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ABSTRACT

The advantages of fuzzy sets and neural networks in emulating the human brain

capabilities motivated the development of fuzzy neural networks. various models of

luzzyneurons have been proposed as the basic element of fuzzy neural networks' In this

thesis, we introduce a generic luzzy neuron as an extension of existing fuzzy neuron

models. In our model, all the states of activity are given in terms of ruzzy sets with

relative grades of membership distributed over the interval [0, 1]. The inputs and

outputs arefuzzysets over different universes of discourse' The connection' aggregation'

and activation functions, which determine the operation of the neuront are fuzzy

relations. When the inputs to a function are fuzzy sets over the same universe of

discourse, the function can be any hnzy operation in class of triangular norms or

triangular conornrs. To evaluate the operation of the fuzzy neuront a fuzzy neural

network architechrre based on the generic fuzzy neuron has been developed for motion

estimation. The fiveJayer feedforwar druzzy neural network emulates a spatio-temporal

image-matctring algorithm. seven simplifred versions of.fuzzy neurons are defined and

utilized in the lvzzyneural network. The results of simulations on thousands o1 64 x 64 
'

6-bit image frames containing moving objects under different conditions are reported'

,v
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Chqpter I

INTRODUCTION

1.1 Background and Motivation

One of the last frontiers of science, perhaps its ultimate challenge, is understanding the

biological basis of mentation and cognition - how we think, re¿ìson' learn, remember' perceive

and act, and implementing artificial systems that do the kinds of things we do' From

mechanical automata in past centuries to electronic devices now' we have tried to make

ha¡dwa¡e and softwa¡e that act like us, or at least some significant part of us. Much of current

research is devoted to modelling various aspects of the human brain, the thing which seems

to be the most highly developed in humans'

The human brain is superior to all kinds of modern day computers in processing cognitive

information, the information acquired by the peripheral nervous system' Whereas most of the

traditional mathematicar toors are based upon some absolute measures of information, the

cognitive information is in the form of relative grades. Unlike the computational functions of

traditional computers, the human brain acts upon the relative grades of raw information

acquired by the neural sensory system.

L.2 îttzzy Sets

To deal properly with uncertainties and imprecisions which arise from human thinking'

mentation, cognition and perception, some special tools and techniques are required' In 1965'

Lotlr A. Zadehpublished his first celebraæd paper onfuzry,f¿tr ¿ls a means for representing

uncertainty [58]. The type of uncertainty that this theory was meant to handle has as its roots
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the type of imprecision and ambiguity which is prevalent in human discourse and thought'

The theory of fuzzy sets is based upon the notion of a relative graded membership, and so is

the function of the mentation and cogniti on.Tadehwrites: "What is central about fuzzy theory

is that, it aims of modelling the imprecise modes of reasoning that play an essential role in the

remarkable human ability to make rational decisions in an environment of uncertainty and

imprecision. This ability depends, in turn, on our ability to infer an approximate answer to a

question based on a store of knowledge, that is inexact, incompleæ, or not totally reliable"

îs71.

Fuzzy set theory emerged by challenging the basic assumptions of three theories: sharp

boundaries in classical set theory, classical logic that each proposition must either be true or

false, and additivity in classical measure theory, particularly probability theory' The first

challenge to classical set theory came in the 1965 with the fuzzy set theory [58]' Next came

fizzy logic, which emerged as an outgrowth of fiizzy set theory [19], and a generalization of

the Lukasiewicz infinitive-valued logic defined on the unit interval [43]. The third challenge

appeared in l9'14,when fuzzy measure theory was introduced [45].

Although fuzzy theory encountered lots of skepticism, it became quite strong in the 1970s'

New important concepts were introduced such asfuzzy numbers, fuzzy topology, and various

kinds of. fuzzy relations. An extension principle appeared in 1975, by which other concepts

and theories of classical mathematics can readily be fuzzified t601. Researchers developed a

theory of dynami c fuzzy systems, investigated operators for aggregating fuzzy sets in a

comprehensive way, introduced fizzy sets of more general types, and formulaæd va¡ious

categories of fuzzy sets and relations. Some ideas of prospective applications of fiizzy theory

also emerged in the 1970s: fuzzy control t37lt55lt56l[59], fuzzy decision making [61]' and

fuzzy pattern recognition [5]. In spiæ of a general lack of interest, fuzzy set theory continued

to advance rapidly. Applications of the theory, however, lagged behind the theory itself, until

the 19g0s. Since then, hundreds of articles onfuzzy set theory and its applications have been

published in more than a doznn fields.

1.3 ArtifÏcial Ner¡ral Networks

Another difference between the human brain and conventional digital computers is its
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structure. It is believed that the brain consists of an enorïnous number of neurons highly

interconnected by links with variable strengths, operating in parallel' Conventional

computers, on the other hand, execute sets of instructions sequentially. To achieve the

massively parallel distributed processing features of the brain, neural networks have been

studied extensively since the influential work of McCulloch and Pitts, on neurons modelled

as discrete decision-making elements with threshold logic outputs in1943 [38]. In its simplest

conception, the neural network may be described as a collection of neurons which interact

ÍLmong themselves through a highly interconnected synaptic network. The most striking

aspect of such a network is the highly distributed manner in which information is stored and

the high degree of paratlelism by which it is processed.

The limitations of McCulloch and Pitts model were recognizcdby RosenblattÍA4J in 1950's'

First, the behaviour of the model was difficult to predict analytically. Second, the available

computational resources of the day were not adequate to simulate the proposed system'

Rosenblatt stirred considerable interest and activity in the field when he designed and

developed the perceptron [44]. The Perceptron had three layers which could learn to associate

a given input to an output. However, the system exhibited complex adaptive behaviour. The

ADALINE network was developed shortty afær the Perceptron by Widrow and Hoff in the

1960's [5 1]. It employed a more sophisticated learning procedure than the Perceptron learning

rule. In 196T,Amari est¿blished a mathematical basis for a learning theory (error-correction

merhod) [1]. In 1988, he and Maginu developed a self-organizing network as a model for

associative memory t2l. Initial work in associative memory was published by Anderson et al.

[3], and by Kohonenl2})lzIl.The former developed a neural network called Brain-State-in-

a-Box,and the latter developed Kohonen's self-organizing feature m.ops artd learning vector

quantizor.The Hopfield nerwork t10lt1llÍl2lÍ471is also a well-known associative network

today. Back-propagation networks are probabty the most well-used neural network today'

Several people published the back-propagation æchnique independently. The earliest was

published by Werbos t501. Adnptive-Resonance-Theory networl<s (ART) based on

biologically plausible models of learning was introduced by Grossberg [7] and developed by

Carpenter and Grossberg [6]. In contrast to feedforwa¡d networks, ART networks are much

more comprehensive set of neurophysiological phenomena. Bart Kosko has developed

several lines of resea¡ch with his hetero-associartve netvvorlcs, which includes the

B i dir e c ti o nal- As s o c i ativ e - emary
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Assocíatíve-Memory 122lÍ2311241[25]Í261. Since McCulloch and Pitts publication'

significant progress has been made in the field of neural networks on many fronts, and many

publications have emerged which attracted a Ereat deal of attention and funding for further

resea¡ch.

1.4 Ftuzzy Nenral Networks

To emulate the capability of the human brain (learning, remembering, reasoning, inælligence,

perceiving, etc.) in a machine, the attempt to utilize fazzy sets in the context of neural

networks began soon after the inception of thefuzzy set theory. The first ideas for developing

a hybrid a¡chiæcture, to enhance computing capabilities of. fuzzy sets by accepting

mechanisms of leá¡ning and using architectures of neural networks, were published by Wee

and Fu [49] in 1969. In their work, a class of. fuzzy automata was formulated and a

nonsupervised learning scheme for automatic control and pattern recognition was proposed'

In 1975, S.C. Lee and E.T. Iæe extended the McCulloch-Pitts model of a neuron to afuzzy

neuron with a fuzry activity rather than an all-or-none process t331. An a¡chitecture of afuzzy

neural network based on the McCulloch-Pitts a¡chitecture was proposed in which the

components were fuzzy neurons. In 1985, Keller and Hunt introduced a fuzzy perceptron

[17]. The proposed fuzzy perceptron was used in pattern recognition to deærmine linear

decision boundaries. Yamakawa and Tomoda described a simple fuzzy neuron model and

used it in a neural network archiæcture for character recognition [52]- They did not present a

specific tearning algorithm for the network; however, Yamakawa and Furukawa described

later an example-based learning algorithm for membership functions of the fazzy neuron [54]'

The proposed algorithm wÍrs tested for recognition of hand-writæn characters. Pedrycz

studied a problem of learning in neural networks with max-min composition operations [41].

He indicated analogies befween relational structures and a certain cla.ss of neural networks.

Takagi and Hayashi reported a formulation for determining fuzzy inference rules and a

method of. fizzy reasoning using neural network models Í461; astructure of a neural-network-

driven fuzzyreasoning system was given and two applications of this method were presented'

An Adaptive-Network-based Fuzry Inference System (ANFIS), a fiizzy inference system

implemented in the framework of adaptive networks, wN introduced by Jang [15]. The

ANFIS could construct an input-output mapping based on both human knowledge (fuzzy if-
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then rules) and stipulated input-output data pairs. He employed the ANFIS architecture to

model nonlinear functions, identify nonlinear components on-line in a control system' and

predict a chaotic time series. Implementation of conjunctive and disjunctive fuzzy logic rules

with neural networks was published by Keller and Tahani tlsl in 1992' Kosko proposed a

fuzzy associative memory (FAM) which defines mappings between fuzzy sets [26]' FAM

used fuzzy matrices instead of.fuzzy neurons to representfuzzy associations.

Besides the activities reported above, some recently developed fuzzy neurons and fizzy

neural networks have been found more attractive. Gupta and Knopf proposed a mathematical

model of. afuzzy neuron and neural network archiæcture for control application [8]. In the

proposed network each neuron representæd a fuzzy inference rule. The neurons could learn

from experience by adapting the synaptic weighting functions' Pedrycz a¡d Rocha

hypothesized the models of neurons based on logic-oriented processing mechanisms of fuzzy

sets [42]. Two broad classes of aggregative (named AND and OR neurons) and referential

neurons (such as matching, dominance, and inclusion neurons) have been presented'

Furthermore, learning procedure for basic logic neurons and various topologies of neural

networks have been discussed. Hirota and Pedrycz introduced a neural network-based model

of logical connectives [9]. The basic processing element of this network consists of two types

of OR and AND neurons structurcd into a three layer network. A supervised learning for the

OR/AND neuron and a realization of a pseudo median filær in which the OR/AND neurons

play an important role have been studied. Lin and Song proposed afiizzy neural network with

a simple sfucture of three layers with different types of. fuzzy neurons [35]. They evaluated

the fuzzy neural network in a simulation study of inverse kinematics of a two degrees of

freedom manipulator. Kwan and Cai defined afuzzy neuron, introduced four types of fuzry

neurons, and proposed a four-layer feedforward fuzzy neural network with its learning

algorithm [2g]. They have applie dthefuzzy neural network to recognize shifæd and distoræd

training patterns.

In this thesis, a generic model of afuzzy neuron witl be introduced as the basic element of our

fuzzyneural system. The generi cfuzzy neuron, which is inspired by Gupta and Knopf'sfuzzy

neuron, is a generalization of the existing models of luzzy neurons. The archiæcture of a five-

layer feedforward fuzzy neural network is proposed for motion estimation. We define seven

simptified types of fuzzy neurons to be employed in different layers of the proposed fuzzy
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neural network archiæcture. We also present and discuss simulation results performed on

synthetic images.

1.5 Overview

The thesis is organised into 7 chapters including the current introductory chapær- Chapæt 2

summarizes some of the basic concepts of fuzzy set theory which will be needed in this thesis.

Chapter 3 provides an introduction to the field of neural networks and summarizes the

theoretical results concerning multilayer feedforward neural networks. A discussion of four

developed models of fuzzy neurons and fuzzy neural networks is given in Chapær 4. To our

knowledge, they are themostimportantmodels among existing frtzzy neural systems- ChapÛer

5 discusses the proposed generic fuzzy neuron and the fuzzy neural network architecture for

motion estimation. An algorithm for motion estimation is also presented in this chapter.

Chapær 6 discusses the simulation results. Finally, the concluding remarks and future

directions of this resea¡ch are given in Chapter 7'



cho er 2

THE BASICS OF IUZZY SET THEORY

2.1 Introductlon

Fuzzy set theory was introduced by L.A. Zadeh in his paper "Fuzzy Sets" published in 1965

t58l as a means for representing uncertainty. The type of uncertainty that this theory was

meant to handle has the type of imprecision and ambiguity which is prevalent in human

discourse and thought. The theory has now matured into a wide-ranging collection of

concepts and æchniques for dealing with complex phenomena which do not lend themselves

to analysis by classical methods. The aim of this chapter is to summarize some of the basic

concepts of fuzzy set theory which will be needed in this thesis. The chapær is organised as

follows: First the idea of fuzzy sets is presented. Then basic operations with fuzzy sets are

explained. Afær that, the definition of fuzzy relations and fuzzy relational equations are

given. Next, the concepts of linguistic variables, fuzzy logic, and fuzzy approximate

reasoning are discussed. Finally, a brief review of. fuzzy infercnce systems and thei¡

components is provided. The contents of this chapter are based on the following publications:

f2gtf3l)Í32lt4glt53lt57lt58lt62l. The reader is referred to the mentioned publications where

exact definitions and more detailed explanations are provided.

2.2 Qaantification of Arnbf$uitY

Linguistic terms and numerical values are classif,red into three categories in accordance with

their meanings. Determinisúc words, e.g., "male" and "female," "dead" and "alive," have truth

1 to NO or YES, vely. In other words, if one is asked,

"Ate you male?," "Are you alive?," then the answer can be made with a "YES" or "NO"
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St¿tement. Exact numerical values, e.g., "exactly 25"C," "438," etc', are in the same

category; that is they have truth values of 0 and 1. The deærministic words and numerical

values have neither flexibility nor inærvals. They are charactenzpd by a characteristic

function as shown in Figure 2.I(a). The word "exactly l5 oC " means only one single point of

temperatur e at l5o C, thus, this type of ærm or value is called a singleton-

Even in the scientific analysis, when exact values are preferred, numerical intervals are

sometimes used to represent flexible values. For example, "The comfortable room

temperature for human beings is 20"C-30oC." The characteristic function representing a

numerical interval "Z0o C -30"C " is shown in Figure 2.1(b). Truth values for æmperatures are

given by yES or NO in this case as well as the case of a singleton. This inærval can be

regarded as a set of singletons. Thus, this type of deterministic interval is called a crisp set.

Crisp sets are also adopted to represent linguistic terms in knowledge in artificial intelligence.

Natural languages are used for easy and efficient communication in our life- Whereas

numerical values and deterministic linguistic terms used in artificial inælligence are well-

defined, the natural language is usually intuitive and includes some kind of uncer[ainty, called

ill-defined, o.g., "Cool it a little bit." This type of natural language is referred to as a Íuzzy

Iinguistíc term. The meaning of the fazzy linguistic term is defined by a characteristic

function as shown in Figure z.I(c).This function is specifically called am¿mbershipfunction,

because it indicaæs a grade of membership of each element in a fuzzy linguistic term. A

membership function exhibits a continuous curve from 0 to 1 or vice versa. For instance, the

fuzzy linguistic tenns "cold," "a little cool," "cool," "warm," "hot," and "very hot" al€

indicaæd in Figure 2.1(c).

a

"exactly l5oc" t'zo"c 
-30" c" "cold" "cool"

YES)1 ---t (YES)1

(NO) 0

010 020 10

8

cold

I

0

Temperature T("c)

(a)

Temperature T('c)

(b)

Temperaûre T("c)

(c)

(NO)

Figure 2.I: (a) A singleton. (b) A crisp interval. (c) Fuzzy sets'
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2.3 Fuzzy Sets

l-et X be a space of points (objects) which could be discrete or continuous. X is called the

universe of discourse and r represents the generic element of X.

Definition 2-l: Afuzry set A ina universe of discourse X is charactenzndby amcmbership

function Þ¿, which associates with each point in X a real number in the inærval [0'1]

namely, lL¡: X+ [0,1] . The value of F¿ (x) at I represents the "grade of membership" of

x in A . Afuzzy set may be viewed as a generalization of the concept of an ordinary set whose

membership function takes two values {0, 1}. Thus a fuzzy set A in X may be represented

as a set of ordered pairs of a generic element ¡ and its grade of membership function

! = {(¡,It¿(x)) : xe X} Q'I)

Definition 2-2:Tlte support of. afi¡zzy set A , S (A) , is the crisp set

S (Á) = {x e X: Po (x) > 0} Q'2)

Defïnition 2-3 T\e crossover point is the element x in X at which

F¿ (x) = 0.5 Q3)

Definition 2-4: Afuzzy singleton is afuzzy set whose support is a single point in X. If A is

afuzzy singleton whose support is the point r, we write

A - ¡s./x Q'4)

where ¡r is the grade of membership of x in A -

Afuzzy set A may be viewed as the union of its constituent singletons. On this basis, A may

be represented in the form

o = I*uo@) /x Q5)

wheretheintegralsignstandsfortheunionof the fuzzysingletons tt¡(x) /x.If A hasafiniæ

support {x' xr, ..., xn}, then (2-5) may be replaced by

A - ¡tr/xr+¡tr/xr+ ... + Irn/x, Q'6)

or, more compactly

9
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r- Ltr,t*' Q'7)

j= I

in which F¡ is the grade of membership of x, in A . It should be noted that the "+" sign in (2'6)

denotes the union rather than the arithmetic sum'

Deflrnition 2-5: Afuzzy setis emptyif and only if its membership function is identically znto

on X.

Definition 2-6:T\e a-level set ot s, -cut of. afuzzy set A is a crisp subset of X and is denoted

by (Figure 2.2 shows a continuous case)

Ao = {x e X: tr¿ 2 s} (2'8)

The "strong cx,-level set" or "strong cf,-cut" is denoæd by

Ao = {x e X: tt¿ > s} (2'9)

Þ¿ (x)

cl

0 x

A.-= {xeX:!r¿2cr}

Figure 2.2: An c -level set.

Definition 2-7: Afuzzy set A is convex if and only if:

Lr¿ [Àx, + ( 1 - ]'") xr) 2 min [Fo (xr) ,IL¡(xr) ] (2'10)

forallx, and xrnluandalll" in [0,1]'Alæmatively,afuzzy setisconvexif all ct'-cutsare

convex. Figure 2.3 shows an example of a convex fuzzy set (a), and an example of a non-

convex fuzzy set O).

tt
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r___l
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P¡ (x)
P¡[]'-rt+ (1-]")xrl

tr¡ (x,)
tt¡(x2)

0
x1 x2

0.3

0

I1

F,a (x)

1
1

0 xx

(a)

Figure 2.3: (a) A convex fuzzy set. (b) A non-convex fuzzy set.

Definition 2-8: A fuzzy set A is normolif and only if supremum sf Fa (x) over X is unity'

Afuzzy setis subnormal tf it is not normal'

Definition 2-9: For a normal and convex fizzy set, if cr -cut is a closed interval, it is called a

fuzzy number.Figure 2.4 shows such fuzzy sets, which could be called "approximately 3" and

"approximately 7..

7
1

(b)

9

I
I
¡r-
I

3

I
I
I
¡
?
I

I
I
I

x
I 567

Figure 2.4:Fuzzy numbers 3 andT-

2.4 Operations With îtrzzY Sets

Iet A and B be two fuzzy sets in x with membership functions F¿ and [r¡ respectively' The

set-theoretic operations with fuzzy sets are defined via their membership functions'

Definition 2-10: Two luzzy sets A and B are equal, A = B, if and only if

[r¿ (¡) = F¡ (¡) for all x e X Q'Il)

Definition 2-ll: A is contained in B , A ÇB ,if and only if

(¡) < F¡ (x) (2.12)
I,r

Definition 2-12: Tlne complemcnt of a fuzzy set A is denoted by 'Ã and its membership
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function is defined bY

ItuQ) = l-F¡(x) Q'13)

Definition 2-13:The unionof two fuzzy sets .'4. and B , A w B , is the fuzzy set defined by the

following membershiP function

Fra(,,¡ (x) = max[U4 (x), Lr¡ (x) ) Q'14)

Definition 2-14:The intersectionof two fuzzy sets A and B , A 
^B ' 

is the fuzzy set defined

by the following membership function

Fa,.,, ¡ (r) = minlr¿ (x), Þ¡ (x) 1 (2'15)

Definition 2-15: The algebraic sumoftwo fuzzy sets A and B, A+B ' is thefuzzyset

defined by the following membership function

lta * ¡ (x) = lL¡(¡) + Lr¡ (¡) - lre (x) ' [r¡ (x) Q'r6)

Definition 2-16:The algebraic productof two fuzzy sets A and B , A' B ' is the fuzzy set

defined by the following membership functio

l\. n@) = Lr¿ (¡) ' þr¡ (x) Q'17)

Definition 2-17:Thebounded sumof.twofuzzy sets A and B, A@B ' is the fuzzy set

defined by the following membership function

Fa s ¿ (x) = minfl, F¿ (x) + F¿ (x) I (2'18)

Definition 2-18: The bounded dffirence of two fuzzy sets A and B ' AQ B 
' 
is the fuzzy set

defined by the following membership function

lr¿e¡ (x) = maxl}, F¿ (r) - Þ¿ (x) 1 Q'19)

Definition 2-19:The absolute dffirence of two fuzzy sets A and B ' AE.B ' 
is the fuzzy set

defined by the following membership function

þænQ) = I Po (x) - Lr¡ (x) | Q'20)

Definition 2-20: T\e algebraic division of two luzzy sets A and B ' AZB ' is the fuzzy set

defined by the following membership function

v¡,n.e) = 'ntt,ffil rr.nt

nition 2-21:11A ariefiizzy sets in X, Xz, ..., Xr, respectively, the cartesian
,A

product of A' Ar,...,An, ArxArx"' xÁn' is a fuzzy set in the product space
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XrxXrx ... x X, with the following membership function:

þArrAr* ,An(x1, x2, .. ', xn) = min [F¿, (x1) ' ll¡r(x2) ' " '' F4n (xn) J Q'22)

A general class of aggregation operators for the intersection offuzzy sets is called tríangular

norms or t-norms.The min, cartesian product, and absoluæ difference operators considered

above belong to this cla,ss. They can be characterized as follows:

Defïnition 2-22:t-normsafetwo-valuedfunctionsfrom [0, 1] x [0, 1] into [0' 1] 'which

satisfy the following conditions:

1-r(0,0) =0;t(Lr¿(r),1) =t(l,Lr¡(¡)) =l-ta(x),xex Q'23)

2-t(þA(¡),F¡(x)) < t(ttc¡),Þp(x))if(lLt (x) < ttç(x) *dþ¡(x) <þto?)) Q'24)

z- t (|tt (¡), Lr¡ (¡) ) = t (p|(x) 
' 
pa (x) )

+- t(þ¿^(x), t(l¡ (x), lrs(x) )) = t(t(u¿ (x), F¡ (x))' F6'(x) )

(2.2s)

(2.26)

corresponding to the class of inærsection operators' a general class of aggregation operators

for the union of. fuzzy sets is called ¡iangular conorms or s-norms (t-conorms)' The max'

algebraic sum, and bounded sum belong to this class'

Defrnition 2-23: s-normsare two-placed functions s, which map from [0' 1] X [0' 1] into

[0,1]'Thesepropertiesareformulaædwiththefollowingconditions:

1-s(1, 1) =1;s(Þ1(x)'0) =s(0,F¿(x)) =!r¿(x),xex Q'27)

z- s(þt (x),F¿(x)) <s(Fc @),lto¡))if (Ite(x) <pc(¡) and pr(x) <po(x)) (2'28)

3- s (Þe (x), p¡ (¡) ) = s ([r¡ (¡), p¿ (¡) ) (2'29)

+-s([r,q(x),s(r¡(x),¡r.(r))) = s(s(u4(x),Lt¡(x))'p.(x)) (2'30)

2.6 îttzzY Relations

Ambiguous relationships such as "f and y are almost equal," "t is much taller than ) 
"' 

and

"f and y look very simillar," are ofæn topics of everyday conversation' however' expressing

relotionsare what makes it possible to express these ambiguous relationships'
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Definition 2-24: Fuzry relatíon R from set X to set Y is a fuzzy set in the direct product

XxY = { (¡,y) : xe X,ye Y}, a¡rd is chatactenze'd by the following membership

function:

V^: Xx Y +[0,1] . When X = Y,R is known as afuzzyrelation on X' As a generalization

of fuzzyrelations, then-aryfuzry relationR in Xr xxzx ...XXnisafuzzy setexpressed as:

ft = { ((xr,x2,...,xr),Fn (xr,x2,"',xr)):(¡t, x2, "''xn) eXrxXrx"'xX,} (2'3L)

Definition 2-252 Afizzy relation R in X xY canbe expressed by an mxn matrix called a

fuzzy matrix, M = Î^¡jf, where m,, has a value in the interval [0, 1] . The mu indicates

!r¡ (x,, );) in the matrix.

Definition 2-262 Afuzzy graphexpresses afuzzy relation R in Xx l, in a graph' For each

F¡ (x,, );) we make x, and )¡ vertices and add the grade *p(x,,)¡) to the a¡c from x, to )¡'

Definition 2-272If R is fuzzy relation in Xx Y and ^S 
is fuzzy relation in fxZ' the

composition of R and ,S, Ro^S ,is afuzzy relation in Xx Z defined as follows

Ro.s e> F¡"5 (x, z) = ^1,'{min{[r^ 
(x' ]) 'F51y' z) ] ] (2'32)

Definition 2-?.8:If R is fuzzyrelationin XxI and S isfuzzy relationin Yx Z,themnx-*

compositionof. R and S,RiS ,isafuzzy relationin Xx Z deftned asfollows

Ri^s e) F¡;5 (x, z) = ^l,r{}r¡ 
(x, )) * trs Q, z)} Q'33)

where * could be any operaûor in class of triangular norÏns' namely, minimum, cartesian

product, or bounded difference.

Definition 2-292If R is fuzzy relation in X x }z and ,S is fuzzy relation in Yx Z, the *-*

compositionof R and S,nlS ,isafuzzyrelationin Xx Z definedasfollows

nfs er Frþ (x, z) = î tp^ (¡, y) * p, (v, z) Ì Q'34)

where * could be any operator in class of triangular norrns or triangular conorrns'

2.6 îtuzzy Relational Equations

As described in the previous section, if we let A be afuzzy set in X and R be afuzzy relation
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in Xx f, the composition of A and R,'A'oR' is defined as

[t¿.n (y) = ^1* {min{ lo (r) 'P¡ (x' y) } } (2'35)

and is afuzzy set in IZ which is called B. In other words, B = AoR' If we view A as the

fuzzyinpu! B as the fuzzy output, and R as the fuzzy system, we can think of B = AoR as

expressing the input-output relation of a system with fuzzy input and fuzzy output' If the

fuzzy input A and fuzzy relation R are given, the fuzzy output B can be founded by taking

the composition of .4 and R. The equation B = AoR is called aluuy relatíonal equation'

2.7 Lilnguistic Variables

A linguistic variable can be regarded as a variable whose value is not numbers but words or

sentences in a natural or artificial language'

Definition 2-302 Alinguistic variableis charactenzndby a quintuple (x' T (x) ' U' G' M) in

which ¡ is the name of the variable; T (x) denotes the term set of ¡, that is, the set of names

of linguistic variables of x, with each value being a fizzy variable denoted generically by r

and ranging over a universe of discourse U which is associated with the base variable u; G

is a syntactic rule for generating the name' X, of values of ¡; and M is a semítntic rule lot

associating with each X its mean^8, M (X) , which is afuzzy subset of U ' A particular X'

that is a name generated by G, is called a term'

For instance, if "temperature" is inærpreted as a linguistic variable, then its tenn Set could be

T(temperature) = {cold, a little cold, cool, wafm, hot, very hot} where each term in

I(æmperature) is characteiznd by a ftzzy set in a universe of discourse U= [0' 100]'

These tenns can be cha.r¡cænzed as fuzzy sets whose membership functions are shown in

Figure 2.1(c).

2.8 îuzzy l.oglc and Approximate Reasoning

r5

r r L-- ¿L ^:- ¿L-^^ ^a¡iavf i-rlananrlent itcrnc'
LOgiCS aS bâSes1Of feasOnmg Can De gfsungul¡ttrçu u) ruçIr uuw vvr¡w^!
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truth values, operators, and tautologies (reasoning procedure)

In Boolean logic, truth values can be tnle or false and by means of these truth values the

operators are defined via truth tables. In multivalued logic, truth values can be true or false or

have an intermediate varue, which may be an element of a finite or infinite truth varue set r.

The uniqueness of interpretation of truth tables, which is very convenient in Boolean logic'

disappears immediately because many truth tables in multivalued logic are similar ' In fuzzy

logic, the truth values a¡e allowed to range over the fuzzy subsets of T' Whereas operators in

Boolean logic and multivalued logic are normally def,rned by the tabulation of truth values in

truth tables, in fuzzy logic, the tabulation of the truth values for operators is not possible

because the number of truth values is infiniæ. However, truth values can be tabulated in terms

of the linguistic variable "Truth" for a frniæ number of terms, such as true, not true' very true'

false, more or less true, an so on.

In traditional logic the main tools of reasoning are tautologies, for instance, them'odus ponens'

that is
Premise
Implication

A is true
If A then B

Conclusion B is true

A and B are statements or propositions (crisply defined) and the B in the conditional

statement is identical to the B of the conclusion. Two generalizations of the modus ponens afe

1- To allow statements that a¡e characteiznd by fuzzy sets.

2- Toretax (slightly) the identity of the " B s" in the implication and the conclusion'

In approximate reasoning there are two important fuzzy implication inference rules named the

generalized modus ponens (GMP) and the generolized modus tollens (GMT):

yisB'
IfxisAthenYisB

(GMP) (GMr)

Conclusion yis B' Conclusion xisA'

The fuzzy implication inference is based on the compositional rule of inference for

approximate reasoning suggestedby Zadeh in 1973 [59]. Here fuzzy sets A' A"B'B' are

Premise
Implication

xis A'
IfxisAthenYisB

Premise
Implication

.t

rll

I
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introduced via ringuistic variabres x, y instead of crisp sets in the traditional logic. The GMP,

which reduces to modus ponens when A = A', and B = B' ,is closely related to the forward

data-driven inference which is particularly used in fuzzy logic control. The GMT, which

reduces to modus tollens, when A'= not A and B'= not B, is closely related to the

backward goal-driven inference which is commonly used in expert systems, especially in the

area of medical diagnosis.

Definition 2-3lz I-et R (x) , R (x, y) , and 'R (y) , ¡ e X,y e }z ' be fuzzy relations in X'

XxY,and Iz respectively.kt A and B denote paficular fuzzy sets in X and Xx Y' The

compositional rule of inferenc¿ asserts, that the solution of the relational assignment

equationsR(¡)=!andR(x,y)=BisgivenbyR(y)=AoB,whereAoBisthe

compositionof A andB.If themax-*compositionisused, R(y)= Aî.B,thisrepresents

m.ox-* compositional rule of inference.

2.9 f^rurzzy luiference SYstems

Fuuy inference systems are also known as fuzzy-rule-based systetns, ruzzy associative

memories, orfuzry controllers when used as controllers' As shown in Figure2'5 afuzzy

inference system consists of five functional blocks: fiznftcation interface, rule base,

database, decision-making unit, and defuzzification interface. Usually the rule base and the

data base are jointly referred to as the knowledge base. The above components are discussed

in more detail in the following.

input tput

(crisp)
(

$azzy) (fuzzy)

database rule base

dccision-ntaking unit

knorvledge base

firzzificatiolr
i¡rterface

defuzzificatio
interfacc

I

*

Figure 2.5 : Fuzzy inference system.
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2.g.1 The F.uzzllitcation Interface

Fuzzífication is related to the vagueness and imprecision in a natural language. It is a

subjective valuation which transforms a measurement into a valuation of a subjective value'

and hence it could be dehned as a mapping from an observed input space to fuzzy sets in a

certain universe of discours e. Afuzziftcation operator conceptually converts a crisp value into

a fuzzy singleton. It interprets an input Io N a fuzzy set A whose membership function

F¿ (x) is zero except at the point xo, at which F¿ (ro) is one'

2.9.21he Rule Base

In a fuzzy interface system, the dynamic behaviour is charactenzpd by a set of linguistic

description rules based on expert knowledge. The expert knowledge is usually of the form

IF a set of conditions are satisfied THEN a set of consequences can be infened (2'36)

Since the antecedents and the consequences of these if-then rules are associaæd with fuzzy

concepts (linguistic terms), they are called "fuzzy rules." Several linguistic.variables might be

involved in the antecedents (multi-input) and the conclusions (multi-output) of these rules'

Multi-input-multi-output fuzq systems a¡e referred to as MIMO fuzzy systems and multi-

input-single-output as MISO luzzy systems. The rule base for a MISO fuzzy system could

have the form:

rule 1 :ifx isA, andY is B, thenz ß C'
rule2:if xis ArandYisBrthenz ßCr,

rule n : if x is A, and y is Bn then z ß Cr' (2.37)

where x, ! , and z are linguistic variables representing two input variables and one output

variable. Ai, Bi, and C, are linguistic terms of the linguistic variables x' ! ' and z in the

universe of discourse U, V, and W, respectively, with i = I,2, "',n: and an implicit

sentence connective also links the rules into a rule base'

18

I

þ

Afuzzy rule, such as "if (x is A, and y is B, ) then (z is C¡ )," is implemented by afuzzy
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implication (fuzzy relation) R, and is defined as follows:

¡rnr p (4, and B,-> C,) (u, v, w) = ltto,@) and ¡tr, (v) I + Vç,(w) (2'38)

where (4, and B,) is fuzzysetA,xB, in uxv;R. = (4, and B,) -+ c, isafuzzy relation

in U x V xW; and -> denotes afuzzy implication function'

2.9.3 The Database

The database defines the membership functions of the fuzzy sets (linguistic ærms) used in the

fuzzy rules. There are two methods used for defining fuzzy sets depending on whether the

universe of discourse is discrete or continuous: i) numerical, ii) functional.

In the former, the grade of membership function of a fuzzy set is represent€d as a vector or

numbers whose dimension depends on the degree of discretization. In the latter, the

membership function of afuzzy set is described in a functional form, typically a bell-shaped

(gaussian) function, triangle-shaped function, or trapezoid-shaped function. The functional

definition can readily be adapæd to a change in the normalization of a universe.

2.9.4 The Decision'Making L'ogic

The decision making logic is the kernel of. afuzzy inference system. It infers the output of the

fuzzy inference system (in ærms of fuzzy sets) on the basis of fiizzified input and the

knowledge base. Several types of fiizzy reasoning (inference operations upon fuzzy rules)

have been proposed. Depending on the types of fuzzy reasoning and fuzzy if-then rules

employed, most inference systems can be classified into four types described in the following

(see Figure 2.6). For simplicity assume that we have two fizzy rules as follows:

rule I: if ¡ is A, and Y is B, then z is C'
rule 2: if x is A, and y is B, then z ís Cr' (2.3g)

The inputs are usually measured by sensors and are crisp. In some cases it may be expedient

to convert the input data into fuzzy sets. In general, however, a crisp value may be treated as

expressed as

ct and of the fîrst and serond rules maY be
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dr = min (P¿, (xs), [r¡, ()¡) ) (2'40)

02 = min (P¿, (xs), P¡, ()s) ) (2'41)

where [r¡, (x¡) and pr, (yo) play the role of the degrees of partial match between the user-

supplied data and the data in the rule base. These relations play a central role in the four types

of fuzzy reasoning described in the following:

premises consequences
type 4

Fo, Irr,

type 1

F",

type2
F.,

I

maximum maximum

I
ILc

\ = Ít(x6,)s)

zz = lz(xq, )9)

weighted
average

type 3

Ft",

1 1
1 1

ww

w

w
1

IL",lLr,TL,,
1I11

U V

I
l-tc

1 1

minimum w

Fi gure 2.6 : Diagr a¡¡rm atic representation of ruzzy reas onin gs.

1) Type 1

Fuzzy reasoning of this type is associated with the use of minimum operation rule ^R" as a

fuzzy implication function. In this rnode of reasoning the dth rule leads to the decision

Lrç,,(w) = min (4,, F6,, (w) ) Q'42)

which implies that the membership function [16 of the infened consequences C is pointwise

w

1

l+v

given by



Chapter 2: The Basics of Fuzzy Set Theory 2I

Itc@) = max (!16,,, 116';) = max ([min (ct1,[t6,(w))], [min (d2,ll6r(w))])(2'43)

2)Type2

Fuzzy reasoning of this type is based on the use of product operation rule as a fuzzy

implication function. In this mode of reasoning the ith rule leads to the decision

[tc,'(w) - cri ' Vc,@) (2'44)

Consequently, the membership function Ps of the inferred consequence C is pointwise given

by

Itc@) = max ([rc,,,Fçr,) = max (lor'F6',(w)),luz'Fc,(w)I) Q'45)

3) Type 3

Fuzzy reasoning of this type is a simplified method based on the fazzy reasoning of the first

type in which the membership functions of fuzzy sets Ai, 8,, and C, are monotonic' The

result inferred from the first rule is cr, such that a, = Ct(z)' The result inferred by from

the second rule is cr, such that crt = czk)' correspondingly' a crisp action may be

expressed as the weighæd combination

^=W 
e.46)

g"L+ u.2

4) Type 4

In this type of fuzzy reasoning, the ith rule is the form of

rule i: if (x is A, ,..., y is B, ) then , = f i(x, "',y) (2'47)

where x,...,y and z are linguistic variables representing process state variables' Ai""'Bi

are linguistic terms of the linguistic variables x, ...,y in the universe of discourse U' ""V '

respectively,with i = 1,2,...,n:andd, isafunctionof thevariables x,...,y definedinthe

input subspaces. For simplicity, assume that we have two fuzzy cont¡ol rules as follows:

rule 1: if ¡ is A, and Y is B, then z = f1(x,l) ,

rule 2: if x is A, andy is B, then z = fz?,y) ' Q.48)

The inferred values from the rules are arf r(xo,)s) and a;fr(xs,)s). Correspondingly' a

^-:^- ^^+:^-:^ ^:"^ñ h' Q'49)
vllÐI, 4vqvr¡ D-6r-t v¡r v7 --
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(2.s0)arf , (x o,)o) + a¡ft (xo, I s)zo=T

2.9.6 The D efvzziÊtcation Interface

Basically, defuzzlftcation maps output fuzzy sets defined over an ouÞut universe of discourse

to crisp outputs. It is employed because in many practical applications a crisp output is

required. A defuzztfication strategy is aimed at producing the nonfuzzy output that best

represents the possibility distribution of an inferred fuzzy output. At present, the commonly

used strategies may be described as the following:

1) The Max Criterion Method

The max criærion method produces the point at which the possibility distribution of the fuzzy

output reaches a maximum value.

2)The Mean of Maximum Method

The mean of maximum generates an output which represents the mean value of all local

infened fuzzy ouþuts whose membership functions reach the maximum. In the case of a

discrete universe, the inferred fuzzy output may be expressed as

zo (2.s1)

j=L

where w, is the support value at which the membership function reaches the maximum value

Itr(wr), and I is the number of such support values'

3) The Centre of Area Method

The centre of area generates the centre of gravity of the possibility distribution of the inferred

fuzzy output. In the case of a discrete universe, this method yields

íu,@,)w,
i=1zo= n

) u. (wr)

;?

where n is the number of quantization levels of the output'

(2.s2)
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Figure 2.7 shows a graphical interpretation of various deruzziftcation strategies'

23

1

0 w

MCM CAM MMM

Figure 2.7:Diagtammatic representation of various defuznfication strategies

z.LO SummarY

In this chapter, some basic concepts of fuzzy set theory, which are required for understanding

the contents of this thesis, were summ anzed. These concepts will be employed to build the

proposed model of the generic fuzzy neuron and also the a¡chiæcture of the fuzzy neural

network. The basic operations with fuzzy sets, fuzzy relations, fuzzy relational equations,

linguistic variables, and fuzzy approximate reasoning are among the topics which will be

utilized in the following chapærs'

p
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FUNDAMENTALS OF ARTIFICIAL NEURAL NETWORKS

3.1 Introduction

The biologically inspired artificial neural network models attempt to achieve good

performance via dense interconnection of simple computational elements' They have a good

potential in areas where many hypotheses are pursued in parallel and high computation rates

are required. The poæntial benefits of neural networks extend beyond the high computation

rates provided by massive parallelism. They typically provide a gfeatet degree of robustness

or fault tolerance than sequential computers because there afe many more processing nodes,

each with primarily local connections. Moreover, they can modify their behaviour in response

to their environment" i.e., they can learn from environment.

This chapûer provides an introduction to the field of neural networks and summarizes the

theoretical results concerning multilayer feedforward neural networks. It is organised as

follows: First a review of the biologicat neural networks is presented. Then the artificial

neuron model is explained. Nexg the architecture of the multilayer feedforward neural

network is described. Finally, the backpropagation learning rule is discussed. The contents of

this chapúer a¡e based on the following publications: [4]tSlt13lt16lt36lt63l'

3.2 The Biological PrototyPe

Artificial neural networks have undoubædly been biologically inspired, but the close

correspondence between them and real neural systems is still rather weak. Vast discrepancies
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exist between both the archiæctures and capabilities of a¡tificial and natural neural networks'

Knowledge about actual brain functions is very limiæd, so there is little to guide those who

would try to emulate them.

The human brain is only a metaphor for a wide variety of neural network configurations that

have been developed. It consists of approximaæly 1011 computing elements called neurons'

Although these neurons can be classified into perhaps as many as 10000 different types, they

share many common features. These neurons with basically simitar properties are able to

produce very different actions because of precise connections with each other and with

sensory receptors and muscles. Each neuron is connected to about 104 other neurons' A

typical neuron has four morphologically defined regions: the cell body, which is also called

soma, dendrites, axon, and synaptic terminals. The ceII body is the metabolic centre of the

neuron. It usually gives rise to two types of processes called the dendrites and the axon'

Dendrites form a dendritic tree, which is a very fine bush of thin fibres around the neuron's

body. Dendrites receive information from neurons through axons - long fibres that serve as

transmission lines. An axon is a long cylindrical connection that carries impulses from the

neuron. The end part of an ¿ìxon splits into a fine arborization. Each branch of the axon

terminates in a small endbulb almost touching the dendrites of neighbouring neurons. The

axon-dendrite contact organ is called synapse.The synapse is where the neuron introduces its

signal to the neighbouring neuron. The signals reaching a synapse and received by dendriæs

are in the form of electrical impulses. The inærneural transmission is sometimes electrical but

is usually effecæd by the release of chemical transmitters at the synapse'

The neuron is able to respond to the total of its inputs aggregated within a short time inærval

called the period of latent summation If the total poæntial of the neuron's membrane reaches

a certain level, it flres. The membrane can be considered as a shell, which aggregates the

magnitude of the incoming signals over some duration'

Incoming impulses can be excitatory if they cause the hring, or inhibitory if they prevent the

firing of the response. A more precise condition for firing is that the excitation should exceed

the inhibition by the amount called the threshold of the neuron. Since a synaptic connection

causes the excitation or inhibition of the receiving neuron, it is practical to assign positive and

negative unity weight values to such connections respectively. The neuron fires when the total
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input impulses exceeds the threshold value during the latent summation period

26

After carrying a pulse, an axon is in a state of complete non-excitability for a certain time

called refroctory períod. For this time interval the nerye does not conduct any signals'

Therefore, we may divide the time scale into consecutive intervals, each equal to the length

of the refractory period. This enables a discrete-time description of the neuron's performance

in terms of their states at discrete time instance. The time units for modelling biological

neurons can be taken to be of the order of a millisecond'

3.3 Learning in Biological Systems

Learning is acquired when modifications are made to the effective coupling between one cell

and another, at the synaptic junction. There is no direct linkage across the junction; rather, it

is a temporary chemical linkage. The synapse releases chemical materials called

neurotransmitters when its potential is raised sufficiently by the action potential. It may take

the arrival of more than one action potential before the synapse is triggered' The

neurotransmitærs that are released by the synapse diffuse across the gap, and chemically

activate gates on the dendriæs, which, when open, allow charged ions to flow' It is this flow

of ions that alters the dendric potential, and provides a voltage pulse on the dendrite, which is

the conducted along into the next neuron. At the synaptic junction, the number of gates

opened on the dendriæ depends on the number of neurotransmitters released. This adjustment

of coupling so as to favourably reinforce good connections is an important feature of neural

network models.

3.4 The A¡tifÏcial Neuron Model

The artihcial neuron model designed to mimic the characæristics of the biological neuron is

shown in Figure 3.1. Each neuron model consists of a processing element with synaptic input

connections and a simple output. The neuron fires an output response when the aggregate

activity of all inputs exceeds some predefined threshold level. From a structural perspective,

as shown in Figure 3.1, the response activity t¡ of a single neuron at location i can be

expressed as
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Figure 3.1: The basic structure of the a¡tificial neuron'

\ = fj[u,-1¡l (3'1)

where the functio n f¡l.l is ofæn referred to as a som.atic activation function that describes

the degree to which the jth neuron is active or firing an output response' Its domain is the set

of activation values of the neuron model defined as

neti = ui-0i

where ø, is the total aggregate input octiviry incident on the cell body of the neuron and 0,

is the thresholdlevel for this neuron. This aggregrtÞinput activity may be expressed as

N
u¡= Ld,¡ 

(3'3)

l-r

where A ir ro-" aggregation operator and N is the number of dendritic inputs to the neuron

j. Each dendritic input dU to the neural cell is a transformed version of an external input x, '

This transformation is the result of a weighting function w ¡¡(.) used to describe the synaptic

terminalbetween the axon of a transmitting neuron and the dendriæ of the receiving neuron'

In terms of the synapse, x, is the synaptic input and dU is the corresponding synaptic output'

(3.2)
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The synapúc output, or dendritic input to the jth neural cell from the ith neuron, can be

written as

d,, = w,¡(x¡) (3.4)

The general neuron model, shown in Figure 3.1 and described with expressions (3.1)-(3.4) is

commonly used in the neural network liærature. However, different artificial neural network

classes make use of different definitions of f (net). Also, even within the same cla-ss of

networks, the neurons are sometimes considered to perform differently during different

phases of network operation. Observe from (3.1) that the neuron as a processing node

performs the operation of aggregation of its weighæd inputs to obtain n¿r. Subsequently, it

performs the non-linear operation f (net) through its activation function. Typical activation

functions are the hyperbolic tangent

f(net)=ffi=r+#-r (3'5)

and sign function

f (net) = sgn (net) =
+1, (net20)

-1, (net <0)
(3.6)

where À > 0 determines the steepness of the continuous function f (net) neaÍ net = 0. As

l, + -, the limit of the continuous function becomes the sgn (ne) function defined in (3.6)'

Activation functions (3.5) and (3.6) are called bipolar continuous and bipolar binary

functions, respectivelY.
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(3.8)

By shifting and scaling the bipolar activation functions defined by (3.5) and (3.6), unipolar

continuous and unipolar binary activation functions can be obtained, respectively' as

f (net) QJ)' 
1+exp(-Ìunet)

and

f (net) = s9n (net) =
+1, (net> 0)

0, (net <0)

The unipolar binary function is the limit of f (net) in (3.7) when I -> "'' The sofi-Iimiting

activotionfunctions (3.5) and (3.7) areofæn called sigmoidnl activationfunction, as opposed

to tlre hard-Iimiting activationfunctions given in (3.6) and (3.8).
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One of the simplest artificial neuron models is the Perceptron. In terms of Equation (3.1) this

model can be expressed as

); = sgn[,å,r',-n] (3e)

where the activation function is a hard-limiting function, the aggregation operator is the

summation of weighted inputs, and the threshold 0, is a bias value. In this model the synaptic

outputs,lrurj, aÍe assumed to be linearly proportional to the external input- The

corresponding synaptic weights , , ij, may be either positive (excitatory) or negative

(inhibitory) real numbers. Both the synaptic weights and the threshold level are assigned to

the neuron during the learning procedure. For this simplistic model all exæmal inputs and the

resultant output response are assumed to be bipolar binary.

3.5 Artificial Neural networks

The artificial neural network can be defined as an interconnection of neurons, such that

neuron outputs are connected, through weights, to all other neurons including themselves.

The network models are partitioned into two basic categories: static networks and dynamic

networks. Static networks are characte nznd by node equations that ¿ue memoryless, that is,

their output is a function only of the current inpul not past or future inputs or outputs.

Dynamic networks, on the other hand' are systems with memory. Their node equations are

typically described by differential or difference equations. In the following, the multilayer

feedforward network which is a static network will be only discussed because it is the type of

neural network used to rcaliznthefuzzy neural systems will be described in the next chapter

and also our proposed fuzzy neural system'

3.6 Multllayer Feedforrn¡ard Ner¡¡al Networks

The multilayer feedforward neural network is a static network consists of an input layer, an

output layer, and one or more layers of nodes between the input layer and the output layers'

Layers with outputs not visible to the external observer are called hidden layers and their units

aÍe unl
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every node in layer I is connected to every node in layer I + I ' An L-layer feedforward

network with n inputs, rn outputs and L - 2 layers of hidden units is shown in Figure 3'2'

Figure 3.22 The multilayer feedforwa¡d neural network topology

The input layer neurons simply distribuæ the signal along multiple paths to hidden layer

neurons. A weight is associated with a connection between layers. All connections and data

flow in the network go from the input to the output. This is why this network is called

feedforward network. There are no feedback loops, even from a unit to itself, in a feedforward

network. The way that total input to a neuron is calculated and the way that a neuron calculates

its output as a function of its inputs depends on the types of neurons being used in the network'

In the next section, a learning rule for the multilayer feedforward neural network is presenæd.
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3.7 The Generalised Delta Learnin$ Rule

31

The learning rule for the multilayer feedforward neural network is called the generalised delta

rule or backpropagation rule.Itprovides the method for adjusting the weights in the network'

When we show the untrained network an input pattern, it will produce a random output' W'e

need to define an efïor function that represents the difference between the network's current

output and the correct output that we want it to produce' Because we need to know the

,'corTect,, output, this type of learning is known as supervised learning' In order to learn

successfully we want to make the output of the network approach the desired output' that is'

we want to continually reduce the value of this enor function. This is achieved by adjusting

the weights on the links between the units. The generalised delta rule does this by calculating

the value of the error function for that particular input, and then back-propagating the error

from one layer to the previous one. Each unit in the network has its weights adjusted so that

it reduces the value of the error function; for units on the output layet, their output and the

desired output are known, so adjusting the weights is fairly simple, but for units in the middle

Iayers, the adjusting is not so obvious. The mathematics show that the weights for a particular

node should be adjusted in direct proportion to the enor in the units to which it is connecæd'

In this way the error function is reduced and the network learns.

Before we discuss the learning algorithm, let us int¡oduce the following notations: (notation

refers to a set of sYmbols)

Notation Meaning

n

m

p
xi

ti

l¡
Xo = xyx2,.,.,Ín

To = tyt2,.',,t^
Yo = lpl2, ".,!^

number of inPut nodes

number of ouþut nodes

training pattern index

ith component of inPut vector

íth component of tÆEet vector

ith component of outPut vector

pth training Pattern

pth target outPut

pth actual outPut

weight which connects the ith node in

layer I-l to theTth node in laYer I
*il
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number of nodes in laYer /

number of layers

number of training Patterns

error function for Pattern P

Let us define the error function to be proportional to the square of the difference between the

actual and desired output, for all the pattems to be learnt:

Eo = )î ,r,-rpì' (¡'to)

i=l

The;makes the mathematics simpler and brings this specific erïor function into line with

other similar measures. The activation of each unit i, for pattern P , Can be written as

netr, 2*,¡to, (3.11)

slnce %
,w ii

= 0 except when k = i it equals 1. The change in error can be defined as a

Nt

L
P

Eo

i.e. simply the weighted sum, as in the single-layer perceptron. The output from each unit i

is the threshold function f ¡ acting on the weighæd sum:

lpj = f¡Øeto) G'12)

We can write

ð'o 
= %49 (3.13)

4t - àneto, àw,,

by the chain rule. Looking at the second term in (3.13), and substituting in (3.11)

W =t+-r¡tp*=+l#u'rr=tpí (3't4)

function of the change in the net inputs to a unit as

ò8, 
-s-f,*ç,-"Pi

and therefore (3.13) becomes

(3.15)

(3.16)AE
õpj! p¡



Chapter3:FundamentalsofArtificialNeuralNetworks33

Decreasing the value of Eo means making the weightchanges proportionalto Eor!o¡'i'e'

Lo*,j = \Eo¡lpi Q.t7)

where r1 is a positive constant. To be able to decrease E, we need to know what õo, is for

each unit. Using (3.15) and the chain rule, we can write

ðEo 
- -%%-E =_;-:2-=-=<=J- (3.18)

"Pi - -ãnetor- ðloròneto,

Consider the second term, and from (3.12)

fu- - f; (ne,t.) (3.19)
ðneto' 

= ft' (neto¡)

Now consider the first term in (3.18). From (3.10), we can differentiae Eo with respect to

! o¡, Eivinr

'3 = -ep¡-tpì Q.zo)
òYoi

Therefore

õpj = f¡'Øeto) Go¡-Yol ß'21)

This is useful for the output units, since the target and output are both available, but not for

the hidden units, since their targets are not known. Thus, if unit j is not an output unit, we can

write

'#, = 
4 P,- *W = 

+ #^ ", rt1'' o'' = -\õ o *w i * (3 22)

using (3.11) and (3.15), and noticing that the sum drops out since the partial differential is

non-zero for only one value, just as in (3.14). Substituting Q'22) in (3'18), we get finally

õpj = f,' Øeto)l õp*r¡* (3.23)

k

This equation represents the change in the error function, with respect to the weights in the

network. This provides a method for changing the error function so as to be sure of reducing

it. The function is proportional to the enors õoo in subsequent units, so the error has to be

calculaæd in the output units first and then passed back through the network to the ea¡lier

units to allow them to alær their connection weights. It is the passing back of this error value

that leads to the networks to as ne
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and (3.23) together dehne how the multilayer network could be trained'

Using the sigmoid function as the non-linear threshold function makes the implementation of

the back-propagation system much easier since it has a simple derivative. Given that the

output of a unit, )pj is given bY

lpj=f(net) =+-knet
I+e

the derivative with respect to the unit is given by

(3.24)

-k net

f'(net) =
ke

= k f (net) (I-f (net)) - ktpj1-tpì Q-25)

(t * "-r "")'
The derivative is therefore a simple function of the outputs.

3.8 Summar5r

In this chapter, an introduction to the field of artificial neural networks was presented' The

emphasis was on multilayer feedforward neural network archiæctures, which form the basis

of fuzzy neural systems introduced in this thesis. In the next chapter we will describe four

developed fuzzy neural systems which have feedforward multilayer architectures'

The generalised delta learning rule for multilayer feedforward neural networks was also

described in this chapter. This was done because most of the resea¡chers who have addressed

learning algorithms for their proposed f,tzzy neural systems, have employed learning rules

which are mostly inspired by the generalised delø rule. In the next chapter we will present

some of these approaches. Although we will not present a learning algorithm for the proposed

fuzzy neural network in this thesis, we will employ a generalised-delta-rule based algorithm

for training our network in future work.
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FUZZY NEURAL SYSTEMS

4.1 Introductlon

Fuzzy neural systems result from the fusion of fuzzy set theory and neural networks. Thus,

the advantages of both approaches are merged. Research on fuzzy neural systems has been

pursued from two different direcúons. Some researchers have utilized conventional neuron

models to develop neural networks which are functionally equivalent to fuzzy inference

systems t15ltl8lt26lt46l.These types of neural networks are trained using the leaming rules

which are mostly derived from the backpropagation algorithm. Other researchers, on the other

hand, have developed neurons with fuzzy functions and fuzry computations. They have

applied logical equations or if-then rules with either fuzzy or crisp input values to describe

fuzzy neurons, and replaced the conventional neurons with these fuzzy neurons in a neural

nerwork tgltglt2glt33lt35lt4llt42lÍ521Í541. Most of those who have addressed learning

algorithms, employed the learning rules which are mostly inspired by the backpropagation

algorithm. This thesis deals with the second group of.fuzzy neural systems'

In this chapter, a brief survey of four different models of fuzzy neurons, relaæd fuzzy neural

networks and their associaæd learning algorithms are presented. These four models have been

found more attractive than others. They belong to the second category of. fuzzy neural

systems. The Gupta-Knopf luzzy neuron is the most powerful fuzzy neuron among the four

models described in this chapter. The generic fizzy neuron which will be introduced in the

next chapter is inspired by this fuzzy neuron'
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4.2 Gupta and Knopf s îttzzy Neural Network

A mathematical model for an adaptive fuzzy neuron and a fuzzy neural network has been

presented by Gupø and Knopf t8l. A brief review of the proposed fuzzy neuron and fuzzy

neural network is given here.

x Weighling

Somotic Aggregotion

Response ActivitY
Yt

a d¡

Dendillic lnputs Somqlic Activqlion

Exlernollnpuls

Figure 4.1: The Gupta-Knopf-fuzzy neuron'

4.2.L Fuzzy Neuron

The Gupta-Knopf fuzzy neuron is shown in Figure 4.1. For thefuzzy neuron all states of

activity are given in terms of.fuzzy sets with relative graded memberships distributed over the

interval [0, 1]. These neural states of activity are:

Synaptic Inputs: Íi = {c[¡, ltr,1or) ], Vi = 1,2,...' N (4'1)

Synaptic Outputs (Somatic Inputs): d¡j = {F¡lLa,,(Pj) } , Vi = 1,2, "',M (4'2)

AggregatedValueof the Somaticlnputs: u, = {9¡tlr,(pj)} , Vi = 1,2, "',M (4'3)

jth Neuron Output: lj = {Þ¡' Pvr(Pj) } ' Vj = r'2' "''M(4'4)

'

w2¡(xzl

I

!

of neurons in the neural network architecture. In linguistic terms, each fuzzy neuron
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represents a single concept such as "small," "big," etc. The output response of the neuron yi

is afuzzy set representing the degree to which the applied external inputs are able to generate

this concept.

The synaptic weighting function which transforms a synaptic input r, into a synaptic output

d 
U 

f.orthe j th neuron is defined by the luzzy relation between these two finzy sets' Therefore,

the synaptic weighting function is writæn as

y,il = xixd¡j (4'5)

where x is the cartesian product of the fuzzy sets .ri and d,r. The definition for this synaptic

weighting function is illustrated in Figure 4.2.

F,",- (a¡, Þ;)

c[,

{
2Dlutzy
relolion
surfoce.

þj

Figure 4.2:Therelationship between the synaptic input x¡ and the corresponding output d¡'

The synaptic outputs, d,r,may be classified as either excitatory or inhibitoty' ô,; is defined

as the dendritic input received directly by the soma, where

d,j if the dendrite transmits an excitatory input

N (d¡j) if the dendrite transmits an inhibitory inputõU = Vld,7l =

The inhibitory inputs undergo a fuzzy logic negation which is defined as

N(tt¿u(Þ¡.) ) - 1 - tld..(þj)

The aggregation operator is assumed to be a t-norm operator

(4.6)

Ni

r

i=l
U

(4.7)

,j
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No threshold operation is employed by the fuzzy neuron model. The decision function /[']

is defined as a mapping operator that transforms the membership of the aggtegatÊ fuzzy set

u, into the fuzzy set for the neuron response )¡. The role of this modification is to enhance,

as shown in Figure 4.3, or diminish the degree to which the exærnal inputs give rise to the

concept represented by the neuron j. The modihed output becomes an external input to the

neighbouring neurons. Thus, a general expression for the response of the ith fuzzy neuron

may be written as

38

(4.e)

(4.10)

t¡=f¡lu¡J =fi õ

1

N

T

Each dendritic input õU is given bY

õU = r¡r [d¡¡ì - V lx¡o w,j]

where " o " is the compositional operator.

tr,- (pj)

|r¡(u¡)+
F.y_ (pj)

pj pj

Figure 4.3: The mapping operator { t.ì that modifies the response of the fuzzy neuron.

4.2.2 The Architecture of the Fuzzy Neu¡al Netq¡ork

The somatic operation of a fuzzy neuron provides the inference mechanism in this network.

The computational structure of a fuzzy neufon represents a single fuzzy inference rule,

Equarions (a.9) and (4.10), which may be stated linguistically as

* ôrj AND ô2j AND ... AND õ", THEN v, (4'11)

tl

)

t
I
I

ì

r

Equation (4.10)

sitional at the as described by
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The inference procedure associated with an unknown input tf "tit". 
at the synapse such that

the new synaptic output is given bY

afi = l,"w i¡ @'12)

or in terms of the membership functions Equation (4.12) is rewritten as follows

u)u f Þrl = ^orl*¡, {Ë",( cr¡) , [r,,. ( 
",, 

p/ ] ] 
(4' 13)

The resultant response of the fuzzy neuron to N inputs is given by Equations (4.9) and (4.10).

A practicalfuzzy inference system requires a set of M rules. This inference system may be

achieved by three contiguous layers of fitzzy neurons. The first layer consists of M fiizzy

neuron, each representing one of the rules in the set. The output of each luzzy neuron becomes

an external input to a single neuron in the second layer. Since the ouþut of each neuron is

over the same universe, p , the responses from these M fuzzy neurons must be combined by

an s-norïn operation. Two casca ded fuzzy neurons with inhibitory inputs correspond to an s-

norm operation for the fuzzy inputs (!¡,!2,...,)¡v). This three-layer neural network

a¡chitecture can be used to derive an output to N fuzzy inputs that are applied to M fuzzy

inference rules, as illustraæd in Figure 4.4'
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YI

Y¡

X¡

Figure 4.4:T"l'rc architecture of the Gupta-Knopf fuzzy neural network'
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4.2.3 Lea¡ning bY ExPerience

The learning procedure for a fuzzy neuron involves changing the surface of the two-

dimensional fizzy relation employed at each synapse. A single synaptic connection to the i th

neuron is shown in Figure 4.5. For a given external input to this synapse at time k, x,(k) ,the

correspondíng fuzzy relation, w,r(k), should be deærmined. This gives a minimum efror'

er(k) ,between thefuzzy neuron response, yi(k), and the desired response' Di(k) ' In order

to achieve this property, the following adaptation rule may be employed to modify the fuzzy

relation surface

wu (,t + 1) - ',v ij(fr) + Lw,¡(k) Ø't4)

The term Lw,r(k) is the change in fuzzy relation surface given as a function, F [.] , of the

effor

(4.1s)Lw,,(k) = Fle,(k)) = FlDj(fr) -Yi(k)l

/'--\
4 I

t
\

I
(k)

fh Neuron

\ a\_/

(k)

Synoptic Conneclion Dt(k)

Figure 4.5: The synaptic diagram of a single synaptic connection with learning

4.g F:uzzy-Set Based Methods of Neurons and KnowledÉe-

Based Networks

pedrycz and Rocha introduced the models of neurons based on logic-oriented processing

mechanisms of fuzzy sets [42]. Different classes of logic-driven neurons, their properties,

ffi

are described below
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4.g.1 Ag$re$atlve Neu¡ons: oR and AND Logtcal computing

Nodes

Two basic types of logical neurons performing aggregation of the OR and AND fypes afe

discussed in this section. Their key feature is that all processing faculties realized by these

neurons are compleæd with the use of standa¡d fuzzy set operations. All input and output

signals as well as the interconnertions of the network are assumed to be coded in the unit

interval. Lnt N = {x, x2, ..., xn} denote a finite set of input nodes and let

| - U1,!2, ...,yn\ denote a set of output nodes.

a) OR computing node: Its input signals x1tx2t...,xn are combined successively with

weights w ¡t w 2, .. ., w n by employing first the AND logical connectivs to each pair (x,, w¡)'

Subsequently, these partial results are aggregated by means of the OR logical operator

producing in this way the output y of the neuron. This transformation is writæn as

y = OR6;w) (4.16)

The explicit formula is based on the t-s composition of thefuzzy sets X and W:

n

y= S(,,",) s'n)
i=I

A bias term is added as an additional ærm in (4.17) that is driven by a constant input signal

equal to 1. Thus, the neuron incorporating the bias is given by:

n

v- s( (4.18)

j=0

where, wo stands for the connection of the bias ærm and xo is a constant input equal to 1. The

role of the bias is to shift the output values of the neuron'

In particular, for the max and min opetations the output of the OR neuron is given by

txt!

4I

(4.1e)y = max {min (w,, r¡) }
I
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b) AND computing node: The AND computing node constituæs a structural dual to that

given previously. The input signals are first combined by completing the OR operation over

a collection of the connections of the neuron- Then, the AND node combines the results by

AND-ing them:

y = AND G;w) Ø:0)

n

y -- T (*,t,,) Ø'21)
j=0

where, wo stands for the connection of the bias term, xo , which is now kept constant at zßÍo

value. In particular, for the min and t?xo.r operations:

y = *!, {max (w,, x¡) } (4'22)

To add an inhibitory effect to the construct, Pedrycz and Rocha extended the inputs by

including complementary values of x¡, say 1 -x,: X = Íxtxz "' xnlxrxr "'Íì ' The

OR and AND neurons with this extended vector of inputs make it possible to admit both the

inhibitory and excitatory characters of their behaviour, depending on the numerical values of

the connections. Figure 4.6 illustrates the graphical notation of OR and AND neurons- In this

figure, x¡tx2,...,xn denote the excitatory inputs and w1, w2, "',w, denote their weights'

-x¡,-x2,...,7n a¡e the input complements employed to handle inhibitory features of the

neurons, and vr, v2t ...tvn are their weights'

X X
w A =min V =mno

2

W

X

vw

o
o
o

o
o
o

X
v

o
o
o

o
o
o

2

nn

(b)(o)

Figure 4.6: Graphical notation of (a) OR and (b) AND neurons
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4.3.2 Referencc Neurons

The role of a reference neuron is to perform a transformation of the input signals with respect

to a given reference point. Let the reference point be denoted by R = {r 1, 12, " ', rr}' The

transformation is denoted bY

y = F(xiw, R) (4-23)

We describe here the following two reference neurons:

a) Matching neuron:

(4.24)y = MATCH (X;W, R)

ø=b = ).trt -> b) n (b -s ù + (a sb) x (b +a)\

i)

y=
n

^I
lw,t çx,= t,)] (4.2s)

(4.27)

(4.28)

(4.2e)

(4.30)

1

where the equality index, denoted by =, can be defined as

(4.26)

thatretumsalevelof matchingforanytwodegreesof membership a,be [0'1].Inthis

formula, the ¡ denotes the min operator, and + is modelled by the Q operation as follows:

arpb = min 1

When w i = l, the matching along this coordinate is essential; lower values of w, indicate

that the result of matching derived becomes less important.

b) Difference neuron:

I = DIFFER (X;W, R)

n

y = .S [r,t 1x, = lr,) ]
i=I

where the difference operator = I is taken as complement of the equality index

(a=lb) = 1- (a=b)
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4.g.g Learnin$ Procedu¡e for Bastc Lo$ic Neurons

The issue of learning for the discussed types of neurons is addressed as a problem of

supervised training controlled by the gradient of the predehned performance index' The

generic performance index used here is the mean squared error between the output of the

neuron and a tårget value. For the series of training data organised as input/output pairs,

(xL, t)
(Xz, tz)

(xN, tN)

Within the process, the adjustable parameters of the neuron (w,, v,, and/or its reference value

r ¡) aremodified in order to minimize the given performance index. The optimizatton is done

by minimizing the performance index expressed as follows:

N

tr-Zlo-vr)' (4'31)" - 
o=,

where ye stands for the actual output of the neuron. The standard iærative scheme of

adjustments of the connections, say w,, is read as:

wi = wi-"# i=r,2,...,n
dw¡

The leamin graÍe Cr controls successive increments of the connections'

(4.32)

4.9.4 Multilevel Neural Networks

The networks which are composed of logic-based neurons are called heterogeneous networl<s'

This means that they include several neurons of different computational characteristics. The

neurons are organiznd into layers. A three layer neural structure is discussed here- It consists

of OR and AND neurons described previously. Each layer consists of neurons of the same

logical type. Two types of rhe networks are defined (Figure 4.7).The hrst class is composed

of AND neurons situaæd in the hidden layer, while the output layer consists of a single OR

neuron. The second category has OR neurons in the hidden layer and a single AND neuron in
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For the first class of the network (OR-AND):

- an input layer consists of 2¿ nodes including both the direct and the complementary

versions of the inputs. The role of these nodes is to distribute the signals to all the nodes of

the hidden layer.

- a hidden layer is composed of å AND neurons. The intermediate signals Z¿ produced there,

are described as:

zt = AND (Wt,X) I = 1,2, ...,h Ø'33)

The vector of connections, lV,, summarises all the connections between the lth node of the

hidden layer and the input nodes. In other words, this relationship is obtained as follows:

nn
Zt = T (*,,t.,), T Q,r,*¡rsti) r=t,2,...,h (4'34)

i=I i=I
The output layer contains a single OR neuron which performs an aggre}ation of z,'s:

Hidden LqYer
lnput Loyer Output loyer

D
Zt,

lnput Voñoble Sum of Minlerms
Minlenns

(o)

45

Hidden LoYer
lnpul Loyer Output loyer

OR
z1

ND

Input Vorioble Product of Mqxlerms
Moxlerms

(b)

y= (4.3s)

í=l

where v,'s denote the weights. The first type of the network implements any two-valued

function as a sum of minterms (SOM). The second archiæcture develops a product of

mÐ(terrns (POM).

h

s v rtz¡

RAND

Figure 4.7;Two types of logic-based networks (a) sum of minterms (Sotvt), (b) product of

maxterms (POM)
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4.4 IKsvan end Cai's Fltzzy Ner¡ral Network

46

Kwan and Cai have defin ed a fuzzy neuron and proposed the structure of a four-layer

feedforwar d fuzzy neural network and its associated learning algorithm t281. A brief review

of the proposed neuron, t!'rc fuzzy neural network and i¡5 learning algorithm are discussed

here.

4.4.L FttzzY Neuron

The Kwan -Ca- fuzzy neuron (as shown in Figure 4.8) has N weighted inputs' x, for

i = L,2,...,N,with wr(i = I,2,...,N)weights, andM outputs' !¡for j = l'2""'M'

Atl the inputs and weights are real values in interval [0, 1]' Each output could be associaæd

with the membership value of. afuzzy concept. Moreover' we have:

z = hlwrx,wzx2,...,w"Ç (4'36)

s = rk-71 Ø'37)

l¡ = 1¡ls) for j - I,2, "',M (4'38)

where z is the net inputof the fuzzy neuron; å t.l is the aggregation function; s is the state of

the fitzzy neuron; /[.] is the activation function; Z is the activating threshold; and

{S t.] , j = 1,2,...,M} arethe M output functions of the fizzy neuron which represent the

membership functions of the input patûern {x1, x2, -..,r"} in alt the M luzzy sets' Four types

of fuzzy neurons (FNs) are dehned by changing the neuron's functions:

X¡ w Y
Yz

a
a
a

N

Figure 4.8: The Kwan-Cai fuzzy neuron'

a) Input-F'N:

If afuzzyneuron is used in the input layer of afuzzy neural network and it has only one input

x, such that

a
a
a

X¡

T

/// 20\

then it is called an InPut-FN.

z--x
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b) Maximum'FN:

If a maximum function is used as the aggregation function of afuzzy neuron such that

N
z = max (wrxr)

.'_ 1l- L

then it is called a Max-FN.

c) Minimum-FN:

If a minimum function is used as the aggregation function of afuzzy neuron such that

N
z= min (w ¡*¡)

fori = 1,...,Nr, j = 1,...,N2

I 1

47

(4.40)

(4.4r)

then it is called a Min-FN.

d) Competitive-FN:

A competi tive fuzzy neuron (Comp-FN) has a variable threshold T and only one output such

that

y = .rs - zt = {: Ï' :: Ø.42)- tl if s>T
T = tfc1, c2, ..., cxl Ø.43)

where s is the state of the fuzzy neuron; r [.] is the threshold function; and co (ft=l to 19 ue

the competitive variables of the fuzzy neuron'

4.4.2 Structure of the Ftuzzy Neural Network

The four-layer feedforward fivzy neural network proposed by Kwan and Cai is shown in

Figure 4.9. The f,rrst layer, which is ananged in a two-dimensional aÍÍay, has N, x N, Input-

FNs. The formulation of the (i,i)th Input-FN is as follows

'f'tl = 'ljtt = *'j fori = 1""'N'' j - 1" "'N2 Ø'M)

trl
tll - 

tu
ij -P' vmax

all inputs

v

vmax

(4.4s)

U
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l2l
Pq

N
s

(4)
Yl lfl

48

(4.46)

COMP.FN

MIN.FN

MAX.FN

lnput-FN

I,N21,0

a

N2

Figure 4.9: The Kwan-Cai fuzzy neural network'

The second layer is also ananged in a two-dimensional afiay, and consists of N, X N, Max-

FNs. The purpose of this layer is to fuzzify the input through a weight function ',e l'm,n l' The

state of the (p, q)th Max-FN in this layer is:

I
1

max

fot p - 1,...,Nl, Q = 1,...,N2

where w lp - i, q - j) is rhe weight connecting the ( i, j )th Input-FN in the first layer to the

(p, q)thMax-FN in the second layer and is def,ined by

w fm, n) = .*p [-Ptl ^' * r')) Ø'47)

form = -(Nr-l) to (Nr- I),n - -(Nz-1) to (Nz-l)

The value of B is determined by the learning algorithm. Each Max-FN has M cltfterent
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outputs, one for each fuzzy neuron in the third layer- The outputs of the (p, q)th Max-FN in

this layer are:

,'oX'* = son^ltl.l'')
for p = 1,..., Np q - 1,..,,N2,m = 1,."M

where fi3ol^ "the 
nth ourpur of the (p, q)th Max-FN which is to be connected to the mth

Min-FN in the third layer. The output function tou^ltll\ is to be deærmined by the

learning algorithm. For simplicity, the triangles with heights equal to 1 and base length equal

to cr (shown in Figure 4.10) are chosen as the output functions of the Max-FNs in the second

layer. Hence

,;i'^ = s on^l'jl') oo*l/o ir a/2= lt;|' -@pq.l>o Ø.4s)

for cr>0,p - 1, ...,N', e = I,
0 if otherwise

,Nr,m = 1,...,M

where @or^is the central point of the base of function sor^lt|l')' The corresponding cr

and @oq^ for every set of p, q and m must be deærmined by the learning algorithm.

In the third layer which is one-dimensional, the output of the m th Min-FN defined as

r-zlsli) -ø

(4.48)

(4.50)

(4.s2)

t3l
ym m

t4l t4l

ir"(r;;:)
Q= |

form = lto M

fot m = I, ..., M

t3l
Nl

mln.f

P=l

where ,,ffl ,.pr"rents the state of the mth Min-FN in the third layer

In the output layer, M Comp-FNs a¡e used to provide nonfuzzy outputs. The algorithm of the

m th Comp-FN is:

ty) =r',j'=yÎt form=ltoM (4'51)

ym =8 mJt
Í41ifs <T
m

t4lifs >T
m

Mf = mox
ûl=I

ym
t3l form=ltoM

where T is the activation threshold of all the Comp-FNs in the fourth layer.

(4.s3)
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0
l2ltPq

Figure 4.10: Output function of a Max-FN in the se,cond layer

4.4.g Learnin$ At$orithm of the Ftru¡zzy Neural Netv¡ork

The learning algorithm determines the following parameters: The parameters of the output

functions of the Max-FNs in the second layer, cr and @oo^; the parameter of the fuzzification

function, B ; and the numbet of fuzzy neurons in each of the third and fourth layers, M 'Í'et

Trbethe fault tolerance of the fuzzy neural network (0 <T¡< 1) and K be the total number

of training patterns. The steps of learning algorithm are:

Step 1. Create N, xN, Input-FNs in the first layer and N, xN, Max-FNs in the second

layer. Choose a value for cr (a ) 0 ) and a value for p '

Step2.SetM = 0 and k = l-

step 3. Set M = M + 1 . Create the Mth Min-FN in the third layer and the Mth comp-FN in

the fourth laYer. Set:

,l',i')
I

c[

@pqtt =
N1

maxi=I
13, ,* fp - í, q -il x¡¡*) (4.s4)l2l

s pq*t j=t

for p - l, ..., Nv q - 1, ...,N2

where @pcu is rhe central point of the M th output function of the (p, q)th Max-FN

in the second layer, and Xo = {r,¡r} is the frth training pattern'

step4. Set /< = k+ 1.If fr>K,thenthelearningprocedureisfinished. otherwise,inputthe

- 1t- - ^--¿---¿ ^f +Lo ¡rrçonf 'Frrzzttkth trainìnJ Þãttern to tne networK an(¡ suulPuut urç UI¡LPL¡! v¡- u¡v ver¡v¡¡Ù ^sggr
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neural network (with M fuzzy neurons in the third and fourth layers)' Set:

(4.5s)

u

Figure 4. 1 1: The Lin-Song fuzzy neuron.

' ñ: ---,^ À 1 1 +L^ c,---., ñôrrr^ñ lrqc qn inraor¡finn rnif and an activation unit. The

Mo= 1-moxj=t ( [3
lj*

*ne." fl is the output of the ith Min-FN in the third layer for the kth training

pattern Xk.If o 3TÍ, go to Step 4-If o > T, Eo to Sæp 3'

4.5 Lin and Song's F.nzzy Neural Network

Lin and Song have proposed afuzzy neuron and defined a three-layer fuzzy neural network

and its associated learning algorithm t351. A brief review of the proposed neuron' the fuzzy

neural network and its learning algorithm is discussed below.

4.5.L luzzY Neuron

The propos ed fuzzy neuron is shown in Figure 4.1 1. The inputs to the fuzzy neuron ate fuzzy

sets Ut, ilZ,...,u0 inthe universes of discourse U1, Ur,...,Up, respectively' These fuzzy

sets can be labelled by such linguistic tenns as "very small," "small," "lafge," etc. The inputs

are then weighted based on a fuzzy computation called "integration operation," instead of

conventional weighted summation. Then, the weighæd inputs go through an activation unit'

The activation unit performs fuzzy logic computations instead of conventional activation

operations such as the sigmoidal function'

w

w
a
a
a

1\S SIUWIr lll rrË,urç -r. -L rtlue Lvfu'¿t

integration function / combines information, activities, or evidences from other neurons and
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provides Lhe net input for this fuzzy neuron

net = f (ut, tt2, ,.,t uo i',9 1,w2, ,..,*o)

An activation function g ouþut a value as a function of its net input

outPut = g (net)

(4.s6)

(4.s7)

(4.s8)

4.6.2 The îruzzy Neural Network Architecture

The propos ed fuzzy neural network has three layers as shown in Figure 4.12. Layer 1 is the

input layer, layer 2 is the fizzy rule base layer, and layer 3 is the output layer' The fuzzy

neurons used in each layer have different integration and activation functions.

In the first layer, the fizzy neurons have the following integration and activation functions:

(l)
xi

(l)

d"
-m
(1)

s

g,t 
t) = "*p 

(¡lt) ) i = r,2, ..., (nt + n2+ ... + n¡¡) (4'59)

where ^[D ^Ar,(t) 
." the mean and variance of the ith bell-shaped function of the inputs.

Suppose that the dimension of the input variables is N and each input variable is divided into

n, linguistic tenn levels (/ = 1, 2, ...,N), then the total number of inputs of the first layer is

nL+ n2+ ... + n". For crisp inputs, each input variable will be fed into n, input nodes in the

first layer. In this layer, ne ^[t) 
', *d ,,Ít) ', can be interpreted as weights. If some of the

input variables are fuzzy linguistic variables, the corresponding input functions will be set to

1.

Thefuzzyneurons in the second layer have the following inægration and activation functions:

I
(2)

8¡

2) Q\ (2) (2)
= x¡\ x¡z " ''iN

= f;" j = 1,2,'..,L L = nLxn2x "'xnN

(4.60)

(4.61)

In the third layer,thefuzzy neurons have the following inægration and activation functions:

-(3) s! (3) (3)
^t

r^- l- 1a
I'k -= /u"'iç -i -1trt-tl 

- Ll a, .-.--i tu
(^ 6)\
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f;" (4.63)(3)
8* for ft = 1,2, ..., M

>,;"
yo = sÍt) for k = 1,2,.",M Ø'64)

Similarly, the weights of neurons in this layer can be inærpreted as ^fr' 't' The outputs of

this layer are all crisp.

Yr Yz Ys YI Ym-l Ym

[oyer 3 aaa aaa aaaaaaaa

Loyet2

Loyer I aaa aoa aaa aaa

Xll Xlz Xtll Xzt Xzz Xztz Xnl Xnz )hln

Fi gure 4. 12: The Lin- S on g finzy neural network architecture.

4.6.g The F:vzzy Ner¡¡al Network Lea¡ning Algorithm

In order to adjust and optimize the parameters of the fuzzy neural network' the

backpropagation algorithm is utilized. The objective is to minimize the ouþut error function:

n = llÞo-vll' = Lrnrr-rt"ll' Ø'65)

where )¿ is the desired output and y is the fuzzy neural network output' The general learning

algorithm used for adjusting the network parameters wU's is

w,,(t+r) =*ii(r).p(-#j) Ø.66)
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Layer 3:

54

(4.67)*|/rt+t =^;:'(')-P[#)

#,=-(roo-s;")t;ft)
j = 1,2,...,L k = 1,2,..',M

Layer 2z

The weights are all unity and no weight updating is needed. Error propagation through this

layer will be treaæd directly in Layer 1.

Layer 1:

^!L){t+r)-^:')(')-e[#) rounr

,,f1){r+ r) _ ,,(') (,) _e[#) *.r0,

t,),

(4.68)

lÌ
(4.7r)

lÌ
(4.72)

(4.73)

òE

ðm

AE
(1)

ðs k

{(r* - '1" )[

(3)
!ar- 8*

I*rt"
>,"r'

,Ê
(1)

8¡

(t) (1)xi -m¡
( l)

si

(1) (1) 2
x -mí

s
(1)

I'rt"
,Ê

(1)
8¡

".p 
(rl1

)[k
(1)
i

)[{r
1

0 if jr+i,jz*i,...,ir*i

)[

,t
(l)

8¡

N

IJ ,f," otherwise

l=l,jÉì
j = 1, 2, ,.., (nr+ nr+ ... + n¡¿)

4.6 Conclusions

This chapter discussed briefly four different models of. fuzzy neural sysúems including fuzzy

neurons, fuzzy neural networks, and their learning algorithms. All of the discussed luzzy

neural systems are categori znd into the second class of fuzzy neural systems described before.

Among the described models õFIuá-y-neùro-ns-, Gupta:Kn-o-pfs fu-zzy ñèUro-n is=th-nost
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powerful one in processing of fuzzy input information, so that the neural network which is

built using this fuzzy neuron will have the smallest number of neurons and layers. However,

this fuzzy neuron is the most complex neuron. Gupta and Knopf employed ther fuzzy neuron

to impleme nt afuzzy neural network for a steering control of an automobile application. The

simplest fuzzy neuron was the Pedrycz-R ocha fuzzy neuron. It is capable of implementing

some simp le fuzzy set operations like AND, OR, or NOT. To achieve afuzzy decision making

system, we should employ a Ereatþr number of neurons of this type than Gupta-Knopf

neurons, and also use more interconnections between nodes. However, the structure of this

fuzzy neuron is very simple and its learning and recall speed are fast. Pedrycz and Rocha

applied their fuzzy neuron in decision making, diagnostic, and mappings problems. The other

tvtofuzzy neurons are not as strong as the Gupta-Knopf fiizry neuron or as simple as the

pedrycz-Rocha one. Kwan and Cai employed their fuzzy neural network in pattern

recognition, whereas, Lin and Song used thefu fuzzy neural system in an inverse kinematics

manipulator with two degree of freedom. In the next chapter, a generic model of. a fuzzy

neuron inspired by Gupta and Knopf's fuzzy neuron, and the archiæcture of a feedforward

multilayer fuzzy neural network for motion detection and velocity estimation will be

introduced. Although the generic fuzzy neuron is more complex than all the describedfi]zzy

neurons, it is the most Powerful.
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THE PROPOSED TUZZY NEURAL SYSTEM

5.1 Introduction

After the brief discussion of various models of. fuzzy neural systems in the previous chapter,

the propos ed fuzzy neural system is discussed in this chapær. The contents of this chapær is

organised as follows: First, we introduce our generic model of a fuzzy neuron as the basic

element of our fuzzy neural network. Then, we look at the bases of our approach for motion

estimation before we propose our fuzzy neural system. In this relation, we review how

fuzziness is measured in a grey-tone image. We also introduce an algorithm for motion

detection and velocity estimation. Moreover, we will study how velocity vectors consisting of

speed and motion direction are calculated at each pixel in the input image. In the last section

of this chapter, we propose the architecture of a five-layer fuzzy neural network which

emulates the motion estimation algorithm. Since different types of fizzy neurons are used in

different layers of the network, the defrnition of the fuzzy neurons, which are simplified

versions of the generic fuzzy neuron, will be given together with the operation of the layers.

5.2 The Generic lrtzzY Neuron

In this section, a generic fuzzy neuron is introduced which forms the basic computational

element of the fuzzy neural network that will be discussed later. The generic fuzzy neuron

model is a generalization of the existing models of fuzzy neurons. Structural similarity

between the generic fuzzy neuron and the Gupta-Knopf.fuzzy neuron is not just coincidental;

)
d
,fj
I

I

the author owes much inspiration to Gupta and Knopf s paper [8]. However, the generic
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fuzzy neuron differs from that of Gupta and Knopf and other models in the following ways:

a) All the variables involved in the generic fuzzy neuron a¡e allowed to be fuzzy or crisp

sels over different universes of discourse'

b) All the functions that specify the characteristics of the neuron are chosen to be fuzzy

relations (when the universes of discourse are similar, the fuzzy relation can be

replaced by any finzY oPeraúon).

c) The output of each function, which is afuzzy set, is obtained using the *'* composition

of inputs to the function and the correspondingfuzzy relation.

d) Each fuzzy neuron can be simplihed to represent an entire fuzzy inference rule with

any number of propositions.

These differences make it possible to carry out any fuzzy computation on the input data and

express any kind of ambiguous relationship. This leads to the following dehnition:

Definition 5-1: A generic luuy neuron (Figure 5.1) consists of connection functions, an

aggregation function and an activation function. It has N inputs Iy,12, "',IN, each input

consisting of a finiæ set of elements. I-et XL = {xr1, xy2, ..., Xlnr},

Xz = {x2¡, x22, ..., x2rr},..., XN = {xrvt, xN2, ..., xNnn} denote the N finiæ sets of inputs'

The inputs Ir:12,...,1N ate fuzzy sets in the universes of discourse XyX2, "',XN,

charactenzed by membership functions ¡Lrr,llrr,...,þrx. The inputs are weighted with

W¡,W2,...,WN,which arefuzzysetsintheuniversesof discourse S, = {s11, s12, ..', s1¡,},

Sz = {s21,s22,...,s2¡r},..., SN = {sy1, s¡y2, ..., s¡irv}. The weighting operation is done

through connectionfunctions of the form:

Ai = ci(Xi'W) (5'1)

Let C, be a 3-ary fuzzy relation in [X¡ì x [S¡] x I U,ì ; the output of a connecúon function

is expressed by the *-* composition of X,,W,, and C, which is the fuzzy set /4.i in the universe

of discourse Ui = {u¡¡,u¡2,...,uiji}. The connection outputs, Á¡'s, may be classified as

either excitatory or inhibitory .l-et B,'s be the direct inputs to the neuron' where

.l

I

l

B
Ai an excitatory inPut

(s.2)
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Ã, denotes complement of the fuzzy set Ai, which is defined by the following membership

function

58

(s.3)Fu,(x) = l-tt¡,(x)

The set B, is a fuzzy set in the same universe, U,, as A,

,1
ql

¡
,r

Figure 5.1: The generic fuzzy neuron.

In the next stage, an aggregation function h[.] provides an input for the last stage as follows

E = h(BL,Bz, "', Brv) (5'4)

IætH bean(N+l)-ary fuzzyrelationin IUl] x lUl x... x IU"l x [Vl;theoutputof the

aggregation function is expressed by the *-* composition of 81, Bz, ..., BN, and H 'which is

fhe fuzzyset E in the universe of discourse V = {v, v2, "', v*}'

The output of the fuzzy neuron is deærmined by an octivation function, in the last stage, as

Connection function

function

A

A
\ry

W2

w

I

I

o = r(E,T) (s.s)
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where / is the activation function and T is the threshold input which is a fuzzy set over the

universe of discourse /, - {2y,22,...,2¡} - I-et F be a 3-ary fuzzy relation in

tyl x lzl x [f] . The output O is deærmined by *-* composition of. E, T, and F, and is

afuzzyset in the universe of discourse Y = U 1, !2, ..., ! ^I'

The generic fuzzy neuron can be simplified if some of the fuzzy sets I¡,W¡,Ai,Bi,E,T,

andO a¡edefinedoverthesameuniverseof discourse, e.g.X - {xr,x2,...,xr}.Inthis

case, the related fuzzy relations C u H, or F can be replaced with any operator from the two

basic classes of operations on fuzzy sets, which are the triangular noffns (t-norms) and the

triangular conorrns (t-conorms or s-norms), such as min, max, bounded-difference, algebraic

product, and so on. Many types of fiizzy neurons can be defined by changing the functions

cl,.l,h[.], and/t.1. In the next section, seven types of fuzzy neurons utilized in the

construction of a fuzzy neural network for motion estimation are defined.

Having defined the generic fuzzy neuron (GFl$, we describe here how it can be simplified to

the four fuzzy neuron models described in Chapter 4. The simplifrcation that should be made

in the generic fuzzy neuron parameters to achieve the function of a given fuzzy neuron are as

follows:

1) Gupta-Knopf fuzzy neuron (GKFN)

- N inputs are allocated to the GFN: I ¡, 12, ..., I N.

- The inputs are defined asfi:øzy sets in the same universe of discourse, X.

- The GKFN inputs, x, (i = 1, ..., N ), are represent€d by 1,'s'

- The Nweight fuzzy sets in the GFN, W¡ (i - l, ..., N ), are omitæd'

- The fuzzy relations in the GFN connection functions, Ci G - 1,...,N), are set to the

corresponding synaptic weighting functions in the GKFN, w, (i - 1, ..., N ).

- The output of the connection function is specified by the min-max compositional rule of

inference.

t
I

;

þ

- The A,'s in the GFN, which now express the d,'s in the GKFN, are simplified to be fuzzy
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sets over the same universe of discourse, U'

- The excitatory and inhibitory inpuS to the GKFN are treated, respectively, as excitatory and

inhibitory inputs to the GKFN.

- The B,'s in the GFN are equal to the corresponding ô,'s in the GKFN and defined over the

universe of discourse U.

- The fuzzy relation H andits *-* compositional rule which denote the aggregation function

in the GFN are simplified to the triangular norm operator utilized in the GKFN.

- The fuzzy set E in the GFN represents the fuzzy set ¡¿ in the GKFN; it is defined in the

universe of discourse U.

- The threshold input Z in the GFN is omitæd.

- Based on the mapping operator /[.] used in the GKFN, a B x þ ruzzy matrix as the fuzzy

relation F, and the max-min composition as the rule of inference, will be employed in the

GFN. p is the number of elements in the universe of discourse of the GKFN's output.

- The GFN's output O, represents the GKFN's ouþut, y '

2) Pedryez-Rocha OR and AND neurons (PROR' PRAND)

- The number of inputs are reduced to one, 1, , in the GFN'

- The input is defined as a fuzzy set in the universe of discourse X, which hus 2n elements'

- The 2n PROR or PRAND inputs are represented by the 2n elements of /t'

- One weight fuzzy set IV, is allocated in the GFN over the universe of discourse, X.

-Thefuzzyrelation C, and its +-* compositional rule in the GFN are simplified to a minimum

operator for the PROR or a maximum operator for the PRAND.

- A, in the GFN, which is afuzzy set in X, expresses the neuron input which is an excitatory

input.

- The fuzzy relation H andits *-* compositional rule which denote the aggregation function

in the GFN a¡e simplified to the H, fuzzy matrix and max-min compositional rule for the

pROR or the H, fuzzy matrix and min-m¿u( compositional rule for the PRAND, where

!
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(5.6)", 
Lll 

", 
Ll

- The fuzzy set E in the GFN is defined over the universe of discourse V which has only one

element.

- The threshold input T and the activation function in the GFN are omitted'

- The GFN's output O , which has only one element, represents the output of the PROR or the

PRAND.

3) Kwan-Caífuzzy neuron (KCFN)

- The number of inputs are reduced to one, /, , in the GFN.

- The input is defined as afuzzy set in the universe of discourse X, which has N elements.

- The N KCFN's inputs, x, (í = 1, .. ., N ), are represented by the N elements of /r '

- One weight fuzzy set lV, is allocated in the GFN over the universe of discourse, X.

- The fuzzy relation in the GFN's connection functions, C' and its *'* compositional rule is

simplifîed to the algebraic product operator for the KCFN'

- A, in the GFN which is a fuzzy set in X, expresses the neuron input which is excitatory.

- Based on the aggregation function å [.] used in the KCFN, a suitable fuzzy relation H and

compositional rule will be employed in the GFN to implement the function h [.].

- The fuzzy set E in the GFN represents e in the KCFN; it has only one element.

- The threshold input Z in the GFN, which has only one element, is used as the threshold input

in the KCFN.

- Based on the /t.l and g¡ [.] functions used in the KCFN, a suitable 3-ary fuzzy relation .FI

and compositional rule will be employed in the GFN to implement the functions /[.] and

8r [.].

- The GFN's output O, which ß a fuzzy set in an universe of discourse with M elements,

^l^*^-r nl /) oon¡accêc ^nê nf thc M nrrfnrrts in the
fUPl'ttött¡ll,S Ultt l\\rfl\ ù \,UlPl'rt'it; rce¡t v¡v¡uv¡¡Ù vr v v^¡u¡vvvv

KCFN.

r
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4) Lin-songfuzzY neuron (LSFN)

- P inputs are allocaæd to the GFN: I, I þ ..., I p'

- The inputs are defined as fuzzy sets over different universes of discours e' Xp Xr' " " X P '

- The LSFN inputs, u¡ (i = 1, ..., P ), are represented by 1,'s'

- P weight fuzzy sets in the GFN, Wi ç - 1, . .., P ), are allocaæd to represent the weights

in the LSFN, w, (i - 1, . .., P ).

- Based on the integration function /[.] used in the LSFN, the fuzzy relations Ci

(r = 1, ..., P ), and H and suitable compositional rules will be employed in the GFN to

implement the function /[-].
- The fuzzy set E in the GFN represents the "net input" fuzzy set in the LSFN.

- The threshold input T in the GFN is omitæd.

- Based on the activation function g [.] used in the LSFN, a suitable fuzzy relation F and

compositional rule will be employed in the GFN to implement the function I [']'

- The GFN's output O, represents the LSFN's output'

In general, the weights, the connection functions, the aggregation function, the threshold, and

the activation function could be tuned during the learning phase. Therefore, the fuzzy neural

network which will be constructed with neurons of this type can learn from experience.

5.3 Architecture of the F:uzzy Neural Network for Motlon

Estimation

In this section, we introduce an architecture of. afuzzy neural network designed for detection

of moving objects and estimation of their velocity. But before describing the detailed

architecture of the network, let us first introduce our approach to motion information

processing and present details of the algorithm we propose for motion estimation'

5.3.1 Measures of f^ttzziness in an Imag¡e

A gray-tone image possesses ambiguity within each pixel because of the possible multivalued
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levels of brightness a pixel can have t391. With the concept of fuzzy sets, an image x of size

M X N and L gray-levels can be considered as an anay of fuzzy singletons' each having a

value of membership denoting i¡5 degree of brightness relative to some brightness level l '

I = 0,1, ..., L - | .In the notion of fuzzy sets, we may therefore write

)( = {lt*(x*r)= þ^n/xrri ^= I,2, "'M,n= I,2' "'N} 6'7)

or in union form

X = LJI)lL^n/x^ni*= 1,2,...M,n= l'2,..'N (s.8)
mn

where lty(x^) of lLmn/xmn (0. v^rs 1) denotes the grade of possessing some brightness

property IL^nby the (m, nþ pixel inænsity x^, f407-It should be noted that the "/" sign in

(5.7) and (5.8) does not denote the arithmetic division. As it was described in Chapær 2,

IL *n/ x 

^, 
expresses a fuzzy singleton.

1

0

b
0
a c

Figure 5.2: Second-order S function'

The fuzzy property þ^n maY be defined in a number of ways with respect to any brightness

level depending on the problems at hand. In this work, a second-order ,S function [34] (Figure

5.2) has been used as follows

0 if.x<a
Sr if a<x3b
52 if b<xSc

where

S (x;a, b, c) (s.e)
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S r(xia, b, c) =

and

(* - o)'
(b-a) (c-a)

. ,2
Sr(xia,b,c)= t-ffia

64

(s.10)

(5.11)

5.3.2 Spatio-Temporal Motion Evaluation

Motion can be regarded as orientation in the spatio-temporal domain [14]. This fundamental

fact has formed the basis of the algorithm designed for motion estimation in this work. In the

proposed method, motion evaluation does not depend on object detection. 'We assume that the

time distance between consecutive images is very small and no significant change occurs

between two consecutive frames, i.e., each object moves a maximum of one pixel between

two consecutive frames. Our approach is formulated bearing in mind the complexity of the

algorithm and the amount of ha¡dware needed for implementing the algorithm in VLSI

technology. Since it is intended that the proposed system will form part of a real-time VLSI

micro-sensor for motion detection and velocity estimation, to achieve the simplest

architecture, we have to establish the mentioned assumption. However, the assumption made

is not a limitation of the approach. Furthermore, since on-chip integrated photodetectors will

be employed as the image acquisition system hardware, and because the output of

photodetector cells can be sampled at different rates, the choice of an appropriate sampling

rate makes it possible to take successive image frames within small time intervals. The

sampling rate can be calculated according to the maximum velocity an object can have at the

nearest distance, and also the resolution of the velocity values we intend to measure. This

assumption will significantly reduce the number of connections and nodes in the fuzzy neural

network that will be introduced later. Therefore, the system implementation in VLSI

æchnology will be feasible and the cost of the implementation will be cheaper. However, the

proposed fuzzy neural network can be easily expanded to cope better with objects that move

more than one pixel per frame. The other hypotheses made for this work are:

a) An object possesses a finite speed and so it can not jump from a given pixel to a nonadjacent

one

b) The object can only change direction smoothly and gradually

c

assumption
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First lmoge

Second
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(a)

65

Firsl lmoge

Second
lmoge

(b)

Figure 5.3: The nine possible movements between two consecutive images, (a) a given pixel

in the first image can only move to nine positions in the second image, i.e., (b) a given pixel

in the second image can only receive a movement from the nine neighbouring pixels in the

first image.

In the proposed algorithm, calculation of the velocity vector, consisting of average velocity

and motion direction, is done for each pixel individually. According to the aforementioned

assumption, each pixel in the first image can move to one of nine possible positions in the

second image, as shown in Figure 5.3 (a). Similarly, only one of nine possible pixels in the

first image, shown in Figure 5.3(b), can only move to a given pixel in the second image. When

noise is present in the input images, it is impossible to find out which of the nine possible

pixels in the first image has moved to a given pixel in the second image if the matching

criterion is based on a pixel intensity value only. A good solution to this problem is to assign

a small sector of the image, consisting of the given pixel and its neighbouring pixels, as a

representative for the given pixel, then compare the sector from the second image with sectors

of equal size from the first image within a certain search area. In this a¡ea the search is done

for the position of the maximum similarity between the two sectors. In our approach, the

sector is selected as the 3 x 3-neighbourhood of a pixel as shown in Figure 5.4.It consists of
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The sea¡ch r¿rnge is limited to the 3 x 3-neighbouring sectors as shown in Figure 5.5. In other

words, to find out which of the nine possible pixels in the first image has moved to a given

pixel in the second image, we search for the maximum similarity between the representative

sector of the given pixel and the sectors representing pixels in the frrst image which can move

to the given pixel. Obviously, it is feasible to extend the size of the sector and/or the area of

the search. The sector size and the sea¡ch area have been chosen for the sake of simplicity

only.

The sector (ij) as a representative
for (ij)th pixel.

Figure 5.4: The relaæd representative sector of a given pixel which consists of its nine

neighbouring pixels.

5.3.3 Similarity Measures

Before proceeding with the details of how the simila¡ity is measured for a given sector in the

second image and its nine neighbouring sectors in the first image, let us describe the

parameters we employ to measure the similarity and the variables we use to store the average

velocity and motion direction of a given pixel.

As mentioned earlier, the input information is fed to the system in the form of two-

dimensional image frames, each frame consists of M x N pixels. As shown in Figure 5.3,

between two consecutive frames a pixel can move in nine possible direction only with an

average velocity value ranging from 0 to L - I . To keep the velocity vector calculation

results for a pixel, the following variables and parameters are set for each pixel (see Figure

5.6):
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First lmoge
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Figure 5.5: The search range. A given sector in the second image can be best matched with
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Pixel (i,i)

Figure 5.6: Variables which are set aside for each pixel.

1) Last Velocity

LV is a six-bit register denotes the last velocity calculaæd for a given pixel' The content of

this va¡iable is updated when a new movement to the pixel is deæcæd.

2) Current Yelocity

CV is a seven-bit counter which denotes the current velocity being measured for a given

pixel. The content of this variable is updated once each sampling interval. Whenever a new

movement to the pixel is detected, the content of its CV variable is copied into the LV register

and then its CV variable is reset to zÊÍo.

3) Direction Variables

D*,Dn*DN,D*r,DB,D5B,Ds Dr* andD, a¡e nine 6-bit registers called direction

variables. Each direction variable denotes a membership degree of possessing the velocity

value stored in LV by the pixel in the corresponding direction, e.g. north east, middle, south

west, etc. These variables are updaæd together with LV when a new movement to the pixel

is detected. A higher value denotes a higher degree of certainty that the system acquires for

function
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, = "*p[-lP';)) 6'12)

where Þ is 
" 

parameter that can be selecæd by a learning algorithm, and x is an integer in the

range 0 to 5. Figure 5.7 illustrates plots of Equation (5.I2) for different values of Þ.

Figure 5.7: Graphical representation of y - exp ) for p = 0.2 to 0.9.I -p x
22

When a movement to a given pixel is detected, its nine direction variables are numbered from

0 to 5 based on the motion direction. Figure 5.8 demonstrates two examples of this numbering'

Then the obtained number of each variable is substituted in Equation (5.12) and the result

specifies the new value of the variable.

3 I o
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4) Control Parameters

Cw CNw CN, CNE, CE, CsE, Cs, Csw and Cu aÍe nine 6-bit registers called control

parameters. These parameters are used in the calculation of the similarity measure. They are

updated once each sampling interval. In the updating process, the values of three variables are

used to calculate the new value of each control parameter: LV, CV, and the corresponding

direction va¡iable. Figure 5.9 shows the variables that are needed in the calculation of the

north-west control parameter of a given pixel.

Cruw

LV

Figure 5.9: The variables which are needed in calculation of a control parameter

The updating mechanism is formulated as follow:

Dx
CV if 0< cv<Lv

LV
cx= (s.13)

Druw

CV

if LV <CV<LV+63

0 \f LV + 63 <CV
where 0 < D*< 63, 0 < LV <63, 0 < CV < L27

cHw

ó3.0

DHw

0 CV
0 IV LV+ó3 |

Figure 5.10: Graphical representation of a control parameter updating operation.

Figure 5.10 illustrates a graphical representation of the operation described by Equation (5.13)

,.?-w)

ó3

suppress the effect of noise in the input information. Moreover, when there is more than one
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sector in the second image with patterns similar to the sector in the first image, the best match

can be found. The reason is that the time domain as well as the spatial domain is included in

the calculation of the best-matched sector. In the spatial domain the similarity is found using

the brightness patterns. In the time domain, all the calculations which have been done from

the beginning to track the real motion, will produce more certain results-

Firsl lmoge Second lmoge

SECTOR

s6- t,l-t) r) S1l+ l,f-l) S(t-I,l) s (t,l) s(l+l,l) st,' l,f+l ) l+l) I,f +l)s(,, Sll+

Figure 5.1 1: The parameters which are employed in the calculation of similarity between the

representative sector of a pixel in the second image and its nine neighbouring sectors in the

first image.

As it is shown in Figure 5.10, a control variable is a dynamic parameter whose value is

changed in each sampling interval. Since the sampling interval is small enough, an object can

only change speed and direction smoothly and gradually. When a movement to a given pixel

occurs, the movement will be transferred to the next pixel with approximately the same speed

and same direction. Therefore, the possibility of transferring the motion from the receiving
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pixel to the next pixel is highest when the time index kept in the CV counter of the receiving

pixel is nearly equal to the content of the LV regisær. This fuzzy mechanism reinforces the

similarity measure in the next pixel at the appropriate time and weakens it other times. The

maximum reinforcement is achieved at the same direction where D" has its maximum value

specified by Equation (5.12). The mechanism of extracting the possibility index, described by

Equation (5.13), is illustraæd in Figure 5.10.

Having extracted the control parameters, let us describe how the similarity measure is

calculated. First, all the similarities between the representative sector of a given pixel in the

second image and its nine neighbouring sectors in the first image are measured. The operation

on the sector's brightness patterns is done using afuzzy operator that will be described in the

next section. As a result, nine similarity values are obtained for each pixel (see Figure 5' 11).

Then the nine measured similarities will be strengthened by nine control parameters in each

pixel. The control parameærs which are used for this purpose come from the neighbouring

pixels except the middle control parameter which is taken from the pixel itself (see Figure

s.r2).

csB

@ *l
Cp

csm

t¡¿Cry

CNÐCryÐxrv

cspCg
ñ

c¡1¿{-1tr

tmçtrlrltxw

üsn\lSüsw

CpCy

cr*ffit¡¡Ð¡*w

CSusw \-SÐ

\tEcnl

\-NW cr.,im\,N

csnt-'g r-gÐC¡; csnCs

CBc¡1aÕxs ü¡,7Õw Cp CBc¡a

tN crun cnecNcnw

Figure 5.12: Control parameærs which are utilized in calculation of the similarity measure

for the (ij)th pixel.
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The strengthening operation rs a fuzzy operation which will be described in the next section.

Therefore, nine match indicators are calculaæd for each pixel as shown in Figure 5- 13. Each

match indicator expresses the final degree of similarity between a representåtive sector of a

pixel in the second image and its nine neighbouring sectors in the first image. In the last stage,

the best-matched sector will be easily specified using afiizzy operation discussed in the next

section.

!+l,f- l)
C5
0+l,D (+l,l+

Lr¡¡
0,1-t)

C¡
6,1+t)

Cy
0,D

0-l,l-l)

C¡
0- t,D

E
(-r,l+r)

(i- ¡,i+ l)
MIMI

GI,D
MI

(i-r,l-r)

MI
(i,i+¡¡

MI
(i,l- | )

MI
(i+l,i+l)

MI
(i+l,l- l)

Figure 5.13: The parameters used for extracting the best match between the representative

sector of the (ij)th pixel zurd its nine neighbouring sectors.
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Having extracted the best-matched sector for a given pixel, the average velocity and

movement direction ¿ue now readily available. If for the (i,7)th pixel in the second image,

the (i, j)th sector in the first image is the best match, then no movement to this pixel has

occurred. In this case, the CV counter will be incremented. If the content of the CV counter

exceeds 127 , thereis not any movement to this pixel; and hence, the content of the related LV

is reset to zero.

YES

Figure 5.14: Flowchart diagram of the average velocity calculation.

If the best match is not the (i, j)th sector, this means that a movement has occurred from the

pixel with the best match index to the given pixel. In this case, the content of CV which

represents the time of travel, is transferred into LV .The CV counter will then be reset to zero.

To lrnd out the exact amount of the. average velocity, the content of LV should be multiplied

by the period of the sampling interval. A flowchart of this operation is shown in Figure 5.14.

LV <---------- 0

LV <------- cv
cv <------- 0

CV <---- CV + I

YES

NO

(ij
TCH

EXTRACTING THE BEST
MATCH INDICATOR
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The features of the proposed algorithm for motion evaluation are

1) Suppressing the effect of noise.

2) Solving the correspondence problem, i.e., the problem of finding the correct match among

other possible matches in brightness patterns-

3) Robustness against changes in illumination'

In the next section the a¡chiæcture of afuzzy neural network which implements this algorithm

is described.

5.3.4 Architecture of the Fvzzy Ner¡¡al Netrrork

The propose d fuzzy neural network for motion estimation is a six-layer feedforward network

with a hierarchical structure as shown in Figure 5.15. The inputs to the network are two

matrices of 64x 64 pixels of 64 gray-levels. The outputs are velocity vectors consisting of

speed and motion direction for each individual pixel of the image. In the following we

describe each layer of the fuzzy neural network individually:

5.3.4.1 First Layer

The first layer is the input layer which accepts a pattem into ttre network. It consists of two

sets of 64x64 input fuzzy neurons (INPUT-FNs) shown in Figure 5.16. The first set of

INPUT-FNs is allocated to the current frame. The second set is for the previous frame. There

is a 64 x 64 memory unit reserved for storing the previous frame. In each sampling interval,

when a new image frame is acquired, the current image is overwritten into the memory

forming the previous image frame.

Each INPUT-FN in this layer corresponds to one-pixel of the previous or current frame. To

express the input image in terms of fuzzy sets, we consider the image as an alray of fuzzy

singletons, each having a membership value denoting its degree of brightress in the interval

[0,1] (Equations (5.7) and (5.8)). To determine the membership value, þ^n,wause the second

order.S function (Equations (5.9), (5.10), and (5.11)) as follow:

p(x) = ,5(¡;0,31,63) (5-14)
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Figure 5.15: Architecture of the proposed fuzzy neural network for motion estimation.
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where x is the pixel intensity in the interval [0,63]. Each INPUT-FN deærmines a

membership value for its input pixel by implementing the function described by Equation

(5.14). The INPUT-FN has one input which is a fuzzy set over a universe of discourse, X,

with 64 elements. All the elements are connected to the given input pixel. The weight is a

fuzzy set over the same universe of discourse whose elements are set as follows:

'l1Ø = {0, 1, ...,63} (5.15)

Fuzzy Relation trI
I1t rAr

Pixel Intensity ßwzry Relation F

Figure 5.16: Input luzzy neuron (INPUT-FN).

Since the input and the weight are fuzzy sets over the same universe of discourse, we employ

the absolute difference fiizzy operator, E , as connection functions. The input A, to the neuron

is excitatory, therefore

Bt = At (5.16)

The aggregation function /¿ [.] is a 2-ary fuzzy relation, F/, which is defined by a 64x64

fuzzy matrix as follows:

0

o

100
010
001[{-

0

0

0

0

1

(s.r7)

000

The output of the aggregation function is the fuzzy æt E determined by the fuzzy max-min

composition of B, and H .The fuzzy set E will have 63 elements whose values are 1, and

one element whose value is 0. The inænsity of the input pixel specifies which elements should

be z,ero. The INPUT-FN has no threshold. The output of INPUT-FN is determined by the
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activation function /[.] which is a2-ary fazzy relation, F, defined by the following 64xI

fuzzy matrix:

The output O, is a fuzzy set in the universe of discourse Í with only one element- It is

determined by the fuzzy min-max composition of E and F; it expresses the membership

degree of the input brighûress in the inærval [0,1].

6.9.4.2 Second Layer

The purpose of the second layer is to determine the similarity values between the

representative sector of each pixel in the current frame and its neighbouring sectors in the

previous frame. The absolute difference fuzzy operator, B, is employed for this purpose.

There are nine similarity fuzzy neurons (SM-FNs) in this layer for each pixel. For the

64x64-pixel input images, a total number of 9x 64x64 SIM-FNs are allocated to the

second layer. We choose a 3x3 universe of discourse containing 9 elements (pixels),

N = {x¡, x12, xL3, x2!, x22, x27, x31, x32, x1IJ}, to express the representative sector of each

pixel as described before. For a given pixel, the single output of its corresponding INPUT-FN

plus eight single outputs of its neighbouring pixels determine the nine elements of the

universe of discourse, i.e., the pixel's representative sector.

As illustrated in Figure 5.L7, each SIM-FN has two inputs, .I, and 1r, which are fuzzy sets

over the same universe of discourse, X. The input .I, is connected to the outputs of the

corresponding INPUT-FNs in the previous frame, whereas, the input I, is fed by the related

cunent frame INPUT-FN outputs. There is no weighting operation for both 1, and Ir, i.e. the

connection functions are null functions. The input to the neurons are both excitatory thus we

A
1

I
I

have:

B IL and 82=42= a (s.1e)
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Since both inputs are fuzzy sets over the same universe of discourse, we employ the absolute

difference fuzzy operator as the aggregation function of SIM-FNs. The result is afuzzy set E

in the same universe of discourse. E has nine elements each denoting the absoluæ difference

between the corresponding input elements.

The output of the SIM-FN is deærmined by the neuron's activation function. The employed

activaúon function is a2-ary fuzzy relation, F, defined by the following 9 x I fuzzy matrix:

F

l,']A

(s.20)

The output O ,is afuzzy set in the universe of discourse Y with only one element. It denotes

the bounded sum of the nine elements of the fuzzy set .8. This is done with the aid of the

bounded-sum -algebraic-product composition of E and F. The single output expresses the

similarity value between its two input sectors in the interval [0, 1]. When two sectors ar€

exactly the same, O will be equal to one.

1

Firct Loyet

12
Fuzzy Relation F

Figure 5.17: Similaity fizzy neuron (SIM-FÌ'Ð

5.3.4.3 Third Layer

The third layer is used to deærmine the match indexes betweeu the representative sector of a

pixel in the current frame and its neighbouring sectors in the previous tìame. This is done

using the similarity values and control parameters described before. For each pixel, the nine

t
o

A

A2
7
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single-element similarities measured by nine SIM-FNs in the second layer are strengthened

with nine control pa-rameters. This operation is carried out through a match fuzzy neuron

(MATCH-FN). There are 64x64 MATCH-FNs in the third layer, with each neuron

allocaæd to a given pixel. We choose a 3 x 3 universe of discourse X in the input, containing

9 elements. For a given pixel, the nine SIM-FNs single outputs form the nine elements of the

universe of discourse.

As demonstrated in Figure 5.18, each MATCH-FN has only one input, 11. It is afiazzy set in

the universe of discourse, X. Each element of the fuzzy set .I, is connected to the

corresponding single output of a SIM-FN in the serond layer. 1, is strengthened through

connection functions using weights. The weightis afuzzy set over the universe of discourse

X and its elements are set as follows:

(s.2r)

t" = {cs'(i-r,r-r)'"r,,-r,¡¡'"rn1r-r,¡*r¡'""1,,¡-r¡'"u1i,11'cw1i,¡+r¡'"""1,*r,r-r)'"t(r* t,rr'"rnr,*t,¡+t¡}

The control parameærs and therefore the weight W are changed in each sampling inærval.

Since the input and weight are fuzzy sets over the same universe of discourse, we employ the

algebraic product fuzzy operator as the connection function. The output of the connection

function is afazzy set A, treated as an excitatory input to the f'vzy neuron; therefore,

Bt = At 6-22)

The aggregation function is a2-ary fuzzy relation, 11, which is defined by a 9 xl fuzzy

matrix as follows:

(s.23)

The output of the aggregation function is a fuzzy set E determined by the fuzzy mær'min

composition of B, and H .The fuzzy set E will have only one element whose value denotes

the maximum value of the nine elements of the fuzzy set .B1 .

80
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The threshold input T in the MATCH-FN is a fizzy set in the universe of discourse X as the

input. It has nine elements, each element is connected to the corresponding element of fuzzy

òet Ar. Therefore we have

T = At 6.24)

This arrangement is to determine the difference between each match indicator, which is an

element of the fuzzy set At , with the maximum value of the nine match indicators. The output

of the MATCH-FN is determined by the activation function which is a 3-ary fuzzy relation,

,F, defined by the following 9 x9 fuzzy matrix

p- (s.2s)

011
101
110

I
1

1

1

111

The output O, is a luzzy set in the universe of discourse X with nine elements- It is

determined by the fuzzy max-bounded-difference composition of E , T , and F. Each element

of the output fuzzy set denotes the difference between the corresponding element of the input

to the neuron and the element that carries the maximum value'

A1

Second Loyer Connection Functions Fuzzy Relation F

Fuzzy Relation trI

Figure 5.18: Matchfuzzy neuron (MATCH-FN).

6.3.4.4 Fourth Layer

The calculation of the direction variables, Dr, is oan'ied out irì the fourth layer. This opcration
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is carried out through nine direction fuzzy neurons (DIR-FNs). There a¡e 9 x 64 x 64 DIR-

FNs in the forth layer; each set of nine neurons is allocated to a given pixel. We choose a3 x3

universe of discourse X for the input, containing nine elements.

As shown in Figure 5.19, each DIR-FN has only one input, .I, . It is a fuzzy set in the universe

of discourse, X. The connection between the Layer 3 outputs and the Layer 4 inputs is defined

as follows:

ILL= ILz= IL3= It4= IL5= 116= Ir7 = 118 = Irg= O (5'26)

There is no weighting operation for 1r, i.e. the connection functions ¿ue identity functions.

The input to each neuron is inhibitory thus we have:

Bt = At (5.27)

The aggregation function is a2-ary fuzzy relation, FI, which is defined by a 1x9 fuzzy

matrix. The contents of the fuzzy matrices are different for the nine DIR-FNs. The ninefazzy

matrices of the nine DIR-FNs, for a given pixel in the forth layer, are defined as follow:

r, = [*n(- p'o') .*r(-9'r') .*n(-e'r') *n(+',') . n(-p'r') ^r(-p'o') *r(-u"').*r(-u'o') *n(-p"')]

n, = l*v(-p'r') "*r(-p'ot) "*n(-p'r') *o(-ptr') ",r(-p'r') *n(-p'r') "*n(-p'o') *n(-p"') ",r(-p'o'))

ø, = [*n(- p'r') ^r(-p'r') .*n(-p'o2) *n(+'o') ",n(-p2,')*n(-pt") ^r(-p"') "*n(-p'o') "r(-p"')f
ro = [*n(- s'r') "*r(-p'r') "*r(-p'o') *n(+'o') .,n(-p',')*n(-u"') *o(-p"') "n(-p"') *n(-p'o')]

¡rs = [*p(- s'o') "*n(-p'o') "*r(-p'o') ^r(-p'o') *n(-p'o') "*n(-ø'o') "*n(-p'o') -r(-p'o') *n(-p'o')]

øu = [*n(- e'02) "*p(-pzr') ",r(-p'r') *n(-e'r') .*r(-p'r')*n(-u'o') "*o(-p'o') "*r(-p"') *n(-p"')]

n, = l^n(-e'r') " r(-p'oz) "*r(-p's') -n(*',') .*r(-p"') " n(-p'o')*o(-p'o') *n(-p"') *n(-p"')]

ø, = [*n(- p'o').*r(-o'r') 
"*n(-p'o') *n(*'r') .,n(-p',') " r(-øtt') *n(-p"') *n(-p'o') *n(-p"t)]

ø, = [*n(- p'r').,n(-p'o') 
" n(-p'r') *n(-p'o') .*r(-pt,')*o(-p"') "*n(-p"')*n(-p"') *o(-p'o')]

(s.28)

The ouþut of the aggregation function is deærmined by the fuzzy max-algebraic-product

composition of ^8, and H , which is afuzzy set E in the universe of discourse V containing

only one element. E deærmines a value for the corresponding direction variable of a pixel

using 
"*p [-p'"'J Or it can be seen from the contents of the fuzzy matrices, in a given DIR-

FN, this arrangement allows the neuron to behave like a lens so that the neuron focuses on one

I

_.t
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of the input elemens which is directly relaæd to the direction value controlled by the neuron.

However, the neuron uses the other elements in the computation of the direction value with

lower degree of importance. p is assigned to 0.5 in the system simulations, based on a few

experiments which were conducted to obtain a suitable value for p; however, the best value

for this parameter should be extracted from a learning process. We will introduce a learning

algorithm for this purpose in our future work.

rt* rAl
Fuzry Relation tr[

83

/\

I

lhird Loyer

Figure 5.19: Directionfuzzy neuron (DIR-FÐ'

There is no threshold input and no activation function for DIR-FN, i.e., the neuron's output is

equal to the aggregation function output

o = E 6.29)

The output O has one element that denotes a value for the corresponding direction variable

of a pixel in the interval [0, U. For a given pixel, Figure 5.20 shows how each direction

variable is driven by a DIR-FN. The direction variables which are memory cells accept the

DIR-FN outputs when a movement to a pixel is deæcæd, i.e., the output of the fifth neuron is

not the maximum one.

MATCH-FN

Ihird Loyer DIR.FNS Direclion Voriobles

1
,!f

j

l

Figure 5.20: The connections between DIR-FNs and direction variables-
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6.3.4.6 F'ifth Layer

The lrfth layer is the last layer of the fuzzy neural network. The calculation and updating of

the control parameters, Cx's, a¡e carried out in this layer. There are three different types of

fizzy neurons used for extracting the control parameters of a given pixel. Therefore, the total

number of the neurons in Layer 5 are 3 x 64 x 64. For a given pixel, the inputs to this layer

are the pixel's LV regtster, the pixel's CV counter, and nine direction par¿Lmeters. The output

of this layer are nine control parameters whose values vary in the interval [0, 1]. As mentioned

in the previous section, the calculation of the control parameærs is done using Equation

(5.13). This function is implemented by a curve fuzzy neuron (CURVE-FÌ'Ð, a current

velocity fuzzy neuron (CV-F¡Ð, and acontrol fuzzy neuron (CTRL-F¡Ð.

A CURVE-FN builds the curve shown in Figure 5.10 using the LV value. It has hvo inputs

.I, and 1, in the same universe of discourse X with 128 elements. All the elements of the first

input are connected to LV and the second input to LV + 64. Since LV is a binary number

between 1 and 63, we can simply add an extra bit which is always "high" as the MSB'

Therefore, we will have LV + 64 as the result. There are two weights 17, and IV, which are

fuzzy sets over the same universe of discourse , X - W, and W, elements are set as follows:

Wt = Wz = {0, 1, ...,127 } (5.30)

V/e employ the algebraic divide fuzzy operator, /, as connection functions. The input A, to

the neuron is excitatory whereas the input A, is inhibitory; therefore,

Bt = At , B, = T, (5'31)

The fuzzy set B I forms the left part of the curve and the fuzzy set B, forms its right part. The

aggregation function is a min fuzzy operator. The output of the aggregation function is afuzzy

set E over the same universe of discourse X with 128 elements. It contains 128 elements of

the whole curve. There is no threshold input and no activation function for the CURVE-FN.

The output O of the neuron is defined as follows:

o = E 6.32)

It represents the curye shown in Figure 5.10 without considering the scaling effeú of the

.t

rl,f
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I
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corresponding direction variable. This curve will be scaled down in the CTRL-FN to achieve

the curve described by Equation (5.13).

The CV-FN is similar ro the INPUT-FN but it does not employ an activation function. Each

CV-FN has one input which is a fuzzy set over the universe of discourse X with 128

elements. All the elements are connected to the CV's output. The weightis afuzzy set over

the same universe of discourse X and its elements are set out as follows:

l{ - {0, 1, ...,127} (5.33)

We employ the absolute difference fivzy operator, E, as connection functions. The input At

to fhe neuron is excitatory; therefore,

Bt = At 6.34)

The aggregation function h [.] is a 2-ary fuzzy relation, I/, which is defined by a 128 x 128

fuzzy matrix as follows:

(5.3s)

000
The output of the aggregation function is a fuzzy set E determined by the fuzzy max'min

composition of B, and H.Thefuzzy set E will have 127 elements whose values are 1, and

one element whose value is 0. The CV-FN has no threshold input and no activation function;

output is defined as

o = E (5.36)

It is a fuzzy set with 128 elements which denotes the input in terms of fuzzy sets.

A CTRL-FN has two inputs 1, and 1, in the same universe of discourse X with 128 elements.

The elements of the first and the second inputs are connected to the corresponding elements

of the CURVE-FNs output and the CV-FNs output respectively. There are no connection

functions and the inputs are excitatory and inhibitory, respectively.'We have

Br=A, Bz=4 (5'37)

100
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Forlh Lq¡et
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Figure 5.21: CURVE-FN, CV-FN, and CTRL-FN plus their connections.

The aggregation function is a 3-ary fuzzy relation, I/, which is defined by a I28 x 128 x 1

fuzzy matrix as follows:
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The output of the aggregation function is a fuzzy set .E determined by the fuzzy max-min

composition of B, , Br, and 11. The fuzzy set E will only have one element whose value

denores rhe output of the function described by Equation (5.13) to its input which is driven by

CV. This value is scaled down by nine direction variables producing the new values of nine

control parameters; this is done by the activation function. The threshold input Z is a fuzzy

set in the universe of discouræ Z with nine elements. Each element of the threshold input is

connected to one direction variable. The activation function is a 3-ary fiuzy relation, F,

defined by the following 1 x 9 x 9 fuzzy matrix:

p- (5.3e)

000
The output O, is a fiizzy set in the universe of discourse Í with nine elements. It is

determined by the max-algebraic-product composition of E, T, and F. Each element of the

output fuzzy set denotes a value for the corresponding control parameters. Figure 5.21

illustrates the fuzzy neurons defined for Layer 5 and their connections.

5.4 Conclusions

This chapter constitutes the core of the thesis. In this chapter, a generic model of. a fiizzy

neuron was defined as an exænded model of the existing fuzzy neurons. It was shown that the

generic fuzzy neuron can be simplified to four models of fuzzy neurons described in Chapter

4. Then the bases of the approach we employed for motion estimation was presenæd. In the

proposed algorithm, motion estimation is carried out not only using a comparison between

brightness patterns in consecutive image frames by fuzzy relations, but also a control

mechanism is established to strengthen or weaken the results of the comparisons in brightness

patterns. The main features of the algorithm are:

1) Suppressing the effect ofnoise.

2) Solving the correspondence problem, i.e., the problem of finding the correct match ¿rmong

other possible matches in brightness patt€rns.

3) Robustness against changes in illumination.
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The only limitation of the algorithm is the assumption that the time distance between

consecutive images is very small and no significant change occurs between two consecutive

images, i.e., each object moves a maximum of one pixel per frame. We explained that this

assumption, is not a limitation of the approach, but a simplif,rcation. The approach can be

easily extended to deal with the objects travelling more than one pixel per frame.

Next, the archiæcture of a fuzzy neural network which was designed to implement the

proposed motion estimation algorithm was given. It has a five-layer feedforward structure.

Seven different fuzzy neurons were dehned and utilized in different layers of the fiizzy neural

network. Tlne fuzzy neurons are simplified versions of the generic fizzy neuron. Although it

wa.s mentioned that the fuzzy neural network constructed with the generic fuzzy neurons can

learn from experience, we did not present a learning algorithm for training the sysæm. We

will define and use a simple learning algorithm based on the generalized delt¿ rule for this

purpose in our future work.

In the next chapter we will study the results of more than thirty simulations of the proposed

flzzy neural network. An evaluation of the performance of the fazzy neural network under

various conditions will be presented.
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EXPERIMENTAL RESULTS

6.1 Introduction

Simulation studies have been conducted to demonstraæ the performance of the proposed

luzzy neural network for motion estimation. Two different experiments were carried out. The

first consisted of five simulations for moving objects with different speeds and trajectories.

The second consisted of twenty four simulations for a moving object with six different

velocities under four different noise conditions- In this chapter the experimental results are

reported and discussed but first we describe the procedure for conducting the experiments.

6.2 Experimental Procedr¡¡e

The experiments were conducæd using a simulation program developed by the author and run

on a SPARC ståtion. The softwa¡e consists of wo C programs: one for producing input image

frames and another one for implementing the network. The first program is capable of

producing 64x64, 6-bit image frames containing moving objects. The number of moving

objects, their shapes, their brightness patterns, their speeds, their trajectories, and also the

background pattern can be changed. The outputs of the program are binary image files, each

file represents one image frame. The program is also capable of adding noise to the images.

For this purpose, it reads external files containing noise data and adds them to the images. The

program can easily be modified to produce image frames with higher resolution, e.g.

256 x 256 , 8-bit images.
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The second program is the fuzzy neural network simulator. It reads the input binary image

file, performs the simulation, and outputs the results in each clock cycle. The calculation of

the average velocity is done based on the frequency of this clock signal. The output consists

of average speeds and motion directions of all pixels in each clock cycle. The output appears

in the form of a binary file. The program allows the parameær p of the DIR-FNs used in the

fourth layer of the network to be changed by the user.

Two main experiments were conducted, each experiment containing a different number of

simulations. The first consisted of five simulations for moving objects with different speeds

and trajectories. The objective of this experiment is merely to test the simulator and evaluate

the motion estimator. The second experiment consisted of twenty four simulations for a

moving object with six different velocities under four different noise conditions. The

objective of this experiment was to measure the error values in estimated average velocities

in noise free and noisy environments.

6.3 Ftirst Experiment

This experiment was done to test the performance of the system in deæcting moving objects

and estimating their avera1evelocities. 'We considered objects of different shapes, brightness

patterns, and velocities. In this experiment we have conducted hve different simulations. We

present one figure for each simulation in this thesis. Each figure is divided into three sections:

top, middle, and bottom. In the top part of the figure we present ten frames from the input

image sequence which a¡e selected from ten equal time slices. The frame number is presenæd

under each image.

In the middle part of each figure ten pictures are presented, with each picture illustrating the

last average velocities of the 64 x 64 pixels. The darker the pixel is, the higher is its average

velocity. The fuzzy neural network calculates the 6-bit average velocities in terms of. pixel per

frame (ppÐ. The maximum average velocity an object can possess and be deæctable by the

system is I ppf. As the number under the picture shows, the picture is the output of the fuzzy

neural network afær processing the corresponding input frame shown in the top section of the

figure.
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In the bottom section of the figure two graphs are presented- Each graph contains Íurows of

different size and direction. The size of each Íurow represents the last average velocity of the

associaæd pixel; the smaller the arrow is, the lower is the pixel's average velocity. The

direction of an arrow shows the direction of the last movement to the pixel. For the pixels with

no arrows displayed, the average velocity is zero. The left graph represents the output of the

fuzzy neural network afær processing the last image frame in each simulation. The right graph

shows a selected part of the left graph containing 20x20 pixels. As can be seen from the

figures, the arrows are displayed bigger to make the difference between the arow sizes more

distinguishable.

Simulation 1.1: In this simulation we examined the response of the fuzzy neural network to

an object moving horizontally from left to right. During movement, the object increases its

speed continuously. When the object leaves the scene in the last frame, it possesses the

maximum possible speed, i.e., 1 ppf. We used 1739 image frames in this simulation. Figure

6.1 shows the results of this simulation.

Simulation 1.2: This simulation was done on a scene with three objects moving horizontally.

The objects have different sizes, speeds (0.1 ppl0.0a ppf, and 0.02857 ppÐ, and directions.

The middle object has the smallest size but the largest speed (0.1 ppÐ, and t¡avels from right

to left. The other two objects travel from left to right with the bottom having the smallest

speed (0.02357 ppÐ. V/e used 2430 image fra¡nes to conduct this simulation. The results of

this simulation are represented in Figure 6.2.

Simulation 1.3: In this simulation, there are two objects moving diagonally from top to

bottom in opposiæ directions. The object which starts from top-left corner and finishes at

bottom-right corner, travels with a lower speed (0.06667 ppÐ than the other object which

moves with a(peed of 0.2 ppf. We used a nonuniform background pattern and different object

shapes to show the ability of the system to detect motion under different background

conditions. W'e used 770 image frames in this simulation. Figure 6.3 shows the results

obtained from this simulation.

Simulation 1.4: Figure 6.4 shows the results of this simulation. The input image sequence

contains a single object moving around a circle with a constant speed of 0.2 ppf. The
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background brightness varies continuously from the dark to bright. We employedT4L image

frames in this simulation.

Simulation 1.5: Figure 6.5 shows the response of the network to the last simulation of this

experiment. Here an object is moving circularly with varying speed. The object starts

travelling clockwise from top of the circle with the lowest speed in this experiment (0.02381

ppÐ. The object increases its speed continuously. When the object rotâtes 90o, the speed

reaches 0.2 ppf (which is the highest speed in this simulation). Then the object starts

decelerating, and the speed is decreased continuously until the object reaches the bottom of

the trajectory. This trend is repeated again until the object returns to the starting point (i.e.,

top of the circle). The total number of 3624 image frames were used in this simulation.
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6.4 Second Þxperiment

This experiment determines the influence of noise on the system performance by measuring

the output error under different noise conditions. 'We have carried out twenty four simulations

in this experiment which are classified into six groups. In each group, there is a moving object

with a given constant speed moving horizontally from left to right. The six selected velocity

values are samples from the range of possible velocities the system can detect (from 0 ppf to

1 ppÐ. In each group, we conducted four different simulations with: 1) noise free input

images, 2) input images with ^lNR = 22d8, 3) input images with .lNR = 17 dB, 4) input

images with SNR = I2dB- One hgure is presented for each simulation. Each figure is

divided into three parts. Similar to the figures presented in the first experiment, in the top

section of each figure ten frames from the input sequence, and in the middle part ten pictures

which illustrate the last average velocity of the pixels, are presented. However, in the bottom

part of each figure we present two graphs that indicate the percentage relative error of

estimated average velocities. The left graph shows percentage relative effor versus frame

number calculated for only the pixels which receive a movement in each sampling interval;

this is to find out the relation between the system performance versus velocity values. The

right graph indicates the error versus frame number averaged for all the pixels in the image;

this is to measure the overall performance of the system.

To measure the perforïnance of the system in the presence of noise, we employed gaussian

white noise with different signal to noise ratios. The signal to noise ratio (SNR) is defined as

follows

,sNR = 1o rog,, [l)' 
(6.1)

where o, is the standard deviation of the image and on is the st¿ndard deviation of noise. We

made thousands of noise files for three different ,SNR levels, 12 dB, 17 dB, and 22 dB. Then

we added the noise information to the input image frames in the image maker program. The

results were the noisy image frames used in this experiment.

Simulation s 2.1.1-2.1.4: In this group of simulations, the object moves horizontally from left

to right with a constant speed of 0.2 ppf. The results of the simulations are presented in

98
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Figures 6.6-6.g.Figure 6.6 illustraæs the results for a noise free situation, and Figures 6-7-6.9

illusrrate the noisy cases with a SNR of.22 d8,17 dB, and 12 dB respectively. We used 263

image frames in these simulations.

Simulation s 2.2.1-2.2.4: In this group of simulations, the object moves horizontally from left

to right with a speed of 0.06667 ppf. The simulation results under the following conditions

arepresentedinFigures6.l0-6.l3respectively:1)inputimagesarenoisefree,2)inputimages

with 22dB signal to noise ratio, 3) input images with 17dB signal to noise ratio, 4) input

images with 12dB signal to noise ratio.'We employed 793 ímage frames in these simulations.

Simulations 2.3.1-2.3.4: Figures 6-14 to 6.17 indicate the results of the third group of

simulations. The object possesses a constant speed of 0.04 ppf and the input frames are mixed

with different levels of noise as mentioned in the previous cases. We utilized 1323 image

frames in these simulations.

Simulations 2.4.1-2.4.4: In this group, the object moves horizontally from left to right with

the speed of 0.02857 ppf. The results of the simulations are presented in Figures 6.18-6.2I.

Figure 6.18 shows the results for a noise free situation, and Figures 6.19-6.2I illustraæ the

noisy cases with SNR of.22 dF ,17 dB, and 12 dB respectively. We used 1853 image frames

in these simulations.

Simulations2.S.L-2.5.4: The object moves with a constant speed of 0.02222 ppf in this group

of simulations. Figures 6.22-6.25 show the simulation results under four different noise

conditions as described before. We employed 2383 image frames in these simulations.

Simulation s 2,6.1-2.6.4: In this group of simulations, the object travels horizontally from left

to right with the speed of 0.01818 ppf. The simulation results under the following noise

conditions are presented in Figure s 6.26-6.29 respectively: 1) input images are noise fren,,2)

input images with 22dB signal to noise ratio, 3) input images with 17dB signal to noise ratio,

4) input images with 12dB signal to noise ratio. We utilized 2912 image frames in these

simulations.
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Figure 6.28: Moving object speed = 0.01818 ppf. Input information SNR = 17 dB.
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6.5 Discussion

In the first experiment we simulated thefuzzy neural network and æsted it on different image

sequences to make sure that the system works well under different conditions. We utilized

different object shapes, brightness patterns, speeds and trajectories, and also employed

different background patterns. Although our choices are not the worst cases for proving the

performance of the fuzzy neural network, they are not the easiest cases either. They are

reasonable examples of conditions in which the detection of a moving object and estimation

of its velocity is neither very easy nor very diff,rcult, even for human beings. All the obtained

results are reasonably good and fulhl our expectations.

In the second experiment, the moving object had the same shape, brightness pattern, and

trajectory in all simulations, but the object speed and the level of noise in the input images

varied from simulation to simulation. We selected six different velocities, which cover the

entire range of possible velocities the system can detect. This gives us a good indication of

the system performance for various velocities. As can be seen from the relative error graphs

in Figures 6.6-6.29, there is a transient error at the beginning of each simulation. This error

occurs because of the nature of the system. As was mentioned in the previous chapter, the

system calculates the average velocity, based on previously obtained velocities. Since at the

beginning of each simulation, there are no previously calculaæd velocities, the error is

expecûed to be large. This error disappears quickly as more frames are processed, and

decreases more rapidly if the velocity is high (see Figures 6.6, 6.10, 6.14,6.18, 6.22, and

6.26). This transient behaviour of the system can be improved by changing the initial values

of the variables which keep the last velocity values of the pixels. This can be done in a

learning procedure.

As can be seen from the results, for the six noise free simulations (Figures 6.6, 6.10,6.14,

6.18,6.22, 6.26), there is no error in calculation of the velocity vectors (except for transition

errors). This shows that the system works well in the absence of noise.

The sysûem also works well if the noise level is moderate. Figures 6.7,6.11, 6.15, 6.19,6.23

and 6.27 illustrate the effect of moderate noise (SNIR = 22 dB) on estimated velocities. The

few spots in the output pictures, which are presented in the middle part of each figure, indicate

*
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very small errors unrecognizable in both relative erïor graphs. Comparisons of the relative

error graphs with their noise free counterparts show that there are no significant differences

in error levels between the two cases. This proves the robustness of the algorithm to noisy

conditions.

Furthermore, it was found that as the noise levels increase from moderate to high the system

performance deteriorates slowly and gracefulty. For a SNIR of 17 dB, the results are given in

Figures 6.8, 6. 12, 6.16, 6.20, 6.24 and 6.28. Noæ that the relative effors for pixels which

should receive motion (left graphs) do not exceed l\Vo (except in the transient phase), and the

effors averaged over the entire frame (right graphs) are below 0.05Vo. For high noise levels

(SN.À = 12 dB), the results are presented in Figures 6.9, 6.13, 6.17, 6-21, 6.25, 6.29- The

relative errors, in these figures, are below 20Vo f.or pixels receiving motion, and typically are

around l\Vo; the erïors averaged over the entire frame are below 2Vo.The sharp changes in

error levels, that occurred in these simulations, are due to similar noise patterns occurring in

two consecutive frames.'When this happens, it causes a false motion detection in some pixels;

thereby, inducing a large error in the velocity estimate of these pixels. This effect can be

reduced by increasing the size of the sector representing a pixel, or by introducing some

preprocessing such as low-pass filtering.

According to the simulation results discussed above, rhefuzzy neural network showed a good

performance in detecting moving objects and estimating their velocities. Although the noise

levels were high, especially in the last case, the error levels are reasonably low. In addition,

the results show that the performance of the system does not depend on velocity values of the

moving objects.

Moreover, the parameter p of the DIR-FNs used in the fourth layer of the network and

assigned 0.5 in our experiments can be adjusted during a learning process to achieve yet better

results. To investigate the impact of this parameter on system performance, we have

conducted an extra experiment in which the object speed was 0.2 ppf, the signal to noise ratio

was 12 dB, and p was equat to 0.3 and 0.7 respectively. Upon comparing the results of this

experiment with those obtained for simulation 2-1.4, (see Figure 6.30), it can be concluded

that if the parameter p is increase.d, the enor values for pixels that receive motion are

increased whilst the error values for the overall pixels are decreased, and vice versa if the

-{
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value of p is decreased. This means that as the value of p is decreased, the sysæm becomes

more accurate in deæcting motion but more sensitive to noise. The optimum value of p can

be found with learning.
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6.6 Concluslons

In this chapter, the experimental results were reported and discussed. First we explained the

experimental procedure including simulation softwa¡e which was developed for conducting

the experiments. Two main experiments were conducted, each experiment contained different

number of simulations. The first consisted of five simulations for objects moving with

different speeds and directions. The objective of this experiment was to examine the quality

of the motion estimator; that is, how the fuzzy neural network detects moving objects with

different shapes, brighnress patterns, and velocities. The second experiment consisted of

t'wenty four simulations which contained a single moving object with six different velocities

uncler four different noise conditions (noise free images, images with,SNR=22 dB, images

with.iNR=17 dB, and images with SNiR=12 dB). The objective of this experiment was to

assess the performance of the system in noise free and noisy environments. The fiszzy neural

network showed a good performance in detecting moving objeca and estimating of their

velocities. Although the noise levels were high, the error levels were reasonably low. In

addition, the results showed that the performance of the system does not depend on the

velocity values of the moving objects nor does it depend on the background conditions. In

conclusion, the system performed well, and it can be utilized as a good motion estimator.



Chopter 7

CONCLUSIONS AND FUTURE DIRECTIONS

7.L Ove¡view

Ftzzy neural systems result from the fusion of fuzzy set theory and neural networks. Thus, the

advantage of both approaches are merged. Research on fuzzy neural systems has been pursued

in two different directions. Some researchers have utilized conventional artificial neuron

models to develop neural networks which are functionally equivalent to fuzzy inference

systems. Other researchers have developed neurons with fuzzy functions and fuzzy

computations. This thesis dealt with the fuzzy neural networks of the second category. Seven

chapters were presented in this thesis.

An introduction to the subject of. fuzzy neural networks was given in Chapter 1. In Chapûer 2,

some of the basic concepts of fuzzy set theory which were required for understanding this thesis

were explained. In Chapær 3, an introduction to the tield of artificial neural networks was

presented. The emphasis was on multilayer feedforward neural network architectures, which

formed the basis of the fuzzy neural systems introduced in this thesis. A survey of four different

types of fuzzy neurons and their relaæd fuzzy neural networks were presented in Chapær 4.

These four models have been found to be the most powerful fuzzy neural systems. In Chapær

5, which was the kernel of this thesis, a generic fuzzy neuron was defined as an extended model

of existing fuzzy neurons. Then the foundation of the approach we employed for motion

estimation was presented. The a¡chitecture of a fuzzy neural network was introduced to emulate

the proposed motion estimation algorithm. Seven different fuzzy neurons were defined and

utilized in different layers of the fizzy neural network; they are simplified versions of the
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generic fuzzy neuron. In chapær 6, we studied and discussed the results of more than thirty

simulations of the proposed fuzzy neural network.

7.2 Conclusions

The fi¡st main contribution in this thesis was the generic model of. afuzzy neuron proposed as

the basic element of our fuzzy neural system. It is a generalization of existing fizzy neurons.

In Chapter 5 it was shown that the generic fuzzy neuron can be simplified to the four models of

fizzy neurons described in Chapter 4. Moreover, we discussed the differences between the

generic fuzzy neuron and the other models. It was described that it is possible to carry out any

fiizzy computation and also express any kind of ambiguous relationship using the generic fuzzy

neuron. It is claimed that the generic fuzzy neuton is the most powertul fuzzy neuron capable

of fuzzy information processing. This is because we employed fuzzy relations in the generic

fuzzy neuron functions (connection, aggregatton, and activation). Moreover, we utilized the *-

* compositional rule of inference, introduced in Chapær 2, to obtain the solution of the

relational assignment equations used in the generic fuzzy neuron. In this way, any type of fuzzy

operation in the class of triangular norrns or triangular conorrns can be utilized to derive the

output of a generic flzzy neuron function. This gives a high fuzzy processing power to the

corresponding function and therefore to the generic fuzzy neuron.

The algorithm for motion detection and velocity estimation which was introduced in Chapær

5, formed the second main contribution of this thesis. In this algorithm, the direction and speed

of motion are estimated not only using a comparison between brightness patterns in consecutive

image frames by fuzzy relations, but also a control mechanism was est¿blished to strengthen or

weaken the results of the comparisons. It was found that the proposed algorithm possesses the

following features:

1) Suppressing the effect of noise.

2) Solving the correspondence problem, i.e., the problem of finding the correct match among

other possible matches in brightness patterns.

3) Robustness against changes in illumination.

The only limitation of the algorithm is the assumption that the time interval between

consecutive images is very small and no significant change occurs between two consecutive

130
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frames, i.e., each object moves a maximum of one pixel betrveen two consecutive frames. The

assumption is to make the system as simple as possible. It signihcantly reduces the number of

connections and nodes in the fuzzy neural network. As a result, the system's construction in

VLSI æchnology will be feasible and the cost of the implementation will be cheaper. The

proposed fuzzy neural network can be easily expanded to process frames containing moving

objects travelling more than one pixel between consecutive images. Therefore, the assumption

made is not a limitation of the system, but a simplification.

The third main contribution of this thesis is the five-layer feedforward fuzzy neural network

architecture proposed for motion estimation. We evaluated the performance of the fuzzy neural

network in simulation studies described in Chapter 6. According to the simulation results, the

fuzzy neural network showed a significant performance in detection of moving objects and

estimation of their velocities. Although the noise levels were high, the error levels were

reasonably low. In addition, the results showed that the performance of the system does not

depend on the velocity values of the moving objects nor does it depend on the background

conditions. 'We found out that increasing the parameter p in DIR-FNs, increases the error

values for the pixels receiving movement whilst it decreases the error values for the overall

pixels. 'We concluded that a learning algorithm should be used to find the best p value.

The simulation results show that the fuzzy neural network has a great potential to be used in

motion estimation which contains uncertainty and imprecision. The results of the demonstraæd

system suggest that the formulation of a fuzzy neural network by combiningfuzzy set theory

and neural networks is a fruitful one. The described fuzzy neural network may also be used for

other computer vision applications.

7.3 Future Directions

In chapter 5 it is mentioned that the weights, the connection functions, the aggregation function,

the threshold, and the activation function in the generic fuzzy neuron could be adjusæd during

a learning process. As a result, the fuzzy neural network constructed with neurons of this type

can learn from the environment. In the propose d fuzzy neural network only B requires to be

adjusted. This parameter was employed in the aggregation functions of the fourth layer DIR-

FNs, and was utilized in the calculation of their correspondtng fuzzy matrices. The simulations
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were conducæd with a fixed value of B = 0 . 5, which was determined by trial and error' We

did not present a learning algorithm for finding the value of p which gives an optimum

performance. However, we intend to define and use a simple learning algorithm forthis purpose

in our future work. Moreover, it is inænded the proposed system will form part of a real-time

VLSI micro-sensor for motion detection and velocity estimation-
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