Node2 ! t. add.member; member.id ; m. size: :r.member

SEQi=0FORm.size
membership.store[member'id][i] := r.memberli]

t.number.of.outputs ; number.of'outputs
SEQ
FIE.Node 1 ! t. number. of.outputs ; number. of.outputs

FIE.Node2 ! t.number.of.outputs; number.of.outputs

t.rule.on; rule.number --master instruction to FIE

rule.weight.store[rule.number] := 100 (INÐ --store weight

t.rule.off; rule.nunber --master instruction to FIE

rule.weight.store[rule.number] := 0 (INT) --store weight

t.input.vector; size::input.vector.data --receive the input vector

SEQ
FIE.Nodel ! t.input.vector; size::input.vector.data
FIE.Node2 ! t.input.vector; size::input.vector-data

t.number.of.rules ; number'of.rules
SEQ

FIE.Node 1 ! t.number.of.rules ; number. of.rules

FIE.Node2 ! t.number.of.rules ; number.of.rules

t.system.mode; sYstem'mode

SEQ
FIE.Nodel ! t.system.mode; system.mode

FIE.Node2 ! t.system.mode; system.mode

Appendix B Listing of the Main Occam Software Routines for the lnference Engine 189

t.evaluate.rulebase
SEQ

system.mode := run.state

WHILE system.mode = run.state

SEQ
--Get latest input vector from the DBM
FIE.DBM ! t.get.input.data
DBM.FIE ? CASE

--the Plant input vector contains data from source

t.input.data; len gth : :input.vector.data
SKIP

FIE.Nodel ! t.input.vector; length::input'vector.data
FIE.Node2 ! t.input.vector; length::input.vector.data
rule.count := 0
ResultsToCome := number.of.rules
TasksToDo := number.of.rules
RuleNodeStateO := 0

RuleNodeStatel := 0
rnore.work:= TRUE

WHILE more.work
SEQ

IF
(RuleNodeState0 = 0) AND (TasksToDo > 0)

SEQ
--Get a rule from the KBM
FIE.KBM ! t.send.rule; rule'count
KBM.FIE ? CASE
t.rule.data; rule.id; r.size: :Rule'Array

SKIP
FIE.Node 1 ! t.rule'd ata; rule'id; r'size: :Rule.Array

RuleNodeStateO :=1

TasksToDo := TasksToDo - 1

rule.count := rule.count + 1

(RuleNodeState0 = 0) AND (TasksToDo > 0)

SEQ
... Get next rule from KBM
FIE.Node 1 ! t.rule.data; rule.id; r.size: :Rule.Array

RuleNodeState0 :=1

TasksToDo := TasksToDo - 1

rule.count := rule.count + 1

TRUE
SKIP

ALT
Nodel.FIE ? CASE

SEQ
... Collect Results
... Send results to DBM
RuleNodeStateO := 0

ResultsToCome := ResultsToCorne-1

IF
ResultsToCome = 0

more.work:= FALSE
TRUE

SKIP
Node2.FIE ? CASE

SEQ
... Collect Results

Appendix B Listin g of the Main Occam Software Routines for the lnference Engine 190

... Send results to DBM
RuleNodeStatel := 0

ResultsToCome := ResultsToCorne- 1

IF
ResultsToCome = 0

¡nore.work := FALSE
TRUE

SKIP

--Calculate the Final Membership Function
--Fuse all rules that belong to the same output variable

--RMFs are in rmf.store[][] anaY

--SEQ i = 0 FOR number.of.outPuts

--Each rule belongs to a particular output variable.

--we have a rule map array that identifies which output a parlicular

--rule belongs to. This is supplied by the pre-processing software'

--initialise cmfs
--SELECT RMFS FOR EACH OUTPUT, AND PUT INTO A MATRIX THAT IS THEN

FUZED.
--should be able to delete this step by using intelligent pointers

--SORT ACCORDING TO OUTPUT
indexl := 0
--MUST COMPARE AGAINST THE ACTUAL OUTPUT SINK, NOT JUST THE

--LOOP COTINTER !!!!!!
SEQ i = 0 FOR number.of.outPuts

SEQ
--NowGETTHENEXTOUTPUTNUMBERINTHELISToFOUTPUTS
--EG 0,7,2,4,6 NOTE...NOT CONSECUTIVE ORDER !!!!
temp2 := actual. output.id[i]
SEQi = 0 FOR number'of.rules

SEQ
--GETTHE OUTPUTID. FORTHIS RULE
templ := rule.outPut.maP[]
IF -- this rule belongs to this output, then.'.

templ = temP2
--cmf is an array of rmfs, placed in output order

SEQ
SEQ k = 0 FOR 101 --PLACE THIS RMF INTO THE ARRAY
cmflindexl] [k] := rmf.store[] [k]

indexl := indexl + 1

templ <> temp} -- if it does not belong, then do nothing

SKIP
TRUE -- placed here to cover all possibilities

SKIP
OP:=0
indexl := 0
index2 := 0
N:= 0
base.index := 0

k:= 0
pointer := 0
seq i = 0 FoR number.of.ourpurs -- FoR EACH OUTPUT, CALCULATE FMFII

SEQ
pointer := actual.output.idli] --added pointer will equal the output sink number

--Pointer must be going larger than 9 for this to fail.
--There can be up to 100 rules for a single output, and there can be

--upto l0 outputs. I'herelore, clrmensron or rules.per.ourput rs [u'.vl
--N can have a value between 0 and 99.

N := rules.per.output[pointer] --was i GET NUMBER OF RULES FOR THIS OUTPUT

Appendix B Listing of the Main Occam Software Routines for the lnference Engine 191

--GET THE DESTINATION FOR THIS OUTPUT
SEQj=0FOR101

SEQ
--N = number of rules to this output
SEQ k = 0 FOR N -- LOAD THE FUZE ARRAY

SEQ
fuze.array[indexl] := cmflindex2l Ul
indexl := indexl + 1

index2 := index2 + 1

indexl := 0 -- reset fuze array pointer

index2 := base.index
fmflilljl := Fuze(fuze.array, N, fusion) --save fmf results

--LOAD ARRAY WITH THE FINAL MEMBERSHIP FUNCTON FOR THIS OUTPUT

SEQn=0FOR101
defuz.array[n] := fmffi] [n]

--CALCULATE THE CRISP OUTPUT and STORE in array

--LOAD CRISP VALUE INTO THE CORRECT POSITION IN THE CRISP ARRAY

data.value ;= (Defuzzify (defuz.array, defuz)) - 50

crisp.output[pointer] := data.value

base.index := base.index + N -- calculate the new base index

FIE.DBM ! t.output.destinations; 1O(INT)::actual'output.id

SEQ i = 0 FOR number.of.outPuts

SEQ
--Load transmit buffer
SEQj=0FOR101
transmitft] := fmf[i]Ul

--Send to DBM
FIE.DBM ! t.fmf.data; i; data.value; 101(INT)::transmit

--NOW SEND DATA TO DBM TO UPDATE ACTUAL OUTPUTS

--The crisp.output array coniains the defuzzified data. The order within

--this array relates to the order of the output listbox in the GUI'

--Therefore, sink identifiers are not required at this point'

FIE.KBM ! t.send.inference'methods
KBM.FIE ? CASE
t.inference.methods; connective; rnodifier.type; fusion; defuz

SKIP
F'IE.KBM ! t.request.state
KBM.FIE ? CASE

t. system.mode; sY stem'mode

SKIP
KBM.FIE ? CASE
t.number.of.rules ; number.of.rules

SKIP
t. actual.output.id; size: : actual.output.id

SKIP
t.rules.per. output; size: :rules.per.output

SKIP
t.rule.output.map ; size: :rule.ou tput.map

SKIP

Appendix B Listing of the Main Occam Software Routines for the lnference Engine 152

PROC Nodel(CHAN OF MESSAGE FIE.Nodel, CHAN OF RESULTS Nodel.FIE)

VAL Process.Stopped IS 0:

VAL Process.Idle IS 1:

VAL Process.Running IS 2:

VALsize.of.rmf IS 101:

VAL AND.logic IS 0:

VAL OR.logic IS 1:

VAL NOT.logic IS 2:

VAL Zadeh.name IS 0:

VAL Giles.name IS 1:

VAL Weber.name IS 2:

VAL Hamacher.name IS 3:

VAL Yager.name IS 4:

VAL Dubois.name IS 5:

VAL INT default.rmf.size IS 101:

VAL INT default.fmf.size IS 101:

VAL NumberOfTransPuters IS 2:

VAL INT data.size IS 101:

VAL INT idle.state IS 0:

VALINTrun.state IS l:
VAL INT ready.state IS 4:

VAL INT t.IF IS O:

VALINTT.INPUT IS 1:

VAL INT t.IS IS 2:

VAL INT t.MEMBER IS 3:

VAL INT t.INPT.IT.HEDGE IS 4:

VAL INTt.AND IS 5:

VAL INT t.OR IS 6:

VAL INT t.NOT IS 7:

VALINTT.THEN IS 8:

VAL INT t.OUTPUT IS 9:

VAL INT T.OUTPUT.MEMBER IS 10:

VAL INT t.INPUT.MEMBER IS 1 1:

VAL INT t.OUTPUT.HEDGE IS 12:

'Worker Node (Node 2 has the same code.)

[100UNT dof.store:
INT system.mode, i, index, temp2, length, data.value: --Idle, Running, Stop

INT connective, modiflter, fusion, defuz:

BOOL running, DONE.FLAG:
INT connective, modifier.type, fusion, defuzzify:

INT vector.time.stamp,vector.length:

[20UNT input.vector.data:
INT number.of.rules, rule.id,rule'count, FIE'rule'count, output'id:

[80UNT Rule.Array:

I2OIBYTE Input.Vector: -- used by procedure "CalcRulelist"

tlOOIINT rule.weights: -- stores the rule weights set by the GUI

I100UNT weighted.dofs: -- stores weighted degrees of fulfilment

INT rule.weight: -- stores weight for this rule

INT rule,number,r.size:
INT member.value,member.id:
INT m.size: -- m.size = number.of.MFs x 100

t25lt101IINT membership.store: -- local copy of the membership functions

INT size,number.of.outPuts:
INT templ, indexl, index2, pointer, N, base.index, k, j:

llOOlINT rule.weight.store: -- array to store rule weights

[101]INT rmf: -- storage array for rmf for this process

Appendix B Listinq of the Main Occam Software Routines for the lnference Engine 193

ll

t100lll01lINT rmf.store: -- [rule.number][index]
110llINT r.member: -- receive buffer for membership function

-- It then gets stored in the membership store array'

[NumberOfTransputers]INT RuleNodeState;

INT count, m, temp:

INT xvalue,dof, index, u, output.number:
INT operator.type,operator.value,membervalue:
INT stack.pointer, u.of.x, u.x.take'1, u.x.take.2:

INT x.take.1, x.take.2:

BOOL rtore:
t20lINT result.stack: --Place to keep interim results

INT output.member.id:
INT FUNCTION modifier (VAL INT a, b, type)

INT modvalue:
VALOF

IF'

type = 0
modvalue ;= (a*b)/100 -- could be 100*100/100 !

type = I
SEQ
IF
a>b
modvalue := b --truncate

a<b
modvalue := a --below cut-off value

a=b
modvalue := a

(type <> 0) OR (type + 1)

modvalue := a -- catch anything else

RESULT modvalue

INT FUNCTION MIN (VAL INT a, b)

INT min:
VALOF

IF
a<b
mln := a

b<a
min := b

a=b
min := a

RESULT min

INT FUNCTION MAX (VAL INT a, b)

INT max:
VALOF

IF
a> b
max := a

b>a
rnax := b

a=b
max := a

RESULT max

Appendix B Listing of the Main Occam Software Routines for the lnference Engine 194

,.1,

INT FUNCTION Connective (VAL INT x, y' gamma' logic'type, name)

INT min, max, temp, answer:

VALOF
IF

logic.type = AND.logic
CASE name

Zadeh.name
SEQ
IF
x(=y
mln := x

Y(=X
min:= Y

TRUE
SKIP

answer := mln
Giles.name

SEQ
answer := MAX ((x+y)-100, 0) --x,y could be 0"100

Weber.name
answer := (xxy)/100 --Normalise

Hamacher.name
unrvve¡;=((x+y)-((2-gamma)*(x*y)))/(1 -((1-gamma) * (x*y)))

Yager.name
answer := 100-MIN(1, ((1-x)))

Dubois.name
answer ;= (x*y)/(MAX(x, MAX(y, gamma)))

ELSE
SEQ
IF
x(=y
min:= x

Y(=X
min:= Y

TRUE
SKIP

answer := min
logic.type = OR.logic

CASE name
Zadeh.name

SEQ
IF
x)=y
max := x

Y)=X
max:= y

TRUE
SKIP

answer := max
Giles.name

answer := MIN(x + y, 100)
'Weber.name

answer ;= (x+y)-((x*y)/100)
Hamacher.name

SEQ
temP := x*Y
answer := temp / (gamma+((1-gamma)*((x+y)-temp)))

il
'¡1;
j

I

Yager.name
answer ;= (x+y) - ((x*y)/100)

Dubois.name

r

Appendix B Listing of the Main Occa m Software Routines for the lnference Engine 195

¿l

I

SEQ
temp := 100- (((100-x)*(100-y))/i00)
answer:=temp / (MAX(100-x, MAX(100-y, gamma)))

ELSE
SEQ
IF
x>=y

MAX := X

Y)=X
max := y

TRUE
SKIP

answer := max

logic.type = NOT.logic
CASE name

Zadeh.name
answer ;= (l _ x)

Giles.name
answer ;= (1 - x)

'Weber.name

answer;= (1 - x)/(1+(gamma*x))
Hamacher.name

answer ;= (1 _ x)
Yager.name

answer;= (1 - x)/(1 + (gamma*x))
Dubois.name

answer:= I - x
ELSE

answer ;= (1 _ x)
TRUE

SKIP
RESULT answer

'Lil
¡

SEQ
-- Initialisation
running:= TRUE
system.mode := run.state

number.of.rules := 0

SEQi=0FORl00
rule.weights[i] := 1

SEQi=0FOR100
dof.store[i] := 0

SEQi=0FOR100
weighted.dofs[i] := 1

SEQj=0FOR25(INT)
SEQi=0FOR101
membership.store[j][i]:=0 -- local copy of the membership functions

connective:=0
modifier.tYPe:=0
fusion:=0
defuzzify:=0
SEQi=0FOR20

input.vector.data[i] := 0
SEQi=0FOR10l
rmf[i] := I

WHILE running
FIE.Nodel ? CASE

t.stop
running := FALSE

t.inference.methods; connective; modifier.type; fusion; defuz

r

Appendix B Listing of the Main Occam Software Routines for the lnference Engine 196

SKIP
t.set.rule.weight; rule.number; rule'weight

rule.weight.store[rule.number] := rule.weight --store weigl.rt

t.add.member; member.id, ln.size: :r'member

SEQi=0FORm.size
membership.store[member.id] [i] := r'.memberfil

t.number.of.outputs ; number.of' outputs

SKIP
t.rule.on; tule.nunrber
rule.weight.storefrule.number] := I 00 (INT) --slore weight

t.rule.off; rule.number
rule.weight.store[rule.number] := 0 (INT) --store weight

t.input.vector; size::input.vector'data --receive the input vector

SKIP
t.number.of.rules ; n umber.of.rules

SKIP
t.system.mode; sYstem.mode

SKIP
t.rule.data; rule.id; length::Rule.Aray

SEQ
--Tìe procedure is passed the rule list that is to be evaluated, together with the input vector data'

--The procedure caiculates the dof, and the weighted dof of the rule, and the rmf of the rule'

--These results are stored in FREE variables thãt are declared outside of the PROC, and therefore have

scope that covers the Procedure.
-- Ruie.Anay is passed to the knowledge base for storage, and is

-- then passed to the inference engine during the evaluation phase'

-- Rule.Array has the following format:

-- <Rule.Array> = <rule number><output number><operator lisÞ
-- <rule number> = <integer>
-- <output number> = <integer>
-- <opeìator lisÞ = <operator type><operator value><operator lisÞ
-- <operator tYPe> = <integer>
-- <operator value> = <integer>

-- Example:
-- Rule Text : if vl is zero and v0 is small then z2 is zero

-- After parsing this becomes:

-- # out v1 zero is v0 small is AND z2 zeto is then

Í2,211t,1114,61 t2, 9 e I t l, 0l t4,4)12,e ells,e elte,2ll4'61[29 9] [8' 9 e]

-- When the rule evaluator reads the output identifier, it knows to

-- stop processing the rule and pass the dof to the next phase ofprocessing

-- This will multiply the dof by the weight for this rule, then calculate

-- the resultant membership function for the rule'

SEQ
stack.pointcr := 0

more:= TRUE
--same as rule.id
rule.number := Rule.Array[0] --first element of array

output.number := Rule'Array [1]
count := 2 --start at the second data pair of array

WHILEmore
SEQ

--process the list, return the dof for the antecedent part

operator.type := Rule.Array[count]
operator.value := Rule.Array[count+ 1]

CASE operator.tYPe

1

\l
'';;
j

t
I

l

t.IF
SKIP

I.INPUT

!

n Occam Software Routines for the lnference Engine 197
Appendix B Listing of the Mai

SEQ
*uilu" := INT(input.vector.data[operator'value])

t.MEMBER
--access the local membership store

SEQ
index := xvalue + 50

u.of.x := membership.storeIoperator'value] [index]

t.INPUT.HEDGE
--pop x
SEQ
u'.ì 1u.of.x

* u.of.x)/100 -- VERY (could be 100x100)

u.of.i := u --re-assign u'of.x ready to be pushed onto the stack

t.IS
SEQ
reùlt.stack[stack.pointer] := u'of'x -- put value onto stack

stack.pointer := stãck.pointer + I -- increment pointer

t.AND, t.oR -- t.not

SEQ
stack.Pointer := stack.Pointer - 1

u.x.take.1 := result.stackIstack'pointer]
stack.pointer := stack.Pointer - I
u.x.take.2 := result. stack[stack'pointer]

temp := Connective (u.xiake' 1, u'x'take'2' 1' operator'type' connective)

result.stacklstack.pointer] := temp

stack.Pointer := stack.Pointer + 1

t.THEN
--This is the end of the list
--The rmf array has been calculated'

more:= FALSE
T.OUTPUT.MEMBER

SEQ
output.member.id := operator' valu

-- CALCULATE THË RESULTANT MEMBERSHIP FUNCTON

SEQm=0FOR101
SEQ
--memberfl[] is the local store for all membership functions

membervalue:=membership'store[output:member'id][m]
--The value becomes modif,red by this function

rmflm] := rnodifier(membervalue, dof'modiher'type)

more := FALSE
t.OUTPUT
--get the dof and apply weighting factor w

.

--ihe last item pushed onto the stack was the result of the Fuzzy

-- Logical Operators (AND, OR, "')'This last one will be the

-- Degree of Fulfilment (dof) for this rule'

SEQ
stack.pointer := stack'pointer - 1 -- adjust the stack pointer

IF
stack.Pointer < 0

stack'Pointer := 0

stack'Pointer >= 0

dof:= result.stack[stack'pointer] -- get the dof

TRUE
SKIP

--Now calculate the weighted dof for this rule' and store it'

weighted.dofs[rule'number] := dof * rule'weights[rule'number]

dof.store[rule.id] := dof
weighted.dofs[rule.id] := dof * rule'weights[rule'id]

t.OUTPUT.HEDGE
--ThiswillfollowIMMEDIATELYafterrmfl]calculation

Appendix B Listing of the Main Occam Software Routines for the lnference Engine 198

SEQ
u :- (nnf[m] * rmflml)/l00 --VERY (could be 100x100)

rmf[m] := u --re-assign

ELSE
more := FALSE

count :=counI" + 2 -- while looP

Nodel.FIE ! t.rmf.data; rule.id; 101(INT)::rmf
Nodel.FIE ! t.dofs.data; 100(INT)::dof.store
Nodel.FIE I t.weighted.dof.data; 100(INT)::weighted'dofs

--RMF.matric is the column vector from the cmf array

--The column contains data values for contributing rmfs'

INT FUNCTION Fuze(VAL IUNT RMF.matrix, vAL INT Num, type.of.fusion)

INT answer, m:

REAL32 temporarY, temP, Div, sum:

REAL32 templ,temP2:
VAL Arithmetic.Mean'TYPe IS 0:

VAL Harmonic.Mean.TYPe IS 1:

VAL Geometric.Mean.TYPe IS 2:

VAL Peak.Follower.TYPe IS 3:

VALOF
SEQ
sum:= 0.0(REAL32)
temporary := 0.0(REAL32)
Div := (REAL32 ROUND Num)
IF

Num <= 0
Div:= 1.0(REAL32)

TRUE
SKIP

IF
type.of.fusion = Arithmetic.Mean'Type

SEQ
SEQ m = 0 FOR Num -- N = number of rules for this output

sum := sum + (REAL32 ROUND RMF.matrix[m]) --sum items in column

answer:=(INTROUND(sum/Div))--dividebynumberofitemstogetaverage
type.of .fusion = Harmonic.Mean.Type

SEQ
SEQ m = 0 FOR Num -- N = number of rules to this output

r SEQ
temp := (REAL32 ROUND RMF.matrix[m]) --get the data

IF
temp = 0.0(REAL32) --test for divide by zero

SKIP
temp >= 1.0(REAL32)
temporary := temporary + (1.0(REAL32)ltemp)

TRUE
SKIP

temporary := temporary / (REAL32 ROUND Num)

answer ;= (INT ROUND temPorarY)

type. of.fusion = Geometric.Mean.Type
SEQ
temporary ;= (REAL32 ROUND RMF'matrix[0])--initialise

tcmPl := RE^'L32 ROLIND Num
tempZ :- 1.0(REAL32) / temPl

SEQm=lFORNum
temporary := temporary * (REAL32 ROUND RMF'matrix[m])

temporary := POWER(temporary' temp2)

Appendix B Listing of the Main Occam Software Routines for the lnference Engine 199

answer ;= (INT ROUND temporary) --convert to integer

type.of.fusion = Peak.Follower.Type
SEQ

answer := RMF.matrix[0] -- initialise
SEQ m = 1 FOR Num-l -- N = number of rules for this output

IF
RMF.matrix[m] > answer

answer := RMF.matrix[m]
TRUE

SKIP
TRUE

SEQ
SEQ m = 0 FOR Num -- N = number of rules for this output

sum := sum + (REAL32 ROUND RMF.matrix[m]) --sum items in column

answer;=(INTROUND(sum/Div))--dividebynumberofitemstoge[average
RESULT answet

INT FLINCTION Defuzzify (VAL []INT final.mf, vAL INT type.of.defuz)

INT Centre.of.Gravity, numerator, denominator:

INT Maximum, answer:

VALOF
SBQ

answer := 0
numerator := 0
denominator := 0

Maximum := 0
IF --can add other methods here.

type.of.defuz = 0
SEQ

SEQ n = 0 FOR default.fmf'size
SEQ
numerator r= numerator + (n * final'mf[n])
denominator := denominator + final.mffn]
IF
denominator = 0 --case where the CMF is zero set

denominator:= 1

TRUE
SKIP

Centre.of.Gravity := numerator / denominator
answer := Centre.of.Gravity

type.of.defuz = I
SEQ

SEQ i = 0 FOR default.fmf.size
IF
final.mflil >= Maximum
Maximum := i -- value at which function is a maximum

TRUE
SKIP

answer := Maximum
tYPe.of.defuz = 2

SEQ
SEQ i = 0 FOR default.fmf.size
IF
final.mflil >= Maximum
Maximum := i

TRI]E
SKIP

answer := Maximum
TRUE

Appendix B Listing of the Main Occam Software Routines for the lnference Engine 200

SEQ
SEQ n = 0 FOR default.fmf'size

SEQ
numerator := numerator + (n * final.mfln])
denominator := denominator + final.mfln]
IF
denominator = 0 --case where the CMF is zero set

denominator:= I
TRUE

SKIP
Centre.of.Gravity := numerator / denominator

answer := Centre.of.Gravity
RESULT answer

Appendix B Listing of the Main Occam Software Routines for the lnference Engine 201

Channel Declarations

CHAN OF ANY to.C012:

CHAN OF RESULTS DBM.Super, FIE.DBM, DBM.FIE, Nodel.FIE,
Node2.FIE:

CHAN OF MESSAGE Super.KBM, KBM.Super,
Super.FIE, FIE.SuPer,
Super.DBM, from.C012,
F'IE.KBM, KBM.FIE,
FIE.Nodel, FIE.Node2:

CHAN OF BYTE DBM.Plant, Plant.DBM:

FuzienProc Process inter-connection

PAR -- These processes run concurrently on the 8008 boa¡d

Supervisor(from.C012, to.C012, Super.DBM, Super.FIE,

FIE.Super, Super.KBM, KBM.Super, DBM.Super)

KnowledgeManager(Super.KBM, KBM'Super, FIE'KBM, KBM.FIE)
DataManager(Super.DBM, DBM.Super, FIE.DBM, DBM.FIE, Plant.DBM, DBM.Plant)

InferenceEngine(Super.FIE, FIE.Super, KBM.FIE, FIE.KBM,
FIE.Nodel, FIE.Node2, Nodel'FIE, Node2'FIE, FIE.DBM, DBM'FIE)

Node I (FIE.Node 1, Nodel.FIE)

Process Mapping

PLACED PAR
PROCESSOR O T8
PLACE from.C012 AT linkOin:
PLACE to.C012 AT link0out:
PLACE Plant.DBM AT linklin:
PLACE DBM.Plant AT linklout: --interface to card

PLACE FIE.Node2 AT link2out:
PLACE Node2.FIE AT link2in:

FuzienProc(frorn.C01 2, to.C0 1 2,

DBM.Plant, Plant.DBM, FIE.Node2, Node2.FIE)

PROCESSOR 1 T8
PLACE FIE.Node2 AT linklin:
PLACE Node2.FIE AT linklout:

Node2(Fl E.Node2, Node2.FlE)

Appendix C Transputer lnterface Module Micro-controller Software 202

Appendix C

Listing of the Control Software for the

Transputer Interface Module Micro'controller'

Appendix C Transpute r lnterface Module Micro-controller Software 203

* ** ********* **** * * * ** * * * * *

* * ** ** ** *** ****** ********** **

;This program controls the interface between the plant, in this case,

; the inverted pendulum, and the transputer system.

; This program first reads all five A"/D channels and stores the values in

; on-chip memory. This process is repeated continuously.

$Title(C01 2 lnterface control)

$MOD752
, ******* ********* *** * * ****** ** * ** **** *** * * ****** ** **+* * ** *** * * * ** ******* * * *

PWMVaI DATA 13h ;Holds next value for updating PWM

Flags DATA z}h
ADFlag BIT Flags.l ;4"/D conversion complete flag.
.************************************t******i*****i************************

; ANALOG CHANNEL STORAGE

AnChO DATA 13h ;Store for analog channel 0 value

AnChl DATA 14h ;Store for analog channel 1 value

AnCh2 DATA 15h ;Store for analog channel 2 value

AnCh3 DATA 16h ;Store for analog channel 3 value

AnCh4 DATA 17h ;Store for analog channel 4 value

outdata DATA 18h ;store for output data value
. * * ** *** ***** ******* it****** **** **** ***** * ** ****** * + **** f ** ** * *** **** ******

; PORT ASSIGNMENT

;P0.0 TTL OUT CS/ C012

;P0.1 TTL OUT R/VV C012

;Po.Z TTLOUTAl C012

;P0.3 TTL OUT A2 C012

;P0.4 TTL OUT PWM

;P1.0

;P1.1

;P1.2

;P1.3

;P1.4

;P1.5

;P1.6

;P1.7

;P3.0

;P3.1

;P3.2

;P3.3

;P3.4

;P3.5

;P3.6

;P3.7

A/D lnput

A/D lnput

A/D lnput

A/D lnput

A/D lnput

TTL OUT

TTL OUT

TTL OUT

TTL IN/OUT/DO

TTL IN/OUT/D1

TTL IN/OUT/D2

TTL IN/OUT/D3

TTL IN/OUT/D4

TTL IN/OUT/Ds

TTL IN/OUT/D6

TTL IN/OUT/D7

Appendix C Transp uter lntedace Module Micro-controller Software 204

; lnterrupt Vectors

ORG O

AJMP Reset
. *********** *** * * ***

;Reset vector

* * **** * * * *** ** * ** * f,****

ù******

Reset: sP,#30h

Flags,#0

TCON,#00h

lE,#82h

P0.0

COMD 1:

MOV A,R2

ACALL ADConv

MOV AnChO,A

MOV A,AnChO

ACALL C012Write

JMP START

;Clear flags.

;Set up timer controls.

;Enable timer 0 interruPt

;notOS = 1

;Set A/D channelto #data.

;Start A/D conversion.

;Store A,/D value

;Put A/D channelvalue into A

;Send data to C012

;Begin loop again

MOV

MOV

MOV

MOV

SETB

START:
.**********************************t*****************************l************

; NOW READ C012 PORT (PORT 3) To GET COMMAND'
.**l************t*****Èt***t****t*****

ACALL C012Read ;Command returned in A

MOV R1,A ;Put command into R1 for now

ACALL C012Read ;Get data to go with this command

MOV R2,A ;Put data into R2 for now.
. f * f ***** ***** ** *
t

; NOW INTERPRET THE COMMAND THAT lS lN R1 = 1 OF 8 COMMANDS =
***** i ** ** * ***** *** ***********t * **t******

MOV A,R1 ;Get the command into acc.

JB ACC.O,COMD-O ;lf bit O set, jump to command 0 :Reset

JB ACC.I,COMD-1 ;lf bit 1 set, jump to command 1 :read A,/D channel #data

JB ACC.2,COMD_2 ;lf bit 2 set, jump to command 2 :set PWM to #data

JB ACC.3,COMD_3 ;lf bit 3 set, jump to command 3 :set P.15,P1.6,P1.7 to [0,1]

JBACC.4,COMD-4;lfbit4set,jumptocommand4:readpottPl
; IF NO COMMANDS MATCH THEN JUMP BACK TO THE START

JMP START
***************** ***t** * t

;Command0=Reset
COMD 0:JMP Reset

t*f*******

; COMMAND 1 = SEND ANALOG VALUE TO C012

; Sample the A/D input identified by data in R2.

; ADConv returns after completion of the conversion.
.*****************************È*****t****t****************************t**f,f***

. **t** ** * ** ****************** *******it****t****** *

Appendix C Transpute r lntedace Module Micro-controller Software 205

;COMMAND2=SETPWM
.**+f*******f****'*************t****f***t**************i***************tt*****

COMD 2:

MOV PWMP,#8Oh ;Set uP PWM Prescaler'

MOV PWCM,R2 ;Set PWM value,'data for which is in R2

MOV PWENA,#O1h ;Stafi PWM.

JMP START

; OoMMAND 3 = DIGITAL OUT , set a TTL output P1.5 P1.6 P1.7 to 0 or 1

. ** **t*** *t*f*****t*********t * *******t*** * **

; data byte lells which bit and its'state.

; R2 P1.7 P1.6 P1.5

;0
;1

XXO
XX1
XOX
X1X
OXX
1XX

2

3

4

5
***************** * *** * * t****

COMD 3:

MOV A,R2

CJNE A,#OOh,NOT_CP15

CLR P1.5

NOT CP15:

CJNE A,#O1h,NOT_SP15

SETB P1.5

NOT SP15:

CJNE A,#O2h,NOT_CP16

CLR P1.6

NOT CP16:

CJNE A,#O3h,NOT-SP16

SETB P1.6

NOT SP16:

CJNE A,#O4h,NOT-CP17

CLR P1.7

NOT CP17:

CJNE A,#O5h,NOT-SP17

SETB P1.7

NOT SP17:

JMP START

; Command 4 = TTL INPUT ; get state of pott 1

COMD_4:

MOV P1,#OFFh ;Put Port into read mode

MOV A,P1 ;Put Port 1 data into A

ACALL C012Write ;Send data to C012

Appendix C Transpule r lnteÍace Module Micro-controller Software 206

JMP START
* ** ** ****t*f * * * ****** **

; Command 5 =

;COMD-S: JMP START
. ************** ** * ** * ************ ****

;Command 6 =
. *Èt***tt***f,************i*************************************a**************

;COMD-6: JMP START

; COMMAND 7 = TEST ROUTINE
. ****************f**t************i****t***************************************

;COMD-7: JMP START
. *t** ******* *t********** **** * * * * * *** * ******* ****** **

; CO12 Link Adaptor lnitialise Routine

C012lnit:

RET
.*t***t***********t***f ** * * * **** t** ** ****

: CO12 Link Adaptor Read Routine

; This routine reads data f rom the co12 data poft, that is connected

; to port 3 of the 87C752, and places it into A'

; lf data present bit of READ INPUT STATUS REGISTER is set then

; (bit O) [refer figure 5.3 on P453.]

; data is present, so read

C012Read:

;Write #OFFH to porl3 so it can read data

MOV P3,#OFFH

;First test the input status register

SETB Po'o ;notcs = 1

NOP

CLR PO.3 ;RSO = O - Select input status register

SETB Po'2 ;RS1 = 1

SETB Po'1 ;Rnotw = 1

NOP ;allow for settling time

READ STATUSI:
SETB Po'o ;notcs = 1

CLR P0.O ;notCS = 0 - Latch address selection

NOP ;allow for settling time

;status register contents appear on data bus, so check status bit.

;Now test if the lnput Ready Flag (bit 0) is set

JNBP3.o,READ-STATUSI;Datanotpresentsoloopuntilready
;ReadY, Put C012 into READ mode

READ DATA:

SETB Po'o ;notcs = 1

NOP ;allow for settling time

Appendix C Transpute r lnterface Module Micro-controller Software 207

CLR

CLR

CLR

NOP

NOP

P0.3

P0.2

P0.0

;RSO = 0 - Select read data

;RS1 - 0

;notOS = O - Latch address selection

;allow for settling time

;allow for settling time

;Data now appears on data bus

;Move data from port 3 into Acc

MOV A,P3 ;Put port data into A

SETB Po'o ;notcs = 1

RET
**********f**t***********È***********************È************************

; C012 Link Adaptor Write Routine

; This routine writes data contained in A, to the C012 data poft'

C012Write:

;Write Off to port 3 so it can read data

MOV P3,#OFFH

;First test the output status register

SETB Po'o ;notcs = 1

NOP

SETB P0.3 ;RSO = 1 - Select output status register

SETB Po'z ;RS1 ='l
SETB Po'1 ;Rnotw = 1

NOP ;allow for settling time

READ STATUS2:

SETB Po'o ;notcs = 1

CLR PO.O ;notOS = O - Latch address selection

NOP ;allow for settling time

;status register contents appear on data bus; so check status bit.

;Now test if the Output Ready Flag (bit 0) is set

JNB P3.O,READ_STATUS2 ;Data not present so loop until ready

;READY, Put C012 into WRITE mode

WRITE DATA:

SETB Po'o ;notcs = 1

NOP ;allow for settling time

SETB P0.3 ;RSO = 1 - Select write data

CLR Po.z ;RS1 - o

cLR Po'1 ;Rnotw = o

NOP ;allow for settling time

CLR P0.0 ;notOS = 0 - Latch address selection

NOP ;allow for settling time

;so send the data

MOV P3,A ;Put A into Potl

NOP ;allow for settling time

SETB Po'o ;notcs = 1

RET

Appendix C Transputer lntedace Module Micro-controller Software 208

; Micro Synchronisation Routine

; This routine synchronises communications between the micro-controller

; and the transputer system. This code looks for a'sequence of #FFH, #00H.

; Return when synchronisation is established.

MSynch:

NOT EQ:

ACALL C012Read ;Data returned in A

CJNE A,#0FFh,NOT-EO ;Wait for #ffh to appear

ACALL C012Read ;Now chech for #00h

CJNE A,#O0h,NOT-EQ ;lf no, stail again

RET ;SYnchronised, so return!

; A/D Conversion Routine.

; This is an alternative version of the A/D routine which

; starts the conversion and then waits for it to complete before

; returning. A/D data is returned in the ACC.

; ACC contains channel number [0..4]

ADConv:

ORL A,#28h ;Add control bits to channel #'

MOV ADCON,A ;Staft conversion'

ADCI: MOV A,ADCON

JNB ACC.4,ADC1 ;Wait for conversion complete'

MOV A,ADAT ;Read A/D'

.*********:.*=*I****r*r*****r***t***r****************** **r*****************

END

Appendix D ALTERA Design file for the motor control EPLD 209

Appendix D

ALTERA Design File for the Motor Control EPLD'

Appendix D ALTERA Design file for the motor control EPLD 210

il
ii

TITLE "Motor Control Logic";

DESIGN fS MoLor
BEGlN

DEVICE "EPM5O32'';
END;

SUBDESIGN encode
(

enable, direction, brake
giateÄ, gateB, gateC' gateD

)

BEGIN

TABLE gateA, gateB, gatec,

: TNPUT;
: OUTPUT;

enable,

U

0; % stoP I
0

0; % stoP %

0

0; % stoP %

0

0; % stop Z

1_

0; ? forward ts

1
1-; % brake %

t-

L; % reverse I
1-

L¡ 3 brake %

END TABLE;

END;

direction, brake =>

00

0l-

10

11

00

01

10

11-

=>

=>

=>

=>

=>

=>

=>

=>

0

0

n

0

0

l-

0

0

0

U

0

1_

n

0

0

gateD;

0

0

0

0

L

L

0

l-

