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SUMMARY

A character recognition system may be divided
into four systems; namely, an input device, a
character separator and preprocessor, a feature
extractor and a categorizer. Each of these sub-
systems is investigated in the development of a

recognition system for Thai text,

As a starting point for the investigation,
a description of Thai printing and of its large

and unusual character set is given.

The inpué device to the CDC6400 computer
is a modified piece of office equipment, a Ges tetener
ES390 scanning machine, These modifications and the
method of input from the scanner to the computer
are described with a detailed consideration of

timing requirements,

The isolation of each character from the
scanned image of a page is complex in the case of
Thai printing. A detailed description of a
method for isolation is given, together with an
inves tigation into the implications of the angle of
tilt on the page in the scanner on this propos ed
me th od, Preprocessing of the binary image of

each character after isolation, necessary to remove



random noise, is considered and character defects
that may affect the result of the feature extraction
subsys tem are described. Some account is given of

other work on pre-processing and of the adopted method.

It is found convenient to transform the binary
image of a scanned character to a point in
p-dimensional space for identification, A method
for computing such points, called 'feature vectors'
is outlined with emphasis being placed on the
selection of those feature elements most suitable
for use in the recognition system, Having selected
a subset of the feature elements, a principal com-
ponent analysis is used to reduce the dimension of
the feature vectors. Experimental results
illus trating the effectiveness of the selection

technique are presented.

Many characters of the Thai alphabet are
very similar in shape, but one out of each group
of similar characters tends to occur more
frequently than the others. This property is
exploited in the categorizer by using a statis tical
model, optimal in the Bayes sense, which is briefly
outlined. This model requires knowledge of the
probability density functions for each category

(or character), which are not easily es timated.



A method for approximating these functioms is

des cribed and results presented.

Finally the effect of introducing rejection as a
possible decision in the categorizer is inves tigated
and experimental results given using both simulated

and s canner data,



This thesis contains no material which has been
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Chapter 1, Introduction

1.1 Background

In recent years there has been an upsurge
in the interest in the automatic translation of
languages. For example, extensive work has
been carried cut on both Russian-English and
Chinese-English translation and to a lesser extent on
French-English and German-English translation
[1,2]. In keeping with this current interest,
Strehlow and Perry [3] have made a study of the
automatic translation of Thai text into English,
since little formal analysis has been made of this
language and a knowledge of the structure and
grammar of the Thai language is of some importance
to Aus tralia generally.

The latter authors wished to acquire data
efficiently and economically in a form suitable
for computer use as is the case for the automatic
translation of any language. The first proposal
they proposed was to nurchase a card or teletype
punch enabling a suitably trained onerator to
transcribe Thai into cards or teletype for
subsequent analysis. [iowever, the expense of
buying or leasing such equipment was prohibitive
and, in addition, an operator would have to be
trained to interpret and punch the large and

unus ual character set, This method of data input
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would also be slow and there is no assurance that
an overator even after training would be able to
transcribe the text accurately. To enable the
effort on the automatic translation of Thai text to
continue, it became necessary to seek some other
method of acquiring the data for computer use
with the minimum of human intervention and inter-
pretation during transcription and at the same time
minimising costs. Thus an automated system for
encoding Thzi text was pronoscd and it is with this
nroblem that the present study is concerned,

The need for machine recognition of Thai
text for automatic translation was nct the only
reason for this study. The large and unusual
character set of the Thai language which is
intermediate and complexity between Zanglish and
Chinesc, makes this an extremely interesting

harac
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er recognition problem. An example of
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ai text 1s presentzad in Figure 1.1.1,

1.2 Thai Text

As outlined by Allison [4], the Thai language
is printed as a sequence of characters left to
right along a linc with the lines running down
the pags as in English. There is no upper or
lower case in Thai, cach character always being

the same size irrespective of its use. Normally
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Figure 1.1.1, Thai Text.




-~ 4

™yai words do not have snaLes hptween them, the
usual spaces only heing hetween groups of words.
Anart from punctuation marks, at each character
nos i rion there 1S always & symbol on the line,
but in addltion theve may be detached symbols
above and/or below the line. it is therefore
convenient to censider a character position as

beine divided into three areas which will ho

called unner, middle and lower areas. G
cuffices, W, ¥ and L resnectively, will be used
to Jistinguish symbols in these areas. Certain

upper symbols My be placed above but between
fwo miadle svmbols and tae term Wiual character

o B8

position™ 15 ns ed des crine this case. (See

ted
-l

Figure 1.2.1.70.

Upner

| $ &
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% Lower

Figure 1.2.1. A sample from That fext showing

tita three areas and tha “dual character’.
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The distinct symbels can readily be divided
into classes which consist of consonants (C),
vowels (V), numerals (N), combined vowel-tone
symbols to be called towels (W) and special symbols
(S). here are 45 consonants in the Thai
alphabet which may only appear in the middle
area [5], However, only slightly more than
half of them are used extensively (some are
even obsclete [4]). The vowels may be sub-
divided into those¢ which occur in the lower area
(V) of which there are two, those which occur
in the middle area (Vy) of which there are
seven, and five appearing in the upper area
(Vi) plus one which occurs in the upper area
between two middle area symbols (VS) - the dual
character case. There are ten numerals (N)
which may occur only in the middle area, There
are six tones which always appear in the upper
area. Two of these have 1limited combinations
with vowels ., Towels occur only in the upper
area and consist of combinations of the five
members of Vy; with five of the tones, or
combinations of the "dual character" with four
of the tones, denoted by WV and Wg respectively,
Note that each tone is vrinted directly above

the vowel with which it is associated. Finally,



-6 -
there are seven special symbols, six appearing
in the middle area and one in the upper area.
They can be summarized in the following way:

M ddle Ares (S €q word repetition

a? abbreviation sign

. full stop
( opening parenthesis
) closing parenthesis

- horizontal dash
Upper Area (Sp): " " quotation marks
Figure 1.2.2. illustrates all the individual
shapes of the Thai character set.
Table 1.2.1. is a summary of the vertical
combinations that are possible in the Thai language.
When considering the problem of machine
recogni tion of Thal text, onc immediately considers
the possibility of regarding cach vertical combination
as one character, but from Table 1.2.1. it is
apparent that the number of possible vertical
combinations makecs this a formidable proposition,
if not impossible, It is necessary to consider
characters falling into the three natural areas,
U, M, and L separately, but even then it is still
necessary for the recognition of some combinations

of symbols, in particular the towels.



Figure 1,2.2, The Thai Alphabet

(a) The Middle Area Characters. Nos.
1-43 are consonants (C), 44-50
vowels (Vl). 51 gnd 52 ;pecia],,'
symbols (S_}), 53-62 numerals (¥),
63-66 special symbols (SM). The

two marked * are no longer in use.
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Figure 1,2.2, (a) Continued,
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Figure 1,2.2, (b) The Upper Area Characters .

Nos. 1 = 6 are vowels, (Vu)
7 = 12 are tones (T) and

13 is a special symbol (Su)

Figure 1,2.2, (c) Lower Area VowelSiTVL)
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Table 1.2.1.

A Summary of the number of possible

vertical combinacions 1n the 14l language.

—

i

Single character positions Dual
Character
Pcsitions
iy i b T
upper !
Ty vy T Sy Vg | Vg
1
j it
¥iddle N cy C C C C C V. St C .C§]C ¢C
Lower Vi | Yy
No. of
Vertical | 10 | 45 44 44 14 44 44x |7 5 1 44x 44x
Combinations x6 x5 X2 x2 2x5 44x1 44x4

0t
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The symbols falling into these natural groups
are summarized in Table 1,2,2.

Table 1.2.2., The number of symbols occuring

in the three natural areas,

Area Ty pe Number Total
Middle N 10
C 45
Upper (T
Wi\Vy 25
(vs)
Wg\Vg 4
Sy 1
vy 5
Vg 1
T 6 42
Lower Vi, | 2 Z
|
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It becomes clear therefore, that there is a total
of 112 symbols to be recognised, which can be
divided into three distinct groups consisting of
68, 42 and 2 members. It was mentioned earlier
that some consonants are rarely used and some are
even obsolete, Indeed, it appears that there
are 2 consonants which are not:used in modern
Thai writing [4]. Thus only 66 characters need
be considered in the middle area group and the
total number of symbols to be recognised is
reduced to 110,

Before an autcomatic system of encoding the
data was proposed, a considerable amount of Thai
text from various sources was coded manually,
punched into cards, and stored on magnetic tape.
In excess of 10,000 characters were available
from which, unfortunately, numerals and special
symbols werc excluded, Using this data a frequency
count of character occurrence was made, the
results of which are presented in Table 1.2.3, in
the form of probability for both overzall and within

area occurrence. The overall probability for the

upper arca only takes into account the individual
character occurrence, for example, a towel is
counted as one vowel and one tone, lowever, for the

within area probability a towel is considered as
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Table 1.2.3., The Probabilities of character
pccurrcence 1n fhal text,
Char. No.| Overall | Within Char No.!Overall|{ Within
Prob., Area Prob|, Prob. Area Prob,

| (X10+2) | (X10+2) (X10+2)} (X10+2)

I

i Middle Area
1 i 3.83 5.16 28 0.04 0.05
2 1.79 1.47 29 1,17 1,57
3 2,38 3.21 30 0.14 0.18
4 1.88 2,53 31 0.23 0.31
5 n.01 0.02 32 3,60 4,85
6 3.26 4.39 33 2.49 3.36
7 .29 n.12 34 5.39 7.26
8 0.89 1.20 35 2.15 2.89
9 9.31 0,42 36 2.45 3.30
10 0.00Q .90 37 0.52 0.70
11 0.02 N.03 38 0.19 0.26
12 0.05 2,07 39 1.88 2.53
13 0.45 0.67 49 1.94 2.61
14 0.10 0.14 41 0.02 0.03
15 003 0.04 42 3,97 5.35
16 0,05 0.06 43 0.01 1.01
17 0.8) 1.08 44 0.00 0.00
18 1.82 2.45 45 0.00 0.90
19 1.75 2.36 46 2.31 3.12
20 0,47 n,53 47 6.44 8.67
21 0.04 0.06 48 3.09 4,16
22 2.25 2.76 A 1.11 1.5)
23 .23 0.31 59 n.41 0.58
24 5.51 7.42 51 nN,81 1.09
25 2.12 2.85 52 2.05 2.76
26 1.72 2.32 53 0,10 N.14
27 .68 9.92 54 0.04 0.06

Lower Area

1 .96 38.40 2 1.54 61.60
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Table 1.2.3. (cont).
Char.Noj Overall | Within |[Char.No} Overall Within
Prob, Area Prob Prob. Area Prob,
(X10+2) | (X19+*2) (X10*2) |(X10+2)
Upper Arca (Vowels § Tones)
1 3.56 | 11.47 | 7 3.79  [15.24
2 1.64 12,19 8 3,57 15, 10
3 2.71 3.01 9 0.01 0.01
il 0.53 1,12 19 0.06 0.01
5 5.89 3.99 11 7.63 5.45
6 0.61 12,59 12 0,73 5.80
Upper Arca (Towels)
Vowel ' Vowel
Tone Tone
Combination Combinatioh

13 1 -7 0.28 28 4 - 7 1.61
141 1 -8 N.28 29 4 - 8 0.42
15 1 -9 0.00 3 4 -9 0.00
16 1 - 19 0.00 31 4 - 10 {0.00
17 1 - 12 0,14 32 4 - 12 [n.00
18 2 - 7 3,43 33 5~ 7 0.07
19 2 - 8 2.66 34 5-8 0.07
21 2 -9 3.00 35 5-9 0.99
21 2 - 1) N .91 36 5 - 10 | 0,00
22 2 - 12 0.09 37 5 - 10 (3.90
23 3 -7 1,82 38 6 - 7 0.56
24 32 - 8 .14 39 6 - 8 2,66
25 3 -9 0.09 40 6 - 9 8.00
26 3 - 15 8.00 41 6 - 10 |0.2D
27 3 - 12 .00
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one symbecl, hence the reason for apparently no
relation between the two probabilities for each
upper area character. Note thiat character 10
of the middle area group did not occur in the
sample as was alsco the case with many towels,
All that may be concluded is that these are very
rare symbols and svnecial account must be made of
these in the recoguition sys tem, The attention
of the reader is drawn to the numbering system
for the characters presented in Figure 1,2.2. and
Table 1.2.3. which will be used in what follows.

Special mention should be made of the
characters in the upper areca. Character 6 is
the '"dual character” which may be used by itself
or with any of the four tones 7 - 10 inclusive.
All of the other uppner vowels may occur alone or
with any one of the tones excluding 11.

Included in the upper vowels is the symbol
"o'", which in fact is not a true vowel [5]. It
occurs with the middle area character "1 " and
together they feorm a vowel. This middle area
character may alsc appear alone in which case it
is 2 consonant, but when it appears with "o'" which
is always in the upper area of the preceding
character, the combination is a vowel. This
vowel will be referred to as the "special upper

vowel", Hote that the preceding character in
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addition toc "o'" may still have a tone in the upper
area. For purposes of machine recognition,
this special upper vowel is considered as two
distinct symbols and consequently the probability
of occurrence of symbol 45 (middle area only)
takes into account the occurrence of 45 and the
special upper vowel in Table 1.2.3,.

1.3, The Recognition System

It is convenient to consider a Character
Recognition System as a number of subsystems (see
Figure 1.3.1.). For the proposed system it is
necessary to examine each of these suwsystems in
turn, bearing in mind that the overall objective
of this study is to develop a system for the

automatic reading of Thai text which operates

cheaply.
Input Separator and Feature
et — -1Categorizer |Decision
Device Preprocessor Extractor|
— X N

Figure 1,3.1. The subsystems of a Character

Recognition System.
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The Input Device or Scanner, is a standard
office Cestetener ES39) copying machine, modified
to produce a digitized version of the page being
s canned. These modifi cations, the input from
the scanner to the computer and the subsequent timing
considerations are presented in Chapter 2,

The isolation of each character for its
individual recegnition from the scanned image of a
page is complex in the case of Thai printing.

It is with tiis aspect of the recognition systenm
with which the Separator and Preprocessor are concerned.
A possible method for isolation is described in
Chapters3 and 4 together with the preprocessing
needed to remove random noise from the scanned
image of each character to improve the recognition
rate. It was found convenient to simulate the
output of the Scparator and Preprocessor subsystenm
to obtain experimental results in the development
of the recognition system, a description of which is
also given in Chapter 4.

The purpose of the Feature Extractor is to
receive the preprocessed patterns and to derive a
number of featurc elements or measurements, thus
effectively reducing the dimension of the data. If
there are 'n' such messures then a pattern can be
represented by a point in n-dimensional space and,

hopefully, points belonging to the same category
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will cluster near one another. In this study,
normalized bivariate central moments are used to
form the clements of the featurc vector for each
pattern and a method is presented for selecting
those most beneficial (although not necessarily
optimal) to the recognition system. Results are
presented for experiements with simulated data in
Chapter 6.

Some groups of characters of the Thai alphabet
are very similar in shape. However, the frequency
count (see section 1,2) has shown that for these
groups onc character is far more likely to occur
than the other; for example, character 11 has a
probability of 2.02 of occurring while character 10
was not found in the sample taken. It was decided
to exploit this property in the Categorizer, and
thus a statistical decision theory model optimal in the
Bayes' sense was adopted. A review is given in
Chapter 5. A problem associated with this type
of Categorizer is the unknown form of the probability
density functicns associated with each category.

A method for approximating these functions is
discussed in Chapter 7 together with results, once

again obtained using simulated data.
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Finally, in Chapter 8, results using both
simulated data and the scanner are presented,
together with a discussion of the difficulties
encountered when applying the scanner to the

recogni tion of this kind of text.
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Chapter 2. The Page Scanner

In this chapter a page-scanning device
which provides suitable input to the character
recognition system is described. The equipment
used is essentially the same as that described by
Jessup and Wallace [6] with one modi fication;
eight grey levels are available instead of two.
Basically the scanner consists of a Gestetener
ES397, a piece of equipment that can easily be
modified to provide a slow but cheap page scanner
suitable as an input device for any computer, in
particular the CDC6490 machine. The ES390 has a
high resolution and is very effective for experi-
mental work in character recognition.

2.1. General Descrintion

The page of text to be scanned must be on a
loose sheet of paper which is nlaced around a
rotating drum and fixed in position by a flexible
clear plastic cover, Yhen operating, the drum
(which is abcut 5 inches in diameter) rotates at
approximately 2490 r.p.m. while a scanning carriage,
mounted on a lead screw, moves slowly past the drum
parallel to the axis of rotation. The page is
scanned in a spiral path but the pitch of the screw
is small and adjacent scans may be considered to be

both vertical and parallel with an error of less than



0.03 percent,

A basic requirement of thc scanner is that a
digitized version of a page must be independent of
any variation in the drum rotation speed, and thus
it was necessary to attach a mechanical clocking
device to the scanner. A clear plastic disc with
approximately 1600 fine markings around the edge
was fixed to one end of the rotating drum, A
focussed light beam, passing through a portion of
the edge of the disc, is directed at two photo-
electric cells mounted at such an angle that each
marking on the edge.causes-two distinct-pulses.
Each -pulse-causes -the intensity reading of the
scanning_ carriage to be converted to a discrete
grey level in the range 0 to 7. Special markings
on the disc cause about 20 percent to be effectively
blanked out and so no grey level readings are made.
These markings are such that this blanked portion
coincides with the clip on the rotating drum passing
the scanning carriage. A photograph of the
modified Gestetener is presented ih'Figure 2,1.1.

2.2, Input to the CDC6470 comnuter and System

Operation
Input to the computer is via an interface
unit built for the "Computer Assisted Instruction"
project [7], the scanner being connected to one of

the 64 local controllers (see Figure 2.2.1.) The
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input is performed under the control of a driving
program residing in one of the 19 available peripheral
processcrs, A smzall buffer area of 512 (60 bit)
words is required in the computer central memory

(65K) and a second peripheral processor is used

to write the contents of this buffer area onto

magnetic tape when requested,

e o b32 0
{
. 1T
145 ? 1
o ~——  Data
Scanner 1 signals 1 dignals that
Code‘ the top of previous data

a vertical point was not
scan accepted

Figure 2.2,2, A Data Word

then operating, data for one vertical scan
is stored in a peripheral processor as it becomes
available, each c¢ata point being stored in the
bottom 3 bits of one 12 bit word, with status
information stored in the other 9 bits (see Figure
2.2.2). This rather extravagant use of storage
is a direct result of the CDCO4ID system. Firs tly,
the 12 bit data word is basic to the design of the
computer which transfers words of this size through
its data channecls. Secondly ,there is insufficient
time to process each data point (check status

information and take the appropriate action) and
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pack the data into the buffer area. It may be
verified from the specifications given in the
previous section that a data point becomes available
at a rate of approximately 1 every 83 u seconds
(assuming no variation in drum speed.) To
interrogate and receive a reply from the scanner
takes 53 u seconds, thus leaving a maximum of 30 u
seconds to process cach data point. However, for
safety, this must be reduced to allow for variation
in the drum speed or distance between markings on
the disc. The time required to simply store each
data word in the buffer area is 11 y seconds and thus
it becomes apparent that there is insufficient time
for any processing as a point becomes available.
When the clip is detected the contents of the
peripheral processor buffer area are transferred to
the central memory buffer arca and the second
peripheral processor is signalled that the contents
of the buffer area are to be written on magnetic
tape. The cycle is repeated when the first data
noint of the next scan is detected. Finally, when
the scanner switches off, or is switched off, an
"end-of-file" mark is written on the magnetic tape
and the process is complete, the time taken for a

complete scan being approximately 6 minutes.
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One may ask, why not process the data words
for 1 vertical scan when the clip is detected or
before the data is written on magnetic tape?

In the first case, when the time taken to trans fer
the data to central memory is taken into account,
about 19 u seconds are available to process each
word; exactly the same situation as discussed
above arises, that is, insufficient time.
Secondly, the magnetic tape driver, with the large
buffer area required for storing the information
for 1 scan, only just fits into a peripheral
processor, with only 26 locations not being used.
Far more storage would be needed to enable the
instructions required for processing to be added
to the progran,.

Thus the information for a complete scan
mus t be processed at a later point in time,

The scanner may be used during normal computer
operation, but, while it is in use, one data channel
and a magnetic tape unit become unavailable to
other users, in addition to the two peripheral
processors and buffer area. This is not a
great demand on the system and as the central
processor is not required during the scanning of a
page the relative slowness of the ES390 is not

costly.



2.3. Discussion

It was mentioned earlier that the intensity
level picked up by the scanning carriage is converted
to one of eight discrete grey levels, 0 corresponding
to white and 7 to black.for each pulse. Experiment
showed that these levels were not reliable and, in
particular, when scanning a uniform black line,
unexpected variation in the grey level occurred,
although white background was always recorded as 0,
with little or no variation. Consequently the
us efulness of this attribute of the scanner was
limited at the time and prompted the following
action, It has been found possible to cons truct
a frequency diagram (Figure 2.3.1.) of the number
of readings against each grey level for a complete
scan and, using this to establish a reliable
threshold which enables a decision to be made for
each ponint of the scan whether it is black or
whi te, The number of readings with grey levels
2 and 1 was usually large, which was to be espected
since black printing on a white background was being
us ed, At other levels the number was considerably
lower with a slight increase for grey levels of 6
and 7, By setting the threshold above the level
which is obviously white,(that is above 1), good

results were obtained. Isolated areas of noise
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are of course introduced by choosing such a low
threshold but these are removed in the preprocessing
stage of the system (see Chapter 4).

For the purpose of character recognition it is
natural to expect a point to be black or white and
so this problem is not as serious as was first
anti cipated. However, it did prevent possible
use of grey levels in determining the reliability
of a reading which could be incorporated in the
recogni tion process. This technique requires the
processing of the magnetic tape on completion of
a scan, but, as processing must be carried out to
check status information, this was not a real
problem, since the threshold can be found at the
same time, although it was nearly always found to be 1.

One important feature of the scanner is its
high resolution. Approximately 18)9 scan lines of
2509 points each are available, giving a resolution
in both the horizontal and vertical direction of
approximately 0.905 inches, thus making it ideal
for experimental work. A "small" middle area
character generates about 32 bits vertically and 24

bits horizontally at this resolution,
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To process the magnetic tape takes about 12
minutes of central processor time using a simple
FORTRAN program which occupies the minimum amount of
central memory required by the computer system for
a FORTRAN program, This program is used to check
the status information associated with each data
point, to take the appropriate action if error
conditions occur, and write the nrocessed scan
information on anotier magnetic tane.

For each data point only three checks are
needed, namely,

(1) the scanner code,

(2) the acceptance of the previous data

point, and

(3) the first data noint for each vertical scan.
If a data point does not have the scanner code,
then 1t is assumed that the data originated from
another piece of equipment connected tc the same
local controller, and the point is neglected.
In the event of a data point being missed, a local
average of the intensity is computed and a dummy
point with this intensity is inserted. If the
first data point for a vertical scan is missed, an
error message is printed indicating the scan number,
The action taken in this case is to insert a series

of zero intensity data points at the beginning of
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Chanter 3. Line Position

Object isolation is all too often ignored in
laboratory studies, yet this is a major problem in
automatic reading of machine printed text. In
section 3.1 the isolation »nroblem is presented,
pointing out the difficulties in applying usual
techniques to Thal printing, and thus establishing
the need to find a point within the left hand bounds
of the middle area of each »nrinted line, A method
for finding such a peint with a study of the effect
of page misregistration (or tilt) on it, is des-
cribed in the next section,

Throughout this study it is assumed that each
page of Thai text is scanned from top to bottom and
from left to right across the page. Thus any
horizontal ccordinate on the nage is specified by
the 'number of data points from the beginning of a
scan line, and a horizontal line across the page
is defined by data points, with the same horizontal
coordinate from successive (vertical) scan lines,

3,1, The Isolation Problem with Thai Printing,

A usual method adonted for the isolation of
characters for their individual recognition is by
the so called scgmentation process [8]. Briefly,
the anproximate nosition of each line of nrint is

found and a window of fixed dimension is stepped
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across the page, one scan at a time, searching for
vertical white lines separating the individual
characters . To enable this process to be effective

a certain condition must hold:- namely, the
continuous nresence across the width of the page

of gaps between successive lines of ﬁrint. These
gans must be snecified so that there are at least

two bits which are blank across the width of the

page., It would be exnected that this process

could be extended to Thai printing, to separate
""character blocks'", with a secondary horizontal
.segmentation being necessary to separate the different
area characters from each resulting block. A

minor technical difficulty would, of course, arise
with the dual character, but this might not be

too great a problem,

However, these are two reasons why this method
does not suffice for Thai text. Firstly, on close
examination of Thai »nrinting, it is found that in
some cases there is little or no separation
between the lower areca of one line and the upper
area of the next. For example, if the sample of
printing of Figure 3,1.1., was nlaced in the scanner
exactly horizontally, it is unlikely that there would
be a clear white gap of at least two data points

between the two lines of print. This is due to the
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Wy g clear white lince.

FEven +f these lines were senarated suffi-
ciently, then only a very small "ancle of tiiz,”

?

say 4, on the nace in the scanner could be tolers-

ted, This "aagle of tilt” is the angle of the page
in the ascanner to the "orizontal wosition, it

sirould alvavs be expected that the nage will be

laced i the scoanner at some angle and so the
method is not nractical. Secondly, even if there
15 sufficiont separation hetween the lines, then
since the line width, *'h', 1s large comnared with

the inter-character distance, 'd', an imnractical

restrictina on '3' is5 onge again necessarv, if

character block separation is to be nossibie, The
naraneters are illustrated in Figoure 3,1.2. In
fact, using results from the scanner, ‘A’ and 'd7
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were found to be 9.5 inches and 7.74 inches,
respectively. Bearing in mind that each character
block must be separated by a vertical white line

of fixed width, say three scans, 'd' is effectively
rcduced to approximately 2.71 inches thus making
the critical angle of tile 5. less than 1 degree,
(The relationship between h, 3 and d is derived

in Chanter 4.) To ald to the problem the upper
arca characters are not always printed exactly
above the middle area character with which they

are associated, thus reducing d even more,

It beccmes apparent taierefore, that a direct
anplication of the normal separation nprocess would
not suffice for Thai printing. This led to
considering the senaration of the characters of
each areca separately (so reducing h and increasing
the allowable tilt) which i1s a comnlex problem as
sore of the middle area caharacters extend into the
upper area and others into the lower area, However,
if the characters of the middle area for a line of
print are isolated, then information obtained in
this process can be used to separate the upper and
lower area characters for the same line of nrint,
since for Thai printing there is a fixed distance
between the middle, and upper and lower areas. The

author has ohserved that this dis tance is approximately
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equal to half the height of the middle area, the
height of each of the upper and lower area characters
alsc being equal to this height, a towel being
larger. (see Figure 3.1.2.) Although a severe
restriction on 9 is still necessary, it is at least
possible to ensure that it takes a nractical value.
The new nrocedure is not simple but it is considered

necessary because of the complexity of Thai printing,

who §___ Upper 1 h
M ddle #1

I h
sh Lower |

Figure 3.1.2. The relationship of inter-area

distance h f 0.167 inches,

3.2. M.ddle Areca Position

Before any attemnt can be made to isolate the
character patterns it is necessary to establish
the approximate horizontal coordinates of each
line of pnrint, Once a reliable threshold value
has been found to distinguish between black and
white (see Section 2.3), it is necessary to make
another pass over the scan tape to convert each
data point to 0 or 1 representing white or black,
respectively. During this conversion a count is

made of the black points across each horizontal line
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of the scan. By plotting a granh of count
(which ideally would be intensity) against horizontal
coordinate, the approximate position of ecach line
of print may be found by locating the regions of
maximum ‘intensity’'. However, because of the need
to know to which area each isolated character
belongs, it is necessary for the line finding
process to yizld a single point at the left of
each line within the bounds of the middle area,
which immediately implies a restriction on "9
for the page in the scanner.

3.2.1. The Model for Thai Printing

Intui tively, a study of the line finding
technique and the implication of the above condition
on the angle of tilt can be made by considering a
model of a line of Thai nrinting. The model
consists of three distinct horizontal blocks in which
all data peints are set to 1, that is, it is assumed
that no middle area characters extend into either
the upper or lower area, and bota upper and lower
characters occur with each middle area character.
Both of these assumptions are not strictly correct.
Firstly, some middle arca characters do extend into
the other areas, but the probability of a large
middle arca character occurring is much less than

an ordinary sized character (see Table 1.2.3.) and
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so this assumption is made. Secondly,a count of
frequency of occurrence of middle, upper (towels
counting as éne symbol) and lower area characters
over ten pages of text showed that, if the pnroba-
bility of occurrence of a middle area character is
assumed to be 1, the probability of an upper area
character occurring in any position is 0,184 and
that of the lower area 0.019. Since the intensity
along horizontal lines is of interest, any contri-
bution of the upper or lower area to the intensity
is weighted according to the above probabilities
to make the model more general, The model used in
this investigation is illustrated in Figure 3.2.1.
for various values of 8, The critical angle of
tilt, 9., is defined as arctan (h/1), where h is
the perpendicular height of the middle area and 1
ne length of the model line.

The effect of 8 on the granh of intensity
against horizontal coordinate for the model line
may be investigatced by plotting the graph for
various values of 8 (Figure 2.2.2.). It is found
for 9 less than 8., the maximum intensity is not
unique, that is, the same maximum intensity occurs
for several horizontal coordinates. However, these
maxima are all within the horizontal bounds of the

left cnd of the middle area. For 8 equal to 8. a
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maximum intensity results at the horizontal
coordinate corresponding to one of the horizontal
bounds of the middle area. Finally, for 8 greater
than 8., the maximum intensity is not well defined,
but in this case all the corresponding horizontal
coordinates lie outside of the bounds for the
left of the middle area. To summarize, a point
can be found within the left horizontal bounds of
the middle area for € less than or equal to O and
for @ greater than 8. it is impossible to find such

a point,



Figure 3.2.2. The Mdel for Thai Printing.

(a) 8 =0

(b) 8 = 1/2 OC
(c) 8 = Oc

(d) 08>8
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Figure 3,2,2, The Intensity Graphs for the Mddel Line,

(a) 8 =0
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Figure 3.2.2. (cont)

(b) 8 =1/2 8
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Figure 3.2,2. (cont)

(c) 8 = Qc
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Figure 3.2.2. (cont)

(d) 9>9C
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3.2,2, Line Position for Thai Printing

It would be expected, and it is indeed the
case, that the preceding results can be extended
to Thai printing,but, due to the assumptions made
in constructing the model line, minor modifications
are necessary.

The intensity nlot for each line of Thai print
does not form a smooth curve since the areas are
not uniformly black as in the model. Fany local
maxi ma occur, but in the region of each line of
print the intensities are relatively high., From
the computational view point, it is desirable that
a single maximum intensity value indicates a point
within the bounds of the left end of each middle
area, and thus there is a need for a smoothing
process to cecliminate the local maxima, The
following "moving average'™ process is well known:
for cach intensity count, the adjacent 'n' original
intensities both above and below, and the one under
consideration, are averaged with the average
replacing the original intensity level, I1f this
procedure is repeated for the intensity levels for
all horizontal coordinates, the intensity graph is
smootied with the amount of smoothing depending on
the chosen value of 'n', For a scanner with

resolution 0.005 inches and the text used, a
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sufficiently large value of 'n' was found to be 12.
However, for this value the maxima indicating the
upper (and to a lesser extent the lower area)
still exist. It is found by increasing the value
of 'n' still further, these maxima dissappear, and
then the only maxima remaining indicate the position
of the middle areas which is a desirable feature,
In general all the local maxima are eliminated for
'n' equal to 16, and the single maxima appear
within the bounds of the middle areca for each line
of print. There 1s little advantage to be gained
by increasing the value of 'n' bevond 16, the only
effect being to snread the intensity curve for
cach line with a decrease in the maximum intensity
values , In Appendix A the effect of increasing
the value of 'n' on an intensity graph for a
single line of print with 8 equal te zero is
illustrated,

In the model it is assumed that the three
areas of Thai printing are dis tinct, but this is
not strictly true because of the existence of large
middle area characters which extend into either
the upper or lower regions. However, since a
normal-size, middle-area, character is more likely
to occur than a large one, the only difference in

the intensity gravh for a rcal line of print and the
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model is a slight variation in the regions on
either side of the peaks corresponding to the
middle area. For small 8, distinct maximum inten-.
sities appear in both the upper and lower regions
before smoothing, provided characters from these
groups occur in the‘}ine of print under consideration,
(It is possible a lower area character will not.)
However, these maxima are smaller in magni tude than

those for the middle area and there is no chance of

confusing them, In any case they are eliminated
with smoothing. These maxima are shown quite

clearly in Figure 3,2.3., in which the separation
points between the areas are clear. It should be
noted that at the separation point between the
upper and middle areas, the intensity is not zero
_because some middle-area characters extend into
the upper area in the line of print for which the
graph is cons tructed.

Previously it was stated that the value of
8. for the model line was arctan th/1). To
discover whether or not this result can be extended
to printing, lines of Thai text taken individually,
were rotated for various values of 8 by computer
program and the intensity graphs nlotted for each
(see Appendix A.) It was found that the maximum

intensity for the lines always occur between the left
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horizontal bounds of the¢ middle area for 6 approxi-
mately in the range 2 degrees without smoothing,
Results from tihe scanner show that the height of
the middle area, h, and the length of the line,
1, to be apnroximately 0.2 inches and 5.5 inches,
respectively, thus giving a theorctical value of
8 for the model of

8. = arctan (0.2/5.5) * 29,
which is in agreement with the experimental result.
However, with smoothing (n=16), it is found that
the range of 8 is reduced with the new maximum
for each line occurring within the required bounds
for 8 in the range of -2 degrees and +1.5 degrees
(see Anpendix A.) Thus to guarantee the maximum
indicating the required point, '8' should be
restricted to these limits.,

This small value for 8 could have been
improved by using less of each line of print to
establish the horizontal point in the middle area.
That is, 1 may be reduced but care must be taken
to ensure that it is long enough to nrovide
sufficient information for each line of nrint. To
show how 8. may be increased, consider the model
of a nage of text nresented in Figure 3.2.4.
Suppese all information up to the vertical scan AB

may be used in the line finding process and 1; and
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1, are the lengths of the topr and bottom lines on
the page that are to be used to '"find" the line. If
1y is such that enough information is available to
establish the position of the top line, 1, is
assumed sufficient for the bottom line, But the
critical angle for the top line exceeds that of the
bottom line, Consequently 8. for the page is
determined by the length of the bottom line portion
1y Now 1, is less than the length of the line,
1, and thus 9. which is now equal to arctan (h/15)
is increased, For 3 opnosite in sign the critical
angle is determined by 1;. It can however, be
dangerous to adopt this technique, since the length
of line necessary to give sufficient information
will vary becausec of the gaps which may occur in a
line of print. As 2 consequence, throughout this
study care was taken when placing a page in the
scanner to ensure that it was as horizontal as
possible, and the full length of the lines used to
determine the required horizontal point.

An alternative process to finding the approximate
position of each line of print is to find the position
of the first and second lines accurately by the
method described, and then make use of the variable
dimension window (see Chapter 4.) This gives an

accurate estimate of the interline distance and the
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angle of tilt from which the position of successive
lines of print can be calculated,. However, since
the interline gaps may vary where paragraphing
occurs, this method is not satis factory generally.

3.3. The-Conversion-and Line Position Program

As mentioned earlier, horizontal intensity
counts for a complete scan, (1800 vertical scans),
can be made at the same time as the conversion of
each data point to zero or one. This depends on
the threshold value found by the first of the scan
processing programs (see Chapter 2). The storage
requirements of this program are not great. Two
arrays of 2,500 locations arec needed to store the
progressive and the subsequent smoothed intensity
counts, one of 125 and another of 42 locations to
store the nrocessed and the converted information
of one vertical scan, respectively, The vertical scans
are converted one at a time, with the resulting data
points written on a second magnetic tape, having
been packed 60 points to a computer word.

At the completion of the conversion, the intensity
counts are smoothed and the local maxima indicating
line position are found and nrinted for use in the
character isolation nrogram (see Chapter 4.) The
total computing time for this processing for a

complete scan is about 120 seconds. A block diagram
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of this stage of the system is presented in

Figure 3.2.5. which continues on from page 31,

Conversion § Line
Posi tion Progran

Hinary Points

Sgan Tape Indicating
Line Positions

Figure 3.2.5. Block diagram of Conversion

and Line Position Programs.
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Chanter 4. Character Isolation and Preprocessing

In this Chapter there are two problem areas
that are considered, namely:

(a) the isolation of characters, and

(b) the remcval of isolated areas of noise

from each resulting character pattern.
Because of the nature of the outnut from the page
scanner, these two arcas were inves tigated by
simulating a possible reading machine for Thai
printing by computer progran. This investigation
gave an indication of the complexity of an automatic
reading machine that would be needed, if such a
machine is to De constructed.

In section 4.1 a method for isolating each
character from the scan image of a page is described,
Since it is not expected that any pageof print will
be placed in the scanner exactly horizontally, the
effect of the tilt angle of the page on the nroposed
technique must be considered,

Once the character patterns are isolated, it is
necessary to remove noisc¢ to increasc the chance of
correctly identifying cach one. A review of previous
work in this field, the method used, and results are
presented in section 4.2.

Before the scanner became available it was

necessary to simulate the cutput of the preprocessing
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stage of the character recognition system, This
simulated data prcved to be extremely useful in
obtaining preliminary results, which are incorporated
in the final system. A descrivnticn of the preparation
of this data is given in section 4.3,

4,1, Isoclation of Characters

Once a point is found within the horizontal bounds
of the middle area of each line of »nrint, the procedure
to separate the characters for individual recognition
may begin, The most difficult problem to overcome
is the feature that some of the middle area characters
extend into elther the unper or lower area.

Because of this, 1t is necessary to implement a
"window" (or a photodiode array in the case of a
reading machine). A "window'" may be considered

as an aperature through which a portion of the scan
image of the page may be viewed. This window 1is
fixed at 3 scans in width and has a variable height
(called its dimension) which can be adjusted to
enable 1t to extend over each character pattern in
turn. The pnrocedure is nrobably best described

by simply stating that, as it moves right across
the character, this window of fixed width is expanded
vertically and manoeuvered until it just exceeds
the vertical bounds of the character nattern by two

clesr horizontal lines both above and bhelow, The
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right hand limit of each character is assumed when
the window reaches a '"white" area. An "area" is
considered "white" when the bit count within the
window is less than a fixed threshold, which is
chosen according te the noisc level of the scan
image.

This isolation technique is implemented by
computer progran, The portion of the scan image of
the page sncomvassing the line of print, (indicated
by the line position coordinate), is stored in
central memory, having been rcad from the binary
scan tape. As each character is being revealed
by the moving window on each step to the right,
the contents of the left-most column of the window
are stored in a column of 3 2-dimensional array,
the current column being indicated by a counter.

If it is found that the window is not sufficiently
expanded to extend beyond the bounds of the
character, it is set back to its '"most recent"
starting point, and the indicating counter for

the 2-dimensional array rostored to its initial
value (unity). The "most recent" starting point
for the window is determined by the end of the
previous character or, if it is the first character
of a line, by the first vertical scan line. Many

variations of this situation of insufficient window
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expansion arise. The aprnropriate action for each
situation is best explained by the flow
diagram of Figure 4.1.1.

4.1.1., Middle Area Separation

To isolate the characters of the middle area,
the window initially with a dimension of 3, is set
at the left end cof a line of print about the point
found within the bounds of the middle area, (see
Chapter 3.) It is then manoeuvered, its dimension
necessarily being increased, to isolate the first
character. After isolating the first character and
assuming that no information is availablc about the
area height, the extreme upner and lower horizontal
coordinates of the window obtained for this first
character, are stored. The dimension and horizontal
positicen of the window are then restored to their
ini tial values, the window moved right, and the next
character separated in a like manner. This process
is repeated for say, the first five characters of the
line.

A line of print always begins with a word and
reference to a Thai dictionary [2] reveals it is
thus assured that at least one ordinary size character
will occur in the first five of a line. Cons equently,
after five characters have been isolated, the stored

upper and lower horizontal coordinates are examined



Figure 4.1.1. The isolation technique employing a

variable dimension window.
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to establish the approximate upper and lower bounds
for the next character of the line. It is possible
to find these bounds since only a small angle of
tilt on the page in the scanner is permissible to
satisfy the requirements of section 3.2. As a
result, therc is no chance of confusion between the
bounds of a large and ordinary character, For
example, suppnose that it is established that the fifth
character of the line is of normal size with height,
h, and upper and lower bounds, 17 and 1,, respectively,
as 1llustrated in Figure 4,1.2. Then the approximate
horizontal bounds for the next character are assumed
to be 17 and 1, and the window is shifted right with
dimension h (equal to 12—11), and horizontal bounds
1, and 1,, to isolate the next character, If the
next character is large, then the window must be
expanded and shifted to fit over the character.
Suppose that the upner and lower limits are found to
be 17 and 1, respectively, then 1, and lé will
be approximately equal and the difference in 1; and
li rclatively large. It is therefore established
that the character is large and extends into the
upper area, As a result, to separate the next
character, the window is set in the limites, (lé -h),
and 15, with a dimension of 'h'. Naturally, if

the sixth character is not large, then 14 and li would
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be approximately equal and the window would be
stepped right with limits 1 and 1;. If the fifth
character happens to be large, then the approximate
bounds are found by using 'h', which is known from
at least one ordinary size character, »nlus the
approprizte bound for the fifth character. The bound
chosen depends on whether it extends into the upper
or lower area.

The only difficulty encountered in this
procedurc arises when the character, & , occurs in
the first five characters., Only half of this
character is generally isolated by the window, and
this fact is revealed by its horizontal bounds
when they are compared tec the bounds of the other
four characters. A way to -overcome this problem is
to step the window back in order to isolate the
complete character after the approximate bounds - for
the middle area have been comnuted.

If either the value of h is known beforechand,
or, after the characters of one line have been
isolated, it is possible toc use the first two and
not the first five characters to evaluate the
approximate horizontal bounds for the next line,

It is necessary to use two characters as it is
possible, (but rare) , that the first character

of a line may be large and extending into the lower
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area, in which case the second character will be of
normal dimension, cr large, extending into the

upper area [2]. At least one of the first two
characters will have a lower bound which is
approximately equal to the common lower bounds for
line. Using this fact and 'h', the approximate
horizontal bounds for the next character can be
evaluated. In this study the lower horizontal bound
for the first character was used in conjunction with
'h' to establish the approximate bounds of the

second character to reduce computing time, This

can be done because a middle arca character rarely
extends into the lower area, particularly at the
beginning of a line [2]. To ensure that this assump-
tion did not introduce error, a brief inspection was
required of the scanned page and a flag in the
isolating program to signal whether or not a character
extends into the lower area in the first position.

An alternative method for window-shift may be
used only after the characters of one lkine have been
s eparated. This entails taking into consideration
the angle of tilt, 8, and requires that the window be
shifted up or down one position at fixed intervals
across the page. The direction and interval of
shift depends on 6. This tilt angle, 6, may be
evaluated from the limiting horizontal bounds of the

line already isolated.
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4,1,2, The Upper and Lower Areas

From the results found for the middle area, a
reascnably accurate estimate of 8 can be made by
using the horizontal bounds at the beginning and
end of a line. The variable dimension window is
set at the left end of the arca concerned with its
dimension and horizontal coordinatss fixed according
to the area height and the inter-area dis tance,
respectively. These values are fixed (see Section
3.2). The window is then stepped across the page
taking @ into account while progressing, as outlined
at the end of the previous section,

When using the variable dimension window for
the upper and lower areas there are two minor
modi fi cations that are necessary to the nrocedure
used for the middle area, Firstly, if the window
has to be extended into the middle area to fit over
a character, it is assumed that a large middle area
character has been encountered, Secondly, if the
window is extended significantly below the lower
bound for the lower area it is assumed that a towel
has been cncountered from the linc below. If either
of these conditions occur, the window is simply
moved on :- that is, these characters arc ignored.

To isolate each character takes about 0.6

seconds computing time. This time is excessive, but
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this is a direct consequence of the complexity of
Thai printing and the versatility needed in the
process to isolate the characters. Note that the
time required for preprocessing the scan tape is
ignored in this estimate,

It is found convenient to combine the pre-
processing and feature extraction programs
required for the recognition system, with the
isolation nrogram, Thus the programming consideration
for the isolation nrocess are given at the end of
Chapter 6.

4.1.,3., Restrictions on Tilt Angle,

For the character isolation procedure to function

without error it is necessary that:-

(a) in the middle area the window encounters
each successive character of a line before
it moves into either the upner or lower
area depending on the sign of '8', and

(p) at least 3 vertical scans separate the
characters of 2ll areas.

The implication of these two requiremenets on 0

is considered below.

Case 1, If the width of the last isolated
character is w, 4 is the intercharacter distance,

h the height of the middle area, and s the distance

between the areas (see Figure 4.1.3 (a)), then the
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maximum allowable angle of tilt 1is given by

S

tan © _— d +w

Typically s = h/2, where h is the perpendicular height
of the middle area, w = 3h/4, and d = h/4, giving

a maximum angle of arctan (0.5), which is approxi-
mately 25 degrees. The dependence of Gmax on the
intercharacter distance, d, should be noted. In
particular, if d is increased, then gmax is decreased,
and if there is a distance of reasonable magnitude

in a line of print then the restriction on 8 is

quite severe. For example, if d is some 2 inches
(which is quite possible for an interphrase gap)

then d is approximately equal to 5 h and 8 _.  is
restricted to approximately 3 degrees. However,

this is still greater than the critical angle for

the line finding process and the isolation method
does not introduce a further restriction on the
maximum allowable angle of tilt.

Case 2. If d and h are the same as above and r

is the resolution in the horizontal direction (the

distance between adjacent scans) then, from Figure

4,1.3. (b):-
d-3 r/cos 6

tan 9max= h

max,

2
whence hvI-cos emax-d cosemax-Sr, and

(h2+d2)c0529max-6rd cos Omax+9r2-h2=0, and
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= 6rdt "(6rd)%-4(h%+d?) (9r2-n%)
2(h%+d?)

8
cos 8 .«

On an average, d was found to be approximately

equal to 5r, and for a large middle area character,
h equal to 40 r, giving 2 maximum allowable tilt
angle of approximately 4 degrees. Once again this
is greater than the restriction imposed by the line
finding technique and so, in theory, it is possible
to separate all characters in the proposed method
without introducing a further restriction on the
angle of tilt. The restrictions imposed by the
isolation technique on the angle of tilt do however,
become significant if part of each line of print is
used in the line finding process instead of the full
line.

4.1.4. Touching Characters

Ideally a white line one bit wide is sufficient
in both the horizontal and vertical direction to
separate each character, but, in order that a false
character end or edge is not gencrated by a broken
stroke for example, the minimum gap has been set at
3 bits for vertical and 2 bits for horizontal
separation. If a space meeting these requirements
is not found between adjacent characters (that is if
they are touching one another or the angle of tilt is

excessive) there does not appear to be an infallible
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method for separating them.

To a human reader each set of two characters of
Figure 4.1.4 should be separated along the dotted
line, but the isolation nrocess would regard each
combination as one shape, There seems to be two
possible solutions to this problen. One is to use
a trial and error technique to divide the shape
into portions at various points until the two shapes
become recognisable. In other words, until the
position of the dotted line is found {971. This
increases the comnlexity of the sys tem considerably
and in view of the few times in which this problem
arose , the inclusion of such a process was considered
too cos tly. The second, and adopted solution, is
to require the recognition method to indicate that the
shape is unrecognisable,

4.2. Preprocessing

The purpose of the preprocessor is to reduce the
intraclass variety amongst the patterns nresented
in such a way that the probability of correct
recognition is increased. Mason and McFall [10]
have fornulated four ways in which the nreprocessor
can act to achieve this:-

(a) Countering the effects of noise by filling

in gaps and removing isolated areas of noise.



&

Figure 4,1.4, Touching Characters

(a) Mddle Area (b) Upper § Lower
Areas.
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(b) Removing di fferences which occur between
separate examples of the same character,
(e.g. rotation and height variation)

(c) Removing redundant information. (This
includes resolution reduction by local
averaging or line thinni ng).

(1) Removing information irrelevant to the
classification criterion.

The most important of these four requirements
is the first, Requirement (b) is adequately dealt
with in the evaluation of sui table characteristic
vectors to describe the character, and because of
the choice of characteristics, (c) and (1) are not
a nroblem and need not be considered here (see
Chapter 6.) Thus it is only necessary for the pre-
processor to reduce the effects of noise, but ensure
that no distortions are introduced which could make
the character difficult to recognise,

The possible defects of a character from the
scanner are shown in Figure 4.2.1. and are enlarged
upon here. In general the gans must he detected
and filled in but. ideally, they should be detected
and then a decision made on their validity. In some
Thai printing the numerous loops which occur are
sometimes solid and other times show a dis tinct

white spot in the centre due to variation in print



Figure 4,2,1, Character Defects.
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quality. For the sakec of consistency these areas
arc required to be always filled in, Other defects
are in the form of small projections in the
horizontal and vertical directions, and isolated
noise spots bHoth of which should be removed.

4.2,1. Some Previous Work on Preprocessing,

One method is to consider each point of the
binary input matrix in turn and reach a decision
whether it should be "one" or "zero" by considering
the neighbouring points. Unger [11] reaches a
decision by considering the neighbouring points in a
5 x 3 window centred on the target noint. However,
his insert and delete algorithms only deal with
small defects affecting one or two matrix points
on the cdges of a character stroke. Sherman [12]
and Deutsch [13] both describe techniques designed
for both smoothing and thinning of character strokes,
a feature which is not required.

Perhaps a more important technique is that
des cribed by Dineen [14]. With a character matrix
of dimension 90 x 90 he uses 2 5 x 5 local area.

The operation is performed by observing the contents
of the 5 x 5 window centred on each element in turn.
A count of the number of one's in the window is
compared with some threshold, T, If the count is

greater than or equal to T, then the corresponding
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element in the new image is one, otherwise it is
zero. Use of a low threshold eliminates scattered
"ones'" and fills in hcles, but for high threshold
corner and junction points are isolated. In
general for low thresholds, the character is
thickened and as the threshold is increased it is
thinned. Dineen suggests the use of a larger window,
say 15 x 15 arcund the smaller window to determine
the threshold for the smaller window. For a dense
window, a high threshold would be used, causing
thinning, and for a sparse window a low threshold
causing smoothing.

Alcorn and Hoggar [15] suggest a method for
implementing Dineen's method. Using a 24 x 24
character matrix the thresholds for the local 3 x 3
window are determined by a 7 x 3 larger window.

The nossible bit counts of the 7 x 3 window are
divided into threc regions (by gates) and a pair of
insert and delete thresholds associated with each
region, When a new matrix point is chosen, the
large window count is first evaluated and then the
appropriate thresholds selected for usc in the 1local
area decision.

4.2.2. Experimental Results

Binary character matrixes with the approximate
dimensions 40 x 40, were isclated from a scan image of

a page and recorded on magnetic tape. This data was
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then used to test some of the above mentioned tech-
niques,

The Dineen method was the first to be tested,
Using a 5 x 5 window and trying various thresholds,
(not set by a larger window), good results were
obtained. However, there was difficulty in
deciding what value to allot to the threshold.

The processing time required for this method was
about 1.3 seconds ner character.

The method proposed by Alcorn and Hoggar was
then applied to the samc data, The large window
was chosen to be of dimension 7 x 7 with a smaller
3 x 3 window for the local area. Once again good
results werz obtained, but some di fficulty was
found in choosing the values for the gate and
threshold values. In addition the precessing time
was increased by about 50 percent over the time
required by the Dineen method,

It was finally decided to use the method
sugges ted by Bomba [16] in which a 3 x 3 local window
is used witah an insert threshold of 5 and a delete
threshold of 4, The processing time was reduced to
approximately 0.2 seconds per character, the process
removing isolated "ones' and inserting '"ones" into
gans ., If insufficient smcothing is obtained in one

apnlication then the process may be reneated,
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Figure 4,2.2, illus trates the effectiveness of this
smoothing process on the character of Figure 4,2.1.
applied once and then twice.

4,3, Simulated Data

In order tc test programs and experiment before
the scanner was built, test characters were made up
and punched into cards, Later this simulated
output of the prenrocessing section of the Character
Recogni tion System, proved to be extremely useful
in finding preliminary razsults which were
incorporated in the final system.

The binary matrices simulating the output of
the prenrocessor were constructed by taking large
characters from a Thai Primer [17], laying graph
paper over eaca chraracter in turn, and marking the
black squares. The resulting binary matrices were
nunched into cards., To fully simulate the output
from the scanner, noise was introduced into the
binary matrices by using a pseudc-randon number
generator, The noise was introduced by stepning
through the binary matrices element hy element, a
random number generatad after each step. If the
random number exceeded a present levcl, the element
was changed to white if it was black, and if it was
white and in the vicinity of a hlack point, it was

changed to black. Otherwise it remained unaltered,.



Figure 4,2.2, The result of smoothing.

(a) After applying the technique once
(b) After applying the technique twice,
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This fully simulated the output of the preprocessor
in which isolated black points were eliminated.

A measure of the noise level was available from
the threshold value, The random number generated
numbers in the range of 0 - 1 and thus the threshold
must be in this range, say 0.9 for examnle, giving
2 noise level defined at 10 percent, Figure 4,3.1.
gives an example of a maually constructed character
and the effect of noise on the same character for

various noise levels.



(a) No noise

(b) Noise Level = 10%
(c) Noise Level = 20%
(d) Noise Level = 30%



L]
. ] . 2.9 . fe0 8 .
[ FENNEREN] E e li® & aTal &
[ X RN X NEN/ fan ey
T eas 28, . .e
o, Bl e P ST X ¥
S e L) . 2 s
a0 [ X
it WL i e 4 e N Sp————— A
LN L]
a ®® ¢ e L)
o *& e LR}
L e . s » . el B B
b IS Srere & & S0 nos g Wouw
I @ a9 L] [
[ R BB W B B
ne 8% @ &G
d e [N XN N) % W
2 egGavde L
AP | — ) L TSR TN S X N
LN ] *N G L3
L] L] e
® [N 8 g
X N X L3 A L. N
@ a LN LY
[ " @ L)
¢ o & a LR
: = o SR W WL T T A
LR L] L]
" o aveacs *o
LA B L ) ©ew s .
Saw %8 .o ’ -
] L]
= . e BEe LR
. L BN s 2@ [
L. ey
(&) (»)
K
L] » % » @
L 2y L 3
T 1 - N - .
s pUVRaER § wuss sae
® @
B BB - ok e S 9, % 2ty
Y L ® 9w LI
PRI S I U . 49
* s &
L] s B
» "D ®
gl gl - H» $ 200 %
B b sanw ?
L] ava ¥
¥ e L] % 9
= L . L 3 - a
ta ane & ass
eB gwd ®H B
LE RN N [ L4
B N . JIESEEs T2 3 o mschcamy e ,.‘ -
L I} “% S0
*O ame A L)
é % % L)
AR a Gae »a = LI .
o bas £88 LI 3 Qeov wgo
B9 &. . Neb L rena o oo
[}
" se @ *® 2 hd 2 il
» L]
ttttt T TR W W) Rt B SOt
LI a®
LIRS L)
& % LR )
2484 3 ]

j [ »é L "
i L3 Y LN
W YN 220 =
. L] .

' *9 oo

4

(e) (a)



- 82 -

Chapter 5. The Categorizer

For each binary pattern presented to the feature
extractor, an n-dimensional vector, y, was computed
which was uscd as the input to the categorizer.

The latter was a device which applied some decision
procedure to assign cach vector to one of a finite
numbcr of categories, say r. It was required that

the output of the categorizer be an integer i(=1,2....1)
under the convention that an outnut j was to mean

that the system had assigned an input to the j th
category of the r nossible ones. In effect the
categorizer could be considered as a procedure to
compute i=R(y), where R(y) is the recognition function.
It was assumed that each sample presented to the
categorizer for recognition belonged to one of the

r categories but if rejection is rccommended, that is,
the system cannot make 2 decision as to which category
an input belongs with certainty, the system would not
be considered in error. However, if the systenm
assigned an input to category j (when in fact it
belonged to some other catcgory), then it was
considered to have made an error.

The use of statistical decision functions is one
of the many possible decision procedures used in the
implementation of a categorizer. They were chosen for

this study because they provided an opportunity to make
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use of the a priori probabilities that are avail-
able (section 1.2) for character occurrence.
Decision functions minimizing the "average risk" and
the probability of error for a given rejection rate
were first considered by Chow [18]. Many other
workers have done work in this area in more recent
times. (See [19] to [23]). The theory of Bayes'
decision functions are reviewed here.

5.1. Bayes' Decision Functions

Suppose that S ={s,, 52""’5r} is the set
of r categories and each input y = v yz,...,?n)
belongs to one and only one category s . Assume that
the a priori probability of an input vector belonging

to category sjis p; for i=1,2,... ,r and

T
Z p; =1. (1)

Because of noise in the original binary

pattern of an unknown character, y is suﬁjéct to
random variation and thus may be considered as a
random variable. Let us assume that the probability
distribution of y is determined by the categories

and is given in the form of a conditional probability
density function on the measurement space Y', Thus
if the category is s;, then the probability of an

input y is F(y]s;).
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Given an input vector, y, the problem is to

decide to which category it belongs. The sys tem

may make any one of (r + 1) decisions dgs dyse.. dr,

for any input y, where dy is the decision to reject

v as being unrecognisable, and di' il £l oZrxe v G

is the decision that y belongs to category Sj . A

decision function or decision rulc g d;|y) is

defined for every y in Y' and decision d; , i=0,1,...,r

such that

B ly) = 1, and

<
N~
o

(2)
g (d4ly) >0, j=0,1,....r

Note that ¢ (dily) is the probability the categorizer
will meke the decision d; given a random vector y in
Y'. The prcblem is to find a decision function
which is 'optimal' in some sense,

Define a loss (or cost) function, W(si,dj),
written Wijx0, such that wjj is the loss incurred
by making the decision dj when the input y belongs
to category s;. Since it is required that the

decision be ¢; if y belongs to s;, we have
WijWioWig > 1433 1,3=1,2,....r, (3)

where wjg is the loss incurred on the system by

rejection if y belongs to sj, and w;; is the loss

associated with correct recognition,
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The probability of making a decision dj,
when the input is from category s; is

P[dj|Si]=[YLF(Y|5i)¢(dj|Y)d¥ (4)

where the integration is over the whole of the
measurement space.
Now the loss or risk incurred when the random
vector hclongs to category s; and the decision
rule 9 is used is
T
R(s3, 0= Jwij | Forls;)00ds0y)ay. (5)
=0 77 L,
Taking into account the a priori probability of
occurrence p=(p1,p2,....pr), the ‘'average risk'

for the whole system is R(p,{), where

r
R(p,#)=_] piR(s;,7),
i=1
r

r
L L e Folsreging o)

i=1 j=0
The optimum categorizer is defined to be the
implementation of the decision rule which minimizes
the average risk R(p,¥) given by equation (6).
The optimum categorizer can be found wi thout
di fficulty [18] for equation (6) and can be

rewritten as

R(p,0)= Ry*+R, (,0), (7



where
T

Rg(p)=i£lpiwi0,

Y
Ry 0=y T gcdslyIv; ey,
j=0

T
Yj(Y)= iz (Wij-wio)piF(ylsi);j=1,...,r,

1

0 55=0

Note that Ry(p) is the average risk when rejection

is made for all inputs and R;(p,#) can obviously be
adjusted through §. Now

Rl(p,ﬁ)ijyamﬁn Y () 14y, (8)

and equality holds if, and only if, the decision

rule @ is chosen as

Py ly)=s(dy lyr=1 for j=k, ~

U(djlY)=6(dj|Y)=0 all j#k, (9)
whenever

m§n [Y; () 1=Yy (y)

Equations (9) yield the optimum categorizer when
the criterion of minimum risk is adopted. The
expected loss 1is given by

T
R(p,8)= ] pywio*|yimin(Y;()1dy. (10)
i=1 ]
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To assign an unknown point, y, to one of the
categories, or reject it, as being unrecognisable
it is necessary to find the value of j for which
Yj(y) has its minimum value, j=0,1,...,r, assuming
that wjp>0,i=1,2,...,r. Then the aim is to find

the value of j for which

b

1=le1JplF(Y|sl)9 j=0:19'°':r! (ll)
takes its minimum value. Having found such a

j(say k) y is assigned to Sy e If j is found to

be zero then y is rejected as being unrecognisable.

5.2. Probabilities of Error and Rejection for

Equal Losses

Let wij

misrecognition, rejection, and correct recogni tion,

=W, Wjg=W, and wii=0’ the costs of
respectively. These are taken to be independant
of the pattern. Then equation (6) may be

rewritten as

r
R(p,0)=] [y;i09 (% 1y)F(yIs;)p;dy

1=1

i=1 j=1

=wg § J #(d,ly)p; Fyls;)dy
i=1)y"’

‘W ‘H T AR Flylsey, a2
Yl



but
Zq(d ly)=1-9(dyly)- V(d |Y), (13)
h
and thus
R(p,0)=wP_(@)+w,P_(0),
where

P ()= rZ 9 (dyly)p;F(yls;)dy=probability
N or rejection,

PC(¢)= E V(d Iy)p F(yls )dy=probability
of correct

1=1 recognition

Pe(¢)=1—Pr£¢)-Pc(@)-probability ofierror

5.3. Mnimum Error Rate

Chow [18] has shown that, for a given
rejection rate, the error rate in a recognition
system is minimized if the following decision
criterion is used. Choose category, k, for the
input, y, if

PkF(ylsk)zij(ylsj) for all j#k,

Py Flyls )28 5 PiF(yls;), 0sect,

(16)
and reject y if

PjF(ylsj)<B-§ p;Flyls;)for all 1 <j <r.
1=

15



- 89 -

The constant g8 is chosen to force the system

to meet a given rejection rate determined by the
condi tion Pr(ﬂ) = «, It has been shown by
Highleyman [19], that the optimal system minimizing
the average risk and errors for a given rejection
rate are equivalent (in the case of constant costs)
if |

wO
p=1- ==— = l-c. (17)

The decision rule given by equations (16) is the
one used for all experimental work described

below.
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Chanter 6. Sclecting Features for the Feature Vectors

Printed characters would appear, at first
sight, to be of fixed size and shane and to lend
hemselves to a simple "Temnlate Matching' recognition
tecanique at least on nrima facie examination. A
machine should therefore look for a mask among its
set of masks which is "something like'" the character
being examined,. "Something like'" is, however,
far too vaguc a condition to be imnlemented directly;
i1t is usuaily human assessment which is by no means
unders tood that performs this process. How do
we measure the degree of "something likeness"?
The fixed size and shavne of nrinted characters are
more annarent than real; they vary in thickness,
angle of nresentation, swacing, height and style,
to which can be added different fonts, ability
and cryptogravnhic canability.

A more reasonable anpnroach is to break the
patterns down into sub-patterns of "features",
which are less variable within categories, and
te re-describe the patterns in terms of these
features ., One can consider the innut patterns 1in
matrix form, mapped into a vector feature space of,
say, n-dimensions. An ideal choice of features

should nrovide featurec vectors which:
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(a) form closely nrack clusters in feature space for
any one category with clusters renresenting

di fferent categories widely separated,

(b) are independent of the position of the
character on the nage,
(c) are independent of the size and orientation

of the character,

(4) are independent of the boldness of the print,
and

(e) vary only slightly in the presence of a
reasonable amount of ''noise' allowing for
other minor differences such as small changes
of »nronortions, slight bending of lines and
so on,

Many methods have been uscd teo extract
features to form fcature vectors, some of which are
mentioned below. Bomba [16] described a cross-
corrclation technique to extract features from a
character, The method may be visualised as the
comparison of the 'two-dimensional' input pattern
with a set of standard natterns, or templates,
renresenting the featurcs to be detected. For
optimal performance, the templates should be
matched with the unknown pattern in the correct
orientation and rosition, and the templates

should be the same size and shape. This technique
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has been extended to auto-correlation for feature
extraction (see [24] - [26] ). The basic principle
underlying feature detection by auto-correlation is
the use of features actually present in the input
pattern as their own templates, meking it unnecessary
to nosition and orientate the pattern. Another well-
known technique is tc use geometrical properties

of the input pattern for recognition purposes (see
[27] - [29] ). In this case, recognition is made

by the exnlicit use of the relative mositions of
continuous line segments of specific shape and
orientation of each character.

The main difficulty with these methods of
feature extraction is the need for extensive pre-
processing of the innut patterns. In all of the
above cases it is necessary to remove redundant
information by the thinning of lines and, in
addition, to cross-correlate rotational and height
variations. However, characters may be recognised
by using features far more abstract than those
outlined above and which may be selected so as to
eliminate the necd for line thinning and other .
normalisation processes in the prenrocessing stage
of the recognition systen, Such a method has been
described by Giuliano, Jones, Kimhall, Meyer and

Stein [39] and Alt [31]. These authors use higher
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bivariate moments of natterns (blackness being
analogous to mass) to derive features with the
properties (a) - (c). For this study this
method of feature extraction was chosen because very
little preprocessing is required on the innut
binary patterns and each moment is easily evaluated,
The remainder of this chapter is devoted to the
derivation of the bivariate moment invariants and
to a method of choosing those suitable for use in
the feature vector to give the best discrimination
between classes.

It should be noted it was stated in (c) that
the feature vector for each binary nattern should
be independent of orientation of the unknown
character., Normalisation with respect to rotation
has becn omitted but "slanting'" such as that which
occurs in italic type is included in its nlace.

This decision was motivated by the fact that only
small angles of tilt of the scanned page are

admissable so that separation of characters for

their individual recognition is possible. (Chapter 3).
Consequently any rotational variation in characters

of the same category would have little effect on

the moments for each character. However, the
derivation of moment invariants taking rotation

into account may be found in a paper by R [32].
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6.1. Derivation of Bivariate Moment Invariants

The binary matrix of an input character can
be represented by a real, two-dimensional density
function, p(x,y), 0<p(x,y)<1, where p(x,y)=1 for
completely black points, and p(x,y)=0 for completely
white points, It was mentioned in Caanter 2
that the scanner should be canable of assigning
one of eight intensity readings to each data point
depending on the grey level. This feature could
be conveniently used here, with the density function
p(x,y) taking one of eight values in the range 0 - 7.
However, since these intensity readings were
unreliable at the time and it was necessary to
convert a data point reading to either 9 or 1,
then p (x,y) is either 0 or 1,

In general the transformation of the input
pattern into feature space can be done by computing
the correclation between the unknown nattern
p (x,y) and a sct of filtering (or discriminant
functions), pi(x,y),to vield a set of n measurements
{ai, i=1,2,...,n}. The correlation integral is
given by

a; = f[pi(x,y)p(x,y)dx dy , i=1,2,...,n. (1)
The set of n measurements thus defined constitute
the output of the feature extractor, The functions

pi(x,y) should be chosen on the basis that the
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meas urements
(1) satisfy condition (a), and
(2) may be transformed so that the fqature
vector satisfies conditions (b) to (e).
Firstly, good discrimination can be obtained by
selecting the filtering functions pi(X,Y) so that
the measurements, a;, represent the leading coefficients
in a series expension approximating the density
function, p (x,y), of the unknown character. If the

filtering functions are set as

pl(xﬂ’) =1
DZ(X,Y) = X,

DS(X’Y) =Y,

o (x,y) = x%, (2)
ps (X,¥) = xy,

0s (x,¥) = yZ,

etc;

then the set of measurements | a;, i =1,2,...,n}
reorescnts the moments of the pattern, a black
point being considered as unit masc. The set of
discriminant functions, pi(x,y), i=1,2,...,n

are the Taylor's series coefficients of the Fourier
trans form of the density function of the pattern,
Other series expansions of the density function,
p(x,y), or of some transform of it, are possible

(e.g. Fourier coefficients)., The measurements
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a; i=1,2,...,n, must be characteristic of the
function p (x,y), since p (X,y) can be approximated
as accurately as is wished by taking sufficient
terms of the approximating series expansion.
However, to discriminate between characters of
di fferent classes it is not necessary to have an
accurate expansion but merely a few low order terms.

Secondly, the feature measurements must be
independent of "mass" (or boldness of print), size,
position on the page, and slant of the character
under consideration. Moments can be conveniently
normalised with respect to all of these variables.

If the filtering functions pi(x,y),i=1,...,n,
are the ascending powers in x and y, then the
measurements given by equation (1) represent the
moments of the pattern, and may be rewritten as

Mij=”xiyj o(x,y)dxdy ,i,j=0,1,2..., (3)
where the order of each moment is defined as (i+j).
It is assumed thatp (x,y) is constant over small

finite areas (equal to 0 or 1). Thus (3) may be

rewritten as

M, .= ) cxiyj, (4)
P aix,y)#0

where ¢ is the "mass" of each cell.
The zcro order moment is equal to the total
"mass'" of the pattern

M00=C M, (5)



3 67 -
where M is the number of black cells, Normalisation
with respect td mass is achieved by d;x}ding all
quantities by Nbo. The centre of gravity of the

pattérn then has the coordinates.

X=c ] x/M =M /M _, 6)
070 00 10 NbO

= 1 = A
Y CQEOV/‘OO My 1/ Mg s
and the central moments (i.e. moments independent

of position on the page) are given by

.=c | (-0 -7, (7)
J p#0

The variances

%%~ /HZ;7ﬁ;;: oy = My 2/ Moo (8)

can be used to normalise the coordinates (thus
making each cocrdinate independent of line width)
by setting

Xt=(x=X) /oy, y*=(y-¥)/oy. (9)
The moments must be normalised with respect to
"mass', and the new moments may then be written as

%1 1 A
c )x 1y'*J/N%JO (10)
pF0

*
m .=
1]

We finally set

=1 Xy Tyt
p#0 p#0

XXy d=y*
,_.__.Z.l—}‘ ’ ’

(11)
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and refer the moments to these coordinates. Then

m,=c Jbrdd e o, (12)
ij o0 00

are invariant under conditions (b), (c) and (d).
Because of the trans formations involved in

the derivation of equation (12),

0020 "g2=1, and

which are of no use as feature vector elements since
they provide no information about the input patterns.
If the moments are arranged in descending i values

to form the feature vector:-

X1 [ mzg
X7 My
X3 M2 ,
X: A =
[ *n Mg

‘we can refer to this as the natural order of the
features in later discussion.

If an input pattern is affected by noise, or
there is some other minor difference (e.g. the
slight bending of a line) then a few of the
cells which should be black are white and vice

versa. For our purposes, any difference between
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an input pattern and the perfect sample of the same
character may be regarded as due to noise of some
kind, If the noisc level is small then only a few
terms in the summation of equation (12) will be
affected and this will make little di fference to
the numerical result, However, the effect of
noise on the individual moments for a given pattern
is not readily solved. Algebraically the task is
formi dable and about the only two conclusions that
can be made are that, firstly, the effect of noise
on individual moments depends on its dis tribution
and, secondly, the high-order moments are affected
more by noise than the low-order moments .

6.2. Selection of the Moments for the Feature Vectors

Knowing that noise will be present in the patterns
from the scanner, even after preprocessing, and that
an infinite number of moments could be comnuted,
for each pattern, one is faced with the problem of
deciding which moments should be used in the feature
vector to give the "best" results. Using statistical
decisionlfunctions in the Bayes sense, the '"best"
set of feature measurements that can be used in a
recognition system arc those which minimize the
'average risk' or, in the case of equal costs of

misrecognition and rejection, those which minimi ze
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the error rate for a given rejection rate. In
practice, however, this procedure is di fficult to
apply for the following reasons:
(a) The underlying probability distributions

associated with the pattern classes may

not be known, or cannot be easily calcu-

lated to allow an analytic calculation of

the 'average risk' or rejection rate, and

(b) The analytic expression for the 'average'

risk or rejection rate may not be suitable

for the minimization required in a

specific decision structure.
It is therefore necessary to find a method for
selecting the moments without computing the rejection
rate, or having a complete knowledge of the probabili ty
structure, for the input patterns under consideration.
An attempt can be made to select a subset of contri-
buting moments by excluding those which are 'detrimental!
to the recognition system. Here 'detrimental' is
defined in the sense that noise causes variation in
the numerical value of a moment, and the inclusion
of such a moment introduces more error than
information into the system. The 'best set' of
moments found by this screening procedure is not
necessarily a unique set, but a systematic procedure

is proposed for selecting a "reliable" set of moments ,
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A "reliable'" moment is defined as one for which
there is little variation in its numerical value.

From a computational point of view it is not
feasible to deal with all the 'reliable' moments.
Thus a selection of those containing signi ficant
information is required, In this study the
selection is determined by performing a principal
component analysis.

The results described in the following text
were obtained using the simulated input characters
(see section 4.3,), for which moments of orders 3 to
7 inclusive were calculated for the "perfect"
images and for 20 images of cach character for each
noise level. (Moments for the perfect images can
be found in Appendix B), All recogni tion
experiments were carried out using the special
case of the Bayes' "minimum risk" system with equal
misrecognition costs and equal a priori probabilities
of occurrence of cach category. (see Chapter 5.)
The conditional probability density functions,

F(Xlsi),i=1,2,...,r, were approximated by

F(X[sp—t—  exp| - (X-X)' (X-X;)
' (21r)n/2hn ! 2h 2 i1 (13)

where

n = the dimension of the feature vector,
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Xi = the training vector for the category S
and in this case is the feature vector
fer the 'perfect' simulated pattern, and
h = a "smoothing parameter".

It is well known that moments are not independent

and that the variances for di fferent moments do

differ, this is not implied by the form of equation

(13), the density function for a multivariate

normal distribution of n indenendent variates

with equal variances., It was decided to use an

approximating function for the probability density

functions (see Chapter 7) given by

o~

expt(x-xik)'(x-xik) (14)
1 2

F(Xfs.)= —— 1 0
. n/2 n m )
(2mR/ e m y

2h

where
L th . . . p
Xik—k training vector for category S;»
and the other parameters are the same as for
equation (13). Equation (13) is the first

approximation, and suffices for the following

discussion.

6.2.1., Sclection of Feature Elements

It would be exnected that the '"best" set of
moments or featurec vector elements would be those
with minimum intraclass and maximum inter-class

scatter or spread, A method for choosing elements
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according to this criterion was programmed and
tested on a computer, but it was found that this
method did not give the best results. However,
it is profitable to consider this method to enable
comparison with the adopted method.

Suppose, as before, there is a set of r
categories denoted by {51’ 52""’sr}’ and there
are ny, n,,...n simple vectors of n dimensions
from each category respectively. Thus all the

sample vectors can be represented by

{xJ..xJ. xJ. ij=1,...,nj; j=1l,..,r },

Let {EJ=(ui,...,u%), j=1,...,r}, be the set of vector
means for each of the r categories, and u = (ul,...,un)
be the vector of all sample means.

Within each of the r categories comnute the
sum of the square deviations about the group mean
for sach element of the feature vector using

i 0y . L 9
clg=-z (xlgl.—u,J) , k=1,...,n. (15)
1.=

i
1 J
J

Thus for a particular element of the feature
vector, the pooled within category sum of squared
deviations about the group mean, A, , can be

determined by
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Ay = zlck, k=1,...,n. (16)
j

The total sum of the squared deviations about the

grand mean may be found from
n,

J
Sszl i 1(xk1 - )% k=1, ..., (17)
j

The sum of the squared deviations between group
means and the grand mean may be obtained by
subtracting the pooled within group sum of squares,
Ak’ from the total sum of squares, Sk or

B =54 k=1,...,n. (18)

The criterion for selecting the first element, say

X4 is
B

and the second, say Xy is

Bv S Bk k=1,...,n,

%R .
and so on. In the rare event that equality
occurs, the procedure arbitarily selects the first
feature in the order 1,...,n.

An alternative method, and one yielding better
results than the one described above, is to simply
compute the variance within each category for each

of the n feature vector elements, find the maximum
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variance over all categories for each element and
select that one with the smallest maximum variance,
the second with the second smallest maximum, and so
on. That is, the first element is chosen such
that it has little intra-class variation, the
second a little more, and so on, disregarding the
inter-category variation.

The variances for each element Wwithin each
category are computed by using the usual formula

for variance, namely,

. k=1 n

J - 1 X 212ttt (21)
Vk (EETTT 1j=1 klj y J=1,..
Since there exists a finite number of categories, r,
for o fixed value of k there will be a j, say a
such that ka is a minimum. The criterion for
selecting the first variable, say X¢ is to choose

a

that value of k(=t) such that Vt t is a minimum, i.e,

choose t such that

a B
t _ min max
Ve© = a11 k! an1 J(V )} (22)

The second variable, say X, is chosen according to

the rule
by max j
Vy = all k # t {all j (Vk) o, (23)

and so on, In the case of equal maximunm variances,

once again the procedure arbitary selects the first
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feature in the order 1,...,n.

To test these two methods of feature element
ordering the test data for each area was generated
with a noise level of 10 percent and the feature
elements recorded according to the criterion
firstly, defined by the inequalities (19) and (20)
and secondly, by cquations (22) and (23). The
new orders found by these two methods is presented
in Table 6.2.1. for all three areas together wi th

b>

the ratios Bk/Ak and Vkak for k = 1,...,n,
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Table 6.2.1. The recorded feature vectors using the

inequalities (19) and (20) and equations

(22) and (23) for the Middle, Upper and

Lower Arecas using test data with a 10

percent noise level.

(a) The ldiddle Area

r -
| Reordered Original Ratio Original ! Max™
Element Featurc /A Feature .
Number Element (k) Bk k Element Variance

1 2 61.02 2 0.00
2 3 57.83 3 0.01
3 11 45,71 7 0.01
4 14 38.27 4 0.02
5 12 36 .14 8 0.02
6 27 32.70 6 0.03
7 5 28.31 1 0.03
8 7 24,71 12 0.04
9 1 21.65 13 0.04
10 4 21,13 9 0.06
11 29 20.79 20 0.06
12 2 20.01 19 0.14
i3 20 19.01 14 0.14
14 10 12.86 27 0.22
15 15 17.95 5 0.27
16 26 16,33 11 0.30
17 13 16,28 18 0.35
18 25 16.22 28 0.47
19 24 15.45 26 0.55
20 6 15.13 21 0.60
Zll 8 14,41 15 0.66
22 30 13,42 22 2.92
23 9 12.99 29 3.34
24 16 12.81 25 3.95
25 28 12.50 17 4,21
26 17 12.12 10 5.03
27 21 11.47 30 18,32"
28 22 9.44 24 50.62
29 23 8.95 16 63,05
30 19 7.73 23 864,11
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(b) The Upper Area.
H T

Reordered Original Ratio | Original Max™

Element Feature Bk/Ak Feature Vari ance

Number Element (k) Element
1 3 54,21 3 0.00
2 2 53.44 2 0.00
3 7 51.32 7 0.00
4 11 45,40 8 0.01
5 1 41,70 12 0.01
6 14 34,71 6 0.01
7 10 33.27 1 0.01
8 4 32.52 4 0.02
9 15 29.51 13 0.02
10 9 29,49 11 0.04
;] 12 29,09 19 0.04
12 18 26.27 18 0.05
13 20 25.70 14 0.05
14 27 25.39 5 0.05
15 6 24.63 9 0.06
16 17 23.48 20 0.07
17 24 22.76 27 0.15
138 5 21.09 26 0.16
19 25 20.18 25 0.33
20 30 20,01 21 0.33
21 22 19.87 17 0.40
22 23 19.43 28 0.44
23 29 19.29 15 0.66
24 26 18.66 10 0.80
25 13 14,59 29 1,97
26 8 14,38 24 3.42
27 19 13.49 22 4,92
28 16 12,88 16 7.01
29 21 11.25 30 29.62
30 28 8.76 23 72.69
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(¢c) The Lower Area

; =

fReordered Original Ratio Original Max™

Element Feature B,/Ak Feature Variance

Number Element (k)| © Element
1 5 67.24 3 0.00
2 16 41,88 2 0.00
3 11 24,89 7 0.00
4 24 24.72 8 0.00
5 4 17.99 6 0.01
6 2 16 .76 5 0.01
7 15 15.89 12 0.01
8 3 11.58 4 0.01
9 30 11.43 13 0.01
10 14 8.49 1 0.01
11 7 7.70 20 0.01
12 8 7.62 19 0.01
13 9 7.42 14 0.01
14 22 6.45 9 0.01
15 21 6.07 18 0.02
16 28 5.75 11 0.02
17 29 5.07 a4 0.02
18 19 4.63 26 0.06
19 29 3.11 21 0.06
20 13 1,56 28 0.08
21 18 1.32 25 0.09
22 23 1.06 17 0.14
23 27 0.87 15 0.16
24 12 0.80 10 0.24
25 19 0.40 16 0.24
26 26 0.21 29 0.26
27 6 0.11 24 0.26
28 25 0.10 22 0.53
29 17 0.07 30 3.45
30 1 0.01 23 4,96
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Note that the scatter ratio method selects several
high order moments on which noise has an adverse
affect, before lower order moments . However,
using variance ordering, the general trend is for
the higher order morents to be selected last,

To test the effectiveness of these ordering
procedures, the reordered fecatures were submi tted
for recognition according to the criterion
described in the previous section, There is no
real reason for choosing the elements in the
natural order. To compare the results with a
s tandard, the feature elements were rearranged in
a random order by making use of a random number
generator and were also submitted for recogni tion,
Thus recognition of the test data was attempted
using natural, random,scatter ratio and variance
ordering, by firstly attempting recognition based
on the first two feature elements , secondly on the
first four, and so on until all 30 feature elements
were used, The percentage of correct recogni ti on
was computed after each experiment. A simplified
flow diagram showing the computer simulated recognition
system using all four inputs is presented in
Figure 6.2.1, In each case there were 15 recognition
experiments, the results of which are given in

Table C.1. of Appendix C and presented graphically in
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Figure 6.2.2, It was found for the Lower Area
that 100 percent correct recognition was achieved
irrespective of the order of the feature elements
for this noise level, although it is suspected
that if elements 23 and 30 were the first two
elements used for recognition, then this would not
be the case. However, for thec present dis cussion,
the Lower Area was not the most important.

From Figure 6.2.2, it is apparent that variance
ordering of feature elements is more advantageous
than the other two ordering methods , all three
being better than random ordering, For both the
Upper and Mddle Areas the variance ordered elements
yield maximum recognition rates using the first 16,
However, as the number of feature elements is
increased beyond 16 in the recognition system the
recognition rates decrease steadily, showing that
the inclusion of features with large variation is
detrimental to the system.

Special note should be made of the natural
order recognition rates. In this case it is expected,
and it is indecd the case, that the recogni tion
curve would be close to the corresponding curve
for the variance ordered elements since the low order
moments exhibit less variation than those of higher

order in the presence of noise. It appears that



Figure 6.2.2. Recognition Curves using 2,4,...,30 feature
elements comparing variance, scatter ratio,
natural and random ordering.

(a) The Middle Area.
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Figure 6.2.2. (cont).

(b) The Upper Area.



0o

.
O
<0

93,69

94 .67

36.0C
4 0

SCATTER RATIO
NATURAL

VARIANKCE
RANDOM

T
.00



- 115 -
the recognition rates using the first 6 or 8
natural order elements yield better results than
the first 6 of 8 ordered by the other methods .
However, as the number of feature elements is
increased a higher recognition rate is obtained
using variance ordering.

The recognition curve using variance-ordered
feature elements is reasonably smooth but there
are small fluctuations in the gradient, the
inclusion of more elements sometimes being detri-
mental and at others improving the sys tem. This
phenomenon can be explained by observing that some
feature elements may have a small intra-category
and inter-category spread, which do not provide
much information for the recogni tion system. As
a result the small variation which occurs in the
element's value is sufficient to cause a slight
decreasc in the recognition rate instead of it
remaining constant as would pernaps be expected,
On the other hand, the recognition rate may be
increased slightly with the inclusion of elements
with a large intra-category variance, when the
inter-category spread is sufficiently large. For
example, in the variance-ordered case when the
number of elements used in the recogni tion system

for the Middle Area is increased from 6 to 8 thus
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including elements 5 and 7, there is a decrease in
the recognition rate of 9,83 percent and when the
nunber of elements is increased from 24 to 26
(including elements 17 and 10) there is an increase
of 0,38 percent in the recogni tion rate,

So far the experimental work has been res-
tricted to moments of orders 3 to 7 inclusive and
a question that one might ask is : "Can the
performance of the recogni tion system be improved
by taking higher order moments 2" It was shown
earlier that variance-ordered moments yield
maximum recognition ratcs using the first 16
feature clements for both the Upper and Middle
Areas, For the Upper Area in this 16, there are
no moments of order 7 and, since noise has more
effect on higher order moments than low order, it
is apparent that the inclusion of moments of order
higher than 6 is of no value in the recogni tion
system, However, for the M ddle Arez ordered
element 14 is a moment of order 7, and thus there is
a possibility that the performance of the system
can be improved by including moments of order greater
than 7. Consequently a recognition exneriment was
carried out for the M ddle Area including moments
or order &, Using variance ordering it was found
that the same maximum recognition rate was obtained

using the first 16 feature elements and they were
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the same elements as in the previous case, Hence
the inclusion of higher order moments did not
improve the performance of the system,

To this stage, characters with a 10 percent
noise level have only been considered - but what
of other noise levels? To investigate this
question, the nrocedure for variance ordering was
repeated for characters of all areas with noise
levels and 20 and 39 percent and the recogni tion
experiment repeated using the first 2 feature
elements, the first 4 and so on, and the percent
correctly recognised calculated for each. The

results are presented in Table 6.2.2.
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Table 6.2.2. Recordered feature elements, the maximum

variances and percent correct recogni tion

using 2,4,...,30 elements for recogni tion

with noise levels 20 and 39 percent

(a) The Middle Area

I“

NOL59 Level 208 dec Noise Lovel 30§ .
Feat, Max™ % correct Feat]‘ Max™ % correct
El. Var, recog. El, Var. recog.

2 0.005 2 0.006
3 0.098 53.11 7 0.008 35.38
7 0.008 3 0.009
4 0.015 g g S 8 0.024 70.83
8 0.022 4 0.024
9 0.035 85.23 9 0,028 77.88
6 0.039 6 0.044
1 0.042 87.65 1 0.053 78.79
12 0.053 12 0.055
13 3.062 3 .52 13 0.083 78.25
20 0.126 20 0.110
14 0.164 83.11 14 0.123 79.62
19 0.182 19 0.259
18 0.327 89.24 18 0.332 79.92
11 0.331 11 0,367
27 0.331 87.30 21 0.407 82.50
5 0.335 27 0.429
15 0.492 85.68 5 0.441 31.06
21 0.661 15 0.544
26 0.667 86 .06 26 0.989 76 .44
28 0.836 28 1.090
22 1.769 84.02 e 1.474 74.92
29 3.399 29 1.359
25 4.930 83.11 25 4.363 74.55
17 5.174 L 6.228
10 6.887 24.47 10 9.486 75.38
3! 12,112 30 10.782
24 63.936 76 .06 24 84.342 65.15
16 92,358 16 127,479
23 1371.547 75.00 23 |1902.151 62.42




119 -

Table 6.2.2. (Cont).
(b) The Unper Ares
Noise Level 20% Noise Level 39%

Feat, Max™ % correct | Feat. Max™ % correct
El1, Var, recog. El. Var, recog.

2 0.005 2 0.010

3 0.008 59.05 3 0.010 46 .90
7 0.008 7 0.011

1 0.016 83.21 8 0.015 73.81
4 0,018 4 0.024

8 0.019 85.83 1 3.026 78.45
6 0.020 6 0.037

12 0.024 84.40 12 0.037 77.14
13 0.051 13 0.079

11 0.071 33.33 11 J,079 77.14
14 0.095 18 0.119

19 0.298 81,79 5 0.132 79.17
12 0.104 14 0.132

5 9.116 85.48 9 0.147 80 .60
9 0.176 19 0,200

20 0.185 87.62 20 0.313 81,31
26 0.332 25 0.562

27 0.412 85.48 26 0.696 75.12
25 0.622 17 0.722

17 0.642 80.12 27 0.854% 72,86
21 0.726 15 0.951

15 0.944 82.02 21 1.082 74,17
28 1.036 28 1,727

10 1.599 81.07 19 2.024 73.45
29 3.953 24 5.422

24 5.895 79.52 29 8.098 71.90
22 14,666 22 10.041

16 15.683} 76.19 16 19.067 69.40
30 54.841 30 62.002

23 155,356 66.19 23 200,893 55.95
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(Cont).,

(c) The Lower Area

S & e g = Sk 8w 8

Noise Level 20% Noise Level 30%

_ ‘ R
Feat, Max™ | & correct| Feat. Max™ & correct
El. Var, recog. E1, Var. recog.

8 0.001 8 0.003
3 0.002 100.20 3 0.003 100.00
2 0.003 2 0.005
7 0.904 100.00 7 N.097 100,00
4 0.006 4 2.010
13 0.010 100.00 5 0.0128 100,00
5 0.011 6 0.918
6 0.011 190.00 13 0.020 100.00
2D D.014 29 0,021
12 0.015 100.00 9 2.022 190,00
14 0.015 14 0.023
1 0.015 199.00 1 N.024 190,00
7 9.017 12 0.027
19 0.021 190.00 19 0.031 100.00
11 0.034 21 0.047
27 0.034 190,29 11 0.948 100.00
13 0.042 27 0.064%
21 0.043 190.00 18 0.082 100.00
26 0.068 20 7,095
23 0.0837 179,90 26 0.148 100.00
29 0.186 29 3.196
17 0.13% 100.00 15 0.244 97.50
15 0.192 17 0,447
25 0,215 100.00 25 0.486 97.59
19 0.337 10 2,610
16 N.412 100,09 16 0,738 100,00
24 0.426 24 0.201
22 0.732 100.00 22 J.851 109,900
30 4.627 30 5.027
23 6.348 199,00 23 115321 120.99
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The maximum recognition rates for the Middle
Area are 94.32, 89.24 and 82.50 percent for noise
levels 10, 20 and 30 percent, using the first 16,

14 and 16 feature elements, respectively. In all
cases the first 13 elements are found to be the
same with slight variation in the order. There is
not a fixed set of elements giving a maximum rate,
but elements 5, 11, 18 and 27 are all included in
the next 5 reliable measufements. On inspection
of the results, however, it is found that whenever
element 27 is added to the recognition systen,
(irrespective of the element it is paired with),
the recognition rate is decreased. This element
was therefore excluded and the other three added
to the first 13. In addition it is found that
element 21 is associated with an increase in the
recognition rate for two of the three noise levels
and so this element was added to the other 16 to
make a total of 17 to be submitted for a principal
component analysis (see next section).

For the Upper Area maximum recognition rates of
93.69, 87.62 and 81.31 percent occurred using the same
first 16 feature elements for all three noise levels.
With the inclusion of elements 15 and 21 for noise

levels 20 and 30 percent, there is a sharp increase
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in the recognition rate. Thus a recognition
experiment using 13 featurs eclements (including
15 and 21) was carried out for the samples with a
noise level of 10 percent, The expected increase
in the recognition rate was not evident, in fact
the recognition rate was 99.02 percent,.- a decrease
of 3.67 percent, Thus only the first 16 were
submi tted for a princinal comnonent analysis.

ilthough the scelection of feature elements for
the two areas was carried out indenendently, the
first 16 selected for each area were the S ame,
Xq4-X

nanmely, {xl-x X

9» X127%142 X157 %20} ang in adaition
X,y Was seclected for the middle area.

There is little noint in submitting ordered
variables for the Lower Area for a nrincipal
component analysis since 199.99 percent correct
recognition is obtained for all noise levels using
the first two elements, which however, are not the
same in all cases, Feature elements 8 and 3 are
found to be the most reliable for the higher noise
levels and so all recognition of lower area

charactcers is based on these two clements .

6.2.2. Dimension Reduction

It was pointed out in the previous section that
some feature elements provide more information than

others for the recognition system, For example,
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the first 8 elements of the '"natural" order provide
a better recognition result than the first 8 of
the variance ordered feature vector for the middle
area characters using a noise level of 10 percent,
Obviously it would be an advantage if the clements
of the featurc vector selected by variance ordering
could be reordered or weighted according to their
relative importance in describing the patterns.

Some work has been done on this type of
selecting and ordering of feature elements. But
most of the methods proposed require a knowledge
or make an assumption about the underlying
probability distribution associated with each
category., For example, Xullback [33] »nroposed a
method for sclection based on the nrincipal of
divergence which was later investigated in detail
by Marill and Creen [34]. Yor this method, if the
condi tional probability density functions of the
categories are Gaussian with equal covariance
matrices the divergence is uniquely related to
the recognition error of the Bayes' decision
theory classifier, However, when the covariance
matrices are different, the divergence is neither
uniquely nor mcnotonically related to the recognition
error. Thus, Marill and Green provided the upper

and lower bounds on the recognition error as a
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function of the divergence by using a Monte-Carlo type
simulation. The feature elements are selected to
maximi ze the divergence between a pair of categories
and at the same time minimizing the recogni tion
error rate, Other methods vary from the simple
approach of weighting the feature elements according
to the "goodness'" of the measurement [35] to the
more complex method of using an information theory
measure to eliminate the less useful elements [36] -
[37].

In this work, a method for selecting and
ordering the feature elements which does not
reauire a knowledge of the probability structure of
the categories under consideration was used,
Essentially the nrocedure is that of pre-weighting
the feature elements according to their relative
importance in describing the pattern, regardless
of the decision structure of the recognition system
by the methed of principal components [38],

Suppose that the elements chosen by variance
crdering for the recognition system, fOrm the
general m-dimension vectors, Zi=(zli’x21""’zmi)’
and the overall mean vector is V=(V1,V2,...,vm)

(no mention is made of which category cach Zi originated).
Then the procedure is to find a set of principal

components , Yj’ in which 211 the variation in the



- 125 -
system is summarized in fewer variables. The
jth principal component of a sample of m-variate

observations is defined to be the linear compound

Y.=aj1+ajzzz+...+a

j Ze. (24)

jmm

whose coefficients are the elecments of the
characteristic vactor of the sample covariance
matrix, S, corresponding to the jth largest
characteristic root, Aj, where S is defined in

the normal way, e,g.

N
;5= _1 ) (zik—vi)(zjk-vj). (25)
(N-1) k=1

If Ai#kj then the coefficients of the ith and

jth comnonents are necessarily orthogonal, If

Ai=xj , the elements can be chosen to be orthogonal

although the infinite number of such orthogonal
vectors exist, The sample variance of the jth
component is Aj’ and as a consequence of the
orthogonality conditions for the coefficient
vectors, the total variance of the feature elements
is

A

*A,*.. . *A = trace S,

1 72
The importance of the jth component is mecasured by

A

E?%EE—S

The algebraic sign and magnitude of aji indicates
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the direction and importance of the contribution
of the ith response to the jth component.

The importance and usefulness of each component
is measured by the proportion of the total variance
attributed to it. For example, if 90 percent of the
variation in a system of 10 feature elements could
be accounted for by a simple weighted average of
the element values, it would appear that almost all
the variation could be expressed along a single
continuum rather than a 10 dimensional space.,

This would be most useful in itself, but, in addition,
the coefficients of the 10 feature elements would
indicate the relative importance of each in the new
derived moment. This may be summarized by stating
that the importance of the principal component
technique is that of summarizing most of the
variation in the system in fewer variables.

If the dimension of the original feature
vectors is m, and less than m nrincipal components
are taken, then some variance will always be
unexpiainecd, How then should one decide how many
commonents provide an adequate description of the
system of feature elements? To gain further
insight into this question a principal commonent
analysis was performed using the selected feature

elements of the sample data used in the previous
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section (19 percent noise level,) for the Middle
anc Upper Areas, The selected elements of the
training vectors used in the recognition experiments
of the previous section were trans formed using the
calculated coefficient vectors and used to identi fy
the principal components of the test data,
recognition being based on the first 2,4,.40.,16
components , These recognition results are
tabulated in Table 6.2.3. together with each
characteristic root and the relative importance of
cach component in describing the variation in the
feature elements, These results are also presented
graphically in Figure 6,2.3, in which the recogni tion
curve using variance ordered fentures is included
for comparison, The eigenvectors corresponding
to each of the cigenvalues may be found in Appendix D.

The property that each successive nrincipal
component contains less information is illustrated
clearly in Figure 6.2.3. as the addition of more
components to the recogniticn system result in a
progressively smaller increase in the recognition rate.
Each component adds information to the system which
is shown by the curve of recognition rate against the
number of comnonents being strictly increasing but,
in the case of variance ordering, the addition of

some features may be detrimental.
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The roots of the characteristic

equation |S-AI|=0, the amount of

variance in each component and the

recognition rates using 2,4,6,...

principal components,

(a) M.ddle Area

1
% of total

b3 X % correct

J Variance recog.

1 1,230E+09 37.77

2 6.3834E-01 19,61 62,42

3 3.965E-01 12.18

4 3.092E-01 9.5) 89.92

5 2.711E-01 8.33

6 1.442E-01 4,43 94,24

7 1.092E-01 3.98

8 7.625E-02 2.34 94.62

9 4,268E-02 1,31

10 2,96 8E-02 0.64 24,70

11 1.267E-02 0.39

12 3.102E-03 0.25 94,77

13 3.014E-03 0.09

14 9.496E-04 0.03 94,77

15 7.767E-04 0.02

16 4.577E-04 0.91 94,77

4 2,990E-04 0.01 94.77

(B) Upper Area

j P % of total % correct
J Vari ance recog.

1 1,115E+20 38,88

2 7.408E-01 25.58 64.29

3 4,612E-01 16 .08

4 1.944E-01 6.78 38.33

5 1,354E-01 4,72

6 7.840E-02 2,73 91.07

7 5.209E-92 1.82

3 3.577E-02 1.25 91,90

9 2.286E-02 0.80

19 1.486E-02 0.52 93.10

11 8.249E-03 0.29

12 4.899E-03 0.17 93.69

13 2.864E-03 0.10

14 7.429E-04 0.03 93.69

15 4,R202E-04 0.02

16 1.814E-04 0.01 93.69
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Figure 6.2.3, Comparison of Recognition Rates using

Variance Ordering and Principal Components

(a) Mddle Area for 2,4,...,16,17 feature

elements.
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From the view pcint of developing an efficient
recognition system therefore, almost all of the
variance is contained in the first 8 principal
components for both the Upner and Middle Areas
since they account for 97,84 and 98.55 percent,
respectively, Thus by using the first 3 components
in the recognition system almost all the variance in
the system is accounted for and the dimension of
the feature vector reduced dramatically.

It should be noted that it is only necessary
to perform one principal component analysis for
each area, in the Recognition Systen. To be more
explicit, the moments chosen by variance-ordering
are generated for a set of "training data" and a
principal component analysis performed on these;
for each area. The resulting eigenvectors may
then be used to form linear combinations of the
moments generated for characters submitted for
recognition at some later point in time. The
"training data” in the experimental system of this
chapter was the set of moments for the character
images actually submitted for recognition. However,
equally as good results were obtained by using the
moments generated for tae perfect images. These
moments alsc form the training points for the

condi tional probability density functions. It was
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found convenient to store the eigenvectors in
cards so that they could be used in later recogni tion
experiments . The principal component program used
to compute these eigenvectors simply computes the
covariance matrix for the data, and the corres-
ponding eigenvalues and eigenvectors by the standard
Jacobi method, The system for preparing the
eligenvectors is presented schematically in Figure 6,2.4.

Using the scanner, the same technique is apnlied
with only mincr modifications being necessary to
the system design. The simulated data is replaced
by a binary scan image of training characters (on
magnetic tape), together with the line position
points. The simulating program is replaced by a
corresponding program used for scanner input, It
was mentioned earlier (section 4.1.) that character
isolation, nreprocessing and feature generation can
all be conveniently included in the one computer
program, It is this program which replaces the
simulating program. The program is basically an
implementation of the isclation process described
in section 4.1, The preprocessing technique (see
section ¢.2.) and the gcneration of the selected
moments are applied as each isolated image beconmes
avai lable, the moments being recorded on magnetic

tape. This comnlete procedure requires an average
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time of about one second per character. For the
experimental investigation it was found convenient
to record the information for each of the areas
separately, that is, disregarding the order of
character occurrence.

The system for generating the coefficient
vectors using the scanner is shown in Figure

5 s . It should be noted at this stage that the

(@)

principal component results using the simulated
data was used in the final system for reasons given

in section 8.2.

Simulated Simulating Moment P.C. analysis
data Program, ~ | Feature program
Introducing| |Tape .
noise into (training)
each image, ' bi

Coeff,
Vectors

Figure 6.2.4. The simulated system of nroducing

Coefficient Vectors

Line |

Posi tion | V
—Isolation,  }_meent l.|P.C. analysis
preprocessing Feature prog.

5 moment gen. Tane
prog. (training) N

- A (Coeff. ]
Bina N\
scanriape Jectors |
(training)

Figure 6.2.5. The scanner system for producing

Coefficient Vectoers.
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Chapter 7. Estimates of Conditional Probabili ty

Densities.

In order to use the Bayes' decision rules for
character recognition it is necessary to evaluate
the a priori probabilities p;» the losses (or costs)
wij’ and the condi tional rrobability densities
F(ylsi); i,j=1,2,...,r. The p; can be estimated
by making a frequency count of characters from text
and the Wij evaluated by trial. However, the
condi tional probability densities are usually un-
known, and thus a categorizer based upcn the
optimum decision function is not practically
realisable, There are at least three possible ways
to overcome this nroblem.

1) Assume a certain form for the condi tional
density functions. It is common to assume
normal distributions and independence for
each category [39,49],

2) Make no assumptions about the condi tional
densities involved but rather make certain
restrictions on the structure of the
categorizer [40],

3) Anproximate the conditional probabi li ty
densities by using an interpolation function,

It is the third of these alternatives that is used
and the method of annroximation is discussed in this

chanter.
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7.1. Background

Parzen [41] was one of the first to derive
the asymptotic properties of a class of es timates,
fn(x), of a univariate probability density function
f(x) based on the random sample X1sXgseae, X from
f(x). Later Murthy [42] and Cacoullos [43]
extended this theory to the multivariate case which
is of direct immortance here.

The estimate, fn(X), of the true probability

density f(X) is of the form

1 K( - ) dF ( ))
Llp(n) Aty

£,(X)

n
L I K(x=%), (1)

nhp(n)k=l h(n)

where Fn(X) denotes the empirical distribution
function based on the sample of n independent
observations Xl’XZ""’Xn cf the random p-dimensional
vector X with density £(X); K(y) is a kernel which
is chosen to satisfy suitable conditions and th(n)}
i1s a sequence of positive constants satisfying

lim h(n)=0. (2)

n->ow

The integration is over the entire range of the
integral variable, Note that the contribution of

one pattern to the overall estinate is not dependent
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on the other noints in rhe training set,
If the kernel K(y) is a real valued function
in p-dimensions satisfying the conditions
(a) K(y)>o0 ,

(b) sup K(y)>=
all y

(c) fiT ly IPK@y)=0 , (3)
y |+

where |y| denotes the length of vector y, and

(d)[ Ky)dy=1 ,

|
and h (n) satisfies (2), then the following asymptotic
properties can be found for the estimate fn(X) [43].
1) The estimator (1) is consis tent (asymntotically
approaches the true density function £(X))at all
points X at which the true density function is
continuous, providing

lim nh? = « (4)

N+
2) If £(X) is uni formly continuous then the
estimate is uni formly consistent (approaches
f(X) everywhere) if
. 20
1im nh“"= o (5)

N+
3) The theoretical solution for the value of h
which minimizes E[f (X)-£(X)]% for particular
values of X and n is found to bhe
h=[p (1% e [P (y)ay) /() (6)
P

where =J ) E gifng yiyjK(y)dy.
i=1 j=1 axiax.
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Note that the value of h cannot be evaluated
and thus all that can be concluded is that the
optimum choise of h is O(nl/(p+4). However, a
sequence satisfying (2), (4) and (5) with hNO(n-(l/p+4))
for a fixed value of X is

(p+4)" 1 ana (7
coens tant »>o

o«

h(n)=c n~ °

c

It is desirable that the overall es timated
density function should be smooth and continuous
over the domain of X, and that the kernel approaches
zero as the Euclidean distance from the training
samples tends to infinity. Parzen [41] presents
a table of kernels which satisfy all the properties
of (3) of which

K(y)= 1 exp [- y'y ] (8)

el R o

is the one with the most desirable characteristics,
Thus if n random p-dimensional vectors are available
from £(X), namely Xl,XZ,...,Xn, then the estimator
nay be written as

fn(X)= 1

1
(20)P7 2,0 T

Using this estimator or approximating function,

i o—g

X[ (%) (X)) (9)
4 oh 2 K

1
the condi tional probability density functions for
the r categories in the p-dimensional principal

component space, may be written as
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Ili ) ; :
) -y j; y-y; j)
= zh (ni) }

(10)

Fn.(YIsi)= 1
: 20 %0P () i

=R ]

exp[-
1

1= 1,2,...,1‘,

where n,= the number of training points for

i
category S5 and, Vij = jth training point for category

5§

—

yijl

Yijp
s |

7.2. Experitionts

Specht [44, 45] has made use of such approximating
functions as given in (19) in a recognition systenm,
but in doing so has restricted himself to two
categories (r=2), and chosen h independent of the
number of training points for cach category. In
the present study r is increased to a maximum of 66
and h is chosen according to (7). Note that for
a fixed value of n, h may be varied by changing ¢
and thus as c tends to zero the decision rule
becomes '"nearest neighbour" and as it tends to
infinity the rule is "minimum distance" [44].

7.2.1. Data

To test the effectiveness of the approximations

for the condi tional probability density functions, it
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was found convenient to "construct" a piece of
Thai "text" by making use of simulated characters
(see section 4.3.). The text was constructed by
simply generating a noisy image of each character
from a section of text. Because of relative
sizes, the images from the scanner of characters
of the upper and lower areas are in general
noisier than those of the middle area, Thus the
generated images were given noise levels of 10,
15 and 15 percent for the middle, upper and lower
areas,respectively, The selected moments were cal-
culated for each image and linear combinations of
these taken according to the principal component
results described in Chapter 6. Each feature vector
was written on magnetic tape. In the sample of
text used, there were 2,402, 573 and 34 characters
from the middle, upper and lower areas, respectively,

Twenty training feature vectors were generated
for all categories and also written on magnetic
tane. The noise levels were the same as for the
"text" and the same principal component results
were used,

7:.2.2. Results

Recognition of the "text" was performed by
using the Bayes' decision rule with forced decision,
equal misrecognition costs, and equal and a priori

probabilities for each character. Note that for
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characters which did not occur in the sample of
text from which the 3 priori probabilities were
evaluated (sec section 1,2,) which however, are
still used in the Thai language, a small positive
probability was assigned to each.

Using 5 training points for each category,
and choosing h according to (7), the text was sub-
mi tted for rccognition with a fixed value of C,
making use of the approximating functions (10).
A flow diagram of the experiments is presented in
Figure 7.2.1. The recognition experiment was
repeated several times, varying ¢ (and thus h) on
each occasion, and the correct recogni tion rates
computed for equal and a priori probabilities.
These results are presented in Table 7.2.1. and
Figure 7.2.2. for the three arecas. Generally it
is found when using 2 priori probabilities, as
the value of ¢ is increased the correct recogni tion
rates drop dramatically, but for small ¢ the results
are quite good. On the other hand when assuming
equal probabilities the recognition rates are good
for 2 large range of c, with only a small decrease
in the rates as ¢ is increased.

A priori probabilities are indeed an advantage
to the recognition system for the upper area.

Using both equal and a priori probabilities a
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Figure 7.2.1. Recognition experiment to test

condi tional probability demsity function

approxinations,
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Table 7.3.1, Recognition results for simulated text
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using 5 training samnles for each

category and varying h(n) according to

h(n)=cn_¢,x=(p+4)'1,where n =

the number

of training noints and p the dimension

of the feature vectors.

Percent Correctly Recognised

c Equal A Priori
Probabi 11 ti.es. Probabilities

Middle Area
0.063 95.13 95,21
0.125 95.37 95.21
0.250 95.21 93.14
0.500 94,97 37.71
1.000 94.31 63.21
2,000 94.81 46 .77
4,000 94.91 34.48
8.000 94,81 19,87
16.900 94,81 12.53

Inprer Area
0.063 96 .67 07,38
0.125 96 .6 2 97.91
0,250 96 .51 97.91
0.520 94,76 94%.59
1.000 93,02 88,833
2.000 92.84 61.08
4,000 92.67 18,69
8.009 92.67 36 .30
16.000 92.67 19.90

Lower Area
0.062 100.00 100.00
0125 100 .00 100.90
0.259 100,00 24.12
0,500 190.00 64.71
1.000 100,00 55,38
2.000 100,90 55.88
4.900 100.00 55.38
3.000 100.00 55.88
16,000 120,00 55.88




Figure 7,2,2. Recognition Curves using Equal ard

A Priori Probabilities for Simulated
Text. The smoothing parameter h(n)

= cn"c,¢=cn'¢(p+4)'1, for n=5 and p=8.
NN= Nearest Neighbour Classifier

M =Mnimum Distance Classifier.
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maximum recogni tion rate is obtained for c equal
to 0.125. However, there is an increase of 1.22
percent from 96.63 to 97.91 percent in the
recognition rate when a priori probabilities are
us ed.

The same cannot be said for the middle area.
With ¢ equal to 0.125 maximum recognition rates of
95.37 and 95,21 percent are obtained using equal
and a priori nrobabilities, resnectively. In
addition as ¢ is increased the recognition rate
using equal probabilities is decreased by only
0.32 percent, Bearing these rates in mind, it
would seem a considerable advantage to assume equal
probabilities for the middle area characters, choose
a large value of ¢ thus enabling the use of the
polyncrdal expansion of the approximating functions
(19) (see Smecht [44]). This nnlvynerial exnansion
is far more cofficient than the series form from
the point of view of storage and computing con-
siderations. However, it has been domonstrated
by Edwards and Chambers [46] that as noise in the
feature vector (or binary pattern) is increased,
then a priori nrobabilities hecome increasingly
useful in = recognition systemn. Thus a small value
of ¢ (O;lZSj 2nd & priori preobabilities are used

in the system for the middle area.
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Assuming ejqual probabilities for both characters
in the lower area 100 nercent correct recognition
is obtained for all values of c, but using a priori
nrobabilities 100 percent recognition results for
c equal to 0.963 and 0,125 only. Thus it would
scem that there is no advantage to be gained by
using a nriori probabilities for this area, but,
it was decided to use them for the sake of con-
sistency,

It would be expected that increasing the
number of training points for each category would
yield more accurate estimates of the conditional
probability density functions, thus improving the
recognition rate. Since there could not be any
improvement for the lower area, further recognition
exneriments were carried out on the simulated text
for the uprer and middle areas only, but in this
case using 19 training points for each category.
For the ummer area with ¢ set to 9.125 there was
an increase of 0.52 and 9.70 percent in the
recognition rates using equal and a priori
probahilities, respectively. With c equal to 1.0
there were corresponding increases of 1,68 and
1.52 percent for the middle area. In general as
n is increased the curves of Figure 7.2.1. are shifted

unward,
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To obtain these increases in the recogni tion
rate, the computing time for recognition was
approximately doubled, Using 5 training noints
for each category, the samnles arc rccognised at a
rate of approximately 10, 9 and 20 per second for
the upner, middle and lower areas, respectively,

Because of the necessity to store all training
noints in central memory there is a need to place a
restriction on the number of training noints for
each category. A restriction of this nature
immediately restricts the amount of computing time
required to identify each samnle. Consideration
nust also be made of the significant increase in the
recognition rate for the middle area using 10 training
samrles, Thus it was decided to restrict the upper
and lower arcas to a maximum of 5 anl the middle area

to a maximum of 10 training points for each category.

With these restrictions, if tho first

3 nrincipal
components are used tc form thé feature vector for
the upper and middle arcas, and the feature vector
of the lower area is of dimension 2 then about 7,000
central memory words are required to store the
training noints,

7.2.3, Discussion

When the approximation functions for the conditional

probability densitios are used in a recogni tion systenm,
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dimension reduction is narticularly important,
For examnle, if the dimension of the feature
vectors for the upper and middle areas was
increased to 10, then with the number of -training
samples specified above, a further 1,740 central
memory locations woulcd be required by the training
points.

The results nresented in section 7.2.2. show
that for recognition in all three areas it is an
advantage to use a priori probabilities in the
recognition system with c equal to 2.125, This
indicates that the optimal decision surfaces
hetween the categories are highly non-linear [44].
Thus it can be seen that it is an advantage to
approximate the conditional probability densities
by (19) rather than assume normal distribution for
each category, say. (Normal distributions with
unequal covariance matrices only vield quadratic
surfaces).

Note that the range of h for which the decisicn
rule yizlds ontimal results is small, and thus it

must e selected with care.
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Chanter 9 - Results

In this chapter the recognition results
obtained using simulated text and the nage scanner
are discussed, Df particular intercst is the
introduction of rejection as a nossible decision in
the categorizer, and its subsequent effect on the
recognition system, The difficulties encountered
using the nage scanner as the innut device to the
recognition system are also exnlained.

For convenience the Bayes' decision rule for
equal costs of misrecognition and rejection, which

was derived in Chanter 5 is restated here,

yes, for ka(y[sk)zij(ylsj) for all j#k

DiF(YISi)y 0<p<1,

Il 10
ot

MO le)ze,

and reject y as bHeing unrecognisadle if
0y

iojF(ylsj)<eiZl 2 F(yls;),i=1,...,r (1)
The constant, B, is chosen to force the system to
meet a given rejection rate, and for equal costs
for rejection, W anl equal costs for misrecognition,
w o,

B=1-wo/w

8.1, Sinmulatsd Text

Using the simulated text, with the constant c

set to 0.125 and using 19, 5 and 5 training sanples
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for the middle, unper and lower aress respectively,
the recognition experiment described in section 7.2

was repeated, However, in this case the identified
r
category, Si» PiF(YIi) anc JZInJF(Y'SJ)n using

both a priori and equal P;s were recorded on magnetic

tane for each innut, y. This tape will he referred

to as the decision tape. A series of exnmeriments

were then nerformed on these results by implementing

(1) in a computer program and using a i fferent value

of B for ecach exveriment. The nercents of text

correctly recognised and rcjocted were commuted for

each area for equal and a2 nriori nrobability of

character occurrence. These results are sumnmarigzed

in Figures 8.1.1. and 8.1.2, the former showing the

correct recognition rate, the latter showing the percent

of the samples rcjected nlotted against g. Table

8.1.1., shows the confusion tables for forced decision.
Note that there is no advantage to he gained

by introcducing rejection as a possible decision for

the lower arca for this data, With forced recognition

170 percent correct recogniticn is ohtained (see

thapter 7). Thus this area is not considered here.



Figure 8.1,1., The Percent of the Simulated Text
correctly recognised plotted against
B using a priori and equal probabilities
c =0,125,
(a) Mddle Area using 10 training pts.

(b) Upper Area using 5 training pts.
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Figure 8.1.2. Percent of Simulated Text rejected,

"plotted against B using a priori

(a) M.ddle Area (10 training pts.)

(b) Upper Area (5 training pts.)
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The confusion table for forced decision

using equal and a pricri nrobabilities

using simulated text, i(j) means that

i _characters wsre misrecognised as

ciaracter j.

(a) M ddle Area for Noise Lovel 12.5 percent,c=0,125

and using 19 training patterns for cach category

Char. |Total |Mo. of|Errors Distribution of Errors
No. Fauzl A Prior: TEqual TR TPriori
Prob, [Prob, Prob Prob
1 141 1 1 1(3)
2 35 J 0
3 56 0 0
) 39 0 0
5 0 0 0
5 106 0 0
7 3 0 0
8 63 7 4 7(9) 4(9)
9 9 1 1 1(23) 1(8)
19 0 0 0
11 4 1 0 1(19)
12 0 0 0
13 9 0 0
14 14 9 0
15 0 0 0
15 2 0 0
17 8 2 0 2(12)
8 48 13 13 13(19) 13(19)
13 54 32 34 1(3),30(18),]1(3),33(18)
1(43)
20 ] 0 0
21 2 0 0
22 71 3 12 1(29),7(40) 1(29),11(40)
23 | 7 0 0
24 182 ! 7 5 1(12),1(25),| 5(32)
| ' 5(32)
25 52 i o0 0
26 L7610 0
27 |19 | ¢ 0
23 o | o 0
120 31 i g 0
30 0 0 0
‘ 31 ! & 0 0
| 32 b1 1 2 1(24) 2(24)
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Table 8.1.1. (cont,)

33 77 0 0

34 191 0 0

35 56 0 0

36 87 1 1 1(45) 1(45)

37 2 0 0

38 23 0 0

39 45 0 0

40 49 5 3 3(22),2(29) | 2(22,1(29)

A1 0 0 0

42 106 2 ) 1(7),1(55)

A3 0 0 0

44 70 0 0

45 291 0 0

16 129 1 1 1(56) 1(56)

47 54 0 0

18 3 0 0

49 35 0 0

50 44 0 )

51 4 2 2 2(52) 2(52)

52 0 0 0

53 0 0 0

54 0 0 0

55 0 0 0

56 1 0 0

57 0 0 0

58 0 0 0

59 0 0 0

60 0 0 0

61 0 0 0

62 1 0 0

63 0 0 0

64 0 0 0

65 0 0 0 ! .

66 0 0 0 | _
| TOTAL | 2402 84 79 |
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Table 5.1.1.(5) Upper Area for Noise Level 15§ percent,

€=0.125 and using 5 training natterns for

each category.

|
Char.| Total| No. of Errors Distribution of Errors
No. Equal A Priori Pqual A Priori
Proh, . Prob, Prob,

1 49 0 0

2 71 0 0

3 14 4 2 4(4) 2(4)

4 8 1 3 1(3) 3(3)

5 g 0 0

6 65 0 0

7 94 8 2 1(14),1(49),|1(14),1(40)

6 (42)

8 114 0 0

9 0 0 0
10 0 0 0
11 a7 2 2 12(38) 2(38)
12 7 0 0
13 3 4] 0
14 1 0 0
15 0 0 0
16 0 0 0
17 2 0 0

18 24 1 b 1(28) 1(28)

19 8 1 4) 1(24)
20 0 0 0
21 0 0 0

22 0 0 0
23 13 0 0

24 ] 0 0
25 0 0 0
26 i 0 0

27 0 0 0

8 il 1 1 1(19) 1(18)

29 2 0 9

30 0 ;0 i
31 VR
32 0 ) Py

33 1 A 1(12) 1(12)
34 1 0 )
35 0 0 L0
% | 9 D10
37 0 0 i 0
38 7 0 } 0
39 13 9 | 0
40 9 N i 0 f
41 0 0 [ 0 ;
|42 0 0 0 |
TOTAL 1573 ' 19 {12 |
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8.2. Scanner

In order to obtain reasonable recogni tion
results using the scanner, it was found necessary
to photograph each page of text, for reasons enlarged
upon below.

A primary requirement of the scanner is that
the pages of text to be scanned must be on a loose
sheet of paper. It was found that print of
reasonable quality suitable for machine recogni tion,
could only be found in expensive books, and the
removal of individual pages for recogni tion was out
of the question. Cheaper magazines and journals,
from which pages could be casily (and cheaply)
removed, contain print of poor quality, with many
characters being distorted and smudged, Another
common fault with magazine printing was found with
large middle area characters, which have a single
stroke extending into the upper area, These were
quite often printed in two distinct parts, with
one portion in the middle and the other in the
upper area, thus appearing to be an ordinary middle

area character with a tone ahove it.
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To add to this difficulty a tone may be
combined with the portion in the upper area
(see Figure 8.2.1.). The identi fication of
these characters, and those which are distorted
{particularly middle area characters which are
similar), by a human reader is di fficult, and
in many cases only context allows identification,
Thus there is little point in submitting such

text for machine recognition,

X Gasasicl \._._._J

{a) {ib)

et e e s e st

{a) without a tone

(b) with a tone.
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Finally, and nerhaps tie most significant
requirerent, was the need to enlarge the pnages of
text, (effectively increasing tie resolution of
the scanner), to enable a reasona>le correct
recognition rate to be obtained. 71 thout en-
largement, 4ifficulty was also encountered in
isolating the individual characters since many
were found to Be "touching" (see section 4,2).

The sample of text illustrated in Figure 1.1.1, is
of the size actually used to obtain the results
described below,

As was to be expected, the collection of
training data was a »nroblem, particularly as the
axcassity for ohotographing restricted the number of
pages that cculd be pvrocessed. The method adonted
was to simvnly scan a few pages of text and gather
suitable training samnles from these. Since some
characters are rarvely used and because of the
limited number of nages available, it was not
nossible to obtain the recommended number of
training samnles for all categories (see Chapter 7).,
In all the recognition exneriments using the scanner,
the categories for which no training samples were
available were automatically given zero probability

of occurring.
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Since training samples were not available for
some categories and 3 variable number of others, a
princinal component analysis of the moments for
the available data would not vield realistic
results. The categories with more training
samples would have the most influence, which is
an undesirable condition, since, ultimataly
memders of all categeries must be identified, Thus
linear combinations of the generated monments for
each character were tacen according to the principal
component analysis of Chanter §, with the resulting
feature vectors being stored on magnetic tane,
These combinations are obviously not ontimal, but
they are better than those that could he obtained
using the available data.

The system used to construct the training
voints in p-dimensional nrincinal comnonient snace
for the scanner input is presented in Figure 8.2.1.

The sene recogni tion experiment as was
described in section 2.1, was nerformed for the
scanned version of the same niece of Thai text
from which the simulated text was cons tructed,

In this case, however, instead of 17, 5 and §
training samnles being available for each category
of the middle, upper and lower areas respectively,

a variable number were available for each. The
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number of training samnles were restricted to
maxima of 10, 5 and 5 for each category of the
respective areas, This experimental system is
nresented diagramatically in Figure 2.2.2. with the
results being given in Figures 2.2.3. and 8.2.4,
Table £.2.1. shows the confusion table for each
area in the case of forced recognition together with
the number of training samples taat were available
for each category, Note that 100 percent correct
recognition was once again obtained for the lower
area chraracters with forced recognition and so there
is no noint in including this result diagramatically,

8.3. Discussion

A possible alternative for constructing a
training set, would be to cut specimens of each
character from the pages of a text bo0k, nhoto-
granh and enlarge them and then scan the print,
However, once again this would involve the des troying
of a text book and it does not overcome the necessity
for photogranhing.

A second alternative would be to nurchase a
tynewriter, preferably with large letters and use this
to arrange training sets. dowever, since the
present study is not concerned with recogni tion
of dAiffor nt fonts it wenld be nocessary to
transcribe Thai text onto loose sheets of paper,

This would of course defeat the nurnose of the project,
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Figure £2.2,1. The exnerimentzl system for

gatiering training roints.,

vl Coeff
Vectors
from PC analysis
(simulated data)

]

)
Isolation, tidy

3inarv
Scan tape

Feature

N\, and feature tave of |[ tanme of
St nrogram samnles \ trainin
(3 noint
Line N e
Posi tions > <

il

P ecogni tion
’ Program

Decision

Tane

Ne

Rejection
Program 1

Correct recog, "ejections
V's B V's g

Figure 8.2.2. The completion of the recognition system,

which follows from M. gure 3,2.5,




Figure 8.2.3. Percent of text correctly recognised,
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Figure 8,2.4. Percent of text rejected, plotted

against B, wing a priori and

equal probs,, c=0,125,

(a) M ddle Area Using a varisble
(b) Upper Area number of training

pts.
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Table

8.2.2.

16 3- -

The confusion table for forced decision

using ejual and a priori probabilities

using scanned text,

i(j) means that i

characters were misrecognised as

character j,

(a) Middle Area for c=0.125 and using a maximum of

10 traininc samples for each category,

Char,; No. of |No. forl No.of Eriors | Distribution
Training| Recog. of Errors
Samples

EqualjA Priori| Equal |A Priori
Prob,.|Prob, Prob Prob
1 10 141 2 2 2(3) 2(3)
2 10 35 ) 0
3 10 56 0 N
4 10 39 0 0
5 1 0 0 0
6 10 106 0 ]
7 1 3 3 3 2027), | 1(27)
1(42) 1(33)
1(42)
8 19 63 0 0
9 3 9 9 9 9(8) 9(8)
19 N 0 0 0
11 2 4 4 4 3(27), | 3(27),
1(42) 1(42)

12 0 0 0 0

13 3 9 0 0

14 9 14 0 0

15 0 0 0 0

16 4 2 ) 0

17 4 8 2 2 1(27), | 1(24),

1(47) 1(47)

18 19 418 13 12 13(19) | 12(19)

19 10 54 32 32 32(18) | 32(18)

20 5 B 0 1 1(42)

21 3 2 n 0

22 19 71 10 12 3(29), | 3(29),

7(40) 9(40)

23 2 7 7 7 1(33), | 1(33),

6(42) 6(42)




Table 8.2,2. (cont)

R——

15 4 -

24 10 i 182 11 11 2(25),] 2(25),
9(32) | 9(32)

25 19 52 0 0

26 10 76 0 0

27 19 19 0 0

28 0 0 0 0

29 10 31 3 2 1(22),| 2(40)
2(40)

30 0 0 9 0

31 19 18 0 0

32 10 71 3 4 3(24) | 4(28)

33 10 77 0 9

34 19 191 5 5 5(36) | 5(36)

35 10 56 1 1 1(42) | 1(42)

36 10 87 1 1 1(1) 1(1)

37 2 8 5 5 3(3), | 3(3),
2(18),| 2(18),
1(19) | 1(19)

38 10 23 9 0

39 19 45 0 9

40 19 19 6 5 3(22),| 2(22),
3(29) | 3(29)

41 0 0 0 0

42 10 106 0 0

43 0 0 0 0

44 10 70 0 0

45 19 291 i 1 1(1) 1(1)

46 19 129 0 0

a7 10 54 0 0

48 3 3 0 0

49 10 35 0 0

50 19 44 0 9

51 2 4 2 2 2(2) 2(2)

52 0 0 0 0

53 1 0 0 0

54 2 0 0 0

55 1 9 0 0

56 3 1 0 0

57 1 0 0 0

58 ] 0 0 0

59 i 0 0 0

50 1 9 0 0

61 2 9 0 0

52 5 1 0 0

63 1 0 0 0

64 1 0 b 0

65 0 0 0 0

66 3 0 0 0

TOTAL 2402 119 120




Table 8.

- 16 5 -

.1.(Cont)

(b) Unper Area for ¢=0.125 and using a maximum of

5 training samples for each category.

Char, No. of | No. for| No. of Frrors Ulstrlbutlon
Trainingl Recog, of Errors
Samples

EqualfA Priori | Bqual|A Priori
Prob.|Prob, Prob.|Prob,
1 5 49
2 5 71 1 1 1(3) [1(3)
3 5 14 7 7 1(2),[1(2),
6(4) |5(4)
4 5 8 3 3 3(3) |3(3)
5 5 17
6 5 65
7 5 94
8 5 14
9 1 0

19 1 0

11 5 47 3 3 1(12) J1(12),

2(38)12(38)

12 5 7

13 2 3

14 1 1 1 1 1(19) 41(19),

15 0 0

16 ] 0

17 2 2

18 5 24 2 2 1(23),1(23)

1(28) 11(28)

19 5 8

20 0 n

21 i 0

22 0 0

23 5 13 2 2 2(18) [2(18)

24 1 1 1 1 1(19) [1(19)

25 n 0

26 0 0

27 9 0

28 5 11

29 2 2 1 1 1(19) [1(19)

30 0 0

31 0 0

32 0 0

33 1 1 1 1 1(12) (1(12)

34 1 1 1 1 1(42) [1(42)

35 0 0

36 0 0

37 0 0 |




Table 8,2.1. (Cont)

38 5 7
39 5 13

40 1 0

41 0 0

42 5 0

TOTAL 573 47 43

Because of the availability of training data,
the results obtained using the simulated text are
more meaningful than those obtained for the scanner,
However, the results obtained using the scanner
at least show that the provosed recognition system
is feasible,

From the confusion tables for both simulated
and scanner data, it is observed that most of the
€rrors are accounted for by several confusion pairs.,
It would seem that context may be the only way to
resolve these pairs,

Cenerally, as the value of B 1s increased, the
percent of samples correctly recognised increases.
This is because the confusing samples are rejected
as being unrecognisable by the recognition system,
Notice for the middle area that the vercent of
characters correctly recognised using equal
probabilities just exceeds the corresponding percent

using a priori nrobabilities, for all values of g.
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This feature is more apnarent for the simulated text,
the two recognition curves being a2lmost identical
for the scanner data. In the case of the upver
area, a priori probabilities are more of an advantage,
As the value of g is increased, however, a priori
probabilities bHbecome less important with the two
recogni tion curves approaching a common value,
For g equal to 1, nearly 103 percent of the samples
are correctly recognised for each area,

From the rejection curves, i1t is observed
that for all values of 8 the number of samples
rejected is grester when using equal rather than
a priori probabilities. That is, recognition is
attempted for more samples when a priori nrobabi 1i-
ties afe used and in the case of the unvner area a
better recognition rate is obtained, There is a
sharp increase in the number of samples rejected
as the value of g is increased beyond 9.9, However,
the increase in tie number of samples rejected is
not warranted by the correspondingly small increase
in the recognition rates. Thus the value of g
should be chosen to give the best recognition rate
while keening the number of rejections to a reasonable
limi t, A reasonable choice for the value of 8

is in the range 9.6 to 0.3,
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Chapter 9, Conclusions

A recognition system for Thai text has been
developed, The limited results obtained by using
the scanner show that it is possible to automatically
read Thai text, however, the cost is prohibi tive,

Cost of photographing cach page of text to
be scanned was negligible comvared with the computing
cost, A breokdown of the central nrocessor
computing time reguired for the recognition of
about 800 charvacters in one average page of Thai
text is given below:-

(a) 12 minutes for processing (Chapter 2),

b) 2 minutes for conversion and finding

c¢ach line position (Chapter 3),
(¢) & minutes for the isolation of cach
character's binary image (Chanter 4),
(d) 3 minutes for prenrocessing (Chapter 4),
(e) 2%minutes for featurs vector generation
(Chapter 6), and
(£) 2%miautes for the recegnition of each
feature vector (Chapter 7).

This is a total of 30 minutes and this excludes
veripharal processor time.

A comparable amount of peripheral processor
time is required by the system, with at least 12

minutes taken up when the scanner is operated.
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The cheanest rates thiat are availahle for the
CDC6400 computerare $A100 and $A20 per hour for
central processor and peripheral processor times ,
respaectively, These costs rise to $A409 and
$A100, respectively, these being the rates
apnlicable to neovle outside of tais Universi ty,
Thus the minimum cost for recogni tion of one
average page of Thai text is about $A60. This
cost together with the cost of translation makes
the proposed automatic translation system a very
expensive proposition, It is the author's
opinion that it would perhaps ba cheaper to employ
a linguist as a translator.

From the breakdown of times shown above, it
can be seen that 40 nercent of the comnuting tiwme
is taken in the processing of the original scan
tape. A considerable saving of cost could be made
1f this processing could be handled as each data
point becomes available and thus the 12 minutes
central processor time would be eliminated, There
is no way apnarent to the author by which the source
of this cost can be climinated due to the characteristics
of the CDC6400 comnuter (sec Chapter 2),.

From an experimental rather than a commercial
point of view, this cost of processing the scan

information at the completion of a scan is partially
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offset by the cheapness of the scanning equipnment,

It can also be seen from the times above
that another 39 percent of central processor time
is taken to isolate the characters from the scan’
image of a page of Thai text. This considerable
time is a direct conseguence of the versatility
requi red by the isolation procedurc. (see Chapter 4),
This versatility indicates the complexity that
would be required of an automatic machine for
reading Thai text, Since the cost of construction
is undoubtedly increcased by the versatility, the
cost to build such an automatic machine would he
forbidding.

To transform the hinary pattern of each
character to a point in n-dimensional feature space,
normalised bivariate moments most advantageous to

fie recognition system were sclected and later
used, as described in Chapter 6. From the experi-
mental results described in this Chapter, it can be
concluded that the best of the methods tried was
based on "variance ordering" for selecting those
moments to be used in the feature vectors. This
"variance ordering" method for sclection is a
distinct advantage for the recognition of the

upper area characters. At the time of these

experiments it was considered more advantageous to
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gein a maxinum recognition rate for characters of
the middle area and so the "variance order" meth od
W as adé?ted. Hoﬁever, on review it is the author's
opinion that perhaps comparable results with less
comnuting effort could be obtained by using the
first & '"matural order' moments as described in
Chapnter 6.

The advantage of.reducing the dimension of
the feature vectors is apparent in view of the
approximnating functions uszd to ostimate the
condi tional vnrobability densities for each category,
and the subseauent need for storing all training
points ., To reduce the dimension vnrincipal,
componcnts were chosen because of their simplicity
and ease of implementation.

The experimental results described in Chapter
7 show that the best vesults are obtained for a small
range of the smoothing parameter "h", which is in
contrast to the results described by Specht [45].
From the results described in Chapter 8, 1t can be
seen that the approximating functions for the
condi tional probability densities have been
applied quite successfully to the problem of

recognition of Thai characters.
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Finally, the results obtained have revealed
that a priori proﬁabilities are of little use to
the recognition system, when it attempts to
distinguish between some of the middle area
confusion pairs of characters. These pairs account
for most of the errors made by the system. In
addition a human, when reading Thai text can only
distinguish between these pairs by context in many
cases. The author feels that future work on the
recognition of Thai text, could be carried out
incorporating contextual information in the decision
process. That‘is, balance approptriately the
information which is obtain from contextual
considerations and the information from the
measurements on the character and arrivé at a

decision using both.



Figure A.l. The smoothing of an intensity plot using
the "moving average" tecinique. The
ruled lines indicate the left end bounds

of the M ddle Area.
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Figure A,2, The effect of 6 on an intemsity plot

for a single line of print with n=0
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Figure A,3, The effect of 8 on an intensity curve

with n = 16,
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APPENDIX B

In the following pages the moments of all the
symbols of the Thai Alphabet are presented from orders

3 to 7 inclusive in the following format,

30 Zn 12 03

40 31 50 13 04

50 41 537 23 14 05

650 51 42 33 24 15 06

70 61 52 43 34 25 16 07

where the numbering is representative of the

moment, e.g. 30 m3



B -2
TABLE B.1l, MOMENTS FOR MIDDLE LINE CHARACTERS

CHARACTER 1

023 -,269 006 -.223
1.238 002 .897 LO15 1.728
038 -.400 002 -.,691 024 -,910
1,658 -,005 1,090 005 1.584 043 3.648
040 -.544 -,006 ~.968 002 -1,82) 056 -3.004

CHARACTER 2

. 280 .290 -.063 ~-.479
1.901 .176 .801 134 1,933
1,011 1,052 .209 112 -,214 -1,871
4,553 875 1.453 <398 1.179 .463 4,849
3.354 3,265 1.084 .978 .211 -.260 -,743--6,477

CHARACTER 3

086 -.219 063 -.,096
1,446 -.120 967 -,039 2,108
201 -.369 «251 -.666 .173 -,558
2.341 -,33 1.316 -.288 1,979 -,147 5.369
367 -.604 .581 -1,120 608 -2,090 .486 -2,477

CHARACTER 4

-.544 . 375 + 154 054
2.329 -.055 .723 -,159 2.087
-2,697 1,061 0.186 657 294 -.,194
7.523 -,808 1.601 -,294 1,155 -,494 5,231
-12,113 3,713 -1.441 1,732 -.264 1.105 +759 -1.730

CHARACTER 5§

. 430 .278 -.084 -.,036
1,938 .307 947 044 1,477
1.605 1.112 £299  .,293 -,110 -.093
4.751 1,415 1.868 .549  1.372 115 2,517
5.393 3.730 1.622 1.411 . 502 .382 -.159 -.236



B -3

TABLE B.1. (CONTINUED)

CHARACTER 6

-1.403
4.879
~13.833
44,922
%45,

-.060
402
-1,099
3.721

CHARACTER 7

-.114
1,488
-.527
2.777
-1,853

.015
-.099
.116
-.370
.363

CHARACTER 8

017
1.711
-.226
5.607

-1.199

. 364
.045
1.013
s 150
2.544

CHARACTER 9

039
1.827
-.031
4.047
-.358

. 436
134
1,198
. 551
3.139

CHARACTER 10

062
1.376
043
2.176
-.198

-.078
021
=, 2126
058
-.507

067
.519
-.205
.876

849-11,383 -1,370

.170
. 726
.238
.882
.350

.178
. 890
134
1,499
.943

.236
. 860
.604

1,658
1,556

.035
. 780
.134
.953
. 245

-.043
-.190
.113
-.107
113

.263
.090
.004
035

-.030

-.328
. 239

. 446
.623

1,472

-.467
. 267
. 569
. 846
1.949

.195
002
-.029
-.009
-.196

1,611
.213
.655

-.061

1,837
.281
1,116
.43

1,959

«545
1.634
1,333

2,161

.679
1.653
1,772

1,671
.028
1.156
.167

-.321
-.482
+130

1,075
.214
.152

-1.169
.804
.963

-1.862
.884
1,272

711
041
.059

3.131

.612 -1,274
4.011

.509 3,407
4,802

1,578 -3.637

6.089

1.923 -6.690

3.235
.030

2,094



TABLE B.1, (CONTINUED)

CHARACTER 11

043 -.,055
1,390 042
-.011 -,186
2,228 .106
-.338 -.,443

CHARACTER 12

.145 064
1,673 . 204
. 435 .231
3.027 620

1.285 .653

CHARACTER 13

-.113 .219
1.861 .268
~.5318 .512
3,849 . 880
-.855 1,146

CHARACTER 14

-.506 056
2.011 -.011
-2,201 .182
5.622 -.100
-3.510 .739

CHARACTER 15

117 .199
1,657 .097
. 269 . 726
3,318 342
542 1.931

040
0765
.119
.929
.208

-.020
.941
. 225

1,548
. 719

. 147
. 720
. 274
1.258
704

-.157
1,154
-.772
2.588
-2.969

.036
.930
o G
1.304
.570

B - 4

.215
W003
024
.0 30
-.113

. 315
014
. 331
. 391
713

1

.020
-.092
420
. 346
1,014

.059
.0 89
.138
.182
. 351

-.620
137
.254
<419
. 354

1,658
043 . 799
1.115 034
<141 .192
1.681
-.045 1.141
1.543 -,039
.552 1,037
1.326
372 -,208
1.094 -,255
.718 . 786
1,594
= 9255 5 .335
1,915 wxZN0)

-1.074 . 489

2,200

-.001 -2.769

1.865 457
.131 -1.760

3.197
075 2,367

3.473
-.08) 3,435

3.967
911 -.,898

2,900
-.223 1,106

6.663
-.338-11.041



TABLE B.1.

CHARACTER 16

. 321
1.866
1,164
3.986
3.428

022
« 205
. 232
. 819
.990

CHARACTER 17

-.001
1.600
-.025
2,761
-.094

-.008
.203
021
.562
065

CHARACTER 18

.140
1,605
.316
2,907
.571

. 120
164
. 299
. 456
-.685

CHARACTER 19

.148
1,608
. 346
2.919
.658

-.123
-.157
-.302
-.435
-.676

CHARACTER 20

.227
1,362
.559
2.052
1,137

-.039
-.135
-.108
= oS
-.237

065
956
. 496
1.824
1.564

004
931
. 160
1,463
401

066
09 10
. 364
1.322
.879

.0 59
.919
.354
1.324
. 859

-.025
. 759
173
982
.430

B -

(CONTINUED)

<127
022
.129
.488
.588

.343
013
. 269
414
472

.038
-.014
-.314
. 355
.733

091
-.004
084
-n204
-.219

1,787

.211
1,676
1.063

1,702
031
1,515
.528

1.961
173
1,657
.811

1.958
.162
1.704
.794

—

L) - .
NSO U
U= A O
oo

.561
.090
« 507

1,262
062
1.012

.165
-.082
-.868

. 100
-.073
-.869

.349
-.030
-.176

5.781
.504

3.610
. 155

4.530
'473

4,528
.464

2.957
-I073

1.883

3.867

. 339

.128

1.054



TABLE B.1. (CONTINUED)
CHARACTER 21
-.009 -.021 .190 013
1.281 127 777 -.203
-.062 028 176 -,101
1,834 . 349 .880 -~-.038
-.172 097 170 -,008
CHARACTER 22

.183 050 -,021 -.,418
1.391 047 1,082 052

442 .288 008 -,371
2.253 <145 1.423 195

912 .835 074 -,168
CHARACTER 23

056 025 -.053 -.,099
1.484 -,014 .856 046

070 235 -.129 002
2.687 ~-,125 1,282 033
-.123 891 -.,358 .288
CHARACTER 24

. 190 189 -.060 .188
1.390 311 1.046 -.002

« 557 .475 .184 . 459
i, 202 853 1,617 «533
1,352 1,141 .724 1,011
CHARACTER 25

. 277 .240 0D.081 -,031
1.349 232 923 004

.728 . 586 166 .396
2,130 .650 1,314 . 351
1,622 1.319 637 .938

1.796
644
1.192
.538

1.977
'-059
2.135
-.146

1,675
-.060
1.282
-.173

1.569
-.110
1.732

0396

1,574
-.140
1.389

271

-.208
-.798
0.479

-1.847
207
-1.831

-.369
. 185
-.082

657
013
1.136

-.062
031
. 743

4,096
1,961 -1.442

5.166
-.242 -6.,925
3.265
-.044 -1,103
2.920
-.173 1,873
2,809
-.236 -.059
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TABLE B.l. (CONTINUED)

CHARACTER 26

-.187 . 210
1.320 -.245
-.672 . 456
2,188 -.729

-1.944 1,075

CHARACTER 27

.145 031
1,313 111
. 340 099
1.876 . 269
.673 .219

CHARACTER 28

-.118 -.053
1,355 =-.240
-.340 -,121
2,117 -.600
-.792 -.156

CHARACTER 29

.026 024
1.443 .115
077 3053
2,507 . 316
.152 1.035

CHARACTER 30

-.177 075
1.518 -.301
-.856 .402

3.090 -1.954
-3.207 1.450

. 247
. 806
085
957
=, 512

-.008
.852
.169

1.068
. 383

. 231
774
177
.923
.168

-.107
1.152
-.230
1.779
-.378

. 264
1.087
ayz
1.520
-,124

057
305
.322
054
. 4692

.045
-.004
.0 86
. 169
. 217

.178

. 248
-.035
-.154
-.250

-.344
064
-.338
.418
-.083

-.006
.376
012
013
.157

1.901

.851
1.314

.608

1.542
007
1,274
. 325

1.384
773
1.224
.588

2.006
-.267
2.418
-.692

2.364
1,149
2.506
1,346

. 597
1,193
.959

172
-.006
224

1.136
1.048
272

-1.611
.328
-1.784

<467
1,801
. 315

4.624
2,691

053

5.298
-.789

7.598
4,658

3.108

.502

5.169

-6.419

3.809



TABLE B.1.

CHARACTER 31

306 -.296
1.387 -.,227
.821 -.710
2.289 -.685
1.880 -1.600

CHARACTER 32

.276 .180
1.423 .170
.642 474

2,348 .481
1.301 1,103

CHARACTER 33

% 2159 067
1.499 112
651 .307
2,558 .334
1,493 . 856

CHARACTER 34

-.432 .306
2.243 -.192
-2.093 1,369
7.450 -1,432
-9.,828 6.125

CHARACTER 35

014 -.,108
1.470 -.123
-.064 -.147
2.466 ~-.390
-.368 -.103

-.076
.894
- 281l

1.320
.768

-.133
1.076
.0 50
1.615
. 321

021
.812
.154
1.163
.495

0.328
1.004
-.804
2,410
2.610

.1038
. 854
-.081
1.24¢6
—.213

B - 8

(CONTINUED)

062
-.007
-.470
-.347

-1.,108

.174
0.052
. 439
217
970

0.240
.069
-.042
.268
. 249

-.172
.151
.176
027

1,243

.363
-.156
035
-.411
041

1.606
o, JESES
1.329

. 341

1.559

1.788
026

1.648
0.039
1,148

.210

1.450
-.601
1.378
-1.162

2.070
-.437
1.496
-.416

.197
-.045
-.845

.595
1.0 71

0.830
. 206

—.556
.485
-.098

1.634
-t724
.511

2,956
-.227

2.856
-.531

3.201
-.112

2‘420
-1.128

5,316
-1.507

497

1.661

-2.327

"1.450

5,953
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TABLE B.1, (CONTINUED)

CHARACTER 36

-.640 L4200 -.372 .156

3.021 -.78 1.119 -;151 1,471
~6.222 2.665 -1,490 L7007 -,752 . 446

17.954 -6.646 3,875 -1.340 1.654 -,654 -.420 2,456
-48.043 19,161 -8,559 3,828 -2,386 1.244 -1.450 1.036

CHARACTER 37

139 -,28) .208 .033
1.544 -.303 .904 042 2,209
.388 -.590 478 -.670 .681 .166
2,735 -.812 1.356 -.644 1.907 .342 6.179
.871 -1,237 1,130 -1.430 1.266 -1,782 2,308 1.098

CHARACTER 38

147 .295 -.174 -,061
1.554 .221 1,035 0.012 1.970
. 547 747 -.024 .578 ~-.364 -,256
2.875 .689 1.689 .329 1,885 ~-.,015 4,518
1.634 1,803 .358 1.421 95.004 1.330 0.802 ~.839

CHARACTER 39
-.199 -,219 -,037 .295

1.604 -.111 .821 019 2,008
-.727 -,337 -.,169 -.,268 -,002 1,369
3.124 -,359 1,281 -.,251 1,285 .240 5,206
-2.252 -.,377 -,515 ~-,446 -,228 -,357 .475 5.622

CHARACTER 40

014 022 -.016 0.535
1.406 -,118 1,111 057 2,147
-.114 <237 -.146 .548 -,035 -2.432
2,376 -.393 1.487 019 2.387 .252 6,283
-.648 .826 ~-,439 .420 -.,330 -2.617 -,200 -9.709
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TABLE B.,1. (CONTINUED)
CHARACTER 41
-.280 -.,125 .268 ~,115
1.781 -.397 .896 .144
-1.398 043 .346 -,583
4.481 -1.324 1.288 -,452
-5.796 .957 .351 -,938
CHARACTER 42
038 -.021 004 043
1,463 -.,015 794 0.039
041 024 -.,945 026
2,396 -.,094 1,097 -.108
-.033 174 -.177 .129
CHARACTER 43
007 -.,009 .108 -,185
1.573 -.050 901 -.011
-,054 -,013 153 -.027
2,807 ~,175 1.347 -.065
-.281 009 224 046
CHARACTER 44
. 336 .146 -.,008 047
2,510 Lyl .98 -,003
2.243 916 430 .328
2.659 1.705 2.674 .553
12,106 4.999 2.963 1.916
CHARACTER 45
-.989 623 0.366 0.396
4.145 0,968 . 837 .188
-9.477 3.478 -1.,129 .364
30.686 -8,465 3.272 -,786
-88.581 26.336 ~-7.732 2.720

2.261
-795 -0554
2,001 «397

1,283 -1,.858

1.951
-.051 .311
1,211 -.,138
0.169 144
1.871
.287 -,701
1.476 -,002
437 -.121
1,605
-.045 .126
1.369 -,023
.780 .639
1.758
-.838 -1.576
1.082 872
-1.,333 -.179

6.411

2.422 -2.351

4.421

0.193 1,256

4.116

769 -2,175

3.055

-.145 .330

4.025
-2.155 -5,218
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TABLE B.1. (CONTINUED)

CHARACTER 46

.548 -,579
2.757 -.469
3.318 -2.077

10.670 -2.710
17,903 -8,486

CHARACTER 47

.038 -.,095
1.509 -.036
303 -.,476

2,913 -.,272
1,298 -1.,484

CHARACTER 48

.138 672
3.483 . 259
2.427 3.620

18.517 3.503
23,664 21,583

CHARACTER 49

= silie .512
2.285 -,242
-1.479 1,762
7.227 -1.407
-7.749 6.334

CHARACTER 50

-.131 . 220
2.192 -,529
-.814 .873
6.458 -2.557

04.152 3.574

. 241
. 739
.527
1.899
2,334

.089
.955
. 264
1,296
617

.069
1.263
.60
4,755
5.3838

-.076
982
-.210
2.153
-1.179

-.008
1.236
-.324
3.121
-1,820

.548
.248
-.275
-.202
~1.442

«532
094
.398
.213
132

.065
nO 54
.878
770
5.097

1

046
.0 39
470
-.141
1,659

.069
.060
. 515
-.844
1,887

1.962
.684
970
627

1.945
. 249
1.778
678

1.404

.226
1.761
1,379

1.366
-.098
1.152
-.159

1.399
-.031
1,893
. 0688

2.224
1.038
.333

2,155
. 387
1.847

-.188
.178
1,222

-.133
.157
.484

211
-.090
1.071

5.246
2.211

5.127
.801

2,192
.492

2,085
-.143

2,173
-.064

7.966

7.669

-.452

-.317

.5006



TABLE B.1.

CHARACTER 51

-,305
2.075
-1.492
5.439
~-5.870

B~ 12

(CONTINUED)

526 -.214 -
-.205  .598
1.272 -.185
-.871  .994
3.320 -.533

CHARACTER 52

-.382
2.070
-1,764

.543
= , 5By
1,385

5.544 -1,385

-6.901

3.909

CHARACTER 53

.118
1,747
474
3.573
1.542

-.035
061
-.069
.201
-.145

CHARACTER 54

.170
1,578
. 597
2.943
1.711

-.007
.226
012
<765
187

CHARACTER 55

.110
1.675
snON
3.076
1.011

L1038
132
. 291
. 410
-.634

-.208
618

1.129
1.088

013
.70 3
-.003
918
027

. 281
.962
-.304
1,392
-.310

.018
.847
122
1,289
434

.678
. 341
.193
050
.080

.609
.358
.205
070
. 790

MDD
.046
015
018
073

015
007
s 20K
g 2r
.559

2.087
-.738

.801
-.279

1,992
-.549

.781
-0374

1,951
-.039
1.055
-.030

1.995
-1.008
1.880
2 Irdli2 1

1,678
-.027
1,309

. 239

-2.839
1.427 6,189
-.454 -2,80 8-

-2,491
1.383 5.542
~.414 -2.404

905
-.222 4.518
031 -.099

. 487
-1.343 5.142
.809 -3.475

047
-.307 3.264
-.400 -.,035

10,703

‘9 00 43

2,985

3.351

.118



B - 13
TABLE B.1. (CONTINUED)

CHARACTER 56

-.012 -.040 . 489 .373
1,887 -.299 1,096 443 1,970
.252 -.363 .954 .382 1.551 1,771
4,528 -1,352 2.081 .239 2,380 2.124 5,235
1.747 -1.725 2.384 003 2,726 2,284 5,176 7.198

CEARACTER 57

148 -.090 .314 045
1.931 -.009 1,128 078 1,632
.899 -.,258 1,032 -.012 767 .187
4.781 -,209 2.544 175 2.040 .315 3,067
3.979 -.878 3,392 -,053 2.404 309 1,772 647

CHARACTER 58

.406 095 -.355 .185
1,308 .082 .847 -.295 1,867
1.487 167 -.359 404 -1,104 . 866
4.909 314 1,147 -.,320 1.618 -1.322 4.566
4,567 379 -,307 .549 -1.334 1,565 -3.565 3,807

CHARACTER 59

-.255 .020 027 -.154
1.511 -.,012 . 859 183 1,752
-.778 .168 003 -.002 .168 -.,505
2,736 -.122 1,068 209 1,442 670 3.779
-2.159 .489 -.148 .209 .264 -.007 .633 -1.349

CHARACTER 60

-.030 -.189 .264 . 341
1.645 -.243 .9 36 .287 2.040
057 -.,497 . 363 027 1.010 1,627
3.239 -.,832 1.370 039 1.847 1.513 65,555
.521 -1.252 732 -.372 1.179 1,047 3,796 6.924



TABLE

CHARACTER 61

019
1.865
,125
4,114
. 714

CHARACTER 62

-.011
1,373
-.050
2.100
-.136

CHARACTER 63

034
2.013
.187
5.014
.821

CHARACTER 64

-.034
2,-13
-.187
5.014
-.821

CHARACTER 65

.000
1,770
009
3.667
000

B.1.

.0 39
-.145
-.035
-.019
-.473

-.000
000
-.000
000
-.000

-.000
.000
007
.000
.000

000
-.000
-.000
-.000
000

0.000
0.000
0.000
0.000
0.000

B -
(CONTINUED)
.182 -,030
.996 -.023
676 010
2,030 . 263
1.997 -,284
006 -,009
.579 .000
016 -.000
618 .000
010 -.,000
769  ~,000
1.159 -.900
1.512 -.000
2.516 000
3.804 .000
-.769 -.,000
1,159 000
-1.512 -.000
2,516 -.900
-3.,304 000
000 0.009
1.000 0.000
000 0.000
1.770 0,000
LO€¢) 0.0-0

14

1.612

.458
1.699
1.675

1.676
008
.667
032

1,772
1.829
2,545
3,717

1.772
-1.829
2,545
-3.717

1.500
000
1,500
000

-.129
-.024
-.021

-.000
.000
0.900

-.000
-.000
-.000

-.000
000
000

2.000
0.000
2.000

3.096
1,140

3,260
003

3,737
4,336

3,737
-4.,336

2,250
0.000

-.415

-,000

. -OOO

-.000

0.000



B - 15
TABLE B.1. (CONTINUED)

CHARACTER 66

002 -.0020 000 -.,000

1.926 0.000 .654 0,000 1.926
.000 0.0090 000 0.090 000 0.000

4,421 -.,000 .542 0,000 .942 90.090 4.421
000 0,000 000 -.090 000 -.000 000

-.000



B-16

TABLE B.2. MOMENTS FOR UPPER AREA

CHARACTER 1.

-.019
2.092
-.442
5.568
-2.695

.385 021 -.485
-.111 .533 N92 2.174
997 021 .303 -.059
-.530 .952 021 .608
2.912 -,203 . 747 .100

CHARACTER 2.

- 452
2.046
-2.132
5.855
-8.855

.399 631 -,052

052 .937 .379 2.708
1.036 744 2,450 . 313
-.278 1.478 1,171 2,876
2.895 957 2,016 3.342

CHARACTER 3.

-.697
2,343
-3.424
8.197
-15.660

.133 .580 -,084
-.075 669 023 2.491
.459 .451 .107 1,813
-.496 .793 159 1.670
1.632 .305 .361 11,377

CHARACTER 4

-.616
2.343
-3.036
7.880
-13.790

.130 .544 -,096
-.028 622 -.,052 2,541
.470 .408 -,007 1,738
-.314 .728 027 1.521
1.586 . 286 .180 1,348

CHARACTER 5

.640
2,821
4,509

12.773

= I 047 037

-.,208 . 519 08 1.762
-.684 108 -,162 122
-.943 691 -,038 .6 40

27.528 -2.367 456 -,353 097

-2.469
.409
.221

2,029
3.695

-.358
- 1235
.119

-.536
= oK
-.465

.203
242
-.173

6.746
-.595-11,064

9.990
10.066 3.387

7.933
6.123 -10833

8.175
5,990 -3.,061

3.559
.305 771



TABLE B.2. (CONTINUED)

CHARACTER 6.

000
1.616
000
3.030
000

CHARACTER

.000
1.000
000
1.000
.000

CHARACTER

.473
1.922
1.542
4.533
4,569

CHARACTER

117
1.627
.529
3.257
1.941

CHARACTER

000
3.235
.000
12.530
.000

-.000
.000

.000
.000

.D00
.000
.000
.000
.000

o0

. 426
.185
1.158
.739
3.025

-.175
045
.196
. 206
-.093

000
.000
.000
.000
.000

000"

000
.515
000
. 560
.000

.000
1.000
009
1.000
.000

.176
.842
.118
1.471
707

.139
.762
173
+955
-.178

4

.000
.056
000
092
.000

17

000
.000
009
.000
000

-.000
-.000
.000
000
000

-.235
.156
. 450
.331

1.293

-.019
-.016
-~.321
-.043
-.443

-.000
-.,000
-.000
-.000
-.000

1.526
.000
5438
.000

1.776
000
1.776
.0090

1,710
0,432
1.264

042

1.749
-.286
1.193

3.235
.000
092
.000

-.000
.000
000

-.000
-.000
-.000

0.858
. 566
.502

-,091
-.037
-.664

-.000
-.000
.000

2,668
.000

5g G0 3
.000

3.568

.000

-.000

-1.131 -2.695

3,650
-,600

12,530
.000

-.349

-.000



B-18

TABLE B.2. (CONTINUED)

CHARACTER 11

-.164 -.231 .373 617

1.676 -.,180 .791 .515 2.599

0.472 -.539 .311 068 1.621 3,769

5,406 -.537 1.058 .134 1,841 3.062 10.545

-1.243 -1,155 .448 =-.434 1,249 1.919 7.807 21.022

CH/ARACTER 12

070 -,398 .144 .552
2.121 -.218 .518 133 2,212
.535 -.,991 194 -,233 .316 2.506
5.630 -.8388 . 887 .069 643 .438 6,527
2,651 -2.,745 616 -.,686 W 222 .018 .872 10.052

SYMBOL 13

-.643 -.094 699 . 729

2.190 -,170 .668 .394 3.010
-2.978 -,198 .555 102 2,172 4,373

7.061 ~-.390 667 -.106 1,742 2.567 12.521
-12.669 -.242 .555 -.306 1,507 1,362 8.590 23.772

SYMBOL 14

.121 021 . 396 164
2.182 .558 1.065 -.1383 1.761
. 285 .425 1,091 .302 .936 . 439
6.320 2,460 2,492 774 1,971 -,374 3,739
.334 1,982 3,198 1.778 2,552 744 2,250 1,009

SYMBOL 15

-.092 112 .268 -.,079

1.874 a2 515 767 -.236 1,851

-.1389 .384 .337 031 717 -,488

4.648 1.111 1,254 032 1,181 -.871 4,
2

5
-.051 1,272 B S8 .377 .751 -.289 0 -2,194



B-19

TABLE B.2. (CONTINUED)
SYMBOL 16
-.403 -.,185 .365 .253
2,494 W7A7518 785 -.127 1.828
-~2.263 -.453 .382 -.112 .888 .957
8.685 1.448 1.453 -,190 1.133 -.162 4,486
-11.838 -1.833 .499 -,050 892 -,297 2,311 3.736
SYMBOL 17
-.748 -.483 .420 .573
2.952 0069 611 -,091 2,488
-4.58 -1.411 401 -,471 1,119 3,110
12,781 1.162 1.147 -.575 1.026 .330 3.975
-26.117 -5.362 .294 -1.,147 1,080 -.665 3.530 15.437
SYMBOL 138
=z (8 = .BB52Z .393 1.023
2.6-3 003 .398 077 3,208
-4,124 -,768 .266 ~,223 995 5.718
10.098 . 546 Al = 29 634 .384 14,272
-20,283 -2.422 .212  -.491 .554 -.113 3.371 30.390
SYMBOL 19
-.081 -.929 .178 . 237
2.047 «520 904 -.,030 1.569
-.803 -.068 447 .338 . 470 .693
5.776 2,096 1,812 .735 1.418 -.075 2.986
-4.656 -.647 939 1.027 1.286 962 1,061 1,740
SYMBOL 20
-.199 .068 .081 -.000
1.831 .227 .766 -,109 1.522
-.802 .084 -.,037 .111 270 -.084
4,425 998 1,270 .149 921 -,392 2.842
-2.98 -.168 -.262 277 «152 «125 699 -.470



B-20
TABLE B.2. (CONTINUED)

SYMBOL 21

-.489 -,227 .122 .405

2.423 . 319 681 -.102 1.683
-2.849 -,712 -.07% 043 .336 1,290

8.515 1.728 1.301 -.009 833 -,161 3.675
-14.771 -3,367 -.,844 008 . 1380 .195 .785 3,979

SYMBOL 22

-.801 -,534 .199 . 589
3.024 . 336 <549 -,122 2,126
-5.211 -1.712 021 -,381 507 2,620
14,120 2.518 1.202 -.204 627 -,062 6.627
~31.396 -7,631 -1.033 -,941 .443  -.441 1,341 11.058

SYMBOL 23

-.854 -,382 . 399 .945
2,893 041 .455 031 3,274
-4.872 ~-.993 .294 -,303 1.087 5,722
12,500 .872 704 -,383 777 .789 15,156
-26.,560 -3.581 199 -.681 .730 -.294 3,807 32.486

SYMBOL 24

-.184 -.,014 . 149 .294

2,156 .561 933 -.020 1.685
-1.261 -.107 401 <425 .453 .909

6.62% 2,371 1,950 .832 1.573 -,045 3.470
-6.977 -1,124 .811 1,193 1,378 1.276 1,112 2.465

SYMBOL 25

-.296 .083 .048 052
1,923 . 240 <791 -.,097 1,604
-1.191 082 -.,117 176 .220 060
5.007 1.099 1,394 .169 .94 -,378 3,165
-4.579 -.370 ~-.500 .364 073 . 281 623 -,120



B-21

TABLE B.2. (CONTINUED)
SYMBOL 26
-.602 -.222 090  .447
2.623  .354  .708 -.117 1.827
-3.578 -.803 -.162 .079  .303 1.529
10.266 2.080 1.469 -.011 .927 -.211 4.354
-19.690 -4.282 -1.226  .160  .105 .299  .779 5.092
SYMBOL 27
-.876 -.547  .193  .629
3.310 .384  .578 -.132 2.308
-6.,098 -1.917 -.001 -.409  .536 3.014
17.006 3.049 1.372 -.214 .703 -.083 7.846
-39.879 -9.408 -1.326 -1.093  .495 -.501 1.532 13.774
SYMBOL 28
-.742 -.327  .257  .952
2.795  .145  .345 -.133 3.370
-4.267 -.791  .148 -.279  .558 5.983
11.366 1.043  .499 -.243  .510 -.204 16.178
-22.807 -2.951 -.004 -.428  .433 -.425 1.316 35.295
SYMBOL 29
-.224 -.104  .098  .334
2.263  .491  .879 -.066 1.733
-1.690 -.571  .196  .358  .332 1.063
7.430 2,098 1.669 .58 1.477 -.184 3.700
-9.833 -3.053 -.080 .618 .921 1.197  .828 2.988
SYMBOL 30
-.268 .013  ,017 .08
1.999  .275  .791 -.117 1.627
-1.284 -.239 -.173  .168  .161 .145
5.558 1.294 1,404  .144 1.017 -.430 3,283
-5.902 -1.657 -.725 .228 ~-.044  .336  .511  .184



B-22

TABLE B.2, (CONTINUED)
SYMBOL 31
-.569 -,260 051 .501
2.79D .358 646 -.160 1.917
-3.467 -.968 -.173 N61 163 1.782
10.662 2.056 1,289 015 .853 -.424 4,845
-19.549 -4,841 -1.194 .029 072 . 299 .290 6.186
SYMBOL 32
-.820 -.,512 .119 632
3.251 404 519 -.238 2,428
-5.663 -1,756 ~-.044 -,356 195 3,380
16,020 2.874 1,192 -.140 613 -,726 8.764
-36,131 -8.445 -1,300 -.896 374 -.437 -.,036 16.146
SYMBOL 33
-.033 -.471 .019 .578
2.128 -.010 .411 002 2,358
-.121 -1.026 N13 -.327 030 2.961
5.289 -.007 734 ~.015 . 385 006 7.622
-.420 -2.550 021 -.584 020 -,267 048 13.003
SYMBOL 34
. 286 043 111 -.079
1.820 331 1.077 -.078 1.698
991 302 .563 .164 .211  -,344
4.029 1.178 2.9938 .391 1.657 -.198 3.349
3.080 1,241 1.729 . 746 .96 8 . 354 444 -1.112
SYMBOL 35
.130 106 -.029 -.,300
1.687 117 .799 -.081 1.844
.594 437 006 -.102 -,070 -1.167
3.563 .527 1.244 -,020 1.133 -.216 4.141
2.300 1.479 .241 129 -.,085 -.442 -,112 -3,799



TABLE B,2. (CONTINUED)

SYMBOL 36
-.016 -.190 .006
2,168 001 .851
-.091 -,223 -.025
5.6 36 015 1,826
-.383 -.,016 -.114
SYMBOL 37

-.327 -.601 044
2,513 s 2047 .695
-1.860 -1.813 -.049
8,072 1,175 1.660
-8.675 -6.018 -.686

SYMBOL 38
.199 -.,038 «559
1.854 -,280 .783
907 -.347 632
4.369 -,995 1.037

3.544 -1,300 1.049

SYMBOL 39
603 -.254 . 242
2,603 -.217 1.040
3.345 -1.247 1.065
9.814 -2.111 2,587
17.729 -6.477 4.014

SYMBOL 40

454 -,111 .142
2,132 -,171 .945
2.250 ~-.661 .646
6.469 -1,204 2.029

10.129 -3.291 2,555

B-23

.083
.013
-.176
006
-.095

. 296
-.101
-.576
-.012

-1.515

«557
.502
.329
.152
010

163
-.091
-.036
-.163
= 0684

-.076
-.177
= 2
-.466
-.842

1,651
N 24
941

-.023

2.090
oO6 5
.781
084

2,531
1,738
1.584
1.364

1.604

.452
1,567
1,667

1,578
.276
1.269
. 889

.370
047
-.303

1.619
-.264
«.679

3,308
2.525
1.800

491
-.183
.329

-.309
-.477
-0454

3.405
079

5.833
-.003

9.233
6.418

3.001
. 848

2.944
.561

1.605

7.183

16 .775

1,309

-.931



TABLE B.2,

SYMBOL 41

446 -
2,671 -
3.027 -1

10.125 -2
17.122 -6

SYNBOL 42

000 -
1,221

000 -
1.664 9

000 -

B- 24
(CONTINUED)

. 373 . 245 317
. 3990 .32 -.,078
461 754 -,225
.388 1.976 ~-.410

622 2,965 -.957

.000 .000 -.000
000 1,000 0.000
.009 .000 -,000
000 1,221 0090
000 .000 -.000

1.691
. 389
A
.938

1.776
000
1.776
.000

1.059
-.152
-.158

-.000
0.000
-.000

3.529
613

3,703
.000

3.341

-.000



B-25
TABLE B.3. MOMENTS FOR LOWER AREA CHARACTERS

CHARACTER 1,

.208 . 499 .190 -,551
2.357 ,168 763 -,225 2.031
1,130 1.693 .295 .232 604 -2,295
7.185 .806 1.597 -.,041 1,147 -.944 5,558
5.227 5.249 743 1.172 647 -,389 2,046 -8.447

CHARACTER 2

.233 .244 -,051 .081
1.357 .211 .945 010 1.552
609 . 569 186 .460 -.065 . 344
2.132 .582 1,357 371 1.468 052 2.765
1.349 1,226 615 977 .386 .980 -.059 1.088



C-1
APPENDIX C,

Table C.1. Comparison of Recognition Rates for the

Yiddle, Unper and Lower Areas with

Variance, Scatter Ratio, Natural and

Random Ordering using 2,4,....,30

Feature eclements for test data with

10 percent noise level,

(a) The M ddle Area

No. of elements Percent Recognised Correctly

vused for Variancqg Scatter Natura Random

recogni tion Ratio 1
2 65,30 65.39 47,65 41,36
4 89.24 71.82 85.30 62.88
6 92.50 77.65 92,73 74.70
8 91.67 87.88 94,15 80.91
19 93,33 91.59 23,18 86 .21
12 93.18 88.94 89.39 77.65
14 92.73 90,76 91.21 83,33
16 94,32 92.42 89.92 85.68
18 93.18 91.82 21.67 86 .29
20 92.50 91,74 92.20 86 .89
22 92.20 84.77 92.12 87.27
24 91.14 86 .74 87.20 82.27
26 91,52 37.890 87.42 87.58
28 87.27 88.79 88.41 88.94
30 36.21 86 .21 86.21 86.21




C-2

Table C.1l. (continued)

(b) The Upper Areca

No, of elements

Percent Recognised Correctly

used for Variance| Scatter{ Naturall Random

recogni tion Ratio
2 72.0 72.02 67.02 44,05
4 39,17 80.71 84,40 62.98
6 87.14 87.22 89.05 73,10
8 89 .64 78.21 91.67 78.21
12 89 .64 80.71 76 .55 81.43
12 92.86 86.43 83.10 65.60
14 92,14 87.38 86 .31 74,29
16 93.569 87.50 78.45 77.26
18 92.50 37.14 80 .24 77.62
20 91.55 78.45 81.07 78.45
22 91,19 76 .90 83.10 78.69
24 90.12 79.88 76 .19 78.81
26 89 .40 20 .00 77.14 79.05
28 87.02 79.88 77.86 79.76
30 80 .24 80 .24 80.24 80,24

(c) The Lower Area

Recognition was found to be 100 percent correct

for the test data with this noise level irrespective

of the element ordering.




D.1,-

APPENDLIX D,

Table D.1. Roots and Véctors of |S-AIl=0

oy
s

GO NIV S N

9
19
11
12
13
14
15
16
17

Roots(kj)

(a) iiddle Area Samnles,

-1,1378-01

1,793E-01
-3,2082-902
42.315E-972
3.363E-01
4,%40E-02
3.,959E-072
6.3775-03
-7.207E-92

7.,054E-01
-1.956E-11

1.8255-91
-2.0475H-21

L585E-91

-1,155E-92
-1,.395E-02
2.105E-012

1.239E+09)

Bax

3.104E-91
1.1788-01
-1,214E-02
-1.901E-91
-5,102E-01
2,382E-91
9.349E-902
-1.944E-072
-8.5818-D3
3.,7228-31
1.948E-91
1.149E-91
-6.990E-92
-6 .45 8E-02
3.905E-01
2.5008-01
-1.661E-91

Roots (Aj) 3.092E-01

ot
1.
1.
-2,
b,
=5y =
6.
1.
Sye
6.
3.
3.
S
A
1.

2.

5.
6.

-1.
-5,
-1,
-2,
=y
1.
1,
1.
==]n.
-4,
-2.
- 3.
1,
-1.
4,

z §

2.

T

22k

115E-92
3168-02
948E-01

96 2E-03

2,68-02
751E-92
59 8E-02
276E-91
216E-932
293E-02
743E-01
045E-02
769E-01
738E-01
985E-91
169E-01
639E-01

334E-01

A5k
114E-9
46 3E-02
6118-01
906E-01
890E-01
R34E-01
235E-01
06 55-01
3168-01
189E-01
072E-01
4528-01
39RE-01
197E-01
232E-01
609E-01
A88E-01

711E-01

a3

1.336E-01
-1.282E-91
1,578E-02
1,624E-01
9.992E-02
5.083E-02
1.723E-01
1,213E-01
-8.550E-02
-3.,027E-01
1.024E-01
-4,269E-02
2,4130E-92
5.8935E-901
-7.504E-02
4,236E-01
-4,874E-01

3.966E-01

"6k

-2.011E-01
2.298E-02
1.334E-01

-9,788E-02

-2.775E-901

~-2.756E-01
1.285E-02

-7.798E-02
1,359E-01
3.398E-01
1.077E-02

-1,890E-91
5,4835-01

-1.398E-01

-5.916E-01
1,425E-01

-3.027E-01

1,442E-01



Table D.T. (Cont.)

3

X 2o Do 29k
1 -2.063B-01  -4.554E-01 -3.651E-01
2 3.005E-02 9.475E-02 -7.129E-02
3 3.319E-02 3.430E-02 3.905E-02
4 -4.641E-01 3.065E-01 -2.064E-01
5 4.207E-01  -2.518E-02 -2.012E-01
6 2.292E-91 1.475E-01 1.709E-01
7  -2.575E-02 5.154E-02 9.1505-02
8  -2.7948-02  -4.183E-02 -5.895E-03
9 3.442E-01 8.121E-02 -5.800E-01
10 2.950E-02  -7.473E-02 -2.273E-02
11 7.7978-02  -3.5745-01 -2.866E-01
12 -3.366E-01 5.4338-01 _3.686E-01
13 -9.490E-03 2.1218-01 2.676E-01
14  -2.254B-01  -1.889E-01 1.540E-01
15 2.790E-01 1.385E-01 2.4585-01
16 3.510E-01 3.399E-N1 -1.650E-01
17 -1.5298-01  -4.502E-02 ~3.191E-02
Roots (X;)1.002E-01 7.625E-02 4.268E-02
K 310k 211k 212k
1 1.056E-01 4.652E-02 6.411E-01
2 -2.876E-01 1.405E-01 1.094E-02
3 1.3365-02 1.077E-01 -6 .900E-02
1 2.9813-01  -5.001E-01 ~1.465B-01
5 ~3.161E-92  -2.127B-01 2.652E-01
6 5.516E-02  -6.670E-02 -3.093E-02
7 ~1.053E-01  -9.490E-02 7.922E-02
f -1.835E-03 8.905E-03 ~4.965E-02
9 1.6%2E-01 4.307E-01 -2.082E-01
10 2.150E-01  -2.573E-01 4.117E-02
11 -2.8918-01  -2.5428-01 . -4.673E-01
12 23.7038-01 2.734E-01 6.6 44E-02
13 1.865E-01 1.558E-01 3.695E-01
14 1.158E-01 3.592E-01 =2.393E-01
15 2.743E-01 6 .999E-02 -4.346E-02
15 -1.830E-01  -3.112B-01 1.406E-01
17 -6.1585-02  -1.060E-01 -2.16 3E-02

Roots()\j) 2.068E-02 1,267E-02 8,152E-03



Table D.1 (Cont,)

1)
AN

W00~ Ui N =

19
11
12
13

15

b
NN OOV E TN D WD

14

el
~1 O en

Roots (Aj)

A1k

-4,583E-02
-4,208E-02
1,512E-51
5.539E-03
4,590E-02
-8.,026E-01
9.797E-04
2.160E-01
-1.061E-01
-1,078E-02
1.7475-02
2,680E-02
-5.562E-02
-9,3778-02
4,511E-01
7.737E-02
-2.158E-91

(kj) 3.014E-03

a
lok

-81359E-02
1.727:-01
-9,175E-01
6.213E-03
-2.577E~92
-1.178E-01
-1,791E-01
-1,869E-02
4,280E-02
-4,5684E-02
1,306E-01
-3.562E-02
2.563E-01
3.628E-02
7.926E-02
-6.173E-03
-5,998E-02

4,577E-04

a1 ax

-4,102E-02
-7.971E-01
-1,139E-901
' -2,321E-01
-3.513E-02
2.711E-03
-4,191E-01
-9.831E-02
-8.430E-02
1,127E-01
4.599E-02
2,719E-01
3.073E-073
1,457E-02
-1.685E-02
1.106E-01
3.394E-02

9.496E-04

a17x

4,999E-03
-1,311E-01
-6.311E-02
-2.133E-02
1,577E-02
2.076E-01
99.030E-02
9.323E-01
1,431E-02
1,958E-02
~-9,292E-03
5.629E-02
4,084E-02
-1,103E-02
-1.391E-01
-1,333E-02
-1,719E-01

2.990E-04

a5k

-6,.569E-02
-3.656E-01
-1,432E-01
-1,052E-01
3.,356E-02
-5.,568E-02
8,405E-01
-1.418E-01
1.535E-01
4.478E-02
7.232E-02
1.235E-01
6.057E-03
-9,330E-92
2.,707E-02
-2.087E-01
2,355E-02

7.76 7E-04



Table D.1. (cont.)
()

k’ Ay,
1 1,971E-91
2 2.,071E-01
3 -4,169E-073
a -2.431E-901
5 -3.792E-01
6 3.056E-93
il 1.368E-91
g 4.274E8-02
9 -2.2545-01
10 6.344E-01
11 8.3575-02
12 2,0381E-01
13 4,992E~02
14 1.659E-01
15 2.9915-01
15 3,4282-01
Roots (Aj)l.IISE-OO

k7 a,

1 4.926E-01
2 -9.245E-92
3 2.910E-92
! 2.613%5-02
5 -4.615E-01
6 -4.514E-01
7 2.741%-052
3 1.4938-01
9 6.679%-92
19 -2,144E-21
11 1.949E-01
12 -2.125E-01
13 6.371E-22
14 -1.914E-01
15 -3.550E-91
16 7.852E-02

Roots(lj) 1.944E-01

lpper Area

82k
406 E-01

138E5-901
401E-n01

-2.
3.53%E-02
3.

s

Samples.

d.438E-02
-6.505E-02
-4.897E-02

1-0 435"

01

4.419E-01
1.559E-01

1.593E-

7.

01

A71E-02

7.022E-01
-2.326E-01
3.158E-02
2.282E-01

7.198E-01

Y
.4139E-01

.lLUL-ul

DH32E-02
LO538E-01

-6.016E-01
1.891E-91
1.142E-01
1.404E-902
-1.304E-01
-2.382E-01
-3,835E-01

-7.104E-02
4.322E-02

-1.662E-01
7.485E-02
2.4258-01

1.354E-901

a
3k

4.657E-02
-1.,059E-901
9.841E-02
8.734E-02
1,153E-01
4.,985E-02
1.937E-01
-3.178E-02
-2.344E-01
-4,310E-01
2.3813E-01
7.391E-04
2.544E-01
6.337E-901
4,7615-02
3.558E-01

4,612E-01

% X

2,941E-01
-7,376E-92
-1.246E-01
3.914E-91
-3,913E-02
1.025E-01
-2.632E-02
2.,022E-01
4.530E-01
-1,369E-01
6.048E-02
2.620E-01
-3,053E-01
1,487E-02
5.222E-01
1,320E-01

7.840E-02



Table D,1. (Cont).

J A
k a9x Aok 20k
1 -2.462E-01 6.455E-02 1.139E-01
2 5.0225-03  -1.229E~92 -1.975E-01
3 -5.2018-02  -1.4818-01 9.845E-02
A 9.720E-01  -5.690E~01 -2.254E-01
5  -9.391E-02 2.912E-01 -1.311E-01
5 §.7976-02  -1.355E-01 3.931E-01
7 1.2795-01 1.512E-01 -9.142E-02
8  -2.223E-01 7.236E-02 -3.523E-01
9 5.3535-01 1.146E-01 -1.330E-02
10 2.060E-01  =2.400E-01 -3.295E-02
11 1.1175-01  -3.038E-01 4.145E-01
12 -2.997E-01  -1.027E-01 -4.569E-01
13 -3.555B-01  -7.6245-02 5.151E-02
14 2.9505-91  -2.206E-01 ~2.493E-01
15  -3.7398-01 1.458E-01 3.706E-01
16 2.679E-01 5.497E-01 -5.7125-02
Roots (A;) 5.2098-92 3.5775-02 2.286E-02
k- 210k 311K B1 2k
1 3.742B-12  -1.826E-01 -4.892E-01
2 1.080E-01 2.839E-01 -1.143E-91
3 2.171E-02 2.618E-02 3.854E-02
4 3.171E-01  -3.9075-01 4.279E-92
5 2.189E-21  -2.944B-01 3.541E-92
6 1.4798-01  -7.031E-02 -6.0456-01
7 6.391E-02  -9.955F-02 -7.814E-02
8  -2.512E-01  -3.121E-01 1.244E-01
9  -2.8158-01 1.946E-01 -1.729E-01
10 -6.212E-93  -3.631E-01 6.954E-02
11 2.917E-01 2.156E-01 3.5305-01
12 2.306T-01 5.350E-01 -1.143E-01
13 -2.2270-01  -3.200E-02 -2.820E-01
14 -4.674E-01 1.451E-02 -3.868E-02
15  -2.799E-91  -1.352E-02 3.131E-01
16 3.993E-01  -1.616E-01 4.209E-02

Roots ()\J.) 1.186E-02 8.249E-03 4,899E-03



Table D.1. (Cont).

j
k a1 3k g 3 5k
1 -1.597E-01 1.417E-02 -2.197E-02
2 1.167E-01 5.273E-01 6.569E~01
3 3.289E-02 4.091E-01 -5.494E-01
4 -2.3148-01 §.697E-02 1.830E-01
5 -2.373E-02 5.941E-02 -2.111E-02
6 4.022E-01  -9.681E-02 -2.734E-03
7 9.385E-02 6.229E-01 -2.999E-01
8 7.4598-91  -5.038E-02 -2.859E-03
9 -2.2148-07 5. 3895-02 -6 .46 8E-02
10 -9.085B-02  -1.007E-01 -9.26 3E-02
11 3.3265-01  -9.404E-02 9.942E-02
12 -1.2678-02  -2.176E-01 ~3.018B-01
13 -1.2955-01  -8.343E-02 1.435E-01
14 -8.0858-02  -9.892E-02 5.092E-02
15  -1.762E-01 1.940E-01 5.967E-02
16  -5.7188-02  -1.344E-01 4.16 3E-02
Roots (A;) 4.864E-03 7.429E-04 4.802E-02
j
k 316k
1 -6.219E-02
2 -2.286E-01
3 -6.465E-01
I -5.787E-02
5 4.243E-02
6  -5.644E-02
7 6.286E-01
8  -6.987E-02
9 A.7965-02
10 3.377E-02
11 1.579E-01
12 1.042E-01
13 1.76 2E-01
14  -1.221E-01
15 2.032E-02
16  -1.838E-01

Roots(Aj) 1.814E-04
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