T e Ll e~ T

INVESTIGATION INTO METHODS AND ANALYSIS
OF COMPUTER AIDED DESIGN OF VLSI CIRCUITS

J. A. NOONAN B. E.(Hons.)
A thesis submitted for the Degree of Master of Engineering Science
in
The Department of Electrical and Electronic Engineering,

The University of Adelaide.

TABLE OF CONTENTS

Table Of CONbENS. .. .cvveeeessasassaissrsssnsnssasasnssssssesssssanssosasassivssssnesssssasssasvaves (1)

g T o - R R LR TR R T P T TP (iv)

DEClATAEION « v e e v et et tteeseenneaeeanss e saeasasanassansasnsassnsssasssssessssarseasasstasasessas (v)

ACKnOW]Ed@emMEntS. . .o v v et vsseeae s ete it et ettt (vi)
CHAPTER 1

IC TECHNOLOGIES AND DESIGN

1.1 Introduction to IC’s and a VLSI Technology Choiceouviiuiiiiiemiiuieaniiiiiiiiinnianss 1.1

1.2 The VLSI Design Philosophy.....o.iuiiiiiiiiiiiriirrerrnreaacneetiitiiiiioteecsnaaiacaneens 1.8

1.3 Australian MP O s . ittt ieirir e tsasasieanaanissassssassssssasssnsarsssasnsrarnransas 1.13

14 SUTTIIIIATY . e v e ve et tuaun st s e aaeeaaaeas st assaesesansisasssasassonasssssontesnsotosssusnses 1.17
CHAPTER II

LOW LEVEL CAD TOOLS FOR VLSI CIRCUIT DESIGN AND ANALYSIS

2.1 Mask Level Design of IC’s using MPCs. ... oot 2.1
2.2 Embedded Layout Languagesc.vevuuueiioueinansonissitnrasssesasareasssteneiaiaansnsanss 2.3
2.3 Interactive Mask Level Geometry Editorscviuiiuniniiiieiiiiiiininiinriaiinannaenunns 2.4
2.3.1 Hierarchical Design Philosophies of Geometry Editors..........cooiiiiiininnainns, 2.10
2.3.2 Further Analysis of Geometry Editorscocviiiriiiiiiinirmnrnmrareeeiiaiiiann, 2.12
2.4 Design Rule Checkers .. .uuuusiuierneieaiaeieiaieneiurissssassaronnrestieeentsnsonesansonos 2.16
2.4.1 Hierarchical Design Rule Checking......ocoviiiiiiiienininiiiraiirirneranasaiaennen, 2.17
2.4.2 Technology Independent Design Rule Checking........coiuiiiiiiiiiirrieniainn. 2.19
2.4.3 Design Rule Checking Input and Qutput.......ccoiiviiiiniiiiiiiiiiiiiiiiiiaeene 2.22
2.4.4 DROC CoOnCIUSIONS. - 4t cvtvrsetenesesessnsusensnsnsssssssesassasassssssosssncenansnns 2.23
2.5 CIrcUit ExbIactors v vuvvre e rennsresecsseaasnsneanssrsssssnssesasastonessarssnssssssaseansens 2.24
2.6 Electrical Rule Checker8 ... vuuueeeine et annnaennsoesssssnssssessssnasasasarosseasanreonenss 2.27
2T AU OTS . v vt ettt eteeaasaeasaesnessnnaseeseesasssesssassnssssnetossssenasassessnnscensans 2.28
2.7.1 Circuit Simulators. . ovveernuseeeeriessatrnrrneneeraaseasanssanasssasstsssnesasansanes 2.28
2.7.2 Timing and Logic Simulators........coiveeiieniiiemrniiiiiiiiiatinneioroenennn. 2.30
2.8 MAGIC a0ais ui s e i ses s eaisi s, s/ s o 50s @ s sese s pes sy s v e e recss 2.32
2.0 COMCIUSIONS + vttt tiessasesas s esssansssesnansasesrssessaissssssssasnsssesesasatosssssosssss 2.33

CHAPTER III

HIGHER LEVEL CAD TOOLS

3.1 Introduction to Symbolic Level Design on a Virtual Grid, VIVIDccoiiiiiiiiiiiiiiinn 3.2
3.1.1 A Better Circuit Description Language (ABCD)coevuiiiiiiiiiiiirianiiiiinaniens 3.4
3.1.2 Higher Level Graphic Circuit Editing (ICE)......ccvviiiuiunumniiiiieiiiiianiiennes 3.8
3.1.3 Circuit Extraction and Simulation......cooviiiiirinnminiiiiiinriniinninennnneaenins 3.12
3.1.4 Compaction to a Standard Mask Description........c.ooiiuiiiiiiiuiinrriicenenee.. 3.14
3.1.5 Mask Level Layout Description cuviumiiiiiuinainiiaiiiiiiaiinsanaieaieciiennes 3.17

i

3.1.6 Master Technology File System......ovvuuerearerisienanaiientsressiaiaaniianniaiens 3.17

3.1.7 VIVID SUIMINATY .« et vveaneantvnnnnnnenssnsessasnsssessssnsssssrestasissansnasassocins 3.18
3.2 Design Levels.....ocviieriiniiuniaierieseresssesasssesisensastasesansssenaasssististtaoconans 3.21
3.3 Programmable Logic Arrays PLA’siiiiiiiiiiiiiii i 3.23
3.4 Display ToOls.....oiasiansinssnsssnssossnsssssrsnsssinstaassssnasnsssssosassssasnesencecsonss 3.29
3.5 A System Level Simulatoriiueruiiiiineeiiiiiiiiia it iittiieaioiirtiiieaan, 3.31

3.6 Conclusions

CHAPTER IV

nMOS DESIGN USING MASK LEVEL CAD TOOLS AND TWO MPC PROCESSES

4.1 TITOAUCEIOTI . v vt v s vese s e anaaean e annssanssssasnsesssesssnnsasasonsssssessssnatasasssennsas 4.1
4.2 The Signature Analyser.........uiiuiiieuenierranrarsaes e itiieieuntnasaisasaasasanmntiatses 4.2
4.2.1 Problem Definition and Floorplanningccouivesaeseareaissesnnrsinsastsesannronss 4.4

4.2.2 Stick Diagrams in Mixed Notationocueiiirimiimnmietiiiiiietiirsrinaneeees 4.6

4.3 Design, Layout and Checkingcoouriiuieiiuniiiiiiiimiiiiraiiiiniiiaicaitatenuanns 4.8
4.3.1 Leaf Cell Layout. ...uuueuruiremearuenenraenasisssassseasuasetenasaesatisastorsaneascess 4.9

4.3.2 Pad Allocation and Positioningcuverierereanreresessinaranirreeranaasiiiinanss 412

4.3.3 Design Rule Checking «..ovvviiurunnninemiaiiiiiiciiinasirrasssamaatanainiian. 4.16

4.3.4 Circuit Extraction .. .ooreresreeenereisreeesssssassnnsrsssssosasssanssrssssansssssssns 4.18

4.3.5 SIMULALION « ot tv e trereereenseaeeeaesassessssssnssssssssnnnsnsasssssssssasnasasannss 4.23

4.4 TC Testing. v e v e vsiaaettsensassnssaesesessnesesssssasssssssesresesasassanesstsssenssotnanes 4.31
4.4.1 Fabrication Process Testing.cuvvviuirrraerireeiiesenrserrosesassnasanarssenses. 4.32

4.4.2 Design Functional Verification Tests.......coiiiiiiiiiiiiiiiiiiniineiiitiranaan 4.36
4.4.2.1 Regular Bit Pattern Testsc.ouiiiimrienriiiiiiiiisiiiaineiraarasiiiane 4.38

4.4.2.2 Pseudo-Random Bit Pattern Tests......coiuriierririniiiaianiiinieneransiasanes 441

4.5 Analysis of CSIRO MPC Effortsovvvurininiianiianieiiirianinenaatiieiiiiisniinniens 4.44
4.6 Control Unit for a Four Bit Microprocessorvuuurrreieriansannreonnrereaaannsanirsnaens 4.46
4.7 Analysis of JMRC MPC Efforts....covuveriienniiiiiisemenrrarieeteiitnirirsnatacaiaaen, 4.47
4.8 COMCIUSIONS 1ttt tsassnsssssasensesasssssnsssansoasarasssessssessssssssstsastressesssasasnsns 4.50

Chapter V
A CMOS ADDER DESIGN USING HIGHER LEVEL TOOLS

LS 61X o s 41 7L W R R 5.1
52 A CMOS Adder Design.....ouvniiiitretinirninmae i eassesresseasareneteneasnaosissenene, 5.4
5.3 Symbolic Layout of the Combinatorial Adderocuivnririmieniriiaiiaaiinaiiniaan, 5.10
5.4 High Level Extraction and Simulation.cuoeieuiiiiiiiiioririrenreriiiiiiiirisinieeeen. 5.20
5.4.1 Simulation of the Carry Generation Stage........coviiuiiimrierirereeeniianiinaenes 5.21

5.4.2 Simulation of the Sum Generation Stage......ccvveenrrieersriiarinrrersasasecaannss 5.26

5.4.3 Simulation of a One Bit Adderccviiiiiiiiiiiiiirinniirisesanaeansssasaesssenes 5.29

5.4.4 Simulation of the Odd and Even Multiplexers........cccviiiiiniinminriieiiiiienin, 5.31

5.4.5 Simulation of the Carry In Generation Circuit cviveuveiriiiriiaiiiiiiiiinns, 5.35

5.4.6 Simulation of a Two Bit Adder.......cocveiiiiiriiiiiiinarietiiiiniranesesianiananes 5.38

5.4.7 Simulation of an Eight Bit Adder.......oovvrvrerenimnerarirriiiiaiaiiiinisaiaaan, 5.45

5.5 Compaction and Mask Level Verification.........ocuiuiuriiiiiiiiiiiiiniiennnacinanenns 5.49
5.6 CMOS MPC Fabrication and Conclusions.c.ccveurireessesussirasnrrsnssscsssssancansanes 5.55

ii

CHAPTER VI

ANALYSING THE PAST AND LOOKING INTO THE FUTURE

6.1 Magk Level Tool8 . e suinviaas o s i s anmmis s es et i Gos v it i b e e e 4575 6.1
8.2 Symbolic Level Toolscuuiiieisiiiianiiiianensnsnsererassssssssmmasaeasasssssaaeeeasaisas 6.3
B.3 OMOS MP OB e treenineennronnnns cilinnssisesaaaiessmisssessssiesvasses s sveviverinime s 6.6
6.4 Higher Level Tools of the Future.iviiiiiiiiiiiinniinianioneenrenasnsareneieianiaiian, 6.7

6.4.1 CADRE.vuueneins vommmneinsemsesnss s eses s smies b bd a8 585080000 (anEaEami s Haismals 6.7

6.4.2 Silicon Compilation......ciuuieieiieiiiuiraromsnrnresseerassseeesessasaosanacrossanss 6.10
REFERENCES :ssia s eiutios: i a0iie-ea/seceis 5555574 §7010367628 « 0 » 4 8 4.0 20 as a0 s ssasasonsassarsionessasnansns R.1
APPENDIX A: Mead and Conway nMOS) Based Design Rules............coiviiiiiiiiiiiiiiin, Al
APPENDIX B: BELLEL Manual.....coiiiiniitiiiiinnneninatinnanrnsssrnssnrssasssnssasianasins B.1
APPENDIX C: ROWAN Technology File ...ooiiniiiiiiiiinnrninrrnrenrnnsararesirisanasiaines C.1
APPENDIX D: BELLE and CIF for the Signature Analyser........ocovuireemrenmenrennniinnnnn.. D.1
APPENDIX E: Weste and Eshraghian CMOS Design Rules........ccoiiiiiiiiiiiiiiiiiiiiiiinn E.1
APPENDIX F: CIF, LLAMA and ABCD Descriptions of a CMOS Circuit..........cooiiiiiiin, F.1

i

Synopsls

This thesis analyses a range of Computer Aided VLSI design tools that have been developed at the
University of Adelaide. The work reviews different IC technologies and summarises some of the overall
philosophies behind the development of VLSI CAD tools. In addition, Multi Project Chip processes and
their relationship to various CAD tools is examined and thoughts offered on the merits of full custom IC
design as opposed to semi-custom design techniques. The work for this thesis has been completed over a
four and a half year period beginning in early 1982, when MPC processes were first introduced to Australia.
As a result, the comments made on VLSI design software and MPC processes are strongly associated with
the problems experienced with these topics in the Australian environment.

An investigation of a mask level CAD tool set is made and a summary of the tools comprising the
complete set, by comparison with some early generation tools that originated from other universities such
as USC Berkeley and MIT, is then offered. The work also investigates a symbolic level CAD tool set, the
VIVID system, which originated from the Microelectronics Center of North Carolina to run under the UNIX
operating system. VIVID was developed for the VMS operating system by ongoing research at the University
of Adelaide. In addition, other tools that are generally classified as higher level tools than either mask or
symbolic level tools are also discussed for the purposes of comparing the directions of tool development.

The thesis presents a detailed analysis of the tools discussed by presenting one complete nMOS MPC
design experience in detail {including testing of the fabricated product), and providing information on a
second design experience for the purposes of comparison of the layout tools discussed. The results of this
work also allow comparison of two different Australian MPC processes using the nMOS technology as both
designs discussed were fabricated using different MPC processes.

A similar account of a detailed design experience using the CMOS technology in conjunction with the
symbolic level tools is presented and new Australian CMOS MPC process foreshadowed. This experience,
considered with the earlier mask level design experiences, provides the basis for some final comparitive results
to be made between the relative efficiency of designing IC's with low level and high level tools. As a result,
the work finally presents conclusions regarding the future development of VLSI CAD tool sets with particular
reference being made to Silicon Compilation.

The thesis tries to draw an analogy between levels of VLSI CAD tool sets and levels of languages used
to program computers in an effort to indicate possible future directions for development of these tools. In
particular, the thesis examines reasons why the symbolic level tools may prove to be the first step on the
way towards making true Silicon Compilation a reality.

Two different IC technologies, nMOS and CMOS, are used to allow the close analysis and investigation
of these tool sets. A number of circuits have been fabricated using the tools and Australian MPC processes
and the simulated and tested results of the designs are used to verify the conclusions regarding the tools.

Declaration

This thesis contains no material which has been accepted for the award of any other degree or diploma
in any university, and to the best of my knowledge and belief, contains no material previously published or
written by any other person, except where due reference is made in the text.

J. A. Noonan

Acknowledgements

In the production of this thesis I must thank my supervisor, Dr. Kamran Eshraghian, for providing the
boundless enthusiasm he constantly brims with. This enthusiasm has served as a source of encouagement
to continue on with a very complex task. I also owe a great debt of thanks to Mr. Michael Liebelt who
provided the highest quality technical assistance and at times helped me to solve seemingly insurmountable
problems, not the least of which was the proof reading of this thesis. Thanks also must be offered to Theo
Kermanidis for assisting with the proof reading. I would also like to say what a pleasure it has been working
with the Electrical and Electronic Engineering Department staff and researchers at Adelaide University.

Finally, I would like to thank Andrew Trevorrow for his patience and assistance in helping me create

this thesis using Donald Knuth’s TEX typesetting system. I will find it hard ever to use pencil and paper
again.

J. A. Noonan.

vi

CHAPTER 1

IC TECHNOLOGIES AND DESIGN i

1.1 Introduction to IC’s and a VLSI Technology Choice

Since the invention of the first transistor by Bardeen, Brattain and Shockley in
December 1947 at Bell Telephone Laboratories, Murray Hill, N.J 18], Microelectronics
has progressed rapidly. Perhaps the best example of this progress is indicated by the

attempts to classify the progress in computer technology.

Computers have so far been classified into four distinct generations, with the
beginnings of a fifth currently being researched!?. The first four generations are all
characterised by their basic building blocks, (1) the vacuum tube, (2) the transistor,
(3) the Integrated Circuit (IC) and (4) the Large Scale Integrated (LSI) or Very Large
Scale Integrated (VLSI) Circuit. The fifth generation on the other hand is characterised

rather by advances in software, in particular advances in Artificial Intelligence (AI)[2].

Integrated Circuits are combinations of basic circuit elements , such as diodes,
transistors, capacitors and resistors interconnected on a common substrate or base mate-
rial. They are fabricated by various processing techniques allowing simultaneous forma-
tion of large numbers of these devices. Development of the planar process techniques and
IC’s did not begin until 1958, 10 years after the invention of the transistorl3l. With these
first IC’s came the realisation of their potential and rapid development followed®1l. G.
E. Moore, President of INTEL Corp., produces excellent plots of statistics which indi-
cate accurately the precise extent of these developments. Fig 1.1 relates the number of
components per chip to time since the beginning of the semiconductor industry, which

is one simple measure of IC development.

The varying scales of integration are themselves classified into four categories.
The invention of the IC in 1958 heralded Small Scale Integration (SSI- fewer than 100

1-1

Section 1.1 Introduction

transistors per chip) and the first commercial IC’s entered the market in 1960 with a
Minimum Feature Size of 25pm["]. Minimum Feature Size has progressively shrunk to
the Medium Scale Integrated (MSI- less than 1000 transistors per chip) 10gm, the
early Large Scale Integrated (LSI- less than 10,000 transistors per chip) 5pm, and now
onto the Very Large Scale Integrated (VLSI- greater than 10,000 transistors per chip)

1um and expected sub micrometer levelsl3],

16M |
@ Bipolar logic
- B MOS logic
A MOS memory £
O Bubble memory A
Q
= 64
£ 64k Y =
E_ A I
2 4k +/ m
é A /l
]
Q
£ /
S 256
16 /
1/
1960 1965 1970 1975 1980 1985

Figure 1.1: Gordon Moore, President of INTEL Corp., has produced much graphical
evidence to support his predictions. Here is a plot he produced of Number of Compo-

nents per Chip vs Time Since the Beginning of the Semiconductor Industry, produced
in 1979.

Minimum Feature Size is commonly quoted as it is an indication of the sophis-
tication of a particular technology. This measure describes the minimum width of any
of the mask level geometries for a particular technology, see Appendix A. It is expected
that the maximum scale of integration will be reached when Minimum Feature Size
reduces to approximately the 0.1 pm level using currently favoured IC technologies[”l.

1-2

Section 1.1 Introduction

A number of different types of IC structure exist. These include Thin-Film and
Thick-Film IC’s, Monolithic IC’s, and Hybrid 1C’s. The advances in integration to the

VLSI level have all been made using monolithic IC’s.

Monolithic IC’s begin with an extremely pure monolithic (single crystal) semicon-
ductor base , which could be Germanium, Silicon, or Gallium-Arsenide, but is usually
Silicon. This base is exposed to a number of chemical deposition, etching, and diffusion
phases, patterned by photolithographic masking techniques. The result of this complex
sequence of materials-processing steps is a layered, three dimensional circuit atop and
within the monolithic base. The specific structural features required for IC’s include the
basic circuit elements, transistors, diodes, capacitors, resistors as well as isolation and
interconnection. The PN junction is the basis of operation of all semiconductor devices
with the two most important active devices being, (1) the Metal-Oxide Semiconductor
(MOS) or Insulated Gate Field Effect Transistor (FET) and (2) the Bipolar Junction
Transistor (BJT).

The mask patterns, see Fig. 1.2, forming IC layouts are prepared in arrays of
squares with dimensions typically in the order of 5mm by 5mm. This array of mask
patterns is designed to cover the whole area of a semiconductor wafer with a diameter in
the order of 3 to 4 inches. The individual squares are referred to as dice (chips). Each
die (chip) carries the designed circuit and can be separated and packaged individually

to perform its required function, see Fig. 1.3.

There are many different technologies available for use in fabricating monolithic
IC’s. Bipolar or MOS technologies, Transistor Transistor Logic (TTL), Integrated Injec-
tion Logic (I2L), Emitter-Coupled Logic (ECL), n-channel or p-channel MOS (aMOS,
PMOS), Complementary MOS (CMOS), or Silicon On Insulator (SOI) MOS IC’s to
name some of the more common technologies. The circuits that can be designed us-
ing these technologies are advantageous because of their low power consumption, small
physical size and resultant low weight and cost!®l. Not all of these are suitable for VLSI

design. Factors that must be considered in choosing a particular

1-3

Section 1.1 Introduction

=0 -HE

=00

U OF BEELRISE

Figure 1.2 (a): A computer generated plot of the mask level layout of project C4, an
nMOS MPC design fabricated on AUSMPC May 1982. C4 implies project number 4 on
die C. Included is a photomicrograph of project C4 on die C.

Section 1.1

i

& “M“;; 'h "

-
2
=
2
o
]
B
-
4
-
-
-
]
a
-
2
g

-~ s

o

-)

xﬂ

Y

s

[-]

g

LA

o

pgUooUuooooooooooouddd
ooo nooooo0gooooogoogooan

C1

c2

c4

c3

Introduction

Figure 1.2 (b): A photomicrograph of the entire die C, and 2 map of die C indicating
the position of each of the projects on die C.

o

Section 1.1 Introduction

Figure 1.3 (a): A photograph of the 4 inch AUSMPC May 1982 Multi Project Wafer
and a 40 pin package with the lid off, exposing the bonded die. The bonded die can
actually be recognised as die H on the wafer, using the map in Fig. 1.3 (b) and the

photograph of the wafer above.

1-6

Introduction

Section 1.1

E

E

B|B

E

E

E|E|X]|E

cljcjc|cjcjcjc

E|E|E |E|E

A[AJA|A|A[A|A

H|{H|H |[H|H|H|H

B|(s|B|B|B|C|C|C|C

G|[G|G|G|G|F|F|F]|F

AlA|A|A|A|A|A|A|A|A]A

H{H|[H|H[H |H[H|H|H]|HIH

B(s|B|B|B|B|B|B|B|B|B

c|ci|cjciyc |c

pjp|p|DfD |D|D|D|D|DfD|D|D

D(D|D (X |D (D

E|E|E|E |E [E

FlF|F|F[F |F|F|F|F|F|F{F]|F

G{c|c|G|G |G |G|G|G|G|G|G|G

Figure 1.3 (b): A map of the 4 inch AUSMPC May 1982 wafer and a close up of an

unbonded version of project C4.

1-7

Section 1.2 The VLSI Design Philosophy

technology for design are circuit density, circuit functionality, power consumption
and performance, topological properties of the circuit for interconnection, suitability for

total system implementation, and availability of processing facilitiesl®.

These points considered, the MOS technologies, in particular nMOS and CMOS
are attractive. MOS devices are particularly well documented and easy to design, as long
as the designer uses a set of design rules and stays away from the smallest geometries
feasiblel”). With a relaxed set of design rules, the performance of standard MOS circuit
blocks are as predictable as TTL circuits!7ll8l, Finally, both nMOS and CMOS circuits
can be fabricated in Australia. As a result, the two monolithic IC technologies used
to illustrate the Computer Aided Design (CAD) systems discussed in this' text will be
nMOS and CMOS. It should be understood at this point however that while these CAD
systems are discussed in relation to these two technologies, most of the CAD tools are

easily modified to handle new technologies as they become available.
1.2 The VLSI Design Philosophy

Just as programming was done throughout the 1950’s by small groups of highly
qualified people solving problems in their own style, IC design in. the 1970’s was still
done by small groups of “layout wizards"7ll12]. The advances in computer technology
have however introduced powerful aids for design, and with the passage of time IC
processing techniques are beginning to become reasonably standardised. As a result,
IC design is very quickly becoming a routine engineering step in the development of a

special purpose system[7].

As IC process technology has moved from the LSI to the VLSI generation, new
problems for the circuit designer have rapidly emerged. These problems can perhaps be
most conveniently grouped under the one heading, Complexity Ma.nagement[5][11][121.
An excellent understanding of these problems can be gained by considering a layman’s
analogy as presented by Moraleel®] relating geographical feature sizes to circuit feature

sizes.

1-8

Section 1.2 The VLSI Design Philosophy

This analogy relates a 1km square street map of London to the complexity in-
volved in a 1mm square die size, 25um feature size SSI chip. Moralee then indicates
that a typical LSI 5mm square die with a 5um feature size, is of similar complexity to
a 25km squé.re street map of London, or almost the whole of the Greater London area
covered by the A-Z book of maps. While it is possible for anyone to hold in their minds
the details of a 1km square street map of London, only a London taxi driver could ever

be expected to keep mental track of a street network 625 times the size.

The LSI designer is faced with a similar daunting task if he is to know his circuit
layout. The VLSI designer however is confronted by die sizes of around 1em square with
feature sizes of around 1um which translates to a map covering a 250km square, or a map
which would fill 100 volumes of the A-Z book of maps and cover most of the southern
half of England. Even this scale of complexity is dwarfed by the expected mature VLSI
devices of the late 1980’s with die sizes of 2em square and feature sizes of 0.25um, or a
map of a street network which would be 2000km square, covering practically the whole
of central and western Europe. Obviously, a “layout wizard” becomes lost at the LSI
stage of design and only new design philosophies developed specifically to handle such

corfiplexity will provide solutions to the problems presented by LSI and VLSI design.

Mudge[u] indicates clearly some paths towards the solution of this complexity
problem by the implementation of a structured design methodology, using a coordi-
nated design team aided by sophisticated (CAD) tools. Sequinl*® provides a much
more detailed scientific analogy to the VLSI design complexity problem. This analogy
was touched on by Mudge[”] also. Sequin relates in detail the VLSI design complex-
ity problem to the complexity problem faced by software engineers when unstructured
programs started to grow to lengths in excess of 10,000 lines of code. The software
complexity problem was alleviated by developing and adopting suitable design method-
ologies, structuring techniques and documentation styles. Many of the lessons learned
from this work are also applicable in the VLSI system design domain, although the VLSI
designer faces even more problems than encountered in the software design domain.

1-9

Section 1.2 The VLSI Design Philosophy

Sequin[lz] concisely sums up the VLSI design process with his three conceptual

concerns:-
1 Functional design: guaranteeing proper behaviour.
2 Implementation: finding a suitable structure.
3 Optimization: fine tuning the physical arrangement.

It is important to note that these three steps in the design process may need to
be iterated through a number of times to guarantee that the high level design decisions

made in step 1 can be implemented with the available medium in 2.

Design methodologies are continually being developed to fit these steps in the
design process. Sequin proposes that the more innovative methodologies so far developed
result in design systems primarily produced by people with a strong background in
Computer Sciencel!?l. 1t is important to note that these innovative design systems
in some cases also owe their origins to people with backgrounds at least as strong in
Electrical Engineering[w], as in the case for Weste and Ackland’s MULGA system and

subsequently developed symbolic layout[13'1”14] systems.

The trend in the development of these methodologies centres around a desire
to design fully custom developed IC’s as opposed to semi-custom devices. However,
because of the restrictions on the sets of design rules that can be used with such design
systems, it is found that the standard processes commonly used for fabricating custom
chips for remote designers can involve as much as a two-generation {factor of four)
deficiency in performance (11} ag compared to the leading edge processes used by “in
house” designers. Subsequently, as Sequin[m] indicates, when rising development costs
for VLSI systems become comparable to the fabrication costs of tens of thousands of
devices, a faster development cycle at the expense of a less efficient implementation
becomes an attractive alternative for many systems. Hence the increasing popularity of
gate arrays and other semi-custom alternatives to LSI and VLSI design such as Standard

Cell systems.

1-10

Section 1.2 The VLSI Design Philosophy

Semi-custom as opposed to Full Custom design offers a “T'TL Databook” type
approach to system design using gates and library cells. Generally semi-custom IC
design limits the number of layers processed by the designer in order to reduce the
complexity faced by the designer. In the case of gate arrays, a pre-processed wafer is
reconfigured using only a few mask levels. In the case of Standard Cell systems, apart
from the reduced number of layers being processed, pre-defined and pre-laid out func-
tion blocks are used, further decreasing the design complexity faced by the designer.
These pre-defined blocks are connected using routing and placement routines. Both of
these approaches to VLSI design allow the designer to customize an underlying matrix
of cells. In the case of gate arrays, these cells are basic, while more complex cells up
to the MSI scale, are used in the case of Standard, or Library cell systems[14'1”14'2]. In
both the Standard Cell and Full Custom VLSI design methodologies, an entirely new,
full set of masks are produced to process an uncommitted wafer, however, Standard
Cell design remains less efficient than full custom design in terms of circuit density and
performance[13'1“14'2]. The ultimate VLSI design methodology will revolve around a
single tool which will comprise many other tools. That tool will be a Silicon Com-
piler. A Silicon Compiler will take a high level system description and automatically
translate it into correct circuit implementations in a particular technology. According
to Sequinllz], such tools are still in their infancy and it should not be expected that
correct, economically viable solutions for arbitrary systems for all combinations of input
parameters will be found before the end of this century. However, early Silicon Com-
pilation tools based on the full custom approach to VLSI design as applied to highly

[14.3], Fig 1.4 gives a

constrained architectures are showing promise, notably Macpitts
Macpitts example and is inserted at this point to briefly introduce the characteristics
of such tools to the reader. Westel43! explains that most current Silicon Compilers are
still characterised by a fixed floor plan. This leaves such tools with no ability to deal
with the complexity involved in contemporary full custom IC’s. It is expected that, in

the future, silicon compilers will synthesise floor plans and circuits in the same manner

as a human designer[48].

1-11

Section 1.2 The VLSI Design Philosophy

Figure 1.4: A circuit generated by the Macpitts Silicon Compiler. The circuits gener-

ated by current Silicon Compilers are still quite restricted and these tools cannot yet
be considered completely versatile as far as Custom IC Design is considered. The code
used to describe the circuit above is given in the following three pages.

1-12

Section [.2

(program frisc 16
(def * power)

{def * ground)
(def * phia)
(def * phib)
(def * phic)

(def reset signal input *)
(def read signal output *)
(def write signal output *)
(def interrupt-request signal input *)

(def interrupt-acknowledge signal output *)
(def address port tri-state *)
(def data port i/o *)

(def p register)
(def s register)
(def m register)
(def a register)
(def b register)
(def i register)

(process cpu 2
reset-cpu

(setq address 0)
{par (setg address
(par (setq address
{setq address 1)
(par (setq address
(par (setq address

instruction-fetch

0) (signal
0) (signal

1) (signal
1) (signal

read))
read) (setq p data))

read))
read) (setq s data))

(cond ((not (eq? i 1 (3 2 1 0)))
(setqg i (> > 1 4))

(cond ((=01

((eq?
((eq?
((eq?
(Ceq?
((eq?
((eq?
((eq?
((eq?
((eq?
((eq?
((eq?
((eq?
((eq?
((eq?

(&)
(]
@3
]
3
3
3
(3
0 (32
11 (3 2
12 (3 2
2
2
2

O 00~ e W
NN NDNNNDDN

13 (3
14 (3
15 (3

P R Y o N S O L

(t (setg i (> > i 8))
(Ceq? i 0 (7 6 5 4)) (call nand))
(Ceq? i 1 (7 6 5 4)) (call subtract))
(Ceq? i 2 (7 6 5 4)) (call shift)))))
(go instruction-decode)

) (go instruction-fetch))

0)) (call constant))
0)) (call get-s))
0)) (call set-s))
0)) (call get-m))
0)) (call load))

0)) (call store))
0)) (call goto))

0)) (call if))

1 0)) (call end))

1 0)) (call mark))

1 0)) (call call))

1 0)) (call return))
1 0)) (call add))

1 0)) (call increment))

The VLSI Design Philosophy

Section 1.2

interrupt
(call push)
(call push)

The VLSI Design Philosophy

(par (setq b m) (setq a p) (setq m (+ s 1)) (setq address 2))

(par (setq address
(par (setq address

2) (signal interrupt-acknowledge))
2)

(signal interrupt-acknowledge)

(setq p data)

(go instruction-fetch))

constant
(call push)
(setq address p)
(par (setq address
(par (setq address

get-s
(call push)

p) (signal read))
p) (signal read) (setq a data) (setq p (+ p 1)) (return))

(par (setq a s) (return))

set-s

(par (setq s a) (call pop))

(go pop)

get-m
(call push)

(par (setq a m) (return))

load
(setq address a)
(par (setq address
(par (setq address

store
(par (setq address
(par (setq address
(par (setq address

goto

a) (signal read))
a)(signal read) (setq a data) (return))

b) (setq data a))
b) (setq data a) (signal write))
b) (setq data a) (go pop))

(par (setq p a) (go pop))

if
(par (cond ((<O0 b)
(go pop)

end
(go pop)

mark
(call push)

(setq p a))) (call pop))

(par (setq m (+ s 2)) (setq a m) (return))

call

Section 1.2 The VLSI Design Philosophy

(par (setq p a) (setq a p) (return))

return
(par (setq p b) (setq b a) (setq s m) (call pop))
(par (setq m b) (setg b a) (go pop))

add
(par (setq b (+ b a)) (go pop))

increment
(par (setq a (+ a 1)) (return))

nand
(par (setq b (word-nand b a)) (go pop))

subtract
(par (setq b (- b a)) (go pop))

shift
(par (setq a (> > a)) (return))

push
(par (setq address (setq s (+ s 1))) (setq data b))
(par (setq address s) (setq data b) (signal write))
(par (setq address s) (setq data b) (setq b a) (return))

pop
(par (setq address s) (setq a b))
(par (setq address s) (signal read))
(par
(setq address s) (signal read) (setq s (- s 1)) (setq b data) (retirn))))

1-15

Section 1.8 Australian MPC'’s

In conclusion, the VLSI design philosophy should take into account all the prob-
lems faced by the large software system designer, and many more. Additional problems
faced by the VLSI designer are mainly based on the two-dimensional nature of IC’s
and the need for physical interconnections between modules. The design methodologies
introduced in this thesis will be based on two different levels of the design philosophy.
The first will be the lowest level, mask level layout description, analogous to machine
code in the software domain. The second methodology introduced will be a higher level,

symbolic level description, analogous to assembler code in the software domain.
1.3 Australian MPC’s

A Multi-Project Chip (MPC) is a chip containing more than one independent
circuit design, with each design being considered an independent project. Usually there
will be a number of independent MPC’s all on the one wafer resulting in the term

Multi-Project Wafer (MP W), see Fig’s 1.2 (a) and (b) and Fig’s 1.3 (a) and (b).

According to Belll28] , the structured design methodology introduced by Mead and
Conway[s] specifically to handle the design of VLSI systems, required as an integral part
of its plan a new implementation methodology for fabrication of IC’s. The previously
existing method of fabrication of one design per fabrication run could not economically
handle the large number of designers trained by the Mead and Conway method. This
new methodology still had to rely on existing Foundry services that had the equipment
and knowledge to build wafers, but not to handle all the designs. The designer needs
only to know that the implementation process is something to which designs must
be sent and from which implemented and packaged chips will be received. This idea
is consistent with the intention that the complex design problem be partitioned into

manageable blocks.

The work done by Mead and Conway detailing the structured design methodol-
ogy used in the generation of MPC’s based on mask level layouts of nMOS designs, in
conjunction with the book produced by Hon and Sequinm, presented the excellent doc-

1-16

Section 1.8 Australiean MPC's

umentation required as an integral part of the methodology. By actually documenting
the techniques involved in approaching a complex task such as VLSI design as well as
documenting a set of tools based on this methodology, these researchers have now made
it feasible for research organisations such as universities to palrticipate in the design and
construction of computing systems totally in silicon. According to Mudge[ll], the last
time universities could economically compete with systems designers was in the second

(transistor) generation.

Simply put, the Mead and Conway methodology for design of VLSI systems
requires a structured approach to the mask level design of nMOS circuits using a relaxed
set of design rules where mask generation, fabrication and packaging are handled by
a Silicon Broker or Foundryllg] which will ultimately return fabricated designs to
the designer with a fast turnaround time, at a relatively low cost. The methodology
has been used in the US and in Australia for separate MPC fabrication runs and has
been shown to work successfully[w]’[w]. Most significantly, the designers creating such
systems come from diverse scientific disciplines and have already produced significant
designs. A good example of some useful designs proven on MPC runs are Richard Lyon’s
Optical Mouse ChiplQO] (US MPC run), and a High Speed Digital Correlator designed
by J. G. Ables and A. J. Huntl?!l (CSIRO Aust. MPC run).

The first Australian MPC effort was initiated by the Commonwealth Scientific
and Industrial Research Organisation (CSIRO) VLSI group, an organisation funded
federally by the Australian Government, and commenced in earnest with a course given
by Dr. K. Eshraghian and Dr. D. Pucknell of Adelaide Universityl?2l[17] in Adelaide in
February 1982. The results of the first and some subsequent MPC efforts can be seen
in Mudge and Clarke’s reports[””lgl. Over the period of the existance of the CSIRO’s
VLSI Group, mid 1981 to late 1984, 8 successful MPC runs, using both 5um and 4pm
minimum feature size, were completed. Fig. 1.5 (a) shows a flowchart of the implemen-
tation system used by the CSIRO for their MPC effort. Prompted by CSIRO’s efforts,
the Joint Microelectronics Research Center (JMRC) and Amalgamated Wireless

1-17

Section 1.3 Australian MPC’3

DESIGN

Design Community:
Designers at
.Universities & Other Educational Institutions
.CSIRO Divisions
.Industry
.Government Labs

Project coordinators:
Project coordinators (one per State) act as an

interface from a State's MPC Community to the
VLSI Program.

COMMUNICATION @ G

CSIRONET

- IMPLEMENTATION SYSTEM]:j]: ' :I::[

CSIRO VLSI Program, Adelalde
Meeting of constraints, Coordinationm, Logistics.
Checking, Merging of designs, interface with
various vendors in Australia and U.S.

CIF to MEBES: format conversion for electron beam mask

making : SynMos, Mountain View
Mask Making: Micromask, Santa Clara
Wafer Fabrication: AMI, Idaho & Comdial, Sunnyvale
Packaging: Philips, Adelaide & Promex, Palo Alto

iy

Packaged Chips Returned to Designers

Figure 1.5 : The Flowchart of the CSIRO AUSMPC prototyping process. This process
was successfully completed 8 times before finishing in 1984. The above flowchart is
copied from the CSIRO AUSMPC 5/82 Designer’s Manual.

1-18

Section 1.4 Summary

Australasia (AWA) in Sydney set up their own MPC facility and have also been
successful in multiple MPC runs. Fig. 1.5 is very similar to the flowchart for the im-
plementation system used by JMRC. The main differences arise in the Communication
block where ACSNETI™! is used in preference to CSIRONET, and in the Implementa-
tion System block where AWA was responsible for Mask Making, Wafer Fabrication and
Packaging. Between 1982 and mid 1985, JMRC had successfully completed 10 MPC
runs using an nMOS 5um minimum feature size process and in mid 1985 commenced
efforts towards running a CMOS MPC. The University of Adelaide Dept. of Electrical
and Electronic Engineering is also in the process of commencing CMOS MPC efforts.
Both JMRC and Adelaide University CMOS MPC efforts would use AWA fabrication

facilities initially.

Since February 1982 when the Mead and Conway VLSI design methodology was
first introduced to Australian circuit designers, there have been numerous nMOS MPC
efforis using 5um and 4um processes and the beginnings of CMOS MPC efforts resulting
in hundreds of circuits being prototyped in silicon by remote designers with little or no
experience in IC design, but with some experience in Computer Science or Electrical
Engineering or preferably both. The number of organisations offering MPC runs is
beginning to grow as is the number of organisations offering CAD tools for the design of
these circuits. IC prototyping of circuits in Australia using MPC fabrication techniques

is now a proven reality.
1.4 Summary

The intent of this thesis is to illustrate in detail that Australian Industry, Re-
search and Design Centers and University Departments have the capability to allow
designers to prototype their systems in silicon at an affordable price with a fast turn
around as long as they have the appropriate Computer Aided Design facilities, both soft-
ware and hardware. This aim will be realised by analysing the effectiveness of a range
of different CAD tools as applied to the fabrication of IC’s using the MPC process. This
thesis provides examples of the MPC process as applied to the nMOS technology, and

1-19

Section 1.4 Summary

applies the same techniques to indicate the viability of the MPC process as applied to
the CMOS technology.

It will be shown that as new technologies become available, using well designed
tools, minor modification only is necessary to prepare VLSI CAD tools for use. The
protoypes detailed in this thesis have been fabricated by different facilities both in
Australia and the US, indicating the versatility of this method of prototyping electronic

circuits.

Different design methodologies will be used to show different approaches to the
complex VLSI design problem, and a comparison of their performances will be made.
Chapter 11 details the variety of tools used in mask level IC design and compares the
operation of many currently used tools. Chapter III introduces higher level tools, based
on a symbo.ic design methodology and compares them to the mask level tools. Chapter
IV will provide a detailed account of two nMOS design experiences as a verification of
the mask level tools and existing MPC implementation systems, while Chapter V will
provide a similar account of a CMOS design experience with the higher level tools, and

draw comparisons between the High Level and Low Level Tools.

Full custom as opposed to semi-custom tools will be considered. Semi-custom
design methodologies, while prompting research into many useful CAD tools (eg. for
automatic placement and routing), and providing economical solutions to certain design
problems not yet handled by reasearch CAD tools and design methodologies, will even-
tually lose favour due to their inherent disadvantages with regard to functional device
density and performance which has been shown to be an order of magnitude worse than

full custom designsl“'l].

As full custom CAD tools become more refined, as CAD software and hardware
becomes less expensive, as standard IC fabrication processes become more commonly
available in the US and Australia, and as communication networks become more com-
mon and accessible, CAD tools for VLSI circuit design similar to those described in this

1-20

Section 1.4 Summary

thesis will be used by circuit designers as common practice in prototyping their designs.
The methods of prototyping circuits as detailed in this thesis are not new but need to
be described as an essential part of the design methodologies. Documentation is also
provided on the various Australian MPC facilities and some design experiences. Most
of the tools that are examined have been used by many designers for many MPC runs.
Some tools are totally new and will soon be tested by fabricating and testing designs
on more MPC runs. The tools in particular provide an insight to component parts of

the ultimate tool of the future, the Silicon Compiler.

1-21

CHAPTER 11

LOW LEVEL CAD TOOLS
FOR VLSI CIRCUIT DESIGN AND ANALYSIS

Because VLSI design is complex, designers think of their designs not in their full
complexity, but rather as collections of parts which may be further decomposed into
other parts. This hierarchical viewpoint both expresses the designer’s understanding
of his design and economises his thinking about it. All unnecessary information is
suppressed, enabling the gate, module, subsystem or system of interest to be dealt

with.

It is common to talk of these hierarchical divisions by discussing Leaf Cells as
opposed to Composition Cells. A leaf cell contains mask level geometry and usually
describes a fundamental block in a large system which may need significant replication
or which may be placed in a cell library for use in several designs. Composition cells
are groups of leaf cells or other composition cells, or both, which are combined to form
larger system blocks. The information available within the composition cells commonly
provides cell I/O connection positions and the layer on which the connection should be
made, possibly some electrical characteristics of the cell and in some cases, peripheral

mask level informationlzs].

The Broker/Foundry accepts the intermediate form description of the design
layout, merges the design with others on an MPC, and then converts the intermediate
form of the merged MPC into a form that will drive the chosen patterning mecha-
nism. Currently, design files are converted to Pattern Generator (PG) files for use by
a maskmaking firm for driving an optical or Electron Beam pattern generator, which is
the first step in maskmaking. By a series of photolithographic steps, a mask house will
produce a set of masks which a commercial fabrication house will then use to pattern

2-1

Section 2.1 Mask Level Design of IC’s using MPC’s

silicon wafers. The remaining function of the Broker /Foundry is to have the wafers

diced and packaged and yield tested before returning the chips to the designer.

A set of CAD tools should be able to represent the design in much the same
way as does the designer. Thus the basis of a set of design tools should be a data-
base representation of designs that is flexible, extensible and hierarchical. This chapter
examines some tools and their different approaches to these design principles. For
complete analysis of the tools, the ability to handle non-manhattan geometry will be

used as one of the criteria for measuring each tool’s versatility.
2.1 Mask level Design of IC’s using MPC’s

At the lowest level of programming, machine code, or bit information is loaded
into a machine. At the lowest level of IC design, mask layouts are described by the
designer. The mask level layout description of an IC design will conform to a set
of relaxed design rules as described by Mead and Conwaylg] (see Appendix A). To
adequately describe mask level layouts of IC designs in such a way as to interface
effectively with an MPC run, a number of stages must be methodically passed through

(see Fig. 1.5).

At the mask level of IC design, the designer must first transform the circuit
and topological level designs into a geometrical layout of the system. The design must
be verified, so design checks discovering layout errors will be required, these checks
will usually be carried out in an iterative manner until the layout is design rule error
free. The result will be a design file that accurately describes the layout in a particular
representative intermediate form which can be read by a Silicon Broker/Foundry. The
intermediate form used by tools discussed in this thesis is the Caltech Intermediate
Form (CIF[7]). Another intermediate form at a different design level will be introduced
in Chapter III, however, the basic format that is able to be read by existing foundries

is at the lowest design level, that of mask layout.

It is important to note that the design rules used with CIF are based on a length

2-2

Section 2.2 Embedded Layout Languages

unit, A. This unit can be scaled up or down as required to match the minimum value of a
fabrication facility’s process. That is, the A concept should produce process independent
designs. The transit time for transistors, resistance per square and capacitance per unit
area will all vary from one fabrication line to another, yet the) based designs should
function correctly if the designs are logically and electrically correct. The following work
describes and makes some comparisons of a complete set of CAD tools that have been
successfully and extensively used for the design and verification of IC’s, at University

of Adelaide.
2.2 Embedded Layout Languages

Mask level layout tools use high level languages run on general purpose com-
puting systems to provide Mask Layout languages. These Layout Languages generally
exploit the features of languages such as PASCAL or LISP to enable faster more efficient
digitization of designs into machine readable form (CIF). Mead and Conwayls] provide
an example of such a language. Other examples are DPL[23], a LISP based Layout
Language, BELLE(?4 and CELLE[25], PASCAL Embedded Layout Languages (see
Appendix B). Fig. 2.1 shows an example of a Layout Language and its resultant layout.
Such Layout Languages inherit the power of the full programming language in which
they are embedded. High level programs can be written that call Layout Language
functions and vice-versa. These languages take a symbolic description of mask level
layout elements such as boxes, or wires at different mask levels, and process these low
level descriptions to produce an intermediate form (in this case CIF) description of the

mask layout.

The only CAD peripheral hardware requirements absolutely necessary for design
using such languages are a text editing terminal, a plotter, and some means of trans-
porting information from the computing system running the tools to the broker/foundry
organising fabrication of the design. This could be done using for example, an electronic

mail network, (eg. Australian networks, ACSNET'I'[73], or CSIRONET[72]), magnetic

+ ACSNET is a trademark of Sydney University

2-3

Section 2.8 Interactive Mask Level Geometry Editors

tape, or even removable disks. The software requirements are a compiler for the high
level language used to embed the Layout Language, a text editor (the more versatile the
better), and a plotting routine that can take the CIF output from the Layout Language

and reproduce a hard copy for investigation.

Mask Layout Languages are programs used to digitize mask level descriptions of
IC designs and therein lies a problem. A circuit designer normally considers systems
in terms of, at worst, the fundamental electronic circuit components, transistors, ca-
pacitors, resistors and wires. The IC designer using a Layout Language however must
manage the complexity of his circuit design as well as the non-trivial task of converting
that circuit design to a detailed mask layout on paper, prior to digitization. This must
necessarily be done on an absolute grid, preferably A = 1 grid spacing. Such digitiza-
tion techniques are quite tedious and slow relative to higher level tools for IC design,
although Mask level Layout Languages provide a more efficient digitization medium

than digitizing using CIF, which is possible but not advisable.

The advantages of Mask Layout Languages derive from the power of the parent
languages in which they are embedded. Once a significant number of designs have been
digitized and verified, a database consisting of a library of these cells can be used in

conjuction with the Layout Language for composition of systems.

It is important at this stage to indicate that most of the tools discussed in this
thesis create or accept only Manhattan geometry at the mask level. This means that all
mask geometry created or processed is parallel to the x or y axis, there are no diagonal
lines used. This design restriction significantly reduces the complexity of the IC designs

as well as the design of the tools used for their creation and analysis.
2.3 Interactive Mask Level Geometry Editors

Geometry editors provide the ability to interactively manipulate pictorial repre-
sentations of objects on a monochrome or colour video terminal. Sections of pictures

can be inserted, deleted, moved, replaced, or operated on in much the same way as text

2-4

Section 2.8 Interactive Mask Level Geomelry Edilors

PROCEDURE dynshift;

CONST

Diff_width 2;

Diff_spacing = 3;

Poly_width = 2;

Metal_width = 3 Layer(poly);

Pol_Dif_spacing = 1; box(22,4,28,11);

Poi_Dif_overlap = 2; box(17,9,20,13);

Impl_over_channel= 2; box(19,9,23,11);

Impl_to_channel = 2; box(17,35,20,39);

Cut_size = 2; box(22,37,28,44);

Cut_spacing 2; box(19,37,23,39);

Cut_to_edge = 1, wire(2,13,17); x(26); y(37);

Pwr_width 4; wire(2,12,12); y(-11);

wire(2,3,33); y(59);
VAR wire(2,11,31); x(21):
cell_start: coordtype;
~ cell_width,cell_length: integer; Layer (Implant) ;
begin box(20,4,30,10);
setsymno(9040); box(20,38,30,44) ;
define(’dyn_shift’);
cell_width:=33; md(-1,34);
cell_length:=48; mp(28,34);

Layer (Metal); md(31,42);
box(0,0,cell_width,pwr_width); md (17,27);
box(0,22,cell_width,22+pwr_width); md(17,21);
box(0,44,cell_width,d4+pwr_width); nd(31,6);

Layer(diffusion); dp(17,11,0);
box(14,14,20,20); dp(8,32,0);
box(14,6,17,15); dp(17,37,0);
box(16,6,30,8);
box(14,28,20,34); enddef;
box(14,33,17,42); end;
box(16,40,30,42); begin
wire(2,19,0); y(6); dynshift;
wire(2,0,35); x(6); y(10); x(14); setnoend;
box(15,22,19,26) ; end;

Figure 2.1 (3): A copy of the BELLE Layout Language used to describe the shift
register cell designed for use in project C4, AUSMPC May 1982.

Section 2.3 Interactive Mask Level Geometry Editors

r"—\
i X
1 Sk
sl |) o
..f.aau]}< g
A=)
;‘ 4
1)

F)
P

Figure 2.1 (b): A computer generated plot of the shift register cell described in Fig.
2.1 (a).

Section 2.8 Interactive Mask Level Geometry Editors

can be altered with a sophisticated text editor. Tools such as ICARUSIS],
Kicl2l, CAESARI?Y PLANI2S ETI28 and MAGICI2%1 are all examples of in-

teractive, mask level, geometry editors.

The advantage in using a geometry editor as opposed to a Mask Layout Language
is that the editor can contain all of the Layout Language functions and more. As well, the
editor is able to provide visual evidence of the design developments and modifications
interactively. The advantage this brings is that no detailed layout need be done on
paper beforehand. Some STICK diagrams may be required for design guidelines, but

even these may be unnecessary for an experienced user of a geometry editor.

The hardware required to use these tools is the same as that for the Layout
Languages, plus either a monochrome or colour interactive graphics terminal, or both,
with some method of manipulating cross-hairs on the terminal. This may be done either
via the terminal keyboard, or a bitpad, or an optical or mechanical mousel20][30}-134],
Some typical Workstations are shown in Fig. 2.2 (a), (b) and (c) running various
geometry editors. (Workstation is the common noun used to describe the hardware

used by a designer to run a complete set of VLSI design tools).

The software required for this type of tool is again similar to the Layout Lan-
guage software in its philosophy. The differences between the two tools are that as
well as performing the layout task that the Layout Language succeeds in achieving, the
Geometry Editor also allows interactive editing of layout. The editing task is much
more time consuming using a Layout Language and can only be completed using an

additional software tool, a Text Editor.

Commonly the structure of a geometry editor provides for a subdivision of the
program into a number of procedures corresponding to the number of functions provided
by the editor menus. A versatile editor will drive more than one type of graphics device
and so usually contains a number of procedures corresponding to the number of device

drivers used by the editor. Generally, a Geometry Editor is 2 much more complex

2-7

Section 2.3 Interactive Mask Level Geometry Editors

Figure 2.2: () Above, an early model of a colour graphics workstation. An AEDS512
with a colour monitor and a bit pad showing some KIC output of project C4. (b) Below,
a VISUAL 500 monochrome workstationlg’o], showing some PLAN output of project C4.
Note that the cross hairs in this case are controlled from the terminal keyboard.

2-8

Section 2.3 Interactive Mask Level Geometry Editors

Figure 2.2 (c): Another colour graphics workstation, a VECTRIXB with optical mouse
for cross hair control. Note also the monochrome terminal alongside used for displaying
additior.al menus and allowing the use of a text editor, or alternatively some other CAD
Tool while viewirg the circuit oa the colour monitor. Also compare the bulky bitpad
in (a) with the much more compact optical mouse shown here.

program than a Layout Language as it must perform the same geometry in-
stantiations as a Layout Language, it must display them interactively on a graphics
peripheral, and it must also incorporate an editing capability which a Layout Language

does not have.

Just as Layout Languages produce CIF output, so do Geometry Editors, but
usually not directly. The machine readable output format varies from editor to editor.
Generally, it is similar to CIF, but not the same. Additional software must accompany
the editor to translate from the editor output format to the desired intermediate form,
in this case CIF. It is generally possible to translate from the intermediate form to the
editor output format as well. For some tools, this second function tends not to be as
useful, because the hierarchical features which are embedded in some of the editors are
not translatable to cif. For example, PLAN does not have a routine to transfer from

2-9

Section 2.3.1 Hierarchical Design Philosophies of Geomelry Editors

CIF to the PLAN output format because of the hierarchical restrictions imposed by

PLAN on a designer.
2.3.1 Hierarchical Design Philosophies of Geometry Editors

Hierarchical information is necessary to simplify the complex IC design task. The
form this hierarchical information may take varies from editor to editor, but a simple
comparison of KIC, PLAN, and ET, will provide an overview of different approaches to

hierarchical IC design using geometry editors.

This comparison is based around innovations in hierarchical design strategies for
geometry editors rather than a comparison of the effectiveness of one tool for VLSI
design, with respect to another. The three editors named in this section each have very
similar geometry manipulation functions and are at different stages of development.
KIC was developed at the University of California, Berkeley[27], originally started as
a Master’s thesis by Keller in 1981. PLANI26] has been developed by a firm called
Integrated Silicon Design (ISD), and originated from a project, RIDEI?51] carried out
by Dickinson. ET has also been developed at the University of Adelaide as the result

of research work by Woloszczuk!281(28-1],

KIC provides no hierarchical design restrictions. The electrical re.ationship be-
tween the cells is not machine recognisable. The onus is on the designer to recognise
and account for all connections between cells at the time of composition. The only
hierarchical division of cells is a visual bounding box around the perimeter of a cell at
the time of composition. Even this hierarchical division may be freely turned on or off
by the designer using a menu selection called EXPAND which then displays all of the

enclosed leaf and/or composition cell information within this top level cell (see Fig. 2.3)

PLAN, however, provides connectivity information as well as the bounding box
around the cell. When a cell is generated, pins must be placed on the inputs and outputs
of the cell before connection can be made between cells when they are composed. These

pins only appear within a bounding box, generally on the edge of the box, and serve

2-10

Section 2.3.1 Hierarchical Design Philosophies of Geomelry Editors

Figure 2.3: The top picture shows a non EXPANded view of project C4 using KIC,
while the picture below shows an EXPANded view of the same design. Some interesting
KIC features can be seen in these pictures. Firstly the Magnifying Glass, the grided
rectangle at the bottom of the pictures providing a magnified view of the contents of the
small black rectangle shown in the top picture on the left of the cross hairs. Also the
MENU of KIC commands selectable via the bit pad can be seen on the left hand side of
the pictures. At the bottom of the pictures can be seen the LAYER TABLE viewport
indicating the various mask levels used and their associated colours, while immediately
above this viewport is the PROMPT viewport enabling textual input by the designer.
The hierarchy in KIC is only implied via the use of non EXPANded bounding boxes as
in the top picture.

2-11

Section 2.8.2 Further Analysis of Geometry Editors

to define the cell electrical input and output ports and act as terminal nodes for
wires (see Fig. 2.4). It is worthwhile noting that in PLAN only hierarchical information
is displayed at different levels of composition. That is, the designer can only view
composition cells as bounding boxes with I/O ports, there is no equivalent to the KIC
EXPAND menu command. This restricts the designer to a strictly hierarchical design
strategy but can cause problems if connection must be made to pins internal to the
cell, (a poor design technique), or if layout geometry is placed close to the edges of
the bounding boxes of composed cells, as design rules could be violated. In these
circumstances, it is necessary to know the internal geometry of the cell or at least the
geometry near the edges that could possibly be involved in design rule violation. PLAN
does not allow a designer to see internal geometry for composed cells at the time of

composition.

ET considers the hierarchical design problem exposed in PLAN and provides
a solution to it. By restricting the designer to the same hierarchical design strategy
(although a step backwards has been made by omitting the electrical connectivity in-
formation), and adding the feature of displaying mask level geometry to design rule
penetration depth at the edges of the bounding boxes of composition cells, the design

problems presented by PLAN are avoided (see Fig. 2.5).
2.3.2 Further Analysis of. Geometry Editors

The different hierarchical attributes of the various geometry editors are not the
only differences between them(28]. KIC is an editor written in the programming language
clB%] to run under the UNIX{t operating system and has been modified[36] to make it
portable for use on a machine running theVMS$ operating system. PLAN was written
in PASCAL, to run under VMS. ET was written in VAX-11 C{ to run under VMS,

with the intention of making it portable to machines running UNIX.

The geometry manipulation functions provided by the different editors are

UNIX is a Trademark of AT&T.
1 VMS and VAX-11 are trademarks of Digital Equipment Corp.

2-12

Section 2.3.2 Further Analysis of Geometry Editors

ok one carner af window ares

Figure 2.4: A PLAN view of the shift register cell in Fig. 2.1. This cell is shown at leaf
cell Jevel above and at composition level below. Note the hierarchical pin information
that must be specified on the bounding box to enable connection between leaf cells at
the time of composition, shown on the picture below. Note that at a particular level
of composition PLAN allows only the hierarchical information to be seen, unlike KIC
which allows a full EXPANsion of the composition level down to the leaf cell level.

2-13

Section 2.3.2 Further Analysis of Geometry Editors

Pick Instance point

Pick Instance point

Figure 2.5: Above, an ET view of a bit slice of AUSMPC 5/82, Project C4, displaying
routing over sub-cells used in the composition of the cell. Below, two slices are composed
alongside each other. One shows leaf cell information to Design Rule Penetration Depth,
while the other is the same as that shown above. Notice the three viewports displaying
design information, as opposed to two used by KIC. The largest is the working viewport,
while the highlighted viewport displays the original cell that was called. The third
viewport displays the cell to be used at composition time in its correct composition
orientation.

2-14

Section 2.4 Design Rule Checkers

similar, with KIC currently being the most versatile in this respect. This is not
surprising as it is one of the oldest of the tools considered, was developed in conjunction
with other research tools such as CAESAR and preceded others such as MAGICI29-1],
For more comments on the Geometry Editing tool MAGIC, see the concluding section,

section 2.8, of this chapter.

The main disadvantages of geometry editors relate to the problems of designing
in mask level geometry. The problems in converting from electrical design to mask
layouts requiring the adherence to geometrical design rules by the designer adds a
step in normal design complexity. The hierarchical advances in such editors can only
minimize the complexity involved in this conversion process, it does not rid the designer

of the conversion problem.

Comparison of Geometry
Editors KIC and ET

Subject KIC ET
Technology Independence Excellent Not Good
Terminal Independence Excellent Not Good
Hierarchical Information Fair Very Good
Hierarchical Restrictions None Good
Language C C
Operating Systems VMS or UNIX VMS or UNIX
Non Manhattan Geometries Yes No

Table 2.1: A comparison of factors indicating the versatility of two Geometry Editors.
Note that KIC is seen here as the more versatile of the two tools. However, it has been

in existance and developed over much longer period. ET will be developed by ISD as
PLAN2.

The advantages of these geometry editors are based on the ability of such tools to
carry out the conversion from electrical design to mask level layout much more efficiently
and quickly, in terms of design time, than Embedded Layout Languages. Geometry
Editors demand much more computing resource than Layout Languages however. Table
2.1 above details some of the qualities of two of the editors discussed in this section on

a comparitive basis.

Section 2.4 Design Rule Checkers

2.4 Design Rule Checkers

Using low level layout tools as described previously in this chapter, the chance of
an error occuring in the layout process causing a design rule violation is high!37l. If the
circuit is to work, careful checking is mandatory[71. Error checking programs embody
the rules for a particular process and examine CIF files or PG tapes for violations,
reporting each instance in terms of coordinates or patterns along with the nature of
the violation. For MPC processes, the error checking tool must examine the CIF as a

remote designer will not be concerned with PG tapes.

Design Rules (see Appendix B) typically assign minimum distances to dimensions
of features, spacing between features in the same layer, and spacing between features
in different layers. Design Rule Checking (DRC) programs ideally take the CIF de-
scription of the layout and provide some output indicating crrors when and where they
occur. There are a number of different approaches to design rule checking and an anal-
ysis and comparison of a number of different design rule checking programmes, Baker’s
DRCB7, Noble's ADRICI®, Hartley’s ROWANI#2l and ISD’s CHECK!Z, will

highlight these different approaches.

Baker’s DRC uses a Raster Scan method, in which a small window is scanned
across the design in raster fashion, and the contents in the window are checked for design
rule violations. A 4X by 4\ window is used as it was initially presumed that this was
a large enough window to provide sufficient information to determine whether design
rules had been violated. Baker does acknowledge however that this DRC produces false
errors and a larger window, say 10X by 10X is needed to detect false errors arising
from geometries that are close together, are separated, but are electrically connected.
An example of such a situation can be seen in Fig. 2.6. Even the larger window

modification will not always delete all such errors.

Apart from false errors, this DRC system has a number of other disadvantages.
It is not very fast because it steps across every square of the design, even for large

2-16

Section 2.4.1 Hierarchical Design Rule Checking

empty spaces. It has no hierarchical structure, the same error is reported every time
it is encountered. Finally, the design rules for a particular manufacturing technology
are intricately embodied in the program making this tool very inflexible with regard
to technology change. It would be a major task to modify this program to accept
a new set of design rules. Baker's DRC does accept non-manhattan geometries, but
it approximates them in such a way that it makes certain width and spacing checks
impossible to perforn1[39]. Baker’s DRC was originally written in C under the UNIX

operating system and transported to run under VMS.

’, 7 ‘] .;(:_!h]
Qf:f*E"uJ gl :::IH;nHIl nul:h“ !Hi i

Figure 2.6: The butting contact alongside the depletion mode transistor above, while
connected to the transistor, can be seen as erroneous by Baker’s DRC if the transistor
to contact join falls outside the raster window.

2.4.1 Hierarchical Design Rule Checking

Hierarchical design rule checkers exploit the hierarchy of a design by first checking
leaf cells, then checking symbols which instance only leaf cells and CIF primitives, and

subsequently repeating this process until the highest level of composition is reached.

ADRIC is an example of such a DRC. Apart from a different method to Baker’s
DRC, ADRIC also incorporates Hierarchical design rule checking based on the work
done in Whitney’s HDRC Algorit-hm[w], although ADRIC, unlike HDRC was designed
to accept CIF.
2-17

Section 2.4.1 Hierarchical Design Rule Checking

The hierarchical philosophy used by ADRIC applies restraints on the designer at
the layout stage. During each run, ADRIC will only check what has not been checked
before unless a previously checked and validated symbol has been altered. ADRIC forces
the designer to check each level of the hierarchy as it is completed. This is because it
can only check those symbol definitions which exclusively instance previously validated
symbols. If the designer runs ADRIC regularly, this causes no problems, otherwise
the designer may find that several runs of ADRIC are necessary to reach the current
level of composition. This restraint could be annoying unless it was to be implemented

automatically at the time of composition.

The Polygon method of design rule checking used by ADRIC applies contraction
and expansion to the features of the layout. These features are stored as polygons and
if two of these polygons overlap when they are expanded by a certain amount, then
they are too close together and a design rule is violated. This type of DRC operates
by referrinz to a table indicating which features are to be expanded or contracted and
by how much for each design rule for the technology. ADRIC is a much less technology
dependent tool than Baker’s DRC and together with its hierarchical analysis algorithm,
implements some good concepts. However, it can be rather slow and consumes large
amounts of storage space. Although ADRIC was never completed, it provided useful
background research for ROWAN. ADRIC was written in PASCAL under the VMS

operating system.

ROWAN is based on the DRC, LYRAM1], which is written in LISP. The checking
philosophy used by this tool is corner based. The rules are only checked at the corners
of features on the layout because if a design rule is broken, then there must be a corner
at which the violation either begins or ends, or both. This DRC is also hierarchical
although the hierarchical philosophy of ROWAN is different to that of ADRIC. ROWAN
will take a design at any level of composition and check for errors without having
to iteratively run the checker for all unvalidated cells, at each level of the hierarchy.
ROWAN takes advantage of the fact that CIF allows structured designs in which certain

2-18

Section 2.4.2 Technology Independent Design Rule Checking

basic circuits can be defined as symbols, and then be incorporated in larger circuits by
just calling the symbol. If the design is done like this in a repetitive fashion, a tree-like

structure results.

ROWAN exploits this structure to speed up the design rule checking and reduce
the number of error reports made for the same error. ROWAN does this by using a
bounding box concept similar to that used in PLAN for individual cells. This cell is
checked once, when it is defined, and skipped when it is called later as long as no CIF
primitives intrude within the bounding box. If CIF primitives do intrude within the

bounding box, the cell will be checked.

If it is possible to skip a symbol when it is called, a thin boundary layer, similar
to that appearing in ET, must still be checked for errors involving objects surrounding
the symbol call. So if a symbol has been checked upon definition, then most of the data
structure of that symbol may then be discarded, leaving just the boundary layer, which
is then called as if it were the complete symbol. Certain layout restrictions are placed
on the designer. To effectively use the hierarchical features of ROWAN, a designer
must adhere to rules about the cell bounding box, see Fig. 2.7. If these rules are not
obeyed, ROWAN cannot detect hierarchy and will check all cells which are intruded
upon. The hierarchical features of ROWAN provide great speed increases, especially on

sparse designs, as long as the designer conforms to the hierarchical layout restrictions.
2.4.2 Technology Independent Design Rule Checking

Technology Independent Design Rule checking calls for increased input to the
DRC Tool. ROWAN includes a separate PASCAL programme called a design rule
compiler[‘m]. This programme takes a text file describing the design rules for a particular
fabrication technology and produces a complete set of tables suitable for use by ROWAN.
This file is called a Technology File. The language used for expressing the rules in this
file is an embedded language and is actually a restricted list of PASCAL procedures.

This feature of ROWAN has already been exploited to provide accurate checks of designs

2-19

Section 2.4.2 Technology Independent Design Rule Checking

— e — ——— e —

— e e S e S G St e S S S S e el
- G S e e G GG S S =S s e e

— e — — — ——— — — — G S e W D D - ——

No clash No clash
! J i }
I | |]
| | | §
}] l 1
| DN P,] e I |
§ 1 I ! | | I I
| § | ! i | I |
----- | 1 | i i I
§ | | | I |
| | | | i I
i | | I I 1
{ | | { I |
} I)y T |
| | | |
§ I | |
§ i | |
} 1 1 i
! | | |
| | | |
. | | o e e o o o e o v o = |

Clash Clash

Figure 2.7: Examples of ROWAN symbol interactions. The dashed lines represent the
| cell bounding boxes. If the cells clash, the hierarchical nature of the design is lost.
Note that wires joining to a cell may have their half-width protrusions entering the cell

| bounding boxes without clashing.

2-20

Section 2.4.2 Technology Independent Design Rule C-'hecking

under a number of different technologies at the University of Adelaide. These
technologies are, the Mead and Conway nMOS technology, two Jet Propulsion Labora-
tory (JPL) CMOS technologies, and the Eshraghian and Westel48l CMOS technology.

These Technology Files contain an average of about 65 statements.

The obvious advantage of a Technology File means a new Design Rule Checker
can simply be created within a few hours, for any technology using geometrical design
layout rules. This feature alone makes ROWAN a very versatile tool, but considering
its hierarchical checking algorithm, its efficient storage and speed of operation, it is
considered to be an extremely flexible DRC. ROWAN is another tool that does not

accept non-manhattan geometries.

Another DRC, CHECI{[42'1], is an extension of work done in ROWAN which
makes it an even more versatile DRC. Like ROWAN, its checking is corner based, uses
a technology file, but can either be run as an hierarchical checker like ROWAN, or as a

non-hierarchical tile based DRC.

In its tile based mode of operation, a design is split into a number of square
windows, ususally 512X square but with some flexibility to cater for small designs,
which completely cover the design area. Each of the tiles making up the complete
design are checked individually. As a result, any hierarchy involved in the design is
lost at the tile partitioning stage. This method of analysis is used in CHECK as even
modest sized IC designs require the use of more Virtual Memory than can currently be
reasonably allocated to users on a multi-user computer. As a result, if CHECK were to
be operated without its tiling feature, its algorithm would place severe restrictions on

the size of circuits designed on multi-user systems.

Most designers find it difficult to confine themselves to the hierarchical design
restrictions placed upon them by the DRC’s ROWAN and CHECK for most efficient use
of their hierarchical checking features. Non-hierarchical designs require very significant
amounts of storage for checking using the hierarchical routines. The tile based approach

2-21

Section 2.4.8 Design Rule Checking Input and Outpul

was implemented to avoid this problem.

An unusual feature of CHECK provides for the optimization of the input CIF
code. This feature takes hierarchical CIF and flattens it, that is, it replaces CIF symbol
calls with instantiated CIF. All overlapping geometries are also altered to form abutting
geometries. This feature is intended to make plotting and Circuit Extraction (to be

discussed in detail in the next section) more efficient.
2.4.3 Design Rule Checking Input and Output

As tools become more sophisticated they require and produce more information
in an effort to make the use of such tools more User Friendly, a term often employed to

indicate the ease of use of software or hardware for novice users.

The input to the DRC programmes of all of the DRC’s discussed in this section
is CIF, as is required for MPC prototyping. However, the tools ROWAN and CHECK
also require the use of Technology Files. The Technology File input to these tools
is done by the use of embedded languages similar to those used for design layout as
discussed, except that these embedded languages are used for the purpose of creating a
new design rule checker. The input is via a restricted set of PASCAL procedures. As an
example, the procedure set for ROWAN is summarised as follows:- lambda, layers, layer,
grow, rules, width, spacing, separation, extension, overhang, define, context, constraint
and endrule. A sample technology input file may be seen in Appendix C. ADRIC also
used an extra file which was used as an 1/O file. It’s purpose was to keep track of

previously validated symbols to enforce ADRIC’s unique method of hierarchical design

rule checking.

The output from the various DRC’s varies quite significantly depending on the
tool. Baker’s DRC provides a single output file, a .DRE Design Rule Error file. This
file is often very large due to the fact that Baker’s DRC reports the same error every
time it is encountered. The output tends also to be cryptic and not particularly easy
to follow. ADRIC produced two output files, the .VSS, Validated Symbol Skeletons

2-22

Section 2.4.4 : DRC Conclusions

file and the .DRE file. ADRIC need not be considered in any great depth owing to its
incomplete state, yet its unique DRC algorithm necessitating the two file output is of
interest. ROWAN produces a single output file, also called a .DRE file. The file reports
errors as they occur, once only and also contains some user accounting information.

CHECK produces very similar output to ROWAN.
2.4.4 DRC Conclusions

Many different types of Design Rule Checking programs are available for use
under a range of operating systems. The latest make use of design hierarchy as well
as technology file input to make the tools efficient and technology independent. It is
interesting to note that hierarchical checking does not necessarily provide great advan-
tages unless the designer uses an hierarchical design methodology. This is in most cases
not a trivial task. The technology file notion does however provide great versatility by

allowing the generation of an essential tool in a matter of hours instead of months.

Comparison of Design Rule
Checkers, ROWAN and CHECK

Subject ROWAN CHECK
Technology Independence Excellent Excellent
False Errors Minimal Minimal
Hierarchical Yes No
Algorithm Corner Based Corner Based
Language PASCAL PASCAL or C
Operating Systems VMS VMS or UNIX
Non Manhattan Geometries No No

Table 2.2: A comparison of statistics indicating the versatility of two DRC’s. The speed
of checking will vary for designs incorporating different degrees of hierarchy. Note that
CHECK may be modified to provide for either non-hierarchical or hierarchical checking.
If this happens, it would be by far the more versatile of the two tools.

Design Rule Checkers as individual CAD tools will probably become redundant
as Circuit Extraction and DRC tools often use very similar algorithms for the solution
of different problems and therefore lend themselves to efficient combination. However

2-23

Scclion 2.5 Circuit Extractors

for the purposes of this thesis, table 2.2 is presented as an analysis of two versatile

design rule checkers operating on the basis of two different philosophies.

2.5 Circuit Extractors

After checks have been made to verify the mask layout, further checks must be
made to verify the electrical operation of the design. This verification is done using Sim-
ulators and Electrical Rule Checkers, CAD tools which will be discussed in later sections
of this chapter. However these CAD tools do not accept CIF as input. As a result, an
intermediate tcol is required that can produce the appropriate input information for

these tools, from CIF.

A CGircuit Extractor is a program designed to take mask layout information (eg.
CIF) as input and produce output consisting of a network of the electrical devices rep-
resented by the layout. The output of a circuit extractor is called a Wirelist, (although
the amount of output can vary for different circuit extractors), and can be fed into other
CAD tools. Different Circuit Extractors can vary in a number of ways. They can differ

in
1. Their use of hierarchy present in the design.
2. The constraints that they impose on the designer.
3. The amount of detail present in their output.
4. The Algorithms they use to locate devices and find Connectivity.

This section examines a number of different extractors and discusses the dif-
ferences between them. The extractors discussed are CIFPLOT[43], MEXTRA‘““],
HEXT[45], ACE!® and NETH7). A brief introduction will also be given to tools

combining both Circuit Extraction and Design Rule Checking.

CIFPLOT and MEXTRA were both written by Fitzpatrick. They provide output
acceptable to a variety of CAD tools in the Berkeley Design Suitel13], They are both
2-24

Section 2.5 Circuit Eztraclors

are both flat (non-hierarchical) extractors that accept CIF. CIFPLOT can handle non-
manhattan geometries while MEXTRA cannot. As a result, MEXTRA is an order of
magnitude faster than CIFPLOT and has an approximately linear growth rate. MEX-
TRA output is essentially the same as CIFPLOT output and so the two tools will be
considered together. They produce output suitable for use with a Static Electrical Rules
Checker (MOSERC), a Switch Level (logic) Simulator (MOSSIM), and a Circuit Sim-
ulator, (SPICE). CIFPLOT also has the ability of being able to produce plots of the
CIF with nodenames and numbers superimposed for visual inspection. Unfortunately
the extraction processes in these two simulators only handle simple transistors (see
Fig. 2.8). The resultant extracted circuits will not always be accurate. Both programs
are written in C and have the technology rules tightly embedded in their code, which
makes them technology dependent. MEXTRA uses a corner based algorithm for circuit

extraction and was originally developed for nMOS extraction.

N NN

ey “'::-'f-*;'/’ » 77 7 7 b ‘xfa\‘\f 4
4 "é’- "!"3" < f g ™ ; ‘.f"-.vl 4

S NAERIIR / 1454
7 R
V ,4;'/".:{,",_/ -';“K‘ /‘:’ / //\(_ \“x‘\ '\!/;
o Gy
A R R TR 3‘114
L Al R 2
g (‘. " 'l. e
R s
Pl Wl . 8.1 A i o ot "’\:"‘]

M

o :::x

Figure 2.8: A transistor as it actually appears on the left, and as it is recognised by
MEXTRA on the right. MEXTRA resolves all transistors to be simple rectangles with
x and y dimensions equalling the total x and total y dimensions respectively.

HEXT is an hierarchical circuit extractor. It has also been developed for nMOS
designs. It is unusual in its approach because it uses a two part process, a front end and
a back end. The front end is responsible for eliminating overlapping symbol instances
and isolating hierarchical cells, which reduces circuit extraction time. The back end
of HEXT is responsible for analysing the geometry contained in each of the distinct

2-25

Section 2.5 Circuit Extractors

windows found by the front end and ultimately combining the adjacent windows to form
a complete circuit for the whole chip. The back end is in fact a modified version of ACE.
The Algorithm used in ACE restricts the designer to nMOS manhattan geometries.
The output of HEXT is an hierarchical wirelist, but because most CAD tools require
a flat wirelist, this is not currently a particularly useful feature. HEXT is written in
C to run under the UNIX operating system. The advantage of using HEXT is that
it forms hierarchical windows from a design without forcing a restricted hierarchical
design methodology on the designer as does the hierarchical DRC, ROWAN. However,

because of its generality, it loses efficiency in circuit extraction for some designs.

ACE is a flat extractor in that it works on a fully instantiated description of the
chip. Again restrictions on the designer are such that only nMOS designs using manhat-
tan geometry can be extracted. The algorithm used is edge based and has advantages
over the raster scan method in that empty space and large device structures are ex-
tracted easily. Its disadvantages are that it does not handle nMOS butting contacts

and its method of determining transistor parameters is crudel46].

The extractor NET introduces new features to the circuit extraction process
which makes this tool very versatile. NET adopts features of ACE and solves the faults,
mentioned previously, that are characteristic of CIFPLOT and MEXTRA, as well as
providing a technology independence by the use of the technology file concept. NET’s
versatility is enhanced by being written in both C and PASCAL for use on UNIX or
VMS respectively. NET requires manhattan CIF input while its output can be used with
all of the CAD simulators and Electrical Rule Checkers already mentioned as well as the
tools produced by ISD. These tools are PROBE, a simulator, and ELEC, an Electrical
Rules checker. Its output can also be used to display node names on a mask level plot

of the design. Currently NET is functional for both nMOS and CMOS technologies.

To conclude this discussion on extractors it is interesting to note that some of
the distinguishing features of circuit extractors and Design Rule Checkers are similar,
for example the algorithms used for their separate functions and the fact that they

2-26

Section 2.6 Electrical Rule Checkers

both require CIF input. New tools are emerging which exploit these similarities to
combine both functions, Design Rule Checking and Circuit Extraction, into one CAD
Tool. Shand[4¥ describes such tools using hierarchical analysis methods. This thesis
however looks at each function separately on a comparitive basis enabling the reader to

more fully understand the complete checking process.

Comparison of Circuit Extractors
MEXTRA and NET
Subject MEXTRA NET
Technology Independence None Excellent
Accuracy Not Good Very Good
Hierarchical No No
Algorithm Corner Based Edge Based
Language C PASCAL or C
Operating Systems UNIX VMS or UNIX
Non Manhattan Geometries No No
Input CIF CIF
Static Rules Check Output Yes Yes
Logic Simulator Output Yes Yes
Circuit Simulator Output Yes Yes

Table 2.3: A comparison of statistics indicating the versatility of two Circuit Extractors.

NET is a much more versatile tool as it is more accurate, it provides output for all of the
tools that MEXTRA does and more, and it is supported under two different Operating
Systems.

2.6 Electrical Rule Checkers

Once circuit extraction has been completed, the abstracted electrical circuit is
presented as output usually in a number of different forms, and is available for use by
other CAD tools. One type of tool that uses extracted output is a Static Electrical
Rules Checker. Two such tools are MOSERClSO], and ELECI5!. They will be used

to illustrate electrical rule checks made on both nMOS and CMOS circuits.

MOSERC checks only nMOS circuits. It was written by F. Baskett at Stanford
University. It is written in the language C to run under the UNIX operating system.

2-27

Section 2.7.1 Circuit Simulatlors

MOSERC looks for unusually configured circuit elements. For example, it looks for such
things as nodes that cannot be pulled up, nodes that cannot be pulled down and bad

ratio values for inverters.

ELEC is similar in its operation to MOSERC. It was written in PASCAL to run
under VMS by R. Kinnear at the University of Adelaide and a version written in C for
UNIX also exists. Both ELEC and MOSSERC provide error file outputs that can be
used by the designer for rectifying bad mask layout. Table 2.4 shows a comparison of

these two tools.

Comparison of Static Electrical Rules Checkers
MOSERC and ELEC

Subject MOSERC FELEC
Technology Independence None Excellent
Accuracy Good Good
Hierarcaical No No
Language C PASCAL or C
Operating Systems UNIX VMS or UNIX
Non Manhattan Geometries No No
Input Tools MEXTRA and NET NET

Table 2.4: A comparison of statistics indicating the versatility of two Static Electrical
Rules Checkers.

2.7 Simulators

Simulation tools are used for checking electrical functionality as well as for op-
timizing certain performance parameters of designs, particularly speed and power dis-
sipation. Just as large scale designs are produced hierarchically, so simulators exist for

different levels of electrical functionality checking.
2.7.1 Circuit Simulators

An example of the lowest level of simulation tool is SPICE2. This is a well
known tool that is written in FORTRAN for use with input files written in the SPICE

2-28

Section 2.7.1 Circuit Simulators

format. It is in fact a Circuit Simulator. Circuit Simulators model electrical circuits of
transistors, capacitors, resistors, diodes etc. to determine static and transient behaviour
of node voltages and branch currents within networks. The results can be presented
in 2 number of different ways but are usually presented as plots of voltage or current
versus time. The input to this simulator can be hand generated or produced as output

from a circuit extractor.
%
* Device Parameters for a CMOS Inverter
*
.SUBCKT IKVL 1 23
* DENOTING INPUT, OUTPUT AND SUPPLY RAIL VDD
Mi 2 1 3 3 PTYPE L=4U W=8U AD=80P AS=80P PD=20U PS=20U NRD=1.25 NRS=1.25
M2 2 1 0 0 NTYPE L=4U W=8U AD=80P AS=80P PD=20U PS=20U NRD=1.25 NRS=1.25
.ENDS INV1
*

* Process Parameters for the P and N type transistors of the Inverter

.MODEL PTYPE PMOS(LEVEL=3 VI0=-0.9 GAMMA=1.0 RSH=100
CGS0=4E-10 CGD0=4E-10 CGB0=2.8E-9

PB=0.7 NSUB=3E16 XJ=6E-7 LD=5E-7 U0=200 UCRIT=8E4
UEXP=0.15 UTRA=0.3 TOX=5E-8 PHI=0.65 TPG=-1
CJ=2E-4 CJISW=4.BE-10 VMAX=5E4 ETA=2 DELTA=0.1
KAPPA=0.5 THETA=1 MJ=0.5 MJSW=0.33 PHI=0.65
JS=1E-4 NSUB=5E15 UCRIT=8E4

* * 4+ + + + + 4+

.MODEL NTIYPE WMOS(LEVEL=3 VI0=+0.9 GAMMA=1.5 RSH=20
+ CGS0=5.2E-10 CGDO0=5.2E-10 CGBO=2.8E-9

PB=0.7 NSUB=1E15 XJ=8E-7 LD=6.4E-7 U0=450 UCRIT=8E4
UEXP=0.15 UTRA=0.3 TOX=5E-8 PHI=0.73 TPG=+1
€J=3.3E-4 CISW=QE-10 VMAX=5E4 ETA=2 DELTA=0.1
KAPPA=0.5 THETA=1 MJ=0.5 MJSW=0.33 PHI=0.65

JS=1E-4 NSUB=2.BE16

* + + + + +

Figure 2.9: SPICE Device Parameters and Process Parameters for a CMOS circuit
showing both the nMOS and the PMOS devices. These parameters are used by the
LEVEL 3 SPICE. Not all of the Process Parameters are used.

The input consists of circuit elements and their connections as well as Device
and Process Parameters for elements that require modelling. For example, PMOS and
nMOS transistors each have separate sets of Device Parameters for CMOS technologies,
as do enhancement and depletion mode transistors for nMOS (see Fig. 2.9). SPICE
is a complex circuit simulator which has three levels of model complexity for MOS
devices. The different levels are accessed by using one of the model parameters. SPICE

2-29

Section 2.7.2 Timing and Logic Simulators

has 8 device parameters which describe the MOS device geometry while it has up to
37 model parameters which describe the MOSFET model. The three different models
used are the Schichman-hodges model at level 1, the MOS2 model at level 2, and a
semi-empirical mode! at level 3, where level 1 represents the simplest model and level 3

the most complex.

With the circuit parameters appropriately set, the simulator is then activated by
modelling circuit behaviour in a series of incremental time steps with the increments
commonly in the order of nano-seconds or less. Initial conditions for voltages may be
set and function generators may be used with the simulator also. The result can be
quite an accuraie simuation of the circuit operation, depending on the model complexity
and parameter accuracy. For SPICE, device parameters are difficult to obtain and as a
result, simulations could possinly be erroneous in orders of magnitude. Chapter 4 shows
results obtained for an nMOS circuit fabricated using the MPC process compared to its

simulated results.

Extremely complex models such as those provided in SPICE need only be used
for particularly crucial circuit components, as the trade-off for using a very accurate
circuit simulator is the long time taken to run such simulations. Circuit Simulators,
even for the less complex models are commonly only used for small circuits (no more

than a few hundred elements).
2.7.2 Timing and Logic Simulators

Another form of simulator is the Timing Simulator. This type of simulator is
not unlike a circuit simulator but is characterised by two features. The first feature is
that it exploits the fact that models can be described by lookup tables with subsequent
interpolation and geometrical scaling. The second feature is the fact that only active
nodes need be altered at the time steps used. This type of simulator could rightly be
considered a circuit simulator using a less accurate model for the devices. The advan-
tage in reducing model complexity is reduced simulation time. The disadvantage is of

2-30

Section 2.7.2 Timing and Logic Simulalors

course the less accurate result, however this need not be of great concern as long as the
particular circuit being simulated is not crucial to the system function. The analogue
output produced by the timing simulator while not totally accurate, still gives the de-
signer a good first approximation to his circuit functionality. An example of a simulator
that could be called a timing simulator is PROBE!™ if the previous definitions are
used. This is a PASCAL program written by M. Pope at the University of Adelaide
to run under VMS. The difference between Timing and Circuit Simulators is probably

most significant in the nomenclature only.

When systems begin to grow larger than a few hundred components, circuit
simulation can become prohibitive. Consequently, the VLSI circuits currently being
designed and those of the future cannot be effectively simulated with such simulators,
other methods giving great simulation speed increases are required. As the designer
departs from the lowest level of hierarchy, a new level of simulation tool must be used to
verify the circuit operation. The Logic Simulator provides the simulation speed increase
that the designer seeks. It does so at the expense of discarding analogue type analysis
and replacing it with discrete digital level analysis. An example of a logic simulator is
MOSSIMI®3] written at MIT by Terman. It is written in C to run under the UNIX

operating system and has also been converted to run under the VMS operating system.

Comparison of Logic Simulators
MOSSIM and PROBE

Subject MOSSIM PROBE
Technology Independence None Excellent
Hierarchical No No
Language C PASCAL
Operating Systems UNIX VMS
Input Tools MEXTRA and NET NET

Table 2.5: A comparison of features indicating the versatility of two Logic Level Sim-
ulators.

The input to MOSSIM is obtained from the output of a circuit extractor while
the output is a file detailing nodes with the characters 0, 1, or X indicating low, high or

2-31

Section 2.8 MAGIC

undefined or unknown voltages respectively, at a particular node. Logic simulators by
themselves are not good enough to simulate circuit operation and should only be used

in conjuncticn with a reliable circuit or timing simulator.

In conclusion, simulators at higher levels exist and are often referred to as Reg-
ister Transfer Level or System Simulators. However to discuss these tools under the
heading of this chapter would be inconsistant and so this discussion is left for the next

chapter.
2.8 MAGIC

The tool MAGIC, has been mentioned in passing as it is a recently developed
tool which is as yet unavailable at the University of Adelaide. This tool does warrant
Turther investigation and a paper by Ousterhout et all29-1] provides a detailed summary
of its features. Discussion of this tool has been left until the concluding section of this
chapter as it incorporates many of the tools discussed after the section on Geometry

Editors, that could not effectively be explained in that section.

The features of MAGIC include increased flexibility and power by allowing for
simple circuit modification using a corner stitching data structurel?®-1l. With most
Geometry Editors, modification of a layout is almost as difficult as re-entering the
whole]a.y011’(.[29'1|. The MAGIC data structure allows for the efficient implementation of
automatic interactive Design Rule Checking that is done continuously and incrementally
during editing sessions. It allows layouts to be compacted and stretched in a manner
that allows the design rules to be obeyed and the circuit to maintain its structure. It
provides routing tools that can work under and around existing wires in channels and
it provides for an hierarchical Circuit Extraction directly from the MAGIC internal

database.

The MAGIC design style resembles those of symbolic systems such as MULGA
and VIVID, see Chapter III, the difference being that it provides precise geometry sizes
and positions. As a Geometry Editing tool, it is the most sophisticated mentioned

2-32

Section 2.9 Conclusions

in this thesis, as it incorporates a system of tools working on its mask level output

description.

2.9 Conclusions

The previous discussion offers a quick summary and comparison of a basic low
level CAD Tool Set for VLSI design. Tools from the different categories presented allow
a designer who has access to such tools to efficiently proceed with remote design of
IC’s using either an nMOS or CMOS process. The tool set presented has evolved over
a period of approximately four years with much effort being devoted not only to the
development of many new, more efficient tools, but also to the troublesome effort of
porting software written to run under the UNIX operating system, to VMS machines

and vice versa.

Summary of Preferred Low Level CAD Tools for VLSI
Design from University of Adelaide Design Environment
Tool Category nAMOS Tool CMOS Tool

Layout Language BELLE1 BELLE1

Geometry Editor KIC KIC
Design Rule Checker CHECK CHECK
Circuit Extractor NET NET
Circuit Simulator SPICE SPICE
Electrical Rules Checker ELEC ELEC
Logic Simulator PROBE PROBE

Table 2.6: Preferred Low Level Tools used in the University of Adelaide VLSI Design
Environment as of late 1985.

The low level tool set discussed fulfills all of the requirements needed in the MPC
remote design process. The diagram in Fig. 2.10 shows how each of the tools used at
the University of Adelaide fit into the VLSI Design Environment and this diagram used
in conjunction with Fig. 1.5, clearly describes the steps a designer needs to iterate
through to prototype a circuit in silicon.

2-33

Section 2.9 Consiustons
Conclusions regarding which of the tools discussed in this chapter should be used
for low level design, are presented subjectively as introductory material to a complete

set of Low Level CAD tools. The preferred tools to be used are listed in Table 2.6.

Ludwig or EDT
Text Editor

1

BELLE, Pascal
Embedded Layout

Language
PLAN, Geometry
Editor
PROBE, Circuit
Y Simulator
PLA t
Generator 1
CIF > NET, Clrcuit

Extractor
CIF / |

Library Y

SPICE, Circuit
Simulator

SEE, Graphles
Package

CSIRO or JMRC MPC
Prototyping Processes

Figure 2.10: The University of Adelaide Low Level CAD Tool Environment for VLSI
Design. (Note that the LUDWIGIS8S! text editor is the commonly used text editor at
Adelaide University on both VMS and UNIX DEC machines).

2-34

CHAPTER III

Higher Level CAD Tools

Contrary to accepted lore, geometry goes into masks, not silicon. Transistors and wires
go into silicon, and these, not squares and rectangles, are what must be represented to
capture the logical intent of a circuit. Today, however, mask geometry serves as the
universal base-level representation. Mask geometry stands in relation to silicon as does
absolute binary code to a computer - neither has any utility as a design representation.
Either can be re-created from a higher-level representation if needed.

-Mead and Lewickit

A new philosophy will be discussed in detail and a complete set of CAD Tools
using the philosophy, described. Other Tools, on even higher levels will also be discussed,
although they will be considered as individual Tools rather than components of an

Integrated Tool Set.

The concepts of IC design using MPC processes as outlined in the first two
chapters of this thesis remain unaltered when considered in conjunction with the CAD
Tools discussed in this chapter. These new Tools are of interest because they apply a
different philosophy to IC Design in an effort to make the task less complex and more
efficient. The new philosophy is based on the concern that Circuit Designers should only
need to know about Circuit Elements such as transistors, wires or contacts. Rather than
add the task of understanding mask level geometries and their interrelationships as is
required by the Low Level Tools already discussed, this new philosophy removes the
need for mask level knowledge, from the designer and embeds this knowledge in the

tool set.

t Carver A. Mead & George Lewicki, Silicon Compilers and Foundries will Usher
in User-Designed VLSI, Electronics, August 11, 1982, pp 107-111.
3-1

Introduction to Symbolic Level Design on o Virtual Grid, VIVID

Section 8.1

3
ﬁ

TRTTR]| %o

c
e =
| b
| 1
|I St
Phase ILD _Bhase 1 LD

Figure 3.1: A photomicrograph of the shift register cell in Project C4 on the left with
a computer generated plot on the right. Both pictures show the different Mask Level

Layers used in the design yet neither bares any obvious physical resemblance to the
circuit schematic of the design, also shown above, indicating the enormity of the change

from circuit to mask layout.

3.1 Introduction to Symbolic Level Design on a Virtual Grid, VIVID

The language BELLE (see Appendix 5) posseses mainly geometric primitives,
as does any Embedded Layout Language operating at the Mask Level, (eg. boxes,
polygons, etc.). These geometries describe the different mask patterns used in the
design of IC’s as can be seen by the comparison of a photomicrograph of a cell with
a plot of the same cell, see Fig. 3.1 If IC design is carried out at the mask level,
the designer is confronted with two major tasks in his design procedure. The first task

3-2

Section 3.1 Introduction to Symbolic Level Design on a Virtual Grid, VIVID

is to correctly produce a traditional electronic circuit design at the transistor level.
The second task is to translate this circuit design into a mask level description of the
same circuit which means the designer is then faced with the problem of mastering the
manipulation of seven or more mask layers in relation to a non-trivial set of Design
Rules, to complete this task. This has necessarily to be done on a fixed spatial grid

providing much room for error in mask layout, particularly for first time designers.

A new concept suggesting the use of symbolic circuit primitives rather than
mask level geometric ones, has been considered and a complete set of CAD Tools has
been developed to enable this design philosophy to be realised. Using elements such
as transistors, wires, contacts, and pins as primitives, designs can much more easily be
completed by a circuit designer, as he is dealing with fundamental primitives that he

already understands.

To realise the aim of this new philosophy, it was necessary to introduce a new tool
to the set already discussed in Chapter II. This tool is described as a Circuit Compactor
and is discussed at length in section 3.1.4. To enable the designer to remain relatively
oblivious to mask level information, this tool had to be designed so that it could take
a primitive circuit description and manipulate it by moving the circuit primitives to
provide a design rule error free and reasonably compact mask level layout of the design.

As well as this totally new tool, the new philosophy also uses a Virtual Grid as opposed

to a fixed grid.

The Virtual Grid concept was first used in the ICDL language that formed the
basis of the MULGA system[sgneol. The grid lines in such a system are used by the
designer to specify relative positioning of the circuit elements as opposed to their abso-
lute placement as in a fixed grid system. The Virtual Grid concept enables insertion or
deletion of horizontal or vertical grid lines in an effort to increase the power of Circuit
Editing Tools, and to enable the operation of the Compaction Tool, which moves these
virtual grid lines relative to one another to achieve the smallest design rule legal circuit.
It is the Compactor which automatically determines the final positioning of the mask

3-3

Section 8.1.!1 A Better Circuit Description Language (ABCD)

geometries, not the designer. Virtual Grid symbolic layout is most useful in Leaf Cell
design. Using the design language discussed in section 3.1.1, the designer may construct

larger cells by using an abutting method and/or a technique called block-interconnect.

The introduction of these two new concepts, compaction and virtual grid layout,
to those tools discussed in Chapter II, primarily highlights the differences between the
two Tool Sets, and forms the basis for all of the differences between the two Tool Sets.
The Integrated Tool Set to be discussed in this chapter is the VIVID(5] (Vertically
Integrated VLSI Design) system. It is a system originating from the Microelectronics
Center of North Carolina (MCNC), and has been developed primarily for the design of
MOS IC’s. It is written in C to run under the UNIX operating system. Work has also
been done by researchers at the University of Adelaide and in turn by ISD to produce

a VMS version of the VIVID system.
3.1.1 A Better Circuit Description Language (ABCD)

In Chapter II, early Design Tool discussion considered CIF and the Embedded
Layout Language BELLE. Both languages used mainly geometrical primitives to pro-
duce the mask level representation of the layout. In this chapter, the first Tool to be

discussed will be the design language used by the VIVID system.

Languages describing IC designs may exist at various levels of abstraction. The
various examples range from Hardware Description Languages (HDL) describing high
level structural and behavioural attributes of designs, as in MacPitts, (see Fig 1.4 (b)),
down to purely physical description languages that define the interrelation of wafer
fabrication mask levels needed to realise a design, as in CIF. Recent research has centered
around using Artificial Intelligence (AI) to produce expert systems that transcend more
levels of abstraction than has been possible in the past. An example is the CADRED7

system.

Languages that specify behavioural description and upon compilation yield a
physical mask description may be classified as Silicon Compilers, in comparison to the

3-4

Section 3.1.1 A Better Circuit Description Language (ABCD)

computer programming language equivalent. The language used as the heart of the

VIVID system, ABCD[58], has been developed from the lowest level of IC design lan- R

guages and as such could be described as a Silicon Assembler. As in most assembly
languages, the language statements represent a small number of the lowest level primi-
tives. In contrast, compiled languages use statements that can be compiled into a very
large number of the lowest level primitives. Ultimately, the lowest level primitives are

the mask geometries.

The advantages of such a language are many. A one to one correspondence
between a line of text in the language and a single circuit element is maintained making
interactive circuit editing feasible. Again drawing the analogy to assembly languages, a
symbolic transistor representation could be considered equivalent to an assembly level
macro. Symbolic references in the textual description are translated into internally
maintained linkages thereby explicitly maintaining circuit connectivity, a feature which

has been recognised as imperative for all future design systemslﬁl].

ABCD forms the basis of the VIVID system. It uses primitives such as transis-
tors, wires, pins and contacts to describe designs. It uses a virtual grid layout and is
based on the ICDL language used in the MULGA symbolic design sy.stem deveioped at
Bell Laboratories, and partially on the language used in the ICSYS systen1[64]. (See Fig.
3.2 for examples of ABCD in text and graphic form). The primitives used are intended

to define circuit primitives rather than geometric ones as in the low level design systems.

It is a text-based language as opposed to a machine readable format such as CIF.
This is a useful feature as easily understood formats are more rapidly accepted by all
who work with them leading to greater understanding by all members of design teams
as well as tool designers. Such a format can be and is used as input to a range of other
tools to perform all of the checking functions discussed in Chapter II. The number of
checking functions that need to be performed is of course reduced by the introduction

of the Compaction Tool (ie. Design Rule Checking is performed within the Compaction

Tool).

3-5

Section 3.1.1

#
$Header$
#

A Better Circuit Description Language (ABCD)

Created by ICE 1.1 on Tue Apr 8 08:22:33 1986

#

begin inv bbox=(0,0,6,10)

out_e:
in_w:

vdd_.nw:
vdd_ne:
vss_se:
VSS_SW:

c2:
cli:

cdis:

cdiD:

cd2D:

d2:

di:

end inv

pin

pin

pin

pin

pin

pin
contact
contact
wire
wire
contact
wire
wire
contact
contact
wire
contact
wire
device
device
wire
wire

metal (6,5)

poly (0,5)

metal (0,10)

metal (6,10)

metal (6,0)

metal (0,0)

vdd (3,10) or=n

vss (3,0) or=n

poly (2,5) (0.5)

poly (3,2) (2,2) (2,8) (3,8)
autocontact di.s or=n
metal (cd1s) (3,0)
metal (3,5) (6,5)
autocontact di.d or=n
autocontact d2.s or=n
metal (cd2S) (cdiD)
autocontact d2.d or=n
metal (cd2D) (3,10)
p-type (3,8) or=n
n_type (3,2) or=n
metal (0,10) (6,10)
metal (0,0) (6,0)

| Figure 3.2 (2): An ABCD description of the CMOS Inverter shown on the following
f page. Notice the difference in primitives used in this language compared to those used

| in BELLE in Fig. 2.1.

A Better Circuit Description Language (ABCD)

Section 8.1.1

£l vdd._ne

vdd_nw 3

—F1 out..e

inLw 3

7T
77/

N

(X

I3

vss_suw [I- F""_,u £] vas_se

Figure 3.2 (b): The Computer generated plot of the inverter described on the previous
page. The elements are all shown on a virtual grid as opposed to an absolute grid layout

used for the mask level description.

Section 8.1.2 Higher Level Graphic Circuit Editing (ICE)

ABCD in the VIVID system, performs most of the functions of CIF in the Low
Level Tool Set. That is, for the Higher Level Tool Set, ABCD has been implemented
as the standard interface between a large set of IC design tools. Whereas in the Low
Level Tool Set, CIF is used as the standard interface between a large set of design
tools. ABCD and CIF appear similar in their abilities to scale up or down to meet the
needs of a particular technology, however there are vast differences. In CIF the value
of A can be redefined by altering the scaling field in the DS statement. This does not
allow for relative size scaling between circuit elements or mask features. The relative
sizes will remain constant using CIF. Using ABCD, a virtual grid circuit description
is translated into a mask description, and at this time dimensions of its components
are specified independently of each other. Since these different elements usually change
scale at different rates as technology changes, ABCD is much more flexible than a layout
language. Designs may be specified in the ABCD language using either a text editor
to generate the code directly or by using a Graphics Editing Tool (see Fig. 2.2 (c)) to
visually edit circuit layouts and produce ABCD as output.

Apart from its current flexibility ABCD is an attractive language to use as a stan-
dard interface because of the proposed development of the complete VIVID Systeml!®8].
Plans exist to develop a structured front end to ABCD to allow procedural design and
to extend this approach from MOS to other technologies such as bipolar. In conclu-
sion, the ABCD language forms an excellent base interface language that will allow

development from the Assembler level to the Compiler level.
3.1.2 Higher Level Graphic Circuit Editing (ICE)

Designs represented in the ABCD language may be created by way of a text
editor if necessary, just as CIF descriptions could also be generated by the use of a text
editor. The most efficient method of ABCD circuit description however is by way of the

VIVID Interactive Circuit Editor ICE.

The principles of operation of ICE are the same as those discussed for Geometry

3-8

Seclion 3.1.2 Higher Level Graphic Circuil Editing (I1CE)

Editors in Chapter II. The difference between ICE and the Low Level Geometry Editors
is the fact that the low level tools produce the layout language CIF on a fixed grid as
their ultimate output while ICE produces ABCD , the higher level circuit description
language using the virtual grid. The importance of the virtual grid becomes most clearly
evident when used in conjunction with a circuit editor as it allows a designer to work
at the Topological level rather than a geometric level. The virtual grid removes all
necessity for design rule considerations from thé designer and leaves him to deal with

circuit placement only, a function that the designer would normally have been trained

for.

The editor ICE is a menu driven program which has six primary features that
make it much more versatile than any of the Geometry Editors that have previously
been discussed. They are (i) Symbolic Layout, (i) Virtual Grid, (iii) Element Tracking,
(iv) Automatic Wire Routing, (v) Easy to use interactive menus, and (vi) Technology

Independencelﬁzl.

The Symbolic Layout and the Virtual Grid concepts have already been discussed
at length. Use of symbolic circuit elements also facilitates the tracking of an element
relative to another. If the designer moves a particular element during the design pro-
cess, ICE moves any related elements automatically. Wire connections are maintained

regardless of the addition or deletion of space during the design processlﬁ?l.

Automatic Wire Routing is also a feature provided by ICE. This connects sym-
bolic elements within cells and belween cells. The points to be connected must be
designated and then the router constructs the wiring. Wire routing eliminates complex

: o
manual placement of wire networks and contacts!62].

All of the circuit design tasks are provided in predefined menus on alphanumeric
and graphics screens. Keyboard input is kept to a minimum allowing the designer to
focus attention on the graphics screen as the primary work area. Menu choices are
represented in colours and symbols that are easy to learn and recognize. They are

3-9

Section 3.1.2 Higher Level Graphic Circuit Editing (ICE)

organised hierarchically with each menu containing selections that are relevant only to

the particular task being perforn1edl62].

Technology independence is achieved through the VIVID Master Technology File
(MTF) system which can be modified to suit specific design requirementsle]. Any of the
technologies (CMOS, nMOS and SOI) can be chosen to meet the designers’ fabrication
requirements. Also, various ICE attributes can be altered, such as the appearance of

. a, Iy
primitives, colours, virtual shapes, and menu orgamsatlonlﬁ"l.

ICE allows the designer to adhere to a rigid hierarchical design structure. At the
highest level would be the Master Floorplan, the top level composition cell containing
all of the lower level hierarchy. The hierarchical structure of any composition cell in a
design can be displayed by using the appropriate menu function. Fig. 3.3 shows ICE
output for a component part of a CMOS Adder cell described in detail in Chapter V.
The system used to indicate composition cells in ICE is similar to that in KIC, where
composition cells are identified by their bounding box and the name of the cell inside

the bounding box.

Most of the problems associated with composing cells at the mask level are non-
existent in the VIVID system as design rules and hence geometry relationship is no
longer an issue. As long as only pin information exists on a bounding box for an ABCD
design, there is no possibility of any design violations at the time of composition. This
enables a truly hierarchical approach to design and combined with the connectivity in-
formation implied through the use of pins, forming the only legal connection between
composed cells, all of the advantageous features of Interactive Circuit Editors as men-

tioned in Chapter II can be found to exist in ICE.

As a component of the VIVID system, ICE is written in C to run under the BSD
(UCB) 4.2 UNIX operating system and has been transported to the VMS operating
system by researchers at Adelaide University and ISD. The hardware required to run

the system is a colour graphics terminal, a monochrome text terminal and a bit pad or

3-10

Section 9.1.2 “ Higher Level Graphic Circuit Editing (ICE)

c c c
| 1 |
Q Q 0
vdd_nw 4 - = vdd_ne
C
)
m Fcomadd
C
Iin_wm [b -
cin.w a cobar
I
vasas_auw vaas._..ac
e 1G] IR cd o —ne
=R =8 B =il .- B g=gizs : ¥ =
=1 ! | -
_E g < s
= |
= o = : el i} [T il
THRIYITIT S AR RRY 52 LARNAR] ZEIRRARL
=] -
ju
O . cobar_re
TEyT unln_lluinﬂﬂﬂl TR T
=Rl .".'_}E 341 o INY N=N g vacms | 2 g
e AR il (LT ! vas_se

Figure 3.3: ICE output showing composition cells with bounding box and port labels
only (above), and with symbolic circuit level detail shown (below).

3-11

Section 3.1.8 Circuit Eztraction and Simulation

optical mouse for cross hair control. Fig. 2.2 (a) and (c) show workstation

configurations capable of running ICE.

In conclusion, ICE is not only a versatile editor because of the VLSI design
philosophy used as its basis, but also provides the designer with a relatively terminal

independent tool, as is shown in Table 3.1.

VIVID System
Compatible Terminals
Graphic Displays Hard Copy Output Devices Input Devices

Ramtek 9400 HP 7580 8-Pen Plotter Summagraphics BitPad
Lexidata 3400 HP 7220 8-Pen Plotter USI OptoMouse 4000
Lexidata 3700 QMS 1200 Laser Printer GTCO Data Tablet
AED 512 Versatec V80 Plotter/Printer
Vectrix VX 384 Printronix 300 Line Printer
Metheus Omega 530

Table 3.1: A table produced by MCNC indicating the versatility of the VIVID system
measured by its terminal independence as of early 1986. The VIVID system currently
runs under 4.2 bsd UNIX on DEC VAX 11/780°s and 11/750’s and is being developed
to run under VMS on the same machines.

3.1.3 Circuit Extraction and Simulation

The higher level tool set allows circuit extraction and simulation prior to mask
layout. Using the ABCD language as input, the circuit extractor ABSTRACT is used
to provide input to one of two simulators, SPICE, the circuit simulator discussed in
Chapter II, or FACTS a timing/logic level simulator. FACTS is most often used as it
gives a much faster response than SPICE and it also allows a more versatile operating

interface for the user.

The symbolic level circuit extractor ABSTRACT references the MTF system
and calculates the electrical parameters associated with each circuit element. The re-
sult of course will not be completely accurate as the actual mask geometries have not
been defined at this stage of the design phase. The need for fast design verification

3-12

Seclion 8.1.8 Circuil Extraclion and Sunulalion

however makes it desirable to be able to perform an approximate circuit extraction and
subsequent simulation at this stage. The estimates are a good approximation for all
elements except wires whose lengths are directly dependent on the final layout size. It
is expressed in the VIVID documentation that reasonable estimates of wire length can
be made as it is assumed that the spacing between the virtual grid lines will average
out over the desigan3]. This average grid spacing parameter is coded in the MTF sys-
tem and can be tuned by the designer according to the technology being used and the

performance of the compactor.

As well as circuit extraction, error checking is performed by ABSTRACT and
both textual and graphical output is available. Examples of errors detected are over-
lapping or improperly abutted cells, unconnected or short circuited components, and

improperly named signals.

Circuit simulation is performed by FACTS. This simulator has been designed for
MOS simulations and can be used with circuits containing as many as several thousand
devices. FACTS precalculates tables of simulation values before beginning a simulation
and allows the use of a simple first order transistor current model, or the use of a
more detailed current model taking into account the effects of saturation, linear and
cut-off regions, channel length modulation, drain and source threshold dependence, and
capacitance modelling. FACTS also monitors all node voltages and when the changes

are small, increases the time step to avoid redundant or insignificant calculations!®3].

FACTS output can be varied depending upon the user hardware whereas stan-
dard SPICE output is a character plot to a line printer or a numeric list to a file. Often
SPICE output can be manipulated to provide more readable output, however, FACTS
has been built into the VIVID system in such a way as to use the display routines
to enable readable plots on a variety of devices including colour graphics terminals,

monochrome graphics terminals, monochrome text terminals and line printers.

The advantage of using FACTS over SPICE is that it quickly provides informative
3-13

Section 3.1.4 Compaction lo a Standard Mask Description

feedback on circuit operation for a designer using the VIVID system. As stated in
Chapter II for logic and timing simulators, FACTS is not intended to provide accurate
network analysis down to analogue detail, rather it allows swift verification of circuits

of up to a few thousand transistors during the design phase.

Included in FACTS are interactive features which enable a simulation process to
be halted at any time to allow alteration of circuit parameters such as loads on nodes,

or of the display of nodes.

These two tools ABSTRACT and FACTS, allow swift verification of the virtual
grid layouts of designs produced using ICE or ABCD. This is an essential feature of
the higher level tool set as it allows the designer to stay away from the low level CIF
description of the design even in the layout verification stage of the design process. The
aim is to provide a highly interactive design environment to increase the efficiency of
the design phase. This would not be the case if the designer had to continually move

between the symbolic and mask levels.
3.1.4 Compaction to a Standard Mask Description

Different methods for compaction have been suggested[48] by various authors,

however only the compactor provided in the VIVID system will be analysed in this

thesis.

Once a design has been completed at the ABCD level, the task remains to con-
vert the circuit level description of the design into a mask layout description enabling
the generation of masks ready for fabrication. This task is handled by the VIVID Hi-
erarchical Compactor HCOMPACT. The compactor takes ABCD descriptions and
generates a LLAMA mask description of the circuit. The compactor operates in two

distinct steps, leaf cell compaction and hierarchical conlpaction[63l.

An ABCD leaf cell will contain only circuit primitives. The compactor translates
the symbols into a mask representation and then spaces them according to the design

3-14

Section 8.1.4 Compaclion to ¢ Standard Mask Description

rules. HCOMPACT solves some of the problems of compaction experienced in the past
due to the interdependency of these two tasks. Traditionally the placement of wires and
contacts on transistors has caused many problems. HCOMPACT solves this problem
by adding flexible wires to rigid structures such as transistorsi®3l. These flexible wires
can be extended to allow decoupling of the rigid constructs from the rest of the layout

to allow the compactor to treat the mask spacing problem in a uniform manner!%3),

Mask spacing is determined during two passes, vertical and horizontal, across
the cell. The compactor then determines the minimum allowable spacing between grid
lines by reference to the MTF. After the spacing for a grid line has been established,

all of the objects on the line are positioned togetherlﬁ:”].

The hierarchical compaction procedure compresses the hierarchy into a set of
cells that completely tiles the circuit(®3l. The compactor analyses all of the positional
occurrences of each of the leaf cells, and finally generates a compaction solution for
each distinct leaf cell that will satisfy all instances of that leaf cell. The compactor then
performs the actual leaf cell compaction and obtains a mask cell that can be placed
in any of the original environments without causing design rule errors. Once each leaf

cell has been compacted, the mask layouts of the cells are assembled according to the

original layout.

During the assembly phase of the compaction, the primary problem is that of
cell pitch-matching. Pitch-matching is a term used to imply alignment of ports on
cells that must be connected at the composition stage of the design process. The
pitch matching on the virtual grid layout of a design may be offset when the physical
layout is established due to the leaf cell compaction process. The compactor therefore
retains information on the original virtual grid layout, enabling it to stretch cells by the
appropriate amount to achieve a match. Compression of cells will not occur as the leaf
cells will have been compressed to minimum size in the first place{63l. The result of the
compaction process is a mask description of the circuit in LLAMA. Fig. 3.4 shows a

leaf cell before compaction in its symbolic form and after compaction in its mask form.

3-15

Seclion 8.1.4 Compaction to a Standard Mask Description

E
|
W
0
oo B O
N e
. s #
* 4" s g
~ :::— b
T i it
PO 1] e TR) TR =
b_mmmmggﬂmuml: =
& 1 —w (R CIO I jcobar_e
mmmiimmmusa 1 at
i I
NENEREESNENGNES N
WO) i i T2

I i TR
R
e Ry] [
%ﬂ R R R
90 T S
e e i o Ry
S S SR
St
TR
NN N R \
TSI N
g 3 \
] 31 (TR \
[- 11 iillﬂimm \
T ATy il i
L ?‘;lll 3 @ \ |§
LI TSSO OB TR S DRI A
N N N B N HEWN
EH TR LTS R BRIV TSR~ M
NN NN _ o N N
Ej:gi-i%{iifi{}*}fﬁm mf}iﬁ@fﬁﬂi .
O 1 IS T e
ATRITITHR T (TR HETTTL (R S TR VT
| TR e

Figure 3.4: The VIVID system allows design in symbolic form, free from the concerns
of Design Rules and once it is complete, VIVID compacts the symbolic design to a mask
level layout. The plot above shows the symbolic representation of a cell, while the plot
below shows the compacted mask layout.

3-16

Section 8.1.6 Master Technology File System

Both HCOMPACT and the MULGA system compactor[651 use a symbolic design
system on a virtual grid and both use the same two basic steps of mask rectangle
generation and grid space assignment. The primary difference between the two is the

order in which these two steps are done. Mulga does grid space assignment first while

HCOMPACT does the mask rectangle generation first!65].
3.1.5 Mask Level Layout Description

The generation of a mask description of the design marks the end of the symbolic
work in the VIVID system and the beginning of the physical manipulation of mask
geometries. It is intended to provide an efficient Geometry Editor with the VIVID
system but as yet this does not exist and it is necessary to use current tools that are
available. In this case KIC (see section 2.3 of this thesis) is used to provide the geometry

editing functions required.

The VIVID system may then be currently regarded as a front end processor to
tool sets such as those described in Chapter II of this thesis. Consequently, A Trans-
lator of Layout Languages ATOLL is provided within the VIVID system to translate
from the LLAMA mask description language to other languages used as standard inter-
faces between particular low level tool sets. Examples of standard formats that ATOLL
already caters for are CIF, CAESAR, and Calma GDS I Stream Format. The architec-
ture of ATOLL has been structured to facilitate the addition of other mask description

languageslﬁe’].

3.1.6 Master Technology File System

One of the concepts discussed in the low level tool set was that of technology
independence and in line with this concept, the tool ROWAN, based on LYRA, was
discussed as the first of a series of tools to use a technology file as the basis for this
technology independence. Technology independence is a favoured feature of any tool
or tool system as it enables swift generation of a tool or tool set to handle any new
technology based on the manipulation of mask layers that conform to a set of design

3-17

Section 8.1.7 VIVID Summary

rules.

The VIVID Master Technology File MTF System is the part of the VIVID
system which provides the interface between the designer and the design system. The

VIVID system configures itself to a particular technology by referring to the MTF

system.

This system contains all of VIVID knowledge of circuit primitives and controls
the representation of primitives in the ABCD language by defining the names of device
types and process layers. It controls the appearance of the circuit by defining the symbol
shapes, colours and stipple patterns and it controls the formation of mask layout forms
of the circuit primitives by providing symbol to mask translation rules. Finally, the

MTF system contains information about the primitives electrical properties.

It is not a trivial task to create a new Master Technology File, but altering a
current one to reflect technology changes is not a difficult task. Chapter V gives a design
example using a new Master Technology File as created for the design rules for a CMOS
process described by Weste and Eshraghian[48]. Part of this new MTF is shown in Fig.
3.5.

3.1.7 VIVID Summary

The VIVID system provides a set of tools for symbolic virtual grid layout of
custom VLSI circuits. These tools enable high level circuit design, which allows the
designer to concentrate on circuit topology rather than on mask level layout and ma-
nipulation. The system is currently available to run under the UNIX operating system
but will soon be available, due to research primarily done at Adelaide University, and

by development work by ISD, to run under the VMS operating system.

Tools allowing mask level manipulation are required at the back end of the system
for final mask level simulations and any resulting mask level alterations, or for such tasks
as the wiring of pads to the final layout. They are not yet supplied as a part of the
VIVID system. However it is intended that they ultimately will be.

3-18

Section 3.1.7 VIVID Summary

compaction{

layer_spacing{ NOEVIRES NmFeATURE
alum, alum, 15 = MICRON / 2; \\(
poly, poly, 10 * MICRON / 2; /
thinox, thinox, 15 * MICROR / 2; [|
pthinox,pthinox,15 * MICRON / 2; o
cut, cut, 10 * MICRON / 2; N-WIRE ANTIFEATURE
poly, thinox, 5 * MICRON / 2;
poly, pthinox, 5 * MICRON / 2; ANTIFEATURE
poly, cut, 10 * MICRON / 2; RECOGNITION
p_plus, p_plus, 10 * MICRON / 2; PATCH
thinox, p_plus, 10 * MICRON / 2; /

, p_well, p_plus, 25 * MICRON / 2; I - I

antifeature_width{ p,}TCH
cut 10 * MICRON / 2;
alum 15 * MICRON / 2; S
poly 10 * MICRON / 2;
p-plus 10 * MICRON / 2;
p_well 15 * MICROK / 2;
thinox 15 * MICRON / 2;
pthinox 15 * MICRON / 2;

}

}
MERGE

Figure 3.5: A component of the Master Technology File used in the VIVID system for
the description of the spacing rules used for the Weste and Eshraghian[48] CMOS pro-
cess. A new concept introduced by the higher level tools is the ANTIFEATURE width.
As mask geometries are automatically generated by the compactor, small antifeatures
can result as shown at top right. While it does not affect circuit performance, it is
important because small photoresist features are likely to peel off during processing,

causing problems elsewhere on the maskl48l. As a result, small patches are added to fill
the antifeature as shown at centre and bottom right.

The combination of the best of the tools from Chapter II, as described in Table
2.5, with the VIVID system provides a complete set of tools enabling the most efficient
design of full custom IC’s on a very large scale using state of the art techniques. The
diagram in Fig. 3.6, taken from the VIVID System Overview Manual, describes the
complete VIVID system. When the proposed developments are completed, the resultant
system will provide a complete stand alone software package for IC design. This package
will then provide a sound base on which to build potential Silicon Compilers of the
future.

3-19

Section 8.1.7

VIVID Summary -

................... R TR SR SRR,
e R ‘%‘;\; :;33\'{"' CRSRNR ICICLE |}
] DA R 8
i Interactive w“t‘ 2 Interactive \i
A) Pt Sttt . . / ::'
E; Circuit Editor Display/Plot B2
% Chip "
iy Avtomaced Assembly | 3
R outing R
I ACHECK ATOLL |}
P
% AFLAT Tu“gl“ A 55
ranslation
3 ABCD : LLAMA b
g AR HCOMPACT] cume ops |2
ke e 2 ma -
Ky Language Circuit Hierarchical I‘da-Sk- Stream Format -~
] Utilities Description Clompactor Description - o
R e Language Language CIF &
R: Caesar \-3
tq Standalone o
: Plotting ARTLIB | |3
- 2
&{ ABSTRACT Language | b
& o] Utilities o
¥ Circuit oy i
by Checking R R s
% A T ;.:‘., 0 1 = Under 3
t:{ SPICE Deck | R S 3 SRR : &é‘é\“‘%\ % Development %
% Generation | foouny R VAR RS . s Q‘Q‘?@)\‘f\(&f\@i TMask | E
o x 0 W '-.- e . e
] FACTS o Symbolic Layout o < Physical Layout | %‘; Editing a
ST : o e , N
3 . . %) 0 L -b . ,\ :>¢‘: e -‘.‘Q',:"a *1 Interactive %
y Circuit 3) R 3 ‘2%‘%% » DRC :
\% Simulation b R AL s : ; .‘3‘:. N ('_‘%\: ;
R T i . R R S S SR 3
SR ¢ ter Technol File System A RN R
3 R e R o e imyve? _ec- ey wzg?’wmprx S :-f:t«x-:t&xwﬁb} éi‘:’i\“‘if

Figure 3.6: The VIVID System design environment indicating the separate mask level
and symbolic level components. Chip assembly currently requires the use of low level
tools such as those described in Chapter Il

3-20

Section 8.2 Design Levels

Integrated Circuit
Design Levels

Design Level Components Information Units TimeUnils

Processor CPU’s, I0P’s, Blocks of Words 1073-10% s
memories, IO devices

Register Registers, combinational Words 1079-1076 s

circuits, simple

sequential circuits
Gate Logic gates, flip-flops Bits 10-10.10-8 5
Mask Layout Mask Geometry Analogue Signals <107 105

Table 3.2: Integrated Circuit Design Levels. These levels provide the boundaries that
enable differentiation between the levels of VLSI Design Tool Sets. Chapter I described
a tool set at the lowest, Mask Layout, level while this Chapter has introduced the VIVID
System, a Gate level tool set.

3.2 Design Levels

The design of a complex system such as any VLSI system, can be considered at
different levels of complexity depending on the components recognised as the primitives.
In digital computer design there are commonly three major levels considered. These are
the Processor Level, the Register or Register Transfer Level and the Gate Level. (With
IC design a fourth level, that of mask layout has been identified and described). Table
3.2 lists the types of primitives or components recognised at each level. The boundaries
between the levels are never absolutely defined and so it is possible to encounter system

descriptions using primitives from more than one level.

The gate level is the subject of classical switching theory and is the concern of
the logic designer. Its level of complexity can be considered equivalent to that involved
in the design of SSI logic. The register transfer level is approximately the level seen
by an assembly language programmer and has a complexity comparable to MSI circuit
design. The processor level is that seen by a computer architect and can be equated to
the system design problem faced by an LSI or VLSI designer.

3-21

Section 3.2 Design Levels

Other methods of distinguishing the various levels are considered in Table 3.2.
Such methods may consider the time taken to process the information used at the
various levels, starting commonly at nanoseconds at the gate level and moving on to
seconds or minutes at the processor level. The amount of information processed at the
various levels is also a useful measure, with bit information being processed at the gate

level and blocks of words at the processor level.

" These design levels are classified as high or low depending upon the complexity of
the primitive used by the particular level being considered. This Chapter has considered
a tool set, VIVID, which can be used at the lowest level discussed here. Following
sections will consider more advanced, higher level tools, not yet composed into a system,

but none the less higher level than those tools introduced so far.

The principles behind the development of such tools revolve around the fact that
complex systems tend to have hierarchical orga.nisation[67]. The development of complex
systems is made easier by and arguably requires the existence of stable intermediate
steps. Hierarchical organization also has important implications for VLSI designers.
It is perhaps most natural to proceed from higher to lower levels of design as this
corresponds to a progression to successively greater levels of detail. This Top Down or
Structured design approach has been promoted most strongly first by the proponents

of structured programmin glm] and then adopted by the proponents of VLSI designls].

Design problems at the various levels are quite different. At the gate level,
substantial Switching Theory exists as a basis for the solution of problems encountered.
Register and Processor level design however still remains largely an art and is highly

dependent on the designer’s skill and experience.

As a result, most of the developed tools currently in existence for IC design are
based at the gate level or at the mask layout level. The following section of this Chapter

discusses a higher level tool for the design of IC’s.

3-22

Section 3.3 Programmable Logic Arrays, PLA’s

3.3 Programmable Logic Arrays, PLA’s

The Programmable Logic Array (PLA) is described in this chapter as a higher
level tool because of the method used to input information to the tool. While it cannot
be considered the most efficient way to implement a logical function in terms of area
or speed, it can still be considered a full custom design tool because it requires the
manipulation of all mask levels to provide the desired result. The PLA is used to

provide fast layout solutions for irregular Combinational Circuit problems.

Combinational Functions can be defined by a truth table that specifies for ev-
ery input combination the corresponding output value. Combinational Circuits are
the physical realisation of Combinational Functions and are constructed from primi-
tives called gates which are themselves the physical realisation of simple Combinational

Functions.

The algebra which models combinational circuits is a type of Boolean Alge-
bra which originated with the work of George Boole (1815-1864), a contemporary of
Babbage[ml ;

The first task is to describe a PLA. Fig. 3.7 shows the general form of a PLA.
Using a 2 phase clocking scheme information can be shifted directly, or in complement
form, into a structure containing an AND plane and an OR plane. The AND plane
generates combinations of these inputs (literals) to form a number of boolean product
terms each containing a number of these literals. These product terms are defined as
minterms, as long as they contain all of the literals. The outputs from the AND plane
are then fed into the OR plane where the boolean sum of the products is completed.
This information is then stored in output registers and shifted out on the second phase

of the clocking. An example of a canonical sum-of-products form of a function is

= 7].Z9.T3 + £1.T2.23 + £1.22.T3 + T1.20.Z3
1.42.43 1.£2.23 1-42 1.£2

3-23

Section 8.8 Programmable Logic Arrays, PLA s

AND R OR
PLANE "| PLANE

—>»| LATCHES LATCHES = j¢— CK
INPUTS OUTPUTS

Al Al A

p——

Figure 3.7: On the left is seen the general form of a PLA indicating the AND-OR
planes, clocking, and inputs and outputs. The diagram on the right shows a possible
circuit schematic for the equations referred to in the text below.

A minimal sum-of-products expression for the previous equation would be
f = z1.20+ £1.73 + T1.T2.Z3

This equation corresponds to a two level AND-OR circuit with the fewest gates and the
fewest gate inputs. These equations use three inputs and one output. A PLA can be
designed to provide solutions for an arbitrary number of inputs or outputs. A simple

example of a PLA scheme is shown in Fig. 3.7 for the equations
Zy = X
Z) =X, +-X-0.Y1.X2

Z, = X1.X2

Z3 = Yo.)—(’l.fg + -)—{o.Xl.Y2
3-24

Section 8.8 Programmable Logic Arrays, PLA's

PLA’s can implement very irregular combinational functions but still maintain a regular
structure as the irregularities are mapped only in the positioning of pull-up or pull-
down transistors in the PLA. The size of the PLA and its shape is a function of four
parameters. (1) The number of inputs, (2) The number of outputs, (3) The number
of product terms and (4) the minimum feature size of the particular technology being

used.

A PLA generator removes the designer from the physical circuit by allowing
interactive input at the boolean equation level. This effectively allows the designer to
skip further steps in his normal design translation procedure. The gate level digital
system designer works in terms of boolean equations which describe system operation.
The equations are minimised and subsequently translated into gate level descriptions of
the circuit. If the designer is working at the symbolic (VIVID) level, these gates are then
converted to device level descriptions and the circuit can be implemented using ICE or
ABCD. If the designer is working at the lowest level, the device level descriptions must
in turn be converted to mask level descriptions and implemented with a layout language
or geometry editor. At each translation stage errors are likely to be made and as the

lower levels are reached, the complexity increases greatly, increasing the likelihood of

€ITOrT.

A PLA Generating (PLAGEN) Tool automatically generates mask layout in
an interactive computing session. PLAGEN, the tool discussed in this thesis is written
in PASCAL to run under VMS. Fig. 3.8 details an interactive session in which the PLA

layout shown in the same diagram was generated for the following boolean equation:-

O=M.P+PSI+PSI

The input to PLAGEN comes not only interactively from the designer, but also
from a file. This file contains a Karnaugh Map style of input as well as information

regarding the number of inputs, outputs, and the number of product terms involved in

3-25

Section 3.8 Programmable Logic Arrays, PLA's

$@plagenn pla

Enter number at which symbols start:9000

Subsymbols to be generated?y

Do you want to program this PLA?y

Do you want all inputs on the same side?n

Which inputs do you want at the top?1 3

Do you want the inputs of this PLA to be clocked?n
Do you want the outputs of this PLA to be clocked?n
Do you want outputs on the bottom side?n

Do you want input and output labels omitted?y

PLA completed.

$
il
% 11T . I
ﬂ Kj‘
JEETITTTRE ﬁ[%fHHHHHHHH__ g : il
= % N '
i e
e T R R B I
- M \ b, 7 :‘ A0 :j
r TR g' [ﬁ}‘IHH1 AL i
-~ N N M N AN N AW AN
: AL Y e
r N {,!) /;) ,-‘"- A] /:
il [HECHRR :y S } EIHiEﬁFﬁ oy
—~ N /1 SIS NRPAIN . 7R AR
’] mﬁnm T = i
“ SRR .ﬁ_ .| _;:‘: b 17 P
[“!Illlmi'ﬁi} i.*l “”l‘.[S IEE 3 H m”j. I [
i

Figure 3.8: The text above shows the interactive session between the designer and the
tool PLAGEN used to create the comparator PLA for Project C4, AUSMPC May 1982.
The layout for the PLA is shown at the bottom of this diagram.

3-26

Section 3.8 Programmable Logic Arrays, PLA’s

the boolean equation. A Karnaugh Map provides a method for minimising the
number of primitives (gates) used in a particular combinational circuit design and so
provides an attractive format for the input of the Equation as it should prompt a
designer to minimise his equation prior to implementation. Fig. 3.9 details the input

file for the PLAGEN session described in Fig. 3.8.

SM
PI 00 01 11 10
o 431 000 0 O O
0D =MP +P.S.I +P.S.1I Ixxi 4 010 0 0 0
111x 1 110 1 1 1
100x 1 101 1 1 0

Figure 3.9: The contents of the Input File to the tool PLAGEN are placed in the form
of a karnaugh map representation. Here the input file on the left is compared to a
karnaugh map representation of the boolean equation, on the right.

The first line of the PLAGEN input file has three numbers in it. The first of the
three indicates the number of different inputs to the PLA, or the boolean equation. The
second of the three inputs indicates the number of product terms involved in the boolean
equation. The last of the three numbers indicates the number of outputs required on
the PLA. The number of lines below this first line corresponds to the number of product
terms, while the number of entries on the line itself corresponds to the number of inputs
(literals) used in each of the terms as well as the outputs. A space separates the inputs

from the outputs. Once this file has been created, then PLAGEN can be executed.

Another example of a PLAGEN input file, this time for a boolean equation which
is 2 non minimised form of the previous equation is used to indicate the possibiltiy of
redundant circuitry. The circuit resulting from the boolean equation below is shown in
Fig. 3.10.

O=M.P+M.PSI+M.PS.I

The PLA offers great reduction in design time and a much more friendly designer

3-27

Section 3.3 Programmable Logic Arrays, PLA's

" -
1]
] } [T LA
M L _;‘
r\ . . IE
HEL |'./ 4
liE TR IR I It
' Aot e] LI o S
L . wﬂ,
r 1t~ l X A N 2 M %
TITTEL E‘ﬁ n
r AL) 211 2 iy /) V3 o O
IR _
| -
ﬂmmm@ﬂﬂaw%m ;

Figure 3.10: The PLA layout above provides the same circuit functionality as that
shown in Fig. 3.8, but the one shown in Fig. 3.8 has been minimised. The effect
this minimisation process has in this case does not alter PLA size, however for larger
equations such minimisation could effectively provide significant space savings for an IC
design.

interface than most other design tools. The designer interface to this tool, using
design techniques based on switching theory, distinguishes it from other gate level layout
tools (VIVID) and places it on a higher level. Of all the tools discussed in this thesis,
the PLA can easily be considered the highest level design tool, and examples of circuits

designed using this tool will be given in Chapter IV.

Unfortunately, as yet, no Gate Level tool exists that totally removes the need
for the designer to be involved in the lowest level of design. The VIVID system still
requires manipulation of mask geometries by the designer for final connection of pads
to the design 10 ports. The designer must also manipulate mask geometries to connect
to PLA generated layouts. As soon as any Mask level manipulation is required, most

of the low level tool set is required to verify the additions to the design.

3-28

Section 8.4 Display Tools

3.4 Display Tools

When considering the complexity of IC design and all of the functions desirable
in a tool set that can handle VLSI systems, it is easy to overlook the most basic function
that is a requirement of all tool sets. Some efficient method must be used to display
mask and/or symbolic level information and the results of verification tests done on the
designs on a variety of different peripheral devices, ranging from simple text terminals
at the lowest level to high resolution colour graphics devices at the top level of available

terminals. Both interactive displays and hard copy information must be provided for.

In well organised tool sets, the standard interface language can be used as an
input source to a tool which will allow display of the design information on a wide
variety of peripherals. An example of such a tool is SEE[GGI, the ISD generated tool
designed to display nMOS and CMOS CIF geometries on a number of different display
devices, including a variety of plotters, as well as a wide variety of VDU’s, both colour
and monochrome. SEE is written in PASCAL to run under the VMS operating system.
As an example of this type of tool, Fig. 3.11 lists an interactive SEE session and shows

the resultant diagram produced .

e

As well as displaying the complete design, SEZ allows some manipulation of the
displayed information. For example, on an interactive VDU, the designer may selectively
zoom in or out on sections of the design. On all devices, windows of certain areas of the
design may be selected for display and the designer may also select any combination of
the mask levels to be displayed. Other features such as the display of node labels also

exist.

The higher level tool set should also provide an integrated approach to the display
of not only mask level information but also the symbolic level information and simulator
output as well. The VIVID system uses high performance graphics subroutines, col-
lectively described as the Z-Graphics package to provide output for its graphical tools

including, FACTS, ICICLE, (a program designed as an interactive tool for viewing

3-29

Section 8.4 Display Tools

$ see bitplt.cif
Enter a value of Lambda you want to use (Default is 250.00) ?
No errors detected in cif file - D1:[JNOONAN.SUB1]BITPLT.CIF;
Technology is nMOS , Llambda = 250
The bounding box of the complete design is :-
Lower left (x,y) (-3 , 3) lLambdas
Upper right (x,y) (122 , 383) lambdas
The display scale to fit the vertical height is : 1.97
Enter the display scale in pixels/lambda (Default is 1.00) 7
Do you want to select a window (Default is KNo) 7
The window you have selected is :-
Lower left (x,y) (-3 , 3) Lambdas
Upper right (x,y) (122 , 383) lambdas
Enter layers to be displayed (Default is all layers) ?
Do you want to display nodelabels (Default is No) ?

=
[-

Figure 3.11: The text shown at the top of the page details an interactive session between
a designer and the tool SEE. The result of the session can be seen below the text. SEE
provides either hard copy or interactive displays of CIF layouts.

3-30

Section 8.5 A System Level Simulator (TicToc)

mask layouts using LLAMA mask descriptions), APLOT, (a stand alone ABCD
design plotting program used for producing a quick graphical view or hard copy when in-
teractive editing is not required), SIMPLOT (a program which plots output from FACTS
or SPICE), and MTF (technology independence and information such as colours, stipple
patterns and shapes for the other graphical tools, are all available for user manipulation
using MTF). The Z-Graphics subroutine library is general purpose and device indepen-

dent, allowing the future addition of new devices as and when necessary.
3.5 A System Level Simulator (TicToc)

Research by Dickinson/®%l at Adelaide University has led to the development of
a tool designed to provide assistance for the VLSI designer in the pre-layout phases of
architectural specification and verification, and the development of microcode and test

vectors.

If a designer can represent and simulate a circuit at a very high level of represen-
tation (abstraction), he can more quickly proceed through the top down design process.
This form of verification is necessary as VLSI design is the process of converting a high
level functional specification into a set of low level geometric mask patterns. Expert de-
signers accomplish this comnlex translation problem by partitioning the design process

into a number of levels of representation as shown in Fig. 3.12057].

Partitioning of a desiza is a difficult task for a VLSI designer as there are none of
the traditional bounds such as packaging constraints or physical size limitations enforc-
ing partitions. The partitioning process for a VLSI designer must rather be considered in
the light of parameters such as (1) Minimisation of interconnect, and (2) Maximisation
of concurrency. System simulation with a tool such as TicToc allows the optimisation
of these parameters by enabling various partitioning strategies to be tested at a high

level.

TicToc enables the designer to specify and verify the architecture on a commu-
nication basis. The TicToc specification describes the hierarchy and connectivity of the

3-31

Section 3.6 Conclustons

system without being overly concerned with the internal workings of modules. Modules

either exist as connections of sub-modules or as leaf modules.

TicToc was written in MODULA-2 and the TicToc specification language is
actually an extension of this language. This is appropriate as the language is suited
to the description of systems that are partitioned and communicate only over defined
interfacesl®%l, For example, the leaf modules of a TicToc specification are written in
MODULA-2 and need not bear any relation to a physical realisation except in the

function that relates module input and output[55l.
3.6 Conclusions

Relating Digital Design concepts as discussed in sections 3.2 and 3.3, to IC design
is necessary as it provides the framework around which efficient design methodologies
may be developed at higher levels. Chapter II described the lowest level of design
tool required for IC design, the lowest level considered in Table 3.2. This chapter
has introduced the VIVID system, which can be classified as a gate level tool set for
IC design, the second level considered in Table 3.2. The VIVID system is still being

developed to provide all of the functions that this level of design requires.

Various attempts at even higher level design tools have been made. The Silicon
Compiler concept has already been mentioned. Early examples of such tools are Bristle
BIocks[GS], FIRSTIGg], and MacPitts!143ll70 Each of these tools is characterised by
the notion of a fixed floor plan in which a designer has a limited amount of freedom
to explore the design space[481. They are very specialised tools and no contemporary
silicon compiler has yet demonstrated any ability to deal with the complexity involved

in full custom VLSI circuits“gl,

The VIVID system has developed to the stage where it can be used to design
CMOS and nMOS circuits at a symbolic level in conjunction with tools from the low
level tool set. It provides a stable intermediate assembly level representation for VLSI
design and allows development of higher level tools from this stable intermediate level.

3-32

Section 3.6 Conclusions

An example of research on this subject can be seen in the CADRE system[57] where
a collection of expert systems communicating through a central manager, (using the
ZetaLisp environment on LISP machines), have been used to model the human physical
design process. A virtual grid and symbolic system is used at a lower level of the
CADRE system as can be seen in Fig. 3.12 which shows the CADRE view of the levels

of design abstraction for a VLSI design.

PROBLEM
FUNCTIONAL SPECIFICATION
ALGORITHM
TE TABLE
ARCHITECTURE SFATE
TER TRANSFER
BLOCK REGLS
DIAGRAM STRUCTURAL
GATE
TRANSISTOR
' VIRTUAL GRID
SYMBOLIC
PHYSICAL MASK
CHIP

Figure 3.12: The CADRE view of Levels of VLSI Design Abstraction.

3-33

CHAPTER 1V

nMOS DESIGN USING MASK LEVEL CAD TOOLS
AND TWO MPC PROCESSES

4.1 Introduction

Australian MPC efforts commenced in 1982 as indicated in section 1.3 of Chapter
I. These efforts enabled Australian circuit designers, who would normally be remote
from IC fabrication facilities, to use for the first time a formally coordinated system for
prototyping circuit designs on silicon. This Chapter presents an analysis of the CAD
tools used for the designs and compares some testing information with some simulated

results to verify the tool set functionality.

The first CSIRO AUSMPC, AUSMPC 5/82 (May 1982), provided free fabrication
of circuits using an nMOS 5 micron process, (ie. A = 2.5¢m or minimum feature size
= 5um). Free fabrication of prototypes was offered to the best 46 designs submitted
to the CSIRO VLSI Program for its first fabrication run as a means of publicising the

MPC effort and to attract engineering excellence to the workl7].

The first part of this Chapter describes a design by Noonan and Williamsl16-1],
which was sucessfully submitted to AUSMPC May 1982. The project was designated
Project C4 AUSMPC 5/82, and was completed using some of the low level tools
discussed in Chapter II (see Table 2.6) and one of the high level tools discussed in
Chapter IIL. Project C4, was designed to be a Signature Analyser and was the designers’
first attempt at designing any IC and specifically their first attempt at nMOS IC design
following the Mead and Conway design methodology. This device is designed to function
as a component part of Eshraghian’s Passive Subharmonic Transponder[82”83], PST
project for use in a Vehicle Recognition System. Project C4 was designed as a 4-bit

4-1

Seclion 4.2 The Signature Analyser

slice version of a system that could selectively compare bit information between two

registers, using a third register as a mask register.

One of the Designers’ aims was to get a working version of the device in silicon
so as to reduce the amount of space taken up by hardware in the PST project, but
primarily the aim was to use this effort as a familiarisation exercise to learn how to
design in silicon following the design methodology of Mead and Conway and evaluate
the CAD tools described in this thesis. The priorities were to attempt a modestly
complex design and get it working. The designers were not trying to complete the most
compact design, rather, to fulfill the project aims, as many tools as possible were used
to try and provide a greater CAD Tool evaluation, hence the use of a PLA for the
comparator part of this circuit. The layout of this design was completed using only the

PASCAL Embedded Layout Language, BELLE and the PLA Generator PLAGEN.

The second part of this Chapter describes a design by Dunis and Webberl7¢]
which was fabricated using the MPC process (again a 5 micron nMOS process) coor-

dinated by the JMRC. The layout of this design was completed using the Geometry
Editor KIC.

The tools used for this design complete an analysis of the Low Level Tools as
described in Chapter II. The results of this work can be used to gauge the effectiveness

of full custom design, using a simple CAD Tool set, with two different MPC processes.
4.2 The Signature Analyser

The Signature Analyser consists of four functional blocks. They are (1) the Input
Shift Register; (2) the Comparator, (3) the Signature Shift Register, and (4) the Mask

Shift Register. A block diagram of this device can be seen in Fig. 4.1.

The Signature to be analysed consists of a 64 bit code which is designed to
contain a number of subsets of information regarding a vehicle carrying the code. For
instance, the 64 bit code could contain information regarding the registration number,

the engine number, the make and model of the vehicle, the class of vehicle, eg. car,

4-2

Section 4.2 The Signature Analyser

|PADVDD . . .
hewpadin 1ewpad1 neupad1newpad1ﬂewpad11eupad
hewpadir FADGROU
hewpadin PADOUT
hewpadinm PADOUT
slice slice slice || slice
newpadin FADDUT
hewpadin FADDUT
LOGO

Figure 4.1: The floorplan of the Signature Analyser desigr submitted for fabrication as
Project C4 on AUSMPC 5/82. This floorplan can effectively be used as a block diagram
for the design.

utility. truck, bus, van, ...etc., the official classification of the vehicle, eg. police
vehicle, ambulance, fire engine, private vehicle ...etc. This information can then be used
for a variety of purposes. For instance the information could be used for detection of an
individual vehicle or, for that matter, an individual class of vehicles for traffic control
purposes. A possible use could be for traffic control to let an ambulance pass unhindered

to an accident or a fire engine to a fire.

The basis of operation of a complete Signature Analyser is as follows. An input
code originating from a vehicle consisting of G4 bits is serially shifted into the input

4-3

Section 4.2.1 Problem Definition and Floorplanning

register where the information is stored. At some time previous to this, a signature
code would be serially shifted into the signature shift register where it is also stored.
Another 64 bit code is also serially shifted into the mask shift register and stored prior
to loading the input information. The purpose of the device is then to compare all of
the bits in the input and signature shift registers that are not masked out by the mask

shift register, and to indicate a positive comparison.

Even though the Signature Analyser chip has been designed with the strict intent
of providing an IC implementation for a part of the Vehicle Recognition System, it is
easily conceivable that this device could be used for a variety of other purposes with
minor alterations. For instance, Signature Analysis is a well recognised technique used
in testability procedureslgl] and with the addition of feedback in the input shift register
and some other design modifications as detailed in Liebelt’s thesis[81], this design could

provide useful background work for a test structure.
4.2.1 Problem Definition and Floorplanning

Using the Mead and Conway Design Methodology, the design proceeds in certain
steps which are foreign to the designer used to designing in TTL using SSI or discrete
components. The methodology takes into account not only circuit efficiency, (eg. the
best way of completing the circuit design in terms of chip area, or speed), but also
considers design time efficiency (ie. the time taken to complete and test the design)
which has rapidly become the weak link in the design chain as far as large systems are
concerned. A description of the aims of the Mead and Conway Methodology is that the
designer needs to consider both circuit efficiency and design time efficiency by creating

a Structured Hierarchical Design using a reduced geometric and electrical rule set.

The first task encountered in the methodology is to write a description of the
problem and list the number of of inputs and outputs required. It is very important
to give careful consideration to these problems at this stage because if for instance, an
input is overlooked, it can be very difficult, if not impossible to rectify the problem

4-4

Section 4.2.1 Problem Definilion and Floorplanning

at a later stage in the design process. This first design stage could be called Problem

Definition.

The problem definition stage as applied to the Signature Analyser project often
takes into account wider aims than just circuit optimisation. In this case part of the
problem was to test a variety of CAD Tools as well as to complete a working nMOS

prototype of a four bit slice of the desired circuit.

From the designer’s understanding of the general sizes of the leaf and composition
cells to be used in the design, in this case shift registers and PLA’s, an estimate of the
size the actual functional blocks would take is then required to be laid down on paper.
As well, consideration must be given to the routing of data and communication lines
between blocks, and also between the pads and the blocks. This second task involved

in the Design Methodology is called creating a floorplan.

It must be stressed that this is only an initial estimate of the final floorplan and
the accuracy of this first estimate depends on how familiar the designer is with the leaf
and composition cells and how well the signal paths are routed. Most often VLSI de-
signers will find that, to refine the floorplan to the point where the actual layout blocks
fall inside those set out on the floorplan, is an iterative process and the number of iter-
ations will be related to the complexity of the circuit and the designers experience. The
number of iterations in this process reduces as the experience of the designer increases.
A mask layout level floorplan confines a designer to absolute geometrical relationships

and sizes and must be considered very carefully.

Care must also be used in positioning pads around the the perimeter of the
circuit. If this is done well, much routing of signals can be avoided. This design
experience showed that the routing of signals around the regular internal blocks can
take a significant percentage of the design time (see section 4.3.2). Fig. 4.1 shows the

Floorplan created for the Signature Analyser.

Section 4.2.2 Stick Disgrams in Mized Notalion

4.2.2 Stick Diagrams in Mixed Notation

When designing on a fixed grid as is required with the low level tools described
in Chapter II, an accurate picture of the cell at mask level is required on paper before
layout can commence. This minimises the number of editing iterations required to
accurately digitise the mask layout of the circuit design. The quantity of information
required varies depending on whether a Layout Language or Geometry Editor is used
by the designer in the layout process. If a Geometry Editor is used, Stick Diagrams
are usually all that is required as hard copy preparation for the design. Using a Layout
Language normally requires a detailed accurate layout of the complete circuit as well

as the Stick Diagrams which aid in the complete layout.

Stick diagrams are a low level IC design aid that allow simple representation of
designs at the basic Leaf Cell level rather than at the Composition Cell level of the
hierarchy. The use of stick diagrams at Leaf Cell level could be equated to the use of a

Floorplan at the highest level or lower Composition Cell levels of the hierarchy.

A stick diagram gives the designer a way of quickly representing his design so
that he can distinguish the general form of his layout yet not take into account the
basic spacing design rules. Mead and Conway used colours to represent the different
layers in silicon. The representation is as follows:- RED=Polysilicon, BLUE=Metal,
GREEN=Diffusion, BLACK=Cuts, YELLOW=Implant and BROWN=OVverglassing,
and is the convention used in this Chapter when colours are used. With these coventions,
stick diagrams representing all types of VLSI devices may be drawn simply and quickly.
Fig. 4.2 shows the layout of the Shift Register Cell used in the Signature Analyser

Project and its associated Stick and Logic Diagrams.

At the floorplan stage of the design it is necessary to think about signal routing.
At the following stage it is of benefit to the designer to use mixed notation within the
floorplan to represent the different cells and enable a more accurate estimate of the size

required for the total design area as well as to formalise on paper the exact paths

4-6

Seclion 4.2.2

$1.LD
ﬁ
T <]
SkaH=
1 A
DATA g) . g DATA
IN _ |:>< ouT
Q)

——

e
$1.00

Stick Diagrams in Mized Notalion

$1.LD
. JDD
:
i
DATA | -
I N
YDD ! !
— GND
3 —i—-—-—
o
]
° DD
GND p1.00 LA
CONNECTION
- Phase I1LD _I_Phase 1LD
VDD

k4

k2

Figure 4.2: The layout of the Shift Register leaf cell used in the Signature Analyser
design accompanied by its associated logic and stick diagrams. The node labels clearly

identify the inputs, outputs and clocking lines

4-7

on the layout.

Section 4.8 Design, Layout and Checking

for signal and data flow. The aim of mixed notation is to use composition cells
and stick or leaf cell representation combined in such a way that they represent exact
path architecture such that all that is required after this stage is the realisation of the

actual layout using the full set of design rules.

A very important consideration is that of timing. Race conditions and glitches
must be avoided. These problems occur if careful consideration is not given to the layers
on which the signals are routed, or if signals are not generated from drivers ensuring
appropriate rise and fall times of signals over long lines. For the Signature Analyser
design, no timing restrictions were set, as the main design criterion was to achieve a
fully functional circuit that would verify the design tools used and would allow future
characterisation of the MPC process used for fabrication. Hence the normal concerns

with race conditions are not crucial for this design.
4.3 Design, Layout and Checking

At this stage of the methodology the designer has almost exact estimates of the
project size, knows where the signal and data paths lie between the functional blocks,
and knows how the leaf cells will interconnect with each other. The designer is then

able to commence work on actual mask layout of the individual leaf cells.

This work, when completed will define exactly the size of the project. For some
MPC runs, (eg. all CSIRO MPC runs), a design must fall inside a final floorplan that
has been specified early in the design process because once the final bid for space has
been made on a multi project chip, the designer is limited by these bounds with little
or no recourse for change if the design is to be accepted on that particular MPC run.
The reason for this was that the competition for space on CSIRO MPC runs dictated
the need for precise floorplans to enable multi-user participation and adherence to strict

deadlines. There was seldom little, if any, room for floorplan expansion on such runs.

Section 4.8.1 Leaf Cell Layout

4.3.1 Leaf Cell Layout

Only two leaf cells are used in the Signature Analyser design, the Shift Register
shown in Fig. 4.2 and the Comparator shown in Fig. 4.3. Belle has been refered to
in Chapter II. The layout of the Signature Analyser Shift Register Leaf Cell, shown in
Fig. 4.2, was completed using the BELLE file description shown in Fig. 2.1 (a).

An auxiliary program to BELLE called GETSYMBOL is intended for use in
conjunction with the IMPORTSYMBOLS function within BELLE. It is used to generate
a header file of the type required by IMPORTSYMBOLS. GETSYMBOL operates on
a CIF file and produces a file containing the name of all symbols taken from a library

of symbols used by the designer, their symbol numbers and their bounding box.

The Shift Register cell is a selectively loadable/resettable dynamic shift regis-
ter with an 8:1 pull-up to pull-down ratio capable of driving pass transistors for cas-
caded stages, as would be required for the Signature Analyser. The Mead and Conway
inverter!®! was modified to conform with standard design rules and to cater for space
allocation. It can be seen that modifications could be made to the inverter to make
it more area efficient still, however these modifications could not be implemented due
to the deadline restrictions enforced by the CSIRO. Fig. 4.2 details the layout of the
shift register with node labels and compares it to its stick diagram and its logic circuit

diagram.

The basic cell size is 33X by 48X although the cell was extended to cater for
standard connection to metal signal paths. This means that the bounding box for the
cell is 33X by 70X but the cell does not take up the full bounding box in silicon real

estate as it overlaps the signal feed paths.

The Comparator used in the Signature Analyser project was layed out using the
tool PLAGEN. This tool has been refered to in Chapter III and is used to generate CIF
code from a truth table description of a circuit. PLAGEN reads from an Input File
and creates the PLA mask layout in a resultant CIF file. The CIF output of PLAGEN

4-9

Seclion 4.8.1 Leaf Cell Layout

has to be concatenated with the CIF output describing the other design components to
ultimately provide the final CIF code representing the complete design. Fig. 3.9 shows
the input file to PLAGEN and the Boolean Equation used to generate the Truth Table
for the input file. The resultant layout of the comparator described by the CIF output
from PLAGEN is shown in Fig. 4.3 along with a schematic diagram of the comparator

function that the PLA is supposed to perform.

It was realised that as PLA’s get larger they also get slower and as this PLA is
relatively small no problematic delays were anticipated or encountered. However it was
to be expected that the speed of operation of the PLA would be the limiting factor in

the overall speed of operation of the Signature Analyser.

The size of the PLA is 118 by 120X which is large considering the logic function
it performs. However it is non-standard in that the positioning of the input buffers was
modified to allow the PLA to be used in a bit slice application in order to produce a
highly regular design. Originally the particular PLAGEN program used could provide
inputs on one side of the structure only. The PASCAL program was modified to allow
inputs on either side of the PLA. By repositioning the input buffers, system routing
complexity is markedly reduced as signals can be fed between functional blocks in a
regular manner and also the positioning of other functional blocks attains a higher
degree of flexibility. A disadvantage in repositioning the input buffers is that the overall
PLA cell will be larger. This disadvantage is however balanced by the advantageous

reduction in interconnection complexity.
The specific modifcations made to the PLAGEN program were as follows;

(a) To allow any input buffer to be located at exactly the same x position but

reflecting the input buffer about the x axis and placing the buffer at the correct position

to line up with the AND plane.

(b) Minor modifications were made to the input buffers to allow ease of inter-

connections. This simply entailed extension of the POLY input wire.

4-10

Section {.3.1 Leaf Cell Layout

Inrut dats bit (I)

Previous OQutrut (0)
stade
outeut (P)

|

Sidnature Mask
data dats
bit (S) bit (W)
i . QuUTRUT
F:;.‘.:i‘.‘:’?i;:" EJ‘:Z:;.E:TKCM J]—%
]
Hln L
» 20 K s
=] F:IE% {_
RSN
a F &
INENEINES ||
S e L
G 2| [G e
FiRe L * | 5] B
a@l EEIIAENCIINE il = =i
I INNELED i: =] |: &l | i ““'1_-'&.__1_,_
. i L = | |
e | R IIIE E s ==
— el s S 5 2
ML | Po— -
Tt %1: s
L onl || |
Y3 -
@:[FJ
SIGIATURE 3% MASK SR
COMNNECT:ON CONMESTION

Figure 4.3: The layout and associated block diagram of the comparator used in the

Signature Analyser Design. Note the extra silicon area required when using inputs on
either side of the PLA structure.

4-11

Seclion 4.8.2 Pad Allocation and Positioning

{c) Minor modifications to PLAGround and the lengths of the AND and OR
POLY and DIFFUSION wires made the paramaterisation of (a) much simpler.

(d) The rerouting of the GROUND and VDD wires was also necessary to cater
for the abuttment of the PLA in this Bit Slice application.

Some standard cells were provided by the CSIRO to assist designers with their
designs by providing standard leaf cells such as Input Pads and Output Pads in a library
open to all designers so that these cells could be concatenated with the rest of the design

software.

BELLE was used to layout the Shift Register, compose the leaf cells into the
final design layout, and interconnect the leaf cells and the pads. PLAGEN was used to
Jayout the Comparator. Appendix D details the BELLE program used, the PLAGEN
input, and the resultant CIF required to completely describe the Signature Analyser
design as shown in Fig. 1.2 (a). Because PLAGEN produces CIF as output, a means
of concatenating the CIF in correct relation to the BELLE produced CIF, is required.
This can be done using either a text editor or alternatively with the aid of the operating

system command language.

The overall size of the project was 861X in the x direction by 649A in the y
direction. X for AUSMPC 5/82 was 2.5um and so the dimensions of the complete

Signature Analyser device was 2.1525mm by 1.6225mm.
4.3.2 Pad Allocation and Positioning

The pads for project C4 are specified very early in the design process as stated
previously. The pads for most projects normally are evenly spaced on all sides of the
circuit. For this device we have pads on three sides of the circuit and then the logo at
the bottom. The total number of pads is 17 and each of the pad structures used was
a standard cell provided by CSIRO. There are 11 input pads using NEWPADIN, 4
output pads using PADOUT, and then PADVDD, and PADGND. The pads are

4-12

Section {.8.2 Pad Allocation and Positioning

shown labeled in the plot in Fig. 4.4 which also indicates the floorplan.The description

of these pads is as follows:-

PAD 1 = NEWPADIN. This pad has been labeled PHI2SL and is the clock

line which acts as the shift through signal on phase 2 for the signature and mask shift

registers.

PAD 2 = NEWPADIN. This pad has been labeled PHI1SL and is the phase 1
equivalent of PAD 1.

PAD 3 = NEWPADIN. This pad has been labeled PHIZNSL and is the clock
line which acts as the refresh for the signature and mask shift register cells on phase 2

of the two phase clock for the signature and mask shift registers.

PAD 4 = NEWPADIN. This pad has been labeled PHIINSL and is the phase 1
equivalent of PAD 3.

PAD 5 = NEWPADIN. This pad has been labeled MSKIN and is the data input

to the mask shift register.

PAD 6 = NEWPADIN. This pad has been labeled SIGIN and is the data input

to the signature shift register.

PAD 7 = NEWPADIN. This pad has been labeled INPIN and is the data input

to the input shift register.

PAD 8 = PADVDD. This pad has been labeled VDD and is the supply voltage

input.

PAD 9 = NEWPADIN. This pad has been labeled PHI2NDL and is the phase 2

clock signal which refreshes the input shift register cells.

PAD 10 = NEWPADIN. This pad has been labeled PHIINDL and is the phase
1 equivalent of PAD 9.

4-13

Section 4.3.2 Pad Allocation and Positioning

a. 0 G. a

(- O [} (]
= =a _[%Q- L R e e L —
e == o=, jw=H, J==.,
- w%—l L — — o e

& I .

— — — - — — - — —-—
—&E .Lij. |L£j| L 'j L£j|

LLLEEA

L ST T XTI
. I_['I
L !

Las

FHI2MDL[[PHI1NDL|IFHI
LLEAIN

Ll

-
]
- -
e e—— l
I ——
—
-
- =
.]
. - 1
g W m—
& -

]

+ + %
o — —— "
. . s

imiisdag)
- 1 1

EEE2-04- HE
_Al-dr

U OF AJELAIJE

VDD
st

1 . : : : : — — i
. w— - L= = bt} ot - -
#

7 . il
—t L e “
= i \ v je = " .
= L & . '
'TEL’E ; ' y | '
= -‘ : t —_[J =
e |
’ 1 | ——QI L |
- | iy} w — I
. = 1 1= Z 1 - Z 1o - e 1 = N v =
if—— — — - = o . —— ™
H s —t — - E
E £ T =] F T =— F T — E
3 = S = :(LE

=
i
1

Figure 4.4: The plot of the Signature Analyser metal layer, Project C4 on AUSMPC
5/82 with the pads labeled. These labels coincide with those used in the text and the
test information presented in following pages.

4-14

Seclion 4.8.2 Pad Allocation and Positioning

PAD 11 = NEWPADIN. This pad has been labeled PHI1DL and is the phase 1
equivalent of PAD 12.

PAD 12 = NEWPADIN. This pad has been labeled PHI2DL and is the phase 2

clock signal that shifts data through the input shift register.

PAD 13 = PADGND. This pad has been labeled GND and is circuit ground

connection.

PAD 14 = PADOUT. This pad has been labeled INPOP and is the output of
the input shift register.

PAD 15 = PADOUT. This pad has been labeled CMPOP and is the output from

the comparator.

PAD 16 = PADOUT. This pad has been labeled SIGOP and is the output from

the signature shift register.

PAD 17 = PADOUT. This pad has been labeled MSKOP and is the output from

the mask shift register.

This pad labeling is used in the test result information presented in section 4.4.2
of this thesis. The labels appear alongside of the signals that are used as source signals
for clocking and as input for the various shift register cells and alongside the signals

received as responses from the shift register and comparator cells.

Pad Positioning is a very important design consideration as it is important to have
the pads as close as possible to the circuit connection points so that the interconnection
paths from pads are as short and as simple as possible. As mentioned previously most
designers find that the interconnect problem can take up a significant percentage of the
design time. The interconnect paths for this project were relatively simple and yet they

took about 5% of the total design time.

4-15

Section 4.8.3 Design Rule Checking

4.3.3 Design Rule Checking

CHECK, the most efficient of the Design Rule Checking tools discussed in Chap-
ter II, was used on the Signature Analyser CIF with different errors introduced to

highlight the operation of a Design Rule Checking tool.

Design Rule Checking is necessary at different stages of a design. Rather than
complete a full system with unchecked leaf cells, which would give multiple reports of
the same errors should any exist in any of the cells, using a non-hierarchical DRC the
designer would be wise to first check each leaf cell used in the design separately so as to
validate that cell. The Signature Analyser has only two leaf cells, and one of these was
generated using PLAGEN which produces CIF layouts according to the design rules.
As a result the only leaf cell that needed checking was that produced using BELLE,
the Shift Register, although the PLA structure may be checked to ensure its layout
validity. The interactive DRC session and its results for the check completed on the

Shift Register and the Comparator are shown in Fig. 4.5.

The composition of leaf cells to form the final layout is z source of many layout
problems as is the routing of the inputs and outputs between the pads and the input and
output leaf cells. As a result, each of these stages should also be individually checked
to ensure final correct layout. Mistakes such as wrong spacing between interconnect
wires or between interconnect wires and cells, are a common source of this design time
extension. Often, the designer may find that the estimated space required for routing
is not enough and using fixed floor plan design techniques, as with CSIRO MPC’s, this
can often force a designer to try and compact leaf cells in an effort to fit a design within
the allowed floorplan space. This type of redesign work using mask level layout tools

can take longer than the original leaf cell designs themselves.

As a final check, the complete Signature Analyser Design is checked, Fig. 4.5
shows the output produced from the Design Rule Checker along with the time taken for

the Tool to complete the check. Note that the warnings given in the output file result

4-16

Section 4.3.3

$ check [jnoonan.subi]shiftreg.cif
No Cif Errors Found

bounding box is -3,-11 to
PROCESSING TILE 1, 1
tile is -13, -21 to 43, 69

33, B9

0 CIF errors, 0 CIF warnings.
0 design rule errors.

Accounting information:

Buffered I/0 count: 61
Direct I/0 count: 71
Page faults: 2174

Charged CPU time:

$ check [jnoonan.work]comp.cif

No Cif Errors Found

bounding box is 0,-31 to 122,101
PROCESSING TILE 1, 1

tile is -10, -41 to 132, 111

0 CIF errors, O CIF warnings.
0 design rule errors.

Accounting information:

Buffered I/0 count: 61
Direct I/0 count: 61
Page faults: 2954

Charged CPU time:

$ check [jnoonan.work]try.cif

No Cif Errors Found

bounding box is -13, O to 848,649
PROCESSING TILE 1, 1

tile is -23, -10 to 509, 522
PROCESSING TILE 2, 1

tile is 489, -10 to 1024, 522
PROCESSING TILE 1, 2

tile is -23, 502 to 509, 1034
PROCESSING TILE 2, 2
tile is 489, 502 to 1021, 1034

0 CIF errors, 31 CIF warnings.
0 design rule errors.

Accounting information:

Buffered I/0 count: 63
Direct I/0 count: 70
Page faults: 18278
Charged CPU time:

0 00:00:06.80

0 00:00:19.42

0 00:04:30.73

Design Rule Checking

Peak working set size: 952
Peak page file size: 1770
Mounted volumes: 0
Elapsed time: 0 00:00:35.23
Peak working set size: 1000
Peak page file size: 1770
Mounted volumes: 0
Elapsed time: 0 00:00:37.03
Peak working set size: 1000
Peak page file size: 2075
Mounted volumes: 0
Elapsed time: 0 00:05:57.63

Figure 4.5: Samples of the CHECK analysis of the shift register, comparator and the
complete Signature Analyser with their results.

4-17

Section 4.3.4 Circuit Eztraction

from the fact that some wires used in this design fall on half A grid boundaries
due to the use of the minimum allowable metal wire width for the nMOS technology,

3A.

Note the result of the check done on the same circuit, but with an error introduced
into the shift register as shown in Fig 4.6. The error introduced is that the metal wire
width is only 2A while it should be 3}, (the minimum width of a metal wire as prescribed

by the design rules in Appendix A) in the ground connection of the shift register.

Once the circuit has been passed through the Design Rule Checker, the designer
can be guaranteed that his circuit layout obeys all of the layout rules specified and that

any malfunction of the circuit will not be due to mask layout error.
4.3.4 Circuit Extraction

Before circuit simulation can be performed, the mask layout of the design must
be converted to an electrical circuit representative form. This can be done manually or
automatically. If it is done manually, the layout is visually interpreted by the designer
and an electronic circuit representation produced in coded form suitable for input to
various simulators and some other tools. There is no guarantee that the electrical circuit
representation of the mask layout is correct, as errors in the interpretation process are

easily made.

To guarantee that the electrical layout is the same as that represented by the
mask layout, automatic generation of the electrical circuit form of the design by a Circuit
Extraction Tool must be completed. Using the CIF description of the circuit, a Circuit
Extractor usually produces various output files that can in turn be used as input to

various simulation tools.

The most efficient of the Circuit Extractors discussed in Chapter 11, NET, is used

to illustrate the function of Circuit Extraction. As indicated in Chapter II, various

4-18

Section 4.8.4 Circuil Ezxtraction

$ check [jnoonan.thesis.work]figd6.cif

No Cif Errors Found

bounding box is -3,-11 to 33, 59
PROCESSING TILE 1, 1

tile is -13, -21 to 43, 69

0 CIF errors, One CIF warning.
22 design rule errors.

JHOONAN job terminated at 14-APR-1986 17:21:08.22

Accounting infeormation:

Buffered I/0 count: 62 Peak working set size: 972
Direct I/0 count: 48 Peak page file size: 1771
Page faults: 2349 Mounted volumes: 0
Charged CPU time: 0 00:00:06.37 Elapsed time: 0 00:00:10.21

CIF ERRORS AND WARNINGS

Warning, line 94, symbol 999 : No geometry

DESIGN RULE ERRORS

: Metal width between 0,1 and 0,3

Metal width between 33,1 and 33,3

Metal width between 0,3 and 0,1 N
Metal width between 33,3 and 33,1 77 \&}%
Metal spacing between 33,3 and 33,4 N
Metal spacing between 29,4 and 29,3
Metal spacing between 33,4 and 33,3 N
Metal width between 0,23 and 0,25 '

Metal width between 15,23 and 15,25
Metal width between 19,23 and 19,25
.3: Metal width between 33,23 and 33,25
Metal width between 0,25 and 0,23
Metal width between 15,25 and 15,23
Metal width between 19,25 and 19,23
Metal width between 33,25 and 33,23

: Metal spacing between 29,44 and 29,45
Metal spacing between 33,44 and 33,45 o
Metal width between 0,45 and 0,47

Metal width between 33,45 and 33,47

Metal spacing between 33,45 and 33,44

: Metal width between 0,47 and 0,45

Metal width between 33,47 and 33,45

AT

NN

74 |

RN

]

e

D002
[

A

A

R T P N N S T e ol ol ol VI U S I e e e
R R R I IR R A A A R O A R R A S R o

0 CIF errors, One CIF warning.
22 design rule errors.

Figure 4.6: The CHECK analysis of the Shift Register design and its results with an
introduced error, the error being 2\ wide metal wires instead of the required 3A.

4-19

Seclion 4.8.4 Circuit Ezlraction

levels of simulation exist with the lowest levels of simulation providing the most
accurate and detailed description of the electrical operaton of the design. The circuit
extractor provides output for the tools SPICE, MOSSIM, MOSERC and PROBE (see
Chapter II). The output required for these various tools is different and so the tool NET
can be run with a number of different command line options which will allow output
variation according to whether the designer is wbrking with nMOS or CMOS circuits

and which tool the designer wishes to use for simulation or electrical rule checking.

Apart from the technology independence and various types of output that are
available using NET, the tool has other useful features. A command line option ex-
ists which will allow the designer to generate CIF nodelabel statements for all of the
node numbers allocated by NET. This allows the designer to display the node numbers
together with the full design with the aid of a design tool such as SEE (described in
Chapter III), so that the user can instantly see the location of the node numbers. An-
other useful feature of NET is the command line option which allows syntax checking

of the CIF input.

The various output formats for the simulation tools will be discussed in the fol-
lowing section. The results of the two features of NET discussed immediately previously
as applied to the Signature Analyser can be seen in Fig. 4.7. The various output for-
mats for the different tools for which NET provides input can be seen in the following

diagrams using the Shift Register from the Signature Analyser as the example CIF

input.

Fig. 4.8 shows the output file produced by NET that is used by the simulator
SPICE. The SPICE models for MOSFETS may change from time to time depending
upon the process used for the fabrication of designs and so should be viewed as an
example of the type of parameterisation expected. It should be noted that the simulator
PROBE takes its input from this SPICE format output as well as the technology file,
examples of which can be seen in Fig. 4.9. The technology files used with NET and

PROBE allows NET to determine capacitance values between CIF layers and uses these

4-20

Seclion {.9.4 Circuil Eztraction

-
K
X
\
N
N
N
i I
W
§ NN
13 N16 NN -
T
S “
% \
) i
/// [§3{1}w>\\\\\
7 34
. N
7 ///,»:i;&f. LA n‘ﬁl::\\?? 42
///];' / ?’;&‘V/;v Xc“:}é"‘
,IL‘%R‘Q@-.‘f
TR i
I il

S ,7@7/” 324,
l..—._-‘s:i <

Figure 4.7 (3): An example of the node labels on the shift register produced with the
NET node option.

Section 4.3.4 Circuil Eztraction

80 1

811

82 1 (nodefile created by NET from Di:[JNOONAN.THESIS.WORK]SHIFTREG.CIF;
83 1 at 13:52:18.49 on 17-JAN-1986);
84 1 DS 999;

85 1 94 1 500,15000 NM;

86 1 94 2 0,12000 NM;

87 1 94 3 5500,11000 NM;

88 1 94 13 -750,8000 NM;

89 1 94 16 1000,9000 HNM;

90 1 94 24 3500,7500 WM;

91 1 94 31 3500,4000 NM;

92 1 94 34 2750,3250 NM;

93 1 94 42 7000,2000 NM;

94 1 DF;

85 1 C 999;

96 1 End

Technology is nMOS, Lambda=250

The bounding box of the complete design is :-
Lower left (x,y) (-3, -12) Lambdas
Upper right (x,y) (33, 60) Lambdas

%NET-I-SCANLINE, scanline now passing y=15000
YNET-W-RENAMELABEL, attempt to rename label "2" to "3" ignored
7NET- I-SCANLINE, scanline now passing y=4500

ZNET-I-OUTPUTDEV, writing devices and nets

Sureary of Devices and Nets

Number of Nets 9
Number of Enhancement 4
Rumber of Depletion 2
Total Number of Devices : 6

YNET-W-INVALIDLABEL, node label 1 without associated geometry
YNET-W-INVALIDLABEL, node label 16 without associated geometry
YNET-W-INVALIDLABEL, node label 34 without associated geometry
%NET-W-INVALIDLABEL, node label 24 without associated geometry
%NET-W-INVALIDLABEL, node label 31 without associated geometry
YNET-W-INVALIDLABEL, node label 42 without associated geometry

Figure 4.7 (b): An example of the listing output for the shift register produced with
the NET listing option.

4-22

Seclion 4.8.5 Simulation

to calculate node capacitances, while PROBE derives the models for its transis-

tors from this technology file.

Fig. 4.10 shows the output file produced by NET for use with MOSSIM and
MOSSERC. This output is much less complex than that used for SPICE which indicates

also the less complex nature of the higher level simulation tool MOSSIM.

The circuit extractor NET is currently used for the verification of all mask level

layouts designed at the University of Adelaide.

4.3.5 Simulation

As discussed in Chapter II, the various levels of simulation that exist present
various degrees of accuracy in the estimation of circuit operation as well as associated
various degrees of complexity in simulation. The need for accuracy of simulation must be
decided by the designer. Ideally, all parts of a design should be simulated as accurately
as possible. This would imply that all parts of a design should be simulated with the

lowest level simulation tool available, which in this case is SPICE.

However, design time restrictions often prevent the realisation of this ideal and
as a result, the designer can be forced to settle for the less accurate simulation offered
by the higher level tools such as PROBE or MOSSIM. In the case of the Signature
Analyser design, the deadlines for entries to the first AUSMPC presented restrictions
on design time which in turn prevented the completion of the ideal simulation. As a
result only MOSSIM could be used as a verification tool at the simulation level prior
to final design submission, however as an illustration of the various levels of simulation
available, examples of simulated circuit operation for parts of the Signature Analyser

will be presented for each of the simulation tools, SPICE, PROBE and MOSSIM.

As an example of the use of SPICE, the NET output for the Shift Register shown
in Fig. 4.7(a) was used to produce the response shown in Fig. 4.11. It is very important

at this stage to understand that the response predicted by SPICE is greatly

4-23

Section 4.8.5

L K B R

.MODEL ENH KMOS
VIC=0.84
RSH=12
TOX=8.5E-8
1D=0.8U
UEXP=0.43
MJ=0.5
UTRA=0.2
CISW=1E-9

HF o+ 44+

.MODEL DEP HMOS
VI0=-2.86
RSH=12
T0X=8.5E-8
1D=0.8U
UEXP=0.43
MI=0.5
UTRA=0.2
CJISW=1E-9

+ o+ + o+ o+

* o+ + +

ci1i102

c2 2 0 73.
C3302

C4 13 0 49.13F
C5 16 0 245.62F
C6 24 0 140.75F
C7 31 0 225.75F
C8 34 0 25.63F
C9 42 0 73.88F

*

M1 42 31 31 O D
M2 2 3 3 0 DEP
M3 31 3 24 0 EN

M4 24 16 3 O ENH

Figure 4.8: The SPICE output file produced using NET for the shift register.

GAMMA=0.47
CGS0=1.6E-10
PB=.539
TPG=+1
UTRA=0.2
CJISW=1E-9
FC=0.5

GAMMA=0.53
CGS0=1.6E-10
PB=.604
TPG=+1
UTRA=0.2
CJSW=1E-9
FC=0.5

=1
L
L=

NMOS SPICE (VERSION 2G) MODEL PARAMETERS

PHI=0.52
CGDO=1.6E-10
JS5=5.25E-4
U0=910
FC=0.5
UCRIT=1E4
CJ=1.1E-4

PHI=0.52
CGDO=1.6E-10
JS=5.25E-4
Uo=800
FC=0.5
UCRIT=1E4
CJ=1.1E-4

SPICE FILE CREATED BY NET FROM D1i:[JNOONAN.THESIS.WORK]SHIFTREG.CIF;
AT 14:43:04.47 ON 20-JAN-1986

LAMBDA=0.02
CGB0=1.7E-10
XJ=BE-7
UCRIT=1E4
Cl=1.1E-4
UEXP=0.43
MJ=0.5

LAMBDA=0.02
CGBO=1.7E-10
XJ=BE-7
UCRIT=1E4
CJ=1.1E-4
UEXP=0.43
MJ=0.5

Simulation

L=15.00U W=5.00U AS=375.00P PS=140.00U AD=987.50P PD=220.00U
5.00U W=5.00U AS=725.00P PS=235.00U AD=975.00P PD=215.00U
=5.00U W=15.00U AS=275.00P PS=60.00U AD=375.00P PD=140.00U
5.00U W=15.00U AS=725.00P PS=235.00U AD=275.00P PD=60.00U
M5 31 34 16 0 ENH L=5.00U W=5.00U AS=425.00P PS=175.00U AD=375.00P PD=140.00U
M6 16 1 13 0 ENH L=5.00U W=5.00U AS=162.50P PS=55.00U AD=425.00P PD=175.00U

Section 4.3.5 Simulation

NMOS.TEC
!model of transistor here
'LAYER AREA PERIMETER
CNM 0.3E-04% 0.0 METAL TO SUBSTRATE
CNP 0.5E-04 0.0 POLYSILICON TO SUBSTRATE
CNT 4 ,5E-04% 0.0 GATE TO SUBSTRATE
CND 0.9E-04 8.0E-10 DIFFUSION TO SUBSTRATE
'END
CMCS.TEC
'model of transistor here
'LAYER AREA PERIMETER
CCM 0D.3E-04% g.0 METAL TO SUBSTRATE
CCP 0.5E-04 0.0 POLYSILICON TO SUBSTRATE
CCT 4 .SE-0O4 0.0 GATE TO SUBSTRATE

CCDN 0.9E-04 8.0E-10 N_TYPE DIFFUSION TO SUBSTRATE
ccop 0.9E-04 7.0E-10 P_TYPE DIFFUSION TO SUESTRATE
'END

Figure 4.9: The two technology files NMOS.TEC and CMOS.TEC used to provide
SPICE MOSFET model definition, and layer to substrate capacitance of the active
layers, for both NET and PROBE.

4-25

Section 4.8.5 Simulation

title SHIFTREG
1 GND 28

2 GND 74

3 GND 243 N
13 GND 49

16 GND 246

24 GND 141 >

[y

31 GND 226 Il
34 GND 26

42 GND 74
31 31 42 1500 500 5500 2000

NN |

3 3 2 1500 500 5500 10500
3 24 31 500 1500 3500 4500
16 3 24 500 1500 3500 8000
34 16 31 500 500 2750 2750 NNy 577N
1 13 16 500 500 500 9000

AIIII Y, =
N
N-
=N
S

13

o000 RAOOOOOOOO0O—

&

I."‘

.title SHIFTREG

C1 1 vss 27.50f (2, 60)

C2 2 vss 73.88f (0, 48)

C3 3 vss 242.75f (22, 44)

C4 13 vss 49.13f (-3, 36)

C5 16 vss 245.62f (4, 36)

C6 24 vss 140.75f (14, 30)

N
)
727

SN

._,71 0
=ls

N ESNNANNNNNYE

<
2
N
,
S,
[«
&

AL N 42

7/ AN
(P AR
NANNN

C7 31 vss 225.75f (14, 16)

<

C8 34 vss 25.63f (11, 13) I
C9 42 vss 73.88f (28, 8) |

M1 42 31 31 vss depl 15.00u 5.00u (22, 8)
M2 2 3 3 vss depl 15.00u 5.00u (22, 42)
M3 31 3 24 vss enil 5.00u 15.00u (14, 18)
M4 24 16 3 vss enl 5.00u 15.00u (14, 32)
M5 31 34 16 vss enl 5.00u 5.00u (11, 11)
M6 16 1 13 vss eni 5.00u 5.00u (2, 36)

G777 777 B 77

Figure 4.10: Above, the SIM output file produced using NET for the shift register. This
file is used as input to the Berkeley tools, MOSSIM and MOSERC. Below, the NET
output file used with PROBE and ELEC.

4-26

Section 4.8.5 Simulation

dependent upon the MOSFET model parameters. Using the Silicon Broker tech-
nique for circuit fabrication, it is very difficult to obtain accurate information regarding
these parameters for a number of reasons. First, the various fabrication houses tend to
jealously gaurd this type of information as proprietary in nature. Second, using a Bro-
ker/Foundry does not guarantee that the designs will be fabricated on a known process,
only that designs adhering to a general set of Design Rules will function. This leaves a
wide tolerance open to most of the MOSFET model parameters resulting in difficulty in
predicting accurate values for the different parameters. Despite these facts, the SPICE
simulation normally will provide the most accurate simulation results for a design and

is desirable at all levels of the design to verify electrical operation of the circuit.

PROBE provides the next most accurate simulation of the design and Fig. 4.12
is the resultant simulation of the Shift Register using this tool. The results of this
simulator, while less accurate than that of SPICE are produced much more quickly

making PROBE a more attractive tool for designers without enough time to use SPICE.

Finally, MOSSIM has its output displayed in Fig. 4.13. This type of simulator
provides absolutely no timing information, rather it gives an indication of the logical

correctness of the circuit. Hence the cryptic form of the output.

As an indication of the time restrictions that can be placed on a designer or a
team of designers, the AUSMPC 5/82 experience is an excellent example. The Signa-
ture Analyser design was completed in time only to allow simulation with MOSSIM.
Restrictions on access to tools added to the time restriction reasons for this undesirable
level of electrical operation checking. However, even had all of the tools discussed in
Chapter II been available, there still would have been great difficulty in carrying out fur-
ther simulations prior to the CSIRO imposed deadline for submission of projects. The
SPICE and PROBE simulations shown in this section are examples only of the types of
simulation most desirable for a prototype design prior to submission to fabrication of

an IC design.

4-27

Section 4.8.5 Simulation

Y
.

i
=)
25.0

20.0
20.0

15.0
5.

w
[72]
=z
(=]
o
[22)
18}
H o—
N :
[&) [4]
o a
% £
(=]
jas) o >
Q [-4]
E s & 1
m [l |..l\1.1.|\
> ..I_l..l.\
= "
= ‘l\lulli.
=
-
=
| g 13
) i
l\u\.l\ Y/
1 ’ . [] i " " . n.b.
5 P s - N -~ = o o g D
. B . . @ o e oy B 0
n - m -1 0. 0. [¥g] T g o - W
i -~
v
[«]
[
ﬂﬂ#ﬁo>“ 8pON uﬁﬂvﬂo JBJJBAUT —DUHO>~ 8poN vﬂﬂCH LQMLU)CH

Figure 4.11: The results of a SPICE simulation of the shift register presented using a
locally produced plotting program called GPLOTI!,

4-28

Time (nsecs.)

Section §.3.5 Simulation

<
<
@
S 3
< i e L e rl e m . ———-——-—————
.................... T - b
w - .
~
(&]
i
[n'4
b o
=g 10 . 0 S g
e I T e ity R e e L
T <
~
g g
Olicel e cccrccmmreercenticccmmenaeeaa== [T PR PE PR Ju e i
N .

16
vdd

Figure 4.12: The results of a PROBE simulation of the shift register. The x axis shows
time in nanoseconds while the y axis shows volts in the 0 to 5 volt range.

4-29

Simulation

Section {.8.5

NI oD eI I YOO Y TY YOO IV TS0 T T {000 T T00N0TITTO0CDTTTIIOOCOTIT Y S
LAOLVCITCO00T 1110000 I T I T I N T VYT Y T Y LU Xy y oy XY Y NN Y XYY XYLy«

THEIHSLI00000000C00NODNLY 0O [OGOTIOCTANSEO00020900D030000T000TO000TICHDIN00

TANEIHAT00000000000000C000T06G0T1C00Y00OTOLH00000000CC0OC000001000T00LI0COTO
TENTYH A2 TO00T000Y000Y00000000000000000001000F000TONOTO0000000000040000000%
AFTIHAIC01GCLTO0010001006000C0000000C00000Y000I000TOOOTOOC0000G000000000
D5 000000C0000000000390002000<
ANAdHUIITITI0000TITIOQCOYYYTIOCCOYTTYOO000TYXYTO00OXXYY. QOO0 YN ANKNN Y LYY LN Y%
PO YN E IV Y Y Y XY YUY Y YN VIV CV Y VB Y Y E P EY PR O T T Or T O ETETTTITITITITIN T
NINSNSH2O0000000000000000FTYVYYTYIYTLTIIYIYOQ0000000G0000000TTTITITITIILITLIT T
INONGH CY Y Y YTV b PR T YTy Y eV Y EY Y Y FY Y PY N EY DL P E T T TR LT U T TN XM NAX AN XN
HINMSO1S{0000TTIY0000YEYICCCOTIYTOCCOYITTOO00TIITOOQ0OYITTOO00YTTIO0000TTIIT
INOOISLVYYET XYY Y YYYEYTYVOOO0YYYTOO00 T TR R IR R R EY PR T T T T R UMM X XY AN XX Y XS
19N11Hd!1000IOOOIOOOTOOOQOOOOOOOOOOOOOOOT000TOOOT00010000000000000000000{
SYIHAI000T000Y00Y000TVO0O00000000000H00000TO00Y00E000T00000000000000000+
1SN”IHd 000000000000000HYIDOOTOOGTIGOOTYOO00000000000000000Y000100010001000+,
TSZTHALI000000000000000800F000Y00VT000YV000000000000000000T000T000TL00TO
S4a313 ZfF Y007 UOTRezTIerqIuY

(30 palIngd 197) sSapou 2o ¢£Jd0351SUBIY &t

T AEedg OH'LVIOIITE TBET-AMN-8T VST HISNE

AOGOOLENOOCHLEGLETO00TOCETANTTH00 TITIHSE 4
INCHOOCLONDOC L GANOTNOLTOCITINOTS TTINTIRL A
THCEOEOCOI000YCOEO0GON0RNGNLIANO0N "IN IHL O

50[0??[000[?00T?GOOOGO“JCCOOG““’ ATTIME A

DLOCTUIT HIWEIWT A
000900000?0030901ITT:T[I"’TT'1T LB B = P0ACH L]
OGCNTTTIT NIYUSCIE O
QCEOOGECOOGOOCOLTO0OYDOITCOATON0 TTNTIHS A

CONOOOOINDO0NNOONGOOTOLOTOONTANOT) T5CIHL A
12003000Y000T0000002000300¢C000C TIEMTLIEL A

000 TONNINOTIOO0ICO0LON00D00CI0000 ASTIHD A

RYNSIUE LRIV IS YHS CTHEIHS HOHTYHS Q1Y Hd RUE M
LAGAMNT D YL LTS HENROYs 100AYS IENTIHS ISTIHd ISNTING 15CThkd ;

Figure 4.13: The results of MOSSIM simulations on the Signature Analyser design.

4-30

Section 4.4 I1C Testing

The time taken to complete the layout of this design was approximately three
months. In that time, the designers had to become familiar not only with the CAD
Tools, but also the PASCAL programming language, the VAX 11/780 and VMS, and
the local Text Editor LUDWIGISS], as well as generate the design using a methodology
foreign to them. The resultant \design was considered good enough to be accepted on

the first CSIRO AUSMPC against strong competition[”l.

The number of design hours is difficult to estimate and the definition of a design
hour is also not clear cut. The design was completed on paper in about 40 man hours.
The time taken to put the design on the computer in the correct format was about 200
man hours. The time taken to fully debug the design in order to pass for AUSMPC
5/82 was around 200 man hours but this time could have been shortened if adequate
design checking facilities were more readily available. Documentation time would have
been approximately 100 man hours, although subsequently documentation aids such as
extremely efficient typesetting and word processilng programs have become available that
ease even this time consuming task!”5]. An approximation of total design hours for the
Signature Analyser subdivided into component categories was as follows:- (a) Algorithim
.05 of total, (b} Floorplan .1 of total, (c) Cell layout .2 of total, (d) Composition .2 of
total, (e) Checking .45 of total.

4.4 IC Testing

Testing of a circuit on silicon is a non-trivial matter for many reasons!74](85](84],
Faults can occur at any stage of the design or fabrication process. The faults can be
introduced by the designer or at some stage in the mask making, fabrication or packaging

or other intermediate processes that are beyond the designer’s control, particularly in

an MPC run.

To verify whether or not an IC is operational, testing must be approached in
an organised fashion. Maxwelll™] indicates the two basic types of IC testing required,
(a) fabrication process testing and (b) design functional verification. Using a Silicon

4-31

Section 4.4.1 Fabrication Process Testing

Broker/Foundry, normally type (a) testing is done for the designer prior to designs
being returned although this is not the case for all Silicon Brokers/Foundries. One such

Foundry service offered in Australia for example leaves all testing, both type (a) and

(b) totally up to the MPC designerlgo].
4.4.1 Fabrication Process Testing

Before checking the functional operation of a design, the designer needs to be
sure that there is no fault introduced in the intermediate processing steps that occur
between the submission of the design in CIF format to the Broker and the return of the
packaged prototype. This type of testing requires checking complete wafers using special
test structures inserted in addition to the functional logic designs submitted by MPC
participants. These tests determine whether or not the fabrication run has satisfactorily
met specified requirements with respect to device thresholds, resistivities, electrical
separation of layers, dielectric integrity, and metal step coverage. Device performance
is also commonly determined with respect to propagation delay, DC characteristics, and

dependence on ten1peraturel74],

These types of test usually require analogue measurement and the test structures
used are independent of the functions of the designs being fabricated. The structures
are inserted into separate areas of the wafer, by the fabrication house and/or may be
included in the form of a starting frame for the design as was the case for AUSMPC

5/82.

An example of the test structures used can be seen in the AUSMPC 5/82 Starting
Framel®! shown in Fig. 4.14. The starting frame is included in the top strip of each die
type on the MPW (Multi-Project Wafer. It is used to determine whether or not the
fabrication process has successfully produced working system level devices and allows
some characterisation and performance measurements to be made. These measurements
need not be carried out by the designers using the MPC implementation system, it is

only provided for interest.

4-32

Fabrication Process Testing

M |

el IEAey digD yfoxJNMIA

Cintd

& e E b olHm g

d
O
hd

i

3 A At (UG W - 10
1F= -Hl.- meuwsms>ﬂ et L3 B et olT

OHISH M &t LD W st AT

>ansnv™ I £ [0 [£

Section {.4.1

4-33

Figure 4.14: The starting frame used in AUSMPC 5/82.

Section {.4.1 Fabrication Process Testing

The AUSMPC Starting Frame consists of, (i) Alignment Marks, (ii) Layer Codes,
(iii) Critical Dimension Testers, (iv) Etch Test Patterns (ELLS), (v) Identification Code,
(vi) Ring Oscillator and (vii) Test Structures. The details of this starting frame are taken
from Clarke’s AUSMPC 5/82 Designer Documentationl‘;], distributed to all designer
participants of AUSMPC 5/82.

Both coarse and fine alignment marks are provided. Coarse alignment is provided
by a square appearing on all layers in the top left hand corner of each die. Fine alignment
can be done using the sequence of squares and fortresses which appear to the right of
the coarse alignment squares. These alignment structures were taken {rom the report

by Hon and Sequinm.

The layer codes (DIF, IMP, POL, CUT, MET and PAD) appear under the align-
ment marks. Alongside each layer code are two critical dimension crosses and a set of
L-shaped test patterns. Note that the IMP and PAD layers are invisible on photomi-
crographs of the die as opposed to their appearance on the diagram in Fig. 4.14 which

is a plot of the complete starting frame using a single colour.

The line width for the first of the two critical dimension crosses is given in Table

4.1, while the width for the second cross is always 2X which in this case ecuals 5pm.

Critical Dimension
Cross Line Width
Layer | Width | Layer | Width
DIF 22 CUT 2A
IMP 4 MET 47
POL 2 PAD 4

Table 4.1: Line width of the first of the two critical dimension crosses shown in Fig.
4.14,

The Etch Test Patterns which appear to the right of the second critical dimension
cross for each layer are 26 high and consist of Ells of two sizes. Five small Ells with one
X width and separation are nested in the upper right corner of four larger Ells having

4-34

Section 4.4.1 Fabrication Process Testing

two A width and spacing. Also included is a vertical two A wide bar down the left side

of the pattern to simplify measurement.

Each of the nine die types used on the Multi-Project Wafers used to provide
design beds for AUSMPC 5/82 is identified by a single character (A...I) which can be
seen by the naked eye. The identification character is 360pm tall and appears at the

top right hand corner of each die.

The ring oscillator has nineteen stages and can be used to estimate the speed of
the devices made using this fabrication process. It consists of nineteen identical inverters
in a circle and a twentieth inverter acting as a buffer to drive a standard output pad.
Each inverter has a pullup ratio of Zp, = 2 : 1 and a pulldown ratio of Zpy = 1 : 2,
resulting in minimum geometry k = 4 inverters. The period of oscillation of the ring
oscillator T equals twice the delay around the loop. Therefore the inverter pair delay
is %, where n is between 19 and 20 since the last inverter drives two loads, (the first

inverter and the buffer inverter). The connections to the pads for the ring oscillator are

from left to right: Ground, Output, VDD.

The test structures are laid out between two strips of 20 probe pads. Each pad is
80pm by 80pm with an overglass cut of 70um by 70um. The pads are spaced apart by
80pm in both the vertical and horizontal directions. The test structures for AUSMPC
5/82 include, (i) small transistors, (ii) a large inverter, (iii) large transistors, (iv) small
inverters (v) Diffusion and Polysilicon Van Der Pauw structures|7 and (vi) a contact
tester. These structures allow among other things, the calculation of parameters useful

for SPICE modelling and their use is detailed in the report by Clarkel74!.

The fabrication process testing is useful to the Silicon Broker/Foundry as it can
almost guarantee that any problems with MPC participants’ circuits are due to design
faults rather than faults produced in the mask making, fabrication or packaging process
for which a Broker may potentially be held responsible. This is not always the case
however. Through participation in AUSMPC 5/82, experience of problems caused by

4-35

Section 4.4.2 Design Functional Verificalion Tests

bonding was gained. Fig. 4.15 shows examples of the faults (severe gauging of a circuit
to the point where wires are ruptured, or splashing of molten metal fragments upon a
circuit causing possible short circuits) that can occur in the bonding process. These
faults can render a design useless as occured in one of the examples shown in Fig. 4.15.
Other types of problems that could potentially arise have been mentioned in Chapter III.
Westel48] has mentioned the need to consider small antifeature dimensions as possible

sources of faults in the mask making process.
4.4.2 Design Functional Verification Tests

The type (b) testing mentioned by Maxwelll 74, (design functional verification),
must be completed by the designer. It assumes that fabrication has been successful and
is necessary to determine whether or not the circuit works as intended. This testing
problem can be subdivided into Production Testing as opposed to Prototype Testingl”].
Production Testing is performed on designs that have already proven to be functionally
correct but individual chips may be faulty due to fabrication processing faults that are
randomly scattered over the surface of the wafer. Production Tests are usually quite

simple, go/no go tests!74.

Prototype Testing and fault finding is the type of testing that a typical MPC
participant would do. This type of testing requires interpretation of the test data to
determine the origins of faults if they exist. For the Signature Analyser, this type of

testing was completed using a Logic Analyser/Function Generator.

A total of five chips were returned to each design team participating in AUSMPC
5/82. These came from two different fabrication sources, COMDIAL in Sunnyvale
California, who fabricated a three inch wafer, and AMI in Idaho who fabricated a four
inch wafer. The chips were packaged by Promex, (Palo Alto), who packaged the four
inch set and Philips, (Adelaide South Australia), who packaged the three inch set. The

duplication of fabrication was intended to reduce the probability of failure as much as

possible.

4-36

.
3 e

Seclion 4.4.2 Design Functional Verification Tests

Figure 4.15: The picture above shows a small blob of metal splashed onto one of the
shift registers on one of the Signature Analyser dice. This device was protected from
such a fault because of the overglass used to cover the project. The picture below shows
the result of a wiring failure to an output pad on a project from AUSMPC 5/82. The
pad is damaged so badly that the connection to the circuit is ruptured making the
device useless.

4-37

Section 4.4.2.1 Regular Bit Pattern Tests

One of the project C4 chips was extensively tested. It was a Promex packaged
chip. The Promex chips were used in the extensive test because they were the first
to be returned. The Signature Analyser design is well partitioned. Each four bit shift
register string can be separately accessed to observe its ability both to hold and to shift
information through the design. The comparator output can also be observed to verify
its operation. The tests can be placed into three groups ordered by their complexity. The
three tests were:- (1) Shift and refresh all three registers (mask, signature, and input)
with all one’s and then all zero’s and observe the comparator for correct operation. (2)
Repeat the first test, but this time with an input which continuously oscillates between
one and zero for each input of the shift registers. (3) Finally, using completely random
inputs, observe all register outputs and comparator operation. The patterns used were

generated on a programmable pattern generator at the CSIRO laboratories.

Also, in this series of tests the chip was pushed to its upper operative frequency
limit which was found to be 2.85 MHz for the output of information from the registers.
The results of such tests for the Signature Analyser design are displayed in Fig. 4.16.
These tests|16-2l verify the total functional operation of the Signature Analyser and

hence the tools used to complete the design.
4.4.2.1 Regular Bit Pattern Tests

The pictures in Fig. 4.16 show the input to the mask, signature and input shift
registers as indicated by MSKIN, SIGIN and INPIN labels. The bottom 4 waveforms in
each case show the output from the mask and signature shift registers, the comparator
and the input shift register respectively denoted by MSKOP, SIGOP, CMPOP, and

INPOP. The top traces seen on the pictures are unassigned.

For the purpose of clarity, these pictures do not show the two phase non over-
lapping clock. A combined pattern generator/logic analyser was used to provide the
random input bit patterns, but an independent clock was used to generate the two
phase non- overlapping clock signal for shifting through and refreshing the shift regis-

4-38

Section 4.4.2.1 Regular Bit Pattern Tests

ters. The frequency of these clock signals was much greater than the clock component of
the random bit patterns and in fact was altered at times during the testing procedure.
A shight lag in the comparator output response can be seen in some cases showing the
time taken for propagation of the bit comparison through the four legs of the chip. This
is not obvious in all cases which indicates the alteration in clock frequency to a higher

value in some cases causing a smaller propagation delay.

The first of the tests mentioned above is satisfied by observing the results of the
subsequent tests. Fig. 4.16 {a) shows a series of pictures indicating the operation of the
shift registers. Both their ability to shift information through and hold information is
demonstrated. Initially ignoring the comparator and its output, the top picture shows
the information being shifted into the three shift registers and the unaffected output
verifying the ability of each of the Mask, Signature and Input shift registers to shift

information straight through the circuit.

The second and third of the pictures shows the ability of each of the shift reg-
isters to hold information. The second picture shows the bit patterns shifted into the
Signature and Input shift registers while the Mask shift register input is held high. Un-
derstanding that the comparator output (CMPOP) is determired by the result of the

boolean equation:-

CMPOP =M.SI+MSI+M.P

where P is the previous comparator bit output, S is the current Signature bit,
I is the current Input bit and M is the current mask bit, with M always high, the
comparator output will be high if and only if the contents of the signature and input
shift registers are exactly the same. (It is important to note that the P input to the
first of the cascaded comparator PLA’s is connected to VDD and therefore is held

permanently high).

I{ MSKIN is permanently high as it is in the second picture and this is shifted

4-39

Section 4.4.2.1 Regular Bit Pattern Tests

il 21 S S
pELTA TIve MEaA

;ma»-ag

rrexI TR

Al BEER NNXNNE

N RERM oW

AN

i R
PR D — ru

-l
HOKIN
SIGIN
1PN

IOk
i
s

ik

CAURIL AN O |

——————————

Figure 4.16 (a): Test results of the Signature Analyser, Project C4 AUSMPC 5/82.
Pictures are numbered one, two and three from the top down.

4-40

Section 4.4.2.2 Pseudo-Random Bil Paltern Tests

through the mask shift register and then held, the Signature Analyser then checks
all of the Input and Signature bits for comparison. If they are all the same, then the
CMPOP will be high as in the second picture. This shows that the contents of the
signature and input shift registers are exactly the same. In fact, they both contain the

pattern shown at their inputs in the second picture.

The third picture shows the results of the comparison when none of the bits in
the signature shift register agree with the bits in the input shift register with MSKIN
again held high. The result of course is CMPOP = 0. The contents of the input and
signature shift registers are again indicated by the patterns at their inputs however the
fact that the output of the input shift register is high compared to the signature shift
register being low shows that the pattern has been offset one bit resulting in all bits

being opposite.

For the picture at the top of Fig. 4.16 (a), the clock inputs were set such that the
information at the inputs of the shift registers is shifted through, while for the second
and third pictures shown the information at the inputs was previously shifted into the
shift registers. At the time of the picture being taken for the second and third pictures,

the information was being stored in the shift registers.
41.4.2.2 Pseudo-Random Bit Pattern Tests

The pictures in Fig. 4.16 (b) show that the shift registers and comparator all
function correctly under the pseudo-random bit pattern test. As explained in the pre-
vious section, when the mask shift register is set high, the comparison of the input and

signature shift registers is enabled.

The first of the pictures in Fig. 4.16 (b) shows MSKIN held high with pseudo-
random bit patterns shifting through the signature and input shift registers. Apart
from verifying the ability of the signature and input shift registers to shift through
pseudo-random bit patterns, the result of the comparator output in the first picture
also verifies correct operation of the Signature Analyser in a dynamic mode, that is,

4-41

Section 4.4.2.2 Pseudo-Random Bit Pallern Tests

with information being constantly shifted through.

Features of the comparator operation that are quite clear from this first picture
are described here with no reference to precise timing because the aim of this design was

to produce a functional design to verify the design tools without setting timing goals.

The fact that all unmasked bits of the signature and input shift registers must
produce a high comparator output for CMPOP to be high, can be seen. For example
in the first picture, the CMPOP can be seen to go low slightly before any change
is detected in the levels of either the SIGOP or the MSKOP. This time delay can
be considered as Tr. This time delay indicates that as soon as the first bit of the
comparison produces a low output, the whole comparison goes low while the change
is not detected at SIGOP or MSKOP until the signal has been shifted through the

whole four bits.

When the CMPOP output rises, it does so at precisely the same time as the
change of either the SIGOP or MSKOP. This shows that the CMPOP output will
not go high until all four bits of the SIGOP and the M S KOP shift registers produce

high comparator outputs.

The second picture in Fig. 4.16 (b) shows a the same pseudo-random input bit
pattern as in the first picture and the results but this time for MSKIN held low. The
results of the CM POP can be seen to be held constantly high. This is because all of the
comparator bits are ignored and the input to the first stage, tied high, is passed through

to the output irrespective of any of the input conditions on SIGIN or INPIN.

The third of the pictures shows a totally pseudo-random input pattern to all
of the three shift register inputs, MSKIN, SIGIN and INPIN. This is a final
verification of the complete dynamic funcional operability of the Signature Analyser
design. The CMPOP provides correct information for all cases of the pseudo-random
shift register inputs. Interesting features that can be seen are the glitches occuring on

CMPOP when the MSKIN signal falls and the SIGIN signal changes state while

4-42

Section 4.4.2.2 Pseudo-Random Bit Paltern Tests

4

-UM-JQ

POO
i
X
2
2
2
2

2

2

]

x
x
«

& moNEm @ oW

50!0-«42
%

sl SNEE SRNXE

AANREN S—Mw

Figure 4.16 (b): Test results for the Signature Analyser using pseudo-random bit pat-
terns. The pictures are numbered one, two and three from the top down.

4-43

Section 4.5 Analysis of CSIRO MPC Efforts

INPIN is held constant, indicating a possible problem area for timing consid-

erations in production runs of the design.

The testing of the chip has been extensive in its range of functional tests and not
so extensive in the area of testing limits of operation, or non ideal operating conditions.
However, for the expected environment of operation it would appear that the tests have
been extensive enough to show 100% success both in terms of complete operation of
all chip functions and in terms of successful operation of all chips, as simple functional
tests, such as those used in Fig. 4.16 (a), were performed on the rest of the chips to

prove their operation.

Overall, the whole experience can be thought of as a successful implementation
of a prototype in silicon. The testing of the final products proved them to function

exactly as designed and concluded a very interesting and satisfying experience.
4.5 Analysis of CSIRO MPC Efforts

The CSIRO VLSI department provided XX MPC runs over the period of some
three years of operation of which AUSMPC 5/82 was the first. The CSIRO’s efforts
enabled research into silicon integrated circuit design using an nMOS process by provid-
ing the expert intermediate assistance required to let designers efficiently communicate

with IC mask makers, fabrication lines, and packaging lines.

In order to successfully complete this task, the CSIRO provided assistance in
the distribution of design layout and verification tools, as well as a number of standard
cells such as pads which were fundamental to the successful operation of the circuits
submitted by designers to these MPC runs. As well, the CSIRO completed the Fabri-
cation Process Testing to provide maximum guarantee that error free dice were finally

distibuted to the designers.

The CSIRO design tools such as BELLE were particularly easy to use and in-
dispensible to the design process. Some designers who were not familiar with PASCAL

4-44

Section 4.5 Analysis of CSIRO MPC Efforts

had some initial difficulties but these were rapidly overcome. The only difficulty in the
design process was the lack of design verification programs. However the lack of suffi-
cient verification tools has subsequently led to the development of tools locally, (some

of which are described in Chapters II and III), which solved the earlier problems.

For AUSMPC 5/82, due to the unavailability of design verification tools, a severe
bottleneck was created adding even more pressure to the crucial design submission
deadline. The verification tools could not be put on the Adelaide University computers,
and as a result, an iterative design process that should have taken at most one and a
half hours took one and a half weeks. Designs were ferried via magnetic tape to the
CSIRO site where a CSIRO employee ran all designs through the design rule checker, and
eventually returned the results. In one and a half weeks the design had passed through
the design rule checker only three times. While the checking process was proceeding
the designers could do little more than wait, which in the case of project C4 could have
been fatal to design completion if the initial design faults had persisted for even one
more iteration. MOSSIM was the last of the design verification programs to be used
and this could only be done on the CSIRO machine. This was quite a difficult job to
arrange also as the deadline was rapidly being approached and again due to the lack
of distribution of tools, a single VAX 11/780 was being severely taxed by many users

wishing to complete similar time consuming design checks.

All of these problems had to be and were solved. The development of tools as
described in Chapters II and III allowed much greater independence for designers at
the University of Adelaide to verify their designs. The networking of the University’s
computing systems to each other and to the ACSNETI!™! has subsequently given even
greater independence to designers. Designers could possibly bypass the Australian inter-
mediaries in the design process and go straight to the US for fabrication should they be
able to arrange the additional administrative matters involved in MPC dealings them-
selves. These administrative matters are non-trivial as experiences with MPC processes
within Australia have proven. The CSIRO set and met deadlines extremely well and

4-45

Section 4.6 A Control Unit for a Four Bit Microprocessor

thereby offered participants of their MPC program a reliable method for the fabrication
of IC design prototypes. For example, the deadline for submission of projects for the
first AUSMPC, 5/82 was the 31°¢ May 1982 and a package of bonded and unbonded

die were returned to the designers by early August 1982 ready for testing.

While the CSIRO no longer provides MPC services, its brief involvement with IC
design work acting as a Silicon Broker prompted similar competitive services from other
commercial enterprises within Australia that currently offer similar MPC services using
fabrication facilities within this country. The exposure of Australian IC designers to the
well scheduled professional IC fabrication facilities offered by the companies existing in
the United States allows Australia to understand standards that should be expected for

IC fabrication.
4.6 A Control Unit for a Four Bit Microprocessor

The success of the Signature Analyser design submitted to AUSMPC 5/82 proves
the worth of many of the layout and verification tools discussed in Chapter Il as well
as the PLA discussed in Chapter III. The tools from Chapter I that remain unverified
as far as having produced a working nMOS IC is concerned were verified in the design

of the project described in this section.

In 1984, Webber and Dunis at Adelaide University were assigned a project(m]
consisting of an nMOS IC design of a control unit for a 4-bit microprocessor. This design
was to be completed using any of the layout and verification tools discussed in Chapter
I and also the PLAGEN program. When the design was completed, it was intended
that it would be fabricated using the JMRC MPC process, depending on satisfactory

design verification using the verification tools.

The control unit was to be used in conjunction with a data path chip fabricated
on CSIRO AUSMPC 5/82 and designed by Lee and Loo[78], also as undergraduates at
Adelaide University. The data path chip was tested by Lojalm] using a control unit built
out of SSI, TTL chips and found to function completely. As a result it was decided to

4-46

Section 4.7 Analysis of JIMRC MPC Efforts

design and fabricate a complete control unit for the data path chip. An attempt was
made at the design by two undergraduates in 1983(8¢] using the lowest level layout
tools, BELLE etc. This design was not successfully completed for many reasons, among
them the inability of the designers to cope with the inflexible space restrictions and

submission deadlines applied to the CSIRO AUSMPC run the design was intended for.

Webber and Dunis, after experience with all of the layout tools mentioned in
Chapter II'as well as PLAGEN, chose to layout their design using PLAGEN and the
Geometry Editor KIC. Their reasons for choosing KIC rather than other layout tools
were the speed and ease of design that KIC offered!’®]. The design was successfully
completed by the two man design team within a six month part time design span. The
design was then submitted to the JMRC November 1984 design MPC run and returned
in May of 1985. Fig. 4.17 shows the plot of the design, completed using KIC, that was

submitted for fabrication.

The testing of this design remains to be completed, however it is felt that the
design has been simulated to such an extent with various tools that the chances of a
completely functioning chip depend only on the ability of the fabrication process to

yield a fault free die.
4.7 Analysis of JMRC MPC Efforts

A complementary MPC process to the CSIRO MPC process was set up in Syd-
ney by the University of New South Wales in conjunction with the fabrication facilities
at AWA at North Ryde in Sydney, as part of an Australian Government funded Joint
Microelectronics Research Center (JMRC) of Excellence. Similar MPC services to those
offered by the CSIRO were provded by the JMRC team including the Fabrication Pro-

cess testing at an affordable price.

The main difference between the two services was that the CSIRO offered the
ability to fabricate designs using a A = 2um process towards the end of the VLSI

rogram’s operation, and research (as opposed to MPC processes provided) was done
B

4-47

Section {.7 Analysis of JMRC MPC Efforts

1

OcT a4
i
|

Figure 4.17: The completed version of the control unit of the data path chip designed
with KIC and fabricated by JMRC.

4-48

Section 4.7 Analysis of JMRC MPC Efforts

by the CSIRO on a A = 1gm process. The CSIRO was able to do this because
they used fabrication facilities in the US and therefore had the opportunity to pay for
the use of some of the most advanced equipment available for the fabrication of IC’s. On
the other hand, JMRC were restricted to the use of the equipment purchased by AWA
for its fabrication line. As a result of the small Australian demand for high quality IC
fabrication equipment and the high cost of this type of equipment, the minimum feature
size offered by the JMRC MPC facility is 5um or A = 2.5um. While this restriction
can be critical to circuits of the VLSI dimension, it still allows a growing Australian
IC design and fabrication industry to develop. AWA can produce smaller scale designs
that are commercially viable and at the same time open its doors to the Australian
electronics research community through the JMRC medium. This enables wider use of
this important facility for research that could lead to designs of a much larger scale, in
turn providing the potential financial impetus for an Australian company to invest in

much higher quality fabrication facilities than those currently existing in this country.

The advantage that the JMRC program has over the now completed CSIRO MPC
program, is that JMRC has the potential to provide CMOS as well as nMOS MPC’s.
Progress is being made in Australian research organisations towards the implementation
of a CMOS MPC process using AWA CMOS fabricatior facilities to produce designs
resulting from the tools discussed in Chapter IIl. A sample CMOS design is discussed

in the following Chapter of this thesis.

Another very interesting difference between the two programs was the operating
systems used on the computing equipment running the design tools. The JMRC was
heavily committed to the use of UNIX as opposed to CSIRO which was just as heavily
committed to the use of VMS. The reasons for these different committments can be

speculated upon but are not as important as the results of the committments.

Whatever the reason for the different commitments, the result has seen a variety
of tools developed for both operating systems within Australia. Those described within
this thesis are primarily VMS oriented but in most cases work on both operating sys-

4-49

Section 4.8 Conclusions

tems, largely due to the significant UNIX to VMS porting effort by researchers at the
University of Adelaide.

The JMRC deadlines for submission and delivery are much more flexible than
those used by the CSIRO. The benefits of this are that the designers have much more
flexibility in altering the final design floorplan and so are not restricted as much by
mistakes made in the early stages of the design process. The disadvantages of the more
flexible deadlines are that designs can be late in returning to the MPC participants in
the order of a few months. In a university research environment, this unexpected delay

can be tolerated, it may not be tolerated in the stricter commercial environment.

4.8 Conclusions

The work discussed in this Chapter provides a detailed account of nMOS MPC
design experiences using the tools discussed in Chapter II, and one of the tools detailed
in Chapter III. The author’s work involved the development of some of these tools,
including KIC and PLAGEN, on the University of Adelaide computing systems as well
as the design of various nMOS structures using these tools, the Signature Analyser
detailed in this Chapter being one example. As well as design tool use and developraent,
the author makes comments on the MPC process from the point of view of the design

coordinator with experience of submitting designs to the JMRC process.

The tools at the University of Adelaide summarised in Table 2.6 have proven to
be well suited for the mask level design of nMOS IC’s. They provide functioning circuits
in minimal design time. A Geometry Editor such as KIC is the most desirable for laying
outcircuits which are space and electrical timing efficient, while PLA’s are the quickest
method of laying out any circuit although the resultant circuit will be inefficient with
respect to silicon area used and will be much slower than a circuit carefully created

using a Geometry Editor.

The verification tools developed at Adelaide University in conjunction with ISD,
including the design rule checker CHECK, the circuit extractor NET and the simulator

4-50

Section 4.8 Conclusions

PROBE, have completed the initially deficient tool set that was used in the early days
of the first CSIRO AUSMPC's and the addition of the mask level Geometry Editor KiC

to the tool set has provided the most efficient method of mask layout.

The Mask Level CAD tool set is complete for the fabrication of nMOS or CMOS
integrated circuits at Adelaide University, even though only nMOS MPC processes have
been used to date to prove this. Designs can now currently be fabricated reliably using
the JMRC MPC 5 micron process using single layer metal. The only remaining barriers

to IC prototyping at Adelaide University using this process are cost and invention.

4-51

CHAPTER V

CMOS DESIGN USING SYMBOLIC LEVEL CAD TOOLS

5.1 Introduction

After initial experiences with custom nMOS design, fabrication and CAD tool
development using various MPC processes, and the final completion of a working nMOS
CAD tool set as described in Chapters II, III, and IV, efforts were begun at Adelaide
University to assist in the development of a higher level CAD tool set for custom VLSI

design capable of providing more efficient designs for nMOS and, more importantly, for

CMOS circuits.

The reasons for the change in technology base from nMOS to CMOS are sum-
marised by Weste and Eshraghian[481 but can be most concisely expressed by saying
that CMOS offers better performance at lower power and also scales extremely well to
small feature size. Their work overcomes earlier barriers to MPC work with CMOS by
adopting similar techniques to those used by Mead and Conwayls] with nMOS designs.
Appendix G details the design rules specified by Weste and Eshraghian for use in a
CMOS MPC process.

The VIVID CAD tool set described in Chapter IIT will be used to present a CMOS
design experience as a means of verifying the ability of the tools to both fabricate
a working CMOS design and to do it much more efficiently than would be possible
using the mask level design tools discussed in Chapter II. The results of this work will
be presented in CIF in a form that could ultimately be fabricated on a CMOS MPC

process using the rules described in Appendix G.

A research project was commenced at Adelaide University in 1983 combining ef-
forts from a signal processing group and an IC design group. The object of the research

5-1

Section 5.1 Introduction

was to produce a new CMOS signal processing architecture capable of performing such
tasks as Correlation, Lattice Filtering, and Fast Fourier Transforms/8€}[87]. The Trans-
form and Filter Brick (TFB) is intended to comprise four ALU’s, four Data Memories,
an Input and an Output Processor, all connected by a Ring Bus structure under the
control of a Stored Program Controller. These structures would be placed on a sin-
gle CMOS chip, estimated to contain more than 200,000 transistors, to form a highly
interconnected Parallel Arithmetic Processor for multi-purpose Signal Processing appli-

cations. Fig. 5.1 shows the proposed physical architecture of TFB.

Previously most computational intensive signal processing tasks necessitated the
storage of digitised data and off-line processing on a general purpose computer. In many
cases, on-line real time processing is required which calls for very fast data manipulation.
Such signal processing tasks are intended to be completed by TFB. To enable completion
of these tasks TFB will comprise a multiplier, a summer, a register for storage, a delay

element and a dividerlsg].

A VLSI design problem such as TFB requires collaborative design team effort as
well as the use of sophisticated IC design tools. The problem must be partitioned into
smaller sections enabling individual designer attention. As part of the investigation into

solutions to TFB sub-circuit design problems, this chapter looks at an adder structure.

The design requirements of TFB regarding design area, speed of operation and
data transfer rates have prompted the need to investigate a number of different adder
structures with respect to these important features and others such as their ease of
adaption for multiplication and their suitability for implementation in silicon as a part
of a larger system. The investigation is to be carried out using the design rules given
by Weste and EshraghianHSI and will be fabricated for testing. One of these adder
structures will be presented in detail in this chapter as an illustration on the use of the

higher level CAD tools.

5-2

Section 5.1 Introduction

‘Daﬁgﬁem

)

ExDecoder

ModgSel
Dataﬁgm ______) '§§wmﬂmwmi _____ :
D OutProc C

]
16 Bit 16 Bit T-Switch 32 Bit 32 Bit
Bus Pass/Break Bus Pass/Break

Figure 5.1: The Physical Architecture of the Transform and Filter Brick, TFB.

Seclion 5.2 A CMOS Adder Design

5.2 A CMOS Adder Design

The combinatorial adder referred to in Weste and Eshra,ghian[481 is the structure
to be studied in detail. The simplest approach to designing an adder is to use stan-
dard logic gates to implement the Boolean equations defining addition of binary digits.
The Boolean equations defining the addition operation for a ripple-through adder are

expressed by equations 5.1 and 5.2.

SUMopyT = A.B.CARRY[y + A.B.CARRY N + A.B.CARRY|yN

A B O AR RY N et ttteteeeeee et tetee e aeianaae e eiaantee e (5.1)
CARRYoyr = A.B+ A.CARRY;N + B.CARRY|y

= A.B + CARRYN.(A + B) wisueiivens st siosseiamus voisesassmevsaing (5.2)

The variables used in the equations are A and B, the two input bits to be added
together, and CARRYy and CARRYpyr, the previously generated carry and the
current generated carry bits respectively. The gate schematic of the adder can be seen

in Fig. 5.2.

The design of one bit of the combinatorial adder is shown in floorplan form in
Fig. 5.3. This floorplan form of the design is available as a standard hierarchical view
of the design using the VIVID system. Fig. 5.2 provides the guidelines for the symbolic
layout of the transistor schematic which in turn can be compacted to a very efficient

mask layout form using systematic symbolic layout techniques.

A technique for efficient layout of CMOS designs is the compounding of individual
gates to implement a particular design, as described by Weste and Eshraghian[4sl. An
advantage is gained by reducing the number of transistors required to implement a
Boolean function using this method rather than composing a number of individual
gates together to perform the same function. The main disadvantage of compounding

gates in this manner is that the circuit may be slower than other implementations.

5-4

Section 5.2 A CMOS Adder Design

A .
i) ——
G r“— CARRY
T\
|/

—'D _—D DC SUM

Figure 5.2: The logic gate schematic of the combinatorial adder.

vdd_nw 5 ‘é g é—-—-ﬁ vdd_ne
It
C
O
m Lcomadd
C
cin_uo 3 % cobar_e
™

Figure 5.3: The Floorplan of one bit of the combinatorial adder.

Section 5.2 A CMOS Adder Design

vdd

T A1_|
Ad—f 81 M—ié' = °i+%

Bi |
ci At— Ci+1 — St [:>x -
Al - Ci

Bi_l
Mg e —;% o1 %u%

Ai_.{

Vss P

E::xk Ci+14

Figure 5.4: The transistor schematic of the combinatorial adder.

This disadvantage can be overcome to some extent by varying the p and n type

ratios of the circuitry to speed up critical paths.

The one bit combinatorial adder is shown in transistor schematic form with its
component parts identified in Fig. 5.4. This particular adder design uses the inverted
carry output (CARRYpyr) in the generation of the sum output SUM. The equation

used for this sum output generation is

SUMpopr = CARRYopr.(A+ B+ CARRY[N) + AB.C..c.cevvnnnnn. (5.3)

Equation 5.3 can be shown to be the same as the complement of equation 5.1

(see Appendix H) but is more efficient in terms of gate complexity for the description

of the sum generation circuitry and is consequently the equation used to describe the

? sum generation circuit in Fig. 5.4. Because the sum output depends on the carry

i output, there will be a delay in sum output generation with respect to the carry output
generation.

5-6

Section 5.2 A CMOS Adder Design

The carry output shown in Fig. 5.4 as Cj4j, is generated according to the

complement of equation 5.2, resulting in equation 5.4.

CARRYoyr = A B+ CARRY[N.(A+ B) . ccviiiiiiiiiiiiiiiiiiininna, (5.4)

The two stages of a one bit adder, the carry and sum generation circuits, can be
cascaded n times to form an n-bit parallel adder. The carry output will need to ripple
through the n stages to provide the final n-bit result. A schematic of a ripple carry
adder can be seen in Fig. 5.5 (a). The final result of the n-bit addition will be delayed
in the worst case by Tp = nTg where T is the delay in the generation of the carry
output in one bit of the circuit (ie. the time taken to generate the output from the

carry generation circuit shown in Fig. 5.4).

SUM, SUM, SuUM, SuM,

1 2 C: Cn cnu

C, —#{ ADDER » ADDER #{ ADDER [~ =~=~= ADDER —

(CARRY IN) l l
@ Ao BO AI 1 A? a2 n n

SUM, SUM, SUM, SUM, (n odd)

1 2 C:l Cn cn+|

C,—{ ADDER ADDER ADDER [O—===== ADDER [——

NO INVERTER IN
CARRY GATE

(b) Av B A, B, A, By A, 8,

Figure 5.5: (3) Above can be seen the schematic diagram of a cascaded ripple carry
adder. (b) Below is the schematic of the same adder using complemented outputs and
inputs to speed up the critical carry propagation path.

Using this type of design to obtain the greatest speed of addition, the aim must
therefore be to reduce T to its lowest value. This requires the optimum design with

5-7

Section 5.2 A CMOS Adder Design

respect to speed of generation of the carry output in Fig. 5.4. The first optimisation is
to generate only the complemented form of the carry out as the signal to be transferred
between blocks. Using the complemented forms of both the sum and carry outputs
(as shown in equations 5.3 and 5.4) and cascading to form the final n-bit adder while
applying alternately complemented and non-complemented inputs, results in alternate

non-complemented and complemented outputs as shown in the schematic diagram in

Fig. 5.5 (b).

Using the complemented outputs for sum and carry generation results in the
reduction of Tg by Ty, where Ty is the delay through the inverter used to produce
the non-complemented form of CARRYpyr. As the carry path is the critical path for
speed of operation of a ripple carry parallel adder, this reduction of T¢ accumulates
with each stage of a parallel adder. The delays due to inversion of inputs and outputs
for the individual adder stages can be made negligible in comparison to Tp depending

upon the specifications of a particular adder design.

Appendix H shows the equivalence of logic equations implemented in the circuit
in Fig. 5.4 with the inputs in both complemented and uncomplemented form and
their respective results. Because of the use of alternate complemented /uncomplemented
inputs, it becomes necessary to distinguish odd numbered stages from even numbered
stages of the cascaded adder circuit. Therefore, the design of the adder has been built
in two bit form as this is the fundamental block with which a parallel adder of this type

can be constructed without any low level symbolic manipulation other than routing.

This fundamental two bit block can be seen in Fig. 5.6 in floorplan form, subdi-
vided into its component parts. The odd and even one bit versions of the adder consist
of the two component cells shown in Fig. 5.8. The multiplexer cells shown in Fig. 5.10
form the component sections of the outputs for the individual odd and even numbered

stages of the addition circuitry.

An odd numbered multiplexer stage uses uncomplemented inputs to produce

5-8

Section 5.2 A CMOS Adder Design

complemented outputs for the sum and carry result. The even numbered multiplexer
stage produces complemented inputs for the sum, and the sum generation circuit uses

the complemented carry from a previous adder stage, resulting in uncomplemented

outputs.
3 o

sa_nu r—g ------ e g % 'E é‘ ‘g e -‘g--—--— L.u ne

sb_w sb_e
vaa.e

Lchbitodd Lcbiteven [*

cin.w oo.e
—- - e vas_se

Figure 5.6: The Floorplan of the two bit building block used for cascading the ripple
carry adder stages.

This adder structure can be used without significant modification for the opera-
tions A — B and B — A as well as A + B. The inputs to the sum and carry generation
circuitry can come either through the inverters or straight through the multiplexer

unaltered, as determined by the inputs s, and s.

These two inputs are used to determine the operation of the adder. If both
sa =1 and sy = 1 then the operation performed will be A+ B. If s¢ = 0 and s = 1 the
operation performed will be B — A, while if s = 0 and sq = 1 the operation performed
will be A— B. The condition s; = 0 and s = 0 is a prohibited condition for this design.
For the operations A — B and B — A to be completed, the carry input to the first stage

5-9

Section 5.8 Symbolic Layout of the Combinatorial Adder

needs also to be altered from O as it should be for A+ B, to 1. This task is completed
by attaching a carry in generation circuit as shown in Fig. 5.11 to the first stage of the

cascaded parallel ripple through adder.

Once the individual symbolic leaf cell functions have been specified at the floor-
plan level, the detailed layout of the design can be commenced. Using the VIVID design
tools, this can be done using either the ABCD language, or more efficiently using the

symbolic graphic editing tool ICE.
5.3 Symbolic Layout of the Combinatorial Adder

The first task is to lay out the carry and sum generation circuits in their most ef-
ficient form. Using equations 5.3 and 5.4 as the guides for the compounding process, the
transistor schematic shown in Fig. 5.4 results. Using gate compounding techniques[“]
the results of the carry generation stage can be seen in Fig. 5.7 (a). Using the unin-
verted form of the LHS of equation 5.4, A.B + CARRYy.(A + B) the n side is first
constructed. The logical AND expression A.B and the OR expression A+ B are shown

constructed in switch form first. Then the complete expression implemented below.

Taking the p-side requires the complement of the expression to be used. The LHS
of equation 5.4 then reduces to (A+B).(CARRY y+A.B) = CARRY[y.(A+B)+A.B.
Then AND and OR terms may once again be constructed in switch form to provide
the results shown in Fig. 5.7 (b). The same techniques applied to the LHS of equation

5.3 results in the transistor schematic for the sum generation circuit shown in Fig. 5.4.

This transistor schematic must be optimised to provide fastest speed of addition
and smajlest silicon area before the final symbolic layout form can be completed. Ini-
tially the design may be layed out using single devices in the positions indicated by the
transistor schematic. Once this is done, simulations can be run to check the speed of
operation of the first layout and successive refinements and simulations made until the

optimised circuit is resolved.

Considering the combinatorial adder shown in Fig. 5.4 and the boolean equations

5-10

Section 5.8 Symbolic Layoul of the Combinalorial Adder

Ad{N A1N_ N} B
B4N

] o[

AB

(A +B).C

o
| Z|
Z.-
[o2)

AB + C.(A +B)

Figure 5.7: (a) Above can be seen the process involved in the construction of the n-

type transistor circuit for the function described in equation 5.4. (b) Below is the
construction of the p-type transistor circuit for the same function.

Section 5.8 Symbolic Layout of the Combinatorial Adder

(equations 5.3 and 5.4) that this transistor schematic is meant to describe, it can

be seen that the positioning of the devices has been optimised.

The circuit schematics shown in Fig. 5.7 could have alternative arrangements,
however three other important considerations dictate the layout shown. First, the tran-
sistors switched by the CARRY signal should be close to the output, minimising the

influence due to body effect of these transistors.

Second, all transistors in the sum generation circuit whose gates are connected
to CARRY oy should be made of minimum size to minimise the capacitive load on
the signal output. This loading principle also dictates the positioning of the carry
generation circuit with respect to the sum generation circuit, as routing lengths should
be minimised for lines connected to CARRYpyr. When routing, the most efficient

layers (metal and poly) should be used.

Third, the sizing of series transistors should subsequently be determined by simu-
lation. This is an iterative process made possible only by the use of a quick response sim-
ulator such as FACTS, described in Chapter III. Simulators such as SPICE would take
too long to make this an effective design procedure, while simulators of the MOSSIM
type are not designed to provide the necessary timirg information. A simulator such
as PROBE would provide the timing information although only after compaction of
the design, and extracton at the mask level, again making the design iteration a more
tedious step than using FACTS. The symbolic layout results of such design iterations

using FACTS for both the sum and carry generation circuits are shown in Fig. 5.8.

These layouts alone do not allow the cascading required to produce the ripple
carry parallel adder. Inverters must be added to the inputs and outputs in an appro-
priate form to provide the alternative complement/non-complement inputs and outputs
required by alternating bits of such a cascaded structure. Allowing for efficient cascad-
ing of a single block to produce an n-bit ripple carry parallel adder, the easiest solution

is to produce a 2-bit version of the adder. The two bit version will provide consistent

5-12

Section 5.8 Symbolic Layout of the Combinatorial Adder

<
]
C
o
I A R ﬁ‘\“\‘“\““*
a_nu.uav—ﬂa:‘] ﬁ\& 3 R tﬁudd_ne
N,
El\:ﬁ\\ﬁltﬁ:*\\ VEINEINE:
; % T) N - - - ‘
- = % e " |
: \\1 oh \'\ \\I
X N :\ [B INN N B .
- t] H :
o s -l——: = :\"E— l
WNIGINE NN
| 5 F =
b Y-
N
a.w 5—pd 5|
bwe Ji —
cin_wB— 1% —& +———=a cobar_e
S [11
[! s -|¥ = E —, :
: R \ . NN ;
=N f‘ \t ki N # I E N 5
TN i’.\\‘- ‘.h\ . N TR

‘t N, ' \'I‘.I_'.II : '-‘U
Kok swﬂ_\ "-.. R T \.‘:h».:::-,.* \\.\,, N ﬁ B o Yt W B F op-ae

Figure 5.8 (a): The symbolic layout of the sum generation stage of the combinational
adder.

5-13

Section 5.8 Symbolic Layoul of the Combinatorial Adder

[=
|
T T 7 7 e T AR AT T T,
vdd_nwfa/"_p,-_,,{_,m_,//, [N E i’ Vol vdd_ne
ﬁ // qr’ m r’ 1 é 7
4 171 1] L[] B | 5
1 .] | -
L | b |
HVEIVIEIVIE:
L e F
== 52
) 873 b
ARV
b | o |
AEIZIEIZIE
m_ == e hﬁ- 8a_e
b i ab_e
cin_w B—)
iz T & cobar_e
- Ly :;::.. =
A
X

~\\{‘~)

¥ 4 QIEI Y wl (Y] =
4 ’V' - — T TAEA T
ves-9u /_/;/g/ /"/ ’/ /%j/:’/// S /Ww’s"ae

Figure 5.8 (b): The symbolic layout of the carry generation stage of the combinational
adder.

5-14

Section 5.8 Symbolic Layout of the Combinatorial Adder

inputs and outputs (no complementing required) at all cascade points. It does
this by containing within the 2-bit block an odd and an even addition stage where the
inputs to the adder are controlled by two lines sq and sp. This control function allows

the adder to complete addition or subtraction of the inputs.

The circuits used to multiplex the inputs to the odd and even numbered bits
of the 2-bit adder block can be seen in logic layout form in Fig. 5.9. These circuits,
(a) and (b), are different only in the configuration of the transmission gates used to
multiplex the input signals to their respective adder inputs. It can be clearly seen from
the schematic that the state of sq and s;, dictate which of the three operations A + B,
A — B, or B — A, will be performed by the 2-bit adder block. (Note that s, = 0 and
sp = 0 is disallowed). The outputs on the other hand are hard wired to provide both
the uncomplemented and complemented forms of the adder output. The results of the
symbolic layout of the circuits schematically described in Fig. 5.9 are shown in Fig.

5.10.

To complete an adder using cascaded 2-bit blocks as described in this section,
an input block for the the first CARRY]y must be completed. Assuming that the first
inputs are to be un-complemented, the control signals sq and s need to be decoded
to generate a CARRY y for the first stage such that if sq and sp are both 1, then
CARRY;y = 0 otherwise CARRY;y = 1. The symbolic layout for this carry in

generation circuit is shown in Fig. 5.11.

The symbolic layout for each of these designs was completed using the tool ICE.
In the time it took to complete the layout for the Signature Analyser design, this
design was totally layed out and simulated using FACTS to verify not only the design
operation, but to give details of timing using preliminary models for estimated CMOS
processes. The symbolic layout of a design on a virtual grid provides great flexibility in
the modification of layouts in conjunction with fast simulations to provide the fastest,

most compact layout of a design.

5-15

Seclion 5.3 Symbolic Layout of the Combinatorial Adder

[~]}

r [
NET

SA SA 8 SB

¢—0n - 08
A i

(v~}

Figure 5.9: (a) Above the logic diagram describing the odd numbered multiplexer for
the combinational adder. (b) Below, the even numbered multiplexer logic diagram.

5-16

Symbolic Layoul of the Combinatorial Adder

Seclion 5.8

sbwg—— - & —asb_e

] =
CER N J.///M/MW//,///,,// N
= [N

NEH FY
- |M

~IN|IE: uﬂx 2 |

| = 4 P 4 B

io_a

5-17

Figure 5.10 (a): The symbolic layout of the odd numbered multiplexer.

Symbolic Layout of the Combinatorial Adder

Section 5.8

[-
o
sa_nwE——-§g----
ab_wG-——- s --lﬂ/.-./
J / NN
Sobsgf.y /// .,,mﬂ;///x

a-n

/.¢/

NANANN AR SAN
NN 7

//// N

L L

N

&/
N

N MF_ =

B _L&,

c&%e% :

RN

/
N

!J

=

.f
»

x
N N i
b Ii ﬂu i
- .
r v
N
/l ﬂﬂ N n
- -
A N
N ¥
AN L N
v
E N

i mm—g SA_NE

———asbh_e

Figure 5.10 (b): The symbolic layout of the even numbered multiplexer.

5-18

Section 5.3 Symbolic Layout of the Combinatorial Adder

sa _nw BT s T T
s b _WELLD L LTI
thHEd! “ii; !:!f' [y as e
N N N
I g
L A= g i
Il i
S 7
!
< F
#
i [Booe

Y
~
i
[T

1 i

Figure 5.11: The symbolic layout of the carry in generation circuit.

5-19

Section 5.4 High Level Extraction and Simulation

The biggest advantage found in using ICE to lay out the design was that errors
were made less frequently because (i) circuit elements (p and n type transistors, cuts and
wires) were being manipulated rather than geometries and (ii) the layout was graphically
edited rather than textually edited. The first advantage is the reason that symbolic level

layout tools are preferrable to mask level layout tools and ICE therefore preferable to

KIC.
5.4 High Level Extraction and Simulation

Ise of the circuit extractor ABSTRACT and the simulator FACTS, enables a
quick response simulation check of a design during the circuit design phase. The fast
response of the extraction and simulation process is a key factor in the effectiveness of the
VIVID tool set. It enables a designer to detect, almost immediately, errors made in the
symbolic layout process. Combined with the layout advantages of symbolic level tools,
the fact that the circuit extractor uses ABCD as input and that the simulator provides
timing information using circuit models, means that a layout/simulation iteration in the
design process can be executed much faster than the same iteration in the equivalent
mask level design procedure. These points will be illustrated using the adder design
simulation results with the VIVID tools and the results gained from using the compacted

CIF version of the design with the mask level tools described in chapters II and IV.

The simulated results for each of the component parts of the adder design are
presented in Fig. 5.12 (a)....(q) along with some examples of extracted circuits produced
by ABSTRACT. Each component of the design has an expected result for its simulated
output and these expected results are presented in tables in the following text as an
analysis of the operation of the adder. In all cases the inputs and the outputs are
nominated for the separate parts of the design. The inputs have signals applied to them
by way of commands given from the simulator while the simulated results are returned

through the outputs.

ABSTRACT uses the VIVID MTF system, which calculates the electrical param-
5-20

Section 5.4.1 Simulation of the Carry Generation Stage

eters associated with each circuit element. These values are estimates, but are relatively
accurate for all primitives except wires, which are directly dependent on the final size
of the layout. For the purposes of presentation in the following sections, ¢;,, a, b, 0 and
co are respectively used to denote CARRY N, A, B, SUMpyr and CARRYpyT as

used in previous equations.
5.4.1 Simulation of the Carry Generation Stage

The inputs for the carry generation stage are ¢;,, @, and b while the output is
To. Table 5.1 presents the input patterns applied to the carry generation circuit to test
its operation for the critical input conditions causing the worst possible time delay in
the addition result, together with the expected result To shown in Fig. 5.12 (b). The

extracted circuit for the carry generation layout is shown in Fig. 5.12 (a).

Cin [2]0|[Co
01110
O [O[L]|l1
0 |01][[1
1 |OfL]fO
1 |O[1}lO
0 |10} 1
O |1]O|] 1
1 |1]0]] O
1 [1{O][O
0O |1]0{f1

Table 5.1: The input conditions causing the worst case carry generation time delay
To. This delay is critical as it results in the longest time delay for an addition result,
Tp = nTc and therefore specifies the maximum speed of operation of an n-bit adder.

The important features that can be seen in the FACTS simulated results shown

in Fig. 5.12 (b) are as follows:-
(i) The expected output agrees with the simulated results.

(ii) The worst propagation time for the carry generation circuit is determined by the
FACTS model to be Tg = Tns. This would imply that for an n bit parallel carry

ripple through adder, the worst overall propagation time could be

5-21

Section 5.4.1 Simulation of the Carry Generalion Slage

Tp = nTo = n.7ns. This figure can be checked against the simulated results for
an adder where n = 8 as shown in section 5.4.8 where a more accurate estimate of T

can be obtained by looking at the propagation delay over a number of stages.

The simulation indicated in Table 5.1 examines the most critical delays for the
carry generation circuit. The critical time delay occurs only when the inputs a and b
are opposite. When an addition is carried out on an n-bit parallel ripple carry adder,
all inputs a, and b, are presented to the adder at the same time. Initially, all n adder
stages will produce sum and carry outputs using their immediate inputs. As the carry
output from the first stage ripples through the n stages, the carry out from a particular
stage ¢ will only be altered from its initial level if the inputs a; and b; are opposite and

the previous carry output goes through a transition.

cinlalbl|l so]co
0O |l0|OJ]]O]O
0 0|1 110
O[1]01]]1]O0
0 1)1 0 1
1 |[010 110
1 |01 011
1 |1]OfjO |1
1 |11 1]1

Table 5.2: The Truth Table for Addition. Note that ¢, is only affected by c;, for the
cases where a # b. Whenever a = b, ¢, is independent of c;y,.

This can be seen by examining the above truth table, Table 5.2. The carry output
for an addition operation will only make a transition from 1 to 0, or 0 to 1 if the carry
input changes when @ = 0 and b = 1 or when a = 1 and b = 0. The cases a = b=0
and ¢ = b = 1 generate their respective carry outputs at the time that the inputs are
applied to the adder. These carry outputs generated at that time will not be altered
by any transistion of a previous carry input to that particular stage at any subsequent
time. This implies that the worst case delay for the final result of an addition from
a parallel ripple carry adder would be when all a; and b; are opposite. The resultant

delay would then be Tp = nT¢ as indicated previously.

5-22

Section 5.4.1

.model nenh nmos

o+ o+ o+ o+ o+

vto=0.779
uo=4.0e-02
xj=.0385u
cj=
gl=

4.2e-4
0.7

.model penh pmos

P B I

vto=-0.98
uo=
xj=.146n

cj=2.5e-4
gl=

1.5e-02

0.7

md5 IC a vss vss nenh
md4 vss b I0 vss nenh
md12 I0 cin cobar vss
mdl I1 a vss vss nenh

md22
md20
mdis
mdi7
mdi6
mdi5
mdi4

cb b

I2 cin cobar
I2 cin cobar
I2 cin cobar
vdd b I2 vdd
12 a vdd vdd
I2 a vdd vdd
vdd b I2 vdd

vss 39.30f

ca a vss 42.60f
ccin cin vss 36.00f
ccobar cobar vss 43.50f
cI0 I0 vss 12.60f
cI2 12 vss 33.60f

vdd
vdd
vdd

Simulation of the Carry Generalion Slage

phi=0.60
nsub=1.0e+22
tox=500.0e-10
cjsw=9e-10

phi=0.60
nsub=8.158e+20
tox=500.0e-10
cjsw=4.5e-10

1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
1=3.0un w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u

nenh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
1=3.0u w=7.0u ad=56.0p pd=30.0u as=56.0p ps=30.0u

penh 1=3.0uv w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
penh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
penh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u

penh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
penh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
penh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
penh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
md7 vdd b I2 vdd penh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0n
md6 I2 a vdd vdd penh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
md2 cobar b I1 vss nenh 1=3.0u w=7.0u ad=56.0p pd=30.0u as=56.0p ps=30.0u
md8 cobar b I3 vdd penh 1=3.0u w=7.0u ad=56.0p pd=30.0u as=56.0p ps=30.0u
mdi0 vdd b I2 vdd penh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
mdil I2 a vdd vdd penh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
md3 I2 cin cobar vdd penh 1=3.0u w=14.0un ad=112.0p pd=44.0u as=112.0p ps=44.0u
md9 I3 a vdd vdd penh 1=3.0u w=7.0u ad=56.0p pd=30.0u as=56.0p ps=30.0u

Figure 5.12 (a): The extracted circuit obtained using ABSTRACT for the carry gener-
ation circuit.

5-23

Section 5.4.1 Simulation of the Carry Generation Slage

| Farallel Ripple Carru Adders Warst Case Carru GSen=roation H?E=§SI
BL 1 E 1 418 1 618 1 51'@ 1 1 818
o1n — I_
At s
1.358 pf | 25
ﬁ 1 1 | | |
._I L,
1.502 pf: | -
I l .] l [_
b — =
1.514 pf: =
| | _
]
— / L
cobar - L
1.482 n{: \ =
I T] 1 1 1) 1] i 1
20 40 68 8¢ 180

Figure 5.12 (b): The FACTS simulation of the carry generation circuit for worst case
carry propagation.

5-24

Section 5.4.1 _ Simulation of the Carry Generalion Slage

L Paralle) Ripple Carru Adder, Quiescent Carry Generatian Hgg.
E} EIEI 12|B 1$B 240 3004 =15 420
1 1 1 Il
©.353 pf _|
i | i | 1
a —
@.ce2 pf_|
b -
B.534 pt_|

cobar -

B.492 pf _|

7

0 50 120 18@ 240 300

al
-
o
N
nJ
&N

Figure 5.12 (c): The FACTS simulation of the carry generation circuit for all possible
input conditions.

5-25

Section 5.4.2 Simulation of the Sum Generalion Stage

It is also important to note that the carry output generated when a = & also
has a worst case time delay associated with it, Tgc. This can be ignored as long as
Toc < Tp. Should the number of stages be such that Toc > Tp, optimisation of the
layout presented here would have to take place as the critical circuit delay would then
become the offending worst case quiescent carry generation condition, which in this case
can be recognised from Fig. 5.12 (c) to be when ¢;,, is high, a is low, and b changes from
high to low. These conditions result in a figure of Tgc = 50ns. The input patterns and

results obtained in the simulation can be compared with those indicated in Table 5.3.

cinla|bllco
0O OO0} 1
0 0|1 1
O |1[O0] 1
0 [1[1][O
1 O[O 1
1 (Of[1]]O
1 |1]0]] 0
1 |[1]1]]0

Table 5.3: The Simulation Test for the complete set of possible input conditions for the
Carry Generation Circuit is defined by the above truth table where c;y,, a and b are the
inputs and ¢, is the output.

5.4.2 Simulation of the Sum Generation Stage

The inputs to the sum generation stage are ¢;,,, @, b and ¢; while the output is
0. Table 5.4 presents the input patterns applied to the sum generation circuit and the
expected results for all possible combinations of input conditions. The extracted circuit

for the sum generation layout is given in Fig. 5.12 (d).

The important features of the simulated results as shown in Fig. 5.12 (e) are as

follows:-
(i) The results of the simulation agrees with the expected results.

(ii) The worst quiescent sum generation time is determined to be Tgs = 50ns. It

has not been considered critical to optimise this time delay for this particular

5-26

Section 5.4.2 Simulation of the Sum Generation Stage

.model nenh nmos

+ vto=0.779 phi=0.60

+ vo=4.0e-02 nsub=1.0e+22
+ xj=.0385u tox=500.0e-10
+ cj=4.2e-4 cjsw=9e-10

+ gl1=0.7

*

.model penh pmos

+ vto=-0.98 phi=0.60

+ no=1.5e-02 nsub=8.158e+20
+ xj=.146u tox=500.0e-10
+ ¢j=2.5e-4 cjsw=4.5e-10

+ g1=0.7

*

*

mdS vss b I0 vss nenh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
md7 I0 a vss vss nenh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
md6 I2 b I1 vss nenh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u

md3 vdd cin I3 vdd penh 1=3.0u w=7.0u ad=56.0p pd=30.0u as=56.0p ps=30.0u
md30 I3 cokar obar vdd penh 1=3.0u w=7.0u ad=56.0p pd=30.0u as=56.0p ps=30.0u
mdd obar cin I7 vdd penh 1=3.0v w=7.0u ad=56.0p pd=30.0u as=56.0p ps=30.0u
md! vdd a I3 vdd penh 1=3.0a w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
md2 I3 b vdd vdd penh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
md8 I1 a obar vss nenh 1=3.0u w=7.0u ad=56.0p pd=30.0u as=56.0p ps=30.0u

md10 vss cin I2 vss nenh 1=3.0u w=7.0u ad=56.0p pd=30.0u as=56.0p ps=30.0u
mdi3 IO cin vss vss nenh 1=3.0un w=7.0u ad=56.0p pd=30.0u as=56.0p ps=30.0u
mdi4 obar cobar I0 vss nenh 1=3.0u w=7.0n ad=56.0p pd=30.0u as=56.0p ps=30.0u
ndi5 vdd a I3 vdd penh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
md16 vdd a I3 vdd penh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
md17 I3 b vdd vdd penh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
md18 I3 b vdd vdd penh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u

md21 vdd a I3 vdd penh 1=3.0u w=14.0n ad=112.0p pd=44.0u as=112.0p ps=44.0u
md22 I3 b vdd vdd penh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
md24 I4 a vdd vdd penh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
md25 IS5 a vdd vdd penh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
md26 I6 a vdd vdd penh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
md27 I7 b 16 vdd penh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
md28 I7 b IS5 vdd penh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
md29 I7 b I4 vdd penh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u

cobar obar vss 48.70f
ca a vss 38.10f

¢b b vss 40.50f

ccin cin vss 44.70f
ccobar cobar vss. 44.40f
cI0 I0 vss 8.40f

cI3 I3 vss 67.20f

cI7 17 vss 8.40f

Figure 5.12 (d): The extracted version of the sum generation circuit.

5-27

Section 5.4.2 Simulation of the Sum Generalion Slage

Parallel Ripple Carru Adder. Sum Generation Steoe ﬂ‘i%:fg]
%] 40 80 1%@ 1$@ EBLB E-—}B EBI@ i?@
clin : -
.4592 pf: :
L.
_ | | | |
‘.552 Hi i
| | |
b i
.l.5:14 pf: -
L
. | _
if . B
'gcnhar F= -
234 pi "
: | | I -
i 4 =
obar - =
2.2R5 ﬂf;“’/ E
48 50 129 160 208 248 28@ 320

Figure 5.12 (e): The FACTS simulation of the sum generation circuit for all possible
input combinations.

5-28

Section 5.4.8 Simulation of the One Bit Adder

design. The reason behind this strategy is that the adder is to be an eight bit
adder and so the crucial time delay is nTg = 8T¢ = 56ns (see simulation of the eight
bit adder, section 5.4.7). This delay is longer than Tpg and therefore Tpg need not
be optimised. This time delay becomes critical only when the number n reduces to the
point where Tgs > nT¢. By the results of the FACTS simulation for this design, the
sum generation circuit would need optimisation only if the number of bits in the adder

were to be n < 8,

Cin|lal|blco]lo
O [0OJO] 11
0 {0[1]1]]0
0O |1]0[11{0
O |1[1]0 |11
1 |0]O] 1][O
1 |O[1[O|f1
1 [1]0[0|1
1 [1[1]O0[O

Table 5.4: The Simulation Test of the Sum Generation Circuit using all possible com-
binations of input conditions.

5.4.3 Simulation of a One Bit Adder

The inputs to the one bit adder are ¢;;,, 0a and o, while the outputs are o and
Zo. Table 5.5 presents the input patterns applied to the one bit adder circuit and the
expected results for all possible input combinations. Note that the difference between
this table and table 5.2 is that the ouputs are complemented. The extracted circuit for

the one bit adder layout is similar to the combination of the first two extracted circuits.

The important features of the simulated results as shown in Fig. 5.12 (f) are as

follows:-
(i) The reults of the simulation agree with the expected results.

(ii) The connection of the two previously simulated stages provides no unexpected

problems for the design. Again the worst cases of sum generation Tgs and carry

5-29

Section 5.4.9

Simulation of the One Bil Adder

Parallel Ripple Cearry

Adder, One Bit Addition without fultlpl=exere

PRE. 58|

o 1p@ 200 308 4PB SBO 58B 788 800
] | N
cin - L
284 pt | E
N I | |
.SB1 n#: :
L.
I
.1
oh ==
515 pf |
1 -
i L
).2BS ot :
L 1 I 1 l 1 -
cobar :
1,473 pt B
g 85 28w 39@ 40w S0@ 508 (0@ ©00

Figure 5.12 (f): The FACTS simulation of a one bit adder consisting of the carry and
sum generation circuits cascaded together.

5-30

Section 5.4.4 Simulation of the Odd and Even Mulliplezers

generation To can be seen to verify the results determined in the previous two

sections.

Cin | Oa | Op) E;
0 010 111
0 0 1 011
0 1 0|l0] 1
0 1 [1[1]O
1 O[O0 1]]0] 1
1 o0 1 1[0
1 1 0 10
1 1 1 00

Table 5.5: The Simulation Test of the One Bit Adder Circuit for all possible input
combinations.

5.4.4 Simulation of the Odd and Even Multiplexers

The multiplexer stages are used as a hardware interface to control the inputs
to the one bit version of the parallel ripple carry adder so that the alternate com-
plemented /uncomplemented forms of the inputs remain consistent with the addition
stage. This removes any necessity for inversion of the various inputs to the different
adder stages at the time of composition of the adder into a larger system. The only
interfacing required at the time of composition of the adder, apart from direct con-
neclion of inputs and outputs, will be the connection of the two control inputs sq and
sp. As described previously, these inputs will determine which of the functions 4+ B

(sa=1,84=1), A~ B (sa = 1,8, =0), or B— A (sq =0, s, = 1) is performed.

The inputs to the odd and even multiplexers are therefore the same. They are
Sa» Sp, @, b, and 1,, while the outputs are o4, 0y, 0 and ©. It should be noted that
the multiplexers provide both the complemented/uncomplemented inputs and outputs
to and from the adder stages and %, is the sum generated output to the multiplexer
output. The differences between the odd and even multiplexer stages are the physical
positioning of the outputs o and o and the results obtained from o4 and o} for various
inputs a and b. Tables 5.6 and 5.7 present the input patterns and the results obtained
for the simulations of the odd and even numbered multiplexer stages.

5-31

Section 5.4.4 Simulation of the Odd and Even Multiplezers

The important features in the simulation results for the odd numbered multi-

plexer shown in Fig. 5.12 (g) are as follows:-

(i)
(ii)

(iii)

The results are as expected in Table 5.6.

The outputs from o4 and op indicate that the odd numbered stages of the multi-
plexer provide uncomplemented inputs to the carry and sum generation circuits.
This means that the outputs from both the carry and sum generation circuits

will be in the complemented form.

The rise and fall times of the outputs o, and op, or o and @ will not present
considerable delays in the addition process. The greatest delay in any of these
rise and fall times is in the order of Tys = 7ns. This delay can be directly added
to the worst case carry generation delay to produce the overall addition delay

Ty =Ty +nTo =Ty +Tp = 63ns.

The important features in the simulation results for the even numbered multi-

plexer shown in Fig. 5.12 (h) are as follows:-

(ii)

The results are as expected in Table 5.7.

The outputs from og and.op indicate that the even numbered multiplexer stages
provide complemented inputs to the carry and sum generation circuits. This

means that the outputs from the sum and carry generation circuits are uncom-

plemented.

As in case (iii) for the odd numbered multiplexer, the rise and fall times of the
outputs again present small delays to the overall operation of the adder. This

delay can again be estimated to be in the order of Tpy = 7ns.

The simulated results in Figs. 5.12 (g) and (h) show that the multiplexers will

not significantly limit the speed of operation of the carry or sum generation stages and

in fact buffer both the input and output stages. It is apparent that the overall addition

delay T4 = 63ns using the multiplexers. Note that the combination sq = s =0,

5-32

Section 5.4.4 Stmulation of the Odd and Even Mulliplezers

I Parallel Ripple Carru Adder, Odd Munbered Iultiplexer H?% gg]
m 28 . 48 68 . 8B 100 . 128
—
ob -
0.142 p¥_ \ E
] | ! | | | i I I I I
B|a [
P.149 pf_
= | | | | T | ' | |
b] ’
P.244 pf _|
= I{ 14_E

.
io

B.160 pt

i [i 1
a
P.244 of _|
[’__\— | | 1

Illl!llll_ll,_.l_l_lullj
et

"

——
MMrTTrirrTTivieveend

[+].]
P.1688@ pf

0.1E69 p+f

0.460 gf

1] Ll

obar

P.,Z293 pf

Figure 5.12 (g): The FACTS simulation of the odd numbered multiplexer.

5-33

Section 5.4.4 Simulation of the Odd and Even Multiplezers

[Parallel Ripple Corru Adder., Even MHumbered Multiplexer R?ESEJ
B 20 . 4@ 60 80 100 120
e 1 1 1 1 1 L 1 J

% e
.. |

Smpligngt

-

FTTTTT AT TIT T IrTl

s

)
T

Figure 5.12 (h): The FACTS simulation of the even numbered multiplexer.

5-34

Section 5.4.5 Simulation of the Carry In Generation Circuil

produces —(A + B) — 2, not —(A + B) as expected. To achieve the —(A + B)
operation using this design requires a two pass operation where A + B is performed

then 0 — (A + B).

Operation [s, [sa [b[a[i0][op |0a |0]|0
A-+DB it 1{ojlol1{fOof[O0]Of1
1{1[|0|1]0O 01 ([1]0
1|]1[|1]0[O 1]1]0([1]0

1|1 |1]1]1 111]0}1

B-A IO0|0|0O[O]]O]1]1]O0
1[0 JO|1[1 0]0|0|1
110([1]0]1 1|1 (0]1
10([1[1]0O 1|0([1][0

A-B |1 [0|OfO 1 {0 [1]0O
Oj1 (0f1]1 1{1](0}11
OlT{1[O0[1T|]fOJOJO|1

o1 (1[1]O]JO[1|1]O

Table 5.6: The simulation test of the odd numbered multiplexer for all valid combina-
tions of input conditions. The outputs oq and oy, are used as inputs fo the one bit adder
whereas the input 10 is the expected one bit adder sum generated output.

Operation [s, [sq [b|a|t0]|[op|0a |0 |0
A+ B 1]1[0f0]0O 1111011
1| 1]0[1]|1 I10][1]0
1[{1({1]0]1 o1 (]1]0

1|11 [1|1]O0 0]0]0[1

B-A 110(0[0+1 10 |L|O
1{0(0|1]0 1 1 |01
1]0]1[0]O 01011011

110 (1(1]1 0}]11]1]0

A-B o1 (O0jO]T (O] 1 [1]O
0|1]0|1]0 0[]0 JO0]1

01]1]0}]60 1 1 |01

O 1 |1]1]1 1010

Table 5.7: The simulation test of the even numbered multiplexer for all valid input
combinations.

5.4.5 Simulation of the Carry In Generation Circuit

Considering that the multiplexing circuitry has been included with the adder
stages in an effort to design an easily cascadable building block, a final leaf cell must be
added to the first stage of the cascaded adder cell to make the design complete. This

Jeaf cell is the carry input generation circuit to the first stage of the adder.

5-35

Section 5.4.5 Simulation of the Carry In Generation Circuil

.model nenh nmos

+ vto=0.779 phi=0.60

+ 10=4.0e-02 nsub=1,0e+22

+ xj=.0385u tox=500.0e-10

+ cj=4.2e-4 cjsw=0e~10

+ gl=0.7

*

.model penh pmos

+ vto=-0.98 phi=0.60

+ uo=1.5e-02 nsub=8.158e+20

+ xj=.146u tox=500.0e~10

+ cj=2.5e-4 cjsw=4.5e-10

+ gl=0.7

*

*

md17 sb sa co vdd penh 1=3.0u w=7.0u ad=56.0p pd=30.0u as=56.0p ps=30.0u
md16 co I0 I1 vdd penh 1=3.0u w=7.0u ad=56.0p pd=30.0u as=56.0p ps=30.0u
md15 co sa I1 vss nenh 1=3.0u w=7.0n ad=56.0p pd=30.0u as=56.0p ps=30.0u
md14 sb IO co vss nenh 1=3.0u w=7.0u ad=56.0p pd=30.0u as=56.0p ps=30.0u
mdi3 IO sa vss vss nenh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
md12 vss sb Il vss nenh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
mdi1 vdd sb I1 vdd penh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
md10 I0 sa vdd vdd penh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
md9 IO sa vdd vdd penh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
md8 vdd sb I1 vdd penh 1=3.0n w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
md7 vdd sb Ii1 vdd penh 1=3§0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
md6 I0 sa vdd vdd penh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
md5 I0 sa vdd vdd penh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
md4 vdd sb I1 vdd penh 1=3.0u w=14.0u ad=112.0p pd=44.0u as=112.0p ps=44.0u
cco co vss 21.00f

csb sb vss 40.20f

csa sa vss 43.50f

cI0 I0 vss 29.70f

cIl It vss 30.60f

Figure 5.12 (i): The extracted version of the first stage carry in generation circuit.

5-36

Section 5.4.5 Simulation of the Carry In Generation Circuil

I Carry ln Generatlion for Filret Stage of a Farallel Ripple Terry Adder Hpg'giﬁl

g 20 40 60 80 §alz

ma — |—
E!T- n{* i
L | | | L
] |
ah - -
. B
263 pf_
hi I |
[-] — -
, 398 pf-

Figure 5.12 (j): The simulation of the first stage carry in generation circuit.

5-37

Section 5.4.6 Simulation of ¢ Two Bil Adder

The inputs to the carry in generation circuit are s; and sp while the output is
co. Table 5.8 presents the input patterns applied to the carry in generation circuit and
the expected results are shown for all valid combinations of sq and sp. The extracted

circuit for the carry in generation circuit is given in Fig. 5.12 (i).

| ot | et| f it 2

r-On—w—u—é“
|| | =| |8

Table 5.8: The simulation test of the carry in generation circuit for all valid combinations
of sq and sy. Note that sq = s, = 0 is not a valid combination.

The important features in the simulation results in Fig. 5.12 (j) are as follows:-
(i) The results are as expected in table 5.8.

(ii) The output co shows that for sq = s = 1, ¢jp = 0, while if sq # sp, ¢cjn = 1
which is consistent with the required inputs to the first (odd numbered) stage.
That is for A + B, the carry in to the first stage should be 0. For the operations
A — B or B — A, the carry in should be 1.

5.4.6 Simulation of a Two Bit Adder

The fundamental cascadable adder building block that can be constructed using
the design so far discussed and simulated is the two bit adder block. Using the even
and odd multiplexer design blocks on top of two cascaded one bit adders provides even
and odd one bit cells cascaded to form a two bit block that can be replicated to the

designer’s specifications to form an n-bit adder.

The inputs to the two bit adder are ay, ag, by, b2, 84, sp, and ¢;, while the
outputs are oy, 09, 07, 03 and ¢,. Table 5.9 presents the input patterns applied to the

two bit adder and the expected outputs.

5-38

Simulation of a Two Bit Adder

Section 5.4.6

01
0

0

Co2
4]

0

0

0

0

02
0

bl
0

0

0

0

0

a2 | b2 | al
0

0

0

Cin
(0]

Sa

Sh

0

0

0

Operation
A+ B

Table 5.9: The simulation test of the two bit adder circuit.

5-39

Section 5.4.6 Simulation of a Two Bit Adder

| Farallel Ripple Carru Adder, Two Bit A + B ARE. %5
1608 520 460 640 800 360 1128 1288
1 1 1 L 1 1 1 1 1 L 1] 1 L 1

i 1) 1 I 1
o1l
P.150 of
r T T T T

Figure 5.12 (k): The FACTS simulation of the two bit adder for the operation A + B.

5-40

Seclion 5.4.6 Simulation of ¢ Two Bil Adder

5]

160 3za 480 640 8306 SEd 1128 1389
| 1

1 1 1 1 1 1 1 1 1 1 | 1

f

‘ Farallel Ripple Carru Adder, Two Bit B - A ApE. ER|
¥
¥
¥

<]
p
D.2B4 o
p

| rTT T T T T rr T

3
:
3
3

0.249 p
0

I N S T
: L B

Figure 5.12 (1): The FACTS simulation of the two bit adder for the operation B - A.

5-41

al

244

b1

244

oe

.289

(-

473

o1l

4. 458

Figure 5.12 (m): The FACTS simulation of the two bit adder for the operation A - B.

Section 5.4.6

Simulation of ¢ Two Bit Adder

l Parallel Ripple Carru Adder, Two Bit A - B ﬁ?"éES'
& 160 320 480 640 BEG ' 864 1129 1280
L 1 1 1 1 1 || L 1 1 1]
nfj E
: I I I T 1 I I I I I I
] ;
1 1 1 1 1 | i 1 1 1 1 ¥
. :
I] | I | ! i i ! I
E g
T T I I | |] | _
p*gl E
| 1 I
ufa E
A] L L Lk
3 I 1 I I e |] 1 1 [] —
3 U \ [U E
| 1 T T T ! \ 1 |
uf§§|
]
EI/\ I léﬂ Eéﬂ 4'é@ I E':-IJ BéEI I Qéﬂ 1 1‘22 1ZIB@

5-42

Section 5.4.6 Simulation of a Two Bit Adder

Separate simulations have been run for each of the operations A+ B, A— B and
B — A for reasons of clarity. The important features in the simulation results shown in

Figs. 5.12 (k), (1) and (m) are as follows:-
(i) The results are as expected in table 5.9.

(ii) It is important to note that the longest time taken to generate the correct output
for any of the conditions indicated in any of Figs. 5.12 (k), (I) or {m) is approxi-
mately 50ns. These times can be interpreted as the quiescent time delay for the

addition result to be produced, Tgg, or the delay Tg¢ discussed previously.

Examining a simulation of the worst case for propagation of the carry through
the two bit adder block allows the designer to determine values for Tp with n = 2.
Table 5.10 gives the input conditions for the worst case for carry propagation through

the two bit adder and the expected results.

ap [ba | ay [by | cip |l o
O|l1]0]1 0 0
0|1 0|1 1 1
O] 1101 0 0
1010 O 0
110|110 1 1
101 1T[]O[] O 0

Table 5.10: Simulation of worst case carry propagation in the two bit adder.

The features of the simulation shown in Fig. 5.12 (n) are as follows:-
(i) The results are as expected in table 5.10.

(ii) The carry propagation through two bits of the adder indicates that the delay

Tp = 14ns and so Tg = 7ns. This indicates that the overall delay through an

n-bit adder would be Tp = n.7ns. This result is important as it must be used

e in conjunction with Tgc and Tgs to determine whether the layout needs to be

optimised to reduce the critical delay path. Any one of Tp, Tg¢ or Tgs may

5-43

Section 5.4.6

49 pt

249 g4

ST ———
[o8

‘P44 pf

o
[

284 pt

ﬂ

©
-
3

264 of

[=:]

473 pf

Simulation of a Two Bit Adder

= - Apr EE‘
r Parallel Ripple Carryg fidder, Two Bit1 Adder Worst Cace Curry Propasation i?:BE
20 49 60 8P 1pp 120

O o

(I N A 5

[e 0

E
@
E
&
E
N

4

u\
/ ﬁ“_ﬁ___,//_—.\
49

|
20 60 8P 100 120

' Figure 5.12 (n): The FACTS simulation of the two bit adder for the worst case carry
f propagation.

5-44

Section 5.4.7 Simulation of en Eight Bit Adder

be the critical time delay depending upon how many stages are used in the

addition circuit.
5.4.7 Simulation of an Eight Bit Adder

Considering the previous simulations allowing approximation of values for each
of Tg, Toe and Tgg, it is clear that for an adder where n = 8, the delays Tgs, Tgc and
Tp = 8T = 56ns are quite similar. Simulations are required that will determine which
of these delays is the more critical so that the circuit may be optimised to produce an

eight bit addition result in the fastest time.

The simulation required for the worst case carry propagation test will be such
that all of the inputs a@...ag and bj...bg will be opposite and s, and s forced to go
through transitions to provide the necessary ¢;,, transition at the first stage of the adder.
The respective input patterns and expected output results are indicated in Table 5.11.
Two possible operating conditions, A — B and B — A will cause this worst case carry

propagation to occur.

The results of these simulations can be seen in Figs. 5.12 (o) and (p). The results
are as expected. The output rise and fall times ¢, and £y are obviously very different.
The worst values for the two delays, as determined by the FACTS results, are {; = 56ns
while ¢, = 28ns. The delay Tp for the overall circuit is determined by the greater of

these two delays, ty = 56ns.

sp | sa | al.a8 | 01..08 || ¢;p | €o
1]1 0 1 0 [0
O] 1 0 1 1 1
01 0 1 1 |1
111 0 1 010
111 0 1 0|0
1[0 0 1 1 |1
110 0 1 1 1
1 {1 0 1 0 [0

Table 5.11: Simulation of the worst case carry propagation through the eight bit adder.

5-45

Section 5.4.7 Simulation of an Eight Bit Adder

€ivht 8it Parallel Ripple Corry Adder; Wores Cace CGmrry Propegediony A = B ﬁ?;,fg]

A0 80 126 160 | 200 | 249 280

|
B;
46 pf%

[T T T i T - T T T
R
515 bt | E
st T TN A N O N O A U N N N S S B [R - - T TN T S Y A A
]
244 of
i T T T N A T Y S N B R T TR T T I
bd -
244 ptz E
T T O Y M T O N O 1 L S L
461 pf -
e i i i A U I TN T O O A S (| I L

-l
/

pf

iigu}rge 5.12 (o): Worst case carry propagation through an eight bit adder for the case

5-46

Section 5.4.7 Simulation of an Eight Bit Adder

I Cight Bit Parnlle) Ripple Carry Adder, Worst Caae Carry Propagation B-n

]
=
-J7¥
s

nany
F=Nagl

4@, 8@, 128 166 204

v

®
O
(D

TT1r 1 11 rrTTihl

=
1N
=)
@
N
'.—)
nJ
N
"
O
®
.
®_
&
M
N
N
.

Figure 5.12 (p): Worst case carry propagation through an eight bit adder for the case
B- A.

5-47

[:D"Ililll

AN

Section 5.4.7 Simulation of an Eight Bit Adder

B =
Twe H1t1 FParallel Ripple Carry fAdder, Horsti Ceee Sunm Generatlion, Tasa ?E’: T

"-11@ 1 1 1 BI[a |12IBI 1 IlE::;BI 1 IEQIQI

sa
3.294 of

-
=
=

=h
3.2892 pf

cin
p.2e4 of

J.LU.!LLLLL‘LLLLLI-‘ _

(-3}
0.244 pt

—

(]
oo
F)
]
&
FLlllJ SEEEN NI EE RN

|

ke
L L

@.289 pf

—

co
0.473 of

-
|

:
:
E
E
_E
E
E
:
E
E

-
-

40 80 120 160 200

(R

Figure 5.12 (q): Example of worst case for either TS or ToC after examining Figs.
5.12 (k), (1) and (m). It is no worse than Tp = 8.T¢

5-48

Section 5.5 Compaction and Mask Level Verification

The simulation in Fig. 5.12 (q) shows the expanded simulation of the apparent
worst case for Tgg or Tgc, as determined by examining Figs. 5.12 (k), (1) and {m).
The results for these delays are tested on the two bit adder. These results show that
Tgs = 50ns at worst and so the layout described in this chapter has minimised the

critical timing paths to provide an eight bit addition within T4 = Tas + Tp = 63ns.
5.5 Compaction and Mask Level Verification

After the symbolic layout has been optimised to the designer’s requirements as
indicated in the previous sections of this chapter, it is only necessary to compact the
design to produce an efficient mask level description of the design, translate to CIF, add
pads using a mask level geometry editor such as KIC, and have the circuit fabricated

using a Silicon Broker as described in previous chapters.

The conversion from ABCD representation to CIF is a two stage process. The
conversion from ABCD to LLAMA is performed by the VIVID compactor. The LLAMA
format provides a mask level description of the circuit. From this intermediate LLAMA
format, the tool ATOLL is used to create CIF or any one of a number of other physical
layout descriptions (see Chapter III) for the purpose of mask generation. The CIF
layout of the two bit adder design can be seen in Fig. 5.13. Compaction and translation
into CIF of the complete circuit allows comparative mask level design rule checks and

simulations to be carried out.

Once in the CIF format, further extraction and simulation can be used to provide
a more accurate estimate of circuit operation. The main differences in the simulation
results should be introduced by the absolute layout of wires specified in CIF. An example
of the translation process can be seen in Appendix F which shows the ABCD, LLAMA
and CIF representations respectively for the carry generation stage of the adder along

with its CIF layout which can be compared with the ABCD layout in Fig. 5.8 (b).

It should be noted at this stage that the parameters to be used in the extraction
and simulation tools should all be derived from the same fabrication process. Those

9-49

Section 5.5 Compaction and Mask Level Verification

used here for extraction and simulation of the CIF circuits are not the same as those
used for the symbolic level extraction and simulation tools. However they are similar
enough to provide an approximate idea of the comparative results obtained using a
currently operational CMOS process in the US, the MOSIS 3um process to extract and
simulate with at the symbolic level, as opposed to approximations for an AWA CMOS

process used for extraction and simulation at the mask level.

Simulation on the CIF form of the two bit adder was carried out to verify the
correct operation of the CIF version of the adder structure which had been simulated
in ABCD form. Subsequent simulation was carried out on an eight bit version of the
same design to verify the worst case carry propagation speeds. The CIF versions of
the designs are first checked and flattened using the design rule checker CHECK. The
circuits are then extracted using NET and simulated with PROBE. The simulations
carried out on the designs are the same as those carried out on the ABCD versions of

the designs.

Fig. 5.14 (a) shows the PROBE results of the simulation run specified by Table
5.9 as applied to the circuit extracted from the CIF description of the two bit adder by
the tool NET. Fig. 5.14 (b) shows the simulated results of the test specified by Table
5.10. The results of both of these simulations show that the carry propagation delay
is of the same order of magnitude as that estimated by the symbolic level simulator

FACTS. The actual propagation delay can be approximated to within 10ns per stage.

The simulated results of the mask level designs and the design rule checks run
on the designs indicate that the circuit shown in Fig. 5.15 will function very close to
the speed predicted by FACTS. Of course, any simulation is only as good as the model
parameters and process parameters given to it and allowances need to be made for
different fabrication facilities. The ability to accurately predict operation of 1C designs

requires an intimate knowledge of the fabrication process as well as the use of detailed

Compaction and Mask Level Verification

Section 5.5

e

- s ¥ e L’ ik

i T IR

all [P 4. i 1
i 1LLL)

\ Ewﬁ ;

. Janf (dupnnh] .hzu %
I .

& A r ¥

& ¢ ool &
.—-—Wﬂl A

:EH

T T TTOTIRGT

LTI

T

Figure 5.13: The CIF layout of the complete two bit adder.

5-51

Section 5.5 Compaction and Mask Level Verification

1792
1792

1344
1344

de by IHTEGRATED SILICON: DESTGH:

idelal
{combit2>

B96

8396

at-

Ersitys

14

448
448

ed tothe Uni

icenc

—PROBE
sh
sa
cin
az
b2
al
bl
02
co

Figure 5.14 (a): The PROBE simulation of the circuit extracted from CIF according to
table 5.9, A + B.

5-52

Section 5.5 Compaction and Mask Level Verification

)Y

16N

FDES

12

N
V)]

BREDERTHTEON

[)

144

Yo

SE

B

X

S

ombitz?

,
e
9

i

Nergt

i e hl

418

s
0

= e

a
27

ROBE- i fercey

= c
L . ~— — o
0 m n m (.\Dj 8

Figure 5.14 (b): The PROBE simulation for the worst case carry propagation through
the two bit adder, according to table 5.10.

5-53

Section 5.5 Compaction and Mask Level Verification

daryr 1rioare '
! 3w -\c-_u}-.ﬂ
R 2 > s 5
‘_;4 > :hg'-h k
ey e R
=%, I b -

w oI5t i
1Y ; y H

i Sl &
4

a ;"t ;t";'-‘vl}:‘}a i ®
' --.1?iv'ﬁ &
%

A
I 5 S 3
%;%x%xm:r.,f_%

% g S Ay f..;".__. :w‘.‘,
M- -‘L-, -.man-! Pnrl: '

e w

rraqrforac et

et T R RS

Figure 5.15: The complete CIF layout of the eight bit adder.

5-5+4

Section 5.6 CMOS MPC Fabrication and Conclusions

models within the simulator. Both PROBE and FACTS allow estimates of op-

eration that can predict the correct orders of magnitude of operating speeds.
5.6 CMOS MPC Fabrication and Conclusions

The CMOS adder design described in this chapter is almost ready for fabrication
on the AWA CMOS fabrication line. All that is needed is a set of input and output
pads connected to the eight bit design. Work has been done at Adelaide University
on producing a set of CMOS pads for use with MPC designslgz]l%], but has not yet
been completed. Once these last barriers are overcome, the mask level graphics edi-
tor KIC can be used to connect the pads to the adder design and the design will be
completed, ready for fabrication. The design should allow an eight bit addition to be
completed within approximately 80ns. This fundamental time delay can then be used
in all subsequent calculations for operations performed in TFB if this adder design is

to be implemented.

MPC runs using nMOS technology have been tried and proven using a number
of sources as indicated in this thesis. The design work detailed in this chapter has been
performed in anticipation of similar MPC facilities being created for the fabrication of
CMOS designs[94]. This work has been completed using a version of CIF describing the
design for the AWA CMOS process in Sydney. Work done by ISD should provide MPC
services using a CMOS technology conforming to the Weste and Eshraghian design
rules(*8] some time in 1986. The flowchart for such a fabrication run would be similar
to that described by Fig. 1.5 (b), the only difference being that the technology used
would be CMOS.

It is expected that this design should function correctly. The accuracy of the
timing estimates provided by FACTS and PROBE can only be determined by testing a
fabricated circuit. As long as the device and process parameters used in these simulators
are accurate, the limiting factor is the accuracy of the model used by the simulators to

predict circuit operation.

9-55

CHAPTER VI

ANALYSING THE PAST AND LOOKING INTO THE FUTURE

Maintaining the analogy between various levels of sophistication of Programming
Languages and of Computer Aided VLSI Circuit Design tool sets, the results of this
research are partitioned into their appropriate sections. As a conclusion to the work
presented in this thesis, a final summary is made of the results obtained in chapters
IV and V providing statistical evidence that the advances made in the CAD VLSI
Circuit Design tools at the University of Adelaide have resulted in a state of the art
CAD tool set that enables fabrication of Integrated Circuits in either nMOS or CMOS
technologies. Using this thesis as reference material, a final look is taken at trends in

tool development and tools of the future are foreshadowed.

6.1 Mask Level Tools

While the results of chapters IV and V indicate that the use of mask level tools
for VLSI circuit design is not recommended, it is still possible. The mask level CAD
tools presented in this thesis allow the completion of the IC design process from layout
to total verification, including design rule checking, circuit extraction and simulation at

the circuit, timing and logic levels.

To try and design full custom VLSI circuits using the mask level tools is still a
very time consuming, error prone process as the designer needs to know about interre-
lationships of mask layers as well as circuit design techniques. This added complexity
magnifies the burden of an already difficult design task, and provides the main source of
error in the design process. Perhaps the most substantial evidence to indicate this com-
plexity is the great difficulty experienced by the CSIRO VLSI design team in achieving
the successful completion of a full custom, 100,000 transistor nMOS chip using mask

6-1

Section 6.1 Mask Level Tools

level CAD tools almost identical to those discussed in this thesis. The design could not
be made fully operational after three years concentrated effort by a large, experienced

and well coordinated design team and very significant investment by the Australian

Government.

The most time consuming problem with mask level design of IC’s is accurate
layout. Circuit extractors, design rule checkers, simulators - all of the verification tools
can also present problems if they do not perform their function efficiently, yet none of

these tools presents as bad a design bottleneck as does the mask level layout problem.

Different methods, aimed at improving the efficiency of mask layout have been
introduced in this thesis and designs using both methods have been fabricated. Com-
parisons of design time are not easy to make for many reasons. Variables such as the
amount of time each day spent working on the design, designer experience, funding
of the work which usually accounts for the sophistication of the hardware used (eg.
multi-user machine versus dedicated work station), have all had an effect on the figures
used in this conclusion. Nevertheless, some facts and figures are presented in an effort
to allow some comparison of the tools to be made. Using an embedded laycut lan-
guage, BELLE, a 430 transistor nMOS circuit (the Signature Analyser) was created by
a two man design team in three months with little simulated verification of the circuit
operation. The design was 100% functional. Using a geometry editor, KIC, an 1860
transistor nMOS circuit (the Data Path Chip) was created by a two man design team

in five months, and completely simulated to verify 100% device functionality.

Both design teams consisted of novice designers of similar backgrounds who were
therefore considered equal in ability. The machine used was the same multi-user VAX
11/780 and the tools were almost identical except for the layout tool used. The amounts
of time spent per day on the designs were very similar and so the conditions for com-
parison were quite equal. These two results show that the geometry editor certainly
increases the efficiency of a design team, allowing a larger circuit design per man month
as well as complete simulation of the design as final verification. The work by the author

6-2

Seclion 6.2 Symbolic Level Tools

in making KIC operational at the University of Adelaide would seem to be rewarded by
this result, which shows an approximate 250% improvement in design efficiency as mea-
sured by circuit complexity (number of devices) completed per man design month. It
should also be understood that mask level layout is an error prone and time consuming

process no matter what tool is used for the job.

The two layout tools discussed in detail in this thesis, BELLE and KIC, do not
solve a fundamental problem with mask level layout tools. That is, the worst case minor
modification to a cell could require a layout task just as significant, or more significant
than the initial design task. The tool MAGIC has avoided this problem by approaching
the mask level design task in a similar way to that in which VIVID has approached

symbolic level design.

The current result of research into mask level tools for Computer Aided VLSI
design has provided a complete set of original tools that are technology independent.
The Technology Independence is perhaps the most important feature of these tools as
it means that no matter what new technologies are introduced for IC design, as long
as the technology description is based on a set of mask level geometrical design rules
that can be described by CIF, very little work, in the order of tens of hours, would be

required to create a totally new set of tools to handle designs using the new technology.

Mask level tools have a place in the full custom design of integrated circuits but
are no longer the preferred option. Their main advantages are in meeting absolute mask
level layout requirements that cannot be guaranteed by higher level tools as well as pro-
viding potentially the most precise simulation information, depending upon availability

of accurate simulation parameters.
6.2 Symbolic Level Tools

The symbolic level of design has been presented in this thesis as the more efficient
of the two design philosophies. The feature which underlies this increase in efficiency,
virtual grid layout of circuit symbols that can be simulated at the symbolic level and

6-3

Section 6.2 Symbolic Level Tools

compacted to mask level descriptions, has been detailed in Chapters IIl and V of this
thesis. All of these advantages introduced by the VIVID symbolic level tool set can be
seen in the comparison of the more efficient nMOS design experience, the Data Path

Chip, with the CMOS design experience, the Adder.

The CMOS design, a 620 transistor design, was completed by the author alone in
a period of two months. The design has been completely simulated at both the symbolic
and the mask level. This is a further increase in design efficiency of approximately 50%

in comparison to the time taken to design and simulate the Data Path nMOS chip using

KIC and the mask level verification tools.

This design has clearly been completed in a much more efficient manner than ei-
ther of the two nMOS designs and provides evidence of the significant advantages gained
in using the symbolic level tools as opposed to the mask level tools. The VIVID tool
set allows the design of IC’s using two different technologies, nMOS and CMOS, and
like the mask level tools, is technology independent. The VIVID technology indepen-
dence feature is an improvement on mask level technology independence as all VIVID
tools reference the Master Technology File which allows changes in technology to be
completed for all tools in the one alteration process. On the other hand, changes in
technology for the mask level tools must be completed on an individual basis extending

the time required for creation of a tool set to handle a new technology.

Expanding and summarising the advantages of symbolic level design, VIVID
allows the designer to ignore design rules and work with circuit primitives on a virtual
grid rather than with geometric primitives on an absolute grid. This design feature
allows great increases in layout speed due to the error free layouts produced. Once the
ciruit editor ICE is understood, an experienced circuit designer would find it difficult to
make an error in the circuit layout phase of the design as the designer would be dealing
with primitives which are commonly known and understood. On the other hand, using
geometric primitives to describe absolute mask layouts requires the designer to learn
and account for geometric design rules as well as circuit layout during the layout phase

6-4

Section 6.2 Symbolic Level Tools

of the design process. This added complexity greatly increases the time taken for layout.
The virtual grid feature makes alterations to symbolic layouts a negligible problem, even
in the worst case. In comparison, worst case alterations to mask layouts using an editor
such as KIC can require a total redesign effort which could be greater than the initial

design effort.

VIVID reduces the number of software interfaces between layout, and layout
verification at the symbolic level. This feature helps improve the speed of the layout
verification design phase. The major advantage that the VIVID system has over the
mask level design tools in the layout verification design phase, however, results from the
fact that VIVID has no design rule checking loop in this design phase. The compactor

produces valid, design rule error free, CIF versions of the design.

VIVID has the added advantage of providing a software interface for designs to
various design system Intermediate Formats facilitating designer interface to fabrication

facilities accepting other than CIF as the design description format.

Layout needs that have yet to be met by higher level tools are the reliable au-
tomatic positioning of pads and automatic routing between sub-components of a VLSI
circuit and between the circuit and pads for full custom circuits. This task is currently
left to manual placement using layout editors, either layout languages or geometry ed-
itors. The VIVID system allows manual routing between sub-circuit elements at the
symbolic level and will provide a solution to the pad placement problem by the use of a
mask level geometry editor as well as the symbolic level editor for addition of pads and

final completion of a design.

This second solution does however imply that mask level verification tools would
also still be required. Mask level manipulation, no matter how trivial, can still be a
source of design rule violations which could prove fatal to an IC design. Consequently
a mask level design rule checker should also be provided. Because the pads could not
be positioned at the symbolic level, simulated results for the circuit including the pads

6-5

Section 6.8 CMOS MPC'’s

must also be completed at the mask level, another important verification step requiring

a further mask level tool.

The VIVID system, running under VMS or UNIX, allows the most efficient
completion of complex full custom VLSI circuits even though low level tools are still
required to complete the design by allowing the placement and verification of pads. The
pad placement problem is usually the least complex mask level routing task for an IC
design and so is the least time consuming mask level layout task. The mask level simu-
lation task can also be quite simple if a logic level simulation only is required, although
timing and possibly some circuit simulation should also be attempted to provide a more

detailed insight into the effects of the pads on the circuit.
6.3 CMOS MPC’s

Using both the mask and symbolic level tools introduced in this thesis, the com-
pletion of VLSI circuits becomes a reality. The complexity of the VLSI design task is
reduced significantly with the aid of the higher level tools and the fine details of pad

placement can easily be handled by the mask level tools.

The Adelaide University mask level tools have been verified by in excess of twenty
fabricated nMOS designs using the two MPC facilities mentioned in this thesis. Two
of the designs used to verify these tools have been presented in Chapter IV. Using the
mask level tools to verify the mask level results of the work done at the symbolic level
using the VIVID system, circuits can be reliably checked to determine their level of
functionality. The CMOS circuit designed in Chapter V has been shown to be 100%

operational as determined by the mask level verification tools.

The verification work done in this thesis in conjunction with ISD and other
researchers at Adelaide University has enabled negotiations to proceed with AWA with
the intent of setting up a CMOS MPC process. This will happen in 1986 and should
be one of the first if not the first commercial CMOS MPC fabrication processes in
Australia.

6-6

Section 6.4.1 CADRE

6.4 Higher Level Tools of the Future

Two levels of CAD tools for VLSI circuit design have been defined and examined
in this thesis. The first (lower) level, Mask Level CAD tools, uses mask geometries to
define absolute circuit structures on silicon. The second (higher) level, Symbolic Level
CAD tools, uses circuit elements to define circuits at an abstracted level which can

automatically generate mask level descriptions of the circuit for fabrication purposes.

Table 3.2 in Chapter III identifies integrated circuit design levels. These levels
can be directly associated with the levels of CAD tools used for IC design and so indicate

the future directions that should be taken for CAD tool development for VLSI design

work.

This thesis has discussed the analogy between levels of Programming Language
and levels of CAD tool sets for IC design, as well as between generations of computing
systems and scales of integration which allow a measure of complexity of both com-
puting systems and IC designs. The fifth generation computing systems have been
characterised by advances in software, Artificial Intelligence, rather than the hardware
characteristics used for the preceeding generations. Artificial Intelligence, or Knowledge
Based Systems, have begun to have their impact on IC design research. Tools using
Al techniques are being developed to provide solutions to the search for CAD tool sets
operating at the higher levels not examined in this thesis, in particular at the Register

Transfer and Processor levels as defined by table 3.2

6.4.1 CADRE

One such tool set has already been referred to in this thesis. CADREDP s
a system of cooperating VLSI design expert agents which allows automatic synthesis
of hierarchical structural circuit descriptions into a set of full custom VLSI low level
geometric mask patterns. CADRE operates by modelling the human design procedure as
a collection of expert agents communicating through a central manager. The individual
agents solve locally constrained problems while the manager ensures that they all work

6-7

Section 6.4.1 CADRE

towards a good global solution.

The CADRE system is relevant to this thesis as it moves from the structural level
(the input is an hierarchical structural description consisting of interconnected cells) to
the symbolic layout level (the output is an hierarchical symbolic layout description).
The CADRE output is passed on to a symbolic level design system for translation into
physical mask layouts. This post processing of CADRE output means that detailed
process design rules can be ignored by CADRE so it can concentrate on topology and

interconnection problems.

The CADRE system requires a number of expert tools including floorplanning,
leaf cell layout, critical path analysis, and global and local signal routing in an effort
to satisfactorily model a human VLSI designer. Fig. 6.1 shows the CADRE VLSI
design system exposing the individual agents used in the design process and how they
are related to the manager and the user. CADRE provides flexibility in that an expert
agent of CADRE may be rule based, algorithmic, or even human. This flexibility allows

for the future development of the CADRE system:.

CADRE is by no means complete, it is a long term research project aimed at
exploring all problem areas of VLSI design and providing new solutions with the aid of

Knowlege Based systems.

Taking a closer look at an individual knowledge based agent, current research
at the University of Adelaide is aimed at creating one of the agents described by the
CADRE system, a Knowledge Based Floor planxler[95]. This floorplanner, FLOYD,
is designed to translate hierarchical structural descriptions into floor plans for custom
VLSI design. It uses expertise in structured top down design to create floor plans
incorporating modules that may not necessarily have been completed at the time of
floor plan creation. This allows global as well as internal module design constraints to

be accounted for.

6-8

Section 6.4.1 CADRE

STRUCTURAL
INPUT

PERFORM.
EXPERT

PHYSICAL
OQUTPUT

|

Figure 6.1: The CADRE design system, exposing the expert agents and their method
| | of interaction with the global manager.

6-9

Section 6.4.2 Silicon Compilation

It is felt!®! that the top down planning approach yields floor plans of higher
quality than conventional bottom up placement algorithms. FLOYD plans its activities
by generating and relaxing constraints on module placements and interconnect. This
planning strategy allows it to operate either without supervision or under the influence

of designer specified constraints.

FLOYD provides an insight into the details of one of the CADRE expert agents.
Similar research effort is ongoing into the other agents shown in Fig. 6.1. The work
done in this thesis provides an introduction to the historical evolution of VLSI design

tools to a level which is directly compatible with future tools proposed by the CADRE

system.
6.4.2 Silicon Compilation

Automatic synthesis tools aid the VLSI circuit designer by automatically per-
forming one or more levels of design translation. The Silicon Compiler is a term that
has been used in the past to describe a number of different automatic synthesis tools.
The ideal silicon compiler would be a tool which would translate all the way from a

functional description to a full custom physical layout.

As yet, no such tool exists. Functional to structural translation is such a broad
task that its complexity has not yet been handled. Existing tools that have been able
to successfully translate functional descriptions into physical layout have at least had

to assume a restricted structural domainl®7l.

This leads to the conclusion that that there will not be one single tool that can
be described as a Silicon compiler. Rather, tools such as those discussed in this thesis
and those foreshadowed by the CADRE system will provide a good basis from which
to tackle the complexity problem involved in functional to structural translation, the

main problem remaining in Silicon Compilation.

As a result, it could be reasonably expected that, using Artificial Intelligence
techniques, tool sets or systems will be developed which consist of computer coordinated

6-10

Section 6.4.2 Silicon Compilation

groups of individual expert tools which provide nearly optimal solutions to all of the
individual problems involved in silicon compilation. The computer aided coordination
of all of these tools will in turn provide a globally optimal solution which may be at the
expense of non-optimal solutions to some local problems. It can therefore be expected
that the term Silicon Compiler for full custom Integrated Circuits should be applied to

such a system of sophisticated tools rather than used to describe a single CAD tool.

6-11

REFERENCES

[1] 3.Becker and J.Shive, “The Transistor - A New Semiconductor Amplifier.” In Proceedings of the
IEEE, Vol. 72, No. 12, December 1984, pp 1696 - 1703.

[2] R.Kahn, “The Quest, A New Generation in Computing.” In IEEE Spectrum, Nov. 1983, pp 36 - 41.

[3] C.Tajnai, “Fred Terman, the Father of Silicon Valley.” In IEEE Design and Test of Computers, April
1985, pp 75 - 81.

[3.1] G.Moore, “VLSI: Some Fundamental Challenges”. In IEEE Spectrum, April 1979, pp 30 - 37.
[4] R.Colclaser, Microelectronics. Processing and Device Design.
[5) D.Moralee, “Visions of the VLSI Future.” In Electronics & Power, April 1982, pp 301 - 305.
[6] R. Clarke, “AUSMPC Designer Documentation.” CSIRO VLSI Program Report.

{7] L.Hon and C.Sequin, 4 Guide to LSI Implementation - Second Edition. XEROX, Palo Allo Research
Center Report, Jan. 1980.

[8] C.Mead and L.Conway, Introduction to VLSI Design. Addison Wesley, Reading, Mass. 1980.

[9] LSutherland and C.Mead, “Microelectronics and Computer Science”. In Scientific American, Sept.
1977, pp 210 - 228.

[10] C.Bell, J.Mudge and J.M°Namara, Computer Engineering . Digital Press, September 1978.
[11] J.Mudge, “VLSI Chip Design at the Crossroads.” In VLSI '81, Edinburgh, Aug. 1981,

[12] C.Sequin, “Managing VLSI Complexity: An Outlook.” In Proceedings of the IEEE, Vol. 71, No. 1,
Jan 1983, pp 149 - 166.

[13] N.Weste and B.Ackland, “A Pragmatic Approach to Topological 1C Design.” In Microelectronics
82, Adelaide, South Australia, May 1982, pp 27 - 31.

[13.2] D.Kollaritsch and N.Weste, “A Rule Based Symbolic Layout Expert.” In VLSI Design, Aug. 1984,
pp 62 - 66.

[14.1] P.Ivey, “VLSI Design for Systems Applications.” In 4* Australian Microelecironics Conference, May
1985,

[14.2] A.Kessler and A.Ganesan, “Standard Cell Design: A Tutorial.” In IEEE Circuits and Devices
Magazine, Vol. 1, No. 1, Jan. 1985, pp 17 - 33.

[14.3] VLSI Design Staff, “Silicon Compilers Part 1: Drawing a Blank.” In VLSI Design, Sept. 1984, pp

54 - 58.

[15) A.Bell, “The Implementation of VLSI Systems.” In Microelectronics 82, Adelaide, South Australia,
May 1982, pp 64 - 68.

[16] L.Conway, A.Bell and M.Newell, “MPC73: The Large Scale Demonstration of a New Way to
Create Systems in Silicon.” In LAMBDA Magazine, Vol. 1, No. 2., 1980,

[16.1] J.Noonan and A.Willlams, “AUSMPC 5/82, Signature Analyser, Project C4." AUSMPC 5/82
Design Report, May 1982,

[16.2] J.Noonan, “AUSMPC 5/82 Signature Analyser Test Report.” AUSMPC 5/82 Test Report, Sept.
1982,

{17} 3.Mudge and R.Clarke, “Australia’s First MPC Implementation System.” In Microelectronics ’62,
Adelaide, South Australia, May 1982.

[18] R.Clarke, “A Summary of Results of Australian MPC's to Date.” In Creating Integrated Systems 'S8,
Adelaide, May 1983.

[19] J.Lipman, “VLSI Training - Enhancing the Silicon Broker/Foundry Concept.” In Microelectronics '82,
Adelaide, May 1982.

[20] R.Lyon, “The Optical Mouse.” XEROX Palo Alto Research Report, Aug. 1981.

[21] J.Ables and A.Hunt, “A Parallel Pipelined VLSI Circuit for High Speed Digital Correlators.” In
Creating Integrated Systems, Adelaide, May 1983.

[22] K.Eshraghian and D.Pucknell, “Design for VLSI - An Undergraduate Teaching Program.” In
Miecroelectronics ’82, Adelaide, May 1982.

[23] J.Batali and A.Hartheimer, “The Design Procedural Language Manual.” In MIT Al Laboratory
VLSI Memo 80-31, Nov. 1980.

[24] B.Phillips, “BELLE Documentation.” CSIRO VLSI Group Documentation, Dec. 1981.

[25] K.Eshraghian, “A Guide to Interactive Computing for CMOS VLSI System Designers.” University
of Adelaide Internal Report, 1983.

[25.1] A.Dickinson, “RIDE.” University of Adelaide Internal Report, 1982.

[26] A.Dickinson and R.Woloszczuk, “PLAN Documentation.” University of Adelaide Internal Report,
1984,

[27] K.Keller, “KIC: A Graphics Editor for Integrated Circuit Design.” In Berkeley VLSI Tools, Jul. 1982,

[28] R.Wolossczuk and D.Pucknell, “ET - A Friendly Interactive Editing Tool for 1.C. Layout.” In The
4™ Australian Microelectronics Conference, Sydney, May 1985.

[28.1] R.Woloszczuk, “M.Eng.Sci. Thesis writing up, Adelaide University.”
[29] J.Ousterhout, “Editing VLSI Circuits with CAESAR.” In Berkeley VLSI Tools, Jul. 1982.

[29.1] J.Ousterhout, G.Hamachl, R.Mayo, W.Scott and G.Taylor, “The Magic VLSI Layout System.”
In IEEE Design and Test of Compulers, Feb. 1985, pp 19 - 30.

[30] Visual 500 Reference Manual, Visual Technology Inc., Tewksbury MA., Sept. 1982.

[31] The Summagraphics Bitpad Manual.

[32] AED 512 Colour Graphics/Imaging Terminal, Users Manual, Advanced Electronics Design Inc., Sun-
nyvale, California, 1981.

[33] Vectriz VX Series Graphics System User’s Manual, Vectrix Corp., Greensboro N.C., July 1983.

[34] Mouse Systems Corp. M-1 Mouse Technical Reference Manual, Mouse Systems, Santa Clara Ca., March
1981.

[35] B.Kernighan and D.Ritchie, The C Programming Language. Prentice-Hall, 1978.
[36] J.Noonan, Research Seminar, University of Adelaide, Sept. 1983.
[37) C.Baker, “Artwork Analysis Tools for VLSI Circuits.” Master’s Thesis, MIT 1980.

[38] D.Noice, R.Mathews and J.Newkirk, “A Polygon Package for Analysing Integrated Circuit De-
signs.” In VLSI Design, third quarter, 1981.

[39] A.Noble, “ADRIC - A Polygon Based Design Rule Checker.” University of Adelaide Internal Report,
1982.

[40] T.Whitney, “A Hierarchical Design Rule Checking Algorithm.” In Lembda Magazine, first quarter,
1980.

[41] M.Arnold and J.Ousterhout, “LYRA:- A New Approach to Geometric Layout Rule Checking.” In
Proceedings of the 19" Design Automation Conference, 1982.

[42] D.Hartley, “ROWAN - An Hierarchical, Corner Based Design Rule Checker for VLSI Designs.” Uni-
versity of Adelaide Internal Report, 1983.

[42.1] CHECK, Integrated Silicon Design Documentation, Adelaide, S.A., 1985.
[43] D.Fitzpatrick, “CIFPLOT.” In Berkeley VLSI Tools, Jul. 1982.
[44] D.Fitzpatrick, “MEXTRA: A Manhattan Circuit Extractor.” In Berkeley VLSI Tools, Jul. 1982.

[45]) A.Gupta and R.Hon, “HEXT: An Hierarchical Circuit Extractor.” In Journal of VLSI and Compuler
Systems, Vol. 1, No. 1, Spring 1983.

[46] NET: Network Circuit Extractor, Integrated Silicon Design Documentation, Adelaide, 1985.

[47] A.Gupta, “ACE: A Circuit Extractor.” In Proceedings of the 20" Design Automation Conference,
19083.

[48] N.Weste and K.Eshraghian,Principles of CMOS VLSI Design. A Systems Perspective., Addison
Wesley, 1985.

[49] M.Shand, “Hierarchical VLSI Artwork Analysis.” In VLSI ’85 Japan, 1985.
[50] D.Fitepatrick, “Circuit Analysis from CIF Layouts.” In Berkeley VLSI Tools, Jul. 1982,

[51] ELEC: Electrical Rules Checker Users Manual, Integrated Silicon Design Documentation, Adelaide,
1985,

[52] A.Vladimirescu and S.Liu, “The Simulation of MOS Integrated Circuits Using SPICE 2." In ERL
Memorandum, Feb. 1980.

[53] D.Fitspatrick, “MOSSIM.” In Berkeley VLSI Tools, Jul. 1982.
[54) M.Pope, “PROBE Users Manual.” University of Adelaide Internal Report, 1985.

[65] A.Dickinson, “TICTOC: A VLSI System Language and Simulator.” University of Adelaide Internal
Report, Mar. 1984.

[56] VIVID User's Manual, Version 1.0, Documentation Supplied by the Microelectronics Center of North
Carolina.

[57] B.Ackland, A.Dickinson, et al., “CADRE - A system of Cooperating VLSI Design Experts.” In
IEEE Internctional Conference on Computer Design, Oct. 1985.

[68] J.Rosenberg and N.Weste, “ABCD - A Better Circuit Description.” In MCNC Technical Report
No. 82-01.

[59] Weste N. H. E., “MULGA. An Interactive Symbolic Layout System for the Design of Integrated
Circuits.” In BSTJ 60(G) pp 823 -857, Jul-Aug 1981.

[60] Weste N. H. E., “Virtual Grid Symbolic Layout.” In Proc. 18" D.A.C. pp 225-238 June 1981.

[61] Trimberger S., Rowson J., “RIOT - A Simple Graphical Assembly Tool.” In Proc. 19" D.A.C. pp
28-29 June 1982.

[62] “VIVID System Manual - ICE Interactive Circuit Editor Designer Reference Version 1.0.” An MCNC
manual.

[63] “VIVID System Manual - VIVID System Overview.” An MCNC Manual.

(64] Buchanan I. “Modelling and Verification in Structured IC Design.” Phd. Thesis, University of Edin-
burgh.

[65] Ackland and Weste. “An Automatic Assembly Tool for Virtual Grid Layout.” In Proc. VLSI '83,
Aug. 19883, Norway.

[66] “The SEE User's Manual.” An ISD Manual.
[67] Hayes J. “Computer Architecture and Organisation.” M®Graw Hill, 1975.
[68] Johannsen D. “Bristle Blocks: A Silicon Compiler.” In Proc. 16'* D.A.C. June 1978, pp 810-318.

[69] Denyer P., Renshaw D., Bergmann N. “A Silicon Compiler for VLSI Signal Processors.” In Proc.
ESSCC 1982,

[70] Siskind J., Southand J., Crouch K. “Generating High Performance VLSI Designs from Succinct
Algorithmic Descriptions.” In Proc. of Conf. on Advanced Research in VLSI, June 1982, MIT pp
28-40.

[71) Hoenielsen B. & Mead C. “Fundamental Limitations in Microelectronics - I. MOS Technology.” In
Solid State Electronics, 1972, Vol. 15, pp §19-829.

[72] “CSIRONET Services.” In Services Note 2, Mar. 1982, CSIRO Division of Computing Research.

[73] Lauder P., Kummerfeld R. Els R. “ACSNET - The Australian Alternative to UUCP." In AUUGN
Vol. 5 No. 4, pp 15 - 20.

[74] Maxwell P. “Design for Testability.” In CSIRO VLSI Program Technical Report, VLSI-TR-83-1-2.
[75] Knuth D. “The TEXBook."” Addison Wesley, 1984.

[76] Webber D. Dunis V. “Design of a Control Unit for a 4-Bit Microprocessor." University of Adelaide
EEE Dept. Final Year Reporl.

[77] “Test of IMRC Fabricated Control Unit.” To come.

[78] Lee and Loo. “Data Path Chip for a Four Bit Microprocessor.” University of Adelaide EEE Dept.
Final Year Report, 1982.

{79] Loja A. “Testing of a Data Path Chip.” University of Adelaide EEE Dept. Final Year Report, 1982.

[80] Andrerwartha L. Walsh A. “Design of an NMOS Control Unit.” University of Adelaide EEE Dept.
Final Year Report, 1988.

[81] Liebelt M. J. “The Testability of Microprocessor Systems.” M.Eng.Sci. Thesis, Adelaide University,
1981,

|82] Eshraghian K. “Vehicle Traffic Monitoring.” M.Eng.Sci. Thesis, Adelaide University, 1977.

[83] Eshraghian K. “Electromagnetic Traffic Sensing and Surveillance.” Phd. Thesis, Adelaide University,
1980.

[84] Rockliff J. “The Implementation of Testability Strategies in a VLSI Circuit.” M.Eng.Sci. Thesis,
Adelaide University, 1986.

[85] Barter C. “The Screen Editor Ludwig - User’s Manual and User Guide.” Universily of Adelaide CS
Dept.

[86] Eshraghian K. et al. “The Transform and Filter Brick.” In VLSI '85, Tokyo Japan 1985.

[87) Eshraghlan K. et al. “A New CMOS VLSI Architecture for Signal Processing.” In VLSI PARC,
Melbourne 1984.

[88] Oppenheim A., Schaefer. “Digital Signal Processing. " Prentice Hall, New Jersey, 1975.

[89] Eshraghian K., Zyner G. “Multiplier/Dividér Designs for a VLSI Signal Processing System.” In
IREECON, Sydney 1985.

[90] “The AWA MPC Process.” An ISD/Adelaide University EEE dept. CMOS Design Ezperience.
[91] “GPLOT.DOC - An online Users Guide™ Adelaide Universily Plotting Software Manual.
[92] Noonan J. “CMOS Pad Design.” A report sent to MCNC Dec. 1984.

[95] Dickinson A. “Floyd: A Knowledge Based Floor Plan Designer.” A Summary for ICCD ’86.

APPENDIX A

THE MEAD AND CONWAY nMOS DESIGN RULES

These rules use the same relationships as those presented in the book by Mead

and Conwa.yls] .

METAL MASK POLY MASK DIFF., MASK

— | L —

N\

L S

ST
LN 77—
W\Wiskif45775!

T‘

1 |

i —)!H—— OVERLAP ~ POLY OVER DIFF,
]

| é— 64 —>|

Butting Contact (Polysilicon to Diffusion via Metal)

Nl Al Sk

9950145 l ch A RRRERN
1 ! . bSO .
[/1 7/, min N : min.
A T bS NN 4
|<_41_,| T T e o)
METAL TO DIFF, METAL TO POLY.
- 2 o) 2fe—
by LRLAABARIAY A
g .
[9974 z ;j/::f,&/;; 4 Multiple
/;/‘ 497 /i /5 I Contact

nnn separation to

@ \\\\ T transistor

DA
N

Design Rules for Contact Cuts (Metal to Polysilicon or Diffusion)

A-

Pt

GREEN e

- . Thinox

.
31 Minimum Separation {B?}gax}
GREEN ! . {Bh}’;ox} j
irf.

s Thinox ;
A Minimum {Diff. } to Poly separation

22
N

RED _Minimum Separation Poly to Poly
N

RED
BLUE
K

Minimum Width Metal paths 3

L

' . T

Minimum Separation Metal to Metal 3a
| BLUE

Conducting Path Width and Separation Design Rules

{Note: The Thinoxide (Thinox.) mask defines the regions where Diffusion (Diff.} will take place in areas not covered by
Polysilicon (Poly). ,

-nZXEA-q

WY L

2

2 SIJL | |

lax = u|

R
fo—
T
~+

77
/
L
7z 7
GREEN RED BLUE
THINOX POLY
(DIFF.) ' METAL

A-2

APPENDIX B

THE BELLE1 MANUAL

1.0 PREFACE

The purpose of this document is to introdnce you to
using the VLSI design tool BELLE1. BELLEL is a Pascal
embedded design tool for the creation of Nmos and Cmos
designs in CIF code, but makes use of the high level Pascal

langnage to create the geometry.

2.0 BELLE1 A USERS VIEWPOINT

2.1 INTRODUCTIOHN

Bellel is a procedural integrated circuit and mask
layout language embedded in the Pascal programming language.
Embedding allows the power of a high 1level programming
language to be used to aid in the description of integrated
circuit mask layouts, without the need to develop an

entirely new programming language.

Bellel is composed of a set of pascal procedures which
can be used to describe the various structures in a layout.
Bellel generates its output in CIF (Caltech Intermediate
Form) [Hon and Sequin, 1980], which is a low level

B-1

description of the circuit. CIF is the standard data format
chosen for communication of designs during the MPC (Multiple

Project Chip).

All dimensions used in Bellel refer to the basic
dimensions Lambda. Only integer values of lambda are

allowed when calling Bellel procedures.

Most work can be done using orthogonal geometry.
However, Bellel does allow 45 degree wires to be used after

the procedure set45 has been called.

Bellel may be used to generate either nMOS or P-well
¢MOS layouts. Only one technology may be used in any given

layout.

2.2 BELLE1 FUNCTIONS AVAILABLE

The built in functions of Bellei are :

2.2.1 THOSE COMMON TO NMOS AND CMOS

SETTECH

Syntax: settech(newtech);

Description: Changes the technology base for the
current layout to newtech, where
newtech is one of CMOS or NMOS.
NMOS is the default technology.

Example: settech (CMOS);

SETSYMHO

Syntax:

Description:

Example:

DEFINE

Syntax:

Description:

Example:

ENDDEF

Syntax:

Description:

Example:

DRAW

Syntax:

or

settech (NMOS);

setsymno(nextsym);

Nextsym is an integer that is used
to label the next symbol in the CIF
program generated by BELLE1.

setsymno(5000) ;

define(’newname’);

defines the start of a symbol definition
and gives it the name ’newname’.
define(’transistor');

{ define the symbol ’transistor’ }

{ proceed with the definition i.e. boxes
and wires that form 'transistor® }

enddef; { end the definition }

enddef ;

defines the end of a symbol definition
define('transistor’');

{ define the symbol ’transistor’ }

enddef; { end the definition }

draw(’newname’,x,y);

B-3

Description: draws the symbol previously defined as
'newname’ at a position (x,y)

Example: draw(’transistor’,5,10);
{draws the geometry held in the symbol

definition ‘'transistor’ at the point 5,10}

Y |
|
|
| pmm———— +
	tran
10	e +
I —a\	
(5,10)	
6 M e S D LS S >
0 5 X
MX
Syntax: draw(’newname’,x,y) ;mx;

Description: mirrors the image of the symbol being
drawn about the vertical line passing through
the point specified in the draw statement.

Example: draw('transistor’,5,10) ;mx;

B-4

10

MY
Syntax:

Description:

Example:

e m——— + - - -+

| |

| tran | |

| |

e X - - -+

I _ﬁ

| (5,10)

|
e i e >
0 5 X

draw(’'newname’,x,y) ;my;

mirrors the image of the symbol being
drawn about the horizontal line passing
through the point specified in the draw
statement.

draw(’transistor’,5,10) ;my;

| - - -+

B-5

I

I | tran |
| | |
0 +-——-uu Fo———— o= >
0 5 X
ROT
Syntax: draw(’newname',X,y) ,rot(angle);

Description: rotates the x-axis of the symbol being drawn

to the specified angle (measured anticlockwise)
Example: draw(’transistor’,5,10) ;rot(180);
NOTE: angle must be an integer multiple of 90 degrees

unless set4b procedure has been called.

Y |
i + - - -+
| . .180 degrees
| | |
I v
: 10 +--=-—-- * - - -+
I n |(5,10)
[a |
boro |
? 0 +--t---4-----mm—oee- >
' 0 5 X

B-6

LAYER

Syntax:

Description: defines the layer on which the succeeding
geometry is to be defined. The layers
available are: Diffusion NMOS

Poly NMGS _& CMOS
Implant NMOS

Contact NMOS _& CMOS

Metal NMOS _& CMOS
Glass NMOS _& CMOS
Buried NMOS
Puwell CMOS

Thinox CMOS
Pplus CM0S
Example: layer (thinox) ;
{ geometry written after this point is on

the thinoxide layer }

BOX

Syntax: box(x1,y1,%2,y2);

Description: draw a rectangular box with corners (x1,y1)
and (x2,y2)

Example: box(2,1,6,4);
{ draws a box with bottom left corner at

(1,2) and top right corner at (6,4) }

3 | I

21 | |
I I
1l ettt +
|
bommmmmmm e e >
2 4 6 X
WIRE
Syntax: wire(width,x,y);

Description: defines a wire of width "width", starting
at (x,y). The wire call must be followed
by one or more of the following procedures:
X(xposn); { continues the wire to the
point (xposn,y) }
Y(yposn); { continues the wire to the
point (x,yposn))}
dx(xlength); { continues the wire to
the point (x+xlength,y) 1}
dy(ylength); { continues the wire to the
point (x,y+ylength) }
xy(xposn,yposn); { continues the wire to
the point (xposn,yposn)
at an angle of 45 degrees }
dxy(xlength,ylength); { continues the wire
to the point (x+xlength,y+ylength)

at an angle of 45 degrees }

B-8

If a wire is to have an odd number of lambda
units width, then the centre coordinates must
be specified between grid points, so as to
enable the wire edges to run along lambda
grid lines and not between them.

Example: Wire(2,2,3);x(5);dy(5);
{ starts a wire of width 2 at (2,3), extends
it to the point (5,3) then extends it

differentially to 5,8) }

B-8

NODELABEL

Syntax:

Description:

Example:

COMMENT

Syntax:

Description:

Example:

SETNOEND

Syntax:

Description:

names the electrical node at the position
and layer specified. Used for simulation

programs, most of which at least require

Vdd and GND to be labelled.

Layers that can have legal nodes are:

Diffusion NMOS

Poly NMOS _& CMOS
Metal KMOS _& CMOS
Thinox CM0Ss

nodelabel('vdd’,275,18,metal);
{ labels the node at (275,18) on the metal

layer with the name VDD }

comment (' comment string’);
inserts a comment into the CIF file.
comment('start a new definition');
{ produces
start a new definition

in the CIF file }

setnoend;

suppresses generation of the end statement

B-10

in the CIF output files. For use when

different CIF files are to be appended.

Example: setnoend;
SET45
Syntax: setdb;

Description: allows the use of 45 degree lines. However
the CIF generated is incompatible with some

service programs. (DRC etc.).

Example: setdb;
EXISTING
Syntax: existing(’symbolname’);

Description: the function returns true if the symbol named
has alrsady been defined.
Example: if existing('transistor') then

begin { if }

end; { if }
{ the compound statement bounded by begin
and end; will be executed only if transistor

has been defined previously)

BOUNDINGBOX

Syntax: boundingbox(’symbolname’,x1,y1,x2,y2);

Description: when boundingbox is called, the boundingbox
of the symbol named is returned in the form

(x1,y1) lower left coordinates

B-11

(x2,y2) upper right coordinates
Example:
boundingbox(’transistor’,xlow,ylow,xhigh,yhigh);
{would return the bounding box coordinates

in the variables xlow, ylow, xhigh, yhigh }

IMPORTSYMBOLS

Syntax:

Description: the filew must contain the bounding boxes of
the geometry which is external to the BELLE1
program. The file will usually be the .SLB
file generated by GETSYMBOL. Importsymbols
must be called before any geometry is defined
in the program.

Example: importsymbols (’pads.slb’);

{ allows the BELLE1 compiler to use the

external symbols outlined in PADS.SLB }

ABORT

Syntax: abort('errormessage’);

Description: prints the string ’errormessage’ then
ceases to execute, returning control to the
user.

Example: abort ("symbol does not exist');

{ writes to SYS$OUTPUT
symbol does not exist

then ceases execution }

2.2.2 THOSE EXCLUSIVELY NMOS

B-12

DIFFCUT
Syntax:

Description:

Example:

POLYCUT
Syntax:

Description:

Example:

diffcut (x,y);

provides all the geometry for a cut between
the metal and diffusion layers, the cut centre
being at (x,y)

diffcut(0,0);

P — :
| !
| 4mmmmmen s
A
| 1 X (0,0 |
I I AN
R v
| 1
R .

polycut(x,y);

provides all the geometry for a cut between
the metal and the poly layers, the cut centre
being at (x,y)

polycut(0,0);

B-13

BUTTCONTACT

Syntax: buttcontact (x,y,angle);

Description: supplies the geometry for a cut between poly,
diffusion and metal. The cut is centred at
(x,y) and the angle of the poly section to the

positive X-axis must be supplied.

Example: buttcontact (0,0,90);
tommmm e +
| poly I<
i +
N AN /1
I 4N /| | 90 degrees
N7 0
-t X (0,0)-+ ----- V--
I 2 N
fooob /o N
1/ A\
[+ |
| diffusion |
$mmmm e +
BURIEDCONTACT

B-14

Syntax:

Description:

Example:

PULLUP
Syntax:

Description:

Example:

buriedcontact (x,y,angle);

supplies the geometry for a buried contact
between diffusion and poly. The cut centre is
positioned at (x,y) and the angle of the poly
section to the positive X-axis must be specified.

buriedcontact (0,0,90);

| poly _& buried |

| +========+ <.
I H poly H] . 90 degrees
] H diff H |
| H buried H |
+----H----%-~-H----+ --V-->

H (0,0) H . X

H diff H buried layer all over

..........

pullup(length,x,y,angle);

places a depletion transistor with length to
width ratio of "length" at the position (x,y)
which is the centre of the boundary between
source and the gate. The angle refers to the
drain direction.

pullup(8,0,0,0);

B-15

2.2.3 THOSE EXCLUSIVELY CMOS

MP (metal poly contact)

Syntax: mp(x,y):

Description: provides all the geometry for a cut between
metal and polysilicon layers, the centre

of the cut being at (x.y).

Example: mp(0,0);
fo— o _mem == +
I I
| 4o v
I A A
I 1 X (0,0 |
17 N
I v
| |
PO +

MD (metal thinox contact)

Syntax: md(x,y);

Description: provides all the geometry for a cut between
metal and thinoxide layers, the centre of the
cut being at (x,y).

Example: mp(0,0);

B-16

| | X (0,0) |

MDP (metal P+ diffusion contact)

This is one of two types of metal thinoxide contacts

Here, thinox is coincident with pplus layer and hence

is p+ diffusion, representing the source or drain

region of a p-device.

Syntax: mdp(x,y);

Description: describes all the geometry for a cut between
metal and thinox (p+ diffusion) layers for
connection of a p-device source or drain

region to a metal strap, the cut centre being at

x,y).
Example: mdp(0,0);

| pt thinox |
PO +

| | metal | !
| 4==m-- + |

| N 7101
I 1 (0,0 |

| /7 N1 |
I it +

MDN (metal/n+ diffusion contact)

This is one of the two types of metal/thinox contact.

Here thinox is not coincident with pplus region hence

is n+ diffusion. The thinox however is in a pwell region

and hence is a source or drain region for a n-device.

Syntax: mdn(x,y);

Description: describes all the geometry for a cut between
metal and thinox (n+ diffusion) layers for
connection of an n-device source or drain

region to a metal strap, the cut centre being

at (x,y).
Example; mdn (0,0) ;
n+ thinox
B +
| metal |
I o4 + |
I T A
I 1 (0,0 |1
I /7 NI
e + |

VSS (metal/p+ diffusion/pwell contact)

Here the metal will be the Vss rail and will contact the p+
region in the pwell. The p+/p contact ensures a good ohmic
contact to tie the pwell to Vss (ground). Tying the Pwell to

Vss and the n substrate to Vdd helps prevent latch up

problems.
Syntax: Vss(x,y);
Description: provides all the geometry for an chmic connection

of the pwell to Vss. The cut is centred at x.,y).

Example: vss(0,0);
p well
t o e e - m - - - +
| p* mask |
| et + |

N S + 1
[N A2 I
Il 1 1 x(,0! |
[T VAR Y I
[B S + 1

] +-diffusion-+ |

B-19

VDD (metal/n+ diffusion/n- substrate contact)

Hers the metal will be the Vdd rail and will contact the n+
region in the n- substrate. This n+/n contact ensures a good
ohmic contact to tie the n- substrate to Vdd.

Syntax: vdd(x,y);

Description: describes all the geometry for an ohmic connection

of the n- substrate to Vdd. The cut is centred

at (x,y).
Example: vdd(0,0);
$roemmmmmmee +
| metal I
| +-=---- + |
LtN /70
I I (0,0 |
It/ NP
e + |
! I
$mmmmmmmammee +

VDDSPLIT (ohmic and rectifying contacts)

This is one of the two possible types of split contact. This
contact connects the n- substrate (via n+ region) and the
p-type source region to Vdd at the same time. It is a very

compact contact and finds wide practical use (e.g. for

B-20

Pullup device of inverter pair).

Syntax:

Description:

Example:

Vddsplit(x,y.angle);

provides all the geometry necessary to tie the
n- substrate and p+ diffusion (source) to Vdd
at one time. The cut “centre" is positioned at
(x,y) and the angle (integer multiple of 90)
of the ohmic (n+ diffusion) end to the x axis
must be specified;

vddsplit(0,0,90);

VSSSPLIT (ohmic and rectifying contacts)

This is one of two possible types of split contact. This

contacts the p-well (via p+ region) and an n-type source

region to vss at the same time. It is a very compact contact

and finds wide practical use (e.g. for pull-down device of

inverter pair).

Syntax:

Description:

Example:

vsssplit(x,y,angle);

provides all the geometry necessary to tie the
p-well and n+ diffusion (source) to Vss at the
one time. The cut “centre" is positioned at
(x,y) and the angle of the rectifying (n+
diffusion) end to the x axis must be specified.

vsssplit(0,0,0);

TRAN (minimum size gate transistor)

Syntax:

Description:

tran(x,y,angle);
provides the geometry for a transistor with a
minimum size gate, the centre of which is at

(x,y) and oriented such that the angle of the

' B-21

thin oxide section to the x axis is the
specified angle.

Example: tran(0,0,90);

TRANX (transistor with variable thinox width)
Syntax: tranx(x,y,width,angle);

Description: provides the geometry for a transistor with

centre at (x,y), thinox width of "width" and angle

specified is angle between the thinoxide section
and the x-axis. Width must be even!!

Example tranx(0,0,6,90) ;

TRANC (transistor with contacts)

Syntax: tranc(x,y,angle);

Description: provides the geometry for a minimum size transistor

with contacts at both ends. Transistor centre is at

(x,y) and angle specified is angle of thinoxide
relative to x-axis.

Example: tranc(0,0,90);

2.2.4 THE GEISYMBOL PROGRAM

An auxillary program to Bellel is the GEISYMBOL
program. This program is for use in conjunction with the
IMPORTSYMBOLS function within Bellel. It is used to
generate a header file of type required by IMPORTSYMBOLS.
GETSYMBOL operates on a CIF file and produces two files.
One file contains the names of all symbols, their symbol

numbers and their bounding boxes. The other file contains

B-22

information on CIF node-labels , their name, location and

layer type.

An example ocutput of the symbol library file, FILE.SLB
locks like:
901 MDN -500, -500, 500, 500
902 MP -500, -500, 500, 500
Records have the format: Sym-No. Sym-Name. Boundary

Box (lower left, upper right corners).

A1l coordinates are given in hundredths of a micron.
The Output file of GETSYMBOL is of the type ".slb". This
file, when operated on by IMPORTSYMBOLS in the BELLEL
Program, enables the CIF file to be produced containing all
the geometry defined in the BELLEl program. It also
contains calls to the external definitions whose bounding
boxes are supplied by the .slb file. When the CIF file has
been generated the file of external definitions must be
appended to it to give a complete CIF description of the

geometry.

In this way it is possible to use predefined geometries

(Pads, PLA's etc.) from the relevant library.

2.3 USE OF PASCAL WITH REFERENCE T0 BELLE1

When using the design language BELLE1, it is possible
to use the basic Pascal programming structures (some of

which are introduced in this section).

B-23

2.3.1 STRUCTURE

A simplified structure of a Bellel Pascal program could
be:
[inherit(’bellei_dir:bellel.pen’)] {include bellel
definitions)}
program <program name>(input,output);
const <constant declarations>;
var <variable declarations>;
<procedure declarations>;
begin
open_ciffile(’<file_name>’);
settech(nmos) ; {or cmos}

<MAIN PROGRAM>;

close_ciffile;

end.

2.3.2 GENERAL

Identifier (variable names, procedure names etc.) must
start with a letter and may be any length of letter and
numbers. All Pascal statements must be separated by a

semicolon, as lines have no separating significance.

A variable can be assigned a value by

¢variable identifier> := <value>;

B-24

Comments can be entered into the Pascal program by
enclosing the comments by { }
e.g.

{Start of Definition}

2.3.3 CONSTANTS

If an identifier is to hold the same value throughout
the program, it can be declared in the constant section at

the start of the program:

e.g.

2.3.4 VARIABLES

If an identifier will be required to change its value
during a program, if must be declared in the VAR section and
its type (integer, real, char etc) be declared:

e.8.

VAR WIDTH: integer;

H: real;

At a later stage these wvariables may be assigned

values,

B-25

WIDTH:= 10;

H:= 5.76;

And at a later stage these can be assigned different
values:
e.g.
WIDTH:= WIDIH + 1;

H:= 6.2;

2.3.5 PROCEDURES

Procedures must be of the same structure as that
described in ‘"structure" ,except that they end in a
semicolon. They are declared using the PROCEDURE statement

followed by the parameter list in brackets.

Procedures can be called from other procedures, or from
the main program.

e.g.
VAR LENGTH: integer; { main program declarations }

PROCEDURE TRANS(SIDE:integer); { procedure declarations)

CONST B = b;
begin

{ body of procedure }
end; {trans} { note the semicolon }

B-26

{ other procedure declarations }

begin {main} { start of main program }

trans (LENGTH) ; { call procedure with length as parameter }

end. {main} { end of program }

2.3.6 DESIGN USING BELLEL

Typically, designs are performed using Bellel in the

following manner:

(1) Beginning with an initial sketch or stick diagram
of the circuit being designed. The circuit must be laid ount
on graph paper to aid in digitisation. This process usually
takes a couple of attempts to generate an acceptable layout.

Hints for Layout

(a) Use coloured pens to help distinguish between
masks.

(b) Graph paper with 2mm grid spacing is a good size.
(2mm represents 1 lambda produces quite legible layouts).

(¢) Liquid paper or equivalent is almost a necessity to
remove those occasional mistakes.

(d) Always check and recheck your layout for design

B-27

rule violations, circuit correctness etc. Some violations
are often very difficult to detect. It is wise to have at
least one other person check your layout since a fresh
outlook may spot elusive errors.

(e) Some layouts, such as address decoders, are highly
repetitive with only slight variations from section to
section of the layout. In these cases, it is not necessary
to draw the entire layout on paper, but to design the basic
cell common to all sections and determine how to program the

cells to achieve the desired function.

(2) Once the layout has been completed on paper,
programmability and parameterisation must be determined.
That is:

(a) Is there a need to program the cells by conditional
placement of transistors or contact cuts ?

(b) Should a variable number of inputs or oontputs be
provided to enable the same BELLEL routine to be used for
several different sections of the layout ?

(c) Should the width of power supply busses be variable

Strategy for implementing these parameters should be

decided upon.

(3) At this stage, coding the circuit in BELLE1 can
commence. Coordinates which are to be parameterised should
be expressed in terms of variables during digitisation. By
expressing coordinate positions relative to reference lines,
(ie the lower left corner of the cell, a vertical 1line etc

), stretching the cell is made easy. Coding the circuit in

B-28

Bellel is effectively the same as writing a pascal
procedure, with the added benefit that many of the required

procedures and functions have been pre-written.

(4) The BELLEi program together with the BELLE1
procedure describing your circuit, must be compiled and
linked before it can be run. When the resulting program is
run, a file is generated containing the CIF description of
your layout. Error messages may occur either when the
program is being compiled or as the program is run. The
Pascal compilation errors pick up syntax and static semantic
errors, while both Pascal or the BELLEl program itself may
detect errors during run-time. BELLE1 detects errors such
as missing or duplicate symbol names, illegal geometries,

etc.

(5) The generated CIF file should then be checked
visually by plotting the layout on whatever facilities are
available to the user. Errors can be corrected and
modifications can be made by repeating the design and

digitisation loop.

(6) Other factors:

(a) When working in multi-person design teams, it is
necessary to take care in the specification of symbol names
and symbol numbers to avoid clashes. When CIF files are
combined or BELLE! programs are merged, symbol number and

name clashes cawvse BELLE1 to report errors. Designers

B-29

should therefore assign themselves a range of CIF symbol

numbers which no-one else in the design team may use. For
example:

designer A symbols 10000 - 10999

designer B symbols 11000 - 11999

designer C symbols 12000 - 12999

The starting CIF symbol number can be set using the
SETSYMNO functiecn in BELLEL.

(b) Symbols which are commonly used in many different
sections of a design (eg a pullup transistor or a nor gate)
should be placed into a separate CIF library, which can then
be used in BELLE1 programs by several designers. Reference
to library elements may be made in a BELLE1l program once an
IMPORTSYMBOLS command has been issued to read the header
file for those symbols.

(c) The IMPORTSYMBOLS command in BELLE1 does not read
the CIF file, but only reads the header information to
determine size and symbol numbers so that the library
symbols can be called. It is necessary to include the CIF
library at the beginning of the final BELLE! generated CIF
file for your circuit. When generating a library using
BELLE1, the SETNOEND command should be used. This enables
the CIF library to be inserted into other CIF files without
modification.

(d) The symbol numbers 1 - 1000 are reserved for
library cells such as pads, drivers etc. HNo two symbols can
have the same symbol number nor the same symbol name within

the overall design.

B-30

2.3.7 OTHER INSTRUCTIONS ON PROCEDURES

2.3.7.1 USAGE OF NODELABELS

Nodelabels in defined procedures must be drawn:

e.g.

Procedure Nodes;

begin {nodes}

Define (’nodes’);
nodelabel(’ai’,60,60,metal};

nodelabel(’bi’,120,60,metal);

. { must contain geometry (boxes etc.) as
. well as node labels }
nodelabel(’out’,60,900,poly);
enddef ;
end;
begin {main}
setsymno (10000} ;
nodes;
draw(’nodes’,0,0);
setnoend;

end. {main}

NOTE, however that if 'nodes’ is defined as shown, it
must contain some geometry. That is, it must consist of
more than a series of '"nodelabel" statements. This

restriction is'to allow the design to be processed by other

B-31

design aids at CSIRO.

2.3.7.2 RUNNING BELLEl

To run BELLEi, enter the following command line:

$ belt <filename>
where <filename> is the name of your BELLE1 input file,
which you will have created using an editor. The <filename>
will, in general , be of the form:

FILENAME.EXT.

If you do not specify an extension to your filename (.ext),
BELLEY assumes that your input file has an extension of

" R pas " .

The BELLEY output file (ie the CIF code) will be
written into your directory with the name "filename.cif"

where "filename" is the name of your imput file.

An executable file "filename.exe" 1is also produced.
This is the file that is actvally run, and since it is
large, BELLE1 asks whether you wish to delete it, after it

has been run.

For debugging the Pascal program, it is often useful to
have a 1listing f£file. This can be achieved by using the

command:

$ bell <filenamed>/lis

2.3.7.3 EXTRACTION OF EXISTING DESIGNS, PADS EIC

B-32

Pads and other universal symbols are stored in the VMS
Text library CIFLIB. This section will demonstrate how to

extract a "pad" from the library and include it in a design.

The pad chosen is ‘“padone" which for example may
require one other symbol to be extracted from the library:

padblank.

To extract the symbols required, type:
$ library/extract=(padblank, padone)/output=pads.cif ciflib
This will generate a file “pads.cif", containing the

CIF for ‘"padone".

The BELLE1 program requires not the CIF file but
instead a file containing the bounding boxes of the pad.
This is done by typing:

getsymbol pads <CR>
which produces a file "pads.slb". It is now possible to
write a short BELLEL program to use this pad, making use of
the BELLE1 importsymbols procedure.This program follows:
[inherit('bellel__dir:bellei.pen’),check(all)]
program testpad(input,output);
procedure designproc;
begin {designproc}
importsymbols(’'pads.slb’); <{inform BELLE1 of the
existence of extra definitions in file "pads.slb"}
draw(’padone’,0,0);

{ draw "padone" from "pads.slb" }
p p

B-33

end; {designproc}

begin {testpad}
open__ciffile(’CIFFILE');
settech(nmos) ;
designproc;
close__ciffile;

end {testpad}

This produces a file containing a call to padone
(testpad.cif) but the actual CIF for the symbol is not
contained in the file. The file containing both the call
(from testpad.cif) and the pad (from pads.cif) can be
created by typing:

$ copy pads.cif,testpad.cif temp.cif
which will append testpad.cif to pads.cif in the file

temp.cif.

by typing:
$ rename temp.cif testpad.cif

the complete file will be in testpad.cif.

2.3.8 GENERAL STRUCTURE OF BELLE1 DESIGN PROGRAMS

The general structure of design programs in BELLEL
differs slightly from the approach used in previous versions
of the procedural layout language BELLE. The difference
lies in the fact that BELLE1 users write a full Pascal
program, whereas BELLE users were writing only procedures.

The Structure of a BELLE1 design program may be seen by

B-34

considering the file represented below. This file,
TEMPLATE_ .PAS, represents the basis for any design

undertaken using BELLE1.

[inherit(’bellei__dir:bellel.pen’),check(all)]

program template(input,output);

procedure designproc;

begin { designproc }

{ INSERT DESIGN DEFINITION HERE }

end; { designproc }
begin { template }
open__ciffile(’CIFFILE’);
settech(nMOS) ; { or "settech(cMOS);" }
designproc;
close__ciffile;

end. { template }

NOTES:

(1) The first line must be included, but the user need not
understand what it is doing. (in fact, it allows the
general BELLE1 environment required by the BELLE1

programs to be inherited and used by the user.

(2) The name of the file and the program name should be

the same.

B-35

(3) The design may be placed where indicated, using correct
Pascal syntax. Using this approach, any design that has
been developed vsing BELLE may also be used with BELLE1

, by inserting the design at this point.

(4) The technology type must be selected as nMOS or cMOS.

(5) The file type is .PAS (not .BEL).

3.0 BELLE1 SYSTEM DEFINITIONS

To configure BELLE1 for normal operation, two global

symbols need to be defined for all BELLEl users.

(1) Set up a subdirectory (preferably in a group
manager directory) and place all the BELLE1 files therein.
A global symbol "bellel_ dir" will need to be defined to
reference that particular directory.

e.g. $ assign <directory_spec> bellel_dir

(2) Define the symbol BELi to invoke the BELLE1 command
procedure
$ bell :== @belle_dir:bellei.com

in a suitable group LOGIN.COM file would be suitable.

(3) Set up a library file CIFLIB containing all current
cells (CIF code) as a VAX/VMS Text Library, for the users to

extract as they wish. A list of available cells for the

B-36

users would be desirable.

B-37

APPENDIX C

A SAMPLE ROWAN TECHNOLOGY FILE

{ These rules are taken from "Portable Design Rules for Bulk
CMOS", VLSI Design, pp. 62-67, Sep/Oct 1982, by Thomas W.
Griswold. The rules are listed under headings from figure 2

of that paper. }

lambda(250); { lambda = 2.5 microns }

layers;

layer (’pwell’,’'CW’);
layer(’thinox’,’'CD');
layer(’'poly’,’'CP');
layer(’p+’,'CS");
layer(’contact’,’CC’);
layer(’metal’,'CM’);

layer(’glass’,’CG');

rules;

{ THIN OXIDE AND P-WELL }

separation(’thinox.not pwell’,’pwell’, 5,’External thinox to pwell spacing’);

separation(’thinox.pwell’,'not pwell’,3,’Internal thinox to pwell spacing’);

c-1

spacing(’pwell’,2, 'P-well spacing’);

width(’pwell’, 4, 'P-well width’);

{ THIN OXIDE AND P+ }

width('p+’,2,’P+ width’);

spacing(’p+',2,’P+ spacing’);
extension(’'p+','thinox’,1.5, ' Internal p+ to thinox spacing');
extension(’not p+’,’thinox’,1.5,’External p+ to thinox spacing’);
width(’thinox',2, Thinox width');

spacing(’thinox’,3,’Thinox spacing’);

{ METAL-POLY CONTACT }

width(’contact’,2, ’Contact width’);
separation(’contact.poly’,'not poly’,1,’Poly width around contact');

separation('contact.metal’,’'not metal’,1,'Metal width around contact’);

{ CONTACTS AND GATES }

separation(’contact’,’poly.thinox’,2,’Contact to gate spacing’);

{ THIN OXIDE AND POLY }

width(’poly’,2, 'Poly width’);

spacing(’poly’,2,’Poly spacing');

extension(’not thinox’,’'poly’,1,’Poly to thinox spacing'):
extension(’thinox’,’'poly’,2, 'Thinox overhang on gate’);

extension(’poly’, 'thinox’,2,'Poly overhang on gate');

c-2

define(’Malformed transistor’);
context(® not poly’,’ X,
'poly.thinox’,’ not thinox’);
constraint(-1,2, 'thinox’);
constraint(i,1,’not poly.not thinox');
constraint(2,-1,'poly’);

endrule;

{ METAL }

width(’metal’,3, 'Metal width');

spacing(’metal’,3, 'Metal spacing’);

{ P+ AND GATE EDGES }

separation(’poly.thinox.p+’,'not p+’,1.5,’P+ width around gate’);

separation(’poly.thinox.not p+’,’p+’,1.5,'P+ to gate spacing’);

{ METAL-THIN OXIDE CONTACTS }

spacing(’contact’,2, ’Contact spacing');

separation(’contact.thinox’,'not thinox’',1,’'Thinox width around contact');

{ SPLIT CONTACIS }

define(’Malformed split contact');
context(’ not contact ' X',
'contact .metal.thinox.p+’',’ not p+');

constraint(3,-1, ’contact’);

Cc-3

endrule;
define(’Malformed split contact’);
context(® not contact LooX,
‘contact.metal.thinox.not p+',' p+');
constraint(3,-1, 'contact’);

endrule;

{ some miscellaneous contact rules }

define(’Contact without metal’);

context (* X', X,
'contact.not metal’,' X');
constraint(-1,-1,’not contact’); { fails automatically
endrule;

define('Contact without poly or thinox’);
context (’ X, X,
'contact.not poly.not thinox',' X');
constraint(-1,-1,’not contact’); { fails automatically

endrule;

C-4

APPENDIX D

THE BELLE AND CIF FILES FOR THE SIGNATURE ANALYSER

The listing that appears first in this appendix is the BELLE description of the

complete Signature Analyser.

PROCEDURE dynshift;

CONST
Diff_width = 2
Diff_spacing = 3
Poly_width = 2;
Metal_width = §;
Pol_Dif_spacing = 1;
Pol_Dif_overlap = 2;

Impl_over_channel= 2;

Impl_to_channel = 2;
Cut_size = 2
Cut_spacing = 2;
Cut_to_edge = 1;
Pwr_width = 4;

VAR
cell_start: coordtype;
cell_width,cell_length: integer;

D-1

begin

setsymno(9040) ;

define(’dyn_shift’);

cell_width:=33;

cell_length:=48;

Layer (Metal);

box(0,0,cell_width, pwr_width);
box(0,22,cell_width,22+pwr_width);
00»(0,44,cell_width,44+pwr_width);

Layer(diffusion);
box(14,14,20,20) ;
box(14,6,17,15);
box(16,6,30,8);
box(14,28,20,34);
box(14,33,17,42);
box(16,40,30,42) ;
wire(2,19,0): y(8);
wire(2,0,35); x(6); y(10); x(14);

box(15,22,19,26);

Layer (poly);

box(22,4,28,11);
box(17,9,20,13);
box(19,9,23,11);
box(17,35,20,39) ;
box(22,37,28,44) ;
box(19,37,23,39);
wire(2,13,17); x(26); y(37);

wire(2,12,12); y(-11);

D-2

wire(2,3,33); y(59):

wire(2,11,31); x(21);

Layer (Implant);
box(20,4,30,10);

box (20,38,30,44) ;

md(-1,34);
mp(28,34);
md(31,42);
md(17,27);
md(17,21);
md(31,6);
dp(17,11,0);
dp(8,32,0);

dp(17,37,0);

enddef ;

end;

begin
dynshift;
setnoend;

end;

Procedure Slice;

begin

importsymbols(’plafile.slb’);

D-3

importsymbols('dynshift.slb’);

setsymno (9050) ;
define('contact_wire');
layer(metal);
box(0,0,118,4);
enddef;
define(’slice’);
layer(green);
box(71,125,75,129) ;
box(39,161,43,165) ;
box(55,285,59,289) ;
layer(red);
box(74,128,75,131);
box(39,164,43,167);
box(55,283,59,286) ;
layer(cuts);
box(72,126,74,130) ;
box(40,162,42,166) ;
box (56,284 ,58,288) ;
layer(metal);
box(71,125,75,131);
box(39,161,43,167);
box(55,283,59,289) ;
draw('dyn_shift’,0,65);
draw(’dyn_shift*,54,65);
draw(’'dyn_shift’,22,144);
draw(’'dyn_shift’',83,144);
draw(*dyn_shift’,38,321);

draw('dyn_shift',83,321);

my;

my;

my;

my;

draw(’plaS000°’,0,195);

{ Place the contacts lines to the leaf cells}

draw(’contact_wire',0,3);
draw(’contact_wire',0,10);
draw('contact_wire',0,68);
draw(’contact_wire’,0,75);
draw(’contact_wire',0,82);
draw(’contact_wire’,0,89);
draw(’contact_wire’,0,147);
draw(’contact_wire',0,154);
draw('contact_wire’,0,307);

draw(’contact_wire',0,314);

{ Conect the power to the leaf cells}

draw(’contact_wire’,0,372);
draw(’contact_wire’,0,379);
draw(’'contact_wire’,0,17);
draw(’contact_wire’,0,39);
draw(’contact_wire’,0,61);
draw(’contact_wire’,0,96);
draw(’contact_wire’,0,118);
draw(’contact_wire’,0,140);
draw(’'contact_wire’,0,321);
draw(’contact_wire®,0,343);

draw(’contact_wire’,0,365);

D-5

{ Connect the leaf cells to the connect lines)

mp(12,77);
mp(66,70);
mp(3,12);

mp(57,5) ;

mp(25,91) ;
mp(86,84) ;
mp(34,166) ;
mp(95,149) ;
mp(50,318) ;
mp(95,309) ;
mp(41,381);

mp(86,374) ;

{ Add connections for power mods to the PLA}
{ Also make connections between SR's}

layer(metal);

wire(3,84,31); x(115);
wire(3,0,110}; x(19);
wire(3,113,110); x(118);
wire(3,0,355); x(35);

wire(3,112,355); x(118);

wire(3,30,31); x(51);
wire(3,51,110); x(80);

wire(3,67,355); x(80);

layer (diffusion);

wire(2,73,65); y(126);
wire(2,41,144); y(162);

wire(2,57,321); y(286);

layer(poly);

wire(2,0,301); x(25); y(285);

wire(2,95,295); y(301); x(118);

wire(2,73,130); y(165);

enddef;

end;

begin
slice;
draw(’slice’,185,83);
draw(’slice’',303,83);
draw('slice’,421,83);
draw('slice’,539,83);
setnoend;

end;

procedure layout;

begin

importsymbols(’ pads.slb’);

setsymno(9070) ;

define(’layout');

draw('newpadin’,-13,107); rot(-90);

draw(’newpadin’,-13,213); rot(-90);

draw(’newpadin’,-13,319); rot(-90);

draw(’newpadin’,-13,425); rot(-80);

draw(’newpadin’,-13,5631); rot(-90);

draw(’'newpadin’',-13,637); rot(-90);

draw(’newpadin’',222,649); rot(180);

draw(’padvdd’,328,649); rot(180);

draw(’newpadin’,434,649); rot(180);

draw(’'newpadin’,540,648); rot(180);

draw('newpadin',646,649); rot(180);

draw(’newpadin’,752,649); rot(180);

draw(’padground’,848,424); rot(S0);

draw(’padout’,848,318); rot(90);

draw(’padout’,848,212); rot(90);

draw('padout’,848,106); rot(90);

draw(’padout’,848,0); rot(90);

enddef;

end;
procedure connect;
begin
define (’connect’);
layer(blue);

comment (‘this is the interconnect for gnd between pads’);
wire(8,122,547); x(111); y(530); x(89);: y(4); x(746); y(547); x(400);
comment (*this is the interconnect for vdd between pads');

wire(8,-9,106); y(645); x(844); y(106);

D-8

comment (*this is pad in no. 6 interconnect');
layer(red);

mp(111,594);

wire(2,111,594); y(515); x(130);

mp(130,515) ;
layer(blue);

wire(3,105,594); x(111);

wire(3,130,515); y(193);

mp(130,193);
layer(red);

wire(2,130,193); x(185);

mp(185,193);

comment('this is pad in no. 7 interconnect’);
layer(blue);

wire(3,179,531); y(524); x(138); y(438);

mp(138,438) ;
layer(red);

wire(2,138,438); =x(185);

mp(185,438) ;

comment ('this is pad in no. 5 interconnect');
layer(blue);

wire(3,105,488); x(122); y(135); x(138); y(113):

md(138,113);
layer(green) ;

wire(2,138,113); x(185);

comment ('this is pad in no. 4 interconnect’);
layer(red);

mp(115,382) ;

wire(2,115,382); x(138);

D-9

mp(138,382);
layer(blue);
wire(3,105,382); x(115);
wire(3,138,382); y(160);
mp(138,239);
mp(138,160);
layer(red);
wire(2,138,160); x(185);
wire(2,138,239); x(185);
mp(185,239) ;
mp(185,160) ;
comment ('this is pad in no. 3 interconnect’);
layer(red);
mp(115,276) ;
wire(2,115,276); x(146);
mp(146,276);
layer(blue);
wire(3,105,276); x(115);
wire(3,146,276); y(153);
mp(146,232) ;
mp(146,153) ;
layer(red);
wire(2,146,232); x(185);
wire(2,146,153); x(185);
mp(185,163) ;
mp(185,232);
comment('this is pad in no. 2 interconnect');
layer(blue);

wire(3,105,170); x(115);

D-10

wire(3,154,174); y(95); x(185);
mp(115,170);
mp(154,174) ;
layer(red);
wire(2,115,170); y(174); x(185);
mp(185,174);
comment (*this is pad in no. 1 interconnect’);
layer(blue);
wire(3,105,64); x(130); y(88); x(185);
wire(3,130,88); y(108);
mp(130,108) ;
layer(red);
wire(2,130,108); y(143);
mp(130,143);
layer (blue);
wire(3,130,143); y(167);
mp(130,167);
layer(red) ;
wire(2,130,167); x(185);
mp(185,167);
comment (’this is pad in no. 8 interconnect’);
layer(blue);
wire(3,220,524); x(212); y(516); x(146); y(392);
wire(3,391,531); y(524); x(240);
mp(240,524) ;
mp(220,524) ;
mp(146,392);
layer(red);

wire(2,220,524); x(240);

D-11

wire(2,146,392); x(185);

mp(185,392) ;

comment ("this is pad in no. 9 interconnect’);
layer(blue);

wire(3,220,516); y(508); x(154); y(399);

wire(3,497,531); y(516); x(240);

mp(240,516) ;

mp(220,516) ;

mp(154,399) ;
layer(red);

wire(2,220,516); x(240);

wire(2,154,399); x(185);

mp(185,399) ;

comment ('this is pad in no. 10 interconnect');
layer(blue);

wire(3,603,5631); y(464);

comment (*this is pad in no. 11 interconnect’);
layer(blue);

wire(3,709,631); y(524); x(667); y(457); x(657):

comment(*this is pad out no. 12 interconnect’);
layer(red);

wire(2,704,371); x(697);

mp(697,371);
layer(blue);

wire(3,697,371); y(438);

mp(697,438) ;
layer(red);

wire(2,697,438); x(657);

mp(657,438) ;

D-12

comment (’this is pad out no. 13 intercomnect’);
wire(2,704,265); x(689);
mp(689,265) ;
layer(blue);
wire(3,689,265); y(384);
mp(689,384);
layer(red);
wire(2,689,384); x(657);
comment ('this is pad out no. 14 interconnect’);
layer(red);
wire(2,704,159); x(697);
mp(697,159) ;
layer(blue);
wire(3,697,159); y(193);
mp(697,193);
layer(red);
wire(2,697,193); x(657):
mp(657,193);
comment ('this is pad out no. 15 interconnect’);
layer(red);
wire(2,704,53); x(697);
mp(697,53);
layer(blue);
wire(3,697,53); y(114); x(680);
mp(680,114);
layer(red);
wire(2,680,114); x(655);
mp(655,114) ;

comment ('this is pad gnd interconnect');

D-13

layer(blue);
wire(8,805,477); x(684); y(428); x(672); y(128);
wire(4,672,128); y(124); x(657);
wire(4,672,428); x(657);
wire(4,672,203); x(657);
wire(4,672,286); x(657);
comment ('this is pad vdd interconnect’);
layer(blue);
wire(8,275,506); x(230); y(490); x(165); y(105);
wire(4,165,105); y(102); x(185);
wire(4,165,225); x(185);
wire(4,165,450); x(185);
wire(4,165,269); =x(185);
wire(4,165,336); x(185);
wire(4,165,146); x(185);
wire(4,165,181); x(185);
wire(4,165,406); x(185);
comment ('these are the node labels for all the pads');
nodelabel(’vdd’,275,596,metal);
nodelabel('gnd’,795,477,metal);
nodelabel ('PHI2SL®,40,53,metal);
nodelabel ('PHI{SL',40,159,metal);
nodelabel ('PHI2NSL',40,265,metal);
nodelabel ('PHI1NSL®,40,371,metal);
nodelabel ('MSKSRIN’,40,477,metal) ;
nodelabel ('SIGSRIN',40,583,metal);
nodelabel ('DATSRIN’,169,596,metal);
nodelabel (’PHI2NDL’,381,596,metal);

nodelabel (*PHI1NDL’,487,596,metal);

D-14

nodelabel (*PHIADL*,593,596,metal) ;
nodelabel (*PHI2DL’,699,596,metal) ;
nodelabel ('DATOUT',795,371,metal);
nodelabel (*COMPOUT ' ,795,265,metal) ;
nodelabel (*SIGOUT',795,159,metal);
nodelabel (*MSKOUT’,795,53, metal) ;
mp(165,384) ;
layer(red);
wire(2,165,384); x(185);
enddef;
end;
procedure logo(height,width:real);(+height and width of the logo*)
label 33;

var here,line,w, h:integer;

procedure posn(space:integer); (*calculates position of next letter*)
begin
here:=here+spacetw+w div 2;

end;

begin

D-15

if (height<60) or (width<255) then

begin writeln('Invalid size, try again');goto 33;end;
height:=height/4.56666;

h:=trunc(height);

width:=width/18.2;

w:=trunc(width);

(#start definitions of characters#);
define('U_logo’);
layer(metal);
wire(4,0,h);y(0);x(w);y(h);

enddef;

define(’0_logo');
layer (metal);
draw(’'U_logo’,0,0);
wire(4,0,h) ;x(w);

enddef;

define(’F_logo’);

layer (metal);

wire(4,0,0) ;y(h);x(w);
wire(4,0,h div 2);x(w div 2);

enddef ;

define(’'A_logo');
layer(metal);

wire(4,0,0) ;y(h) ;x(w) ;y(0) ;x(w);

D-16

wire(4,0,h div 2);x(w);

enddef;

define(’d_logo’);
layer(metal);
wire(4,w,h);y(0);x(0);y(h div 2);x(w);

enddef;

define('E_logo');
layer (metal);
draw('F_logo’,0,0);
wire(4,0,0) ;x(w);

enddef;

define(’L_logo’);
layer (metal);
wire(4,0,h);y(0) ;x(w);

enddef ;

define(’p_logo’);
layer(metal);
wire(4,0,0) ;y(h);x(w);yCh div 2);x(0):

enddef;

define(’b_logo’);
layer(metal);
wire(4,0,h);y(0);x(w);y(h div 2);x(0);

enddef ;

D-17

define(’1_logo');
layer(metal);
wire(4,w div 2,h);y(0);

enddef;

define(’i_logo');
layer(metal);

wire(4,w div 2,h);y(0);
wire(4,0,h) ;x(w);
wire(4,0,0) ;x(w);

enddef;

define('C_logo’);
layer (metal);
wire(4,w,h);x(0);y(0):x(w);

enddef ;

define(’g_logo’);
layer(metal);
draw(’'c_logo’,0,0);
wire(4,w,0);y(h div 2);

enddef ;

define(’eight_logo’);:
layer(metal);
draw(’0_logo’,0,0);
wire(4,0,h div 2);x{w);

enddef ;

D-18

define(’two_logo’);
layer(metal);
wire(4,0,h) ;x(w);y(h div 2);x(0);y(0);x(w);

enddef;

define('dash_logo’);
layer(metal);
wire(4,w div 3,h div 2);x(2*w div 3);

enddef;

define(’J_logo’);

layer (metal);

wire(4,0,h); x(w);

wire(4,w div 2,h); y(0); x(0); y(h div 2);

enddef;

define(’'n_logo’);
layer(metal);
wire(4,0,0); y(h); x(w); y(0);

enddef;

define(’W_logo’);

layer (metal);

wire(4,0,h); y(0); x(w); y(h);
wire(4,w div 2,0); y(h);

enddef ;

define(’k_logo'};

layer (metal);

D-19

wire(4,0,0); y(h);
wire(4,0,h div 2); x(w); y(h);
wire(4,w*3 div 4,h div 2); y(0);

enddef ;

define(’four_logo’);

layer (metal);

wire(4,0,h); y(h div 2); x(w);
wire(4,w,h); y(0);

enddef;

(*start logo here, only need to alter draw statements *)

define(’logo’');

here:=2

line:=14#h div 4;
draw(’U_logo’,here,line);
posn(w);
draw(’0_logo’,here,line);
posn(0);

draw(’F_logo’ ,here,line);
posn(w);

draw(’A_logo’ ,here,line);
posn(0);

draw(’d_logo’ ,here,line);
posn(0);

draw(’E_logo’ ,here,line);
posn(0);
draw('L_logo’,here,line);

posn(0) ;

D-20

draw('A_logo’ ,here,line);
posn(0);

draw(’I_logo’, here,line);
posn(0);

draw(’D_logo’ ,here,line);
posn(0) ;

draw(’E_logo’ ,here,line);
line:=7*h div 4;

here:=3*w div 2;
draw('E_logo’ here,line);
posn(0);

draw(’E_logo’ ,here,line);
posn(0);

draw(’eight_logo’ ,hers,line);
posn(0);

draw(’'two_logo’ ,here,line);
posn(0);

draw('dash_logo’, here,line);

posn(0);

(*+put project number heret)
draw(’0_logo’ ,here,line);
posn(0);
draw('four_logo',here.line);

posn(0);

draw('dash_logo’ ,here,line);

posn(0);

D-21

(*demonstrators initials*)
draw('k_logo’ ,here,line);
posn(0);
draw(’E_logo’ ,here,line);
line:=2;

here:=7T+w div 2;

(*designers initials*)
draw(’A_logo’ ,hers,line);
posn(0);
draw('W_logo’ ,here,line);

posn{0);

draw('dash_logo’ ,here,line);

posn(0);

draw(’J_logo' ,here,lins);
posn(0);
draw(’n_logo’,here,line);

posn(0) ;

enddef;
33:;

end;

begin
connect ;
draw(’connect’,0,0);

logo(66,255) ;

D-22

draw(’logo’,290,12);
layout;
draw(’layout’,0,0):

end;

The second listing is the CIF description of the complete Signature Analyser.

25 lambda = 250;

DS 9041;

g diffcut;

42 -500,-500 500,500,
L XD;

B 1000 1000 0,0;

L NC;

B 500 500 0,0;

L WM;

B 1000 1000 0,0;

DF;

DS 9042;

9 polycut;

42 -500,-500 500,500;
L NP;

B 1000 1000 0,0;

L NC;

B 500 500 0,0;

D-23

L NM;
B 1000 1000 0,0;

DF;

DS 9043;

9 buttcont;

42 -750,-500 750,500;
L ND;

B 1000 1000 -250,0;
L NP;

B 750 1000 375,0;

L NC;

B 1000 500 0,0;

L WM;

B 1500 1000 0,0;

DF;

DS 9040;

9 dyn_shift;

42 -750,-3000 8250,15000;
L RM;

B 8250 1000 4125,500;
B 8250 1000 4125,6000;
B 8250 1000 4125,11500;
L ND;

B 1500 1500 4250,4250;
B 750 2250 3875,2625;
B 3500 500 5750,1750;

B 1500 1500 4250,7750;

D-24

B 750 2250 3875,9375;

B 3500 500 5750,10250;

W 500 4750,0 4750,1500;

W 500 0,8750 1500,8750 1500,2500 3500,2500;
B 1000 1000 4250,6000;

L NP;

B 1500 1750 6250,1875;

B 750 1000 4625,2750;

B 1000 500 5250,2500;

B 750 1000 4625,9250;

B 1500 1750 6250,10125;

B 1000 500 5250,9500;

W 500 3250,4250 6500,4250 6500,9250;
W 500 3000,3000 3000,-2750;
W 500 750,8250 750,14750;

W 500 2750,7750 5250,7750;
L NT;

B 2500 1500 6250,1750;

B 2500 1500 6250,10250;

C 9041 T -250,8500;

C 9042 T 7000,8500;

C 9041 T 7750,10500;

C 9041 T 4250,6750;

C 9041 T 4250,5250;

C 9041 T 7750,1500;

C 9043 T 4250,2750;

C 9043 T 2000,8000;

C 9043 T 4250,9250;

DF;

D-25

25 Lambda = 250

DS 9001;

(
i
B
L
B
B
L

B

4 Items.);

KD;

1000 1500 1500,1000;
NP;

500 1500 500,1000;
500 1500 2500,1000;
NC;

500 500 1500,750;

DF;

DS 9002;

(

L

16 Items.);

ND;

1000 1000 500,750;
1000 1000 500,2750;
2250 500 1875,750;
2250 500 1875,2750;
1000 1000 3250,750;
1000 1000 3250,2750;
NI;

2250 1500 2375,750;
2250 1500 2375,2750;
NP;

1250 1500 2375,750;

1250 1500 2375,2750;

9 FsmGround ;

9 FsmPullps ;

D-26

H

o i

L NC;

B 500 500 500,750;

B 500 500 500,2750;
B 1000 500 3000,750;
B 1000 500 3000,2750;
L WM;

B 1500 1000 3000,750;

B 1500 1000 3000,2750;

DF;

DS 9003; 9 FsmConnct ;
(10 Items.);

L ND;

B 1250 1000 2625,1500;
L NP;

B 1000 1000 750,750;
B 1000 1000 750,2750;
B 2250 500 2125,500;
B 2250 500 2125,2500;
L NC;

B 500 500 750,750;

B 600 500 750,2750;

B 6500 500 2500,1500;

L BM;

B 1250 1000 625,750;
B 1250 1000 625,2750;
B 1000 4000 2500,2000;

DF;

D-27

DS 9004;

(5 Items.);

L KNP;

B 1000 1000 2500,750;
B 500 500 3000,500;

L NC;

B 500 500 2500,750;

L NM;

B 2250 1000 1125,780;
B 1000 2000 2500,1000;
DF;

DS 9006; 9 FsmGndSp ;
(2 Items.);

L NP;

B 1000 1000 1250,500;
L NC;

B 500 500 1250,500;

DF;

DS 9007; 9 Fsmln ;

(
L

B

w

o

32 Items.);

ND;

1000 1000 1000,5500;
1000 1500 1250,7750;
1000 1500 1250,3250;
500 1600 1000,6500;
500 250 1000,7125;

500 1500 1000,4750;

9 FsmConnSp ;

D-28

500 250 1000,3875;
1000 1250 1500,625;
1500 2000 2500, 3000;
1500 2000 2500,8750;
1000 1000 3500,750;
750 7750 3375,4875;
NI;

1500 1500 1000,6500;
1500 1500 1000,4500;
NP;

1000 1000 500,8000;
1000 1000 500,3000;
500 1500 250,7000;
500 1500 250,4000;
2250 500 1375,6500;
1500 500 1000,4500;
500 2750 500,1375;
500 6750 2500,3375;
500 3750 2500,9125;
NC;

1000 500 1000,8000;
} 1000 500 1000,3000;
500 500 1000,5500;
500 500 1500,750;
500 500 3500,750;
NM;

4000 1000 2000,750;
4000 1000 2000,5500;

1500 1000 1000,8000;

D-29

B 1500 1000 1000,3000;

DF;

DS 9008; 9 FsmCkdIn

(9 Items.);

C 9007;

L ¥D;

B 1500 2000 2500,10750;
B 1000 1000 2500,13000;
B 500 1500 2500, 14000;
L KP;

B 4000 500 2000,14000;
B 1000 750 2500,12375;
B 500 2500 2500,11000;
L XNC;

B 500 1000 2500,12750;
L NM;

B 1000 1500 2500,12750;

DF;

DS 9021; 9 FsmOut ;
(41 Items. });

L ND;

B 500 3250 750,6875;
B 1000 1000 1000,8500;
B 1500 2000 1500,4750;
B 1500 500 1500,8250;
B 1000 1000 1250,10750;

B 750 500 1625,10250;

D-30

2250 500 2375,11500;
500 2250 2000,9375;
1000 1000 2500,3750;
1500 2000 2750,6250;
1000 1000 3250,12500;
500 5500 3500,9500;
NI;

1500 1500 2000,9000;
1500 1500 2750,11500;
NP;

500 3000 250,10500;
1000 750 1000,9125;
500 2000 750,12500;
1000 1000 1250,2000;
500 4000 1500,4250;
1500 500 2000,9000;
750 1000 2625, 12500;
500 3250 2750,6125;
500 750 2750,13125;
500 1500 2750,11500;
760 500 3125,4750;
1000 1000 3250,2000;
500 2750 38500,3625;
NC;

500 1000 1000,8750;
500 500 1250,2000;
500 500 1250,10750;
500 500 2500,3750;

1000 500 3000,12500;

D-31

500 500 3250,2000;
M;

4000 1000 2000,3750;
4000 1000 2000,10750;
1000 1500 1000,8750;
1000 3500 1250,750;
1500 1000 3000,12500;

1000 3500 3250,750;

DF;

DS 8022; 9 FsmCkdOut ;

(

L

41 Items.);

ND;

1000 1000 1250,-500;
1000 1000 3250,-500;
500 1500 1250,500;
500 1500 3250,500;
1000 1000 1250,1500;
1000 1000 3250, 1500;
500 3250 750,6875;
1000 1000 1000, 8500;
1500 2000 1500,4750;
1500 500 1500,8250;
1000 1000 1250,10750;
750 500 1625,10250;
2250 500 2375,11500;
500 2250 2000,9375;
1000 1000 2500,3750;

1500 2000 2750,6250;

D-32

1000 1000 3250,12500;
500 5500 3500,9500;
NI,

1500 2000 2000,9250;
2000 1500 2500,11500;
NP;

4000 500 2000,500;
500 3000 250,10500;
1000 750 1000,9125;
500 2000 750,12500;
1000 750 1250,2125;
500 4000 1500,4250;
1500 1000 2000,9250;
750 1000 2625,12500;
500 3250 2750,6125;
500 750 2750,13125;
1000 1500 2500,11500;
750 500 3125,4750;
1000 750 3250,2125;
500 2750 3500,3625;
RC;

500 500 1250,-500;
500 500 3250,-500;
500 1000 1000,8750;
500 1000 1250,1750;
500 500 1250,10750;
500 500 2500,3750;
1000 500 3000,12500;

500 1000 3250,1750;

D-33

B 4000 1000 2000,3750;
B 4000 1000 2000,10750;
B 1000 1500 1000,8750;
B 1000 1500 1250,1750;
B 1500 1000 3000,12500;
B 1000 1000 1250,-500;
B 1000 1000 3250,-500;

B 1000 1500 3250,1750;

DF;

DS 9019; 9 FsmProgrm ;
(2 Items.);

L ND;

B 2500 1000 1250,0;
L RC;
B 500 500 2000,0;

DF;

DS 9000 250 1;
9 PLAS000;

C 9002 T 0,15;
L NM;

B 66 4 47,18;

B 66 4 47,26;

C 9003 T 79,15;
L NP;

B 20 2 101,17;

B 20 2 101,25;

D-34

KD;

20 4
9001
9002
NM;

66 4
66 4
9003
NP;

20 2
20 2
ND;

20 4
9001
9001
NP;

2 36
2 36
ND;

4 36
9007
9001
NP;

2 36
2 36
ND;

4 36
9007

9001

101,21;
R 0,1 T 116,15;

T 0,31;

47,34;
47,42;

T 79,31;

101,33;

101,41;

101,37;
R 0,1 T 116,3%;

T 15,7;

17,30;

25,30;

21,30;
T 15,47;

MYT 31,53;

33,30;

41,30;

37,30,
MY T 31,13;

T 47.,7;

D-35

B 2 36
B 2 36
L ND;

B 4 36
C 9007
C 9001
L NP;

B 2 36
B 2 36
L ND;

B 4 36
C 9007
C 9002
L KM;

B 4 34
B 4 34
C 9021
L HNM;

94 vdd
B 4 58
B 84 4
B 84 4
B 415
B 27 4
B4 25
B 42 4
B4 15

B 19 4

49,30;

57,30;

53,30;
T 47,47,

MYT®63,63;

65,30;

73,30;

69,30;
MYT63,13;

RO0,1T 108,0;

Q7,31;
105,31;

T 92,47;

2,10 NM;
2,42;
42,69,
42,-9;
82,-3;
93,2;
82,79;
101,90;
105,-3;

112,-9;

D-36

[o2]

B

B

B

4 25 120,79;

78 4

78 4

4 56

28 4

4 57

19 4

i1 4

94 gnd

c

c

c

C

c

c

9019

9019

9019

9019

9019

9019

9019

8019

8018

9019

8019

9019

9019

DF;

25 Lambda

52,10;

52,50;

89,36;

101,62;

113,35;

9,8;

116,8;

113,47 WM;

T

T

DS 9060;

21,18;
69,18;
21,26;
37,26;
53,26;
-1,0 T 69,26;
21,34;
-1,0 T 37,34;
-1,0 T 53,34;
-1,0 T 69,34;
0,-1 T 97,21;
0,1 T 97,21;

0,-1 T 97,37;

= 250;

9 contact_wire;

42 0,0 29500,1000;

L

WM;

D-37

B 28500 1000 14750,500;

DF;

DS 9052;

9 polycut;

42 -500,-500 500,500;
L NP;

B 1000 1000 0,0;

L KC;

B 500 500 0,0;

L NM;

B 1000 1000 0,0;

DF;

DS 90b1;

9 slice;

42 -750,750 29875,95750;
L ND;

B 1000 1000 18250,31750;
B 1000 1000 10250,40750;
B 1000 1000 14250,71750;
L KP;

B 1000 750 18250,32375;
B 1000 750 10250,41375;
B 1000 750 14250,71125;
L NC;

B 500 1000 18250,32000;
B 500 1000 10250,41000;

B 500 1000 14250,71500;

D-38

NM;

1000

1000

1000

8040

9040

9040

9040

9040

9040

9000

9050

9050

9050

9080

9050

9050

9050

9050

9050

9050

9050

9050

9050

9050

9050

8050

9050

9050

1500 18250,32000;
1500 10250,41000;
1500 14250,71500;
MY T 0,16250;

MY T 13500,16250;
MY T 5500,36000;
MY T 20750,36000;
T 9500,80250;

T 20750,80250;

T 0,48750;

T 0,750;

T 0,2500;

T 0,17000;

T 0,18750;

T 0,20500;

T 0,22250;

T 0,36750;

T 0,38500;

T 0,76750;

T 0,78500;

T 0,93000;

T 0,94750;

T 0,4250;

T 0,9750;
T 0,15250;
T 0,24000;
T 0,29500;

T 0,35000;

D-39

9050
9050
9050
9052
9052
9052
9052
8052
9052
9052
9052
9052
9052
9052
9052
NM;
750
750
750
750
750
750
750
750
ND;
500
500
500

NP;

T 0,80250;

T 0,85750;

T 0,91250;

T 3000,19250;

T 16500,17500;
T '750,3000;

T 14250,1250;

T 6250,22750;

T 21500,21000;
T 8500,39000;

T 23750,37250;
T 12500,79000;
T 23750,77250;
T 10250,95250;

T 21500,93500;

21000,7750 28750,7750;
0,27500 4750,27500;
28250,27500 28500,27500;
0,88750 8750,88750;
28000,88750 29500,88750;
7500,7750 12750,7750;
12750,27500 20000,27500;

16750,88750 20000,88750;

18250,16250 18250,31500;
10250, 36000 10250,40500;

14250,80250 14250,71500;

D-40

W 500

0,75250 6250,75250 6250,71250;

W 500 23750,73750 23750,75250 29500,75250;
W 500 18250,32500 18250,41250;
DF;
C 9051 T 46250,20750;
C 9051 T 75750,20750;
C 9051 T 105250,20750;
C 9051 T 134750,20750;
DS 2;
O PADBLANK;
L NM; B 26500 2000 13250,1000;
B 20500 2000 13250,25500;
B 13500 13500 13250,13250;
L NG; B 11500 11500 13250,13250;
DF;
DS 3;
9 PADDRIVER;
C 2;
L ND; B 26500 TO00 13250,3500;
B 7000 19500 3500,16750;
L NC; B 1000 500 2000,1000;
L NP; B 500 23000 2250,14000;
B 4250 500 4125,25250;
B 22500 500 13250,2500;
L NM; B 1000 1500 3250,7000;
B 1000 1500 3250,13250;
B 1000 1500 3250,19500;
L §C; B 500 1000 3250,7000;

D-41

NM;

KC;

NP;

NM;

NC;

ND;
NP;

NC;

NM;
NC;
NM;

NC;

500 1000 3250,13250;
500 1000 3250,19500;
3250 1000 4875,7000;
3250 1000 4875,13250;
3250 1000 4875,19500;
1000 500 4500,1000;
500 19500 4250,14280;
4750 500 6375,23750;
18500 500 13250,4500;
500 1500 6000,25750;
1500 1000 7000,3500;
1000 2750 7000,5125;
1000 500 7000,3500;
1000 500 7000,1000;
12500 7000 13250,23000;
500 3000 8500,25000;
1000 500 9500, 1000;
1000 500 10250,26000;
1000 500 10250,25000;
1000 500 12000,1000;
1000 500 12250,26000;
1000 500 12250,25000;
1500 1000 13250,3500;
1000 500 13250,3500;
1000 2750 13250,5125;
1000 500 14250,26000;
1000 BOO 14250,25000;
1000 500 14500,1000;

1000 500 16250,26000;

D-42

B 1000 500 16250,25000;
B 1000 500 17000,1000;

L KP; B 4750 500 20125,23750;
B 500 3000 18000,25000;

L BM; B 1500 1000 19500,3500;

L BC; B 1000 500 19500,3500;

L §M; B 1000 2750 19500,5125;

L NC; B 1000 500 19500, 1000;

L ND; B 7000 19500 23000,16750;

L §M; B 3250 1000 21625,19500;
B 3250 1000 21625,13250;
B 3250 1000 21625,7000;

L NP; B 4250 500 22375,25250;
B 500 1500 20500,25750;

L NC; B 1000 500 22000,1000;

L NP; B 500 19500 22250, 14250;

L NM; B 1000 1500 23250,7000;
B 1000 1500 23250,13250;
B 1000 1500 23250, 19500;

L KC; B 500 1000 23250,7000;
B 500 1000 23250,13250;
B 500 1000 23250,19500;
B 1000 500 24500,1000;

L NP; B 500 23000 24250,14000;

DF;

(CIF file of symbol newpadin

created by the CD package for user Rob

on Wed Apr 7 08:14:50 1882

)

D-43

DS 502 1 1;

9

(VDD and Ground Bus Wires);

L

B 26500 2000 13250 25500;

B

buses;

NM;

26500 2000 13250 1000;

DF;

DS 504 1 1;

9
(

L

mypadblnk;
PadBlank);

WM,

26500 2000 13250 25500;

20500 2000 13250 1000;

13500 13500 13250 13250;

NG;

11500 11500 13250 13250;

DF;

DS 503 1 1;

9

(

c

mypadin;

Updated Padin);

504 T 0 3250;

NI;

1500 2000 16500 1250;
1500 2000 21000 1250;
2000 1500 13000 1500;
ND;

500 24000 24000 15250;

D-44

2000 3250 23000 6625;
16750 500 15625 27000;
1000 2000 7000 26250;
19250 4500 12625 6500;
26500 1000 13250 29250;
1000 28750 500 14375;
1000 28750 26000 14375;
1000 500 15750 2250;
500 1500 24000 2500;
1000 1000 23500 1750;
1000 1000 14750 2000;
500 2000 16500 1250;
500 2000 21000 1250;
1000 1000 19250 2000;
1000 1500 13000 1500;
1500 1000 10750 2000;
3000 1500 20750 3000;
4000 1500 11500 3000;
1000 1500 16250 3000;
12750 500 15875 4000;
12000 500 19500 250;
12500 750 7250 375;
1500 1000 2000 29250;
1500 1000 4500 29250;
1500 1000 7000 29250;
1500 1000 9500 29250;
1500 1000 12000 29250;
1500 1000 14500 29250;

1500 1000 17000 29250;

D-45

1500 1000 19500 29250;
1500 1000 22000 29250;
1500 1000 24500 29250;
NP;

500 2000 23250 4750;
500 1250 23250 8125;
1000 1000 23000 4250;
18750 500 14125 5750;
18750 500 14125 7500;
500 1750 5000 6625;
750 1000 22875 1750;
500 1000 22750 2750;
1000 750 14750 1375;
500 750 15500 1375;
1500 1000 16500 1250;
1000 500 18250 1500;
500 1000 18000 2250;
1500 1000 21000 1250;
500 750 20000 1375;
1000 750 19250 1375;
2000 500 13000 1500;
2650 500 14125 1500;
4000 500 20750 3000;
5000 500 11500 3000;
2000 500 16250 3000;
1000 500 17750 3000;
1250 500 14625 3000;
NM;

1000 4250 7000 24625;

{1

1500

1000

1000

1500

1000

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

NC;

1000

1500

1500

1000

1500

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

23250 1750;
14750 1750;
19250 1750;
10750 2000;
10750 750;
2000 29250;
4500 29250;
7000 29250;
9500 28250;
12000 29250;
14500 28250;
17000 29250;
19500 29250;
22000 29250;

24500 29250;

500 500 23000 4250;

1000 500 21250 4750;

1000

1000

500

500

1000 500

1000

1000

500

500

500 1000

1000

1000

1000

500

500

500

500 1000

500 1000

18750 4750;
16250 4750;
13750 4750;
11250 4750;
8750 4750,

7000 26000;
6250 4750;

3750 4750;

23250 1750;
14750 1750;

19250 1750;

D-47

B

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

DF;

DS 501 1 1;
9 newpadin;

(the new PadIn with metal buses overlaid

500

500

500

500

500

500

500

500

500

500

500

10750 2000;
2000 298250;
4500 29250;
7000 29250;
9500 29250;
12000 29250;
14500 29250;
17000 29250;
19500 29250;
22000 29250,

24500 29250;

CB502T00;

C 503 R -1 0MXT O 29750;

DF;

DS 6;

9 PADGROUND;

C

L

2;

NM;

DF;

DS 7;

B 2000 4500 7500,22250;

B 2000 4500 19000,22250;

9 PADVDD;

L NM;

B 26500 2000 13250,1000;
B 13500 13500 13250,13250;

B 2000 4500 7500,42850;

);

D-48

L NG; B 11500 11500 13250,13250;
L NM; B 2000 4500 19000,4250;
DF;
DS 4;
9 PADOUT;
C 3;
L ND; B 1000 6750 2250,29875;
B 2500 1000 3500,32750;
B 2000 3000 3500,28750;
L NI; B 1500 4000 3500,28750;
B 1500 2000 3500,32750;
L NM; B 1000 1500 3500,34250;
L KP; B 1000 750 3500,33875;
L ND; B 1500 1000 3750,34500;
L NP; B 500 7000 3500,30250;
L NC; B 500 1000 3500,34250;
L NP; B 3500 500 5250,30750;
L ND; B 500 3750 4500,34375;
B 2000 1000 5250,29250;
B 3000 500 6000,36000;
L NM; B 1500 2250 5500,28625;
L §P; B 1500 1000 5500,28000;
L NC; B 1000 500 5500,28000;
B 1000 500 5500,29250;
L NM; B 1000 3750 5750,30625;
B 3500 1000 7000,32750;
L ¥P; B 500 2250 6000,27125;
B 500 3500 6750,33500;

B 16500 500 14750,31750;

D-49

ND;

NM;
NP;

NC;

NP;
ND;
NC;

NM;

ND;

NC;

NM;

KC;

NP;
ND;
NP;
NC;
ND;
NC;
ND;

NM;

5250

500 9125,35250;

13260 500 13125,29750;

500 1000 6750,30250;

6000

4000

1500

3250

1500

1000

1000

4000 10250,30750;
1750 9250,35375;
1000 8000,32750;
1000 8875,28000;
1000 8000,28000;
500 8000,32750;

500 8000,28000;

500 2250 8500,27125;

1500

1000

6500

6500

6500

1000

1000

2000

1000

1000

1250 9750,28125;
500 9750,28000;

1000 13250,30750;
1000 13250,34250;
1000 13250,34250;
500 10750,30750;

500 10750,34250;
8500 13250,30250;
500 13250,30750;

500 13250,34250;

500 1250 13250,35625;

6000

6500

1000

} 4000

1000

1500

3250

4000 16250,30750;
500 16500,35250;
500 15750,30750;
1760 17280,35375;
500 15750,34250;
1250 16750,28125;

1000 17625,28000;

D-50

L NC; B 1000 500 16750,28000;
L NP; B 500 2250 18000,27125;
L ND; B 1500 1000 18500,32750;
L EM; B 3500 1000 19500,32750;
L NP; B 1500 1000 18500,28000;
L NC; B 1000 500 18500,32750;
B 1000 500 18500,28000;
L ¥D; B 3000 500 20500,29000;
B 3000 500 20500,36000;
L NP; B 500 2250 20500,27125;
L NM; B 1000 5000 20750,30000;
L NP; B 1500 1000 21000,28000;
L §M; B 1500 1000 21000,28000;
L NC; B 1000 500 21000,28000;
L KD; B 2500 1000 23000,32750;
B 500 3750 22000,34375;
B 2000 3000 23000,28750;
B 1500 1000 22750,34500;
L NI; B 1500 4000 23000,28750;
B 1500 2000 23000,32750;
L NM; B 1000 1500 23000,34250;
L NP; B 1000 750 23000,33875;
B 500 7000 23000,30250;
L NC; B 500 1000 23000,34250;
L ND; B 1000 6750 24250,29875;
DF;
25 Lambda = 2560;
DS 1002;

9 polycut;

D-51

42 -500,-500 500,500;
L NP;

B 1000 1000 0,0;

L XC;

B 500 500 0,0;

L NM;

B 1000 1000 0,0;

DF;

DS 1003;

9 diffcut;

42 -500,-500 500,500;
L ND;

B 1000 1000 0,0;

L NC;

B 500 500 0,0;

L NM;

B 1000 1000 0,0;

DF;

DS 1001;

O connect;

42 -3250,0 212000,162250;

L NM;

(this is the interconnect for gnd between pads);

W 2000 30500,136750 27750,136750 27750,132500 22250,132500 22250,1000
186500,1000 186500,136750 100000,136750;

(this is the interconnect for vdd between pads);

W 2000 -2260,26500 -2250,161250 211000,161250 211000,26500;

D-52

(this is pad in no. 6 interconnect);

L RP;

C 1002 T 27750,148500;

W 500 27750,148500 27750,128750 32500,128750;
C 1002 T 32500,128750;

L NM;

W 750 26250,148500 27750,148500;

W 750 32500,128750 32500,48250;

C 1002 T 32500,48250;

L NP;

W 500 32500,48250 46250,48250;

C 1002 T 46250,48250;

(this is pad in no. 7 interconnect);

L NM;

W 750 44750,132750 44750,131000 34500,131000 34500,109500;
C 1002 T 34500,109500;

L NP;

W 500 34500,109500 46250,109500;

C 1002 T 46250,109500;

(this is pad in no. 5 interconnect);

L NM;

W 750 26250,122000 30500,122000 30500,33750 34500,33750 34500,28250;
C 1003 T 34500,28250;

L ND;

W 500 34500,28250 46250,28250;

(this is pad in no. 4 interconnect);

L NP;

C 1002 T 28750,95500;

W B0O 28750,95500 34500,95500;

D-63

C 1002 T 34500,95500;

W 750 26250,95500 28750,95500;
W 750 34500,95500 34500,40000;
C 1002 T 34500,58750;

C 1002 T 34500,40000;

L NP;

W 500 34500,40000 46250,40000;
W 500 34500,59750 46250,59750;
C 1002 T 46250,59750;

C 1002 T 46250,40000;

(this is pad in no. 3 interconnect);
L NP;

C 1002 T 28750,69000;

W 500 28750,69000 36500,69000;
C 1002 T 36500,69000;

L NM;

W 750 26250,69000 28750,69000;
W 750 36500,68000 36500,38250;
C 1002 T 36500,58000;

C 1002 T 36500,38250;

L NP;

W 500 36500,58000 46250,58000;
W 500 36500,38250 46250,38250;
C 1002 T 46250,38250;

C 1002 T 46250,58000;

(this is pad in no. 2 interconnect);
L WM;

W 760 26250,42500 28750,42500;

D-54

W 750 38500,43500 38500,23750 46250,23750;

C 1002 T 28750,42500;

C 1002 T 38500,43500;

L NP;

W 500 28750,42500 28750,43500 46250,43500;

C 1002 T 46250,43500;

(this is pad in no. 1 interconnect);

L NM;

W 750 26250,16000 32500,16000 32500,22000 46250,22000;
W 750 32500,22000 32500,27000;

C 1002 T 32500,27000;

L NP;

W 500 32500,27000 32500,35750;

G 1002 T 32500,35750;

L NM;

W 750 32500,35750 32500,41750;

C 1002 T 32500,41750;

L NP;

W 500 32500,41750 46250,41750;

C 1002 T 46250,41750;

(this is pad in no. 8 interconnect);

L NM;

W 750 55000,131000 53000,131000 53000,120000 36500,129000 36500,98000;
W 750 ©7750,132750 97750,131000 60000,4131000;
C 1002 T 60000,131000;

C 1002 T 55000,131000;

C 1002 T 36500,98000;

L RP;

W 500 55000,131000 60000,131000;

D-55

W

c

500 36500,98000 46250,98000;

1002 T 46250,98000;

(this is pad in no. 9 interconnect);

L

W

W

C

M

750 55000,129000 55000,127000 38500,127000 38500,89750;
750 124250,132750 124250,129000 60000,129000;

1002 T 60000,129000;

1002 T 55000,129000;

1002 T 38500,99750;

NP;

500 55000,129000 60000,129000;

500 38500,99750 46250,99750;

1002 T 46250,99750;

(this is pad in no. 10 interconnect);

L

W

NM;

750 150750,132750 150750,116000;

(this is pad in no. 11 interconnect);

L

W

NM;

750 177250,132750 177250,131000 166750,131000 166750,114250

(this is pad out no. 12 interconnect);

L

W

NP;

500 176000,82750 174250,92750;
1002 T 174250,92750;

NM;

750 174250,92750 174250,109500;
1002 T 174250,109500;

NP;

500 174250,109500 164250,109500;

1002 T 164250,109500;

D-56

164250,114250;

(this is pad out no. 13 interconnect);
W 500 176000,66250 172250,66250;

C 1002 T 172250,66250;

L NM;

W 750 172250,66250 172250,96000;

C 1002 T 172250,96000;

L NP;

W 500 172250,96000 164250,96000;
(this is pad out no. 14 interconnect);
L NP;

W 500 176000,39750 174250,39750;

C 1002 T 174250,39750;

L NM;

W 750 174250,39750 174250,48250;

C 1002 T 174250,48250;

L NP;

W 500 174250,48250 164250,48250;

C 1002 T 164250,48250;

(this is pad out no. 15 interconnect);
L NP;

W 500 176000,13250 174250,13250;

C 1002 T 174250,13250;

L NM;

W 750 174250,13250 174250,28500 170000,28500;
C 1002 T 170000,28500;

L NP;

W 500 170000,28500 163750,28500;

C 1002 T 163750,28500;

(this is pad gnd interconnect);

D-57

L NM;

W 2000 201250,119250 171000,119250 171000,107C00 168000,107000 168000,32000;
W 1000 168000,32000 168000,31000 164250,31000;
W 1000 168000,107000 164250,107000;

W 1000 168000,50750 164250,50750;

W 1000 168000,71500 164250,71500;

(this is pad vdd interconnect);

L NM;

W 2000 68750,149000 57500,148000 57500,122500 41250,122500 41250,26250;
W 1000 41250,26250 41250,25500 46250,25500;

W 1000 41250,56250 46250,56250;

W 1000 41250,112500 46250,112500;

W 1000 41250,67250 46250,67250;

W 1000 41250,84000 46250,84000;

W 1000 41250,36500 46250,36500;

W 1000 41250,45250 46250,45250;

W 1000 41250,101500 46250,101500;

(these are the node labels for all the pads);
04 vdd 68750 148000 NM;

94 gnd 198750 110250 NM;

94 PHI2SL 10000 13250 NM;

94 PHI1SL 10000 39750 NM;

94 PHI2NSL 10000 66250 NM;

94 PHIINSL 10000 92750 HNM;

94 MSKSRIN 10000 119250 NM;

94 SIGSRIN 10000 145750 NM;

94 DATSRIN 42250 149000 NM;

94 PHI2NDL 95250 149000 NM;

94 PHIINDL 121750 149000 NM;

D-58

04 PHIIDL 148250 149000 HNM;

94 PHI2DL 174750 149000 NM;

94 DATOUT 198750 92750 HNM;

94 COMPOUT 198750 66250 HM;

94 SIGOUT 198750 39750 NM;

94 MSKOUT 198750 13250 NM;

C 1002 T 41250,96000;

L NP;

W 50O 41250,96000 46250,96000;

DF;

C 1001 T 0,0;

DS 1004;

9 u_logo;

42 -500,-500 4000,4000;

L NM;

W 1000 0,3500 0,0 3500,0 3500,3500;

DF;

DS 1005;

9 o_logo;

42 -500,-500 4000,4000;

L NM;

C 1004 T 0,0;

W 1000 0,3500 3500,3500;

DF;

DS 1006;

9 f_logo;

D-59

42 -500,-500 4000,4000;

L NM;

w 1000 0,0 0,3500 3500,3500;
W 1000 0,1750 1750,1750;

DF;

DS 1007;

9 a_logo;

42 -500,-500 4000,4000;

L NM;

W 1000 0,0 0,3500 3500,3500 3500,0 3500,0;
W 1000 0,1750 3500,1750;

DF;

DS 1008;

9 d_logo;

42 -500,-500 4000,4000;

L NM;

W 1000 3500,3500 3500,0 0,0 0,175C 3500,1750;

DF;

DS 1009;

9 e_logo;

42 -500,-500 4000,4000;
L NM;

C 1006 T 0,0;

W 1000 0,0 3500,0;

DF;

D-60

DS 1010;

9 1_logo:;

42 -500,-500 4000,4000;

L NM;

W 1000 0,3500 0,0 3500,0;

DF;

DS 101%1;

9 p_logo;

42 -500,-500 4000,4000;

L WM;

W 1000 0,0 0,3500 3500,3500 3500,1750 0,1750;

DF;

DS 1012;

9 b_logo;

42 -500,-500 4000,4000;

L NM;

W 1000 0,3500 0,0 3500,0 3500,1750 0,1750;

DF;

DS 1013;

9 1_logo;

42 1250,-500 2250,4000;

L NM;

W 1000 1750,3500 1750,0;

DF;

DS 1014;

D-61

9 i_logo;

42 -500,-500 4000,4000;

L HM;

W 1000 1750,3500 1750,0;
W 1000 0,3500 3500,3500;
W 1000 0,0 3500,0;

DF;

DS 1015;

9 c_logo;

42 -500,-500 4000,4000;

L NM;

W 1000 3500,3500 0,3500 0,0 3500,0;

DF;

DS 1016;

9 g_logo;

42 -500,-500 4000,4000;

L NM;

C 1015 T 0,0;

W 1000 3500,0 3500,1750;

DF;

DS 1017;

9 eight_logo;

42 -500,-500 4000,4000;
L WM;

C 1005 T 0,0;

W 1000 0,1750 3500,1750;

D-62

DF;

DS 1018;

9 two_logo;

42 -500,-500 4000,4000;

L RM;

W 1000 0,3500 3500,3500 3500,1750 0,1750 0,0
3500,0;

DF;

DS 1019;

9 dash_logo;

42 500,12650 2750,2250;

L NM;

W 1000 1000,1750 2250,17590;

DF;

DS 1020;

9 j.logo;

42 -500,-500 4000,4000;

L NM;

W 1000 0,3500 3500,3500;

W 1000 1750,3500 1750,0 0,0 0,1750;

DF;

DS 102%;
9 n_logo;
42 -500,-500 4000,4000;

L NM;

D-63

W 1000 0,0 0,3500 3500,3500 3500,0;

DF;

DS 1022;

9 w_logo;

42 -500,-500 4000,4000;

L NM;

W 1000 0,3500 0,0 3500,0 3500,3500;
W 1000 1750,0 1750,3500;

DF;

DS 1023;

9 k_logo;

42 -500,-500 4000,4000;

L NM;

W 1000 0,0 0,3500;

W 1000 0,1750 3500,1750 3500,3500;
W 1000 2500,1750 2500,0;

DF;

DS 1024;

9 four_logo;

42 -500,-500 4000,4000;

L NM;

W 1000 0,3500 0,1750 3500,1750;
W 1000 3500,3500 3500,0;

DF;

DS 1025;

D-64

9 logo;

42 0,0 64000,16250;

C 1004

c

c

1005

1006

1007

1008

1009

1010

1007

1014

1008

1009

1009

1009

1017

1018

1019

1005

1024

1019

1023

1009

1007

1022

1019

1020

1021

DF;

T

T

T

T

500,12250;

9250,12250;
14500,12250;
23250,12250;
28500,12250;
33750,12250;
39000, 12250;
44250,12250;
49500, 12250;
54750, 12250;
60000,12250;
5250,6000;

10500, 6000;
15750,6000;
21000,6000;
26250,6000;
31500,6000;
36750,6000;
42000,6000;
47250,6000;
52500,6000;
12250,500;

17500,500;

22750,500;

28000,500;

33250,500;

D-65

C 1025 T 72500,3000;

DS 9070;

9 layout;

42 -3250,0 212000,162250;

C 501 RO,-1

C

c

c

501

501

501

501

501

501

TR

501

501

501

501

6 R

4 R

4 R

4 R

4 R

DF;

C 9070 T 0,0;

End

RO,-1
R O,-1
R 0,-1
R 0,-1

RO,-1

T -3250,26750;
T -3250,53250;
T -3250,79750;

T -3250,106250;
T -3250,132750;
T -3250,159250;
T 55500,162250;
82000, 162250;

T 108500, 162250;
T 135000,162250;
T 161500,162250;

T 188000,162250;

0,1 T 212000,106000;

0,1 T 212000,79500;

0,1 T 212000,53000;

0,1 T 212000,26500;

0,1 T 212000,0;

D-66

APPENDIX E

THE WESTE AND ESHRAGHIAN CMOS DESIGN RULES

. s o148
These rules are copied from pages 104 - 106 of the book by Weste and Eshraghianl48.
A2
- 2 e
MASK 1: THINOX
A1. MINIMUM THINOX WIDTH 22
A2, THINOX SPACING 2
(nttontorptiopt)
A3.p*+ to n+ SPACING 8\
— 2 e—
Al
— g
gﬁ r- i | MASK 2: p-WELL
|
———- —1' I:—-— ~ | B1. MINIMUM p-WELL WIDTH 4\
|
f [| B2. MINIMUM p-WELL SPACING 21
| I a (SAME POTENTIAL)
I
: I : B3. MINIMUM p-WELL SPACING 6\
| 1 { {DIFFERENT POTENTIAL)
4 _} IL —:ll 5\ == B4 MINIMUM OVERLAP OF 3\
St fo - BS INTERNAL THINOX
—i a\ he—
B4 — 2\ bt— B5. MINIMUM SPACING TO 5\
B2 EXTERNAL THINOX
(61 FOR WELLS
AT DIFFERENT
POTENTIALS)
D4 D1
2 2
e, be—ni c2 c3 MASK 3: POLYSILICON
———3 Je2am —f A le—
I { 201 7 7 C1. MINIMUM POLY WIDTH ~ 2\
X % 7/ :
l / i C2. MINIMUM POLY SPACING 2\
€3 1\ -
€3. MINIMUM POLY-THINOX A
I // W/ o
1A s / /i -
T | T C4. MINIMUM POLY GATE ~ 2)
! ADs oo o © ix EXTENSION
[S _— c
i 2 C5. MINIMUM THINOX 2
D2 2 MASK 4: p-PLUS SOURCE/DRAIN EXTENSION
. .
! D1. MINIMUM OVERLAP OF THINOX 2
| _ N ' D2. MINIMUM p - PLUS SPACING 2
2\ D3 D3. MINIMUM GATE OVERLAP OR DISTANCE
TO GATE EDGE 2
M
/ A D4. MINIMUM SPACING TO UNRELATED
THINOX 2\

MASK §: CONTACT

E1. MINIMUM CONTACT AREA D x D

E3 E2 E2. MINIMUM CONTACT SPACING 2
% =i lo_ bl /”"" E3. MINIMUM OVERLAP OF POLY A
/ OR THINOX OVER CONTACT
E'.F‘ ; m m A.*. E4. MINIMUM SPACING TO GATE POLY 2
2: — _.| u._. ;f; E5. n* SOURCE/DRAIN CONTACT

E6. p+ SOURCE/DRAIN CONTACT

E7. Vgg CONTACT

m _{ E8. Vpp CONTACT

N E9. Vg SPLIT (OR MERGED)

W/////////// -f ggg‘mgT (ELONGATED CONTACT

E10. Vpp SPLIT CONTACT
{2\ x 2\ CONTACTS SHOWN)

e
—— -1 Al
=]

—

g
q
m
L e e
—

e L ——

_.| by 1
e
F1 F2 F1
= A [N D e
" _’] ;' T MASK 6: METAL
|
| | :] F1. MINIMUM METAL WIDTH 2\
l ! | { F2. MINIMUM METAL SPACING 3\
I | | | F3. MINIMUM METAL OVERLAP \
I | | OF CONTACT
] o
[(.
| | | |
L_J L_J
AF3
—tnf)\ h—

E-2

APPENDIX F

THE ABCD, LLAMA AND CIF FILES FOR A CMOS CIRCUIT.

The listing that appears first in this appendix is the ABCD description of the
CMOS carry input generation circuit to the eight bit adder discussed in Chapter IV.

#

$Header$

#

Created by ICE 1.1 on Tue May 6 17:32:17 1986
#

begin carin bbox=(18,5,24,32)

sa_nu: pin metal (18,32)
sb_w: pin metal (18,31)
co_se: pin metal (24,9)
vss_e: pin metal (24,30)
vdd_e: pin metal (24,19)
d4: device p_type (20,26) w=2
d5: device p_type (22,26) w=2
d6: device p_type (22,24) w=
d7: device p-type (20,24) w=2
ds: device p-type (20,22) w=2
dg: device p-type (22,22) w=2
d10: device p-type (22,20) w=2
dii: device p_type (20,20) w=
di2: device n_type (20,28) w=2

F-1

di13: device n_type (22,28) w=2

di4: device n_type (22,13)
di5: device n_type (20,13)
d16: device p-type (20,16)
di7: device p_type (22,16)
wire metal w=2 (18,30) (24,30)
wire metal w=2 (18,19) (24,19)
wire metal (cdi2D) (21,30)
cd12D: contact autocontact di2.d
wire metal (cd4D) (cd6S)
cd4D: contact auntocontact d4.d
cd6s: contact autocontact dé.s
wire metal (cd6S1) (cd8D)
cd6S1: contact autocontact d6.s
cd8D: contact autocontact d8.d
wire metal (cd8D1) (cdi0S)
cd8D1: contact autocontact d8.d
¢d10S: contact autocontact di0.s
wire metal (cd10S1) (21,19)
cd10S1: contact autocontact di0.s
wire metal (cdi12S) (cd4S)
cd12S: contact autocontact di2.s
cd4s: contact autocontact d4.s
wire metal (19,26) (cd7S)
cd7S: contact autocontact d7.s
wire metal (cd8S) (19,24)
cd8S: contact auvtocontact d8.s
wire metal (19,22) (cdiis)
cdiis: contact autocontact dii.s

F-2

cd10D:

cdoD:

cd6D:

cdbD:

cd13D:

cd1i7D:

cdidD:

cdi16S:

cd15S:

cl:

c2:

wire

contact

contact

wire

contact

wire

contact

wire

contact

wire

wire

wire

contact

wire

contact

wire

wire

wire

wire

wire

contact

contact

wire

wire

wire

wire

wire

contact

contact

metal (cd10D) (cdSD)
antocontact d10.d

antocontact d9.d

metal (23,22) (cdéD)
antocontact dé.d

metal (23,24) (cdSD)
autocontact db.d

metal (23,26) (cdi3D)
autocontact di3.d

poly (22,32) (22,16)

poly (20,31) (20,18)

metal (20,18) (23,18) (cd17D)
autocontact di7.d

metal (23,16) (cdi4D)
autocontact di4.d

metal (23,20) (24,20)

poly (24,20) (24,15) (20,15) (20,16)
poly (22,15) (22,13)

poly (18,20) (18,15) (19,15)
metal (cd16S) (cd15S)
autocontact di6.s

antocontact dib.s

metal (19,20) (18,20)

metal (18,31) (24,31)

metal (24,32) (18,32)

metal (22,17) (18,17) (18,14)
poly (18,14) (20,14) (20,13)
autocontact (20,31)

autocontact (22,32)

F-3

c3: contact autocontact (18,20)

c4: contact autocontact (24,20)
cb: contact autocontact (20,18)
cB: contact autocontact (22,17)
cT: contact autocontact (19,15)
c8: contact autocontact (18,14)
c9: contact vss (21,30)
c10: contact vdd (21,19)
wire metal (cd16D) (cdi14S)
cd16D: contact autocontact di16.d
cd14S: contact autocontact di4.s
wire metal (cdi14S1) (21,9) (24,9)
cd14S51: contact autocontact di4.s
wire metal w=2 (18,5) (24,5)
cii: contact vss (21,5) or=n
end carin

The second listing is the LLAMA description of the carry in circuit.

begin name=carin tech=cmos units=2000000 elements=159 depth=0 bbox=(-7,-15,108,439)
pin metal (94,161,108,175) vdd_e

pin metal (94,379,108,393) vss_e

pin metal (98,15,104,21) co_e

pin metal (-3,407,3,413) sb_w

pin metal (-3,427,3,433) sa_nw

layer thinox

F-4

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

(43,379,57,393)
(16,343,86,371)
(13,350,16,364)
(86,350,89,364)
(16,291,86,319)
(13,298,16,312)
(86,298,89,312)
(16,255,86,283)
(13,262,16,276)
(86,262,89,276)
(16,219,86,247)
(13,226,16,240)
(86,226,89,240)
(16,183,86,211)
(13,190,16,204)
(86,190,89,204)
(43,161,57,175)
(13,99,89,113)
(13,29,89,43)

(43,-7,57,7)

layer poly

rect

rect

rect

rect

rect

rect

rect

rect

(56,422,61,438)
(61,93,67,438)

(67,422,72,438)
(28,402,33,418)
(33,139,39,418)
(39,402,44,418)
(-7,190,-3,204)

(-3,81,3,204)

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

(3,190,8,204)
(93,190,98,204)
(98,81,104,204)
(104, 190, 108,204)
(29,139,33,153)
(39,139,44,153)
(56,121,61,135)
(67,121,71,135)
(33,81,39,119)
(13,76,27,92)
(3,81,13,87)
(39,81,61,87)
(61,23,67,87)
(67,81,98,87)
(-7,51,7,66)
(7,55,33,61)

(33,23,39,61)

layer p.well

rect

rect

(5,335,97,408)

(5,-15,97,51)

layer p_plus

rect

rect

rect

rect

rect

rect

rect

rect

(39,375,61,397)
(12,179,90,323)
(9,294,12,316)
(90,294,93,316)
(9,258,12,280)
(90,258,93,280)
(9,222,12,244)

(90,222,93,244)

rect

rect

rect

rect

(9,186,12,208)
(20,186,93,208)
(9,95,93,117)

(39,-11,61,11)

layer metal

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

(55,421,73,439)
(-3,427,55,433)
(73,427,104,433)
(27,401,45,419)
(-3,407,27,413)
(45,407,104,413)
(-7,379,47,393)
(47,350,53,393)
(53,379,108,393)
(13,350,17,364)
(17,190,23,364)
(23,350,27,364)
(43,350,47,364)
(53,350,57,364)
(75,350,79,364)
(79,190,85,364)
(85,350,89,364)
(13,298,17,312)
(23,298,27,312)
(43,2908,47,312)
(47,161,53,312)
(53,298,57,312)
(75,298,79,312)

(85,298,89,312)

F-7

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

(13,262,17,276)
(23,262,27,276)
(43,262,47,276)
(53,262,57,276)
(75,262,79,276)
(85,262,89,276)
(13,226,17,240)
(23,226,27,240)
(43,226,47,240)
(53,226,57,240)
(75,226,79,240)
(85,226,89,240)
(-7,190,17,204)
(23,190,27,204)
(43,190,47,204)
(53,190,57,204)
(75,190,79,204)
(85,190,108,204)
(-7,161,47,175)
(53,161,108,175)
(29,139,45,153)
(45,143,79,149)
(79,29,85,149)
(55,121,71,135)
(-3,51,3,131)
(3,125,55,131)
(13,75,17,113)
(17,29,23,113)

(23,75,27,113)

F-8

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

(43,99,47,113)
(47,15,53,113)
(53,99,57,113)
(75,99,79,113)
(85,99,89,113)
(-7,51,-3,67)
(3,51,7,67)
(13,29,17,43)
(23,29,27,43)
(43,29,47,43)
(53,29,57,43)
(75,29,79,43)
(85,29,89,43)
(53,15,104,21)

(-7,-7,108,7)

layer cut

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

rect

(61,427,67,433)
(33,407,39,413)
(47,383,53,389)
(17,354,23,360)
(47,354,53,360)
(79,354,85,360)
(17,302,23,308)
(47,302,53,308)
(79,302,85,308)
(17,266,23,272)
(47,266,53,272)
(79,266,85,272)

(17,230,23,236)

F-9

rect (47,230,53,236)
rect (79,230,85,236)
rect (-3,194,3,200)
rect (17,194,23,200)
rect (47,194,53,200)
rect (79,194,85,200)
rect (98,194,104,200)
rect (47,165,53,171)
rect (33,143,39,149)
rect (61,125,67,131)
rect (17,103,23,109)
rect (47,103,53,109)
rect (79,103,85,109)
rect (17,81,23,87)
rect (-3,55,3,61)
rect (17,33,23,39)
rect (47,33,53,39)
rect (79,33,85,39)
rect (47,-3,53,3)

end

The third listing is the CIF description of the carry in circuit.

DS 500 50 2;

(CIF symbol 500 generated from carin.ll);
94 vdd_e 326 396 CM;

94 vss_e 326 812 CM;

F-10

94 co_se 326 0 CM;

94 sb.w O 872 CM;

04 sa_nw O 922 CM;

L CM ;

B 40 40 180 S22 ;

B

B

170 20 75 922 ;

136 20 268 922

40 40 100 872 ;

90

216 20 228 872 ;

150 40 55 812 ;

20 100 140 782

196 40 248 812

i0

20

10

10

10

i0

20

10

10

10

10

20

10

10

10

10

20 35 872 ;

40 35 752 ;

336 50 604 ;

40 65 752 ;

40 125 752 ;

40 185 752 ;

40 261 752 ;

336 276 604

40 281 752 ;

40 35 666 ;

40 65 666 ;

40 125 666 ;

310 140 531 ;

40 155 666 ;

40 261 666 ;

40 291 666 ;

40 35 596 ;

we

F-11

10 40 65 896 ;
10 40 125 596 ;
10 40 155 586 ;
10 40 261 596 ;
10 40 291 596 ;
10 40 35 b26 ;
10 40 65 526 ;
10 40 125 526 ;
10 40 155 526 ;
10 40 261 526 ;
10 40 291 526 ;
60 40 10 456 ;
10 40 65 456 ;
10 40 125 456 ;
10 40 155 456 ;
10 40 261 456 ;
60 40 316 456 ;
150 40 55 396 ;
196 40 248 396 ;
40 40 100 336 ;
146 20 193 336 ;
20 316 276 188 ;
40 40 180 286 ;
20 206 0 193 ;
150 20 85 286 ;
10 96 35 198 ;
20 216 50 138 ;
10 96 65 188 ;

10 40 125 226 ;

F-12

20

10

10

10

10

10

10

10

10

10

10

10

186 20 243 0 ;

CN ;

40 40 140 512 ;

266 40 163 752 ;

266 40 163 666 ;

266 40 163 596 ;

266 40 163 526 ;

266 40 163 456 ;

256 140 118 ;

40 185 226 ;

40

40

40

40

40

40

40

40

40

40

40 40

40

40

40

50

96

40

40

40

40

40

40

20

20

40

40

40

261 226 ;

291 226 ;

-15 110 ;

i5 110 ;

35 50 ;

65 60 ;

125 50

165 BT

261 50

291 50

140 396 ;

50 226 ;

140 226 ;

276 226 ;

95 226 ;

208 226 ;

50 50 ;

140 50 ;

276 50 ;

F-13

B 50 20 95 50 ;

B 96 20 208 50 ;

L CP ;

B 10 40 165 922 ;

B 20 742 180 571 ;

B 10 40 196 922 ;

B 10 40 85 872

B 20 576 100 604 ;

B 10 40 115 872 ;

B 10 40 -15 456 ;

B 20 316 0 318 ;

B 10

B 10

B 20

B 10

B 10

B 10

B 10

B 10

B 20

B 40

B 20

B 60

B 20

B 126 20 253 170 ;

40

40

316 326 318 ;

40

92

40

20

20

156 180 102 ;

15 456 ;

311 456 ;

341 456 ;

85 336 ;

115 336 ;

165 286 ;

195 286 ;

100 206 ;

50 170 ;

20 170 ;

140 170 ;

B 40 40 0 110 ;

B 70 20 55 110 ;

B 20 96 100 72 ;

L CPW ;

F-14

B 286 822 163 431 ;

L

CPP ;

B 60 60 140 812 ;

B

B

286 270 163 561 ;

60 60

60 60

60 60

30 40

76 40

CT ;

20 20

20 20

20 20

20 20

20 20

20 20

20 20

20 20

20 20

20 20

20 20

20 20

20 20

20 20

20 20

20 20

20 20

20 20

20 20

50 226 ;

140 226 ;

276 226 ;

95 226 ;

208 226 ;

180 922 ;

100 872 ;

140 812 ;

50 7852 ;

140 752 ;

276 752 ;

50 666 ;

140 666 ;

276 666 ;

50 586 ;

140 596 ;

276 596 ;

50 526 ;

140 526 ;

276 526 ;

0 456 ;

50 456 ;

140 456 ;

276 456 ;

F-15

B 20 20 326 456 ;
B 20 20 140 396 ;
B 20 20 100 336 ;
B 20 20 180 286 ;
B 20 20 50 226 ;
B 20 20 140 226 ;
B 20 20 276 226 ;
B 20 20 50 170 ;
B 20 20 0 110 ;

B 20 20 50 50 ;

B 20 20 140 50 ;
B 20 20 276 50 ;
DF ;

(Outer Call made to symbol with the greatest depth) ;
C 500 ;

End

F-16

