"DESIGN AND DEVELOPMENT OF DATA BASE SOFTWARE FOR EDUCATIONAL USE"

by

ROBERT GODFREY
Adv. Dip. Numerical Analysis and Statistics (Salford), M.A.C.S.

A thesis
presented for the degree
of
Master of Science
in the
University of Adelaide.

Based on work performed in the
Computer Centre, South Australian Institute of Technology
in association with the
Department of Computing Science, University of Adelaide.

December, 1984.

DEDICATION

To my father who died while this thesis was

being prepared.

I give consent to this co
. : t PY of my thesis, wh
Library, being available for loan and phétocsgy

Date : 0—0!-(2184 ---------- Signed

deposited in the un
ing.

iversity

SUMMARY

This thesis describes an experiment in the modular construction of data base

software for an educational environment.

The thesis commences with a description of the educational uses of data base
software and specifies why commercially available software is often not suitable

for this environment.

A major review of the database software literature follows. This review
examines the hierarchic network, relational and inverted models, and examines
the ways in which the user is given independence from physical database storage
mechanisms. The data dictionary concept and the role of the Data Base Admin-
istrator is discussed followed by a description of different types of user
interface languages. The review concludes with the security aspect of database

software.

Next the thesis details the objectives, methods and procedures of the software
implemented. The software consists of a multi-model database system (hierarchic,
inverted and sequential file) with a common query/update language linking the

three models.

The query/update language QUILL is then described, followed by the sequential
file system SEQUENT, the inverted system INVERSE, and the hierarchic system

PYRAMID.

Finally the thesis examines the software developed in retrospect, and also

comments on the feasibility of adding other models to the multi-model software.

ACKNOWLEDGEMENTS

I would like to express my appreciation to my thesis supervisor Professor Frank
Hirst firstly for giving me the opportunity to undertake this study, secondly

for his patience in allowing me time to chart a course around the many pitfalls
my research led me into, and finally for his guidance about how to proceed with

writing up the work done.

Thanks are due also to my own department head, Professor Bob Northcote, for his
encouragement to press on with and to finish the research and then the thesis.
I am grateful to him for allowing me time and space to write up this thesis

and to those of my colleagues who were allocated extra tasks by him which would

otherwise have fallen to me.

The Computer Centre and its staff at the South Australian Institute of Technology
are appreciated for providing the computer facilities on which the software was

developed.

Andrew Smith of ICL(UK), firstly in Reading and then later in Bracknell is
remembered for it was while working under him in 1968 that my interest in
database technology was kindled, an interest that has remained strong to this

day.

My first wife Barbara is remembered for encouraging me to turn this interest

into an actual programme of research.

I express my appreciation to Angela McKay, not just for typing this thesis, but
for checking with me daily to see if I had any more pages written., Without

her interest and help this thesis would have taken far longer to write.

Finally, to me wife Margaret, a big THANK YOU, for your continuing love, patience
and support during the many evenings I spent locked away in my study surrounded
by piles of papers.

Robert (Bob) Godfrey.

STATEMENT OF AUTHENCITY

This is to certify that this thesis contains no material which has been accepted
for the award of any other degree or diploma in any University. To the best

of my knowledge and belief, it contains no material previously published or
written by another person, except where due reference is made in the text of

the thesis.

Signed.-.. AL L L L B

(R. defkky)\J

TABLE OF CONTENTS

SUMMARY
ACKNOWLEDGEMENTS
STATEMENT OF AUTHENTICITY

1. INTRODUCTION

1.1 The Educational Use of Database Software

1.2 The Educational Environment
1.3 Design Factors
1.4 Summary

2. REVIEW OF LITERATURE
2.1 Introduction
2.2 Database Models
2.2,1 Introduction
2.2,2 Hierarchic Model
2.2.3 Network Model
.2.4 Relational Model
.2.5 Inverted Model
ata Description

2
2.3
3 Introduction
3
3

.1

.2 The Form Filling Approach
.3

abase Administrator

a Manipulation Facilities

5.1 Introduction
.5.2 Host Language DML

NN
. o
[Sa R

a
a

2.5.3 End-User Access to Databases

Security
Summary

~n N
L] e
~N

ETHODS AND PROCEDURE

1 Major Objectives

2 Choice of Programming Language
3 Software Transfer

4 Use of Examples

5 The Lexical Analyzer

M
B
3.
3
o)
gL

4, QUILL QUERY LANGUAGE
4.1 Introduction
4.2 Language Details
4,3 Implementation

53 SEQUENTIAL FILE QUERIES (SEQUENT)
5.1 Introduction
5.2 Dictionary Create
5.3 Sequential File Queries

t
The Conversational Approach

3.4 The Data Description Language Approach
t

t

NNNNNNNNNI})NNI\JNI\)NNNNN
NP WWWWWWWwWwWwWwNMNE NN -
NOOWOAAAPLPDBHWNERF — O~ W

APPENDIX 1

APPENDIX 2

NVERTED DATABASE SYSTEM (INVERSE)
Introduction
INVERSE Data Description language
INVERSE Index Files
Building the Inverted Index

Inverted Database Query/Update

O B W N <

I
6
6
6
6
6

HIERARCHIC DATABASE SYSTEM (PYRAMID)
7.1 Introduction

7.2 PYRAMID Databases

7.3 PYRAMID Internal Schema DDL

7.4 PYRAMID External Schema DDL

7.5 PYRAMID Mapping Code

7.6 Hierarchic database queries
CONCLUSIONS

8.1 The database software in retrospect
8.2 Potential Development of the Software
8.3 Concluding Remarks

REFERENCES

- SYNTAX DESCRIPTIONS
Al.1 Syntax Description Notation
Al.2 The QUILL Query/Update Language Syntax
Al.3 The PYRAMID External Schema DDL Syntax
Al.4 The PYRAMID Internal Schema DDL Syntax
- STRUCTURE DIAGRAMS
A2.1 QUILL Query/Update Language (QLSCE)
A2.2 Build Sequential File Dictionary (SBUILD)
A2.3 Scan Sequential (SCANSQ)
A2.4 Scan Sequential File (SCANSF)
A2.5 Check Conditions (CHECK)
A2.6 Extract/Replace Field (FIELD)
A2.7 Invert File (INVERT)
A2.8 Scan Inverted Database (SCANIV)
A2.9 Internal Schema DDL Compiler (INTSCE)

A2.10 External Schema DDL Compiler (EXTSCE)
A2.11 Generate Mapping Code (GENSCE)

APPENDIX 3 - SEQUENT EXAMPLES

APPENDIX 4 - INVERSE EXAMPLES

vii

Al-1
Al-2
Al-4
Al-7
Al-9

AZ-1

A2-2

A2-11
A2-12
A2-13
Az-14
AZ2-15
A2-16
A2-22
A2-27
A2-29
A2-31

A3-1

A4-1

APPENDIX 5 - PYRAMID EXAMPLES
Introduction
Internal Schema DDL
External Schema DDL
Test program CRCUST
Test program ADDCUST
Test program NEWITEM
Test program ORDENT
Test program IVPRINT
PYRAMID Query examples
Mapping code example 1
Mapping code example 2
Mapping code example 3

vill

A5-1

A5-1

A5-7

A5-12
A5-19
A5-20
A5-21
A5-22
A5-25
A5-29
A5-30
A5-47
A5-54

l

1

CHAPTER 1

] o)
INTRODUCTION _ /),;:}

The Educational Uses of Database Software

This thesis is concerned with the design of database software for educat-
jonal users. The term "educational user" used in this thesis is taken to

mean the student and their instructors in a tertiary institution.

The term "student" is intended to include both students intending to make
a career in computing and also those using a computer as part of some
other discipline (e.g. Accountancy, Business Management, Town Planning,

etc.)

By "instructor" is meant those lecturers, tutors, etc. actively involved

in teaching students about database systems.

The term educational user deliberately excludes the use of a database for
administration, research and consulting even though these activities may

also be carried out within the tertiary institution.

In the remainder of this thesis the term "user" should be taken to mean

"educational user" unless indicated otherwise.

These users require a data base system so that they can:

(1) dissect and/or modify the software to gain an insight into how
such software works and to explore its potential;

(2) wuse the system in a conventional way.

Category (2) above can be further subdivided:

1-1

1.2

(2a) "Vocational users" who will use the system because it is typical of,
or similar to, other such systems that they will meet in the outside
world;

(2b) "Non-vocational users" who will use the system simply because it is

the most effective tool for their current activity.

The needs of these 3 groups of users can be met in either of two ways:
(a) by using commercially available database software;
(b) by using purpose-built database software that has been specifically

designed for educational use.

Hawryzkiewycz (1979) has described a DBMS course using Burroughs DMS-II

for practical work.

In broad terms, this thesis is concerned with an experiment using method

(b) above.

McDonnell (1981) has described a CODASYL mini-DBMS and an instructional
relational algebra (IRA), and the software described in this thesis can be
viewed as adding to the range of such systems available to a database

instructor.

The Educational Environment

Bradley (1982) has observed

"There is a final problem for the data base instructor, about which
1ittle can be done in a texthook, and that is the problem of student
access to suitable database management systems. I believe that at
the present time the CODASYL and Relational approaches are the most
important from an educational point of view. Yet it is still rare
for an institution to have access to both systems, and there are some
that have access to neither."

Gudes (1977) has suggested using a text and Computing Surveys to design
meaningful assignments, but this thesis contends that a better approach
may be the construction and use of purpose built software.

1-2

The major commercially available database systems IMS, IDMS, ADABAS

etc. are aimed at the large business enterprise, although they can be

used for education (Honkanen 1983). However, it is contended that this

software is unsuitable for an educational environment for the following

reasons:

1. It is very expensive,.

2. It uses large amounts of processor resources.

3. It is designed to be productive and to "meet all needs of all men".

4, It is intended to be used by say 10 - 100 users sharing common data.

5. It is too complex, offering more facilities than can comfortably be
taught.

6. It is designed for the long term (even if ad hoc) user. That is,
users will use the system, however infrequently, over a period of

years.

The typical educational environment for a student machine:

1. has limited money for software purchase (Montgomery, 1980):

2. has processor resource limits geared for small BASIC programs;

3. is selective in matching the "real world" by simplifying and removing
or reducing time consuming routine tasks;

4. may have several thousand largely independent users who generally work
on their own problems and data;

5. the majority of users will use the system for a limited period, say a
term, semester or year, while completing a particular subject. They

will not be computer professionals.

1-3

1.3

1.4

Design Factors

When designing database software for educational use, the following factors

need to be considered:

1. It must be easy to learn (typically say in 2-3 hours of class/lab.
time).

2. The majority of users will not possess a manual so all error messages
need to be clear and non-cryptic.

3. The software must be able to be swapped with other educational users.
To this end the sofware should be written in a common standard
tanguage.

4, Some users (research fellows and computing majors say) will want to
modify and adapt the system to their own ends. The sofware should be
built on sound engineering principles using exchangeable/ replaceable
modules.

5. The software should contain the essential features of real world
systems, but need not contain all such features.

6. The software should be useful both for computing and non-computing
majors. |

Summary

The thrust of this thesis is as follows:

there is a need to teach the use of database software;

this teaching cannot be carried out satisfactorily without using a
DBMS;

commercially available software is generally not suited to this
purpose;

special purpose software can be built to meet the need for a DBMS.

1-4

2.1

CHAPTER 2

REVIEW OF LITERATURE

Introduction

Tsichritzis (1977a) comments thus on DRMS research:

"Since DBMS is a relatively new discipline many people

have converged into it from other areas."”
BRecause of this, DBMS research and literature overlaps with many other
computing (and non-computing) areas. These areas include Operating
Systems (for I1/0 processing), Systems Analysis (Database design),
Programming Languages (Data types), Artificial Intelligence (Distributed
Databases), Software Engineering (Multi-purpose architecture), and
Hardware (Database machines). It is difficult therefore to draw a neat
boundary around database literature and hence to control the scope and

size of any review of that literature.

This review will be confined to those topics of paramount importance to
the construction of database software and, in particular, to the

educational aspects of this software.

The initial review will consider the more important database models
and their place in multi-model database architectures, followed by

consideration of database description and the role of the Data Base
Administrator. Following this language interfaces are examined,

followed by security issues.

2-1

2.2

Database Models

2.2.1 Introduction
Tsichritzis (1977:32) defines a data model as "an intellectual tool

used to understand the logical organization of data."

Models are used to enable people to think about the nature and processes
of the "real world". The model seeks to remove extraneous material

and also to simplify the nature of the real world.

The model can be used solely as a design tool or it can be embodied in
a database software system. Because the model is needed to serve many
purposes some authors define several types of model. Thus Robinson
(1981:29-36) defines the following:
device data model - a device/machine perception in terms of blocks,
pages, etc.:

. storage data model - a view in terms of stored records and access
mechanisms:

. logical data model - a global view of the data and its inherent
logical characteristics (structure, access constraints, integrity
constraints, etc.):

Togical data sub-models - a perception in terms of constructs

manipulated by high-level languages (fields, records, etc.).

Multiple model approaches to data models require an "architecture" to
place the models in the correct relationship with each other, with the
users and with the data itself. Thus Robinson's four models are

related as shown in Fig. 2.1. He comments that work is still continuing
in this area (both at a theoretical and at a practical level) and "it

may be some time before agreed definitions of the architecture and its
models are reached."

2-2

APPLICATION A
PROGRAM 1

LANGUAGE

’ N\

LOGICAL
SUB- MODEL

)

APPLICATION A
PROGRAM 2

LANGUAGE

2

APPLICATION PROGRAM TO
(}ﬂ SUB- MODEL MAPPING

Pl

LOGICAL

DATA
DICTIONARY

Vv / MODEL
\
DBMS

\

APPLICATION Z
PROGRAM n

LANGUAGE

A

LOGICAL
SUB-MODEL

z

STORAGE
MODEL

e

SUB-MODEL TO
MODEL MAPPING

S LOGICAL MODEL
TO STORAGE MODEL
MAPPING

STORAGE MODEL TO
DEVICE MODEL MAPPING

3

N\ DEVICE
\ MODEL

L

Figure 2.1: Generalised Architecture for a Database System (Robinson)

2-3

Date (1977:14) bases his architecture diagram (Fig. 2.2) on the
ANSI/X3/SPARC proposals with its three schemas
External schema - the view of an individual user;
Internal schema - the way in which the data is stored;
Conceptual schema - a global view of the data, independent of

how it is stored or how it 1is used.

Tsichritzis (1977:96-97) also uses the ANSI/SPARC architecture.
Tsichritzis observes, however, that "most existing commercial DBMS's...
combine conceptual and internal schema facilities, and hardly provide
any external schema views." The PYRAMID system described in Chapter 7
follows this common approach and combines the internal and conceptual
schemas. It does however aim to provide for more than one external

view.

Rowe and Stonebraker (1981) describe four options for database
architectures (see Figs. 2.3-2.6). They state "We believe these

architectures are the only resonable candidates for future DBMS packages."

Option 1 (Fig. 2.3) has a high level interface on top of an intermediate
interface (such as CODASYL) where users can access either interface.

They give UNIVAC's DMS-1100 as an example of this architecture.

TANDEM's ENFORM is an example of the (Option 2) architecture (Fig. 2.4)
where a high level interface sits on top of a low level (e.qg. Record
Manager) system. Thus programmers can either process files directly
(e.g. using COBOL READ/WRITE verbs) or can use say a query/update

language to access files.

If the low level system of Option 2 cannot be accessed by the user
then Option 3 (Fig. 2.5) results. INGRES is given as an example of

this architecture.

2-4

User A2 User Bl User B2

User Al
Language Language Language Language
Workspace Workspace Workspace Workspace
*External \] *Ext:m I
Schema A Schema B
External External
Model A Model R - L

\ >

External/conceptual External/conceptual

mapping A mapping B
Database
Conceptual Data model < > Management
schema (conceptual System
model) (DBMS)
A

Conceptual/internal
mapping

i

Storage structure
definition
(Internal schema)

_)Q\x__./

Figure 2.2: An architecture for a database system (Date).

2-5

PROGRAMMER END-USER

END-USER
INTERFACE

CODASYL SYSTEM

Figure 2.3: DBMS Architecture (Option 1)

2-6

PROGRAMMER

END-USER
INTERFACE

LOW LEVEL SYSTEM

END-USER

Figure 2.4: DBMS Architecture (Option 2)

2-7

ALL USERS

Y

END-USER OR PROGRAMMER
INTERFACE

LOW LEVEL SYSTEM

!
A

~

Figure 2.5: DBMS Architecture (Option 3)

2-8

PROGRAMMER END-USER

I\

CODASYL END-USER
SYSTEM INTERFACE

LOW LEVEL SYSTEM

Figure 2.6: DBMS Architecture (Option 4)

2-9

The fourth architecture (Fig. 2.6) has an intermediate level interface
(e.g. CODASYL) and a high level interface on top of a low level interface.
Rowe and Stonebraker could not find any example of this architecture.

They considered an alternative to Option 4 in which the end-user

interface interfaces not with the low level interface but with the
intermediate interface. They did not consider this alternative in

great detail as in their view it offers approximately the same advantages

and disadvantages as the original Option 4.

Option 4 is clearly the most complex but it does offer the greatest
flexibility in terms of user interfaces. Accordingly, the architecture
chosen is basically this option with the exception that the CODASYL
model is replaced with a variety of different database models and the
end-user interface being the QUILL query language. This is shown in
Fig. 2.7. Not all operations are possible at all Tevels but an attempt
has been made to permit some operations at all three levels to enable
students to use and hence appreciate the differences between the various

levels.

The use of multiple intermediate interfaces (PYRAMID, INVERSE and
SEQUENT described in Chapters 5, 6 and 7) is motivated by the very diff-
erent advantages and disadvantages of each model to certain groups of
users. To select only one model is to deny or at least deter some
users from the system. The use of such "coexistence" or "multi-model'
architectures have been extensively advocated (Tsichritzis, 1977a:
Hawryszkiewycz, 1980: Deen, 1980 and 1981; Sockut, 1981; Champine,

1979; Zaniolo, 1979; Mercz, 1979).

2-10

PROGRAMMER

END-USER

END-USER INTERFACE (QUILL)

\’

l

SEQUENT INVERSE PYRAMID
SEQUENTIAL INVERTED HIERARCHIC
FILE SYSTEM SYSTEM
SYSTEM
: |
/ v Y v

LOW LEVEL SYSTEM

l

DATA
BASE

Figure 2.7: QUILL Architecture

2-11

Kroenke (1983) relates "six common useful models" using the diagram

below
HUMAN MACHINE
(Logical) (Physical)
= >
Semantic Entity- Relational CODASYL DBMS -
Data Model Relationship Data Model DBTG Specific
(SDM) Model (E-R) Model Mode]

ANSI/X3/SPARC

He ranks five of the models as being oriented towards human meaning or
machine specifications, with the sixth (ANSI/X3/SPARC) in a class of

its own, He does not rank the hierarchic model (in his view hierarchic
= IBM's DL/I) or the (non-CODASYL) network model but includes these
specific implementations in the DBMS-specific models (including ADABAS,
SYSTEM200, TOTAL, IMAGE). If one of these products is to be used
Kroenke recommends using the SDM (McLeod 1978) or similar model to develop
the logical database design and then transferring this design into a
physical design for the available DBMS. Vetter (1981: 72-92) uses the
E-R model for this purpose. Many use the normalisation parts of the
relational model for this design process but Codd (1980) has pointed

out that the relational model is more than a data structure (flat

files) but includes the relational algebra operators and some integrity

rules.

Kent (1978) groups the hierarchical, network and relational model as
variations of the traditional record model and notes "an increasingly
visible trend away from record oriented data models towards models
which might generally be called semantic nets, or graph structured
models." This visibility is "“everywhere except in current commercial

database processing.”
2-12

As this thesis is concerned with database software, the topic of logical
database design will not be pursued further. The concern here is for
physical database design using one of the commercially implemented
models, it being assumed that one of the logical design models having

already been used as proposed by Kroenke (1983) or Vetter (1981).

2.2.2 Hierarchic Model

The hierarchic model is clearly the poor relation when compared to the
network and relational models. It lacks the theoretical nicety of the
latter, and can be viewed as a subset of the former. The hierarchig

model is important however, if only because (Robinson, 1981) "people

use them", and the software implementations are proven (Atre, 1980).

The hierarchy is a common structure (Tsichritzis 1976) in everyday life
and the model is easier to understand than the other two models.
Clemons (1981) believes "that an external schema facility is best based
on hierarchies." Lien (1981) also proposed that a hierarchical view
of relational databases may be preferable to the view of a relational

database as a series of projections of one universal relation.

Kroenke's (1983) observation that "hierarchic data model" and "DL/I"
are synonymous has already been referred to. Tsichritzis (1977b),
while not explicitly saying so, nevertheless writes as if the two are
the same. Date (1977:55-58) however treats hierarchies independently
of IMS's DL/I. Perhaps the strongest critic of the narrow approach is
Bradley (1982):

"Because of the fairly wide use of IMS, some authors have

contented themselves with a description of IMS instead of

describing the hierarchical approach in general. We believe

this to be an undesirable strategy from an educational point of
view...."

2-13

The hierarchic model views data as records connected via 1:n relationships
in an inverted tree, Each record occupies a node of the tree and can

own zero or more records but apart from the root can be owned by one

and only one record. The root node at the top of the tree has no

owners.
Consider the hierarchy of record types

STATE

CITY

STREET

This hierarchy has zero or more states, each owning zero or more cities.
Each city owns zero or more streets, Thus a typical instance of this

hierarchy might be

SYSTEM
SA VIC NSW

/

GEELONG MELBOURNE BENDIGO

SPENCER ST BOURKE ST COLLINS ST

It is often convenient to conceptualize a virtual record say "system"

to own the instances of the root record type.

The major disadvantage of the hierarchic model is its clumsy handling

(Atre, 1980) of the two way relationships found in networks. Thus

given a requirement to process the triad of records: CUSTOMER, ORDER,

PRODUCT a hierarchic model must select one of the hierarchies below

CUSTOMER PRODUCT
ORDER ORkER
PRODUCT CUSTOMER

Bradley's "hierarchical conceptual database" would select one of these
as the primary hierarchy and then derive a secondary hierarchy to
convert the network conceptual database to a hierarchical conceptual
database. This is done by adding another 1ink record into the database

(CUST-ORD) as in Fig. 2.8. The two primary hierarchies

CUSTjMER PRODUCT
CUST-ORD ORDER

are also linked by the secondary hierarchy

CUSTOMER

CUST-ORD/ORDER

PRODUCT

The most widely used hierarchic database system is IBM's Information
Management System (IMS) (see Date, 1977) which divides its database into
"segments". There is a "root" segment type with the other segment
types being dependent segment types. Each "parent" segment type has

at least one "child" segment type.

MRI's System 2000 (Cohen 1978) is based on an inverted list in a

hierarchically structured database. In a System 2000 database "index",

2-15

CUSTOMER PRODUCT
{_;ROH # | DESCRN PRICEl

1:n 1:n

CUST # | NAME | ADDRESS

CUST-0RD

ORDER-NO

~ Y ORDER

ORDER # \ PROD # \ CUST # t» aQry \

Figure 2.8: Primary and Secondary Hierarchies

2-16

"structure data" and “"content data" exist on separate files. The term
"repeating group" is used to denote a type of "dataset" (record)
consisting of a number of "elements" (fields). Each data set not the
root repeating group has one and only one "parent" one level above it.
An "ancestor" will occur at each higher level above any data set which
is not the root repeating group. A1l data sets which trace their
ancestry to a common data set are considered "descendants" of that data
set whether they occur immediately below or at deeper levels. NData

sets which share a common parent are "sihlings".

2.2.3 Network Model

The network model has been used as the basis for the CODASYL database
proposals, and while this is the most important use of the model, other
network implementations (e.g. TOTAL) are also of importance. Reference
has already been made to Kroenke's (1983) view that any non-CODASYL
network model is a DBMS specific model. Atre (1980: 109-123) is not
as explicit but treats the terms "CODASYL model" and "network model”
synonymously. Tsichritzis (1977: 136-184), however considers the
CODASYL model to be a restricted form of the more general network
model. The relationships in a network model can be 1:1, 1:N or N:M,
However (CODASYL, 1971) requires all relationships to be potentially

1:N.

This 1:N relationship is fundamental to the CODASYL proposals and most
other network DBMS's. If two record types (by STATE, CITY) are connected
by a 1:N relationship from STATE to CITY then each STATE record can be
connected with many CITY records. Conversely each CITY record can

only be connected with one STATE record. The STATE record is said to

be the "owner" of a "set" of CITY records and the CITY records are said

to be "members" of the set. This set construction can be used to

create both hierarchies and networks (CODASYL 1971, 01le 1973).

2-17

Tsichritzis (1977) considers the problems of modelling N:M relationships
within the CODASYL model. Thus if an N:M relationship (Fig. 2.9)
exists between say STATE and COMPANY then an intermediate record type
(MANUFACTURES say) is required along with two 1inks MANUFACTURES IN
between STATE and MANUFACTURES, and IS MANUFACTURED between COMPANY and

MANUFACTURES (Fig. 2.10).

The CODASYL DataBase Task Group (CODASYL 1971) proposals have been used
as the basis for many commercial DBMS's (Cullinane's IDMS, DEC's DBMS-
11, UNIVAC's DMS 1100, Burroughs DMS-II etc.). Fry (1976) gives some
of the history of the CODASYL proposals, starting with G.E.'s I-D-S,
through the (CODASYL 1969) report and further reports in 1971, 1973,
1975, 1976. A further major CODASYL report followed in 1978 (Caelli
1979). Each of these reports have been developments and refinements of

the work of various CODASYL committees.

The CODASYL database is described in the "schema" which defined all

record formats and set constructions in the database. A sub-schema
defines the user view of a single application. Although a Device

Media Control Language (DMCL) to handle file and device assignments was
mentioned (but not defined) the architecture was essentially of two

levels. By 1978 however following the ANSI/SPARC three level architecture
the 1978 CODASYL proposals revised their architecture to fall into line
with this newer concept. The 1978 CODASYL architecture is shown in

Fig. 2.11 (Cael1i 1979). The sub-schema and schema correspond to the
ANSI/SPARC External and Conceptual Schemas respectively, with the DSDL

matching the Internal Schema.

The CODASYL user accesses the database using a host language Data
Manipulation Language. Comprehensive examples of programs using DML
can be found in BCS (1971) and Dee (1973).

2-18

VIC

I~

MITSUBISHI FORD TOYOTA

Figure 2,9: N:M Relationship

SA VIC
a b @ d e
MITSUBISHI GMH GMH FORD TOYOTA

Figure 2.10: 1:N Relationship

2-19

Local
Logical

USER 3

USER-N

USER 1 USER 2
SUB-SCHEMA SUB-SCHEMA
1 2

SUB-SCHEMA

SUB-SCHEMA
N

Global
Logical

SCHEMA

DATA BASE

Figure 2.11:

Data Storage

Definition

Language
(DSDL)

DEVICES

CODASYL 1978 Data Base Architecture

2-20

The central DML statement is FIND which locates a record in the database.

(GET is used to retrieve fields from located records.)

Thus in a COBOL host program the statements
ACCEPT PART-NO.
FIND PART
GET PART; PART-NO, PRICE, DESCRIPTION.
DISPLAY DESCRIPTION, PRICE.

would locate and retrieve fields from a specific PART record.

2.2.4 Relational Model
While the network model has been the basis for most of the commercially
available DBMS's, the relational model has been the subject of the

greatest research.

Although some of the ideas had been known for some years, Codd (1970)
was the first person to give structure to the concepts. In later
material (Codd 1971 a,b,c: 1974, 1979, 1980) these ideas were refined.
In the meantime several others had added to the wealth of literature on
the subject. Chamberlin (1976) and Kim (1979) give comprehensive

bibliographies of much of this work.

In his original paper (1970) Codd applies elementary relation theory to
two problems - "data independence" and "data inconsistency". He cited
as two important advantages of the relational model to be firstly that
it did not need any additional pointers or the like, and secondly that
it forms a sound basis for treating derivability, redundancy and

consistency.

There are two main thrusts to the work on relational databases.
Firstly the structure of the relations themselves and their "normaliz-
ation"; secondly the development of a Relational Algebra and Calculus to

manipulate the relations. Many authors have ignored the second thrust

2-21

and treated relational data bases merely as a so-called "flat file"
model. Codd (1980) takes them to task for this with the observation:

"This is 1ike trying to understand the way the human body
functions by studying anatomy but omitting physiology."

He defines a data model thus:

“l. a collection of data structure types (the building blocks
of any database that conforms to the model):

2. A collection of operators or inferencing rules, which can
be applied to any valid instances of the data types listed
in 1., to retrieve or derive data from any parts of those
structures in any combinations desired;:
3. a collection of general integrity rules, which implicitly
or explicitly define the set of consistent database states
or changes or both... these rules may sometimes be expressed
as insert-update-delete rules.”
The basic data structure for a relational database is the relation.
Relations are normally shown as arrays, though this is not essential

(Codd 1970).

Three sample relations (C, P and 0) are shown in Fig. 2.12. Each

relation "closely resembles a traditional sequential file" (Date 1977).

The rows of the relations are called "tuples" and their order is
immaterial. The ordering of columns is significant and this significance
is partly conveyed by labelling it with the name of a "domain" (Codd
1970). There is confusion in the literature over the use of the terms
"domain" and "attribute" to refer to a column. Kroenke (1883: 243)
just refers to attributes and many people follow this style. However
the most useful distinction between the two terms is perhaps given by
Date (1977) and Deen (1977). They define an attribute to refer to the
column and the domain to be the set of values that can appear in the
column. Both column and attribute can be named. As both Deen and
Codd (1970) have pointed out, a relation may have two columns from the

same domain (but being different attributes, e.g. father's age, mother's

2-22

C (Customer)

C# CNAME CITY STATUS
1 Smith Adelaide 1
2 Jones Melbourne 1
3 Wilson Adelaide 2
P (Part)
-

P# DESN PRICE

1 DESK 250

2 CHAIR 140

3 TABLE 180

4 BOOKCASE 100

0 (Orders)

C# P# QTY

1 1 5

1 3 4

2 1 1

2 2 3

2 3 2

2 4 4

3 2 6

Figure 2.12: Customer, Part and Order Relations

2-23

age). Codd notes that many current DBMS's do not provide for two or
more identical domains and hence for most purposes attribute and domain

can be used synonomously.

The production of normalized relations was dealt with first by Codd
(1970) when "first" normal forms were dealt with. Subsequently (Codd
1971a) "second" and "third" normal forms were introduced to make
relations easier to understand and control. In his 1971 paper Codd
stated that use of third normal form would "significantly extend the
life expectancy of application programs.” The rather abstract paper
(Codd 1971a) was followed by a tutorial discussion (Codd 1971c). Each
of these higher normal forms make database operations more consistent

than operation on lower normal forms.

For a time it was considered that third normal form was the highest
possible or desirable form. However, Fagin (1977) formalized the notion
of a "fourth" normal form and Date (1977) mentions the independent work
of Zaniolo in this field. Fagin (1979) continued work and the "fifth"
normal form was born. Ling (1981) has suggested an improvement to third
normal form. Kent (1983) summarises the development of these five

normal forms.

The normalization concept is now an accepted part of the process of
database design, not just for relational databases but also for hierarchic

and network systems.

However, reference has also been made to the necessity to consider the
Relational Algebra and Calculus and their place in the relational model.
Both are techniques for manipulating databases, the first a lower Tevel

procedural language, and the second a high level non-procedural language.

The relational algebra was introduced by Codd (1970). The two principal

operators introduced at this time were the "project" and "join" operators.

2-24

Projection is basically the extraction of one or more columns of a
relation and then the elimination of any duplicate tuples that result.
Referring back to Fig. 2.12, if we project relation C over the attribute
CITY, we obtain a relation containing Adelaide and Melbourne, in other

words all city names in the relation.

Join is basically the merging of two relations using an attribute from
one to cross-reference to one or more tuples in another relation. It
accomplishes what in the hierarchical and network models is often
achieved by inter-record links. To join relations O and P over the
attribute PART# effectively creates a new relation like O but with the

appropriate DESN and PRICE fields appended to each tuple.

The relational algebra was extended (Codd 1971b) to include the division
and restriction operators. The concept of combining several operators
to form a relational algebra expression was also introduced. Thus to
find the identity of any customer with orders for all parts, first
project P over P# to form relation Q (just containing P#) and then

divide 0 by Q. Date (1977: 117) gives a similar example.

Both the above operations can be combined in a single arithmetic

expression.

The problem for programmers with the relational algebra lies with its
non-navigational approach. While it is relatively easy to take an
expression and say what it will do, it is much harder to have a need
and then write an expression to satisfy that need. A parallel could
perhaps be drawn with mathematics here - if mathematics appeals to a
student then its use seems natural and simple, if the reverse is true
then while the student may be able to follow a worked example, they may

not be able to solve problems for themselves.

2-25

The relational calculus (Codd 1971b) is an attempt to help overcome

this problem and is further addressed by Codd (1974). The former

paper gives an algorithm for translating a calculus expression written

in DSL ALPHA into a semantically equivalent sequence of operations in

the relational algebra. Codd envisages a great variety of languages

for accessing databases and considers the completeness of such languages
for accessing a relational database. He divided such "data sublanguages

into calculus and algebra related languages (see Fig. 2.13).

The form of expression for the calculus given by Codd (1971b) is based
on mathematical symbols, but Date (1977) gives examples based on SEQUEL
which are easier for non-professionals to follow. Using Fig. 2.12
again, to find all status 1 customers in Adelaide one would write

SELECT C#, CNAME

FROM C

WHERE CITY = 'ADELAIDE'

AND STATUS =1
Again the initial feeling against the relational calculus was based
more on its mathematical form of expression than on its potential
usefulness. More user-friendly versions are now readily available -

AQL (Antonacci 1978), SQUARE (Boyce 1975), BSOL (Baxter 1978), CASDAL

(Su 1978), REMOTE-OBE (Combes 1980) to name but a few.

Again for a long time System R (Astrahan 1979 and 1980, Chamberlin
1981) was the only well known commercial implementation of a relational
package. The market is now "flooded" with such products - INGRES
(Stonebraker, 1976), ORACLE (), RAPPORT (Logica, 1982) and

many others. Brodie (1981) 1lists 75 vendor systems. In Canning's

(1982) words "Relational Database Systems are here".

2-26

CALCULUS ORIENTED LANGUAGES

SO O m

RELATIONAL
CALCULUS

RELATIONAL
ALGEBRA

MACAIMS

ALGEBRA ORIENTED LANGUAGES

Figure 2.13: Comparison Scheme for Data Sublanguages (Codd 1971b)

2-27

2.2.5 Inverted model
Data can be thought of as points in n-dimensional space. In three

dimensions a useful view of data is shown in Fig. 2.14 below

A
Attribute

. {FORD, COLOUR, BLUE}

. {JONES, WEIGHT, 80}

Entitz%?

Value
Figure 2.14

With some data a fourth dimension must be considered, that of time.
Thus the attribute "weight" for entity "Jones" may have the value "80"

at present but over time this may vary.

Disc and tape storage devices have one dominant dimension, based around
the block concept. These devices read and write blocks and it makes
sense to store commonly associated data within the same block. In
geometric terms it is thus necessary to project the data points onto
one of the axial planes. Thus one of the four dimensiéns of data is
represented by blocks on a file. In traditional file systems this

blocking is based on the entity dimension.

Within blocks it is usual to allocate different parts of each block to
one of the other dimensions. For example within each block a particular

field is used to represent the attribute dimension.

2-28

A third dimension is typically represented by some binary pattern
within a field. Traditionally the value dimension is treated in this

way.

The time dimension is typically represented (if at all) by either
holding archival files or by having multi-vaiued attributes (e.qg.

holding 12 monthly sales figures in an inventory record).

So entrenched have these representations become that many users

unfailingly select this representation for all files.

An alternate representation of data based on "inverted files" rejects
this traditional method of holding data within files. It organises

data primarily by attribute instead of entity.

Inverted files have been used as the basis for many databases although
there is no clear cut agreement in the literature as to whether they
constitute a "database model" or merely a "file organiuzation" to be
used in implementing a model. Atre (1980: 280-287), Kroenke (1983:
53), Deen (1977: 174) are in the first group, while Bradley (1982:151),
Tschritzis (1977b: 218-221) and Date (1977: 34) take the latter view.
Whether as a data model or a file organization, inverted files are of
great importance in retrieval intensive database applications, and this
importance alone is strong enough for them to be considered here as a

database model.

Bird (1978) cites two major strengths of inversion: rapid retrieval

by multiple keys, and the ability to evaluate queries without reference
to the primary file. On the other side Bird places three weaknesses:
the complex file structure, the increased storage requirements and the

complexity of the file maintenance process.

2-29

Inverted files have been used as the basis of database systems both in
the information retrieval field and for more general applications.
PRIOR (ICL 1968), PEARL (Carter 1969), ROBOT (Burns 1975) are early
examples of such systems, and SYSTEM 2000 (Cohen 1978) and ADABAS

(Software AG 1980) more recent examples.

Cardenas (1975), McDonell (1976, 1977), Hill (1978a, 1978b), Bird
(1978), and Johnson (1982) have all analysed the performance of inverted
indexes (or Associate Key Lists) while Liu (1976) has described algorithms

for searching inverted files.

Inverted files can be held solely as an inverted file (e.g. PEARL) but
more usually there is a main file and an index. Updating of such dual
files presents a problem - some systems (ADABAS for example) maintain
both in parallel, while other systems (e.g. PRIOR) have maintained only
the main data file and then inverted it at intervals. As Bird (1978)
points out, this latter technique is only useful for relatively static
databases. Chapter 6 discusses the use of this technique for just such

a "static" database (used for planning).

A second major difficulty with inverted systems is the handling of
inter-record relationships. In some systems they are handled by system
pointers while in many databases they are simply ignored or not
implemented. This latter approach can be defended in two ways - firstly
because many databases are homogeneous in nature and the handling
problems are basically due to size and not complexity; secondly

because the distinction between attribute and relationship is somewhat

arbitrary.

Kent (1978) admits "I don't know why we should define "attribute" as a

separate construct at all." He gives as an example two “facts":

2-30

2.3

. Henry Jones works in Accounting;

. Henry Jones weighs 175 pounds.

Both facts are relationships connecting entities "Henry Jones"

and "Accounting" and "175 pounds" respectively. Both facts can clearly
be represented by attributes or as relationships themselves having
attributes:

. Henry Jones has worked 1in Accounting since 1970;

. Henry Jones has weighed 175 pounds since 1970.

Data Description

2.3.1 Introduction

Databases are usually described in a Data Description Language (DDL) and
this description is held in a Dictionary. The Dictionary (or Directory)
is a core file of most database systems and contains descriptions of

the various files, records and fields in the database. Thus ADABAS

has its ASSOCIATOR file (Software AG 1980) and SYSTEM 2000 has a Data
Base Definition File (Tsichritizis 1977; 293). While the names are

many and varied the purpose of each of these Dictionary)Directory files

is similar.

The data dictionary has assumed an importance both within and also
external to DBMS and it is even suggested (Canning, 1981) that for some
small organisations the Data Dictionary alone (without its associated

DBMS) may meet most needs.

Associated with the data dictionary is the concept of the Data Base
Administrator (DBA) function which has the task of maintaining the

dictionary and controlling the organisation and use of the database.

2-31

The data dictionary and its associated DDL have been developed in many
situations to the status of a systems design tool (BCS 1977; Bourne 1979)

but this aspect of their use is beyond the scope of this thesis.

There are many different techniques for setting up the Dictionary, the
three most common of which are:

Form Filling

Conversational

Data Description Language (DDL)

2.3.2 The Form Filling Approach
In this approach the Dictionary is set up by filling in forms and these
forms are input to the computer and used to enter data descriptions

into the dictionary.

This is a fairly simple technique and is suitable for relatively
unsophisticated users. The major disadvantage of the approach is that
the user has to have a supply of the forms to fill in or at least know
the exact format of the input data. The system may thus be unsuitable

for the casual user.

While the original input forms can be used as a visible form of the
data dictionary, this is often fairly bulky and a more suitable form of
documentation is often provided by a Dictionary Print Program.
Alternatively the print can be produced as a by-product of the original

input process.

2-32

2.3.3 The Conversational Approach

In this approach the Dictionary is set up by running an on—ﬁine
conversational style program. The program asks the user a series of
questions and from the responses builds up the data descriptions in the

Dictionary.

Like the form filling approach this is suitable for unsophisticated users.
In addition because the user merely has to respond to questions this

approach is also suitable for first time users with no prior training.

The major disadvantages of this approach is the verbosity of the dialogue
as the user becomes more experienced, and in addition a change to the
data description can often only be made by repeating the entire
conversation. This latter problem can be overcome by introducing an
intermediate stage where some Data Description Language (DDL) is
generated (see 2.3.4) and this in turn is compiled into the Dictionary.
Minor changes can now be implemented by editing the DDL using a Text

Editor and then re-compiling the DDL.

Typical of this approach is the Automatic Design Tool (ADT) of Datatrieve
(DEC 1982). Using this tool the user is asked a series of questions

and from the responses the ADT package builds up a set of DDL. Sub-
sequent modifications are made by editing the DDL and more sophisticated

users can go direct to DDL to describe their data.

The SEQUENT system described in Chapter 5 uses an interface similar in

style to ADT but places the data description directly in the dictionary.

2.3.4 The Data Description Language Approach
In this approach the Dictionary is set up by compiling a purpose built
Data Description Language (DDL).

2-33

2.4

In general this approach is best suited to systems complex enough to
require a Data Base Administrator. Because of the complexity of the

languages they are generally unsuitable for unsophisticated users.

PLUTO "layout strings" (ICL 1969) are an early example of the use of
data description language. The string

H24NAMH26ADDR04S02MSLR12S02BALZ
describes a record with a 24 character name file (NAM) followed by up
to 4 lines of an address field ADD (each of 26 characters) followed by
up to 12 2 byte monthly sales figures (MSL) and finally a 2 byte balance

field (BAL).

This layout string was stored in front of each PLUTO Master File and

was used by PLUTO routines to access fields by name.

A more modern instance of this approach (DATATRIEVE) was referred to in
the previous section, but by far the best known version of this approach
is the CODASYL DBTG Schema DDL (CODASYL 1971), and this has been the
principal inspiration in the development of the INVERSE and PYRAMID

DDL's described in Chapters 6 and 7.

Data Base Administrator

Concurrent with the development and growing use of databases there has
been a recognition that the database is a resource (Davenport 1980)
that needs to be managed and this is the role of the Data Base

Administrator (DBA).

Lyon (1976) points out:
"While the nature of the DBA can be expressed in general terms,

there is no universal definition of a DBA; it is unique to
the enterprise.”

2-34

The role of the DBA covers the following:
design of the database;

. physical creation of the database;

. maintenance and use of the database;

. optimization of the database.

In a teaching environment the balance between the activities will be

different to the emphasis placed on them in the outside worid.

The performance optimization of the database is crucial in the outside
world but in a teaching situation databases are rarely large enough to

justify much effort in this direction.

Similarly the concern with the maintenance of the database is likely to
be less strong than in the outside world. For many teaching situations
the database will only be used in a retrieval mode. Where updates are
used they will tend (being generally hypothetical transitions) to be
small in volume and used for illustration. Rarely will updating be a

major problem.

The key problems of database administration in a teaching environment are:
. what sort of database is needed - in terms of database model, record
contents, inter-record structure etc.;

. where is the data to come from - so that the database looks real.

For the systems described in Chapters 6 and 7/ (INVERSE and PYRAMID) it
is assumed that usually the role of DBA will be undertaken by a member
of the teaching staff. They will design the database, decide how it

js to be used, and then build the database.

2-35

2.5

Only for the SEQUENT system (Chapter 5) would it be normal for the
student to perform all functions including data definition when using

the QUILL Tanguage as a stand-alone query language.

Data Manipulation Facilities

2.5.1 Introduction

Mayne (1981) defines three types of data manipulation facilities

. Host Language DML

. Report Writers

. Query Update Languages

He observes that the latter two are often combined and called a self-

contained language.

Peat (1982) defines data manipulation facilities in terms of the users
of those facilities rather than by Mayne's use of names describing the
style and features of the language. Thus Peat refers to "programmer

interface" and "end-user facilities".

The QUILL Query/Update language described in Chapter 4 has some report
writer features. Mayne would thus call it a se]f—contéined language
and Peat by the term "end-user facilities". Within this thesis the
term "end-user facilities" and "programmer interface" will be treated
as synonyms for "self-contained language" and "host language pML"

respectively.

Most (but not all) general purpose database software systems start with
a host language interface and they may then add a query language at a

later date.

2-36

This developmental life-cycle emerges from a primary concern with the
representation of data and relationships rather than with user processing
of that data. It seems almost as if the query language interface 1is

seen as the "icing on the cake".

Thus 011le (1973) records that the CODASYL DBTG specifications do not
define a query language and that they were not intended to do so.

This was not because the DBTG did not believe in such capabilities, but
because they saw these facilities as being on a different level from

the CODASYL DML.

The CODASYL (1969) report states

"The objectives of the Data Base Task Group in developing
its proposals was to make it easier and more efficient
for programmers to store and retrieve data...."

They went on to say

"It is important to note that the Data Base Task Group's
proposals are oriented to the programmer. It is not an
inquiry language intended for the non—programmer...."

The CODASYL (1971) report makes the same point when it states

"It is important to note that the Data Manipulation Language
specified in this document is not designed as a universal
processing language and indeed that it is not a self contained
language. Rather it is an enhancement of COBOL and it can
thus be categorised as a host language system. As such its
level of procedurality is about equal to that of COBOL and thus
it is appropriate for use in programming that large class of
problems for which COBOL is the most used and most suitable
language."

A status report (CODASYL 1979) on end user facilities has not yet been

followed up.

Thus these database systems were clearly geared to COBOL-1ike programming.

They failed to draw the distinction that while COBOL may be the most

2-37

used language, it was not necessarily the most suitable. Recent develop-
ments in the so-called "Fourth Generation Languages" (Ashton 1982)
demonstrate that other languages may be more suitable for large classes

of problems.

While some systems such as RIQS (Borman 1976) only provide the self-
contained interface and CODASYL (1971) only specifies a programmer
interface, most database systems provide both facilities. Thus the
PYRAMID system described in Chapter 7 offers both QUILL and a host

language interface.

2.5.2 Host Language DML
Host Language Data Manipulation languages use a standard host programming
language (e.g. COBOL, FORTRAN, PL/I) to perform all but database I/0.
The database 1/0 is performed by causing the user programs DML commands
to invoke the particular DBMS software.
In its simplest form the host DML command takes the form of a CALL to a
library procedure. For example a COBOL program using ADABAS (Peat
1982: 189-204) would say
CALL "ADABAS" USING CONTROL-BLOCK,

FORMAT-BUFFER,

RECORD-BUFFER,

SEARCH-BUFFER,

VALUE-BUFFER.

The control block contains amongst other things a command code and the

lengths of the other buffers.

The format buffer contains a description of the layout of the record
buffer which is filled up by say a READ command. A value of "AA,5X,

AB,3,V" specifies that the record buffer is to be laid out as below.

2-38

5 spaces

AA value AB value

8 bytes packed 3 bytes unpacked
The search buffer specifies the record selection criteria and the value
buffer contains the values used to particularize the selection expression.
Thus a search buffer containing "AA,D,AB" and a value buffer with the
hexadecimal value F1F2F3F4 F5F6F7F8002C will locate those records

containing the AA value of 12345678 and the AB value of +2.

The ADABAS call interfaces with ADAMINT which is a custom module created
by the Data Base Administrator (Cohen 1978). A similar technique and

interface is employed by the PYRAMID system described in Chapter 7.

Some database systems provide an alternative way of writing DML which
avoids the direct use of the call mechanism. The host source including
the DML statements is passed through a preprocessor to convert the DML
statements into host language CALL statements. While DMS 1100 and IDMS
have a preprocessor, IMS and TOTAL do not (Mayne 1981). The PYRAMID
system described in Chapter 7 has no preprocessor, but' Chapter 8

describes how such a feature could easily be added.

2.5.3 End-User Access to Databases

Benbasat (1981) reports that it is estimated that for 95% of human/
machine interactions, people costs are greater than machine costs and
that actions that reduce human costs and simplify the human interface
will have the greatest impact on the growth of the computer industry.
This has led to the development of a whole range of end-user languages

of which query languages are perhaps the most important.

2-39

While most computer professionals would recognise a Query Language if
they saw one, most formal definitions, while nonetheless correct,

are somewhat superficial.

Reisner (1981) defines them as "a special-purpose language for
constructing queries to retrieve information from a database of

information stored in the computer.”

Tagg (1981) defines a Query Language as being "a high-level language,
suitable for non-programming users, and oriented towards ad hoc

retrieval of data with fast response."

Samet (1981) gives the definition "a high-level computer language
which is primarily oriented towards the retrieval of data held on
files or databases." Samet also gives what he acknowledges to be a
less formal, but more satisfactory, way of telling if a package is a

query language by examining certain features of the package.

Paraphrasing Samet's 1ist in Table 2.1, there are 6 basic attributes
that can be examined for features appropriate or inappropriate in a

query language.

A query-update language is an extension of the query language concept
that permits the user to update as well as retrieve information. In
what follows the term "query language" will be taken to refer to

either of the above concepts unless otherwise qualified.

Query languages are normally intended to be used by non-professional
programmers. In general they have a limited number of fairly high-

powered functions.

Robinson (1981) divides query language functions into the following

categories:

2-40

Attribute

Data Retrieval

Prime Users

Style of language

Data entry or

maintenance

Amount of data
displayed at a time

Performance

Appropriate
On line

Ad hoc
Not predefined

Little or no
NP experience

Specify WHAT is
wanted, often in a
single statement

Limited

Few lines/records

Response and speed of

development more
important-than- run—
time efficiency

Table Z,1

2-41

Inappropriate

Batch
Predefined
Evaluated repeatedly

Specialists who build
systems for others

Specify HOW to do

the task

Unlimited

Large volumes

Run time efficiency
is important

. Retrieval

. Update

. Phonetic Search

. Graphics

. Boolean Operators

. Conditional Operators
. Relational Operators
. Statistical Functions

. Mathematical Functions

He divides "retrieval"™ into six sub-categories: Single Record, Record
Collection, Combination, Quota, Grouping and Total. Single records
is based on primary key, while record collection is the selection of
groups of records based on conditional and boolean operators.
Combination retrieval is the ability to use the output of one query
as the input for another. A1l three of these features are available
in the QUILL query language described in Chapter 4, although there
are restrictions on the use of combinations retrieval in that a "hit
file" has to be produced as an intermediate stage and this file then
interrogated separately. O0f the last three of Robinson's six
retrieval functions only one is implemented in QUILL (see Chapter 4),
that being total retrieval, the ability to print the entire database.
Quota retrieval, which places restrictions on the volume of output,
is not implemented. It is perhaps more suited to bibliographic
searching, although it does have applications in accounting ("list
the 10 largest outstanding debts"). Grouping retrieval collects
records together with a common domain value and hence implies a

sorting process. The only way to achieve this using QUILL is to

2-42

produce a hit file, sort it, and then carry out a series of queries

on the hit file for each value of the sorted attribute.

Yu (1978) classifies queries into three classes: Exact Match, Partial
Match and Closest Match. In an "exact match" the query specifies
particular values of a set of attributes that match exactly one
record, for example "employee-number = 1234". A "partial match"

query also specifies particular values and attributes but it is
expected that many records will meet the criteria, for example "sex =
male and age > 21". In a "closest match" query the search is for
records which match some but not necessarily all of the chosen
attributes. This type of query is found in bibliographic searches

and also in searches of say criminal records. The QUILL query language
provides no facilities for closest match, but concentrates on partial
match. Exact match can clearly be viewed as a subset of partial

match, but it is not considered here as of great importance.

Robinson defines update as being a process of changing parts of the
database based on some retrieval selection process. He observes

that many query languages do not permit update, and that in others
(e.g. SYSTEM 2000) update is restricted to batch mode. He further
states that update features are often achieved in a rather clumsy
manner and are often not provided in the first version released but
are added later. The QUILL language provides update facilities in a
limited way, the 1limit being imposed more by the non-procedural nature

of the language than by any implementation problems.

Phonetic searching and graphics, while desirable features, are not
implemented in QUILL as they are considered to be outside the scope

of the system developed.

2-43

QUILL does provide for Robinson's boolean and conditional operators,
but does not have a feature for his "don't care" string matching as,
apart from any customer name searching the facility is more useful

for bibliographic databases.

There has been no attempt to implement the relational operators of
selection, projection, join and division etc., because the mode
selected for the QUILL language (see Chapter 4) precludes their

implementation.

QUILL provides the add, subtract, multiply and divide operators, but
does not provide exponentiation. The design objectives of the language

do not permit unary minus and parentheses to be implemented.

The statistical functions provided in QUILL are SUM and AVERAGE. No

mathematical functions are included - in Robinson's words they "are

not an essential feature of a query language".

Most query languages require that the user views their data in a

particular way from a whole range of possible views (Tagg 1983).

This conceptual view, or data model (Reisner 1981) may be thought
of in several ways:

1. a single table - a file;

2. a set of tables or relations;

3. a hierarchy or tree structure;

4. a network model or graph structure.

The model chosen for the QUILL language is the single table model.

It should be stressed that this data model or conceptual view need

not be the way that the data is stored. In Chapters 5, 6 and 7 it

2-44

is shown that a number of different internal or physical views can be

mapped onto this relatively simple conceptual view.

Set the task of describing a computer technique to solve a problem,
solutions advanced tend to fall into two distinct groups. For
example, suppose a group of students is asked to say how they would

find the average salary of females in a payroll file.

Students with programming skills would tend to give an answer like:

1. Read the first record.

2. If it is female add the salary to a total and add 1 to a count.

3. Read the next record. If there is one go to Step 2.

4. If there are no more records divide the total by the count.

5. Print the answer.

There would be variations - some suggesting opening and closing files,
some clearing the total and count (often at the wrong step!), and
others putting the end of data test at some other point. Nevertheless

all very similar descriptions.

Students without programming skills would by contrast tend to produce
answers like:
"Find all the females, add up their salaries and divide by the number

of females."

Again there will be variations on this theme, but the techniques here

are quite different in style from the programmer solutions.

Thus faced with a need to allow non-programmers to access a database,
two broad directions can be followed. One can teach the user to think

and write programs in a procedural fashion (say using top-down design,

2-45

structured code etc.) or alternatively instead of moving the user
closer to the computer language the language is made more “natural"
to the user's style of expression and thought. If the latter course
is chosen then a so-called non-procedural language is likely to
result. This user-oriented language is also likely to have more
powerful functions (but often less flexibility) than conventional

languages.

Thus using COBOL the following procedure division code might be
produced.

PROCESS-QUERY.
MOVE ZERO TO TOTAL, COUNT.
OPEN INPUT PAYROLL-FILE,
MOVE “YES" TO MORE-DATA.
PERFORM READ-AND-PROCESS-DATA UNTIL MORE-DATA = "NO".
DIVIDE TOTAL BY COUNT GIVING AVERAGE ROUNDED.
MOVE AVERAGE TO EDITED-AVERAGE.
DISPLAY EDITED-AVERAGE.
CLOSE PAYROLL-FILE.
STOP RUN
READ-AND-PROCESS-DATA,
READ PAYROLL-FILE AT END MOVE "NO" TO MORE-DATA.
IF MORE-DATA = "YES"
IF SEX = "F"
ADD SALARY TO TOAL
ADD 1 TO COUNT.

Using a language like RIQS (Borman 1976) the following code might be

produced.

BEFORE SEARCH LET T1 = O LET T2 = 0

BEGIN SEARCH IF #SEX = "F" LET T1 = T1 + #SALARY
LET T2 = T2 + 1

AFTER SEARCH LET AVERAGE = T1/T2

PRINT AVERAGE.

Alternatively, using the QUILL language the user could code

WHERE SEX = F AVERAGE AGE.

Query languages are often described as "procedural" or "non-procedural”

but comparing the three programs above it can be seen that RIQS is

2-46

less procedural than COBOL but more procedural than QUILL. It is
inappropriate then to talk of "procedural™ and "non-procedural" as
though these terms are the two discrete values in a binary scale.
Welty (1981) has commented that procedurality can be thought of as a
continuous measure. To this end Welty has proposed a "procedurality

metric" by which query languages may be ranked for procedurality.

Haskell (1980) lists as the advantages of non-procedural programming
languages:

. they can be given machine independent semantics;

. programs can be executed in many different orders;

. program proving is simpler.

Expanding on the last point, Haskell goes on to argue that the proof
for any procedural program involves transforming the program into a
non-procedural equivalent form which is then proved correct. There

is no known direct proof method for procedural programs.

However, as Haskell points out, all non-procedural languages compromise
their semantics when dealing with system functions such as 1/0.

Thus users of the non-procedural language QUILL described in Chapter

4 need to be aware that in the program

WHERE AGE <21 PRINT NAME, SALARY
ADD 50 TO SALARY.

the ADD statement is evaluated before the PRINT.

Thus Haskell concludes that "so far it has not been possibie to design

a system employing such a language which is entirely non-procedural.”

Miller (1981) has documented an experiment in which he gdave 6 different

problems of varying complexity to a group of non-programmers. He

2-47

analysed the responses for completeness and for the content categories
of expressions (e.g. actions, attribute testing, transfer of control
etc.). He found that there was very little explicit control or
data definition/declaration in natural language when compared to
programming languages. He concluded that there are

"fundamental, almost incompatible, differences between

natural and programming specifications of procedures.

... Changing so firmly entrenched a manner of speech

is akin to asking people to change the way they walk or

talk."
Benbasat (1981), Welty (1981), and Schneiderman (1978) have described
similar research. Welty notes, however, that people more often

write difficult queries correctly when using a procedural rather than

a non-procedural language.

Thus the use of a non-procedural query language can be seen to be of
value to non-programmers to help them handle simple requests of a

database.

This development of languages to be more natural to the user has
fostered a whole field of research in Artificial Intelligence and
Natural Languages. Most of the early attempts at Natural Language

are widely perceived as having failed or to be impossible (Hi11 1972)
but more recent results are impressive (Kaplan 1982). Using Artificial
Intelligence Corporation's INTELLECT Kaplan gives the following
examples.

ARE THERE ANY PEOPLE WORKING AS SECRETARIES
AND EARNING A SALARY OF $15,000 OR MORE?

GIVE ME A SORTED LIST OF NAMES OF ALL
THE VICE PRESIDENTS IN CHICAGO OR LOS ANGELES.

2-48

Njissen (1983) has also stated that INTELLECT or similar natural
language interfaces are the direction in which all database access
should be heading, and both Harris (1978) and Hendrix (1978) have

described natural language database interfaces.

Security

Drake (1971) lists the three general ways in which a file can be
damaged

. unauthorised access;

. erroneous or incomplete update;

. system malfunctions.

While there is general agreement on the above subdivision, there are
considerable variations in the use of labels for each category.

Thus Drake uses the terms “security" or "privacy" merely to apply to
the first of the above, and Tsichritzis (1977) adopts the same use
for the term "security". Date (1977) however uses "security" to

refer to all three, as does Kroenke (1983).

Deen (1977) refers to authorisational operation and physical security

to refer to the three types of "data protection'.

This thesis adopts the convention that security is concerned with
protecting a database from both unauthorized use and also unintentional
destruction. The term privacy will be used for unauthorized access,
even though this term is used by some to apply to the rights of

human individuals, and even though others may prefer to talk about

access controls, authorisation checks, confidentiality etc.

Recovery is the term used to describe processes to rebuild the database

after system or program failure.

2-49

Two major privacy features are typically provided by DBMS's (Peat

1982). They are passwords and encyphering.

Passwords can be applied to various clauses in the DDL, with the
implicit assumption that unless the password is quoted access to the
protected clause is to be denied. The CODASYL (1971) report is
perhaps the best known use of this technique. It has a multi-level

system of both simple passwords and more complex procedures.

The PYRAMID system (see Chapter 7) uses passwords as in CODASYL to
achieve Bonczek's (1977) "Security by view" - that is that the
Database Administrator set up access routines that can only access
parts of the database and the user can only look at their allocated
view. The INVERSE system also provides this security by view through

its selective indexing mechanisms.

Encyphering techniques are used for highly sensitive data. They
have not been considered necessary either to discuss further here or

to implement.

Verhofstad (1978) states

"No single recovery techniques or series of recovery techniques
can cope with every possible failure.”

He describes six possible kinds of recovery:

. recovery to the correct state;

. recovery to a correct past state;

. recovery to a possible previous state;

. recovery to a valid state;

. recovery to a consistent state;

. crash resistance (e.g. after failure return to the prior state

is automatic).

2-50

Verhofstad goes on to list seven categories of recovery, restart and

maintenancy of consistency:

., salvation program - rescues information still recognizable - used
as a last resort;

. incremental dumping - taking of back up copies;

. audit trail - recording sequences of actions on files (before and
after images);

. differential files - main file is unchanged, differential file
holds changes;

. backup/current version - traditional file cycling;

. multiple copies - all copies identical except during update - file
marked by "back list" when updating in progress;

. careful replacement - duplicates data at the moment of update.

Verhofstad links the six kinds of desired recovery to the seven

recovery techniques in a cross-reference matrix.

The only technique to recover files to the correct state is the audit
trail or journal. For this reason the INVERSE system in Chapter 6
produces an audit trail journal. The use of the 1ncrementa1 dump
technique can also be used to reduce the amount of audit trail
information required to be kept. The audit trail journal contains
both before and after entries (see Drake 1971, Fossum 1974, and

Verhofstad 1978).

It is possible that if the INVERSE linked lists are corrupted then

the situation could be improved by a purpose-built salvation program.

Harder (1979) discusses the possibility of optimizing logging and

recovery in database systems.

2-51

2.7

Verhofstad (1979) has proposed that the security techniques implemented

may vary at different levels of multi-level database systems.

Fossom (1974) describes the database integrity features of Univac's
DMS 1100 system, including its locking and deadlock mechanisms, the

rollback and quick, long and selective recovery features.,

Dadam (1980) has analyzed the special problems of recovery in a
distributed database and suggested checkpoint techniques that although

more complex than for a central database are nevertheless necessary.

Kaunitz (1981) provides a similar but less extensive review

to that of Verhofstad (1978).

Summary

This chapter has attempted to review a selection from the literature
that bears on the design and construction of educational database
software. The software described in Chapters 4 through 7 has been
designed mostly because of, but also occasionally in spite of, the
ideas found in the literature. The rejection, often reluctant, of
useful ideas has usually been made on the grounds of expediency -
that the construct is of limited application; is difficult to teach;
is too greedy on resources; or is more difficult to implement than

some alternative, though more restricted facility.

The selection of database models to be implemented has been made on
expedient grounds. It has to be conceded that of the four major
database models dealt with (hierarchic, network, relational and
inverted) that the selection of the first and last only and the

decision not to implement network and relational models is less than

2-52

perfect. The network model is however often used in a hierarchic
fashion for student exercises and not much is lost in implementing

this subset of network facilities. The choice between relational

and network/hierarchic models is more difficult (Simsion 1981, Michaels
1976, Sockut 1981). At the current time the network model is more
widely used, but there is clearly a trend to the relational model.
Nevertheless the decision to select a navigational model rather than
the relational model is based on current market-place popularity.

This choice is looked at in retrospect in Chapter 8.

The decision to implement the inverted model was much easier - it has
clear advantages for retrieval intensive applications - e.g. land use

databases, bibliographic databases etc.

The simplification of the three level ANSI/X3/SPARC architecture in
favour of a two level architecture in the pyramid system in Chapter
7 is defended on the basis that most commercial DBMS's follow the
same path. The choice still permits a sufficient measure of data

independence to be implemented.

The choice between the conversational and DDL approaches to data
description was also relatively easy, each being used where most

appropriate (Chapters 5,6,7).

Academic staff have always had a coordinating and control role in
student exercises, but with the use of databases the demand for them
to act in this way is more necessary. Some consideration needs

then to be given to the role of the Data Base Administrator and for
any activity to decide where the boundary between academic and student

should lie.

2-53

The concentration on an end-user language (QUILL) as the main data
manipulation language echoes the comment by Lawrence (1979):

"It is believed that in this area (ad hoc enquiries) that

the most significant benefit of a DBMS is realised.”
However, having concentrated on the end-user side, the needs of
programmers has to be met with a host-language DML. Stamen (1981)

has set forth some evaluation criteria for database languages.

The important (and growing) importance of security has been recognised
and both privacy using Bonczeks "Security by View" and the now fairly
standard audit trail features have been implemented.

Finally, Peat (1982) makes the following comment on the selection of

a DBMS,

"It should be recognised that no DBMS is 'better' than another,
rather that each has its strengths and weaknesses. The object
of the selection process is to find the system with the most
advantages and fewest disadvantages for the envisaged EDP
environment."

Thus the system described in this thesis should be judged on its

advantages and disadvantages for tertiary-level education and not on

its use as a commercially viable DBMS.

The major advantage of the described system is its low use of resources
(both money and central memory), its simple interfaces, and adaptability

to other hardware systems.

The major disadvantage is its restricted range of facilities, mostly
to ensure low memory utilisation and simplicity of user interface.
Again following Peat (1982):

'The power ... of commands is in general directly proportional
to their complexity."

2-54

3.1

CHAPTER 3

METHODS AND PROCEDURES

Major Objectives

The fundamental aim in developing the educational software described in

this thesis is that the student user who in later 1ife has to use a commercial

DBMS should when using the various facilities of this commercial system be

able to say in effect "Ahah! 1've used that sort of feature before'.

To this end the software should contain in microcosm examples of most of the
features found in real world systems. Reference was made to many of these

features in Chapter 2 but the more important ones are repeated here.

The software should have the following features:
it should provide physical and logical data independence;

. it should provide both a programmer and an end-user interface;
more than one data model should be supported;

. use of resources, especially main memory, should be kept to a minimum;

. security features including privacy locks and journal files should be
provided;

. the software must be capable of being taken apart and rebuilt (with some
modules replaced) by, say, a student interested in software construction;

. the software must be able to be transferred from the development machine
and operating system to a target user machine.

Later chapters (4, 5, 6 and 7) describe the end-user language QUILL; the

stand-alone query system SEQUENT; the inverted system INVERSE and the hier-

archical system PYRAMID which were built to meet the stated aims.

3-1

3,2 Choice of Programming Language

The software developed during the preparation of this thesis was written for
a CNC Cyber 173 using the NOS QOperating System and subsequently some of it

was transferred to a DEC VAX 750 using the VMS Operating System.

Three major programming languages were available to code the system's modules:

FORTRAN, PASCAL and COBOL.

FORTRAN was not used because it lacks any convenient data structure for

describing records.

PASCAL has a good data structure for describing records, and its block
structure and parameter passing mechanisms are good features for writing
compilers. A serious drawback however is its lack of sophisticated input

output such as indexed sequential files.

Eventually it was decided to write all the software in COBOL. As Evans
(1982) and Triance (1978) have reported, COBOL has a number of weaknesses,
but this thesis advances the view that the effect of these weaknesses need

not be great, and in addition COBOL has many compensating strengths.

Evans lists the following as some of the weaknesses of COROL.

1. It has no block structure and this makes structured programming difficult.
2. It is verbose.

3. It has no local data items.

4, Internal and external call mechanisms are different.

5. It cannot pass parameters in its internal call mechanism.

Weaknesses (1) and (3) can be overcome by adhering to particular coding
standards, for example by heavy use of the PERFORM...UNTIL construction,
avoiding PERFORM...THRU, using GOTO only for abort activities, and by

reserving data items for specific purposes.
3-2

Weakness (2) is in part necessary so that COBOL programs are easy to read

and hence maintain.

In addition COBOL has certain strengths:

. it has a well defined standard (ANSI 1974) and compilers for this
standard are found on most mainframe computers;

. as COBOL is the target language for the code generators described in
Chapter 7, and is the intended host language for the system, then the use
of COBOL makes it possible by bootstrapping to use the current system

to add new subsystems.

Wallis (1982) observes that ease of portability has been less important in
the development of COBOL standards than the desire to provide permissive
standards. Fach COBOL standard has a 1ife of five years, and it is not the

case that each successive standard incorporates its predecessor as a subset.

The "freedom" to add extra features leads to problems in that a data name
used in a legal ANS standard program is a non-standard reserved word in a
compiler to which the program is transferred (Fenton 1978). A typical
example of this problem was found when test program "CRCUST" (see Appendix
5) was transferred from the CYBER to the VAX. The dataname RECORD-NAME

which was acceptable on the CYBER was rejected by the VAX compiler.

Wallis (1982) states that because many COBOL features are left to be
“implementor defined" and further that there is substantial freedom to pick
and choose features for subsets, the portability of COBOL has been seriously
compromised. Thus the 1974 standard specifies a nucelus and eleven modules
of the standard, each of which modules can be implemented at different

levels. There are thus more than 100,000 versions of "standard" 1974 COBOL.

Similar problems exist with FORTRAN, particularly with respect to character
handling. Thus Fenton (1978) says about both COBOL and FORTRAN

3-3

"no two compilers accept precisely the same language. Indeed
no compiler accepts the standard, the whole standard and nothing
but the standard.”

However, whilst accepting that some COBOL compilers have non-standard

features, Norman (1978) has ohserved

", .. experience has shown that the best results are obtained
when the (COBOL) language is used in a disciplined way."

Part of the discipline is the selection of the original compiler to develop
the software. Fisher (1978) in ranking eleven COBOL compilers for portability
ranks the top 3 as:
1. IBM - extremely good.
2. CDC - very good and strictly according to the standards (non-ANSI
flag good).
3. DEC - very good (System/10).
The U.S. Navy (1978) ranks the CDC COBOL Compiler, Version 4,2 as the most

portable and comments that it is "virtually perfect”.

The choice then of the CDC COBOL compiler, while not guaranteeing portability,

does offer perhaps better prospects than any other language and compiler.

The COBOL Environment Division is and always will be a problem (Fisher, 1978).

The advice of Fisher has been followed that "the only 'reliable’ data type
is DISPLAY". This data type has been used wherever possible, and an attempt
has been made to avoid use of data types that are dependent on the word

length of the CYBER.

A1l code in the system has been written and tested using the CDC COBOL-5
compiler (CDC 1978). The compiler option ANSI=AUDIT has been used to verify
that constructs not included in the ANSI standard (ANSI 1974) are rejected by
the compiler. Thus the code should be used on other computer systems with

minimal conversion effort.

3-4

3.3

Because it is intended that students may dissect and/or modify the code, the
following coding conventions have been adopted to make the code easier to
follow.

1. A1l names are as self-explanatory as possible, even at the expense of
verbosity.

2. The code has been laid out in accordance with the top-down design of
each software program. Thus the paragraphs of each program are coded
top-down, left-to-right. For example, given the paragraph hierarchy of
Fig. 3.1, the order of the paragraphs is A, B, C, D, E, F and finally G.
An exception is made in the case of paragraphs called more than once.
These are placed at the end of that part of the hierarchy in which they
are used. Thus in the hierarchy shown in Fig. 3.2, the order of the

paragraphs is A, B, C, D, E, F, G and finally the common paragraph H.

Software transfer

Mention has already been made that the software described here was developed
on a CDC CYBER 173 and then transferred to a VAX 750. The software consists
of about a dozen large COBOL subprograms which are linked in various
combinations to form the various software programs. There are in total
over 7000 lines of code. Accordingly, while structure diagrams and sub-
program diagrams are included within this thesis, the 150 or so pages of
software compilation 1istings are not. It is felt that to include the code
would add little to an understanding of what has been achieved. Further,
nobody should attempt to implement major software packages by keying in
copies of code from an appendix. If any potential user requires the code
it is available both on magnetic tape and also on the diskettes on which it

was successfully transferred from the CYBER to the VAX.

3-5

Figure 3.1: Typical module hierarchy (1)

3-6

c
D E
F
H
Figure 3.2: Typical module hierarchy (2)

3-7

3.4

8.5

Use of Examples

The varijous software facilities developed for this thesis are described in
Chapters 4 through 7. Each feature of the software is described through
examples. The selection of examples has attempted to steer a middle path
between the two extremes of a single complex all-embracing example and a
disjointed set of simpler examples particularly suited to the feature being
discussed. The former approach would allow a consistent thread to be
maintained but the use of certain features for the single application may
defy reality and stretch credibility. The latter approach enables an
easier case to be made for any specific feature but tends to obscure the

integrating nature of any particular database.

The Lexical Analyzer

Most of the programs in the software are in fact compilers, This subprogram
is a central part of all such compilers in the system. It is invoked by
the calling sequence
CALL "LEXAN"
USING FUNCTION, SYMBOL, SYMBOL-TYPE,
NUMERIC VALUE.
The basic purpose of the Lexical Analyzer is to read source lines, break

them down into symbols, and present the symbols one at a time to the calling

program,

Symbols may be separated by any number of spaces. They must be wholly

contained on one source line.

The symbol types processed are:
String - any sequence of characters enclosed by quotes (" "). The

maximum length of a string is 64 characters.

3-8

Identifier -

Number

Letter

any sequence of characters from the set A through Z, 0 through
9 and hyphen (-). The first character must be a letter. A
hyphen can only appear between two other non-hyphen identifier
characters. The maximum length of an identifier is 20
characters.

a string of decimal digits, 0 through 9, with a leading optional
sign (+) or (-) and an optional decimal point (.). If the
decimal point appears it must not be either the first or the
last character of the number.

a single character from the set A through Z .

The input parameter is FUNCTION which can take the following values:

Spaces

LETTER

LIST

NOLIST
LENGTH

FINISHED

the next symbol (irrespective of type) is returned. The
parameter SYMBOL-TYPE as set to "STRING", "IDENTIFIER", "NUMBER"
or "SEPARATOR" as appropriate. The value in SYMBOL is the
characters of the string (not including the quotes), the ident-
ifier or the separator. For a number SYMBOL contains the char-
acter by character value as it appears in the source text, and
NUMERICVALUE contains the actual signed value as an 18 digit
number with 9 decimal places. A separator is a single character
which is not A through Z, 0 through 9, "space", "+", "-" e.qg. a
punctuation character.

if the next non-space character is a letter then this is
returned, otherwise a space is returned in SYMBOL.

starts listing the source from the next source line.

stops printing the source after the current source line.
NUMERIC-VALUE is assumed to contain the character position on
the source line where unpacking of symbols is to cease. The
default value is 73.

the source file is closed and symbol processing finishes.
3-9

The output parameter SYMBOL-TYPE is set to one of the following values:
IDENTIFIER
STRING
LETTER
NUMBER
SEPARATOR

In all compilers the mode statement

BATCH
MODE IS

INTERACTIVE

establishes the processing mode for the compilation. If the clause is not

specified then MODE IS INTERACTIVE is assumed.

In batch mode source lines are read from the system file "INPUT" and are
echoed on system file "OUTPUT" along with any appropriate compilation errors
and/or messages. Any compilation error found during the compilation will
cause the entire compilation to fail after syntax and semantic checking has

been completed.

In interactive mode the system files "INPUT" and "OUTPUT" are assumed to be
an interactive terminal. No echoing of source lines takes place, and any
compilation errors are assumed to be immediately corrected and hence the

compilation is not aborted.

3-10

4.1

CHAPTER 4

QUILL QUERY LANGUAGE

Introduction

The QUILL Query/Update language is the high-level or end-user interface to
the system. The language is designed to be used by non-programmers in an
interactive fashion, although it can also be used by programmers and can

also be run as a batch system.

The design principles for the language are those suggested by Bonczek
(1977):

the language is independent of the database;

programming expertise is not required to access the database;

the language is non-procedural;

. the language is easily extendable.

The independence of the language from the database is such that the same
language is used to access three fundamentally different types of database

- a sequential file, an inverted database and a hierarchijc database.

Each of these three internal physical views is mapped onto a single
conceptual view, or data model (Reisner, 1981). For QUILL this conceptual
view is of a single table or file with each record of the file containing
the same fixed format fields. The language allows the user to manipulate
the database through this conceptutal view and mapping routines translate

these activities into the operations required in the particular database.

Programming expertise is not required to access the database as using

QUILL the user can retrieve data, produce reports and (depending upon the

4-1

4.2

particular physical database) can update data. Thus for a whole range of
data processing tasks the QUILL language can be used rather than a con-

ventional programming language such as COBOL.

The QUILL language is non-procedural and using the procedurality metric of
Welty (1981) the language is much closer to the non-procedural extremity

of the procedural <> non-procedural scale than most query languages. The
QUILL query or statement is specified as a series of actions and these
actions can be written by the user in any order, with all such combinations
being by definition semantically equivalent and hence producing the same

result.

The language is easily extendable such that since its original conception anc
implementation various different physical database models have been accessed
via QUILL, and in addition several arithmetic operations have been added

without any significant changes being made to the existing code.

Language details

Operations using QUILL consist of a sequence of statements. The state-
ments are actioned individually so that when used interactively input of

statements alternate with actioning those statements.

Each statement takes the form

WHERE search-predicate action-1 --- action-n.

The search predicate may be a simple or a complex boolean expression and
the actions consist of printing, displaying, updating, totalling and
extracting specified fields from the selected records. The actions may

(except for printing page control) be written in any order without affectint

4-2

the result of the statement. The full syntax for the language is given

in Appendix 1.

The facilities of the QUILL language are shown in the following examples.

WHERE SEX = M PRINT AGE.

will print on the line printer all records with the SEX field containing M

(males).

A more complex boolean expression may be given

WHERE SEX = M AND AGE < 21 DISPLAY NAME.

which will display on the screen the names of all records with both a SEX

value of M and an AGE value less than Z21.

Where 3 or more conditions are given the question of operator precedence
is raised. AND and OR are treated as of equal precedence, and paren-

theses are also allowed to indicate the order of evaluation.

WHERE SEX = M AND (AGE < 18 OR AGE > 64)...

will retrieve say males not aged between 18 and 64 inclusive.

The < and > can also be written LESS THAN, GREATER THAN as in the following

example

WHERE AGE IS GREATER THAN 64 ...

The negation operator can be used as 1in

WHERE AGE NOT > 64 ... or in

WHERE AGE IS NOT GREATER THAN 64 ... etc.

4-3

For the equal and not equal tests two or more values can be OR'd together

in the same condition. For example, the QUILL user can write

WHERE SEX NOT = M OR F DISPLAY NAME, SEX.

which will display the NAME and SEX values of any record not correctly

classified as M (male) or F (female).

While it is sensible to allow the user to write

WHERE GRADE = 2 OR 3 ...

it is clearly not sensible to allow

WHERE AGE <30 OR 35 ...

and therefore only = and NOT = can be followed by multiple values.

One of the design features of the language is that character values may be,
but need not be, enclosed in quote characters. This allows the user to
avoid the unnatural string concept unless embedded spaces or special

characters appear in the value. The user can thus write

WHERE TITLE

TOLANTHE DISPLAY AUTHOR.
WHERE TITLE = “PIRATES OF PENZANCE" DISPLAY AUTHOR.

WHERE CATEGORY = COLOUR OR AGE DISPLAY ID-NO.

To permit the last of these three examples causes problems in the inter-

pretation of the symbol OR. Consider the query

WHERE CATEGORY = COLOUR OR AGE < 10 DISPLAY ID-NO.

Either the QUILL query syntax analyzer must Took ahead; or the OR must be

interpreted as connecting this condition, or connecting two values for a

4-4

single condition. To resolve this problem the last of these inter-
pretations has been used and thus in the last example given a syntax error
is given on encountering the < symbol as the symbol AGE has been taken

to be a test value for CATEGORY. This example can be rewritten

WHERE (CATEGORY = COLOUR) OR (AGE < 10) DISPLAY ID-NO.

and the ambiguity is resolved.

The actions PRINT and DISPLAY follow the "tabular" and "list" structures
of Samet (1981). Thus the statement WHERE SEX = M PRINT AGE, NAME will

produce the following style of output in a printer file

SMITH 27
JONES 43
WILSON 17

whereas the statement WHERE SEX = M DISPLAY AGE, NAME will produce the

following style of output on the screen

AGE
NAME

27
SMITH

o

ENTER S TO STOP DISPLAY. PRESS RETURN

Thus PRINT is intended for high volume printed output, and DISPLAY for low-

volume on-line output.

In the action PRINT A, B, C the fields may be separated by spaces, commas
or the AND symbol. If desired the field list may be enclosed in parenthese
as in PRINT (A,B,C). This latter form can overcome the ambiguity between
the actions PRINT A B DISPLAY C where DISPLAY is taken as the key word of
an action and thus A and B are printed and C is displayed. However PRINT

(A B DISPLAY C) will treat all of A, B, DISPLAY and C as field names.

4-5

Returning to the action PRINT A, B, C the three fields are printed
by default with two spaces between them. It is possible to over-ride

this default as in the action PRINT A SPACE 5 B SPACE 6 C.

If the number of characters to be printed exceeds one line then a fresh
line is started with the first field that cannot fit onto the current

line.

Headings can be printed by the use of the HEADING action. Thus the

statement

WHERE AGE > 17 PRINT AGE SPACE 3 SEX
SPACE 3 NAME
HEADING "AGE SEX NAME".

will produce output of the form

AGE SEX NAME

18 M SMITH
21 F JONES
19 M WILSON

Headings are assumed to start at line 1 column 1 unless otherwise specified.
Greater control can be obtained by the use of line and/or column numbers
as in the statement

WHERE AGE > 17 PRINT AGE NAME

HEADING “AGE NAME" ON LINE 1

HEADING "=== ==--- " ON LINE 2

HEADING " " ON LINE 3.

will produce output of the form

AGE NAME

18 SMITH
21 JONES
19 WILSON

4-6

The statement

WHERE AGE > 17 PRINT SPACE 20 NAME
HEADING "NAME" AT COLUMN 21
HEADING " " ON LINE 2.

will produce a column of names in column 21 as below

NAME
SMITH
JONES
WILSON
The CONTROL action can be used to set up to control the page and display

screen layouts. Thus the actions

CONTROL PAGE WIDTH 120
CONTROL PAGE LENGTH 50
CONTROL PAGE NUMBER 100...

will print 50 120-character lines per page (including headings) and will

number pages at column 100 of Tine 1 of each page heading.

Other controls available are for example

CONTROL DISPLAY WIDTH 75
CONTROL DISPLAY DEPTH 20

While these report writer features are probably sufficient for most student
use, more sophisticated reports can be produced by using QUILL to produce
an extract file, and then processing this extract file using a conventional

program or report writer utility. For example the QUILL user can write

WHERE SEX = M EXTRACT NAME AGE SALARY.

and a file will be produced with the selected fields (and no others) for

all males in the database.

4-7

QUILL is also able to process simple update operations using the ADD,

SUBTRACT, MULTIPLY, DIVIDE, INCREASE, DECREASE and SET actions.

The ADD arithmetic operation has the same syntax as COBOL, thus

WHERE AGE = 18 ADD 30 TO WAGE

adds 30 to the WAGE field for all those records with the AGE field equal

to 18.

The selection of records is performed prior to the update operation, thus

the QUILL statement

WHERE GRADE = 3 ADD 1 TO GRADE

will result in all selected records having a grade of 4., Thus no records

will have the value 3 after this statement.

The MULTIPLY arithmetic operation has a different syntax from COBOL

WHERE AGE = 18 MULTIPLY WAGE BY 1.05.

COBOL uses the form MULTIPLY 1.05 BY WAGE adopting the convention that the
last field name receives the result. Thus in COBOL the statements ADD A

TO B and MULTIPLY A BY B both place the result in B.

In QUILL, however, each arithmetic operation involves a single variable
and a literal, with the result being placed in the variable. The ambiguity
of COBOL is thus avoided (along with some of the power of COBOL) and in

QUILL the more natural form of the MULTIPLY syntax can be employed.

The INCREASE arithmetic operation is for some end-users a more natural

form of expression than ADD or MULTIPLY.

4-8

Consider the following QUILL update statements

WHERE AGE < 18 INCREASE SALARY BY 15%

compared to the equivalent statement

WHERE AGE < 18 MULTIPLY SALARY BY 1.15.

The QUILL interpreter processes both of these statement identically and

this allows the user to choose the (to them) more natural form of expression.

Again consider

WHERE AGE < 18 INCREASE SALARY BY 500

compared to the equivalent statement

WHERE AGE < 18 ADD 500 TO SALARY.

The DECREASE operation is an alternative to SUBTRACT or MULTIPLY.

the QUILL update statement

WHERE COST < 18 DECREASE PRICE BY 10%.

is interpreted identically to

WHERE COST < 18 MULTIPLY PRICE BY 0.90.

and the staterment

WHERE COST < 18 DECREASE PRICE BY 5.

is the same as

WHERE COST < 18 SUBTRACT 5 FROM PRICE.

4-9

Thus

The final arithmetic operation is the SET action. The QUILL statement

WHERE AGE = 17 SET SALARY TO 8000
SET GRADE TO X.
will replace the current value of the SALARY and GRADE fields with 8000

and X respectively.

When an arithmetic action and an output action are combined in the same
statement, the order in which the actions are defined (by the QUILL
language) to be carried out is of significance. Consider the statements
WHERE SALARY < 10000 INCREASE SALARY BY 1000
PRINT NAME, SALARY.
WHERE SALARY < 10000 PRINT NAME, SALARY
INCREASE SALARY BY 1000.
If these two statements are required to be semantically equivalent, then
in both cases either the print or the increase action must be performed
first, and the QUILL system in fact chooses the latter option, performing
arithmetic before output. Thus the above two statements may print

salaries that no longer meet the selection criteria of the search predicate.

Continuing this theme, a further problem arises when several arithmetic

actions appear in the same statement. Thus consider the statements

WHERE A = 10 ADD 1 TO B MULTIPLY C BY 3.

WHERE A

10 ADD 1 TO B MULTIPLY B RY 3.

The actions in the first statement are clearly order independent, while
those of the second are not. For this reason QUILL restricts arithmetic
operations to one per field in any statement, even if the arithmetic

actions are commutative. However

4-10

4.3

WHERE A = 10 ADD 3 TO B SUBTRACT 1 FROM B

can be clearly rewritten with a single action ADD 2 TO B and so these

multiple commutative actions are transformed into a single action.

Implementation

The QUILL language is implemented in the source module QLSCE and this
module communicates via a standard COBOL CALL-interface with the SCAN

module to access the database (Figure 4.1).

The SCAN module exists in two versions
. SCANSQ for sequential files and hierarchic databases;

SCANIV for inverted databases;

The call to the SCAN module in the QLSCE code is as follows

CALL "SCAN"™ USING SEARCH-FUNCTION,

CONDITION-COUNT,

CONDITIONS,

VALUE-COUNT,

TEST-VALUES,

RETRIEVE-LIST-LENGTH,

RETRIEVE-FIELDS,

BUFFER,

SEARCH-STATUS.
The SEARCH-FUNCTION can take the OPEN, CLOSE, FIND, GET, PUT. The function
OPEN and CLOSE are used to open and close the database. FIND is used to
initialise the search process for a new query. For some SCAN modules
(e.g. SCANIV) the searching and selection of records is done here, while
for others (e.g. SCANSQ) the data is merely (re-)positioned at the start.
The GET function presents the calling routine with a single record matching

the search criteria, while PUT returns an updated record.

4-11

USER
DISPLAY

/

§
N\

OLSCE

SCAN

g

A

; DATA
1 BASE

Figure 4.1: The QUILL system cha

4-12

___ A i} 5

rt.

The CONDITIONS are a table with one entry for each condition of a search
predicate. Each entry in the table has 6 components: LEVEL, CONNECTOR,
FIRST-VALUE, NO-OF-VALUES, TEST-FIELD and TEST-TYPE. The LEVEL is an
integer representing the depth of a condition within nested parentheses.

A value of 1 indicates a condition not enclosed in parentheses, 2 within a
single pair, 3 within a double pair, etc. The CONNECTOR is used in the
second and subsequent entries in the table to connect the entry to its
predecessor. It can take the value "A" for AND or "O" for OR. Thus
using LEVEL and CONNECTOR nested queries of arbitrary complexity can be
specified. FIRST-VALUE 1is the relative address within the TEST-VALUES of
the one or more values (specified by NO-OF-VALUES) that the TEST-FIELD is
to be compared to. Finally TEST-TYPE can take the values "EQ", "NE", "LT",
"LE", "GT" or "GE" representing "equal", “not equal", "less than", "less
than or equal to", "greater than", and "greater than or equal to". Only
EQ and NE may have NO-OF-VALUES greater than 1. After the design of this
table driven system was completed, a similar but less powerful tabular

technique was found to be described by Cagan (1973).

The TEST-VALUES are a table of values (both numeric and character) that

particular fields are to be tested against.

The RETRIEVE-FIELDS are a table with each entry having 4 components:
RETRIEVE-FIELD-NAME, RETRIEVE-FIELD-POSITION, RETRIEVE-FIELD-LENGTH and
RETRIEVE-FIELD-TYPE. The RETRIEVE-FIELD-NAME is filled in for each field
to be retrieved, and the SCAN module returns the position, length and

type of the retrieved field. The position is a relative character positio

(1...n) within BUFFER.

Finally SEARCH-STATUS is normally set to spaces, but is set to “NO MORE"
by SCAN when no more records can be returned. Any other value of SEARCH

STATUS indicates an error.
4-13

From the structure diagrams for QLSCE (Appendix 2) it can be seen that
the basic action is to process a number of statements, and that each

statement consists of the two steps: “get statement" and "action statement".

"Get statement” consists of "get conditions" and “get actions". "Get
condition" scans the boolean expression for the search predicate and from

it builds up the CONDITIONS and TEST-VALUE tables. "Get actions" processes
the action clauses of the statement and records these details in various
action lists: retrieve list, arithmetic list, sum list, print list,

display list and extract list.

"Action statement" locates and then retrieves records from the data base
using the scan module. It then moves through the action lists in the
order arithmetic, sum, display, print and extract and carries out the
appropriate action. This action sequence is thus not dependent upon the

order of specification of the clauses in the statement.

4-14

5.1

5.2

CHAPTER 5

SEQUENTIAL FILE QUERIES (SEQUENT)

Introduction

The QUILL language can be used as a stand-alone query language. In this
mode of operation (called SEQUENT) the user can process files using conven-
tional programming techniques and intersperse these operations with the

use of the query language.

There are two stages to this process (see Fig. 5.1). First a Dictionary
file must be set up describing the field formats of the records in the
file, and secondly the QUILL query language is run using both the users
file and the previously created Dictionary. On the CYBER these two

activities are controlled by the SEQUENT CCL procedure.

Dictionary Creation

Because users of this facility are more likely to be less sophisticated
users than the users of the Inverted and Hierarchical databases, it is
essential that the setting up of the Dictionary should be as simple as
possible. Thus the use of a Data Description Language is avoided and

instead data is described to an on-line conversation style program.

The CYBER SEQUENT CCL procedure call

SEQUENT, DEFINE

invokes the Dictionary Set-Up program SBUILD and initiates the inter-

active dialogue.

5-1

Data
Descriptions

Dictionary

Set-Up
(SBUILD)
\
DICTIONARY USER
SEQUENTIAL
FILE
User Sequential
Queries > File Query
SQUERY
/
Reports

Figure 5.1: SEQUENT System Structure

5-2

For example, consider the following sequential file record layout

Columns Contents
1 -4 4 digit employee-number
5 Sex (M or F)
6 Marital Status (S, M, W, D)
7 -9 Hourly pay rate $.¢¢
10 - 29 Surname)
) Name
30 - 33 Initials)
34 - 53 Maiden Name
54 - 80 Not used

The full dialogue of the Dictionary Set-Up program js included in Appendix
3. Some extracts from this dialogue are shown below so that the facil-

jties of the Dictionary Set-Up program may be discussed.

A numeric field (e.g. hourly pay rate) is set up using the following dialog

ENTER FIELD NAME

? PAY-RATE

ENTER FIELD TYPE - C(CHARACTER) OR N(NUMERIC)
2 N

ENTER LENGTH OF FIELD (3 DIGITS)

? 003

ENTER NUMBER OF DECIMAL PLACES (1 DIGIT)

? 2

ENTER FIELD POSITION (4 DIGITS FROM 0001)

? 0007

At each stage of the above dialogue the response is validated, and if an

error is detected then an opportunity is given for the user to repeat their

response.

When all responses have been made the information keyed in is echoed to the
user and they are asked to confirm whether or not they wish to add the
field to the Dictionary. For the example above this confirmation dialogue

is as follows:

5-3

5.3

FIELD NAME PAY-RATE

FIELD TYPE NUMERIC
FIELD LENGTH 3
DECIMAL PLACES 1
FIELD POSITION 7

ENTER Y TO ADD THIS FIELD TO THE DICTIONARY
7Y

A character field follows the same pattern as that shown above for a
numeric field. The only difference is that “decimal places" are not

asked for in the dialogue or echoed in the confirmation.

There is no restriction on how the record is broken up into fields
other than that all names are unique. In particular a part of the
record may be redefined. Thus columns 9 to 32 of the record can be
described twice, once as NAME, and then effectively redefined as

SURNAME and INITIALS. This allows users to write queries of the form

WHERE SURNAME = SMITH PRINT NAME
or

WHERE YEAR-BORN < 43 PRINT DATE-OF-BIRTH

Another use of this facility allows users to process alternative recorc
descriptions. Thus for the record described above the field "maiden
name" may only be present for married women and could be used as

below

WHERE SEX = F AND MARITAL-STATUS = M
PRINT EMPLOYEE-NUMBER, MAIDEN-NAME.

Sequential File Queries

SEQUENT queries can be invoked in two ways

SEQUENT, QUERY (on-1ine)
SEQUENT, QUERY, I=DATA (batch from file DATA)
5-4

The module structure of the query program SQUERY is shown in Fig. 5.2,
The QLSCE module is the standard query language module for the QUILL
query language. The same module is used for query programs IQUERY
(Inverted database) and PQUERY (Hierarchic files). Likewise the Lexical

Analyzer module LEXAN is common to all three query programs.

The module SCANSQ is common both to programs SQUERY and PQUERY. (Program

IQUERY contains a different module SCANIV which is described in Chapter 6.)

SCANSQ performs the record selection defined by the call from QLSCE (see

Chapter 4, Section 3).

Module SCANSF is called firstly to open the file (and read the field
descriptions from the dictionary), and secondly to read the next record

from the file.

Because SCANSQ operates in a read-only mode, any update operation spec-
ified in QUILL is passed down by QLSCE to SCANSQ, but is then ignored.
Since however QLSCE carries out all updating and printing from its own

buffers, printed output will appear to have been updated. Thus

WHERE SALARY < 8000 ADD 500 TO SALARY
PRINT NAME, SALARY.

will print the update salary and not the original salary. The file,

however, will not have been changed.

5-5

Query
QLSCE . Output

[

Query
VSource

SCANSQ LEXAN

N

\ 4
SCANSF

DICTIONARY SEQUENTIAL
FILE

Figure 5.2: SEQUENT Query Program SQUERY Module Structure

5-6

6.1

CHAPTER 6

INVERTED DATABASE SYSTEM (INVERSE)

Introduction

An INVERSE database consists of a single data file coupled with one or

more inverted index files.

The data file can be used as a stand-alone file or using the QUILL

query language it can be accessed through one of the index files.

Each of the index files includes both a Data Dictionary describing
selected fields of the user records and indexes to some of these selected
fields. There may be several such index files, each one representing

a different user view in the multi-user system.

There are two basic components of this system (see Fig. 6.1). First
the index file is created, and second the QUILL language is used to
interrogate and update the data file through the index file. On the

CYBER both activities are controlled by the INVERSE CCL procedure.

A typical application for which the INVERSE system is suited is Financial
Planning or Town Planning where a large database is to be browsed over
say a period of 3/4 weeks. During this period of ad hoc enquiries it

is expected that the database will not change so that a frozen (but
nevertheless reasonably up-to-date) view of the enterprise can be used
to plan management decisions. Appendix 4 contains just such an example
from the Town Planning area. Some examples from that database, and
also from a personnel database are used as illustrations within this

chapter.

6-1

— me

INVERSE
pDL
\r
Index - Concordance
Build > Listing
(IBUILD) \/
INDEX
FILE
User Inverted Data
Queries < Base Queries
(IQUERY)
Reports

Figure 6.1: INVERSE System Structure

6-2

6.2

INVERSE Data Description Language

Because users of the INVERSE system are likely to be more sophisticated
than some of the users of the SEQUENT system described in Chapter 5,

the setting up of the data dictionary parts of the index file is
accomplished using a Data Description Language (INVERSE DDL) rather

than using a conversation style dialogue. This is necessary because
the recording of data description and index building is integrated in a
single process, and this process needs to be redone whenever the indexed
fields are changed. For example, in the example used in Appendix 4

this update and re-indexing is carried out monthly.

The CYBER INVERSE CCL procedure call

INVERSE, BUILD, I = data

invokes the Index Build program IBUILD which reads the DDL and from il

constructs the index.

A part of the DDL given in full in Appendix 4 is shown below.

INVERT ALL RECORDS.
PRINT SUMMARY.
INDEX FIELD NAME IS ZONING-CODE
POSITION IS 205 TYPE IS ALPHA LENGTH IS 3.
FIELDNAME IS FRONTAGE POSITION IS 50
TYPE IS NUMERIC LENGTH IS 5.

The formal syntax of the language is given in Appendix 1.

The INVERT statement controls the selection of records for inversion.
As shown in the example above all records in the file can be accessed
through the index but by using the form INVERT FROM m TO n then only
the records with ordinal numbers m through n are indexed. The

records of the data file are held in the ANSI-COBOL Relative file

6-3

organisation where each record is identified in serial order by an
ordinal number starting from 1. If the data file is loaded sorted by
some prime search key then by a judicious use of the values of m and
n a view can be built in which preliminary selection by the prime key
can be done while building the index. The user of the view need not
then select on this prime key using QUILL but need only concern them-
selves with other subordinate search keys. For example, the town
planning database of Appendix 4 is sorted by LGA (Local Government Area
number) because it is known that each group of users of the database
(in say one subject or course) will restrict their searches to a few
adjacent LGA's as part of some assignment or project activity. Thus
while the database consists of some 400000 records for 100 or so LGA's,
each query can be constrained to a few hundred (for small geographic
areas) up to perhaps a few thousand records. A second use of the
INVERT FROM m TO n feature is to set up pilot indexes for testing and
demonstration purposes. Thus the INVERT statement controls the

"breadth" of the index (see Fig. 6.2).

The "depth" of the indexing is controlled by the FIELD statements.

The Data Base Administrator (DBA) has the option of simply recording
the nature and position of a field (so that it can be printed for
selected records) or they can specify that an index js to be built for
the field. The prefix INDEX on a FIELD statement identifies those
fields for which indexes are to be built and on which record selection

can be carried out.

The FIELD NAME clause identifies the field name that can be used by the
query language user. The POSITION clause specified the character
number (from 1) of the start of the field and the TYPE clause specifies
whether the field is ALPHA or NUMERIC. The LENGTH clause specifies

6-4

USER 1 USER 2 USER 3

INDEX INDEX INDEX
1 2 3
\‘N\ //\ 7’

\\//
- " 4’ 4’

‘.‘ A
<DATA BASE <O

Figure 6.2: INVERSE User Views

6-5

6.3

the length of the field and for numeric fields this value may be followed

by WITH 2 DECIMAL PLACES.

The language described above (and that given in Appendix 4) is somewhat
verbose. This is satisfactory for use in examples but a shorthand
form is available for experienced users which omits all optional and

noise words and abbreviates certain key words.

INDEX ZONING-CODE 205 A 3.
FRONTAGE 50 N 5.

js all the DDL needed for the example given earlier in this section.

The PRINT SUMMARY statement, if specified, produces a concordance of

values for each of the indexed fields. This concordance takes the form

FIELD NAME FIELD VALUE NUMBER OF
OCCURRENCES
MARITAL-STATUS D 217
MARITAL-STATUS M 271
MARITAL-STATUS S 83
MARITAL-STATUS W 48
SEX F 184
SEX M 245

INVERSE Index Files

The index files have three levels of indexes leading to the data records
(see Fig. 6.3). The top level is used to select a particular field
(or attribute), the second Jevel to select a particular attribute value,

and finally the third level to select particular records.

Although there are three levels of index, there are only two different

entry types in the index file (see Fig. 6.4).

6-6

ATTRIRUTE ATTRIBUTE ATTRIBUTE
HEADER HEADER — - P HEADER
1 2 e
ATTRIBUTE ATTRIBUTE ATTRIBUTE
VALUE VALUE i # VALUE
1 2 m
N 4
POINTER POINTER = POINTER
ARRAY ARRAY ARRAY
1 2 n
DATA DATA
RECORD RECORD
X Y

Figure 6.3:

INVERSE Index Structure

6-7

ATTRIBUTE HEADER |
"MARITAL-STATUS"
POINTER ARRAY
"D-DIVORCED"
POINTER ARRAY
"M-MARRIED"
POINTER ARRAY
"M-MARRIES"
POINTER ARRAY
"M-MARRIED"
POINTER ARRAY
"S_SINGLE"
POINTER ARRAY
"W-WIDOWED"
ATTRIBUTE HEADER
IISEXII

POINTER ARRAY
"F_FEMALE"
POINTER ARRAY
"F_FEMALE"
POINTER ARRAY
"M-MALE"

POINTER ARRAY
"M-MALE"
ATTRIBUTE HEADER
"YEAR-BORN"
POINTER ARRAY
1922

POINTER ARRAY
1923

—~ O\

DAY

Figure 6.4: INVERSE Index File

6-8

Each pointer array consists of an attribute value and an array of
pointers (record ordinals) to the data file. As implemented these
arrays consist of 99 elements for a record size of 523 characters. By
varying the record size the pointer arrays could be made shorter or
longer and this can have a significant effect both on index file size
and index search time. Consider the example in Fig. 6.4 where
"marital-status" has four values of which one (married) requires three

pointer array records, and the other three values require only one.

There will thus be 4 "half-empty" index records. The attribute "sex
however will only have 2 incomplete records, while "year-born" could
have 50-60. Thus if most of the attributes indexed have few values
(1ike sex) a large index record size is desirable, whereas if most
attributes indexed have many values (e.g. year-born) a small index
record size is to be preferred. Thus the record size implemented is
likely to be a compromise between these two extremes. The concordance

1istings can be used to monitor the index structure, and if desired the

record size can be changed.

Within the index file the pointer arrays for the same value of the same
attribute are grouped together in consecutive index records (see Fig.
6.4). For any attribute the groups of records for each value are also
stored next to each other in the index file. Within the attribute the
attribute values are stored in ascending sequence., The attributes
themselves are also stored in ascending sequence. Within the index
the attribute header records are stored immediately in front of the
first pointer array record for the attribute. A11 the attribute
headers are linked by a singly-linked list. Within each attribute the
first pointer array record of each value is linked to the next highest

value by other singly-linked lists.

6-9

6.4

6.5

Non-indexed attributes are written in the same format as indexed
attributes. They are placed in front of the indexed attribute headers

starting at record 1.

Building the Inverted Index

The inverted index is built by program IBUILD (see Figure 6.1). The
program reads in the DDL describing the fields to be indexed, and

secondly builds the index.

The index is built in three stages. In the first stage the data file
is read from start to finish (or between the limits set by the
INVERT...FROM...TO... statement). As each record is read all the
fields to be indexed are extracted. Each of the extracted fields are
written to a work file with the following information in each work
record:

Data Record Ordinal

Attribute Name

Attribute Value.
When all the work records have been written, stage two sorts the work
file on attribute value within attribute name. The work file can now

be read sequentially by the third stage which loads the index attribute

by attribute, value by value.

Inverted Database Query/Update

The Inverted Data base query program IQUERY is invoked by the CYBER CCL

procedure call

INVERSE,QUERY.

or INVERSE, QUERY, I=TEXT (batch from file TEXT)

6-10

The module structure of IQUERY is shown in Fig. 6.5, Modules QLSCE

and LEXAN are standard to all the query programs.

Module SCANIV is a special purpose module for evaluating query boolean
expressions against an inverted database. SCANIV is called by QLSCE
with the parameters described in Chapter 4, Section 3. Briefly

recapping, these parameters include

. SEARCH-FUNCTION
CONDITIONS

. TEST-VALUES

« RETRIEVE-FIELDS

. BUFFER

. SEARCH-STATUS

SEARCH-FUNCTION can take one of the values "OPEN", "CLOSE", "FIND",

"GET" and "PUT".

The OPEN function opens the index, data and journal files and then
Tocates all the attribute headers in the index file. This ensures
that any reference to a particutar attribute can go directly to the

first value record for that attribute (see Fig. 6.4).
The CLOSE function closes the index data and journal files.

The bulk of the SCANIV program is concerned with the FIND function.
The FIND function takes the CONDITIONS and TEST-VALUES and evaluates
each condition by locating the pointer arrays associated with the

appropriate values of the attribute named in the condition.
Thus the QUILL query
WHERE SEX = F DISPLAY NAME.

will retrieve the pointer array elements for the attribute "SEX" and
the attribute value "F"., This pointer array of data record ordinal

6-11

QLSCE

Query Output
N

r 4

SCANTV

/

INDEX
FILE *
JOURNAL
FILE
Figure 6.5:

N

USER
ON-LINE
SCREEN

LEXAN

DATA
FILE

Query
Source

INVERSE Query/Update Program IQUERY Module Structure

6-12

numbers is then made available to the GET function described later in

this chapter).

With the query

WHERE SEX = F AND MARITAL-STATUS = "S" DISPLAY NAME.

first the list of females is built and this is added to the top of a
stack of such lists. Next the 1ist of single people is built and this
is added to the top of the stack. Finally the two lists are combined
into a single list. In the above query the combination results in a new
list containing only record ordinals common to both 1ists (see Fig.

6.6). However with the query

WHERE SEX = F OR MARITAL-STATUS = S display name.

the combination results in a 1ist containing the records numbers found

in either (or both) original lists as in Fig. 6.7.

The combination can only proceed if both Tists relate to conditions at

the same level (depth of parenthesis). If the second condition refers to
a higher level (deeper parenthesis) then both lists are left on the

stack (see Fig. 6.8) and are not "reduced" until either a Tower level
condition is encountered (equivalent to passing through a right
parenthesis) or else the end of the boolean expression is reached.

The reduction process continually reduces the level of the list at the

top of the stack and combines it with the list immediately underneath

it (if both lists are now at the same level) until the Tevel of the

topmost list is equal to the level of the condition about to be evaluated.

Thus consider the QUILL statement

6-13

34
MARITAL-STATUS 38
=S 68

80
81 34 }

17 68
34 [::[::> 81
41
SEX=F 68 SEX=F AND

81 MARITAL-STATUS=S

82
93

Fiqure 6.6: AND stack lists

6-14

MARITAL-STATUS
=S

SEX=F

34
38
68
80
81

1/
34
41
68
81
82
93

1/
34
38
41
68
80
81
82
93

Figure 6.7:

OR stack lists

6-15

SEX=F AND
MARITAL-STATUS=S

LEVEL x
CONDITION

i
~N

X

LEVEL 3
CONDITION

LEVEL 2
CONDITION

LEVEL 1

CONDITION

LEVEL 2
CONDITION

LEVEL 1
CONDITION

Figure 6.8:

1l
w

X

V

LEVEL 4
CONDITION

LEVEL 3
CONDITION

LEVEL 3
CONDITION

LEVEL 2
CONDITION

LEVEL 2
CONDITION |

LEVEL 1

LEVEL 1
CONDITION

CONDITION

SCANIV Condition Evaluation Stack

6-16

WHERE SEX = F AND (YEAR-BORN = 1942 OR MARITAL-STATUS = S)

OR MAIDEN-NAME = JONES DISPLAY NAME.
The nested conditions are now reduced in a multi-stage combination
process. First the SEX=F list is added to the stack and then the
YEAR-BORN = 1942 1ist is placed on top. Next the MARITAL-STATUS = S
1ist is put on the stack and then the top two lists are combined (see

Fig. 6.9).

When MAIDEN-NAME = JONES is encountered, SCANIV recognises that this
condition is at level 1 whereas the top of the stack has a level 2
condition (YEAR-BORN = 1942 OR MARITAL-STATUS = S). This level 2
condition is reduced by 1 level and combined with the level/condition
underneath it (SEX = F). Only after this has been done is the new
level 1 condition (MAIDEN-NAME = JONES) added to the stack (see Fig.
6.10). This reduction process ensures that where levels of parenthesis

are equal then a left-to-right evaluation is performed.

After the FIND function has built its single Tist of record ordinals
the GET function of SCANIV reads the Tist of data record pointers
resulting from the invocation of the FIND statement. Each use of GET
returns a single record to the calling routine (the QLSCE module, see
Chapter 4). If a record is available the STATUS-FLAG of the calling
parameters is set to spaces and the fields specified in the QUTPUT-
FIELDS 1ist are extracted from the data record and loaded into BUFFER.
If GET is used and all records found by FIND have been returned then

the STATUS-FLAG is set to "NO MORE".

The PUT function is used by the calling routine to indicate that some
(or all) of the fields in the BUFFER have been changed. A before and

after image is logged on the journal file and the data record is updated

6-17

34
MARITAL-STATUS 38
= S 68
80 18
81 34
18 38
YEAR-BORN 34 41
= 1942 41 68
81 80
17 81
Y ——x 2
11 34
SEX = F 68 41
81 68
82 81
93 82
93

Figure 6.9: Evaluation of nested conditions (part 1)

6-18

MAIDEN-NAME
= JONES

YEAR-BORN
= 1942

or
MARITAL-STATUS
=3

18 | «— TOP OF
34 STACK

SEX = F

73
41

34
41
68
81

Figure 6.10:

Evaluation of nested conditions (part 2)

6-19

using the fields in the buffer. The contents of the journal records

are shown below

Query number (1 + n)
Data Record Ordinal number
Image Flag (A = After, B = Before)

Copy of data record

The structure diagrams for SCANIV are included in Appendix 2.

6-20

7.1

CHAPTER 7

HIERARCHIC DATABASE SYSTEM (PYRAMID)

Introduction

A PYRAMID database consists of a collection of entity types contained

within a single indexed sequential file.

The entity types are organised in a hierarchy where, with the exception
of the root type, each entity type is "owned" by another type of entity.
Consider Figure 7.1 where a COMPANY database consists of zero or more
DEPARTMENT's. Each department (the root entity type) owns zero or

more instances of both EMPLOYEE and PROJECT entities. In turn the
employees own zero or more ALLOWANCE's and the projects zero or more
PURCHASES's. Each entity type (except the root) can only be identified
with respect to its owning entity. This in Fig. 7.1 there may be
several project entities with the same key (of project number) but

there will not be duplication of project numbers within any department.

A1l five entity types described above are stored together in a single
physical file. One or more physical files are described in the
"Internal Schema" using an Internal Schema Data Description Language.
For any given internal schema there may be several user views or
"External Schemas". These are described in External Schema Data
Description Language. Each external view is a subset of an internal
schema in which certain attributes from certain entities are defined.
Thus one user view of the internal schema of Fig. 7.1 is shown in Fig.

7.2.

The PYRAMID system has two user interfaces

7-1

DEPARTMENT

EMPLOYEE

ALLOWANCE

Figure 7.1:

PROJECT

PURCHASE

COMPANY internal schema

7-2

DEPARTMENT

EMPLOYEE

Figure 7.2: PAYROLL external schema

7-3

7.2

host language interface
query language interface.

The overall structure of the PYRAMID system js shown in Fig. 7.3.
Programs INTDDL and EXTDDL handle the Internal and External Schema
Maintenance activities. Program PBUILD generates a COBOL sub-program
that maps user calls in terms of the external schema into file and
record processes on the physical files of the internal schema. When
compiled to form the "Mapping Object Code" this mapping can be combined
either with a user program or with the QUILL query language module
QLSCE to form a complete program. On the CYBER all except the last of

these activities are controlled by the PYRAMID CCL procedure.

PYRAMID Databases

The entities of a PYRAMID database may be accessed randomly or
sequentially. In both cases access to lower level entities is through

the owning entity (and so on up through the tree to the root entity).

An efficient implementation of the above requirements demands that
groups of owned entities can be accessed easily once the owning entity

is located, and that any entity can be located directly using a key.

Figure 7.4 shows a typical implementation of the hierarchy

CUSTOMER
¥
INVOICE
¥
ITEM
where customers order a number of items to be billed on an invoice.
At any one time several such invoices may be on order. In Fig. 7.4
the CUSTOMER entities might be accessed directly via an index or hashing

algorithm (or more rarely chained together). The INVOICE entities owned

7-4

Internal
Schema DDL

Internal
Schema

Compiler
(INTDDL)

Y

PHYSICAL
VIEW
FILE

External
Schema DDL

External
Schema

Compiler
(EXTDDL)

v

LOGICAL
VIEW
FILE

Mapping
DDL

\\

Mapping PYRAMID
Source v Code Generator
Code (PRUILD)
COBOL
Compiler
DBA '+
Mapping o
=381 Object = i
Code
S
RUN TIME
PROGRAM

COBOL ,FORTRAN User

User
Code etc. Compiler Object
Code

Figure 7.3: PYRAMID System Structure

v

7-5

o &
0-0-¢
()} (m)—(=)

Figure 7.4: Chained Implementation of a Hierarchy

7-6

by any given CUSTOMER could be linked to each other to form a chain
with the list head printer in the owner entity. In Tike manner the
ITEM entities can be linked to an INVOICE entity. The major advantage
of this approach is that by using (say) record ordinals to identify

records little disc space overhead is taken up by the pointers.

A major disadvantage however is that access to specific owned entities
requires the chain of owned entities to be traversed. This search can
be speeded up by maintaining the owned records in some key order within
the chain but this improvement in retrieval time is achieved at the

expense of complicating the process of inserting new owned entities.

An alternative arrangement is to dispense with the owned entity chain

and hold pointers to all owned entities in the owned record (a "pointer
array"). This arrangement works quite well when each entity owns only

a small number of owned entities (e.g. PERSONS owning CARS), but causes
problems when in the 1:n relationship n is large (e.g. ELECTORAL-AREA
owning VOTER).

Another approach entirely to the representation of hierarchies is
suggested by a traditional magnetic tape method using header and detail
records. Thus given the need to represent the hierarchy
DEPARTMENT
EMPtOYEE

a magnetic tape could contain the following sequence of records

DEPT EMP EMP EMP DEPT EMP EMP DEPT

A 3 5 6 8 4 7 C

with employees 3, 5 and 6 being in department A, employees 4 and 7

in department B, etc. Each of the department records would typically

1-7

contain information common to all employees in the department (e.g.
department name, location, pay rates etc.). In some implementations
the different record types are identified by a type field similar to
Djikstra's discriminated union (Dahl 1972). For example a "record
type" field might have the value D or E for department and employee
records respectively. This technique is satisfactory where records
can be maintained in order, but another technique of even greater
vintage (dating back to the punched card era) not only idetifies each
record type but also allows the sequence of owning and owned records to
be maintained. This is achieved by having a multi-level sequence key
(in the example above DEPT-NO and EMP-NO). By assigning a low value
(e.g. zero) to the EMP-NO field of a department record, and by ensuring
that all employee records have an EMP-NO greater than this low value
and also have the same DEPT-NO value as their owning department record,
then by sorting the records on EMP-NO within DEPT-NO the records on the
file fall naturally into their correct hierarchic relationship.
Department and employee records can be distinguished by whether or not

the EMP-NO field is zero.
This method can be extended to more levels. Thus in the hierarchy

DIVISION
¥
DEPARTMENT

¥
EMPLOYEE

a department record would have EMP-NO zero but DEPT-NO and DIV-NO non-

zero.

The implementation of the hierarchy used for PYRAMID combines the "multi-
level key" and the "“record type" techniques described above. The

entities are not stored on a sequential file however but in an indexed

7-8

sequential file and by this means it is possible to read entities

directly.
For example, returning to the

CUSTOMER
¥
INVOICE
¥
ITEM

hierachy, the PYRAMID entity layouts are shown in Figure 7.5.

The 3 key fields and the entity code field appear in the same place in
each of the three entities (usually but not necessarily at the front).
The data content of the three different entities vary both in use and

total size.

A customer entity has a non-blank CUSTOMER-NO field, with the other two
key fields being spaces. The COBOL literal SPACES is used instead of
the literal LOW-VALUES so that not only the software can be transported

to other machines but possibly also some example databases.

The invoice entity has a non-blank INVOICE-NO as well as CUSTOMER-NO.

Only the order line entity has the ORDER-ITEM field present;

The traditional method has to be varied when the hierarchy has multiple-
legs as well as multiple-levels. Considering the hierarchy shown in
Fig. 7.6 where PAYMENT entities have been added to the database to record
the receipt of money from the customer to pay for the products ordered

on the invoices. Following the style of Djikstra the key structure of
Fig. 7.7 could be used with the field LEG-NO having the value "1" for
invoices and order-lines and the value "2" for payments. This technique

keeps key length to a minimum and also keeps the invoices separate from

7-9

R —

Customers file general record layout

KEY
ENTITY ENTITY
CODE DATA
CUSTOMER INVOICE ORDER
-NO -NO -1TEM
Customer entity
ENTITY CUSTOMER CREDIT TOTAL
KEY CODE -NAME -LIMIT BALANCE -VALUE
~ON-ORDER
Invoice entity
KEY ENTITY INVOICE
CODE -DATE
Order-line entity
KEY ENTITY ORDER ORDER
CODE -QTyY -PRICE
Figure 7.5: CUSTOMERS File Entity Layouts

7-10

CUSTOMER

//
INVOICE PAYMENT
ORDER-LINE
Figure 7.6: Multi-leg hierarchy
KEY
CUSTOMER LEG INVOICE ORDER ENTITY ENTITY
-NO -NO -NO -ITEM CODE DATA
PAYMENT
-DATE
Figure 7.7: Possible key structure for a multi-leg hierarchy.
KEY
CUSTOMER INVOICE ORDER PAYMENT ENTITY ENTITY
-NO -NO -ITEM -DATE CODE DATA
Figure 7.8: PYRAMID multi-leg hierarchy key structure.

7-11

the payments for any given customer. If the hierarchy branches into
different legs at several points in the structure then LEG-A-NO, LEG-B-NO

etc. can be used to control the structure.

The technique described above is fairly complicated for complex
hierarchies, and so the PYRAMID databases are implemented using a

conceptually simpler technique that does however make the key longer.

In the PYRAMID technique the key field for each type of entity has a

unique place in the composite key area. In Fig. 7.8 the payment-date
field is set to spaces for invoice and order-line entities. A payment
entity has the payment-date field non-blank but has spaces in both the

invoice-no and order-item fields.

In essence the key structure of PYRAMID linearizes the two-dimensional
entity structure so that top-down in the hierarchy becomes left-right

in the key order of the entities in the database. Provided that the
owned entities of any given entity are located to the right of the owning
entity, the placement of owned entities from different legs is immaterial.
Thus Fig. 7.9, 7.10 and 7.11 are all permissible implementations of

Fig. 7.6.

The three different database entity orders are achieved by specifying

the entity descriptions in different orders.

File Specification order
Sequence 1st entity 2nd entity 3rd entity 4th entity

A Customer Invoice Order-item Payment
B Customer Invoice Payment Order-Tine
C Customer Payment Invoice Order-line

7-12

CUSTOMER INVOICE ORDER PAYMENT ENTITY
-NO -NO -1TEM -DATE -CODE NATA
1 1 CUST
il | 4 PAY
1 1 2 I/v
il 1 1 3 0-1
il 1 2 3 0-1
il 2 2 /v
il 2 | S R 3 0-1
Figure 7.9: CUSTOMER File Sequence A
CUSTOMER INVOICE PAYMENT ORDER ENTITY
-NO -NO -DATE -1TEM -CODE DATA
1 1 CUST
1 1 3 PAY
1 il 2 1/V
1 1 1 4 0-1
1 1 2 4 0-1
1 2 2 I/v
1 2 1 4 0-1
Figure 7.10: CUSTOMER File Sequence B
CUSTOMER PAYMENT INVOICE ORDER ENTITY
-NO -DATE -NO -ITEM -CODE DATA
1 1 CUST
1 1 3 I/V
1 1 1 4 0-1
1 1 2 4 0-1
1 2 3 I/v
1 2 1 4 0-1
1 1 2 PAY
Figure 7.11: CUSTOMER File Sequence C

7-13

s

The entity codes are assigned in specification order. It can be seen
that the order in the database is the mirror-image of the standard post-

order tree traversal algorithm (Knuth, 1973).

Thus the Database Administrator (DBA) can mould the file structure by
writing the DDL in particular ways and hence the DBA can optimise
particular sequential operations on the database. However, while
sequences A, B and C may be more efficient for certain operations, it

is clearly necessary that all 3 operate identically as far as the user

is concerned and that the codes generated for the mapping should maintain

the integrity of the external views.

PYRAMID Internal Scema DDL

Like INVERSE (see 6.2), the PYRAMID system uses a data description

language (DDL) to describe both in Internal and External Schemas.

The "internal schema" is a description of the physical files on which

the data is held.

Unlike SEQUENT and INVERSE, attributes within PYRAMID entities may not
overlap but they may be sub-divided into further attributes. Thus the
PYRAMID attributes have a hierarchic structure similar to the systems

entity structure,

Because of the nested nature of the PYRAMID attributes, the COBOL-Tike
DOL used for INVERSE is considered inappropriate for PYRAMID. Instead

a more concise (but less easy to read) form of language is used.

The CYBER CCL procedure call

PYRAMID, INTDDL, I = data

7-14

invokes the Internal Schema Compiler to read the DDL and sets up the

“Physical view dictionary".

A part of the DDL given in full in Appendix 5 is shown below.
NEW DICTIONARY.

INTERNAL SCHEMA NAME 1S MANUFACTURING.

FILE NAME IS CUSTOMERS; ORGANISATION IS INDEXED;

ASSIGN TO ORDERS.

ENTITY NAME IS CUSTOMER; KEY IS CUSTOMER-NO

(CUSTOMER-NO/C 6, CUSTOMER-NAME/C 30, CREDIT-LIMIT/N 8.2,
BALANCE/N 10.2, TOTAL-VALUE-ON-ORDER/N 8.2).

ENTITY NAME IS INVOICE; OWNER IS CUSTOMER; KEY IS INVOICE-NO
(INVOICE-NO/C 6, INVOICE-DATE/C 6).

ENTITY NAME IS ORDER-LINE; KEY IS ORDER-ITEM; OWNER IS INVOICE
(ORDER-ITEM/C 4, ORDER-QTY/N 6, ORDER-PRICE/N 5.2).

The formal syntax of the language is given in Appendix 1.

The NEW DICTIONARY statement appears if (and only if) a new dictionary
file is to be created. (Several internal schemas may be held on the
same dictionary file.) The statement INTERNAL SCHEMA NAME IS MANU-

FACTURING identifies the particular schema.

An internal schema can consist of one or more database files. In the
example above there is only one file which has (but need not have) the
same name and the schema. The ORGANIZATION clause is not used at
present but allows for other implementations of PYRAMID data bases

(e.g. DIRECT for a hashed file, SEQUENTIAL for a positional file, etc.).
The ASSIGN clause identifies the physical file in the host operating

systems filestore.

Each entity in the file is described in a single ENTITY statement.

The entity is named in the NAME clause. Except for the root-entity,
the OWNER clause specifies the owning entity name. Thus in the example
given CUSTOMER has no owner, whereas the INVOICE entity specifies

the CUSTOMER entity as its owner.

7-15

The KEY clause names the attribute to be used to jdentify instances of
the entity within a specific instance of the owning entity. The key
may be an elementary attribute, or a composite attribute. For example
the INVOICE entity is specified with key INVOICE-NO (an elementary

attribute).

An example of a composite attribute being used as a key is the

field NAME (consisting of the elementary attributes SURNAME and INITIALS
from the following DDL.

ENTITY NAME IS EMPLOYEE; KEY IS NAME (EMP-NO/CA4,

NAME (SURNAME/C20, INITIALS/C4), SEX/C1,

SALARY/N5).

The attributes of the entity are described in sequence enclosed in

parentheses. Fach elementary attribute is followed by its format as

in the examples below

CUSTOMER-NAME/C30 30 characters
ORDER-QTY/N6 6 digit integer
ORDER-PRICE/N5.2 5 digit number with 2 decimal places

Composite attributes are followed by their constituent elementary

attributes enclosed in parentheses. For example

NAME (SURNAME/C20, INITIALS/C4)

This nesting of attributes may be continued indefinitely. Thus the

user can define

NAME (SURNAME /C20, FORENAMES (FIRST-NAME/C15, OTHER-INITIALS/C3))

The external (user) interface can refer to any of the names defined.
Thus in the last example NAME is 30 characters long, FORENAMES 1is 18

characters, and FIRST-NAME is 15 characters.

7-16

The internal schema dictionary has a hierarchic structure with a key
structure similar to a PYRAMID database. (Theoretically it is possible
for the dictionary to be a PYRAMID database though this has not been

implemented.)
The hierarchy is shown below

INTERNAL SCHEMA
FILE

Pl

ENTITY

¥ T

FIELD
Each entry in the dictionary has a four-part key consisting of

INTERNAL -SCHEMA-NAME
FILE-NAME
ENTITY-NAME

FIELD-NAME

No entry exists at the internal-schema level as no information is
required to be held for the schema as a whole. (Potential exists
however for say privacy locks to be placed here if this is ever felt

necessary.)

The file level entry contains the following information
File-organization
Access-Mode
Assign-name

From this entry the mapping generator (see 7.6) can generate the COBOL

statement

7-17

SELECT filename ASSIGN TO assign-name

ORGANIZATION IS file-organization

ACCESS MODE IS access-mode.
A11 other clauses of the SELECT...ASSIGN statement are left to be
installation defaults. As has been stated earlier, the file organisation
must be specified as INDEXED and the system itself specifies access
mode as DYNAMIC. If however the installation COBOL compiler requires
different values then it would be relatively easy to change the file

level entry to accommodate these differences.

The entity level entry contains the following

Owner-name

Entity-key

Entity-code
The owner-name identifies the opening entity (except for the root
entity). The entity key identifies the field used to identify entity
instances. The entity-code is a two-digit integer which identifies
the entity type within the database. The code values are allocated in
sequence from 1 as each entity is encountered in the DDL. It is thus
possible to add new entities to a PYRAMID data base without changing the
database other than extending the key field with spaces provided that
the new entities can be and are added to the end of the DDL. This is
always possible if (and this is usual) the new entity types are sub-
ordinates to entities already in the data base. For example, the
hierarchy of entities

A

/N

B C

defined in the order A B C can be extended to

7-18

/A

B }L D
E F

without any problems by defining the entities in the order ABCEDF

say. An example of this growth of a database definition is demon-

strated in Appendix 5.

The field level entry contains the following information
Field-type
Field-length
Field-sequence
Field-level
Field-access
The first two contain the type and length of the field. Field-sequence
is used to order the fields within an entity. The sequence numbers
are allocated in the order the fields are defined in the DDL and they

thus correspond to the order within the physical file record.

The field-level is 2 for an elementary field, with lower levels being
used for parts of composite fields. The level numbers thus equate
directly with COBOL level numbers and enable the mapping generator to
generate the following COBOL Data Division code for the EMPLOYEE entity

DDL given earlier.

01 EMPLOYEE

02 FILLER PIC X(2).

02 EMP-NO PIC X(4).

02 FILLER PIC XX.

02 NAME
03 SURNAME PIC X(20).
03 INITIALS PIC X(4).

02 SEX PIC X.

02 SALARY PIC 9(5).

The field-access is used to distinguish key fields from ordinary data

fields.
7-19

7.4

PYRAMID External Schema DDL

The External Schema DDL of PYRAMID has a similar style to the internal
schema DDL. The "external schema" is a description of the user view
of one or more files and of the processing that the user is permitted

to carry out through that view.

The external schema consists of one or more record descriptions with

each record containing one or more items.

The record names must match some or all of the entities in the internal
schema, and the item names for any record must match some or all of

the field names of the matching entity.
The CYBER CCL procedure call
PYRAMID, EXTDDL, I = data

invokes the External Schema Compiler to read the DDL and sets up the

"Logical view dictionary".

A part of the DDL given in full in Appendix 5 is shown below.

NEW DICTIONARY.

EXTERNAL SCHEMA NAME IS TROUBLE

PERMIT ACCESS FOR UPDATE, RETRIEVE, CREATE, FORMAT.

RECORD NAME IS CUSTOMER (CUSTOMER-NAME/C40, CUSTOMER-NO/C6,
CREDIT-LIMIT/N8.2, TOTAL-VALUE-ON-ORDER = TOTAL-VAL/N8.2).
RECORD-NAME IS INVOICE (INVOICE-NO/C6, INVOICE-DATE/NG).
RECORD ORDER-LINE = ORDER (ORDER-ITEM/C4, ORDER-PRICE/N5.2,
ORDER-QTY = QTY/N6).

RECORD NAME IS PART (DESCRIPTION/C40, PART-NO/C4,
UNIT-PRICE/N6.2, STOCK-IN-HAND/N6).

The NEW DICTIONARY statement is used to create a new dictionary and the

EXTERNAL SCHEMA statement is used to identify the schema.

7-20

The PERMIT/DENY access statements control the range of options akﬁpﬁeH a i

e

to users of the view. If no such statement is present all fac gﬁties
are available. If PERMIT is specified as in
PERMIT UPDATE, RETRIEVE.
then these two modes of access are permitted and all others (CREATE,
FORMAT) are denied. The same effect can be obtained by writing

DENY CREATE, FORMAT.

RETRIEVE allows a user to retrieve records from the database, while
UPDATE allows the contents of retrieved records to be changed and then
replaced. CREATE allows the user to create new instances of records
in the database. The FORMAT access allows the user to access a table
of field formats for a given record. It is of use primarily to the

query language QUILL through module SCANSQ.

The External Schema consists of a set of records and their constituent

fields.

The records are defined as for example

RECORD NAME IS CUSTOMER

aE e s 8888 s s

RECORD ORDER-LINE = ORDER

In the first extremal CUSTOMER records maps onto the internal CUSTOMER
entity, whereas in the second the name ORDER is used externally to

refer to the internal ORDER-LINE entity. The external user can choose
their own record and field names using this technique, we are not bound

to use the internal names.

The syntax
RECORD NAME IS INVOICE (INVOICE-NO/C6, INVOICE-DATE/NG)

defines that the users record INVOICE consists of a six character

7-21

INVOICE-NO field and a six digit INVOICE-DATE field. The fields can be
described in any order and need not contain all the fields of the
corresponding internal entity. In addition, as will be described later,

the record may contain fields from owning entities higher up the hierarchy.

Notice further that the field CUSTOMER-NAME /C40 maps onto the internal
attribute CUSTOMER-NAME/C30. Changing field sizes is permitted, but
clearly the Database Administrator should exercise care in using this

facility.

The description for the ORDER record (mapping onto the ORDER-LINE
entity) includes a field defined as

ORDER-QTY = QTY/N6
which defines a six digit field QTY which maps onto the ORDER-QTY
attribute in the internal schema. Thus both field and record names

be changed at the external schema interface.

In the external schema DDL, any field from a high-level record can
instead be included within any owned record. Thus the INVOICE record
can be defined as

RECORD INVOICE (INVOICE-NO/C6, INVOICE-DATE/NG, CUSTOMER-NAME /C40)
to create an external schema record some of whose fields come from the
internal schema entity INVOICE and some from its owner, the CUSTOMER
entity. Two examples of the use of this feature are given in Appendix
5. One converts a three-level entity structure into a two-level record
structure while the other merges all three levels into one mapping
onto the lowest level. This latter form compresses the hierarchy into
a single flat-file, and is used as the interface module when using the
query language QUILL on PYRAMID databases. This is a powerful facility
in read-only modes, but an update in the INVOICE example above while
INVOICE-DATE may be changed, CUSTOMER-NAME obviously cannot as it

7-22

7.5

is not uniquely identified by the key INVOICE-NO. The update
operation only changes fields at the mapped level to preserve the

integrity of the database.

PYRAMID Mapping Code

The interface between the PYRAMID database and the user is through a
mapping code module generated to transform the internal view of the

data into the user or external view.

In recent years much attention has been given to the so called "fourth
generation languages" which often include facilities for generating
user programs or program fragments from high level parametric descriptions
of the problem.

Prywes (1979) describes the Model II language, a non-procedural language
which is processed by a generator to produce a PL/I program. They give
an example of the use of the language to generate a master file update

program.

Horvath (1980) describes DESP (Database-Extract-Sort-Print) which
generates a full ANS COBOL program for both IDMS databases and serial

files.

bwyer (1977) generates COBOL programs to implement decision tables

using a pre-processor approach, while Baxter (1976) translates RPG and
generates COBOL programs. The technique used by Baxter has been used

in the Pyramid Mapping Code Generator, but many refinements have been
made to the basic idea because the unstructured and long-winded code
produced by Baxter is no longer acceptable today. Nevertheless, the
idea of simultaneously generating code to many sections and then sorting

the code into order later is based on Baxter's work.

7-23

Alternative approaches of skeleton programs or of interpretive approaches
to program development were rejected as being too slow for Pyramid, but
they have been used successfully elsewhere - Bertrand (1980), Butters

(1980).

The essential core of the technique is to write a skeleton COBOL
program and assign section identifiers to each distinct part. In
PYRAMID the section identifier is a two-letter code from AA through to
7Z. For example AA was allocated the IDENTIFICATION DIVISION, BA and
BB to the CONFIGURATION and INPUT-OUTPUT SECTIONS respectively of the
IDENTIFICATION DIVISION and so on. As each line of code is generated
it is allocated to a specific code section and is also given a four
digit sequence number (generated from one onwards in chronological
order). The code section identifier and the sequence number form the
standard COBOL sequence number in columns 1 through 6. The final stage
of the generation process sorts the code on these six characters and
the code is thus grouped by purpose (code section) and within each

section by order of generation.

The use of the above technique means that the generator can make
effectively a single pass through the dictionary and for each dictionary
entry simultaneously generate code in several places in the target

program.

For example, at the start of the generation process, the following

skeleton code is generated

7-24

Section Code

BB INPUT-OUTPUT SECTION.

BB FILE-CONTROL.

EA INITIAL-PARAGRAPH.

EA MOVE ZERO TO RESULT.

EA IF FUNCTION = "NEW"

EA PERFORM NEW-DATA-BASE

EA ELSE IF FUNCTION = "OLD"

EA PERFORM OLD-DATA-BASE

EA ELSE IF FUNCTION = "RELEASE"

EA PERFORM RELEASE-DATA-BASE
ELSE PERFORM BRANCH-ON-RECORD-NAME.

TA NEW-DATA-BASE.

TA IF DATA-BASE-OPEN-FLAG = "YES"

TA MOVE 101 TO RESULT

TA ELSE

TA PERFORM CREATE-~DATA-BASE

TA PERFORM CLOSE-DATA-BASE

TA PERFORM UPDATE-DATA-BASE

TA MOVE "YES" TO DATA-BASE OPEN-FLAG.

TB CREATE-DATA-BASE.

TC UPDATE-DATA-BASE.

TD CLOSE-DATA-BASE.

When a dictionary entry for a physical file (say CUSTOMERS) is located

in the dictionary, then the following code is generated.

Section Code
BB SELECT INTERNAL-CUSTOMERS
BB ASSIGN TO etc.
CB FD INTERNAL-CUSTOMERS
etc.
1B OPEN OQUTPUT INTERNAL-CUSTOMERS.
TC OPEN I-0 INTERNAL-CUSTOMERS.
i) CLOSE INTERNAL CUSTOMERS.

The PYRAMID mapping code generator is involved in two ways
PYRAMID, BUILD (on-line)

PYRAMID, BUILD, I=data (batch from file "data").

7-25

7.6

Hierarchic database queries

The Scan Sequential module SCANSQ (see A2.3) can be used to call either
module SCANSF (see Fig. 5.2) or it can be made to call the DBMS module
of mapping code produced by PYRAMID. In the former case the SEQUENT
query program SQUERY is produced, and in the latter the PYRAMID query

program PQUERY 1is constructed.

PYRAMID queries can be involved in two ways
PYRAMID, QUERY (on-1ine)

PYRAMID, QUERY, I=data (batch from file "data").

The query program uses the QUILL query language in exactly the same way

as SEQUENT, details of which were included in Chapter 5, Section 3.

7-26

CHAPTER 8

CONCLUSIONS

The database software in retrospect

While the software described in this thesis was being developed it is
clear that there has been a shift from navigational models (hierarchic
and network) towards the relational model. The decision then to build
the hierarchic PYRAMID system is perhaps with hindsight not the best

model to have implemented.

Remmen (1979) however can be quoted in defence:

... the quality of data structures does not depend primarily
on the model being used, but on the insight of the designer.

Education should not aim at advocating certain models exclus-
ively but at using models in the right way. The only thing
to be advocated is insight, which is to be achieved by approp-
riate education."
Since the PYRAMID model offers a fair degree of physical and logical
data independence, there is scope for using the system to illustrate

the common advantages that exist for both PYRAMID and commercially

available DBMS's.

The desire to carry to extremes the non-procedurality of the actions in
a QUILL statement has led to a language that seems unduly restrictive

to experienced programmers. Non-programmers have reported no such
disquiet however and they are the target users, not experienced prog-

rammers.

The QUILL language as implemented has been most effective for INVERSE

databases where efficient use can be made of the inverted indexes.

8-1

8.2

The inability to use PYRAMID prime keys for rapid access to lower
levels of the hierarchy clearly limits the use of QUILL to small hier-

archic databases, and similar restrictions apply to SEQUENT.

The major aims of the software were however met. A stand alone query

facility has been provided in SEQUENT, and INVERSE has permitted students

to significantly reduce retrieval times for accessing a large data base
of some 400,000 records. PYRAMID has allowed students to manipulate
logical structures that are relatively independent of the physical
structures. Both INVERSE and PYRAMID have provided privacy features,

while INVERSE can produce a recovery audit trail.

A1l the above has been achieved without the running programs requiring
excessive main memory. In fact, of the programs that a student would
normally use, none uses more memory than the CYBER Loader used to link/
load the programs into memory and they can thus all run with minimal
memory limits. The only program of significant main memory size is
the PYRAMID Mapping Code Generator and this will be run by the Data
Base Administrator and then but rarely. (This can be contrasted to
the S.A.I.T. CYBER where student memory limits are insufficient to use
multiple key indexed sequential files in an on-line COBOL program -

they have to be run as off-peak batch programs.)

Potential Development of the Software

Perhaps the most useful development for the software would be the
development of network and relational models under the QUILL umbrella.
It is easy to envisage a PYRAMID-1ike generator producing code to
manipulate a logical view from a network data base. If this logical
view happened to be a hierarchy then the QUILL language could be used
to access the database as for PYRAMID.

8-2

The relational model would not fit as well under the QUILL umbrella.
While it would be possible to derive a logical view of a single global
relation formed as a join of all physical relations, and then to use
QUILL as on the single relation as for SEQUENT, this accessing technique
would take away both the power and beauty of the Relational Calculus.

It may be better to abandon QUILL altogether and opt for a multi-file

rather than single-file conceptual view for the query language.

The development of alternative query languages would allow a study of
end-user/machine interactions to be carried out (following Schneiderman,
Miller, Welty & Stemple etc.). Such a development would allow the
various psychological theories to be subjected to rigorous examinations
without the issue being clouded by having different databases, operating

systems, hardware etc.

The development of a pre-processor for the PYRAMID system would be a

relatively simple task if the syntax and code layout of the data sub-
language was controlled - e.g. by having unique verbs to introduce DML
statements and perhaps requiring such statements to appear on separate

code lines.

Apart from these free-standing developments, it is clearly possible to
add extra features to the existing programs - to add back in, in fact,
many of those features deliberately left out during the design stage.
An example might be to add an audit trail capability to the PYRAMID
system. Each such addition however is one more thing for the student to

learn, and also increases the size constraint on the running programs.

8-3

8.3

Concluding Remarks

Remmen (1979) has stated

"The aim of every education is that the persons involved
(students, pupils) gain a personal insight into the
relevant subject matter.

The insight mentioned can only be developed by a personal
learning process of the student himself.

.-

The (happy) end of such a personal struggle can easily be

regarded as the spontaneous manifestation of an 'aha'-
experience."

Elsewhere in the same paper Remmen says

"Experience in different learning situations has clearly
shown that manipulation of data structures is the best
way to promote the understanding of these structures.”

The author of this thesis strongly endorses Remmen's views. Database
concepts cannot realistically be taught using the so-called "purple
cow" approach (I don't have a purple cow but if I describe its
characteristics carefully enough hopefully my students will recognise

such a beast when they see one).

So to teach database concepts students must be able to lay their hands
on some DBMS software. The software described in this thesis offers
an alternative to more costly commercial DBMS's and being less general
should be easier to learn while still enabling all the major features

to be used.

8-4

ERRATA

The following should be added to the list of references in pages
REF-1 through REF-7.

Brodie, M.L. and Schmidt, J.W., 1%81, Final Report of th
ANSI/X3/SPARC DBS-SG Relational Database Task Group, Doc.
No. SPARC-81-690.

[(]

Caelli, W.J., 1979, The CODASYL 1978 Data Base Proposals : An
Overview and Discussion, Australian Computer Journal, Vol.
11, No. 2, pp 48-59.

Chamberlin, D.D., 1976, Relational Data-Base Management Systems,
Australian Computing Surveys, Vol. 8, No. 1, pp 43-66.

Dee, E., Johnson, E.M., and King, P.J.H., 1973, An Example of
Programming using the CODASYL Data Base Task Group Proposal
with COBOL as the Host Language, Data Base Management,
Infotech International State of the Art report., 1973, pp .

455-488.

Deen, S.M., 1977, Fundamentals of Data Base Systems, McMillan,
London.

Fry, J.P. and Sibley., E.H., 1976, Evolution of Data-—Base
Management Systems, ACM Computing Surveys, Vol. 8, No. 1, pp
7-42.

Kim, W., 1979, Relational Database Systems, ACM Computing

Surveys, Vol. 11, No. 3, pp 185-211.

REFERENCES

Ansi, 1974, American National Standard - Programming language COBOL, Report
ANSI X3.23-1974, ANSI, New York.

Antonacci, F., Dell'Oras, P., Spadevecchia, V.N. and Turtur, A., 1978, AQL: A
problem-solving Query Language for Relational Data Bases, IBM J. Res. &
Dev., Vol. 22, No. 5, pp. 541-559,

Ashton, D. and Wade, K., A Fourth Generation/End-User Language in a College
Environment, Proc. Australian College of Adv. Education Conf., Aug. 1982,
Launceston.

Astrahan, M.M. et al., 1979, System R: A Relational Data Base Management System,
Computer, 1979, pp. 42-48.

Astrahan, M.M., Schkolnick, M. and Kim, W., 1980, Performance of the System R
Access Path Selection Mechanism, Information Processing 80, Proc. IFIC
Congress 80, Melbourne, pp. 487-492.

Atre, S., 1980, Data Base: Structural Techniques for Design, Performance &
Management, Wiley, New York.

Baxter, A.Q. and Johnson, R.R., 1978, A Block Structure Query Language for
Accessing a Relational Data Base, ACM SIGIR, Vol. 13, No. 19,

Baxter, J.D. and Vincent, G.J., 1976, Report Program Generator (Single File
Input System) Users Manaual, Univ. Melbourne.

BCS, 1971, Proc. October 1971 Conference on APRIL 71 REPORT, British Computer
Society.

BCS, 1977, The British Computer Society Data Dictionary Systems Working Party
Report, reprinted in ACM SIGMOD RECORD, Vol. 9, No. 8

Benbasat, I. and Dexter, A.S., 1981, An Experimental Study of the Human/Computer
Interface, Comm. ACM, Vol. 24, No. 11, pp. 752-762.

Bertrand, 0.P. and Daudenarde, J.J., 1980, USAGE: Generating Interactive Applic-
ation Programs from Grammatical Descriptions, ACM DATA BASE, Vol. 11, No.
3, pp. 76-83.

Bird, R.M., Newsbaum, J.B. and Trelftzs, J.L., 1978, Text File Inversion: An
Evaluation, ACM SIGARCH, Vol. 7, No. 2, pp. 42-50.

Borman, L., Chalice, R.,, Dillamen, D., Dominick, W. and Kobbe, R., 1976, RIQS-
Remote Information Query System Users Manual, Northwestern Univ. Report 74-
003.

Bourne, T.J., 1979, The Data Dictionary System in Analysis and Design, ICL
Technical Journal, Nov. 1979, pp. 292-298.

Boyce, R.F., Chamberlin, D.D., King, W.F. III and Hammer, M.M., 1975, Specifying
Queries and Relational Expressions: The SQUARE Data Sublanguage, Comm
ACM, Vol. 18, No. 11, pp. 621-628.

Bonczek, R.H., Cash, J.I. and Whinston, A.B., 1977, A Transformational Grammar-
Based Query Processor for Access Control in a Planning System, ACM
Transactions on Database Systems, Vol. 2, No. 4, pp. 326-338.

REF-1

Bradley. J., 1982, File and Data Base Techniques, Holt, Rinehart and Winston,
New York.

Butters, E.H. and Seymour, C.M., 1980, Generalized Systems: Reducing High
Cost of Application Development, ACM DATABASE, Vol. 11, No. 3,
pp. 99-105.

Burns, D., 1975, Data Handling Techniques in ROBOT, Data Base Systems, INFOTECA,
pp. 239-263.

Cagan, C., 1973, Data Management Systems, Melville, Los Angeles.

Canning, R.G., ed., 1981, A New View of Data Dictionaries, EDP Analyzer, Vol. 19,
No. 7, July 1981.

Canning, R.G., ed., 1982, Relational Database Systems are Here, EDP Analyzer,
Vol. 20, No. 10, Oct. 1982,

Cardenas, A.F., 1975, Analysis and Performance of Inverted Data Base Structures,
Comm ACM, Vol. 18, No. 5, pp. 253-263.

Carter, R.J. and McVitie, D.G., 1969, PEARL Preliminary System Description, ICL
Report K/AD n37,

Chamberlin, D.D. et al., 1981, A History and Evaluation of System R, Comm ACM,
Vol. 24, No. 10, pp. 632-646.

Champine, G.A., 1979, Current Trends in Data Base Systems, COMPUTER, May 1979,
pp. 27-40.

Clemons, E.K., 1981, Design of an External Schema Facility to Define and Process
Recursive Structures, ACM Trans. on Database Systems, Vol. 6, No. 2,
pp. 295-311.

CODASYL, 1969, CODASYL Data Base Task Group, October 1969 Report, CODASYL, 1969.
CODASYL, 1971, CODASYL Data Base Task Group, April 1971 Report, ACM, New York, 1971.
CODASYL, 1979, A Status Report on the Activities of the CODASYL End User

Facilities Committee, ed. H.C. Lefkovits, ACM SIGMOD Record, Vol. 10, Nos.
2 and 3.

Codd, E.F., 1970, A Relational Model of Data for Large Shared Data Banks, Comm
ACM, Vol. 13, No. 6, pp. 377-387.

Codd, E.F., 1971a, Further Normalization of the Data Base Relational Model,
Data Base Systems, ed. Rustin, Prentice-Hall Inc., New Jersey, pp. 33-64.

Codd, E.F., 1971b, Relational Completeness of Data Base Sublanguages, Data Base
Systems, ed. Rustin, Prentice-Hall Inc., New Jersey, pp. 65-98.

Codd, E.F., 1971c, Normalized Data Base Structure: A Brief Tutorial, 1971 ACM
SIGFIDET Workshop, ed. Codd & Dean, San Diego, Calif. pp. 1-17.

Codd, E.F., 1974, Seven Steps to Rendezvous with the Casual User, Data Base
Management, ed. Klimbie and Kofferman, North-Holland, Amsterdam, pp. 179-199.

Codd, E.F., 1979, Extending the Data Base Relational Model to Capture More
Meaning, Australian Computer Science Comm., Vol. 1, No. 1, March 1979,
pp. 5-48.
REF -2

Codd, E.F., 1980, Data Models in Database Management, ACM SIGMOD Record, Vol. 11,
No. 2, Feb. 1981, pp. 112-114.

Cohen, L.J., ed., 1978, Data Base Management Systems, Q.E.D. Information Sciences,
Mass., U.S.A.

Combes, D., 1980, REMOTE-QBE: An Overview, Australian Computer Science Commun-
jcations, Vol. 2, No. 5, pp. 459-469.

Dadam, P. and Schlageter, G., 1980, Recovery in Distributed Databases Based on
Non-synchronized Local Checkpoints, Information Processing 80, Proc. of
IFIP Congress 80, Melbourne, pp. 457-462.

Dahl, 0-J., Dijkstra, E.W. and Hoare, C.A.R., 1972, Structured Programming, Academic
Press, Letchworth, England.

Date, C.J., 1977, An Introduction to Database Systems, 2nd ed., Addison-Wesley,
Mass., U.S.A.

Davenport, R.A., 1980, Data Administration - the Needs for a New Function,
Information Processing 80, Proc. of IFIP Congress 80, Melbourne, pp. 505-510.

DEC., 1982, Introduction to VAX-11 DATATRIEVE, Digital Equipment Corporation Manual
AA-KO82A-TE, Mass., U.S.A,

Deen, S.M., 1980, A canonical schema for a generalised data model with local
interfaces, The Computer Journal, Vol. 23, No. 3, pp. 201-206.

Deen, S.M., Nikodem, D. and Vashishta, A., 1981, The design of a canonical database
system (PRECI), The Computer Journal, Vol. 24, No. 3, pp. 200-209.

Drake, R.W. and Smith, J.L., 1971, Some Techniques for File Recovery, Australian
Computer Journal, Vol. 3, No. 4, pp. 162-170.

Dwyer, B., 1977, How to Write Decision Tables for Use with COPE, Techsearch Inc.,
S.A. Institute of Technology, Adelaide.

Evans, M., 1982, Software Engineering for the COBOL Environment, Communications
of the ACM, 25, pp. 874-882,

Fagin, R., 1977, Multivalued Dependencies and a New Normal Form for Relational
Databases, ACM Transactions on Database Systems, Vol. 2., No. 3, pp. 262-278.

Fagin, R., 1979, Normal Forms and Relational Data Base Operators, ACM SIGMOD
International Conf. on Management of Data, Boston, Mass.

Fossom, B.M., 1974, Data Base Integrity as Provided for by a Particular Data
Base Management System, Data Base Management, North-Holland, Amsterdam,
pp. 271-287.

Gudes, E., 1977, Teaching data base systens using Date and Computing Surveys,
ACM SIGMOD Record, Vol. 9, No. 1, pp. 47-49.

Harder, T. and Reuter, A., 1979, Optimization of Logging and Recovery in a
Database System, Data Base Architecture, North-Holland, Amsterdam,
pp. 151-168.

Harris, L.R., 1978, The ROBOT System: Natural Language Processing Applied to
Data Base Query, Proc. ACM 1978 Annuail Conf., Dec. 4-6, Washington, D-C,
U.S.A., pp. 165-172.

REF-3

Haskell, R. and Harrison, P.G., 1980, System Conventions for non procedural
languages, The Computer Journal, Vol. 23, No. 2, pp. 132-141.

Hawryskiewycz, I1.T., 1980, Multi-model Data Base Architecture, Australian
Computer Science Communications, Vol. 25, No. 4, pp. 400-416,

Hawryskiewycz, I.T., 1979, The Evolution of Data Base Technology and its Effect
on the Teaching of Data Base, Proc. Colleges of Adv. Education Conf., Bendigo,
1979, pp. 3.11-3.19,

Hendrix, G.G., Sacerdoti, E.D., Sagolowicz, D. and Stocum, J., 1978, Developing
a Natural Language Interface to Complex Data, ACM Transactions on Database
Systems, Vol. 3, No. 2, pp. 105-147.

Hi11, E., Jr., 1978a, Analysis of an Inverted Data Base Structure, ACM SIGIR, Vol. 13
No. 1, pp. 37-64.

Hi11, E., Jr., 1978b, A Comparative Study of Very lLarge Data Bases, Springer-
Verlag, Berlin.

Hi11, I.D., 1972, Wouldn't it be nice if we could write computer programmers in
ordinary English - or would it?, Computer Bulletin, Vol. 16, No. 6, pp. 306-312.

Honkanen, P.A., 1983, Installation of a Commercial Database Management System
in a University Environment, ACM SIGCSE Bulletin, Vol. 15, No. 1, pp. 211-219.

Horvath, P.J., 1980, DESP - A COBOL Program Generator for IDMS Databases and
Serial Files, ACM DATA BASE, Vol. 11, No. 3, pp.46-55.

ICL, 1968, Specification of PRIOR, ICL Business Information Systems Dept. report.

ICL, 1969, PLUTO System, ICL Tech. Pub. 4150, London, England.

Jackson, M., 1983, System Development, Prentice-Hall International, New Jersey,
U.S.A.

Johnson, J..S and Webster, D.B., 1982, Updating an Inverted Index - a Performance
Comparison of Two Techniques, The Computer Journal, Vol. 25, No. 2, pp. 169-175.

Kaplan, S.J. and Ferris, D., 1982, Natural Language in the DP World, Datamation,
Vol. 2, No. 9, pp. 114-120.

Kaunitz, J. and Van Ekert, L., 1981, Data Base Backup - The Problem of Very Large
Data Bases, Australian Computer Journal, Vol. 13, No. 4, pp. 136-142,

Kent, W., 1978, Data and Reality - basic assumptions in data processing revisited,
North-Holland, Amsterdam.

Kent, W., 1983, A Simple Guide to Five Normal Forms in Relational Database Theory,
Comm. ACM, Vol. 26, No. 2, pp. 120-125.

Knuth, D.E., 1973, The Art of Computer Programming - (Vol. 1) - Fundamental
Algorithms, Addison-Wesley, Mass.

Kroenke, D., 1983, Database Processing, 2nd ed., SRA, Chicago.

REF -4

Lawrence, M.J., 1979, The Computer Data Base Decision, Australian Computer Journal,
Vol. 11, No. 1, pp. 13-20.

Lien, Y.L., 1981, Hierarchical Schemata for Relational Databases, ACM Trans. on
Database Systems, Vol. 6, No. 1, pp. 48-69.

Liu, J.W.S., 1976, Algorithms for Parsing Search Queries in Systems with Inverted
File Organization, ACM Transactions on Database Systems, Vol. 1, No. 4,
pp. 299-316.

Ling, T-W, Tompa, F.W. and Kameda, T., 1981, An Improved Third Normal Form for
Relational Databases, ACM Transactions on Database Systems, Vol. 6, No. 2,
pp. 329-346.

LOGICA, 1982, RAPPORT-3, Designing and Using a Database, Logica Ltd. U.K.

Lyon, J.K., 1976, The Database Administrator, Wiley, New York.

Mayne, A., 1981, Database Management Systems: A technical review, NCC Publications,
Manchester, England.

McDonnell, K.J., 1976, The Design of Associative Keylists (Secondary Indexes),
Australian Computer Journal, Vol. 8, No. 1, pp. 13-18.

McDonnell, K.J., 1977, An Inverted Index Implementation, The Computer Journal,
Vol. 20, No. 2, pp. 116-123.

McDonnell, K.J., 1979, Systems for Teaching Database Concepts, Proc. Austtralian
Colleges of Adv. Education Conf., Aug. 1981, Perth, pp. 179-193.

McLeod, D., 1978, A Semantic Data Base Model and its Associated Structured User
Interface, Report MIT/LCS/TR-214, MIT, Cambridge, Mass., U.S.A.

Mercz, L.I., 1979, Issues in Building a Relational Interface on a CODASYL DBMS,
Proc. IFIP Working Conf. on Data Base Architecture, Data Base Architecture,
ed., G. Bracchi & G.M. Nijssen, North-Holland, Amsterdam.

Michaels, A.S., Mittman, B. and Carlson, C.R., 1976, A Comparison of Relational
and CODASYL Approaches to Data-Base Management, ACM Computing Surveys,
Vol. 8, No. 1, pp. 125-151.

Miller, L.A., 1981, Natural-Language Programming: Styles, Strategies and
Contrasts, IBM Perspectives in Computing, Vol. 1, No. 4, pp. 22-33.

Montgomery, A.Y., 1980, A Short Essay on Some Problems with Teaching of Computing
in Australian Government Institutions Today, Australian Computer Science
Communications, Vol. 2, No. 4, pp. 396-399.

Nijssen, G.M., 1983, What can CAI learn from the DATABASE world?, Proc. Conf. on
Computer-Aided Learning in Tertiary Education. Brisbane, Qld., Sept. 1983,

011le, T.W., 1973, Data Base Management Systems Software: The CODASYL DBTG Proposals
Data Base Management, Infotech International State of the Art Report, 1973,
pp. 407-428.

Peat, L.R., 1982, Practical Guide to DBMS Selection, Walter de Gruyter, Berlin.

Prywes, N.S., Pnueli, A. and Shastry, S., 1979, Use of a Nonprocedural Spec-
ification Language and Associated Program Generator in Software Development,
ACM Transactions on Programming Languages and Systems, Vol. 1, No. 2,
pp.196-21/.,

REF-b5

Reisner, P., 1981, Human Factors Studies of Database Query Languages: A Survey
and Assessment, ACM Computing Survey, Vol. 13, No. 1, pp. 13-31,

Relational Software Inc., 1983, ORACLE Terminal User Guide, Version 3.1, U.S.A.

Remmen, F., 1979, Education in Databases - the Coaching of a Learning Process,
Post Secondary and Vocational Education in Data Processing, ed. Jackson, H.L.W.
and Wiechers, G., North-Holland, Amsterdam, pp. 137-150.

Robinson, H., 1981, Database Analysis and Design. Chartwell-Bratt, England.

Robinson, M.A., 1981, A Review of Data Base Query Languages, Australian Computer
Journal, Vol. 13, No. 4, pp. 143-159.

Rowe, L.A. and Stonebraker, M., 1981, Architecture of Future Data Base Systems,
ACM SIGMOD Record, Vol. 11, No. 1, pp. 30-44,

Samet, P.A., ed., 1981, Query Languages - A unified approach, Heyden & Son/BCS
Monographs in Information.

Schneiderman, B., 1978, Improving the Human Factors Aspect of Database Inter-
actions, ACM Transactions on Database Systems, Vol. 3, No. 4, pp. 417-439.

Simsion, G.C. and Symington, J.A., 1981, A Comparison of Network and Relational
Data Base Architectures in a Commercial Environment, Australian Computer
Journal, Vol. 13, No. 4, pp. 122-126.

Sockut, G.H., 1981, Comparison and Mapping of the Relational and Codasyl Data
Models -- An Annotated Bibliography, ACM SIGMOD Record, Vol. 11, No. 3,
pp. 55-68.

Software AG, 1980, ADABAS-M Application Programmers Manual, Software AG Manual
ADM-110-030, Darmstadt, W. Germany.

Stamen, J. and Costello, W., Evaluating Database Languages, Datamation, Vol. 27,
No. 5, pp. 116-122.

Stonebraker, M., Wong, E., Kreps, P. and Held, G., 1976, The Design and
Implementation of INGRES, ACM Transactions on Database Systems, Vol. 1,
No. 3, pp. 189-222.

Su, S.Y.W. and Emam, A., 1978, CASDAL: CASSM's DAta Language, ACM Transactions
on Database Systems, Vol. 3, No. 1, March 1978, pp. 57-91.

Tagg, M.R., 1981, Query Languages for some current DBMS, Proc. First British
National Conference on Databases, Cambridge, England, July 1981, pp. 99-118.

Tagg, R.M., 1983, Interfacing a Query Language to a CODASYL DBMS, ACM SIGMOD
Record, Vol. 13, No. 3, pp. 46-64.

Triance, J.M., 1978, Discussion and correspondence: A study of COBOL portability,
The Computer Journal, Vol. 21, No. 3, pp. 278-281.

Tsichritzis, D.C. and Lochovsky, F.H., 1976, Hierarchical Data-Base Management:
A Survey, ACM Computing Surveys, Vol. 8, No. 1, pp. 105-123.

Tsichritzis, D.C., 1977a, Research Directions in Database Management Systems, ACM
SIGMOD Record, Vol. 9, No. 3, pp. 26-41.

REF-6

Tsichritzis, D.C. and Lockovsky, F.H., 1977b, Data Base Management Systems,
Academic Press, New York.

Verhofstad, J.S.M., 1978, Recovery Techniques for Database Systems, Computing
Surveys, Vol. 10, No. 2, pp. 167-195.

Verhofstad, J.S.M., 1979, Recovery Based on Types, Data Base Architecture,
North-Holland, Amsterdam, pp. 125-139.

Vetter, M. and Maddison, R.N., 1981, Database Design Methodology, Prentice-Hall
International, London.

Welty, C. and Stemple, D.W., 1981, Human Factors Comparison of a Procedural and
a Non-Procedural Query Language, ACM Transactions on Database Systems,
Vol. 6, No. 3, pp. 464-485.

Yu, C.T., Luk, W.S. and Siu, M.K., 1978, On the Estimation of the Number of
Desired Records with Respect to a Given Query, ACM Transactions on
Database Systems, Vol. 3, No. 1, March 1978, pp.41-56.

Zaniolo, C., 1979, Multimodel External Schemas for CODASYL Data Base Management
Systems, Proc. IFIP Working Conf. on Data Base Architecture, Data Base
Architecture, ed. G. Bracchi and G.M. Nijssen, North-Holland, Amsterdam.

REF -7

APPENDIX 1 - SYNTAX DESCRIPTIONS

This appendix contains a summary of the syntax description notation and then a

formal definition of the syntax of the following languages:
(a) The QUILL Query/Update Language.

(b) The PYRAMID External Schema DDL.
(c) The PYRAMID Internal Schema DDL.

Al-1

Al.1 Syntax Description Notation

In these syntax descriptions the following notation is adopted:

UPPER CASE

UNDERLINED UPPER CASE

1ower case words

Brackets []

Special words of the various languages. They must
be written exactly as specified. In general they
should not be used except in their specified content

(e.g. do not use as field/record names).

These special words are mandatory whenever the format
in which they occur is used. Special words that are

not underlined are optional "noise" words.

Generic terms which must be replaced by words, names
or values supplied by the user. Within any given form
if a generic term is repeated, each occurrence is
identified by an appended integer (e.g. entity-name-1,

entity-name-2).

These surround an optional portion of a format.

The entire contents of the brackets can be included

or omitted as desired. If the brackets contain
vertically stacked descriptions then only one of these
descriptions can be used,

(s

at least no occurrences

a
b
c

at most one occurrence

Al-2

Braces { |} Only one of the vertically stacked descriptions

can be used,

a at least one occurrence
e.g. b

C at most one occurrence

Braces are also used to enclose mandatory constructs

which may be repeated.

Bars || || Each of the vertically stacked descriptions may occur

in any order. Each description can occur only once,

a at least one occurrence
e.g. b =
[| ¢ || at most one occurrence of each
Elipses ... Indicates that the description immediately preceeding

the ellipses and enclosed in brackets or braces can

be repeated if desired.

Punctuation symbols Generally required unless enclosed in brackets or
specifically noted as optional. In general, commas (y)
and semicolons (;) are optional and can in fact be used
wherever a space can appear. Periods/fullstops (.) are

mandatory at the ends of sentences.

Angle brackets < > These surround parts of the description (gnerally

clauses) which are defined later in the syntax descripti

1= The construct to the left of the ::= symbol is defined

by the description to the right of the symbol.

Al-3

Al.2 The QUILL Query/Update Language Syntax

query ::=
|’ <action> ...

<qualifier> “

action ::=
(<print-action> h
<display-action>
<sum-action>

<average-action>

<add-action>

<subtract-action>
<multiply-action>
<divide-action>

<increase-action>
<decrease-action>

<set-action>

\. <generate-action>

sum=-action ::=

SUM <field-1ist>

average-action ::=

AVERAGE <field-1ist>

add-action ::=
ADD number TO field-name
Al-4

subtract-action ::=

SUBTRACT number FROM field-name

multiply=-action ::=

MULTIPLY field-name BY number

divide-action ::=

DIVIDE field-name BY number

increase action ::=

INCREASE fileld-name BY number [%]

decrease action ::=

DECREASE field-name BY number [%]

set-action ::=

SET field-name TO <literal>

generate action ::=
GENERATE <field-list>
Al-5

field-1list ::=
field-name

(<field-name> ...)

Titeral ::=

number
alphanumeric-literal
string

Al-6

Al.3 The PYRAMID External Schema DDL Syntax

external schema description ::=
[<mode-statement>]
[<create-statement>]
<external -schema-statement>

{<record-description>} ...

mode-statement ::=

BATCH
MODE IS

INTERACTIVE

create-statement ::=

NEW

external-schema-statement ::=

EXTERNAL SCHEMA NAME IS external-schema-name.

record-description ::=

RECORD NAME IS record-name

[= equivalent-record-name]

[({<item-description>}...)].

item-description ::=
item-name [= equivalent-item-name]

<item-format>

item-format ::=

/ <item-type> item-length
Al-7

item-type ::=

= o

Al1-8

Al.4 The PYRAMID Internal Schema DDL Syntax

internal schema description ::=
[<mode-statement>]
[<create-statement>]
<internal-schema-statement>

{<file-description>} ...

mode-statement ::=
BATCH

MODE IS .
INTERACTIVE

create-statement ::=

NEW DICTIONARY

internal-schema-statement ::=

INTERNAL SCHEMA NAME is internal-schema-name.

file-description ::=
<file-statement>

{<entity-description>} ...

file-statement ::=

FILE NAME IS file-name

<organisation-clause>
<access-clause> 8

<assign-clause>

Al-9

organization-clause ::=

ORGANIZATION IS file-organization

access-clause ::=

ACCESS MODE 1S access-mode

assign-clause ::=

ASSIGN to assignment-name

entity-description ::=
<entity-clause>

<owner clause>
<key clause>

{<field-description>} ...

entity-clause ::=

ENTITY NAME IS entity-name-1

owner-clause ::=

OWNER NAME IS entity-name-2

key-clause ::=

KEY NAME IS field-name-1

field-description ::=
field-name-2
(<field-description> ...)

{field-format>

Al-10

field-format ::=

]/ <field-type> field-length

field-type ::=

)

|=

Al-11

APPENDIX 2

STRUCTURE DIAGRAMS

This appendix contains structure diagrams for the various programs and sub-

programs of the database system,
The conventions used for the charts are basically those of Jackson (1983).

rectangles indicate processes to be performed;
processes are activated in a top-down, left-to-right order;

. an * indicates the process is activated repetitively (zero or more
times);

an 0 indicates that one of the sub-processes is selected;
a double vertical border to a rectangle indicates that the process is

further sub-divided on a subsequent chart.

The following charts appear:

A2.1 QUILL Query/Update Language (QLSCE)
A2.2 Build Sequential File Dictionary (SBUILD)
A2.3 Scan Sequential (SCANSQ)

A2.4 Scan Sequential File (SCANSF)

A2.5 Check Conditions (CHECK)

A2.6 Extract/Replace Field (FIELD)

A2.7 Invert File (INVERT)

A2.8 Scan Inverted Database (SCANIV)

A2.9 Internal Schema DDL Compiler (INTSCE)
A2.10 External Schema DDL Compiler (EXTSCE)
A2.11 Generate Mapping Code (GENSCE)

A2-1

A2.1 QUILL Query/Update Language (QLSCE)

QLSCE
L l [x |
Initialisation Process Mode Process Finalisation
of Run Statement
| Il
L Get Action
Statement Statement
J .
I | | l
Initialise Get Get Finalise
Statement Conditions Actions Statement
—
[% *
Initialise Get Get
Condition Condition Action

A2-2

Get

Check if Valid
Field Name

condition

Scan the

Condition
%

Get Get Next Skip Over
Relation Value Right
Operator Parentheses

*
Skip Right
Parentheses

A2-3

Get

Action
Process Process Process Process
Print or Control Add-Subtract Extract
Display etc.
Process Process Process
Heading Sum or Increase or
Average Decrease

A2-4

Process Print
or Display

¥

Get Output
Field Name

Check if
Field Name

Check if
Key Word

>k

Scan Key
Words

Add Field to
Retrieve List

Add Field
to Print List

Add Field to
Display List

Process Sum
or Average

¥

Get Sum
Field Name

Add Field
to Sum List

X

Search Sum
List

A2-6

Process Add
Subtract Etc.

Process Process Process Process
Add Subtract Multiply Divide
Process
Multiply or
Divide
Insert Field
in Arithmetic
List
¥
Add Field Search
to Retrieve Arithmetic
List List

R2-7

Add Field
to Retrieve

List
3% l
Search Check if
Retrieve Valid Field
List Name

A2-8

Action

Statement
Get and Print Print
Action Totals Averages
Records

Get and
Action Records

| | 2
Final Get and
Records Action
Record
Get Action
Record Record
Arithmetic Sum Display Print
on Record Record Record Record

A2-10

A2.2 Build Sequential File Dictionay (SBUILD)

SBUILD
: |
]* 1
Open Process Close I
File Field File !
l
Process
Field
Details
| | i [|
Process Process Process Process Write
Field Field Field Field Record
Name Type Length Position
_[]
|
l |
Accept Accept Accept Accept _1
Field Field Field Field
Name Type Length Position
Check Process
Previous Decimal
Names Places
Accept
Decimal
Places

A2-11

A2.3 Scan Sequential (SCANSQ)

SCANSQ
Process
Query
. |
| |
Open Close Find Get
Files Files Function Function
[.
| % |
Read and Extract
Test Record Fields
x
| I
Get Evaluate Extract
Next Conditions Field
Record
|
CHECK
| %]
Look for Move
Field Field

o

SCANSF

DBMS

A2-12

Move
Char

A2.4 Scan Sequential File (SCANSF)

SCANSF
Process
Query
|
Open Close Find Get
Files Files Function Function

Read
Attribute
Headers

Read
Next
*

Header

Store
Header
Record

A2-13

A2.5 Check Conditions (CHECK)

CHECK
Test
Record
Evaluate
Conditions
*
Evaluate
Condition
| l
Look Extract
for and Test
Attribute Attribute
*
|]
Scan Extract Test the
Parameters the field Value
|
FIELD Compare the
Values
o lo 0
Test for Test for Test for
Equal Unequal High-Low

I |
|

Compare for

equal

A2-14

A2.6 Extract/Replace Field (FIELD)

FIELD

Extract
Field

Get
Field

Get
chav

A2-15

Replace
Field

Put
Field

Put
char

A2.7 Invert File (INVERT)

INVERT

[1 E

Initialise Process Field Build Close
Descriptions Index Files
*

Process Field
Description

] |
Process Process Process Enter Details
Index Position Length in Parameter
‘ Clause Clause Clause Table
|
l
Process Process
Field name Type
Clause Clause

A2-16

Initialise

|

|

Open
Files

l

l

Start Process i Process
Lexical Invert Print
Analyzer Statement Statement
of | ©
Invert Invert
A1l From-To
Statement Statement

r

]

Invert
From
Statement

Invert
To
Statement

A2-17

Build
Index

r

Read and
Process
Data File

Read and
Process
Data Record

Process
Record

Scan
Parameter
Table

Add-Index
Entry to
Work File

A2-18

|

Generate
Index
Records

f i

Generate

Index
Records
!) I
Sort Generate Read and Write Index
Work Non-Indexed Process End of File
File Headers Work File Record
*
Generate
Non-Indexed *
Header
Read and End of
Process Work Value
Record
Process
Work
Record
[|]
New Attribute New Attribute Add to
Name Value Index
Record
End of Write Pointer
Value Array
Record
A2-19

New

Attribute
Name
| 1) I |
End of Look for Write Attribute New
Attribute Attribute Header Record Attribute
Details Value
End of
Value

A2-20

End of

Write Pointer

Value
C I |
Link by Print
Value
Summary

A2-21

A2.8 Scan Inverted Database (SCANIV)

SCANIV

Process
Query

|

Open
Files

Close
Files

Find
Function

I

Read
Attribute
Headers

Read
Next
Header

A2-22

Get
Function

Put
Function

Get

Function
Get Extract
Next Fields
Record
*
Read Extract
Data Field
File
*
Look Move
for Field
Field
*
Move
Character

A2-23

Find

Function
* I *
|]
Evaluate Collapse
Condition Stack
Combine
Stack
Scan Pointer Lists
Array Records
0 o
Add to the

top of Stack

il

Reduce
Nesting

Add to the
top of stac

Combine
Stack Lists

*

Collapse
Stack

Combine
Stack
Lists

A2-24

Combine
Stack
Lists

Merge
Top Two
Lists

l

AND Lists
Together

AND List
Entries

OR Lists
Together
*
OR List
Entries
I

OR from OR from
List 1 List 2

A2-25

Put
function

Log
Before
Image

|

Look
for
field

I —
Update Log
Record After

Image
Update
fields
*
Update
field
Replace
Field
*
Replace
Character

A2-26

A2.9

Internal Schema DDL Compiler (INTSCE)

INTSCE
= I
[] [
Initialisation Process Close
Internal Dictionary
Statement
|
Process Open Purge
Mode of Dictionary Schema
Run
*
Process
Statement
| I 1
Process Process
File Entity
*
File
Clauses
i] [
Process Process Process
File Assign Access
Organisation

A2-27

Process

Process
Owner

Entity
J* _I*
|
‘ |
Entity Process
Clauses Entity
Fields
| |
Process
Key
Process Process
Field Right
Format Parenthesis

A2-28

A2.10 External Schema DDL Compiler (EXTSCE)

EXTSCE
ot
Initialisation Process Process Close
External Statement Dictionary
Statement
Process Open Process
Mode of Dictionary Record
Run
*
Process
Record
Items
Process
Item
Format

A2-29

Process
External
Statement
Purge Process
Schema Permit
Clause
o} o
Process Clear
Schema Schema
Locks Locks
]
o] 1o *
Clear Set Process
Schema Schema Schema
Lock Locks Lock

A2-30

A2.11

Generate Mapping Code (GENSCE)

GENSCE
Initialisation Process Generate Finalisation
Statements Code
Open Close Sort
Files Files Generated
Code

List Process
Mode Statement

Process Process

Internal External

A2-31

Generate

Code
Generate Fill Scan Scan
Initial File External Internal
Code Table Schema Schema
*
Look for Generates
File Table Final
Entry Code
o
Generate Generate Generate Generate i
Program Input -Output Data Division Working Storage -
Heading Section Header Header
|
Generate Generate Generate Generate
Final Initial Procedure Div. Linkage
Procedures Procedures Header Section

A2-32

Scan

External
Schema
*
File Find Check if all Generate
Record Entities Records Record
Table found
*
Look for
Record Table
Entry
I l]]
Generate Fill Sort Generate
Leading Item Item Items
Record Code Table Table
* %*
Look for Sort
Item Table Item Table
Entry Pass
*
Sort
Item Table
Compare

A2-33

Find
Entities

Scan
Files

Match
Entities and
Records

Try and
Match Entity
and Record

A2-34

Generate

Items
! %
Generate Generate Generate
User Record Format Item
Copy Record Code
Generate l Generate Generate Ff]]
Picture Format User Item
Item Code Item Copy Code
| 1 |
[Look Fill Fill Fill
| for Ext-Item Int-Item Int -Key
l Entity Code Code Items
*
Search for
Entity
in File

A2-35

Scan
Internal
Schema

Check if
File
Needed

Generate
File
Specification

Generate
Record

Generate
FD
Entry

Generate
Open and
Close Code

Generate
File
Flags

|
l

Generate
File
Key

Look For
Key Fields

Generate
File Key
Field

A2-36

Generate
Entities

Generate

Entities
[*
Fill Fi11 in [- Locate Generate
Entity External | Active Entity if
Table Owners l Entities Active
* * *
Look for Fill in Fill in Generate
Entity Table External Active Entity
Entry Owner Entity
*
See if Locate Find Owner
External Owner Of Active
Record Entity
* *
Search for
Owner

A2-37

Generate
Entity
[|
Generate Generate Generate
Leading Read Set Up Key
Entity Code Code Code
Generate Generate
CUR-INT- Read
entity Code
| l |
Generate Sort Fill
Fields Field Field
Table Table
Tk *
Generate Sort Look for
Trailing Field Table Field Table
Entity Code Pass Entry
*
Sort
Field Table
Compare
*
Generate Generate
Entity Key Field
Fields
*
Generate Generate the
Entity Key Field
Field
Generate
Picture

A2-38

Generate
Leading
Entity Code

Generate
Call-Read
Code

Generate
First
Entity Code

Generate
Next

Entity Code

Generate
Rewrite
Entity Code

Generate
Delete
Entity Code

Generate
Write
Entity Code

Generate
Look for
Entity Code

Generate
Clear-Int-
Entity Code

Generate
Make-Curr-
Entity Code

Generate
Look for
Owner Code

Generate Code
of not External

Record

A2-39

Generate
Format
Code

Generate
Make-Curr-
Entity Code

Locate
Owned
Entities

Clear
Entity
Flags

I

*

Generate
Clear-Curr
Code " N

Set Flags
For Owner
Entities

Clear
Entity
Flag

Ry

Set Flag
For Owned
Entity

Look for
Owned
Entity

A2-40

APPENDIX 3 - SEQUENT EXAMPLES

This appendix gives examples of the use of the SEQUENT sequential file query

system.

The layout of the example file is shown in Figure A3.1.

The dictionary file is

set up by the use of the CYBER CCL* procedure call

SEQUENT, BUILD

which initiates the conversational style interface for building the dictionary

(refer following pages).

The chosen example has

Employee number
Sex -

Marital Status

Pay rate -

Name -

Surname -
Initials -

Maiden-name -

The file was set up in

statement.

The final example page

query facility on this

eight fields

a four digit numeric field

a single character field

a single character field

a three digit numeric field to one decimal place

a twenty-four character field which is subdivided
also into Surname and Initials

the first twenty characters of the Name field

the last four characters of the Name field

a twenty character field only present for married

females.

a standard COBOL program employing that language's WRITE

of this appendix gives four examples of using the SEQUENT
file using the CYBER CCL command

SEQUENT, QUERY, 1 = query source

Included in these examples are the use of both simple and compound relation

expressions, the use of all and/or part of the Name field, and the use of the

optional maiden name field.

A3-1

- -

NAME

EMPLOYEE MARITAL PAY -
SEX
-NUMBER STATUS RATE SURNAME INITIALS
4 5 6 9 10 29 30 33 34

Figure A3.1:

A3-2

Example sequential file record layout

- -

_SERQUENT, BUILD

DEFINE SEQUENTIAL FILE DICTIONARY
:gug MORE FIELDS - ENTER ¥ OR N
ENTER FIELD NRME

? ENFLOYEE-NUNEER

ENTER FIELD TYPE - € (CHARACTER) OR N (NUMERIC)
(L

ENTER LENGTH OF FIELD ¢ 3 DIGITS)

7 004

ENTER NUNBER OF DECIMAL PLACES ¢ 1 DIGIT)

70

ENTER FIELD POSITION (4 DIGITS FROM @6861)

7 8001
FIELD NAME EMPLOYEE-NUMBER
FIELD TYPE NUMERIC

FIELD LENGTH 4

FIELD POSITION 1

ENTER ¥ TO ADD THIS FIELD TO THE DICTIONARRY
? 9,

ANY MORE FIELDS - ENTER Y OR N
7Y

ENTER FIELD NAME

7 SE¥

ENTER FIELD TYPE - C (CHARACTER) OR N (NUMERIC)
a3

ENTER LENGTH OF FIELD ¢ 3 DIGITS)

7 801

ENTER FIELD POSITION (4 DIGITS FROM eeeti)

?'éées

FIELD NANE SEX

FIELD TYPE CHARACTER
FIELD LENGTH 1
FIELD POSITION 5

ENTER ¥ TO ADD THIS FIELD TO THE DICTIONARY

W

A3-3

ANY MORE FIELDS - ENTER ¥ OR N
|

ENTER FIELD NRME

? MARITAL-STATUS

ENTER FIELD TYPE - C (CHRARACTER) OR N (NUMERIC)
7 ¢

ENTER LENGTH OF FIELD ¢ 2 DIGITS)

? 881’

ENTER FIELD POSITION (4 DIGITS FROM 8801)

2 0006

FIELD NAME MARITARL-STARTUS
FIELD TYPE CHRARACTER
FIELD LENGTH i

FIELD POSITION)

ENTER Y TO ADD THIS FIELD TO THE DICTIONARY
? ey
ANY MWORE FIELDS - ENTER ¥ OR N
79

ENTER_FIELD NANE
2 PAY-RRTE
ENTER FIELD TYPE - C (CHARACTER) OR N (NUMERIC)

Sead

ENTER LENGTH OF FIELD ¢ X DIGITS >

7 @e3

ENTER NUNBER OF DECIMAL PLRACES ¢ 1 DIGIT)
T3

éNTER FIELD POSITION (4 DIGITS FROM ©801)

? 0007

FIELD NAME PAY-RATE
FIELD TYPE _ NUMERIC
FIELD LENGTH .3
DECINAL PLACES 1
FIELD POSITION 4

ENTER ¥ TO ADD THIS FIELD TO THE DICTIONARY
1y

"AN§ NORE FIELDS - ENTER ¥ OR N

ENTER FIELD NANE

7 SURNANE

A3-4

ENTER FIELD TYPE - C (CHRRACTER) OR N (NUMERIC)
7 ¢

ENTER LENGTH OF FIELD ¢ 2 DIGITS)

2 20826°

ENTER FIELD POSITION <4 DIGITS FROM 8001)

7 dode

FIELD NRME SURNAME
FIELD TYPE CHARARCTER
FIELD LENGTH 20

'FIELD POSITION 19
'ENTER Y TO RDD THIS FIELD TO THE DICTIONARY
|

ARNY MORE FIELDS - ENTER ¥ OR N
7N

ENTER FIELD NAME

? INI11RLS

ENTER FIELD TYPE - C (CHARACTER) OR N (NUMERIC)
7 ¢

ENTER LENGTH OF FIELD ¢ 3 DIGITS »

? 004

ENTER FIELD POSITION (4 DIGITS FROM ©@8i)

7 @eie

FIELD NANME INITIALS
FIELD TYPE CHARACTER
FIELD LENGTH 4

FIELD POSITION 28
ENTER ¥ TO RDD THIS FIELD TO THE DICTIONRRY
1Y

"ANY NORE FIELDS - ENTER ¥ OR N
.Y

ENTER FIELD NAME

7 BARE]

ENTER FIELD TYPE - € (CHARACTER) OR N (NUMERIC)
ENTER LENGTH OF FJELD ¢ 3 DIGITS)

5 833 A3-

ENTER FIELD POSITION (4 DIGITS FROM BRR81)

? doip

FIELD NAME NAME
FIELD TYPE CHARACTER
FIELD LENGTH 24

FIELD POSITION ie

ENTER Y TO ADD THIS FIELD TO THE DICTIONARY

y v

7 ¥

ANY MORE FIELDS - ENTER ¥ OR N
7Y

ENTER FIELD NANE

? BAIDEN-NAME

ENTER FIELD TYPE - C (CHARACTER) OR N (NUMERIC)
? &

ENTER LENGTH OF FIELD ¢ 2 DIGITS)

2 920"

.

ENTER FIELD POSITION (4 DIGITS FROM 0881)

? 8034

FIELD NAME MAIDEN-NAME
FIELD TYPE CHARACTER
FIELD LENGTH 20

FI1ELD POSITION 34
ENTER Y TO ADD THIS FIELD TO THE DICTIONRRY
Ty

ANY MORE FIELDS - ENTER ¥ OR N
72 N

8 FIELDS CREATED IN DICTIONARY

REYERT. BUILD.
7

A3-6

_SEQUENT. QUERY. 1=JESTSQ1

';u THIS QUERY PRINTS OUT THE MARITAL STATUS,
o AND NAME OF ALL MALES.

YWHERE SEX = M PRINT MARITRL-STRATUS, NAME.

'S SHITH N o J
M WILSON KDS
REYERT. QUERY.
iyl
!
E?UENT GUERY. 1:TESTS0Z
3

%" THIS QUERY PRINTS OUT THE MARITAL STATUS.
% AND NRHE OF ALL FEMALES

;HHERE SEX = F PRINT MARITAL-STATUS. NAME.

"N JONES KR

M SMITH PR

REVERT. QUERY.

RN
$d

., SEQUENT, QUERY. 1= - JESTSEX, !
+ THIS QUERY PRINTS OUT THE FULL NAME OF
* ALL EMPLOYEES WITH THE SURNAME SMITH

" NOTE - SURNAME 1S A SUE-FIELD OF FULL NAME
;HHERE SURNAME = SMITH PRINT NAME.

"SHITH _ J
SHITH _ PA
"REYERT. QUERY.
/‘I
4

1

_SERUENT, QUERY. 1=TESTSQ4

~3

"+ THIS QUERY PRINTS OUT THE MAIDEN NAME OF
"%+ AND EMPLOYEE NUMBER OF ALL MARRIED FEMALES.

:* NOTE _ MAIDEN NAME 1S ONLY SPECIFIED FOR
* MARRIED WOMEN.

NHERE SEX = F AND MARITAL-STATUS = M
' PRINT EMPLOYEE-NUMBER. MAIDEN-NAME.

4257 MWILSON
REVERT QUERY.
7

K \

A3-7

APPENDIX 4 - INVERSE EXAMPLES

This appendix gives examples of the INVERSE inverted file query/update sub-

system,

The first page of computer printout gives the DDL for building the inverted
index. To reduce the size of example output only the first 60 of the 400,000

records on the file were indexed.

The original file contained details of all property sales in South Australia
over a two year period. The records are 400 characters long (giving a file
size of 16 mega-bytes) but only a few fields were described in the dictionary,
and only a selection of these few were indexed. Again this was to reduce the
complexity of the example for inclusion here. Of the eleven fields, only LGA,

ZONING-CODE and LAND-USE-CODE were indexed.

The second and subsequent computer printout pages of this appendix give ten
query/update requests that demonstrate many of the range of features available

in the QUILL language used by the INVERSE system.

The ten queries demonstrate the following features
- simple and complex relational conditions including both equality
and inequality
- print format control - page size
- headings
- page numbering
- updating selected records

- extraction of information onto "hit files"

Ad-1

-Ca

ERSE BUILD. 1=TESTYZ

A

.. -
%% e iz

THIS SET OF "INYERSE" DDL HAS BEEN APFLIED TO
RECORDS 1 7O 62 (RATHER THAN THE WHOLE FILE OF
400,008 RECORDS) IN ORDER TO RESTRICT AMOUNT OF
OUTPUT FROM EACH EXAMPLE QUERY.

% THE FOLLOMING FIELDS ARE DESCRIBED

T LGA - THE LOCAL GOYERNMENT RREA NUMBER
" 20NING-CODE LIN = LIGHT INDUSTRIAL

» , . _GIN = GENERAL INDUSTRIAL
E SALE-DATE FORMAT YYMMDD

% SALE-PRICE

* FRONTRGE

o 'LAND-USE-CODE CURRENT USE OF LAND

Cu GRAPHIC-INDEX

Cu IMPROVEMENTS-CODE BUILDINGS ON SITE

» RRER-HECTARES

a OLD-NANE FORMER OMNER

* NEW-NANE CURKENT OWNER

"INYERT FROM 1 TO €0 .
"PRINT SUNMARY.
_INDEX FIELD NAME IS LGA
_POSITION IS 1
" TYPE 1S ALPHA
. _ LENGTH IS 2.
_INDEX FIELD NAME IS ZONING-CODE
_POSITION IS 205
"TYPE 1S5 ALPHA
_LENGTH 15 3.
_FIELD NRAME 1S SALE-DATE
, 'POSITION 15 14 TYPE 1S NUMERIC LENGTH IS 6.
FIELD NANE 1S SALE-PRICE POSITION IS 23 TYPE IS NUMERIC LENGTH IS 8.
_FIELD NANE 1S FRONTAGE POSITION IS S@ TYPE 1S NUMERIC LENGTH IS 5.
INDEX FIELD NAME 1S LAND-USE-CODE POSITION IS 164 TYPE IS NUMERIC
LENGTH IS 4.
FIELD NANE IS GRAPHIC-INDEX POSITION IS 1€%£ TYPE IS ALFHA
L _ LENGTH IS 18,
“FIELD NANE 1S IMPROYEMENTS-CODE POSITION IS 4178 TYPE IS ALPHRA
B ~ LENGTH IS 15.
_FIELD NAME IS RREA-HECTARES POSITION IS 19X TYPE IS NUMERIC
_ , LENGTH IS 8.
_FIELD NAME 1S OLD-NAME POSITION 1S 244 TYPE 1S5 ALPHA
R LENGTH IS €0.
_FIELD NAME IS NEM-NANME POSITION IS 274 TYPE IS ALPHA
LENGTH IS ¢0.

éEvERT BUILD.

lf'

\

A4-2

 INVERSE. QUERY. T=TESTR1™
'WRERE LAND-USE-CODE = 1108 PRINT LGAR. ZONING-CODE.
_SALE-DATE
HERDING "LGR ZONE DRTE".
iLgh zoNE DRTE
22 GIN 800729
22 GIN 794120
22 'GIN gees22
‘22 GIN 790907
.22 LIN 790627
‘22 LIN 'sei1ie
22 LIN 8108112
22 LIN se8102
22 GIN 791818
22 LIN se8714
22 LIN seesSei
22 LIN 884224
22 LIN 798119
22 GIN 798704
‘22 GIN 8108116
22 LIN 790529
22 GIN 7908801
22 GIN 800130
22 GIN 791126
22 GIN 790126
‘22 GIN 8es7e2
(22 GIN 798517
"22 GIN 8ie13e
22 GIN_ 810127
‘22 GIN 790412
"22 GIN seeile
~22 GIN 'see9ii
T22 GIN see4le
REVERT. QUERY.

U]

A4-3

Yowd o6 e

I T |

st

R

“ *-% % % &% &

ngERSE,QUERv;JEiESTaz'

1

THIS QUERY PRINTS OUT THE LGR AND OMWNER NAME

OF ALL SALES OF LAND CURRENTLY USED AS A QUARRY
AND ZONED LIGHT INDUSTRIAL.

_THE PRGE LENGTH HAS BEEN SET TO 415 LINES AND
_THE PAGE NUMBER 1S TO BE PRINTED IN COL. 40.

A THREE LINE HERDING IS TO BE PRINTED ON EARCH
PARGE.

HHERE LHND -USE-CODE = 110@ AND ZONING CODE = LIN FPRINT LGA.
HEADING "LGR NEW NAME" ON LINE

ﬁEHDlNﬁ\' ---------- * ON LINE 2
HERDING "*® ON LINE 2
CONTROL 'PRGE LENGTH 15
CONTROL PAGE NUMBER 40.
FAGE 1

22 NR C S + P R CARAPETIS 4 JAMES ST THEERRTON
22 W G + 1 M HARLEY é PATRICIA RYE CRMDEN
22 R & P MATHIEU 74 MARIA STREET THEBRRTON

.22 _GRANDAL NOMINEES PTY LTD X2 WEST THEEARTON RD THEBARTON

22 MR A ELALI 77 LINDSARY ST PERTH I
22 PANYIC PTY LTD C/0 54 BURLINGTON ST WALKERWILLE

22 J R POPE 3 WHITING ST SERCOMBE HEIGHTS

22 MR D H + J A MATHEWS 3 JAMES ST THEBARTON

22 NR__G + T MAZARAKOS 120 WRIGHT ST ACELAIDE

EVERT. QUERY.

Al
[|
)

Ab-4

NEW-NAME

wn

S50

INVERSE. QUERY, |
"UHERE LAND-USE-CODE

HEAD ING

1
'LGA
j22
“22
22
22
.22
C22
‘22
22
‘22
.22
22
‘22
22
.22
22
‘22
j22
‘22
(22
‘22
22
22
22

"LGA ZONE

I=TESTRX"

—-

= 11060 PRINT LGRH.
SALE-PRICE"*.

ZONE SRLE-PRICE

GIN
GIN
GIN

GIN
LIN

LIN

LIN
LIN

GIN

LIN
LIN

LIN

LIN

GIN

GIN

LIN

GIN
GIN

GIN
GIN
GIN
GIN
GIN

GIN
GIN

GIN
GIN

“GIN
RT QUERY.

09021000

90025000

0e028000

90185000
20015000
00025500
00030509
02023000
00016000

98009500

20025000
00822000
20028500
80027500
00027500
ee023500
80025500
‘80020500
20927500
20025000
20850000
_p8@37000
80060000
20030000

00060000

geg2300e0
gao30000
goozgene

A4-5

ZONING-CODE.

SALE-PRICE

NVERSE QUERY., 1=TEST(4

!
.
1L

1
;# TH1S QUERY PRINTS OUT ALL LAND CURRENTLY USED

* FOR_QUHRRIES AND ALSO UPDATES THE SALE PRICE
4+ By Ses. - NNE
LMHERE LAND-USE-CODE = 11€@ PRINT LGR., ZONING-CODE. SALE-PRICE
INCREHSE SALE-PRICE BY See

HERD]NG *LGA 20NE SRLE-PRICE®.

LGA 20NE SALE-PRICE
‘22 GIN ‘eeeziSee
122 GIN__BRB25500

22 GIN “oee28500
~22 GIN 08185500

“22 'LIN__@0015500

‘22 LIN o0e2ée00
‘22 LIN "ee031800
(22 LIN__@0823508

22 _GIN ewv0165See

T22 LIN éeoieove
22 LIN eB023500

‘22 LIN eee22500
"22 LIN 00025840
722" GIN ‘eo02sd0e
"22 GIN eep2séoes
.22 LIN “ees24000
"22 'GIN 00026000
‘22 GIN 08021809

22 GIN eee2800d

22 GIN 00025500

'22 GIN__eeesseses
"22° GIN “eeei?See
22 GIN 00060500
'22 GIN 08038500
22 GIN_ 00068500
22 GIN 00823500

‘22 GIN ees3esee
22 GIN epe2s5ee

REYERT. QUERY.

21

Ad-6

?ERSE QUERY., 1=TESTES

THIS QUERY JLLUSTRATES THE USE OF AN
INEQUALITY RELATIONSHIP.

;PRINT LGR,

L

1 _
‘22 eeps15000
22 90025500
22 000305080
‘22 00023000
‘22 0900055080
~22 0825000
"22 epe22000
.22 00028500
‘22 00023500

REVERT. QUERY.

25

‘

HHERE LAND-USE - CODE < 1290 HND ZONING-CODE = LIN
"SALE-PRICE. NEMW-NAME.

MR C S +PA CHRHPETI< 4 JAMES ST THEERRTON

M G+ I M HARLEY € PATRICIA AYE CAMDEN

R ¢ P MATHIEU 74 MARIA STREET THEBARTON

GRANDAL NONINEES PTY LTD 2X WEST THEBARTON RD THEBARTON

MR A ELALI 77 LINDSAY ST PERTH c6od
PANYIC PTY LTD C/0 54 BURLINGTON ST WALKERYILLE

J R POPE 2 WMHITING ST SERCOMBE HEIGHTS

MR D H + J A MATHEKWS X JAMES ST THEBRRTON

MR G + T MAZARAKOS 128 WRIGHT ST ADELAIDE

A4-7

on

INVERSE. QUERY, IZTESTE

+
b
-1

p—— -

TH1S QUERY PRINTS OUT THE LGA AND OKWNER NAME

OF ALL SALES OF LAND CURRENTLY USED AS A QUARRY

AND ZONED GENERAL INDUSTRIAL.

_THE PAGE LENGTH HﬁS BEEN SET TO 15 LINES HND

THE PAGE NUMBER 1S TO BE PRINTED IN COL. 40.

A THREE LINE HERDING 1S TO BE PRINTED ON EACH

PAGE.

";TH]S QUERY ALSO EXTRACTS FOUR FIELDS FROM
EARCH SELECTED RECORD AND WRITES THEM TO

AN EXTRACT FlLE

"WHERE .LAND-USE-CODE = 1108 AND ZONING-CODE = GIN
"PRINT_LGR, NEW-NAME

"HEADING *LGA NEW NAME® ON LINE 1
“HEADING *--- --- ----" ON LINE 2

"MEADING ** ON LINE 3 o
"EXTRACT LGA, LAND-USE-CODE. ZONING-CODE AND NEW-NAME.
LGA MEW NAME

[T

n/S

LI

5! Bhanar Y108

ST THEBRARTON

22 KINTORE <

THEERRTON

‘22 2IFF PTY LTD C/0 9 BLUELRKE CT TENNYSON

5821
S

22;
T22

22
22
22
22
22
S22

21FF PTY LTD C/0 TOUCHE ROSS + CO 45 GRENFELL ST ADELAIDE

MR D + P PARSALIDIS 29 LIGHT TCE THEBRRTON
MR J D PHILLIPS 26 JAMES ST THEBARTON 5@
P & N 10ANNOU 34 PHILLIPS ST THEBRRTON 58
'HIGHWRYS DEPT 32 WARWICK ST WALKERYILLE 5
EYANGELISTA NOMINEES PTY LTD 227 RUNDLE ST RDELRIDE
KIGHWAYS DEPT X3 WARMICK ST WALKERYILLE 5
HIGHMRYS DEPT 22 WARMICK ST WALKERYILLE 5

SR BREMING CO LTD 224 HINDLEY ST ADELAIDE

GHL]C]R PTY LTD 232 PIRIE ST ADELRIDE

D]VERSE PRODUCTS LTD 29 PORT RD THEBARTON o
DUNED]N NOMINEES PTY LTD 456 PULTENEY ST RADELRIDE
DlVERSE PRODUCTS LTD 27 PORT RD THEEBARTON

NR 0 _+ A CARRARBS 62 CUDMORE TCE MARLESTON

HR ‘1 G + C D FRASER 5@ MWEST THEEARTON RD THEERRTON
MR B + S 'E GLEDHILL 3 WARE ST THEERRTON

Seee

REVERT QUERY.

/1

od

A4-8

?QERSﬁ}éﬁékﬁJiE?tsTE%’
" THIS QUERY PRINTS OUT THE LGA AND OWNER NAME

]
E
_’C
* OF ALL SALES OF LAND CURRENTLY USED AS R QUARRY
#» AND ZONED LIGHT INDUSTRIAL.

%

%

THE PAGE LENGTH HRS BEEN SET T0O 7 LINES AND
THE PAGE NUMBER 1S TO BE PRINTEL IN COL. 48.

" A THREE LINE HEADING IS TO BE PRINTED ON ERCH
» PRGE.

* THE PRINT ACTION USES THE *SPACE® OFTION IN ORDER
* T0 OYERRIDE THE DEFAULT SPACING.

MHERE LAND-USE-CODE = 14088 AND ZONING-CODE = LIN
'PRINT LGR. SPRCE 2 NENW- NAME

HERDING °"LGA NEW NRME® ON LINE 1

_HEADJNG "~~~ === ===- * ON LINE 2
HEHDING ** ON LINE 3
CONTROL'PRGE LENGTH 7

CONTROL PRGE NUMBER 480.

1) FAGE 1

B

_22 MR C S + P R CARARPETIS 4 JAMES ST THEEARRTON

22 MG + 1 M HRRLEY 6& PRTRICIA AYE CAMDEN

22 R & P NATHIEU 74 MARIA STREET THEEARTON

22 GRANDAL NOMINEES PTY LTD XX WEST THEBARTON RD THEBARTON
1 PRGE 2

"LGA NEW NANE

- e e -

722 MR A ELALI 77 LINDSAY ST PERTH 6080
22 PANYIC PTY LTD C/0 S4 BURLINGTON ST WALKERYILLE

22 J R POPE 3 WHITING ST SEACOMBE HEIGHTS

22 MR D H + J A MATHEWS X JAMES ST THEBARTON

i PAGE 3

“LGR NEW NANE

- - -

‘22 MR G + T MAZARAKOS 12@ WRIGHT ST ADELRIDE
REVERT. QUERY.
Pk

t3

A4-9

Se

_INYERSE. QUERY, 1=TESTRE

. *_..

TH1S QUERY DEMONSTRATES A SIMFLE BOOLERN EXFRESSION

_WHERE LRND-USE~CODE = 1200
"PRINT LGA, LAND-USE-CODE, ZONING-CODE. NEW-NAME.

122 1200 GIN
22 1200 GIN
22 1200 GIN
(22 41288 GIN
22 1280 GIN
22 1208 GIN
22 1200 GIN
22 1208 GIN
22 1208 GIN
22 1208 GIN
22 1288 GIN
REYERT. QUERY.
AR
ik

.".

HOUSING TRUST 417 RNGRS ST ADELRIDE
HOUSING TRUST 47 ANGAS ST RDELAIDE
HOUSING TRUST 47 ANGAS ST ADELAIDE
HOUSING TRUST 17 ANGAS ST ARDELRAIDE
HOUSING TRUST 47 RNGAS ST ARDELRIDE
HOUSING TRUST 17 ANGAS ST ADELRIDE
HOUSING TRUST 47 RNGAS ST ADELRIDE
HOUSING TRUST 47 BNGAS ST ADELRIDE
HOUSING TRUST 17 ANGAS ST RDELRAIDE
GALICIA PTY LTD 3X FIRIE ST ARDELAIDE

nununuurnunununn
D2DPIDIIDIPIDIDIDPIDID

56

CLOVERCREST FINANCE + INY FTY LTD 1822 PORT RD ALBERT PARK

WERSE. QUERY, 13TES103]
i

TH1S QUERY DEMONSTRARTES A COMFOUND BOOGLERN EXPRESSION

"MHERE LAND-USE-CODE = 110@ AND ZONING-CODE = GIN
LAND-USE-CODE. ZONING-CODE., NEW-NAME.

PRINT LGR.
1

‘22 11e8
‘22 1108
22 i1e0
22 14ee
22 1100
22 1400
22 11e@
22 i1ee
22 1iee
22 1100
22 1408
22 14ee
22 1400
22 11ee
‘22 11e0
22 4dee
22 411ee
22 11080
22 14ee

GIN
GIN
GIN
GIN
GIN
GIN
GIN
GIN
GIN
GIN
GIN
GIN
GIN
GIN
GIN
GIN
GIN
GIN
GIN

REYERT. QUERY.

4

1

H
)

M/5 J LILITH @ KINTQRE ST THEERRTON
MR H + A AMANATIDIS 22 KINTORE ST THEERRTON
ZIFF PTY LTD C/0 9 BLUELAKE CT TENNYSON

S5a

ZIFF PTY LTD C/0 TOUCHE ROSS + CO 45 GRENFELL ST ADELAIDE

MR D + P PARSALIDIS 2% LIGHT TCE THEERRTON
MR J D PHILLIPS 26 JAMES ST THEBARTON

P & M IOANNOU 34 PHILLIPS ST THEEARRTON

HIGHWAYS DEPFT 23 WARWICK ST WALKERYILLE

EYANGELISTA NOMINEES PTY LTD 227 RUNDLE ST ADELAIDE
HIGHWAYS DEPT 33 WARWICK ST WALKERYILLE

HIGHMAYS DEPT 23X WARMICK ST WALKERYILLE

S A BREWING CO LTD 224 HINDLEY ST ADELAIDE

GALICIA PTY LTD 22 PIRIE ST ADELRIDE

DIYERSE PRODUCTS LTD X% PORT RD THEBARTON

DUNEDIN NOMINEES PTY LTD 456 PULTENEY ST ADELRIDE
DIVERSE PRODUCTS LTD 37 FORT RD THEEARTON

MR 0 + A CRRRAES €3 CUDMORE TCE MARLESTON

MR 1 G + C D FRASER 5@ WEST THEBARTON RD THEBARTON
MR B + S E GLEDHILL X WARE ST THEEARTON

A4-10

B
Lt

-
=
-g-

ERSE. QUERY; 121ESiEde” 7

* TH1S QUERY DEMONSTRATES THE USE OF FRARENTHESES
* TO CONTROL THE ORDER OF EYARLUATION OF COMFLEX
* BOOLERN EXPRESSIONS

;MHERE ((LAND-USE-CODE = 141@@ ANl ZONING-CODE = GIN) OR
{LAND-USE-CODE = 12@8))
_PRINT LGA, LAND-USE-CODE. ZONING-CODE. NEW-NARME.
1
'22 1180 GIN M/S J LILITH 2@ KINTORE ST THEERRTON S5@;
22 1100 GIN MR H + AR AMANARTIDIS 22 KINTORE ST THEBARTON

22 120080 GIN S A HOUSING TRUST 47 RANGRS ST RADELRIDE '
22 1200 GIN S R HOUSING TRUST 47 ANGARS ST RDELRAIDE :
22 1200 GIN S R HOUSING TRUST 47 ANGAS ST ADELRIDE :
22 1208 GIN S A HOUSING TRUST 47 RNGAS ST ADELRIDE :
22 1100 GIN ZIFF PTY LTD C/0 % BLUELRKE CT TENNYSON

22 110@ GIN ZIFF PTY LTD C/0 TOUCHE KROS5 + CO 45 GRENFELL ST RDELRIDE
22 1208 GIN S A HOUSING TRUST 47 ANGAS =T RDELRIDE :
22 1208 GIN S R HOUSING TRUST 17 ANGARS ST ACELRIDE :
22 1200 GIN S A HOUSING TRUST 47 ANGAS ST ADELAILE :
22 1200 GIN S A HOUSING TRUST 47 ANGAS ST ADELRIDE :
22 1200 GIKR S A HOUSING TRUST 47 ANGAS ST ADELRIDE :
22 1188 GIN MR D + P FARSALIDIS 29 LIGHT TCE THEBRRTON

22 1100 GIN HMR J D PHILLIFS 26 JAMES ST THEBARTON :

22 11886 GIN P & M ITOANNOU X4 FHILLIF:E: 5T THEBRRTON '
22 1108 GIN HIGHWAYS DEFT XX WARMWICK =T WALKERVYILLE

22 41808 GIN EYANGELISTAR NOMINEES FTY LTD 227 RUNDLE ST RDELAIDE

22 11080 GIN HIGHWAYS DEFPT XX WARMICK ST WALKERVYILLE

22 1100 GIN HIGHWAYS DEFT XX WARWICK ST WALKERYILLE

22 1108 GIN S R BREWING CO LTD 224 HINDLEY ST RDELRIDE

22 1180 GIN GALICIA PTY LTD XX PIRIE ST RADELRIDE S5ai
22 11@e8 GIN DIYERSE PRODUCTS LTD X2 FORT RD THEERRTON
22 120@ GIN GALICIA PTY LTD XX PIRIE =T ADELRIDE Sa1

22 1100 GIN DUNEDIN NOMINEES PTY LTL 454 PULTENEY ST ADELRIDE

22 1280 GIN CLOYERCREST FINANCE + INY FTY LTD 1832 FORT RD ARLBERT PARK
22 1108 GIN DIYERSE PRODUCTS LTD 27 FORT RO THEBARTON

22 110¢ GIN MR O + A CARRABS éX CUDMORE TCE MRRLESTON

22 119006 GIN MR 1 G + C D FRASER S8 WEST THEBARTON RD THEBARTON

22 1100 GIN MR B + S E GLEDHILL X WARE ST THEBARTON
REYERT. QUERY.

4

A4-11

APPENDIX 5 - PYRAMID EXAMPLES

This appendix gives examples of the use of the PYRAMID hierarchical

database subsystem.

The internal dictionary has been set up using five sets of Internal Schema

DDL.

TESTI1 describes the Customer database with the 3 entities

CUSTOMER (CUSTOMER-NO, CUSTOMER-NAME, CREDIT-LIMIT,
l BALANCE, TOTAL-VALUE ON-ORDER)

INVOICE (INVOICE-NO, INVOICE-DATE)

l

ORDER-LINE (ORDER-1TEM, ORDER-QTY, ORDER-PRICE)

TESTIZ2 is an unrelated database with a multi-leg hierarchy

DEPT
EMPLOYEE PROJECT
EXPENSE PURCHASE

TESTI3 describes the layout of the Inventory database and its two entities.

PART (PART-NO, DESCRIPTION, UNIT-PRICE, STOCK-IN-HAND)

!

PURCHASE (PURCHASE-ORDER-NO, PURCHASE-QTY, PURCHASE-DATE,
PURCHASE-PRICE, PURCHASE-SUPPLIER)

A5-1

TESTI4 combines the Customers and Inventory databases of TESTIl1 and

TESTI3. It is set up for the order-entry and invoice print External Schemas.

TESTI5 is an extension of the Customers data base of TESTIl, with the
Payment entity being added to convert the single leg hierarchy to a

multiple leg hierarchy.

CUSTOMER
INVOICE PAYMENT
ORDER-LINE

This Payment entity has been added to illustrate the ability of PYRAMID
databases to have extra entity types added without making existing
databases redundant. By adding six spaces (for PAYMENT-DATE) into all
existing records, the same data records can be matched to the new internal

schema.

In a real-1ife situation TESTI1 and TESTI4 could co-exist for different
applications, but the advent of the changes in TESTI1 to create TESTIS

would require corresponding alterations to TESTI4,

The external dictionary has been set up for seven user interfaces.

TESTELl is an interface to the CUSTOMERS file. It was set up for the
initial order-entry process when that program accepted orders without
checking the stock-in-hand of the ordered parts. Notice that the user
processes a 40 character customer name while the database uses a 30
character field. MNotice also that the internal entity ORDER-LINE has
been renamed ORDER for the user interface, and also that the internal

attribute ORDER-QTY has been renamed as the user field QTY.

A5-2

TESTE2 is an interface suitable for maintaining the file of parts,
including stock levels and the history of purchases to replenish these

stock levels.

TESTE3 collapses the three level hierarchy of TESTEl into a single user
record. Its primary use is for incorporation with QLSCE so that the

QUILL language can be used to interrogate the file.

TESTE4 is an example of converting a three level internal schema into a
two level external schema. It is thus an interface part way between the

extremes of TESTEl and TESTE3.,

TESTE5S and TESTE6 are interfaces to the COMPANY internal schema of TESTIZ2.

TESTES uses a single external name (NAME) for the internal names SURNAME

and INITIALS,

TESTE7 is the revision of TESTEl to allow the order entry program to
check the stock-in-hand of the part records. The PURCHASE record is not
really required, but has been included in case a further enhancement to

the order entry program needs to make purchases as "back-orders".

After the twelve sets of DDL, the appendix contains five example user
programs for creating parts and customers, taking orders, and printing

invoices (see Figure A5.1).

Program CRCUST is the main subprogram of the CREATE program.

The purpose of the program is to create the CUSTOMERS database. This is

achieved by the DBMS call

MOVE “RELEASE" TO FUNCTION.
CALL “DBMS" USING FUNCTION, RECORD-NAME, BUFFER, RESULT.

A5-3

~7
\
NEWITEM ADDCUST CRCUST
Create and add Kdd New Create
parts Customers Customer
Database
ORDENT
Order
INVENTORY Entry CUSTOMERS

PN

A

IVPRINT
Print

Invoices

‘

Invoices

Figure A5.1: Order-entry system chart

AS-4

Following this the empty database now exists and can be used by other

programs to add, modify and retrieve order entry data.

Program ADDCUST picks up the CUSTOMERS database (either empty or partially

full) and adds new customers to it.

The database is opened by the DBMS call
MOVE "OLD" TO FUNCTION
CALL "DBMS" USING FUNCTION, RECORD-NAME, BUFFER, RESULT.

New customers are written using the DBMS call
MOVE "WRITE" TO FUNCTION.
MOVE "CUSTOMER" TO RECORD-NAME.
CALL "DBMS" USING FUNCTION, RECORD-NAME, BUFFER, RESULT.

Program NEWITEM combines the activities of the above two programs and

both creates and loads the INVENTORY database.

Program ORDENT updates the CUSTOMERS and INVENTORY databases with the
details of orders taken. PART records are read with the DBMS call
ACCEPT ORDER-ITEM.
MOVE ORDER-ITEM TO PART-NO.
CALL DBMS USING READ-FUNCTION, PART-RECORD, PART, RESULT
and the record with STOCK-IN-HAND adjusted is replaced using the DBMS call
CALL “DBMS" USING REWRITE-FUNCTION, PART-RECORD, PART, RESULT.

Program IVPRINT reads sequences of records to form invoices. It includes
DBMS calls of the form
CALL "DBMS* USING NEXT-FUNCTION, ORDER-RECORD, ORDER-LINE, RESULT.

A5-5

Following the five programs referred to above the next page of the appendix
gives 3 examples of the use of the QUILL query language on the CUSTOMERS
database. In the CYBER CCL call

PYRAMID, QUERY, I= TESTPQl, D = ORDERS

the ORDERS is the catalogue name for the CUSTOMERS database.

Finally the appendix contains a selection of database interface subprograms
generated by PYRAMID, Each of these subprograms is introduced by a page

explaining its potential use.

A5-6

PYRAMID, INTDDL, J=TEST14
NEW DICTIONARY.
INTERNAL SCHEMA NAME IS MANUFACTURING.

FILE NANE IS CUSTOMERS; ORGANIZATION IS INDEXED:
RSS1IGN TO ORDERS.

ENTITY NAME 1S CUSTOMER; KEY IS CUSTOMER-NO
(CUSTONER-NO/C 6.CUSTOMER-NAME/C 28.,CREDIT-LIMIT/N 8. 2.
BALANCE/N 18. 2. TOTAL-YALUE-ON-ORDER/N &. 2).

ENTITY NAME 1S INYOICE; OWNER IS CUSTOMER: KEY IS INYOICE-NO
(INYDICE-NO/C 6. INYOICE-DATE/N €).

ENTITY NANE 1S ORDER-LINE; KEY IS ORDER-ITEM;
"OWNER 15 INYOICE.

(ORDER-ITEN/C 4.O0RDER-@TY/N €,O0RDER-PRICE/N 5.2).
REYERT. INTDDL.
’

A5-7

PYRRMID, INTDDL, 1=TEST]2

REYERT. INTDDL.

/

*
*

*

L4
*
*
®
*
L]
*
*
*
*
)|

TH1S SET OF °FYRAM
SINGLE DATRBASE WHICH IS R MULTI-LEG HIERARCHY.

EMPLOYEE

EXPENSE

FILE NAME 1S COMPANY.
ASSIGN TO COMPANY.

ID" INTERNAL SCHEMA DDL DESCRIBES R

DEPARTHENT

PROJECT

FURCHRSE

NTERNAL SCHENMA NAME 1S COMFANY.

ORGANIZATION IS INDEXED:

ENTITY NARME 1S DEPRRTMENT. KEY 1S DEFT-NO
(DEPT-HD/C 2,DEPT-NRNME/C 2@).

ENTITY NAME 1S EMPLOYEE, OWNER I% DEFARTHMENT:
KEY 15 EMP-NOCEMP-NO/C 4. NAME(SURNAME/C 2@.INITIALS/C 4).
SEX/C 1,SALARY/N 3).

ENTITY NAME 1S PROJECT; QWNER IS DEFARTMENT:
KEY 15 PROJ-NO(PROJ-NO/C 6.FPROJ-NAME/C 28.BUDGETAN 7).

ENTITY NRME 1S PURCHASE; OWNER 1$ FROJECT;
KEY 15 PURCHRSE-ORDER-NO(PURCHRSE-ORDER-NO/N 5.

ANOUNT/N 8. 2).

ENTITY NAME 1S EXPENSE; OMNER 15 EMFLOVYEE:
KEY 1S EXPENSE-CODECEXPENSE-CODE/C 1.RATE/N 4. 2).

L4

A5-8

PYRAWKID, INTDDL, I=TESTIZX

* THIS SET OF *PYRAMID® INTERNAL SCHEMAR DDL DESCRIBES
* THE LAYOUT OF THE INYENTORY DATA BRASE WHICH CONTAINS
PART ENTITIES OWNING PURCHASE ENTITIES.

INTERNARL SCHEMA NAME IS5 INYENTORY.

FILE NAME 1S INYENTORY, ORGANIZATION IS INDEXED
ASSIGN TO PARTS.

ENTITY NAME 1S PART; KEY IS5 PART-NC
{PART-NO/C 4,DESCRIFTION/C 48.UNIT-PRICE/N & 2.
STOCK-IN-HAND/N 6).

ENTITY NANE 1S PURCHASE; OMWNER 15 PRRT: KEY IS PURCHRSE-ORDER-NO
(PURCHRSE-ORDER-NO/C 4,PURCHASE-QTY/N €, FURCHRASE-DRTE/N €.
PURCHRSE-PRICE/N 6.2, PURCHASE-SUFPLIER-NO/C 4).
REYERT. INTDDL.
/.

A5-9

PYRRMID., INTDDL. J=TESTI4

THIS SET OF "PYRAMID®" INTERNAL SCHEMA DDL DESCRIBES
THE LAYOUT OF THE TWO DATA BASES WHICH CONTRIN

PART ENTITIES OWNING PURCHRSE ENTITIES. ARD CUSTOMERS
* OWMNING INYOJCES OWNING ORDER LINES.

-INTERNAL SCHEMAR NAME 1S DOUBLE.

FILE NAME IS INYENTORY, ORGANIZATION IS INDEXED;
ASSIGN TO PARTS.

* % &

ENTITY NAME 1S PART; KEY 1S PART-NO
(PART-NO/C 4,DESCRIPTION/C 4@,UNIT-FRICE/N 6. 2.
STOCK-IN-HAND/N €).

ENTITY NRME IS PURCHASE; OWNER 1S PFART; KEY IS PURCHARSE-ORDER-NO
(PURCHRSE-ORDER-NO/C 4,PURCHASE-QTY/N €é.PURCHRSE-DRTE/N 6.
PURCHRSE-PRICE/N 6. 2, PURCHASE-SUPFLIER-NO/C 4).

FILE NAME 1S CUSTOMERS; ORGANIZATION 1S5 INDEXED:

ASS]IGN TO ORDERS.

ENTITY NRNE 1S CUSTOMER; KEY IS5 CUSTOMER-NO
(CUSTOMER-NO/C 6.,CUSTOMER-NAME/C X@.CREDIT-LIMIT/N 8. 2.
BALANCE/N 1@. 2, TOTAL-YALUE-ON-ORDER/N €. 2).

ENTITY NAME 1S INYOICE: OWNER IS CUSTOMER; KEY IS INVOICE-NO
{INYOICE-NO/C 6. INYOICE-DATE/N €).

ENTITY NAME 1S ORDER-LINE; KEY IS ORDER-ITEM.
OMNER 1S INYOICE:
{ORDER-1TEM/C 4.0RDPER-QTY/N €é,ORDER-PRICE/N 5. 2).
REYERT. INTDDL.
'

A5-10

PYRANID., INTDDL., I=TESTI S

» THIS SET OF °PYRAMID® INTERNAL SCHEMR DDL DESCRIBES A
* SINGLE DRTRBASE HWHICH 1S A MULTI-LEG HIERARCHY.
»

* DEFPARTHMENT

»

*

»

* . .

% INYOICE PAYMENT

* .

»

* ,

* ORDER-LINE

1

INTERNAL SCHEMA NAME 1S ACCOUNTING.

FILE NAME 1S CUSTOMERS,; ORGANIZATION IS INDEXED:
ASSIGN TO ORDERS.

ENTITY NRME 1S CUSTOMER; KEY IS CUSTOMER-NO
{CUSTOMER-NO/C 6,CUSTOMER-NAME/C X@.CREDIT-LIMIT/N & 2,
BALANCE/N 10. 2, TOTRL-YALUE-ON-ORDER/N &. 2).

'ENTITY NAME 1S INYOICE: OMWNER IS CUSTOMER; KEY IS INYOICE-NO
(INYOICE~NO/C 6. INYOICE-DATE/N 6).

ENTITY NANE 1S ORDER-LINE; KEY 1S ORDER-ITEN;
OMNER IS INYOICE;
(ORDER-ITEN/C 4,0RDER-QTY/N 6.,0RDER-FRICE/N 5. 2).

ENTITY NANE 1S PAYMENT; KEY IS PAYMENT-DATE:
OUNRER 1S CUSTOMER:
(PAYMENT-DATE/C 6., PRYMENT-AMOUNT/N €. 2).

REVERT. INTDDL.
=

A5-11

'WRAMID, EXIDDL. 1=TESTES

*
*
$

TH1S SET OF "PYRAMID® EXTERNAL SCHEMR
A THREE LEYEL STRUCTURE (THE SRME A%
SCHENR).

NOTE - THE FIELD TOTAL-YALUE-ON-ORDER
TOT-YAL FOR SHORT.

THE RECORD ORDER-LINE HAS BEEN
THE NEW DICTIONARY STRTEMENT HRS BEEN

RS TH1S 1S THE FIRST EXTERNAL YIEM TO
IN THE EXTERNAL YIEW DICTIONARY.

"NEW DICTIONARY.

EXTERNAL SCHEMAR NAME IS ORDER-ENTRY

PERM1T RACCESS FOR UPDRTE.RETRIEVE. CREARTE.

DDL DESCRIBES
THE INTERNRAL

HAS BEEN RENAMED

RENAMED TO ORDER

INCLUDED
BE FLRACED

FORMAT.

RECORD NAME 15 CUSTOMER (CUSTUMER-NAME/C 4%, CUSTOMER-NQ/C 6.
CREDI1T-LIMIT/N 8. 2, TOTAL-YALUE-ON-ORDER=TOT-YAL/N 8.2).

'RECORD NAME 15 INYOICECINYOICE-NO/C €, INYOICE-DATE/N 6).

RECORD ORDER-LINE = ORDER(ORDER-1TEM/C 4.CRDER-FRICE/N 5. 2.
ORDER-QTY=QTY/N 6).
REYERT. EXTDODL.

/

A5-12

PYRARMID, EX1DDL. 1=TESTEZ

TH1S SET OF "PYRAMID® EXTERNAL SCHEMA DDL DESCRIBES
THE YI1EW OF THE DRTA BASE USED FOR MAINTAINING PART
DETAILS AND FOR RECORDING PURCHASES OF STOCK INTO
THE INYENTORY.

% % % ¥

EXTERNAL SCHEMA NAME IS FURCHASES
PERN1T ACCESS FOR UPDATE.RETRIEYE, CRERTE. FORMAT.

 RECORD NAME 15 PART(DESCRIPTION/C 4@,FART-NO/C 4.
UNIT-PRICE/N 6. 2. STOCK-IN-HAND/N €).

RECORD NAME 1S PURCHRSE(FURCHASE-CORDER-NO/C 4, FURCHRSE-DATE/N 6.
PURCHASE-QTY/N 6, PURCHRSE-PRICE/N &. 2, PURCHASE-SUPPLIER-NO/C 4).

REYERT. EXTDDL.
PR

A5-13

PYRARMID, EXTDDL, I=TESTEZ

TH15 SET OF °*PYRAMID" EXTERNAL SCHEMA DDL 1S A SINGLE
LEVEL Y1EW OF THE THREE LEVYEL INTERNAL SCHEMA. IT IS5
USED PRIMARILY FOR INCORPORATION IN THE QUERY FROGRAM
PRQUERY WMHICH ALLOMS USERS TO ACCESS THE DATA BRSE

* USING THE *QUILL" LANGURGE.

_EXTERNAL SCHEMA NAME 1S5 INYOICE-QUERY

PERMIT ACCESS FOR UPDATE. RETRIEYE. CRERTE. FORMAT.

x %X % *

RECORD NANE 1S ORDER-LlNE=&UERV—RECURD(CUSTUMER—NHHE/C 49.
CUSTOMER-NO/C 6,CREDIT-LIMIT/N S. 2, INYOICE-NO/C 6. INYOICE-DRTE/N 6.
GRDER-1TEN/C 4,0RDER-PRICE/N 5.2, ORDER-QTY=QTY/N €).
REYERT. EXTDDL.
7

A5-14

PYRANID, EXTDDL, 1=TESTEA
EXTERNAL SCHEMA NAME 15 ORDER-ITEMS
!PERN]T ACCESS FOR UPDATE.RETRIEYE. CREATE., FORMAT.

[
‘RECORD NRNE 1S CUSTOMER (CUSTOMER-NAME/C 4@.CUSTOMER-NO/C 6).
l

RECORD ORDER-LINE = ORDER(INYOICE-NG/C 6. ORDER-ITER/C 4.
ORDER-PRICE/N S. 2. ORDER-GTY=QTY/N 6).

fE?ERT.EXTDDL.

’

A5-15

PYRARMID, EXTDDL. I=TESTEDS
EXTERNAL SCHEMR NAME 1S PAYROLL
PERN]T RACCESS FOR UPDRTE.RETRIEVYE.

'RECORD NAME 115 DEPARTHMENT(DEPT-NO/C 2.
DEPT-NAME/C 36).
RECORD NAME 1S EMPLOYEE(EMP-NO/C 4. NAME/C Z4.

SALARY/N S5).
EYERT. EXTDDL.

'R

A5-16

PYRAMID, EXTDDL, J=TESTEE
EXTERNAL SCHEMA NRME IS EMPLOYEE-LIST
PERNIT ACCESS FOR UPDATE.RETRIEYE.

RECORD NAME 15 EMPLOYEE(DEPT-NO/C 2.EMF-NO/C 4.NAME/C 24.

SALARY/N 5).
EVERT. EXTDDL.

A5-17

YRANID. EX1DDL, 1=TESTE?

THIS SET OF °*PYRAMID®" EXTERNAL SCHEMA DDL DESCRIBES
% THE Y1EW OF THE DRATAR BASE USED FOR ORDER-ENTRY.

EXTERNAL SCHENAR NAME 1S TROUBLE
PERMIT ACCESS FOR UPDATE.RETRIEYE, CRERTE. FORMAT.

RECORD NAME 1S CUSTOMER (CUSTOMER-NAME/C 48.CUSTOMER-NO/C 6.
CREDIT-LINIT/N €. 2, TOTAL-YALUE-ON-ORDER=TOT-YAL/N &. 2).

RECORD NAME 1S INYOICECINYOICE-NO/C €, INYOICE-DARTE/N €).

RECORD ORDER-LINE = ORDER(ORDER-ITEM./C 4,0RDER-FRICE/N 5. 2.
ORDER-QTY=QTY/N 6).

RECORD NAME 1S PRART(DESCRIPTICGN/C 48.FPART-NO/C 4,
UNIT-PRICE/N 6. 2,STOCK-IN-HAND/N €).

RECORD NAME 15 PURCHASE (PURCHASE-ORDER-NO-C 4.FURCHASE-DRTE/N 6.
PURCHASE-@TY/N 6.PURCHASE-PRICE/N &. Z. PURCHASE-SUFFLIER-NQ/C 4).

JEYERT. EXTDDL.

A5-18

3 3 3¢ 3¢

ICENTIFICATION DIVISION.
PROGRAVM-IC. CRCUST,

THIS PROGRAM IS USED TO SET UP AN EMPTY
CUSTDMER DATABASE.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION,
SOURCE-COMPUTER. CYBER.
OBJECT-COMPUTER. CYBER.
DATA DIVISION.
WORKING-STCRAGE SECTION.
01 FUNCTION PIC X(10).
01 RECORC-NAME PIC X(20).
01 BUFFER PIC X(512).
01 RESULT PIC 99S.
PROCEDLRE DIVISION,
MAIN-PARAGRAPH,
MOVE "NEW"™ TO FUNCTION.
PERFORM CALL-DBMS.
DISPLAY "DATA BASE CREATE RESULT = ", RESULT.
MOVE "RELEASE"™ TO FUNCTION.
PERFORM CALL-CBMS.
DISPLAY "DATA BASE RELEASE RESULT = ", RESULT.
STCP RUN.
CALL-DBMS.
CALL "“DBMS"™ USING FUNCTION, RECORD-NAME,
BUFFER, RESULT.

A5-19

3 3F 36 3t 3¢

3 a n

3¢

IDENTIFICATION DIVISION.
PROGRAN-ID. ADCCUST.

THIS PROGRAM IS USED TC ADD CUSTOMERS TO
AN EXISTING CUSTOMER DATA EBASE.

THE INVOICE AND ORDER-LINE RECCRDS ON THE DATABASE
ARE NOT USED.

(NCTE THAY BY DEFAULY THE FIELL TCTAL-VALUE-ON-ORDER

IS SET TD ZERC ON ALL CREATED CUSTOMER RECORDS).

ENVIROCNMENT DIVISION,.
CCNFIGURATION SECTION.
SDURCE-COMPUTER. CYBER,
CBJECT-COMPUTER. CYZER.
DATA DIVISICN.
WORKING-STORAGE SECTION.

01
01
01
01
01

01

FINISHED PIC XXX.

REFLY PIC XXX

FUNCTICON PIC X(10>.
RECORD-NAME PIC X(20).
CUSTONMZR.

02 CUSTOMER-NAME PIC X(40).
02 CUSTCMER-NUMBER PIC X(&).
02 CREDIT-LIMIT PIC S(2).

02 TCTAL-VALUE-DON-ORCER PIC S(8).
02 FILLER PIC X(450).

RESULT PIC 9965.

PROCEDLRE DIVISION.
MAIN-PARAGRAPH,

MOVE "OLC" TGO FUNCTION.

PERFORM CALL-CBMS.

DISPLAY "DATA BASE CPEX RESULY = ", RESULT.
MOVE "NGO" T0 FINISHED.

PERFORM ADD-CUSTCMER UNTIL FINISHED = "YES"™,
MOVE "RELEASE™ 70O FUNCTIGON.

PERFORM CALL-CBMS.

DISPLAY "CATA BASE RELZA3E RESULT = ", RESULT.
STCP RUN.

ADD-CUSTOMER.

DISPLAY "ANY NMORE CUSTC¥ERS TE BE ADDED™,
ACCEPT REPLY.
IF REFLY = "YES™
FERFORM CETY-CUSTCYER-DETAILS
ELSE MOVE MYES"™ T0 FINISHECD.,

GET-CUSTOMER-DETAILS.

DISPLAY "ENTER CUSTOMER WUMBER aaawaa"
ACCEPT CUSTOMER-NUMBER.

DISPLAY "ENTER CUSTOMER NAMEW,

ACCEPT CUSTOMER~NAME.

DISPLAY ®ENTER CREDIT LIMIT #s#sssssn,
ACCEPT CREDIT-LIMIT.

MOVE ZERO TO TOTAL-VALUE-ON-DRDER.
MOVE YWRITE" 70 FUNCTION.

MOVE "CUSTOMER" t0 RECDRD-NAME.
PERFORM CALL-DBMS.

DISPLAY ®WRITE RESULT 8", RESUL?.

CALL-DBMS.

CALL "“DBMS"™ USING FUNCTION, RECORD-NAME,
CUSTOMER, RESULT.

A5-20

ICENTIFICATION DIVISICN.
PROCGRAM-IC. NEWITEM.

#0483 3w

THIS PROGRAM IS A TAKE-ON PROGRAM TO SETUP THE
INITIAL PART ENTITIES ON THE PARTS FILE. THE
PURCHASE ENTITIES ARE NOT USED.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-CCMPUTER. CYBER.
03JECT-COMPUTER. CYBER.
DATA CIVISICON.
WORKING-STORAGE SECTION.

01
01
01
01
01

01

FINISHED PIC XXX.

RSFLY PIC XXX

FUNCTICN PIC X(10).
RECCRC-NAME PIC X(20>.
PART,

02 DESCRIPTICN PIC X(C40).
02 PART-NG PIC X(4D3,

02 UNIT-PRICE PIC S999V99.
02 STCCK-IN-HAND PIC S(&).
D2 FILLER PIC X(456).
RESULT PIC 999.

PROCEDLRE DIVISION.
MAIN-PLRAGCRAPH.

MOVE "NEW"™ TO FUNCTION.
PERFOKM CALL-LCEMS.
IF RESULT NOT = 0
CISPLAY "ERROR ON OPENING DATA BASE"™
STOP RUN.
MOVE ©“NO"™ TO FINISHED.
PERFQORM ADD-PART UNTIL FINISHED = WYES"h,
MZVE "RELEASE"™ 70 FUNCTION.
PERFORM CALL-C2MS,
IF RESULT NOT = 0
DISPLAY "“ERROR ON RELEZSING DATA BASE".
STCP KUN,

ADD-PART.

DISPLAY "ANY MCRE PARTS TO BE ADDED".
ACCEPT REPLY.
IF REFPLY = "YES"
PERFORM GET-PART-DETAILS
ELSE MOVE "YES" T0 FINISHED.

GET-PAKT-DETAILS.

DISPLAY "ENTER PART NUMBER 2zaa".
ACCEPT PART-NC.

DISPLAY "ENTER DESCRIPTION".
ACCEPT DESCRIPTION.,

DISPLAY "ENTER INITIAL STOCK ##¥#Z#x".
ACCEPT STOCK-IN-HAND.

MOVE ZERO TO UNIT-PRICE.

MOVE "WRITE"™ TC FUNCTION.

MOVE “PART"™ TG RECORD-NAME.
PERFORM CALL-DBMS.

IF RESULT NOT = ZERD

CALL "DBMS™ USING FUNCTION, RECORD-NAME,
PART, RESULYT. :

DISPLAY "ERROR ON WRITING PART TO DATA BASE".
CALL-DBMS. e i : P

A5-21

P
pxd

IDENTIFICATICK DIVISION,
PROGRANVM-ID. ORCENT.,

THIS PROGRLM IS THE ON-LINE CRCER-ENTRY PRCGRAM,
IT ACCESSES TWC PHYSICAL DATARBRSES.
CRDERS (CUSTCOMER/INVOICE/CRCZER)
ANC PARTS (PART/PURCHASE)D
THE ORCERS CATABASE HAS DRDER ENTITIES ADDED 7O IT,
WHILE THE PARTS DATABRASE HAS PART ENTITIES UPDATED

WITH THE QUANTITIES ACTUALLY DROERED. (NDTE THAT
THE PURCHASE ENTITIES ARE NOT LUSEDR).

ENVIRONMENT DIVISICN,

CONFIGLRATION SECTICN.
SOURCE-COMPUTZR,. CY3ER.
03JECT-COMPUTER. CYBER.
DATA CIVISION.
WORKING-STOREGE SECTION.
01 FINISHED PIC XXX.
01 MORE-ITEMS PIC XXX.
01 REPLY PIC XXX.
01 WRITE-FUNCTION PIC X(10) VALUT IS "WRITE™.
01 READ-FUNCTION PIC X(10) VALUE IS "READ"™.
01 OPEN-OLD-FUNCTION PIC X(10) VALUE IS ®gLC™.
01 RELEASE-FUNCTION PIC X(10) VALUE IS "RELFASE",
01 REWRITE-FUNCTIGN PIC X(10) VALUE IS "REWRITE",
01 CUSTCMER-RECORD PIC X(20) VALUE IS "CUSTCMER®™.
01 INVDICE-RECCRC PIC X(20) VALUE IS "INVOICE".
01 ORCER-RECORD FIC X(20) VALUE IS ®"ORDER™,
01 PART-RECGRC PIC X(20) VALUE IS "PART",
01 DUMMY-RECORZ PIC X(20) VALUE IS SPACES.
01 CUSTOMER.
02 CUSTGMER-NAME PIC X(40).
02 CUSTOMER-NUMBER PIC X(é).
02 CREDIT-LIMIT PIC 9(B).
02 TCTAL-VALLE-ON-CRDER PIC 5(8).
02 FILLER PIC X(450).
01 DUMMY~BUFFER REDEFINES CUSTOMER PIC X(512).
01 INVOICE.
02 INVOICE-NUMBER PIC X(6).
02 INVOICE-DATE PIC 9(6).
02 FILLER PIC X(500).
01 ORCER-LINE.
02 ORDER-ITEM PIC XXXX.
02 ORDER-PRICE PIC 999.99.
02 ORDER-CTY PIC 9(6).
02 FILLER PIC X(497).
01 PART.
02 DESCRIPTICON PIC X(40).
02 PART-NC PIC X(4).
02 UNIT-PRICE PIC 9999Vu3.
02 STOCK-IN-HAND PIC 9(6).
02 FILLER PIC X(456).
01 RESULT PIC 995.
PROCEDURE DIVISION.
MAIN-PARAGRAPH. o
CALL "DBMS” USING OPEN-OLD-FUNCTION, DUMMY-RECORD, A5-22
DUMMY-BUFFER, RESULT.

IF RESULT NCT = ZERD
DISPLAY YERROR ON OPENING DATA BASE"
STOP RUN.
MGVE "NO" TC FINISHED.
PERFORM PRCCESS-CUSTOMER UNTIL FINISHED = "YES".
CALL "DB3MS"™ USING RELEASE-FUNCTION, DUMMY-RECORD,
DUMMY-BUFFER, RESULT.
IF RESULT NCT = ZERD
CISPLAY "ERROR ON RELEASING DATA BASE".
STCP RUN.
PROCESS-CUSTCMER,
DISPLAY "ANY MORE QRDERS".
ACCEPT REPLY.

IF REPLY = myssw
PEREORM GET-CUSTOMER-CETAILS
ELSE MGVE MYESM 7O FINISHED.

GET-CUSTCMER-DETAILS.
DISPLAY "ENTZR CUSTOMER NUMRER azzza2".
ACCEPT CUSTCMER~NUMBER.
CALL "DBMS™ USING REAC-FUNCTICN, CUSTOMER-RECORD,
CUSTOMER, KESULT.
IF RESULT NECT = ZERD
CISPLAY "ERROR ON READING CUSTCMER RECORD".
DISPLAY "CUSTCMER NAME = ", CUSTOMER-NAME.
DISFLAY WCCRRECT CUSTOMER"™.
ACCEPT REPLY.
IF REPLY = "Yy:zS" PERFQORM PROCESS-INVOICE.
PROCESS-INVCICE.
DISPLAY "ENTER INVOICE NUMBER HEHI&¥Y,
ACCEPT INVCICE-NUMBER.
DISPLAY "ENTER INVOICE DATE YYMMDD",.
ACCEPT INVOICE-DATE.
CALL "D3MS"™ USING WRITE-FUNCTION, INVOICE-RECORD,
INVOICE, RESULT.
DISPLAY "WRITE RESULT = ", RESULT.
MOVE "YES" TL MCRE-ITEMS.
PERFORM PROCESS—ITEM UNTIL MORE-ITEMS = "NOU.
PROCESS-ITEM.
DISPLAY "ANY MQORE ITEMS".
ACCEPT REPLY,
IF REPLY = ®"yzs"
PERFQRM GET-ITEM-DETAILS
ELSE MOVE "N2" TO MORE-ITEMS.
GET-ITEM-DETAILS.
DISPLAY "ENYER ITEM NUMBER ###%",
ACCEPT ORDEP-ITEM.
MOVE DORDER-ITEM TO PART=NO.
CALL "DBMS"™ USING READ-FUNCTICGN, PART-RECORD,
PART, RESULT.
IF RESULT NST = 0
CISPLAY ®"NO SUCH PART"
ELSE CISPLAY "DESCRITPTION = ", DESCRIPTION
DISPLAY ®“CORRECT ITEM 2"
ACCEPTY REPLY
IF REPLY = %“YES™
PERFORM GET-ITEM-QUANTITY.
GET-ITEM-QUANTITY.
DISPLAY “ENTER QUANTITY ###",
SUBTRACT CRDER-QTY FROM STOCK-IN-HAND.
IF STDCK-IN-HAND < ZERD

CISPLAY "NOT ENQUGH STOCK™
ELSE PERF3RM RECORD-DRDER-DETAILS.
RECORD-ORCER-DETAILS.
CALL "D3MS™ USING REWRITE-FUNCTION, PART-RECORD,
PART, RESULT.,
CALL "DBMS" USING WRITE-FUNCTION, ORDER-RECORD,
GRDER=-LINE, RESULT,

IF RESULT NOT = ZERC
CISPLAY M"ERRZR ON WRITING CRDER RECORD™.

A5-24

IDENTIFICATION DIVISION,
PROGRANM-IC. IVPRINT.

4

o

%k THIS PRZGRAM IS THE INVCICE PRINT PROGRAM,

b

= IT ACCESSES TWC PHYSICAL DATABASES.

* CRTEFRS (CUSTOMER/INVOICE/CRCER)

s ANT PARTS (PART/PURCHASE)

% THE CRCEZRS LDATAEZASE HAS DORDER ENTITIES ADDED 70 IT,
* WHILE T=Z PARTS DATABASE HAS PART ENTITIES UPRATED
s WITE Trz JUANTITIES ACTUALLY ORKDERED. (NCTE THAT

k12

THE PURL=2SE ENTITIES ARE NOT LSED).
ENVIRCNMENT TIVISICN,
CONFIGURATION SECTIZN.
SOURCE-CC¥PUTER,., CYBER,
OBJECT-COMFUTER. (CYZ2ER
INPUT-CUTFUT SECTICN,
FILE-CCNTRCL.

SELECT IAVCICES ASSIGN TO "gQUTPUTW,
DATA DIVISIZIN.
FILE SECTICA.
FD INVOICZS LLBEL RECORDS OMITTEC.
01 INVEICZ-LINE.
02 FILLEZR PIC X.
02 FItLEZR PIC Xx(132).
WORKING-STCZPAGE SECTION.
01 MCRE-CUSTC™ERS PIC XXX,
01 MORE-ZINWsTICES PIC XXX.
01 MORE-CZZEZR-LIMES PIC XXX
01 REFLY =IC XXX,
01 WRITE-=UaCTION PIC X(10) VALUE IS "WRITE".
01 READ-FUNMCTICN PIC X(10) VALUE IS "READM,
01 NEXT-FoNCTICK PIC X(C10) VALUE IS UNEXT".
01 OPEN-CLO-FUNCTION PIC X(C10)> VALUE IS "CLD".
01 RELEASZ-FUNCTICN PIC X(C10) VALUE IS "RELEASE",
01 REWRITZ-FUNCTION PIC X(C10) VALUE IS "REWRITE".

01 CUSTZ¥Ez=2-FEC272 PIC X(20) VALUE IS "CUSTOMER",
01 INVOICE-RECCRI PIC X(20) VALUE IS "INVOICEY,
01 ORDER-#%ZCZZRC PIC X(20) VALUE IS "CRDERY.

01 PART-%ZZC2TZ PIC X(20)> VALUE IS "PARTY,

01 DUMMY-2ZCCrKD FIC X(20) VALUE IS SPACES.

01 CUSTGP=zZR,
02 CUSTIMCR-WNRAME PIC X(40).
02 CUSTCMER-NUMBER PIC X(6).
02 CREDIV~-LIMIT PIC 9(8).
02 TCTAL-VALUE-DN-ORDER PIC S(8).
02 FILLER PIC X(450).
01 DUMMY-EUFFER REDEFINES CUSTOMER PIC X(512).
01 INVOICE.
02 INVOICE-RUMBER PIC X(8&).
02 INVIOICE-DATE PIC 9(6)e.
02 FILLER PIC X(500).
01 ORCER-LINE.
02 ORDER-ITEM PIC XXXX.
02 OREEZP-PRICE PIC 999.99.
D2 ORDER-QCTY PIC 9(6). A5-25
02 FILLER PIC X(497).
01 PAkRT.

02 DESCRIPTICN PIC X(40).
02 PART-NC PIC X(4).
02 UNIT-PRICE PIC 995SV39,
02 STOCK-IN-+AND PIC 9(4).
02 FILLER PIC X(45868).
01 RESULT PIC 956,
01 HEADING-LINE-CNE,
02 FILLER PIC X.
02 FILLER PIC X(&4) VALUE "CUST"“.
02 FILLER PIC X(6) VALUE SPACES,
02 FILLER PIC X(B) VALUE “CUSTOMER™,
02 FILLER PIC X(2C> VALUE SPACES.
02 FILLER PIC X(7) VALUE "INVOICE",
02 FILLER PIC X(1C).
01 HEADING-LINE-TWC.
02 FILLER PIC X.

D2 FILLER PIC X(4) VALUZ "™ NC ",
02 FILLER PIC X(é&) VALUE SPACES,
02 FILLER PIC X(&) VALUE " NAME ",

02 FILLER PIC X(20) VALUE SPACES.

02 FILLER PIC X(7) VALUE "NUMBER ™.

02 FILLER PIC X(10).

01 HEADING-LINE-THREE,

02 FILLER PIC X.

02 CUSTOMER-KUMSER-OUT PIC X(€).

02 FILLER PIC XX VALUE SPACES.

02 CUSTOMER-NAME-OUT PIC X(4C).

02 FILLER PIC XXXX VALUE SPACES.

02 INVOICE-NUMBER-OUT PIC X(&).

02 FILLER PIC X(10).

01 HEADING-LINE-FCUR.

02 FILLER PIC X.

02 FILLER PIC X(4) VALUE "ITEM™,

02 FILLER PIC XX VALUE SPACES.

02 FILLER PIC X(11) VALUE "DESCRIPTION™.

02 FILLER PIC XXXX VALUE SPACES.

02 FILLER PIC X(5) VALUE "ORCER™.

02 FILLER PIC XXXX VALUE SPACES.

02 FILLER PIC XXXX VALUE MUNIT".

01 HEADING-LINE-FIVE.

02 FILLER PIC X.

02 FILLER PIC XXXX VALUE " NC ".

02 FILLER PIC X(15) VALUE SPACES.

02 FILLER PIC X(5) VALUE ™ QTY ",

02 FILLER PIC XXXX VALUE SPACES.

02 FILLER PIC X(5) VALUE " NC. ".
01 DETAIL-LINE.

02 FILLER PIC X.

02 PART-NUMBER-DUT PIC X(4).

02 FILLER PIC XX VALUE SPACES.

02 DESCRIPTICN-DUT PIC X(40).

02 FILLER PIC XXXX VALUE SPACES.

02 ORDER-QTY-DUT PIC Z(5)9.

02 FILLER PIC XXXX VALUE SPACES.

02 UNIT-PRICE-OUT PIC 1229.99.
PROCEDURE DIVISION. (G
MAIN-PARAGRAPH. L ’;;_

OPEN DUTPUT INVOICES. B

CALL "DBMS" USING DPEN-OLD-FUNCTION, DUMNY-RECORD, A5-26
DUMMY-BUFFER, RESULT.

IF RESULT NCT = ZERD

DISPLAY "ERRCR ON CPENING DATA BASEM
STOP RUN.
MOVE "YES"™ 70 MORE-CUSTOMERS.
PERFORM PRDCESS~-CUSTOMER UNTIL MORE-CUSTOMERS = "NO".
CALL "DBMS" USING RELELSE-FUNCTION, DUMMY-RECCRD,
CUMMY-BUFFER, RESULT.
IF RESULT NDT = RC
DISPLAY MERROR
CLCSE INVOICES.
STCP RUN.
PROCESS-CUSTCMER.
CALL "D8MS"™ USING NEXT-FUNCTICN, CUSTOMER-RECORD,
CUSTCMER,y RESULT.

1t
ROR CN RELEASING DATA BASE".

IF RESULT = 111
MOVE "NO" TO MCRE-CUSTOMERS
ELSE IF RESULT = ZERD
PERFCRM PRQCESS-INVCICES-FOR-CUSTOMER
ELSE DISFLE&Y "NEXT CUSTBNMER ERRCOR ", RESULT

ST3P RUN.
PROCESS-INVDICES-FCR-CUSTCMER.
DISPLAY " M,

MOVE CUSTONER-NUMSER T0D CUSTOVER-NUMBER-OUT.

MOVE CUSTCMER-NAME TO CUSTOMER-NAME-QUT.

MOVE MYES™ T3 MORE-INVOICES.

PERFORM PROCESS-INVCICS UNTIL MORE-INVOICES = "NO".
PROCESS-INVOICE.

CALL "DBMS" USING NEXT-FUNCTICN, INVOICE-RECORD,

INVDICE, RESULT.
IF RESULT = 111
VOVE "NC" TC MORE-INVDICES
ELSE IF RESULT = ZERD
FERECRM PROCESS—INVCICE-ITEMS
ELSE DISELAY "NEXT INVOICE ERROR ", RESULT
ST2P RUN.
PROCESS-INVOICE-ITEMS.

MOVE INVOICE-NUMEER TO INVOICE-NUMEER-OUT.

WRITE INVOICE-LINE FRGM HEADING-LINE-ONE.

WRITE INVOICE-LINE FROM HEADING-LINE-TWO.

WRITE INVOICE-LINE FROM HEADING-LINE-THREE.

WRITE INVOICE-LINE FROM HEADING-LINE-FOUR

AETER ACVANCING 2 LINES.

WRITE INVOICE-LINE FRCM HEADING-LINE-FIVE.

MOVE "YES® T0D MORE-DRDEIR-LINES.

PERFORM PROCESS—ORDER-LINE UNTIL MDRE-DRDER-LINES = "NO".
PROCESS-ORDER-LINE.

CALL "DBMS" USING NEXT-FUNCTICN, DRODER-RECORD,

CROER-LINE, RESULT.
IF RESULT = 111
MOVE "ND" TO MORE-ORDER-LINES
ELSE IF RESULT = ZERD
PERFORM PRINT-DRDER-DETAILS
ELSE DISPLAY “NEXT ORDER ERROR ", RESULT
STOF RUN.
PRINT-CRDER-DETAILS.

MOVE PART-NO TO PART-NUMBER-OUT.

MOVE ORDER-QTY TD ORDER-QTY-DUT.

MOVE DRDER-ITEM TO PART-NO.

CALL "DBMS™ USING READ-FUNCTION, PART-RECORD, A
PART, RESULT. 5-27
IF RESULT = 23

MOVE ALL ®%" TD CESCRIPTION

ELSE IF RESULT NOT = ZERD

DISPLAY “READ PART ", ORDER-ITEM,

" ERROR "™, RESULT
TOP RUN.
MOVE CESCRIPTICN TG DESCRIPTICN-0OUT.
MOVE LNIT-PRICE TC UNIT-PRICE-DUT.
WRITE INVOICE-LINE FROM DETATIL-LINE.

A5-28

__PYRANID, QUERY. 1=TESTFG4, P=ORDERS
oo

* THIS QUERY PRINTS OUT THE CUSTOMER NAME AND
. .,* QUANTITY ON ORDER FOR ALL CURRENT ORDERS

‘s FOR ITEM 7979.

MHERE ORDER-ITEM = 7979 PRINT ORDER-GTY. CUSTOMER-NAME.

020 _JONES
160 GODFREY
EV@RT.QUERY

wNimd ..

'?f? ANID, CUERY, I=TESTPR2I P2 ORDERS'
THIS QUERY PRINTS OUT THE ITENM NUMEERS
*# AND QUANTITIES FOR INYOICE 412121z

3

% HOMEVER THE F1ELD INYOICE-NO HAS EEEN CALLED INYOICE-NUMBER

< da

/MHERE INYOICE-NUMBER = 1241212 PRINT ORDER-ITEM. ORDER-QTY.
NO SUCH FI1ELD RS INVOICE ~NUMEBER

) SERRCH ABANDONED
F]ELD NRME

"SOURCE-REJECTED

REVERT. QUERY.
P

A

~

* THIS QUERY PRINTS OUT'THE ITEM NUMBERS
‘% AND QURANTITIES FOR INVOICE 424242

4-6

.UHERE JNVOICE-NO = 121242 PRINT ORDER-ITEM. ORDER-QTY:;
_HEADING "I1TEN ~ @TY"® HEADING ®---- ---* ON LINE 2
"HERDING * * ON LINE 3.

C1TEN QTY
_6767 @15
7979 dee

REVERT QUERY.

28 i

A5-29

Mapping Code Example 1

The following COBOL code was generated by the PYRAMID mapping code

generator using the source code

INTERNAL SCHEMA NAME IS DOUBLE,
EXTERNAL SCHEMA NAME IS TROUBLE.

The generated code is used by the ORDENT, IVPRINT, ADDCUST AND CRCUST programs.

A5-30

LG0T I TrcE LA REVEIRD
La00n Feobknak-1T.
1G0T 5%
“o0Ta% cyxTIor oL SCser o oMeME OTC TROUTLT
5507 T
AOZrbm
30286 InTeanaL SO mguE TS TP T
A02B7%
000z INVIUONMINT LIVISION.
4LGG04 CONFIGLRATION SECTIGN.
140005 SOURCE-COMFUTER. (YEER.
20056 CEJECT-CCOMPUTER. CYBER.
50007 INPUT-CUTFUT SECTICN.
200C% FILE-CONTERTL,
E0208 SELECT INTERNAL-CUSTIOMERS
EQ289 ASSIGN TD HWOROERSY
502%0 OREGANIZATION I8 INCEXED
30251 ACCESS MOCE 18 TYNAMIC
cs0252 RECORT KEY IS Zo2MS=kFY=CUSTCMERS
SE0EES FILE STATUS T8 SILE-STATUS.
2305889 SELECT INTZRNIL-INVENTORY
2280690 ASSTGN TO MRARTSY"
SE0661 ORCANIZATICN 1% INTEXED
150652 ACCE3S MOCE IS DYNaMIC
2204%3 RECORE KEY IS DEMI-KIY-INVENMTORY
ERQSEE BEILE STATUS Z5F =TLE-STATUS,
CLU0CY DATA TIVISION.
CAD010 FILE SECTION.
30293 B0 INTERNAL=-CUSTCME=RS
50294 LAEEL S=CORDS CMITTFD.
080255 01 DBMS-KCD-CUSTLVEIRS,
'CB0256 02 DEMS=KEY=-CLSTCOMEIES
1C20297 . 02 DBMS-CLSTCMEIR-ND oICTURE IS X(&D.
£50268 0z DEMS=INVODICI-NG STCTURE IS X(€).
20299 n? DEMS=-QRLER-ITEN PICTURE IS X(4)D.
. CBO3C0 02 ENTITY-CCOCE PICTURE IS S5,
£50431 01 DEMS-REC-CUSTCNMER PICTLRE IS X(72),
£5055% 01 DBMS-REC-INVODICE PICTURE IS X(Z22).
CROEST 01 BENS—-REC=ORDER-LINE PTCTURE T& X(27J% .
CBO694 FD INTERNAL-INVENTORY
CB06SS " LAREL RECORDS OMITTER. -
CB0696 01 DBMS—-RCD-INVENTORY.
CBO&ST 02 DEMS-KEY-INVENTORY.
CB0O&SE D3 DBMS-PART-ND PICTURE IS X(&).
CB0&9S 03 DBMS-PURCHASE~-CRDER-NO PICTURE IS X{4D.
C80700 2% ENTITY~COCE PICTURE IS 2993,
CB0826 01 DBMS-REC-PART PICTURE IS X(50).
CBD957 01 ~DSNMS-REC-PURCKASE PICTURE IS XC32).
CCO0011 WORKING-STCRAGE SECTICN.
CC001Z 01 FILE-STATUS PICTUPE IS XX,
CCO0013 01 DATA-BASE~DOPEN-FLAG PIC X(32)
CCO0M% "~ T o 2is” YALUE'TS "NO%. -
CCO015 01 SEARCH-FLAG PILTURE IS XXX,
CC0016 017 CURRENT-ENTITYZTODE PIC 99.)
CC0017 01 SAME~CWNER . . SPICTURE IS XxX.
€60081 01'. BBMS=-CUR-CUSTCMZIR PTCTURE IS XXX VALUE IS "NO".
£G0126 01 DBNS-CUR-INVDICE FPICTURE IS5 XXX VALUE IS “NO".
560153;D}IfDBHSFCURPDRDER-LINE PICTURE TS XXX VALUE IS unge,

£G0189 D

| £60234"
30082

g n

;gggg;cugybagT‘p;;TURs TS XXX VALUE IS "NC",
_-mﬁ#tuﬁzpvn5ﬁ135fw1c1-,§,IS”mxx VALUETTS "ND",
DBMS-EXT-CUSTCMER. 2

01

i

A5-31

I
-J

CHY D O
[el]
o N B g

-1 o~

— o

PRI S S S S S N

[S S
o
o
LY 2NN
NS

[wb)

SIS

o
O
[y
o
[5e]

1J0177
4Jd0190
2J01S8
2J0204
2J0213
2Joz2z22
2J0235
240240
1J0246
£J0258
£J0267
{40276
{K0415
CKO&41%
CKO&417
CKO41B
CKO419
CK042Z0
CKO4z2
CKO&24
CKOL26
iCKO05459

CK0677
CK0678
CKOBTG
CKO&80
CKOé6E2
CKD2813
CKO814
‘CKO0B1S5"
CK081¢4
| CKOB17
- CKOo819
ko821

CKD945
CK0946
CKo948

L CKO9SD

CK0952
;CLOOBS

CL0086 ‘

01

01

0l

01

01

01

0 Pt TTSURE T X(4T
i S PILTURE IS OX(AD),

C i MTT PICTLEZ IS5 S(8)
0 TaL=-VALLF="N=nnoTn DI CTYURE

——
S T

i

BICTURS IS X(&d.

(]
]

g .
LuvS- F)T—ﬁ‘”"-L’NE.
9]

i -ITEM BICTURE IS X(4).
& -PFIC? PICTURE TS 9(ED.
2 CTY PICTURE T35 9(é).
A ,T.
02 DBMS-FEXT=-DESCRIFTION 2TCTURE IS X(4C)
02 DEMS=-EXT-PERT=-ND PICTHU=Z IS X(4).
02 DRMS-EXT=UNIT-FRICEZ PICTURE IS S(€).
02 DEMS-EXT=-STODCK-IN=-HAND PICTURE TS S(4

DuMS—-EXT-PURCHASE. :
02 DBMS—EXT-PLRCHASE-TRDER-NG PICTURE IS

02 C2MS—-2XT-PLRCHASE-DATEZ PICTURE IS 9(4

[is]

BMS=IXT=-PLRCHASF-0TY PICTLRE IS 2(&)
DEMS=SXT=PLRCHASE-PRICE PICTURE IS S(C

MS-INT-CUSTOMER.

05MS-INT-CUSTOMER=ND PTICTURE IS X(£D
DEMS-KEY=C01 PICTURE IS X(4).
DEMS-KEY-(02 PICTURPE IS X(&4).

FILLER PICTURE IS 25.

2
J\

MS=INT=-ELLANCE PILCTURE IS 9(10).

T OO OO OOOO0 O T 00O
(RSN S CR v LR ST SR AC R QU S B SURR DA BNV RN A B A [N
T

DEMS~EXT-PURCHASE-SUPPLIZR-ND PICTU®E

ORMS=INT- "L,(DM:’R-‘"“E PTCTURE IS (_}\
D:r"\ L"JT CPE”TT L‘yfT DICTUQE IS Q)

IS w2,

TATE BPICTLRE IS S(FD.

J.

XC4).
>
£y,
IS XC4).

3

).

I8 5(%).

C:wk ~INT=-TIT2L-VALUE-ON-0ORCER PICTURZ
MS=INT-INVOICE.
CEMS-KEY-CD3 PICTURZ IS X(£).
DEMS-INT-INVOICE-ND PICTURE IS X(&).
DEMS- KtY C0& PICTURT IS X{4),
02 ©TILLER PICTURE IS 23.
02 DEWS~ INT INVDICE-DATE PICTLRE IS 29(4),

DEMS~INT-CRTET~LINE,

02— DEMS=KEY=TQ0S5 PICTURE IS X(&).

02 DOBMS-KEY-CD06 PICTURE IS X(&).

02 DEMS~INT-CRDER-ITEM PICTURE IS X(4).
02 FILLER PICTURE IS 9%.

02 DBMS-INT-QRDER-QTY PICTURE IS 9(6).
02" DEMS—-INT-DRDER-PRICE PICTURE IS 3(5).
DENS-INT=PART. =7

02 DBMS-INT-PART-ND PICTURE IS5 X(4).

02 DOBMS=-KEY-007 PICTURE IS X(4&).

02 FILLER PICTURE IS 99%9. °

02 DEMS-INT-DESCRIPTICON PICTURE IS X{40).

02 DEMS-INT-UNIT-PRICTE PICTURE IS 9(&).

DEMS-INT-PURCHASE. "

.02 DBMS~KEY=008 PICTURE IS 1(4).

© 02 DBMS-INT=STCCK=IN-HAND PICTURE IS 9C6).

CK0942 01
. CKD94 3
CKD94E”

2 DEMSSINT=PURCHASE-CRDER-NG PICTURE IS XT&).

02 FILLER PICTURE I8 99.

02" DEMS=INT-PURCHASE-QTY PICTURE IS ace).
02 DBMS-INT-PLRCHASE-CATE PICTURE IS 9(6).

02 0EMS-INT=PURCHASE=PRICE PICTURE IS 9(&).
0 _;PLRCHASE-SUPPLiﬁﬂfNQ PICTURE IS ch).__J

¢ g o g
=~

005
0033
0090
0051
.0037
,.un”‘f:':
L0059
£0100
L0106
L0107
Lo1GS
L010S
L0115
LO116
L0117
L0116
L0130
L0131
L0133
L0134
L013¢
LO1ze
L0142
;L0143
L0144
sL0145
TLO187
SL015¢8
L0160
L01€1
CLO1é2
CLo1es
CLO0169
CL0170
CLO171
cLo172
CLO17¢8
CLO179
€L0180
CLO181
CL0193
CLO1S4
CLO1S6
CLO1G7

01

01

61

,CLC1¢98

CL0196G .
cL020S
€Loz206
cLezoy

 CLO20DE

CLO214 "

CLp2157

CL0216

TLo217

cLo2z3 -
cLo2z4

cLo225
CL0226. =

-CLD238 01 .

X & SILLES T T
Jr 0 CTLLER PIC
Gz FILLES BTC
o2 FILLER PTC
. FIillzr PIC
3: FILLER PIC
52 FILLETR OBIC
02 FILLER RIC
0z FILLSR PIC
02 FILLER PIC
0z FILLER PIC
9z FILLER PIC
52 FILLER PIC
6z FILLER PIC
D2 FILLER PIC
02 FILLER PIC
DEMS-FMT-INVDIC
2 DBEMS-NOI-TN
02 FILLER PIC
0z FILLER PIC
02 =ILLER PIC
G2 FILLER PIC
0z FILLER PIC
02 SILLER PIC
02 FILLER PIC
02 FILLER PIC
D&NS-FMT—DRDER-
D2 OEMS-NQI-=CR
02 FILLER PIC
0z FILLER PIC
0z FILLER FIC
gz FILLER PIC
02 FILLER PIC
6z FILLER PIC
02 FILLER PIC
nz FILLER PIC
02 FILLER PIC
02 FILLER PIC
02 FILLER PIC
02 FILLER PIC
DEMS-FMT-PART.
02
02 FILLER PIC
02 FILLER"PIC
02 FILLER PIC 9
02 FILLERPIC
02 FILLER PIC
02 "FILLER PIC
02 FILLERLPIC
02 FILLERPIC
02 FILLER PIC
02 FILLER PIC
02 FILLER PIC
02 FILLER FIC
02 FILLER PIC
92 FILLER'PIC
02 FILLER PIC
02~ FILLER PIC

DEMS~FMT-PUROHASE., .
CUﬁ?!?“"““ﬂZ“*ﬂﬁﬂS*ﬁﬂE“PURCHnSE PIC
L0241

. T

VaLT o TS
e

k.,

Do NAME T

<
< Tat,

D VA BEVE R R

?I" :(:
VALUE
Yoo vapus T
vaLus 10"

LTl

)
TC r
v -

) -0

273

3% VALUE IS (047,

93vee vaLue IS 008.

% IS "TCTAL-VALUE-ON=-
" N " N

005E

Is DO8.

e I8
© VALUE IS
3cVGee VALUE

i a Ry

(Yo BRNS)

T

b I

PICTURE IS
VAaLUE IC'
JE IS MCwe,
VQLUP I5 CCO01.
VALUE IS 00Q¢€.
U) VALUE I8 "INVOICE-DATE",
ALUE IS Ny,

~\

NVOICE-NOM,

W D O
r" A

<<
Nl
\£)

~ 0

n (s IR~ N TR o SR s Bl oS I]
0
<
>
—~
C
m
—
N
]
o
(=]
-
L]

0

Ve 1S 00E.

Thit.

NER-LINE PICTUFRE
X(20) VALUE IS5 "“GI
X VALUE IS "C".,
vepLus IS 0001,
SSGYSS vALLE IS 004.

) VALUE IS "pRRFR-PRICEM,
IS wNY,

VALUE 15 Q005
523 VALUE IS D05,

I8 WDROER=-QTYY,
BLUE 'S NP,

g VALUE IS 0010,
9vV99 VALUE 1S 005.

vatUE

F'L1kL)><><!;/‘LiW><><<T1l(/!k()

s 9

S VALUE TS
DER=TTEMN,

.
=Ry}

3]

\
5y)

0
Do

73]
D WO I~
O U < PO D A <N
[« JEVS BV i i ap]
() ~—
C
<
=
—
c
m

WD XK X N D XK

O W0

DBMS-NOI-FART PICTURE IS §9 VALUE IS 04.

X(20) VALUE IS "DESCRIPTION".
X VALUE IS "Cw.”

9999 VALUE IS 0001.

5999V3e9 "WALUE IS 040.
X(20) VALUE IS “PART-NOY,
X VALUBSTS WCH,

9999 VALUE IS 0D41
$S999V99 VALUE IS 004,

X¢20) VALUE IS "UNIT-PRICE",
X VALUE ‘IS "N";
9599 VALUE. IS 0045.
S959VS” VALUE IS 006,

X(20) VALUE IS YSYOCK-IN- ~HAND".

X VALUE IS "N".
9999 VALUE IS 00514
§299Y99 AALUL I5: 005

oRBERM,

29 VALUR IS 02.

na

F‘!S 99 VALUE IS OSL

02 FI{LER ?xc XC20). anuE_ 3 "puntunse ~DRDER-NO™.

A5-33

cLUl- 0z SULOK o oveLur 1o omone,

LLOzq c2 FI{TRQe VALUE OIS oo,

uLv4~~ 02 PIT ST2gvVEL VaLus IS no4,

CLGZED oz I8 XC20) VALUF I8 MPYRCHASE-DATEN
Lozsi e ERAA 4 VQL”L TS,

L2232 02 SR PIC 9%9C VALUE IS 0005,

CLo2:32 02 FILLER FPIZ 59929Ves VEALUF IS5 0neg

CLGz:9 G2 FILLER PIC X(C20) VALUF I35 NPURCHLSE-TTYN,
CLOZED 02 FILLER PIC x VBLUE I§ nnn,

CLO2¢1 2 FILLER PIC 5%5¢ VALUJE TS5 (011,

CLOZG2 02 FILLER PIC 5999v99 VALUEZ I8 DO%.

CLC2¢eB 02 FILLER PIC X(20) VALUE IS "PURCHASE-PRICE™,
CLOZ¢: 02 FILLERP PIC X VALUE IS unn,

CLOZ70 02 FILLER PIC 9999 VALUE IS ¢D17.

cLoz271 02 FILLSR PIC S999VSS VALUE IS 00¢.

CLo277 02 FILLER PIC X(C20) VALUE IS WPURCHASE=~SUPPLIER-NOM,
CLOZTS 02 FILLER PIC X VALUZT IS ngn,

CLO279 02 FILLER PIC 9989 VALUE IS 0023,

Lozep 02 FILLEP PIC S998V3S VALUF IS D04,

£50359 01 CUR-INT-CUSTCW

ERX PICTURE IS XXX VALUE TS wnypm,
C50531 01 CUR-INT-INVGICE PICTURE IS XXX VALUE IS WNpow,
CS0657 01 CUR-INT-ORDER-LINE PICTURE IS XXX VALUE IS #nOM,
€50757 01 CUR-INT-PAPT FICTURE IS XXX VALUE IS "NO".
€S0924 01 CUR-INT-PURCHASE PICTURE IS XXX VALUE IS "Now,
CX0304 01 BUFFEF-CUSTOME®RS PICTURE IS %(E5),

CX0704 01 ~UFF;P INVENTCRY PICTURE IS X(5).-

C20012 LINKAGE SECTICN. A

£z0019 C1 FUNCT;DN PIC X(10D>.

CI0020 CG1 THE-RECORC-N&MF PIC X(22).

CZ0021 01 RESULT PIC 93¢,

Cl00c2 01 UWZ PIC X(512

CAO0Z2 PROCEDURE DIVISION USING =UNCTITON,

cAQ024 THE-RECORD-NAME, UWA,

UDAODZS RESULT.

tA0026 INITIAL-PARAGRAFH.

EADO27 MOVE ZERD 70 RESULT.

EADQZS IF FUNCTICN = "NEW M

_EAQOO29 . . PERFORM NEW=-DATA-B8ASE . -
EA0D30 ELSE IF FUNCTICN = ®oLp ™

EAD031 PERFUORM™ OLD-DATA~-BASE il
EADD32 ELSE IF FUNCTION = "RELFaSc n
EADD33 P "PERFDRM RELEASE<DATA-ZASE”
EAQO34 - ELSE FERFORM ERANCH-ON-RECDRD-NAME,
EADD35 FINKl PAR&GRAP“ =) r i :
. EAQD3S CLEXTT PROGRANM,

FAQOD37 BRANCH ON=RECCRD-NAME, "

FAOOTR If THE-RECORD=-NAME = "CHSTOMERM
FADDTS N7 PERFORM USE-CUSTOMER
FADOBO -+ ‘ELSE V.
FAC123 1F THE-RECORD=NAME ='"1chxcs"
FAOA24 ‘i-uul Siiind PERFOEM USE- znvn:cs
FADI2S EUSE R s TR :
FAD150:- 4 ¢ .1F THE- n=cnkn-nnm= *; "DRDER"
FAD151 '*”-”'?’.' PERFORM ust CRDER-LINE
FAD152° © ELSE" &
FAD186 SR ¢ THE ~RECORD- NAME = WpARTM
- FAOQL1EY W e ‘PERFOEF USE =PART At 1 =
3 FﬂOIS B ,<: - ELS E-.- - 3 Rt ?J';_T* , 3 e T R 5 ..—_-:w-v'-'- ._,. e . £
“FAD231 i IE IﬁE RECORQ—N&HE B "PUPCH&SE“ N
RFAD 282 TAn e ' fRFDRH u&s4ﬁuacﬂa32 S - S e

CFAD233

A5-34

3 uSma

(B}
“J

PEDEORY If - UOMoTEOnT

603 .
80052 FILL-INT-CUSTOY 7,
000756 MIVE COMA-EXT-rUaTrii-oonpne

A00 5 TG

£

DM T T AT rMER AT

EYR R MOY R DO MSary Ta ey inaty)

0166 TU £ M= TR T-rn1amMeeayn,

lagi1e MOVE Mooty T U T (MTT

AG1L2 TO DAMS=-IHT-CReDTT-LTIMIT,

o121 MOVE ORMA=SXT=TOTOL=-VOLIT=AN=fPNOD

Mmolee TO CHUMAS=THT=-TOTAL=-YALUF=0N=C2050
PA0124 FILL-INT-INVOICT,

12132 MAVE DUMR-EXT-THYVLTIC =MD

‘A0Ta0 TO DRAMI-THT-TMVOTLR =MD,

1a014R MOVE DaMAi-TXT=TMYOTC"=0ATF

mAT
a0 14 TO CEMS=TMT-INVRICT-DATE,
180155 SILL-INT-27D3R- TH7,

0164 MOVE DEMT e X Tann T T

“AD1&7 TH CAMI=THT-000t2-TT M,
146172 MOVE DMy =y TRt T (R
iAC17¢4 TO S&4Ms-1HT-Tomsr-m0T(",
A0 T4 MGVE CEMS=0XT=-0R0GIFP-0TY
SAQ1RE TO CHMS=IHNT-TR0ER-"TY,
840151 FILL-TNT-FART,

40202 MOVE CoMS=tyT-neorpIoT oy
“A020 3 TN Crus—1HT=0 R 1RT T,
HB0211 MOVE CrmMnetXT-EanTon
HAQRZL12 T COMS=TMNT=-PALET-N"T,

I -

Hagzen MOVE AMA= Y TN T=-02T(C°
L0201 TO BIMS-TuT=UNIT-PRIAT,
Fn0227 CMEVE COMS-TXT-STOCK=TN=HAND
PA0230 T DAME=INT=5TACK=TH-HANT

PAC22A FILL-INT=FURCHAST,

<

100747 HOVE [OMS~IXT-FUECHALE=(ODER=1 "
MO 24N TO COMS=IHT=BURCHASK=ORDER-AD,
NAQ2E6 MGVE [CoMS—EYT-"SlHASE-NATE

HAQ249T T DAMS=INT-CUSCHASE-DATE,
HAQ26&S MOVE LOME=TXT-DUFCHASE=-JTY

HAD264 TO DAMS=TNT=-"URCHASE-2TY,

HKAD 274 TMCVE CAMS-FYT-OUDCHASK~-DPRT(FE
HAaQ27¢" 70 LOME=TNT-PUEOHASE-RDICE,

HAQ 262 MOVE CHMA~FYT-0URCHOSE~SUPPLIFE-NG
Ha0284 T COMS=TINT-CURCHASE-SUPRLTER-MD,
HHO0B84 FILL-EXT~-CUSTOM:CT.

H3Q022 MOVE DEMS—TIWNT-CRTOMER-NAME
SRDQNS2 TO CAMI=EXT-CUSTOMIR-NAMF,
H%01G1 MOVE CRMS=INT-CUSTOMER-NO

iHA0102 TO NOMS=SXT-CUSTOMER=-ND,

HR0110 MOVE DAMS=TMT-r2€nTT-LIMIT

FA0111 TO DAMG=CYT-PEOTT-LIMTIT,

FR0119 MOVE CUMS=TMNT=-TOTAL-VOLUE~-NN-CROFR
H80120 TO COMS-FYT=-TOTA&L-VALUF-CN=-CRDFR.
H30129 FILL=-EXT=-TNMVNICE.

HAGL37 MOVE CrMe=JHNT=-THNVOTEF-NN

H50128 TO CARMS=FXT-THVOICE-MD,

H10146 MOVE DAMS-TNT-INVOICE=-DATE

HE0147 TO DEMS-FXT-INVOTICE-DATE,

H1Q1566 FILL=-EXT-COD=R~-L INE,

THEO164 MOVE [RMS-IHT-MnER=T1TrMN

H20165 TO ORMS=FXT=0RNYR=TTENM,

HED173 MCVE DRMS-TINT-GRDER-PRICE

e 0174 TO CAMS-EXT-0Rpre-pal(sn,

A5-35

A5-36

52162 BACRyeS eEp Ty
80152 TC 0¥ T ¥
201%% FILL-EXT-F2
Lgzgo MOVE T2 CRINTION
80201 YO oo SLEITTION.
02069 MOVE SEMS-INT-F2FT-N2
L0210 TG DoMS-EXT=-F2RT=-N2,
{20218 MOVE DRMS=-INT-UNIT-pPRICE
5021¢ TG CRMS-EXT-UNIT-PRICE.
150227 MCVE CBMS=INT-STOCK-IN=HANT
20228 TO D&MS-EXT=STDCK-IN-HANC,
{80237 FILL-EXT-PUKCHASE.
180245 MOVE CaMS-INT-PURCHASE=GRDER=NC
1.eo.zcus 70 DEMS-EXT-PURCHASE-CROER-NDO.
13024 MOVE DEMS=INT-PURCHASE-DLTE
AB0255 T0 DBNMS-EXT=-PURCHASE-DATE,
120263 MOVE CSMS-INT-CURCHASE=CTY
1E0264 TO DEMS-FXT-PURCHASE-CTY,
180272 OVE DBMS-INT-PUCCHASE-PRICS
HBO273 T0 DEMS=-EXT-PURCHASE-PRICE.
nB0281 MOVE CEMS-INT-FURCHLSE-SUPPLIZIR-ND
HBO0282 TD DEMS—EXT-PURCHASE-SUPFLIER-NE,
FAO205 USE-CUSTOMER.
FAQ306E PERFORM SET-CURP-CUSTOMER,
FAQ3CT MOVE 01 TO CURRENT-EZNTITY-CCODE.
PAC3OE PERFORM INN=CLSTCOMTR.
PAG31Z IF FUNCTION = “RELD W
PA0314 PERFORM READ-CUSTOMER
PAC31S ELSE
“1Fa0316 IF FUNCTICN = ‘FIRST "
fFA0217 PERFORM FIRST-CUSTOMER
FAD212 ELSE
PA0322Z IF FUNCTIGN = MNEXT M
PAG3Z3 PERFORM NEXT-CUSTCMER
PAG3Z4 ELSE
PAO34E IF FUNCTION = "WRITE *
PAO3E6 PERECRM WRITE=CUSTOMER—
PAD347T ELSE .
‘PAD360 IF FUNCTION = "DELETE ©
PAO361 © PERFORM DELETE- CUSTOME:
PAQ362 ELSE
PAO26&E IF FUNCTICN = "REWRITE "
PAO36T . PERFORM REWRITE~CUSTOMER
PAD368S ELSE ‘ ‘ ol
FRO3S4 IF .FUNCTION = VYFDRMAT ™
PAD2YS "PERFORM FORMAT-CUSTOMER
PAD3SE ELSE
PA0428 "PERFORM NC-SUCH-FUNCTIZN,
PADL2S. IF FUNCTION IS NOT EQUAL TC “FCRMAT
PAD43D PERFORM DUT-CUSTOMER,
PAD432 USE-INVDICE.
PAOGIIE T
PAO43GY% T=51 IF CWNING EhTITY CURRENT
PAD435%
. PAD436 IF DEMS-CUR-CUSTOMER (= #YES™
_PAD&3T PERFORM PROCESS-INVOICE
- PAO438 ELSE MOVE 199 70 RESULT.~ Gt
. FR0439 pnutess—‘rwo'rce. : i
PAO440 - ' PERFORM SET~CURR- INVOICE. ¥
PAOL4L MOVE 02 TO CURRENT-ENTITY-CODE.
PRO&442 PERFORM INN-INVOICE.

L dawE
o443
30450
AU451
RD4E2
A0456
AD
M0438
80479
‘A04E0
‘AO0481L
‘A06S 4
"AG4S 3
YA0496
»A0500
»A05C1
500502
"AQE26
PADSZT

PAOS2E -
PAOESE .

PAQSST
PAOSSS
PAOS6D

PADSE L
FAQSEZ
FAQSE 3=

PAOSES
FAQSES
PAOSES

PACSST

PAOS6S
PADS5E9
PAOSTO
FAQSTS
PADST6
PAOSTT
PADS578
PAOSTS

PAOSBO .

PAOS84
PAOS8S
PAOSR6
PAOGOT
PADGOB

PAOBOY

PADB22
PAQG23
PADBR4
FROEZE
PRO6E29

‘PADG3D

PADES2
PAOGS3
PAOBS4
PAO&SBG

PAO6SS
PAOSBE

e BUNCTLON = 3
RN ol I T

Al B

TF FONCTION = "EIRST M
POLFORM FT T-1nvipldr

LSt

IF FUNCTICN = WUNEXT M
PERFONY MIXT=TINVRIOE

SILASYE

TF BUNCTION = "WHRITE O
FPERFORM WRITE-INVDICE

LSt

IF FUNCTION = “DELETET U
PERFORM NELETE-INVRICE

ELSE

IF FUNCTIGON = "REWRITE "
PERFORM REWRITE-INVCICE

ELSE :)

1F FUNCTION = "SCRMAT M
PEREQRM FCRMAT-INVOICE

ELSE .)
PERECRM NC-SUCH-FUNCTTCN.

IF FUNCTIGN IS NOT EQUAL T0 WwFORMAT M
PERFOOM QUT-INVORICE.

USE-ORCER-LINE.

T

1R

ST IF OWNI

IF DEMS-CUR-
PERFORM

ELSE MOVE 196
PEGCESS-ORGER-LI

PERFORM SET-

MGVE 03 T0O C

PERFORM INN-

IF FUNCTICN

PERFORM

ELSE

IFf FUNCTION

PERFORM

ELSE .

If ‘FUNCTION
PERFORM
ELSE" '

IF FUNCTION
g PERFORM
“ELSE
IF FUNCTION

PERFORM
ELSE
IF FUNCTION

" PERFORM
ELSE " .
"IF FUNCTION

PERFURH
ELSE])

PFRFDRM
i FUNCTION
b PERFORM

PAOT0S USE—PhRT-"ﬂ” iR

PADTOé

"'PERFDRM SET-

NG ENTITY CURRTHRT
INVD
PR C
c D
NE»
CLRER-GRDER- LINE.
URRENT-ENTITY-C2DE,
NREER-LINE.

= nprpag "

READ-NFDSR-LINE

= WFIRST "
FIRST-ORDER-LINE

n

"NEXT
NEXT-DRDER-LINE

"

= WWRITE

WRITE~ORDER-LINE

" -

= "DELETE
DELETE-ORLDER-LINE

= "REWRITE "
REWRITE-ORDER-LINE

= WFORMAT "

FCRMAT-OROER-LINE
NC-SUCH-FUNCTION,

IS NOT E€QUAL TD "FORMAT
OUT-ORDER-LINE.

CLRR PlRT.

A5-37

g

LLT0Y
TA070¢

" OAGT713

BOT14
FRUTLE
FLOT15

nPACTLT

PAOT1E

¢ - o~
FROTZZ

PAQTZ3

PADT24

FAGT4S

PAOT4E
PADTYHT

. PAGTED
CPAOTEL
“FADTE2

FAOTES
FACTET
PROTES
PADTSZ

©PAOTY3
. PAOT94
L PA0BZ3

13 Pg»—'_

-PAD919 -

PADB24

PAQBZE

oo

0 o) M

L LYW WL

[as B elNb¢)

PA0B43
PAOBYS
PAOB4S

PADB4E "

PAOB4T
PADBS1
PADSS52
PAOBS3
FAOBT4
PADBTS
PADBTS

PRAOBBY"

D~ LR OO
s 3

ELSE
Iaf

FUNCTICN

eERFCRM

ELSE

IF FUNCTICN
PERFORM

ELSE

CIF EUNCTICN

PRCC

PADBSD,

PAOBST

PAQOBSS
PAOBY9S
FAOBST

PAO920
PAD921 " .

PAOY9SSG

PAG9SS:

PALSES

PERFLRM INN-

PE

ELSE

IF FUNCTICN
PERFORM

REQRM

Bl SiE
PERFDORM
FUNCTION

c =

x)

DWhI

153
PURCHASE.,
CRM SET-
02 70 ¢
IF FUNCTION
PERFORM
ELSE - ‘
IF FUNCTION
PERFDORM
ELSE
IF FUNCTION
PERFDRH:
ELSE i
IF FUNCTION
PERFORM
ELSE

IF FUNCTION

PERFORM
ELSE ‘-..: ._..'..-‘... .
IF FUNCTIDN

" PERFORM
eLSE
1E FULCTIBN?
k. PERrBRM
ELSEvQZZL:“

PERFORRL
IF FGNCTIUN’

~ PERFORM

FCRMAT-PURCH&SE

i

MWRITE
WRITE=FLRT

"

H

WREWRITE
EWRITE-PAPT

~

MEQRMAT

CRMAT=PART

m

NC=-SUCH-FUNCTICN.
TS NOT Z3U2L To nmeoamaT
CLT-PART.

NG ENTITY CURRENT

PART

PRCCESS-SURCHA
3 TO RESULT.

CLURR=FUSCH2SE,
CURRENT=-ENTITY-CTOC,
PURCHASE.

|IREAD n

READ PURCHAJ:

usxasr "
FIRST=PURCHASE
- |lN E\XT "
NEXT-PURCHASE
WYWRITE ®
WRITE‘PURCHASE

NDELETE

DELETE PURCH&SE

ST g -(

5 “REHRITE -
R‘wRITF PUQCH&SE
%;“FORPA?

s —
R i Rl

NZQSUCﬂ-FuucvinN. =
IS NOT EQUAL TD "FORMAT
OUT-PURCHASE.

A5-38

CO021% E.r37-CUusImue:,
FC0zLG GOVE MNON T DT INT-oIUTTIuIgn,
FCOZul PERFLLY NEXT-CLSTOMAR,
FLO326 NIXT=LLSTOMER,
VECORLS Th SINY-CUSTOMEE = npnw
PCOz27 TRELEM SITLR=KEY-CUSTOMES
PCO3zE MOVE SFACTS TO DEMS-TMT-CUSTOYMER=-NC.
PCO325 MOVE DFnS=T1uT-0UsTowM
L0220 T3 DOM3-FLL-CUSTON
PCO232 MOVE MYESH T2 (US=-TIMT-CUS
PC0322 PERFORM MAKEZ-CLam-
PCO333 START INTERNAL-CUSTOMERS
‘FCO334 KEY TS GUEATER THAN DEMS-KEY-CUSTOMERS
‘PCO335 INVALID KEY MCVE BNOO TO CUR-INT-CUSTOMER,
PCO336 IF CUR-INT-CUSTOMER = myzgw
‘PCO337 MOVE MYESY TO SELFCH-FLAG
§9c0338 PERFORM LLCK~-FQOR-CUSTGNMER
iPC0339 UNTIL SFARCH-FLAG = nINpw,

" PCDR40 IF CUR=INT~CUSTOMER = nyegn
PCO341 MOVE DEMS-REC-CLUSTOMER
PCO342 TO DEMS-TNT-CUSTOvEER
PCO3453 PERFCEM =ILL-EXT=-CUSTONER
PLO34a ELSE M0OVE 111 70 2ESULT.
PC0348 WRITE-CUSTOMER,
PLOZ4S MCVE M“YES"™ TO "08MS-CUR-CYUSTOMER,
PCO350 PERFORM SETUP-KEY-CUSTOMER,
PCC351 PERFORM CLELE-INT=-CUSTOMZR.
L PC02E2 PERFIRM FILL=-INT=-CUSTCMER,
PCO2ER MCVE CEMS=INT-CUSTCMER
PC0354 TC DEMS-08(C- cu<T’~=Q
PCO355 MOVE CURRENT=EATITY-CIZZ T2 SNTITY=CEODT
PCO356 CF DENMS=FCN-CUSTOMERS
PCO337 WRITZ CBM3-REC-CUSTCOMEC
PCO35E INVALID KTY PERECRM WRITC-INVALID-KZY
pCcO3s¢e MIVE MNQ" TO DOMS-CUR~CUSTOMER,
PLO362 DELETE=-CUSTOMER,
PCO364 DELETS INTﬁENaL-CUST:MEQs
PCO3¢&S INVALID KEY PERFORM DELZTF-TNVALID-KTY.
PCO36Y% REWRITE- CL_TCIER.
PCOZ70 REWRITE DBMS-REC-CUSTCMER
PCO371 FROM DBMS-INT-CUSTOMER
PCO372 INVALID KEY PERFORM REWRITF-INVALID~-KEY.
PC0397 FORMAT-CUSTOMER.
PCO398 MBVE CBMS-FMT-CUSTOMER TJ Uwa.,
PCO400 READ-CLSTOMER.
PCO4D1 MOVE MYES™ T2 CUR—INT-CUSTGMER.
PCO402 PERFORM SETUP-KEY-CUSTOMER.
PCO4D3 MOVE DBEMS~INT-CUSTOMER - '
FCO404 TC DBEMS-REC-CUSTOMER.
PCO4DS READ INTERNAL-CUSTOMERS ..
PCO4D6& INVALID KEY PERFORM READ-INVALID-KEY
PCD4DT "MOVE "ND® - T0 CUR-INT-CUSTOMER.
PCO408 IF CUR-INT~CUSTOMER = nYESH,
PCORDY = ' TTI MOVETDBMS-RECSCUSTOMERS:"
PCO410 - - :TD DBMS=- INT-CUSTOMFR
PCO41Y PERFORM FILL-EXTSCUSTOMER.

[PCO&53 FIRST-INVOICE.
FPCO4S407" MOVE. WNOY TO CUR-INT-INVOICE s
PCO455 PERFORM NEXT INVDICE. -ﬁ S

{f?coase NExT-vaﬁ!tE- - "7T MERRCER 0

\Pt0460 IF Cﬂﬂ-INT INVOICE = "ND”

A5-39

04él
Gaéz
04Ez
S4c4
Ques
0sed
06ET
LG4t
J04EY
10470
t0471
20472
0473
C04T4
0475
fcoat6
C0417
CoaTs8
C0482
CQ&aB2
C0484
:C0485
CQ4Eb
tC04ET
FCOuBR
FC04EYG
5C0450
PC0491
FL0&52
EC0453
FLQscT
L4 e
DCU499
FCOB02Z
FCC5G4
PCOSCE
FCOS506
PCOS29
PCOS30
pPLOS32
pPCO533

PC0OS34 -

PLO535
PLOS3%

PC0537.

PCOS538
PC0O539

PCOS4D -

PCO541

PCOS42 -

PLO543
PCO581
PCOSE2
PCO5E3
PCOS8BT
PuUSBS

PCDSQDut
950591”
pPC0592 -

pCOSS3

-1 . [
DENS-TNT-TRVOICE-NT.

uuuuu

ce.
-TNVDTCE.
nTCES
EDS
Al DANS-KEY-CUSTOMERS
. oyE UNGY TO CUR-INT-INVODICE.
IF CUP-INT-INV nyzsw
MOVE MYESY EARCH-FLAG
FEFFORN LCCK-FOR-INVOICE
UNTIL SEARCH-SLB% = MEND'.
IF CUR-INT-INVOQICE = "yEes®
MCVE DBMS-REC-INVCICE
TC DBMS=INT-INVCICE
PETEQRM FILL-SXT-INVOICE
ELSE MOVE 111 TG RESULT.

WRITE-INVCICE.
MCYE "YESH 0 C8MS-CUR-INVCICE
PERFORM SETUP-KEY=-INVOICE.
PEREORM CLFEAR-INT-INVOICE.
PERFORM FILL-INT-INVDICE.
MGV = DﬁMSéINT-*NVch=
T0 DEMS-REC-INVCICE
MOV E CURk'NT—*NT*TY-:C?-
nF DEMS-RCC-CUSTOW
WRITE DBMS-REC-INVOICE
INVALID KEY PERFOR™ WRITE-INVALID-KZY
MoyS nNon TO CPMS-CUR-TNVEICE.
TE-INVOICE
DELETE ;NTERMAL-CUSTDNEDS :
TNVALTID KEY PEPE2RY DELETE-INVALID-KTY.
E-INVOICE,
EWRITE NAMS-REC-I ~v
FROM DEMS-INT-IN
S INVALID KEY PERF
FOGRMAT-INVDICE.
MOVE DBMS=-FMT- INVGICF TO UuWA.
READ-INVOICE.
MOVE "YES® TD CUR-INT- INVDICE
PERFORM SETUP-KEY-INVOICE.
MOVE OBMS=INT-INVOICE
TD DBMS-REC-INVOICE.
READ INTERNAL~-CUSTEUMEKS
INVALID KEY PERFORM READ-INVALID-KEY
MOVE "NOY TO CUR-INT-IKVD
If# CUR- INT= INVDIC: = nwyz3w
MCVE DBMS-REC-INVOICE -
TO DBNS=INT-INVOICE '
. PERFCRM FILL~- ExT Iuvsxcs.
FIRST-CROER=UINE. "7 Fiant
MOVE “NO" T0 CUR-INT- DPDER-LIh:.
"PERFORM NEXT-CRDER-LINE.
NEXT -0ORDER-LINE. '

J3n

EWRITE-INVALIC-KEY,.

”l IF CUR=-INT=ORCER~- LINE = "NOW

' PERFORM SETUP-KEY-DRDER-LINE
(9T MOVETSPACES, TO: nans—:wt nnnea -ITEM.
_:ane DBMS=INT-ORDER-LINE - :
-~ ygTDBMS-REC-ORDER- LINE.
MOVE "YES" TC CUR-INT-ORDER-LINE. -

A5-40

Lptaoy= TR KT o [U T e

{oess® STENT INTSENOL-OUET o 2R
CUEse AZY TS OGREATLA TRAN DTMI-KTY-CHSTITOWING
C0397 TRNMALIC KEY MIVE M2 o0 T cpnoIuMT-QRROFR-LINT,
CG598& IF CUR-INT-0RCER-LINE = Myfgwn
C05%9 MOVE MYESH Tn STanfH-FLAG
10600 PERFORM LCOK=FDo-0D0fp-LTAT
0801 UNTIL SEARLH=-SLAG = mENDU,
1C0602 I CUE~INT- cq:sa LINZ = uyzsH
'C0E03 MCVE DUMS-REC-0OBDER-LINE
1C0604 TC oLr<—*m* OROFE-LINE
L0605 pEoFOnN ;LL—LXT-GuDER-LIKE
200606 ILSE MOVE 111 T2 RESUL
'C0610 WRITE-CRDZR-LINE.
‘C0611 MOVE MYSSM T0 DEMS-CUR-DRDER- LINE.
20612 FEFFORM SETUP-KEY-QRDEP-LINE,
PL0E13 PERFORM CLEAR-INT-ORNDER-LINE,
’C0614 PERFIRM FILL-INT-DORDER-LINF,
300615 MOVE CBMS~INT-CRDER~LINF
*C0616 T{ DEMS-REC-DPOER-LINE.
L0617 MOVE CURRENT-ENTITY-CCCE TC ENTITY-CCODE
°>C0618 OF DEMS=-RCOD- CUST“M'”S
°C0619 WRITE DBMS=REC-GRDER-LINE
©PL0620 INVALIC KEY pracrov WRITE-INVALID-KEY
L0621 MOVE W"NOM TR [RMS-CUR-ORPEO-LINE,
PCO&25 DELETZ-0DRCER-LINE.
PCO626 DELETZ INTERNAL-CUSTOMERS
FC0627 INVALID KEY PSRFORM DELETF-INVALID-KEY.
PCO621 REWRITE-DRDER-LINE.
PCO&32 REWRITE DEMS-REC-DRCTE-LINT
FCO633 ERGH DEMS-INT-0EREQ-LINE
FCO0634 INVALTID KEY PEDFCORM REWRITZ=INVALID-KEY.
PCO655 FURMLT-CRDZK-LINE,
£C0656 MOVE [BMS-FMT-0PDF2-LINF TC Ubb.
PC0658 READ~GRIER-LINE,
PCO659 MOVE "YES" T0 CUR-INT-0ORDER-LINE,
PC066D PERFORM SETUP-KEY-CROER-LINE,
FCO0661 MIVE DRMS-INT-CRDER-LINE
PCOGE2 T TC O DBRMSI-"EC-ORDEF-LINE,
PC0B63 RERLD INTERNAL-CUSTOMERS
PCOBES INVALID KEY PERFDRM READ-INVALID-KEY
PLO6EBE T MDVE WND™ TD CUR-INT-ORDER-LINE,
PCOBES IF CUR-INT-ORDER-LINE = "YESHW
PCOGBT MCVE DBMS=REC-ORDER-LINE
PCOL6ES TO DBN¥$~INT-DRDER- -LINE
PCO&EY - PERFEORM FILL-rXT CRD‘R LINE.
PCOTL1S F’RST PART.
PCOT20" _MOVE "NOY™ TD CUR-INT-PART.
PCOT21 L PERFORM NEXT-FART,

PCO7Z5 NEXT-PART.
PCO726 « ‘+ IF CUR-INT-PART =."NO®
PCOT27 o1 PERFORM SETUP-KEY-PART i+~

PCOT28, | =~ MCVE SPACES TD DEMS-INT-PART-NO. ,
?covzv“i.w'nevs CEMS=INT=PART =~ = == ;
PCO730 Y . TD. DBMS-REC-PART,

PCOT3L MOVE "YESH 70" CUR-INT- -PART. "

PCO732. * PERFORM MAKE=CURR-PARTW .~ =

'PC0733 T TART INT‘RNIL*INVENTCRY

PCOT34. KEY IS GREATER THAN 03h§~xsv INVENTORY
PCOT3STRTR s e INVALTE KEY MOVE “NO¥ TO CUR-IHT ~PARTS
PLOT36 F cun SINT- pha S G

A5-41

~J
L)

TER
726
740
1741
3742
)74z
JT44

DT4E WRIT
p749
0750
07351
0752
06753
0754
0755
0756
0757
0758
10759

10743 DELE
10764
T0T765

!

Vi i i Crmit 50
zIo SrerTi =
S-g:cg_rl ~ uwTrmnn

TE CUR RT = mygeon

WL -REC-PLRT

T3 TRI-PART

FE SILL-EXT=FPART
ELIE W 1070 RESULT.
E~-PART .
MOVE PYEST TO DARMS-CUR-PART.
PERF0PM SETUP=-KEY=-PORT.
PERFORM CLEAR-INT-FPAKT.
PERFORM FILL-INT-PART.
MCVE DBMS-TINT-FART

TC DBMS-REC-PART.
MCVE CURRENT-ENTITY-CCOE TC r-’N'TITY CDDt
OF DEMS=-RCD=INVENTORY
WRITE DBMS-REC-PART
INVALID KEY PERFORM WPTTC—INVALID KzY
MOVYE WNDOM TO DAMS-CUR-PAPT.
TE-PART.
DELETE INTERNAL- INVENTERY
INVALID KEY PEREORNM NELETE-INVALID-KEY.

0769 REWRITE-PART.

C3770
o771
C0772

REWRITE DEMS-REC=-PART
FROM PJM -INT-PART
INVALID KEY PERFORM REWRITE-INVALIC-KEY.

C0795 FCRMAT-PART.

CI796

0758 READ-

10793
1C6500
rC0501
200802
200803
20804
PCGSOS
PC0BOE.
PCOBOT
PCO8OS
FC08D9

MOVE CBMS-FMT-PERT 107 UWS .
PART.
MOVE MYESW T2 CUR-INT-FART.
PERFORM SETUP-KEY-PART,
MCVE DBMS-INT-PART
TC DEMS-REC-PART,
ZZAD INTERNAL-INVENTORY
INVALID KEY PERFCRM READ- INVALID-KEY
MOVE WN2W TO CUR-INT- Ph“T.

IF CUR-INT=-PART = ﬂy:cn

- MCVE DEMS-REC-PART v
~ TC DBMS-INT- PART
PERFORM FILL-EXT-PART.,

PCOB48 FIRST-PURCHASE.

PLOBAS
PCO8B50

MOVE -WNB" TO CUR-INT- -PURCHASE.
PERFDRM NEXT-FURCHASE.

'PCOB54 NEXT- PUREHASE.

PLORSS
PCOB56
PCOBST
PCO8SE
PCOBSY
PCOBED
FCO861 .
PCOBE2
PCOBE3
PCOBEL
PCOBES

L PCOBES

_-Pcossv'

" PLOBEE
; PCOBEY
-_PCDBTp

IF CUR-INT-PURCHASE = "Nov
PERFORM SETUP-KEY-PURCHASE
MOVE SPACES TO DEMS-INT- PURCHASE=-ORDER=NC
MOVE CBMS—INT-PURCHASE
TC DBMS~QEC‘PURCH&SE;"
MOVE "YES" 70 CUR-INT~PURCHASE.
PERFDRM MAKE=CURR-PURCHASEL e
STRRT INTERNAL=INVENTORY .
7 KEY IS5 GREATER THAN DBMS -KEY~ TNVENTDRY

JINVALIO KEY MOVE "NQn TO CUR INT PURCHASE.

IF CUR—‘NT -PURCHASE = MYESWITH

TMGVE uygsn 7O SEARCH-FLAG
FERFDRM LCDK-FGR PURCHASE o
UNTIL SEARCH-FLAG. = -"END". b

giid cum“xﬂihththnSt"k "?Es‘? j".f:,ﬁ"'**

. MOVE DBﬂS -REC pURCHAss

:A5-42

5871 NE pEMG.TLTo2LI0
0872 : ST L =S Y TR R oINS
0R72 ELZE ¥E 111 T2 ©ESULT,
0277 IT&—FUaCH£SI.
“0&TH MEVE NYES™ 1D G“\'C”>—rU CHASE.
S037% PERFIRE SETUP EY=-PUTCHLSE,
L0850 PERFORN CLEAR-INT-FURCHBSE.
rosel PERFOR™ FILu-*\T DUPFHJSE.
0882 MOVE CEMS=IRT-FURCHAS
0883 10 DEMS-REC-PURCHASE.
C0834 MOVE CURRENT-ENTITY-CODF TD ENTITY-CCDE
CoBss OF DPMS-RCD-INVENTORY
o856 WRITZ DEMS=REC-PURCHASE
€ogeT INVALID KEY PERTORM WRITE-INVALID-KEY
‘C08568 MOVE "NG" TO CBMS-CUR-PUKCHASE,
C08S2 DELETE~PURCHASE.
0893 DELETE INTERNAL-INVENTORY
0894 INVALI“ KLy PERFORM DELETE-TNVALID-KEY,
'C0898 REWRITE-PLRCHASE,
C0899 REWRITE DEMS-REC-PURCHASES
'C09C0 FROM DBMS=-INT-PURCHASE
i€0501 INVALID KEY PERFORM REWRITE-INVALID-KEY.
‘0922 FORMAT-PURCHASE.
0923 MOVE [DBMS=-FMT-PURCHASE TO UWA.
’C0925 READ-PLRCHASE
FC0926 MOVE MYES"™ T2 CUR-INT-PURCHASE,
500927 PERFORM SETUP-KZY-PURCHASE,
200528 MOVZ CEMS-INT-PURCHASE
200929 TO OBRMS-REC-PURCHASE.
PC0920 READ INTERNAL-INVENTORY
FC0531 INVALIC KEY PERFORM READ~INVALID-KFTY
PCO932 ‘ MOVE WNDM TD CUR-INT-PURCHASE,
PL0923 I# CUR-INT-PURCHASE = "yzs™
£C0934 MEVE DEMS=-REC-PURCHASE
PCOS3E TC DRMS-INT~PURCHASES
FLO93E PCRFORM FILL-EXT-PURCHASE.
CAD372 LCDK-FCR-CUSTOMER,
LA0374 - READ INTERNAL-CUSTCMERS NEXT RECORD
QAD375 AT ENC MOVE UEND" TG SEARCH-FLAG
QA0376 g MOVE ®NOM™ TC CUR-INT=CUSTCMER,
QA0377 IFf SEARCH-FLAG = "Yygse : '
‘QA0378 " IF DEMS-CUSTOMER-NO = SPACES
SA0379 MOVE "SPACES TD SEARCH-FLAG .
QR0280 ELSE IF ENTITY-CCDE OF DBNMS=-RCD-CUSTOMERS = 01
GAD381 MCYE MENC" TD SEARCH-FLAG.
‘QAD382 IF SEARCH=-FLAG = SPALES ' f
‘QA0383 MCVE .MEND" TO SEARCH- FLAG
QAO384 MOVE MNO" TO CUR-INT-CUSTOMER.
CAOS507 LODK-FCR-INVOICE. ‘i
|GAQS5D08 READ INTERNAL-CUSTOMERS NEXT RECCRD ™
QALS509 AT ENC MOVE “ENDY T0 SEARCH-FLAG
QR0S107 57 © O MDVE MNO" TO CUR ~INT-INVOICE.
"QA0511 e SEARCH-FLAG = M“YES™
QADSI2 T IF DBMS-INVBICE-AD SFnCES
IQA0S513 ; MOVE SPACES TC s=ancn FLAG
QAOSIA LGN L ELSE IF ENTITY-CODE OF DBMS-RCD- cu:rcwcqs N 4
' CAD515 . MCVE MENDM.TD sznacw FLAG
. QAD518 IF SEARCH‘FﬂAE' SPACES : '
SQA0517 . MOVE MENDY TO Sﬁnktﬁ-FLAG

tnosm“’: i MayE wNgwTD” CUR-INT- Irwmcs.”
cAosas L0OK- FOR~ORDER—LINE. _ T

. A5-43

fra

:H&h H : Vi il i I el MR
GAOeZ WEAT Mgl Gim g ST TR DR~ T
LaAdezs Ir = CH=SL_ 40 = nyzgn

QAOEa T i SOFR-rLoEn-TTEN = SPEf s

ERIET 1 BINS SEACES TC ST E(H-RL

QA0Ga 2 SL3® TR PNTITY-COOr OF DSt S-iln-CUSTOMELS
QALO6.Z ICVE MENDD TO SERL(CH-TL AR,
QAQG44 IF SEs0H=-FLIGC = SPACEx

SADE4S MCVE MENDM T SEAPCH-FL2S

TADE4E MOVE "hO"W T CUR-INT-QRDSE-LING,

{GAO0773 LOCK=FCR-FART.

QADT74 READ INTEZENAL-INVENTORY NEXT FECpeD

CAOTTSE BT INC MOVE M“END" TO SEAPCH=-FLAG
QAD776 MOVE "“N2" 70 CUR-INT-PART.
Ga0777 IF SEARCH-FLAG = nyggn '

GADT778 IF DEMS-PART-NG = SPACES

QAQTTS MOVE SPACES TO SEARCH-SLAG

QAOTED ELSE IF ENTITY-CO2T DF DENMS-2CD-INVINTORY
Cao07e1 MOVE WENDM TO SEARCH-FLOG,
QA0T7e2 IF SELRCH-FLAG = SPACES

QADT783 MOVE MENDM TO SEARCH-FLAG

QAQ784 MCVE "NOW 7O CUR-INT=-PART.

CA0902 LOOK=FCR-PURCHOSE,

Q40903 READ INTERNAL-INVENTORY NEXT Fcrnon

QA0904 AT ENC MOVE PENDY T0 SEARCH-FLAG
2Aa0505 MOVE “NO" TD CUE-INT-PURCHASE,
CADSO06 IF SEARCH=-FLAG = nyegn

QAO0SOT IF DBMS-PURCHASE-CROER-ND = SPALCES
Q40908 MOVE SPACES TO SEARCH-FELAS

gaocpe SLSE IF SNTITY-COZ: 0F DBNS-GOD-INVENTODY
CA0910 MOVE MEND" TO SEARCH=-RL2G.

QA0911 IF SEARCH-FLAGZ = SPACES

QA0912 MCVE "ENDM™ TO SEARCH-ELAG

'3A0913 MOCVE "NC™ T0O CUR-INT-PURCHASE,

CB0412 SETUP-KEY-CUSTGOMER.

CED413 MCVE CSMS-EXT-CUSTOMER=NG -

QB0414 TC DBMS=-INT~ CUSTD“*R ND.

CBOS544 SETUP-KEY-INVOICE.

QB0545S MOVE DBMS-INT-CUSTOMER

QB0546 TO DBMS-INT-INVOICE.

QB0547 MOVE DBMS-EXT-INVOICE-ND

QBO548 TC DEMS=INT-INVOICE- -NO.

QBOB70 SETUP-KEY-ORDER=-LINE. < 3 '

CBO0B71 MOVE DBMS~INT-INVOICE

QBDBT2 ' TC DBMS-INT-ORDER-LINE.

QB0&73 MDVE DBMS—EXT- CPDER*ITEM

CBO6T4 Y TC DBMS-INT-ORDER<ITEM.

'QB0O8B10 SETUP-KEY-PART.

IQBDB811 MOVE DBMS-EXT-PART=ND

GB0812 " TO DBMS=INT- ~PART- ND.

QB0937 SETUP-KEY-PURCHASE. = =

QB0938 MOVE DBMS-INT-PART ‘= .

QB0939 - TO DEMS=INT-PURCHASE

QB0940 MCVE DBMS-EXT- puncnass-onnra nNO

LB80%41 UITO DBMS-INT- puncaass ~0RDER-ND.

CCO0385. CLEAR=INT-CUSTOMER, . |

1QC0421 MOVE SPACES 'TC DBMS= ~INT- cusvauen -NAME,
QC0423 MOVE 'ZEROS TO DBMS~INT- CREDIT-LIMIT.

QC0425 - MOVE'ZERDS TO- DBMS=INT-BALANCE. 24 B
QCos2y " MUVE IEROS T0 nams INT-TG?AL-anu= ON- -DRDER.

A5-44

01

0519 CLEAT=INT-INVLICH,
Z0EES MOV DE :]
0447 CLIAR-INT-O0ORDER
Cu&s51 MOVE IEKOS
CoBE3 MIVE IERDS
CO7EE CLEAR=INT-FRATY
cog18 MOVE 3PACE DFAS-INT=-DESCRIPTION
[cogze MGVE ZSR0S TG DEMS~INT-UNIT-PRICS,
|cogz2 MOVE ZFROS T2 LOMS=INT-STOCK=IN-HAND.
iIC0914 CLEAR-INT-PURCHASE,
0947 MOVE ZZROS 72 DEMS-INT-PURCHASE-CTY.
'C0949 MOVE ZERDS TO D3MS-INT-PURCHAGSE-DATE,
0951 MGVE ZEROS TO CaMS-INT-PURCHASE-PRICE,
(20953 MOVE SPACES TC DEMS~-TNT-PURCHAST-SUPPLIER-ND.
'D0386 MAKE=-CURR-CUSTCMER.
:D0387 MGVE "YES" TO CUR-INT-CUSTCMER.
1D0390 MCVE "NOY TO CUR-INT-INVDICE.
.00392 MOVE “NO" T0 CUX-INT-CRDER-LINT.
iD0520 MAKE-CLRR-INVOICE. -
200521 MOVE MYES™ TQ CUR-INT-INVCICE,
00524 MCVE "NO" TG CUR-INT-0ROER-LINE,
sD0648 MAKE-CURR-DRDER-LINE,
“D0649 MOVE "YZS" T2 CUR-INT-QORDER-LINE,
©D0786 MAKE-CURR-PART,
GDO787 MOVE "YES" T0 CUR-INT-PART.
QD070 MOVZ "NG" 0 -CUR-INT-PURCHASE,
©D0915 MAKE-CLRR-PURCHASE,
LD0916 MOVE "YESY T0 CUR-INT-PURCHASE,
'EQ0388 SET-CURR-CUSTCMER, :
WEQ389 MOVE MYESY T2 "8MS-CUR-CUSTOMER,
£e0351 MGVE "HOM T35 CaMS-CUR-INVOICE,
GE0393 MOVZ “NO" TL CEMS-CUR-DRDEC-LINE,
QE0522 SET-CURR-INVOICE.
GED523 MOVE MYESH TO [DaMS-CUR-INVRICT.
2E0525 MGCVE “NO" TO C2MS-CUR-CRDER-LINE,
CE0650 SET-CURR-CRDER-LINE.
CE0651 MCVE "YESM TC DS5M$-CUR-DRDER-LINFE,
CE0T786 SET-CURR-PART,
QEO7B9 . MOVE “YES" TO CBMS-CUR-PART.
GE0791 MOVE “NO" TO CEeMS-CUR-PURCHASE.
CE0917 SET-CURR-PURCHASE.
QED9Y8 ‘MOVE “YESM TO DBEMS-CUR- PURCHn<c.
SAD309 INN-CUSTOMER.,
SAD31D 'MDVE UWA TO DEMS-EXT- CUSTCMFR.
. SA0311 DUT-CUSTCMER,"
$A0312 . MDVE DBMS-EXT-CUSTOMER To Uwa.
. SA0443 INN-INVRICE.
SAD&44 7 MOVE UWA TD DEMS-EXT- INVDICE.
SAD445 OUT-INVOICE.®
SAD&446E MOVE DEMS-EXT-INVOICE TC UWA.
SAD571 INN-ORTER-LINES
SAOST2 " MOVE UWA TO DEMS-EXT- “au=n LINE.
. SADS573. OUT-GRLER- LINE.
. 'SADBT4 T T MOVE CSMS-EXT- Jaaea LINE TU an.
 SAD709 INN-PART.

SADT710 MOVE UWA TO SENS--X*-PART.
 SAD711 QUT-PART. X 2 :
_'5A0712?,i” MOVE DBMS-EXT- PnRT TD uwn. o o
-saoszb INN-PURCHASE. & 5 a1 S
TSA0B ““MOVE UWA TD nﬂss EXT-PURtPASE. G ooty vt i e b Y
7 SADB#ﬁ aurwpuncanse. ‘ A :

A5-45

FAICE [
- -~ :.— : = - = H\ o
TME 100
PERFOEN CrmeT =02t oy
PERFORK CLGSE-02T6-7 137
PERFORM UEC4Ti—TrTooapss
MOVE MYPEM TO SrTa-3838-005k-
CLO-DATA-EASE,
IF DATA=BASI-CPEN-FLLE = Mysgm
MCVE 101 1C RESULT
ELST PERFCKM LPDATE~DATA-ZLSE
MCVE MYESY TO DRTA-S0SE-CPEN-FLA
RELEASE-DATA-BASE
IF DATA-BASE-CPEN-FLI: = MNP

MCVE 102 70 RESULT
ELSE PERFORM CLOSE-TATL~RASE
MCVE "NO™ TD DATA-SASE~-DPEN-FLAG.
CREATE-DATE-RASE, '
CPEN CUTPUT INTERNAL-CUSTOMESS
PEN QUTPUT INTERNAL-INVENTOCOY,
UPDATE-DATA-EASE,
CPEN TI=0D INTFEENAL-CUSTOMERS,
OPEN I-0 INTERNAL- INVFhT”QY.
CLOSE-DATA-BASE.
CLCSE INTERNAL-CUSTOME
CLTSE INTEQNAL-INVENTOS
NO=-SUCE-FUNCTION.
MCVE 105 TG RESULT.
READ-INVALID-KEY,
MOCVE FILE-STATUS TO ©28<yLT.
READ=LZT~-END.
MCVE FILE-STATUS TC =2iyLT,
WRITE-INVALID-KEY.
MOVE 107 TC PESULT.
CELETE-INVALID-KEY.
MCVE 108 TO RESULT.
EEWRITE-INVALID-KEY.
MOVE 1035 TO PESULT.
NO-SUCh-RECDRE.
MOVE 104 YO RcSULT.
START-ERROIR, ‘
MOVE 111 ‘TG RESULT.

Mapping Code Example 2

The following COBOL code was generated by the PYRAMID mapping code
generator using the source code

INTERNAL SCHEMA NAME IS MANUFACTURING.
EXTERNAL SCHEMA NAME IS INVOICE-QUERY.

The generated code can be incorporated in the PYRAMID Query Program PQUERY
to allow the QUILL query language to be used to interrogate CUSTOMERS,
INVOICES and ORDER-LINES.

AS-47

e B VLBRR-FIZ. T
LT S
3007 & SR TREONSY fQYTms het TS TRVGICE-AUTEY
A3077:
AClaws
AUL1ECw TNTRENAL FOHLMs NLET TS L OTURTRG
LO151%
20002 SHVIRONMENT SIVIEYEN,
20004 CONFIGULRATIZSN STCTIICM
L0005 SPURCE-COMPUTER. CYIER,
L0006 DRJECT-CCOMPUTER. CYREFR,
30007 INPUT-CUTPUT SECTICN.
‘50008 FILEZ-CCNTROL.
801352 SELECT INTZ846L-CUSTRVIRS
330182 ASSIGN TH #GoCEGSn
180154 ORGANIZATION I8 INDEXED
EQ18E LCCESS MOID= I8 DYMAMIC
250156 RECOED KEY IS DRMS-KFY-CUSTOMERS
©50336 ETLE STATUS I8 BILE-3TATUS,
CADOCS DATA CIVISION.
CAGQ10 FILE SECTICN.
CRO157 FD INTERNAL-CUSTLOMEIRS
CzC015¢8 LABEL RECORDS OMITTED.
C20159 01 DBMS-RCO-CUSTIMIRS,
£50160 3 DEMS-KEY-CUSTOMERS,
C201¢é1 02 DEMS-CLSTOMES-NT PICTURT IS X(&).
CBEO1E2 JR DEMS=IANVOICE-NT BTICTURT IS X(&).
L0163 02 DPMS-NROEZR-ITEV PTICTURF TS X(4&).
£=01%4 92 ENTITY-CCZE PICTURT (IS %%..
50197 01 DEMS-FEC-CUITIVMIR FICTURS T XCT?)
(20223 01 DBEMS-REC-INVTICE PICTURD It X(22).
CZ035% 01 DSNMS-REC-0RTEF-LINE PICTURE I3 X(27).
CCOC011 WORKIRG=-STORAGE SECTION.
£C0012 01 FILE-STATUS PICTURE IT X¥.
Ccoolz: 9 NATA-BASE-CPER-FLAG FIC X(ZD
Ccool4 VALUS IS “NO",
"CO0015 01 SEARCE-FLAG FICTURE I35 XXX.
CC0O015 01 CUFRENT-ENTITY-LCDE PIC S5,
CCo017 ¢ SANE-CWNER PICTURE IS XXX,
CG0081 01 ©DBMS-CUR-CRDER-LINE PICTURE IS XXX VALUE IS "NO".
CJ00B2 01 DBNS-EXT-DRDER-LINE.
£Joog?r 02 DBMS—EXT-CLSTOMER=NAME PICTURPE IS XC(40)a
CJD0%4 02 DBMS=-EXT-CLSTCMEP-NT PICTURE IS XCé€D.
cJoicl 02 DBMS=EXT-CREDIT-LIMIT PICTURE 1S a(R).
cJo10s 02 DBMS-EXT-INVOICE-ND PICTURE IS X(6).

CJ0ol1s 02 D3MS-EXT-INVOTCE-DATE PICTURE IS 9(é&).
cJo1z2 02 DBMS~EXT-CRIFR-ITEM PICTURE IS X(4d.
CJ0131 02 DBMS—-EXT-0ORDER-PRICE PICTURE IS 9(5D.
CJ0140 02 DEMS-EXT-0FDER-QTY PICTURE IS5 9(6D.
CK0184 01 DBMS—INT-CUSTCMER. . .

CKD185 02 D3MS=INT-CUSTOMER-NO PICTLRE IS X(&).
CKO166 - D2 DBMS-KEY-CC1 PICTURE IS XC(é&J.

CKO187 = 02 DBMS-KEY-002Z PICTURE IS XC4)e

Ck0188 02 FILLER PICTURE IS 99. ,

CKD189 02 DBMS-INT-CLSTOMER-NAME PICTURE Is X(30).
"CKD191 02 DBMS—INT-CREDIT-LIMIT PICTURE IS 9(B).
CK0153 02 DBMS-INT-R2ZLANCE PICTURF IS S(C10).
CKO1S5 02 DBMS~INT-TCTAL-VALUE-ON-DRCER PICTURE IS5 9(8).
CK0218 01" DEVS=INTSINVOICE.™ AR o fe seza ey
CK0217 .- 02 DBMS-KEY-C03 PICTURE IS X(6).

A5-48

el ® z - - T AEeT - ¥ | '
AL a PL_ERY (T4 DICT ¢ C4Y.
(3220 0 LT PICTUL L a
(tzel CZ S-TRET-VRY [£ —BlT cTu LS ().
KO34Zz 1 DM i=IW V-5 F8&-L <
K0244)5 TogrY=00s SIOTUE S X(ad.
0245 nz C L-XIY-00a PILTURE TS OYLED.
K0344 07 DeMS-INTI-fenTR-ITEM PICTURE TS OX(4),.
K347 02 SILL ETCTURE TS @5,
KOZ4r 02 CUMS-INT-QRTEO-CTY PICTLERE TS S(35).
K025 02 SIMS=INT-DFDEZR=-PRICS FICTLRE IS 2(30.
LO08S 01 CDEMS-FwT-CRDEC-LINT.
LOoOES 02 0EMS-NDI-CR2ER-LINS STCTUFE TS 89 valus IS 08,
LO0DEE 02z FILLTE PIC X(20) vaLys IS MCUSTOMES—NAMER,
.LOOES 02 FILLER PIC X VALUE IS ®CM,
L00%0 07 FILLYER PIC 9999 vaeLUE IS to0o%1.
"2L0091 02 FILLSR PIC SgSoVac valys 1S Q40
~Loo0¢cs 02 FILLER PIC X(203 valLuz IS WCUSTOMER=MON
CLOOS ¢ 2 RILLER PIC X VALUE TS MCn.
CLOCY7? g2z TFILLER PIC 9825 VALUT IS nQale.
CLQOSE Gz RILLFR PIC S9%3sVves valle T3 0Ch.
CLol10z 02 FILLER PIC Xx{20) vaLuyt IS MCREDTT-LINITH,
CLO1GZ 02 FILLER PIC X VALUE IS "N",
CLO104 07 EILLER PIC 9999 velLuys IS TnaT.
CLO1CGS o2 FILLER PIC $S939Ves VvaLUE IS nee.
CLO10OS 02z FILLER PIC Xx(20) vatus 15 MTRYDICT-NDOM,
CLo110 0z FILLER FIC X vaLys IS MC™.
CLC111 02 FILLER PIC $95% vipus IS Con%.
cLO1izZ n2 EILLFRE PIC S8%9V3% VELUL 1S 004
CLO115 62 ©TILLSE FIC X(€20)> vaLus It WINYOTICE=-22TEY
gLo117 02 FILLSR PIC X VALUZT I35 "NV,
cLD0118 02 FILLTRH PTC 9959 vaLl® IS I0sl.
fCLO11¢ 02 TILLTR PIC Su5SVves vilLUE IS D0&.
cLo1Z22 2 ©ILLETR PIC X(20) vaLLT IS NORTER-ITIMY,
CLO1Z4 02 FILLEF PIC X vaeLUz 15 nwlh,
cLO12% 5 ®ILLER DIC.269% vaLUT IS Q0E&T.
CLO1Z26 02 FILLER PIC Ssggvos vaplUs IS ANAT
tLo1z2 > FILLE® PIC X202 vaLun T& WARDER-CRICEN,
CL0133 02 FILLER FIC X VALLE IS "N".
CLO134 02 FSILLER PIC 99%¢ VvALUE IS 071,
CLO13S 02 FILLER PIC S9%9VSI VvaLUE IS 005.
CLO141 02 FILLER PIC X(Z0) VALUE IS NORDER=-LZTYY,
CtLola4l 02 FILLER PIC X VALUE IS "NY,
CL0143% g2 -FILLER PIC G99%¢ VALUE IS 0756,

CLO144 02 FSILLFR PIC $995V39 VALUE IS 006.
CS0165 01 CUR-INT-CUSTOMER PICTURS IS XXX VALUE Is MNOW.
CS0195 01 CUR-INT-INVCICE PICTURE IS XXX VALUE IS UNO®.
£s0324 01 CUR-INT-CFDER-LINE PICTURE IS XXX VALUE TS "NGM.
CX0168 01 EUFFER-CUSTOMERS PICTURE TS X(Z).
C10018 LINKAGE SECTICN.
20019 01 FUNCTICN PIC X(10D.
£10020 01 THE-RECORD-NAME PIC X(20).
£20021 01 RESULT PIC 995.
‘£70022 01 UWA PIC X(5127. =R
. CADD23 PROCEDLRE oxv*sxon USING FLNCT’DN,
 DADO24 %, THE-RECORD-NAME, UWA,
DADOD25 RESULT.
EADO26 INITIAL-PARAGRAPHL " "1
[~EA0027. . MOVE ZERD TO RESULTS)
 EA0028 “IF FUNCTION = MNEW # 5%
EAD029 PERFORM NEW-DATA-BASE

A5-49 -

ADUZC
ACC=1

-

LOOZE
40033
TAQDCZ 4
FAQQ35
*AOD:
Fa0037
FACDTS
FAO0T9
FADOBO
=a0357
HAa0083
HAD129
" HA0I30
HAD138
HA0139
KA0147
HADL14&48
‘HROOB4&
RBEODY2
H50093
HBOOSS
HBO1CO
'H30106
HEO107
HBO0113
H30114
KR0120
RB0121
HB0127
H30128
HB0136
FBD137
KBO145
HB0146

_)

)

[

Cr\

FILL-INT-
MOVE

70

MOVE

10

MGVt

10

FILL-EXT-CRDER-LIN

{OVE
70
MOVE
70
MCVE
T0
MZVEZ
TC
MGVE
10
MCVE
70
MOVE
TE
MCVE
10

—PAD224 USE=URTE

PAD225 PERF
PAD226 MGVE
PAD22T PERF
PAD232 1F F
PAD233
PAO234 ELSE
PAD235 IF F
PAD236
PAD237 ELSE
PAD241 IF F
PAOZ242Z"

PAD243 ELSE
PAO26G 1F F
PAD265

PAD266 ELSE
PAO279 1IF £
PAO280

PAD281 ELSE

. PAD285 IF F

© PAD286 '
PAD287 = ELSE

i CPAD319 -

L PAO32DC
PAD321 ELSE"

DOMS—INT~-CUSTCMER-NAME
DaMS~EXT-CUSTOMER=-NAME,
CBMS~INT-CUSTOMER-ND
DBMS-EXT-CUSTCMER=NT.
DEMS=INT=-CREDIT-LIMIT
CEMS—-EXT-CREDIT-LIMIT,
CEMS—INT-INVOICE-NC
CEMS—EXT-INVOICE-NT.
BMS-TRT-INVOICI-02TC

Ce ETE
CEMS-EXT-INVCICE-CATE,
0EMS-TINT-0RNIR=ITEM
CEMS=-EXT-"RDSR=-ITEM
DyMS=TINT-0RDIR=DPRIGE
CRBMS-EXT-CROEE-PRICE,
CEMS-INT-CRIER=-0TY
DEMS-EXT-CRDER-0TY.

R= LJ.'\J' . . ,
ORM "SET-CLRR-CRDER-LINE.
03 TC CURRENT-ENTITY-CODE.
ORM INN=-0ORDER-LINE.
UNCTION = "RELD M
BERFORM RFAD-ORDER-LINE

UNCTION = MFIRST
SERFORM FIRST-OROER-LINE

UNCTION = MNEXT ®
PERFTORM NEXT-DRDER-LINE

UNCTION = "WRITE ™
PERFORM WRITE-DRDER-LINE

UNCTION = "DELETE "
FERFORM DELETE~-DRCER- LIN‘
UNCTICN = “REWRITE " _
PERFGPH REWRIT&-GRDER-LINE

=R
AT

IF FUNCTION = “FORMAT

PERFURM FCRMAT-DRDER- LIN?

A5-50

—c oppEOTICL 7oL
:' “:" "L'_ " - \('"5
ST 7® PLACTIO noELEaSE M
S RETUY LS LI23T-D8T2-2ASE
AR TR ANCH="h=pRECTE oK AME
SAGRAF -,
PROGRAM,
N-RECCED=NEME
TF THT-RECORT-wiNE = WLUSRY-DECIPDM
FiREORM UST-NEDER-LINE
PERFORM NC-SUCH-RECDRD,
~BROER-LINE .
CEMI-EXT-020SR-TTEM
C3MS-INT-0RCEG-ITEM,
DEMS-EXT=NO0FR-PRICE
SoMS-TINT-GRDEZ-RICE.
CEMC-FEXT~CROEE-CTY
SaMS=INT-0RDZR-GTY.
£,

]
tA
AN

~2
AN S B RO TN S ol B SRS)

.|

0173
‘0180
°C016¢S
20200
0201
’C02C2
"C0203
200204
>C0205
2Cp2C6
PCD207
PCO208
PCO2CS
PCO210
FCD23§
PCO22¢
FCO240
FCO244
PCO243
PCO246
PC0247
FCO24&
FCO24¢
"PCO250
FCO251

PCO252

PCO253
PCO254
PCO255
PCD256
PCO257
PCO258
PCO259
'PC0260
PCO261
PCO262
PCO263
PCD267
PCO268
PCO269
PC0O270
PCO271
PCO272
PCO273
PCO274
PLO275
PLO276
PCO277
‘PCO278

PIREC fun =pSHlis (=h— B e T .
IF FUNCTICUI I3 NTT UL TO B"FCRMAT b
EERPEOAN DLT-0UIFR-LIND,
READ-CLEZTCMER,
MCVEZ "YyLsSn 70 fUR=IMNT-CUSTOMEER,
PERFIAOM L7TUR-KEY-CUSTTMER,
MGVE CoMS-TLT-T03T0ER
TG DEME-FEC-CUSTTNMER,
READ INTEENAL-CUSTCMERS
INVALIT KEIY PERFIRM READ-INVALID=KEY
MOVE "NO" 70 CUR-INT-CUSTOMER.

IF CUR-INT-CUSTOMER = "Yyegn
MOVE LEMS-REC-CUSTOMER
TC ZOMS-INT-ZUSTOMFR,
READ-INVCICE,
PERFCRM READ-CUSTOMER,
MOveE “YES" 7O CUR-INT-INVOICE.
PERFORM SETUP-XEY-INVGICE.
MOVE DBMS-INT-INVOICE
TC DEMS-RIC-INVDICE,
INTERNAL-CUSTOMERS
INVALID KtY PERFORM REAT-INVALID-KFY
MBvz "NO"™ TO CUR-INT-INVDICE.
IF CUR-INT-INVCICE = Yyesn
MOVE DEMS-REC-INVLDICE
TG C2MS-INT-INVCTICEF,
R=LINT.
ND" T LUR=-INT-
M NEXT-CEDER-LINT,

EEAD

-
—
s
(%]

ot

-LINE,

o M
I M n —T)

g Cormog

KEXT

HITJE—J
pal

momoO

R!

1]
ER
2%
S

<

o

o=

el
T o€ N

FORM S
MOVE SPaC
DEMS=INT- CRpES
TO DBMS=REC-D
MOVE BYESY T cuo
PERFORM MAKE=CURE-TED
START INTERNAL-CUSTGOM
KCY IS GREATER THAN DEMS-KEY-CUSTOMERS
T INVALIC KEY MCVE “ND"™ TO CUR-INT-ORDER-LINE,
IF CUR INT ORZER-LINE = WYES™
MOVE "YES™ TD SEARCH-FLAG
PERFORM LCCK-FDR-DRDER-LINE
"UNTIL SEARCH-FLAG = "ENDT™,
IF CUR-INT-DRCER-LINE = MYES"
" MOVE DBMS-REC-DRDER-LTINE -
CTD DBMS-INT-DRDER-LINE
PERFORM FILL-EXT-ORDER-LINE
ELSE MDVE 111 TO RESULT,
WRITE-~DRDER=LINE. A e
MOVE YYESY 1.0 DSMS-CUR-0RDER-L INE.
PERFORM SETUP-KEY-ORDER-LINE.
PERFORM CLEAR-INT-DRDER-LINE.
PERFORM FIUL-INT-CRDER-LINE.
MOVE DBMS—-INT-ORDER-LINE
.. TC DBMS-REC-DRDER-LINE.
MOVE. CURRENT-ENTITY-CODE 10- ENTITY cuos
u¥ _DEMS=-RCD-CUSTOMERS n TRy
,.HRITE nsﬂs—nsc DRDER=LINE. ‘' . -
’“"”stnlxb KEY PERFDRM un:tr-rwvnlzo xsv
MOVE ¥NO" TQ CBMS-CUR-ORDER-LINE.

mon o
v
[

"o |or-

Move

X

EEL I B B § P,
+
I 4 = |

I N

l -—I ol

1#1”

vnﬁul

x .9

wn |
2]
=
te i)
-

A5-51

43"M9VE ZERUS Tﬂ QBM

S“INT TBT%L*V&LUE DN“BRDER.

% CELET T TUoHAL-TLITTY
=2 3 LI NIy mioe ST TTE-INVALID v
0 P EWRITEG ~LINE,
1g2es SELEITY NIVE-Rn(-0rDER=LINE
202590 SCo Dt MS-INT
15291 LVALID KEY €
10322 sGep INE
cpzaz [E L S-EUTA0R0SE-LIN: T Uha,
£o2zs ER-LINE,
€326 BERFOREN READ-INVDICE.
£o0327 MOVE "Y&SM T0 CUR-INT-DRDER-LINE,
o328 FERFOFRK SETUP-KEY-DRDER-LINE,
C0229 MOVE DEMS—YNI-CQ“EA LINE
C0330 1T NEMS=RIC-LROER-LINE,
‘C03231 READ IhTEC“LL CUSTOMERS
0332 INVALIC KEY PERFORM READ-INVALID-KEY
ic0233 MOVE "NO" TQ CUR-INT-DRDER-LINE.
'C0334 IF CUR=INT-QRLER=-LINE = nyss§n
C0335 MCVE DPMS-REC-DRDER-LINE
L0236 TG DRNS-INT-QORDER-LINE
00337 PEPFARM FILL-ZXT-0RDER-LINE
00252 LOGK-FLF-CRDER-LINE,
180293 READ IMTERNAL-CUSTCMERS NEXT RECORD
iA0294 AT ENC MOVE MEND" TO SEARCH-FLAG
2A0265" , : MOVE UNOW TC CLR-INT-ORCER-LINE,.
140256 1F SEBRCH-FLAG = MYESH :
3R0267 T8 OaMS-DRLER-ITENM = SPACES
SAC258 MOVE SPACES TO SEARCH-FLAG
TA0259 ELST TF TNTITY-COCE OF DRMS-RCD-CUSTOMERS = 03
JAD200 MEVE WERDN TO SFARCH=-FLAG.
SA03201 IF SEEECH-FLAC = SPACES .
LA0302 TF ENTITY-CODE OF DEMS—RCO-CUSTOMERS = (2
ILA03G3 MOVE "YSSWM TO SEARCH-FLAG
eno304 “OVE [AMS-REC-INVOICE
ICAD30S TC DEMS-INT-INVOICE.
(AD306 If SELTCH-FLAR = SPACES
CA0307 T2 INTITY-CODE OF DeMS-RCD-CUSTOMERS = 01
¢A0208 MOVE MYZSM TD SEBRCH-FLAG
CAC309 — — — MCVE TBMS=REC-CUSTOMER — —— —— —— — — ——
GAD310 TC DEMS-INT-CUSTOMER.
$AD311 TF SEARCH-FLAG = SPACES
QA0312 MCVE "END"™ TD SEARCH-FLAG
GAD313 MCVE “NO"™ TO CUR-INT-DRDER-LINE.
CBO181 SETUP-KEY-CUSTOMER.
CB0182 MOVE DBMS-EXT-CUSTOMER-NO
80183 TC DBMS—INT-CUSTOMER-ND.
Q@B0211 SETUP-KEY-INVDICE. -
QBC212 MOVE DBMS~INT-CUSTOMER
&B0213 TC DBMS=INT-INVOICE
CB0214 MGVE DBEMS—EXT-INVDICE- ND
GB0215 TG DBMS—INT-INVOICE-ND,
_QB033B SETUP-KEV-DRDER-LINE.
QBD339 MOVE CBMS-INT-INVOICE
$B0340 TO DEMS=-INI-DRDER-LINE, 3
CB0341 MGVE DBMS-EXT-ORDER-ITEM v
QB0342 _ TO DBMS-INT-ORDER-ITEM. :
QL0150 MOVE SPACES TC DBEMS-INT-CUSTCMER-NAME.
@Cco192 MOVE 2EROS TO DBMS-INT-CREQIT-LIMIT. :
Qrop194 MOVE ZERDS TO DEHS*INT-B&L!NCE&ﬂf' i N
QL0156 7S

!

¢
2
r

r

06214

CCO3ay 05 8

ARG} SOTERTE 5

S00215 MAKZ=CLAR-DRDEo=LINE,

L0031e NIVE MYESM T CUR-TNT-TI0ER-LINE,
SED317 SET-CURR=-COISR-LING.

LE0318 MOVE Mysegn 1n cems-cu:-o&asa—Lxms.
5A0228 INN-URCER-LINE,

SAD229 MCVE UWA TC DEMS-tXT-2RDER=-LIAE,
SAD230 OUT-CRCER-LINE.

SADZ231 MOVE DEMS=EXT-CRDFER=-LINGE TO Ukd.
TAOD38 NEW-CAaTA-%25E,

TA0039 IF DATA-SASE~CPEN-FLAG = MWYEgw
TA0O040 MOVE 101 T0 RZSULT

TAOD41 ELSE -

TA0042 PERFORM CREATE-DATF-BASE
TADQ&3 PERFORM CLOSE-DATA-RASE
700044 PERFOKM UPDATE-DATA=RASE
TAQD04S MOVE MYESW T3 DATA-BASE-CPEN-FLOG.
TACO46 OLD=-DATA-EASE,

TAOQ47T 1€ CATA-BASE~CPEIN-FLAG = Mygs®
'TAOQ4 8 MOVE 101 TG RESULT

TAOD4S ELSZ PERFOOM LPDATF-DATA-EBASE
‘TAD05S MOVE MYESH T DATA-BASCE—CPEN-FLAZ.
‘TAO0051 RELEASE~-DATA-2ASE.

' TAOCS2 IF CATA=BASE-CPEN-FLAG = WNC™
'TAQ053 . MOVE 102 TO RESULT

TA0O054 ELSE PERFIAM CLGSE-2ATA-BASE
TADOQ3S MOVE MROM TO DATA-RASE-QOPEN-FLAC,
TEOCES CREATE-DATE~BASE.

T80165 GPEN CUTPUT INTEGNAL=-CUSTOMERS.
TCOO057 UPDATE-GATA-BASS. ,

TCO1&6 JPEN I-0 INTERNAL- CUSTIMERS.
TD0058 CLOSE-CATA-BASE,

TD0167 ° CLCSE INTERNAL-CUSTOMESS,

VAOO059 NO-SUCH-FUNCTIGON.
~VAGO60— — MDVE-105 TO RESULT+

VAQO061 READ-INVALID-KEY.

VAOD62 = MOVE FILE-STATUS TO RESULT.
VAOD63 READ-AT-END. '

VADD6 4 MOVE FILE-STATUS TD RESULT.
' VAO00&E5 WRITE-INVALID-KEY.

VAOO&S ° MOVE 107 TO RESULT.

VADO067 DELETE-INVALID-KEY..

VAOO06E MOVE 108 TC RESULT.

VAQDES REWRITE-INVALID-KEY.

VADOT70 MOVE 109 TO RESULT.

VAEOD71 NO-SUCF-RECORD. -

VADDT2 MOYE 104 TO RESULT.

VAOD73 START-ERRCR.

VADOT4 MOVE 111 T8 RESULT.

 A5-53

Mapping Code Example 3

The following COBOL code was generated by the PYRAMID mapping code
generator using the source code

INTERNAL SCHEMA NAME IS INVENTORY.
EXTERNAL SCHEMA NAME IS PURCHASES.

It is used by program NEWITEM to maintain the PARTS database.

A5-54

40001
50002

A007 5%
A0CT &
400773

2RO177

AQYT G
ACLT S

40003
cA00C4
SAGOOS
EA0006
£30007
EBO00S
EBC1E0Q
tz01e1
FEQL1EZ
£80183
CB0184
230449
JA000S
££0010
{20185
L0186
i:ul&?

. -

ENVI
CONF
SOUR
OEJE
INPU
FILE

DATA
FILE
FD

g1

01
01
WIRKI
01
01

01
01

01

01
01
01

01

01

01

.__,‘

EXTERNAL SCHEMA NOME IS PUDIRASEE

(%] - Lo

INTERNAL SCHEMA NAME TS ITRVIHTODY

RONMENT DIVISION,
IGURATICN SECTION.
Cz-CoMPUTEP. CYZ2ER,
CT-COMPUTER. CYBER,
T-CUTPUT SECTICN,
-CINTROCL.
SELECT INTERNRL-INVENTCRY
ASEIGN TO "PARTSM
ORGANIZATIOCN IS INDEXED
ACCESS MCCDE® IS DYNEMIC
RECORD KEY IS CAMS-KEY-INVENTLORY
FILE STATUS TS FILE-STATUS.
CIVISION,
SECTICN.
INTERNAL-INVENTORY
PEL RECCRDS CMITTED.
DBMS-RCD-INVENTORY.,
02 DEMS-KEY-INVENTCRY.
03 DEMS~FART-ND PICTURE IS

02 DEMS—=PURCHASEF-ORDER-ND PICTURE T3S
02 ENTITY-CCRE PICTURE IS ©2,
DBMS-REC-PART PICTURE IS X{(40D.
CENS- KFC-LLFCPA(C FICTURE TS Y(30).

NG~STORAGE SECTION.
CILE-STATJS FICTURE IS XX.
DATA-BASE-CPEN-FLLG PIC X(2)

VeLus IS "NOM.
SEARCH-FLAG PICTURET IS XXX,
CURRENT—-ENTITY~-CCZCE PIC 92

SAME-OWNER PICTURE I3 XXX.

DEMS-CUR=-PART PICTURE TS XXX VALUE IS "NOY.
DEMS-CUR-PURCHASE PICTURE IS XXX VALUE IS v
DBMS-EXT-PART.

02 DBMS=-EXT- OFSCRIPTIBN PICTUR~ IS X€&40).
02 DBMS-EXT-PART=-NO PICTURE IS X(4).

02 DBMS-EXT-UNIT-PRICE PICTURE IS S(&).

02 DBRMS-EXT-STOCK~IN- HANﬁ PICTURE IS 9(&).
JEMS-EXT-PURCHASE, :

XC4),

ND".,

02 DEMS-EXT- PURCHASE-DRDER <NO PICTURE IS X{4>.

02 DBMS-EXT-PURTHASE-DATE 'PICTURE IS 9(6).
02 DRMS-EXT-PLRCHASE-QTY PICTURE IS °9(6).
02 DEMS-EXT-PLRCHASE-PRICE PICTURE IS 9(#8).
02 DEMS-EXT-PURCHASE- suppLzen-No PICTURE IS
DENS=INT-PART. =

02 DBMS~INT-FART-NC PICTURE IS %X(&).

02 DBMS=KEY-001 PICTURE IS X(&).

D2 FILLER PICTURE IS.5%9.

02 DBMS=INT-DESCRIPTIQON PICTURE IS X{a0dL '
02 DEMS-=INT-UNIT-PRICE PICTURE IS 9(6).

02 DEMS-INT-STOCK-IN-HAND PICTURE IS 9(8)a =

DBMS-INT~ PURCHASE.!

02 OBMS-KEY-002 PICTURE'Ts'xraa.'*3“*“**“** -
02 DBMS-INT-PURCHASEZ-ORDER-NC PICTURE IS X(%).

A5-55

X(4).

Ro4zé
Koaz7
K043
A
CKD443
.LOGeE
LLODES
SLCoEH
cLoGgs
cLoose
cL0021
cLocs7
CLOOSSB
CLoOssS
CLO10GC
CLO10S6
CLO107
CLO10B
CLO1D%
CLo115b
CLG116
CLO117
CLO11B
cCLo1z0
Lo131
L0123
CLO134
cLc1zs
CL313¢
CLC142
CLO143
CLOl4a

CLO1453
1CLO12L

CLO0152
CLG1z2
CLC1B4
CLO1&D
CLO1é61
CLO1g2
CLO163
CLO1é9
CLO170
CLO171
CLO172
£s0z88
{50415
CX01%5
£z0018
Cz0019
Cz0020
€Z0021
Cz0022

CADOZ3

Dag02s4
DAQO025
EAQ026
EAQQ27
EADD28

§A0029;*
EAD030 -

".): = (v. , .
s SN T-FLEOMLER-07 SrENURT SR OB(E.
02 - T-PURCHAS T -08TT PIITLURE T8 2(2),
32 ~INT=FLACHLESE=-PRICE PICTURE TS 2(&).
5 FO=THT=pPURCHLSs=SUPPLIED-NT PICTURE IS YX(4).
(G, FAT-RERT.,
02 DIMSeNCI-RLnTY pIfTURS TS S VALUE TS 04,
Cz FILLER PIC X(Z22) VaiLUT IS5 "DISCRIPTICNM
G2 FILLER FPIC X VALUT IS miw,
gz FILLER FIC 2%%9% VeLUE IS (0201,
Jz rFILLER PIC SSSGVES VALUS IS 04¢C,
02 FILLZIR PIC X(Z0D) VALUET IS "PART-NOW
2 FILLER PTC X VELUE IS n(n,
02 FILLER PI{ 29GS VALUE IS C041,
02 FILLER PIC S2%39V3S VALUE IS5 004,
02 FILLER PIC ¥(20) VALUE IS MUNIT-PRICE™,
02 FILLER PIC X VALUE IS UKV,
0z FILLER PIC 9999 VLLUF IS (04°%
02 FILLER PIC 599SVSS VALUEZ IS D04,
02 FILLER PIC X(2C) VALUE IS USTOCK-IN--ANDM,
02 FILLER PIL X VMaLUT IS MKY
02 FILLER PIC 2995 VRELUE IS 40531,
0z FILLER PIC SS99VES VAaLUE TS 004,
01 DeNMS-FMT-PURCFLSE,
02 DHME-NCI-FURCHASE PICTURE IS 99 VALUE IS L5,
02 ®ILLER PIC X(CZ20)> VALULT IS “PURCHELSE-ORDIR-NO",
2 FILLER PIC X VALUE IS PMCw
02 FILLER .PIC 5995 VALUE TS (021
02 FILLER PIC S8S&VSE VALLE 1S 204,
32 SILLER PIC X(2C) VBLUZ T& "PURCHASE-TATEMN,
02 FILLER PIC X VoLUE IS N7,
02 FILLER PIC 8993¢ VALUEZ IS CQO0%5,.
2 FILLER PTIT S%3TSVES VALUE IS 020é,.
02 FILLER PTC XC2C)> VALUE IS "PURCHASS-TTYM,
02 =ILLErR PIC X VELUE IS "KNT.
D2 FILLER PIC 5920 VALUE IS C011.
02 FILLER PIC SGSSVES VAaLu¥ IS5 006,
02 FILLER PIC X(20)> VaLUE IS "PURCHASF-SRICE"™,
02 FILLER PIL X VALUE TS MNW,
02 FILLER PIC 9999 VALUSE IS CC017.

o
[)
n
[
—
—
m
X

PIC S959Vv3e3s VALUE IS C06.

02 FILLER PIC X(20> VALUE IS "PURUHASE-SUPPLIER-NC"
D2 FILLER PIC X VaLUE IS n{n,
02 FILLER PIC ©9%9 VALUE IS 0023.

02 FILLER PIC $998V99 VALUE IS 004.
01 CUR-IANT-PART FICTURE IS XXX VALUE IS "NOV.
01 CUP-INT-PURCHASE PICTURE IS XXX VALUE IS "NO“,
01 BUFFER-INVENTCRY PICTURE IS X(5).
LINKAGE SECTICN,
01 FUNCTION PIC X(10D.
01 THE-RECORD=NAME PIC X(20).

‘D1 RESULT PIC 99%.

01 UWA PIC X(512).

PRCCEDURE DIVISION USING FUNCTION,

THE-RECORD-NANE, UWA,
RESULT. '

INITIAL-PARAGRAPH

~ MCVE ZERO TO RESULT.. .

- IF FUNCTION = ®NEW. . "o - 00

'3: ‘PERFDRM NEW DATA-BASE Vi

"ELSE 1IF FUNC?ICN = pLp M T

A5-56

- =

AQC31 SuETL o LT =LA A
A00Z22 SLSE T3 FLANCTION = anmpifagg o
AGO3 2 PEEENRK FTLIO0GI-NATA-TASE
20034 LLSE ET0EDP MO E-TN=RTLORT =N
A00=: FINAL-FAFLGRAFPHS.
LO0Z6 EX1T PROGRAM.
{A0037 ERLNCH-GN-RECORD-NRME,
(40078 TE THE-RECCRD-NAMT = wpaoTn
[A00T79 PERFORM USE-PART
FAQ0E0 ELSE
FAO123 . IF THE-RECORD=-NAME = "FURCHASEM
FAD124 PERFORM USE-PURCHASE
EAOIZS ELSE
AO4ED PERFORM NCO-SUCH-KRECORC.
FAOOBB EILL-INT-PART.
HADD54 MOVE TBMS-EXT- -DESCRIPTION
HAD09S TC DBMS-INT-CESCRIPTION.
HA0102 MOVE DCBMS-EXT-FART-NO
HAD104 TC OBMS—INT-FART-NO.
HAD112 MOVE DBMS-EXT-UNIT-PRICE
'HAD113 T0 DBEMS=INT-UNIT-PRICE.
HAO121 MOVE [3MS=-EXT-STOCK-IN-HANE
HAD122Z TC DEMS-INT—STGCK-IN-H&ND.
HAD128 FILL-INT-PURCHAS
HAD13S MCVE CaMS- :xr PURCHASS-TRDER=NG
HAG140 TC DBMS-INT-PURCHASE-TJCDER-ND.
HAQ14 & MOVE [CRMS-EXT-PURCHASE-DRATE
HAQ14¢8 TC DBMS-INT- puacwac= DATE.
HAD157 MOVE CRMS-EXT-PURCHASE-CTY
HAC1S5E 10 CEMS-INT —PURCHASE-2TY.
HAD166 MOVE CSMS-EXT-PURCHASE=-PRICE
HAG167T 10 DRMS—-INT-PURCHASE-"RICT,
HAD1T75 MOVE DEMS—EXT-PURCHASF-SUPPLIER-NT
HAD1T6& T0 DBMS=INT-PURCHASE-SUFFLIER-ND,
30084 FILL-EXT-PART.
KED09?2 MCVE DBMS=INT~- -BESCRIPTION
KBCD93 - T0 DXMS-EXT-DESCRIPTICN.
“HB0101 - -MOVE CBMS-INT-PART=NZ_ . _
HB0102 T0O DBMS-EXT-PART-NO.
HBO110 - MOVE DBMS=INT-UNIT-PRICE
HBO111 T0 CBMS-EXT-UNIT-PRICE.
HBD119 - MOVE DBMS®INT-STOCK-IN-HAND
HB0120 70 CEMS-EXT-STOCK-IN-HANC.
HB0129 FILL-EXT-PURCHASE. ,
HBO137 - . MOVE CBMS-INT-PURCHASE-TIRDER-NT
KBO138 £ - T0 DBMS~EXT-PURCHASE-ORDER-AC.
HB0146 MOVE DBMS-INY-PURCHASE-DATE
HBO147 °° T0 OBMS=EXT-FURCHASE-DATE
HBO155 : MOVE DRMS-INT=PURCHASE-QTY
HBO0156 © 70 DBMS-EXT-PURCHASE-QTY.
HB0164 MCVE CBMS—INT-PUREHA5= -PRICE
HB016S T0 DEMS~EXT-PURCHASE-PRICE.
HBD173 MOVE DBMS-INT-PURCHASE-SUPPLIER-NOD .
HBO174 > 1) DBHS”YXT%PUPCHHSE -SUPPLIER- NB.
PAD196 USE-PART. i
PAO1S7 PERFORM. $E1 CLRR -PART. . .
PAD198 MOVE 01 TO CURRENT-ENTITY CODE.

PAO189 © = PERFORM INN-PART.

PAORO4 ;v IF. FUNCTIGN ZUREAD M P
PAO205 1 PERFQRM-REab=vnRT L T RN

PAOZOG 1 ELSE

A5-57

PA0207 I =LACTION = wEIosTow
*ACZC s Dro=Dn ETCSTap T
PA020% ELSE
SAC213 FOFUNCTION = "NEXT M
Pa0214 PERFORM NEXT-PART
PA0215 ELSE
PROZ2ZE IF FUNCTIDN = wymiye "
FAO23T PIRFORN LRITS=-PART
FAB238 LSE
Pan251 IF FUNCTION = WOELETE-®
PAD252 PERFORM DELETE-PART

'PAO253 ELSE .

" PAD257 IF FUNCTION = MREWRITE ™
PAD258 PERFORM REWRITE-PART"
PAD25S ELSE }

PAO28B3 IF FUNCTION = “FQORMAT "

PAD28B4 PERFORM FCRMAT-PART
PAO285 ELSE
FAO314 PERFORNM NC=-SUCH=-FUNCTICN,
PAOD31S IF FUNCTION IS NOT SCQUAL TO "FORMAT *
PAOD316 PERFORM GUT-PART.

PAD318 USE-PURCHASE.

PAO319x% a

PAD220 TEST IF.OWNTNG ENTITY CURRENT
PAD221:

PAD322 IE DEMS-CUP-2ART = Hysgw
PAD22Z3 PEREJRM PROCESS-CURCHOSFE
PAD224 SSLSE MDOVE 1389 TO RESULT.
PAO225 PRCCESS-FPURCHASE.

PADZ26 PERFORM SET~-CULRR-PURCHASE,
PLO3Z MOVE 02 TC CURRENT=-ENTITY-CONE,.

{Pnozcd PERFOPM INN-PURCHASE.

.\ PAO333 IF FUNCTICN = mReap o

i PAO334 PERSCKM READ-PURCHASE

i PAO33S eLsS:E

1 PAD32E IF FUNCTICN = MEIRST ¥

L PAD33T PERFCRM FIRST-PURCHASE

| PAC338 ELSE el
CPAQD342 IF FUNCTION = WNEXT " .
PAD343 PERFORM NEXT-PURCHASE
PAD3GS ELSE
PAD3ES IF FUNCTION = "WRITE ®
PAD266 PERFORM WRITE-PURCHASE
PAO3ET ELSE
PAO3BO IF FUNCTION = UDELETE ©
PAC381 PERFORM DELETE-PURCHASE
PAQ3&2 ELSE
PAD386 IF FUNCTION = "REWRITE @
PAO3ET | PERFORM REWRITE-PURCHASE
PAD358 FELSE ~ T :

PAD41D “IF FUNCTION = "FDRMAT *

PAO411 } PERFORM FCRMAT-PURCHASE
PAD4L2 ELSE . o . i
PRD44S i PERFORM NC-SUCH-FUNCTION.

. PAD44S IF FUNCTION IS NOT EQUAL TO "FORMAT

l PADGLT PERFORM OLT-PURCHASE,

 PC0210 FIRST-PARTA : iR,

PCO211 *Tﬁ MOVE “MU“ 10 CUR INT- PART. . T
PCD212 ' . PERFORM NEXT PnRT.; o 2 Sy
Pc0216 Ngxt_PART;‘"I . % a*w-- .r Vo i -131!-- - .l_:‘ o AR
pcoz217 IF CUR—IN? PART = “ND"

A5-58

pLC228
PC0229
PC0230
PC0231
PLC0232
PC0233
PCO234
PC0235
FCOzZ29
PC0240
FL0241
PCO242
PCO243
PCO244
PCO2453
PCO245
PCO247
PCO24%
PCO249
PLO2E0
PCOZS4
PCO2:sE
FCOz36
FCO2¢€0
PL0cel
PCD2¢z2

PCO2s3

PCO28¢
PL0O287
PC0289
PC0250
PC0291
PC02%2
PCO293
PCO29¢4

PCD255.
PCO296 -~
PLO2S7 "

PLO258
PLD2599%9
PCO300
FCO339

PCD340

PCO341
PC0345

| PCO0346

FCO347

PCD348
“PLO349

PCO351

P

N DPMS-KTY-TNVENTRRY
Y MIVE UNCW TO CUR-INT-PART.
= "YESH
MCVE "YZSW 7O SEARCH-FLAG
PERFORYM LCCK~FCR=FART
UNTIL SEARCH=-FLAG = "“inow,
IF CUR-INT-PART = M"ycgn
MOVE DEMS-REC-PLRT
TC DBEMS-INT=-PART
PERFORM FILL=-EXT-PAPRT
ELSE MOVE 111 7O RESULT.
WRITE-FALRT.
MGVE MYES"™ 70 DEMS-CUR-PART.
PERFORM SETUS=-KEY-PLRT.
PERFCRM CLEAR-INT-PART.
PEFFDRM FILL-INT-PR&RT.
MOVE DEMS-INT=-PART
TC DEMS-REC-PART.
MOVE CURRENT-ENTITY-CODE TP =ATITY-COPE
OF DBMS—PCC-INVENTORY
WRITE DSMS-RZIC-PART
INVALIL KFY PEREMENM WRITT-INVALTD=KEY
MOVT WNDM TO FEMS-CUP-PART.

2 T |
Ro e N I i e}
!

=1 vy

DELETE-PLRT,
DELETE INTERNAL-INV
INVALID KTy PER
REWRITE-PART,
REWRITE DBNS
FROM CDEM
INVALIN
FORMAT-PART.
MCVE DBMS-FMT=-PART 70 UWA.
READ-PART.
MOVE YYES™ 7O CUR-INT-PART.
PERFORM SETUP-KEY-PART.
MOVE DBMS-INT-PART
TO DEMS-REC-PART.
READ INTERNAL-INVENTGRY .
INVALID KEY PERFORM READ-INVALID-KEY "
P MOVE "NO" T0 CUR-~-INT-PART.
TIF CUR=INT-PART = Wwygsn B
MOVE DBMS-REC-PART gl
"TO DBMS-INT~-PART ' =
, PERFORM FILL-EXT-PART. e
FIRST-PURCH&SE.
!MOVE "NO" TO CUR- ~INT- -PURCHASE, e 75
PERFORM NEXT-FURCHASE, e et
NEXT-PURCHASE. :
T IF CUR-INT-PURCHASE = mNg®
PERFORM SETUP-KEY-PURCHASE
: MOVE SPACES T0 DSMS=INT= pLRCHns=-nRDER—Nn.
- MOVE. DEMS- -INT=-PURCHASE .
?r" TO DBMS-REC-PURCHASE, .
MOVE W“YES"™ TD CUR-INT-PURCHASE,

ENTORY

=rrw DELETE-INVRELID-XEY,
~EEC-PART

S=INT-PART

KCY PERFORM REWRITE-INVALID-KEY. .

A5-59

ROV ICIN o A ST A LRt W
oz STRETY 1Y ruAL - T TE TN Y
200584 KUY OIS TIEETIN THAL DawS-KTY=INVENTOTY
20355 IRVALID KEY MIVE MNGM T9 Cuz-TNT-PLRCHASE,
"C035¢ IF CUR-INT-PULCHASE = nysgm
200257 MCVE MYESM TO SEARCH=FLAL
©C03:R PERFORM LODK=-FOR-PURCHASE
FCC359 UNTIL SZARCH=-SLAG = mwenNDn,
PCOZ60 IF CUR-IMT-PURCHASE = nycgn
PCO361 MCVE DEMS-REC-PURCHASE
FCO362 TC CEMS—-INT-FURCHASE
PCLD363 PERFORM FILL-EXT-PURCHASE
PCO3&4 ELSE MOVF 111 7O RISULT.
- PLO368 WRITE-PURCHASE. ,
_PC0O369 MOVE "YES™ TO DIMS~CUR~PURCHASE.
PCD370 PERFORNM SETUP-KEY-PURCHASE.,
‘Pco371 PERFORM CLEAR-INT-PURCHASE.
JPC0372 PERFORM FILL~INT-PURCHASE.
\fFC0373 MOVE DaM3-INT-PURCHASE
PCO3T74 _ TC DEMS-REC~PURCHASE.
IPC0375 MOVE CURQENT—ENTITY—CDDE TC ENTITY-CDDE
PC0376 GF DEMS- a INVENTORY
PCO377 WRITE D8MS~- R -PURCHASE
PCO373 INVALIN KEY PERFORM WRITE-INVALTID=-KEY
PCO379 / . MOVE "NO" T0 CBRMS-CUR-PURCHASE,
PCO383 DELETE~PURCHASE,
PCO3%4 DELETE INTEENﬁL—TNV»hTLQY
PCO38S INVALID KEY PEPFORM DELETE-INVALID-KEY,
PCO38S REWPITE-PURCHASE.
PCD230 REWRITE DOBMS-REC-PUPCKASE
PCO351 FROM [EMS-INT-PURCHASE
PCOZY2 INVALTD KZY PERSORM DFELRITE-INVALID=KEY,
{FC0413 FORMAT=-PURCHASE.
FCO&4l4 MCVE DRMS=FMT-PURCHASE TO UWb.
 FC0416 READ-PLRCHASE,
PCO417 MCVE M"YES" T0O CUR-INT-PURCHASE.
PCC41§ PERFORM SETUP-KEY-PURCHASE.
FCO419 MCVE CBMS-INT-PURCHASE
PCO0420 TC DEMS=-REC-PURCHASE.
PC0421- - READ INTERNAL<INVENTORY
PC0422 (INVALIC KEY PERFDRM READ-INVALID-KEY
PCO423 MOVE "NO" TD CUR-INT-PURCHASE.
PCO424 IF CUR INT- PURCHASE = myYgsy
FCO425 "MOVE "DBMS-REC-PURCHASE
FCO426 - TC DEBMS-INT-PURCHASE
PCO42ZT " PERFORM FILL-EXT-PURCHASE.
GAD264 LOOK-FOR-PART,
QAD265 READ INTERNAL- INVENTBRY NEXT RECORD
QaD266 - . AT END MOVE VENDY TD SEARCH-FLAG
QAQ26&7 MOVE "NDM TD CUR- INT-PART.
Qap2¢8 I7 SEARCH-FLAG = myggn..
QAO026S IF DBMS=PART-ND = SPACES
QAQ270 . - MOVE SPACES TO SEARCH=-FLAG
Qap271 v “ELSE IF ENTITY-CODE DF DRNMS-RCD- -INVENTORY = 01
QAQ272 < . MCVE M“END™ TD SFnRCH —FLAG.
QAD273 1F SEnRCH-FLaG = SPACES
QAD274 MOVE. WEND" TO SEARCK-FLAG
€A0275 7 MOVE, "NOW TG?CUR-XNT-PART;

QA0393 LOOK-FCR~PURCHASE.
QAD394 " "= READ INTERNAL-INVENTORY NEXT RECORD
Q0395 1% AT END MOVE "ENDM!TO SEARCH-FLAG"

v " : N ‘. a 1 R 5 s AS_BO

s LAY ity il 6f Ly - T-vUE LGF
0297 TE S'afc~—rL:: =yt
L0358 ¥ D BLRCHLR I=TRDERSND = SPACES
10399 weys goapre TO OSELPCH-FLLAG
8G4C0 LLET IF OSNTITY=E5DT PF BIVE=RCO-TNVIMTO
20401 MAYT MWENSN Y0 STIECH-FLACG.
hoa402 1F SEARCH-FLAE = IPRCES
04032 MEVE MENDD TO SELELH=-FLLG
A0404 MCVE WNOY TO CUS-TNT-PUPCEASE.
50301 SETUP-KEY-PRAZT.
180302 MOVE CEMS=EXT-PART-NT
120303 TC DaMS=INT=PART=-ND.
‘50428 SETUP-KEY-PUFCHASE,
550429 MOVE CEMS=INT-PaRT
1B0430 TO DSMS-IANT-PURCHASE.
180431 ‘MCVE DBMS-FEXT-PURCHASE-OROFR-NC
180432 TO DEMS-INT-PUSCHASE-ORDER-ND.
2C0276 CLZAR-INT-PART.
2C0309 MOVE SPACES TC DEMS-INT-DESCRIPTION.
GCO311 MGVE ZERDS T2 :ems INT-UNIT-FPRICE.
(c0213 MOVE ZEROS T CZMS=-INT-STOCK-IN-HAND
2C0405 CLEAR-INT-PURCHASE
<C0438 _MCVE ZERCS TO'DEMS-INT—PUQCHﬁSE—QTY.
CC0440 MOVE ZERDS TC DPMS-INT-PURCHRASE-DATE,
QC0442 MOVE ZERCS TO DEMS=INT=-PURCHASE-PRICE.
QC0444 MCVE SPACES TC DaMS-INT-PURCHASE-SUPPLIER-NO.
©D0277 MAKE-CURR=PART,
Qp027% MGVE MYESH TD CUR-INT=-PART.
GD028R1 MCVE MNO® TO CUP-INT-PURCHASE,
;c004os MAKE-CLAxE=PUSCHASE.
QD04C7 MOVE MYSSM TC CUR-INT-PURCHLSE.
IGEQ279 SET-CUFR-PART.
>‘ko 280 MCVE M"YES" TCO CEMS-CUR-FART.
"LED282 MOVE MNQ"™ TO CAMS-CUR=-PURCHAESE.
' GEQ40O8 SET-CURK-PURCHASE.
QE0409 MOVE MYES" T0O DRMS-CUR-PURCHAS
L 5A0.200. INN=PARTa .- . . .
SAQ201 MGVE UWL TO DEMS-EXT-PART.
$A0202 DUT-PART.
SAD203 MOVE DBMS-EXT- PAPT T0 UWA.
SAD329 INN-PURCHASE
SA0330 MOVE" uwa TO OBMS-EXT- PUQCHASF
SA0331 OUT-PURCHASE.
SA0332 MOVE DBMS-EXT-PURCHASE TD UKna.
TAOO38 NEW-DATA-BASES '
TAQO039 IF DATA- SASE—GPENeFLAG = NYES™
TADD40 MOVE 101 TO RESULTY
TAODS1 © ELSE
TAD042 PERFORM CREATE-DATE-BASE
TA0D43 PERFORM CLOSE-DATA=BASE
TADD&4 PERFORM ‘UPDATE-DATA-BASE
TADD4S MBVE TYYESY T0 DATA-BASE-DPEN-FLAG.
TAD046 OLD-DATA-BASE . y
TAOD4T 1F BnTn-BBSF LCPEN-FLAG = WYES™Y
TADD48 MCVE 101 TC RESULT
TAD049 ELSE PERFORM UPDATE-DATA-BASEI!"
TAQ050 MDVE “YES"™ TO DATA-BASE-CPEN- FLnG.,
TAODS1 R:LEASE SDATA=BASES ~ wEieo FRAH RO T
_TA0052 1F Bth-SlSE-UPEN FLAG = “ND“ CLR A Ll
TADDS3 CCUMOVEL102°70 RESULT™ i ek U Rt
TA0054 ELSE PERFORM .CLOSE-CATA- an=

A5-61

o

’.
‘ ,

(@]
> O
<
(35}

SRS -l
S~ 6y L

RS CE W U S LI

(Y]

ADODE4
'A0065
140066
Ja005&7
1A00&E
VAQDSS
VADODT0
yA0071
VA0OT 2
VAOQT3

VAOOT4

vl

1 =

[l -
1

>
Vsl
T

)
L.

TPUT I
S T

“ 2 .

[

T

L “
- -
S T

=
1
T

. = F
AR

I =
[

v
»
I
!

BHAL

o 20 o L o UL R SRR 3 B |
LI T V2R o

3T

-4 — 1>

=
VYO |

A

[43]

T

J

1

b3

— << T <
—owm O
m
I X A 10

tn

i m < n
=8
R (I L BN S N iy

ol S N s S S R B ol WL B B |

=z
(gn]
<
2l

=
A‘
[
—
T
1
(]
<<
k=3

MOVE 1

MOVE 108 TG RESULT.
REWRITE-INVALID-KEY,
MOVE 109 TC ©@cSULT.

NG=SUCK-RECCRD. ,
MGVE 104 TO RESULT.

START-ERRER. ‘
MDVE 111 TD RESULT.

NTIRNAL-INVENTORY,
INVENTOOY,

-INVENTCRY.

RESULT.

EATT-TE TR

n

=

