Threshold Logic Based Implementation
of High Performance VLSI Arithmetic

Circuits

by

Peter Celinski

B.E. (Electrical & Electronic Engineering, with Honors),
The University of Adelaide, Australia, 1998

Thesis submitted for the degree of
Doctor of Philosophy

in

Electrical and Electronic Engineering
University of Adelaide

December, 2006

ADELAIDE

UNIVERSITY
AUSTRALIA

r“r‘(‘w Peter Celinski

Centre for Biomedical Engineering

agBME © 2006
The Universiy of Adelside All Rights Reserved

Contents

Contents

Abstract

Statement of Originality
Acknowledgments
Conventions
Publications

List of Figures

List of Tables

Chapter 1. Introduction
1.1 Context and Technology
1.2 ThresholdLogic
1.3 Thesis Overview and Organization

1.4 Original Contributions

Chapter 2. Threshold Logic Arithmetic
2.1 Neural Computation
2.2 Threshold Logic vs. Conventional Logic . . .
2.3 Threshold Logic Addition and Multiplication
2.3.1 Addition Networks
2.3.2 Multiplication Networks

24 ChapterSummary.

Chapter 3. Threshold Logic Circuit Implementations

vii

ix

xi

xiii

XV

Xix

xxiii

21

Page iii

Contents

3.1 Threshold Gate Implementations
3.1.1 Voltage/Charge Mode TLGates
3.1.2 Current/Conductance Mode TLGates

3.1.3 Other Gate Implementations

3.1.4 Gate Implementation Comparison

315 Desigh Considefations « .. « « o v o ¢ v s v s a5 53 55085353

3.1.6 TL Based System Implementations

32 Chapter SummBary ., « « s .c v s 6% ¢ 56 o ¥ 65 65 65§ 85 %5555 % 3 5

Chapter 4. Capacitive Threshold Logic Circuit Techniques

41 ChargeRecyeling ThresholdLogic . . o o o o s v s 6 s v 69 56 w3 wow s
4.2 Self Timed Threshold Logic

4.3 Delay Modeling

.................................

43.1 LogicalEffort
432 CRILDelayModel .« « oo s 6 65 6 e s 6 6 5 5 8 5 88 5 5353 @ a
4.3.3 Applying the Model—Design Comparison Examples

4.4 Test Chip Results

................................

45 EChapler SUMmMary .. « « o 450 & 5 ¢ 5 v 8 ¢ 8 6 8 § 5 4 58 68 5 & 509 5553

Chapter 5. Threshold Logic Addition
5.1 Threshold Logic AdditionSchemes 000
5.2 Carry Lookahead Addition
93 The A-DELTAAddert iene e nnonns
B.3.1 AdderArchitecture . » . v v s s s s s s 58353 355 w5 50w ama
53.2 Designofthe 16-bit Adders

5.3.3 Layout and Simulation Results of A-DELTA

54 Prefix-8 Adder .

.................................

5.4.1 Adder Architecture e e e

5.4.2 Delay Estimation and Comparison

5.0 ChapterSummary. e

Chapter 6. Threshold Logic Multiplication

............

41
42
45
48
48
al
54
58
64

65
66
67
71
71
72
74
76
76
79
81

83

Page iv

Contents

6.1 ParallelMultipliers: . . « + « s s s s v s s v v wms s oo mmes
6.1.1 ParallelCounters
6.1.2 Partial Product Reduction Tree (PPRT) Multipliers
B2 3 ZandZi2C0uiets « o « v v 5 5 5 5 5 1 3 5 4 wrowwwww Wy
6.2.1 Standard CMOSCounters
622 Dominolegie: . ::i::sssssvsvssvsssmmssss
6.2.3 Threshold Logic—Kautz3:2
6.2.4 A Hybrid TL/Domino 3:2counter
6.2.0 Counter'CompariSon . « « « « s ws s wn wa s o a wwww
B Larger COUMers « s v o v 5 6 5 6 6 6 6 6 2o mbbbbe b Vasadi
631 Tmplememtatlonm . « « v o 4 « v s v i v w v w s ww ww e
6.3.2 KautzTLCounters
633 DMinnlckTLCounters, ; vvrovvsvswasmpwws s 2 g 3
6.3.4 ASpectrumof TL Counters
6.3.5 Hybrid TL/Domino Counters
6.3.6 Counter Comparison
83.7 Counter'Cholte : s s s s s ssnmanummassma ¢ & s
B4 TL CounterCirenifs . - « s v s v v vwwaww s wwwwss 0o s
6.5 Partial Product ReductionTrees
6.5.1 Three-DimensionalMethod : o v wws oo
6.5.2 Input-Symmetric Counters
6.5.3 HeterogeneousCitcuits . « v v v v v v v v o v v v v v ooy
654 Resulls « ;s ssssssvvsrnmmmmweansngs ¢ss
6.6 ChapterSummary.

Chapter 7. Optical and GaAs Threshold Logic Techniques

7.1 SEEDBasedTL . ::u:ssvemnsnommummes vooeessss
7.2 System Design Considerations
7.2.1 Physical structure of p-i(MQW)-ndiode
7.2.2 TheoreticalModel

7.2.3 Nyquist Analog-to-Digital Converter using Optical TL

Contents

7.2.4 Simulations and Experimental Results
73 CGaAsThresholdLegic .. vvvvwwew cwawasswodvoessasss
73.1 Neu-GaAsBasicStructure . . . oo o m v s s 6 50 v 5 555 6585 5
7.3.2 Choice of GaAs Technology
7.3.3 A 4-bit neu-GaAsRippleCarryAdder
7.3.4 Simulation results for the neu-GaAsRCA
735 GateLeakage e
T4 CHApterSUmIary . « « « « v o vomacas v v mmw wmwin s% & 8 § 8 § 0 5 8
Chapter 8. Mapping TL Functions of a Small Number of Variables
8.1 PreliminaryObservations s ssssmwmmemms 0k s e h a5 835 8
8.2 Computing Boolean Functions Using Threshold Gates
83 A Simple Design Technique
84 TwoDesignExamples
8.5 Mapping the TL Network to neuron-MOS
86 FutureWork e
B CLSPIFSHBERTT. . - « c s o sovvmma s wmmmmen v 6 ¢ 8§ § ¥ 78 ¥ ¥

Chapter 9. Summary and Conclusions

9.1

ThesisConclusions' . . : « « v cm s wm s G EF.c 8 6 ¢ 65 7§85 5% 3 3 3

9:.1.1
9.1.2
9.1.3
9.14
9.1.5
9.1.6
9:1.7

Review of Threshold Logic
Review of Threshold Logic Circuits
Capacitive Threshold Logic Circuits
Threshald Logic Addition: . v« v v v o ¢ s s kv s s 8 9 5 5 5 3 3
Threshold Logic Multiplication
Optical and GaAs Threshold Logic
Mapping Threshold Logic Functions

9.2 Recommendations for Future Work

9.3 Summary of Original Contributions

94 Conclusion o e e e e

Bibliography

Biography

135
136
137
139
141
143
143
144

149
150
150
150
150
151
151
161
151
152
152
154

155

163

Page vi

Abstract

This Thesis focuses on the area of high speed very large scale integration (VLSI) com-
plementary metal oxide semiconductor (CMOS) circuit design using threshold logic
(TL) techniques. The work described in this document contributes three major ad-
vances on high speed TL based CMOS circuit design: (i) the development and experi-
mental verification of novel high speed TL gate circuit topologies; (ii) a method for de-
lay modelling of sense-amplifier based TL gates and (iii) novel TL based networks for
the implementation of high speed arithmetic circuits. In this Thesis, the basics and pre-
vious work in threshold logic are reviewed, including theoretical results for TL based
networks used in arithmetic and TL gate circuit design techniques. Novel floating
gate based TL circuit implementations based on precharged sense-amplifiers employ-
ing charge recycyling are described and experimentally verified. A new weight-shared
circuit technique is proposed which significantly reduces the area cost. Based on the
theory of Logical Effort, a model for the Charge Recycling Threshold Logic (CRTL)
gate is developed and experimentally verified. This model is used to evaluate and
compare a number of CRTL based circuits, demonstrating its significant reduced delay
compared to conventional static and dynamic CMOS logic. New parallel counters are
proposed and partial product reduction trees based on these counters for use in paral-
lel multipliers are shown to be significantly faster than previously published schemes.
The 64-bit prefix-8 adder presented here is the fastest 64-bit adder published to date.
The contributions in this Thesis are an important step towards alleviating the issues
faced in present day VLSI arithmetic design and demonstrate for the first time the
significant benefits offered by TL compared to conventional logic circuit techniques.
The methodologies introduced are shown to lead to increased circuit compactness and
reduced power dissipation which are of particular interest for future smart sensor tech-
nology and will potentially impact on future portable electronics systems for a range

of applications from mobile personal communications through to aerospace systems.

Page vii

Page viii

Statement of Originality

Declaration

...

This work contains no material which has been accepted for the award of any other degree or diploma in any
university or other tertiary institution and, to the best of my knowledge and belief, contains no material
previously published or written by another person, except where due reference has been made in the text.

| give consent to this copy of my thesis, when deposited in the University Library, being made available for loan
and photocopying, subject to the provisions of the Copyright Act 1968.

SIGNATURE: oo e DATE:..... 2 7./ ‘1/ oo,

Page ix

Page x

Acknowledgments

This work was carried out with the support of many people to whom I am indebted.
Firstly I want to thank my supervisor, Professor Derek Abbott (Director of the Centre
for Biomedical Engineering, School of Electrical and Electronic Engineering; The Uni-
versity of Adelaide) for encouraging me to work on my own ideas from the beginning
and providing the funding and support for numerous conferences and collaborative
research trips.

Thanks go to my friends and colleagues from the University of Adelaide School of
Electrical and Electronic Engineering: Sam Mickan, Leonard Hall, Greg Harmer, An-
drew Allison, John Salerno, Greg Sherman, Said Al-Sarawi, Kiet To, Troy Townsend
and Tony Sarros. In particular [would like to acknowledge the collaboration of Tony
and Said on the SEED based TL work presented in Chapter 7 and Troy on the multi-
plier work presented in Chapter 6.

I would like to thank my many colleagues and friends abroad—]Jose F. Lépez at the
University of Las Palmas in Spain, Dmitry Cheresiz, Sorin Cotofana and Stamatis Vas-
siliadis at the Delft University of Technology in the Netherlands, Sunay Shah at Oxford,
Bart Rylander at the University of Portland, and Vojin Oklobdzija at the University of
California, Davis.

A special thanks to Shaghik Atakaramians for assisting with the Latex presentation for
this thesis.

I would like to gratefully acknowledge the financial support of the University of Ade-
laide Postgraduate Scholarship, Research Abroad Scholarship, Australian Research
Council, Delft University of Technology Research Fellowship, IEEE SA Section Travel
Scholarship, SPIE Student Travel Grant, Sir Ross and Sir Keith Smith Fund Scholarship,
and the D. R. Stranks Travelling Fellowship.

Lastly, I would like to sincerely thank Theresa, my parents and Tom for their tremen-
dous support, encouragement and generous patience.

This thesis survived a few parties, a startup, two rounds of VC funding and the birth

of my beautiful son Aydan.

Page xi

Page xii

Conventions

This thesis it typeset using the EIEX2e software. WinEdt build 5.4 was used as an
effective interface to I&TEX. Harvard style is used for referencing and citation in this
thesis. Australian English spelling is adopted, as defined by the Macquarie English

Dictionary.

Page xiii

Page xiv

Publications

[1] Peter Celinski, Derek Abbott, and Jose F. Lopez, “Novel Extension of neu-MOS techniques to neu-
GaAs,” Proc. of SPIE MICRO/MEMS 99, vol 3893 Gold Coast, Australia, pp. 169-175, December 1999.

[2] Peter Celinski, Said Al-Sarawi, and Derek Abbott, “A Delay Model for neuron-MOS and Capacitive
Threshold Logic,” Proc. 7th IEEE International Conference on Electronics, Circuits & Systems, Lebanon,
pp- 932-935, December 2000.

[3] Peter Celinski, Gregory D. Sherman, and Derek Abbott, “Implementation of Arbitrary Boolean
Functions in Threshold Logic,” Proc. SPIE International Symposium on Smart Electronics and MEMS,
vol. 4236, Melbourne, Australia, December 2000.

[4] Peter Celinski, Jose F. Lépez, and Derek Abbott, “Novel Extension of neu-MOS techniques to neu-
GaAs,” Microelectronics Journal (Elsevier), vol 31, no 7, pp. 577-582, 2000.

[5] Peter Celinski, Jose F. Lépez, Said Al-Sarawi, and Derek Abbott, “Complementary neu-GaAs struc-
ture,” IEE Electronics Letters, vol 36, no 5, pp. 424-425, March 2000.

[6] Peter Celinski, Jose F. Lopez, Said Al-Sarawi, and Derek Abbott, “A Low Power, High Speed
Threshold Logic and its Application to the Design of Novel Carry Lookahead Adders,” Proc. SPIE
International Symposium on Smart Electronics and MEMS, pp. 258-265, Adelaide, Australia, December
2001.

[7] Peter Celinski, Gregory D. Sherman, Jose E. Lopez, and Derek Abbott, “A Mapping Technique For
the Synthesis of Linear Threshold Networks to Implement Boolean Functions,” Advances in Neural
Networks and Applications, Nikos Mastorakis, editor, World Scientific Engineering Society, pp. 224-228
2001.

[8] Peter Celinski, Jose F. Lépez, Said Al-Sarawi, and Derek Abbott,“Low Power, High Speed Charge
Recycling Threshold Logic Gate,” IEE Electronics Letters, vol 37, no 17, pp. 1067-1069, August 2001.

[9] Peter Celinski, Troy Townsend, Jose F. Lépez, Said Al-Sarawi, and Derek Abbott, “A Compact Par-
allel Multiplication Scheme Based on (7,3) and (15,4) Self-Timed Threshold Logic Counters,” Proc.
2nd WSEAS International Conference on Instrumentation, Measurement, Control, Circuits and Systems,
pp. 2641-2645, Mexico, May 2002.

[10] Peter Celinski, Jose F. Lopez, Said Al-Sarawi, and Derek Abbott, “A Compact (m,n) Parallel
Counter Circuit Based on Self Timed Threshold Logic,” Proc. 2nd WSEAS International Conference on
Instrumentation, Measurement, Control, Circuits and Systems, pp. 2601-2605, Mexico, May 2002.

[11] Peter Celinski, Jose F. Lopez, Said Al-Sarawi, and Derek Abbott, “A Family of Low Depth, Thresh-
old Logic, Carry Lookahead Adders,” Proc. 2nd WSEAS International Conference on Instrumentation,
Measurement, Control, Circuits and Systems, pp. 1981-1983, Mexico, May 2002.

Page xv

Publications

[12] Peter Celinski, Sorin D. Cotofana, and Derek Abbott, “Generalized, Compact (m,n) Counters for
High Speed Multipliers,” Proc. SPIE International Symposium on Smart Materials, Nano-, and Micro-
Smart Systems, pp. 205-213, Melbourne, Australia, December 2002,

[13] Peter Celinski, Jose F. Lopez, Said Al-Sarawi, and Derek Abbott, “Low Depth Carry Lookahead
Addition Using Charge Recycling Threshold Logic,” Proc. IEEE International Symposium on Circuits
and Systems, pp. 469-472, Phoenix, USA, May 2002.

[14] Peter Celinski, Jose F. Lépez, Said Al-Sarawi, and Derek Abbott, “Compact Parallel (m,n) Coun-
ters Based on Self Timed Threshold Logic,” IEE Electronics Letters, vol 38, no 13, pp. 633-635, June
2002,

[15] Peter Celinski, Jose F. Lopez, Said Al-Sarawi, and Derek Abbott, “Low depth, low power carry
lookahead adders using threshold logic,” Microelectronics Journal (Elsevier), vol. 33, No. 12, pp. 1071-
1077, 2002.

[16] Peter Celinski, Derek Abbott, and Said Al-Sarawi, “Level sensitive latch,” US Patent number
6,542,016, April 2003.

[17] Peter Celinski, Sorin D. Cotofana, Jose F. Lopez, Said Al-Sarawi, and Derek Abbott, “State-of-
the-Art in CMOS Threshold Logic VLSI Gate Implementations and Applications,” Proc. SPIE VLSI
Circuits and Systems Conference, vol 5117, pp.53-63 Spain, May 2003 (invited).

[18] Peter Celinski, Sorin D. Cotofana, and Derek Abbott, “A-DELTA: A 64-bit High Speed, Compact,
Hybrid Dynamic-CMOS Threshold-Logic Adder,” Proc. 7th International Work Conference on Artificial
and Natural Neural Networks, IWANN), pp. 73-80, Spain, 2003.

[19] Peter Celinski, Sorin D. Cotofana, and Derek Abbott, “Area Efficient, High Speed Parallel Counter
Circuits Using Charge Recycling Threshold Logic,” Proc. IEEE International Symposium on Circuits and
Systems, pp. 233-236 Bangkok, Thailand, May 2003.

[20] Peter Celinski, Sorin D. Cotofana, and Derek Abbott, “A Logical Effort Based Delay Model of
Charge Recycling Threshold Logic Gates,” Proc. ProRISC Workshop on Circuits, Systems and Signal
Processing, pp. 43-48, Veldhoven, Netherlands, November 2003 (keynote presentation).

[21] Troy Townsend, Peter Celinski, Said Al-Sarawi, and Michael]. Liebelt, “Hybrid Parallel Counters
- Domino and Threshold Logic,” Proc. IEEE Computer Society Annual Symposium on VLSI — Emerging
Trends in VLSI Systems Design (ISVLSI'04), pp. 275-276, Lafayette, Louisiana, February, 2004.

[22] Peter Celinski, Said Al-Sarawi, Derek Abbott, Sorin D. Cotofana, and Stamatis Vassiliadis, “Log-
ical Effort Based Design Exploration of 64-bit Adders Using a Mixed Dynamic-CMOS/Threshold-
Logic Approach,” Proc. IEEE Computer Society Annual Symposium on VLSI — Emerging Trends in VLSI
Systems Design (ISVLSI'04), pp. 127-132, Lafayette, Louisiana, February, 2004.

[23] Peter Celinski, Sorin D. Cotofana, and Derek Abbott, “Delay Evaluation of High Speed Data-path
Circuits Based on Threshold Logic,” Proc. of 14th International Workshop on Power and Timing Modeling,
Optimization and Simulation (PATMQOS); Santorini, Greece, pp. 899-906, September 2004.

[24] Said Al-Sarawi, Peter Celinski, and Tony Sarros, “Data Converters,” Australian Patent Office,
Application Number 2004906742, November 2004,

Page xvi

Publications

[25] Tony Sarros, Said Al-Sarawi, Peter Celinski, and Kerry A. Corbett, “Optical Threshold Logic Ana-
log to Digital Converters Using Self Electro Optic Effect Devices,” Proc. of SPIE MSN & MSS, vol.
5649, Sydney, Australia, pp. 227-236 December 2004.

Page xvii

Page xviii

List of Figures

1l Model of the Threshold LogicGate 4
2.1 Model of the Threshold Logicgate 10
22 Example networks that implement (a) 3-input AND, (b) 4-input MA-

JORITY and (c) 2-input XOR i 12
3.1 Single-ended voltage mode threshold gates 24
3.2 Differential voltage mode threshold gates including (a) Latched vMOS

and (b) Charge Recycling Threshold Logic 31
3.3 Current mode threshold gates including (a) Latched Comparator Thresh-

old Logic (LCTL) and (b) Equalized Current Mode Threshold Logic (ECMTL) 32
3.4 Differential Current-Switch Threshold Logic 33
4.1 Charge Recycling Threshold Logic (CRTL) Gate circuit 43
4.2 Layout of the CRTL circuit of Fig 4.1 in a 2P/4M 0.35 ym process 44
4.3 Power Dissipation vs. Frequency comparison of the CRTL gate in a 0.35

JTIPIOCESY « & 5 6 s 8 60 % O Q@S @S EF 6 8 ¢ 6 6 8 € 4 % ¥ FE 8 5§ 8 8 3 45
4.4 Input, Enable and Output analog waveforms. 46
4.5 The Self-Timed Threshold Logic gate structure circuit 47
4.6 Static CMOS 4-bit carry generate circuit 55
4.7 Dynamic-CMOS 4-bit carry generate, domino circuit. 56
4.8 Schematic of test chip for experimental functionality verification and de-

IRy MBASOIBIIBINS o » s o s e m/s v 5 § 6 s ¢ § 8 5 6 28 %5 538455 % amwe 59
4.9 Micrograph of fabricated test chip for experimental functionality and

delay measurements in a 3.3 V, 0.35 yum AMS CMOS process 60
4.10 TL gates layouts and micrographs 62

4.11 Plot of measured and predicted CRTL gate delay, dg_.g;, vs. fan-in,n . . 63

Page xix

List of Figures

|
5.2
53
5.4
5.5
5.6
5.7

6.1
6.2
6.3

6.4
6.5
6.6
6.7
6.8
6.9
6.10

6.11
6.12
6.13

6.14

7.1
1.2

Proposed 64-bit adder block diagram 72
16-bit adder carry prefix-tree schematic 73
Statlc-CMOS prefixeell s v svssssmmmswmwnmwm s s v ewssssvs 74
Dynamic-CMOScircuits 75
16-bit AdderLayout . s vsvprvmansuwwsmome s covsonsrs 75
64-bit Adder Layout. o o 76
64-bitadderblock diagram: . oo cw v mmw v s v w w66 6 8585 8w 78
Standard 2:2 and 3:2 CMOS counter circuits 86
Kautz 3:2 counter circuit consisting of two threshold gates 89

Hybrid 3:2 counter circuit consisting of two XOR gates and one three-

input threshold gate with unity weights and a threshold of 2 90
Kavitz I5:d countercite®it « oo o ww ¢ 4 v ¢ s s 6 6 6 ¢ 5 s a4 8 % 65 d83 a3
Mitmick 15 4 coutite eitetit . v v oo « « & 6 o v 5 6 v v 520 2 w52 w0 94
The (7,3) counter truth table and the Minnick TL network 95
Minnick counter networks v v v v v e i e e e 97
Kattzeotinter networks .. . « v o i s s v s 162 i s 5§85 § 35 nmmaa 99
Hybridecounternetworks ccossrvvsasasnasss muwmwa 100
The (1,2, X) hybrid 15:4 counter circuit consisting of XOR gates and a

threshold loglemebwWork. .« . o o o+ v oo 6 ¢ 5 5 ¢ 8.8 8 8 8 8 8 8 5 % e e o w e 102
Symmetric 6 to 3 reduction circuit using standard 3:2 counters 107

Circuit diagram of the proposed STTL Modified Minnick (7,3) counter . 108
Circuit diagram of the proposed CRTL Minnick scheme based (15,4)

COUIEBL o m b © 6@ § 6 6 6 6 6 8 8 § 5 6.0 6 8 6 8§ 8 8§ 5 08 8850 aE#s 109
Simulation results of the STTL Modified Minnick (7,3) counter 110
SEEIdeviee: om ¢ o o s v i v s s e 8 0 555555858 §ETEEEE ST 119

Resistor-SEED (R-SEED) network in which a resistor is connected in se-
s with aSEELY . ¢ i s s s s s s s s 1 5388 588D L PEE 8 8 8 5§ 3 120

Page xx

List of Figures

7.3
74
7.5
7.6
1.7
7.8
7.9
7.10
T.11
7.12
7.13
7.14
1.15

8.1
8.2

8.3

8.4

8.5

8.6

8.7
8.8

Networks for performing the calculations in Equation7.3 121
Digital output of a 2-bit A/D converter from a sinusoidal waveform . . 122
2-bit optical threshold logic ADC, 122
Experimental setup for a 2-bit optical threshold logic ADC 123
Tineshold RBEED results ; : . c s s sss s s v annsvnswmney 3 124
Introducing neu-MOS L e 127
Basic neu-GaAs inverterstructure « « s s s v vv v s e w v w v we ¢ 8 128
Neu-GaAs inverter structure simulationresults 128
Conventional GaAs and neu-GaAs full adder designs 130
Switching of ¢3 during the HSPICE simulation 131
Cout and Cj, Simulation for a neu-GaAsfulladder 131

Delay and power dissipation vs. supply voltage for a 4-bit neu-GaAs RCA133

Delay and Power Dissipation vs Supply Voltage for a 4-bit conventional
GEABRIEA « v v v v oo v v u v 2 a3 35 0 8 8 50 osmmew e e e e s 134

N-Dimensional cubes shown for 1, 2, 3 and 4 dimensions 137

Full adder carry-out function shown on a 3-cube and the three adjacency
planes (edges) corresponding to the three product terms 138
An example of a function requiring two threshold gates in the first (in-

put) layer e e e e 139
All of the Karnaugh map shapes (up to isomorphism) and selected or-
thogonal edges for possible cut-complexes in 2, 3 and 4-dimensions . . . 145
(@) Original Shape on Karnaugh map. (b) A shape isomorphic to the
shapeshownin(a) 146
(a) Karnaugh map and minimum threshold cover for Y = A+ BC (weight

of shape = 6) (b) Corresponding minimally weighted cut-complex (with
re-assigned inputs) and selected orthogonal edges (weight of shape =5) 146
The AON and threshold logic implementationsof Y = A+ BC. 146
(a) Karnaugh map for Y = (A, Ag # B1Bp), (b) The minimum threshold
cover for A < B, (c) The minimum threshold cover for A > B, (d) The
minimally weighted cut-complex and selected orthogonal edges, (e)

The required input re-assignment for both (b) and (c) to obtain (d) 147

Page xxi

List of Figures

8.9 The threshold logic implementation of Y = (AjAg # BiBy)

8.10 The neuron-MOS implementation of Y = (AjAo #BiBy)

9.1 Model of the Threshold Logic Gate

......................

Page xxii

List of Tables

2.1

2.2

2.5

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5

4.6

4.7

5.1

5.2
5.3
5.4

Summary of theoretical constructive results on threshold logic addition
including network depth, gate count, maximum weight and maximum

fan-in e e e e e e 17

Block Save Addition (BSA) hardware requirements for the partial prod-

uct reduction to two partial sum-words indepth-2 19
Partial Product Reduction using Hierarchical Block Save Addition (HBSA)

and Telescopic Sums with Gate Sharing (TSGS) 19
Summary of Reported TL Gate Delay Results 34
Summary of Reported TL Gate Power Dissipation Results 35
Summary of Reported TL Gate Applications 36
Summary of Reported TL Gate Applications (continued) 39
Delay parameters of the 0.35 ym, 3.3V, dM/2P processat 75°C 53
Extracted CRTL gate logical effort, g, parasitic delay, p, parameters . .. 53
Minimum-delay domino-CMOS AND tree designs 57
Statlc CMOS AND tree designs . - + « s s s s s s s s now s mmma s s 57
4-bit carry generate, G:”.LS, and (7,3) counter coy FO4 delay comparison

with CRTL for path electrical effort H=1and 10 58

CRTL and STTL gates implemented on the test chip, the weight values,
threshold range and occupied chiparea 63

Residual floating gate voltage (¢res), measured threshold (all data inputs
x;j set to 0), calculated nggr and measured Dgge 0w .. 63

Summary of 64-bit TL adder results including network depth, gate count,

maximum weight and maximum fan-in 66
MODCVS and CRTL 4-bit adder comparison 70
Normalized Logical Effort (LE) parameters of various gates 79

Comparison of high speed 64-bit adders showing that the pproposed
Prefix-8 adder has significantly lower delay compared to previously pub-
lishedresults 80

Page xxiii

List of Tables

6.1
6.2
6.3
6.4
6.5
6.6

6.7

6.8
6.9

7.1
1.2

Static CMOS 3:2 counter—Ilogical effort analysis 87
Domino 3:2 counter—logical effort analysis 88
A comparison of 3:2 counters (for homogeneous circuits) 91
A comparison of 3:2 counters (for heterogeneous circuits) 92
Comparison of saturatedcounters oo o wwww s oo voe v 103

Comparison of the various designs for saturated (3,2), (7,3) and (15,4)

COUMMEES: & & 5 v ¢ & 5 5 5 8 » & 5 § 6 5 5 5 % © 0 5 5 & o & &b & W% E 5% 0 i 104

Counter comparison (0.35 um 2P/4M process) for Boolean logic (BL),
Charge-Recycling Threshold Logic (CRTL and Shared-capacitor CRTL

(SCRTL) implementations vt . 111
The PPRT latency comparison (in terms of delay parameter¢) 114
Partial product reduction tree area estimates 115
Composite HSPICE parameters 129
Simulation Results fora4-bit RCA 132

Page xxiv

Introduction

“It is clear to me that we will develop silicon neural systems, and that learning how to design
them is one of the greatest intellectual quests of all time.”
— Carver Mead

HIS chapter introduces Threshold Logic and outlines the motiva-
tion for the work in this Thesis. The structure of the Thesis and
the contents of the Chapters are outlined, and the original contri-

butions are summarized.

Page 1

1.1 Context and Technology

1.1 Context and Technology

Arithmetic operations, including addition and multiplication, are critical operations
performed by microprocessors and digital signal processors. Consequently, the design
of high speed and low power adder and multiplier circuits are key requirements in
building a high performance computer. The computer designer’s task is to find a good
solution in the vast design space which spans from the process technology, circuits,
architecture, software up to the algorithm level. In addition to computation speed,

increasingly important is the design for low power dissipation and low cost.

Complementary metal-oxide silicon (CMOS) has now been the dominant underlying
technology for building processors and related components for almost three decades
(Pucknell and Eshraghian 1988, Weste and Eshraghian 1995). Rapid improvements
in the speed and density of CMOS transistors has seen the clock frequency of micro-
processors double every two years and they are expected to reach around 12 GHz by
2010 (SIA 2001). The clock frequency of a clocked microprocessor chip is the most im-
portant design parameter in the quest for higher performance. The minimum clock
cycle time is often set by the adder delay in a processor. Adders are also used in
floating-point arithmetic units, arithmetic logic units, memory addressing and pro-
gram counter updates. Multipliers are important in many computational problems
and complete multiplication units have been integrated in state-of-the-art digital sig-

nal processors and microprocessors.

Gordon Moore observed in 1965 that the number of transistors per unit of chip area
had doubled every year since the integrated circuit was invented and he predicted
that this trend would continue (Moore 1965). This rate has slowed down in processors,
however memory density has continued to approximately double every 18 months
and provides the current definition of Moore’s Law. As the technology nears physical
scaling limits, alternative fabrication technologies and techniques will need to be used

in order for this trend to continue.

As process technology feature sizes continue to shrink, high speed digital VLSI circuit
designers are increasingly faced with the challenging issues of, among others, power
dissipation, signal integrity and design complexity. Threshold Logic based circuits are

a potential candidate for alleviating these design issues.

Page 2

Chapter 1 Introduction

1.2 Threshold Logic

The realization that human brains are far superior to computers in solving many prob-
lems including combinatorial optimization and image and speech processing, despite
the building blocks being several orders of magnitude slower, has led to significant in-
terest in the field of artificial neural networks. This Thesis considers the Boolean model
of an artificial neuron, namely the linear Threshold Logic (TL) gate, that computes a
neural-like Boolean function of binary inputs. The main issues in the study of networks
(circuits) of TL gates include the estimation of their computational capabilities and lim-
itations and the comparioson of their properties with those of traditional Boolean logic
circuits based on AND, OR and NOT (AON) gates. There is strong evidence that TL
circuits are more efficient than AON circuits in implementing a number of important

functions including integer addition, multiplication and division (Beiu et al. 2003).

Threshold Logic has been studied since the 1960’s (Minnick 1961, Winder 1963, Sheng
1965, Dertouzos 1965, Hu 1965, Lewis and Coates 1967, Sheng 1969). It is a possi-
ble alternative or complementary design technique to traditional Boolean logic due to
the greater computational capability of TL gates. There has been a resurgence in TL
research in recent years in the VLSI design community. Whereas the theoretical devel-
opment of TL is mature, satisfactory CMOS implementations of TL gates and circuits
based on these gates have only recently been developed.

Significant questions remain, concerning factors such as performance improvement
and silicon area reduction, which have not been solved by such theoretical studies.
For decades, TL gates have offered the promise of higher functional (computational)
density over traditional logic using AON gates, leading to reduced gate count and
therefore smaller logic networks and faster circuits, however, few practical designs

have been demonstrated.

The computational power of the threshold logic network design style lies in the intrin-
sically more complex functions implemented by such gates when compared to con-
ventional Boolean logic gates. This potentially allows circuit realizations, which re-
quire fewer threshold gates than standard logic gates (Muroga 1971). It is well known
that an arbitrary Boolean function can be realized by a network of threshold gates and
there are many examples where the number of gates required is considerably less than
when conventional logic is used. In contrast, there are also functions where there are

no savings.

Page 3

1.2 Threshold Logic

More recently, a number of theoretical results have shown that TL networks with the
number of levels polynomially bounded can implement functions that require net-
works with unbounded levels of standard logic gates (Impagliazzo et al. 1997). In par-
ticular, important functions like multiple-addition, multiplication, division and sorting

can be implemented by polynomial-size threshold circuits of small constant depth.

Threshold gates operate on the so-called majority or threshold decision principle, where
the gate’s output value depends on whether the weighted arithmetic sum of its in-
put values exceeds a threshold. Conventional simple logic gates, such as AND and
OR gates, are special cases of threshold gates, and Boolean logic may be considered a
sub-set of threshold logic. However, the usefulness of threshold logic as a design al-
ternative is determined by the availability of efficient threshold gate implementations,
where efficiency is measured in terms of delay, power dissipation and silicon area, or

a combination of these.

With regard to silicon implementations, of particular importance is that threshold gates
are more sensitive than conventional gates to transistor mismatch and noise. The sen-
sitivities depend on the particular circuit implementation, and there is frequently a

trade-off between increased logic capability and robustness.

A threshold logic gate is functionally similar to a hard limiting neuron without learning

capability. The gate has n binary inputs xj, X3,..., Xn, a set of corresponding n real
number weights wy, wy,..., w, and a single binary output y, as shown in Fig. 1.1.
W,
X, —
l

Figure 1.1. Model of the Threshold Logic Gate. The gate shows the outputs y after a thresh-

olding operation T that sums inputs x| to X, after multiplication by weights wy,.

The output y is given by (all operators algebraic):

Lt ELiwig>T
Y 0, otherwise.

(1.1)

A device that implements this theoretical model must compute the linear weighted

sum of the binary inputs, store the threshold value and compare the weighted sum

Page 4

Chapter 1 Introduction

to this threshold. The various gate implementations proposed differ in the way they
implement the weights, threshold and comparison. They rely on representing each
distinct weighted sum of inputs and the threshold level by an analogue voltage or

current and will be explored in Chapter 2.

A TL gate can be programmed, either statically (hard wired at design time) or dynam-
ically, to realize many distinct Boolean functions by adjusting the threshold T and/or
the weights w;. For example, an n-input TL gate with unit weights, w; = 1 and thresh-
old T = n will realize an n-input AND gate. The output of this gate is logic 1 if and
only if all inputs are 1. By setting T = n/2 and leaving the weights unchanged, the
gate computes a majority function. This versatility means that TL offers a significantly

increased computational capability over conventional AND-OR-NOT logic.

Significantly reduced area and increased circuit speed can therefore potentially be ob-
tained, especially in applications requiring a large number of input variables, such as
computer arithmetic. For example, to implement the 8-input MAJORITY function (5-
or-more-out-of-8) using conventional 2-input AND and OR gates requires a network
of 47 gates of depth 6. The same function is readily implemented using a single 8-input
threshold gate with unit weights and threshold equal to 5 (T = 5).

A small number of practical circuit examples have emerged since the mid 1990’s, il-
lustrating the potential of TL to reduce circuit area, interconnect (wiring) and to lower
power dissipation when compared to conventional logic. The most advanced circuits
presented to date consist of simple arithmetic components (Celinski et al. 2003c), in-
cluding full-adders, compressors, parallel population counters, single high fan-in ma-
jority/OR/AND gates, Muller-C elements, 4-bit adders and embedded TL flip-flops.

Despite the resurgence of research interest in threshold logic, there remain a number
of unresolved issues in the approaches proposed to date. This Thesis aims to address

these issues:

e The TL gate designs proposed previously have had a high power dissipation
relative to conventional CMOS logic.

e The TL gate designs proposed previously have a high delay relative to conven-
tional CMOS logic.

e The TL gate designs occupy a large area relative to conventional CMOS logic.

Page 5

1.3 Thesis Overview and Organization

e No large scale TL based circuit designs (complete arithmetic blocks) have been

demonstrated that offer advantages over conventional CMOS logic.

e The silicon area savings and performance improvement, which result from the
use of threshold gates for realizing a large scale logic design, have not previously

been determined.

e The extent to which the theoretical advantages of TL (i.e. the exponential to poly-
nomial reduction in gate count for common functions, such as PARITY), offset by

practical implementation issues, including limited precision of weights.

The main aim of this Thesis is to demonstrate, using novel TL gate implementations
and based on a large scale design, the advantages of the threshold logic circuit de-
sign paradigm over conventional CMOS logic in terms of improved power dissipation,

speed performance and area efficiency.

1.3 Thesis Overview and Organization

Chapter 1 introduces threshold logic. Chapter 2 reviews the literature on threshold
logic gate circuit implementations, and theoretical results related to the implementa-

tion of important arithmetic functions using threshold gate networks.

Novel contributions to threshold logic circuit design are presented in Chapter 4, in-
cluding two new threshold gate designs, their performance evaluation and test chip
measurement results. The application of these gates to the design of adder circuits
is described in Chapter 5. In Chapter 6, the focus is on parallel counters and their
application to the design of multiplier circuits. Chapter 7 shows how threshold logic
techniques may be applied to technologies other than CMOS, including Gallium Ar-
senide and Self-Electro-Optical (SEED) devices. Chapter 8 includes a discussion of a
mapping technique developed to aid in the implementation of logic functions using
threshold gates.

Chapter 8 concludes the Thesis with a summary of the outcomes and conclusions, and

recommendations for future work in threshold logic.

Page 6

Chapter 1 Introduction

1.4 Original Contributions

For many years, research in linear threshold logic has focussed on two areas, namely
computational circuit complexity and hardware implementation, with surprisingly lit-
tle overlap between the two. This Thesis aims to establish a connection between the
theory and implementation of threshold logic circuits. Establishing this connection will
lead to solutions for practical problems and inspire new theoretical questions raised as

a result of implementation issues.

The original contributions in this Thesis in the area of threshold logic technology lie
in (i) threshold gate circuit techniques and (ii) threshold logic network design for im-
portant arithmetic operations, including addition and multiplication. The originality
of these contributions is evidenced by the list of patents, journal and conference publi-

cations on Pages xix to xxii.

The work in this Thesis proposes two original CMOS threshold gate circuit topologies,
Charge Recycling Threshold Logic (CRTL) and Self-Timed Threshold Logic (STTL).
These gates exhibit superior delay performance and lower power dissipation com-
pared to any previously proposed threshold gate. The development of CRTL and STTL
was carried out in collaboration with Dr. José F. Lopez at the Research Institute for Ap-
plied Microelectronics at the University of Las Palmas de G.C., Spain, and test chips
were designed in cooperation with the Microelectronic Circuits and Analogue Devices
Research Group in the Department of Engineering Science at the University of Oxford.
The CRTL and STTL gates were experimentally verified, and a new weight-sharing cir-
cuit technique was proposed, which greatly reduces the circuit area cost of CRTL and
STTL based circuits and may be applied to other TL gate designs.

The work presented here has also led to the development of a new, patented level
sensitive latch for use in the design of high-speed, compact flip-flop circuits with low
internal power dissipation and clock load as well as new, patented analog-to-digital

converters based on optical Self-Electro-Optic Devices (SEEDs).

Following the development of CRTL and STTL, a delay modelling technique is pro-
posed, based on the principles of Logical Effort (Sutherland and Sproull 1991), for
the systematic evaluation and design for minimal delay of CRTL based circuits. The
method developed is applicable to other sense-amplifier based TL gates.

To demonstrate the advantages of the threshold logic design paradigm on a non-trivial
circuit problem, two new hybrid CRTL/CMOS-domino adder designs are developed.

Page 7

1.4 Original Contributions

The prefix-8 adder design is shown to be over 1 FO4 delay faster than any other 64-bit
CMOS adder design proposed to date that does not require multiple non-overlapping
clock phases. The adders were developed in collaboration with Assoc. Prof. Sorin
Cotofana from the Computer Engineering Group at the Delft University of Technol-
ogy in the Netherlands.

New parallel counters networks and multiplier circuits are developed, and the pro-
posed partial product reduction schemes are shown to be significantly faster than pre-

viously published implementations.

The adder and multiplier circuits shown in this Thesis are the first published large-
scale designs based on threshold logic which demonstrate conclusively the advantage

of threshold logic over conventional CMOS in arithmetic application.

The original contributions of this Thesis offer benefits to high performance and low
power VLSI processor design and to potential applications of threshold logic in com-
pact low power, portable, wireless devices. Portability is important for aerospace ap-

plications, smart sensors and personal communication systems.

Page 8

Threshold Logic Arithmetic

HE focus of this chapter is the review of significant, recent de-
velopments in threshold logic arithmetic. The theoretical results
in threshold logic addition and multiplication are reviewed and
summarized, providing a context for the original contributions in these ar-

eas developed later in the Thesis.

Page 9

2.1 Neural Computation

2.1 Neural Computation

It is believed that the computational power of neural systems is related to their adap-
tive behaviour, and for this reason the majority of research in the field of neuromorphic
analog VLSI is related to implementing neurons that learn or adapt (Holler et al. 1989,
Hasler et al. 1995). It has also been demonstrated that the elementary function per-
formed by neurons, namely the sum of weighted inputs followed by thresholding, is
in itself, without learning, highly useful. The capability of such building blocks has
been extensively studied and the computational complexity theory of circuits is well
established. However, there has been little work reported in the literature on the link
between theoretical results in threshold logic and work on improved silicon implemen-
tations particularly relating to the polynomial network size using TL versus the expo-
nential circuit size using conventional AON logic required to compute useful Boolean

functions.

Threshold networks have been shown to be particularly efficient in implementing var-
ious important arithmetic functions. For example, integer multiplication can be im-
plemented by a polynomial size threshold circuit of constant depth. This means that
to implement the threshold circuit to compute the multiplication of two n-bit integers,
polynomially many (in n) threshold gates are required. In contrast, using conventional

AON logic gates requires exponentially many gates.

2.2 Threshold Logic vs. Conventional Logic

The model of the threshold gate introduced in Chapter 1, is repeated for convenience
in Fig. 2.1.

W
I

X —
W

2

Figure 2.1. Model of the Threshold Logic gate. The gate shows the outputs y after a thresholding

operation T that sums inputs x| to x, after multiplication by weights wy,.

The Boolean function computed by such a gate is called a threshold function and it is
specified by the gate threshold T and the weights wy,ws,. .., wy,, where w; is the weight

Page 10

Chapter 2 Threshold Logic Arithmetic

associated with the i! input variable x;. It has been shown (Muroga 1971) that any
linear threshold function can be implemented with integer weights. The threshold
function implemented by the model shown in Fig. 9.1 can be written in a more compact

form using the sgn notation:

y=sgn {i WiXj — T} , (2.1)

i=1
where the sgn function is defined as follows, sgn(x) = 1 if x > 0 and sgn(x) = 0 if
x<0.

A threshold logic network will be considered an acyclic graph, in which each connec-
tion is associated with a weight and in which each node calculates the step activation
function defined by Equation 2.1. A threshold logic circuit will be considered to be the
transistor level CMOS implementation of a network, which consists of one or more

threshold gates.

As an example, using the notation of Equation 2.1, the 3-input AND, 4-input MAJOR-
ITY and 2-input XOR functions may be written as in Equations 2.2-2.4 and Figs. 2.2(a)-

(c) show the networks that implement the corresponding functions,

AND(xi, X2, x3) = sgn(x; + x2 + x3 — 3) (2.2)
MA](x1, X2, X3, X4) = sgn(x; + x2 + x3 + x4 — 2) (2.3)
XOR(xy, x3) = sgn{x; + x; —2-sgn(x; + x, —2) — 1}. (2.4)

A device that implements the theoretical model in Fig. 9.1 must compute the lin-
ear weighted sum of the binary inputs, store the threshold value and compare the
weighted sum to this threshold. The gates discussed in later sections follow this parad-

igm, but they differ in the way they implement the weights, threshold and comparison.

A fair question to ask is whether there is a justifiable reason for using threshold gates,
given that any Boolean function can be systematically implemented by AND, OR and
NOT (AON) gates. The reason is that for many important functions, including XOR,
the number of AON gates grows exponentially with the number of inputs to the func-
tion (Wegener 1991). On the other hand, using threshold gates the number of gates is
linear in the number of input bits. In general, a depth-2, AON circuit implementation

of the n-bit XOR function requires at least 2"~! + 1 gates, and only n+ 1 TL gates. The

Page 11

2.2 Threshold Logic vs. Conventional Logic

()

Figure 2.2. Example networks that implement (a) 3-input AND, (b) 4-input MAJORITY
and (c) 2-input XOR. The binary logic inputs are denoted by x; and the binary output
of each gate is denoted by y. The weights and their values for each input are denoted
by the number beside each gate input and the gate thresholds are given by the number

inside the circles. The XOR gate is an example of a two-level threshold logic network.

power of TL based circuits is evident when we observe that for any single AON gate

there is an equivalent TL gate, but the reverse does not hold.

Even though TL circuits are computationally more powerful, the gate implementa-
tions, as will be discussed in the following sections, are more complex and therefore
may potentially require more area and dissipate more power. The central question
to ask is to what extent are the theoretical advantages of TL, i.e. the exponential to
polynomial reduction in gate count, offset by the practical implementation issues. The
answer to this question depends on the complexity of the function to be implemented
—typically the greater the number of inputs to the gate the greater the advantage of
employing TL.

From a practical perspective, it is insufficient to contend with polynomial bounds on

weights and gate number, as the absolute numbers may still be prohibitively large for

Page 12

Chapter 2 Threshold Logic Arithmetic

leading to an efficient or even feasible implementation from a reliability perspective.
Hardware implementations use a finite number of bits for weight storage (whether
programmable or hard-wired) and this translates to a limited precision for the weights .
The precision of the implementation is directly related to its cost, usually in circuit area
and therefore increased capacitance leading to increased power dissipation. Increasing
the precision requires that the TL gate be able to reliably distinguish a smaller quantity;,

either voltage or current, typically in a noisy circuit environment.

If the weighted sum is in the form of a voltage on a capacitor, a higher precision leads to
a larger area of that capacitor (as capacitor mismatch is inversely related to area) and
a greater amount of energy required to charge the capacitor. More importantly, the
ability of a sense-amplifier , which implements the thresholding operation, to resolve
the small voltage difference is dominated by the input-referred offset voltage. This in
turn is related to transistor mismatch in the sensing circuit, which is inversely related

to transistor area, leading to larger transistor requirements.

It is instructive to determine whether there is an inherent advantage of TL gates that
can reliably handle a large number of inputs. We assume that the size of an n-input TL
gate is approximately proportional to n. Under this assumption, it can easily be shown
that a TL gate implementing an n-input AND gate can be replaced by a tree of 2-input
AND gates of which the size is also approximately proportional to n, since the size of
the tree is proportional to the number of 2-input AND gates, which is approximately

1.

However, this scenario changes when we consider a general n-input threshold func-
tion and construct a network of two-input TL gates to implement the same function. It
turns out that the size of this tree is at least proportional to r* (Mead 1989), an order of
magnitude larger than the single gate. This can be understood by comparing the infor-
mation content carried by the signal nodes within the 2-input network and the analog
nature of the summation node of the single TL gate. Within the 2-input network, the
intermediate discrete gate outputs carry less information than the intermediate analog
nodes and hence a larger network is required to compensate for this lost information by
providing a larger number of discrete signal nodes. In addition to allowing a smaller
circuit size for implementing a given threshold function, high fan-in TL gates lead to

networks with reduced depth and hence lower delay.

Page 13

2.3 Threshold Logic Addition and Multiplication

2.3 Threshold Logic Addition and Multiplication

In the last decade, significant progress has been made in the theory of arithmetic circuit

design based on threshold logic. In this section, recent constructive results (i.e. where
the reported method prescribes how to select the weight values and how to construct
the network) for the addition and multiplication of two binary integers are summa-
rized. The main issues to consider relate to the network depth (delay), maximum
required weight values and gate fan-in. Despite the resurgence of activity in this
area during the last decade, there have been very few implementations. The earli-
est examples are the Mark I Perceptron built by Rosenblatt (1958), Widrow’s Memis-
tor (1960) and the DONUT computer (Coates and Lewis 1964). Recent threshold logic
based circuit implementations may be found in the floating point co-processor of MIPS
R2010 (Johnson 1988) , the SUN Sparc V9 (Lev et al. 1995) and the Itanium 2 micropro-
cessor in 2002 (Naffziger et al. 2002).

2.3.1 Addition Networks

The addition of two n-bit binary numbers, X = x, ,X,-2...x0and Y =y, 1, Vp-2...
Yo, is defined as the unsigned sum, S = sp,5,-1,Sp—2... Sy, of X added to Y. There
are many well known techniques for performing addition (Ling 1981, Brent and Kung
1982, Knowles 1999, Beaumont-Smith and Lim 2001). The sum bits s; may be computed
using s; = x; @ y;® ¢ fori=0,1,...,n—1, and s, = c,. The carry bits are ¢; =
(xi-yi) + (xi-¢i-1) + (¥i - ¢i_1), c—1 = 0. Alternatively, the sum bits, s; may be written
as s; = (x;-yi-¢i—1) + [- (x; + yi + ¢;i_1)] and this expression may be implemented
using a single TL gate. The addition operation essentially reduces to computing the

carries, ¢;, from which the sum bits are computed in the final stage of the process.

To date there have been two approaches in the study of TL based adders, theoretical
and practical. The theoretical approach is concerned with the computational circuit
complexity, and this may be divided into two categories. The first is the set of re-
sults that establish existence of solutions and upper and lower bounds on the various
parameters such as network depth and size. The second set includes results that are
constructive and provide a method of determining the weights and interconnection of

TL gates, and is of particular interest to finding efficient circuit implementations.

Theoretical research has also focused on the weights, or more precisely on the ca-

pabilities of TL networks with restricted weights. Particular classes of functions are

Page 14

Chapter 2 Threshold Logic Arithmetic

amenable to physically realizable implementations using gates with low fan-in, small
weights and in shallow depth and polynomially sized networks. This class includes

addition and multiplication.

The existence of a depth-2 adder of polynomial size is well known (Siu and Bruck
1990). It was followed by the first constructive depth-2 majority gate based adder
(i.e. using TL gates with weights of -1, 0 or +1) of size O(n?), first published in 1991
and commonly available in (Alon and Bruck 1994). Table 2.1 provides a more detailed
summary of these results relating to network depth, TL gate count, maximum weight

size and maximum gate fan-in, adapted from (Beiu 2003).

The chronilogically ordered list below summarizes the notable result on the depth,

weight dynamic range and network size for the addition operation.

e 1991 — depth-3 of size n?/2 4+ 7n/2 — 1 (Siu et al. 1991)
e 1991 — depth-7 of size O(nlogn) (Siu et al. 1991)

e 1993 to 1994 - depth-5 of size O(nlogn) (Beiu et al. 1993, Beiu et al. 1994b, Beiu et al.
1994a)

e 1994 - depth-4 to 3 + logn of size 7n to 2nlogn + 5n (Beiu 1994, Beiu et al. 1994a)
e 1994 — depth-3 of size 5n with exponential weights (Beiu 1994, Beiu et al. 1994a)

e 1995 to 1996 — depth-3 of size 6n + 2[n/[n|]| with exponential weights (Cannas
1995, Vassiliadis et al. 1996)

e 1996 — depth 3 of size O(n?/klogn) for any 1 < k < n/logn with polynomial
weights (Vassiliadis et al. 1996)

e 1999 — depth-2 of size n? 4+ 2n with exponential weights (Beiu 1999)
e 1999 — depth-3 of size n\/n + 4n and weights 2 V7 (Beiu 1999)

e 1999 - depth-2 of size 2n with exponential weights 2" (Ramos and Bohérquez
1999)

e 1999 - depth-3 of size 4n with weights 2V (Ramos and Bohérquez 1999).

The above results show the tradeoffs in terms of adder depth vs. size and the related

weight size. The progressive improvements in small depth adders have reduced the

Page 15

2.3 Threshold Logic Addition and Multiplication

size of depth-2 networks from O(n*) with constant weights to O(n) with exponential
weights. In depth-3 and and depth-4, the size has been reduced to O(n) with exponen-
tial weights. These results will be used in Chapter 4 to develop an efficient TL 64-bit
CMOS adder implementation.

Although network size and weight magnitude may not grow exponentially with the
adder width, the best schemes for shallow depth addition still require polynomially
increasing weights. This may lead to absolute values for network size (TL gate count),
weights and fan-in to be prohibitively large for a feasible CMOS implementation, fre-
quently by an order of magnitude. Network depth alone is also insufficient to evaluate
the likely delay or to compare delay of implementations, largely because in a circuit im-
plementation the true delay depends on technological constraints such as wire loading

and fan-out.

Page 16

Chapter 2

Threshold Logic Arithmetic

Table 2.1. Summary of theoretical constructive results on threshold logic addition including

network depth,

gate count, maximum weight and maximum fan-in. The symbol n

denotes the operand width, ¢ denotes a constant, wax denotes the value of the maximum

weight in the network, é denotes an arbitrary parameter constraint and [] denotes the

ceiling operator (lowest integer greater than). Adapted from Beiu et al. [2003].

Year Depth # Gates Wax Fan-ing,ax
Siu & Bruck 2 n* — —_
1990
Alon & Bruck 2 O(n") {-1,0,4+1} n
1991
Siu et al. 3 (n®+7n-2)/2 {-1,0,+1} 2n
1991 7 O(nlogn) {1,041}
Beiu et al. 5 O(nlogn) 28 2n
1994
Beiu 3+ [o] 5+ 2n] 2812 5
1994 4 Tn 2n 2n
d 2dn—n 2 Vn 2 %¥n
3+ % 5n+ m:a(;l% Wisiag 2108 Wenax
Beiu 24 lolgf”] 3n+ ZH[IJ;’?EI] 96/2 5
1994 3 5n 21 2n
4 7n 2vm 2\/n
d 2dn—n AL 29¥n
2+ 1:1g(11+§::,,m7 3n+ mg?:)l% Winax 2log Wiax
Vassiliadis 3 6n+2[n/[/n]] 20Vl 2[ey] +3
et al. 1996
Beiu [m';’g”l] i i g n[lﬂlggf_ll] 90.76 5
1999 d n*yn+2n(d—1) 214 Y 2 3Yn
1+ W]gggﬂﬂ-;{ﬁ gf{—(’)lg‘g&\— O(n) Winax 1.4log Winax
Ramos & d 2(d—1)n—2(d—3)“Vn 2 | 2"Vo™ | 2/nd 2 4 |
Bohérquez 1+ ﬁ&j}j ﬁ% + O(n) Wmax 2logwmay + 1
1999

Page 17

2.3 Threshold Logic Addition and Multiplication

2.3.2 Multiplication Networks

Multiplication is closely related to addition. The product of two n-bit numbers requires
the computation of the sum of n 2n-bit numbers that form the rows of the partial prod-
ucts matrix. Siu and Bruck (1990) showed, based on considerations of multi operand
addition, that the product of two n-bit numbers can be computed in depth-4 using a

polynomially sized (in n) network with polynomially bounded weights.

The multiplication operation consists of three steps. In the first stage of the multiplier,
the partial product bits are generated, typically using AND gates. In the second stage,
the matrix of partial products is reduced to two numbers which are simply added in
the third stage.

The second stage is by far the most expensive in terms of the number of gates and
fan-in per gate. Although it is theoretically possible to implement the second stage
using a depth-2 network, the excessive hardware requirements render conventional
approaches prohibitive. Lauwereins and Bruck (1991) observed that a depth-2 imple-
mentation using Block Save Addition (BSA) (Siu and Bruck 1990) of the second stage
of a 32x32-bit multiplier requires gates with fan-in >1000, and over 20 million con-
nections. In BSA, the partial product columns of n numbers are divided into column-
blocks of logn bits. The sum of one column-block is therefore at most 2logn bits wide
and hence overlaps only the column-block to which it belongs and at most one adja-
cent column-block. As a result, the even and odd column-block sums do not overlap
and the sums of the even and odd column-blocks are concatenated to two partial sum-
words. Siu and Bruck (1990) proved that the sum of a column-block of n numbers
logn bits wide can be determined in a depth-2 polynomially bounded network. Ta-
ble 2.2 (Lauwereins and Bruck 1991) lists the number of gates and fan-in requirements

for common multiplier widths using the BSA scheme.

In order to reduce the hardware requirements, Lauwereins and Bruck (1991) described
two minimizations, while maintaining the depth-2 strategy for the second stage. While
this resulted in significant wiring and gate savings, practical implementation based on
this method for word lengths beyond 16 bits is still not feasible. To reach a practical
hardware solution, Lawereins explored trading off cost for an increase in delay, based
on a Hierarchical Block Save Addition (HBSA) approach. Instead of performing the
entire reduction of the partial product bits in a single step using a depth-2 network,
the n partial product rows are broken down into blocks of numbers, and each block

is reduced to two numbers in one reduction step, and the process is repeated until

Page 18

Chapter 2 Threshold Logic Arithmetic

Table 2.2. Block Save Addition (BSA) hardware requirements for the partial product reduc-
tion to two partial sum-words in depth-2. The table shows that the number of TL

gates and the maximum gate fan-in are very high for a 3232 multiplier.

Multiplier Width | # TL Gates | Max Fan-In
4x4 272 16
3x8 1,950 64
16x16 16,448 256
32x32 133,250 1024

Table 2.3. Partial Product Reduction using Hierarchical Block Save Addition (HBSA) and
Telescopic Sums with Gate Sharing (TSGS). The table shows a significant reduction

in the number of gates required compared to the BSA approach.

Multiplier Width | # TL Gates - HBSA | # TL Gates - TSGS | Max Fan-In
4x4 88 40 16
8x8 310 144 64
16x16 1264 464 256
32x32 4966 1820 1024

two numbers remain. Based on a block size of 8, the 32 32-bit multiplication second
stage now requires approximately 5300 gates with maximum fan-in of 24 (Lauwereins
and Bruck 1991). Further optimizations, based on the observation that certain bits in
the partial product reduction steps are constantly zero, reduce the gate number by ap-
proximately a factor of two. It was also observed that compared to carry save addition
(CSA) using various reduction schemes, the delay of the HBSA is significantly lower
for the same fan-in requirement.

Vassiliadis et al. (1995) proposed further optimizations to the BSA scheme by intro-
ducing a scheme which incorporates Minnick'’s telescopic sums (Minnick 1961) and
a minimization based on gate sharing. While the scheme has the same asymptotic
bounds for the number of gates as that proposed by Lauwereins, for practical mul-
tiplier sizes it reduces the gate count and number of wires by approximately a fac-
tor of two, and the gate count comparison for a depth-2 reduction is shown in Ta-

ble 2.3 (Vassiliadis et al. 1995). The maximum fan-in is the same for both schemes.

Page 19

2.4 Chapter Summary

2.4 Chapter Summary

This Chapter has introduced the concept of threshold logic and its potential advan-
tages when compared to conventional logic design. An outline of the practical issues
faced in the implementation of TL circuits was given and the significant developments
in the design of threshold logic based networks for the arithmetic operations of addi-
tion and multiplication were summarized. The following Chapter takes the opposite
perspective to the network theoretical results presented thus far and looks at the details

of implementing threshold logic circuits using CMOS technology.

Page 20

Threshold Logic Circuit
Implementations

HE focus of this Chapter is the review of significant, recent de-
velopments in Threshold Logic circuit design techniques using
CMOS. A number of gate implementations are described in de-
tail and their relative performance is evaluated and compared. A survey
of notable practical applications in computer arithmetic is given including
a comparison of the relative improvement in one or more metrics for the

same function when compared to conventional static CMOS logic.

Page 21

3.1 Threshold Gate Implementations

3.1 Threshold Gate Implementations

Despite the development of threshold logic over four decades ago, and the theoret-
ically motivated promise of superior performance circuits compared to AON imple-
mentations, lack of efficient physical realizations has meant that TL has, over the years,
had little impact on VLSI. Efficient TL gate realizations have recently become available
(Shibata and Ohmi 1991, Kotani et al. 1995, Avedillo et al. 1995, Ozdemir et al. 1996,
Bobba and Hajj 2000, Celinski et al. 2001, Padure et al. 2002b), and a number of applica-
tions based on TL gates have demonstrated its ability to achieve high operating speed
and significantly reduced area (Ozdemir et al. 1996, Celinski et al. 2001, Padure et al.
2002b, Celinski et al. 2003a, Celinski et al. 2004). |

A number of recently proposed CMOS TL gate designs are now reviewed. Rather than
presenting an exhaustive review of all previously reported gate designs of note, the
main focus is on those designs that have led to the design of high-speed TL based
circuits. The reason for this is to establish a framework for developing digital sys-
tems, based on CMOS TL gates, which have performance competitive with that of
conventional static or dynamic-CMOS. A short summary of other notable gate im-

plementations is also included, a comprehensive historical survey may be found in
(Beiu et al. 2003).

The requirements for high speed and high fan-in lead to the consideration of predom-
inantly dynamic, differential gates. The gates considered here may be classified as
either voltage mode or current/conductance mode. The voltage mode designs dis-
cussed here include neuron-MOS (¥MOS) (Shibata and Ohmi 1992) (the only static
gate considered), Capacitive Threshold Logic (CTL) (Ozdemir et al. 1996), Latched
neuron-MOS (L-vMOS) (Kotani et al. 1998) and Charge Recycling Threshold Logic
(CRTL) (Celinski et al. 2001). The current mode designs include Latched Compara-
tor Threshold Logic (LCTL) (Avedillo et al. 1995), Equalized Current-Mode Thresh-
old Logic (ECMTL) (Bobba and Hajj 2000) and Differential Current-Switch Threshold

Logic (DCSTL) (Padure et al. 2002b).

The important gate features are speed of operation, maximum sum-of-weights (or,
equivalently, the fan-in where all weights are equal), area and power dissipation. The
maximum sum-of-weights sets the minimum signal level (voltage or current) which is
required to be resolved by the comparator in the TL gate. A high value of fan-in gen-
erally leads to shallow depth logic networks and therefore reduced circuit delay . An-

other desirable feature is the ability to easily implement negative weights, since some

Page 22

Chapter 3 Threshold Logic Circuit Implementations

arithmetic operations are conveniently expressed in the form of Equation 2.1 where
the values of w; are negative. Ease of dynamic re-programmability of the weights and

threshold may also be important in reconfigurable logic operations.

3.1.1 Voltage/Charge Mode TL Gates

The voltage mode TL. gate implementations described here are based on the principle
of the capacitive synapse proposed in (Cilingiroglu 1991). The underlying concept is
the use of an array of capacitors to implement the weighted sum of inputs, connected
to the gate of a MOS transistor (the so-called vMOS transistor (Shibata and Ohmi 1991),
also known as the Multiple Input Floating Gate transistor). Typically, in CMOS tech-
nology these capacitors are implemented between the polysilicon 1 and polysilicon 2
layers. Figures 3.1 and 3.2 depict the four voltage mode gates considered here, includ-
ing YMOS, Capacitive Threshold Logic, Latched vMOS and Charge Recycling Thresh-
old Logic.

rMOS

The vMOS transistor based static TL gate proposed in the early 1990s uses an array
of capacitors to implement the input weights, followed by one or more inverters to

implement the thresholding operation, as shown in Fig. 3.1(a).

The input of the first inverter in the chain in Fig. 3.1(a) is effectively floating, and its
voltage is given by

ie1 Ci%i

Ctot ’

where Ci is the sum of all capacitances at the floating node, including parasitic ca-

E = 3.1)

pacitances. The switching point of the first inverter in the chain, the primary inverter,
determines the gate threshold, and the subsequent inverters serve to generate a full
swing rail-to-rail output voltage. This expression assumes that no charge is initially
present on the floating node. The presence of this charge is, however, unavoidable
as a result of fabrication, and for this reason techniques such as UV erasure must be
used (Shibata and Ohmi 1991). The vMOS gate suffers from limited fan-in (typically
<12) due to variability of the switching threshold of the primary inverter as a result
of process variations. It is also relatively slow and has a high data dependent power
dissipation as a result of the static current flowing from V34 to Gnd in the primary in-

verter when the floating gate voltage is not at one of the supply rails. The gate is highly

Page 23

3.1 Threshold Gate Implementations

\
G+ CZ% N Cn%
X, x, X

(@
Ve
o O S S
()

Eyﬁn

¢Llgl gl L€l
‘L i n—L
q’E‘iL """" R
x Xy x; X,
(b)
Figure 3.1. Single-ended voltage mode threshold gates.

capacitors C;. The weighted sum of inputs corresponds to the floating gate voltage ¢ in

both cases. The inverter chain is used to

output y.

compact and relatively simple to design, and

by adding control capacitors (Shibata and Ohmi 1992). Negative weights can not be

implemented in the vMOS gate.

Capacitive Threshold Logic

To overcome the limited fan-in of vYMOS, Capacitive Threshold Logic was proposed
to the clocked-vMOS (Kotani et al. 1995)
gate, proposed at approximately the same time. The circuit schematic of the CTL gate

(Ozdemir et al. 1996). The CTL gate is similar

perform the thresholding operation to generate

the gate threshold may be programmed

Page 24

These include (a) ¥MOS and (b)
Capacitive Threshold Logic. The inputs x; are applied to weights implemented using

Chapter 3 Threshold Logic Circuit Implementations

is shown in Fig. 3.1(b). An n-input CTL gate comprises n weight-implementing capac-
itors (C;) followed by one or more inverters which function as voltage comparators to
generate the binary output. The main difference between CTL and neuron-MOS lies in
the way the value of the gate threshold is set. In CTL, the threshold value is a function

of an external reference voltage Ves.

The CTL gate operates in a two-phase non-overlapping clock scheme consisting of a
reset phase ¢ and an evaluate phase ¢g. During the reset phase the row voltage ¢ is
reset to the threshold voltage V, of the primary inverter, while the capacitor bottom
plates are set to the reference voltage Ves. During the evaluation phase, the row voltage
is perturbed from Vj;, by the inputs x; which now become capacitively coupled onto the
effectively floating input to the primary inverter. The magnitude of this perturbation
is a function of Ve, which effectively controls the threshold of the gate. The floating

gate voltage, during the evaluation phase, is given by

4 E?:l Ci(Xi - V;‘ef)
Ctot ‘

Due to the reset mechanism, CTL does not require UV erasure of residual floating

E = Vi (3.2)

gate charge. The gate also has a significantly increased fan-in of up to 255 inputs
(Ozdemir et al. 1996) compared to vMOS since the switching point variability of the
primary inverter no longer influences the effective gate threshold. This is similar to the

offset cancellation mechanism in chopper type comparators.

The drawbacks of the CTL gate are that it requires a complex clocking scheme and it
also suffers from high static power dissipation and low speed for similar reasons as
vMOS. The gate also requires an analog reference voltage to set the threshold value
which leads to difficulties in implementing CTL circuits with a large number of gates
with different threshold values. The analog-reference voltage problem was overcome
by the introduction of the Capacitor Programmable Capacitive Threshold Logic gate
which requires only binary logic levels and Vzq/2 for programming (Stokman et al.
1998).

Latched neuron-MQOS

The Latched vMOS gate (Kotani et al. 1998, Luck et al. 2000)—also referred to as Sense-
Amplifier YMOS—was introduced to overcome the high power dissipation of the YMOS

and CTL gates. The gate uses a current-controlled latch-sense amplifier circuit (cross

Page 25

3.1 Threshold Gate Implementations

coupled transistors M1-M4) instead of an inverter to perform thresholding. The gate
uses the previously described vMOS structure to compute the weighted sum of in-
puts as illustrated in Fig. 3.2(a). Device parameter fluctuations are compensated by the
differential amplifier configuration and the gate was shown to have significantly re-
duced power dissipation when compared to CTL (or clocked-vMOS) and static CMOS
(Kotani et al. 1998). The fan-in is also expected to be higher than vMOS and negative
weights may be implemented, due to the differential circuit structure. The threshold
value may also be programmed conveniently by adding additional control capacitors.
UV erasure or other technological measures must be used to remove residual floating
gate charge (Luck et al. 2000).

Charge Recycling Threshold Logic

Another CMOS threshold gate realization has been proposed that was intended to
solve the problem of high power dissipation and low speed of CTL and vMOS. The
CRTL gate has low power dissipation while providing very high operating speed
(Celinski et al. 2001). Fig. 3.2(b) shows the circuit of the Charge Recycling Threshold
Logic (CRTL) gate. The sense amplifier (cross coupled transistors M1-M4) generates
output y and its complement y. Precharge and evaluate are specified by the enable
clock signal E and its complement E. The inputs x; are capacitively coupled onto the
floating gate ¢ of M5, and the threshold is set by the gate voltage T of M6. The potential
¢ is given by ¢ = Yi | Cix;/ Cior, where Cio is the sum of all capacitances, including
parasitics, at the floating node. Weight values are thus realized by setting capacitors
C; to appropriate values. Negative weights may be easily implemented by using a
second capacitive array on the gate of M6 to generate T. The gate was shown to reli-
ably operate at high speed (with fan >20) (Celinski et al. 2001). The gate does not have
static power dissipation. The drawback of the gate is the requirement for UV erasure of
residual floating gate charge. A related self-timed gate implementation has also been
proposed (Celinski et al. 2002a).

3.1.2 Current/Conductance Mode TL Gates

The second class of TL gate implementations described here is based on the principle of
comparing current (or conductance). Early conductance mode gates based on pseudo-
nMOS or output-wired inverters (Schultz et al. 1990) were fast but suffered from high

power dissipation and limited fan-in. Recently, a number of high-speed differential

Page 26

Chapter 3 Threshold Logic Circuit Implementations

solutions have been proposed, including Latched Comparator Threshold Logic, Equal-
ized Current-Mode Threshold Logic and Differential Current-Switch Threshold Logic.

The underlying principle of these schemes is the use of an array of MOS transistors
to implement the weighted sum of inputs in the form of a net conductance, which is
compared to the net conductance of a similar array of MOS transistors used to imple-
ment the gate threshold. To obtain high speed, the comparator is implemented in the
form of cross-coupled inverters. Figures 3.3 and 3.4 depict the three current mode gates

considered here.

Latched Comparator Threshold Logic

The Latched Comparator Threshold Logic (Avedillo et al. 1995) gate shown in Fig. 3.3(a)
consists of a current-controlled latch formed by transistors M1-M4. The input transis-
tor array is a set of identical NMOS parallel transistors with gates connected to inputs
X1,...,Xp. Similarly, parallel transistors with gates connected to f,...,t; implement the
threshold. Input weights are implemented by connecting each input signals to one ore
more input transistor gates. Two additional transistors, Mx and My, ensure correct

operation in the event that the weighted sum is equal to the threshold value.

The clock signal (clk) controls the precharge and activation of the sense circuit. The
gate has two phases of operation, the precharge phase and the evaluate phase. When
clk is low the nodes y; and y are precharged to Vgq. When clk is high, the input
array and threshold setting array draw unequal currents from the precharged nodes y;
and y;. The current-controlled latch amplifies the difference in potential now present
between y; and yj, accelerating the transition until either y; or y; reaches Vyq. In this
way the circuit structure determines whether the net conductance of the input array is
greater than or less than the net conductance of the threshold array and a TL gate is

realized.

The gate does not have static power dissipation. Reliable operation with fan-in up to
20 has been reported, the gate can implement negative weights and the threshold value
may be dynamically programmed. The drawback of the gate is the large capacitance
at nodes x and y which slows down the sensing. To overcome this, a modified imple-
mentation in the form of Cross-coupled Inverters with Asymmetric Loads Threshold

Logic (Ramos et al. 1998a) was proposed.

Page 27

3.1 Threshold Gate Implementations

Equalized Current Mode Threshold Logic

The Equalized Current Mode Threshold Logic (Bobba and Hajj 2000) gate is shown
in Fig. 3.3(b). The gate also consists of a current-controlled latch formed by transis-
tors M1-M4 and two banks of identical PMOS input transistors and threshold setting
transistors. The important distinction is that the voltage swing is limited on the input
nodes xi,...,xp and internal nodes to provide very low power dissipation on intercon-
nects while maintaining high switching speed. The interconnect voltage is generated
by a low voltage-swing interconnect driver (not shown) which converts the rail-to-rail

outputs yand yto a low voltage which is used to drive subsequent ECMTL gate inputs.

The clock signal (c1k) controls the equalization and activation of the sense circuit. The
gate has two phases of operation, the equalize phase and the evaluate phase. When
clk is low the nodes y and y are equalized. When clk is high, the input array and
threshold setting array draw unequal currents from Vj4 and charge nodes y and y
at different rates. The current-controlled latch regenerates the difference in potential

between y and y, accelerating the transition to full swing outputs.

Reliable operation of ECMTL with up to 8 inputs has been reported, the gate can im-
plement negative weights and the threshold value may be dynamically programmed.
The main drawback of the gate is the requirement of a low-voltage swing driver with
a separate low voltage supply to drive the gate interconnects. The gate has no static

power dissipation.

Differential Current-Switch Threshold Logic

Finally, the Differential Current-Switch Threshold Logic (Padure et al. 2002b) gate is
shown in Fig. 3.3(c). The gate is based on the Differential Cascode Voltage Switch
Transistor Logic (DCSTL). It consists of a cross-coupled inverter latch formed by tran-
sistors M1-M4 and two banks of identical n-channel MOS input transistors and thresh-
old setting transistors. The clock signal (c1k) controls the precharge and activation of
the latch. The gate has two phases of operation, the precharge phase and the evaluate
phase. When c1k is low the nodes y; and y; are precharged to V3. When clk is high,
the input array and threshold setting array draw unequal currents and discharge nodes
y1 and y; at different rates. The latch regenerates the difference in potential between y
and y, accelerating the transition to full swing outputs. Transistors M6 and M7 reduce
the voltage swing on nodes a and b and cut off the static current during evaluation,

reducing the power dissipation.

Page 28

Chapter 3 Threshold Logic Circuit Implementations

Reliable operation has been reported for DCSTL gates with up to 64 inputs (Padure et al.
2003), the gate can implement negative weights and the threshold value may be dy-

namically programmed. The gate has no static power dissipation.

3.1.3 Other Gate Implementations

A large number of VLSI circuit implementations of the threshold gate have been pro-
posed (Beiu et al. 2003). In addition to the previously mentioned “high performance”

gates, other notable implementations include:

e Static CMOS majority gate based circuits.

e Null Convention Logic (NCL) (Fant and Brandt 1994).

e Complementary Pass Transistor Logic (CPL) (Quintana et al. 2001).
e Balanced-Capacitive Threshold Logic (B-CTL) (Garcia et al. 2000).
e CMOS Capacitor Coupling Logic (C3L) (Huang and Wang 2000).

e Output Wired Inverter (also known as Ganged-CMOS) (Schultz et al. 1990) and

its variations.

e Pseudo-nMOS and its variations.

3.1.4 Gate Implementation Comparison

To compare the performance of the gates, the results published in the literature must
be normalized. The main difficulties in providing a fair comparison are that results
for the different gates are reported for various process technologies and in different
circuit applications. More often than not, results presented are based on simulations
alone and not measurements from fabricated circuits. This may lead to optimistic de-
lay, power dissipation or estimated area results where layout techniques to minimize
noise and reduce the influence of device parameter variation to ensure robust opera-
tion are not considered. In some instances, the results presented may also be skewed
to favour a particular figure of merit (delay, area, power, power-delay product, maxi-

mum sum-of-weights etc.) without providing a complete evaluation. For these reasons

Page 29

3.1 Threshold Gate Implementations

the evaluation provided here is in the form of a collection of reported results in the lit-
erature, for delay and power dissipation, and a qualitative assessment of the relative
advantages of each gate. From these results, conclusions may be drawn about the suit-

ability of a particular gate for a given circuit design problem.

The focus of this section is on representative gates and small-scale circuits. Large scale
arithmetic circuit applications are the subject of the next section. Table 3.1 summarizes
the delay results reported in the literature for single gate circuits for each TL gate dis-
cussed in this work. The table gives the circuit function implemented using the given
gate, the process technology used and the gate delay. In the case of the L-vMOS gate,
delay is not explicitly reported, so a delay number is inferred from the reported data
rate. The CTL delay numbers exclude the reset-phase time, which is of the order of
1000’s of evaluation cycles (Padure et al. 1999).

Page 30

Chapter 3 Threshold Logic Circuit Implementations

t
clk | ms hWEL M6 |- clk
_\’«;Q 2l | % D&?
A

-

£
-~
.
=
~
=

AN
|
CLCl...Cl|M9 MlO{»me
ET 'ZT HT
X X.

(a)

E @kﬁ@

<M .
-0
[>)

{oe]

Y E
I M6 I»T
gl Gl ; Lol |
T T AT
Mo *n

E~| M7
4* MI10
M1 }7

(b)

Figure 3.2. Differential voltage mode threshold gates including (a) Latched vMOS and (b)
Charge Recycling Threshold Logic. In both gates, the inputs x; are applied to
weights implemented using capacitors C; and the weighted sum of inputs corresponds
to the floating gate voltage ¢ in both cases. The gate thresholds are set using analog
voltages on the opposite side of the sense amplifier. The cross-coupled inverter based
sense-amplifier is used to perform the thresholding operation to generate output y and

its complement.

Page 31

3.1 Threshold Gate Implementations

clkq[ms M%”)A #Elu Mf._|oc|k
| |5 D&T

clk _HEM Mak clk
x ;

o

ok

s
_‘:ﬂ
_i==*
[z 1
Ed

— 5 o

«J

: _]t'w .

-
e

(b)

Figure 3.3. Current mode threshold gates including (a) Latched Comparator Threshold Logic
(LCTL) and (b) Equalized Current Mode Threshold Logic (ECMTL). The inputs
x; are applied to weights implemented using transistors. The weighted sum of inputs
corresponds to the current one one side of the circut. Cross-coupled inverter based
current sensing amplifiers are used to perform the thresholding operation to generate

output y and its complement.

Page 32

Chapter 3 Threshold Logic Circuit Implementations

F

!

clk@“ﬁm MFF—X—@(M2 MI\E“:} clk
y v
¥ 0<} 71 Y {>07 j‘;

M3 }—><—{ M4
clk«{ M5

clk~| M3 Mo I»clk

Figure 3.4. Differential Current-Switch Threshold Logic. The inputs x; are applied to weights
implemented using transistors. The weighted sum of inputs corresponds to the current
one one side of the circut. The gate threshold is set using a bank of transistors on
the opposite side of the sense amplifier. Cross-coupled inverter based current sensing
amplifiers are used to perform the thresholding operation to generate output y and its

complement.

Page 33

3.1 Threshold Gate Implementations

Table 3.1. Summary of Reported TL Gate Delay Results. The table summarizes the reported

delay for a range of TL based circuits implemented in a range of process technologies.

Gate Function Process Delay

vyMOS 5-1/P majority (Lashevsky et al. 1999) 0.8 ym, 5V 0.7 ns

CTL 20-1/P OR (Padure et al. 1999) 0.5 um, 5V 5ns
30-1/P majority (Ozdemir et al. 1996) 1.2 ym 6 ns

L-vMOS | 7-1/P no. detector (Kotani et al. 1998) 0.6 um 1 ns

CRTL 4-bit carry (Vassiliadis et al. 1996, Celinski et al. | 0.35 pm, 3.3 V | 250 ps
2003a)

LCTL 20-1/P majority (Avedillo et al. 1995) 0.7 um, 33V | 35 ns
31-1/P AND (Padure et al. 2002b) 1.6 ym, 33V | 1.7ns

ECMTL | 8-1/P majority (Bobba and Hajj 2000), 0.18 pm, 1.5V | 300 ps
AND and OR

DCSTL | 31-1/P AND (Padure et al. 2002b) 1.6 ym, 3.3V | 0.7 ns
4-bit carry (Vassiliadis et al. 1996, Padure et al. | 0.25 ym, 2.5V | 290 ps
2002¢)

Page 34

Chapter 3 Threshold Logic Circuit Implementations

Table 3.2. Summary of Reported TL Gate Power Dissipation Results. The table summarizes
the reported power dissipation for a range of functions implemented using various TL

gates implemented in a range of process technologies.

Gate Function Process Power Dissipation

rMQOS 5-1/P majority (Lashevsky et al. 1999) | 0.8 ym, 5 V 280 pW (static)

CTL 20-1/P majority (Celinski et al. 2001) | 0.25 ym, 2V | 410 yW at 200 MHz
L-vMOS | 7-I/P no. detector (Kotani et al. | 0.6 um 400 ;W at 100 MHz
1998)

CRTL 20-1/P majority (Celinski et al. 2001) | 0.25 ym, 2V | 200 pW at 200 MHz

LCTL 20-1/P majority (Celinski et al. 2001) | 0.25 ym, 2V | 350 pW at 200 MHz

20-1/P majority (Avedillo et al. 1995) | 0.7 ym, 3.3V | 410 W at 100 MHz

ECMTL | 8-1/P majority (Bobba and Hajj 2000) | 0.18 pm, 1.5 V | 45 yW at 200 MHz

DCSTL | 31-I/P AND (Padure et al. 2002b) 1.6 um, 3.3V | 390 uW (unknown
freq.)

Table 3.2 summarizes the power dissipation results reported in the literature for single
gate circuits for each TL gate discussed in this work. The table shows the circuit func-
tion implemented using the given gate, the process technology used and the power

dissipation result under the given conditions.

3.1.5 Design Considerations

A number of TL specific circuit design issues related to the mixed signal (multi-valued)
nature of the circuits must be considered, where each distinct weighted sum is repre-
sented by an analogue current or voltage. The first issue relates to the reliable operation

of networks based on the threshold gates. The input offset voltage of the comparator is

Page 35

3.1 Threshold Gate Implementations

Table 3.3. Summary of Reported TL Gate Applications. The table summarizes the reported
chip area utilization for a range of TL based circuits implemented in a range of process
technologies. Where available, a static CMOS comparison is included, illustrating a

significant advantage of TL in either or both area and speed.

Gate Function Process | Results CMOS Compari-
son
vMOS | 5-input majority | 0.8 ym | 390 um? 60% less area,
(Lashevsky et al. 1999) 17% slower
Full adder (Hirose and | 2 ym 831 um® area | 45% less area,
Yasuura 1996) (meas.) 30% slower
(15,4) counter using | 1.2 yum | 8 ns delay 28% faster
vMOS sorter (Rodriguez-
Villegas et al. 2000)
8-input Muller-C element | 0.8 pm | 4930 ;Lmz, 1.8 ns | 50% less area,
(Rodriguez-Villegas et al. delay, 30 puW at | 44% faster, 94%
2001) 100 MHz (meas.) | lower power
(4:2) compressor | 0.8 ym | 1.2 ns delay 61% faster, 20%
(Quintana et al. 2002) lower power delay
product
(6:2) compressor | 0.8 ym | 1.6 ns delay 64% faster, 22%
(Quintana et al. 2002) lower power delay
product
CTL (31,5) counter | 1.2 um | 42 ns delay | approx. 50% less
(Leblebici et al. 1996) (meas.), 80000 | area
pim?
(8x8)-bit multiplier | 1.2 ym | 70000 pm?, up to | (no comparison
(Leblebici et al. 1996) 30 MHz data rate | provided)
(meas.)

Page 30

Chapter 3 Threshold Logic Circuit Implementations

much more significant than the capacitor mismatch (Luck et al. 2000) in gates that use

a capacitive array is to compute the weighted sum of inputs.

Conversely, the current mode gates are susceptible to the significant input and thresh-
old setting transistor mismatch. In addition, to maintain a symmetrical load on in
the comparator circuit, dummy transistors (Padure et al. 2002b) may have to be used,
which do not perform a computational function and increase the gate area and con-

tribute to increased power dissipation and delay.

Each of the gates must be considered as an analog circuit requiring the use of known
layout techniques to match devices and minimize the impact of noise. These include
substrate voltage control, shielding, isolation, same-orientation layout of transistors
and the use of small parallel transistors to realize larger devices with reduced statistical
parameter variations. It is also worth mentioning that various techniques can can be
used for designing reliable circuits based on unreliable gates, including coding (Hedge
and Shanbhag 1998), hardware redundancy (Muroga 1971) and synthesis techniques

that introduce don't care conditions.

3.1.6 TL Based System Implementations

To provide a perspective on the attainable performance of digital systems designed
using threshold logic, Tables 3.3 and 3.4 provide a collection of results on the design
of digital circuits reported in the literature. The tables include reported measured and
simulated results and show the comparison to equivalent circuits designed using con-
ventional CMOS logic. Where available, the reported comparison is of the given circuit
relative to conventional CMOS logic, either dynamic-CMOS or static-CMOS. For ex-
ample, the YMOS full adder was shown to occupy 45% less area and was 30% slower
than the static-CMOS implementation (Hirose and Yasuura 1996). To the best of the
author’s knowledge, no ECMTL applications, other than single gates, have been re-
ported. Where the reported results are based on fabricated chip measurements, this
is denoted in the table by “(meas.),” all other results are based on circuit or extracted
layout simulations. The table shows that TL potentially offers great advantages com-
pared to conventional logic in terms of area, power or delay across a wide range of

digital circuit designs.

Page 37

3.2 Chapter Summary

3.2 Chapter Summary

This Chapter has reviewed a number of of significant, recent developments in Thresh-
old Logic circuit design techniques using CMOS. A number of gate implementations
were described in detail and their relative performance evaluated and compared. A
survey of notable practical applications in computer arithmetic was given including a
comparison of the relative improvement in one or more metrics for the same function
when compared to conventional static CMOS logic. In the next Chapter, two new ca-
pacitive threshold gate implementations are desribed and a delay model is developed
for the systematic evaluation and design for minimal delay of circuits based on these

gate implementations.

Page 38

Chapter 3

Threshold Logic Circuit Implementations

Table 3.4. Summary of Reported TL Gate Applications (continued).

Gate Function Process | Results CMOS Compari-
son
CRTL (7.3) shared- | 0.35 um | 460 ps delay, 70 | 6% area reduction,
capacitor counter trans., 1850 ymz 45% faster
(Celinski et al. 2003b)
(15,4) shared- | 0.35 ym | 480 ps delay, 140 | (no comparison
capacitor counter trans., 3960 ym?® provided)
(Celinski et al. 2003b)
4-bit adder | 0.25 um | 2280 pum?, 104 | 41% less area,
(Celinski et al. 2002b) trans., 500 uW at | 75% lower power
100 MHz
64-bit hybrid | 0.35 pm | 670 ps critical path | 30% faster, 30%
CRTL/CMOS adder delay, 4325 trans. | fewer trans.
(Celinski et al. 2003a)
LCTL 16-bit adder | 1 pm 126000 Iumz, 11 | (no comparison
(Ramos et al. 1998b) ns delay, 37 pW | provided)
at 3.3V, 100 MHz,
1328 trans.
DCSTL | (7,3) hybrid DC- | 0.25 um | 345 ps delay, 237 | 53% faster, 67%
STL/CMOS counter trans. more trans.
(Padure et al. 2002a)
Mod. DCSTL 16-input | 0.25 ym | 1470 um?, 1.0 to | (no comparison
embedded TL flip-flop 2.1 ns worst case | provided)
(Padure et al. 2003) delay (meas.)

Page 39

Page 40

Capacitive Threshold Logic
Circuit Techniques

“The efficient mapping of a system onto its implementation medium, be it neuron or silicon, is
the essence of the design problem.”
— Carver Mead

HIS Chapter proposes two new realizations for CMOS threshold

gates, Charge Recycling Threshold Logic (CRTL) and Self-Timed

Threshold Logic (STTL). CRTL and STTL have a very low evalua-
tion delay, are suitable for implementing functions with a large number of
variables and have a low overall power dissipation. CRTL operates on a
single phase clock, while STTL is suitable for self-timed operation. A Logi-
cal Effort based delay model is developed for CRTL, and the model is used
to evaluate numerous design examples. Fabricated test chip measurement
results are used to verify the correct functionality of both CRTL and STTL
for a range of gate configurations.

Page 41

4.1 Charge Recycling Threshold Logic

4.1 Charge Recycling Threshold Logic

Both static and dynamic TL gate implementations have been widely reported (Beiu et al.
2003). Purely static gates such as neuron-MOS (Shibata and Ohmi 1991) suffer from
limited fan-in (Kotani et al. 1995), typically less than 12 inputs. Also, some of the exist-
ing dynamic gates have relatively high static power dissipation, and some require mul-
tiple clock phases (Kotani et al. 1995, Ozdemir et al. 1996, Stokman et al. 1998, Huang
and Wang 2000), introducing the drawbacks associated with clock signal routing cost,
clock skew management and clock power dissipation. Although the dynamic ap-
proach proposed in Avedillo et al. (1995) dissipates no static power, its dynamic power

dissipation is comparable to the total power dissipation of other existing approaches.

Fig. 4.1 shows the proposed circuit structure for implementing a threshold gate with
positive or negative weights and threshold. It is based on the charge recycling Asyn-
chronous Sense Differential Logic (ASDL) developed by Kong et al. (1999). The ASDL
comparator architecture from which the CRTL gate is derived implements high perfor-
mance, energy efficient operation by recycling charge. The main element is the sense
amplifier (cross coupled transistors M1-M4) which generates output Q and its comple-
ment Q. The inputs x; are capacitively coupled onto the floating gate ¢ of M5, and the
threshold is set by the gate voltage t of M6. The potential ¢ is given by

¢ =Y Cixi/ Cor, 4.1)
i=1

where Cy is the sum of all capacitances, including parasitics, at the floating node.
Weight values are thus realised by setting capacitors C; to appropriate values. Typ-
ically, these capacitors are implemented between the polysilicon 1 and polysilicon 2
layers, commonly available in mixed signal processes, although alternatives, such as

trench capacitors available in some processes, may also be used.

The enable signal E controls the precharge and activation of the sense circuit. The gate
has two phases of operation, the equalize phase and the evaluate phase. When E is
high the output voltages are equalized to Vj4/2 provided that the capacitive loads at
nodes Q and Qp are equal. When E is high, the outputs are disconnected and the differ-
ential circuit (M5-M7, M10, M11) draws unequal currents from the formerly equalized
nodes Q and Qy. The sense amplifier is activated after the delay of the enable inverters
and amplifies the difference in potential now present between Q and Qj, accelerat-

ing the transition. In this way the circuit evaluates whether the weighted sum of the

Page 42

Chapter 4 Capacitive Threshold Logic Circuit Techniques

inputs, ¢, is greater or less than the threshold, T, and a TL gate is realized. The ad-
vantage of equalizing the nodes Q and Qj to V,4/2, as opposed to precharging to Vjq
as in clocked-vMOS, is that evaluation speed is increased since the cross coupled in-
verters begin evaluation in their transition state. Transistors M10 and M11 turn off the
differential circuit after evaluation is completed to reduce the power dissipation. The
gate is charge recycling because charge which was drawn from the supply rails during
evaluation is re-used during equalization, thus reducing the power dissipation during

one half of the clock cycle.
E Do E
%
avah
Q 0y,
Q; D& Oy

oo
T
E
MIEH—E‘
T 2T .
x] X.

X
2 n E‘{ M7

I I, I 11

E|} Vb
i I - Equalize
E W ‘

f’ \ /— IT - Evaluate
Figure 4.1. Charge Recycling Threshold Logic (CRTL) Gate circuit. The inputs x; are applied

N

. —
oLl ¢l @5

Time

to weights implemented using capacitors C; and the weighted sum of inputs corresponds
to the floating gate voltage ¢». The gate thresholds are set using an analog voltage t on
the opposite side of the sense amplifier. The cross-coupled inverter based sense-amplifier

is used to perform the thresholding operation to generate output (Q and its complement

Qp-

To ensure reliable operation, the gate layout must be symmetrical to minimize the tran-

sistor mismatches and interconnects should be of similar length and width to eliminate

Page 43

4.1 Charge Recycling Threshold Logic

Figure 4.2. Layout of the CRTL circuit of Fig 4.1 in a 2P/4M 0.35 ym process. The bank
of input weight setting capacitors is on the left hand side with the inputs applied from

above, and the right hand side of the diagram shows the sense amplifier circuit.

interconnect related mismatch. The delay of the enable inverter must be sufficiently
large so that the output nodes have sufficient voltage difference at the start of sensing
to overcome any offset voltage present in the cross coupled sensing amplifier caused

by device mismatch.

To evaluate and compare the performance of the proposed CRTL gate against other
CMOS TL gate implementations, a 20-input majority gate (T = 10, achieved by setting
voltage t=V;q/2), was designed in a 0.25 ym process. The 20-input majority function
was also implemented using clocked neuron-MOS (Kotani et al. 1995), CMOS Capac-
itor Coupling Logic (C3L) (Huang and Wang 2000) and the TL gate implementation
reported in Avedillo et al. (1995) (LPTL). The unit capacitance value used in each im-
plementation was 5 fF. To compare the power dissipation, each of the gates was de-
signed to have similar delay, output rise and fall times, and was loaded by equally
sized inverters. All transistors were of minimum length for each implementation and
transistor widths were selected to achieve the above timing requirements. All inputs to
each gate were switched such that during each evaluation cycle the minimum majority
or minority was achieved (11 out of 20 inputs were high or low, respectively), corre-
sponding to the worst-case delay and power dissipation scenario. Also, the power
dissipated in the inverters driving the clock and data inputs was included in the total
power dissipation measured for each gate. Fig. 4.3 shows the HSPICE power dissi-
pation simulation results for each of the gates versus operating frequency for a 2 V
supply. As shown in Figure 4.3, for a typical operating frequency of 200 MHz, CRTL
improves power dissipation by between 15% and 30% over the other CMOS threshold
gate implementations.

Page 44

Chapter 4 Capacitive Threshold Logic Circuit Techniques

Power Dissipation (W)
500u

450ut

400u

clocked neuron-MOS

350u|
300uf
250uf

\

200ut

150u - : : -
50M 100M 150M 200M 250M 300M

Frequency (Hz)

Figure 4.3. Power Dissipation vs. Frequency comparison of the CRTL gate in a 0.35 um
process. Above an operating frequency of 70 MHz, the CRTL gate has noticeably lower
power dissipation compared to clocked neuron-MOS, CCCL and LPTL threshold gate

implementations. The improvement increases with frequency.

To ensure correct behavior under process and operating point variations, the proposed
gate was tested at 45 corners (Vg at 2'V, 2.5 V and 3V, process Slow-Slow, Slow-Fast,
Fast-Slow, Fast-Fast and Typical-Typical, and temperature at -25°C, 75°C and 125°C).
Fig. 4.4 shows the transient waveform results from the HSPICE simulation for the 2 V
typical-75°C corner at 300 MHz.

4.2 Self Timed Threshold Logic

Fig. 4.5 shows the proposed circuit structure for implementing a self-timed threshold
gate variant of the CRTL implementation, which does not use charge recycling. The
main element is the cross coupled NMOS transistor pair (M3, M4) that generates the
output Qand its complement Q after buffering by the two inverters. The gate operates
in two phases. Precharge and evaluate are specified by the dual enable signals E and

its complement Ej. The inputs x; are capacitively coupled onto the floating gate ¢ of

Page 45

4.2 Self Timed Threshold Logic

Volts

En%\

1.5}

Output (Y)
0.5} /
]

0 2n 4In t'i'n
Time (s)

Figure 4.4. Input, Enable and Output analog waveforms.. Simulation results of the CRTL gate

in a 0.35 pm process.

M10, and the threshold is set by the gate voltage T of M11. The potential ¢ is given by
¢ = Y.Ly Cix;/ Cior, Wwhere Ciot is the sum of all capacitances, including parasitics, at the
floating node. Weight values are thus realised by setting capacitors C; to appropriate

values.

The enable signals, E and Ej, control the precharge and activation of the sense circuit.
When E is high the voltages at nodes A and B are discharged to ground. When E is low
and Ej, is high, the outputs are disconnected from ground and the differential circuit,
formed by M10 and M11, draws different currents from the supply via M8 and MS9.
The currents in M8 and M9 are mirrored by M1 and M2 respectively, and the gates
of M3 and M4 (nodes A and B) begin to charge at different rates. As the charging
rates are different and the capacitances at those two nodes are the same (ensured by
identical sizing of the two buffer inverters), a voltage difference begins to develop
between nodes A and B. When this difference is sufficiently large, either M3 or M4
turns on, but not both. The outputs Q and Q are evaluated and passed to the next
stage. In this way, the circuit structure effectively determines if the weighted sum of

the inputs, ¢, is greater or less than the threshold, T, thus realizing a thresholding

Page 46

Chapter 4 Capacitive Threshold Logic Circuit Techniques

3

wlprdpn s

A Do{ ‘i’j
B : E 5

q)\ E——‘ M5 M3 M4 M6 ’——E 0
| M0 . - Ml }—T To next stage
o I M N |E v
| [‘ CZT C::T
R Yo E, % MI2

Figure 4.5. The Self-Timed Threshold Logic gate structure circuit. The inputs x; are applied
to weights implemented using capacitors C; and the weighted sum of inputs corresponds
to the floating gate voltage ¢. The gate threshold is set using analog voltage T on the
opposite side of the sense amplifier. The cross-coupled inverter based sense-amplifier is
used to perform the thresholding operation to generate output () and its complement
(Qp. The circuit includes logic for the self-timed equalization and evaluation signals for

the next stage.

operation. The two buffer inverters serve to provide a balanced capacitive load for

nodes A and B and also to drive the inputs of the next stage.

The next STTL gate is held in precharge until the previous gate evaluates its output.
The enable signals for the next stage are generated by the NAND gate output E} and
its inverse F'. During the precharge phase of the first stage, the enable signals for the
next stage are Ej=0 and E'=1, hence the second stage and all subsequent stages are also
in the precharge phase, and only begins to evaluate after the outputs of the first stage
(Q and Qp) are established. Correct timing is ensured by setting the combined delay of
the two buffer inverters and the NAND gate to be larger than the evaluation delay of
the first gate. Thus, outputs of each gate propagate through the chain in a self-timed
fashion. An additional benefit of the above scheme is that spurious transitions and

hence power dissipation associated with glitching are removed.

Page 47

4.3 Delay Modeling

4.3 Delay Modeling

In this section, a delay model for CRTL is developed based on the recently proposed
theory of Logical Effort . The delay model enables the prediction of the delay of CRTL
based circuits and a systematic comparison of CRTL designs with conventional logic.
Another motivator for developing the model is the desire to avoid the common and
largely unsatisfactory presentation of circuit performance results commonly found in
the literature in the form of delay numbers with insufficient information to allow com-
parison across different process technologies and loading conditions. The model is
applied to the design of a number of common circuits, including 4-bit carry generate
blocks, AND trees, and a (7,3) counter critical path.

4.3.1 Logical Effort

Logical effort (LE) is a design methodology for estimating the delay of CMOS logic
circuits, implementing a given logic function (Sutherland and Sproull 1991, Suther-
land et al. 1999). It provides a means to determine the best number of logic stages,
including buffers, required to implement a given logic function, and to size the tran-

sistors to minimize the delay.

Logical effort is based on a reformulation of the conventional RC model of CMOS gate
delay that separates the effects on delay of gate size, topology, parasitics and load. The
relative simplicity of the method compared to other delay modeling techniques and
sufficient accuracy allow it to be used early in the design process to evaluate alternative

circuits.

The total delay of a gate, d, is comprised of two parts, an intrinsic parasitic delay p, and
an effort delay, f, driving the capacitive load. The parasitic delay is largely indepen-
dent of the transistor sizes in the gate, since wider transistors which provide increased
current have correspondingly larger diffusion capacitances. The effort delay in turn
depends on two factors, the ratio of the sizes of the transistors in the gate to the load
capacitance and the complexity of the gate. The former term is called electrical effort, h,
and the latter is called logical effort, g.

Electrical effort is defined as
Cout

Cin’
where Coy and Ci, are the gate load capacitance and input capacitance, respectively.

h= (4.2)

The logical effort, g, characterizes the gate complexity, and is defined as the ratio of the

Page 48

Chapter 4 Capacitive Threshold Logic Circuit Techniques

input capacitance of the gate to the input capacitance of an inverter that can produce
equal output current. Alternatively, the logical effort describes how much larger than
an inverter the transistors in the gate must be to be able to drive loads equally well as

the inverter. By definition an inverter has a logical effort of 1.

The delay of a single logic gate can be expressed as
d=gh+ p. (4.3)

This delay is in units of 7, which is, the delay of an inverter driving an identical copy
of itself, without parasitics. This normalization enables the comparison of delay across

different technologies. The product gh is called the gate or stage effort.

The considerations so far apply to single gates, but may be extended to the treatment of
delay through a path . Using uppercase to denote path parameters, the path electrical
effort, H, is similarly defined as the ratio of the path load capacitance to the path input
capacitance. The path logical effort, G, is given by

c=Tl& (4.4)

where the subscript i indexes the logic gates along the path. The effect of fan-out, which
causes some of the available drive current to be directed off the path being analyzed,

is accounted for by considering the branching effort, b, which is defined as

Con— path =t Coff— path

B e (4.5)

Confpath
and the path branching effort is given by
B= H b;. (4.6)

Finally, the path effort, F, is given by the product of the path logical effort, the path
branching effort and the path electrical effort

F= GBH (4.7)

The path delay, D, is the sum of the delays of each of the gate stages in the path, d;, and
consists of the path effort delay, D, and the path parasitic delay, P,

D =)4
= Dg+ P
=) ghi+) p: (4.8)

Page 49

4.3 Delay Modeling

It can be shown that the path delay is minimized when each stage in the path bears the

same stage effort and the minimum delay is achieved when the stage effort is
fnin = gihy = j 4.9

This leads to the main result of logical effort, which is the expression for minimum
path delay
Do = NV Y +.B. (4.10)
To equalize the effort borne by each stage in the path, the transistor sizes in each logic
gate must be chosen according to the electrical effort given by Equation (4.9)
FL/N
g

This allows us to calculate the input capacitance and hence transistor size (width, as-

hi.min = (4.11)
suming minimum length transistors) by applying the transformation

Cin.i — 8i Cout,i .

(4.12)

fmin
This input capacitance is distributed among the transistors within the gate connected

to the input.

The preceding steps dictate how to size the gates along a path for minimum delay,
taking into account the differing complexity of the gates as given by the logical ef-
fort. Equally important is the selection of the correct number of stages. It has been
shown (Sutherland et al. 1999) that for static CMOS logic, the near optimal stage ef-
fort is approximately 4, and stage efforts from 2.4 to 6 give delays within 15% of the

minumum. Hence the best number of stages is approximately
N = log,F. (4.13)

For domino logic the optimal stage effort is 2 to 2.75 (Sutherland et al. 1999).

To minimize delay, the design should use the correct number of stages of logic and
gates with low logical effort and parasitic delay. Path design may involve iteration,
because the path'’s logical effort depends on the topology of individual gates, but the

best number of stages is not known without knowing the path effort.

The simulated values of logical effort for a range of fanin NAND and NOR gates in
a 0.18 um, 1.8 V CMOS technology were shown to be significantly different from the
theoretical value (Yu et al. 2001). In the same work it was also shown that the delay

Page 50

Chapter 4 Capacitive Threshold Logic Circuit Techniques

value predicted by Equation (4.3) differed from simulation results on average by over
20% for the same range of gates, mainly as a result of the impact on delay time of the
input transition times. However, the accuracy of the delay predicted by Equation (4.3)
can be improved by calibrating the model by simulating the delay as a function of load
(electrical effort) and fitting a straight line to extract T, the inverter parasitic delay, pny,
and the logical effort, g. This technique will be used to develop a calibrated logical
effort based model for the delay of the CRTL gates.

4.3.2 CRTL Delay Model

This section begins by providing a set of assumptions which will simplify the analysis,
a proposed expression for the worst case delay of the CRTL gate and a derivation of
the model’s parameters. The model is then applied to two practical circuit examples.
The method described below may similarly be applied to other sense amplifier based

linear threshold gates.

Notation and Assumptions

The TL gate is assumed to have n logic inputs (fan-in), the total number of gate inputs
connected to logic one is denoted by N, and T is the threshold of the gate. The potential
of the gate of transistor M6, ¢, in Fig. 4.1 is given by

T
t=—x Vid- (4.14)
In the worst case, the voltage ¢ in Equation (4.1) takes the values
p=t=x g (4.15)
where J is given by
Vad

(4.16)

Equation (4.15) expresses the worst case (greatest delay) condition where the difference
between ¢ and t is minimal, ie. the step voltage generated by the sum of inputs with
respect to the threshold voltage is smallest. The value of ¢ = t—§/2 corresponds to the
rising and falling edges of the nodes Q and Qp, respectively, in Fig. 4.1, and conversely
forp =t+46/2.

The gate inputs are assumed to have unit weights, ie. w; = 1, since the delay depends

only on the value of N and T. Also, without loss of generality, it will be assumed that

Page 51

4.3 Delay Modeling

the weights and threshold are positive, since negative weights may easily be accom-
modated in the differential structure of the gate by using a network of input capacitors
connected to the gate of M6.

Since the gate is clocked, delay will be measured from the clock E to Q;-Qp;. Specifi-
cally, delay will be measured as the average of the 50% point on two falling transitions
of E to the 50% points on the corresponding falling and rising edges of Q; and Qy;.
Generally, the delay will depend on the threshold voltage, t, the step size, 4, and the
capacitive output load on Q; and Qp;. To simplify the analysis, the value of t will be
fixed at 1.5 V. This value is close to the required gate threshold voltage in typical cir-
cuit applications. Therefore the worst case delay depends only on the fan-in and gate
loading, and allows us to propose a model based on expressions similar to those for

conventional logic based on the theory of logical effort.

Formulation of the Model and Parameter Extraction

The delay of the CRTL gate may be expressed as Equation (4.17). This delay is the
total delay of the sense amplifier and the buffer inverters connected to Q and Qj, and
depends on the load, h, and the fanin, n, as follows

ds-.0, = {g(n)h+ p(n)}t. (.17

The load, h, is defined as the ratio of load capacitance on Q; (assuming the loads on Q;
and Qp; are equal) and the CRTL gate unit weight capacitance. Both logical effort and
parasitic delay in Equation (4.17) are a function of the fanin.

To determine the values of the parameters in Equation (4.17), the value of the parasitic
delay of an inverter, piy, is first determined. From Equation (4.3), the inverter delay
is d = 1(gh + piny), where by definition g = 1 for an inverter. To obtain the values
of T and piny, it is possible to measure from HSPICE simulations the inverter delay
for various values of electrical effort h, and plot the delay versus h. The slope of this

straight line gives the value of T and the h = 0 axis intercept gives T piny.

The delay parameters for the industrial 0.35 ym process used to obtain the simulation
results presented here and the simulated FO4 (fan-out of four) inverter delay are given
in Table 4.1. The value of 7 is found to be 40 ps.

The values of g and p in Equation 4.17 were extracted by linear regression from simu-

lation results for a range of fanin from n = 2 to 60 while the electrical effort was swept

Page 52

Chapter 4 Capacitive Threshold Logic Circuit Techniques

Table 4.1. Delay parameters of the 0.35 ym, 3.3 V, 4M/2P process at 75°C. This includes
the intrinsic delay parameter T, inverter parasitic delay piny and the FO4 (fan-out of

four) inverter delay.

T Pinv | FO4 delay
40 ps | 1.18 204 ps

Table 4.2. Extracted CRTL gate logical effort, g, parasitic delay, p, parameters. For n =
2 to 60 for the 0.35 um, 3.3 V, 4M/2P process at 75°C and the gate delay normalized
to FO4 for electrical effort h =1, 5 and 10.
n| g | p|deaq | de-qi | de—0i
h=1 h=5 h=10
2 [0346 | 25| 0.55 0.82 1.15
5 10357 33| 071 0.98 1.33
10| 0365 | 40 | 0.84 1.13 1.48
1510376 | 43| 090 1.19 1.56
20 | 0375 | 47 | 0.98 1.27 1.63
30 | 0.400 | 5.0 | 1.04 1.35 1.74
40 | 0.424 | 51| 1.07 1.40 1.80
50| 0439 |52 | 1.09 1.43 1.85
60 | 0.460 | 5.2 | 1.09 1.45 1.90

from h = 0 to 20 as shown in Table 4.2. The Table also gives the absolute gate delay
for three values of electrical effort, h = 1, 5 and 10, where h is the ratio of the load

capacitance to the unit input capacitance of 3.37 {F.

By fitting a curve to the parameters g and p, CRTL gate delay may be approximated in
closed form by
dg_ i = {(0.002n+ 0.34)h + In(n) + 1.6} 7. (4.18)

It should be noted that the FO4 delay predicted by the LE model, d = T(gh+ Bny) =
40(4 + 1.18) = 207 ps, agrees well with the simulated result of 204 ps. Additionally,
the FO4 delay value is approximately 20% higher than that reported in the literature
for a typical 0.35 um process (see for example (Horowitz et al. 1998)), most likely due
to the lower temperature used to obtain those results. For comparison, the FO4 delay
across various process technologies may be closely approximated by 500 ps/micron
(gate length) (Horowitz et al. 1998).

Page 53

4.3 Delay Modeling

In order to use the parameters in Table 4.2 and Equation (4.18), it is necessary to com-
pensate for the parasitic capacitance at the floating gate of M5. From Equation(4.1), the
parasitic capacitance, Cp, contributes to a reduced voltage step, 4, on the gate of M5 in
Fig. 4.1 with respect to the threshold voltage, t, as given by Equation (4.19),

Y1 G }
b d izl g 4.19
off { TG+ G, 0 (4.19)

where §y is the nominal step given by Equation (4.16). This reduction in J is equivalent

to an increased value for the fanin. This effective fanin, ng, is given by

B G+C
nm:{J%%%i}m, (4.20)
=1 “I

where ng is the number of inputs to the gate and ngg is the value used to calculate
the delay. Typically, for a large fanin CRTL gate, by far the major contribution to the
parasitic capacitance will be from the bottom plate of the floating capacitors used to
implement the weights. In the process used in this work, this corresponds to the polyl
plate capacitance to the underlying n-well used to reduce substrate noise coupling to

the floating node.

For example, for a 32 input CRTL gate with 3.37 fF poly1-poly2 unit capacitors (4 ym?),
the parasitic capacitance of poly1 to substrate is 29 fF, and the Y1 ; C; = 32 x 3.37 =
108 fF. From Equation (4.20) the effective fanin to be used in the delay calculation is
((108+29)/108) x 32 ~ 41.

4.3.3 Applying the Model—Design Comparison Examples

In order to illustrate the application of the model presented in the previous Section,
the delay of wide AND gates used in ALUs, the 4-bit carry generate function used
in adders, and the carry-out of a (7,3) parallel counter, designed using both domino
and CRTL are evaluated and compared. In all examples the transistors of the domino
circuits (first stage only for multi stage circuits) are sized to present the same input
capacitance as the minimum sized inverter (1.8 ym of gate width, minimum length),
which is approximately equal to the CRTL unit weight input capacitance, to ensure all

designs affect the delay of the driver equally.

Page 54

Chapter 4 Capacitive Threshold Logic Circuit Techniques

4-bit Carry Generate

The carry generate signal, «, of a 4-bit block may be calculated using a single TL gate
as follows (Vassiliadis et al. 1996) (a; and b; are the input bits at the ih bit significance)

@ = sgn { 3 2!(a; + by) — 24} i (4.21)
i=0
A realistic load corresponding to h = 10 (ie. G, = 33.7 fF) will be assumed. The sum of
weights N = 30, so the worst case delay of this gate will correspond to the delay of a
gate of effective fanin, neg, of approximately 40. From Table 4.2, the expected delay is
1.8 FO4, or 372 ps. Using Equation (4.18), the calculated delay is 379 ps.

b5

Figure 4.6. Static CMOS 4-bit carry generate circuit. The bit-wise carry propagate signals are
denoted using p; and the carry generate signals are denoted using g;. The gate output

is denoted by «.

The static CMOS gate used to compute the same function is shown in Fig. 4.6 (Beaumont-
Smith and Lim 2001). To obtain a fair comparison, the transistors of the static CMOS
gate were sized so that the CMOS gate input capacitance is equal to the input weight
unit capacitance of the CRTL gate, corresponding to wy = 1, or G, = 3.37 fF and the
same load was used. The simulated slowest, gj_3, input delay delay is 1.07 ns (5.3 FO4)
and the fastest, gj, input delay is 634 ps (3.1 FO4). The gate is then sized so that the

Page 55

4.3 Delay Modeling

input capacitance is equal the the largest input capacitance of the CRTL gate, corre-
sponding to w3 = 8, which is 8x3.37 = 27 fF. In this case the simulated slowest and
fastest input delays are 514 ps (2.5 FO4) and 197 ps (0.96 FO4) respectively.

+— clk

lJ

Figure 4.7. Dynamic-CMOS 4-bit carry generate, domino circuit. The bit-wise carry propagate

signals are denoted using p; and the carry generate signals are denoted using g;. The

gate output is denoted using GJJ':_B.

The domino gate used to compute the same function for comparison is the well known
Manchester-carry circuit, shown in Fig. 4.7. The electrical effort and parasitic delay
for the slowest input, gj_3, were extracted from simulation (Sutherland et al. 1999) and
used to calculate the worst case delay for h = 1 and h = 10. The results are summarized
in Table 4.5. It should be noted that the domino gate delay numbers exclude the delay

of generating the bitwise p; and g; signals.

Under the conditions of equal input capacitance and load, the CRTL gate is 1.3 to 1.6
times faster. This is a significant delay improvement even in this case of a function

with a small number of logic inputs.

Wide AND

As a second example, the design of wide AND gates, used for example in ALUs for
zero detection, is considered. The minimum delay domino trees for 8 to 64 inputs
are listed in Table 4.4, e.g. 4, 4, 2 denotes a 3-layer tree design of the 32-input AND
consisting of four 4-input AND gates in the input layer, four 4-input gates in the second
layer and a 2-input gate in the third layer. These minimum delay trees were obtained
by extracting the logical effort and parasitic delay of 2-, 4- and 8-input domino AND
gates from simulations (see Chap. 5 of Sutherland et al. (1999) for details), and finding
the tree which minimizes the sum of effort and parasitic delay. The calibrated electrical

effort and parasitic delay were used in the domino delay calculation.

Page 56

Chapter 4 Capacitive Threshold Logic Circuit Techniques

Table 4.3. Minimum-delay domino-CMOS AND tree designs. Fanin n = 8, 16, 32 and FO4
delay comparison with CRTL for path electrical effort H = 1 and 10. The CRTL imple-

mentation has significantly lower delay for both values of path electrical effort.

n | Domino H=1 H =10
tree Domino | CRTL | Domino | CRTL
8 4,2 1.91 0.84 2.34 1.48

16 4,4 2.33 0.98 2.8 1.63
32| 4,4, 2 3.22 1.07 3.47 1.80
64| 4 4, 4 3.5 1.1 3.93 1.95

Average 2.74 1.0 3.14 1.72

Table 4.4. Static CMOS AND tree designs. FO4 delays for minimum delay for n = 8, 16, 32

and 64 for path electrical effort H = 1 and H = 5.
n Tree FO4 delay | FO4 delay

H=1 H=5

8 4,2 1.94 2.84
16 4,4 2.58 3.38
32| 4,2 2 2 3.32 3.98
6414, 2 4, 2 3.86 454

Table 4.4 shows the FO4 delay for domino and CRTL AND gates with fanin from 8 to
64, for path electrical effort H = 1 and H = 10, corresponding to the values of load
h=1and h = 10 in Table 4.2. Note that increased vales of nu are used to obtain the
correct CRTL delay values from Table 4.2.

Comparing Tables 4.2 and 4.4, the CRTL gate design is on average approximately 1.8 to
2.7 times faster than domino-CMOS for a path electrical effort of 10 and 1, respectively.

Table 4.4 shows the FO4 delay for static CMOS AND trees with fanin from 8 to 64, for
H = 1and H = 5 (Sutherland et al. 1999), corresponding to the values of load h = 1
and h = 5 in Table 4.2.

Comparing Tables 4.2 and 4.4, the CRTL gate design is on average 3 times faster and
2.8 times faster for H=1 and H = 5, respectively.

Page 57

4.4 Test Chip Results

Table 4.5. 4-bit carry generate, Gj—z, and (7,3) counter c,, FO4 delay comparison with
CRTL for path electrical effort H = 1 and 10. The CRTL implementation has

significantly lower delay for both values of path electrical effort.

H=1 H=10
Function | Domino | CRTL | Domino | CRTL
ij‘3 ik 107 | 242 1.8
(7.3) Cowr | 15 084 | 1.9 1.48

(7,3) Counter Critical Path

As the final design example, consider the critical path of a (7,3) parallel counter, com-
monly used in multipliers. The domino critical path for ¢, consists of two full adders.
The CRTL implementation computes the majority function using a single gate, where
the output is logic 1 if 4 or more inputs are 1. The delay results are shown in Ta-
ble 4.5. Under the given loading conditions, CRTL implementation is between 1.3 and
1.8 times faster.

4.4 Test Chip Results

A test chip was implemnted using an industrial double-poly, 4-metal process. The chip
circuit schematic is shown in Fig. 4.8. The main focus was firstly on proof-of-concept of
the functionality of both CRTL and STTL gates. Secondly, the fan-in cabability of was
investigated, and finally delay measurements to verify the validity of the model pre-
sented in Section 4.3.2 were obtained. Both types of TL gate designs were agressively
sized for near optimal delay, as would be required in a performance driven application,
like a high-speed adder design. As will be shown below, the measurements verify cor-
rect functionality.

The micrograph of the fabricated test chip is shown in Fig. 4.9. Due to the limited area
and number of pads available on the test chip! there are seven gates on the chip, four
CRTL gates and three STTL gates, with fan-in (sum-of-weight) ranging from 8 to 64.
The chip consists of a serial-to-parallel shift register (six chained flip-flops) that pro-
vide the data inputs to each of the TL gates and the select signals to the demultiplexer

Test chip was kindly fabricated by the Microelectronic Circuits and Analogue Devices Research
Group, Department of Engineering Science, University of Oxford.

Page 58

Chapter 4 Capacitive Threshold Logic Circuit Techniques

ClkD
D D Q D Q | D Q D Q D Q D Q
= L> L L L L
CIKTL
1:3 DEMUX
,Nq + 4 4 4)\(4 ,Nr 4 +4
'CRTL | |CRTL | |CRTL | |CRTL | ISTTL | ISTTL | ISTTL |

Figure 4.8. Schematic of test chip for experimental functionality verification and delay mea-
surements. From top to bottom, the diagram shows the input shift register, 1:8 de-

multiplexer, bank of CRTL and STTL gates and 8:1 multiplexer.

and multiplexer. Through the 1:8 demultiplexer and 8:1 multiplexer, the shift register
outputs also control the signal path of the input data and TL gate clock to one of the
seven gates at a time, and the output of that gate, buffered, to the output pad of the
chip. In this way, the functionality of each gate may be observed externally and in
isolation. Also, by providing one separate path for the TL clock from its input pad to
the output which is identical to its usual path (where it is used to clock the CRTL and
STTL gates), except that it does not pass through a TL gate, the gate delay (dg_, g;) may
be measured.

Table 4.6 describes the implemented CRTL and STTL gates. Each gate was designed
with three inputs, with the weights for each input given in the table. The total sum of
weights for the gates is 16 (CRTL16), 32 (CRTL32), 48 (CRTL48), 8 (STTLS), 32 (STTL32)
and 64 (STTL64) and this reflects the fan-in corresponding to inputs with unit weights.
The threshold voltage is externally adjustable through an analogue pad connection,
Adjusting the analogue threshold voltage from Gnd to Vjq4 allows the gate threshold T
to be set anywhere in the range from 0 up to n, where n is the sum of weights. In the

case of the CRTL(32,32) gate, a network of capacitors is used to adjust the threshold, as

Page 59

4.4 Test Chip Results

Serial to para]lei shift feg-is'tel:
B i T % p

1:8 DEMUX

8:1 MUX

CRTL and STTL Gates

Figure 4.9. Micrograph of fabricated test chip for experimental functionality and delay mea-
surements in a 3.3 V, 0.35 ym AMS CMOS process. The diagram shows the input
shift register, 1:8 demultiplexer, bank of CRTL and STTL gates and 8:1 multiplexer

corresponding to the functional blocks in Figure 4.8,

described in Section 4.1. In this gate, the three gate inputs are connected to the three

threshold setting capacitors as well as the three input weight capacitors.

This scheme allows testing of a wide range of sum-of-input-weights and threshold
combinations. For example, from Table 4.6, the weight values of [1,5,10] for the CRTL16
gate allow for the input sum-of-weights to take values of 0, 1, 5, 6, 10, 11, 15 and 16.
For the CRTL(32,32) gate, the possible sum-of-inputs and threshold value pairs are
(0,0), (2,3), (12,14), (14,17), (18,15), (20,18), (30, 29) and (32,32).

It is important to note that the CRTL and STTL gates are relatively compact when
compared to other differential implementations. For example, compared to the DCSTL
gate areas reported in (Padure et al. 2003), a 32-input CRTL gate, including the capacitor

Page 60

Chapter 4 Capacitive Threshold Logic Circuit Techniques

network to implement the weights, occupies less than 30% of the area of the 32-input
DCSTL gate—implemented in a smaller feature size technology of 0.25 um, although
not optimized for delay. As discussed previously, this is largely because DCSTL and
other non-capacitive TL gates require dummy transistors, which add a significant area
overhead. Table 4.6 summarizes the area results of the implemented CRTL and STTL
gates. The layouts and corresponding chip micrographs of a CRTL 16-input gate and
an STTL 8-input gate are shown in Fig. 4.10.

Page 61

4.4 Test Chip Results

g

S ¥
§ -

: 1

t £3
-
-
i
E - 3

-

guet en el
. ITe & i

b

.

(© (d)

Figure 4.10. TL gates layouts and micrographs. (a) 16-input CRTL layout, (b) 16-input CRTL
micrograph, (c) 8-input STTL layout and (d) 8-input STTL micrograph.

Page 62

Chapter 4 Capacitive Threshold Logic Circuit Techniques

Table 4.6. CRTL and STTL gates implemented on the test chip, the weight values, threshold

range and occupied chip area.
Gate Weights | Threshold | Area (um?)
CRTL16 {1,5,10} | {0 — 16} 576
CRTL32 {1,11,20} | {0 — 32} 608
CRTLA48 {1,15,32} | {0 — 48} 734
CRTL(32,32) | {2,12,18} | {3.14,15} 018
STTLS8 {1,2,5} {0 — 8} 600
STTL32 {1,11,20} | {0 — 32} 688
STTL64 {1,23,40} | {0 — 64} 800

Table 4.7. Residual floating gate voltage (¢cs), measured threshold (all data inputs x; set

to 0), calculated 1. and measured ngg.

Gate Pres V | tmeas V %‘TTGJ Calculated nug | Measured nep
CRTL16 | 1.86 2.01 1.3 21 22
CRTL32 | 1.75 1.83 1.28 41 41
CRTL48 | 1.58 1.562 1.26 60 55

—4—Measured ——Delay Model

o

1.400 -

1.200

1.000

0.800 1

Delay (ns)

0.600

0.400 -

0.200

e

—
25.000

Fan-in (n)

0.000
0.000

T

5.000 10.000 15.000 20.000 30.000 35.000 40.000 45.000 50.000

Figure 4.11. Plot of measured and predicted CRTL gate delay, di; .¢; vs. fan-in, n.

Page 63

4.5 Chapter Summary

Table 4.7 summarizes the measured residual floating gate voltage for each gate. The
table also lists the measured and calculated values of the effective fan-in, n.¢ as pre-
dicted by Equation (4.20), based on values of capacitance extracted from the layout.
As can be seen from the table, the calculated and measured values of ngg are in close

agreement across a wide range of fan-in.

Figure 4.11 shows the measured and predicted delay results. The predicted (calculated)
delay values are based on Equation (4.18). The two plotted lines are for two different
processes (which have different values of 7) and hence can not be compared directly.
However, what can be clearly seen from Figure 4.11 is that the form of the derived
model of Equation (4.18) is in close agreement with measurement. It can clearly be
seen that, as predicted, the delay has a very weak dependence on fan-in, it increases

very slowly with n.

4.5 Chapter Summary

This Chapter proposes two new realizations for CMOS threshold gates, Charge Recy-
cling Threshold Logic (CRTL) and Self-Timed Threshold Logic (STTL). A delay model
is developed for CRTL and test chip measurement results are used to verify the cor-
rect functionality of both CRTL and STTL. The next Chapter builds on these results to
develop new adder architectures and uses the delay modelling techniques to evaluate

the performance of these adders.

Page 64

Threshold Logic Addition

HIS chapter proposes two new realizations for 64-bit CMOS,

threshold logic adders, and the realizations are shown to be the

fastest 64-bit CMOS adders, not requiring a large number of non-
overlapping clock phases, proposed to date.

The chapter begins by formulating the well known carry-lookahead prefix
scheme in a form suitable for implementation in threshold logic. The first

proposed 64-bit adder is based on a hybrid carry-lookahead/carry-select

scheme using threshold logic and conventional CMOS logic. The adder
is designed, laid out and simulated in a 0.35 um process. The worst case
critical path delay from the simulated extracted layout is shown to be faster

than previously proposed high speed Boolean dynamic logic adders.

The second proposed adder is designed based on systematic transistor level
delay estimation using Logical Effort (LE) presented in the previous Chap-
ter. The adder is a variant hybrid design consisting of domino and CRTL.
The delay evaluation is based on LE modeling of the delay of the domino
and CRTL gates. From the initial estimations, the 8-bit sparse carry look-
ahead/carry-select scheme is selected. Simulations indicate a delay of less
than 5 FO4, which is 1.1 FO4 or 17% faster than the nearest domino design,

based on a comprehensive survey of published adder results to date.

Page 65

5.1 Threshold Logic Addition Schemes

Table 5.1. Summary of 64-bit TL adder results including network depth, gate count, maxi-
mum weight and maximum fan-in. The adders presented in this work use a hybrid of
CMOS and CRTL. The depth of 4 TL gates is in addition to a dynamic-CMOS 2-input
OR gate and a static CMOS 2:1 MUX gate.

Year Depth | # Gates | Wyax | Fan-ingax
Siu et al. 1991 3 2271 1 128
Beiu 1994 4 448 26 128
5 576 256 16
Beiu et al. 1994 3 320 204 128
4 448 256 16
5 576 16 8
Vassiliadis et al. 1996 3 400 64 19
Beiu 1999 2 4224 ghd 128
3 768 2352 16
4 302 49 8
5 693 16 5.6
Ramos & Bohérquez 1999 2 128 i 129
3 240 256 17
4 352 16 9
5 693 16 5.6
— This Work 4 62 1 8
(Prefix-8 Adder)

5.1 Threshold Logic Addition Schemes

Addition is one of the most critical operations performed by VLSI processors. Adders
are used in ALUs, floating point arithmetic units, memory addressing and program
counter updates. The critical requirement of the adder is speed, but low power dissi-

pation and area efficiency have become increasingly important in recent years.

Table 5.1 provides a summary of absolute value results for known threshold logic ad-
dition schemes, discussed in Chapter 2, for 64-bit wide adders. The table focuses on
low depth (up to 5) adders, and lists the depth, number of gates, maximum weight
requirement and maximum fan-in. The addition schemes proposed in this chapter sig-

nificantly improve on these results.

Page 66

Chapter 5 Threshold Logic Addition

The total gate count is the CRTL gate count shown in Table 5.1 and the conventional
CMOS logic used in the design.

5.2 Carry Lookahead Addition

Carry lookahead is a well-known technique for decreasing the latency of addition by
reducing the logic depth to O(log,w), where w is the word length of the addends. It
is one of the fastest addition algorithms, and allows significant design trade-offs to be
made in terms of latency, area and power. The key factor in the proposed addition
schemes is the introduction of high-valency threshold logic carry generate and propa-
gate cells, which leads to reduced logic depth addition networks, and hence reduced

area and power dissipation.

The addition problem can be expressed in the well known prefix notation in terms of
generate, G, propagate, P‘JI and carry ¢; signals at each bit position j for a width w
adder as follows:

- aj.bj, for i=j
G = { G+ PEGL |, for j>k>i ol
SR A J=2k>1

pi— aj—l-:b-, for i=j 5.2)
J PLP, for j>k>|,
where j =0,...,w— 1, ¢; denotes the carry generated at position i and ¢_; denotes the

carry into the LSB position. Assuming that c_; = 0, then the carry signal at position j,
¢j, is given by:

¢ = G (5.3)

The direct approach to implementing this scheme in, for example, static CMOS is not
practical for any useful wordlength w > 16, since the amount of circuitry required to
assimilate the MSB carry becomes prohibitive. For this reason, and also because of the
associative nature of the expressions for G”; and P;] , carry lookahead adders are usually
built using a parallel prefix-tree structure. The threshold logic approach can, however,
be used to design circuits which implement carry lookahead addition in a more direct

and efficient way than the static CMOS prefix-tree approach.

A modified set of the Boolean Equations (5.1)-(5.3) will now be derived in a form suit-
able for implementation in threshold logic. The proposed scheme takes advantage of
the high fan-in capability of TL to design high valency threshold logic prefix-cells, that

Page 67

5.2 Carry Lookahead Addition

is, prefix-cells which compute group propagate, group generate and carry signals from

a large number of input bits.

The input operands (a;, b;), i = 0,...,w— 1, are grouped into n-bit blocks. The first
stage starts with the computation of the group-generate and group-propagate signals
(Gj'.-_n+1 and PJ’ ~™1 for each block, directly from the input operands. A carry is gen-
erated in a group if the sum of the n bits in the group exceeds (is strictly greater than)
the maximum number representable by n sum bits. Therefore a group-propagate sig-
nal Gj:_ﬂﬂ is 1 if the sum of the n bits in the group exceeds the maximum number
representable by n sum bits. Similarly, the group propagates a carry originating in the
neighbouring group of lower significance and the group propagate signal I}’._ﬂﬂ is1
if the sum of the n bits in the group is equal to or greater than the maximum number

representable by n sum bits. This may be written in general equation form as:

: J ,
G " =sgn(), 2FUTm (a4 by) —27) (5.4)
k=j—n+1
. J .
P —sgn() 2407 (a+) — 27— 1). (5.5)
k=j—n+1

Equations (5.4) and (5.5) are exactly in the same form as Equation 2.1, which describes
the operation of a threshold gate. The input weights for calculating G}J:ﬁm*l and PJ].L”Jrl
are the same, and the gate thresholds differ by 1.

An example will serve to illustrate the ideas. Consider a 3-bit grouping of the input
bits (as, bs, a4, by, a3, b3). The group generate signal Gg is 1 if the sum of the inputs is
greater than the largest number representable in the three sum bits (s, s4, s3), which is
7. The group propagate Pg’ signal is 1 if the sum of the inputs is greater than or equal

to 7. This can be expressed as:
Gg = sgn(4as + 4bs + 2a4 + 2by + a3 + bg — 8) (5.6)
ﬁs = sgn(4as + 4bs + 2a4 + 2by + a3 + b3 — 7). (5.7

An expression for calculating GJ? may be written by combining the intermediate group
generate and group propagate signals in the following way:
G} = G¥+ P¥Gi_, + PfP_,G"; +
B PP, ..PE 6 (5.8)

Page 68

Chapter b Threshold Logic Addition

Equation (5.8) can be interpreted as expressing the partitioning of the w inputs into
contiguous blocks in which it is determined where a carry signal is generated and
propagated. Such an expression may also be easily converted into TL form. This is il-
lustrated by the following example for Gi;, where we partition the 16 bits into 4 groups,

and use 4 bit group generate and group propagate signals as follows:

Gls = Gif+ PG} + PP} Gl + Pi{P P G
= sgn(8Gl + 4Pl + 4G} + 2P +2G1 +
el 8). (5.9)

Finally, the sum bits are computed from the truth table for addition as follows:

Sj = sgn(aj e bJ - Cji—1— ZCJ — 1)
= sgn(a;+ bj+ ¢j—1 + 28— 3), (5.10)

where we have used —c; = ¢; — 1 so that all weights are positive.

By exploiting the parallelism inherent in the computation of carry signals as expressed
in Equation (5.8), we can construct carry lookahead adders of significantly reduced

logic depth compared to previous prefix-tree approaches.

One possible 16-bit carry lookahead tree structure is shown in Fig. 5.2. The black cells
consist of two CRTL gates and compute GI?;' signal pairs, the grey cells compute the
carry signals G? and the white cells compute the sum according to Equation (5.10).
Only one capacitive input network is required for computing the pair of GI*;‘. signals
because the input weights for computing group propagate and group generate are the
same, and it is shared by the two CRTL gates which have different thresholds. The
adder has a depth of only 4 gates. This is a significant improvement compared to, for
example, a conventional 16-bit Brent-Kung adder which has a critical path consisting
of 9 gates, i.e. 7 gates for the prefix-tree, one gate for generating p; and g; and finally
one XOR gate for computing the sum bits.

To achieve bit-level pipelined operation, the input operands (a;, bj) must propagate
through the CLA because the sum bits s; are computed from the input operands as well
as the two carries (cj_1, ¢j). Therefore each cell in the CLA would also need to include
two D-latches. This would result in a compact and potentially low-power pipelined
adder suitable for DSP applications. In addition, the proposed CLA has a number
of very desirable properties. The adder consists primarily of only one type of CRTL

Page 69

5.2 Carry Lookahead Addition

Table 5.2. MODCVS and CRTL 4-bit adder comparison. This shows the significant advan-

tage of CRTL in the number of transistors required, occupied area and average power

dissipation.
MODCVS CRTL Reduction
Transistors 176 104 41%
Area 52x72 pm? | 43x53 jm? 39%
Avg. power 1.9 mW 0.5 mW 74%
(@ 100 MHz)

gate, which means only one gate requires careful design and optimization in addition
to the relatively simple capacitive networks. The regularity of each cell also means
that networks of the type shown in Fig. 5.2 are highly suitable for automated layout

generation.

A 4-bit adder was chosen for initial evaluation of the ideas by simulation. To measure
the power dissipation, the adder was loaded with minimum sized inverters and the
input vectors were set to (a3 a; a; ag) = (000 0) and (b3 bz by by) = (1 11 1) and simulated
using HSPICE. The c_; was switched from 0 to 2 V at a frequency of 100 MHz and each
gate was clocked at 200 MHz. To perform a comparison of the proposed CRTL design,
a 4-bit multi-output differential cascode voltage switch (MODCVY) logic adder (Ruiz
1996) was also designed in the same 0.25 ym process and simulated under the same
switching conditions. The MODVCS design presented in (Ruiz 1996) calculates all 4
carries in parallel and is claimed to have low power dissipation, low transistor count
and low area compared to previous DCVS logic designs. For this reason it was chosen
for comparison with CRTL. Both adders were laid out in the same 0.25 ym, 4-metal,
2-poly process. The polyl-poly2 capacitance in this process is 0.8 fF/um?, and as was
mentioned earlier, the unit capacitance was chosen to be 5 fF. The comparison results
are shown in Table 6.7 and demonstrate that CRTL offers significant improvement over
the MODCVS design. It is interesting to note that the area of the capacitive networks in
the CRTL adder comprise approximately half of the total area of the adder. The reason
for this is the relatively low polyl-poly2 capacitance value in the chosen process, and
further significant area reduction would be possible by using processes with dedicated
capacitive layers such as MIM.

Page 70

Chapter 5 Threshold Logic Addition

5.3 The A-DELTA Adder

In this section, the design of the Adelaide-Delft Threshold Logic Adder (the A-DELTA
Adder) is presented. The underlying approach for the design of the 64-bit adder is to

utilize at the circuit level, a hybrid scheme of combined conventional CMOS logic and
TL.

5.3.1 Adder Architecture

At the architecture level, the design is structured to optimize speed based on the advan-
tages and limitations of the logic gates used. A combination of anticipated-computation,
carry-lookahead, and carry-select is used. At the implementation level within the
blocks comprising the 64-bit adder, CRTL is used to achieve the minimum critical path

delay, and where possible, static CMOS is used to reduce the area.

The block diagram of the proposed 64-bit adder is depicted in Fig. 5.7. In this scheme,
the 64-bit input addends are divided into four 16-bit adder blocks. Each 16-bit block
generates a carry signal. These carry signals form the inputs of the global carry-
lookahead unit which generates the select signals, c31, ¢47 and cg4. These select sig-
nals are used to select the appropriate 16-bit final sums using three 32 to 16 multi-
plexers. The critical path of the 64-bit adder, shown using the thick dashed line in
Fig. 5.7, consists of the generation of the carry-outputs of one 16-bit block, the global
carry-lookahead computation that computes ¢;7 which then selects the most significant
16-bit anticipated sum, and one 32 to 16 MUX delay.

The three anticipated sums are computed in the 16-bit blocks using pairs of 16-bit
adders with ¢, = 0 and ¢ = 1. The 16-bit anticipated sums must be ready before
the global carries arrive to perform the selection. It is this balance of quickly comput-
ing the carries out of the 16-bit adders and the global carries considering the maximum
fan-in and delay of CRTL, which dictates a partition of the 64-bit inputs into four 16-bit
wide blocks.

To achieve the lowest critical path delay, the computation of the carry-output of each
16-bit adder and the global carries must be as fast as possible. In theory, it is possible
to compute the carry-output signal for such a 16-bit block in one TL gate using the
scheme first presented in (Vassiliadis et al. 1996). However, this leads to a requirement
for the sum of weights in the TL gate of 217 — 2, which is prohibitively large for the

Page 71

5.3 The A-DELTA Adder

g3 bgy a5 byg “47;’47 "‘31 by a3y by, a6 big a5bys a, by
< Ciu=0 <= Ciy=0 < Cin=0 < C_y
16-bit Adder 16-bit Adder 16-bit Adder 16-bit Adder ||
- T T = J
= < Cip=1 i < Cin=1 P < Cin=1 I
16-bit Adder 16-bit Adder 16-bit Adder
B _ ik . I
Cuul.4 i i E i Cuul‘] E E ; i CuulZ i g g i CIS |
TR [R i Vo
A1 \ : 3 '
Vol Vo \ - |
Global Carry — Lookahead b '
R o e e s e e g o
Car |l - Ca

I]

|
3216 MUX =, | 3216 MUX (< 32:16 MUX
]

y Yo »
S64 Se3 v vt S Sz ¢ » S 831 ° = * S5 Sis vt 0 8y

Figure 5.1. Proposed 64-bit adder block diagram. The critical path is shown using the thick
dashed line. From top to bottom, the adder consists of 16-bit sub-adders using a carry-
select scheme, a global carry-lookahead and multiplexers to select the correct anticipated

sub-adder result.

state-of-the-art CRTL (or any other TL gate implementation for that matter). For this
reason, the 16-bit carry computation is performed in two levels, as discussed in the

following section.

5.3.2 Design of the 16-bit Adders

The design of the 16-bit adders uses carry lookahead. This is a well-known technique
for designing logarithmic depth addition networks. To design the high speed 16-bit
adder, the high fan-in capability of CRTL is utilized to implement carry-lookahead
prefix-cells which compute group carry-generate and group carry-propagate signals

from a large number of input bits.

The design of the CRTL prefix-cells is influenced by the maximum sum of weights of
CRTL. This is limited by the available precision with which the capacitive weights are
implemented and, more significantly, the resolution of the sense amplifier under the
influence of process mismatch and noise (Luck et al. 2000). For this reason we limit the
sum of weights to approximately 30, and use this as the basis on which to optimize
the critical path delay of the 16-bit adder. This, as will be shown, leads to the CRTL
prefix-cells having 4-bit word inputs.

Page 72

Chapter 5 Threshold Logic Addition

The group generate , GJ, and group propagate , P9, signals are computed from the 4-bit
grouping of the input addend bits as follows:

Gg = sgn{8az + 8b3 + dap + 4by + 2a; + 2by + ap + by

—16} (5.11)
P?? = sgn{8az + 8b3 + 4a, + 4b, + 2a; + 2by + ag + by
—15}. (5.12)

In the second level, 2-, 3- and 4-input static CMOS prefix cells (Beaumont-Smith and
Lim 2001) assimilate the 4-bit group-generate and group-propagate signals to compute

the carries at each bit position.
The sum bits are computed using conventional CMOS XOR gates,

The computation of the half-sum, #;, is performed in parallel with the calculation of the
carries in each 16-bit block. The sum bits, s;, are calculated in parallel with the 64-bit
adder global carry-lookahead.

15 0
&Y & 5 Y
12 <12 ~ 12 8 8 8 ~d 4 4 (1] 0 (]
P! P12 pGY PGt | PGS PGS pG!| PG| pa! o af o
| —]
/ —1_ WM crrLed "t k=12
. — ke

-3
B crIL G

5

@ @ cmos prefix cells
15

Figure 5.2. 16-bit adder carry prefix-tree schematic. The grey squares represent group carry gen-
erate circuits, black squares represent combined group generate and propagate circuits

and the grey circles represent the final stage carry-generate circuits.

The schematic diagram of the proposed 16-bit adder carry prefix-tree is shown in

Fig. 5.2. The critical path uses CRTL prefix-cells to compute the carry-propagate and

Page 73

5.3 The A-DELTA Adder

carry-generate signals, PGJ"., for groups of 4-bits using Equations (5.4) and (5.5) as in-
dicated by the black and grey squares in Fig 5.2. Each black square cell consists of
two CRTL gates with thresholds differing by 1 and sharing the same capacitive net-
work for computing the weighted sum of inputs. Grey squares represent group carry
generate cells GJ‘ The remaining cells of the prefix-tree consist of conventional static-
CMOS carry generate and propagate cells to reduce overall area. These are indicated
by grey circles in Fig. 5.2 and the circuit for the case of Gjﬁg is given in Fig. 5.3. The
MUX circuit was implemented using static-CMOS, and Wang’'s XOR (Zimmermann

and Fichtner 1997) gate design was used in the half/complete sum computation.

Figure 5.3. Static-CMOS prefix cell. This prefix cell is for computing G‘J’f_a.

5.3.3 Layout and Simulation Results of A-DELTA

The layout of a 16-bit adder block using a double-polysilicon, 4-metal, 0.35 ym process
is shown in Fig. 5.5, and the layers of cells corresponding to Fig 5.2 are indicated. The
complete 64-bit adder layout is shown in Fig. 5.6. The global carry-lookahead block
cells are merged into the 16-bit adder blocks. The layout of the CRTL gates in the adder
must be considered as an analog circuit requiring the use of known layout techniques
to match devices and minimize the impact of noise. These include substrate voltage

control, shielding, isolation and same-orientation layout of transistors.

The critical path of the 64-bit adder consists of one CRTL gate to compute 4-bit group
generate/propagate signals, followed by one static-CMOS prefix cell to compute ¢s,
one static-CMOS cell to compute c47 in the global carry-lookahead block and the MUX

Page 74

Chapter 5 Threshold Logic Addition

(a) (b) (© (d)

Figure 5.4. Dynamic-CMOS circuits. (a) Gj.i—l, (b) Gj_z, (c) P{_l and (d) ij_z. The bit-wise
carry propagate signals are denoted using p; and the carry generate signals are denoted

using g;. The gate output is denoted using Gj.._".

Hall-sum XOR ——>

-

Capacitor Networky ——

CRTL Sense Amps, —=— !ﬁ%‘ ;Eg"

Figure 5.5. 16-bit Adder Layout. From top to bottom, the layout consists of the half-sum XOR
gates, weight bank capacitors, CRTL gate sense amplifiers, static CMOS carry cells and
final sum XOR gates.

used to select the sum bits Sg3,...,s43. The critical path latency of the extracted 64-
bit adder layout was obtained from HSPICE simulation and was found to be 1.02 ns.
To compare with the delay of other recently reported adders, the delay was normal-
ized with respect to the “fanout-of-four inverter delay”, FO4. The FO4 delay is the
delay of a minimum sized inverter driving four minimum sized inverters and the FO4
normalized delay of combinational logic is relatively constant over a wide range of
processes (Ho et al. 2001).

The FO4 normalized delay and area comparison was made with three other dynamic
high speed adders (Sun et al. 2001b), (Naffziger 1996) and (Woo et al. 2000). The area
comparison is made using the reported adder dimensions, normalized with respect to
the value of the corresponding process A. It should be noted that the delay results pre-

sented in Sun et al. (2001b) are based on simulation and the results in both Naffziger

Page 75

5.4 Prefix-8 Adder

1236 pm

211 pm

L
: ?‘-i’r%-lhin ar' aHr

. s Y _‘rl n‘n‘u’rr

Two 16-bit adders and 32:16 MUX Block

Figure 5.6. 64-bit Adder Layout.. Two 16-bit adders and with a 32:16 mux block are repeated.
(1996) and Woo et al. (2000) are from chip measurements. An average speedup of al-

most 20% is achieved, with an increase in area compared to (Naffziger 1996), and a
reduction in area compared to both (Woo et al. 2000) and (Sun et al. 2001b).

5.4 Prefix-8 Adder

This section presents the second high-speed 64-bit hybrid TL adder design. The de-
lay estimation based on logical effort has been carried out for a number of high speed
adders (Dao and Oklobdzija 2001), including dynamic Kogge-Stone (D-KSA), dynamic
carry look-ahead (D-CLA), dynamic Ling/conditional-sum (D-LCNSA) and Intel's Qu-
arternary (D-QTA) (Mathew et al. 2002). This work is extended to include CRTL based
adders. For completeness, a comparison with the HP Ling adder (Naffziger 1996),
Harris’ adder (Horowitz 1999) and the Output Prediction Logic adder developed by
Sechen’s group (Sun et al. 2001a) is also included.

5.4.1 Adder Architecture

The selection of the adder architecture is heavily influenced by the availability of fast
high fan-in CRTL gates. This leads us to use CLA (carry look-ahead) and CSA (carry-
select) blocks. The adders described in (Naffziger 1996) and (Horowitz 1999) are based
on 4-bit CLA blocks, which is usually the optimal trade off between the depth of the
CLA tree and the number of series transistors in a CMOS gate. The carries in these

adders are generated at 16-bit boundaries, requiring 16-bit sub-adders for carry-select
blocks.

Page 76

Chapter 5 Threshold Logic Addition

As an initial test of the relative performance of CRTL, we designed the 4-bit CLA block
using both CRTL and domino logic. The carry generate signal, «, of a 4-bit block may
be calculated using a single TL gate as follows (Vassiliadis et al. 1996):

azsgn{izi(a;+b,-)—24}. (5.15)

i=0
The sum of weights N = 30, so the worst case delay of this gate will correspond to the

delay of a gate of effective fanin, ney, of approximately 40.

The domino gate used to compute the same function for comparison is the well known
Manchester-carry circuit. The electrical effort and parasitic delay for the slowest input,
gj—3, were extracted from simulation (Sutherland et al. 1999) and used to calculate the
worst case delay for h = 1 and h = 10. Under the conditions of equal input capacitance
and load, the CRTL gate is 1.3 to 1.6 times faster. This is a significant delay improve-

ment even in this case of a function with a small number of logic inputs.

Increasing the number of bits handled by a CLA block to 8-bits results in fewer logic
levels and a more regular design and layout (Sun et al. 2001a). This is impractical in
conventional CMOS logic, since it requires 8 series transistors. We can, however, take
advantage of the wide AND gates in CRTL. We obtain the regular structure shown in
Fig. 5.7. In this scheme, the 64-bit input addends are divided into eight 8-bit blocks,
and it has logg64, or two levels of carry look-ahead. The Kogge-Stone scheme generates
carries for each bit position, so no carry select is needed. The 4- and 8-bit block versions
have depth log,64 = 3 and logg64 = 2, respectively. However, they consist of many

more CLA blocks with significantly increased wiring and fanouts.

The structure of the proposed adder is a sparse carry prefix tree. In the first layer, the
bitwise propagate and generate signals, p;, g;, are formed, followed by the computation
of eight pairs of 8-bit group generate and propagate signals 1§_7, Gj:_7 in the second
layer. These are then assimilated in the global carry look-ahead block to generate the
sum selection carries, ¢z, ¢47, . . ., C55, which select pre-computed 8-bit sums. These 8-bit

adders are also based on carry look-ahead.

The CLA equations may be written as given as Equations (5.16)-(5.19). Each CLA level
consists of an AND and an OR gate, which requires significantly lower sum of weights
in the CRTL implementation that a single gate AND-OR implementation. The six stage
critical path of the 64-bit adder consists the domino-OR2 to generate p; (despite the
lower logical effort and parasitic delay, this gate has a higher fanout than gy), ANDS

Page 77

5.4 Prefix-8 Adder

463 bg3 156 bsg ap3 by3 a5by6 215by5 ag by a3 +b7 “nfu
e Cip
1-bitp, g e I-bitp. g 1-bitp, g I-bitp, g
AP , L P-823_16 ; L P 8i15-8 j L P:87-0

8-bit group P, G ee s 8-bit group P, G 8~bit group P, G 8-bit group P, G

56 16 0

PG P e Pl

\ y
8-bit global CLA

by carry—select T by carry-select by carry-select

(J CSS J cm J L‘?
8-bit sum 8-bit sum 8-bit sum 8-bit sum by CLf|<— Cin

564 Se3 vt Ssp LR S15 0 ¢+ 8y Spv 0t 8y

Figure 5.7. 64-bit adder block diagram. This shows the inputs (a;, b;), bit-wise carry propagate
and generate stage, 8-bit group-wise carry generate and propagate stage, global carry-

lookahead and final sum by carry-select stage.

and ORS to generate G, ANDS8 and ORS to generate cs5 in the global CLA block and a
2:1 MUX to select the sum.

The bitwise propagate and generate signals are computed as follows

pi = a+b (5.16)
g = a-b, (5.17)

and from these the 8-bit block group propagate and generate signals are given by

P = pr-ps-ps-pa-ps-p2- P (5.18)
G = gr+pr-g+pipe-g + ...
+ prPe-Ps-Pa-P3-P2-Pr-Lo- (5.19)

Finally the 8-bit block carry outputs are given by
=Gy, (5.20)

A similar expression to Equation (5.19) may be written for generating the global look-

ahead carries.

Page 78

Chapter 5 Threshold Logic Addition

Table 5.3. Normalized Logical Effort (LE) parameters of various gates. This includes an
inverter, Hi-skew inverter, dynamic 2-input NAND, dynamic 2-input NOR and a 2:1
static MUX—in 0.35 um technology, in units of T = 40 ps.

Gate Type LE, (g) | Parasitic
delay, p
Inverter 1 1.18
Hi-skew Inverter 0.7 1
dyn-NAND?2 0.4 1.8
dyn-NOR2 0.3 1.4
2:1 static MUX 1.13 2.6

5.4.2 Delay Estimation and Comparison

In addition to the delay model for CRTL discussed earlier, in order to evaluate the
adder delay it is necessary to characterize the domino gates using HSPICE simulation
of the gate delay for various output loads, according to the LE rules. Characterization
of domino gates considers only the one transition of interest, which is the falling tran-
sition for the dynamic pull down and rising transition for the hi-skew static inverter.
This is repeated for each of the gates, and the results are shown in Table 5.3. Note
that the dynamic gates listed consist of the pull down path only, excluding the static

inverter.

The delay of the critical path, sg3, dyn-OR2 — CRTL-AND8 — CRTL-OR8 — CRTL-
AND8 — CRTL-OR8 — MUX2 is calculated using Equations (4.8) and (4.18) and Ta-
ble 5.3. For the 8-input CRTL gates we ues an ng value of 10. In addition, we must
consider the fan-out of 7 of the dyn-OR2 gate (which drives 7 unit weight CRTL in-
puts). The other gates have a unity electrical effort. From Equation 4.10 the optimized
delay of the two stage dyn-OR2 gate is therefore given by

dorzmin = NFYN4P
= 2{gnoR2 X 8HS—Iny X hHs_1ny }°°

+ PNOR2 + PHS-Inv
= 2{03x07x7}" +14+1
= 487. (5.21)

Page 79

5.4 Prefix-8 Adder

Table 5.4. Comparison of high speed 64-bit adders showing that the pproposed Prefix-8

adder has significantly lower delay compared to previously published results.

64-bit Adder # Stages | Tech. | LE | Sim.
pm | FO4 | FO4
D-CLA (Dao and Oklobdzija 2001) 14 0.18 | 11.1 | 136
D-LCNSA (Dao and Oklobdzija 2001) 9 0.18 | 9.0 9.5
Intel D-QTA (Mathew et al. 2002) 10 010 | 83 | -
D-HCA (Oklobdzija et al. 2003) 10 0.10 | 8.26 -
D-KSA (Dao and Oklobdzija 2001) 6 0.18 | 6.2 7.4
HP mod. Ling (Naffziger 1996) 4 0.5 - 7
Harris (Horowitz 1999) - 0.6 - 6.4
OPL (Sun et al. 2001a) 8 0.25 - 2.9
— This Work 6 035 | 49 5.3

From this the critical path delay is calculated as follows

dss; = dorzmin + 4 X dcrrLio + (gh+ p)muxz
= 48 + 4x426 + 1.13 + 2.6

= 25.6t
= 4.9F04. (5.22)

The proposed adder consists of 3653 transistors and 342 unit capacitors. The critical
path was also simulated, including wiring capacitance estimations based on traversed
CRTL and domino cell pitch, and the extracted gate layouts and the critical path delay
thus obtained was 5.3 FO4. Note that the 207 ps FO4 delay is a very slow process corner
for a drawn channel length of 0.4 um, and is the fastest we had available, (Sun et al.
2001a) similarly reports 162 ps for the 0.25 pm process used in that work. It is therefore
not surprising that the 930 ps delay for the 0.5 ym process reported in (Naffziger 1996)

has a FO4 delay less than ours, especially if a faster process corner was used.

The FO4 delay comparison with eight other dynamic high speed adders is shown in Ta-
ble 6.7, with the logical effort estimate and simulated or measured delay values listed
where available. The comparison suggests a significant delay speed improvement of
almost 1.1 FO4 or 17% compared to Harris' agressive domino design. The Output Pre-
diction Logic (OPL) adder is included for completeness to acknowledge other novel

circuit techniques in full. It has the significant drawback of requiring 8 clock phases

Page 80

Chapter 5 Threshold Logic Addition

which has prohibitive power dissipation issues, in addition to the reduced noise mar-
gin of OPL gates. Table 6.7 also shows that delay is related to but not proportional to
the number of gate levels on the critical path, so comparing delay estimates based on

this simple metric is inconclusive.

5.5 Chapter Summary

Two high speed 64-bit adders based on a hybrid carry look-ahead/carry-select scheme
using Charge Recycling Threshold Logic and conventional domino logic have been
proposed. The worst case critical path delays were shown to be significantly improved
compared to previously proposed domino high-speed adders. The results show that by
combining TL and conventional CMOS logic with the appropriate architectural strat-

egy, relatively fast arithmetic circuits may be achieved.

The work presented here leaves a number of unresolved questions. The important is-
sue of power dissipation has not been addressed. Power dissipation may be traded for
delay and the energy-delay curves for adders may cross (Oklobdzija et al. 2003), which
implies that single point delay comparisons such as in Table 6.7 are not always mean-
ingful. The results presented here suggest that the substantial delay improvement over

domino logic justifies the added design complexity of CRTL.

The following Chapter continues the pursuit of higher performance arithmetic by ex-
amining the multiplication operation. Novel parallel counters used in partial product
reduction trees are designed, also using CRTL gates and performance is evaluated us-

ing the logical effort based delay model developed in the previous Chapter.

Page 81

Page 82

Threshold Logic
Multiplication

“At least one good reason for studying multiplication and division is that there is an infinite
number of ways of performing these operations and hence there is an infinte number of PhDs
(or expense-paid trips to conferences in the USA) to be won from inventing new forms of mul-
tiplier.”

— Alan Clements, The Principles of Computer Hardware

HIS chapter proposes new realizations parallel counters used
in parallel multipliers based on partial-product reduction trees.
Significant latency and device count improvements are achieved

compared to previously published results.

The chapter begins by developing a number of novel counter circuits based
on CRTL and hybrid domino-CMOS/CRTL circuits. The delay results for
these counters are extrapolated in the context of partial-product reduction
trees (PPRTs) and the performance of multipliers based on these PPRTs are
evaluated. Due to the ability of CRTL based circuits to cope with a high
number of inputs in each gate while maintaining a delay almost indepen-
dent of fan-in, a significantly better latency compared to static and domino
CMOS logic is achieved.

Page 83

6.1 Parallel Multipliers

6.1 Parallel Multipliers

High-performance multiplication is a critical operation in digital signal processing,
computer graphics, and necessary for many other applications. Pipelined parallel mul-
tipliers provide the highest possible performance, and partial product reduction tree
(PPRT) multiplier topologies, typically implemented using parallel counters, provide
the best known means of implementation. This chapter presents a number of novel
parallel counters using a hybrid of domino and threshold logic. These counters are
then used to implement PPRT circuits which outperform existing known implementa-
tions. For example, the proposed 64 x 64 PPRT was found to reduce latency by almost

40% and device count by almost 40% compared to the domino logic equivalent.

The goal of the work described here is to implement high performance parallel coun-
ters and partial product reduction tree (PPRT) circuits using a hybrid threshold logic/
domino approach. The main aim is to derive PPRT schemes with minimal latency to
produce multipliers with a reduced number of pipeline stages, saving area and power.
Area is measured in terms of device count, and it is assumed that power dissipation is

a monotonic function of device count.

Initially an introduction to parallel counters is given in Section 6.1.1 and partial product

reduction trees in Section 6.1.2. Logical effort analysis is used to estimate delay.

Section 6.2 presents and compares several 3:2 and 2:2 counter designs. Section 6.3
examines larger counters, and introduces novel TL and hybrid domino/TL circuits.
Finally, Section 6.5 examines algorithms for PPRT generation using these counters, and

compares the performance and efficiency of these circuits.

6.1.1 Parallel Counters

An m:n binary counter is a combinatorial network which generates a binary coded
output vector of length n, corresponding to the number of logic ones in the m-bit input
vector. Typically n = log,(m+ 1)—such counters are referred to as saturated. The well-
known “full adder” is a saturated 3:2 counter; the “half adder” is an unsaturated 2:2

counter.

In multipliers, parallel counters are used to reduce (add) the matrix of partial products
(bits)—a 3:2 counter reduces the overall count by one bit; larger counters reduce by

more than one.

Page 84

Chapter 6 Threshold Logic Multiplication

The concept of parallel counters was originally proposed by Dadda [1965], who also
developed a scheme for interconnecting small counters to design counters with a larger
number of inputs (Dadda 1980). Oklobdzija et al. [1996] then extended this scheme to
the entire PPRT, noting that the addition of partial products of a given binary signifi-
cance (column) is essentially a counter design problem. In conventional logic, higher
order counters, such as (7,3), (15,4) or (31,5), have traditionally been implemented
by using trees of (3,2) counters because of the disadvantages of a direct implemen-
tation (Song and Micheli 1991). However, counters consisting of such full adder trees
have a relatively high delay and grow rapidly with input vector size in terms of the re-
quired number of full adders. Swartzlander (1973) reported the number of full adders
for an m-input population counter as m — log,m. It would be ideal if it were possi-
ble to design area efficient higher order counters which could operate at much higher
speeds than the same counters built using trees of full adders (Oklobdzija et al. 1996).
Threshold logic offers this possibility.

Conventional CMOS logic is only effective at low fan-in. Thus PPRT design typi-
cally uses small counters, of which the 3:2 is generally regarded as the most effi-
cient (Oklobdzija et al. 1996). However, each 3:2 counter removes two bits from the
column, and so occasionally a 2:2 counter is required to change from an odd to an

even bit count, or vice versa.

6.1.2 Partial Product Reduction Tree (PPRT) Multipliers

Parallel multipliers provide the highest throughput, lowest latency and most area-
efficient implementation of the multiplication operation. Although array multipliers
provide a higher degree of layout regularity, the less regular partial product reduction
tree (PPRT) multipliers are preferable due to significantly lower latency—O (log n) vs
O (n) stages for an n x n multiplier. Also, when pipelined, the latch count for the PPRT
multiplier is much lower—due to a combination of fewer latches per pipeline stage and
fewer stages overall—providing area improvement over the array multiplier. The ben-

efits are most pronounced at high wordlengths.

PPRT-based multipliers were pioneered in the 1960s by Wallace (1964) and Dadda
(1965). There are three stages to a PPRT-based multiplier (1) partial product genera-
tion, (2) the PPRT itself, and (3) the vector-merging adder. The former is responsible

for generating the matrix of partial products, and can be a simple sea of AND gates

Page 85

6.2 3:2 and 2:2 Counters

i
Y
g
Y

DD

-
D=
-

Figure 6.1. Standard 2:2 and 3:2 CMOS counter circuits. The 2:2 counter is shown on the
left, it consists of an XOR gate and an AND gate, with two inputs a and b and a sum
output s and carry output ¢. The 3:2 counter on the right consists of two XOR gates,
three two-input AND gates and one three-input AND gate and has the additional input
d. After Townsend et al [2004].

or a more sophisticated re-coding (such as Booth encoding). The PPRT reduces (adds)
these bits to at most two per column, which are combined in the final vector-merging
adder. The PPRT is by far the most delay and area intensive portion of the computation
Stelling (1998) and is the focus of this work.

6.2 3:2 and 2:_2 Counters

6.2.1 Standard CMOS Counters

Although numerous CMOS counter implementations exist, a standard 3:2 counter
(“full adder”) circuit (Oklobdzija et al. 1996) and associated model are the most widely
used, and are shown in Figure 6.1. Although the final delay of the circuit in question is
slightly worse than some alternative implementations, the overall performance—when

the faster carry output path is also considered—is believed to be highly competitive.

The model for the delays in this 2:2 counter circuit sets sum delay s = b+ x;, and
carry-out delay ¢ = b+ yz5, where Xy, is the delay of the XOR gate, y; is the delay
of the AND function, and b the slower input (i.e. a < b). For the 3:2 counter circuit,
s = max(b+ x2,d+ x3) and ¢ = d+ y3, where x; is the delay through both XOR

Page 86

Chapter 6 Threshold Logic Multiplication

Table 6.1. Static CMOS 3:2 counter—logical effort analysis. The transistor relative widths for
each input, logical effort g, electrical effort h, parasitic delay p, output delay d(7) and
relative output delay compared to an XOR gate d(XOR).

Gate width g h p| d(t) | d(XOR)
XOR (a,b) 1| 4] 1]ar] sm 0.77
XOR (d) 1| 4| 167|472]11.39 1
NAND-2 (all) 1]133| 25236 5.69 0.5
NAND-3 21| 1.67 2354 | 6387 0.6

gates, x3 the delay through only the second XOR, y3 the delay through the carry output
function, and with the inputs arriving such that a < b < d.

The standard model for 3:2 counters (from Stelling (1998)) uses the XOR delay as the
unit of time, and sets x, = 2, x3 = 1 and y3 = 1. For 2:2 counters, x;, = 1 and yy, =
0.5. Logical effort analysis was performed using the results in (Sutherland et al. 1999)
and is shown in Table 6.1. We see that the delay of the majority function is about 10%
worse than that of the XOR, so the unit delay is 12.567.

From an area perspective, each 3:2 counter requires 34 transistors and each 2: 2 counter

requires 12 (although this may vary if a different XOR gate topology is used).

6.2.2 Domino Logic

The standard CMOS counters are easily adapted to domino logic by simply replacing
static CMOS gates with their domino equivalents. All domino logic in this work is
dual rail, sized to provide an input loading equivalent to a minimum-sized inverter,
with such an inverter buffering each gate’s output. Thus, for any domino gate driving
any other domino gate, h = 1.

Logical effort analysis is again used to estimate performance, using parameters de-
rived from HSPICE simulations. Table 6.2 presents this analysis. Each domino gate
is followed by an inverter to provide adequate buffering, and all gates are unit drive
strength (width).

Here the delay profile is rather different—the majority function, instead of being slightly
slower than one XOR, is slightly slower than two. Thus we model it as two XOR delays,
that is, y3 = 2 and ¢ = d+ 2 while s is unchanged.

Page 87

6.2 3:2 and 2:2 Counters

Table 6.2. Domino 3:2 counter—logical effort analysis. The logical effort g, electrical effort B,

parasitic delay p, output delay d(t) and relative output delay compared to an XOR gate

d(XOR).
Gate glh p | d(t) | d(XOR)
XOR (a,b) 044 | 1| 18| 2.24 0.69
+ inverter 111|118 218
XOR (d) 044 | 1| 1.8 2.24 1
+ inverter 1]13]118 | 418
NAND-2 (all) | 042 | 1 | 1.4 | 1.82 0.62
+ inverter 111|118 | 2.18
NAND-3 052 (1| 23| 282 1.09
+ inverter 113]118 | 418

We may use the same process to obtain a domino 2:2 counter—obtaining ¢ = b+ 1
and s = b+ 1. The transistor count for the 3:2 is 66; for the 2:2 it is 22—however,
this includes output inverters and a pair of clocking transistors on each gate, some of

which may be able to be shared amongst multiple gates.

6.2.3 Threshold Logic—Kautz 3:2

The three most common threshold logic networks for implementing counters are based
on networks for computing symmetric functions developed by Kautz (1961), Min-
nick (1961) and Muroga (1971), which we will refer to as the Kautz, Minnick and
Muroga counters respectively. They differ in the number of threshold gates, network
depth, maximum fan-in and maximum sum of weights per gate. The counter based
on Muroga’s network has a delay of 2 gates but is more expensive in terms of gate
number. Furthermore, even though the primary inputs are only required in the input
layer, the larger number of input layer gates results in an increased interconnect over-
head compared to the Kautz and Minnick designs. At 3:2, these counters are identical,
but they diverge at larger sizes (7:3 and above). Initially they were designed for com-
puting parity; Cotofana observed that the intermediate outputs available in the Kautz
network for computing parity could be used as generalized counter outputs (Cotofana
and Vassiliadis 1998).

Page 88

Chapter 6 Threshold Logic Multiplication

Figure 6.2. Kautz 3:2 counter circuit consisting of two threshold gates. Inputs a, b and d are
applied to both gates, with the input weights being equal to 1 in each case and the gate
thresholds shown inside the circles. The output of the gate with threshold 2 is fed into
the second gate with weight —2. A sum output s and carry output ¢ are generated.
After Townsend et al [2004].

The Kautz 3:2 counter is seen in Figure 6.2, and works by initially computing the carry
output with a single threshold gate. This is then weighted by two, as it is double the
binary weight of the inputs and subtracted from the input vector in a second threshold

gate, which thresholds at one to produce the sum output.

The input loading of this CRTL counter is two unit capacitors, so a homogeneous cir-
cuit built using them would place an output loading of 4x on the first gate and 2x on
the second. Logical effort analysis estimates the delays of these gates to be 4.337 and
4,157 respectively. Thus, with a base delay unit (quantum) of 4.337—faster than both
static and domino—we obtain ¢ = d+ 1 and s = d+ 2. This counter uses two threshold

gates and eight capacitor units, resulting in an area requirement of 36 devices.

TL 2:2 counters are not considered as the domino half adder performs equivalently

and requires less area.

6.2.4 A Hybrid TL/Domino 3:2 counter

CRTL is significantly faster at computing the carry output than domino, and so a single
CRTL gate is used—in identical fashion to the Kautz 3:2 counter’s carry circuit. The
domino sum implementation is somewhat more effective than the TL version due to
the presence of a fast input—although the time quantum (defined as the XOR delay
for domino and 3-input CRTL delay for TL) is larger. The time quantum ceases to be a
factor if the counter is used in parallel with larger TL gates or any domino-only circuits,

and so under such circumstances the hybrid is the best performer.

Page 89

6.2 3:2 and 2:2 Counters
)
D>y

T2y

Figure 6.3. Hybrid 3:2 counter circuit consisting of two XOR gates and one three-input

O

threshold gate with unity weights and a threshold of 2. Inputs a, b and d are
applied as shown. A sum output s and carry output ¢ are generated. After Townsend
et al [2004].

The area requirement of this 3:2 counter—seen in Figure 6.3—is 41 devices. The delay
equations are, in fact, identical to those of the standard static CMOS 3:2 counter, al-
though the XOR delay unit is reduced to 5.427—as the input loading of this counter is
2K.

The hybrid 2:2 counter is not considered here, as the threshold gate requires more area

than an equivalently-performing domino AND function.

6.2.5 Counter Comparison

From a performance perspective, two possibilities are considered. Initially, we will
consider homogeneous circuits—each 3:2 counter will be considered separately and
will run at an optimal rate. That is, we will select an optimal time quantum for each

counter, and round up each gate’s delay to the next multiple of that figure.

Table 6.3 shows area, loading and performance (latency and throughput) information
for each of the 3:2 counters. The time quantum is a measure of flexibility in clock fre-
quency choice—the lower the better—and therefore for throughput. Latency is mea-
sured in terms of the three delay parameters xp, x3 and y3. Area is measured in terms

of device (transistor or capacitor) count.

It can be seen that the CRTL-only circuit is able to provide the smallest time quantum
(and thus the greatest flexibility when it comes to pipelining); however, due to the
presence of a fast input, the hybrid circuit will outperform the CRTL-only circuit un-
der some circumstances. The hybrid and CRTL circuits both out perform the domino
counter in performance and area; static CMOS is more area-efficient but significantly

slower.

Page 90

Chapter 6 Threshold Logic Multiplication

Table 6.3. A comparison of 3:2 counters (for homogeneous circuits). This shows the device
count (transistors and unit capacitors), input load &, time quantum in number of delay

units T and delay parameters x; in number of delay units T.

Circuit Device Input | Quantum X X3 V&

Count | Load (x) (r)| (o) | ()| (v)
Static CMOS 34 6.67 1257 | 2561 | 126 | 12,6
Domino 66 3 6.42 | 128 | 6.4 | 12.8
CRTL 36 2 433 | 86| 86| 43
Hybrid 41 2 542|108 | 54| 54

For heterogeneous circuits, synchronisation will not only need to occur within each
cell, but between cells of differing types—domino, TL and hybrid static CMOS, being
single rail, requires some interfacing and suffers a severe performance penalty. The
common delay quantum will be set ¢ = 6.427—this is the delay of a two-input domino
XOR gate with an output loading of three equivalent gates. That is, the delay of each
stage of each counter circuit is rounded up to the nearest integer multiple of ¢, allowing

easy synchronisation and comparison.

This interval (¢) is chosen on the basis of the domino 3:2 counter—it is the delay of
the slower XOR gate, and exceeds half the delay of the majority function used to gen-
erate the carry output. It should be noted that this comparison will slightly favour the

domino circuit as a result of this choice.

The results of this comparison are seen in Table 6.4. The hybrid counter is dominant—
it is equal to or better than each of the others on every delay path. Thus there is
no possible performance gain from producing heterogeneous circuits using only 3:2
(and smaller) counters. The hybrid 3:2 counter will prove useful when combined with

larger structures.

6.3 Larger Counters

6.3.1 Implementation

Charge Recycling Threshold Logic (CRTL) can effectively support higher fan-in than
typical CMOS circuits. For static CMOS and CRTL, the logical effort gis O(n) in terms

Page 91

6.3 Larger Counters

Table 6.4. A comparison of 3:2 counters (for heterogeneous circuits). This includes domino,
CRTL based Kautz and a hybrid implementation, showing the delay parameters x; in

number of delay units T.

Circuit X7 x3| 3

(@) | (¢) | (¢)
Domino 2 1 2
Kautz CRTL 2 2 2
Hybrid 2 1 1

of the number of inputs. However, as was shown in previous chapters, CRTL's con-
stant of proportionality is much lower—0.002, against 0.33 for static NAND and 0.67
for static NOR.

It is theoretically possible to implement arbitrarily large counters in threshold logic
with near-constant delay. However, in reality, the design of the CRTL counters is influ-
enced by the maximum sum of weights on CRTL gates. The maximum sum of weights
sets the minimum voltage which is required to be resolved by the sense amplifier in the
CRTL gate. For this reason, we limit the sum of weights to approximately 30, and use
this as the basis on which to select counter sizes. In most counter topologies, this will

allow us to implement 7:3 and 15:4 counters (and their unsaturated counterparts).

6.3.2 Kautz TL Counters

The Kautz (1961) architecture implements a 2" — 1:n counter using n TL gates, and
generates one output after each TL gate delay. That is, we generate the most significant

output after one gate delay, the second after two, the third after three and so on.

For example, the Kautz 15:4 counter is seen in Figure 6.4. This circuit accepts a 15-bit
input vector V and produces output Og—most significant—after one gate delay, then
subsequently Oy (two gate delays), O, (three) and finally O, (four). This is the most
area-efficient TL counter architecture, and also places a relatively low load (nx) on the

input vector. However, it is somewhat slow, with logarithmic worst case delay.

We will differentiate between the various TL counter architectures using their output
delay profiles—that is, counter (ny, n, n3) produces the most significant n; output bits
after one TL gate delay, the next ny after an additional TL gate delay, and the final n3

Page 92

Chapter 6 Threshold Logic Multiplication

0Oy 0, o, 0,

Figure 6.4. Kautz 15:4 counter circuit. The 15-input vector is denoted by v and the outputs are
denoted by ;. The weights and their values for each gate input are denoted by the
number beside each gate input and the gate thresholds are given by the number inside
the circles. The input weights are unit. The Kautz 15:4 network has a depth (critical
path delay) of four threshold gates.

after a total of three TL gate delays. Thus the Kautz 2" — 1:n counter is the saturated?
(1,1,...,1) TL counter (with n delays in total). The Figure 6.4 example is thus the
(1,1,1,1) TL counter.

6.3.3 Minnick TL Counters

The faster Minnick (1961) counter, exemplified by Figure 6.5 (15:4), has a worst case
delay equal to that of two threshold gates—independent of the order of the counter.
The most significant output always has a delay of one threshold gate, with all others
computed after a second threshold gate delay. However, it is more expensive in terms
of gate count and area; in addition, it places a very large load on the input and on some
internal gates, so buffering may be required.

The Minnick scheme operates by thresholding the input at several places in parallel.
The first two outputs are generated identically to the Kautz scheme, but all others are
generated in parallel with the second. By initially thresholding the input vector at 2, 4,
6, etc we can produce Oy by providing negative feedback for any pairs of bits—thus,
effectively, the gate generating O; sees one if an odd number of inputs are high, and
zero otherwise. Higher-order outputs need only take a smaller number of negative-

feedback inputs (multiples of 4 for O, 8 for O3, etc).

ZWe will assume all counters are saturated unless otherwise stated.

Page 93

6.3 Larger Counters

-4
-7

)?} ®)®)®)
i

10
N\
oL
—8™
TN
(9
08 04 02 01

Figure 6.5. Minnick 15:4 counter circuit. The 15-input vector is denoted by v and the outputs
are denoted by ;. The weights and their values for each input are denoted by the
number beside each gate input and the gate thresholds are given by the number inside
the circles. The input weights are unity. The Minnick 15:4 network has a depth (critical
path delay) of two threshold gates.

Consistent with our earlier notation, the Minnick 2" — 1: n counter is dubbed the (1,
n—1)TL counter. In terms of gate delays, this is the fastest known TL architecture,
but loading, area and power issues must be carefully considered when weighing this

against other options.

As an illustrative example, Fig. 6.6 shows the truth table and TL network for the (7,3)
Minnick counter. The input v consists of the seven input bit lines, each having a weight

of 1, and is denoted by a thick black line to differentiate it from the single bit lines.

The truth table for the (7,3) counter, and the (7,3) Minnick counter design are shown

in Fig. 6.6. The input v consists of the seven input bit lines, each having a weight of 1,

Page 94

Chapter 6 Threshold Logic Multiplication

and is denoted by a thick black line to differentiate it from the single bit lines. In effect
v represents the arithmetic sum of 1's in the 7 inputs. From the truth table, the MSB
of the output, y», is 1 when v > 4, hence y; is the output of the first layer gate which
has a threshold of 4. The y; output is 1 when 2 < v < 4 and v > 6. Therefore the
second layer gate which has threshold 2 computes y;. This gate has an input weight of
-4 from the first layer gate which has threshold 4. Similar reasoning can be extended
to the output yp. In the general case, the MSB will be computed by a first layer gate,
and the lesser significance outputs are computed in the second layer. The second layer
gates have as inputs, in addition to v, the negatively weighted outputs from the first

layer to isolate the desired ranges of v where those outputs are 1.

7

v o
v |o, o, 0 » p %
0ol 0 0 o0 :iw
1o o 1 &)
210 1 o — —
30 1 1) 2
4 |1 0 o *
s 11 0 1
6 | 1 1 0 .
710 11 @

Figure 6.6. The (7,3) counter truth table and the Minnick TL network. The 7-input vector
is denoted by v and the outputs are denoted by O;. The weights and their values for
each input are denoted by the number beside each gate input and the gate thresholds
are given by the number inside the circles. The input weights are unity. The Minnick

7:3 network has a depth (critical path delay) of two threshold gates.

The operation of the (7,3) Minnick counter can be described by the following expres-

sions:
y2 = sgn(v—4) = 4
y1i = sgn(v—2—4-4)
vo = sgn(v—1-2-2—-2-4—2-6). (6.1)

A different approach (Rodriguez-Villegas et al. 2000) to counter design is claimed to

have been developed. This approach is based on a sorter circuit followed by one layer

Page 95

6.3 Larger Counters

of threshold gates to obtain the counter outputs. This circuit is in fact equivalent in
structure to the Muroga counter reported earlier. While it was shown to have improved
speed over a conventional logic full adder based design for the case of a (15,4) counter,
its logic depth is the same, its interconnect requirement is significantly higher and its

gate count is almost double that of the Minnick counter.

6.3.4 A Spectrum of TL Counters

The aim of this section is to develop a range of counters which may be considered to
lie in-between the ends of the counter topology spectrum ranging from the Minnick
design to Kautz. We focus on small counters which are feasible to implement in the
currently available CMOS processes. Typically, the available precision with which the
weights are implemented in VLSI is of the order of 4 to 6 bits (Lauwereins and Bruck
1991) for an analog implementation, and for this reason we limit the maximum sum of

weights inputs per TL gate to approximately 30.

The objective will be to develop binary counters which can be used in conjunction with
the known Minnick and Kautz networks to design near area optimal multiplier partial
product matrix reduction schemes, given a particular CMOS TL gate implementation.
Counters which trade off network depth against gate count and fan-in can be used off
the critical path of the partial product reduction tree, reducing the overall area of the
multiplier without a penalty in latency. The following sections show the known exist-
ing topologies for counters which have a maximum of 29 inputs per TL gate, including

the Minnick and Kautz networks, and the proposed in-between (15,4) counters.

Depth 2 (3,2), (7,3) and (15,4) Counters

Figures 6.7(a)-(c) show the saturated depth 2 Minnick counters up to 15 inputs. The
delay of the most significant output bit is always one TL gate, and all other outputs
have a delay of 2 gates. For the (7,3) Minnick counter, the delay for each output is
denoted by [1,2,2].

Logarithmic Depth (7,3) and (15,4) Counters

Figures 6.8(a)-(b) show the saturated logarithmic depth Kautz counters up to 15 in-
puts. The (3,2) Kautz counter is identical to the (3,2) Minnick counter. The (7,3) Kautz

Page 96

Chapter 6 Threshold Logic Multiplication

o
o

(c)

Figure 6.7. Minnick counter networks. (a) Depth 2 (3,2) counter with [1,2] delay profile, (b)
depth 2 (7,3) counter with [1,2,2] delay profile and (c) depth 2 (15,4) counter with
[1.2,2,2] delay profile. The input vector is denoted by v and the outputs are denoted
by O;. The weights and their values for each input are denoted by the number beside
each gate input and the gate thresholds are given by the number inside the circles. The
input weights are unity and the network depth (critical path delay) is 2 threshold gates

in each case.

Page 97

6.3 Larger Counters

counter has the [1,2,3] delay profile, and the (15,4) Kautz counter has the [1,2,3,4] delay
profile.

Proposed Depth 3 (15,4) Counters

In addition to the depth 2 and logarithmic depth counters, it is possible to devise net-
works by using a hybrid approach. Figure 6.9(a) shows the proposed (15,4) counter
with a [1,2,2,3] delay profile. This means that the output Oy is generated after 1 gate
delay, outputs Oy and Oy are generated after 2 delays and the O; output after 3 delays.
The O and Oy outputs are generated as in the Minnick counter in Figure 6.7(c) and the
least significant output bit Oy is generated in Kautz fashion as in Figure 6.8(b) using
0,, O4 and Og. Figure 6.9(b) shows the (15,4) counter with [1,2,3,3] delay profile. This
counter computes the outputs Oy, O; and O4 in Minnick fashion based on the value of
Og. Both counters have a maximum sum of weights equal to 29, but the [1,2,2,3] counter
has a total of 34 non-1/0 weights, compared to 50 for the [1,2,3,3] design. Other coun-
ters such as [1,3,3,3] and [1,3,2,3] are possible but would not reduce the gate count,

thus increasing delay with no reduction in cost and are therefore ignored.

Because the hybrid designs have a reduced cost compared to the (15,4) Minnick net-
works, they are useful in reducing the gate count and area wherever 3 gate delay coun-
ters do not increase the critical path delay of the overall network, and where the 4 gate
delays of the Kautz design would do so. The cost of each of the counters designs will

be evaluated and compared in the next section.

For higher order counters (such as 31:5), more options are available. The first stage
can only produce one output bit, but subsequent stages may produce anything from
one bit up to all remaining bits. We have two choices for each bit after the initial two—
produce it serially (as in Kautz) or in parallel (as in Minnick) to the previous one—so
there are a total of 22 such counter topologies for the 2" — 1:n counter (including

pure Kautz and Minnick counters).

Some counters will be clearly superior to others though—not all have a niche. For
example, the (1,2,1) 15:4 counter is superior to the (1,1,2) in area (lower weights)

and latency (second output is faster), and is otherwise largely equivalent.

It is interesting to note that the maximum sum of weights is constant across all equal-
sized counters in the spectrum—it always occurs on the gate generating Oy, and is

20+l _ 3 for a 2" — 1:n counter. Thus with an upper limit of approximately 30 for

Page 98

Chapter 6 Threshold Logic Multiplication

i O

TN

0 0, 0, 0,

(b)

Figure 6.8. Kautz counter networks. (a) Depth 3 (7,3) counter with [1,2,3] delay profile and (b)
depth 4 (15,4) counter with [1,2,3,4] delay profile. The input vector is denoted by v and
the outputs are denoted by O;. The weights and their values for each input are denoted
by the number beside each gate input and the gate thresholds are given by the number
inside the circles. The input weights are unity. Each network has a depth (critical path

delay) which is a logarithmic function of the input vector width.

Page 99

6.3 Larger Counters

®2
S
L\.L J_
S

-8

(@)
T - .
Ol rOu="0
X0
o, o 5, ©

(b)

Figure 6.9. Hybrid counter networks. (a) Depth 3 (15,4) counter with [1,2,2,3] delay profile and

(b) depth 3 (15,4) counter with [1,2,3,3] delay profile. The input vector is denoted by
v and the outputs are denoted by O;. The weights and their values for each input are
denoted by the number beside each gate input and the gate thresholds are given by the

number inside the circles. The input weights are unity and the network depth (critical

path delay) is 3 threshold gates.

Page 100

Chapter 6 Threshold Logic Multiplication

CRTL, we may implement all 15:4 counters in the spectrum as their maximum sum of

weights is 29.

6.3.5 Hybrid TL/Domino Counters

We may extend this spectrum of counters even further by providing a domino logic
option for the least significant output—they are unable to provide sufficient perfor-
mance for higher outputs, as CRTL leads for the 3:2 carry function, and gains further
at higher fan-in. This increases the size of the spectrum by half*—as well as the exist-
ing two choices (parallel and serial) for the final bit, we have the additional option of
using an XOR function. We will represent such a choice as (..., X)—e.g. the hybrid
3:2 counter is the (1, X) counter. Note that the position of the X is always at the end,
and does not signify timing—as the XOR gates compute the least significant output in

parallel.

The least significant output of a counter is equal to the XOR of all the inputs. Since
the XOR operation is both associative and commutative, we may combine the input
bits in any order and configuration in order to compute the final result. Fora 2" — 1:n
counter, we require 2" — n — 1 two-input XOR gates. If all inputs arrive at the same
time, this should be a depth-n binary tree with one fast input, as the tree is not quite
balanced. Algorithms similar to those used in PPRT generation may be used to gener-

ate optimal structures inside the counter, on a per-placement basis.

The hybrids provide several advantages over TL-only counters. Firstly, for parallel
structures (Minnick counters being the extreme examples), the number of TL gates
is greatly reduced—converting the 15:4 Minnick counter to the equivalent (1,2, X)
hybrid, seen in Figure 6.10, reduces the TL gate count from 10 to 5. Better still, the
overall input loading is reduced from 10« to 6x, and the output load on the slowest gate
(that driving Og) is reduced by at least 2k—more if the input is not carefully buffered.
We found this to be equivalent to an area saving—once buffering is factored in—of
around 30%. Finally, the maximum sum of weights is decreased by two, as the most

heavily weighted gate is always removed.

As a result of the reduced loading, the remaining TL gates operate faster—in our 15:4

example, a 27% latency reduction was achieved in the first stage (including input

3The number of counters in the spectrum at each size is increased by exactly half, except for 3:2—
where it increases from one to two.

Page 101

6.3 Larger Counters

.

LWL LN L L

VAVAY:
o LYY
]

a 4 2 1

@.)@)@)
S

Figure 6.10. The (1,2, X) hybrid 15:4 counter circuit consisting of XOR gates and a threshold
logic network. The input vector is denoted by v and the outputs are denoted by O;.
The weights and their values for each input are denoted by the number beside each
gate input and the gate thresholds are given by the number inside the circles. After
Townsend et al [2004].

buffering but ignoring synchronisation), although there was only a 1% boost on the
second stage. The XOR tree, assuming equal-delay inputs, will complete calculation in

a similar time to the Minnick counter—in terms of ¢, both are complete by time 4.

Compared with the (1,2, 1) TL counter, the relative gain is less clear: the delay favours
the (1,2, X) by 23% on the first stage and 1% on the second, with the XOR tree sig-
nificantly faster (effectively by ¢ after synchronisation) in computing the final input.
Area, however, favours the (1,2, 1) by 32%—although it is worth noting that slower
and more area efficient options (1,1, 1, X) and (1, 1,1, 1) exist.

6.3.6 Counter Comparison

Large counters are only likely to be used in heterogeneous circuits —3:2 counters are
required at the final stage to reduce the bit count down to the maximum of two per
column for the final vector-merging adder. Thus we will expect delays at the end of

each gate to be synchronised to multiples of ¢, in order to simplify circuit generation.

In order to ensure each XOR gate is able to keep pace with this, the input loading on
some of the counters must be reduced to 3x. This will only be necessary for TL gates, as
the XORs present an input loading of 1x and the hybrid 3:2 counter is a better choice

from both area and performance perspectives than the domino-only 3:2 counter.

Page 102

Chapter 6 Threshold Logic Multiplication

Table 6.5. Comparison of saturated counters. Comparison is for area efficiency including domnino

and static-CMOS implementations. After Townsend et al [2004].

Circuit Og | O | Oy | O Area eff. | Area eff.

(@) | (@) | (@) | (¢) | vs domino | vs static
Domino 3:2 2 2 100% 52%
(1,1) 1] 2 183% 94%
(I,X) 1 2 161% 83%
(1,1,1) 2| 3| 4 362% | 186%
(1,1, X) 1 2 3 224% 115%
(1,2) 2| 3| 3 185% 05%
(1,1,1,1) 3| 5| 7| 8 346% | 178%
(1,1,1,X) 2| 4| 5| 4 207% | 112%
(1,2,1) 3| 5| 5| 6 271% | 140%
(1,2, X) 2| 3| 3| 4 185% 95%
(1,3 30 4| 4| 4 129% 66%

Since all gates being considered (domino and CRTL) are dual-rail, we may use sin-
gle inverters as buffers, and simply swap the inverted and noninverted rails, thereby

halving the number of inverters needed.

Table 6.5 provides latency and area data for a number of different counters, including
the best performers. For simplicity, we are ignoring the possibility of a “fast input”—
each of the domino/TL hybrids are capable of computing O; in one less delay quantum
(¢) than is shown if the last input is slower than all others (by at least ¢). Area num-
bers are normalised against the static and domino 3:2 counters—that is, for a counter
reducing n bits (e.g. the 15:4 counters reduce 11 bits), the area is divided by the area
of n reference 3:2 counters. Thus numbers exceeding 100% indicate that the circuit is

more area efficient than the reference, and vice versa.

It should also be noted that it is possible to save some area if unsaturated versions of
these counters are used—for example, the 11:4 (1, 2, X) counter will never trigger the
threshold-12 CRTL gate in the first column of the saturated equivalent, so that gate
can be removed from the circuit. However, we found that all such unsaturated hybrid
counters switched at the same speed (after quantisation) as their saturated equivalents,

and that none of the unsaturated TL-only counters are able to match the performance

Page 103

6.3 Larger Counters

Table 6.6. Comparison of the various designs for saturated (3,2), (7,3) and (15,4) counters.

Gates | Sum of Non | Sum of I/P | Maximum Sum of Cost
I/P Weights Weights Weights per Gate
(3,2) Muroga 5 3 12 3 5g + 15w
Kautz 2 2 6 5 28 + 8w
Minnick 2 2 6 5 2g + 8w
(7.3) Muroga 12 10 70 7 12g + 80w
Kautz 3 10 21 13 3g + 31w
Minnick 5 10 35 13 5g + 45w
(15,4) Muroga 25 25 330 15 25g + 355w
Kautz 4 34 60 29 4g + 94w
Minnick 10 34 150 29 10g + 184w
[1,223] 6 34 90 29 6g + 124w
[1:2,3,3] 6 50 90 29 6g + 140w

of the hybrids. Thus no further performance gain is possible, and power and area

savings are the only benefits.

From the table, it is clear that the best performing counters are, in each case, the hy-
brids based on the Minnick topology—that is, (1, X), (1,1, X) and (1, 2, X). The Kautz
counters are, unsurprisingly, the most area-efficient—although static CMOS is slightly
better at 3:2 level. Note, though, that the area efficiency of both domino and CRTL
may be improved through careful sharing of components—transistors in the former
case and capacitors in the latter (Celinski et al. 2002a)—so static CMOS is perhaps less
area efficient than it may seem from the table. These improvements are difficult to

quantify, and so have not been considered here.

Table 6.7 compares the various counter designs for up to 15 inputs in terms of gate

count, sum of non-input weights and the maximum sum of weights per gate.

In order to determine the area cost of each of the counter networks, it is necessary to
define a cost function which accounts for interconnect, weight area and the area of
the sense amplifier component of each TL gate area. The area of the sense amplifier
component will be referred to as the gate area, and does not include the area required
to implement the weights. Unlike conventional AND-OR-NOT (AON) logic, total TL
circuit size is not easily related to the number of gates as, in addition to interconnect,

the area of TL circuits depends on the number of inputs as well as the weight size. The

Page 104

Chapter 6 Threshold Logic Multiplication

contribution of each component to the total cost depends on the CMOS technology and
the gate design. Given these considerations, a reasonable definition of a suitable cost

function, C, is a follows:

C=) gatesxg+ Y wypXw + Y Wnoni/p X Wa, (6.2)

where g, w; and w; are technology and circuit dependent parameters that account
for the relative contribution of the gates, input weights, hidden layer weights and
interconnect, respectively. The factor wi/p refers to the number of input layer unit
weights and wyn1/p refers to number of hidden layer unit weights. Typically the in-
put and hidden layer weights will contribute equally to area and thus w; = wy(=
w), which means that a unit input weight occupies the same area as a hidden layer
unit weight. However, certain gate designs, especially capacitive differential type
gates (Garcia et al. 2000, Celinski et al. 2002a), are particularly well suited to the area ef-
ficient implementation of counter networks and allow the input weights to be shared,

thus reducing the total cost.

Given the definition in Equation (6.2), the cost for each counter is evaluated in terms
of the g and w parameters in the final column of Table 6.7. As discussed previously,
the parameters g and w and therefore the cost depend on the particular circuit design
and technology used in the implementation of the TL gate. For example, ina 0.35 um,
AM-2P STTL (Celinski et al. 2002a) implementation without input weight sharing, the
area occupied by 10 weight forming capacitors is equal to the area of one gate, so
that g = 10w. In this case the (15,4) Minnick counter occupies 2.1 times more area
than (15,4) Kautz but has 2 gates less worst case delay. Similar calculations can be
performed to compare cost for other technologies and implementations. Generally, for

a given counter, the Kautz network is the cheapest, followed by Minick and Muroga.

6.3.7 Counter Choice

In theory, it is possible to optimise counter choice for performance across an entire
PPRT. However, in reality this is subject to massive computational requirements, and

is infeasible for all but the simplest circuits.

Page 105

6.4 TL Counter Circuits

Comparison of equal-sized counters is achievable by comparing the vectors of bits in
each output column. However, this method breaks down when the number of bits pro-
duced in each column varies between counters, as typically occurs when attempting to

compare counters of different sizes.

To obtain a formative comparison, the aim will be to compare rather than prove domi-
nance, and we will primarily target the most critical case, which occurs when adjacent
columns are of roughly equal size in terms of partial product count. The larger coun-
ters are less flexible, so they will only be considered when there is a number of partial
products at the same delay—3:2 counters are likely to be more efficient when the de-
lays vary.

To compare, symmetric circuits are used—for each carry out, there is a matching carry
in at the same delay, i.e. all adjacent column circuits are exactly equal. Effectively, this
means feeding the carry bits back in to this “virtual column” and continuing to reduce
down to the desired number of bits. As an example, consider the case where there are
six bits at delay zero. A symmetric 3:2 circuit reduces this to three bits in the fashion
seen in Figure 6.11—each rectangle represents a 3: 2 counter, with inputs at the top and
outputs at the bottom. This circuit produces outputs at time 2, 3 and 3 (in terms of ¢)—
compared with the 6:3 unsaturated hybrid counter, which produces outputs at time 1,

2 and 3. Thus larger counters are a better choice in this situation.

The 7:3 hybrid and its unsaturated equivalents compare favourably to the 3:2 hybrid
when there are six or more bits available; for five bits, the result is unclear, and the
3:2 circuit will be used as it provides greater adaptability. Similar reasoning shows the
15:4 hybrid counter to be superior when there are eleven or more bits arriving at the

same time.

6.4 TL Counter Circuits

The Minnick counter offers the best tradeoff in terms of area and delay. The worst case
delay for all outputs is equal to two threshold gates and is independent of the order of

the counter. The most significant output always has a delay of one threshold gate.

For these reasons the Minnick counter is chosen as the basis for our modified imple-
mentation, and will be referred to as the Modified Minnick Counter (MMC).

As was described in the previous section, each of the gates in the first and second layers

includes among its inputs all of the inputs to the counter. This means that the network

Page 106

Chapter 6 Threshold Logic Multiplication

oLofof ofof O

3:2 3:2
1 2 1| 2
v
)
1] 1 \
3:2
3[3
< —
2 \ 3

Figure 6.11. Symmetric 6 to 3 reduction circuit using standard 3:2 counters. The numbers
next to the 3:2 outputs denote the number of delay units for that output. After
Townsend et al [2004].

that performs the weighted summation of the counter inputs (with all weights being
1) in the VLSI layout of the counter is replicated at each threshold gate. In the recently
proposed capacitive threshold gate designs, this contributes to a very significant por-
tion of the total counter area. For example, in the (7,3) counter discussed previously,
the total number of capacitors performing the summation of the input bits at each of
the 5 gates is 35 (5 gates x 7 input bits). Additionally, there is significant area associ-
ated with routing the 7 interconnect lines to each of the 5 gates. These drawbacks have

an even greater impact on total area for higher order counters.

The new design proposed here is based on separating, at the circuit level, the two func-
tions performed by the threshold gate, namely weighted addition and thresholding. In
other words, the capacitive network, which calculates the analog value of the sum of
the counter input bits, needs only to be implemented once, and this value becomes one
input of the sense amplifier in any number of CRTL or STTL gates. In the second layer
gates, the other sense amplifier input is connected to the capacitive networks which
implement the negative weights of the layer 1 to layer 2 interconnections. Additional
capacitors can also be connected to the other input to set the gate threshold. Such an ar-
rangement is possible only because of the differential nature of the CRTL or STTL gate
and is not possible with other recent TL gate designs including neuron-MOS (Shibata
and Ohmi 1991), LPTL (Avedillo et al. 1995), CTL (Ozdemir et al. 1996) or the approach

Page 107

6.4 TL Counter Circuits

described in (Garcia et al. 2000). It reduces the number of capacitors required from 39

to 22 in the Modified Minnick (7,3) counter implementation.

/1 Q;—”i — L 2F— Yo
—
xl_Hi T_“!—| 14
2 | I Il I
x2_H_" rHJ T_”l,
x3_”&' 8
x—{}z« I O rH— —h OF— N
4
xs_”z' T_”ll Hi
2 1 I 3 i
5= T
e O [Rt
L ‘ L
L‘G E é yg
ﬁl b s

Figure 6.12. Circuit diagram of the proposed STTL Modified Minnick (7,3) counter. The
inputs are denoted by x; and the outputs are denoted by y;. The capacitor values are
given as a multiple of the minimum unit capacitance for the process. The dashed-line

box indicates a possible STTL gate to balance all output delays.

The circuit diagram showing this design is shown in Fig. 6.12. The numbers next to
the capacitors indicate the multiple of the unit capacitor. The enable signals, E and
E}, are not shown to improve clarity. The two gates in the second layer are enabled
after the outputs from the first layer are evaluated, as discussed in Section 4.2. The two
enable signals of one of the first layer gates drive the enable inputs of both second layer
gates. The capacitors shown connected to 0 V and Vjq adjust the effective threshold
of each STTL gate. The outputs of the first layer gates are connected to the capacitors
which implement the negative weights. The inputs denoted by I; and I, in Fig. 6.12
correspond to the ¢ and T inputs, respectively, shown in Fig. 4.5

Counter Simulation Results

The counter circuit shown in Fig. 6.12 was simulated with HSPICE using 0.25 ym pro-
cess parameters at a supply voltage of 2 V. The value of the unit capacitor was chosen

to be 5 fF. The simulation waveforms are shown in Fig. 6.14 and include the first layer

Page 108

Chapter 6 Threshold Logic Multiplication

i of———— R {1 e
;_F
1
HE}— A I+
¢ —
o | | ———
T_| 2 ____”;
A =4 D»—: —#
Y% i T
5 4 X o
s Ty
lﬁ 4”3‘* }LF_!!
e _”1‘ r{
Xq & Lo Hh eF— 0
Ky P g I
Yy —"i' u:ﬂ*'*h HI I
o —FH l—| I
RNt _”_2" L Q T—ﬂl
Mg — T_{ 10 r”L
X3 AIL :ﬂ»— I
"]44”3‘ l—{
“‘IS_Hi —h @ nh o Ya
T 2 I
?1 1, T—iﬂ».@
.L_| 1
_‘11 Q
'L{ 14 Yq
i

Figure 6.13. Circuit diagram of the proposed CRTL Minnick scheme based (15,4) counter.
The inputs are denoted by x; and the outputs are denoted by y;. The capacitor values

are given as a multiple of the minimum unit capacitance for the process.

enable signal, E, the weighted input vector signal, I;, and the three output bits. The
waveform that has the form of a staircase is the I input to each STTL gate and in-
creases as the number of 1's in the input vector, (xi, ..., X7), is increased from 0 to 7. It
can be seen that when E goes low, the outputs y,, y; and y evaluate correctly for all

values of the input vector.

It should be noted that the output y; is available after one gate delay and the remaining
two outputs are available after two gate delays. All outputs can be made to evaluate si-
multaneously by adding one additional STTL gate which would act as a delay element
for y,. This gate is shown with dashed lines in Fig. 6.12. The enable signal frequency

for the first layer gates was 300 MHz and the power dissipation was measured to be

Page 109

6.4 TL Counter Circuits

Volts

N aNANANAWANANAN

10n 15n 20n

-

2

0

0
10n 15n 20n
2 T
[1]3 L L
15n 20n

25n

-

5n
0 5n 10n 25n
2 T v -
Y1 | \M M -
0 i 1 1 1
0 5n 10n 15n 20n 25n
2 T m T 2
Y2 1 - [—_ﬂ—f
d 5n 10n 15n 20n 25n

Time (s)

Figure 6.14. Simulation results of the STTL Modified Minnick (7,3) counter.

870 uW. The counter delay is less than 1.4 ns, measured from the falling edge of the
enable signal to yp or y;. Compared to other Minnick (7,3) counter implementations,

the number of capacitors required is reduced from 39 to 22.

Compared to the design of the (7,3) counter based on Minnick’s scheme which does
not use capacitor sharing, the required number of (unit) capacitors has been reduced
from 94 to 61, and for the (15,4) counter the required number of (unit) capacitors has
been reduced from 384 to 152.

To evaluate the area savings, the (7,3) and (15,4) counters were laid out using the pro-
posed capacitor sharing technique (SCRTL) and without sharing (CRTL) usinga 3.3V,
double-poly, 4-metal 0.35 um process. For comparison, a (7,3) counter using the tradi-
tional Boolean full-adder (BL) based scheme (Koren 2002) was also laid out in the same
process. The extracted layouts were simulated using HSPICE. Table 6.7 shows the area
and delay results. For the CRTL based counters, delay refers to the latency, since the

gates are clocked.

As is shown in the table, the CRTL based designs are approximately 45% faster than
the full-adder implementation for the (7,3) counter. The CRTL (7,3) counter without

sharing occupies 50% more area than the full-adder design, and the capacitor-sharing

Page 110

Chapter 6 Threshold Logic Multiplication

Table 6.7. Counter comparison (0.35 ym 2P /4M process) for Boolean logic (BL), Charge-
Recycling Threshold Logic (CRTL and Shared-capacitor CRTL (SCRTL) imple-
mentations. The table compares the delay, transistor count, number of unit capacitors
required, the occupied area and the normalized area compared to the Boolean logic

implementation.

Counter Delay | # Tran. | # Unit | Area | Norm.

Type (ps) Caps. | (um?) | Area
BL (7,3) (Koren 2002) | 840 136 - 1970 1
CRTL (7,3) 460 70 94 2052 15
SCRTL (7,3) 460 70 61 1848 0.94
CRTL (15,4) 480 140 384 | 10124 | 1
SCRTL (15,4) 480 140 152 | 3956 | 0.4

technique provides a small area saving when compared to the full-adder based counter.
The sharing of capacitors reduces the area by 37% for the (7,3) counter and by 60% for
the (15,4) counter compared to the non-shared designs. It should be noted that the use

of capacitor sharing does not result in an increase in delay.

A number of other circuit designs have been proposed in the literature based on differ-
ent process technologies. These include the (15,4) counter using a neuron-MOS based
sorter circuit (Rodriguez-Villegas et al. 2000) which was reported to have a delay of 8
ns in a 1.2 um process and for which no area data was given. The design for a (31,5)
counter using Capacitive Threshold Logic (CTL) was presented in (Leblebici et al.
1996), the worst case delay was 4.2 ns in a 1.2 ym process and the area was approx-
imately 80000 ym?. Recently a hybrid Threshold-Boolean logic (HTBL) design was
proposed (Padure et al. 2002a) which uses a single-phase clocked differential cascode
voltage switch circuit implementation of the TL gate in combination with static CMOS
logic. The delay of the (7,3) HTBL counter in a 0.25 ym process was 345 ps and the

design required 237 transistors.

Page 111

6.5 Partial Product Reduction Trees

6.5 Partial Product Reduction Trees

6.5.1 Three-Dimensional Method

The best-performing known schemes for PPRT circuit generation are based upon the
three-dimensional method (TDM), originally developed by Oklobdzija [1996] and sub-
sequently refined by Stelling [1998]. This method works with one column at a time,
iterating from least to most significant, such that all the partial product delays (includ-
ing carry input bits) for the column are known in advance. In this manner, a highly
optimised circuit may be custom generated for the specific delay vector of each col-
umn.

Various algorithms are possible for allocating the counters (typically 2:2 and 3: 2 CMOS)
within each column. The initial attempt detailed in Oklobdzija [1996] is now known

as the “Three-Greedy Method”, in which one 3:2 counter is placed at a time, using

the earliest three input bits. No distinction is made between the sum outputs of previ-

ously placed counters, the carry input bits from the previous column and the initially

generated partial product bits. More recent works (Stelling 1998, Townsend 2001) in-

vestigated the search for optimal PPRT circuits within the framework of the TDM.

Some restrictions are placed upon the counters used for this; however, each of the
3:2 counters presented are within them. The only change required is to the relevant
delay constants; the algorithms remain the same. The numerical results published in
Oklobdzija [1996] still hold for the hybrid 3:2 counter, but require re-calculation for

the domino 3:2 and Kautz 3:2 counters.

6.5.2 Input-Symmetric Counters

The three-dimensional method may be further optimized for input-symmetric coun-
ters—that is, counters in which the delay paths from each of the inputs are identical
(there are no “fast” or “slow” inputs). For a 3: 2 counter, this simplifies the delay equa-
tions to s = d+ x3 and ¢ = d + y3. That is, all output delays depend only on the arrival
of the slowest input to each counter. It is worth noting that the XOR gate (sum only, as

used in hybrid counters) and each of the TL-only counters fit this definition.

Because both sum and carry delays are fixed offsets from d, we need only examine
the delays of the d inputs to each gate when comparing circuits, and so only have one

vector to optimise.

Page 112

Chapter 6 Threshold Logic Multiplication

It is relatively straightforward to prove, by contradiction, that the greedy algorithm is
optimal for circuits of input-symmetric counters; however, space restrictions prevent

the inclusion of the formal proof here.

6.5.3 Heterogeneous Circuits

In order to use the faster 7:3 and 15: 4 counter circuits, we need to build heterogeneous
circuits—3: 2 counters will still be needed to adapt to more difficult circumstances, and

to reduce the final few bits in preparation for the vector-merging adder.

Several algorithms were tested; one outperformed the others and is detailed here. This
algorithm uses the optimal TDM circuit generator of Stelling [1998] to do the bulk of
the work, albeit placing hybrid 3:2 counters instead of static CMOS (as was originally

envisaged).

In order to find optimal 3:2 counter circuits, we require the complete input delay pro-
file. Thus any larger counters must be placed in a segment at the beginning of the
circuit, the output of which is passed to the TDM segment. In a similar fashion to the

TDM, we will proceed one column at a time, starting with the least significant.

The allocation of the larger counters will proceed using a simple greedy algorithm—
each n-input counter will take the earliest remaining n bits in the column segment as
inputs; the sum outputs are re-integrated. The choice of action depends on the number

of bits i available at the same delay as (and including) the earliest available bit:

e i> 15: place a saturated 15:4 (1, 2, X) counter

e 11 < i< 15: place an unsaturated i:4 (1,2, X) counter

7 < i< 11: place a saturated 7:3 (1, 1, X) counter

e i = 6: place an unsaturated 6:3 (1, 1, X) counter

i < 5: pass these i bits to the TDM segment.

This process repeats until there are no further bits remaining in the column segment.
Once all of the large-counter segments have been processed in this fashion, the TDM
optimal circuit finder [Stelling 1998] —which runs significantly faster than for the full
PPRT, due to the reduced problem size—generates the remainder of the PPRT using
hybrid 3:2 and domino 2:2 counters.

Page 113

6.5 Partial Product Reduction Trees

Table 6.8. The PPRT latency comparison (in terms of delay parameter ¢). For a range of

domino, Kautz, hybrid and heterogenous counters and input word lengths.

Algorithm 16 x 16 | 32 x 32 | 64 x 64 | 128 x 128
Domino 3-greedy 12 15 18 22
Domino optimal 12 15 — —
Kautz 3:2 optimal 10 13 15 18
Hybrid 3:2 3-greedy 8 11 15 18
Hybrid 3:2 optimal 8 11 — —
Heterogeneous 7 9 11 144
6.5.4 Results

When working with fixed delay ¢, throughput is solely a function of pipelining—so
latency is the sole performance concern. Latency results are presented in Table 6.8
for various PPRT sizes; it should be noted that computational limits due to the algo-
rithm’'s exponential complexity prevented us from finding optimal circuits for some
cases. In those instances, the three-greedy algorithm (Oklobdzija et al. 1996) results
are provided; the optimal circuit’s performance is unlikely to exceed the three-greedy

circuit by any significant amount.

These are results in terms of the domino 3:2 counter, as that was the basis for choos-
ing ¢. These results clearly show that the Kautz and Hybrid counters are capable of
producing lower-latency circuits at the same clock rate, as is the heterogeneous al-
gorithm described in this paper. Comparing between the other algorithms, however,
is not quite so clear cut—the results are somewhat dependent on the choice of time
quantum, and this may be influenced by other aspects of the circuit. Nevertheless, the

heterogeneous algorithm appears to be the best choice for large circuits.

In area terms, the 3:2 circuits may be simply compared on the basis of their counter
cells although this will be perturbed slightly by the few 2:2 counters needed. The
heterogeneous circuits use a range of counters, but the efficiency does not vary too
greatly—from 161% of the domino counter to 224%, which corresponds to a device

count reduction of 38 — 55%. Thus area improvements are expected somewhere in this

This result is taken from a sub-optimal circuit, which was generated using threé-greedy rather than
optimal TDM (where applicable). Computational requirements are too great for an optimal circuit to be
found.

Page 114

Chapter 6 Threshold Logic Multiplication

Table 6.9. Partial product reduction tree area estimates. Comparison with domino and static

CMOS logic for a range of counter types.

Algorithm Area efficiency | Area efficiency

vs domino vs static
Domino 100% 52%
Kautz 3:2 183% 94%
Hybrid 3:2 161% 83%
Heterogeneous ~ 170% ~ 88%

range; the larger counters are more area-efficient, so the efficiency will likely increase

slightly at higher wordlengths. These results are tabulated in Table 6.9.

6.6 Chapter Summary

The results shown by hybrid domino-TL PPRT circuits are highly promising. Due to
their ability to cope with much higher fan-in than conventional CMOS logic gates,
CRTL based circuits were expected to shine at very high wordlengths, but better per-
formance is evident at wordlengths as low as 16 bits; the latency improvement at
64 x 64 is 39%. In addition, it is possible to achieve this with area requirements only
narrowly exceeding those of static CMOS despite much higher performance, and sig-

nificantly below those of domino logic.

Having focused in the last three Chapters the advantages of TL circuits using CMOS
technology, the focus now changes to exploring threshold logic based techniques in
other promising, although not nearly as widespread, technologies including Comple-
mentary Gallium Arsenide circuits and Self-Elecro-Optic Devices (SEEDs).

Page 115

Page 116

Optical and GaAs
Threshold Logic

Techniques

HE focus of this Chapter is the development of Self-Electro-
Optic Effect Device (SEED) and Complementary Gallium Ar-
senide (CGaAs) based threshold logic elements. Firstly, the ap-
plication of threshold logic elements based on complementary GaAs tech-
nology to implement very low power, high speed logic is investigated. Sec-
ondly, the application of the counter designs proposed in earlier Chapters is

extended to the optical domain and novel ultra high speed analog-to-digital

(ADC) converters are proposed and experimental measurement results are

discussed.

Page 117

7.1 SEED Based TL

7.1 SEED Based TL

The optical domain offers a number of advantages over conventional electronics. Op-
tical components typically have much higher bandwidth, low power consumption,

improved reliability and insensitivity to electro-magnetic interference.

This section describes a novel Nyquist type analog-to-digital converter (ADC) using
threshold logic counters and an opto-electronic device called the self electro-optic ef-
fect device (SEED) (Miller 1990). These multiple quantum well structures (MQWS)
(Miller et al. 1985) consist of alternate thin layers of GaAs and AlGaAs in the intrinsic
region sandwiched between p and n doped AlGaAs layers. The result is a p-iMQW)n
diode that can behave as a modulator (Souza et al. 1994) or as a bistable switch de-
pending on whether the SEED is operating in the negative or positive feedback mode
(Miller et al. 1985).

Under negative feedback self-linearised modulation, linear light-by-light modulation,
optical subtraction and optical level shifting (Miller et al. 1985) is possible. Bistability is
obtained under positive feedback and this is used to create a threshold logic gate using
two SEEDs connected in series, also known as symmetric-SEED . Typically a reference
beam is the input to one SEED while the signal beam is the input to the other, however

for simplicity, a resistor SEED (R-SEED) network is used in this work.

Section 7.2 describes the system design considerations of an optical threshold logic
ADC and a theoretical analysis of the R-SEED network is given. Section 2.3 discusses
three designs of a 2-bit ADC, one of which is demonstrated experimentally and simu-

lation results are compared with measurements.

7.2 System Design Considerations

7.2.1 Physical structure of p-i(MQW)-n diode

The devices used in this study consist of forty 95A/40A AlGaAs/GaAs quantum wells
and were fabricated by the metal oxide chemical vapour deposition (MOCVD) process.
These devices were intentionally very large, 500 pm x 500 pm to simplify fabrication,
testing and experimental design. As a consequence, maximum clock speeds were low
(less than 1 kHz) but still allowed verification of the proof of concept for the proposed
ADC.

Page 118

Chapter 7 Optical and GaAs Threshold Logic Techniques

7.2.2 Theoretical Model

The self electro-optic effect device in its simplest form is a reverse biased p-i(MQW)n
device as depicted in Figure 7.1(a) and the equivalent circuit model is shown in Fig-
ure 7.1(b). The current source represents the current generated by the absorbed inci-
dent radiation and the diode represents the dark current generated by the p-n junction.
The series resistance arises from the contacts and was assumed to be negligible for sim-

ulation purposes.

Vdd

TI Ph ‘lb
Interconnects: @ Vo =, ?R.ﬂf Vo Ry

—p Optical

Electrical

Figure 7.1. SEED device. (a) The simplest network is a SEED with a bias voltage applied across
it. The output power Py is a function of the input power P,. (b) shows the equivalent
circuit consisting of a current source generating a current I, from the input power,
diode due to the dark current Iy, a capacitor Cj and a resistor Ry, in parallel and a

series resistance Rs. After Sarros et al [2004].

Figure 7.2 illustrates a Resistor-SEED. The R-SEED is simply a resistor connected in
series with a multiple quantum well p-i-n diode. By applying a bias voltage Vg4, an
input power By and chosing the correct wavelength and resistor values, the output

power P,y can be made to switch.

In determining the operation of the R-SEED, a static and dynamic analysis is performed
to provide a means of simulating the behaviour and maximum operating speeds to the

fabricated devices.

The static analysis of the R-SEED can be used to show that the output power is given
by
hv

Pout = Bn — Pabs — Ploss = Pn — mfph(v) — Posss (7.1)

where P, accounts for optical loss within the system including reflections from the

front of the photo-detector.

Dynamic analysis for an R-SEED is leads to,

Page 119

7.2 System Design Considerations

Vdd

Interconnects:
s Optical
Electrical

Figure 7.2. Resistor-SEED (R-SEED) network in which a resistor is connected in series with a
SEED. It can be used in the bistability or modulation mode depending on the wavelength
and bias voltages chosen. After Sarros et al [2004].

Vd‘g V o B.S(V) + g _ Ii(V). (7.2)

dt

Equation 7.2 shows that the dynamic behaviour of the R-SEED is a function of the self
loading capacitance, the supply voltage, the dark current and the voltage dependent
photo-current. Increasing the optical power has a large effect on the dynamic perfor-

mance. Equation 7.2 is solved numerically in the following Subection.

7.2.3 Nyquist Analog-to-Digital Converter using Optical TL

Nyquist type ADCs have a fast conversion rate with precision typically limited by
component mismatch. The optical threshold logic converters discussed here are of this
type. This section describes the design and construction of a 2-bit ADC using two
R-SEED networks.

The Kautz (3:2) counter described in a previous chapter is shown in Figure 7.3(a), and
functions by initially computing O, with a single threshold gate. This is then weighted
(by two, as it is double the binary weight of the inputs) and subtracted from the input

vector in a second threshold gate, which thresholds at one to produce O.

To demonstrate this architecture in the optical domain, the weights of the system must
be positive since an optical signal is unipolar. The negative weight on the second
threshold is removed by rearranging and substituting the logic expression X = 1 — x.

A division of two is carried out to avoid any optical amplification into the next stage.

Page 120

Chapter 7 Optical and GaAs Threshold Logic Techniques

The calculations for this are shown in Equation 7.3 and the corresponding diagram is
shown in Figure 7.3(b). The counter network is equivalent to a 2-bit optical ADC where
the input is now a combination of an analog and digital optical signals instead of three

binary inputs. The following relations describe the operation of the networks shown
in Figure 7.3,

202 + Pin ; 3:
R
O, + % > 1.5, (7.3)
v ? P 0.5
e (2)—{13
0, O, O, 0,
(@) (b)

Figure 7.3. Networks for performing the calculations in Equation 7.3. (a) Depth 2 (3,2) Kautz
counter with [1,2] delay profile (b) Depth 2 (3,2) Kautz counter with [1,2] delay profile

using positive weights.

Figure 7.4 shows the digital output of a 2-bit ADC from an input sinusoidal waveform.
This shows the sinusoidal waveform separated into four levels where each level rep-
resents a distinct 2-bit value, i.e. 11, 10, 01 and 00. The corresponding digital output
waveforms of O; and O; are shown, where in the case of a 2-bit R-SEED ADC, the
digital outputs are inverted.

The 2-bit ADC shown in Figure 7.5 uses two R-SEED networks as described in Sec-
tion 7.2.2. The R-SEED network represents the optical threshold logic gate where the
resistor varies the switching point of the input power. The operation is as follows:
P, represents the analog input signal entering the first R-SEED network while By,/2
is required for the second R-SEED network to satisfy Equation 7.3. The output of an
R-SEED network is inherently inverted, i.e. a low input power yields a high output

Page 121

7.2 System Design Considerations

Figure 7.4. Digital output of a 2-bit A/D converter from a sinusoidal waveform. This shows
the waveform separated into four levels representing a 2-bit value ie. 11, 10, 01 and 00

which are the values of O, and Oy, respectively. After Sarros et al [2004].

power state and vice versa. The output power of the first R-SEED network is then in-
put to the second R-SEED in addition to half the analog input power such that (7.3) is
satisfied. This is depicted diagrammatically in Figure 7.3(b).

Ydd Vdd

Interconnects:
=—p— Oplical 6
Electrical 2

Figure 7.5. 2-bit optical threshald logic ADC. This uses two R-SEED networks where the resistors
Rii and Ry,» determine the thresholds of the devices. After Sarros et al [2004].

7.2.4 Simulations and Experimental Results

This Subsection presents the simulation and experimental measurement results for the
2-bit ADC shown in Figure 7.5. A dynamic analysis is used for the simulations in
which circuit equation 7.2 is solved numerically. Experimentally measured data for
the device responsivity and reflectivity is used in the simulation. These measurements

were obtained by applying incident power of 100 W and measuring the photo-current

Page 122

Chapter 7 Optical and GaAs Threshold Logic Techniques

and reflectivity as a function of voltage and wavelength. The dark currents and the
parasitic capacitances for each device were also measured with the incident power set
to zero. The experimental data for Sy, S, Iy, I, C, and C; were substituted into

equation 7.2 and solved numerically.

50/50 Beam
splitter
Ti Sapphire Noise| AOM \ ,
Laser Eater o P
int
«——" Wedge
Vdd Vdd
. =1 ND Filter e e .
th2 th1
ni n i
| —
Lens l l N2 N4 Lens 1
r‘n!ermnﬂsd.sr
gr;fiar P oul2 P, oull

Figure 7.6. Experimental setup for a 2-bit optical threshold logic ADC. This uses two R-SEED
networks shown in Figure 7.5. After Sarros et al [2004].

Figure 7.7 compares experimental and simulated results obtained from implementing
the architecture shown in Figure 7.5 where the optical sine wave input frequency was
100 Hz. The operating wavelength was chosen to be 846 nm as this gave the highest
contrast ratio for both devices, The bias voltage for both R-SEED networks was set
at -10 V and the analog power levels on both networks were 100 W with a 10 yW
amplitude, therefore the power ranged from 90 yW to 110 yW.

In Figure 7.7 the digital output of the most significant bit complements the simulated
diagrams. For the digital output of the least significant bit the simulation switches
sooner from the 01 to 00 transition compared to the experimental data. Comparing to
the ideal case, there is a noticeable difference due to the large hysteresis of the R-SEED
network.

From simulation and experimental data for the 2-bit optical threshold logic ADC shown
in Figure 7.5, it can be observed that the least significant bit has a significant hystere-
sis problem. One way to minimise hysteresis is with the use of an S-SEED struc-
ture such that a reference power is applied or a differential system is employed. A
method for eliminating hysteresis using S-SEEDs includes a state-preset pulse oper-

ating at a wavelength several nanometers longer than the operating wavelength (Loh

Page 123

7.3 CGaAs Threshold Logic

Input signal @ 100.0199Hz
120 T T T T T

-
—
o

Power (uW)
=
o
T
1

90 — Experiment]
— - Simulated
80 1 1 1 T 1
0 5 10 15 20 25 30

Output power of first R—-SEED threshold logic gate

T T
— Experiment 9
— - Simulated :
1o |deal z

Power (uW)

10 15 20 25 30

Output power of second R—SEED threshold logic gate
T T
— Experiment |gwy -
— - Simulated ff:|:
1o |deal -

Power (uW)

20 25 30
Time (ms)

Figure 7.7. Threshold R-SEED results. From top to bottom, the analog input, most significant
and least significant bits of the 2-bit optical threshold logic ADC is shown at 100 Hz.
The simulated graphs indicates a good representation for predicting the behaviour of
the system. The ideal graph for the most significant bit shows the R-SEED networks

hysteresis problem. Measurements carried out by Tony Sarros.

and LoCicero 1996). This technique results in a single point of intersection on the I-V

curve hence unambiguously determining the state of the S-SEED.

7.3 CGaAs Threshold Logic

As a further exploration of various physical implementations of threshold logic, this
Section focuses on Complementary Gallium Arsenide based TL. The techniques pre-
sented in this section are closely related to the capacitive MOS TL gate implementa-
tions.

The neu-MOS transistor uses capacitively coupled inputs onto a floating gate. Neu-

MOS enables the design of conventional analog and digital integrated circuits with a

Page 124

Chapter 7 Optical and GaAs Threshold Logic Techniques

significant reduction in transistor count (Wong et al. 1997, Gonzalez et al. 1998). Fur-
thermore, neu-MOS circuit characteristics are relatively insensitive to transistor param-
eter variations inherent in MOS fabrication processes. Neu-MOS circuit characteristics
depend primarily on the floating gate coupling capacitor ratios. It is also thought that
this enhancement in the functionality of the transistor, ie. at the most elemental level
in circuits, introduces a degree of flexibility which may lead to the realisation of in-
telligent functions at a system level (Ohmi and Shibata 1995). This Chapter extends
the neu-MOS paradigm to complementary gallium arsenide based on HIGFET transis-
tors. The design and HSPICE simulation results of a neu-GaAs ripple carry adder are
presented, demonstrating the potential for very significant transistor count and area re-
duction through the use of neu-GaAs in VLSI design. Preliminary simulations indicate
a factor of 4 reduction in transistor count for the same power dissipation as conven-
tional complementary GaAs. The small gate leakage current is shown to be useful in

eliminating unwanted charge buildup on the floating gate.

Complementary GaAs has a number of highly desirable properties for low-power,
high-speed digital and mixed RF/digital applications. These include low voltage op-
eration (0.9 V to 1.5 V), very low static power dissipation using CMOS-like designs and
significantly higher operating speeds than CMOS.

The neuron-MOS transistor (neu-MOS or vMOS for short) was originally developed
at Tohoku University in 1991 (Shibata and Ohmi 1991). The structure of a neu-MOS
transistor is identical to an ordinary MOS transistor, but with a number of additional
inputs capacitively coupled onto a floating gate, as shown in Figure 7.8. MOSFET
style transistor symbols have been used to emphasize the semi-insulating nature of the
HIGFET transistor gate. The floating gate potential is a weighted sum of the inputs,

the weightings being determined by coupling capacitor ratios.

The use of neu-MOS transistors provides additional functionality that allows, for ex-
ample, the design of a full adder cell with only 8 transistors as compared to 28 in CMOS
and an area of 55% of the CMOS design (Hirose and Yasuura 1996).

The goal of this chapter is to extend the neu-MOS paradigm to the complementary
GaAs technology. In particular, we demonstrate the suitability of 0.5 pm HIGFET tran-
sistors for application to neu-GaAs (Abbott et al. 1998), present a basic neu-GaAs circuit
structure and the simulation results of a neu-GaAs 4 bit ripple carry adder, for the first

time.

Page 125

7.3 CGaAs Threshold Logic

The use of neu-GaAs techniques in HIGFET transistor designs promises to give VLSI
designers more freedom in designs where area, delay and power dissipation are critical

and provides a step forward towards boosting the effective integration level.

7.3.1 Neu-GaAs Basic Structure

The neu-GaAs transistor is shown in Figure 7.8. Although the gate of a HIGFET
transistor is not strictly speaking a floating node as in a MOS transistor, the analy-
sis of this structure is identical to that of the neu-MOS transistor given in (Shibata and

Ohmi 1991), and the floating gate potential is given by

CGVi+ GV + ...+ CnV
pp = CVE GOV bt OV @4

where Cr is the sum of the coupling capacitors C; to C, and Cy. Here (is the sum of
all parasitic capacitances from the floating gate to the substrate, including the floating

gate to source and drain capacitances.

A basic variable threshold neu-GaAs inverter structure is shown in Figure 7.9. This
neu-GaAs inverter is a fundamental building block in digital neu-GaAs design and is
similar to an ordinary CMOS like ratioless inverter consisting of a p-type GaAs pull-
up and an n-type pull-down transistor. The gates of the two transistors are connected
and two inputs which are capacitively coupled to this floating gate are added. When
the floating gate potential exceeds the inverter threshold, the inverter output becomes
low and vice versa. By using two inputs, one of which is to be inverted, ¥,, and one
as a threshold control, V.., the effective neu-GaAs inverter threshold (as seen from
the input Vi) can be made variable. The simulation results for three values of Vi are

shown in Figure 7.10.

7.3.2 Choice of GaAs Technology

The realisation of neu-GaAs circuits requires that the floating gate voltage remain sta-
ble for periods of time depending on the clock frequency being used. This means that a
low gate leakage current is required. The HIGFET uses a semi insulating AlGaAs layer
to reduce gate leakage currents (to approximately 2 nA/um? of gate area) and it ap-
pears, at least in the short term, as the most viable option for complementary neu-GaAs

applications.

Page 126

Chapter 7 Optical and GaAs Threshold Logic Techniques

V

S"‘—| ELEL..-IJIIH |—°D
N] (%]

P-substrate

Figure 7.8. Introducing neu-MOS. (a) The structure of an n-type neu-MOS transistor, (b) its

electronic symbol, and (c) the capacitance model.

Due to the proprietary nature of the complementary GaAs parameters, Table 7.1 lists
the composite set of HSPICE (level 3, JFET) parameters based on a number of comple-
mentary GaAs processes, including Honeywell (Fulkerson et al. 1996), Sandia (Baca et al.
1996), Univ. Lille (Thiery et al. 1997) and MIT (Chen et al. 1996).

7.3.3 A 4-bit neu-GaAs Ripple Carry Adder

A 4-bit RCA was chosen as a simple circuit to demonstrate the feasibility of circuit
design using neu-GaAs. Ripple carry adders have relatively low power dissipation
and the delay for computing the final carry depends on the number of bits to be added
because the carry propagates successively from the first stage to the last. The basic

neu-GaAs full-adder (FA) is implemented based on the following expressions obtained

Page 127

7.3 CGaAs Threshold Logic

1.6

1.4

1.2

Vout (V)

0.6

0.4

0.2

Vin E

Vout

Vref

Gnd

Figure 7.9. Basic neu-GaAs inverter structure .

neu-GaAs basic structure

Vref=0.0 V

Vref=0.75V

Vref=1.5

1 1 1 1 1 1

0.2 0.4 0.6 0.8 1 1.2 1.4

Vin (V)

Figure 7.10. Neu-GaAs inverter structure simulation results.

1.6

Page 128

Chapter 7

Optical and GaAs Threshold Logic Techniques

Table 7.1. Composite HSPICE parameters.

Parameter Name || n-type (Range/Value) | p-type (Range/Value) | Units
is 2.4-2.6 2.3-2.6 pA
cgs 5.5-6.0 7.5-8.0 fF
ced 1.8-2.4 3.7-4.1 fF
vto 0.65 0.52 V

beta 4.1-4.3 0.9-1.1 mA/ V?
lambda 0.13-0.15 0.25-0.27 1/Vv
alpha 2.2-23 2.3-24 1/Vv

from the truth table for addition:

¢=1<a;+b+c_1>2 (7.5)

si=1< aj+bj+ci_1—2¢c;>1 (7.6)

where a; and b; are the two bits at the i" position and c; is the carry generated at the ith
position. The + symbol denotes algebraic addition, and a;, b;, ¢;_1, and ¢; take values

of 0 or 1 corresponding to 0 V and Vpp in the actual circuit, respectively.

As there are no negative voltages in the circuit (there is only a 1.5 V supply), —2¢;y

must be converted into 2(T;; — 1) and hence:

Ci:1<:\’aj+bi+014122 (77)

si=1<= a;+ bj+ ¢;_1 + 2¢; = 3. (7.8)

It should be noted that in order to compute s;, ¢; has to be pre-computed. The neu-
GaAs realisation of the two inequality expressions for ¢; and s; is shown on the right
hand side of Figure 7.11. The magnitudes of the coupling capacitors for each of the
inputs may be found as follows. To evaluate ¢; from a;, b; and ¢;_;, Equation 7.7 is
written in the following form:

a;VppCi + biVop Gz + ¢i_1 Vop Gz . Vbp
CG+6G+G6G+G - 2

= Voo (7.9)

where C;, C;, and C3 are the neu-GaAs structure coupling capacitor magnitudes for the
inputs a;, b; and c;_1, respectively, and G is as defined in Section 7.3.1. Furthermore,
Cp is assumed to be very small compared the sum of the coupling capacitances (i,

C,, and C3. The right hand side of inequality (7.9) is set to Vpp/2 which is equal to

Page 129

7.3 CGaAs Threshold Logic

the threshold voltage of the inverter in the neu-GaAs structure. Comparing inequality
(7.9) with (7.5), it becomes clear that by setting C; = C; = C3 = C, Inequality (7.9) may

be rewritten as

O By .
G = Vpp = AEHHCHAIC 2 (7.10
or equivalently
3
C = VDD<:>3j+bj+CI‘_12§. (7.11)

Since a;, b;, ¢; and ¢;_; may take on the values of either 1 or 0, Inequality 7.11 may be
written as

=l a+b+c1>2. (712)

Thus the neu-GaAs circuit to evaluate ¢; has equal coupling capacitances for each of
the three inputs as shown in Figure 7.11. The design of the circuit to evaluate s; follows

a similar procedure.

Figure 7.11 also compares the full adder cell design in both conventional complemen-
tary GaAs and neu-GaAs and shows a significant transistor count reduction in the

neu-GaAs design.

QVDD

4

vDD

|> o GCi

AVDD

.

o
CHFET neu-GaAs

Figure 7.11. Conventional GaAs and neu-GaAs full adder designs.

Page 130

Chapter 7 Optical and GaAs Threshold Logic Techniques

7.3.4 Simulation results for the neu-GaAs RCA

Figure 7.13 shows the HSPICE simulation results for a single full adder while ¢y, is
switched. The graph on the right in Figure 7.13 shows that there is no degradation of
the cou output even when ¢, is maintained high for an extended period of time (25
ns). The coupling capacitors used were 30 fF for all inputs with the exception of the G
intermediate output, which was 60 fF.

The technique used to simulate the RCA structure using HSPICE was as follows. The
two input words were set to (a3 az a; ag) = (000 0) and (b by by bg) = (111 1) as shown
in Figure 7.12. The ¢y, was switched from 0 to 1.5 V at a frequency of 200 MHz. This

causes the output carry ¢ to switch when the input carry ¢, propagates through the
four bit slices.

1111 a3 a2 al a0

T 00 0 0 b3 b2blbo
1 0000 1 ——— 15V
0 e1 111 L 0
a3 3 S2 S1 S0 Cin ———- 0y

e

Freq = 200MHz

Figure 7.12. Switching of ¢3 during the HSPICE simulation.

16 . T : : . 16
o — , g . 1
{ ! e laf i f i 7
va i i/~Cin| | | i | 14
{ H 1 | 1 !
| d | |
|] | !
2 (ﬁcnm | | 12
i i | i
M L i -1
| i | | ;
< i i] e Cin B
g a i g os
3 * } ! g "
out
Calll i i | o 08
{ { { >
I |
k2 i i 1 04
| ! '
H | |
0z i | 4 oz b
| i
4 i H
" B |]
02 . . 1 . L) ; ‘ .
0 8209 1008 12008 1. I 02 ' . .
W e e e 5 : eifen ifedh 0 509 108 15808 2608 25008 3e08 35008 4808
Time (sec)

Time (sec)

Figure 7.13. Cyy and Cj,, Simulation for a neu-GaAs full adder.

The propagation delay and power dissipation of the carry signal through both the
4-bit neu-GaAs and the 4-bit conventional complementary GaAs ripple carry adders

operating at 200 MHz were then measured as a function of the supply voltage. The

Page 131

7.4 Chapter Summary

Table 7.2. Simulation Results for a 4-bit RCA.

Adder Type Power Dissipation | Carry Delay
neu-GaAs (1.5 V) 0.66 mW 1.5ns
complementary GaAs (1.5 V) 0.68 mW 1.4 ns
neu-MOS (3.3 V) 9.0 mW 3.7 ns
CMOS (3.3 V) 0.34 mW 1.9 ns

results are plotted in Figures 7.14 and 7.15. For a typical supply voltage of 1.5V, the
power dissipation and carry dalay are approximately equal for both the 4-bit neu-GaAs

and 4-bit conventional adders based on the designs shown in Figure 7.11.

Table 7.2 shows the carry delay and power dissipation for both the 4-bit neu-GaAs
and 4-bit conventional complementary GaAs adders for a supply voltage of 1.5 V. For
completeness, the carry delay and power dissipation for 4-bit RCAs designed in neu-
MOS and CMOS using a 3.3 V supply voltage have also been included in the table. For
comparison pufposes, we have used both 0.5 ym CMOS and complementary GaAs.

7.3.5 Gate Leakage

Net charge present on the floating gate after the fabrication process in neu-MOS tran-
sistors causes fluctuations in transistor inversion threshold voltage (Shibata and Ohmi
1991). The residual charge on the floating gate can be removed by irradiating the
neu-MOS structure with ultra-violet (UV) light. This, however, is an additional step
necessary in the construction of neu-MOS circuits. Alternatively, transistor switches
connected to the floating gate may be used to set the floating gate potential to a known

value and to refresh the floating gate potential periodically.

The proposed neu-GaAs transistor structure does not require a specific procedure to
remove residual floating gate charge or floating gate potential initialisation. The reason

for this is the presence of a small gate leakage current.

7.4 Chapter Summary

The first part of this Chapter has presented novel ways of digitising signals using op-
tical threshold logic techniques. Using experimental data for SEED device characteris-

tics, a novel 2-bit ADC using optical threshold logic, the Kautz 3:2 counter algorithm

Page 132

Chapter 7 ' Optical and GaAs Threshold Logic Techniques

3.5

251

Carry Delay (ns)

15F

05t
Power Dissipation (mW)

1.3 1.4 1.5 1.6 1.7 1.8
Supply Voltage (V)

Figure 7.14. Delay and power dissipation vs. supply voltage for a 4-bit neu-GaAs RCA.

Vertical axis is Power Dissipation (mW) or Carry Delay (ns).

and two R-SEED networks have been demonstrated. These results may be extrapo-
lated to similar architectures on an optical semiconductor integrated circuit operating

at much faster speeds.

The second part of this Chapter has explored complementary neu-GaAs. It has been
shown that by using neu-GaAs, a very significant reduction in the number of transis-
tors is attainable over conventional complementary GaAs adder designs despite the
presence of a small gate leakage current. Moreover, it is anticipated that the gate leak-
age removes the need for UV erasure of residual floating gate charge as is required in
CMOS. The use of neu-GaAs techniques in HIGFET transistor designs promises to give
VLSI designers more freedom in designs where area, delay and power dissipation are

critical and provides a step forward towards boosting the effective integration level.

Until this point, the focus has been on theoretical results for specifica arithmetic func-
tions and gate implementations. The following and final Chapter explores the synthe-

sis of TL based networks for arbitrarily specified Boolean functions using a mapping

Page 133

7.4 Chapter Summary

25 b

Carry Delay (ns)
15}

o5
Power Dissipation (mW)

0 L 1 L L L 1
1.3 1.4 15 1.6 1.7 1.8

Supply Voltage (V)

Figure 7.15. Delay and Power Dissipation vs Supply Voltage for a 4-bit conventional GaAs
RCA. Vertical axis is Power Dissipation (mW) or Carry Delay (ns).

technique. This is seen as an extension of the well-known Karnaugh map technique
commonly used in hand minimization of Boolean logic functions with a small (six or

fewer) logic variables.

Page 134

Mapping TL Functions of a
Small Number of Variables

HIS Chapter focuses on the development of a systematic design
technique for implementing Boolean functions of up to 4 variables
using threshold logic (TL) gates. The proposed method is a gener-
alization of the standard Karnaugh map logic minimization technique to in-
clude Boolean functions which are also threshold functions. The proposed
method is illustrated through two worked circuit design examples, using

the capacitive neuron-MOS TL technique.

One of the more interesting problems of designing logic circuits using
threshold logic is that, unlike for conventional CMOS, there exist no general
systematic techniques for the implementation of arbitrary Boolean func-
tions in TL. More precisely, given the truth-table fully specifying a Boolean
logic function, there do not exist any techniques of efficiently implementing
that function using a TL gate network. Efficiency can be thought of in terms
of a minimum gate count realization or a minimum depth network or both,

or some other such measure.

Page 135

8.1 Preliminary Observations

The methods which until now have been used to map conventional designs to, for
example, neuron-MOS, are somewhat ad hoc and only applicable to relatively trivial
functions. The aim will be to develop a Karnaugh Map based mapping technique for
implementing logic functions in TL, and a version of the design methodology for 3 and

4 variable circuits will be discussed.

Section 8.1 provides a review of Karnaugh-map function minimization, followed by
a discussion of how Boolean logic functions may be computed using TL networks in
Section 8.2. Section 8.3 outlines the proposed method and two examples of its use are
given in Section 8.4. The translation of a TL circuit to the neuron-MOS implementation
is illustrated in Section 8.5. Section 8.6 proposes areas for further investigation and a

brief conclusion follows in Section 8.7.

8.1 Preliminary Observations

This section begins with an overview of the key aspects of the geometrical represen-
tation of Boolean functions, including n-cubes and the operation of Karnaugh map

(K-map) logic minimization.

An n-variable or n-input Boolean function can be represented as a cube in n-dimension-
al Boolean space, where there is one axis for each variable, and each variable can take
the values 0 or 1. To map the function onto the n-cube, we assign the value of the func-
tion corresponding to the coordinates of a vertex (ie. the value of the input variables)
to each vertex of the n-cube. Fig. 8.1 shows the n-cube for 1 (a line), 2 (a square), 3

(a cube), and 4 (a 4-cube) dimensions.

The conventional Karnaugh map logic minimization method provides a means of iden-
tifying adjacency planes on the n-cube. Each adjacency plane corresponds to a product
(AND) term of the function (in sum-of-products form), and an m-dimensional adja-
cency plane within an n-dimensional cube will produce a term with n — m literals. In
other words, the fewer planes (Karnaugh map groupings) the fewer the terms in the
function’s final (reduced) expression. Also, the higher the dimension of each adjacency
plane, the fewer the literals in the product term corresponding to that plane. The min-

imization process corresponds to finding the minimum cover of the function.

An example is shown in Fig. 8.2 for the full adder carry-out function in both truth table

and 3-cube form (black dots on vertices correspond to logic 1's).

Page 136

Chapter 8 Mapping TL Functions of a Small Number of Variables

. i XYZ
I e — |
% 011 on
1 —cube kp— ——F)
XY
o o ot0 1
Y Y 110
‘ z |00t 1ot
00 (G———— =) 10 000 (Wy
X X 100
2 —cube 3 - cube
WXYZ
1011 111
0111 e)
0011 i A il |
== 1010 | e ;
— % 1110
0010 B —
(= i =
Y A 5 0110 |
‘ 1001 i J
0101 A e
| 3 g 1o
| e -3
W 1100
0000 (-
X 0100

4 — cube
Figure 8.1. N-Dimensional cubes shown for 1, 2, 3 and 4 dimensions.

While the classical K-map minimization technique works by identifying adjacency
planes and hence product terms, our technique uses the K-map to identify sets of ver-
tices which are linearly separable from the other vertices on the n-cube and are thus
“computable” by one or more threshold functions. Just as there may be more than one
product term in the reduced sum-of-products expression, when using a TL function
realization there may be more than one plane, and hence threshold function, required

to achieve a separation of sets of vertices to compute the given function.

8.2 Computing Boolean Functions Using Threshold Gates

As was mentioned earlier, a depth-2 network of threshold gates suffices to compute
any Boolean function. The first layer computes the separation of each cluster of 1's

from the remainder of the n-cube, and the second layer performs an OR operation on

Page 137

8.2 Computing Boolean Functions Using Threshold Gates

_B Cin
011 011
[
A B Cin Cout)
0 0 0 0 010“., i
0 0 1 0 B 110 AB
o 1 0 0
0 1 1 1 |
1 9 9 4 el | i 101
1 0 1 1 T o
1 1 0 1 ' '
1 1 1 1 000 (v — = .
A 100 A Cin

Cout=BCin + AB + ACin

Figure 8.2. Full adder carry-out function shown on a 3-cube and the three adjacency planes

(edges) corresponding to the three product terms.

all the outputs from the first layer—using either a conventional CMOS OR gate, or a
TL version. A cluster of vertices of 1's which is separated using a single hyper-plane
from the rest of the vertices is called a cut-complex (Emamy 1999). The number of
such cut-complexes determines how many TL gates are required in the first layer of

the network.

To illustrate how a threshold gate operates, we return to the example of Fig. 8.2. This
function is computable by a single threshold gate since only one plane is required to
achieve a separation of vertices to which are assigned 1's from those to which are as-
signed 0’s. Such a Boolean function is linearly separable. An example of a function
(XYZ + YZ) which requires two threshold gates in the first layer and the correspond-
ing planes defined by the TL network required to compute the function are shown in
Fig. 8.3.

To create a TL network which is robust and immune to noise it is desirable to achieve
cluster separations such that each threshold function defining plane is as far removed

from the vertices as possible.

Other techniques which have been developed for the design of logic using TL include
the “Floating Gate Potential Diagram” method (Shibata and Ohmi 1993) (which was
first reported in a slightly different form by Sheng (1965)), and the linear-programming

Page 138

Chapter 8 Mapping TL Functions of a Small Number of Variables

e

Figure 8.3. An example of a function requiring two threshold gates in the first (input) layer.
The two thresold functions are represented by the two shaded planes which seperate
the 1's (indicated by filled vertices on cube vertices) from the 0's (indicated by empty

circles).

approach (Ike et al. 1998). Neither of these methods, however, is well suited to the de-
sign of TL circuits by hand, except for relatively trivial functions. One example of a
mathematical treatment of the subject is the development of a technique for enumerat-

ing linear threshold functions of n-dimensional binary inputs (Ojha 2000).

8.3 A Simple Design Technique

The technique which we have developed consists of a number of steps, and the process
is somewhat similar to Karnaugh map minimization. The method will first be outlined,

followed by two examples which will seek to clarify the procedure.

1. The first step is to draw the Karnaugh representation of the function to be im-

plemented in a threshold gate network. The 1's are then grouped into shapes,

Page 139

8.3 A Simple Design Technique

using the smallest number of shapes. The set of shapes is chosen such that the
intersection (or union) of the shapes on the Karnaugh map covers the function
precisely. The shapes are chosen from a collection of valid cut-complex shapes,
which are shown for up to 4-dimensions in Fig. 8.4. We have termed this process

finding the minimum threshold cover of the function.

2. If necessary, each of the cut-complex defining shapes from step 1 need to be con-
verted into minimally-weighted cut-complexes. This is done by re-assigning the
coordinates such that the shape is effectively centred about the origin (0,0,...,0)
in the n-cube. This is achieved by swapping and/or inverting one or more input
variables. A function is defined by codewords which represent the input values
of the corresponding 1’s on the Karnaugh map (ie. codeword 110 implies inputs
ABC=110). The codeword weight is the sum of the number of 1's in the codeword
and the weight of a shape is the sum of the codeword weights which comprise
the shape. A minimally weighted cut-complex is one in that the weight of the shape
is minimal. A minimally weighted cut-complex results in the plane for that cut-
complex being such that the weights which define the plane are positive. This is

necessary for implementation, for example, in neuron-MOS.

3. The next step is to determine the planes (threshold function weights) for each
minimally weighted cut-complex. This is done by choosing n orthogonal edges
(where n is the number of input variables)—the midpoints of these edges then
define the plane. The edges must be chosen correctly so that the convex-hull
defined by the plane includes all—but no more than the number of—points in

the cut-complex.

4. The weight values can then be calculated by solving the matrix equation

. = & .
X11 X1z vt Xin w | 1
X1 X2+ Xon w2l _ o 1 8.1)
| Xn1 Xn2 Xpn | | Wn | [1

This may be re-written as
Aw = T¢g (8.2)

solving for w we obtain
W= A"'T¢g (8.3)

Page 140

Chapter 8 Mapping TL Functions of a Small Number of Variables

where A is the matrix, which has as its rows the coordinates of the edge mid-
points that define the plane, W is the weight vector and T is the gate threshold. If

the sum of the weights is constrained to equal 1, then T is calculated as follows

T = (@A te) L, (8.4)

5. Finally the network may be constructed by combining the outputs of each thresh-
old gate in the input layer into an OR gate or AND gate, depending on whether
the function is defined using union or intersection of the shapes, respectively. The
output of this OR or AND gate is the function output.

The short black lines in Fig. 8.4 represent the edges that are used when choosing mid-
points. The edges are chosen such that they cut the perimiter of the shape and they
correspond to pairs of adjacent positions on the Karnaugh map (adjacent points on the
n-cube). For those shapes which are sub-cubes of the n-cube (eg. a square in a 3-cube),
one or more input variables is removed. For example, some shapes on the 4-variable
Karnaugh map are shown to have less than 4 chosen edges. The inputs removed are

those which are not partitioned by a chosen edge.

Two shapes are said to be isomorphic if one can be derived from another by a com-
bination of swapping and negation of inputs, as shown in the example of Fig. 8.5. A
minimum weighted cut-complex is always isomorphic to its original shape. The cor-
responding chosen edges are also transformed by such operations. Isomorphic shapes
on the Karnaugh map correspond to identical shapes on the n-cube, merely translated
and/or rotated. Also, it should be noted that the complements (white shapes) of the
shaded shapes in Fig. 8.4 are also valid shapes, with the same chosen edges as the

shaded counterparts.

8.4 Two Design Examples

In this Section we illustrate how the proposed method may be used to design the
threshold gate network to implement Boolean functions. The first example is of the
3-variable function Y = A + BC, and the second example is of a 2-bit non-equivalence
(A1 Ay # B;Bp) function.

Page 141

8.4 Two Design Examples

Example 1

The Karnaugh map for Y = A + BC is shown in Fig. 8.6.

Following the process outlined in Section 8.3, the 1's are grouped using the shaded
shape shown in Fig. 8.6(a). This is a valid shape because its complement is a valid
shape as shown in the fourth 3-dimensional Karnaugh map in Fig. 8.4. The cut complex
defined by this shape in its current position on the map is not minimally weighted,
and the shape needs to be shifted to that shown in Fig. 8.6(b). The shape is translated
vertically on the map by one position to achieve a weight of shape reduction from 6
to 5. The resulting transformation of the inputs is also shown in Fig. 8.6(b). The three
orthogonal edges are then chosen as indicated by the short thick lines in Fig. 8.6(b),
and the coordinates of these edges are (0.5,1,0), (1,0.5,1) and (0,1,0.5). From these the

weight vector may be calculated as follows

w1 05 1 0 1
W2 = 1 05 1 T|1]|. (8.5)
w3 0 1 05 1

Selecting a threshold value T = 7/10, the weights become w; = 1/5, wp = 3/5, and
w3 = 1/5. The AON and TL implementations of this gate are shown in Fig. 8.7.

Example 2

The Karnaugh map for Y = (A; Ay # By Bp) is shown in Fig. 8.8.

Following the process outlined in Section 8.3, the 1's are gouped using the minimum
number of largest shapes, which in this case is two, one shape for A < B and a second
shape for A > B. The resulting minimum threshold cover is shown in Fig. 8.8(a) and
(b). The shape used is the third to last shape shown on the 4-dimensional Karnaugh
map in Fig. 8.4. The cut complexes defined by the two shapes in their current positions
on the map are not minimally weighted, and both shapes need to be shifted to that
shown in Fig. 8.8(d). The resulting transformation of the inputs for both A < B and
A > Bis shown in Fig. 8.8(e). The four orthogonal edges are then chosen as indicated
by the short thick lines in Fig. 8.8(d), and the coordinates of these edges are (0.5,1,0,1),
(0,0.5,1,0), (0,1,0.5,1) and (1,0,0,0.5). The weight vector for both A < Band A > Bis

the same (but different input variables appear inverted in the two threshold gates as

Page 142

Chapter 8 Mapping TL Functions of a Small Number of Variables

shown in the input transformation in Fig. 8.8(e)) and may be calculated as follows

_ - _ - —1 _ -

wy 05 1 0 1 1
w, 0 05 1 0 1
= T . (8.6)
w3 0 1 05 1 1
| ws | 1 0 0 05| 1]

As we will see later, it is sometimes desirable that the sum of the weights equal 1,
which in this case means we must set the threshold value T = 7/16. The weights
become w; = 3/8, wp = 1/8, w3 = 3/8 and wy = 1/8. The TL implementation of this
gate is shown in Fig. 8.9. The amount of conventional AON logic which this circuit

replaces is clearly quite large.

8.5 Mapping the TL Network to neuron-MOS

To map a TL circuit such as that shown in Fig. 8.9 to a neuron-MOS implementation,
values for the capacitors used to implement the weights must be found, and the in-

verter threshold voltage of the primary inverter must be set correctly.

The ratios of the capacitances are chosen to be the same as the weights in Fig. 8.9 since
the weights were chosen such that their sum was equal to 1. Using inverters sized for
a threshold voltage of 7Vpp/ 16, the neuron-MOS circuit for the network of Fig. 8.9 is
shown in Fig. 8.10.

8.6 Future Work

There are a number of issues related to the proposed method which require further
investigation. The first issue relates to the proximity of a threshold function defining
plane to vertices. In some cases, especially in higher dimensions, a plane could be
oriented such that it passes too close to a vertex to achieve an acceptable level of noise
margin. In such cases it would be preferred to replace a single plane with two or more
planes of different orientations while still achieving the same n-cube separation. This
would require using a non-minimum threshold cover for the function, and a systematic

technique for determining when this is required needs to be developed.

Page 143

8.7 Chapter Summary

The second issue relates to the choice of points to define the threshold function. We
have used midpoints in our discussions, and it is relatively simple to prove that a
plane defined by n orthogonal edge midpoints for 4 dimensions or less does not pass
through a vertex (ie. the threshold function is feasible). It is unknown whether this
is also the case in higher dimensions. It would also be worthwhile to determine the

bounds on the “dynamic range” of weights determined using edge midpoints.

8.7 Chapter Summary

A methodology was developed for the systematic paper-and-pencil design of 3 and 4
variable threshold gate networks implementing arbitrary Boolean functions. The op-
eration of the proposed design methodology was illustrated by two worked examples.
The mapping of a TL network designed using the proposed technique to neuron-MOS
based TL gates was shown. This is seen as an extension of the well-known Karnaugh
Map design technique commonly used in hand minimization of Boolean logic func-

tions with a small (six or fewer) logic variables.

Page 144

Chapter 8 Mapping TL Functions of a Small Number of Variables

| i

01
BC - = |] |

0o o1 11 10

00

cD —

Figure 8.4. All of the Karnaugh map shapes (up to isomorphism) and selected orthogonal
edges for possible cut-complexes in 2, 3 and 4-dimensions. The grey shaded regions

are groupings of Is.

Page 145

8.7 Chapter Summary

C c
0 1 0 1
00 00
01 t— 01 ot
AB ——p AP —
11 11
10 10
| |
(a) (b)

Figure 8.5. (a) Original Shape on Karnaugh map.

shown in (a).

00

01

AB A B

11

10 0 0

(a)

A’ =B

B’-ﬂ—.—E

C - A

(b) A shape isomorphic to the shape

AB

0o = 01
01—+ 11
11 = 10

1 0 =" QW0

A’=B
B'=A
c'=C

Figure 8.6. (a) Karnaugh map and minimum threshold cover for Y = A+ BC (weight of

shape 6)

(b) Corresponding minimally weighted cut-complex (with re-

assigned inputs) and selected orthogonal edges (weight of shape = 5).

A —‘ A

i O
" B ——————— | 12

B —‘ o
%] — ¥ \ i
c SNo—— g —— =S

Figure 8.7. The AON and threshold logic implementations of Y =

A-+-BC.

Page 146

Chapter 8 Mapping TL Functions of a Small Number of Variables

0 1
00 01 11 10

00 o 1 1 1 0

01 1 0 1 1 1

AA, — S

11 1 1 0 1 1

10 1 1 1 0 1
A#B A<B A>B
(a) (b) (c)

o
I A<B A>B
e Ag—= Ay A Ag
A—A, A —-A]
0 1] = 3 i
Eo_"Bo o Bp
1. 5,8, 8,8

(d) (e)

Figure 8.8. (a) Karnaugh map for Y = (A Ay # B/ By), (b) The minimum threshold cover
for A < B, (c) The minimum threshold cover for A > B, (d) The minimally
weighted cut-complex and selected orthogonal edges, (e) The required input

re-assignment for both (b) and (c) to obtain (d).

Page 147

8.7 Chap

ter Summary

1/8

>

3C

S

e

c

1]

|

A>B

A>B

A<B

J— A#B

Figure 8.10. The neuron-MOS implementation of Y = (A Ay # B By).

Page 148

Summary and Conclusions

HIS Chapter draws the final conclusions from the work described
in this Thesis and suggests directions for further exploration and
research. Until this point, a number of novel contributions to the
study of threshold logic have been made, including new TL gate circuits
and their delay models, adders, counters, multipliers, optical and GaAs
based gates as well as a simple mapping technique. The future of threshold
logic is promising, particularly in the application to high-speed datapath

design, signal processing as well as compact and low-power circuits.

Page 149

9.1 Thesis Conclusions

9.1 Thesis Conclusions

0.1.1 Review of Threshold Logic

Chapter 1 introduced threshold logic and provided motivation for the study of this
field. The schematic diagram of the Boolean model of an artificial neuron, namely the

linear Threshold Logic (TL) gate, is repeated below in Fig. 9.1 below.

W,
Xy g,
W,

2

Figure 9.1. Model of the Threshold Logic Gate. The gate shows the outputs y after a thresh-

olding operation T that sums inputs x| to x, after multiplication by weights Wy,

The TL gate computes a neural-like Boolean function of binary inputs. There is strong
evidence that TL circuits are more efficient than AON circuits in implementing a num-
ber of important functions including arithmetic functions, potentially allowing circuit

realizations which require fewer threshold gates than standard logic gates

9.1.2 Review of Threshold Logic Circuits

With regard to silicon implementations of TL gates, of particular importance is sen-
sitivity to transistor mismatch and noise. A device that implements the theoretical
model of Fig. 9.1 must compute the linear weighted sum of the binary inputs, store
the threshold value and compare the weighted sum to this threshold. The various gate
implementations reviewed in Chapter 3 differ in the way they implement the weights,
threshold and comparison. They rely on representing each distinct weighted sum of

inputs and the threshold level by an analogue voltage or current.

9.1.3 Capacitive Threshold Logic Circuits

Chapter 4 proposes two novel CMOS threshold gate circuit topologies, Charge Recy-
cling Threshold Logic (CRTL) and Self-Timed Threshold Logic (STTL). A logical effort

Page 150

Chapter 9 Summary and Conclusions

based delay model is developed, and these gates are shown to exhibit superior de-
lay performance and lower power dissipation compared to any previously proposed
threshold gate. Finally, measurements of a test chip fabricated in a 0.25 ym process
verify the correct functionality of a range of gates with up to 64 inputs, including the
form of the delay model for the CRTL gate.

9.1.4 Threshold Logic Addition

To demonstrate the advantages of the threshold logic design paradigm on a non-trivial
circuit problem, two new hybrid CRTL/CMOS-domino adder designs are developed
in Chapter 5. The prefix-8 adder design is shown to be over 1 FO4 delay faster than any
other 64-bit CMOS adder design proposed to date that does not require multiple non-
overlapping clock phases. This is a significant achievement, in light of the tremendous

importance of adders in datapath design in conventional microprocessors and DSPs.

90.1.5 Threshold Logic Multiplication

New parallel counters networks and multiplier circuits are developed in Chapter 6,
and the proposed partial product reduction schemes are shown to be significantly
faster than previously published implementations. A shared input-weight circuit tech-

nique is also proposed to significantly reduce the area of the input weight arrays.

0.1.6 Optical and GaAs Threshold Logic

Chapter 7 shows how threshold logic techniques may be applied to technologies other
than CMOS, including Complementary Gallium Arsenide (CGaAs) and Self-Electro-
Optical (SEED) devices. A novel optical analog-to-digital converter architecture based
on SEED TL networks is proposed and test circuit measurements verify the correct

functionality of this approach.

9.1.7 Mapping Threshold Logic Functions

The Thesis is concluded in Chapter 8 with a simple mapping technique developed
to aid in the implementation of logic functions of a small number of variables, using
threshold gates.

Page 151

9.2 Recommendations for Future Work

The original contributions of this Thesis offer benefits to high performance and low
power VLSI processor design and to potential applications of threshold logic in com-
pact low power, portable, wireless devices. Portability is particularly important for

aerospace applications, smart sensors and personal communication systems.

9.2 Recommendations for Future Work

A review of the significant recent developments in TL has been presented, including
gate implementations and applications in computer arithmetic. The summary of ap-
plications has shown that the reviewed TL gates are suitable for the design of high
performance digital circuits with reduced area, power dissipation and delay. The ad-
vantages of TL are essentially a matter of increased efficiency. Area or power reduction
leads to reduced cost, or alternatively, increased functionality for the same power or

cOst.

Threshold logic, however, continues to remain almost exclusively the subject of re-
search work. A large number of publications claim that a particular TL based circuit
or gate reduces power/delay/area by a certain percentage relative to conventional
CMOS, and it is likely that more work of this nature will not contribute to the incorpo-
ration of TL techniques in industrial applications. The author believs that in order for
TL to gain industry acceptance, a number of large scale system designs based on TL
must be able to demonstrate significant advantages compared to state-of-the-art con-
ventional CMOS logic designs. This Thesis has presented considerable evidence that
a hybrid conventional-logic/TL approach (Celinski et al. 2003a, Padure et al. 2002a)
could help achieve this.

9.3 Summary of Original Contributions

The original contributions represented by this work are discussed in Sec. 1.4. In sum-
mary, they include contributions in this Thesis in the area of threshold logic technology
lie in (i) threshold gate circuit techniques and (ii) threshold logic network design for
important arithmetic operations, including addition and multiplication. The original-
ity of these contributions is evidenced by the list of patents, journal and conference

publications on Pages xix to xxii.

Page 152

Chapter 9 Summary and Conclusions

1. The work in this Thesis proposed two original CMOS threshold gate circuit topolo-
gies, Charge Recycling Threshold Logic (CRTL) and Self-Timed Threshold Logic
(STTL). These gates exhibit superior delay performance and lower power dissi-
pation compared to any previously proposed threshold gate (Ch. 3). The CRTL
and STTL gates were experimentally verified, and a new weight-sharing circuit
technique was proposed, which greatly reduces the circuit area cost of CRTL and

STTL based circuits and may be applied to other TL gate designs (Ch. 3).

2. The work presented here has also led to the development of a new, patented level
sensitive latch for use in the design of high-speed, compact flip-flop circuits with
low internal power dissipation and clock load as well as new, patented analog-

to-digital converters based on optical Self-Electro-Optic Devices (SEEDs).

3. Following the development of CRTL and STTL, a delay modelling technique is
proposed, based on the principles of Logical Effort, for the systematic evaluation
and design for minimal delay of CRTL based circuits. The method developed is
applicable to a renge of sense-amplifier based TL gates.

4. To demonstrate the advantages of the threshold logic design paradigm on a non-
trivial circuit problem, two new hybrid CRTL/CMOS-domino adder designs are
developed. The prefix-8 adder design is shown to be over 1 FO4 (fan-out of four
inverter delay) faster than any other 64-bit CMOS adder design proposed to date

that does not require multiple non-overlapping clock phases.

5. New parallel counters networks and multiplier circuits were also developed, and
the proposed partial product reduction schemes are shown to be significantly

faster than previously published.

6. The adder and multiplier circuits shown in this Thesis are the first published
large-scale designs based on threshold logic which demonstrate conclusively the

advantage of threshold logic over conventional CMOS in arithmetic application.

7. The original contributions of this Thesis offer benefits to high performance and
low power VLSI processor design and to potential applications of threshold logic

in compact low power, portable, wireless devices.

Page 153

9.4 Conclusion

9.4 Conclusion

This Chapter has given a summary of the major conclusions of this Thesis and pre-
sented a number recommendations for future work in the field. As summarized in
preceding section, the work in this thesis has led to a number of significant, novel

contributions and provides a foundation for further work in the field.

Threshold logic theory has developed considerably during the last five decades and is
a mature and well understood field. However, it has only been since the early 1990s
that practical TL gate circuit implementations have appeared. There are currently a
dozen or more research groups world-wide studying this field, yet many unresolved
challanges still remain. The main challenge is the relatively low awareness of TL circuit
techniques in the VLSI research and commercial design communities. Other challenges
include a lack of commercially available synthesis tools for TL based logic design,
including a lack of support for the TL paradigm in hardware description languages.
From discussions with insiders in one of the largest microprocessor manufacturers, it
appears that there is a reluctance to embrace unconventional and potentially risky de-
sign techniques, relying mostly on progress in scaling of process technologies to pro-
vide generational performance improvement. This is a well proven approach which
has withstood the test of time, however, a point will be reached where unconventional
circuit techniques may well find their place in the quest for ever higher performance

or lower power dissipation, and TL appears to be a prime candidate.

Page 154

Bibliography

ABBOTT-D., AL-SARAWI-S., GONZALEZ-B., LOPEZ-]., AUSTIN-CROWE-]., AND ESHRAGHIAN-K.
(1998). Neu-MOS (MOS) circuits for smart sensors and an extension to a novel neu-GaAs (GaAs)
paradigm, IEEE ICECS98, Vol. 3, Lisbon, pp. 379-404.

ALON-N., AND BRUCK-]. (1994). Explicit constructions of depth-2 majority circuits for comparison and
addition, SIAM Journal on Discrete Mathematics, 7(1), pp. 1-8.

AVEDILLO-M., QUINTANA-]., RUEDA-A., AND JIMENEZ-E. (1995). Low-power CMOS threshold-logic
gate, IEE Electronics Letters, 31(25), pp. 2157-2159.

BACA-A., ZOLPER-]., DUBBERT-D., HIETALA-V., SLOAN-L., SHUL-R., SHERWIN-M., AND HAFICH-M.
(1996). Complemetary HFET technology for wireless digital and microwave applications, inF. Ren.,
S. Chu,, C. Wu,, and S. Pearton. (eds.), Proc. of the Symposium on High Speed III-V Electronics
for Wireless Applications and the 25th State of the Art Program on Compound Semiconductors,
Electrochem. Soc, Pennington, NJ, USA, pp. 73-83.

BEAUMONT-SMITH-A., AND LIM-C. C, (2001). Parallel prefix adder design, Proceedings of the 15th
IEEE Symposium on Computer Arithmetic, Vail, USA, pp. 218-225.

BEIU-V. (1994). Neural Networks Using Threshold Gates: A Complexity Analysis of Their Area-and
Time-Efficient VLSI Implementations, PhD thesis, Katholieke Univ. Leuven, Belgium.

BEIU-V. (1999). Neural addition and Fibonacci numbers, Proc. IWANN 99, LNCS 1607, Vol. 2, pp. 198-
207.

BEIU-V. (2003). Constructive threshold logic addition, oceedings ICANN, Turkey, pp. 745-752.

BEIU-V., PEPERSTRAETE-]., VANDEWALLE-]., AND LAUWEREINS-R. (1993). Comparison and threshold
gate decomposition, Proc. MicroNeuro 93, pp. 83-90.

BEIU-V., PEPERSTRAETE-]., VANDEWALLE-]., AND LAUWEREINS-R. (1994a). Addition using con-
strained threshold gates, Proc. ConTI 94, pp. 166-177.

BEIU-V., PEPERSTRAETE-]., VANDEWALLE-]., AND LAUWEREINS-R. (1994b). Area-time performances
of some neural computation, Proc. SPRANN 94, pp. 664-668.

BEIU-V., QUINTANA-]J. M., AND AVEDILLO-M.]. (2003). Vlsi implementations of threshold logic: A
comprehensive survey, IEEE Transaction on Neural Networks, 14(5), pp. 1217-1243.

BOBBA-S., AND HAJJ-1. (2000). Current-mode threshold logic gates, Proceedings of the IEEE Interna-
tional Conference on Computer Design, Austin, Texas, USA, pp. 235-240.

BRENT-R., AND KUNG-H. (1982). A regular layout for parallel adders, IEEE Transactions on Computers,
31(3), pp. 260-264.

CANNAS-S. (1995). Arithmetic perceptrons, Neural Computation, 7(1), pp. 173-181.

Page 155

Bibliography

CELINSKI-P., AL SARAWI-S., ABBOTT-D., COTOFANA-S., AND VASSILIADIS-S. (2004). Logical effort
based design exploration of 64-bit adders using a mixed dynamic-cmos/threshold-logic approach,
Proc. IEEE Computer Society Annual Symposium on VLSI - Emerging Trends in VLSI Systems
Design (ISVLSI'04), Lafayette, pp. 127-132.

CELINSKI-P,, COTOFANA-S. D., AND ABBOTT-D. (2003a). A-DELTA: A 64-bit high speed, compact,
hybrid dynamic-CMOS/Threshold-Logic adder, Proceedings of the 7th International Work Con-
ference on Artificial and Natural Neural Networks (IWANN 2003), Lecture Notes in Computer
Science, Spain, pp. 73-80.

CELINSKI-P., COTOFANA-S. D., AND ABBOTT-D. (2003b). Area efficient, high speed parallel counter
circuits using charge recycling threshold logic, Proc. IEEE International Symposium on Circuits
and Systems, Vol. 5, pp. 233-236.

CELINSKI-P., COTOFANA-S., LOPEZ-]. F., AL-SARAWI-S., AND ABBOTT-D. (2003c). State-of-the-art
in CMOS threshold logic VLSI gate implementations and applications, Proceedings of the VLSI
Circuits and Systems Conference, Vol. 5117, SPIE, Spain, pp. 53-64.

CELINSKI-P., LOPEZ-]. F., AL-SARAWI-S., AND ABBOTT-D. (2001). Low power, high speed, charge
recycling CMOS threshold logic gate, IEE Electronics Letters, 37(17), pp. 1067-1069.

CELINSKI-P., LOPEZ-]. E., AL-SARAWI-S., AND ABBOTT-D. (2002a). Compact parallel (m,n) counters
based on self timed threshold logic, IEE Electronics Letters, 38(13), pp. 633-635.

CELINSKI-P., LOPEZ-]. F., AL-SARAWI-S., AND ABBOTT-D. (2002b). Low depth carry lookahead addi-
tion using charge recycling threshold logic, Proc. IEEE International Symposium on Circuits and
Systems, Phoenix, pp. 469-472.

CHEN-C., MAHONEY-L., NICHOLS-K., AND BROWN-E. (1996). Self-aligned complementary GaAs MIS-
FETs using a low- temperature-grown GaAs gate insulator, Electronics Letters, 32(4), pp. 407-409.

CILINGIROGLU-U. (1991). A purely capacitive synaptic matrix for fixed-weight neural networks, IEEE
Transactions on Circuits and Systems, 38 (2), pp. 210-217.

COATES-C., AND LEWIS-P. (1964). DONUT: a Threshold gate computer, IEEE Transactions on Electronic
Computers, EC-13(1), pp. 240-247.

COTOFANA-S. D., AND VASSILIADIS-S. (1998). Periodic symmetric functions, serial addition and mul-
tiplication with neural networks, IEEE Transactions on Neural Networks, 9(6), pp. 1118-1128.

DADDA-L. (1965). Some schemes for parallel multipliers, Alta Freq., 34, pp. 349-355.
DADDA-L. (1980). Composite parallel counters, IEEE Transactions on Computers, C-29(10), pp. 942-946.

DAO-H., AND OKLOBDZIJA-V. G. (2001). Application of logical effort techniques for speed optimization
and analysis of representative adders, Proc. Thirty-Fifth Asilomar Conferenceon Signals, Systems
and Computers, 2001, Vol. 2, pp. 1666-1669.

DERTOUZOS-M. L. (1965). Threshold Logic: A Synthesis Approach, MIT Press, Cambridge, Mass.

EMAMY-W. R. (1999). Geometry of cut-complexes and threshold logic, Journal of Geometry, 65, pp. 91—
100.

Page 156

Bibliography

FANT-K., AND BRANDT-S. (1994). NULL convention logic, US patent 5,305,463 April 19.

FULKERSON-D., BAIER-S., NOHAVA-]., AND HOCHHALTER-R. (1996). Complementary heterostruc-
ture FET technology for low power, high speed, digital applications, Solid State Electronics, 39(4),
pp. 461-469.

GARCIA-]. L., RAMOS-]. F., AND BOHORQUEZ-A. G. (2000). A balanced capacitive threshold logic gate,
Proc. DCICS’2000, Montpellier, France, pp. 61-69.

GONZALEZ-B., ABBOTT-D., AL-SARAWI-S., HERNANDEZ-A., GARCIA-]., AND LOPEZ-]. (1998). Effi-
cient transistor count reduction for a low power GaAs A/D converter, Proceedings XIII Design of
Circuits and Integrated Systems conference (DCIS’98), Madrid, Spain, pp. 62-66.

HASLER-P., DIORIO-C., MINCH-B. A., AND MEAD-C. (1995). Single transistor learning synapses, in
G. Tesauro., D. Touretzky., and T. Leen. (eds.), Advances in Neural Information Processing Systems,
Vol. 7, MIT Press, pp. 817-824.

HEDGE-R., AND SHANBHAG-N. R. (1998). Energy-efficiency in presence of deep submicron noise, Pro-
ceedings of ICCAD, pp. 228-234.

HIROSE-K., AND YASUURA-H. (1996). A comparison of parallel multipliers with neuron MOS and
CMOS technologies, Proceedings of IEEE Asia Pacific Conference on Circuits and Systems 96, IEEE,
pp. 488-491.

HOLLER-M., TAM-S., CASTRO-H., AND BENSON-R. (1989). An electrically trainable artificial neural
network (etann) with 1024 'floating gate’ syanpses, Proceedings of IACNN, pp. 191-196.

Ho-R., MAI-K. W., AND HOROWITZ-M. (2001). The future of wires, Proceedings of the IEEE, 89(4),
pp. 490-504.

HOROWITZ-M. (1999). EE271 class notes (adders), Stanford University, http://eeclass.stanford.edu
/ee371/.

HOROWITZ-M., YANG-C.-K. K., AND SIDIROPOULOS-S. (1998). High-speed electrical signaling, Micro,
IEEE, 18, pp. 12-24.

HUANG-H., AND WANG-T. (2000). CMOS capacitor coupling logic (C3L) circuits, Proc. of IEEE Asia
Pacific Conference on ASIC, pp. 33-36.

Hu-S. (1965). Threshold Logic, University of California Press, Berkeley.

IKE-K., HIROSE-K., AND YASUURA-H. (1998). A module generator of 2-level neuron MOS circuits,
Computers and Electrical Engineering, 24(1-2), pp. 33-41.

IMPAGLIAZZO-R., PATURI-R., AND SAKS-M. E. (1997). Size-depth tradeoffs for threshold circuits, STAM
Journal on Computing, 26(3), pp. 693-707.

JOHNSON-M. (1988). A symmetric cmos nor gate for high-speed applications, IEEE]. Solid-State Cir-
cuits, 23(10), pp. 1233-1236.

KAUTZ-W. H. (1961). The realization of symmetric switching functions with linear input logical ele-
ments, IRE Transactions on Electronic Computers, EC-10, pp. 371-378.

Page 157

Bibliography

KNOWLES-S. (1999). A family of adders, Proceedings 14th IEEE Symposium on Computer Arithmetic,
pp. 30-34.

KONG-B., IM-]., KIM-Y., JANG-S., AND JUN-Y. (1999). Asynchronous sense differential logic, ISSCC
Digest of Technical Papers., pp. 284-285.

KOREN-I. (2002). Computer Arithmetic Algorithms, A. K. Peters, Natick, MA.

KOTANI-K., SHIBATA-T., IMAI-M., AND OHMI-T. (1995). Clocked-neuron-MOS logic circuits employ-
ing auto-threshold-adjustment, ISSCC Digest of Technical Papers, pp. 320-321.

KOTANI-K., SHIBATA-T., IMAI-M., AND OHMI-T. (1998). Clock-controlled neuron-mos logic gates, IEEE
Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 45(4), pp. 518-522.

LASHEVSKY-R., TAKAARA-K., AND SOUMA-M. (1999). The efficiency of neuron-MOS transistors in
threshold logic, Soft Computing, 3(1), pp. 20-29.

LAUWEREINS-R., AND BRUCK-]. (1991). Efficient implementation of a neural multiplier, Proc. 2nd In-
tern. Conference on Microelectronics for Neural Networks, pp. 217-230.

LEBLEBICI-Y., OZDEMIR-H., KEPKEP-A., AND CILINIROGLU-U. (1996). A compact high-speed (31-5)
parallel counter circuit based on capacitive threshold-logic gates, IEEE JSSC, 31(8), pp. 1177-1183.

LEV-L. A., CHARNAS-A., TREMBLAY-M., AND ET AL.. (1995). A 64-b microprocessor with multimedia
support, IEEE Journal of Solid-State Circuits, 30(11), pp. 1227-1238.

LEWIS-P. M., AND COATES-C. L. (1967). Threshold Logic, Wiley, New York.
LING-H. (1981). High-speed binary adder, IBM J. Res. Develop., 25(3), pp. 155-166.

LoH-L. M., AND LOCICERO-]. L. (1996). Subnanosecond sampling all-optical analog-to-digital con-
verter using symmetric self-electro-optic effect devices, Optical Engineering, Society of Photo-
Optical Instrumentation Engineers, pp. 467-466.

LUCK-A., JUNG-S., BREDERLOW-R., THEWES-R., GOSER-K., AND WEBER-W. (2000). On the design
robustness of threshold logic gates using multiple-input floating gate MOS transistors, IEEE Trans-
actions on Electron Devices, 47(6), pp. 1231-1239.

MATHEW-S., ANDERS-M., KRISHNAMURTHY-R., AND BORKAR-S. (2002). A 4 GHz 130nm address
generation unit with 32-bit sparse-tree adder core, Symposium on VLSI Digest of Technical Papers,
IEEE, pp. 126-127.

MEAD-C. (1989). Analog Vlsi and Neural Systems, Addison-Wesley, chapter Appendix D, pp. 354-355.

MILLER-D. A. B. (1990). Quantum-well self-electro-optic effect devices, Optical and Quantum Electron-
ics, 22, pp. S61-S98.

MILLER-D., CHEMLA-D., DAMEN-T., WooD-T., BURRUS-C., GOSSARD-A., AND WIEGMANN-W.,
(1985). The quantum well self-electro-optic effect device: Optoelectronic bistability and oscilla-
tion, and self- linearized modulation, IEEE Journal of Quantum Electronics, 21(9), pp. 1462-1476.

MINNICK-R. C. (1961). Linear-Input Logic, IRE Transactions on Electronic Computers, EC-10, pp. 6-16.

MOORE-G. E. (1965). Cramming more components onto integrated circuits, Electronics, pp. 114-117.

Page 158

Bibliography

MUROGA-S. (1971). Threshold Logic and Its Applications, Wiley, New York.

NAFFZIGER-S. (1996). A sub-nanosecond 0.5 ym 64b adder design, International Solid State Circuits
Conference Digest of Technical Papers, IEEE, pp. 362-363.

NAFFZIGER-S. D., COLON-BONET-G., FISCHER-T., RIEDLINGER-R., SULLIVAN-T.]., AND
GRUTKOWSKI-T. (2002). The implementation of the itanium 2 microprocessor, IEEE Journal
of Solid-State Circuits, 37(11), pp. 1448-1460.

OHMI-T., AND SHIBATA-T. (1995). Intelligence implementation on silicon based on four-terminal device
electronics, Proc. of 20th Int. Conference on Microelectronics, Vol. 1, pp. 11-18.

OJHA-P. C. (2000). Enumeration of linear threshold functions from the lattice of hyperplane intersec-
tions, IEEE Transactions on Neural Networks, 11(4), pp. 839-850.

OKLOBDZIJA-V. G., VILLEGER-D., AND LIU-S. S. (1996). A method for speed optimized partial product
reduction and generation of fast parallel multipliers using an algorithmic approach, IEEE Transac-
tions on Computers, C-45(3), pp. 294-305.

OKLOBDZIJA-V., ZEYDEL-B., HOANG-D., MATHEW-S., AND KRISHNAMURTHY-R. (2003). Energy-
delay estimation technique for high-performance microprocessor VLSI adders, Proceedings. 16th
IEEE Symposium on Computer Arithmetic, pp. 272-279.

OzZDEMIR-H., KEPKEP-A., PAMIR-B., LEBLEBICI-Y., AND CILINIROGLU-U. (1996). A capacitive
threshold-logic gate, IEEE JSSC, 31(8), pp. 1141-1149.

PADURE-M., COTOFANA-S., AND VASSILIADIS-S. (2002a). High-speed hybrid Threshold-Boolean logic
counters and compressors, Proceedings of the 45th IEEE International Midwest Symposium on
Circuits and Systems, pp. 457-460.

PADURE-M., COTOFANA-S., AND VASSILIADIS-S. (2002b). A low-power threshold logic family, Proc.
IEEE International Conference on Electronics, Circuits and Systems, pp. 657-660.

PADURE-M., COTOFANA-S. D., AND VASSILIADIS-S. (2003). Design and experimental results of a
CMOS flip-flop featuring embedded threshold logic, Proc. IEEE International Symposium on Cir-
cuits and Systems, pp. 253-256,

PADURE-M., COTOFANA-S. D., BODEA-M., AND VASSILIADIS-S. (1999). Capacitive threshold logic: a
designer perspective, CAS '99 Proceedings, pp. 81 -84.

PADURE-M., COTOFANA-S. D., VASSILIADIS-S., DAN-C., AND BODEA-M. (2002c). Compact delay
model for latch-based threshold logic gates, Proceedings of the IEEE International Semiconductor
Conference, Vol. 2, pp. 317-320.

PUCKNELL-D. A., AND ESHRAGHIAN-K. (1988). Basic VLSI Design : Systems and Circuits, second edn,
Prentice-Hall.

QUINTANA-]. M., AVEDILLO-M.]., JIMENEZ-R., AND RODRIGUEZ-VILLEGAS-E. (2001). Practical
low-cost cpl implementations of threshold logic functions, Proc. Great Lakes Symp. VLSI, West
Lafayette, pp. 139-144.

Page 159

Bibliography

QUINTANA-J. M., AVEDILLO-M.]., RODRIGUEZ-VILLEGAS-E., AND RUEDA-A. (2002). Threshold-
logic-based design of compressors, Proc. International Conference on Electronics, Circuits and Sys-
tems, Vol. 2, pp. 661-664.

RAMOS-]. F., AND BOHORQUEZ-A. G. (1999). Two operand binary adders with threshold logic, IEEE
Trans. Computers, 48(12), pp. 1324-1337.

RAMOS-]. F., LoPEZ-]. A. H., MARTIN-M.]., TEJERO-]. C., AND GAGO-A. (1998a). A threshold logic
gate based on clocked coupled inverters, International Journal of Electronics, 84(4), pp. 371-382.

RAMOS-]. F., TEJERO-]. C., HIDALGO-]. A., MARTIN-M.]., AND GAGO-A. (1998b). Two operand bi-
nary adders with threshold Logic, Proceedings DCICS'98, Madrid.

RODRIGUEZ-VILLEGAS-E., AVEDILLO-M., QUINTANA-]., HUERTAS-G., AND RUEDA-A. (2000). A
vMOS based sorter for arithmetic applications, VLSI Design, 11(2), pp. 129-136.

RODRIGUEZ-VILLEGAS-E., HUERTAS-G., AVEDILLO-M.]., QUINTANA-]. M., AND RUEDA-A. (2001). A
practical floating-gate muller-c element using vMOS threshold gates, IEEE Transactions on Circuits
and Systems II: Analog and Digital Signal Processing, 48(1), pp. 102-106.

RUIZ-G. A. (1996). Compact four bit carry look-ahead CMOS adder in multi-output DCVS logic, IEE
Electronics Letters, 32(17), pp. 1556-1557.

ScHULTZ-K. J., FRANCIS-R.]., AND SMITH-K. C. (1990). Ganged CMOS: Trading standby power for
speed, IEEE JSSC, 25, pp. 870-873.

SHENG-C. L. (1965). Graphical interpretation of realization of symmetric boolean functions with thresh-
old elements, IEEE Transactions on Electronic Computers, v EC-14, pp. 8-18.

SHENG-C. L. (1969). Threshold Logic, Academic Press, New York.

SHIBATA-T., AND OHMI-T. (1991). An intelligent MOS transistor featuring gate-level weighted sum and
threshold operations, IEDM, Technical Digest, IEEE, New York, NY, USA, pp. 919-922.

SHIBATA-T., AND OHMI-T. (1992). A functional MOS transistor featuring gate-level weighted sum and
threshold operations, IEEE JSSC, 39, pp. 1444-1455.

SHIBATA-T., AND OHMI-T. (1993). Neuron MOS binary-logic integrated circuits - part 1 design funda-
mentals and soft-hardware logic circuit implementation, IEEE Transactions on Electron Devices,
40(3), pp. 570-575.

SIA. (2001). Summary of the International Technology Roadmap for Semiconductors, Semiconductor
Industry Association. Web Reference www.sia-online.org.

Siu-K., AND BRUCK-]. (1990). Neural computation of arithmetic functions, Proceedings of the IEEE,
78(10), pp. 1669-1675.

Siu-K., ROYCHOWDHURY-V., AND KAILATH-T. (1991). Depth-Size tradeoffs for neural computation,
IEEE Trans. Computers, 40(12), pp. 1402-1412.

SONG-P.]J., AND MICHELI-G. D. (1991). Circuit and architecture tradeoffs for high-speed multiplication,
IEEE Journal of Solid State Circuits, 26, pp. 1184-1198.

Page 160

Chapter 9 Bibliography

SouzA-E., CARRARESI-L., BOYD-G., AND MILLER-D. (1994). Self-linearized analog differential self
electro-optic-effect device, Applied Optics, 33(8), pp. 1492-1497.

STOKMAN-A., COTOFANA-S., AND VASILLIADIS-S. (1998). A versatile threshold logic gate, CAS "98
Proceedings, pp. 163-166.
SUN-S., MCMURCHIE-L., AND SECHEN-C. (2001a). A high-performance 64-bit adder implemented in
output prediction logic, Proceedings Conference on Advanced Research in VLSI, pp. 213-222.
SUN-X., MAO-Z., LAI-F., AND YE-Y. (2001b). A high speed 0.25pm 64-bit CMOS adder design, Pro-
ceedings of ASIC, IEEE, pp. 581-583.

SUTHERLAND-I,, AND SPROULL-B. (1991). Logical effort: Designing for speed on the back of an enve-
lope, in C. H. Sequin. (ed.), Proceedings of the 1991 University of California Advanced Research in
VLSI Conference, MIT Press, pp. 1-16.

SUTHERLAND-I. E., SPROULL-R. F., AND HARRIS-D. L. (1999). Logical Effort, Designing Fast CMOS
Circuits, Morgan Kaufmann.

SWARTZLANDER-E. E. (1973). Parallel counters, IEEE Transactions on Computers, C-22, pp. 1021-1024.

THIERY-]., FAWAZ-H., BOURZGUI-N., NUYEN-L., AND SALMER-G. (1997). Temperature dependence
of pseudomorphic complementary HIGFET devices electrical characteristics, in Shur,, and Suris.
(eds.), Proc. of the 23rd Inter. Symposium on Compound Semiconductors, IOP Publishing, UK,
pp. 523-526.

VASSILIADIS-S., COTOFANA-S., AND BERTELS-K. (1996). 2-1 addition and related arithmetic operations
with threshold logic, IEEE Trans. Computers, 45(9), pp. 1062-1067.

VASSILIADIS-S., COTOFANA-S., AND HOEKSTRA-]. (1995). Block save addition with threshold logic,
Proc. of 29th ASILOMAR Conference on Signals, Systems, and Computers, pp. 575-579.

WEGENER-I. (1991). The complexity of the parity function in unbounded fan-in, unbounded depth
circuits, Theor. Comput. Sci., 85(1), pp. 155-170.

WESTE-N. H. E., AND ESHRAGHIAN-K. (1995). Principles of CMOS VLSI Design, second edn, Addison
Wesley.

WINDER-R. (1963). Bounds on threshold gate realizability, IRE Transactions on Electronic Computers,
EC-12, pp. 561-564.

WoNG-L., Kwok-C. Y., AND RIGBY-G. A. (1997). 0.9 V 5 MS/S CMOS D/A converter with multiple-
input floating-gate MOS, Proc. of the 1997 IEEE Custom Integrated Circuits Conference, Santa
Clara, CA, USA, pp. 305-308.

Wo00-R., LEE-S.-]., AND YOO-H.-]. (2000). A 670 ps, 64bit dynamic low-power adder design, Proceed-
ings of the International Symposium on Circuits and Systems, IEEE, Switzerland, pp. 128-131.

Yu-X. Y., OKLOBDZIJA-V. G., AND WALKER-W. W, (2001). Application of logical effort on design

of arithmetic blocks, Proceedings of 35th Annual Asilomar Conference on Signals, Systems and
Computers, pp. 872-874.

ZIMMERMANN-R., AND FICHTNER-W. (1997). Low-power logic styles: CMOS versus pass-transistor
logic, IEEE Journal of Solid State Circuits, 32(7), pp. 1079-90.

Page 161

Page 162

Biography

Peter Celinski graduated from The University of Adelaide with

a Bachelor in Engineering (Electrical and Electronic) in 1998.
He commenced a PhD under under the supervision of Profes-
sor Derek Abbott (The Centre for Biomedical Engineering) at
The University of Adelaide in 1999.

He has been awarded numerous scholarships and stipends,
including the D. R. Stranks Travelling Fellowship in 2002,
IEEE SA Section Travel Scholarship in 2002 and 2003, SPIE
Travel Scholarship in 2002, The University of Adelaide Re-
search Abroad Scholarship in 2001, the Australian Postgraduate Award from 2000 to
2002, and the Sir Ross and Sir Keith Smith Scholarship in 1999.

He has been an invited researcher at a number of international institutions, including
the Research Institute for Applied Microelectronics, Universidad de Las Palmas de
G.C., Spain, The University of Oxford, UK, The University of Portland, USA, and the
Delft University of Technology, The Netherlands, where he was a visiting Research

Fellow in Professor S. Vassiliadis’ Computer Engineering Group during 2003.

Peter has authored and co-authored more than 25 peer-reviewed publications and his
work is regularly cited in journals and conference proceedings dealing with threshold
logic. He has given more than ten international conference presentations including an
invited presentation at the 2003 SPIE VLSI Circuits and Systems Conference in Gran
Canaria, Spain, and one keynote presentation at the 2003 ProRISC Workshop on Cir-

cuits, Systems and Signal Processing in the Netherlands.

He has been a member of the IEEE since 1999 and was a founding member of The Uni-
versity of Adelaide student chapter of the IEEE. In 2003 he co-founded Avega Systems
Pty Ltd (formerly Gecko Audio Pty Ltd), a venture-capital backed technology startup,
which now employs more than 25 engineers with offices in Sydney and San Francisco.

Avega is developing the next generation of networked home entertainment products.

Page 163

Biography

Peter Celinski's Scientific Genealogy

1774 MA University of Cambridge John Cranke

1782 MA University of Cambridge Thomas Jones

1811 MA University of Cambridge Adam Sedgwick
1830 MA University of Cambridge William Hopkins
1857 MA University of Cambridge Edward John Routh
1868 MA University of Cambridge | John William Strutt (Lord Rayleigh)
1883 MA University of Cambridge Joseph John Thomson
1903 MA University of Cambridge John Sealy Townsend
1923 DPhil University of Oxford Victor Albert Bailey
1948 MSc University of Sydney Ronald Ernest Aitchison
1964 PhD University of Sydney Peter Harold Cole
1980 PhD University of Adelaide Kamran Eshraghian
1995 PhD University of Adelaide Derek Abbott

2006 | PhD submitted | University of Adelaide Peter Celinski

Page 164

