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ABSTRACT

The advantages of fuzzy sets and neural networks in emulating the human brain
capabilities motivated the development of fuzzy neural networks. Various models of
fuzzy neurons have been proposed as the basic element of fuzzy neural networks. In this
thesis, we introduce a generic fuzzy neuron as an extension of existing fuzzy neuron
models. In our model, all the states of activity are given in terms of fuzzy sets with
relative grades of membership distributed over the interval [0, 1]. The inputs and
outputs are fuzzy sets over different universes of discourse. The connection, aggregation,
and activation functions, which determine the operation of the neuron, are fuzzy
relations. When the inputs to a function are fuzzy sets over the same universe of
discourse, the function can be any fuzzy operation in class of triangular norms or
triangular conorms. To evaluate the operation of the fuzzy neuron, a fuzzy neural
network architecture based on the generic fuzzy neuron has been developed for motion
estimation. The five-layer feedforward fuzzy neural network emulates a spatio-temporal
image-matching algorithm. Seven simplified versions of fuzzy neurons are defined and
utilized in the fuzzy neural network. The results of simulations on thousands of 64 x 64,

6-bit image frames containing moving objects under different conditions are reported.

v
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Chapter 1

/

INTRODUCTION

1.1 Background and Motivation

One of the last frontiers of science, perhaps its ultimate challenge, is understanding the
biological basis of mentation and co gnition - how we think, reason, learn, remember, perceive
and act, and implementing artificial systems that do the kinds of things we do. From
mechanical automata in past centuries to electronic devices now, we have tried to make
hardware and software that act like us, or at least some significant part of us. Much of current
research is devoted to modelling various aspects of the human brain, the thing which seems

to be the most highly developed in humans.

The human brain is superior to all kinds of modern day computers in processing cognitive
information, the information acquired by the peripheral nervous system. Whereas most of the
traditional mathematical tools are based upon some absolute measures of information, the
cognitive information is in the form of relative grades. Unlike the computational functions of
traditional computers, the human brain acts upon the relative grades of raw information

acquired by the neural sensory system.
1.2 Fuzzy Sets

To deal properly with uncertainties and imprecisions which arise from human thinking,
mentation, cognition and perception, some special tools and techniques are required. In 1965,
Lotfi A. Zadeh published his first celebrated paper on fuzzy sets as a means for representing
uncertainty [58]. The type of uncertainty that this theory was meant to handle has as its roots
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the type of imprecision and ambiguity which is prevalent in human discourse and thought.
The theory of fuzzy sets is based upon the notion of a relative graded membership, and so is
the function of the mentation and cognition. Zadeh writes: "What is central about fuzzy theory
is that, it aims of modelling the imprecise modes of reasoning that play an essential role in the
remarkable human ability to make rational decisions in an environment of uncertainty and
imprecision. This ability depends, in turn, on our ability to infer an approximate answer to a

question based on a store of knowledge, that is inexact, incomplete, or not totally reliable”

[571.

Fuzzy set theory emerged by challenging the basic assumptions of three theories: sharp
boundaries in classical set theory, classical logic that each proposition must either be true or
false, and additivity in classical measure theory, particularly probability theory. The first
challenge to classical set theory came in the 1965 with the fuzzy set theory [58]. Next came
fuzzy logic, which emerged as an outgrowth of fuzzy set theory [19], and a generalization of
the Lukasiewicz infinitive-valued logic defined on the unit interval [43]. The third challenge

appeared in 1974, when fuzzy measure theory was introduced [45].

Although fuzzy theory encountered lots of skepticism, it became quite strong in the 1970s.
New important concepts were introduced such as fuzzy numbers, fuzzy topology, and various
kinds of fuzzy relations. An extension principle appeared in 1975, by which other concepts
and theories of classical mathematics can readily be fuzzified [60]. Researchers developed a
theory of dynamic fuzzy systems, investigated operators for aggregating fuzzy sets in a
comprehensive way, introduced fuzzy sets of more general types, and formulated various
categories of fuzzy sets and relations. Some ideas of prospective applications of fuzzy theory
also emerged in the 1970s: fuzzy control [371[551[56]1(59], fuzzy decision making [61], and
fuzzy pattern recognition [5]. In spite of a general lack of interest, fuzzy set theory continued
to advance rapidly. Applications of the theory, however, lagged behind the theory itself, until
the 1980s. Since then, hundreds of articles on fuzzy set theory and its applications have been

published in more than a dozen fields.

1.3 Artificial Neural Networks

Another difference between the human brain and conventional digital computers is its
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structure. It is believed that the brain consists of an enormous number of neurons highly
interconnected by links with variable strengths, operating in parallel. Conventional
computers, on the other hand, execute sets of instructions sequentially. To achieve the
massively parallel distributed processing features of the brain, neural networks have been
studied extensively since the influential work of McCulloch and Pitts, on neurons modelled
as discrete decision-making elements with threshold logic outputs in 1943 [38]. In its simplest
conception, the neural network may be described as a collection of neurons which interact
among themselves through a highly interconnected synaptic network. The most striking
aspect of such a network is the highly distributed manner in which information is stored and

the high degree of parallelism by which it is processed.

The limitations of McCulloch and Pitts model were recognized by Rosenblatt [44] in 1950’s.
First, the behaviour of the model was difficult to predict analytically. Second, the available
computational resources of the day were not adequate to simulate the proposed system.
Rosenblatt stirred considerable interest and activity in the field when he designed and
developed the Perceptron [44]. The Perceptron had three layers which could learn to associate
a given input to an output. However, the system exhibited complex adaptive behaviour. The
ADALINE network was developed shortly after the Perceptron by Widrow and Hoff in the
1960’s [51]. It employed a more sophisticated learning procedure than the Perceptron learning
rule. In 1967, Amari established a mathematical basis for a learning theory (error-correction
method) [1]. In 1988, he and Maginu developed a self-organizing network as a model for
associative memory [2]. Initial work in associative memory was published by Anderson et al.
[3], and by Kohonen [20]{21]. The former developed a neural network called Brain-State-in-
a-Box, and the latter developed Kohonen's self-organizing feature maps and learning vector
quantizor. The Hopfield network [10][1 1][12][47] is also a well-known associative network
today. Back-propagation networks are probably the most well-used neural network today.
Several people published the back-propagation technique independently. The earliest was
published by Werbos [50]. Adaptive-Resonance-Theory networks (ART) based on
biologically plausible models of learning was introduced by Grossberg [7] and developed by
Carpenter and Grossberg [6]. In contrast to feedforward networks, ART networks are much
more comprehensive set of neurophysiological phenomena. Bart Kosko has developed
several lines of research with his hetero-associative networks, which includes the

Bidirectional-Associative-Memory (BAM), the Fuzzy-Cognitive-Maps, and the Fuzzy-
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Associative-Memory [22][231[24][25](26]. Since McCulloch and Pitts publication,
significant progress has been made in the field of neural networks on many fronts, and many

publications have emerged which attracted a great deal of attention and funding for further

research.

1.4 Fuzzy Neural Networks

To emulate the capability of the human brain (learning, remembering, reasoning, intelligence,
perceiving, etc.) in a machine, the attempt to utilize fuzzy sets in the context of neural
networks began soon after the inception of the fuzzy set theory. The first ideas for developing
a hybrid architecture, to enhance computing capabilities of fuzzy sets by accepting
mechanisms of learning and using architectures of neural networks, were published by Wee
and Fu [49] in 1969. In their work, a class of fuzzy automata was formulated and a
nonsupervised learning scheme for automatic control and pattern recognition was proposed.
In 1975, S.C. Lee and E.T. Lee extended the McCulloch-Pitts model of a neuron to a fuzzy
neuron with a fuzzy activity rather than an all-or-none process [33]. An architecture of a fuzzy
neural network based on the McCulloch-Pitts architecture was proposed in which the
components were fuzzy neurons. In 1985, Keller and Hunt introduced a fuzzy perceptron
[17]. The proposed fuzzy perceptron was used in pattern recognition to determine linear
decision boundaries. Yamakawa and Tomoda described a simple fuzzy neuron model and
used it in a neural network architecture for character recognition [52]. They did not present a
specific learning algorithm for the network; however, Yamakawa and Furukawa described
later an example-based learning algorithm for membership functions of the fuzzy neuron [54].
The proposed algorithm was tested for recognition of hand-written characters. Pedrycz
studied a problem of learning in neural networks with max-min composition operations [41].
He indicated analogies between relational structures and a certain class of neural networks.
Takagi and Hayashi reported a formulation for determining fuzzy inference rules and a
method of fuzzy reasoning using neural network models [46]; a structure of a neural-network-

driven fuzzy reasoning system was given and two applications of this method were presented.

An Adaptive-Network-based Fuzzy Inference System (ANFIS), a fuzzy inference system
implemented in the framework of adaptive networks, was introduced by Jang [15]. The

ANFIS could construct an input-output mapping based on both human knowledge (fuzzy if-
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then rules) and stipulated input-output data pairs. He employed the ANFIS architecture to
model nonlinear functions, identify nonlinear components on-line in a control system, and
predict a chaotic time series. Implementation of conjunctive and disjunctive fuzzy logic rules
with neural networks was published by Keller and Tahani [18] in 1992. Kosko proposed a
fuzzy associative memory (FAM) which defines mappings between fuzzy sets [26]. FAM

used fuzzy matrices instead of fuzzy neurons to represent fuzzy associations.

Besides the activities reported above, some recently developed fuzzy neurons and fuzzy
neural networks have been found more attractive. Gupta and Knopf proposed a mathematical
model of a fuzzy neuron and neural network architecture for control application [8]. In the
proposed network each neuron represented a fuzzy inference rule. The neurons could lean
from experience by adapting the synaptic weighting functions. Pedrycz and Rocha
hypothesized the models of neurons based on lo gic-oriented processing mechanisms of fuzzy
sets [42]. Two broad classes of aggregative (named AND and OR neurons) and referential
neurons (such as matching, dominance, and inclusion neurons) have been presented.
Furthermore, learning procedure for basic logic neurons and various topologies of neural
networks have been discussed. Hirota and Pedrycz introduced a neural network-based model
of logical connectives [9]. The basic processing element of this network consists of two types
of OR and AND neurons structured into a three layer network. A supervised learning for the
OR/AND neuron and a realization of a pseudo median filter in which the OR/AND neurons
play an important role have been studied. Lin and Song proposed a fuzzy neural network with
a simple structure of three layers with different types of fuzzy neurons [35]. They evaluated
the fuzzy neural network in a simulation study of inverse kinematics of a two degrees of
freedom manipulator. Kwan and Cai defined a fuzzy neuron, introduced four types of fuzzy
neurons, and proposed a four-layer feedforward fuzzy neural network with its learning

algorithm [28]. They have applied the fuzzy neural network to recognize shifted and distorted

training patterns.

In this thesis, a generic model of a fuzzy neuron will be introduced as the basic element of our
fuzzy neural system. The generic fuzzy neuron, which is inspired by Gupta and Knopf’s fuzzy
neuron, is a generalization of the existing models of fuzzy neurons. The architecture of a five-
layer feedforward fuzzy neural network is proposed for motion estimation. We define seven

simplified types of fuzzy neurons to be employed in different layers of the proposed fuzzy
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neural network architecture. We also present and discuss simulation results performed on

synthetic images.
1.5 Overview

The thesis is organised into 7 chapters including the current introductory chapter. Chapter 2
summarizes some of the basic concepts of fuzzy set theory which will be needed in this thesis.
Chapter 3 provides an introduction to the field of neural networks and summarizes the
theoretical results concerning multilayer feedforward neural networks. A discussion of four
developed models of fuzzy neurons and fuzzy neural networks is given in Chapter 4. To our
knowledge, they are the most important models among existing fuzzy neural systems. Chapter
5 discusses the proposed generic fuzzy neuron and the fuzzy neural network architecture for
motion estimation. An algorithm for motion estimation is also presented in this chapter.
Chapter 6 discusses the simulation results. Finally, the concluding remarks and future

directions of this research are given in Chapter 7.



THE BASICS OF FUZZY SET THEORY

2.1 Introduction

Fuzzy set theory was introduced by L.A. Zadeh in his paper "Fuzzy Sets" published in 1965
[58] as a means for representing uncertainty. The type of uncertainty that this theory was
meant to handle has the type of imprecision and ambiguity which is prevalent in human
discourse and thought. The theory has now matured into a wide-ranging collection of
concepts and techniques for dealing with complex phenomena which do not lend themselves
to analysis by classical methods. The aim of this chapter is to summarize some of the basic
concepts of fuzzy set theory which will be needed in this thesis. The chapter is organised as
follows: First the idea of fuzzy sets is presented. Then basic operations with fuzzy sets are
explained. After that, the definition of fuzzy relations and fuzzy relational equations are
given. Next, the concepts of linguistic variables, fuzzy logic, and fuzzy approximate
reasoning are discussed. Finally, a brief review of fuzzy inference systems and their
components is provided. The contents of this chapter are based on the following publications:
[29](311[32][481[531[571[58][62]. The reader is referred to the mentioned publications where

exact definitions and more detailed explanations are provided.
2.2 Quantification of Ambiguity

Linguistic terms and numerical values are classified into three categories in accordance with
their meanings. Deterministic words, e.g., "male" and "female,” "dead" and "alive," have truth
values of 0 or 1 corresponding to NO or YES, respectively. In other words, if one is asked,

"Are you male?," "Are you alive?," then the answer can be made with a "YES" or "NO"
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statement. Exact numerical values, e.g., "exactly 25°C," "43g," etc., are in the same
category; that is they have truth values of O and 1. The deterministic words and numerical
values have neither flexibility nor intervals. They are characterized by a characteristic

function as shown in Figure 2.1(a). The word "exactly 15°C " means only one single point of

temperature at 15°C, thus, this type of term or value is called a singleton.

Even in the scientific analysis, when exact values are preferred, numerical intervals are
sometimes used to represent flexible values. For example, "The comfortable room
temperature for human beings is 20°C-30°C." The characteristic function representing a
numerical interval "20°C-30°C " is shown in Figure 2.1(b). Truth values for temperatures are
given by YES or NO in this case as well as the case of a singleton. This interval can be
regarded as a set of singletons. Thus, this type of deterministic interval is called a crisp set.

Crisp sets are also adopted to represent linguistic terms in knowledge in artificial intelligence.

Natural languages are used for easy and efficient communication in our life. Whereas
numerical values and deterministic linguistic terms used in artificial intelligence are well-
defined, the natural language is usually intuitive and includes some kind of uncertainty, called
ill-defined, e.g., "Cool it a little bit." This type of natural language is referred to as a fuzzy
linguistic term. The meaning of the fuzzy linguistic term is defined by a characteristic
function as shown in Figure 2.1(c). This function is specifically called a membership function,
because it indicates a grade of membership of each element in a fuzzy linguistic term. A
membership function exhibits a continuous curve from O to 1 or vice versa. For instance, the
fuzzy linguistic terms "cold,” "a little cool,” "cool," "warm," "hot," and "very hot" are

indicated in Figure 2.1(c).

'“"exactly 15°C" "2ooc__3ooc“ war;rﬂ
YES)LO— - - -y (YES)LO| - & e L.
] 1
! 1
0.4 \ 0. {0 0.
| "
NO) 0 L+ 1 5 NO)O ) | . 0l .
0 10 20 0 20 30 0 10 20 30 40
Temperature T(°C) Temperature T(°C) Temperature T(°C)
() ®) ©

Figure 2.1: (a) A singleton. (b) A crisp interval. (c) Fuzzy sets.
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2.3 Fuzzy Sets

Let X be a space of points (objects) which could be discrete or continuous. X is called the
universe of discourse and x represents the generic element of X.
Definition 2-1: A fuzzy set A in a universe of discourse X is characterized by a membership

function |, , which associates with each point in X a real number in the interval [0,1]
namely, p,: X —[0,1]. The value of |, (x) at x represents the "grade of membership" of
x in A . A fuzzy set may be viewed as a generalization of the concept of an ordinary set whose

membership function takes two values {0, 1}. Thus a fuzzy set A in X may be represented

as a set of ordered pairs of a generic element x and its grade of membership function
A= {(xp,(x):xe X} 2.1)
Definition 2-2: The support of a fuzzy set A, S (A) , is the crisp set
S(A) = {xeX:p, (x) >0} (2.2)
Definition 2-3: The crossover point is the element x in X at which
B (x) =05 (2.3)
Definition 2-4: A fuzzy singleton is a fuzzy set whose support is a single pointin X. If A is

a fuzzy singleton whose support is the point x, we write
A=W'x 2.4)

where [ is the grade of membership of x in A.

A fuzzy set A may be viewed as the union of its constituent singletons. On this basis, A may

be represented in the form
A= / 25
J ma(x)/x 2.5)
where the integral sign stands for the union of the fuzzy singletons |1, (x) /x.If A hasa finite
support {x,, X,, ..., X, }, then (2.5) may be replaced by
A= /X + U/ X4+ w,/x, (2.6)

or, more compactly
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n
A= Y u/x @)
i=1

in which p, is the grade of membership of x; in A . It should be noted that the "+" sign in (2.6)

denotes the union rather than the arithmetic sum.

Definition 2-5: A fuzzy set is empty if and only if its membership function is identically zero
on X.
Definition 2-6: The o -level set or o -cut of a fuzzy set A is a crisp subset of X and is denoted

by (Figure 2.2 shows a continuous case)

A, = {xe X:p, 2o} (2.8)

The "strong o.-level set" or "strong o, -cut" is denoted by

Ay = {xe X, >} 2.9)

Figure 2.2: An o.-level set.

Definition 2-7: A fuzzy set A is convex if and only if:
1, [y + (1=A)xp] 2min [y (x)), 1y ()] (2.10)
forall x, and x, in 2 and all A in [0,1]. Alternatively, a fuzzy set is convex if all ot-cuts are

convex. Figure 2.3 shows an example of a convex fuzzy set (a), and an example of a non-

convex fuzzy set (b).
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Ry (x) Hu (x)

(a) (b)

Figure 2.3: (a) A convex fuzzy set. (b) A non-convex fuzzy set.

Definition 2-8: A fuzzy set A is normal if and only if supremum of p, (x) over X is unity.

A fuzzy set is subnormal if it is not normal.
Definition 2-9: For a normal and convex fuzzy set, if o -cut is a closed interval, it is called a
fuzzy number. Figure 2.4 shows such fuzzy sets, which could be called "approximately 3" and

"approximately 7."

3

1 1
1 1
03f-cmmmm h-r -
1 1

1
1
1
1
=
1
3

]
8
Figure 2.4: Fuzzy numbers 3 and 7.

2.4 Operations With Fuzzy Sets

Let A and B be two fuzzy sets in X with membership functions [, and Q. respectively. The

set-theoretic operations with fuzzy sets are defined via their membership functions.
Definition 2-10: Two fuzzy sets A and B are equal, A = B, if and only if
By (x) = Up (x) forallxe X (2.11)

Definition 2-11: A is contained in B, A < B, if and only if
My (%) SHp (X) (2.12)

Definition 2-12: The complement of a fuzzy set A is denoted by A and its membership
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function is defined by
Iy () = 1=ty () (2.13)
Definition 2-13: The union of two fuzzy sets A and B, A U B, is the fuzzy set defined by the
following membership function
W p(¥) = max(p, (x),1g ()] (2.14)
Definition 2-14: The intersection of two fuzzy sets A and B, A N B, is the fuzzy set defined
by the following membership function
W, 5 () = min i, (x), k5 (0)] (2.15)
Definition 2-15: The algebraic sum of two fuzzy sets A and B, A + B, is the fuzzy set
defined by the following membership function
Wy, 5 () = iy () +1p () —Hy (1) - g (%) (2.16)
Definition 2-16: The algebraic product of two fuzzy sets A and B, A-B ,isthe fuzzy set
defined by the following membership function
My 5 () = (%) g () @.17)
Definition 2-17: The bounded sum of two fuzzy sets A and B, A® B, is the fuzzy set
defined by the following membership function
Wy op(x) = minll, iy () +iig (0)] (2.18)
Definition 2-18: The bounded difference of two fuzzy sets A and B, AOB ,is the fuzzy set
defined by the following membership function
Myop(®) = maxi0, p, (x) — g ()] (2.19)
Definition 2-19: The absolute difference of two fuzzy sets A and B, ABB, is the fuzzy set
defined by the following membership function
Mags () = | g (1) —Hp (D] (2.20)
Definition 2-20: The algebraic division of two fuzzy sets A and B, AJB, is the fuzzy set

defined by the following membership function
Hy (x) }
x) = miny1l, —— 2.21)
Hams ) { Hg (x)

Definition 2-21:If A, A,, ..., A, are fuzzy setsin X,, X,, ..., X,, respectively, the cartesian

product of Al,Az,...,A", AIXAZX...XA", is a fuzzy set in the product space
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X XX, X .. xX, with the following membership function:

Ha xA,x.. x4, (Xps Xy w00y X)) = MR [Hy, (x1)s My, (X)) eor My (x,)] (2.22)

A general class of aggregation operators for the intersection of fuzzy sets is called triangular
norms or t-norms. The min, cartesian product, and absolute difference operators considered
above belong to this class. They can be characterized as follows:

Definition 2-22: t-norms are two-valued functions from [0, 1] x [0, 1] into [0, 1] , which
satisfy the following conditions:

1-£(0,0) = 0;t(p, (x), 1) = (L (x)) = pa(x), %€ X (2.23)
2 1y (5), 1y (1)) (R (R), My () iF (g (3) SR () and g () <Hp (X)) (229)
3 £ (i (1), 1 (1) = (kg (x), 1y () (2.25)

4 t(p, (0,8 (Hg (), B (1)) = 1(2(ky (). Kp (x)); he(¥) (2.26)

Corresponding to the class of intersection operators, a general class of aggregation operators
for the union of fuzzy sets is called triangular conorms or s-norms (t-conorms). The max,
algebraic sum, and bounded sum belong to this class.

Definition 2-23: s-norms are two-placed functions s, which map from [0, 1] X [0, 1] into
[0, 1]. These properties are formulated with the following conditions:

-s(1,1) = 13s(uy (0,0 = s(O0,1y (x) =y (0, xeX (227)
2 5 (1, (1), g (1)) 5 (R (D), p () if (Ry (x) SH(®) and iy (x) SHp (1)) (2.28)
35 (1 (%), g (1)) = 5 (bg (1), 1y (3)) (2.29)

4 5 (1, (%), 5 (g (), B (0))) = s (5 (g (%), Hp (%)), e (%)) (2.30)
2.5 Fuzzy Relations

Ambiguous relationships such as "x and y are almost equal,” "x is much taller than y," and
"x and y look very simillar," are often topics of everyday conversation, however, expressing

{hiese kinds of ambiguous relationships-in-terms-of ordinary relations is very difficult. Fuzzy

relations are what makes it possible to express these ambiguous relationships.
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Definition 2-24: Fuzzy relation R from set X to set Y is a fuzzy set in the direct product
XxY = {(xy) :xe X,ye Y}, and is characterized by the following membership

function:

pe: XXY—[01]. When X = Y, R is known as a fuzzy relationon X. As a generalization
of fuzzy relations, the n-ary fuzzy relation R in X; X X, X...x X, isafuzzy set expressed as:
R = { ((xy;xy e X,) s B (X %o, v X)) (X, Xg, o X,) € X XX, X xX,} (231)

Definition 2-25: A fuzzy relation R in X X Y can be expressed by an m X n matrix called a

fuzzy matrix, M = [m‘.j], where m;; has a value in the interval [0, 1] . The m; indicates
Hp (X yj) in the matrix.

Definition 2-26: A fuzzy graph expresses a fuzzy relation R in XX Y, in a graph. For each

Hp (X yj) we make x; and y, vertices and add the grade [p (x;, yj) to the arc from x; to y;.

Definition 2-27: If R is fuzzy relation in Xx Y and § is fuzzy relation in YX Z, the
composition of R and §, RoS , is a fuzzy relationin X X Z defined as follows

RoS © s (.2) = max {min {11 (6.7 s (> }} (2.32)

Definition 2-28: If R is fuzzy relationin X X Y and S is fuzzy relation in Y X Z, the max-*

composition of R and §, RgS ,isa fuzzy relationin X X Z defined as follows
R3S € Hgos (%, z) = ey {pg (x,y) *Kg (¥, 2) } (2.33)

where * could be any operator in class of triangular norms, namely, minimum, cartesian
product, or bounded difference.

Definition 2-29: If R is fuzzy relation in X x Y and § is fuzzy relation in Y X Z, the *-*

composition of R and §, RES ,is a fuzzy relation in X X Z defined as follows

R3S o uts(50) = 3 () * s (0,2)) (234)

where * could be any operator in class of triangular norms or triangular conorms.

2.6 Fuzzy Relational Equations

As described in the previous section, if we let A be a fuzzy set in X and R be a fuzzy relation
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in X x Y, the composition of A and R, AoR, is defined as
L) = de {min{p, (x) Mg (xy)}} (2.35)

and is a fuzzy set in Y which is called B. In other words, B = AoR. If we view A as the

fuzzy input, B as the fuzzy output, and R as the fuzzy system, we can think of B = AoR as
expressing the input-output relation of a system with fuzzy input and fuzzy output. If the
fuzzy input A and fuzzy relation R are given, the fuzzy output B can be founded by taking

the composition of A and R. The equation B = AoR is called a fuzzy relational equation.

2.7 Linguistic Variables

A linguistic variable can be regarded as a variable whose value is not numbers but words or
sentences in a natural or artificial language.

Definition 2-30: A linguistic variable is characterized by a quintuple (x, T (x), U, G, M) in
which x is the name of the variable; T (x) denotes the term set of x, that is, the set of names
of linguistic variables of x, with each value being a fuzzy variable denoted generically by x
and ranging over a universe of discourse U which is associated with the base variable u; G
is a syntactic rule for generating the name, X, of values of x; and M is a semantic rule for
associating with each X its meaning, M (X) , whichis a fuzzy subsetof U. A particular X,

that is a name generated by G, is called a rerm.

For instance, if "temperature" is interpreted as a lin guistic variable, then its term set could be
T (temperature) = {cold, a little cold, cool, warm, hot, very hot} where each term in

T (temperature) is characterized by a fuzzy set in a universe of discourse U= [0, 100].
These terms can be characterized as fuzzy sets whose membership functions are shown in

Figure 2.1(c).
2.8 Fuzzy Logic and Approximate Reasoning

Logics as bases for reasoning camr be-distinguished-by-their-three-context-independent items:
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truth values, operators, and tautologies (reasoning procedure).

In Boolean logic, truth values can be true or false and by means of these truth values the
operators are defined via truth tables. In multivalued logic, truth values can be true or false or
have an intermediate value, which may be an element of a finite or infinite truth value set 7.
The uniqueness of interpretation of truth tables, which is very convenient in Boolean logic,
disappears immediately because many truth tables in multivalued logic are similar. In fuzzy
logic, the truth values are allowed to range over the fuzzy subsets of T'. Whereas operators in
Boolean logic and multivalued logic are normally defined by the tabulation of truth values in
truth tables, in fuzzy logic, the tabulation of the truth values for operators is not possible
because the number of truth values is infinite. However, truth values can be tabulated in terms
of the linguistic variable "Truth" for a finite number of terms, such as true, not true, very true,

false, more or less true, an so on.

In traditional logic the main tools of reasoning are tautologies, for instance, the modus ponens,

that is
Premise A is true
Implication | If A then B

Conclusion } B is true

A and B are statements or propositions (crisply defined) and the B in the conditional
statement is identical to the B of the conclusion. Two generalizations of the modus ponens are
1- To allow statements that are characterized by fuzzy sets.

2- To relax (slightly) the identity of the "Bs" in the implication and the conclusion.

In approximate reasoning there are two important fuzzy implication inference rules named the

generalized modus ponens (GMP) and the generalized modus tollens (GMT):

Premise xis A' Premise yis B'
Implication | If x is A thenyis B Implication | If xis A thenyis B

(GMP) (GMT)
Conclusion || yis B’ Conclusion I x is A’

The fuzzy implication inference is based on the compositional rule of inference for

approximate reasoning suggested by Zadeh in 1973 [59]. Here fuzzy sets A, A’, B, B' are
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introduced via linguistic variables x, y instead of crisp sets in the traditional logic. The GMP,
which reduces to modus ponens when A = A' and B = B', is closely related to the forward
data-driven inference which is particularly used in fuzzy logic control. The GMT, which
reduces to modus tollens, when A'= notA and B'= not B, is closely related to the
backward goal-driven inference which is commonly used in expert systems, especially in the
area of medical diagnosis.

Definition 2-31: Let R(x), R(x,y),and R(y), xe X,ye ¥, be fuzzy relations in X,
Xx Y, and Y respectively. Let A and B denote particular fuzzy sets in X and Xx Y. The
compositional rule of inference asserts, that the solution of the relational assignment

equations R(x) = A and R(x,y) = B is given by R(y) = AoB, where AoB is the

composition of A and B. If the max-* composition is used, R(y)= AgB, this represents

max-* compositional rule of inference.
2.9 Fuzzy Inference Systems

Fuzzy inference systems are also known as fuzzy-rule-based systems, fuzzy associative
memories, or fuzzy controllers when used as controllers. As shown in Figure 2.5 a fuzzy
inference system consists of five functional blocks: fuzzification interface, rule base,
database, decision-making unit, and defuzzification interface. Usually the rule base and the
data base are jointly referred to as the knowledge base. The above components are discussed

in more detail in the following.

knowledge base

ot

fuzzification defuzzification
interface interface

decision-making unit

(fuzzy) (fuzzy)

Figure 2.5: Fuzzy inference system.
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2. 9.1 The Fuzzification Interface

Fuzzification is related to the vagueness and imprecision in a natural language. It is a
subjective valuation which transforms a measurement into a valuation of a subjective value,
and hence it could be defined as a mapping from an observed input space to fuzzy sets in a

certain universe of discourse. A fuzzification operator conceptually converts a crisp value into

a fuzzy singleton. It interprets an input x, as a fuzzy set A whose membership function

U, (x) is zero except at the point x,, at which p, (x,) is one.

2.9.2 The Rule Base

In a fuzzy interface system, the dynamic behaviour is characterized by a set of linguistic
description rules based on expert knowledge. The expert knowledge is usually of the form

IF a set of conditions are satisfied THEN a set of consequences can be inferred  (2.36)
Since the antecedents and the consequences of these if-then rules are associated with fuzzy
concepts (linguistic terms), they are called "fuzzy rules." Several linguistic variables might be
involved in the antecedents (multi-input) and the conclusions (multi-output) of these rules.
Multi-input-multi-output fuzzy systems are referred to as MIMO fuzzy systems and multi-
input-single-output as MISO fuzzy systems. The rule base for a MISO fuzzy system could
have the form:

rule 1:if x is A, and y is B, then z is Cy,

rule 2 :if x is A, and y is B, then z is C,,

rulen:if x isA and y is B, then z is C,,. 2.37)

where x, y, and z are linguistic variables representing two input variables and one output

variable. A;, B;, and C; are linguistic terms of the linguistic variables x, y, and z in the

universe of discourse U, V, and W, respectively, with i = 1,2,...,n; and an implicit

sentence connective also links the rules into a rule base.

A fuzzy rule, such as "if (x is A; and y is B;) then (z is C;)," is implemented by a fuzzy
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implication (fuzzy relation) R; and is defined as follows:
e, = (A and B> C) (v, w) = [iy (0) andpy )] e () 238)
where (A, and B)) isfuzzy set A; X B; in UX V;R, = (A;and B;) — C, isafuzzy relation

in Ux Vx W; and — denotes a fuzzy implication function.
2.9.3 The Database

The database defines the membership functions of the fuzzy sets (linguistic terms) used in the
fuzzy rules. There are two methods used for defining fuzzy sets depending on whether the

universe of discourse is discrete or continuous: i) numerical, ii) functional.

In the former, the grade of membership function of a fuzzy set is represented as a vector or
numbers whose dimension depends on the degree of discretization. In the latter, the
membership function of a fuzzy set is described in a functional form, typically a bell-shaped
(gaussian) function, triangle-shaped function, or trapezoid-shaped function. The functional

definition can readily be adapted to a change in the normalization of a universe.
2.9.4 The Decision-Making Logic

The decision making logic is the kernel of a fuzzy inference system. It infers the output of the
fuzzy inference system (in terms of fuzzy sets) on the basis of fuzzified input and the
knowledge base. Several types of fuzzy reasoning (inference operations upon fuzzy rules)
have been proposed. Depending on the types of fuzzy reasoning and fuzzy if-then rules
employed, most inference systems can be classified into four types described in the following

(see Figure 2.6). For simplicity assume that we have two fuzzy rules as follows:

rule 1:if x is A; and y is B, then z is C,

rule 2:if x is A, and y is B, then z is C,, (2.39)

The inputs are usually measured by sensors and are crisp. In some cases it may be expedient

to convert the input data into fuzzy sets. In general, however, a crisp value may be treated as

a fuzzy singleton. Then the firing strengths o, and &, of the first and second rules may be

expressed as
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oy min (HAI (xo) ) l»lgl (y()) ) (2.40)

o, = min (1, (%0), Kz, (V) (2.41)
where [ A (x,) and p B, (yo) play the role of the degrees of partial match between the user-

supplied data and the data in the rule base. These relations play a central role in the four types

of fuzzy reasoning described in the following:

premises consequences
type 1 type 2 type 3 type 4
Hy, a Bz He, Hc, a He
1 1 1 1 1+
T:: TA / 2 =f1(x07)’o)
»U 0 0 wolidl w0 1 > W
Ha, a Hi  Hc,
1 1} l‘ 11_
\ / =1 (%) ¥p)
0 »U O wo —>W
maximum maximum  weighted weighted
average average
"° N
02y + 0,2y
7 o +o
j
w
Figure 2.6: Diagrammatic representation of fuzzy reasonings.
1) Type 1

Fuzzy reasoning of this type is associated with the use of minimum operation rule R_ as a
fuzzy implication function. In this mode of reasoning the ith rule leads to the decision

He (w) = min (o ie, (W) (2.42)
which implies that the membership function [ of the inferred consequences C is pointwise

given by
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He (w) = max (ucl': ucz') = max ([min ((11, ucl (w))], [min (U~2’ uCZ (w))1)(243)

2) Type 2
Fuzzy reasoning of this type is based on the use of product operation rule as a fuzzy

implication function. In this mode of reasoning the ith rule leads to the decision
Mo, (W) = 0 B, (W) (2.44)
Consequently, the membership function i of the inferred consequence C is pointwise given

by
he(w) = max (e, He) = max ([0 - He, (w1, [oy . he, (W) (2.45)

3) Type 3
Fuzzy reasoning of this type is a simplified method based on the fuzzy reasoning of the first

type in which the membership functions of fuzzy sets A;, B;, and C; are monotonic. The
result inferred from the first rule is o, such that o, = C, (z;)- The result inferred by from

the second rule is o, such that o, = C,(z;)- Correspondingly, a crisp action may be

expressed as the weighted combination

0,2, + 0,2
g = 22 (2.46)
a, +0,
4) Type 4
In this type of fuzzy reasoning, the ith rule is the form of
rule i:if (x is A;,..., y i8 B; Ythen z = f;(x, ..., y) (2.47)
where x, ...,y and z are linguistic variables representing process state variables. 4;, ..., B,
are linguistic terms of the linguistic variables x, ..., y in the universe of discourse U, ..., V,

respectively, with i = 1,2, ...,n; and f; is a function of the variables x, ..., y defined in the
input subspaces. For simplicity, assume that we have two fuzzy control rules as follows:
rule 1:if x isA; and y is B then z = fixy),
rule 2: if x is A, and y is B, then z = o (xy) . (2.48)
The inferred values from the rules are o, f; (x4, yo) and o, f, (Xg ¥o)- Correspondingly, a

erisp-action-is-given-by— (2.49)
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L = O GoYo) +0afs (X0 Vo) (2.50)
0o~ o, +0, .

2.9.5 The Defuzzification Interface

Basically, defuzzification maps output fuzzy sets defined over an output universe of discourse
to crisp outputs. It is employed because in many practical applications a crisp output is
required. A defuzzification strategy is aimed at producing the nonfuzzy output that best
represents the possibility distribution of an inferred fuzzy output. At present, the commonly

used strategies may be described as the following:

1) The Max Criterion Method
The max criterion method produces the point at which the possibility distribution of the fuzzy

output reaches a maximum value.

2) The Mean of Maximum Method
The mean of maximum generates an output which represents the mean value of all local
inferred fuzzy outputs whose membership functions reach the maximum. In the case of a

discrete universe, the inferred fuzzy output may be expressed as

1
W,
2= 3, @2.51)
=

where w; is the support value at which the membership function reaches the maximum value

H, (w j) , and [ is the number of such support values.

3) The Centre of Area Method

The centre of area generates the centre of gravity of the possibility distribution of the inferred

fuzzy output. In the case of a discrete universe, this method yields

2 H, (Wj) w;

zg = E—r (2.52)
Y B, (w)
j=-t

where n is the number of quantization levels of the output.
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Figure 2.7 shows a graphical interpretation of various defuzzification strategies.

71

MCM CAM MMM

Figure 2.7: Diagrammatic representation of various defuzzification strategies.

2.10 Summary

In this chapter, some basic concepts of fuzzy set theory, which are required for understanding
the contents of this thesis, were summarized. These concepts will be employed to build the
proposed model of the generic fuzzy neuron and also the architecture of the fuzzy neural
network. The basic operations with fuzzy sets, fuzzy relations, fuzzy relational equations,
linguistic variables, and fuzzy approximate reasoning are among the topics which will be

utilized in the following chapters.
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FUNDAMENTALS OF ARTIFICIAL NEURAL NETWORKS

3.1 Introduction

The biologically inspired artificial neural network models attempt to achieve good
performance via dense interconnection of simple computational elements. They have a good
potential in areas where many hypotheses are pursued in parallel and high computation rates
are required. The potential benefits of neural networks extend beyond the high computation
rates provided by massive parallelism. They typically provide a greater degree of robustness
or fault tolerance than sequential computers because there are many more processing nodes,
each with primarily local connections. Moreover, they can modify their behaviour in response

to their environment, i.e., they can learn from environment.

This chapter provides an introduction to the field of neural networks and summarizes the
theoretical results concerning multilayer feedforward neural networks. It is organised as
follows: First a review of the biological neural networks is presented. Then the artificial
neuron model is explained. Next, the architecture of the multilayer feedforward neural
network is described. Finally, the backpropagation leaming rule is discussed. The contents of

this chapter are based on the following publications: [4][8][13][16] [36][63].

3.2 The Biological Prototype

Artificial neural networks have undoubtedly been biologically inspired, but the close

correspondence between them and real neural systems is still rather weak. Vast discrepancies
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exist between both the architectures and capabilities of artificial and natural neural networks.
Knowledge about actual brain functions is very limited, so there is little to guide those who

would try to emulate them.

The human brain is only a metaphor for a wide variety of neural network configurations that

have been developed. It consists of approximately 10! computing elements called neurons.
Although these neurons can be classified into perhaps as many as 10000 different types, they
share many common features. These neurons with basically similar properties are able to

produce very different actions because of precise connections with each other and with

sensory receptors and muscles. Each neuron is connected to about 10* other neurons. A
typical neuron has four morphologically defined regions: the cell body, which is also called
soma, dendrites, axon, and synaptic terminals. The cell body is the metabolic centre of the
neuron. It usually gives rise to two types of processes called the dendrites and the axon.
Dendrites form a dendritic tree, which is a very fine bush of thin fibres around the neuron’s
body. Dendrites receive information from neurons through axons - long fibres that serve as
transmission lines. An axon is a long cylindrical connection that carries impulses from the
neuron. The end part of an axon splits into a fine arborization. Each branch of the axon
terminates in a small endbulb almost touching the dendrites of neighbouring neurons. The
axon-dendrite contact organ is called synapse. The synapse is where the neuron introduces its
signal to the neighbouring neuron. The signals reaching a synapse and received by dendrites
are in the form of electrical impulses. The interneural transmission is sometimes electrical but

is usually effected by the release of chemical transmitters at the synapse.

The neuron is able to respond to the total of its inputs aggregated within a short time interval
called the period of latent summation. If the total potential of the neuron’s membrane reaches
a certain level, it fires. The membrane can be considered as a shell, which aggregates the

magnitude of the incoming signals over some duration.

Incoming impulses can be excitatory if they cause the firing, or inhibitory if they prevent the
firing of the response. A more precise condition for firing is that the excitation should exceed
the inhibition by the amount called the threshold of the neuron. Since a synaptic connection
causes the excitation or inhibition of the receiving neuron, it is practical to assign positive and

negative unity weight values to such connections respectively. The neuron fires when the total
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input impulses exceeds the threshold value during the latent summation period.

After carrying a pulse, an axon is in a state of complete non-excitability for a certain time
called refractory period. For this time interval the nerve does not conduct any signals.
Therefore, we may divide the time scale into consecutive intervals, each equal to the length
of the refractory period. This enables a discrete-time description of the neuron’s performance
in terms of their states at discrete time instance. The time units for modelling biological

neurons can be taken to be of the order of a millisecond.
3.3 Learning in Biological Systems

Learning is acquired when modifications are made to the effective coupling between one cell
and another, at the synaptic junction. There is no direct linkage across the junction; rather, it
is a temporary chemical linkage. The synapse releases chemical materials called
neurotransmitters when its potential is raised sufficiently by the action potential. It may take
the arrival of more than one action potential before the synapse is triggered. The
neurotransmitters that are released by the synapse diffuse across the gap, and chemically
activate gates on the dendrites, which, when open, allow charged ions to flow. It is this flow
of ions that alters the dendric potential, and provides a voltage pulse on the dendrite, which is
the conducted along into the next neuron. At the synaptic junction, the number of gates
opened on the dendrite depends on the number of neurotransmitters released. This adjustment

of coupling so as to favourably reinforce good connections is an important feature of neural

network models.
3.4 The Artificial Neuron Model

The artificial neuron model designed to mimic the characteristics of the biological neuron is
shown in Figure 3.1. Each neuron model consists of a processing element with synaptic input
connections and a simple output. The neuron fires an output response when the aggregate

activity of all inputs exceeds some predefined threshold level. From a structural perspective,

as shown in Figure 3.1, the response activity Y of a single neuron at location j can be

expressed as
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N
External Inputs

Figure 3.1: The basic structure of the artificial neuron.

y; = f[u;- 8] @3.1)
where the function fj [.] is often referred to as a somatic activation function that describes

the degree to which the jth neuron is active or firing an output response. Its domain is the set
of activation values of the neuron model defined as

where u ; is the total aggregate input activity incident on the cell body of the neuron and 6 ;

is the threshold level for this neuron. This aggregate input activity may be expressed as
N
u; = A;l d;; (3.3)
1=

where A is some aggregation operator and N is the number of dendritic inputs to the neuron

j . Each dendritic input 4, j to the neural cell is a transformed version of an external input x; .

This transformation is the result of a weighting function w, 7 (.) used to describe the synaptic

terminal between the axon of a transmitting neuron and the dendrite of the receiving neuron.

In terms of the synapse, x; is the synaptic input and 4, j is the corresponding synaptic output.
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The synaptic output, or dendritic input to the jth neural cell from the ith neuron, can be

written as

d; = wy(x) (3.4)

The general neuron model, shown in Figure 3.1 and described with expressions (3.1)-(3.4) is

commonly used in the neural network literature. However, different artificial neural network

classes make use of different definitions of f(net). Also, even within the same class of
networks, the neurons are sometimes considered to perform differently during different

phases of network operation. Observe from (3.1) that the neuron as a processing node
performs the operation of aggregation of its weighted inputs to obtain net. Subsequently, it
performs the non-linear operation f(net) through its activation function. Typical activation
functions are the hyperbolic tangent

1 —exp(-Anet) _ 2 B
1 + exp(-Anet) ~ 1 +exp(-Anet) 1 (3.5)

f(net) =

and sign function
{+1, (net=0)
f(net) = sgn (net) = _1, (net<0) (3.6)
where A >0 determines the steepness of the continuous function f(net) near net = 0. As

A — oo, the limit of the continuous function becomes the sgn (net) function defined in (3.6).
Activation functions (3.5) and (3.6) are called bipolar continuous and bipolar binary

functions, respectively.

By shifting and scaling the bipolar activation functions defined by (3.5) and (3.6), unipolar

continuous and unipolar binary activation functions can be obtained, respectively, as

_ 1
ilzes) = 1 + exp(-Anet) 3.7)

and

+1, (net=z0)

0, (net<0) (38)

f(net) = sgn (net) = {

The unipolar binary function is the limit of f (net) in (3.7) when A — oo. The soft-limiting
activation functions (3.5) and (3.7) are often called sigmoidal activation function, as opposed

to the hard-limiting activation functions given in (3.6) and (3.8).
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One of the simplest artificial neuron models is the Perceptron. In terms of Equation (3.1) this

model can be expressed as

N
y; = sgn[z w,.jx,.—ej] (3.9)

i=1
where the activation function is a hard-limiting function, the aggregation operator is the

summation of weighted inputs, and the threshold 6 ; is a bias value. In this model the synaptic

outputs,w, x;, are assumed to be linearly proportional to the external input. The

corresponding synaptic weights, w;j, may be either positive (excitatory) or negative
(inhibitory) real numbers. Both the synaptic weights and the threshold level are assigned to
the neuron during the learning procedure. For this simplistic model all external inputs and the

resultant output response are assumed to be bipolar binary.
3.5 Artificial Neural networks

The artificial neural network can be defined as an interconnection of neurons, such that
neuron outputs are connected, through weights, to all other neurons including themselves.
The network models are partitioned into two basic categories: static networks and dynamic
networks. Static networks are characterized by node equations that are memoryless, that is,
their output is a function only of the current input, not past or future inputs or outputs.
Dynamic networks, on the other hand, are systems with memory. Their node equations are
typically described by differential or difference equations. In the following, the multilayer
feedforward network which is a static network will be only discussed because it is the type of
neural network used to realize the fuzzy neural systems will be described in the next chapter

and also our proposed fuzzy neural system.

3.6 Multilayer Feedforward Neural Networks

The multilayer feedforward neural network is a static network consists of an input layer, an
output layer, and one or more layers of nodes between the input layer and the output layers.
Layers with outputs not visible to the external observer are called hidden layers and their units

are called hidden unifs. Often the Tiodes between adjacent layers-are-fully-connected; i€
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every node in layer [ is connected to every node in layer [+ 1. An L-layer feedforward

network with n inputs, m outputs and L —2 layers of hidden units is shown in Figure 3.2.

2nd hidden
Layer

st hidden
Layer

Figure 3.2: The multilayer feedforward neural network topology.

The input layer neurons simply distribute the signal along multiple paths to hidden layer
neurons. A weight is associated with a connection between Jayers. All connections and data
flow in the network go from the input to the output. This is why this network is called
feedforward network. There are no feedback loops, even from a unit to itself, in a feedforward
network. The way that total input to a neuron is calculated and the way that a neuron calculates
its output as a function of its inputs depends on the types of neurons being used in the network.

In the next section, a learning rule for the multilayer feedforward neural network is presented.
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3.7 The Generalised Delta Learning Rule

The learning rule for the multilayer feedforward neural network is called the generalised delta
rule or backpropagation rule. It provides the method for adjusting the weights in the network.
When we show the untrained network an input pattern, it will produce a random output. We
need to define an error function that represents the difference between the network’s current
output and the correct output that we want it to produce. Because we need to know the
"correct” output, this type of learning is known as supervised learning. In order to learn
successfully we want to make the output of the network approach the desired output, that is,
we want to continually reduce the value of this error function. This is achieved by adjusting
the weights on the links between the units. The generalised delta rule does this by calculating
the value of the error function for that particular input, and then back-propagating the error
from one layer to the previous one. Each unit in the network has its weights adjusted so that
it reduces the value of the error function; for units on the output layer, their output and the
desired output are known, so adjusting the weights is fairly simple, but for units in the middle
layers, the adjusting is not so obvious. The mathematics show that the weights for a particular
node should be adjusted in direct proportion to the error in the units to which it is connected.

In this way the error function is reduced and the network learns.

Before we discuss the learning algorithm, let us introduce the following notations: (notation

refers to a set of symbols)

Notation Meaning

n number of input nodes

m number of output nodes

)4 training pattern index

X; ith component of input vector
L ith component of target vector
¥; ith component of output vector

Xp = X5 Xgy oo Xp pth training pattern

T, =ttt pth target output

14 m
Yp = Y4 Yo o+0s P pth actual output

! . . . :
W ij weight which connects the ith node in

layer -1 to the jth node in layer /
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N, number of nodes in layer [
L number of layers

P number of training patterns
E, error function for pattern p

Let us define the error function to be proportional to the square of the difference between the

actual and desired output, for all the patterns to be learnt:

m

1 2
E, = 52 (25— Ypy) (3.10)
)

The % makes the mathematics simpler and brings this specific error function into line with

other similar measures. The activation of each unit j, for pattern p, can be written as
net,; = Zwijypi (3.11)
1

i.e. simply the weighted sum, as in the single-layer perceptron. The output from each unit j

is the threshold function f; acting on the weighted sum:

Yp; = fi(nety) (3.12)
We can write

oE aEp anetpj

aw:. - onet,; ow;; (3.13)
by the chain rule. Looking at the second term in (3.13), and substituting in (3.11)
onet._. ow,
oWy . : :

since %—; = 0 except when k = i it equals 1. The change in error can be defined as a
function of the change in the net inputs to a unit as

- aif‘: = Spj (3.15)

pj
and therefore (3.13) becomes
oE
- —F (3.16)

—— 'y i
awU pr’p
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Decreasing the value of E, means making the weight changes proportional to 8pjyp ;s 1€
Aw, = nSpjypi (3.17)
where 7 is a positive constant. To be able to decrease £, we need to know what Spj is for

each unit. Using (3.15) and the chain rule, we can write

oE BE 0
5pj = — é—-’L = - = 8 Do (3.18)
net,; Ypionety;
Consider the second term, and from (3.12)
oy, ;
pj = .' .
anetpj f] (netp]) 3.19)

Now consider the first term in (3.18). From (3.10), we can differentiate Ep with respect to

Ypj* giving
a& =—(t.,-y. ) (3.20)
aypj pj P
Therefore
8y = fj (nety)) (1= Yp)) @3.21)

This is useful for the output units, since the target and output are both available, but not for
the hidden units, since their targets are not known. Thus, if unit j is not an output unit, we can
write
aE anet
N 2 2 2 Vi = -28 Mik (3.22)
aypj Bnet ok apr ane aypj k7 pt e PET

i

using (3.11) and (3.15), and noticing that the sum drops out since the partial differential is

non-zero for only one value, just as in (3.14). Substituting (3.22) in (3.18), we get finally
Spj = fj' (netpj) §5pkwjk (3.23)

This equation represents the change in the error function, with respect to the weights in the

network. This provides a method for changing the error function so as to be sure of reducing
it. The function is proportional to the errors 5pk in subsequent units, so the error has to be
calculated in the output units first and then passed back through the network to the earlier

units to allow them to alter their connection weights. It is the passing back of this error value

that leads to the networks being referred to as back-propagation networks. Equations (3.21)
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and (3.23) together define how the multilayer network could be trained.

Using the sigmoid function as the non-linear threshold function makes the implementation of

the back-propagation system much easier since it has a simple derivative. Given that the

output of a unit, Ypi is given by

|
Yy = f(net) = ———= (3.24)
1+e

the derivative with respect to the unit is given by

-k net

ke

f'(ner) = = k f(net) (1-f(net)) = ky,;(1-yp,;)
(1+e_k el jz PJ PJ

The derivative is therefore a simple function of the outputs.

(3.25)

3.8 Summary

In this chapter, an introduction to the field of artificial neural networks was presented. The
emphasis was on multilayer feedforward neural network architectures, which form the basis
of fuzzy neural systems introduced in this thesis. In the next chapter we will describe four

developed fuzzy neural systems which have feedforward multilayer architectures.

The generalised delta learning rule for multilayer feedforward neural networks was also
described in this chapter. This was done because most of the researchers who have addressed
learning algorithms for their proposed fuzzy neural systems, have employed leamning rules
which are mostly inspired by the generalised delta rule. In the next chapter we will present
some of these approaches. Although we will not present a learning algorithm for the proposed
fuzzy neural network in this thesis, we will employ a generalised-delta-rule based algorithm

for training our network in future work.
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FUZZY NEURAL SYSTEMS

4.1 Introduction

Fuzzy neural systems result from the fusion of fuzzy set theory and neural networks. Thus,
the advantages of both approaches are merged. Research on fuzzy neural systems has been
pursued from two different directions. Some researchers have utilized conventional neuron
models to develop neural networks which are functionally equivalent to fuzzy inference
systems [15][18][26][46]. These types of neural networks are trained using the learning rules
which are mostly derived from the backpropagation algorithm. Other researchers, on the other
hand, have developed neurons with fuzzy functions and fuzzy computations. They have
applied logical equations or if-then rules with either fuzzy or crisp input values to describe
fuzzy neurons, and replaced the conventional neurons with these fuzzy neurons in a neural
network [8][91[281[331(35][411{42][52][54]. Most of those who have addressed learning
algorithms, employed the learning rules which are mostly inspired by the backpropagation

algorithm. This thesis deals with the second group of fuzzy neural systems.

In this chapter, a brief survey of four different models of fuzzy neurons, related fuzzy neural
networks and their associated learning algorithms are presented. These four models have been
found more attractive than others. They belong to the second category of fuzzy neural
systems. The Gupta-Knopf fuzzy neuron is the most powerful fuzzy neuron among the four
models described in this chapter. The generic fuzzy neuron which will be introduced in the

next chapter is inspired by this fuzzy neuron.
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4.2 Gupta and Knopf's Fuzzy Neural Network

A mathematical model for an adaptive fuzzy neuron and a fuzzy neural network has been
presented by Gupta and Knopf [8]. A brief review of the proposed fuzzy neuron and fuzzy
neural network is given here.

Xy Synaptic Weighting

Somatic Aggregation

Response Activity
f] (U;) *Y)

Dendritic Inputs Somatic Activation

XN
External Inputs

Figure 4.1: The Gupta-Knopf fuzzy neuron.
4.2.1 Fuzzy Neuron
The Gupta-Knopf fuzzy neuron is shown in Figure 4.1. For the fuzzy neuron all states of

activity are given in terms of fuzzy sets with relative graded memberships distributed over the

interval [0, 1]. These neural states of activity are:

Synaptic Inputs: x, = {o;, uxi(ai) }, Vi=12,..,N (41)

Synaptic Outputs (Somatic Inputs): dij = {[Sj, My (Bj) Y, Vi=12,...,.M(42)

Aggregated Value of the Somatic Inputs: u; = {B,u, (Bj) Y, Vi=12,...,M43)
jth Neuron Output: yj = {B. uy'(ﬁj) Y, Vi=12,...,M(@44)

where N-is-the total number of dendritic inputs to the j th neuron and M is the total number

of neurons in the neural network architecture. In linguistic terms, each fuzzy neuron
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represents a single concept such as vsmall," "big," etc. The output response of the neuron y;

is a fuzzy set representing the degree to which the applied external inputs are able to generate

this concept.

The synaptic weighting function which transforms a synaptic input x; into a synaptic output
d i for the j th neuron is defined by the fuzzy relation between these two fuzzy sets. Therefore,
the synaptic weighting function is written as

Wy = xxd; (4.5)

where X is the cartesian product of the fuzzy sets x; and d, i The definition for this synaptic

weighting function is illustrated in Figure 4.2,

Figure 4.2: The relationship between the synaptic input x; and the corresponding output dj;.

The synaptic outputs, d; j» may be classified as either excitatory or inhibitory. 5.’,’ is defined

as the dendritic input received directly by the soma, where

d; i if the dendrite transmits an excitatory input
8,‘j =V [d, ] = ) . . K . (4.6)
J N(d;) if the dendrite transmits an inhibitory input
The inhibitory inputs undergo a fuzzy logic negation which is defined as
N(udu(Bj)) =1 -lldl,j(ﬁj) 4.7)

The aggregation operator is assumed to be a t-norm operator

N
i=1
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No threshold operation is employed by the fuzzy neuron model. The decision function f[.]
is defined as a mapping operator that transforms the membership of the aggregate fuzzy set

u; into the fuzzy set for the neuron response y;. The role of this modification is to enhance,

as shown in Figure 4.3, or diminish the degree to which the external inputs give rise to the
concept represented by the neuron j. The modified output becomes an external input to the
neighbouring neurons. Thus, a general expression for the response of the j th fuzzy neuron

may be written as
N
v =l =f| T 8 4.9)
i=1

Each dendritic input Gij is given by
8,-1- = \V[du] = \V[xio WU] (410)

where "o " is the compositional operator.

My, (B,) uyj(B,)
1 1
= 1) =P
0 B; 0 B;

Figure 4.3: The mapping operator fj [.] that modifies the response of the fuzzy neuron.

4.2.2 The Architecture of the Fuzzy Neural Network

The somatic operation of a fuzzy neuron provides the inference mechanism in this network.
The computational structure of a fuzzy neuron represents a single fuzzy inference rule,
Equations (4.9) and (4.10), which may be stated linguistically as

IFSUAND82].AND ...ANDSNJ.'I'HENyj (4.11)

where each fuzzy input is given by compositional operation at the synapse as described by

Equation (4.10).
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. . . . * .
The inference procedure associated with an unknown input x; arises at the synapse such that

the new synaptic output is given by

dj; = xow, (4.12)
or in terms of the membership functions Equation (4.12) is rewritten as follows
* . *
g, (B) = max [mm [ (@), b, (e, B) }] (4.13)

The resultant response of the fuzzy neuron to N inputs is given by Equations (4.9) and (4.10).

A practical fuzzy inference system requires a set of M rules. This inference system may be

achieved by three contiguous layers of fuzzy neurons. The first layer consists of M fuzzy
neuron, each representing one of the rules in the set. The output of each fuzzy neuron becomes

an external input to a single neuron in the second layer. Since the output of each neuron is
over the same universe, B, the responses from these M fuzzy neurons must be combined by
an s-norm operation. Two cascaded fuzzy neurons with inhibitory inputs correspond to an s-
norm operation for the fuzzy inputs (¥, ¥, .- yy)- This three-layer neural network

architecture can be used to derive an output to N fuzzy inputs that are applied to M fuzzy

inference rules, as illustrated in Figure 4.4.

Layer 1 Layer 2 Layer 3

Figure 4.4: The architecture of the Gupta-Knopf fuzzy neural network.
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4.2.3 Learning by Experience

The learning procedure for a fuzzy neuron involves changing the surface of the two-
dimensional fuzzy relation employed at each synapse. A single synaptic connection to the jth

neuron is shown in Figure 4.5. For a given external input to this synapse at time k, x; (k) , the
corresponding fuzzy relation, Wi (k), should be determined. This gives a minimum error,

e (k) , between the fuzzy neuron response, y g (k) , and the desired response, D ; (k). In order

to achieve this property, the following adaptation rule may be employed to modify the fuzzy
relation surface

Wy (k+1) = wy; (k) +Aw; (k) (4.14)

The term Aw,.j (k) is the change in fuzzy relation surface given as a function, ¥ [.], of the

error
Aw;(k) = Fle;(k)] = F[D;(k) —y; (k)] (4.15)
/’—~‘\
( jih Neuron |—ZISQ»
\ /
~o.’
A 1 | el(k>_r‘r‘.
' 7
Synaptic Connection Dy(k)

Figure 4.5: The synaptic diagram of a single synaptic connection with learning.

4.3 Fuzzy-Set Based Methods of Neurons and Knowledge-

Based Networks

Pedrycz and Rocha introduced the models of neurons based on logic-oriented processing
mechanisms of fuzzy sets [42]. Different classes of logic-driven neurons, their properties,
learning mechanisms for the discussed types of neurons; and development of neural networks

are described below.
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4.3.1 Aggregative Neurons: OR and AND Logical Computing
Nodes

Two basic types of logical neurons performing aggregation of the OR and AND types are
discussed in this section. Their key feature is that all processing faculties realized by these
neurons are completed with the use of standard fuzzy set operations. All input and output

signals as well as the interconnections of the network are assumed to be coded in the unit

interval. Let X = {xl,xz,...,xn} denote a finite set of input nodes and let

Y = {y;, Yy ---» ¥, denote a sct of output nodes.

a) OR computing node: Its input signals x;, x, ..., x, are combined successively with
weights w, w,, ..., w, by employing first the AND logical connective to each pair (x,, w)).

Subsequently, these partial results are aggregated by means of the OR logical operator

producing in this way the output y of the neuron. This transformation is written as

y = OR (x;w) (4.16)
The explicit formula is based on the t-s composition of the fuzzy sets X and W:
n
y= S (witx) @.17)
ja =]

A bias term is added as an additional term in (4.17) that is driven by a constant input signal

equal to 1. Thus, the neuron incorporating the bias is given by:

n

y= S (wix) “18)

i=20
where, w, stands for the connection of the bias term and x,, is a constant input equal to 1. The

role of the bias is to shift the output values of the neuron.

In particular, for the max and min operations the output of the OR neuron is given by

y = max{min(w;x;) } (4.19)
i
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b) AND computing node: The AND computing node constitutes a structural dual to that
given previously. The input signals are first combined by completing the OR operation over
a collection of the connections of the neuron. Then, the AND node combines the results by

AND-ing them:

y = AND (x;w) (4.20)
y = %(W,-Sx,-) (4.21)
i=0

where, w, stands for the connection of the bias term, x,, which is now kept constant at zero
value. In particular, for the min and max operations:
y = min{max(w;,x,)} (4.22)
1

To add an inhibitory effect to the construct, Pedrycz and Rocha extended the inputs by
including complementary values of x;, say 1—x;: X = [x; x, ... X, | %, X, ... X,]. The
OR and AND neurons with this extended vector of inputs make it possible to admit both the
inhibitory and excitatory characters of their bebaviour, depending on the numerical values of
the connections. Figure 4.6 illustrates the graphical notation of OR and AND neurons. In this

figure, x;, x5, ..., X, denote the excitatory inputs and wy, Wy, ..., W, denote their weights.

X, Xy ..., X, are the input complements employed to handle inhibitory features of the

(a) (b)
Figure 4.6: Graphical notation of (a) OR and (b) AND neurons.
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4.3.2 Reference Neurons

The role of a reference neuron is to perform a transformation of the input signals with respect
to a given reference point. Let the reference point be denoted by R = {rl, | S r"}. The

transformation is denoted by
y = F(X;W,R) (4.23)

We describe here the following two reference neurons:

a) Matching neuron:

y = MATCH (X;W, R) (4.24)

n
y = S [wit(xiEri)] (4.25)
i =1

where the equality index, denoted by =, can be defined as

a b=%{(a—)b)/\(b—nz)+(c‘1—>5)/\(l§—>a)} (4.26)

that returns a level of matching for any two degrees of membership a, be [0,1].In this

formula, the A denotes the min operator, and — is modelled by the @ operation as follows:

apb = min(l, ‘E‘) (4.27)
When w; = 1, the matching along this coordinate is essential; lower values of w; indicate

that the result of matching derived becomes less important.

b) Difference neuron:

y = DIFFER (X;W, R) (4.28)

n
y = S [w,.t(x,.EIri)] (4.29)

i=1

where the difference operator =1 is taken as complement of the equality index

(a=lb) = 1- (a=bh) (4.30)
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4.3.3 Learning Procedure for Basic Logic Neurons

The issue of learning for the discussed types of neurons is addressed as a problem of
supervised training controlled by the gradient of the predefined performance index. The
generic performance index used here is the mean squared error between the output of the
neuron and a target value. For the series of training data organised as input/output pairs,
(X 1)
(X5, 1,)

X ty)

Within the process, the adjustable parameters of the neuron (w,, v;, and/or its reference value
r;) are modified in order to minimize the given performance index. The optimization is done

by minimizing the performance index expressed as follows:

N
E=Y (t,-y)" (4.31)
k=1

where y, stands for the actual output of the neuron. The standard iterative scheme of

adjustments of the connections, say w,, is read as:

w, = wi—a@- i=1,2,...,n (4.32)

: aw,.

The learning rate o controls successive increments of the connections.

4.3.4 Multilevel Neural Networks

The networks which are composed of logic-based neurons are called heterogeneous networks.
This means that they include several neurons of different computational characteristics. The
neurons are organized into layers. A three layer neural structure is discussed here. It consists
of OR and AND neurons described previously. Each layer consists of neurons of the same
logical type. Two types of the networks are defined (Figure 4.7). The first class is composed
of AND neurons situated in the hidden layer, while the output layer consists of a single OR
neuron. The second category has OR neurons in the hidden layer and a single AND neuron in

the output layer.
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For the first class of the network (OR-AND):

- an input layer consists of 2n nodes including both the direct and the complementary
versions of the inputs. The role of these nodes is to distribute the signals to all the nodes of
the hidden layer.

- a hidden layer is composed of # AND neurons. The intermediate signals z; produced there,
are described as:

z;=AND(W,X) [1=12,..h (4.33)
The vector of connections, W/, summarises all the connections between the [th node of the

hidden layer and the input nodes. In other words, this relationship is obtained as follows:

n

7, = T(wlini)t T(w,(n+,.)sx,.) I=12,..., h (4.34)

i =1 i =

The output layer contains a single OR neuron which performs an aggregation of z,’s:

h

y = S (v,tz,) (4.35)

i=1
where v,’s denote the weights. The first type of the network implements any two-valued
function as a sum of minterms (SOM). The second architecture develops a product of

maxterms (POM).

Hidden Layer Hidden Layer
Input Layer Output Layer Input Layer Output Layer

Input Variable Sum of Minterms Input Variable Product of Maxterms
Minterms Maxierms

(a) (b)
Figure 4.7: Two types of logic-based networks (a) sum of minterms (SOM), (b) product of
maxterms (POM).
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4.4 Kwan and Cai’s Fuzzy Neural Network

Kwan and Cai have defined a fuzzy neuron and proposed the structure of a four-layer
feedforward fuzzy neural network and its associated learning algorithm [28]. A brief review

of the proposed neuron, the fuzzy neural network and its learning algorithm are discussed

here.
4.4.1 Fuzzy Neuron

The Kwan-Cai fuzzy neuron (as shown in Figure 4.8) has N weighted inputs, x; for
i=12,...,N,withw; (i=12,...,N) weights, and M outputs, 7 forj = 1,2,...,. M.

All the inputs and weights are real values in interval [0, 1]. Each output could be associated

with the membership value of a fuzzy concept. Moreover, we have:

z = h[wlxl,wzxz, ...,waN] (4.36)
s = flz-T] (4.37)
Yy = gj[s] forj=12,...M (4.38)

where zis the net input of the fuzzy neuron; h [.] is the aggregation function; s is the state of
the fuzzy neuron; f[.] is the activation function; T 1is the activating threshold; and
{gl.],j=1,2,..., M} are the M output functions of the fuzzy neuron which represent the
membership functions of the input pattern {x;, Xy, ..., x)}in all the M fuzzy sets. Four types

of fuzzy neurons (FNs) are defined by changing the neuron’s functions:

Xy 9 Y1
Xo—2p 9\—>Y2
[ ] h f [ ]

XN W W (Y
T

Figure 4.8: The Kwan-Cai fuzzy neuron.

a) Input-FN:

If a fuzzy neuron is used in the input layer of a fuzzy neural network and it has only one input

x, such that
- (4.39)

then it is called an Input-FN.
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b) Maximum-FN:

If a maximum function is used as the aggregation function of a fuzzy neuron such that

N
z = max (w;x,) (4.40)
i=1

then it is called a Max-FN.

¢) Minimum-FN:

If a minimum function is used as the aggregation function of a fuzzy neuron such that

N
z = min (Wx) (4.41)
i=1

then it is called a Min-FN.

d) Competitive-FN:

A competitive fuzzy neuron (Comp-FN) has a variable threshold T and only one output such

that
0 ifs<T
= s — = 4.42
y = gls—T] {1 i 4.42)
T = tlcp g onr Cxl (4.43)

where s is the state of the fuzzy neuron; ¢ [.] is the threshold function; and ¢, (k=1 to K) are

the competitive variables of the fuzzy neuron.

4.4.2 Structure of the Fuzzy Neural Network
The four-layer feedforward fuzzy neural network proposed by Kwan and Cai is shown in

Figure 4.9. The first layer, which is arranged in a two-dimensional array, has N, XN, Input-

FNs. The formulation of the (i, j )th Input-FN is as follows

1 1 . .

st= el =y fori=1, N, j=10 N, (4.44)
g e

v = 5 fori=1,... Ny, j= L u Ny (4.45)

vmax
where X5 is the (i; 7)th-input value (xfj. 20)and-P___-isthe maximum input value among

all inputs.
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MAX-FN

input-FN

N1,N2

Figure 4.9: The Kwan-Cai fuzzy neural network.

The second layer is also arranged in a two-dimensional array, and consists of N; X N, Max-

FNs. The purpose of this layer is to fuzzify the input through a weight function w [m, n]. The

state of the (p, g)th Max-FN in this layer is:

=

21 N A §)
Spq = mc}yi m&;{(w[pﬂ,q—;]y,j ) (4.46)
] = _jz

forp = 1, ...,Nl, qg =1, ...,N2
where w [p — i, ¢ —j] is the weight connecting the (i, j )th Input-FN in the first layer to the
(p, g)th Max-FN in the second layer and is defined by
wlm,n] = exp L—B%mz + n2)) (4.47)
form = —(N;-1) to (N;=1),n = -(Ny— 1) to (N,~-1)

The value of B is determined by the learning algorithm. Each Max-FN has M different
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outputs, one for each fuzzy neuron in the third layer. The outputs of the (p, g)th Max-FN in

this layer are:

[2] [2]
Ypgm = 8pgm [qu (4.48)
forp=1,...,N;,q = L,..,N,m = 1,..M

where y}EZ}n is the mth output of the (p, g)th Max-FN which is to be connected to the mth
Min-EN in the third layer. The output function 8pgm [SIE?] is to be determined by the
learning algorithm. For simplicity, the triangles with heights equal to 1 and base length equal

to o (shown in Figure 4.10) are chosen as the output functions of the Max-FNs in the second

layer. Hence

(4.49)

[2] . [2]
N {1—2|qu 0,70 fas22 s, ~©,,|20
pgm pgmbL pq

0 if otherwise

forae20,p=1,...,N;,q = L,..,N,,m = 1,...M

. . . [2] .
where Op gm 18 the central point of the base of function g, ., [sp 2 ] . The corresponding o

and ®p - for every set of p, ¢ and m must be determined by the learning algorithm.

In the third layer which is one-dimensional, the output of the mth Min-FN defined as

N N
3 3 2
yB =B o (yIqun) form = 1to M (4.50)
p =i 1 q = 1

(3]

where s, represents the state of the mth Min-FN in the third layer.

In the output layer, M Comp-FNs are used to provide nonfuzzy outputs. The algorithm of the

mth Comp-FN is:

st 2 M B form = 1o M 4.51)
o 4]
0 ifs " <T
(41 (4] m
vl = g[s, -T] = {1 o form=1,..,M (4.52)
S, 2T
M
T = max (y,[f]) for m=1to M (4.53)
m=1

where T is the activation threshold of all the Comp-ENs in the fourth layer.
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slses

0 X s
_r — Pq

Figure 4.10: Output function of a Max-FN in the second layer.

4.4.3 Learning Algorithm of the Fuzzy Neural Network

The learning algorithm determines the following parameters: The parameters of the output

functions of the Max-FNs in the second layer, o and 0 pqm’> the parameter of the fuzzification

function, B ; and the number of fuzzy neurons in each of the third and fourth layers, M. Let

Tf be the fault tolerance of the fuzzy neural network (0 < TfS 1) and K be the total number

of training patterns. The steps of learning algorithm are:

Step 1. Create N; XN, Input-FNs in the first layer and N, X N, Max-FNs in the second

Jayer. Choose a value for o (a2 0) and a value for B.

Step2.Set M = 0and k = 1.

Step 3.Set M = M + 1. Create the M th Min-EN in the third layer and the M th Comp-FN in
the fourth layer. Set:

@ _ M| N .
@qu = SpqM = _ma;{ _ma)i (wlp-i,q-Jj] x,‘jk)
1 = } 3

(4.54)

for p 1,...,N1,q =1,..,N,

where Gp oM is the central point of the M th output function of the (p, g )th Max-FN

in the second layer, and X, = {xijk} is the kth training pattern.

Stepd.Set k = k+ 1.1f k> K, then the learning procedure is finished. Otherwise, input the

“kth training pattern to the fietwork-and-compute-the-output-of-the-current-fuzzy
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neural network (with M fuzzy neurons in the third and fourth layers). Set:

M
o=1- max(-y},f]) (4.55)
J=1

where y2) is the output of the jth Min-FN in the third layer for the kth training

pattern X,. If 6< Tf, goto Step4.1If 6> Tf, go to Step 3.

4.5 Lin and Song’'s Fuzzy Neural Network

Lin and Song have proposed a fuzzy neuron and defined a three-layer fuzzy neural network
and its associated learning algorithm [35]. A brief review of the proposed neuron, the fuzzy

neural network and its learning algorithm is discussed below.

4.5.1 Fuzzy Neuron

The proposed fuzzy neuron is shown in Figure 4.11. The inputs to the fuzzy neuron are fuzzy
Sets Uy, Uy, o5 Uy in the universes of discourse U, U,, ..., UP, respectively. These fuzzy
sets can be labelled by such linguistic terms as "very small,” "small," "large," etc. The inputs
are then weighted based on a fuzzy computation called "integration operation,” instead of
conventional weighted summation. Then, the weighted inputs go through an activation unit.
The activation unit performs fuzzy logic computations instead of conventional activation

operations such as the sigmoidal function.

g() Y

Figure 4.11: The Lin-Song fuzzy neuron.

~As showmnrin-Figure-4:11;-the-fuzzy-neuron-has-an integration unit and an activation unit. The

integration function f combines information, activities, or evidences from other neurons and
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provides the net input for this fuzzy neuron

net = f(ul’ u2: LR ] up > WP W2, seey wp) (456)

An activation function g output a value as a function of its net input

output = g (net) 4.57)
4.5.2 The Fuzzy Neural Network Architecture
The proposed fuzzy neural network has three layers as shown in Figure 4.12. Layer 1 is the
input layer, layer 2 is the fuzzy rule base layer, and layer 3 is the output layer. The fuzzy

neurons used in each layer have different integration and activation functions.

In the first layer, the fuzzy neurons have the following integration and activation functions:

(1) (1) )2
PO H("i — M ) (4.58)
i ( (1))2 .
S
gi(l) = exp (fi(l)) i=1,2,..., (n +n,+...+ny) (4.59)

where mi(l) and s ,( D are the mean and variance of the i th bell-shaped function of the inputs.

Suppose that the dimension of the input variables is N and each input variable is divided into

n; linguistic term levels (j = 1,2, ..., N), then the total number of inputs of the first layer is

ny+n,+...+ny. For crisp inputs, each input variable will be fed into n; input nodes in the

first layer. In this layer, the mi( Vs and s i(l) ’s can be interpreted as weights. If some of the

input variables are fuzzy linguistic variables, the corresponding input functions will be set to

I

The fuzzy neurons in the second layer have the following integration and activation functions:

(2) (2) @ (2)
fj le sz Xy (4.60)
'(2) —f j=12,..,L L=nXn,X...Xny (4.61)

In the third layer, the fuzzy neurons have the following integration and activation functions:

e S P for k=t 2 M 4a2)
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(3)
e

&k T L0
X

Ve = 8;53) fork =1,2,...,.M (4.64)

fork = 1,2,...M (4.63)

3,

Similarly, the weights of neurons in this layer can be interpreted as my; * ’s. The outputs of

this layer are all crisp.

Xy X2 X Xo) X222 X212 Xn1 Xn2  Xnin

Figure 4.12: The Lin-Song fuzzy neural network architecture.

4.5.3 The Fuzzy Neural Network Learning Algorithm

In order to adjust and optimize the parameters of the fuzzy neural network, the

backpropagation algorithm is utilized. The objective is to minimize the output error function:
_ 1 2 1 32
£ = 3pa-ol" = 3ba-sl (465)
where y, is the desired output and y is the fuzzy neural network output. The general learning
algorithm used for adjusting the network parameters w; ’s is
_QE—) (4.66)
ow,

i

wy(t+1) = wy () + B(

where-B-is the learning rate-In detail, the learning algorithm can be described as follows:
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Layer 3:
m (1) = mg” (1) -B _9E_
’ am(3)
ik
(3)
o (y 8(3))(——xj J
3) “\dk " Sk (3)
i 2
.i= 1’29'--:L k = 1,2,...,M
Layer 2:

54

(4.67)

(4.68)

The weights are all unity and no weight updating is needed. Error propagation through this

layer will be treated directly in Layer 1.

Layer 1:
mD (e+1) = m” (1) ~P (—a%]
om

s vy =5 @ -ﬁ(—a%J
os;

o8 =2“{(ydk‘gl£3))( (3)]

J

J

3(2) 0 ifj,#0,j,#0, o jy#i
_fj_ - al (2)
(n i
g; H P otherwise
I=1,j,#i
i=1,2 (n,+n,+ +ny)

4.6 Conclusions

(4.71)

E _ zk‘,—{(ydk—gés))(’%) g‘mjf’(iigg]exp (fi(n)z(

2
x‘_(l) —m,-(l)) }

3
)

4.72)

(4.73)

This chapter discussed briefly four different models of fuzzy neural systems including fuzzy

neurons, fuzzy neural networks, and their learning algorithms. All of the discussed fuzzy

neural systems are categorized into the second class of fuzzy neural systems described before.

Among the described models of fuzzy ‘neurons, Gupta-Knopf's fuzzy nieuron is the most
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powerful one in processing of fuzzy input information, so that the neural network which is
built using this fuzzy neuron will have the smallest number of neurons and layers. However,
this fuzzy neuron is the most complex neuron. Gupta and Knopf employed their fuzzy neuron
to implement a fuzzy neural network for a steering control of an automobile application. The
simplest fuzzy neuron was the Pedrycz-Rocha fuzzy neuron. It is capable of implementing
some simple fuzzy set operations like AND, OR, or NOT. To achieve a fuzzy decision making
system, we should employ a greater number of neurons of this type than Gupta-Knopf
neurons, and also use more interconnections between nodes. However, the structure of this
fuzzy neuron is very simple and its learning and recall speed are fast. Pedrycz and Rocha
applied their fuzzy neuron in decision making, diagnostic, and mappings problems. The other
two fuzzy neurons are not as strong as the Gupta-Knopf fuzzy neuron or as simple as the
Pedrycz-Rocha one. Kwan and Cai employed their fuzzy neural network in pattern
recognition, whereas, Lin and Song used their fuzzy neural system in an inverse kinematics
manipulator with two degree of freedom. In the next chapter, a generic model of a fuzzy
neuron inspired by Gupta and Knopf’s fuzzy neuron, and the architecture of a feedforward
multilayer fuzzy neural network for motion detection and velocity estimation will be
introduced. Although the generic fuzzy neuron is more complex than all the described fuzzy

neurons, it is the most powerful.
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#

THE PROPOSED FUZZY NEURAL SYSTEM

5.1 Introduction

After the brief discussion of various models of fuzzy neural systems in the previous chapter,
the proposed fuzzy neural system is discussed in this chapter. The contents of this chapter is
organised as follows: First, we introduce our generic model of a fuzzy neuron as the basic
element of our fuzzy neural network. Then, we look at the bases of our approach for motion
estimation before we propose our fuzzy neural system. In this relation, we review how
fuzziness is measured in a grey-tone image. We also introduce an algorithm for motion
detection and velocity estimation. Moreover, we will study how velocity vectors consisting of
speed and motion direction are calculated at each pixel in the input image. In the last section
of this chapter, we propose the architecture of a five-layer fuzzy neural network which
emulates the motion estimation algorithm. Since different types of fuzzy neurons are used in
different layers of the network, the definition of the fuzzy neurons, which are simplified

versions of the generic fuzzy neuron, will be given together with the operation of the layers.
5.2 The Generic Fuzzy Neuron

In this section, a generic fuzzy neuron is introduced which forms the basic computational
element of the fuzzy neural network that will be discussed later. The generic fuzzy neuron
model is a generalization of the existing models of fuzzy neurons. Structural similarity
between the generic fuzzy neuron and the Gupta-Knopf fuzzy neuron is not just coincidental;

the author owes much inspiration to Gupta and Knopf’s paper [8]. However, the generic
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fuzzy neuron differs from that of Gupta and Knopf and other models in the following ways:
a) All the variables involved in the generic fuzzy neuron are allowed to be fuzzy or crisp

sets over different universes of discourse.

b) All the functions that specify the characteristics of the neuron are chosen to be fuzzy
relations (when the universes of discourse are similar, the fuzzy relation can be
replaced by any fuzzy operation).

c) The output of each function, which is a fuzzy set, is obtained using the *-* composition
of inputs to the function and the corresponding fuzzy relation.

d) Each fuzzy neuron can be simplified to represent an entire fuzzy inference rule with
any number of propositions.

These differences make it possible to carry out any fuzzy computation on the input data and

express any kind of ambiguous relationship. This leads to the following definition:

Definition 5-1: A generic fuzzy neuron (Figure 5.1) consists of connection functions, an
aggregation function and an activation function. It has N inputs I, I, ..., Iy, each input

consisting of a finite set of elements. Let X = {xll,xlz,...,xlnl},

X, = {x500 X995 o5 x2n2},..., Xy = {le, Xpgs +e s anN} denote the N finite sets of inputs.

The inputs Il,‘Iz, v Iy are fuzzy sets in the universes of discourse X;, X,, e Xy
characterized by membership functions R IAR U The inputs are weighted with

W, Wy, oo Wy which are fuzzy sets in the universes of discourse S1 = {511’ S1gs -+ S1i, 1,

S, = {8515 599 ...,s2i2},..., SN e {le,sN2, ...,sM.N}. The weighting operation is done

through connection functions of the form:

A, =, (X, W) (5.1)
Let C; be a 3-ary fuzzy relation in [X,] X [S]x[U ;]; the output of a connection function
is expressed by the *-* composition of X;, W, and C; which is the fuzzy set A, in the universe
of discourse U; = {u;, Uy -+ ”ij,.}' The connection outputs, A;’s, may be classified as

either excitatory or inhibitory. Let B;’s be the direct inputs to the neuron, where

B, =

A;  anexcitatory input
Z (5.2)

;aninhibitory input
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A; denotes complement of the fuzzy set A;, which is defined by the following membership

function

My () = 1=py () - (53)

The set B, is a fuzzy set in the same universe, U,,as A;.

T

Figure 5.1: The generic fuzzy neuron.

In the next stage, an aggregation function h [.] provides an input for the last stage as follows

E = h(B,B,, ..., By) (5.4
Let H be an (N+1)-ary fuzzy relation in [U,] X [U,] x...% [UN] % [V]: the output of the
aggregation function is expressed by the *-* composition of B, B,, ..., By, and H, which is

the fuzzy set E in the universe of discourse V = {vl, Vas oeos vk}.

The output of the fuzzy neuron is determined by an activation function, in the last stage, as

0 = f(E,T) (5.5)
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where f is the activation function and T is the threshold input which is a fuzzy set over the
universe of discourse Z = {z;,25 .- Z;} - Let F be a 3-ary fuzzy relation in
[V] X [Z] x [Y] . The output O is determined by *-* composition of E, T,and F, and is

a fuzzy set in the universe of discourse ¥ = {y, yp, .., ¥ Rl

The generic fuzzy neuron can be simplified if some of the fuzzy sets I, W,.,A P B, ET,

and O are defined over the same universe of discourse, e.g. X = {x;, Xy, ..., xn}. In this

case, the related fuzzy relations C, H, or F can be replaced with any operator from the two
basic classes of operations on fuzzy sets, which are the triangular norms (t-norms) and the
triangular conorms (t-conorms or s-norms), such as min, max, bounded-difference, algebraic

product, and so on. Many types of fuzzy neurons can be defined by changing the functions
c[.1,h[.], and f[.]. In the next section, seven types of fuzzy neurons utilized in the

construction of a fuzzy neural network for motion estimation are defined.

Having defined the generic fuzzy neuron (GFN), we describe here how it can be simplified to
the four fuzzy neuron models described in Chapter 4. The simplification that should be made
in the generic fuzzy neuron parameters to achieve the function of a given fuzzy neuron are as

follows:

1) Gupta-Knopf fuzzy neuron (GKFN)

- N inputs are allocated to the GFN: Il, Iy ... IN.

- The inputs are defined as fuzzy sets in the same universe of discourse, X .

- The GKFN inputs, x; (i = 1, ..., N),are represented by I;’s.

- The N weight fuzzy sets in the GFN, W, (i = 1,...,N), are omitted.

- The fuzzy relations in the GFN connection functions, C; (i = 1,...,N), are set to the
corresponding synaptic weighting functions in the GKEN, w; (i=1,..,N)

- The output of the connection function is specified by the min-max compositional rule of

inference.

- The A,’s in the GFN, which now express the d,’s in the GKFN, are simplified to be fuzzy
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sets over the same universe of discourse, U.

- The excitatory and inhibitory inputs to the GKFN are treated, respectively, as excitatory and
inhibitory inputs to the GKFN.

- The B,’s in the GFN are equal to the corresponding ;s in the GKFN and defined over the

universe of discourse U.

- The fuzzy relation H and its *-* compositional rule which denote the aggregation function
in the GFN are simplified to the triangular norm operator utilized in the GKFN.

- The fuzzy set E in the GFN represents the fuzzy set u in the GKFN; it is defined in the
universe of discourse U.

- The threshold input T in the GFN is omitted.

- Based on the mapping operator f[.] used in the GKFN, a B x B fuzzy matrix as the fuzzy
relation F, and the max-min composition as the rule of inference, will be employed in the
GEN. B is the number of elements in the universe of discourse of the GKFN’s output.

- The GFN’s output O, represents the GKFN’s output, y.
2) Pedrycz-Rocha OR and AND neurons (PROR, PRAND)

- The number of inputs are reduced to one, I L in the GEN.

- The input is defined as a fuzzy set in the universe of discourse X, which has 2n elements.
- The 2n PROR or PRAND inputs are represented by the 2n elements of ;.

- One weight fuzzy set W, is allocated in the GEN over the universe of discourse, X.

- The fuzzy relation C, and its *-* compositional rule in the GFN are simplified to a minimum

operator for the PROR or a maximum operator for the PRAND.

- A, in the GFN, which is a fuzzy setin X, expresses the neuron input which is an excitatory

input.
- The fuzzy relation H and its *-* compositional rule which denote the aggregation function

in the GFN are simplified to the H, fuzzy matrix and max-min compositional rule for the

PROR or the H, fuzzy matrix and min-max compositional rule for the PRAND, where
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] 0
H, = N m,= 0 (5.6)
1 0

- The fuzzy set E in the GFN is defined over the universe of discourse V which has only one

element.

- The threshold input T and the activation function in the GFN are omitted.
- The GFN’s output O, which has only one element, represents the output of the PROR or the
PRAND.

3) Kwan-Cai fuzzy neuron (KCFN)

- The number of inputs are reduced to one, I, in the GFN.

- The input is defined as a fuzzy set in the universe of discourse X, which has N elements.

- The N KCEN’s inputs, x; (i = 1, ...,N), are represented by the N elements of 1 1
- One weight fuzzy set W, is allocated in the GFN over the universe of discourse, X.

- The fuzzy relation in the GFN’s connection functions, C1 , and its *-* compositional rule is

simplified to the algebraic product operator for the KCFN.

- A, in the GEN which is a fuzzy set in X, expresses the neuron input which is excitatory.

- Based on the aggregation function 4 [.] used in the KCEN, a suitable fuzzy relation H and
compositional rule will be employed in the GFN to implement the function A [.].

- The fuzzy set E in the GFN represents z in the KCFN; it has only one element.

- The threshold input T in the GFN, which has only one element, is used as the threshold input
in the KCFN.

- Based on the f[.] and g, [.] functions used in the KCFN, a suitable 3-ary fuzzy relation H

and compositional rule will be employed in the GFN to implement the functions f[.] and
g [.]
- The GFN’s output O, which is a fuzzy set in an universe of discourse with M elements,

represents-the-KEFN’s-outputs-Each-element-of-O-expresses one.of the M outputs in the

KCFEN.
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4) Lin-Song fuzzy neuron (LSFN)

- P inputs are allocated to the GFN: I}, [}, ..., Ip.

- The inputs are defined as fuzzy sets over different universes of discourse, X, X,, ..., Xp.

- The LSFN inputs, u; (i = 1, ..., P ), are represented by 1, ’s.

- P weight fuzzy sets in the GEN, W, (i = 1,...,P), are allocated to represent the weights
inthe LSFN, w; (i = 1,...,P).

- Based on the integration function f[.] used in the LSFN, the fuzzy relations C;

(i =1,...,P), and H and suitable compositional rules will be employed in the GFN to

implement the function f[.].
- The fuzzy set E in the GFN represents the "net input” fuzzy set in the LSFN.
- The threshold input 7 in the GFN is omitted.

- Based on the activation function g [.] used in the LSEN, a suitable fuzzy relation F and
compositional rule will be employed in the GFN to implement the function g [.}.

- The GFN’s output O, represents the LSFN’s output.

In general, the weights, the connection functions, the aggregation function, the threshold, and
the activation function could be tuned during the learning phase. Therefore, the fuzzy neural

network which will be constructed with neurons of this type can learn from experience.

5.3 Architecture of the Fuzzy Neural Network for Motion

Estimation

In this section, we introduce an architecture of a fuzzy neural network designed for detection
of moving objects and estimation of their velocity. But before describing the detailed
architecture of the network, let us first introduce our approach to motion information

processing and present details of the algorithm we propose for motion estimation.
5.3.1 Measures of Fuzziness in an Image

A gray-tone image possesses ambiguity within each pixel because of the possible multivalued
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levels of brightness a pixel can have [39]. With the concept of fuzzy sets, an image X of size
M x N and L gray-levels can be considered as an array of fuzzy singletons, each having a
value of membership denoting its degree of brightness relative to some brightness level [,

[ =0,1,...,L—1.Inthe notion of fuzzy sets, we may therefore write
X = {uX(xmn)= umn/xmn; m=1,2,..M,n=1,2,...N} (5.7)
or in union form

X = UUumn/xmn; m=1,2,..M,n= 1,2, ...N (5.8)
m n

where [y (x,,,) or W,/ x (0<y,,,<1)denotes the grade of possessing some brightness

property W, . by the (m, n)th pixel intensity x,, . [40]. It should be noted that the "/" sign in

(5.7) and (5.8) does not denote the arithmetic division. As it was described in Chapter 2,

W,.n/ x  €Xpressesa fuzzy singleton.

il
=

%

/=
gy
EZBEN

Figure 5.2: Second-order S function.

The fuzzy property 1 may be defined in a number of ways with respect to any brightness

level depending on the problems at hand. In this work, a second-order S function [34] (Figure
5.2) has been used as follows

0 ifx<a

Slﬁa<be
§(xabc) = S, ifb<x<c (52)
1 ifx>¢

where
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S (x:a, b, c) = (x-a)® (5.10)
e " (b-a) (c-a) '
and
(x-¢)°
S, (x;a,b,¢)=1- (c_b) (c—a) (5.11)

5.3.2 Spatio-Temporal Motion Evaluation

Motion can be regarded as orientation in the spatio-temporal domain [14]. This fundamental
fact has formed the basis of the algorithm designed for motion estimation in this work. In the
proposed method, motion evaluation does not depend on object detection. We assume that the
time distance between consecutive images is very small and no significant change occurs
between two consecutive frames, i.e., each object moves a maximum of one pixel between
two consecutive frames. Our approach is formulated bearing in mind the complexity of the
algorithm and the amount of hardware needed for implementing the algorithm in VLSI
technology. Since it is intended that the proposed system will form part of a real-time VLSI
micro-sensor for motion detection and velocity estimation, to achieve the simplest
architecture, we have to establish the mentioned assumption. However, the assumption made
is not a limitation of the approach. Furthermore, since on-chip integrated photodetectors will
be employed as the image acquisition system hardware, and because the output of
photodetector cells can be sampled at different rates, the choice of an appropriate sampling
rate makes it possible to take successive image frames within small time intervals. The
sampling rate can be calculated according to the maximum velocity an object can have at the
nearest distance, and also the resolution of the velocity values we intend to measure. This
assumption will significantly reduce the number of connections and nodes in the fuzzy neural
network that will be introduced later. Therefore, the system implementation in VLSI
technology will be feasible and the cost of the implementation will be cheaper. However, the
proposed fuzzy neural network can be easily expanded to cope better with objects that move
more than one pixel per frame. The other hypotheses made for this work are:

a) An object possesses a finite speed and so it can not jump from a given pixel to a nonadjacent

one.
b) The object can only change direction smoothly and gradually.
¢) Noise does not possess properties a and b. It does not also follow the aforementioned

assumption.
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Figure 5.3: The nine possible movements between two consecutive images, (a) a given pixel
in the first image can only move to nine positions in the second image, i.e., (b) a given pixel
in the second image can only receive a movement from the nine neighbouring pixels in the
first image.

In the proposed algorithm, calculation of the velocity vector, consisting of average velocity
and motion direction, is done for each pixel individually. According to the aforementioned
assumption, each pixel in the first image can move to one of nine possible positions in the
second image, as shown in Figure 5.3 (a). Similarly, only one of nine possible pixels in the
first image, shown in Figure 5.3(b), can only move to a given pixel in the second image. When
noise is present in the input images, it is impossible to find out which of the nine possible
pixels in the first image has moved to a given pixel in the second image if the matching
criterion is based on a pixel intensity value only. A good solution to this problem is to assign
a small sector of the image, consisting of the given pixel and its neighbouring pixels, as a
representative for the given pixel, then compare the sector from the second image with sectors
of equal size from the first image within a certain search area. In this area the search is done

for the position of the maximum similarity between the two sectors. In our approach, the
sector is selected as the 3 X 3-neighbourhood of a pixel as shown in Figure 5.4. It consists of
the pixel and its eight neighbouring pixels. This sector is considered as a representative for

the pixel.
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The search range is limited to the 3 x 3-neighbouring sectors as shown in Figure 5.5. In other
words, to find out which of the nine possible pixels in the first image has moved to a given
pixel in the second image, we search for the maximum similarity between the representative
sector of the given pixel and the sectors representing pixels in the first image which can move
to the given pixel. Obviously, it is feasible to extend the size of the sector and/or the area of
the search. The sector size and the search area have been chosen for the sake of simplicity

only.

The sector (i,j) as a representative
——  for (i,j)th pixel.

vea(D)

Il+2,]-2

Figure 5.4: The related representative sector of a given pixel which consists of its nine
neighbouring pixels.

5.3.3 Similarity Measures

Before proceeding with the details of how the similarity is measured for a given sector in the
second image and its nine neighbouring sectors in the first image, let us describe the
parameters we employ to measure the similarity and the variables we use to store the average

velocity and motion direction of a given pixel.

As mentioned earlier, the input information is fed to the system in the form of two-
dimensional image frames, each frame consists of M X N pixels. As shown in Figure 5.3,
between two consecutive frames a pixel can move in nine possible direction only with an
average velocity value ranging from 0 to L—1. To keep the velocity vector calculation
results for a pixel, the following variables and parameters are set for each pixel (see Figure

5.6):
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First Image

:oocoo.

OOOOO/.,

.......
......

\\

v : oo@oo:
+100000:| 100000

I+2

Second Image

Figure 5.5: The search range. A given sector in the second image can be best matched with

one of the nine possible neighbouring sectors in the first image.
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Figure 5.6: Variables which are set aside for each pixel.

1) Last Velocity

LV is a six-bit register denotes the last velocity calculated for a given pixel. The content of
this variable is updated when a new movement to the pixel is detected.

2) Current Velocity

CV is a seven-bit counter which denotes the current velocity being measured for a given
pixel. The content of this variable is updated once each sampling interval. Whenever a new

movement to the pixel is detected, the content of its CV variable is copied into the LV register

and then its CV variable is reset to zero.

3) Direction Variables
Dy, Dyyn Dy, Dy g Dg, D, D, Dgyn and D,, are nine 6-bit registers called direction
variables. Bach direction variable denotes a membership degree of possessing the velocity
value stored in LV by the pixel in the corresponding direction, e.g. north east, middle, south

west, etc. These variables are updated together with LV when a new movement to the pixel

is detected. A higher value denotes a higher degree of certainty that the system acquires for

estimating the motion direction. Calculation of these variables is done using the following

function
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%= CXPL—L Bzxz)) (5.12)

where P is a parameter that can be selected by a learning algorithm, and x is an integer in the

range 0 to 5. Figure 5.7 illustrates plots of Equation (5.12) for different values of B.

Figure 5.7: Graphical representation of y = exp(—Bzxz) for = 0.2t00.9.

When a movement to a given pixel is detected, its nine direction variables are numbered from
0 to 5 based on the motion direction. Figure 5.8 demonstrates two examples of this numbering.
Then the obtained number of each variable is substituted in Equation (5.12) and the result

specifies the new value of the variable.

D—IF_II? 3]

Pixel (i,j) Pixel (1,j)

&

(a)

lw) o

< - |£Uo “é -t |
(v O
SN "n‘?m "5 'S

Figure 5.8: Numbering example of the direction variables. (a) Movement from the south-west
pixel. (b) Movement from the east pixel.
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4) Control Parameters

Cur» Cyws Cn Cnpr Cp Cypr Co Copp and C,, are nine 6-bit registers called control
parameters. These parameters are used in the calculation of the similarity measure. They are
updated once each sampling interval. In the updating process, the values of three variables are
used to calculate the new value of each control parameter: LV, CV, and the corresponding
direction variable. Figure 5.9 shows the variables that are needed in the calculation of the

north-west control parameter of a given pixel.

Dnw

Ccv

LV

Figure 5.9: The variables which are needed in calculation of a control parameter.

The updating mechanism is formulated as follow:

DX .

Z.cv if 0SCV<LV
Cy = _ 5.13
X Dx(l-g%ﬂ’) if LV<CV<LV+63 G139

0 if LV+63<CV
where 0< D, <63,0<LV<63,0<CV< 127

Cnw

0 . : 7)CV
0 LvV 63 LV+63 12
Figure 5.10: Graphical representation of a control parameter updating operation.
Figure 5.10 illustrates a graphical representation of the operation described by Equation (5.13)

for updating-the control-parameters:- The-main-purpose-using-the control parameters is 1o

suppress the effect of noise in the input information. Moreover, when there is more than one
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sector in the second image with patterns similar to the sector in the first image, the best match
can be found. The reason is that the time domain as well as the spatial domain is included in
the calculation of the best-matched sector. In the spatial domain the similarity is found using
the brightness patterns. In the time domain, all the calculations which have been done from

the beginning to track the real motion, will produce more certain results.

PR,

Sa-1)-1  Sajn Sasign Sa-1p  Sap  Saerd Sa-1pn Sen S@i+1,)+1)

First Image Second Image
sector| | sector| | sector :
1) @1 L) ,
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SECTOR SECTOR SECTOR :
@1 T “aen | .
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\ \} W - ]

Figure 5.11: The parameters which are employed in the calculation of similarity between the
representative sector of a pixel in the second image and its nine neighbouring sectors in the
first image.

As it is shown in Figure 5.10, a control variable is a dynamic parameter whose value is
changed in each sampling interval. Since the sampling interval is small enough, an object can
only change speed and direction smoothly and gradually. When a movement to a given pixel
occurs, the movement will be transferred to the next pixel with approximately the same speed

and same direction. Therefore, the possibility of transferring the motion from the receiving
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pixel to the next pixel is highest when the time index kept in the CV counter of the receiving

pixel is nearly equal to the content of the LV register. This fuzzy mechanism reinforces the
similarity measure in the next pixel at the appropriate time and weakens it other times. The

maximum reinforcement is achieved at the same direction where Dx has its maximum value

specified by Equation (5.12). The mechanism of extracting the possibility index, described by
Equation (5.13), is illustrated in Figure 5.10.

Having extracted the control parameters, let us describe how the similarity measure is
calculated. First, all the similarities between the representative sector of a given pixel in the
second image and its nine neighbouring sectors in the first image are measured. The operation
on the sector’s brightness patterns is done using a fuzzy operator that will be described in the
next section. As a result, nine similarity values are obtained for each pixel (see Figure 5.11).
Then the nine measured similarities will be strengthened by nine control parameters in each
pixel. The control parameters which are used for this purpose come from the neighbouring
pixels except the middle control parameter which is taken from the pixel itself (see Figure

5.12).

Figure 5.12: Control parameters which are utilized in calculation of the similarity measure
for the (i,j)th pixel.
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The strengthening operation is a fuzzy operation which will be described in the next section.
Therefore, nine match indicators are calculated for each pixel as shown in Figure 5.13. Each
match indicator expresses the final degree of similarity between a representative sector of a
pixel in the second image and its nine neighbouring sectors in the first image. In the last stage,
the best-matched sector will be easily specified using a fuzzy operation discussed in the next

section.

MI

G-1,)-N G-1,j+1)

MI

(i+1,}-1) Y ' } (i+1,j+1)

Best Match
Figure 5.13: The parameters used for extracting the best match between the representative
sector of the (i,j)th pixel and its nine neighbouring sectors.
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Having extracted the best-matched sector for a given pixel, the average velocity and
movement direction are now readily available. If for the (i, j)th pixel in the second image,
the (i,j)th sector in the first image is the best match, then no movement to this pixel has
occurred. In this case, the CV counter will be incremented. If the content of the CYV counter
exceeds 127, there is not any movement to this pixel; and hence, the content of the related LV

is reset to zero.

v

EXTRACTING THE BEST
MATCH INDICATOR

Figure 5.14: Flowchart diagram of the average velocity calculation.

If the best match is not the (i, j)th sector, this means that a movement has occurred from the
pixel with the best match index to the given pixel. In this case, the content of CV which
represents the time of travel, is transferred into LV. The CV counter will then be reset to zero.

To find out the exact amount of the average velocity, the content of LV should be multiplied

by the period of the sampling interval. A flowchart of this operation is shown in Figure 5.14.
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The features of the proposed algorithm for motion evaluation are

1) Suppressing the effect of noise.

2) Solving the correspondence problem, i.e., the problem of finding the correct match among
other possible matches in brightness patterns.

3) Robustness against changes in illumination.

In the next section the architecture of a fuzzy neural network which implements this algorithm

is described.

5.3.4 Architecture of the Fuzzy Neural Network

The proposed fuzzy neural network for motion estimation is a six-layer feedforward network

with a hierarchical structure as shown in Figure 5.15. The inputs to the network are two
matrices of 64 x 64 pixels of 64 gray-levels. The outputs are velocity vectors consisting of
speed and motion direction for each individual pixel of the image. In the following we

describe each layer of the fuzzy neural network individually:
5.3.4.1 First Layer

The first layer is the input layer which accepts a pattern into the network. It consists of two
sets of 64 X 64 input fuzzy neurons (INPUT-ENs) shown in Figure 5.16. The first set of
INPUT-FNs is allocated to the current frame. The second set is for the previous frame. There
is a 64 X 64 memory unit reserved for storing the previous frame. In each sampling interval,
when a new image frame is acquired, the current image is overwritten into the memory

forming the previous image frame.

Each INPUT-FN in this layer corresponds to one-pixel of the previous or current frame. To
express the input image in terms of fuzzy sets, we consider the image as an array of fuzzy

singletons, each having a membership value denoting its degree of brightness in the interval

[0,1] (Equations (5.7) and (5.8)). To determine the membership value, |, , we use the second

order § function (Equations (5.9), (5.10), and (5.11)) as follow:
n(x) = S(x;0,31,63) (5.14)



Chapter 5: The Proposed Fuzzy Neural System 76

CONTROL Ng== ) G

PARAMETERS e
LAYER S5
CTRL-FN
CURVE-FN CV-FN
7 2\
e = = = BN — = — = — — - — ———
/ \
V4 o N
[V+éd LV . DIRECTION S  CV
- VARIABLES S~
[
LAYER 4
DIR-FNs
LAYER 3
LAYER 2

INPUT-FNs (GROUP 1) INPUT-FNs (GROUP 2)

Figure 5.15: Architecture of the proposed fuzzy neural network for motion estimation.
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where x is the pixel intensity in the interval [0, 63]. Each INPUT-FN determines a
membership value for its input pixel by implementing the function described by Equation
(5.14). The INPUT-FN has one input which is a fuzzy set over a universe of discourse, X,
with 64 elements. All the elements are connected to the given input pixel. The weight is a

fuzzy set over the same universe of discourse whose elements are set as follows:

w = {0,1,...,63} (5.15)
[ 0 Fuzzy Relation H
/I;r'@\. X
l !
\
s
\\‘\;& g /\\
Pixel Intensity ' Fuzzy Relation F

Figure 5.16: Input fuzzy neuron (INPUT-FN).

Since the input and the weight are fuzzy sets over the same universe of discourse, we employ

the absolute difference fuzzy operator, B, as connection functions. The input A, to the neuron

is excitatory, therefore
B, = A, (5.16)
The aggregation function A [.] is a 2-ary fuzzy relation, H, which is defined by a 64 x 64

fuzzy matrix as follows:

100..0
010..0
H=1001..0 (5.17)
e e e O
0 0 0 ... 1

The output of the aggregation function is the fuzzy set E determined by the fuzzy max-min

composition of B, and H. The fuzzy set E will have 63 elements whose values are 1, and

one element whose value is 0. The intensity of the input pixel specifies which elements should

be zero. The INPUT-FN has no threshold. The output of INPUT-EN is determined by the
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activation function f[.] which is a 2-ary fuzzy relation, F, defined by the following 64 X 1

fuzzy matrix:

§(00,31, 63)
§(1;0,31, 63) (5.18)

F =
§(63;0,31, 63)
The output O, is a fuzzy set in the universe of discourse Y with only one element. It is

determined by the fuzzy min-max composition of E and F; it expresses the membership

degree of the input brightness in the interval [0,1].
5.3.4.2 Second Layer

The purpose of the second layer is to determine the similarity values between the

representative sector of each pixel in the current frame and its neighbouring sectors in the

previous frame. The absolute difference fuzzy operator, B, is employed for this purpose.
There are nine similarity fuzzy neurons (SIM-FNs) in this layer for each pixel. For the

64 % 64 -pixel input images, a total number of 9 X 64 X 64 SIM-FNs are allocated to the
second layer. We choose a 3 X3 universe of discourse containing 9 elements (pixels),
X = {x14, X195 X135 Xp1s X905 X35 X315 X35 X33 1, to express the representative sector of each

pixel as described before. For a given pixel, the single output of its corresponding INPUT-FN
plus eight single outputs of its neighbouring pixels determine the nine elements of the

universe of discourse, i.e., the pixel’s representative sector.

As illustrated in Figure 5.17, each SIM-FN has two inputs, I, and I, which are fuzzy sets
over the same universe of discourse, X. The input I, is connected to the outputs of the
corresponding INPUT-FNs in the previous frame, whereas, the input I, is fed by the related

current frame INPUT-FN outputs. There is no weighting operation for both 7, and I, , i.e. the

connection functions are null functions. The input to the neurons are both excitatory thus we

have:

B,=A =1 and B,=A,=1I, (5.19)
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Since both inputs are fuzzy sets over the same universe of discourse, we employ the absolute
difference fuzzy operator as the aggregation function of SIM-FNs. The result is a fuzzy set E
in the same universe of discourse. E has nine elements each denoting the absolute difference

between the corresponding input elements.

The output of the SIM-FN is determined by the neuron’s activation function. The employed

activation function is a 2-ary fuzzy relation, F, defined by the following 9 X 1 fuzzy matrix:

1/9
F= |17 (5.20)

1/9
The output O, is a fuzzy set in the universe of discourse ¥ with only one element. It denotes
the bounded sum of the nine elements of the fuzzy set E. This is done with the aid of the

bounded-sum -algebraic-product composition of E and F. The single output expresses the

similarity value between its two input sectors in the interval [0, 1]. When two sectors are

exactly the same, O will be equal to one.

"
@&\d)

] I

First Layer . o
4 4 Fuzzy Relation F
<\
@ |
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Figure 5.17: Similarity fuzzy neuron (SIM-FN).

5.3.4.3 Third Layer

The third layer is used to determine the match indexes between the representative sector of a
pixel in the current frame and its neighbouring sectors in the previous frame. This is done

using the similarity values and control parameters described before. For each pixel, the nine
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single-element similarities measured by nine SIM-FNs in the second layer are strengthened
with nine control parameters. This operation is carried out through a match fuzzy neuron

(MATCH-FN). There are 64 x 64 MATCH-FNs in the third layer, with each neuron

allocated to a given pixel. We choose a 3 x 3 universe of discourse X in the input, containing
9 elements. For a given pixel, the nine SIM-FNs single outputs form the nine elements of the

universe of discourse.

As demonstrated in Figure 5.18, each MATCH-FN has only one input, 7;. It is a fuzzy set in
the universe of discourse, X. Each element of the fuzzy set I 1 is connected to the

corresponding single output of a SIM-FN in the second layer. I, is strengthened through

connection functions using weights. The weight is a fuzzy set over the universe of discourse

X and its elements are set as follows:

(5.21)
L {CSE(i-1,j-1)'Cs(i-1,j)'csw(-‘-1,j+1)’CE(i,j-l)'CM(i,;)'Cw(i,j+1)'CNE(i+1,j-1)'CN(i+1,j)'CNW(i+1,j+1)
The control parameters and therefore the weight W are changed in each sampling interval.
Since the input and weight are fuzzy sets over the same universe of discourse, we employ the

algebraic product fuzzy operator as the connection function. The output of the connection

function is a fuzzy set A, treated as an excitatory input to the fuzzy neuron; therefore,
B, = A, (5.22)

The aggregation function is a 2-ary fuzzy relation, H, which is defined by a 9x1 fuzzy

matrix as follows:

H=|1 (5.23)

—-1_

The output of the aggregation function is a fuzzy set E determined by the fuzzy max-min

composition of B, and H. The fuzzy set E will have only one element whose value denotes

the maximum value of the nine elements of the fuzzy set B, .
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The threshold input 7' in the MATCH-FN is a fuzzy set in the universe of discourse X as the

input. It has nine elements, each element is connected to the corresponding element of fuzzy
set A| . Therefore we have

T =A, (5.24)
This arrangement is to determine the difference between each match indicator, which is an
element of the fuzzy set A, with the maximum value of the nine match indicators. The output
of the MATCH-FN is determined by the activation function which is a 3-ary fuzzy relation,

F, defined by the following 9 X 9 fuzzy matrix

_ = O
—_ O =
O =

(5.25)

. . .
. . . .
10"“’—"—“?—",

1 1 1..

The output O, is a fuzzy set in the universe of discourse X with nine elements. It is

determined by the fuzzy max-bounded-difference composition of E, T, and F. Each element
of the output fuzzy set denotes the difference between the corresponding element of the input

to the neuron and the element that carries the maximum value.

Second Layer | Connection Functions Fuzzy Relation F

Fuzzy Relation H

Figure 5.18: Match fuzzy neuron (MATCH-EN).

5.3.4.4 Fourth Layer

The calculation of the direction variables, Dy, 1s carried out in the fourth layer. This opcration
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is carried out through nine direction fuzzy neurons (DIR-FNs). There are 9 X 64 x 64 DIR-
FNis in the forth layer; each set of nine neurons is allocated to a given pixel. We choose a 3 X3

universe of discourse X for the input, containing nine elements.

As shown in Figure 5.19, each DIR-FN has only one input, I, . It is a fuzzy set in the universe

of discourse, X . The connection between the Layer 3 outputs and the Layer 4 inputs is defined

as follows:

Ly=l,=I=I,=I5=1=1;=1Ig=1I4= 0 (5.26)

11
There is no weighting operation for I, i.e. the connection functions are identity functions.
The input to each neuron is inhibitory thus we have:

B, = 71; (5.27)
The aggregation function is a 2-ary fuzzy relation, H, which is defined by a 1 X 9 fuzzy

matrix. The contents of the fuzzy matrices are different for the nine DIR-FNs. The nine fuzzy

matrices of the nine DIR-ENs, for a given pixel in the forth layer, are defined as follow:

H, = [eo(-8%0%) el -%1%) exe 472) sp(-81%) eo(-8%2%) ex(-674”) csn(-82") exe( 674 so(-875"]
H,y = [oo-81%) exe6702) el -6712) exp(857) e -6722) exp(-95%) exn( %47 exn(-67") eo(-874"]
H, = [oo-8%5") exg6712) o -702) enp{ -524%) ep(-8722) exp(-81%) e -875") ex(-674°) (675"
H, = Lol -8%1%) exp6722) ol -%2) eno(6%0%) ep(-872%) exp(-675") enp(-6°1%) exe(-673") xa( 874"
H = [np(-5%%) e -824%) exe-6742) exp(6%4%) xa(-6%0%) exol-674?) enp(-874") esp(-674°) exo 074"
Hy = [ool-5%7) exp(-6722) el -5712) enp{875%) o -872%) exp(-870") enp(-6°¢") ex(-67°) xa(-6%1"]
Hy = [np{-529%) ol -826%) exp(-6752) exo(6227) cxp(-872%) ex(-674”) enp(-90%) ex(-671") ena(-87"]]
He = [exn(-6742) exp(572) exn(642) xp(5752) xp(-672) exp(-6°57) el -%1%) exn(-670°) exn(-671°)]
H = [ean(-6752) esp(742) exn(6252) ap(5742) xp(-672) enp(-61%) (472" exn (6712 exe(-670")]

(5.28)

The output of the aggregation function is determined by the fuzzy max-algebraic-product

composition of B, and H, which is a fuzzy set E in the universe of discourse V containing
only one element. E determines a value for the corresponding direction variable of a pixel

using expL—Bzxzj . As it can be seen from the contents of the fuzzy matrices, in a given DIR-

FN, this arrangement allows the neuron to behave like a lens so that the neuron focuses on one
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of the input elements which is directly related to the direction value controlled by the neuron.

However, the neuron uses the other elements in the computation of the direction value with
lower degree of importance. 3 is assigned to 0.5 in the system simulations, based on a few
experiments which were conducted to obtain a suitable value for B ; however, the best value

for this parameter should be extracted from a learning process. We will introduce a learning

algorithm for this purpose in our future work.

Fuzzy Relation H

RS

Third Layer

Figure 5.19: Direction fuzzy neuron (DIR-FN).

There is no threshold input and no activation function for DIR-FN, i.e., the neuron’s output is
equal to the aggregation function output

O=E (5.29)
The output O has one element that denotes a value for the corresponding direction variable
of a pixel in the interval [0, 1]. For a given pixel, Figure 5.20 shows how each direction
variable is driven by a DIR-FN. The direction variables which are memory cells accept the
DIR-EN outputs when a movement to a pixel is detected, i.e., the output of the fifth neuron is

not the maximum one.

Third Layer DIR-FNs Direction Variables

Figure 5.20: The connections between DIR-FNs and direction variables.
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5.3.4.5 Fifth Layer

The fifth layer is the last layer of the fuzzy neural network. The calculation and updating of
the control parameters, Cy’s, are carried out in this layer. There are three different types of
fuzzy neurons used for extracting the control parameters of a given pixel. Therefore, the total
number of the neurons in Layer 5 are 3 x 64 X 64 . For a given pixel, the inputs to this layer

are the pixel’s LV register, the pixel’s CV counter, and nine direction parameters. The output
of this layer are nine control parameters whose values vary in the interval [0, 1]. As mentioned
in the previous section, the calculation of the control parameters is done using Equation
(5.13). This function is implemented by a curve fuzzy neuron (CURVE-FN), a current
velocity fuzzy neuron (CV-FN), and a control fuzzy neuron (CTRL-FN).

A CURVE-FN builds the curve shown in Figure 5.10 using the LV value. It has two inputs

I 1 and . ) in the same universe of discourse X with 128 elements. All the elements of the first

input are connected to LV and the second input to LV + 64. Since LV is a binary number
between 1 and 63, we can simply add an extra bit which is always "high" as the MSB.

Therefore, we will have LV + 64 as the result. There are two weights W, and W, which are
fuzzy sets over the same universe of discourse, X. W, and W, elements are set as follows:
w, =W, ={01,..127} (5.30)
We employ the algebraic divide fuzzy operator, [/], as connection functions. The input A, to
the neuron is excitatory whereas the input A, is inhibitory; therefore,
B, =A, , B, =4, (5.31)
The fuzzy set B, forms the left part of the curve and the fuzzy set B, forms its right part. The

aggregation function is a min fuzzy operator. The output of the aggregation function is a fuzzy
set E over the same universe of discourse X with 128 elements. It contains 128 elements of
the whole curve. There is no threshold input and no activation function for the CURVE-FN.
The output O of the neuron is defined as follows:

O=EFE (5.32)

It represents the curve shown in Figure 5.10 without considering the scaling effect of the
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corresponding direction variable. This curve will be scaled down in the CTRL-FN to achieve

the curve described by Equation (5.13).

The CV-FN is similar to the INPUT-EN but it does not employ an activation function. Each

CV-FN  has one input which is a fuzzy set over the universe of discourse X with 128
elements. All the elements are connected to the CV’s output. The weight is a fuzzy set over
the same universe of discourse X and its elements are set out as follows:

w= {0,1,...,127} (5.33)
We employ the absolute difference fuzzy operator, H, as connection functions. The input A,

to the neuron is excitatory; therefore,
B, = A, (5.34)
The aggregation function # [.] is a 2-ary fuzzy relation, H, which is defined by a 128 x 128

fuzzy matrix as follows:

100..0
010..0
H=|1001..0 (5.35)
vt ag e s 0
0 0 0 .1

The output of the aggregation function is a fuzzy set E determined by the fuzzy max-min
composition of B, and H. The fuzzy set E will have 127 elements whose values are 1, and

one element whose value is 0. The CV-FN has no threshold input and no activation function;

output is defined as
O=E (5.36)

It is a fuzzy set with 128 elements which denotes the input in terms of fuzzy sets.

A CTRL-FN has two inputs /, and I, in the same universe of discourse X with 128 elements.

The elements of the first and the second inputs are connected to the corresponding elements
of the CURVE-FNs output and the CV-FNs output respectively. There are no connection

functions and the inputs are excitatory and inhibitory, respectively. We have

B, =A, B,=A4, (5.37)
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Figure 5.21: CURVE-FN, CV-FN, and CTRL-FN plus their connections.

The aggregation function is a 3-ary fuzzy relation, H, which is defined by a 128 X 128 x 1

fuzzy matrix as follows:

00..0
10 ..0
01..0 (5.38)
R—
00 .1
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The output of the aggregation function is a fuzzy set E determined by the fuzzy max-min
composition of B, , B,, and H. The fuzzy set E will only have one element whose value
denotes the output of the function described by Equation (5.13) to its input which is driven by
CV. This value is scaled down by nine direction variables producing the new values of nine
control parameters; this is done by the activation function. The threshold input T is a fuzzy
set in the universe of discourse Z with nine elements. Each element of the threshold input is
connected to one direction variable. The activation function is a 3-ary fuzzy relation, F,

defined by the following 1 X9 x 9 fuzzy matrix:

1 00..0
010..0
F=1001..0 (5.39)
v e s oss 0
0 0 0 ...1

The output O, is a fuzzy set in the universe of discourse Y with nine elements. It is

determined by the max-algebraic-product composition of E, T, and F. Each element of the
output fuzzy set denotes a value for the corresponding control parameters. Figure 5.21

illustrates the fuzzy neurons defined for Layer 5 and their connections.

5.4 Conclusions

This chapter constitutes the core of the thesis. In this chapter, a generic model of a fuzzy
neuron was defined as an extended model of the existing fuzzy neurons. It was shown that the
generic fuzzy neuron can be simplified to four models of fuzzy neurons described in Chapter
4. Then the bases of the approach we employed for motion estimation was presented. In the
proposed algorithm, motion estimation is carried out not only using a comparison between
brightness patterns in consecutive image frames by fuzzy relations, but also a control
mechanism is established to strengthen or weaken the results of the comparisons in brightness
patterns. The main features of the algorithm are:
1) Suppressing the effect of noise.
2) Solving the correspondence problem, i.e., the problem of finding the correct match among
other possible matches in brightness patterns.

3) Robustness against changes in illumination.
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The only limitation of the algorithm is the assumption that the time distance between
consecutive images is very small and no significant change occurs between two consecutive
images, i.e., each object moves a maximum of one pixel per frame. We explained that this
assumption, is not a limitation of the approach, but a simplification. The approach can be

easily extended to deal with the objects travelling more than one pixel per frame.

Next, the architecture of a fuzzy neural network which was designed to implement the
proposed motion estimation algorithm was given. It has a five-layer feedforward structure.
Seven different fuzzy neurons were defined and utilized in different layers of the fuzzy neural
network. The fuzzy neurons are simplified versions of the generic fuzzy neuron. Although it
was mentioned that the fuzzy neural network constructed with the generic fuzzy neurons can
learn from experience, we did not present a learning algorithm for training the system. We
will define and use a simple leaming algorithm based on the generalized delta rule for this

purpose in our future work.

In the next chapter we will study the results of more than thirty simulations of the proposed
fuzzy neural network. An evaluation of the performance of the fuzzy neural network under

various conditions will be presented.



Chapter 6

EXPERIMENTAL RESULTS

6.1 Introduction

Simulation studies have been conducted to demonstrate the performance of the proposed
fuzzy neural network for motion estimation. Two different experiments were carried out. The
first consisted of five simulations for moving objects with different speeds and trajectories.
The second consisted of twenty four simulations for a moving object with six different
velocities under four different noise conditions. In this chapter the experimental results are

reported and discussed but first we describe the procedure for conducting the experiments.
6.2 Experimental Procedure

The experiments were conducted using a simulation program developed by the author and run
on a SPARC station. The software consists of two C programs: one for producing input image
frames and another one for implementing the network. The first program is capable of
producing 64 X 64, 6-bit image frames containing moving objects. The number of moving
objects, their shapes, their brightness patterns, their speeds, their trajectories, and also the
background pattern can be changed. The outputs of the program are binary image files, each
file represents one image frame. The program is also capable of adding noise to the images.
For this purpose, it reads external files containing noise data and adds them to the images. The

program can easily be modified to produce image frames with higher resolution, e.g.

256 x 256, 8-bit images.
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The second program is the fuzzy neural network simulator. It reads the input binary image
file, performs the simulation, and outputs the results in each clock cycle. The calculation of
the average velocity is done based on the frequency of this clock signal. The output consists
of average speeds and motion directions of all pixels in each clock cycle. The output appears

in the form of a binary file. The program allows the parameter 3 of the DIR-FNs used in the

fourth layer of the network to be changed by the user.

Two main experiments were conducted, each experiment containing a different number of
simulations. The first consisted of five simulations for moving objects with different speeds
and trajectories. The objective of this experiment is merely to test the simulator and evaluate
the motion estimator. The second experiment consisted of twenty four simulations for a
moving object with six different velocities under four different noise conditions. The

objective of this experiment was to measure the error values in estimated average velocities

in noise free and noisy environments.
6.3 First Experiment

This experiment was done to test the performance of the system in detecting moving objects
and estimating their average velocities. We considered objects of different shapes, brightness
patterns, and velocities. In this experiment we have conducted five different simulations. We
present one figure for each simulation in this thesis. Each figure is divided into three sections:
top, middle, and bottom. In the top part of the figure we present ten frames from the input
image sequence which are selected from ten equal time slices. The frame number is presented

under each image.

In the middle part of each figure ten pictures are presented, with each picture illustrating the
last average velocities of the 64 X 64 pixels. The darker the pixel is, the higher is its average
velocity. The fuzzy neural network calculates the 6-bit average velocities in terms of pixel per
frame (ppf). The maximum average velocity an object can possess and be detectable by the
system is 1 ppf. As the number under the picture shows, the picture is the output of the fuzzy
neural network after processing the corresponding input frame shown in the top section of the

figure.
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In the bottom section of the figure two graphs are presented. Each graph contains arrows of
different size and direction. The size of each arrow represents the last average velocity of the
associated pixel; the smaller the arrow is, the lower is the pixel’s average velocity. The
direction of an arrow shows the direction of the last movement to the pixel. For the pixels with
no arrows displayed, the average velocity is zero. The left graph represents the output of the
fuzzy neural network after processing the lastimage frame in each simulation. The right graph
shows a selected part of the left graph containing 20 x 20 pixels. As can be seen from the
figures, the arrows are displayed bigger to make the difference between the arrow sizes more

distinguishable.

Simulation 1.1: In this simulation we examined the response of the fuzzy neural network to
an object moving horizontally from left to right. During movement, the object increases its
speed continuously. When the object leaves the scene in the last frame, it possesses the
maximum possible speed, i.e., 1 ppf. We used 1739 image frames in this simulation. Figure

6.1 shows the results of this simulation.

Simulation 1.2: This simulation was done on a scene with three objects moving horizontally.
The objects have different sizes, speeds (0.1 ppf, 0.04 ppf, and 0.02857 ppf), and directions.
The middle object has the smallest size but the largest speed (0.1 ppf), and travels from right
to left. The other two objects travel from left to right with the bottom having the smallest

speed (0.02857 ppf). We used 2430 image frames to conduct this simulation. The results of

this simulation are represented in Figure 6.2.

Simulation 1.3: In this simulation, there are two objects moving diagonally from top to
bottom in opposite directions. The object which starts from top-left corner and finishes at
bottom-right comer, travels with a lower speed (0.06667 ppf) than the other object which
moves with aépeed of 0.2 ppf. We used a nonuniform background pattern and different object
shapes to show the ability of the system to detect motion under different background
conditions. We used 770 image frames in this simulation. Figure 6.3 shows the results

obtained from this simulation.

Simulation 1.4: Figure 6.4 shows the results of this simulation. The input image sequence

contains a single object moving around a circle with a constant speed of 0.2 ppf. The



Chapter 6: Experimental Results 92

background brightness varies continuously from the dark to bright. We employed 741 image

frames in this simulation.

Simulation 1.5: Figure 6.5 shows the response of the network to the last simulation of this
experiment. Here an object is moving circularly with varying speed. The object starts
travelling clockwise from top of the circle with the lowest speed in this experiment (0.02381
ppf). The object increases its speed continuously. When the object rotates 90°, the speed
reaches 0.2 ppf (which is the highest speed in this simulation). Then the object starts
decelerating, and the speed is decreased continuously until the object reaches the bottom of
the trajectory. This trend is repeated again until the object returns to the starting point (i.e.,

top of the circle). The total number of 3624 image frames were used in this simulation.
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Figure 6.1: An object moving horizontally from left to right with varying speed.
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6.4 Second Experiment

This experiment determines the influence of noise on the system performance by measuring
the output error under different noise conditions. We have carried out twenty four simulations
in this experiment which are classified into six groups. In each group, there is a moving object
with a given constant speed moving horizontally from left to right. The six selected velocity
values are samples from the range of possible velocities the system can detect (from O ppf to
1 ppf). In each group, we conducted four different simulations with: 1) noise free input
images, 2) input images with SNR = 22dB, 3) input images with SNR = 17dB, 4) input
images with SNR = 12dB. One figure is presented for each simulation. Each figure is
divided into three parts. Similar to the figures presented in the first experiment, in the top
section of each figure ten frames from the input sequence, and in the middle part ten pictures
which illustrate the last average velocity of the pixels, are presented. However, in the bottom
part of each figure we present two graphs that indicate the percentage relative error of
estimated average velocities. The left graph shows percentage relative error versus frame
number calculated for only the pixels which receive a movement in each sampling interval;
this is to find out the relation between the system performance versus velocity values. The
right graph indicates the error versus frame number averaged for all the pixels in the image;

this is to measure the overall performance of the system.

To measure the performance of the system in the presence of noise, we employed gaussian

white noise with different signal to noise ratios. The signal to noise ratio (SNR) is defined as
follows
o, |?
SNR = 10 1 — 6.1

08 10 c, (6.1)
where o_ is the standard deviation of the image and G, is the standard deviation of noise. We
made thousands of noise files for three different SNR levels, 12 dB, 17 dB, and 22 dB. Then
we added the noise information to the input image frames in the image maker program. The

results were the noisy image frames used in this experiment.

Simulations 2.1.1-2.1.4: In this group of simulations, the object moves horizontally from left

to right with a constant speed of 0.2 ppf. The results of the simulations are presented in
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Figures 6.6-6.9. Figure 6.6 illustrates the results for a noise free situation, and Figures 6.7-6.9
illustrate the noisy cases with a SNR of 22 dB, 17 dB, and 12 dB respectively. We used 263

image frames in these simulations.

Simulations 2.2.1-2.2.4: In this group of simulations, the object moves horizontally from left
to right with a speed of 0.06667 ppf. The simulation results under the following conditions
are presented in Figures 6.10-6.13 respectively: 1) input images are noise free, 2) input images
with 22dB signal to noise ratio, 3) input images with 17dB signal to noise ratio, 4) input

images with 12dB signal to noise ratio. We employed 793 image frames in these simulations.

Simulations 2.3.1-2.3.4: Figures 6.14 to 6.17 indicate the results of the third group of
simulations. The object possesses a constant speed of 0.04 ppf and the input frames are mixed
with different levels of noise as mentioned in the previous cases. We utilized 1323 image

frames in these simulations.

Simulations 2.4.1-2.4.4: In this group, the object moves horizontally from left to right with
the speed of 0.02857 ppf. The results of the simulations are presented in Figures 6.18-6.21.
Figure 6.18 shows the results for a noise free situation, and Figures 6.19-6.21 illustrate the

noisy cases with SNR of 22 dB, 17 dB, and 12 dB respectively. We used 1853 image frames

in these simulations.

Simulations 2.5.1-2.5.4: The object moves with a constant speed of 0.02222 ppf in this group
of simulations. Figures 6.22-6.25 show the simulation results under four different noise

conditions as described before. We employed 2383 image frames in these simulations.

Simulations 2.6.1-2.6.4: In this group of simulations, the object travels horizontally from left
to right with the speed of 0.01818 ppf. The simulation results under the following noise
conditions are presented in Figures 6.26-6.29 respectively: 1) input images are noise free, 2)
input images with 22dB signal to noise ratio, 3) input images with 17dB signal to noise ratio,
4) input images with 12dB signal to noise ratio. We utilized 2912 image frames in these

simulations.
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Figure 6.6: Moving object speed = 0.2 ppf. Noise free input information.
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Figure 6.16: Moving object speed = 0.04 ppf. Input information SNR =17 dB.
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Figure 6.19: Moving object speed = 0.02857 ppf. Input information SNR = 22 dB.
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Figure 6.20: Moving object speed = 0.02857 ppf. Input information SNR =17 dB.
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Figure 6.25: Moving object speed = 0.02222 ppf. Input information SNR = 12 dB.
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Figure 6.26: Moving object speed = 0.01818 ppf. Noise free input information.
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Figure 6.27: Moving object speed = 0.01818 ppf. Input information SNR = 22 dB.
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Figure 6.28: Moving object speed = 0.01818 ppf. Input information SNR =17 dB.
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6.5 Discussion

In the first experiment we simulated the fuzzy neural network and tested it on different image
sequences to make sure that the system works well under different conditions. We utilized
different object shapes, brightness patterns, speeds and trajectories, and also employed
different background patterns. Although our choices are not the worst cases for proving the
performance of the fuzzy neural network, they are not the easiest cases either. They are
reasonable examples of conditions in which the detection of a moving object and estimation
of its velocity is neither very easy nor very difficult, even for human beings. All the obtained

results are reasonably good and fulfil our expectations.

In the second experiment, the moving object had the same shape, brightness pattern, and
trajectory in all simulations, but the object speed and the level of noise in the input images
varied from simulation to simulation. We selected six different velocities, which cover the
entire range of possible velocities the system can detect. This gives us a good indication of
the system performance for various velocities. As can be seen from the relative error graphs
in Figures 6.6-6.29, there is a transient error at the beginning of each simulation. This error
occurs because of the nature of the system. As was mentioned in the previous chapter, the
system calculates the average velocity, based on previously obtained velocities. Since at the
beginning of each simulation, there are no previously calculated velocities, the error is
expected to be large. This error disappears quickly as more frames are processed, and
decreases more rapidly if the velocity is high (see Figures 6.6, 6.10, 6.14, 6.18, 6.22, and
6.26). This transient behaviour of the system can be improved by changing the initial values
of the variables which keep the last velocity values of the pixels. This can be done in a

learning procedure.

As can be seen from the results, for the six noise free simulations (Figures 6.6, 6.10, 6.14,
6.18, 6.22, 6.26), there is no error in calculation of the velocity vectors (except for transition

errors). This shows that the system works well in the absence of noise.

The system also works well if the noise level is moderate. Figures 6.7, 6.11, 6.15, 6.19, 6.23
and 6.27 illustrate the effect of moderate noise (SNR = 22 dB) on estimated velocities. The

few spots in the output pictures, which are presented in the middle part of each figure, indicate
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very small errors unrecognizable in both relative error graphs. Comparisons of the relative
error graphs with their noise free counterparts show that there are no significant differences

in error levels between the two cases. This proves the robustness of the algorithm to noisy

conditions.

Furthermore, it was found that as the noise levels increase from moderate to high the system
performance deteriorates slowly and gracefully. For a SNR of 17 dB, the results are given in
Figures 6.8, 6.12, 6.16, 6.20, 6.24 and 6.28. Note that the relative errors for pixels which
should receive motion (left graphs) do not exceed 10% (except in the transient phase), and the
errors averaged over the entire frame (right graphs) are below 0.05%. For high noise levels
(SNR = 12 dB), the results are presented in Figures 6.9, 6.13, 6.17, 6.21, 6.25, 6.29. The
relative errors, in these figures, are below 20% for pixels receiving motion, and typically are
around 10%; the errors averaged over the entire frame are below 2%. The sharp changes in
error levels, that occurred in these simulations, are due to similar noise patterns occurring in
two consecutive frames. When this happens, it causes a false motion detection in some pixels;
thereby, inducing a large error in the velocity estimate of these pixels. This effect can be
reduced by increasing the size of the sector representing a pixel, or by introducing some

preprocessing such as low-pass filtering.

According to the simulation results discussed above, the fuzzy neural network showed a good
performance in detecting moving objects and estimating their velocities. Although the noise
levels were high, especially in the last case, the error levels are reasonably low. In addition,
the results show that the performance of the system does not depend on velocity values of the

moving objects.

Moreover, the parameter B of the DIR-FNs used in the fourth layer of the network and
assigned 0.5 in our experiments can be adjusted during a learning process to achieve yet better
results. To investigate the impact of this parameter on system performance, we have
conducted an extra experiment in which the object speed was 0.2 ppf, the signal to noise ratio
was 12 dB, and B was equal to 0.3 and 0.7 respectively. Upon comparing the results of this
experiment with those obtained for simulation 2.1.4, (see Figure 6.30), it can be concluded
that if the parameter B is increased, the error values for pixels that receive motion are

increased whilst the error values for the overall pixels are decreased, and vice versa if the
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value of P is decreased. This means that as the value of B is decreased, the system becomes

more accurate in detecting motion but more sensitive to noise. The optimum value of B can

be found with learning.
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6.6 Conclusions

In this chapter, the experimental results were reported and discussed. First we explained the
experimental procedure including simulation software which was developed for conducting
the experiments. Two main experiments were conducted, each experiment contained different
number of simulations. The first consisted of five simulations for objects moving with
different speeds and directions. The objective of this experiment was to examine the quality
of the motion estimator; that is, how the fuzzy neural network detects moving objects with
different shapes, brightness patterns, and velocities. The second experiment consisted of
twenty four simulations which contained a single moving object with six different velocities
under four different noise conditions (noise free images, images with SNR=22 dB, images
with SNR=17 dB, and images with SNR=12 dB). The objective of this experiment was to
assess the performance of the system in noise free and noisy environments. The fuzzy neural
network showed a good performance in detecting moving objects and estimating of their
velocities. Although the noise levels were high, the error levels were reasonably low. In
addition, the results showed that the performance of the system does not depend on the
velocity values of the moving objects nor does it depend on the background conditions. In

conclusion, the system performed well, and it can be utilized as a good motion estimator.



Chapter 7

CONCLUSIONS AND FUTURE DIRECTIONS

7.1 Overview

Fuzzy neural systems result from the fusion of fuzzy set theory and neural networks. Thus, the
advantage of both approaches are merged. Research on fuzzy neural systems has been pursued
in two different directions. Some researchers have utilized conventional artificial neuron
models to develop neural networks which are functionally equivalent to fuzzy inference
systems. Other researchers have developed neurons with fuzzy functions and fuzzy
computations. This thesis dealt with the fuzzy neural networks of the second category. Seven

chapters were presented in this thesis.

An introduction to the subject of fuzzy neural networks was given in Chapter 1. In Chapter 2,
some of the basic concepts of fuzzy set theory which were required for understanding this thesis
were explained. In Chapter 3, an introduction to the field of artificial neural networks was
presented. The emphasis was on multilayer feedforward neural network architectures, which
formed the basis of the fuzzy neural systems introduced in this thesis. A survey of four different
types of fuzzy neurons and their related fuzzy neural networks were presented in Chapter 4.
These four models have been found to be the most powerful fuzzy neural systems. In Chapter
5, which was the kernel of this thesis, a generic fuzzy neuron was defined as an extended model
of existing fuzzy neurons. Then the foundation of the approach we employed for motion
estimation was presented. The architecture of a fuzzy neural network was introduced to emulate
the proposed motion estimation algorithm. Seven different fuzzy neurons were defined and

utilized in different layers of the fuzzy neural network; they are simplified versions of the
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generic fuzzy neuron. In chapter 6, we studied and discussed the results of more than thirty

simulations of the proposed fuzzy neural network.
7.2 Conclusions

The first main contribution in this thesis was the generic model of a fuzzy neuron proposed as
the basic element of our fuzzy neural system. It is a generalization of existing fuzzy neurons.
In Chapter 5 it was shown that the generic fuzzy neuron can be simplified to the four models of
fuzzy neurons described in Chapter 4. Moreover, we discussed the differences between the
generic fuzzy neuron and the other models. It was described that it is possible to carry out any
fuzzy computation and also express any kind of ambiguous relationship using the generic fuzzy
neuron. It is claimed that the generic fuzzy neuron is the most powerful fuzzy neuron capable
of fuzzy information processing. This is because we employed fuzzy relations in the generic
fuzzy neuron functions (connection, aggregation, and activation). Moreover, we utilized the *-
* compositional rule of inference, introduced in Chapter 2, to obtain the solution of the
relational assignment equations used in the generic fuzzy neuron. In this way, any type of fuzzy
operation in the class of triangular norms or triangular conorms can be utilized to derive the
output of a generic fuzzy neuron function. This gives a high fuzzy processing power to the

corresponding function and therefore to the generic fuzzy neuron.

The algorithm for motion detection and velocity estimation which was introduced in Chapter
5, formed the second main contribution of this thesis. In this algorithm, the direction and speed
of motion are estimated not only using a comparison between brightness patterns in consecutive
image frames by fuzzy relations, but also a control mechanism was established to strengthen or
weaken the results of the comparisons. It was found that the proposed algorithm possesses the
following features:

1) Suppressing the effect of noise.

2) Solving the correspondence problem, i.e., the problem of finding the correct match among

other possible matches in brightness patterns.

3) Robustness against changes in illumination.

The only limitation of the algorithm is the assumption that the time interval between

consecutive images is very small and no significant change occurs between two consecutive



Chapter 7: Conclusions and Future Directions 131

frames, i.e., each object moves a maximum of one pixel between two consecutive frames. The
assumption is to make the system as simple as possible. It significantly reduces the number of
connections and nodes in the fuzzy neural network. As a result, the system’s construction in
VLSI technology will be feasible and the cost of the implementation will be cheaper. The
proposed fuzzy neural network can be easily expanded to process frames containing moving
objects travelling more than one pixel between consecutive images. Therefore, the assumption

made is not a limitation of the system, but a simplification.

The third main contribution of this thesis is the five-layer feedforward fuzzy neural network
architecture proposed for motion estimation. We evaluated the performance of the fuzzy neural
network in simulation studies described in Chapter 6. According to the simulation results, the
fuzzy neural network showed a significant performance in detection of moving objects and
estimation of their velocities. Although the noise levels were high, the error levels were
reasonably low. In addition, the results showed that the performance of the system does not
depend on the velocity values of the moving objects nor does it depend on the background
conditions. We found out that increasing the parameter B in DIR-ENs, increases the error

values for the pixels receiving movement whilst it decreases the error values for the overall

pixels. We concluded that a learning algorithm should be used to find the best B value.

The simulation results show that the fuzzy neural network has a great potential to be used in
motion estimation which contains uncertainty and imprecision. The results of the demonstrated
system suggest that the formulation of a fuzzy neural network by combining fuzzy set theory

and neural networks is a fruitful one. The described fuzzy neural network may also be used for

other computer vision applications.

7.3 Future Directions

In chapter 5 it is mentioned that the weights, the connection functions, the ag gregation function,
the threshold, and the activation function in the generic fuzzy neuron could be adjusted during
a learning process. As a result, the fuzzy neural network constructed with neurons of this type
can learn from the environment. In the proposed fuzzy neural network only B requires to be
adjusted. This parameter was employed in the aggregation functions of the fourth layer DIR-

FNs, and was utilized in the calculation of their corresponding fuzzy matrices. The simulations
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were conducted with a fixed value of B = 0- 5, which was determined by trial and error. We

did not present a learning algorithm for finding the value of B which gives an optimum
performance. However, we intend to define and use a simple learning algorithm for this purpose
in our future work. Moreover, it is intended the proposed system will form part of a real-time

VLSI micro-sensor for motion detection and velocity estimation.
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