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Thesis Summary

Polyfunctional thiols (also known as varietal thiols) with odour detection
thresholds (ODTs) in the nanogram per litre range are one of the most potent
volatiles present in wine and are regarded as odour-active compounds affording
significant sensory contributions. These compounds have been intensively
investigated for the past few decades, along with their non-volatile grape-derived
precursors in more recent years, but knowledge of the analysis, biogenesis, and
fate of thiols, as well as the influences of environmental and winemaking factors,
is still incomplete. This thesis therefore begins by reviewing the current
knowledge of polyfunctional thiols in wine and precursors in grapes (Chapter 1),
and then covers the analytical approaches that have been developed to identify
and quantify thiols in foods and beverages, with a particular focus on wine
(Publication in Chapter 2). A number of original research studies (Publications in
Chapters 3 to 6) are then presented to address the knowledge gaps related to

characteristic thiols in wine and their precursors in grapes.

Polyfunctional thiols 3-sulfanylhexan-1ol (3-SH) and 3-sulfanylhexyl acetate (3-
SHA) are two of the most evaluated thiols in wine. 3-SH and 3-SHA are chiral
molecules, which give rise to pairs of enantiomers that differ in aroma quality and
ODT. However, chiral analytical methods required to study 3-SH and 3-SHA
enantiomers in wine were essentially non-existent. Addressing this gap, a novel
stable isotope dilution assay (SIDA) with chiral high-performance liquid
chromatography with tandem mass spectrometry (HPLC-MS/MS) using a
polysaccharide-based column has been developed and validated for analysing
the enantiomers of 3-SH and 3-SHA, after extraction from wine as their 4-
thiopyridine derivatives. Authentic derivatives were synthesised to enable chiral
column screening, and method validation encompassed calibration range,

linearity, accuracy, precision, limit of detection, and matrix effects. The validated
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Thesis summary

method demonstrated excellent analytical performance and offers opportunities
for further research around chirality of polyfunctional thiols. By applying this
method, the distribution pattern of enantiomers of 3-SH and 3-SHA in a set of

commercial wines has been reported (Publication in Chapter 3).

The formation of 3-SH and 3-SHA during fermentation involves conjugated
precursors that are present as pairs of diastereomers in grapes. However, there
was no literature on thiol precursor stereochemistry in grapes in relation to thiol
chirality in wine. Employing the newly developed method for analysing thiol
enantiomers, the relationship between precursor diastereomers in grapes and
thiol enantiomers in wine was examined for the first time through a fermentation
trial using five co-located clones of Sauvignon blanc grapes (Publication in
Chapter 4). No correlation was observed between precursor diastereomers in
grapes analysed by SIDA HPLC-MS/MS and 3-SH or 3-SHA enantiomers in wines
measured by SIDA chiral HPLC-MS/MS, but the results have provided insight
that can be further explored to understand the implications of thiol biogenesis on

thiol precursor stereochemistry.

Tackling thiols and their precursors from a viticultural and oenological
perspective, the impacts of sub-region within one geographic indication, grape
clone, grape amino acids, yeast strain, commercial enzyme, fermentation
nutrient, and pre-fermentation freezing have been assessed in controlled
fermentation trials with Sauvignon blanc (Publications in Chapter 4 and 5).
Substantial intraregional variations existed among thiol precursors and thiols in
the examined grapes and wines, respectively, and clonal differences were noted
at the diastereomeric and enantiomeric levels for precursors and thiols,
respectively. In terms of the impact of grape metabolites on thiols and
precursors, grape amino acids were revealed for the first time to have stronger

correlations to 3-SH precursors in grapes (e.g., |rl > 0.73 and 0.62 for glutamic
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Thesis summary

acid and glycine) than thiols in wines (Il < 0.42), highlighting the potential
interaction between grape amino acids and thiol precursor metabolism in grapes.
With regard to thiol management during winemaking, significant elevations of
polyfunctional thiols in wine occurred with the use of a commercial enzyme in
juices (up to an approximate two-fold increase in a clone-dependent manner) or
pre-fermentation freezing treatment on fresh grapes (up to an approximate 10-
fold enhancement regardless of clone). These practical approaches and novel
results are of potential interest for winemakers who seek to be one step closer to

thiol management during winemaking.

The fate of polyfunctional thiols in wine requires continued investigation to
comprehend the impacts on varietal aroma profiles of wine. Based on the co-
existence of 3-SH and acetaldehyde in wine, the presence of a new volatile sulfur
compound (VSC) with an oxathiane structure was theorised. After the synthesis
of a deuterated standard and the development of a SIDA headspace solid-phase
microextraction (HS—SPME) with gas chromatography and mass spectrometry
(GC-MS) method, 2-methyl-4-propyl-1,3-oxathiane was identified and
guantitated in wine for the first time. Only detectable as the cis-isomer, this
compound strongly correlated (r = 0.72) with the concentration of 3-SH
determined by HPLC-MS/MS analysis. The ODT of this newly discovered wine
volatile was determined in a neutral white wine. Concentrations of cis-2-methyl-4-
propyl-1,3-oxathiane (up to 460 ng/L) determined in a range of surveyed
commercial wines were below the measured ODT of 7.1 pg/L. Nonetheless, the
presence of this new wine volatile still has potential implications for wine aroma,
due to its direct link with the fate of important wine aroma compound 3-SH. On
one hand, this may help account for 3-SH that is lost during fermentation and
ageing, and on the other hand, a sizeable proportion of 3-SH could be masked as
the oxathiane, thus diminishing the impact of 3-SH on wine aroma (Publication in

Chapter 6). iii



Thesis summary

In summary, this PhD thesis has combined modern analytical methods,
chemistry synthesis, fermentation trials, and sensory testing to shed light on
aspects of wine aroma related to important polyfunctional thiols and their
precursors. The outcomes not only contribute to a better scientific understanding

of thiol chemistry but also offer opportunities for potential industrial

applications.
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Chapter 1

Literature Research
Review Questions & Aims

The literature review in this chapter covers the literature up to December
2015. The literature beyond this date has been included in the
publication in Chapter 2 and introductions of the publications in
Chapters 3 to 6.
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Chapter 1 | Literature review & Research questions

1.1. Polyfunctional thiols in wine

Aroma is one of the most complicated and important criteria for wine quality [1].
Of >800 volatile components reported in wines [2], polyfunctional thiols (or
varietal thiols) are a category of volatile sulfur compounds (VSCs) that are of
great importance to the aroma quality of wine of many varieties [3—5], especially
for Sauvignon blanc, the variety known for its distinctive tropical fruit aroma

characteristics [6].

From 2000 to 2010, Sauvignon blanc has significantly increased in its cultivation
area in all major wine countries worldwide (Table 1) and become one of the top
white grape varieties [7], which appears to reflect the modern wine consumers’

preference of immediate fruit aromas over subtlety and ageing ability [8].

Table 1.
Cultivation area (hectare), share (%) in national wine grape area, and decadal

increase (DI) for Sauvignon blanc in key wine-producing countries [7].

2000 2010 DI 2000 2010 DI
France 20933 26839 28 2.4 3.2 24
NZ' 2423 16205 569 24.4 50.7 52
Chile 6662 12159 83 5.9 10.9 46
South Africa 5436 9551 76 5.8 9.5 39
usz 4191 6584 57 2.2 2.9 17
Australia 2602 6467 149 2.0 4.3 53

TNZ: New Zealand. 2 United States.
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Chapter 1 | Literature review & Research questions

The typical tropical fruit aromas in Sauvignon blanc wine are mostly from three
polyfunctional thiols: 3-sulfanylhexan-1-ol (3-SH), 3-sulfanylhexyl acetate (3-
SHA) and 4-methyl-4-sulfanyl-pentan-2-one (4-MSP) (Table 2). Due to their
aroma qualities and extremely low odour detection thresholds (ODTs), 3-SH, 3-

SHA, and 4-MSP have been intensively investigated during the past two decades.

Table 2.
Structures, odour descriptions, odour detection thresholds (ODTs), and reported

odour activity values (OAVs) of three potent polyfunctional thiols in wine.

3-SH Grape fruit [9] 60[9] 12-214 [6]
(R)-3-SH /\EEH/\OH Grape fruit, citrus peel [10] 50 [10]
H SH . .
(8)-3-SH X _~ o Passion fruit [10] 60 [10]
i SH o Box tree, grape fruit, _
el A~AAAN passion fruit [3] 4[3] 53-194 [6]
O
(R-3-SHA _ £ I Passion fruit [10] 9[10]
H SH ]
(S)-3-SHA /\)°\/\O)J\ Boxwood [10] 2.5[10]
amsp I 0 Box tree, cat urine [4] 0.8[4] 5-28]6]

" Thiols bearing a chiral centre are most often studied as their racemic mixtures
although they are present as pairs of enantiomers. Where available, the
properties of both the racemate and individual enantiomers are given. % ng/L,

measured in a 12% (v/v) aqueous alcohol solution.
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Chapter 1 | Literature review & Research questions

1.1.1. Aroma contribution of polyfunctional thiols

Generally, certain polyfunctional thiols are recognised as the aroma compounds
responsible for the typical ‘tropical fruit’ and ‘citrus fruit’ aromas of wines. In the
very first instance, the profound sensory contribution of polyfunctuional thiols to
wine was highlighted for 4-MSP exhibiting a ‘guava-like’ aroma through a sensory
evaluation on white wines [11]. Later by gas chromatography—olfactometry (GC-
0), 4-MSP was tentatively identified in Sauvignon blanc wine with aroma
described as ‘powerful box tree’ [12]. Afterwards, 3-SHA was identified in
Sauvignon wines by gas chromatography with flame photometric detector (GC-
FPD) and found to have a ‘box tree’ odour with ‘passion fruit’ and ‘grapefruit’
aromas [3]. 3-SH with a ‘grapefruit’ aroma was also identified in Sauvignon blanc
wine [9]. Although polyfunctional thiols are normally associated with pleasant
fruity aroma, their sensorial properties are concentration-dependent. It has been
shown that polyfunctional thiol 4-MSP at moderate concentration enhanced the
‘overall fruit aroma’ whereas negative aromas such as ‘cat urine’ and ‘sweaty’

could arise when at high concentrations [13].

Additionally, 3-SH and 3-SHA are chiral molecules both bearing a pair of
enantiomers that differ in aroma quality. The aroma of (R)-3-SH was reminiscent
of ‘grapefruit’, while the aroma of the (S)-3-SH was like ‘passion fruit’. The (R)-
form of 3-SHA showed more ‘herbaceous’ aroma, with a smell like 4-MSP, while
(S)-3-SHA displayed ‘boxwood’ note [10]. The changes of ratios of the
enantiomers of 3-SH and 3-SHA is reported to result in different wine aroma

profiles [13].
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Chapter 1 | Literature review & Research questions

The measured ODTs of 4-MSP, 3-SH and 3-SHA were extremely low, at 0.8, 60 and
4 ng/L (Table 2), respectively, which made them one of the most potent volatiles
found in nature. These three polyfunctional thiols are readily able to impart
significant sensory contributions to wine aroma. With respect to enantiomers of
3-SH and 3-SHA, the detected ODTs of 3-SH enantiomers were similar (50 ng/L
for the (R)-form and 60 ng/L for (S)-form), but ODTs of (S)-3-SHA (2.5 ng/L) and
(R)-3-SHA (9 ng/L) were very different [10].

Odour activity value (OAV) is the ratio of the measured concentration over the
ODT of the compound, which is also referred as the aromatic index (/). It can be
calculated to evaluate the aroma contribution of volatile compounds: an OAV
above 1.0 indicates a likely contribution of the compound to the overall aroma
[14]. The OAV data of polyfunctional thiols (Table 2) demonstrated their
undeniable sensory impact on wine aroma [6]. In addition to OAV, aroma extract
dilution analysis (AEDA) technique has also been applied to screen potent
volatile odourants, and its result is expressed as flavour dilution (FD) factor which
means the dilution degree that a substance can still be smelled [15]. AEDA
studies on wine aroma have found that polyfunctional thiols had high FD,
frequently higher in white [16] and rosé wine [17], but to a lesser extent in red wine
[18]. However, as a tool to detect odour-active compounds, AEDA has some
downsides, such as odourant losses during isolation [19]. Therefore, sensory
reconstruction study was proposed to elucidate the specific role of certain
volatile compounds to the overall aroma profiles [19]. The omission of 4-MSP in
Scheurebe model wine resulted in a completely different aroma profile to the
original wine, revealing that 4-MSP was one of the most important volatile
compounds responsible for aroma of the Scheurebe wine [19]. The contribution
of 3-SH to aroma of Grenache rosé wines has also been demonstrated using

AEDA [17].
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Chapter 1 | Literature review & Research questions
1.1.2. Analysis of polyfunctional thiols
1.1.2.1. Extraction

Extraction is the first step for chemical analysis of polyfunctional thiols. However,
extraction of thiols is a challenging task for wine researchers due to two main
impediments: the ultra-trace concentrations and the unstable chemistry nature
of polyfunctional thiols [20]. To overcome analytical challenges, liquid-liquid
extraction (LLE), headspace solid-phase microextraction (HS-SPME), and solid

phase extraction (SPE) have been used for thiol analysis in wine.

1.1.2.1.1. LLE and pHMB

As the early methods for polyfunctional thiol extraction, LLE required the use of
organic solvents (e.g. diethyl ether and pentane) to obtain volatile fractions from
wine followed by specific polyfunctional thiol extraction procedures. In the
particular selective extraction steps, polyfunctional thiols were bound by p-
hydroxymercuribenzoate (pHMB), converted to, and preserved as the stable thiol-
pHMB. Next, the bounded polyfunctional thiols were treated with glutathione
(GSH) to release polyfunctional thiols by replacing thiols with GSH [4]. This
extraction method demonstrated good extraction selectivity by using mercury to
attack thiols. An improved method based on this approach added an additional
basic anion exchange chromatography step to eliminate impurities [6], and its
modified versions have been subsequently developed [21-24]. LLE combined
with covalent chromatography procedure for isolation of polyfunctional thiols
has also been proposed too [25]. Afterwards, a modified method using mercuric
bounded agarose gel was suggested [26]. LLE in combination with pHMB-related
extraction strategy provided exclusive separations of polyfunctional thiols from
wine, but had several major drawbacks, such as the requirement of large volumes
of sample and solvent, tedious sample preparation procedures, and the use of

hazardous chemical (e.g., mercury).
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Chapter 1 | Literature review & Research questions

1.1.2.1.2. Derivatisation

Although there were only limited derivatisation reagents available for thiol
derivatisation, derivatisation overcame some of the disadvantages of the
traditional pHMB extraction methods. The first reported derivatisation method
[27] applied 2,3,4,5,6-pentafluorobenzyl bromide (PFBBr) as a derivatisation
reagent together with a secondary reagent (tribuytilamine) to react with the
benzene extract of polyfunctional thiols, to obtain stable pentafluorobenzyl
derivatives. In the following studies, PFBBr derivatisation was used for more
polyfunctional thiols (3-SH and 3-SHA) [28] and upgraded by introducing a
methoximation procedure (for 4-MSP) [29, 30]. Modified versions were employed
to extract polyfunctional thiols from wines [31, 32]. Ethyl propiolate (ETP) was
presented a low molecular weight derivatisation reagent [33]; however, this
extraction method was unable to analyse 4-MSP because the derivatisation was
influenced by wine matrix. Later, o-methylhydroxylamine hydrochloride (o-
CH,ONH,-HCI) was suggested as a new derivatisation reagent for 4-MSP [34],
and the sensitivity of quantitation of 4-MSP was below its ODT (0.8 ng/L). With
regard to the derivatisation of 3-SH and 3-SHA, o-phthaldialdehyde (OPA) was
evaluated [35]. More recently, a novel thiol derivatisation procedure using 4,4-
dithiodipyridine (DTDP) for thiols (including 4-MSP, 3-SH, and 3-SHA) was
reported [20].

1.1.2.1.3. HS-SPME and SPE

HS—-SPME was employed for 4-MSP extraction, in which the concentrations of 4-
MSP in all samples were considerably high (at pg/L) [36]. SPME offered a simpler
experiment procedure than LLE and derivatisation. Direct HS—SPME extraction
was proposed for 3-SH and 3-SHA [37]. Apart from directly extracting thiols from
wine, SPME has also been combined with derivatisation. For instance, five

polyfunctional thiols were extracted by HS-SPME with on-fibre
7 of 182
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derivatisation [27]. SPE has also been used for polyfunctional thiol extraction [37,
38]. Other than direct extraction through SPE cartridges [37], thiols can be

extracted by on-cartridge derivatisation [29] or derivatised prior to SPE [20].

1.1.2.2. Identification and quantitation

Modern gas or liquid chromatography (GC, LC) is a useful and efficient tool for
polyfunctional thiols analysis due to its tremendous separation power. The initial
‘identification’ of polyfunctional thiols was accomplished through GC-0, by
comparing the retention time and sensory intensities between wine samples and
reference polyfunctional thiols [4]. This procedure narrowed down the odorous
zones of interest. Later, retention indices (RIs) of polyfunctional thiols were
calculated and mass spectrometry (MS) was used for identifications [9, 16, 39].
As a common technique normally coupled with GC and LC for aroma analysis,
MS gives accurate identification by providing the unique mass spectra of the
targets. To enhance identifications, selected ion monitoring (SIM) and multiple
reaction monitoring (MRM) modes are commonly applied for GC-MS [28, 33, 36,
37, 40] and LC-MS [20, 32, 34, 41], respectively.

For quantitation, several unlabelled internal standards (ISs) have been used, such
as 4-methoxy-2-methyl-2-mercaptobutane [6, 42, 43], propyl thioacetate [36], and
6-mercaptohexan-1-ol [37, 40, 44]. The behaviour of different ISs for
polyfunctional thiol quantitation was evaluated [28, 29]. Currently, the most
effective and precise approach for identification and quantitation is stable
isotope dilution assay (SIDA). SIDA uses deuterium labelled analogous as IS,

which have almost identical physicochemical properties and chromatographic
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behaviour as unlabelled analytes [45]. This offers superior identification and
quantitation accuracy. Many labelled polyfunctional thiol analogues have been
applied in quantitation, such as d,-3-SHA [35, 43, 46], d,-3-SH [29, 46, 47], d.-3-
SHA [29, 32, 48], d

-4-MSP [20, 32, 48, 49], d. -3-SH [20, 32, 49, 50].

10 10

1.1.2.3. Chiral analysis

Very limited scientific attentions have been paid to the chiral analysis of 3-SH and
3-SHA in wine. In one chiral GC-MS method developed to analyse 3-SH and 3-
SHA enantiomers in wines [10], the separation of (R)- and (S)-form of 3-SH on the
tested chiral GC column was achieved, but the resolution for the enantiomers of
3-SHA was unsatisfactory. Therefore, 3-SHA enantiomers were tentatively
quantitated [10]. Another downside of this method is that per GC—MS run was
more than two hours. A more efficient chiral separation method (only for 3-SH,
resolution = 1.3 for 3-SH enantiomers) with half of the run time was
demonstrated later [50]. The investigations on the distribution (Table 3) and
evolution patterns of 3-SH and 3-SHA enantiomers in wines have been limited in
a small number of wine samples using previously developed chiral methods [10,
50-52]. The distribution of (R)- and (S)- enantiomers of 3-SH in wines was almost
even [10], but the enantiomers of 3-SHA were unequally present, which indicated
different acetylation abilities from 3-SH enantiomers to 3-SHA enantiomers.
Vintages and grape varieties were reported to have no influences on the ratios of
enantiomers of 3-SH and 3-SHA, although the total amounts of 3-SH or 3-SHA
varied in different grape varieties. However, Botrytis cinerea significantly affected

the enantiomers of 3-SH (Table 3) [10].
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Table 3.

Distribution of enantiomers of 3-SH and 3-SHA in wines [10].

o529 | ISA (9

_ dry ' (n=8) =~ 50:50 =~ 30:70
Sauvignon
sweet?(n=1) 34:66 N.D.
dry " (n=7) =~ 50:50 = 30:70
Semillon
sweet 2 (n = 6) =~ 30:70 N.D.

"Made from healthy grape.?Made from grape affected by Botrytis cinerea.

N.D.: not detected.

1.1.3. Occurrence of polyfunctional thiols

With the analytical methods available, polyfunctional thiols have been assessed
in a range of wines, including white, red, and rosé wines of many varieties.
Generally, the presence of 3-SH and 3-SHA is more ubiquitous than 4-MSP; 3-SH
is at the highest concentration and 4-MSP is normally present at the lowest
amounts. The varietal differences are obvious too, with Sauvignon blanc wine
containing relatively larger amounts of polyfunctional thiols than other varieties

(Table 4).

Table 4.

Concentrations (ng/L) of polyfunctional thiols in wines of selected varieties.

Sauvignon blanc [21]  3570+118 = 170+1 N.D. - 10124167 0.6+1.5 - 24.841.3

Sauvignon blanc [35] 718 - 2262 19-1029 N.A.
Riesling [32] 172 - 1060 N.A. N.A.
Pinot gris [32] 108 — 1021 N.A. N.A.
Gewurztraminer [32] 96 — 1237 N.A. N.A.
Chardonnay [53] 508 - 776 79.2 - 121 N.A.

N.D.: not detected. N.A.: not analysed.
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1.2. Biogenesis of polyfunctional thiols

1.2.1. Thiol precursors

Polyfunctional thiols are essentially absent in grapes (only around 100 ng/L
found in grapes) or juices [32], but become available after fermentation [20]. This
enrichment phenomenon of polyfunctional thiols from grape to wine suggested
the presence of precursors of thiols in grapes. Until now, the identified
cysteinylated and glutathionylated conjugates, and unsaturated carbonyl

compounds have been nominated as thiol precursors (Figure 1).

1.2.1.1. Cysteinylated precursors

Cysteinylated precursors are the first type of polyfunctional thiol precursors
identified in grapes [54]. When treating a crude grape must extract with a cysteine
B-lyase preparation (E7 in Figure 1), significant elevations of concentrations of
polyfunctional thiols were observed by GC-FPD, which led to the hypothesis that
S-cysteine conjugates could possibly act as thiol precursors [54]. The in vitro
release of polyfunctional thiols in a model medium supplemented with
synthesised S-cysteine conjugates (Cys-3-SH, Cys-4-MSP) was demonstrated
under the same enzymatic condition. Finally, S-cysteine conjugates of
polyfunctional thiols have been identified in grapes by GC—MS in the form of their

trimethylsilylated derivatives which confirmed their presences [54].

1.2.1.2. Glutathionylated precursors

Further study revealed glutathionylated conjugates as another type of
polyfunctional thiol precursors [52]. The concentrations of Cys-3-SH in grape
must increasing by 49-537% after being loaded through an immobilised y-
glutamyltranspeptidase (y-GGT, E2 in Figure 1) column [55], so the presence of
glutathione conjugated 3-SH in the must was suggested. Furthermore, S-3-

(hexan-1-ol)-glutathione (Glut-3-SH) in Sauvignon blanc must was tentatively
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Cys-4-MSP: S-4-(methylpentan-2-one)-L-cysteine;
Cys-3SH: S-3-(hexan-1-ol)-L-cysteine;

Glut-4-MSP: S-4-(methylpentan-2-one)-L-glutathione;
Glut-3-SH-al: S-3-(hexanal)-L-glutathione;

Glut-3-SH: S-3-(hexan-1-ol)-L-glutathione;

CysGly-3-SH: S-3-(hexan-1-ol)-L-cysteine-glycine;
GluCys-3-SH: S-3-(hexan-1-ol)-L-glutamic acid-cysteine.
Glut-3-SH-S03: S-3-(1-hydroxyhexane-1-sulfonate)- L-glutathione;
E1: B-lyase;

E2: y-glutamyltranspeptidase;

E3: carboxypeptidase;

E4: alcohol dehydrogenase (suggested);

E5: acetyltransferase.
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identified by high resolution liquid secondary ion mass spectrometry (HR-
LSIMS). The evidence of 4-S-glutathionyl-4-methylpentan-2-one (Glut-4-MSP) as
another glutathionylated thiol precursor in Sauvignon blanc juice was discovered
later [56].The identification of Glut-4-MSP was conducted comparing synthe-
sised Glut-4-MSP as standard and Sauvignon blanc juice spiked with Glut-4-MSP
by HPLC-MS/MS [56].

The intermediates from Glut-3-SH to Cys-3-SH, dipeptides CysGly-3-SH and
GluCys-3-SH, have been more recently identified in Sauvignon blanc juice [57] and
fermented grape juice model medium respectively, while the identification of

GluCys-3-SH was tentatively [4] and still needs to be confirmed.

1.2.1.3. Carbonyl precursors

Carbonyl compounds constitute another type of thiol precursors. Based on
structure similarity to 3-SH and 4-MSP, (E)-2-hexenal and mesityl oxide were
suggested as the putative precursors of 3-SH and 4-MSP [58]. This hypothesis
was tested by adding synthesised d,-(E)-2-hexenal and d, -mesityl oxide as
deuterated analogues of (E)-2-hexenal and mesityl oxide to a Melon B. must.
After fermentation, d,-3-SH and d, -4-MSP were detected in final wine by GC ion
trap mass spectrometry (GC-ITMS), so (E)-2-hexenal and mesityl oxide were
concluded as another two new thiol precursors, possibly forming 3-SH or 4-MSP
indirectly through 1,4-addition of cysteine, or in a direct way through 1,4-addition
of H_S [58]. The corresponding alcohol of (E)-2-hexenal, (E)-2-hexenol, could react
with H,S to form 3-SH in the early stage of fermentation [24]. These studies have
shown that the formation of polyfunctional thiols related to the unsaturated
carbonyl compounds. Later, Sauvignon blanc grapes were spiked with deuterium-
labelled aldehyde d -(E)-2-hexenal prior crushing, and d -Glut-3-SH-al and d_-Glut-
3-SH were identified in the juices by HPLC-MS/MS [59], which suggested that
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(E)-2-hexenal involved with polyfunctional thiol formation by incorporating with
GSH to generate Glut-3-SH-al and then to Glut-3-SH [59]. The confirmed
identification of Glut-3-SH-al in Sauvignon blanc juice was recently reported [60],
through spiking fermentation experiment and ultra HPLC—-Fourier transform
mass spectrometry (UHPLC-FTMS). Glut-3-SH-SO, has been proposed as a new
polyfunctional thiol precursor in the same study [60]. Also, the formation of Glut-
3-SH has been rationalised as the result of glutathione S-transferases induced by
(E)-2-hexenal [61]. These studies pointed out the importance of unsaturated C6
in thiol biogenesis. As for the origin of unsaturated C6 in grapes, they are
degraded from the unsaturated fatty acids through lipoxygenase/hydroperoxide
lyase (LOX/HPL) pathway (Figure 2). Regarding the connective roles of (E)-2-
hexenal and (E)-2-hexenol both in LOX/HPL pathway and 3-SH formation (Figure
2), it is likely that there are some other missing carbonyl components from
certain branched chain unsaturated fatty acids responsible for 4-MSP formation,

but this hypothesis has never been verified.
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1.2.2. Analysis of thiol precursors

1.2.2.1. Extraction

For extracting polyfunctional thiol precursors from grape, must, juice or wine
matrix, various methods using several techniques, such as LLE, affinity

chromatography (AC), or SPE have been developed.

1.2.2.1.1. Traditional column chromatography

Column purification was used for the extraction of cysteinylated precursors. In
the early proposed method, Sauvignon blanc must (45 L) was firstly cleaned by
partition chromatography (C,, silica). The purified fraction was loaded on a basic
anion column and the un-retained fraction was collected, which was subjected to
a chelating Sepharose 4B column (containing Cu?*, capable of fixing tryptophane
and cysteine) and washed by hydrochloric acid to obtain polyfunctional thiol
precursors. Before analysis, thiol precursors were derivatised with a mixture of
N,0-bis(trimethylsilyl)trifluoroacetamide, trimethylchlorosilane, and pyridine
(3:1:3) to obtain Cys-4-MSP and Cys-3-SH derivatives [54]. Later, a simplified
method was developed [62]. This method involved adding a relatively smaller
amount of Sauvignon blanc must (20 mL) into a reaction medium and loaded
them on a DEAE column [62]. This method did not require column purification or
derivatisation. Another extraction method only used 500 pL of sample and a
single Chelating Sepharose 4B column for extraction [63]. Based on this
published method [63], diastereomers of Cys-3-SH in grape must were analysed
with modifications (column pH adjustment and derivatisation) [51]. In addition to
cysteinylated precursors, column chromatography has also been used to extract

glutathionylated precursors, for instance, the reported Glut-4-MSP
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extraction from Sauvignon blanc juice through C18 sorbent and C18 column [64].

1.2.2.1.2. SPE

SPE methods, with advantageous sample preparation procedures than column
chromatography, have also been applied for the extraction of thiol precursors.
For instance, for Cys-3-SH extraction, only a small amount of sample (8 mL) was
required when using Supelclean Envi-18 SPE cartridge [65]. Another procedure
used Strata SDB-L SPE cartridge for the extraction of diastereomers of both Cys-
3-SH and Glut-3-SH [41], CysGly-3-SH [57] and GluCys-3-SH [48]. For Glut-3-SH,
the use of Dowex 50WX4-100 cation exchange resin followed by C18 cartridge
was proposed [26], which only needed 1200 pL centrifuged sample for extracting

4-MSP and 3-SH precursors.

1.2.2.1.3. Other extraction methods

LLE has been demonstrated for the extraction of Cys-3-SH and Glut-3-SH from
grape leaf, stem, skin, juice, and seed [66]. Briefly, the pulverized sample was
macerated in methanol water (10:90) buffer containing 0.1 % formic acid for 16

hours. After this, the supernatant was filtered ready for instrument analysis.

1.2.2.1.4. No extraction required

Recently developed methods for thiol precursor analysis did not need any thiol

precursor extraction procedures [44, 67, 68].
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1.2.2.2. Identification and quantitation

To identify potential polyfunctional thiol precursors, the authentic reference
standards are required, but these compounds were often commercially
unavailable at the stage of discovering new compounds, so chemical synthesis
is necessary. Apart from the identification and quantitation purpose, those
synthesised precursors can also be used as substrate tracers in fermentation
trials to investigate of the conversion of precursors to free thiols, as well as to
evaluate the effects of winemaking practices. To date, several studies have
reported the synthesis of polyfunctional thiol precursors and their labelled
analogues (reviewed in references [5, 69, 70]). Generally, polyfunctional thiol
precursors were synthesised through Michael addition of Boc-protected cysteine
or glutathione to the corresponding a,8-unsaturated carbonyl compounds [51,
52]. The identification and quantitation of polyfunctional thiol precursors are
usually achieved by GC—detectors or HPLC—-MS. Polyfunctional thiol precursors
are non-volatile, therefore derivatisation (perfluoroacylation [51], silylation [54]) is
required prior to GC. In comparison, HPLC-MS is more suitable for
polyfunctional thiol precursor analysis. Meanwhile, the sample preparation
protocol for HPLC—MS analysis is simpler and easier, being achieved by SPE

purification [41] or by simple centrifugation and filtration [67, 71].
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1.2.3. Occurrence of thiol precursors

Once the identification and quantitation of polyfunctional thiol precursors have
been achieved with the synthesised reference standards and instrument
analysis, polyfunctional thiol precursor concentrations have been largely

assessed in grapes, juices, musts, and wines (Table 5, 6).

Table 5.
Concentrations (ug/L) of polyfunctional thiol precursors in grape skin, juice, and

whole berry of various varieties.

Cys-4-MSP | Cys-3-SH Glut-4-MSP Glut-3-SH
R [ skinjuice

skin : juice

Sauvignon blanc 20:80 [72] 50:50 [72], 78:28 [73] 81:19 [73] 57:43[73]
Koshu N.A. N.A. N.A. 50:50 [66]
Cabernet Sauvignon N.A. »60:40 [63] N.A. N.A.

Merlot N.A. »60:40 [63] N.A. N.A.

Melon B. N.A. skin only [73] skin only [73] 28:72 (73]

| |concentrationinwholeberyl67l

Sauvignon blanc 12.611.4 174471 7.7+1.3 1557486
Gewdrztraminer 8.0x1.5 89.246.3 6.6+0.8 1154156
Muscat N.D. 15747.6 8.310.9 1673171

N.A.: not analysed. N.D.: not detected.

1.2.3.1. In grape

Thiol precursors varied in quantity in grapes. In Sauvignon blanc grapes, the
seeds only contained negligible amount of thiol precursors, but predominant
levels of precursors were found in skin and juice [72]. About 80% Cys-4-MSP was
found in juice, while Cys-3-SH equally distributed in juice and skin. The
concentrations of Glut-3-SH and Cys-3-SH were also studied in leaf, stem, seed,
skin, and juice of Vistis vinifera L. cv Koshu during grape ripening [66]. Similarly,
Glut-3-SH and Cys-3-SH were barely present in grape seed and stem in the whole

period, but found in skin, juice and leaf, with the highest amounts in leaf.
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Skin and juice contained similar levels of Cys-3-SH regardless ripening stage, but
higher concentrations of Glut-3-SH were observed in skin than juice [66]. In
Cabernet Sauvignon and Merlot, around 60% of Cys-3-SH presented in skin [63].
In Melon B., Cys-3-SH and Glut-4-MSP were found to be in the skin and Glut-3-SH
occurred in both juice (72 %) and skin (28 %) [73] (Table 5).

1.2.3.2. In juice and wine

In contrast to concentrations of polyfunctional thiols in wine in ng/L range (Table
4), thiol precursors present in much larger quantities (around pg/L range). Table
6 lists the quantitative data of Cys-4-MSP, Cys-3-SH, Glut-4-MSP, Glut-3-SH, and
CysGly-3-SH. Sauvignon blanc juice and wine contained higher concentrations of
polyfunctional thiol precursors than other varieties. However, dramatically high
concentrations of Glut-3-SH (1200 — 9855 pg/L) was recently reported in Spanish
Merlot must [71]. Generally, cysteinylated and glutathionylated conjugates were
the two major types of precursors, and 3-SH precursors were higher than 4-MSP
precursors which was in accord with the distributions of 3-SH and 4-MSP (Table
4). Glutathionylated precursors were presented in larger amounts than
cystinylated precursors in juice and wine from Australia [41] and New Zealand
[21]. However, other studies found that cysteinylated precursors were more
abundant [26, 66, 74-76]. Stereochemically, (S)-diastereomers of polyfunctional
thiol precursors dominated over (R)-diastereomers [41]. The concentrations of
polyfunctional thiol precursors in juice and wine depended on many variables,
and the effects of terroir and winemaking on polyfunctional thiol precursors were

discussed in the following context.
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Table 6.

Concentrations (ug/L) of polyfunctional thiol precursors in grape, juice, must, and wine of various verities.

| varety | Cys4MSP___ | Glut4-MSP

Juice

Must

Wine

Sauvignon blanc (NZ)
Sauvignon blanc (AU)
Sauvignon blanc (FR) 2.61-6.23[75]
Chardonnay
Riesling

Pinot Grigio
Melon B.
Gewdirztraminer

1.07-3.83 [75]
0.54-0.82[75]
Sauvignon blanc
Riesling
Gewdrztraminer
Petite Arvine
Lugana

Merlot
Sauvignon blanc

LOQ-0.58+0.1 [71]

Riesling

Pinot Grigio
Chardonnay
Muscat

Pinot gris
Gewurztraminer

0.03-4.30[75]

N.D. [75]
0.10-0.18[75]

LOQ-0.25+5.9 [71]

Cys-3-SH' Glut-3-SH’

7.3-111[21]
S$14-41R7-14[41]
15.53-30.69 [75]
S4-22R3-16[41]
S$2-8R4-10[41]
S$13-16 R10-11[41]
<1.05[75]
58.25-58.28[75]
7.9-35.5[26]
15.1-30.8[26]
52.9-65.2[26]
31-85[65]
36.1-363.0[44]
3.10£0.9-558+7.1 [71]
$26-35R13-15[41]
S4-16 R1-12[32]
S19R11[41]
S8R7[41]
$3-77R2-30[32]
SLOQ-53 R 1-26 [32]
SL0Q-43 RLOQ-17[32]

CysGly-3-SH’

22-541[21] 0-180%[74]
S$210-556 R 35-140[41] 10-28.5[57]
1.35-7.54[75]

S77-342 R 34-175[41]
S75-219 R 22-56[41]
S$266-392 R72-83[41]
<0.20[75]
2.29-2.90(75]
1.3-7.5[26]
0.7-2.0[26]
5.6-7.1[26]

7.1-173.7[44]
1200+0.9-9855+9.0 [71]
S295-392 R 79-94 [41]
S18-315R 13-99 [32]
S241R82[41]
S52R37[41]

S19-405 R 12-98 [32]
S57-194 R 21-55[32]
S18-315R 13-99 [32]

NZ: New Zealand. AU: Australia. FR: France. ' Data represent the concentrations of combined diastereomers, unless indicated as S: (S)-form; R: (R)-form.
LOQ: limit of quantitation. ? Estimated data adapted from figure.
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The correlation between polyfunctional thiol precursors and free thiols in
resulting wines has been investigated on 3-SH, and no correlation being noticed
either in small-lot fermentation [21] or commercial scale fermentation [32].
Another study on 55 Sauvignon blanc juices fermented under controlled
conditions reported no total or individual correlation between 3-SH precursors in
the juices and 3-SH in the wines [74]. In contrast, positive correlations between 3-
SH precursors in juices and 3-SH in wines were noted for Koshu grape
fermentation [66]. 3-SHA is formed through the acetylation of 3-SH. In a
fermentation study, Cys-3-SH or Glut-3-SH was spiked into synthetic media and
3-SH and 3-SHA were quantitated after fermentation [42]. The concentrations of
3-SHA using two substances (Cys-3-SH, Glut-3-SH) showed no significant
differences, but the concentrations of 3-SH varied, which indicated 3-SHA was
not regulated by 3-SH. Also, production of 3-SHA could be related to the forms of
precursors [60]. However, another fermentation trial using yeast deletant
mutants observed a strong correlation between 3-SH and 3-SHA across all

fermentations [48].

1.2.4. From precursors to thiols

Polyfunctional thiols are formed from their precursors during fermentation. Many
studies have investigated the “real contribution” of proposed polyfunctional thiol
precursors to free thiols. The conversion yields of thiol precursors to
polyfunctional thiols have been measured in both model medium and real grape
juice conditions. To accurately monitor the changes of thiol precursors and free
thiols during fermentation, synthesised thiol precursors or labelled precursors
(deuterated isotopes) were spiked to model medium or juice at known amounts.

The supplemented labelled substances acted as tracers to track the formation of
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Table 7.

Conversion yields (%) from putative precursors to free thiol 3-SH and 4-MSP.

Fermentation condition

Precursor Conversion <_m_% Ref
i Medium Yeast strain

3-SH Cys-3-SH N.S. juice VL3C <10 [63]

(R), (S)-Cys-3-SH SCD liquid media AWRI 1655 1.0 (R), 1.1 (S) [50]

dg-Cys-3-SH synthetic medium ES1, ES2 <1 [77]

Cys-3-SH synthetic medium VIN13 (CSL1) 14 [52]

Cys-3-SH synthetic medium VL3 0.5 [42]

Glut-3-SH d2/d3-Glut-3-SH juice VIN13 4.4 [26]

(R)-Glut-3-SH synthetic medium VIN13 (CSL1) 3 [52]

Glut-3-SH synthetic medium VL3 0.5 [42]

Glut-3-SH synthetic medium BY4742 and its mutants 1.053 [48]

Glut-3-SH-Al Glut-3-SH-Al juice & synthetic medium X5 0.40-0.45 [60]

Glut-3-SH-S0O3 Glut-3-SH-S03 juice & synthetic medium X5 0.38-0.42 [60]

(E)-2-hexenal dg-(E)-2-hexenal must KD yeast 10 [58]

dg-(E)-2-hexenal must ES1, ES2 N.P. [77]

(E)-2-hexenal synthetic medium (MS 300) VIN13, X5,V1116 58.8 [24]

(E)-2-hexenol (E)-2-hexenol synthetic medium (MS 300) VIN13, X5,V1116 9.4 [24]

C6 ooBUoc:n_mM C6 ooBUoc:amN juice & synthetic medium X5 0.004-0.01 [60]

4-MSP  Cys-4-MSP Cys-4-MSP synthetic medium EC1118, X5, F150%X 0.2,1,<67 [79]

Glut-4-MSP d10-Glut-4-MSP must VIN13 0.3 [78]

Glut-4-MSP synthetic medium BY4742 and its mutants 0.53 [48]

o« overexpression of full-length IRC7. SCD: synthetic complete dextrose. YPS: yeast peptone sucrose. N.S.: no spiking. " molar conversion (%). 2 (E)-2-hexenal + (E)-2-hexenol. ® conversion yield

on wild-type yeast. N.P.: not provided.
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polyfunctional thiols from their precursors. For 3-SH production, 3-SH precursors
(d,-Cys-3-SH and d,-(E)-2-hexenal) were spiked into Sauvignon must [77], and
through fermentation, only less than 1% of Cys-3-SH was converted to 3-SH,
accounting for less 10% of total 3-SH production. Meanwhile, 5 ng/L of 3-SH was
formed from d-(E)-2-hexenal, representing 0.1% of 3-SH final concentration. For
4-MSP production, synthesised d, -Glut-4-MSP [78] was added into Sauvignon
blanc and synthetic media, and after fermentation, about 0.3% of Glut-4-MSP
contributed to the final amounts of 4-MSP, explaining only 20% of 4-MSP in
Sauvignon blanc wines. During yeast fermentation, glutathionylated precursors
can be degraded to cystinylated precursors. For instance, about 20% of Glut-3-SH
was degraded to Cys-3-SH within the 24 h of inoculation of wild-type BY4742
yeast, as well as 0.25% of GSH-3-SH to GlutCys-3-SH, and 0.5% yield rate of Glut-
4-MSP to Cys-4-MSP [48]. The reported conversion rates of precursors to

polyfunctional thiols are listed in Table 7.

As seen, despite the variations of fermentation conditions, the overall conversion
rates from polyfunctional thiol precursors to free thiols are around 10%, with the
exception for the data obtained using genetically modified yeasts [38, 79].
Clearly, large amounts of thiol precursors in the juice remain non-converted

during fermentation [42, 77].

During alcoholic fermentation, the availabilities of polyfunctional thiol precursors
utilised by the yeast were different. Cys-3-SH was reported to be more easily
metabolised at an earlier stage than Glut-3-SH [42, 66]. In synthetic medium, four
times higher Cys-3-SH than Glut-3-SH was converted to 3-SH during alcoholic
fermentation [66]. The difference in the availability of polyfunctional thiol
precursor uptake by the yeast may be related to their different conversion

pathways (Figure 3).
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GAPT1 deletion yeast strain liberating significantly lower concentrations of 3-SH
and 3-SHA in synthetic fermentation condition demonstrated GAP1p was the
transporter responsible for Cys-3-SH uptake on synthetic medium [80]. However,
GAP1 was suggested not associated with the uptake of Cys-4-MSP [79]. Opt1
was the main transporter for Glut-4-MSP and Glut-3-SH into the yeast [48]. The
important role of Ecm38 involving with 3-SH release from Glut-3-SH was also
identified in the same study [48]. IRC7 was believed to be accountable for

converting Cys-3-SH and Cys-4-MSP to free thiols [81].
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Figure. 3. Polyfunctional thiol precursor metabolism pathways in yeast [48,79].
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1.3. Impacts of viticulture and oenology

1.3.1. Terroir

Polyfunctional thiol precursors are influenced by grape cultivation regions and
the related environmental conditions. The evolutions of Glut-3-SH and Cys-3-SH
of Koshu grapes from different vineyards with similar soil compositions and
cultivation practices, were reported to be influenced by cultivation locations.
Water [82, 83], nitrogen status of vine [82], ultraviolet irradiation [83], and
biological stimulation during grape ripening [83] all up-regulated polyfunctional
thiol precursors. Another study compared the concentrations and distributions of
thiol precursors of Sauvignon blanc grape sourced from different vineyards in
France and their results demonstrated that the productions of Cys-3-SH was
enhanced in grapes cultivated under the Mediterranean dry climate [73].
Although moderate water status seemed to improve the formation of
cysteinylated precursors [73], severe water deficit was proven to limit their
production [82]. No correlation between nitrogen status and cysteinylated
precursors was observed [82]. It was suggested that either nitrogen deficiency or
high vine nitrogen should be avoided [82]. Botrytisation considerably elevated
the Cys-3-SH in Sauvignon and Semillon grapes [84]. Another factor, clone type
played a role on polyfunctional thiol precursors [57]. The diastereomers of Cys-3-
SH, CysGly-3-SH and Glut-3-SH in five Sauvignon blanc clones grown in a single
vineyard were different [57]. Clone has also been depicted to influence 3-SH and

3-SHA concentrations in the Sauvignon blanc wines by a recent study [85].

1.3.2. Grape ripening and harvest date

Polyfunctional thiol precursors in grape berries accumulated during ripening. In
a study on Sauvignon blanc ripening, the evolutions of cysteine conjugates (Cys-

3-SH and Cys-4-MSP) differed across different vintages and types of
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precursors [82]. For Koshu grape, Cys-3-SH and Glut-3-SH accumulated from 8
post flowering weeks (PFWs), peaked at 16 PFWs in both berries and skins, and
then decreased afterwards [66]. From veraison to harvest, the variations of Cys-3-
SH changed slightly, but the fluctuation on Cys-4-MSP was observed [82].
Apparent increases of Cys-3-SH and Glut-3-SH have been noticed in five
Sauvignon blanc clones ripening period [32]. Trace amounts of 3-SH (100 ng/L)
in Sauvignon blanc juice has been detected for the first time (around 100 ng/L)
[32]. In another study, the same authors investigated 3-SH precursors (Cys-3-SH,
Glut-3-SH, and CysGly-3-SH) in Sauvignon blanc from veraison to post
commercial maturity point, and they observed precursors accumulated to
maturation and declined after sugar level reaching 24° Brix [86]. Generally, grapes
with higher total soluble solid (TSS) contained higher concentrations of thiol

precursors, especially for cysteinylated precursors [68].

Grapes of different harvest dates had different ripening degrees. In Melon B. and
Sauvignon blanc grapes harvested on three different dates with one week interval
between every two consecutive dates, concentrations of Glut-3-SH and Cys-3-SH
were higher in late harvest grapes, while the levels of Glut-4-MSP and Cys-4-MSP
fluctuated [76]. In Melon B., only Cys-4-MSP varied at different harvest dates.
These evidence indicated the variety-dependent pattern of harvest date impact
on the polyfunctional thiol precursors. Harvesting timing also influenced 3-SH
precursors [53]. 3-SH precursors accumulated at early morning and declined
during the day in grapes, and wines produced from early morning harvested

grapes contained higher levels of 3-SH and 3-SHA [53].

1.3.3. Harvest operations

Grape harvesting process could affect polyfunctional thiol precursors.
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Comparing hand and machine harvesting techniques, machine harvesting
enhanced the polyfunctional thiol precursors (about 70% and 65% increases of
Glut-3-SH and Cys-3-SH [59] in Australian Sauvignon blanc grapes). Berry
damage by machine harvesting was believed to boost the formation of
polyfunctional thiol precursors [59]. Similar results were shown by another study
in which 3 out of 5 studied juices from machine-harvested grapes were found to
contain higher Cys-3-SH and Glut-3-SH [21]. Regarding to free thiols, higher levels
of 3-SH and 3-SHA were found in wine fermented with machine-harvested grapes
[21, 87]. As another harvest-related operation, transportation can be viewed as
extended harvesting simulation [22]. The effect of transporting of machine-
harvested Sauvignon blanc on 3-SH has been investigated at commercial scale
[59]. After transportation for 12 h, the concentrations of Cys-3-SH and Glut-3-SH
saw dramatic increases (around 10-fold and 2-fold, respectively) [59], and
CysGly-3-SH went up by 20-fold compared with non-transported samples [57].
Both of harvest and transport operations influenced the composition of juices.
Berry damage happened at these stages (which potentially triggered the
production of C6 aldehydes from fatty acids (Figure 2)) affected the formation of
polyfunctional thiol precursors and the production of polyfunctional thiols

(Figure 1).
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1.3.4. Pre-fermentation

After harvested from vineyards and transported to winemaking facilities, grapes
are ready for fermentation. Including pressing and maceration, many pre-
fermentative winemaking variables could influence the polyfunctional thiol

precursors and free thiols.

1.3.4.1. Pressing

Pressing affected the extraction of polyfunctional thiol precursors from the berry
to the juice. The effect of pressing on Cys-3-SH was evaluated in three Sauvignon
blanc juices during winey press cycles, and 3.8 to 4.4 times higher of Cys-3-SH
was found in pressed juices than in free run juices [88]. Concentrations of Cys-3-
SH and Glut-3-SH of Sauvignon juices increased when higher pressure applied (1
bar) [21]. The higher concentrations of thiol precursors in heavier pressed
operation was theorised because of higher extraction of polyfunctional thiol
precursors [32, 73]. The extraction depended on grape origins and Cys-3-SH was
more inclined to be extracted than Glut-3-SH in Sauvignon blanc and Melon B.
[73]. This was expected because precursors were located in the grape skin and

juice (Table 5), which were more easily extracted to juice under high pressures.

Although pressed juices held higher polyfunctional thiol precursors, the wines
made from them somehow exhibited lower amounts of polyfunctional thiols [21,
89]. However, contrary results were reported by other study [73], but different
pressing protocols were used in these studies (winery pressing [73, 89], 80 L
water bag press [21]). More research is needed to explain the disagreement. For
each polyfunctional thiol, 3-SH and 3-SHA were more likely to be affected by
pressing, and instead, 4-MSP was more stable during and pressing [21]. This was
more likely related to the distribution and concentration of their precursors in

berries, but this is still unclear.
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1.3.4.2. Maceration

Maceration affected both polyfunctional thiol precursors and free polyfunctional
thiols. The concentration of Cys-3-SH continuously increased (62%) during skin-
contact maceration in Merlot must, and the same trends were observed for
Cabernet Sauvignon and Cabernet franc [72]. The increase of cysteinylated
precursors (30% for Cys-4-MSP and 50% for Cys-3-SH) was observed after a
19 h skin contact [72]. Moreover, longer maceration duration increased the
content of Cys-3-SH [88]. As could be expected, maceration temperature played
an important role, with higher temperature promoting the concentration of Cys-3-
SH during maceration. Thiol precursors in must macerated at 20 °C increased
59% than that at 10 °C [63]. The better extract ability of polyfunctional thiol
precursors was expected to be achieved at higher temperature and longer time,
as they favoured the diffusion of precursors from grape solids to juice [63, 88].
However, Cys-3-SH of musts from 20 and 25 °C skin contact conditions showed
no difference and other compounds were also affected during maceration [63].
Although lower maceration temperature limited the content of Cys-3-SH in juice
[72], cryogenic maceration significantly increased 3-SH and 3-SHA contents in
wine [87]. These above results indicate the importance of a balanced maceration

condition on thiol-related quality of wine.

1.3.4.3. Oxidation

From harvest, grape handling, crush, to maceration, grapes and juices
experienced various chemical or enzymatic changes. Since oxidation status of
grapes or juices is of great importance to such changes, the effects of oxidation
status of grapes and juices on polyfunctional thiol precursors and free thiols are

presented.
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Once grape bunches were picked from the vines into a picking bin, the influence
of oxidation status began. The oxidative status of grapes and juices has been
investigated by many studies, and the oxidative status were controlled through
the addition of O, or SO,. O, addition experiment on Sauvignon blanc and Melon
B. juices improved the production of Glut-3-SH but Cys-3-SH, Cys-4-MSP, and
Glut-4-MSP were not much affected by oxygen content [76]. The elevation of
Glut-3-SH was likely caused by the Michael addition between GSH and (E)-2-
hexenal derived from fatty acids [76]. Effects of adding SO, of different doses
into grapes and juices showed that higher SO, reserved more 3-SH and 3-SHA,
with optimal SO, dose at 120 mg/kg, and the acetylation of 3-SH to 3-SHA was
limited when SO, was at 300 mg/kg [22]. One explanation of this was that the
added SO, interacted with polyphenol quinones, therefore reserved the
polyfunctional thiols consumed by quinones, and this was in accord with the
investigation on kinetics between polyfunctional thiols and o-quinones [90].
Moreover, the addition of SO, protecting the participation of GSH in polyphenol
oxidation [91], and GSH can form Glut-3-SH-al and Glut-3-SH [59, 76], therefore it
was expected that more polyfunctional thiol precursors would be produced with
the presence of SO,. However, SO, at 500 mg/L (highest dose treatment in this
study) lowered Cys-3-SH [59] as SO, on one hand, inhibited the formation of (E)-2-
hexenal from oxidation of fatty acids (Figure 2) or bound the (E)-2-hexenal
compounds, and on the other hand inhibited the activities of enzymes involving
with degradation of Glut-3-SH. Therefore the excessive SO, (500 mg/L) also led
to lower levels of Glut-3-SH, which was justified by the low availability of (E)-2-

hexenal and enzymes (i.e. enzymes responsible for production of Glut-3-SH).
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The inhibition of grape enzymes responsible for formation of Glut-3-SH in berries
during post-harvest period was investigated through snap-freezing and protein-

precipitating [86].

The effect of oxidative maceration has also been examined. Higher oxidative
maceration status increased the concentrations of Glut-3-SH in Muller-Thurgau
and Sauvignon blanc juice, and at the same time GSH diminished in oxidative
juices [92]. Again, the increase of Glut-3-SH in oxidative status was explained as
appropriate amounts of oxygen were required for the formation of (E)-2-hexenal
from fatty acid degradation pathways, whose availability affected the production
of Glut-3-SH [92]. In this study, the trend of precursors was consistent with
previous studies [92], but polyfunctional thiols contents were lower in wines
made from hyper-reductive winemaking. Also, the loading and pressing protocols
with different oxidative status influenced polyfunctional thiols and their

precursors [44].

1.3.5. Fermentation

1.3.5.1. Yeast

During alcoholic fermentation, yeast liberates polyfunctional thiols from their
precursors, and such thiol-releasing abilities of yeasts have been largely
investigated [36, 93-97]. Selected examples of yeasts (Saccharomyces

cerevisiae) affecting polyfunctional thiol production are presented in Table 8.
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Example 1 was conducted in a synthetic medium, in which CWY8 yeast strain
elevated 4-MSP concentration up to 138 times higher than that in control
medium in which CWY 1-6 yeast strains only liberated minor amounts of 4-MSP
[36]. The effects of yeast on 4-MSP production were seen for other
polyfunctional thiols. For instance, 3-SH and 3-SHA were also modulated by
commercial yeasts in Sauvignon blanc juice fermentation process [97]. With
regard to 4-MSP and 3-SH, the thiol-releasing ability from the yeast seemed more

important.

Table 8.

Selected examples of studies on the effects of yeasts on polyfunctional thiols.

Thiols Yeast strains Medium Thiol releasing ability

4-MSP CWY1-CWY8 Synthetic [36] CWY8 (138-fold increase) > CWY1-7

3-SH NT116, VIN7, VL3, i VIN7 showed highest increase on 4-MSP;

Sauvignon blanc )
3-SHA L2056, QA23, VL3, Juice [97] VIN13 elevated 3-SH; QA23 rated higher
4-MSP X5 uice on conversion 3-SH to 3-SHA.

In terms of 3-SHA, its production was related to the thiol-converting (3-SH to 3-
SHA conversion) capability, and this appeared to be irrelevant to 3-SH releasing
potential [97]. In real winemaking, the effects of yeasts on thiol aromas of wine
were less apparent than in media fermentation, which possibly resulted from the
masking effect by other wine volatiles such as the ester aromas [97]. Based on
the observation that different thiol releasing abilities from specific strains, co-

inoculation with yeast strains of high thiol-releasing and thiol-converting
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abilities was suggested as one possible solution for thiol enhancement [97].
Higher concentrations of 3-SH and 3-SHA in wine fermented with a set of three
yeasts co-inoculation were observed [98]. The sensory scores of co-inoculated
wine rated higher in passion fruit note, well in accord with the thiol
concentrations [98]. However, the mechanism of elevation of polyfunctional
thiols (3-SH and 3-SHA) from certain yeast strains or co-fermentation is still
unclear. It should be noted that the characteristic sensory attributes of
polyfunctional thiols were not only influenced by yeast strains but also might be
affected by other aroma compounds, for instance, esters and methoxypyrazines

[97,99].

Yeast performance on releasing polyfunctional thiols during fermentation relates
to several aspects of the yeast, such as enzymes and transporters involving with
the uptake of polyfunctional thiol precursors and the release of thiols. As shown
in Figure 1 and 2, the biogenesis of polyfunctional thiols from their precursors
required specific enzymes and transporters. The uptake of extracellular
polyfunctional thiol precursors is expected to affect the polyfunctional thiol
production. Using 21278b ura3 as a reference strain, 3-SH released from Cys-3-
SH was compared to strain X1278b ura3 deletion mutant gap7A [80], which
demonstrated GAPT as an uptake transporter of Cys-3-SH, but this was not
validated in grape must fermentation and some cysteine transporters (including
GAPT1) were reported that not associated with the uptake of Cys-4-MSP) [79].
Opt1p was suggested to be necessary for the uptake of Glut-4-MSP and Glut-3-
SH. The transpeptidase CIS2 also contributed to the uptake of Glut-3-SH. With
gene deletion experiments, the role of yeast carbon-sulfur lyases on 4-MSP

releasing from Cys-4-MSP was suggested [100].
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Moreover, the cystathionine B-lyase Irc7p has been shown to be the principal
enzyme for the liberation of polyfunctional thiols (4-MSP and 3-SH) from
cysteinylated precursors [101], which was confirmed by subsequent research
[102]. The substrate preference of IRC7 protein for Cys-4-MSP than Cys-3-SH was
also observed by comparing the cleavage abilities of crude protein extracts on
different precursors [102]. However, the clear mechanism behind the uptake of
polyfunctional thiol precursors and release of polyfunctional thiols by yeast is
still need to be elucidated to better understand the fate of polyfunctional thiols

during fermentation.

In addition to S. cerevisiae, the effects of yeast on polyfunctional thiols were also
investigated on other species, including S. bayanus var. uvarum, hybrids S.
cerevisiae x bayanus var. uvarum strains [94], and other non-S. cerevisiae species
[96]. Strain-dependent variations are also found among non-S. cerevisiae yeasts,
and certain yeast strains or hybrids demonstrated higher proficiency in releasing

polyfunctional thiols [96].

1.3.5.2. Yeast nutrition

The nutrition of yeast has been identified as an influential factor for
polyfunctional thiol precursor degradation and polyfunctional thiol production.
Using urea and diammonium phosphate (DAP) in a synthetic medium
supplemented with Cys-3-SH, the impacts of nitrogen source on Cys-3-SH
consumption was investigated [80]. Cys-3-SH was depleted in medium with urea
at high concentration, but was largely left in DAP treatment, which suggested that
the degradation of polyfunctional thiol precursors was regulated by nitrogen
catabolite repression (NCR). Moreover, the general amino acid permease
(GAP1p) was a limited factor for thiol production in synthetic medium, but the
repetitive results were not observed with actual grape must. Nonetheless, DAP

addition into grape musts prevented the production of polyfunctional thiols.
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A following study [103] showed that 17 genes of yeast involved in nitrogen
metabolism related to 3-SH production and highlighted the importance of
nitrogen. However, it has been suggested that NCR regulated the production of 4-
MSP from Cys-4-MSP, and GAP1 seemed to be irrelevant [79]. Although the thiol
production from their precursors is still unclear, the reported evidence
demonstrates the critical relevance between yeast nutrition status and

polyfunctional thiols.

1.3.5.3. Fermentation temperature

Fermentation temperature also affected polyfunctional thiol production.
Comparing fermentation conducted at 18 and 28 °C in synthetic medium, the
lower fermentation temperature favoured 4-MSP production [36]. Fermentation
temperature was investigated further in model medium (13, 20 and 24 °C) and
grape juice (13 °C and 20 °C) [95]. In model medium, the concentrations of 4-MSP
and 3-SH decreased in lower temperature conditions for VL3¢ and VIN13 strains.
In grape juice, greater amounts of 4-MSP, 3-SH and 3-SHA were produced at 20

°C than 13 °C, irrespective of the yeast strains and the origin of the must.
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1.4. Research questions

Polyfunctional thiols in wine have been and will continously be a topic of interest
for wine chemists due to the significant aroma contributions by these potent
volatiles. Given studies and knowledge presented in this literature review, the
following research questions have been proposed as the focus of this PhD thesis,

aiming to expand our knowledge of thiols in the field of wine chemistry.

Question 1: How can a suitable chiral analytical method be developed
for analysing enantiomers of polyfunctional thiol 3-SH and 3-SHA

wine?

Most of the research has focused on 3-SH and 3-SHA in wine as their racemic
mixture and little attention has been paid to the chirality of 3-SH and 3-SHA,
despite their enantiomers differing in aroma quality and ODT. The quantitative
data of enantiomers of 3-SH and 3-SHA are also extremely limited. This gap is
largely due to the fact that an analytical method which can fully resolve 3-SH and
3-SHA enantiomers is still missing. A robust chiral analytical method for

analysing 3-SH and 3-SHA enantiomers in wine is required.

Question 2: What is the potential stereochemical relation between

precursor diastereomers in grape and thiol enantiomers in wine?

Some thiol precursors (Glut-3-SH, CysGly-3SH, and Cys-3-SH) exist in grapes as
pairs of diastereomers which are metabolised to 3-SH enantiomers by yeast
Saccharomyces cerevisiae. This stereochemical relation from precursors in
grapes to thiols in wines in this biological process is unknown. With a new
method for analysing 3-SH and 3-SHA enantiomers (Question 1) to be developed,
the puzzle of thiol precursor stereochemistry is expected to be solved through

winemaking trials.
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Question 3: How do the regionality, grape composition, and
winemaking factors impact thiol precursors in grapes and/or thiols in

wines?

Yet fully understood, thiol metabolism is a complex biochemical process that
involves the formation and degradation of both precursors and thiols, as well as
their interactions with other grape metabolites. Various geographic, grape, and
winemaking factors will be tested for their impacts on thiols and/or precursors,

with the hope to propose new strategies for effective thiol management.

Question 4: How to discover new volatile compounds that can

potentially explain the fate of 3-SH in wine?

Focusing on the most important polyfunctional thiol 3-SH in wine, this research

will also attempt to discover new volatile compound candidate(s) related to 3-SH.
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1.5. Summary of research aims

In view of the current state of knowledge of polyfunctional thiols in wine that has
been detailed in the literature review chapter, this project aims to evaluate and
explore polyfunctional thiol phenomena, specifically through investigation of
their chirality, precursor stereochemistry, formation through winemaking, and

potential fate through reactions in the wine matrix.

Objective 1: Evaluation of chirality of 3-SH and 3-SHA in wine by

developing a novel analytical method

The chemical analysis of polyfunctional thiols in wine is a challenging task and
current approaches use various forms of sample preparation combined with
sensitive instrument analysis techniques, despite that the majority of analytical
methods have been developed only for racemic polyfunctional thiols. Such
information on thiol analysis has been reviewed, with a focus on wines, and
presented in the publication in Chapter 2.

Chirality of volatile compounds in wine is an important topic in aroma chemistry
because enantiomers of chiral volatiles often have different aroma quality and
ODT. Two polyfunctional thiols, 3-SH and 3-SHA, are chiral molecules that exist
as pairs of enantiomers with different sensory properties. However, analytical
methods focusing on 3-SH and 3-SHA enantiomers in wine were extremely
limited, thereby hampering research on the chirality of 3-SH and 3-SHA. To fill this
gap, a SIDA coupled to HPLC-MS/MS has been developed and applied to
evaluate the chirality pattern of 3-SH and 3-SHA in a selection of commercial
wines. Full details of this study, including the method development, validation,

and application are presented in the publication in Chapter 3.

Objective 2: Investigating the link between thiol and precursor

stereochemistry under controlled winemaking conditions
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Polyfunctional thiol 3-SH in wine is formed from its precursors in grape during
fermentation. Likely 3-SH precursors, termed Glut-3-SH and Cys-3-SH, are
present as diastereomers in grape and are converted to 3-SH enantiomers
through yeast metabolism. This stereochemical link between 3-SH precursor
diastereomers from grapes and 3-SH enantiomers in wine is important for

understanding thiol formation, but has remained relatively untested.

Applying the novel SIDA chiral HPLC-MS/MS method for 3-SH and 3-SHA
(Objective 1), the stereochemical relationship between Glut-3-SH and Cys-3-SH
diastereomers to 3-SH and 3-SHA enantiomers has been investigated through
controlled laboratory-scale winemaking trials, employing fruit from five
Sauvignon blanc clones grown in the same location. The detailed results of the
winemaking trials on thiol/precursor stereochemistry are presented in the

publication in Chapter 4.

Objective 3: Polyfunctional thiol production and management during

winemaking

The biogenesis of polyfunctional thiols is a complicated and dynamic
biochemical process that can be influenced by grape, geographical, regional,
viticultural, and oenological factors, yet the impacts of these factors on thiol

metabolism are still unclear.

Aiming to provide new insight into thiol production and potentially offering new
strategies for thiol management, multiple factors, including grape clone, grape
amino acids, subregion, yeast, nutrient addition, the use of commercial enzyme,
and pre-fermentation freezing treatment have been evaluated for their impact on
polyfunctional thiols and/or thiol precursors during winemaking. The outcomes
are presented in the publication in Chapter 4 (yeast, nutrient addition, and
commercial enzyme) and in the publication in Chapter 5 (subregion, grape amino

acids, pre-fermentation freezing treatment).
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Objective 4: Identification of a new volatile compound associated with

the fate of 3-SH

3-SH is the most studied polyfunctional thiol in wine, but research focusing on
the fate of 3-SH is very limited. Indeed, other than the disulfide (oxidised) form,
volatile compounds that are closely linked to 3-SH have barely been suggested.
To achieve a better understanding of the fate of 3-SH, identification of a new
volatile compound has been completed by critically theorising the chemical
structure of a proposed volatile candidate (an oxathiane formed by reaction of 3-
SH with acetaldehyde). A deuterium labelled standard was synthesised followed
by the development of a targeted analytical method. Results and details of the
newly identified volatile compound, its occurrence, ODT, and potential
chemical/sensorial implications with respect to 3-SH, are presented and

discussed in the publication in Chapter 6.
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Abstract: Certain volatile thiols are some of the most potent odour-active molecules that are found in
nature. Thiols play significant roles in the aroma qualities of a range of foods and beverages, including
wine, with extremely low odour detection thresholds (nanogram per litre range). A fundamental
understanding of their formation, fate, and impact essentially depends on the development of suitable
analytical methods. The analysis of volatile thiols in foods and beverages is a challenging task when
considering (1) the complexity of food and beverage matrices and (2) that thiols are highly reactive, low
molecular-weight volatiles that are generally present at trace to ultra-trace concentrations. For the past
three decades, the analytical evaluation of volatile thiols has been intensively performed in various
foods and beverages, and many novel techniques related to derivatisation, isolation, separation, and
detection have been developed, particularly by wine researchers. This review aims to provide an
up-to-date overview of the major analytical methodologies that are proposed for potent volatile thiol
analysis in wine, foods, and other beverages. The analytical challenges for thiol analysis in foods
and beverages are outlined, and the main analytical methods and recent advances in methodology
are summarised and evaluated for their strengths and limitations. The key analytical aspects
reviewed include derivatisation and sample preparation techniques, chromatographic separation,
mass spectrometric detection, matrix effects, and quantitative analysis. In addition, future perspectives
on volatile thiol research are also suggested.

Keywords: derivatisation; sample preparation; gas chromatography; high performance liquid
chromatography; mass spectrometry; untargeted identification; targeted quantitation; matrix effect;
stable isotope dilution assay

1. Introduction—Importance of Thiols to the Aroma of Foods and Beverages

Aroma is inarguably one of the most important quality aspects for any food or beverage product,
with unique and characteristic aromas being attributed to a large range of volatile compounds with
various physico-chemical properties. At the time of writing this review, a commercial database, Volatile
Compounds in Food, had compiled a total of 9514 volatile components that were identified in natural
and processed food products from published literature data [1], and the list continues to grow. Amongst
the vast numbers of volatiles in the database, volatile sulfur compounds (VSCs, sulfur-containing
volatiles) are the second largest category just after volatile esters, and they represent around 13% of
total volatiles (Figure 1a) [1]. VSCs play an important role in the aromas of foods and beverages,
not only because of their broad presence, but also for their significant sensory contributions due to
concentrations that are well above their low odour detection thresholds (ODT) [2,3].
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Figure 1. (a) Doughnut chart showing the relative percentages of volatile sulfur compounds identified
in foods according to Volatile Compounds in Foods database [1], where each segment represents
one chemical category of volatiles; (b) Examples of chemical structure, aroma descriptor, and ODT
of some of the most studied volatile thiols in wine [4]; and, (c) Bibliometric map of volatile thiol
research visualised from a total of 395 publications (from 1990-2019) retrieved from Web of Science
Core Collection using “Volatile Thiols” as keyword. Literature analysis and graph construction by
VOSviewer [5]. Note the abbreviations 3-MH and 3-MHA used in panel (c) are in keeping with much
of the earlier literature; however, the IUPAC names (i.e., sulfanyl prefix instead of mercapto) are used
in this review and abbreviated as 3-SH and 3-SHA.

Volatile thiols, historically known as mercaptans and consisting of the structure R-SH, are a
sub-category of VSCs that are of particular interest, because they have some of the lowest ODTs
(ng/L and lower) of any volatile compound identified in nature [6]. Such potent volatile thiols
have been in the spotlight of aroma research and they are frequently regarded as “potent” [7], “key
aroma” [8], “aroma-active” [9,10], or “aroma-impacting” [11] odorants. Some of the most famous
examples in foods and beverages include 3-sulfanylhexan-1-ol (aroma descriptor: grapefruit, ODT:
60 ng/L) and 3-sufanylhexyl acetate (aroma descriptor: passionfruit, ODT: 4 ng/L) in wine [6],
4-methyl-4-sulfanylpentan-2-one (aroma descriptor: boxwood, ODT: 0.8 ng/L) in beer [12] and wine [6],
and 2-furfurylthiol (aroma descriptor: roasted coffee aroma, ODT: 0.4 ng/L) in coffee [13] (Figure 1b).

From a total of 395 publications (1990 to 2019, using “Volatile Thiol” as the search keyword)
retrieved from Web of Science Core Collection and visualised by a network approach, it was obvious
that research on volatile thiols had been focusing on “detection” and “reaction”, and the majority
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of publications had emerged from the field of “wine” research (Figure 1c). Indeed, much progress
on the development of analytical methods for untargeted identification and targeted quantitation
for volatile thiols has been achieved in wine [4]. As such, this review emphasises the field of wine
research and particularly covers literature that is dedicated to developing analytical methods. The
analytical challenges and requirement for volatile thiol analysis in the context of wine, foods, and other
beverages are first presented, followed by strategies that were developed to address those analytical
challenges. Sample preparation techniques (selective extraction with metal ions, derivatisation),
chromatographic separation, mass spectrometric detection, quantitative analysis with stable isotope
dilution assay (SIDA), and matrix effects have been reviewed. Finally, future trends and directions for
volatile thiol research have been proposed. However, exhaustive occurrences, sensory interactions,
chemical synthesis and biogenesis, and other unmentioned aspects of thiols in foods and beverages are
considered as beyond the scope of this review.

2. Analytical Challenges and Requirements

The analysis (either untargeted identification or targeted quantitation) of volatile thiols in foods
and beverages has always been a challenging task due to two reasons:

e  matrix complexity;

e  properties of thiols.

Volatile thiols can be found in many foods and beverages, including wine, beer, cheese, olive oil,
coffee, fruit, meat, and vegetable [14]. On one hand, these foods and beverages possess drastically
different matrices (animal or vegetal, fermented or unfermented, liquid or solid, aqueous or lipid,
etc.) and, on the other, the matrices are compositionally complex (containing many other volatile and
non-volatile metabolites). Such complexity and diversity in matrices pose analytical challenges for
developing suitable and efficient analytical methods [15]. Potent volatile thiols are highly unstable
small molecules that are present at extremely low abundances with diverse chemical structures. The
sulfhydryl (-SH) group in thiols is one of the most reactive functional groups found in natural organic
matter [16]. As such, thiols are prone to oxidation, isomerisation, and rearrangement [17]. The highly
active —-SH group can cause chromatographic separation difficulties even when thiols are well preserved
throughout extraction, such as peak tailing during analysis by gas chromatography (GC) [18]. Apart
from the instability, volatile thiols differ in chemical structure, with the majority containing either
acid (-COOH)), alcohol (-OH), aldehyde (-CHO), ester (-OC(O)-), ether (-O-), and/or aromatic ring
functional group(s), with only a small portion belonging to aliphatic thiols [14]. Those additional
functional groups should be taken into consideration at an early stage of method development in order
to minimise their modification. For instance, the analysis of thiol acetates should avoid the occurrence
of acetate hydrolysis during sample preparation and analysis [19]. Besides structural diversity, some
thiols are also characterised with chirality, owing to the carbon bearing the sulfur atom (Figure 1b),
which gives a pair of thiol enantiomers. As with any enantiomer pairs, enantiomeric thiols are of
almost identical physical and chemical properties, but they often differ in aroma quality and ODT [4].
The separation of enantiomers has always been a complex task as there is no golden rule to predict
chiral separation. Lastly, thiols are generally found at trace to ultra-trace concentrations and, in many
cases, at part per trillion levels. Such extremely low abundances require the careful consideration of
effective sample isolation and enrichment steps, and sensitive detection techniques.

An ideal analytical method for thiol analysis should be fast, simple, reliable, robust, green,
sensitive, and cost-effective. For analytical methods that are dedicated to screening/discovering
new volatile thiols, analytical information that is provided by the methods should be sufficient for
identification. As for quantitative methods, limit of detection (LOD, ideally below ODT), matrix effects,
repeatability, precision, and accuracy are among the important factors.
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3. Thiol Isolation—Extraction and Derivatisation

Due to the analytical challenges previously mentioned, particularly the instability of volatile thiols,
but also their low abundance, efficient isolation using the routine extraction techniques employed for
aroma analysis is hard to achieve. This reflects on the fact that many of the established thiol isolation
methods have combined rather sophisticated forms of sample pre-treatment, specific extraction,
derivatisation, clean-up, and enrichment (concentration). From the methods that are summarised in
Table 1, it is evident that the isolation of volatile thiols from wine (and similar applications in foods and
other beverages) is an evolving process that has advanced from traditional, time-consuming methods
to better-sequenced and much simplified procedures. Although being proposed in various formats,
the currently available thiol preparation methods can generally be categorised into three main groups:

e non-specific extraction, e.g., straightforward application of headspace solid-phase microextraction
(HS-SPME), solid phase extraction (SPE), liquid-liquid extraction (LLE), purge and trap (P+T),
and vacuum distillation;

e  selective extraction with metal ions (e.g., Hg* or Ag*);

e  derivatisation (coupled with LLE, HS-SPME, SPE, or gas purge microsyringe extraction (GP-MSE)).

As the non-specific extraction techniques for thiol isolation are principally similar to those that
are commonly applied for other volatile compounds, selective extraction and derivatisation-based
methods have been selected as the focus in this review.

3.1. Selective Extraction with Metal Ions

Thiol-specific extraction methods are based on the strong affinity between thiols and metal ions,
such as mercury (Hg*) and silver (Ag™). In fact, the word mercaptan, which is the historical synonym for
thiol, arose from the Latin term cercurium captans, which means mercury-seizing [20]. Organomercurial
compounds have long been applied for thiol-specific extraction (Table 1, Entries 1-4) [21,22] by reversibly
binding with thiols and forming stable Hg-thiol complexes (mercaptides). The thiol moiety can then
be replaced from Hg-thiol complexes by an excess of other thiol (e.g., glutathione [21], cysteine [22],
or p,L-dithiothreitol [23]) during an elution step, which releases the thiols of interest. Specific
organomercurial compounds that have been used in this manner include 4-hydroxymercuribenzoate
(usually referred to as p-hydroxymercuribenzoate and abbreviated p-HMB) [21,22,24], phenylmercuric
chloride [25], and 4-aminophenylmercuric acetate [23]. These agents efficiently and selectively bind
thiols; for instance, the reaction between p-HMB, the most popular organomercurial reagent, and thiols
in wine requires less than 90 s, and, more importantly, p-HMB does not react with thioesters, sulfides,
or disulfides [21].

Pioneered for wine with the identification of varietal aroma compounds that are associated with
box tree odour, the early developed p-HMB extraction method (Table 1, Entry 1) requires pH adjustment
on a large volume of sample (1000 mL), followed by LLE with organic solvent prior to thiol extraction
with aqueous p-HMB solution [21]. While using this extraction method, 4-MSP was identified for the
first time in the plant kingdom (a Sauvignon wine). For quantitation purposes that require cleaner
thiol extracts, a strong anion exchange column was introduced as a clean-up step after the extraction of
thiols from the organic phase with p-HMB solution, prior to eluting with cysteine solution to release
the thiols (Table 1, Entry 2) [22]. This approach has been modified and used for thiol extractions in
beer [12] and cheese [26]. One limitation of applying this extraction method is that it requires pH
adjustment at several points (in the raw sample, during extraction, and in pooled extracts [22]), and
the high pH conditions could induce thiol oxidation or unwanted changes in the sample matrix, such
as the formation of quinones that can react with thiols. Therefore, the p-HMB extraction method has
been modified to avoid tedious pH adjustment of wine by using a Tris buffer solution (pH > 7) [24].
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Table 1. Isolation methods developed for analysis of potent volatile thiols in wines, foods, and other beverages.

5o0f 24

Entry Reference No. of 1 Matrix Sample Isolation Overview 2 Major Methodological Parameters 3 Comments 4
No. Analytes Amount
. . o LLE x 3 using p-HMB solution
1 1995 [21] 1[1D] Wine 1000 mL LLE = sclective extraction + Glutathione added at 20-fold the
[p-HMB]
p-HMB amount
LLE = selective extraction * »-Zmﬁro-vﬂwm.“m.ﬁ”w\“w%“#mnﬁ asls R bl . 1
2 1998 [22] 5[QT] Wine 500 mL [p-HMB] = strong anion exchange priad + Reversible tagging allows
e Dowex 1X2-100 column thiols to be analysed in native
column = LLE .
® >45 min for column step form by GC-O
o SIDA + Suitable for thiol screening
LLE = selective extraction o Wine protected in ice bath under N, with GC based methods
3 2003 [25] 3[QT] Wine 500 mL o LIME] o LLE for 15 min — Large sample volume needed
p o Affi-Gel 501 — High demand for organic
o 1,4-dithio-pr-threitol (DTT) elution moA_<mH.#w i
— p-HMB is highly toxic
¢ SIDA — Very time consuming
® Mercurated agarose gel prepared from ¢ cheese [26]
LLE = SAFE = selective extraction Affi-Gel 10
4 2017 [27] 1[QT] Hops 350 g [p-HMB] = SAFE e LLE duration >3 h
P o SAFE at 40 °C
o DTT elution
e SAFE to remove DTT
For beer:
e LLE for 15 min
o Centrifugation for 15 min + Novel SPE concent
5 2017 [28] 6 [QT] Beer, hops 20mL,2g LLE = Ag™ resin based SPE o Meta-Sep IC-Ag SPE cartridge p

o Cartridge reversed
o Salted eluate shaken for 15 min
o Centrifugation for 15 min

— Multiple extraction steps
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Table 1. Cont.

7 of 24

Entry Reference No. of 1 Matrix Sample Isolation Overview > Major Methodological Parameters 3 Comments 4
No. Analytes Amount
o SIDA
o pH adjustment
. Beer, wort, T o PDMS stir bar B . .
13 2015 [34] 3[QT] hops 20 mL Derivatisation [ETP] and SBSE o ETP reaction for 10 min at 25 °C Long extraction time
o NaOH addition
© SBSE for 180 min at 1500 rpm
Automated derivatisation of 4-MSP o SIDA + Easy automated extraction
14 2014 [35] 1[QT] Wine 3mL carbonyl [0-methylhydroxylamine] o DVB/CAR/PDMS fibre approach
and HS-SPME o SPME for 45 min at 55 °C — Only one analyte assessed
o SIDA
o Add potassium metabisulfite and PVPP, stir
for 10 min
. T o Centrifugation for 10 min — Large sample volume
15 2015 [30] 21Qrt] Wine 180 mL LLE = derivatisation [OPA] o pH adjustment and sodium borohydride — Complicated protocol
addition
o LLE for 20 min
® Reaction for 5 min at room temperature
® 4-Methoxy-a-toluenethiol |WMMMMMM MMMM WMMMMH MMMM_WMW
16 2013 [37] 7 [QT] Olive oil 2g Single step derivatisation [ebselen] . mem:o-shwmﬂﬂwm.%“ M:Qmﬂ N, # wine [38], beer [38], brewed
coffee [39], roasted coffee [40]
* SIDA + Sutable for muliple thicls
17 2015 [7] 5[QT] Wine 20 mL Derivatisation [DTDP] = SPE ® Reaction for 30 min at room temperature . shpee b
. + Chiral analysis possible
© Bond Elut C18 SPE cartridge . o
¢ wines [41,42]
Single step stable isotope labelled © BQB dried under N,
18 2014 [43] 1[ID] Beer 100 uL chemical derivatisation o Gly-HClI buffer
[do/d7-BQB] ® Reaction for 1 h at 60 °C + Stable isotope derivatisation
Selective extraction [p-HMB] & SPE + wamnmwmﬂ“mﬁ“: scan
" . = LLE = Stable isotope labelled e LiChrolut-EN SPE mercurated with p-HMB . .
19 2017 [44] 61QT] Wine 100 mL chemical derivatisation ® Reaction at 40 °C for 10 min ~ Synthesis of reagents required
[do/ds-AENM]
Coffee ® Gas purge with Np + No pre-enrichment step
bean, © 1.0 mL of syringe loaded with 0.5 mL of — Customised extraction
20 2018 [45] 4[QT] cookies, 2g GP-MSE = derivatisation [PIPD] MeOH as extraction solvent apparatus required
fried nuts, o Sample heated for 30 min at 190 °C - Sample subjected to high temp.
biscuit e Derivatisation for 10 min

— Synthesis of reagent required

1 ID: identification; QT: quantitation. 2 Only major steps are presented. See text and Figure 2 for reagent abbreviations; GP-MSE: gas purge microsyringe extraction. ® IS: internal standard;
SAFE: solvent-assisted flavour evaporation; PDMS: polydimethylsiloxane; DVB: divinylbenzene; CAR: carboxen; SIDA: stable isotope dilution assay; PVPP: polyvinylpolypyrrolidone;
MeOH: methanol. 4 +: advantage; —: disadvantage; ¢: application of similar extraction approaches reported in foods and beverages; GC-O: gas chromatography-olfactory; MS:
mass spectrometry.
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p-HMB extraction procedures are quite time consuming due to the need for pH adjustment
and clean-up, and, more importantly, thiols are prone to oxidation during the laborious sample
preparation steps, which could influence their quantification. Affinity chromatography with Affi-Gel
501 (formed from Affi-Gel 10 by treatment with 4-aminophenylmercuric acetate) was developed for thiol
extraction from extracts prepared by LLE to simplify the selective extraction step (Table 1, Entry 3) [25].
Affinity chromatography with Affi-Gel appears to be less time-consuming when compared to the
previously developed p-HMB protocol, but it demonstrates lower recovery rates (e.g., for 4-MSP,
38% vs. 75%-80%). This approach is possibly more suited to thiol discovery, with a similar affinity
chromatography approach having been used to screen for volatile thiols in various fruits and wines [23].
Another slight limitation is that Affi-Gel 501 needs to be prepared in-house, and these approaches still
involve intense extraction and concentration steps (more problematic for routine quantitation than for
thiol screening).

Another selective extraction method is based on the high affinity between thiols and Ag™* (Table 1,
Entry 5) [28]. Using commercially available Ag* based SPE cartridges (Meta-Sep IC-Ag), volatile thiols
in the organic extracts of beer and hops were retained and then eluted with thioglycerol in CH,Cl, [28].
Ag* extraction is advantageous when compared to Hg*, because it avoids the use of toxic mercury
and the SPE cartridges can be commercially obtained. However, the Ag* extraction procedure is still
somewhat complicated, with the LLE extraction of volatiles, and multiple clean-up and concentrating
steps after SPE. However, from purely an extraction viewpoint, selective extraction methods have high
reaction efficiency, selectivity, and permit the recovery of thiols for analysis in their unmodified form.
This is particularly useful for GC-Olfactometry (GC-O) screening for new thiol odorants, and it has
enabled the discovery of many important volatile thiols in wine [21,22,24], tea [46], hop extracts [12],
and beer [12,47]. On the other hand, the drawbacks of these extraction approaches are obvious: large
amounts of sample and solvent are required for the preparation of volatile extracts; procedures are
lengthy and time-consuming; final concentrated thiol distillate/extracts are in their original sulfhydryl
form, which can cause reaction, separation, and detection issues; in the case of p-HMB, handling highly
toxic organomercurial compounds poses significant health and environmental risks.

3.2. Derivatisation Approaches

The adaptation of derivatisation for more selective, efficient, and simplified isolation procedures
and/or stabilisation of thiols has been the major development in thiol isolation. These approaches are
designed to improve the sensitivity of instrumental analyses, because, after derivatisation, volatile
thiols are easier to be extracted, chromatographed, and detected. On one hand, derivatisation intends to
block the sulfhydryl group (or mask a carbonyl group in the case of 4-MSP, for example) and the formed
thiol derivatives are chemically stable for isolation, as well as thermally stable for GC analysis. On the
other hand, introducing a substituent means that thiol derivatives exhibit greater hydrophobicity, less
polarity, and/or stronger proton affinity, which leads to better liquid chromatography (LC) separation
and signal enhancement for mass spectrometry (MS)-based detection [48]. When selecting suitable
derivatisation reagents, the factors to consider include reaction specificity and efficiency, matrix
compatibility, required sample manipulation, introduction of interferences, and whether it occurs
before or after the extraction of analytes. Figure 2 shows common derivatisation reagents and related
reaction conditions that are proposed for volatile thiols analysis in wine, foods, and other beverages,
and categorised into those for GC analysis (Figure 2a), or LC analysis with conventional (Figure 2b) or
stable isotope labelled (Figure 2c) derivatisation reagents.
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Figure 2. Derivatisation reagents and reactions of volatile thiols in wine, foods, and other beverages
for (a) gas chromatography (GC) analysis, (b) liquid chromatography (LC) analysis, and (c) LC with
stable isotope labelled derivatisation reagents. PFBBr: 2,3,4,5,6-pentafluorobenzyl bromide; ETP:
ethyl propiolate; OPA: o-phthaldialdehyde; ebselen: 2-phenyl-1,2-benzisoselenazol-3(2H)-one; DTDP:
4,4’-dithiodipyridine; PIPD: 1-(4-(1H-phenanthro[9,10-d]imidazol-2-yl)phenyl)-1H-pyrrole-5-dione;
BQB: w-bromoacetonylquinolinium bromide; AENM: acridone-10-ethyl-N-maleimide.

3.2.1. Derivatisations for GC Analysis of Thiols

As seen in Table 1 (Entries 6-14), 2,3,4,5,6-pentafluorobenzyl bromide (PFBBr), ethyl propiolate
(ETP), and o-methylhydroxylamine have been used as derivatisation reagents for GC-based thiol
analysis. PFBBr and ETP both react with the sulfhydryl group, whereas o-methylhydroxylamine
derivatises the carbonyl group in 4-MSP (forming a methoxime). After derivatisation(s), extractions
can be conducted in combination with modern extraction techniques such as HS-SPME, SPE, or stir
bar sorptive extraction (SBSE), in contrast to the traditional LLE or affinity chromatography normally
practised in selective extractions with Hg* or Ag* (although LLE, in particular, may still feature along
with derivatisation).

PFBBr (Table 1, Entries 6-11) is frequently used as a derivatisation reagent for thiols, due
to the bromide atom being particularly susceptible to nucleophilic substitution by thiols in the
presence of base, and the obtained PFBBr thiol derivatives offer desired properties, not only by
stabilising the thiol, but also with regard to electron-capturing abilities and MS detection [18]. The
derivatisation of volatile thiols in wine with PFBBr has been evaluated in various formats: automated
headspace on-fibre derivatisation [18], derivatisation in organic solvent system [29] or aqueous
phases [32] followed by HS-SPME, in-cartridge SPE derivatisation [30], and HS-SPME coupled with
SPE [31]. The SPME on-fibre derivatisation (Table 1, Entry 6) is fast, automated, and solventless.
A polydimethylsiloxane/divinylbenzene (PDMS/DVB) SPME fibre is exposed in sequence to the vapours
of tributylamine (5 min), PFBBr solution (5 min), and then pre-incubated wine sample (containing
ethylenediaminetetraacetic acid, salt, and internal standard (IS)) for extraction for 10 min at 55 °C [18].
This approach provided convenience and less potential interferences by using an autosampler and
HS-SPME [18], but the linear ranges for the studied thiols were not very wide (and extremely narrow
for 2-methyl-3-furanthiol, 2-MFT) and only two thiols (2-FT and 3-SHA) out of five were able to be
analysed with this method. To improve the procedure, three conditions (two-phase liquid-liquid
system, two-phase liquid-liquid system with a phase transfer catalyst, and two-phase liquid-solid
system) were evaluated for wine and PFBBr derivatisation was finally conducted in a homogeneous
organic solvent (benzene) system, based on relatively higher derivatisation yields and lower extraction
of polar compounds from wine (Table 1, Entry 7) [29]. Apart from switching from on-fibre derivatisation
to a homogeneous organic solvent system, 1,8-diazabicyclo[5.4.0Jundec-7-ene (DBU) was used as a
non-nucleophilic base to better deprotonate thiols (enhancing reactivity) and enable a decrease in the
amount of PFBBr, which lessened the chance of PFBBr carryover. After comprehensive optimisation,
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the method provided larger linear ranges than SPME with on-fibre derivatisation [18], but it was
still unable to achieve consistent results for 2-MFT and required the use of the carcinogenic solvent
benzene [29]. Subsequently, PFBBr derivatisation (after carbonyl derivatisation) in an SPE cartridge was
suggested for volatile thiols in wine (Table 1, Entry 8) [30]. This protocol involved multi-step washings,
derivatisation reaction, and the elution of PFBBr derivatives, but it still suffered from interferences
regardless of the improved clean-up with SPE. This was ultimately compensated for by adapting to a
method involving SIDA [30]. A method with methoximation and PFBBr derivatisation in combination
with both SPE and HS-SPME has been developed, also using SIDA, to further eliminate matrix effects
(Table 1, Entry 9) [31]. After methoximation (for 4-MSP) [30], the wine sample was adjusted to pH 7
and derivatised in-cartridge with PFBBr and DBU, and then eluates from SPE were evaporated and
sampled by HS-SPME [31]. The change of pH was necessary to eliminate interferences that were not
retained by SPE at higher pH [31].

The above-mentioned PFBBr derivatisation approaches were followed by GC with chemical
ionisation (CI) and MS detection in negative ion mode, instead of the more routinely available electron
ionisation (EI) with MS detection in positive ion mode. As such, the PFBBr derivatisation methods were
investigated for thiol analysis in wine while using GC with EI-MS, again in combination with HS-SPME
of the derivatives [32,33]. Focusing on 3-SH, an extraction was proposed that involved LLE with
pentane and back-extraction into cold aqueous NaOH, followed by direct PFBBr derivatisation (Table 1,
Entry 11) [32]. This method showed that the analysis of a PFBBr thiol derivative could be achieved by
EI-MS, although the sample volume (100 mL) was much larger than that required for NCI-MS detection,
and only 3-SH was assayed (albeit at levels below its ODT) [32]. The method was improved by applying
extractive arylation with PFBBr but still using GC-EI-MS (Table 1, Entry 12) [33]. The approach, which
included 3-SHA and 4-MSP, along with 3-SH, employed PFBBr derivatisation of thiols in 40 mL of
wine (pH adjusted to 12) with the simultaneous extraction of derivatives into pentane-diethyl ether.
The extracts were dried, reconstituted, and subjected to HS-SPME [33]. The improved analytical
performance, when compared to the previous method for 3-SH alone [32], was proposed to result from
the removal of interferences, more optimal conditions for derivatisation or HS-SPME sampling, or
having fewer steps that contribute to analyte losses during extraction [33]. In comparison to selective
p-HMB extraction and the analysis of free thiols, the suggested PFBBr derivatisation-based methods for
thiol extraction and analysis (either for CI-MS or EI-MS) have significantly lower sample volume and
solvent consumption (especially with HS-SPME), less sample preparation steps, and no requirement
for organomercurial compounds. However, the overall extraction processes are still lengthy and
complicated (e.g., pH adjustment and multiple steps), and PFBBr is not entirely without safety concerns.

ETP is another reagent that has been investigated for the derivatisation of thiols (Table 1, Entries 12
and 13) in wine [19], beer [34], hops [34], and wort samples [34]. In the case of wine analysis, ETP rapidly
reacts with thiols at basic pH (10 min), and, following an optimised SPE step, the ETP derivatives
can be analysed by GC-MS (Table 1, Entry 12) [19]. The ETP-based method has further simplified
the approach to thiol derivatisation when compared to p-HMB and PFBBr methods, but still requires
pH adjustment of wine (not a trivial undertaking). The main shortcoming was the lack of sensitivity
for 4-MSP in real wine samples as a result of poor derivatisation [19]. Nonetheless, ETP has also
been evaluated in combination with SBSE for the analysis of 3-SH, 3-SHA, and 4-MSP in beer, hops,
and wort samples (Table 1, Entry 13) [34]. The SBSE procedure is relatively simple to conduct and it
requires less solvent, but the disadvantages included the need for pH adjustment of samples, that a
single SBSE of derivatives required more than 3 h, that stir bars needed to be conditioned before use
and reconditioned after each use, and the need for a thermal desorption unit (TDU) [34].

Finally, there is 0-methylhydroxylamine for the derivatisation of a carbonyl group as a methoxime.
Aside from its use for masking the keto functionality of 4-MSP to facilitate thiol derivatisation with
PFBBr (Table 1, Entries 8 and 9), o-methylhydroxylamine derivatisation has been employed in an
automated SIDA HS-SPME procedure for the analysis of 4-MSP at sub-ODT concentrations (Table 1,
Entry 14) [35]. The procedure creates specific higher mass fragments that facilitate MS detection when
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compared to the natural analyte (but using positive CI rather than the more routine EI), and it requires
a small volume of sample (3 mL) and less sample preparation as compared to ETP [35]. However,
despite being easier to undertake and very sensitive, the procedure is only applicable to 4-MSP, and
it is complicated by the fact that two derivative isomers are formed from a single analyte, with the
favoured (E)-isomer being selected for quantitation [35].

3.2.2. Derivatisations for LC Analysis of Thiols

The abovementioned specific extraction and derivatisation approaches that involve Hg™,
Ag*, PFBBr, and ETP are for GC based systems. Emerging some time after many of the GC
methods were developed, derivatisation-based procedures that were designed for LC analysis
are perhaps one of the most important developments in thiol isolation. In comparison
to their GC counterparts, the suggested derivatisation protocols for LC analysis of volatile
thiols have tended to simplify the overall extraction protocol and offer excellent sensitivity
in a variety of matrices. Derivatisation reagents applied for LC-based analysis of thiols
(Table 1, Entries 15-19) include conventional reagents, like o-phthaldialdehyde (OPA) [36],
2-phenyl-1,2-benzisoselenazol-3(2H)-one (ebselen) [37-40], 4,4’-dithiodipyridine (DTDP) [7,41,42],
and 1-(4-(1H-phenanthro[9,10-d]imidazol-2-yl)phenyl)-1H-pyrrole-5-dione (PIPD) [45], as well as
stable isotope labelled reagent pairs dy/d7-w-bromoacetonylquinolinium bromide (do/d7-BQB) [43,49]
and dy/d4-acridone-10-ethyl-N-maleimide (do/ds-AENM) [44]. The reagents readily react with the
sulfhydryl group, and derivatisation reactions are often performed in various formats, such as
in conjunction with LLE, SPE, or GP-MSE prior to LC analysis, to assist with sample clean-up
and enrichment.

OPA was considered for thiol derivatisation in white wine [36] due to the reactivity of the
dialdehyde functionality with amino acids and other nucleophiles, including thiols [50], thus beginning
the exploration of LC-based approaches for the analysis of volatile thiols in wine (Table 1, Entry 15).
Derivatisation with OPA in the presence of ethanolamine under basic conditions is rapid (5 min at room
temperature in borate buffer), but 4-MSP was unable to be derivatised and the pre-derivatisation sample
preparation steps are rather complicated. Briefly, wine has to be treated with potassium metabisulfite
and polyvinylpolypyrrolidone, followed by pH adjustment and reaction with borohydride, and
then LLE with CH,Cl; (possibility of forming an emulsion) and sample concentration steps prior to
derivatisation [36]. Moreover, the OPA-thiol derivatives were unstable, even when stored at —80 °C,
and their rapid and significant degradation would ultimately lead to a loss of sensitivity and inaccurate
quantitation [36].

The Se-N-containing reagent 2-phenyl-1,2-benzisoselenazol-3(2H)-one (ebselen) selectively and
efficiently reacts with thiols by the cleavage of Se-N bond and formation of an Se-S bond with the -SH
group [51]. Ebselen has been used to derivatise a range of thiols (such as those in Figure 1b) in various
matrices (lipid: olive oil [37]; hydroalcoholic: wine [38], beer [38]; aqueous: brewed coffee [39]; organic
extract: roasted coffee [40]) (Table 1, Entry 16). The proposed ebselen derivatisation approaches are fast,
single-step derivatisation/extraction (~ 1 min), with some slight variations in initial sample preparation,
solvent choice, solvent volumes, and workup steps, depending on sample matrices. In general, a
suitable solvent containing ebselen (or with ebselen introduced separately) is added to the solid or
liquid sample. After vortexing for a short period of time, the organic phase is collected, concentrated,
and the residue is re-dissolved for analysis (or analysed directly without concentration) [37-40]. The
major advantages of these approaches when compared to aforementioned derivatisation procedures
is they are much less complicated and they employ mild conditions, although they still require the
handling of samples under Ny, and the instruments are all high resolution mass spectrometers as
opposed to the more common triple quadrupole. As a slight aside, these derivatives are claimed to
enhance ionisation and improve the signal response due to the ease of ionisation and the positive charge
gained by the nitrogen. However, the nitrogen in ebselen derivatives is an amide (weak acid) and not
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an amino nitrogen, so positive ionisation mode would rely on the protonation of the carboxamide
oxygen [52].

Thiol derivatisation with DTDP has also been developed for wine analysis (Table 1, Entry 17) [7],
due to its high derivatisation ability of sulthydryl groups at acidic pH [53], whereby DTDP specifically
and rapidly directly reacts with thiols in the natural wine pH range [7]. Avoiding pH adjustment
throughout derivatisation and extraction is deemed to be an important point, and, when coupled with
conventional SPE for clean-up and enrichment of derivatives, this procedure provides a relatively
simple approach that affords the desired sensitivity for analysis of 3-SH, 3-SHA, 4-MSP, BT, and 2-FT [7].
The flexibility of the DTDP derivatisation and extraction method has been demonstrated in the chiral
analysis of enantiomers of 3-SH and 3-SHA in wine [41], and in a refined form (no concentration after
SPE) while using convergence chromatography for wine analysis [42]. The additional advantages
of DTDP derivatisation include the formation of stable and easily ionisable derivatives (due to the
pyridine moiety) that are ideal for electrospray ionisation (ESI), and, to a lesser extent, the inclusion
of a chromophore, which may be useful for samples with high levels of thiols (3-SH in particular),
although this was not tested. As a bonus, DTDP is a non-hazardous chemical and is safer to deal with
than some other reagents, especially p-HMB or PFBBr.

More recently, 1-(4-(1H-phenanthro[9,10-d]imidazol-2-yl)phenyl)-1H-pyrrole-5-dione (PIPD) has
been demonstrated as a new derivatisation reagent for volatile thiols (Table 1, Entry 20). The maleimide
moiety in PIPD can rapidly react with thiols to form derivatives that are stable (4 °C for at least three
days) and detectable by HPLC—fluorescence (with atmospheric pressure chemical ionisation (APCI)-MS
used for identification) [45]. Thiol extraction was performed with GP-MSE (N, at 2.5 mL/min for
30 min at 190 °C) in a customised apparatus prior to derivatisation (10 min at 35 °C in phosphate
buffered saline, pH 7.5) [54]. After extraction and derivatisation, the mixtures were diluted with
methanol (MeOH)), filtered, and directly injected [45]. This proposed extraction and derivatisation
methodology is simple and fast, and the analytical method is precise and sensitive, but the approach
requires a customised gas purge chamber and the sample is kept at a high temperature for 30 min,
which seems unlikely to be applicable to liquid samples, such as wine or beer. In addition, PIPD has to
be synthesised, as opposed to other commercially available reagents.

Whether for LC or GC, the derivatisation examples that have been mentioned so far require the
use of reference standards and internal standards to establish the calibration curves for quantitative
analysis. In many cases, the reference standards or internal standards (particularly deuterated internal
standards) are not commercially available, or they are expensive to acquire or non-trivial to synthesise.
These concerns can be somewhat simplified by the use of stable isotope labelled derivatisation-based
methods [43,44,49], and, when considering that the derivatisation of volatile thiols appears to be
essential for food and beverage analysis by LC, introducing stable isotope labelled derivatisation
does not add any extra sample processing steps. Reagents for stable isotope labelled derivatisation
can not only enhance the stability and detectability of thiols, just like the conventional reagents, but
also provide advantages in facilitating untargeted identification and targeted quantitation based on
the characteristic mass differences between the unlabelled/labelled derivative pair that are easily
distinguishable by MS [55]. Stable isotope labelled derivatisation reagent pairs that have been used
for thiol analysis in beverages include dy/d7-w-bromoacetonylquinolinium bromide (dy/d7-BQB) for
beer (Table 1, Entry 18) [43,49] and dg/ds-acridone-10-ethyl-N-maleimide (do/d4-AENM) for wine
(Table 1, Entry 19) [44]. Both of the reagents utilise a reactive group (bromide for BQB, maleimide in
AENM), an ionisable group, and an isotopically labelled group in one of the pairs. BQB derivatisation
consists of rather simple sample preparation steps, which only involve drying and derivatisation
(60 °C, 60 min, pH = 3.5) [49]. AENM derivatisation is faster (40 °C, 10 min, pH = 7.4), but it requires
a lengthy p-HMB-based SPE step before derivatisation [44]. AENM-thiol adducts were reported to
be stable at room temperature for at least three days [44]. Despite the advantages of stable isotope
labelled derivatisations, the reagent pairs have to be synthesised, which could be a potential downside
of these approaches.
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4. Analytical Instrumentation

Appropriate analytical instrumentation and techniques are required for either qualitative or
quantitative analysis after thiol extraction and/or derivatisation. GC or LC coupled to various types
of detectors, particular MS, are the leading separation and detection techniques used for volatile
thiol analysis in wine, foods, and other beverages (Table 2). GC (single or multidimensional) has
been coupled with olfactometry (O), flame ionisation detector (FID), flame photometric detector
(FPD), pulsed flame photometric detector (PFPD), atomic emission detector (AED), electron-capture
detector (ECD), sulfur chemiluminescence detector (SCD), and MS detector (single quadrupole, Q;
triple quadrupole, QqQ; ion trap, IT; and, high resolution MS with time-of-flight (TOF, including
quadrupole-TOF) or Orbitrap) in the majority of cases. Reversed-phase (RP)-LC conditions coupled
with MS detectors (especially QqQ) are the most common configurations for LC-based instrumentation.
When using MS detection, EI or CI modes are proposed for GC-MS analysis of thiols, and electrospray
ionisation (ESI) in positive mode is frequently reported for the LC-MS methods.

4.1. Analysis by GC

GC separations in the gas phase are applicable for volatile analytes, such as thiols and some of their
derivatised forms (e.g., PFBBr or ETP derivatives). For injection, a purge and trap injector (PTI) [21] and
cool-on-column injection (20 °C [25], 35 °C [25], 40 °C [23]) have been reported for the GC separation of
native forms of thiol analytes (e.g., Table 2, Entries 3 and 31). PTI has great extracting and concentrating
ability for relatively large volumes of sample (8 mL) [21,56], and cool-on-column injection is preferred
for labile analytes [56], hence they are both suitable for the analysis of trace to ultra-trace volatile thiols.
The enhancement of thermal stability of analytes after derivatisation allows for the use of conventional
injectors and injection modes for thiols, including splitless [18,19,32], large volume (20 uL) [29,30],
splitless to split [33,35], TDU in splitless mode [26], and pulsed splitless [28] injection programs.
After injection, most of the separations are performed in a one-dimensional GC system installed with
fused silica capillary columns, either with non-polar (e.g., BPX-5 [22], DB-5ms [32]) or polar (e.g.,
HP-Innowax [19], DB-Wax [35]) stationary phases. Selecting the right column for thiol analysis still
requires practical trial-and-error approaches, even though multiple options for GC capillary columns
are available (Table 2). For example, large volume injection of PFBBr derivatives followed by separation
on a VF-5ms column showed problematic chromatographic behaviour (dirty, distorted, broadened, and
delayed peaks) and switching to a column with a more polar phase did not resolve this issue [29]. In
another instance, peak interferences and tailing when separating PFBBr derivatives on a DB-5 column
were overcome by using a DB-FFAP column [33]. In the case of large injection volumes (10 uL), a
column with larger internal diameter (0.53 mm i.d.) was preferred [25]. Apart from one-dimensional
GC, two-dimensional separations of volatile thiols have also been explored with heart cut GC or
GCxGC systems (Table 2, Entry 24, 27, 31) [23,27,57]. However, it was worth noting that, even with the
enhanced resolving power of GCxXGC, conventional sample preparation procedures without specific
chemical derivatisation failed to detect a targeted thiol (4-MSP) due to the high background noise [27].

The detectors of choice in GC applications are normally associated with the analytical aims of
the methods; that is, whether for identification or quantitation purposes. O, FID, FPD, PFPD, SCD,
and Q-TOF-MS appear to serve as detectors for identification purposes given the sensitivity and
selectivity of detectors towards ultra-trace volatile thiols, whereas Q, QqQ, and ITMS are regularly
used for quantitation (and can be coupled to GC-O as well). From some of the early work that was
focused on screening/discovering volatile thiols in foods and beverages (e.g., Table 2, Entry 1) to as
recent as 2017 (e.g., Table 2, Entry 30), GC-O has frequently been utilised to locate odour zones of
interest and provide the odour quality of the analytes being isolated [12,21,23]. GC-O also serves as
an important criterion for the identification of aroma compounds, and quite remarkably, the human
olfactory organ has demonstrated greater sensitivity for certain thiols during GC-O analysis than PFPD
or MS [12]. Such ultra-sensitivity towards volatile thiols has been related to specific thiol olfactory
receptors (e.g., OR2T11, OR2W1, and OR2C1) in humans [58,59].
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Table 2. Cont.
Entry  No. of . Analyte Analytical .3 . . 4 5 7 (o Recovery 8
No.l  Thiols Year Matrix Form 2 Instrumentation Aim Major Separation Parameters ME RSD 7 (%) (%)
23 1 2016 [64] Wine Free GC-EI-MS/MS (QqQ) QT e ZB-1ms (60 m X 0.25 mm, 1 pm) - 9 -
24 2 2017 [57] Wine Free GC-EI-MS/MS (QqQ) D ® ZB-1ms (60 m X 0.25 mm, 1 pm) - - -
25 6 2017 [28] WMMM Free GC-EI-MS/MS(QqQ) QT o InertCap Pure-WAX (30 m x 0.25 mm, 0.25 um) - 2.8-8.4 74-113
o Eclipse Plus C18 column (50 mm x 2.1 mm,
" ) . RQr 1.8 um)
26 6 2017 [44] Wine Deriv. UHPLC-ESI-MS/MS(QqQ) QT o A: 0.1% formic acid in 5% aqueous MeCN N <35 >78
® B: 0.1% formic acid in MeCN
© Q-TOF: 1st GC: DB-FFAP (30 m X 0.25 mm,
GCxGC-Q-TOF 0.25 pm), 2nd GC: DB-5 (2 m X 0.15 mm, 0.30 um) 109 + 6
27 1 2017 [27] Hops Free Heart cut QT o ITMS: 1st GC: FFAP (30 m X 0.32 mm, N <15 104 M 4
2D-GC-CI-ITMS 0.25 pm), cool-on-column injection; 2nd GC: -
DB-1701 (30 m X 0.25 mm, 0.25 pm)
o Polysaccharide Amylose-1 column
) . . (150 mm X 2.0 mm, 3 um)
28 2 2018 [41] Wine Deriv. HPLC-ESI-MS/MS(QqQ) QT o A: 5 mM aqueous ammonium bicarbonate Y/N <8 90-110
o B: MeCN
M.M_Mwm o Eclipse XDB-C18 column (150 mm X 4.6 mm,
= i . T . . 5 pm) .
29 8 2018 [45] n.oo_ﬁm\ Deriv. HPLC-FLD-APCI-MS QT o A: 30% aq. MeCN N 4.98 86-97
fried nut, o B: MeCN
biscuit Ve
, . . 2 e BEH 2-EP column (100 mm X 3 mm, 1.7 um) . B
30 4 2018 [42] Wine Deriv. UPC*-MS/MS(QqQ) QT « Solvent: CO, and MeOH N 8-18 94-119
. e DB-FFAP (30 m x 0.32 mm, 0.25 pm)
Fruit, GC-0O, -FID, -SCD, PR _ _ _
31 11 2019 [23] wine Free GCXGC-Q-TOF 1D, QT e 1st GC: DB-FFAP (30 m x 0.25 mm, 0.25 pm),

2nd GC: DB-17ms (2 m X 0.18 mm, 0.18 pum)

1 Entry number in bold indicates the method is a stable isotope dilution assay (SIDA). ? free: analytes in free thiol form; deriv.: analytes in thiol derivative form. 3 ID: identification, QT:
quantitation. # GC column dimension expressed as (length x internal diameter, film thickness; LC column dimension expressed as (length X internal diameter, particle size); A: mobile
phase A; B: mobile phase B; MeCN: acetonitrile; MeOH: methanol. 5 ME: matrix effect; Y: ME existed, N: ME not evident; Y/N: ME observed for some analytes; —: not evaluated. 610D
expressed in comparison to the odour detection thresholds (ODT) of the analytes; <: LOD < ODT; >: LOD > ODT; <: methods involved multiple analytes where LOD > ODT for some
analytes and LOD < ODT for others; —: not reported. 7 RSD: repeatability (%); — not reported. & — not reported.
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FPD [21], PFPD, and SCD [23,34] are important sulfur-selective detectors [65] that are also useful
when screening for volatile thiols. These detectors record signal responses of sulfur atoms in the
compounds of interest, which provides preliminary chromatographic information. For instance, the
retention indices that were calculated upon analysing linear thiol compounds with PFPD have been
used for identification purposes (Table 2, Entry 10) [26]. Similar to FPD, SCD has also been applied
for screening volatile thiols due to the demonstrated high selectivity and sensitivity (absolute limit of
detection below 1 ng, Table 2, Entry 31) [23]. The chromatographic conditions (e.g., GC column and
oven program) that are obtained from using detectors such as FPD can then be applied for GC-MS
quantitation, as in the case of thiols in soy sauce [66]. Being less expensive to purchase and less
complicated to operate and maintain are other practical reasons for using these detectors for routine
thiol screening. For thiol quantitation, AED has been evaluated for three volatile thiols in wines
(Table 2, Entry 3) and showed good detection performance for 4-MSP, but was not suitable for 3-SH
and 3-SHA due to co-elution problems with the IS used [25]. Even so, the LOD of 5 ng/L with AED
detection was a few times higher than the ODT of 4-MSP (0.8 ng/L) [25].

MS detectors are still required because of their indispensable ability of obtaining mass spectra
for the identification of analytes of interest and the superior quantitation capacity, despite the highly
specific coverage of FPD, PFPD, and SCD towards sulfur-containing volatiles. Other than retention
index, MS spectra of peaks of interest can be compared to those in commercial databases (e.g., NIST [67]
or Wiley [68]), or an in-house thiol database [23]. Accordingly, identity confirmation of new thiols
then necessitates the synthesis of reference standards if they are not readily available from commercial
suppliers [23,64,69]. The majority of GC-based quantitative analyses are conducted with MS detectors,
with electron ionisation (EI) (Table 2, multiple entries) or less frequently used chemical ionisation (CI)
(Entries 3, 5, 7, 8, 12) [18,25,29-31] being applied for volatile thiol detection. Selected ion monitoring
(SIM) has been frequently used over full scan mode, with one quantifier ion and desirably at least
two other qualifier ions when single stage MS is applied for quantitative analysis. MS/MS is used in
multiple reaction monitoring (MRM), selected reaction monitoring (SRM), or consecutive reaction
monitoring (CRM) mode, depending on the detector (QqQ and ITMS), which provides better selectivity
and sensitivity than single stage MS. Taking 3-SH, which is probably the most evaluated thiol in wine
and beer, as an example, many methods have used MS for its detection. When detected in the native
form, SIM ions at m/z 134, 100, 82, and 67 [19,60] were chosen as the qualifiers and quantifier for single
stage MS, whereas transitions m/z 134—82 and 100—82 were the pairs used for MRM with MS/MS [28].
If 3-SH has been derivatised, ions that were selected in EI-MS have higher m/z, for instance, 314, 181,
and 133 for the PFBBr derivative [32] and 232, 187, and 132 for the ETP derivative [19]. The reported
LOD values for 3-SH when using single stage MS were 30 ng/L [32], 69 ng/L [60], 7 ng/L [29], and
2 ng/L [30], which were higher than those values that were obtained with MS/MS (1.9 ng/L [28] and
0.7 ng/L [25]).

4.2. Analysis by LC

In recent years, LC-based analytical methods have emerged as promising and novel alternatives
for volatile thiol analysis (both screening and quantitation) in foods and beverages (Table 2, Entries 15,
16,21, 22, 26, 28, 29). Although LC has been used to assess non-volatile thiols, such as cysteine and
glutathione, in biological samples for some time [70-72], the LC analysis of volatile thiols in foods
and beverages has arisen more recently. The high volatility and low abundance of the analytes meant
that they were more compatible with GC separations rather than LC with liquid-phase MS detection.
Even when bypassing the chromatographic system, underivatised 3-SH was undetectable by direct
liquid infusion MS in positive or negative ion mode [43], so to facilitate the potential application of LC
to the analysis of volatile thiols, the analytes first have to be converted into non-volatile derivatives
with suitable reagents. Indeed, with promising derivatisation reagents having been specifically
suggested (Section 3.2.2 and Table 1), complementary LC methods have necessarily been developed in
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tandem (Table 2, Entries 16, 21, 22, 26, 28), some of which even rival the analytical performance of the
GC methods.

RP-LC separations with C18 stationary phases are commonly used for derivatised volatile thiols.
The injection volumes and flow rates (0.20-0.40 mL/min) varied slightly, depending on the column and
instrument used (Table 2). For example, slightly higher flow rates (0.35 mL/min and 0.40 mL/min) were
utilised in ultra-performance (UP) LC with a column containing 1.7 um particles [36]. Mobile phases are
the same as commonly used for RP-LC, for instance, aqueous MeOH [37,43] and aqueous acetonitrile
(MeCN) [7,41,44]. Proposed RP-LC methods have been able to resolve the analytes in a relatively
shorter period of time (e.g., 17 min with UPLC [36]) compared to GC methods (e.g., 55 min [33]).

MS is still the preferred detection technique for LC methods, even when derivatisation introduces
a chromophore into volatile thiols (wWhich may facilitate UV [41] or fluorescence detection [36,45])
(Table 2). In fact, detection is typically undertaken with MS/MS, and instruments, including QqQ,
Q-TOEF, and Orbitrap operated in ESI mode have been described for identifying or quantitating volatile
thiols, with superb sensitivity and selectivity. More specifically, with a QqQ, MRM [7,36,41] is the
main mode that is utilised for quantitation and double precursor ion scan (DPIS) mode has been
applied more for qualitative purposes [43,49]. The selection of mass transition pairs for MRM typically
includes one quantifier pair and at least one qualifier pair as the minimum requirement, with the
transitions being chosen from direct infusion product ion MS experiments of the reference standard
derivatives [7]. MRM of unique mass transition pairs provides a cleaner chromatographic background,
which directly results in greater sensitivity [44]. QqQ with MRM mode has been employed for thiol
derivatives that were obtained either with conventional derivatisation reagents [7,33,36,41] or stable
isotope derivatisation reagent pairs [44].

DPIS combined with stable isotope labelled derivatisation has been investigated for thiol profiling
in beers (Table 2, Entry 16) [43,49]. Admittedly, the thiols that were tentatively identified in beer
with this method were biological thiols, but this could be of potential use for volatile thiols analysis.
Light- and heavy-labelled thiol derivatives have characteristic ions with a fixed mass shift that
can be distinguished by DPIS with QqQ by employing stable isotope labelled derivatisation, and
identities can then elucidated by product ion scan and Q-TOF [43]. Only peak pairs from extracted
DPIS chromatograms with the same retention time and peak intensity are considered and relative
quantitation can be readily achieved by varying the ratios of light- and heavy-labelled samples being
mixed [43]. This overall approach could be an attractive option for volatile thiol discovery in foods
and beverages.

The application of Orbitrap MS for volatile thiol analysis has been reported for olive oil [37],
wine [38], beer [38], and roasted coffee [40]. While using Se-containing ebselen derivatisation, thiol
derivatives inherit the selenium isotopic pattern (®Se, 78Se) and the corresponding accurate masses
that were recorded by using Orbitrap MS (mass error tolerance <2 ppm) have been used for tentative
identification and quantitation (when thiol reference standards were used) [37]. An Orbitrap MS
generated chromatograms with almost no background noise due to its superior sensitivity and
selectivity, and the resulting limit of quantitation values were extremely low for 3-SH, at 0.1 ng/kg in
olive oil (Table 2, Entry 15) [37], and 0.01 ng/L in wine [38].

4.3. LCvs. GC

Overall, the LC methods have been demonstrated to be more sensitive, selective, and faster
than GC approaches for quantitative volatile thiol analysis in foods and beverages. Perhaps more
importantly, another significant advantage of LC-based methods is that the sample preparation steps
are less complicated, markedly so in a number of cases. Furthermore, LC with MS/MS in DPIS mode
has potential for untargeted thiol profiling and screening (Table 2, Entry 16). However, as discussed in
the next section, the LC-MS approaches have to be treated carefully (particularly for quantitation) to
solve analytical challenges from matrix effects [73].
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GC approaches generally involve more complicated sample preparation, but are still attractive
when compared to LC-MS methods, particularly with respect to the aroma qualities that are obtained
by GC-O, which can provide valuable information for thiol identification (or verification) [23] and
related sensory studies [74]. In addition, multidimensional GC offers great separation power [75],
and with fast GC in the second dimension improving the detection limits and reducing the matrix
background, GCXGC coupled with different types of detectors could serve as a powerful tool for
discovering new thiols. For instance, GCXGC-TOF-MS has been recently used for thiol screening in
wine and fruit, where a total of 11 volatile thiols were identified (Table 2, Entry 31) [23].

GC and LC based methods for thiol analysis are both very versatile and they have great potential
in identification and quantitation. The choice of method is often based on instrument availability in
the given laboratory, along with capital, operating, and maintenance costs, and most importantly, the
analytical methods that are required to address the aims of the research.

4.4. Other Instruments

Beyond GC and LC, an ultraperformance convergence chromatography—tandem mass
spectrometry (UPC2-MS/MS) method has been developed to quantitate volatile thiols in wine [42] after
DTDP derivatisation [7]. This proposed method uses supercritical CO; as the primary mobile phase
(along with MeOH) at high flow rate (1.5 mL/min), with this convergence chromatography approach
providing great efficiency (7 min run time per sample) and being coupled with QqQ (MRM mode) for
sensitive detection (with all LODs below the thiol ODT values). Such instrumentation is not common
in many laboratories, which may limit application of the method, although this novel approach offers
potential high throughput thiol analysis without compromising sensitivity [42].

4.5. Matrix Effects and Quantitative Analysis

With the advances in chromatography and MS capabilities, instrumentation with higher separation
ability and detection sensitivity has become more available, which leads to a greater number of analytical
methods being reported for volatile thiols in more foods and beverages. However, matrix effects in
trace analysis have been noted in modern analytical methods that were developed for agricultural
samples [76]. In addition, the concentrations of these unstable compounds are at trace to ultra-trace
levels and in complex matrices, so their quantitative analysis has to be treated with great care to avoid
inaccurate or inconclusive outcomes regarding these potent odour-active molecules.

Matrix effects should be critically evaluated when developing quantitative methods to achieve
accurate and reliable results. It is well known that matrix interferences have significant impacts on the
extraction, separation, detection, and consequently the quantitation of analytes. This is of particular
importance, given both the reactivity and trace concentrations of potent volatile thiols. Matrix effects
have been clearly noticed and explored during method development for volatile thiol analysis [18,41].
One way to distinguish the extent of matrix effects is to compare the slopes of calibration curves that
have been obtained from different matrices [18,31]. While using this approach, a matrix effect was
evidently observed in model wine vs. real wines [18,41] and oxidised vs. non-oxidised wines [30], with
various impacts during the extraction, separation, or detection steps potentially leading to differences
in the results. For instance, undiluted solvent-assisted flavour evaporation (SAFE) distillate [23],
competitive absorption on an HS-SPME fibre [25], or ESI-MS signal enhancement/suppression [77]
could cause large matrix effects.

Even when using matrix-matched calibration approaches, the choice of IS can be extremely
important in minimising or compensating for matrix effects. Many compounds with similar properties
to volatile thiols that showed a negligible matrix effect have been suggested as internal standards,
such as 4-methoxy-2-methyl-2-mercaptobutane [22] and 6-sulfanylhexan-1-ol (6-SH) [60]. Even so,
stable isotope labelled IS are the best option in a stable isotope dilution assay (SIDA), which is
arguably the most accurate analytical approach, and, in most cases, can efficiently eliminate a matrix
effect by compensating extraction, separation, and detection variabilities due to the almost identical
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properties between analytes and their stable isotope, labelled analogues [78]. SIDA has been widely
employed for LC-MS [7,36,41] and GC-MS [19,25,27,30-33] methods for volatile thiols analysis, and
both 2H [7,19,25,30,32,33,36,41] and 13C labelled [27] internal standards have been used in various
cases (Table 2, Entries with bolded numbers). Typically, the ideal degree of atom labelling should be
greater than two [76], but d,-3-SHA [36] and d,-3-SH [30,36] have been reported in a few cases as
stable isotope labelled IS. Additionally, the elution of stable isotope labelled IS generally occurs slightly
earlier than analytes depending on the extent of isotope incorporation, and such examples can be seen
for both GC [31,32] or LC [7,41]. However, the co-elution of analytes and stable isotope labelled IS
would be desirable to completely compensate for matrix effects [78].

Indeed, SIDA does not guarantee the complete elimination of matrix effects for thiol analysis in
wine. It has been shown that deuterated IS spiked into an oxidised wine somehow underwent a faster
oxidation than native analyte, which led to a persistent matrix effect [30]. On the other hand, phenols or
pigments in red wines have a potentially significant impact on LC-MS/MS signal responses, as evident
when comparing calibration curve slopes from different wine and model wine matrices [41]. However,
the main limitation with SIDA for thiol analysis is that stable isotope labelled internal standards are
often not commercially available or they are expensive to obtain [79]. The same issue applies to stable
isotope labelled derivatisation, but it does offer a straightforward and accurate method for quantitative
analysis [44] once the reagents have been prepared. Finally, even though stable isotope labelled IS
cannot always correct for matrix effects occurring during detection, they are still ideal for overcoming
variabilities in extraction, reaction, or adsorptive losses, for instance, which is essential for accurate
quantitative analysis.

5. Conclusions and Outlook

This review presents an up-to-date overview of the analysis of potent volatile thiols in foods and
beverages, with a focus on wine analysis, because that is where many of the methodological advances
have arisen. It covers topics from traditional selective extraction, chemical derivatisation (for LC or
GC), chromatographic and MS instrumentation, matrix effects, and quantitation considerations. The
identification of new volatile thiols and quantitation of known thiols have been made possible over
the past three decades thanks to the development of specific thiol extraction methods in combination
with sensitive analytical instrumentation. The major observations regarding the current state of potent
volatile thiol analysis are: (1) extractions consisting of some form of thiol derivatisation are a popular
choices due to their efficiency and simplicity; (2) GC coupled to different detectors (e.g., O, sulfur
selective detectors, and MS) are still of considerable utility for discovering new thiol odorants, although
newer LC-MS/MS approaches with thiol-specific derivatisation and precursor ion scan experiments
also look promising; (3) recently developed quantitative LC-MS methods usually outperform existing
GC-MS counterparts when considering the whole protocol, from isolation to analysis; and, (4) SIDA
approaches are frequently applied for reliable quantitation.

Undoubtedly, the analysis of potent volatile thiols has been greatly advanced; however, there is still
room to further improve the analytical performances to develop faster, more cost-effective, and greener
methods that can provide more comprehensive information. In terms of specific extraction, currently
available techniques could be coupled with the popular MS detection for the sensitive analysis of
volatile thiols. For instance, inspiration could be drawn from the analysis of low molecular weight thiols
in water as their p-HMB-thiol complexes by LC-ESI-MS/MS after online SPE preconcentration [16].
This offers a stable, sensitive, and selective means for thiol analysis, although the use of mercury
features again, and its application to potent volatile thiols in foods and beverages would still need
to be investigated. New approaches that apply novel extraction materials should be continuously
designed for low cost and effective isolation of volatile thiols, apart from maximising the potential of
currently available extraction methods. For example, the potential of novel molecularly imprinted
polymer SPME fibres for volatile analysis keeps growing [80], and it seems plausible that SPME fibre
coatings could also be customised for volatile thiol extraction. The same can be suggested for SPE

76 of 182



Chapter 2 | Publication | Review | Analysis of volatile thiols
Molecules 2019, 24, 2472 20 of 24

sorbent materials, given the recent example of an Ag* based SPE cartridge that has been proposed for
volatile thiol analysis [28].

Regarding the future of chromatographic separation in the analysis of volatile thiols, emerging
trends include the testing of novel stationary phases and new separation techniques. With respect to the
stationary phases, new generation superficially porous silica LC columns have been made commercially
available and reported for the separation of a variety analytes [81]. These columns are compatible with
conventional HPLC instrumentation (including MS), and the chemistries of the stationary phases are
similar to conventional C18 columns, but they offer faster and more efficient separation [81]. Other than
new generation LC columns, there are also other stationary phases of potential interest. As an example,
a polysaccharide-based chiral LC column has not only demonstrated good analytical performance for
separation of thiol enantiomers, but it also revealed the possibility to simultaneously analyse other
important achiral volatile thiols [41]. Alternative separation techniques should be also considered,
besides improving separation through new columns. The excellent separation efficiency achieved for
volatile thiol derivatives by ultraperformance convergence chromatography [42] offers a glimpse of
what the future may hold in terms of speed and sensitivity.

The trend for detection is that QqQ and high resolution (Q-TOF or Orbitrap) MS will be more
prevalent for both the identification and quantitation of potent volatile thiols. The use of QqQ for
LC-MS/MS analyses of thiols has grown strongly in recent years and offers a number of benefits in
comparison to GC-MS methods. Future advances should take advantage of the unique fragmentation
patterns (with diagnostic fragmented ions) and precursor ion scan mode in LC-MS/MS for the
preliminary screening of unknown volatile thiols. Q-TOF and Orbitrap MS detection will also be
ideal for such purposes (based on unique isotope pattern of diagnostic ion) due to their unparalleled
resolution power and the ability to determine molecular formulas. A few recent reports [37,38,43,49]
have explored this non-targeted approach, but ongoing research is required to better answer the
complex sensorial, (bio)chemical, and microbiological questions that surround potent thiol odorants in
foods and beverages.
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A number of polyfunctional thiols are well-recognised as some of the most potent aroma compounds in
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1. Introduction

Aroma and flavour analysis is a complex and important scientific
field that contributes to the understanding of volatile compounds
that are crucial to sensory properties of (and preference for) foods
and beverages. Of particular interest are certain key odorants,
designated character impact compounds [1], which can be associ-
ated with the characteristic aromas of a product such as coffee,
pepper, or wine. Indeed, passionfruit and citrus aromas emanating
from Sauvignon blanc wines are primarily due to polyfunctional
thiols, especially 3-sulfanylhexan-1-ol (3-SH, 1) and related 3-
sulfanylhexyl acetate (3-SHA, 2), which are potent volatiles found
at nanogram-per-litre concentrations [2,3]. Notably, these varietal
thiols, as they are also known, are present as pairs of enantiomers
due to the chiral centre at position C-3. The racemic mixtures of 1
and 2 have reported odour detection thresholds in hydroalcoholic
solution of 60 and 4.2 ng/L, respectively [3], but the enantiomers
exhibit different detection thresholds and aroma qualities (Table 1)
[4], such that the sensory profiles of wine can be affected by
different enantiomer ratios [5]. However, quantitative data for the
enantiomers of 1 or 2 in wines are scarce and understanding of
their sensory effects in different wines in relation to their con-
centrations, and of the factors affecting their distribution profiles, is
currently very limited.

Perhaps the main reason that enantiomers of 1 and 2 have been
ignored by wine chemists is due to the analytical challenges asso-
ciated with the ultra-trace occurrence of these reactive thiols [7].
This is coupled with the demanding task of synthesising and pur-
ifying authentic standards and labelled analogues. To our knowl-
edge, work addressing these enantiomers in wine is apparently
limited to a 2006 report of Tominaga et al., in which enantiomers of
2 were not fully resolved and no quantitative data were given for
either set of enantiomers [4], and to a Master thesis, where only 1
was analysed [6]. In those studies the thiols were isolated using p-
hydroxymercuribenzoate (p-HMB) [4] or derivatised with 2,3,4,5,6-
pentafluorobenzyl bromide (PFBBr) [6] and subjected to GC-MS
analysis using cyclodextrin-based capillary columns. The only re-
ported concentrations for enantiomers of 1 ranged from 368 to
1129 ng L' for (S)-1 and 275—-1031 ng L~ ! for (R)-1 in a small
survey of predominantly commercial Australian Sauvignon blanc
and Chardonnay wines (Table 1), with ratios of approximately
50:50 but slightly favouring the (S)-enantiomer in most cases
(although the two botrytised wines included in Table 1 were re-
ported to be closer to 60:40 for (S):(R)) [6]. A similar uniform ratio
for 1 (with slight preponderance for (S)-1) and somewhat different
ratio for 1 in botrytised wines (70:30 for (S):(R)) was observed in
the 2006 study involving some French white wines, in which 2 was
also found with (S):(R) ratios of around 70:30 [4]. Note that reso-
lution of enantiomers of 1 and 2 has been reported for yellow
passionfruit using multi-dimensional GC with flame photometric
detection [8,9], but as with many methods for analysis of

polyfunctional thiols, the sample preparation is tedious.

We recently reported a stable isotope dilution analysis (SIDA)
method for determination of polyfunctional thiols in wine that
greatly simplified the sample preparation phase. In that work,
thiols were derivatised in situ with 4,4'-dithiodipyridine (DTDP)
followed by solid-phase extraction (SPE) and HPLC-MS/MS analysis
of the reconstituted extracts. We now report an important expan-
sion of this method to encompass quantitation of the enantiomers
of 1 and 2 using a chiral HPLC column. This necessitated synthesis
of authentic thiol—4-thiopyridine disulfides of 1 and 2 (i.e., 3 and 4,
see Fig. 1) for chiral column screening and further method devel-
opment. The method was fully validated in different wine matrices
and was applied to a range of commercial wines to investigate the
enantiomer profiles of 1 and 2.

2. Material and methods
2.1. Chemicals

The following chemicals and reagents were purchased from
commercial suppliers: 1H-benzotriazole (BtH, 99%), 4-thiopyridine,
4.4'-DTDP, acetaldehyde, formic acid, ammonium bicarbonate, eth-
ylenediaminetetraacetic acid (EDTA), and ethylenediaminetetra-
acetic acid disodium salt (EDTA 2Na) (Sigma-Aldrich, Castle Hill,
NSW, Australia); acetic acid (Chem-Supply, Gillman, SA, Australia);
HPLC-grade acetonitrile (MeCN), ethanol (EtOH), and methanol
(MeOH) (Merck, VWR, Tingalpa, QLD, Australia); C18 Bont Elut SPE
cartridges (500 mg, 6 mL, Agilent, Mulgrave, VIC, Australia). Water
was obtained from a Milli-Q system (Millipore, North Ryde, NSW,

Australia).
The following compounds were previously prepared in-house or
synthesised according to  published procedures: 1-

chlorobenzotriazole (BtCl) [10]; disulfide standards 3 and 4 [11];
thiol standards 1 and 2 [12]; deuterium-labelled internal standards
d10-1[13] and ds-2 [12]; pure enantiomers of (R)- and (S)-1 [4], and
(R)- and (S)-2 [4].

2.2. NMR spectroscopy

Proton ('H) and carbon (13C) nuclear magnetic resonance (NMR)
spectra were recorded with a Varian spectrometer operating at
500 MHz for proton and 125 MHz for carbon nuclei, respectively.
Chemical shifts were recorded as ¢ values in parts per million
(ppm). Spectra were acquired in CDCl3 at 26 °C, and the resonances
were assigned by routine 2D correlation experiments.

2.3. High-resolution mass spectrometry (HRMS)
Spectra were obtained on an Agilent G6530B Q-TOF mass

spectrometer with electrospray ionisation (ESI) in positive mode
using solutions prepared in water at approximately 10 mg L1,

Table 1
Structures, sensory thresholds, sensory descriptors, and concentrations of enantiomers of 3-SH 1 and 3-SHA 2 previously reported in wine.
(R)-3-SH (S)-3-SH (R)-3-SHA (S)-3-SHA
Structure SH SH SH o SH o)
OH OH (©) (0]
Threshold® (ng L) [4] 50 60 9 2.5
Sensory description [4] grapefruits, citrus peel passionfruit passionfruit boxwood

Concentration” (ng L") [6]

275—-1031 (219, 2998

368—1129 (356, 4396)°

not reported

not reported

¢ In model wine media.

> Commercial Sauvignon blanc (n = 12) and Chardonnay (n = 1).

€ Values in parentheses are for botrytised Semillon (n = 1) and botrytised Sauvignon blanc (n = 1), respectively.
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Fig. 1. Approach to resolving and determining enantiomers of 3-SH 1 and 3-SHA 2 in wine using chemical synthesis of thiol-DTDP derivatives, chiral column screening, deri-
vatisation in wine and SPE clean-up, and precise quantitation by SIDA with chiral HPLC-MS/MS. Steps marked with grey shading were based on the report of Capone et al. [14] for
racemic thiol analysis. Atom numbering of 3 and 4 relates to the numbering used for NMR structural assignments (see Figs. S2—S5 of the Supplementary material for NMR spectra).

2.4. Synthesis of standards 3 and 4 for chiral screening

2.4.1. 3-(Pyridin-4-yldisulfanyl)hexan-1-ol (3)

4-Thiopyridine (104 mg, 0.93 mmol) was added to dry
dichloromethane (1 mL) containing BtCl (220 mg, 1.43 mmol) and
BtH (109 mg, 0.91 mmol) at —78 °C and under N,. The solution was
stirred at —78 °C for 2 h and then 3-SH 1 (185 pL, 1.35 mmol) was
added at —20 °C and stirring continued at this temperature for
0.5 h. The reaction was quenched with aqueous solutions of
Na;S,03 (3.4 mL) and saturated NaHCOs3 (6.8 mL) with rapid stirring
at 0 °C for 20 min. The reaction mixture was extracted with
dichloromethane (3 x 30 mL) and the combined organic extracts
were dried over MgSO4 and filtered. The residual solvent was
removed in vacuo to afford a white solid (468 mg), which was
purified by flash chromatography on silica (10% MeCN/CH,Cl,,
Rf = 0.50) to give compound 3 as a pale yellow oil (43 mg,
0.18 mmol, yield 19%) with purity > 95% (by "H NMR).

'H NMR (500 MHz, CDCls, §) (Atom numbering as in Fig. 1): 8.45
(2H, d,J = 5.0 Hz, Hy), 7.46 (2H, d, ] = 5.0 Hz, H3 5), 3.84—3.73 (2H,
m, Hg), 2.99 (1H, quint, ] = 6.2 Hz, H7), 1.86 (2H, q, ] = 6.7 Hz, Hg),
1.72 (1H, s, OH), 1.62—1.57 (2H, m, Hyg), 1.54—1.41 (2H, m, Hy1), 0.87
(3H, t, ] = 7.5 Hz, Hy2); >C NMR (125 MHz, CDCls, 6): 149.68 (Ca),
149.26 (Cy6), 120.25 (C35), 59.89 (Co), 49.21 (C7), 36.61 (Cs), 36.16
(C10), 19.92 (Cqq), 13.70 (Cq2). ESI-HRMS (m/z): [M+H] calcd. for
C11H17NOS3, 244.08299; found, 244.08277; HPLC-ESI-MS/MS of m/
z 244 (m|z, %): 144 (100), 111 (1).

2.4.2. 3-(Pyridin-4-yldisulfanyl)hexyl acetate (4)

The same synthetic procedure described above was employed,
using 4-thiopyridine (108 mg, 0.97 mmol), BtCl (228 mg,
149 mmol), BtH (115 mg, 0.97 mmol) and 3-SHA 2 (243 uL,
1.35 mmol), affording compound 4 as a colourless oil (57 mg,
0.2 mmol, 21%) with >97% purity (by 'H NMR) after purification
(40% MeCN/CH,Cly, Rf = 0.45).

TH NMR (500 MHz, CDCls, 6) (Atom numbering as in Fig. 1): 8.47
(2H, d,J = 5 Hz, Hy), 7.46 (2H, d, ] = 5 Hz, H35), 4.23—4.15 (2H, m,
Ho), 2.87 (1H, quint, ] = 6.2 Hz, Hy), 2.02 (3H, s, Hy4), 1.93 (2H, q,
J = 6.7 Hz, Hg), 1.63—1.57 (2H, m, Hyg), 1.51-1.39 (2H, m, Hy1), 0.87
(3H, t, ] = 7.5 Hz, Hy). 3C NMR (125 MHz, CDCl3, 6): 171.31 (C13),
149.91 (Cz,4,6), 120.74 (C35), 62.12 (Cg), 49.64 (C7), 36.42 (Cyp), 33.15
(Cg), 21.23 (Cy4), 20.41 (Cyq), 14.16 (Cy2). ESI-HRMS (m/z): [M+H]*
caled. for C13H19NO2S3, 286.09354; found, 286.09379; HPLC-ESI-
MS/MS of m/z 286 (m/z, %): 226 (49), 144 (100), 143 (63), 115 (27),
111 (3).

2.5. Stock and working solutions

Individual stock solutions of racemic 1 and 2 were prepared
volumetrically with pure standards in ethanol. Appropriate aliquots
of the stock solutions were combined and diluted volumetrically
with ethanol to yield ten different working solutions. Internal
standard solution (combined deuterated IS) and pure single enan-
tiomer solutions were prepared volumetrically in ethanol. Solu-
tions containing free thiols had EDTA (3 g L) added, were flushed
with Ny, and stored in glassware at —20 °C. Synthetically-prepared
3 and 4 were dissolved in 10% aqueous ethanol solution and stored
at4 °C.

2.6. Wine samples

Commercial wines obtained from retail outlets were used for
method validation (a Sauvignon blanc (SAB), a rosé, and a red
blend) and a survey (Table S1 of the Supplementary material).
Model wine (MW) solution used for validation consisted of 10% (v/
v) aqueous ethanol saturated with potassium hydrogen tartrate and
pH adjusted to 3.4 with tartaric acid solution.

2.7. Sample preparation

Thiols were derivatised and extracted as detailed previously
[14]. A fresh set of matrix-matched calibration samples and quality
control samples (QCs) were prepared with each batch of samples to
be analysed. Reconstituted extracts were run immediately or stored
at —20 °C before HPLC-MS/MS analysis.

2.8. Analytical method development

2.8.1. Chiral column screening

Lux Amylose-1, Amylose-2 and Cellulose-1 were screened for
their chiral resolution ability using synthetic 3 and 4. Chiral
screening was performed by PhenoLogix [15] using columns that
were 100—250 mm in length with 4.6 mm i.d. and 5 pm particle size
(Phenomenex, Torrance, CA, USA). Mobile phase compositions used
for column screening are summarised in Table S2 of the Supple-
mentary material. Solutions of 3 and 4 were prepared in the mobile
phases being tested at concentrations of 1 mg mL~!, and detected at
254 nm.
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2.8.2. Optimisation of enantiomer separation

Lux Amylose-1 and Amylose-2 columns (150 x 2.0 mm, 3 um
particle size, Phenomenex, CA, USA) protected by guard cartridges
(4 x 2.0 mm) of the same material were selected for method
development and optimisation. A ThermoFinnigan instrument
consisting of a Surveyor HPLC and a LCQ Deca XP Plus mass spec-
trometer fitted with an electrospray ionisation source (ESI) was
used. HPLC parameters trialled included: eluents consisting of
different percentages of MeCN or MeOH and water, and organic
additive (either formic acid, ammonium formate, or ammonium
bicarbonate); flow rate at either 0.150, 0.180, 0.200 or
0.300 mL min~!; column temperature at either 15, 20 or 25 °C;
injection volume of 10 or 20 pL; various isocratic or gradient
methods. MS data were recorded in full scan mode at m/z 50—1000
amu. Instrument control and data acquisition were managed using
Xcalibur software (version 1.3).

2.9. HPLC-MS/MS method validation

Method validation and quantitative analyses were performed
with an Amylose-1 column (150 x 2.0 mm, 3 um particle size)
protected by a guard cartridge (4 x 2.0 mm) and connected to
either an Agilent 1200 HPLC (including a 1290 binary pump)
equipped with an Applied Biosystems 4000 QTRAP hybrid tandem
mass spectrometer or an Sciex ExionLC AD connected to a Sciex
QTRAP 6500" tandem mass spectrometer, both with a TurboV
source (with IonDrive for the 6500) fitted with TurbolonSpray
probe. Positive ESI with a source voltage of 5500 V was used for all
analyses with an injection volume of 10 pL and column tempera-
ture set at 25 °C. Eluents were prepared freshly before use and
consisted of 5 mM aqueous ammonium bicarbonate (A, pH = 8.7)
and acetonitrile (B), with a flow rate of 0.300 mL min~ . The pro-
gram for solvent B was 0 min, 65%; 10 min, 65%; 10.5 min, 90%;
25 min, 90%; 25.1 min, 65%; 30 min, 65%. MS data were recorded in
multiple reaction monitoring (MRM) mode with the same MRM
transition pairs for analytes and deuterium internal standards as
previously reported [14], and optimised source parameters (gases,
temperature) for each instrument. Analyst software (versions 1.6.2
and 1.6.3) was used for instrument control and data acquisition. The
optimised method was validated according to standard procedures
[16]. Other polyfunctional thiols could also potentially be evaluated
but were not the focus of this work (Fig. S1 of the Supplementary
material).

2.9.1. Elution order assignment

Elution orders of the enantiomers of 1 and 2 were initially tested
using pure enantiomers spiked in model wine and derivatised with
DTDP. Peak identity was also confirmed in wine by fortifying pure
enantiomers in a charcoal-stripped Sauvignon blanc wine
(100 g L~ charcoal with stirring for 2 h followed by filtration
through a 2.5 um filter paper) followed by derivatisation, SPE and
HPLC-MS/MS analysis. (R)-1 (0, 500, 1500 ng L~') and (R)-2 (0, 100,
300 ng L~ 1) were spiked into the charcoal-stripped wine that was
previously spiked with racemic 1 (1000 ng L™!) and 2 (200 ng L™1).
This led to wine samples containing consistent concentrations of
(S)-enantiomers (500 ng L~ for 3-SH 1 and 100 ng L~ for 3-SHA 2)
and increasing concentrations of (R)-enantiomers (500, 1000, and
2000 ng L' for 3-SH 1; 100, 200, and 400 ng L~! for 3-SHA 2). The
samples were prepared and analysed according to the optimised
method.

2.9.2. Linearity and matrix effects

Racemic calibration solutions were prepared in duplicate at ten
concentrations (0, 156.3, 312.5, 625, 937.5, 1250, 1562.5, 1875,
2187.5 and 2500 ng L~ for each enantiomer of 1; 0, 31.3, 62.5, 125,

187.5, 250, 312.5, 375, 437.5 and 500 ng L~ for each enantiomer of
2) using MW, and a Sauvignon blanc, a rosé, and a red wine. Line-
arity was tested across the given concentration range by regression
analysis and expressed as coefficients of determination (R?).
Regression models were evaluated by a D'Agostino-Pearson
omnibus K? normality test of residuals [17]. For matrix effects,
slopes of curves in different matrices were compared using the
following equation [18]:

Matrixeffect (%) (l Slope of calibration curveinreal wine >

" Slope of calibration curvein modelwine
= 100

2.9.3. Accuracy and precision

Accuracy was evaluated through recovery (%) and Z-score of six
replicate samples spiked with analytes at low and high levels in
each matrix. Precision was expressed using within-laboratory
(indicated by subscript r) relative standard deviation (RSD;) and
Horwitz ratio (HorRat;) [19]. Six replicates spiked at two concen-
trations (312.5 and 1562.5 ng L~! for enantiomers of 1; 62.5 and
312.5 ng L~ for enantiomers of 2) within the calibration range were
prepared and analysed in one batch along with calibration samples
in each matrix.

2.94. Limits of detection and quantitation

The limit of detection (LOD) and limit of quantitation (LOQ)
were estimated based on 3 and 10 times the error of y-intercept
divided by the slope obtained from full calibration curves [20].

2.10. Statistical analysis

Mean values, standard deviations (SD), RSD;, HorRat;, linear
regressions, and Pearson correlations were calculated in Microsoft
Excel (Professional Plus version, 2013). Normality testing (o = 0.05)
for evaluation of regression residuals was performed using
GraphPad Prism 7 (GraphPad Software, Inc.).

3. Results and discussion
3.1. Method development for chiral analysis of 1 and 2

3.1.1. Experiment design and column screening

A recently developed HPLC-MS/MS method for determination of
polyfunctional thiols in wine using in situ derivatisation with DTDP
[14] was also suited to chiral analysis of 1 and 2 as their mixed
disulfide derivatives 3 and 4. This necessitated switching from an
achiral C18 phase to a chiral stationary phase (CSP) but to our
knowledge there was no relevant literature precedent for the
separation of the enantiomers similar to 3 and 4. The expense of
chiral HPLC columns discounted a trial and error approach, so chiral
screening by Phenologix [15] was used to determine the most
appropriate CSP. First, authentic standards 3 and 4 were syn-
thesised using a one-pot procedure for asymmetric disulfide for-
mation mediated by BtCl [11]. New compounds 3 and 4 were fully
characterised and used for screening of commercially-available
polysaccharide chiral HPLC columns (Fig. 1).

Initial screening was conducted with three Lux polysaccharide-
based columns (4.6 mm i.d.) under various MS compatible mobile
phase conditions (Table S2 of the Supplementary material).
Amylose-1 and Amylose-2 columns were the best options based on
the screening, having successfully resolved the enantiomers of 3
and 4, with Amylose-2 affording a run time of about 15 min and
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Amylose-1 greater than 30 min (Table S2 of the Supplementary
material). We chose a column diameter (2.0 mm) that used less
solvent and was more compatible with HPLC-MS and began with
the chromatographic conditions used for column screening as a
starting point for HPLC-MS/MS method optimisation.

3.1.2. HPLC-MS/MS method optimisation

When transferring the chromatographic conditions used for
column screening to HPLC-MS/MS for optimisation, the previously
observed separation of enantiomers using a 4.6 mm i.d. Amylose-2
column could not be achieved with the 2.0 mm counterpart. En-
antiomers of 3 remained well resolved but the baseline resolution
for 4 could not be replicated (« = 1.04), even though a number of
HPLC parameters (see section 2.8.2) including mobile phase
composition, organic additive, flow rate, column temperature, and
gradient program were trialled (data not shown).

The chiral resolution of 3 and 4 on a 2.0 mm i.d. Amylose-1
column was better than that obtained on Amylose-2. Isocratic
elution with 5 mM ammonium bicarbonate water:acetonitrile
(40:60, v/v) achieved full enantioseparation of both thiol de-
rivatives, but the initial HPLC-MS/MS run lasted almost 50 min
(data not shown). Curiously, three out of the four peaks arising from
the two pairs of enantiomers eluted within the first 10 min,
whereas extreme retention was noted for one enantiomer of 3-SH
derivative 3, necessitating the long run time. Therefore, the iso-
cratic method was changed to incorporate an isocratic stage and
essentially a step gradient (see section 2.9), with a higher flow rate
to decrease the run time to 30 min.

The separation results achieved with the two chiral columns
demonstrated the profound effect of CSPs on chiral resolutions of
given compounds. The retention factors and selectivity values of 3
and 4 are given in Table 2. Under optimised chromatographic
conditions, the enantiomers of 3 and 4 were separated on an
Amylose-1 column with respective selectivity values a« = 5.69 and
1.73, which were higher than those on Amylose-2 (« = 3.67 and
1.04 for the enantiomers of 3 and 4, respectively). The CSPs of
Amylose-1 and Amylose-2 are amylose 3,5-
dimethylphenylcarbamates (ADMPC) and amylose 3-chloro-5-
methylphenylcarbamates (ACMPC), respectively, which differ at
the 3-position of the phenyl moiety (electron-donating methyl
group on Amylose-1 vs. electron-withdrawing chloro group on
Amylose-2). These substituents, along with the carbamate and ar-
omatic functionalities, are key factors affecting chiral recognition
(via hydrogen bonding, dipole-dipole and w-7 interactions);
intramolecular hydrogen bonding of adjacent carbamates is also
important as it gives these CSPs higher-order structure [21]. A
previous study indicated that higher hydrogen-bonding ability
would be expected from polysaccharide CSPs substituted with a
halogen rather than an alkyl group, which explained the better
separation of chiral sulfoxides on halogen-containing CSPs [22]. In
our case, we observed opposite results on the two CSPs, which may
suggest that the chiral recognition between 3, 4 and the CSPs
involved interactions other than hydrogen-bonding alone.

Table 2

Retention factors (k; and k) and selectivity values («) for 3-SH and 3-SHA de-
rivatives on Amylose-1 and Amylose-2 columns under respective optimised HPLC-
MS chromatographic conditions.®

Analytes Amylose-1 (ADMPC) Amylose-2 (ACMPC)

ki ko o ki k2 a
3-SH derivative 3 1.89 10.76 5.69 1.56 573 3.67
3-SHA derivative 4 131 227 1.73 6.38 6.61 1.04

2 Detailed in section 2.9 for Amylose-1. Amylose-2 used isocratic 5 mM aqueous
ammonium bicarbonate:MeCN (60:40) and a flow rate of 0.200 mL min~".

Other factors such as chromatographic conditions and chemis-
try of chiral analytes may also account for separation differences.
The chiral derivatives 3 and 4 are structurally similar, only differing
at the C-1 position, where 3 (and 3-SH 1) possesses a hydroxyl
group whereas 4 (and 3-SHA 2) has an acetoxy group. On ADMPC
(Amylose-1), stronger retention was observed for enantiomers of 3
(k1 =1.89, ky = 10.76) than 4 (k; = 1.31, ky = 2.27), which indicated
that 3 could interact strongly through the hydroxyl group with
ADMPC compared to the acetoxy group. However, the opposite
trend was seen on ACMPC where 4 (k; = 6.38, ky = 6.61) showed
greater retention than 3 (k1 =1.56, k = 5.73, Table 2). These results
mirrored the previous observation of better chiral resolution of
hydroxyl compounds (cannabinoids) on ADMPC compared with
their acetylated analogues [23]. The theory that blocking the hy-
droxyl group by acetylation would result in lower separation was
previously confirmed by conformational analysis [23], although the
effect may be solvent-dependent [24].

Apart from the abovementioned observations, the obvious
enantiomeric bias of ADMPC for 3, with a selectivity factor o = 5.69,
was noteworthy. Extreme HPLC enantioseparation cases on ADMPC
have previously been reported for other compounds [25], but the
exact reasons for such retention of one enantiomer of 3 were not
investigated further in the present study.

3.1.3. Elution order assignment

The order of elution for enantiomers of 3 and 4 was determined
using enantiopure synthetic (R)- and (S)-forms of 1 and 2. Model
wine spiked with individual pure enantiomers yielded a single
peak per enantiomer that had the same retention time and mass
spectrum as one of the peaks arising from the respective synthetic
racemate of 1 and 2 (data not shown). This was further confirmed
by fortifying a charcoal-stripped Sauvignon blanc wine with pure
enantiomers; this involved spiking with increasing amounts of (R)-
enantiomers while the amounts of (S)-enantiomers, originating
from a spike of racemic 1 and 2, remained constant. Deuterated
internal standards were also added, and area ratios of analyte/IS
were calculated. Samples spiked with (R)-enantiomers of 1 and 2
yielded corresponding increases in area ratios, confirming the peak
identities (Fig. 2).

The retention times of enantiomers of 1 and 2 as their de-
rivatives were: (R)-4, 4.15 min; (S)-3, 5.21 min; (5)-4, 5.80 min; (R)-
3, 21.18 min. An example MRM chromatogram is shown in Fig. 3.
Notably, 1 enantiomers were remarkably resolved on Amylose-1,
with extreme retention of (R)-1 (and a broader peak, Fig. 3),
whose retention time could not be decreased any further.

3.1.4. HPLC-MS/MS method validation

Validation of this SIDA method [ 16] encompassed the evaluation
of linearity, matrix effects (ME), accuracy, precision, and sensitivity
(LOD and LOQ) with the primary focus on the enantiomers of 1 and
2 (Table 3). Nonetheless, achiral polyfunctional thiols including 4-
methyl-4-sulfanylpentan-2-one (4-MSP), 2-furfurylthiol (FT), and
benzenemethanethiol (BMT) could potentially be evaluated on this
column (Fig. S1 of the Supplementary material) but this was not
pursued further for this study.

3.14.1. Linearity and matrix effects. Linearity and matrix effects
were evaluated from calibration curves prepared with racemic 1
and 2 over the spiking range 0—2500 ng L™ per individual 3-SH 1
enantiomer and 0—500 ng L' per individual 3-SHA 2 enantiomer
in model wine and in a white, a rosé and a red wine. Calibrations
encompassed a realistic range of these thiols in wine [14]. The
curves in all matrices were fitted with simple linear regression,
which afforded R? values greater than 0.98 and mostly above 0.99
for each enantiomer (Table 3). Normality testing of residuals gave
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Fig. 2. Bar chart showing the increased analyte/IS ratios after spiking (R)-3-SH and (R)-
3-SHA. All samples contained racemic 1 at 1000 ng L™! and racemic 2 at 200 ng L™1;
(R)-1 and (R)-2 were spiked at 500 and 100 ng L™, respectively, for the low-level
spiked samples and at 1500 and 300 ng L™, respectively, for high-level spiked samples.

insignificant p-values (0.1275—0.9708), further showing that a
linear model was appropriate.

The effect of different matrices on this method was evaluated by
comparison of slopes obtained from model wine and those from
the three wine matrices. Deuterium labelled internal standards and
SPE clean-up were employed to minimise interferences. The
calculated ME are included in Table 3. Compared with model wine,
Sauvignon blanc wine showed the least effect of the matrix for all
enantiomers with ME values below 10%, which were within soft
matrix effect range (<20%) considered to be a mild signal sup-
pression/enhancement effect [18]. However, strong matrix effects
(ME>50%) were observed for (S)-1 in the red wine and (R)-1 in the
red and rosé wines. In contrast, comparing the slopes of the red and
rosé wines against each other revealed only 10% variation, indi-
cating similar impacts of the matrix for red and rosé wines (and
implying a role of phenolic compounds and pigments present in
such wines). Based on these evaluations, we recommend preparing
different matrix-matched calibration standards for specific sample

L. Chen et al. / Analytica Chimica Acta 998 (2018) 83—92

sets, i.e., calibration curve in model or white wine for white wine
samples, calibration curve in red (or rosé) wine for red and rosé
wine samples.

3.1.4.2. Accuracy and precision. Six replicates of standards of 1 and
2 were spiked into model and wine matrices at low and high
concentrations and analysed to determine the accuracy and preci-
sion of the overall analytical procedure (Table 3). In terms of ac-
curacy, mean recoveries for all analytes in the four matrices ranged
from 90% to 111% and Z-scores were within the range of —1.8 to 1.9.
Precision (repeatability) of the determinations expressed as RSD;
was between 1% and 8% depending on spiked analyte/matrix
combination. The Horwitz ratio for a single laboratory (HorRat;)
[19] was also determined as a further description of method pre-
cision. HorRat; values gained here were consistently less than 0.1
and considerably below the lower limit (0.5) of the generally
accepted range [19]. However, the analytes being considered were
at ng L~! concentrations, which leads to large predicted RSD values
and consequently low HorRat values when the results are very
precise (as is the case with our SIDA approach). Further supporting
the low HorRat; values, better precision would be expected from
intralaboratory compared to interlaboatory validation due to the
lack of biases from different instruments, laboratory operations,
etc. [19].

3.14.3. Limits of detection and quantitation. The obtained LOD
values of the enantiomers of 3-SH 1 and 3-SHA 2 in the four
matrices (<0.7 ng L~ for 1 enantiomers and 0.1 ng L~ for 2) were
all well below their respective sensory thresholds (see Table 1).
Similarly low LODs were reported for achiral methods of analysis
for 1 and 2 such as the previously reported DTDP derivatisation
method [14] that the current one is based upon, and a SIDA method
for maleimide derivatives using HPLC-MS/MS [26].

(S) 3-SH enantiomers
2.6e5
2.0e5 (R)
— 1.0e5
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8- [\
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Fig. 3. MRM chromatograms of enantiomers of 3-SH 1 and 3-SHA 2 isolated from a Sauvignon blanc wine (as their derivatives) using the optimised chiral HPLC-MS/MS method
(Section 2.9) with an Amylose-1 column. Grey line: MRM chromatograms of internal standards (d1o-1, m/z 254.5 — 144.9; ds-2, 291.3 — 144.1), black line: MRM chromatograms of

natural 1 and 2 in the sample (1, m/z 244.5 — 144.1; 2, 286.4 — 144.2).
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Table 3
Validation data in four matrices for the SIDA HPLC-MS/MS method developed for quantitation of enantiomers of 3-SH 1 and 3-SHA 2.
Analyte Matrix® Linearity ME Accuracy Precision Lop! LoQ!
R? % Recovery (%) Z-score RSD; (%) HorRat,
L H L H L H L H

(S)-3-SH MW 0.9832 93-102 93-104 -0.6—1.9 -09-14 35 48 0.07 0.14 0.6 1.8
SAB 0.9906 10 92-111 91-108 -1.1-1.6 -1.0-1.5 7.0 73 0.13 0.17 0.4 1.2
Rosé 0.9816 -20 90-104 95-104 -1.8-0.2 -1.2-14 6.6 3.2 0.12 0.08 0.6 1.8
Red 0.9965 61 91-109 97-107 -1.1-13 -1.0-1.7 79 3.6 0.15 0.09 0.3 0.9

(R)-3-SH MW 0.9901 95—-100 92-107 -1.2-15 -1.1-1.7 21 5.6 0.04 0.13 0.4 1.2
SAB 0.9965 -2 90—99 91-101 -0.7-1.5 -1.6—-1.2 31 3.7 0.06 0.09 0.3 0.9
Rosé 0.9755 61 91-103 96-101 -13-14 -1.6—-1.1 4.4 1.7 0.08 0.04 0.7 21
Red 0.9966 56 91-107 96—-99 -13-13 -14-1.0 6.0 14 0.11 0.03 03 0.9

(S)-3-SHA MW 0.9842 91-99 92-95 -14-1.1 -14-14 32 1.2 0.05 0.02 0.1 0.3
SAB 0.9931 1 91-96 99-109 -1.2-1.7 -1.1-13 1.6 42 0.01 0.08 0.1 0.3
Rosé 0.9941 21 92-100 98-101 -0.8—-1.7 -1.1-13 34 20 0.05 0.04 0.1 03
Red 0.9957 17 92-94 96—-104 -1.0-1.6 -14-13 1.1 29 0.06 0.06 0.1 0.3

(R)-3-SHA MW 0.9915 93-102 90-97 -1.1-1.6 -1.1-0.7 4.0 2.8 0.06 0.05 0.1 0.3
SAB 0.9919 -1 93-103 94-109 -1.0-1.6 -1.2-1.7 4.1 5.0 0.06 0.09 0.1 03
Rosé 0.9944 22 96—-108 98—-103 -0.8—-1.6 -1.1-1.6 5.0 1.8 0.07 0.03 0.1 0.3
Red 0.9958 13 90-100 96—-101 -1.2-14 —-0.9-1.6 39 33 0.02 0.05 0.1 03

2 MW, model wine; SAB, Sauvignon blanc wine. Concentrations of endogenous analytes occurring in the wines used for validation are shown in Table S3 of Supplementary

material.
b L, low-level standard spiked sample.
€ H, high-level standard spiked sample.
d ng L

3.2. Distribution of enantiomers of 3-SH and 3-SHA in commercial
wines

The validated method was applied to evaluate the distributions
of enantiomers of 3-SH 1 and 3-SHA 2 in a small number of com-
mercial wines (Table S1 of the Supplementary material). Out of 23
wines, enantiomers of 1 presented above their sensory thresholds
in each (Fig. 4a): in dry wines, (S)-1 ranged from 72 to 1663 ng L™!
and (R)-1 ranged from 69 to 1320 ng L', whereas considerably
higher amounts' of both enantiomers of 1 were detected in one
botrytised wine (4865 and 1755 ng L~! for (S)- and (R)-forms,
respectively). These results (in terms of summed enantiomers)
mirrored reported concentration ranges of 1 in wines [14,27—29].
Sauvignon blanc generally exhibited higher concentrations of en-
antiomers of 1 compared to the other varieties, followed by Char-
donnay and rosé wines. This agreed with the common observation
that Sauvignon blanc is characterised by high varietal thiol con-
centrations [14] but 1 has also been found to be abundant in rosé
[27,28] and Chardonnay [14] wines. Sauvignon blanc from Marl-
borough in New Zealand (i.e., SAB 1—3) contained higher amounts
of 1 with up to 2983 ng L~! combined total, which accords with
previous data showing Marlborough Sauvignon blanc wines are
normally higher in these thiols [2,29]. The red wines contained
relatively much lower concentrations of the enantiomers of 1
compared with the white and rosé styles assessed.

With respect to 2, 16 of 23 wines contained enantiomers above
the LOQ, with (S)-2 and (R)-2 ranging between 1.1-130 and
1.2-58 ng L™}, respectively (Fig. 4b). Among wines with detectable
levels of 2, 12 of them contained concentrations of (S)-2 above its
sensory threshold (2.5 ng L™, Table 1), whereas for (R)-2, only 4
wines had concentrations higher than threshold (9 ng L~1). The
odour activity values (OAV) of enantiomers of 2 implied a higher
sensory impact from (S)-2 (OAV up to 52) than (R)-2 (OAV up to 6)
in these wines. In general, Sauvignon blanc wines were frequently
seen with high levels of 2, with the highest concentration observed
in a Sauvignon blanc wine of New Zealand origin (SAB 3). The total

1 Extrapolated, (S)-3-SH outside of the calibrated range of the method.

concentrations of 2 in Sauvignon blanc wines were consistent with
previous data on wines produced in Australia [ 14| and New Zealand
[2]. Rosé wines showed relatively higher concentrations of the
enantiomers of 2 among the non-Sauvignon blanc varieties, in
accord with that reported for racemic 2 [14]. In particular, a young
Shiraz rosé wine (R3) from vintage 2017 had higher levels of 2
(especially of (S)-2) than older vintage wines (Table S1 of the
Supplementary material), which can be attributed to a relative lack
of acetate hydrolysis of 2 (i.e., conversion of 2 back to 1) compared
to aged wines [30]. Enantiomers of 2 in the botrytised wine were
present in smaller amounts, in contrast to the results for 1. In red
wines, the concentrations of enantiomers of 2 were under the LOQ.

Possible relationships within and across (S)- and (R)- forms of 1
and 2 were checked by Pearson correlation analysis. Very strong
correlations were seen for the enantiomer pairs of 1 and 2 (r > 0.99
for both; note, the botrytised sample was excluded from each
correlation analysis). Additionally, reasonable correlations existed
between the respective analyte enantiomers; that is, comparing
(5)-1 and (S)-2 (r = 0.55), and (R)-1 and (R)-2 (r = 0.54). Despite the
general chemical and biological complexity of wines, good corre-
lations presented here were not entirely surprising given that
compound 2 is derived from 1 during fermentation [7].

The relative amounts (%) of the enantiomers of 1 and 2 are
presented in Fig. 5 (excluding CH2 and WB1 for 3-SHA 2, where
only one enantiomer was detected). Across all dry wines, even
though enantiomers for 1 were roughly equally distributed
(Fig. 5a), (S)-1 appeared to be slightly more abundant than (R)-1 in
most wines; the percentage of (S)-1 ranged between 44% and 57%,
with a mean value of 52%. In the botrytised wine, (S)-1 accounted
for 74% of total 3-SH. In the case of 2, the proportion of (S)-2
dominated over (R)-2 in most wines (Fig. 5b), ranging from 48% to
71% with a mean value of 60%. The botrytised wine and SAB8 had
the highest proportion of (5)-2, at 71% in each.

The present results for 3-SH 1 were in accordance with the
previous observations that the enantiomers were more or less
uniformly distributed in dry Sauvignon blanc and Semillon wines,
but often with a slight excess of (S)-1 (at a consistent average value
of around 53%) [4,6]. Furthermore, the higher proportion of (S)-1 in
botrytised wines was also observed in those two previous studies
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Fig. 4. Concentrations of enantiomers of (a) 3-SH 1 and (b) 3-SHA 2 in a selection of commercial wine samples. Error bars indicate SD between duplicate analyses. (S): enantiomers
in (S)-form; (R): enantiomers in (R)-form; SAB, Sauvignon blanc; CH, Chardonnay; WB, white blend; SEM, Semillon; BSEM, botrytised Semillon; R, rosé; CS, Cabernet Sauvignon. For

sample details refer to Table S1 of Supplementary material.
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Fig. 5. Relative distribution of enantiomers of (a) 3-SH 1 and (b) 3-SHA 2 determined in commercial wines. (S): enantiomers in (S)-form;
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Sauvignon blanc; CH, Chardonnay; WB, white blend; SEM, Semillon; BSEM, botrytised Semillon; R, rosé; CS, Cabernet Sauvignon. For sample details refer to Table S1 of Supple-

mentary material.

and appears to be more broadly applicable. For 3-SHA 2, the results
of Tominaga et al. showed that the (S):(R) ratio was always around
70:30 whenever 2 was detected in dry Sauvignon blanc and Sem-
illon wines (40% of wines assessed) [4]. The skewed distribution of
2 [4] was more or less mirrored in our data set, where the majority
of the wines contained (S)-2 ranging from 60 to 70%, but certain
wines had slightly less (S)-2 or almost equal amounts of (S)- and
(R)-2 (i.e., a racemic mixture, as in SAB5 and CH1). However, in the
wines where 2 was virtually racemic, the levels were very low and
just above the LOQ, so any baseline noise could have influenced the
quantitation results.

Given the relatively small number of wines that have undergone
chiral analysis of 1 and 2 in the current and previous work, further
studies are required to verify the enantiomer distribution phe-
nomenon. The simple chiral method presented here will facilitate
additional studies, such as linking the stereochemistry of precursor
diastereomers in grapes to the free thiol enantiomers in wine, to

better elucidate (bio)chemical pathways. during ripening,
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3.3. Implications for relating enantiomers of 3-SH and 3-SHA to
reaction stereospecificity

With respect to the production of 3-SH 1 and 3-SHA 2 in wine,
on the basis of current knowledge these thiols are originally absent
in grapes” [31], but 1 can be generated from precursors in grape
juice by Saccharomyces cerevisiae metabolism during alcoholic
fermentation, and 2 is then derived from 1 [7]. Two major types of
precursors of 1 found in grapes are conjugates of cysteine (i.e., Cys-
1) and glutathione (i.e., GSH-1), which have been determined at pg
L~ ! levels [32—34]. In fact there exist two diastereomeric forms of
Cys-1 and GSH-1, which then link to the respective enantiomers of
1 (and thus 2) in wine [35]. In grape juice, (S)-GSH-1 and (S)-Cys-1
(referring to the stereocentre at C-3 of the hexan-1-ol chain) have

2 Approximately 100 ng L~! of 1 has been shown for Sauvignon blanc grapes
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routinely been found in greater amounts than their (R)-counter-
parts [31-33]. The dominance of (S)-GSH-1 (and thus (S)-Cys-1 due
to its role in glutathione degradation pathways) indicated reaction
stereospecificity in the conjugation between 2-hexenal and GSH,
likely as a result of an enzymatic process [32]. Stereoselectivity
studies on thiol formation during fermentation revealed that the
alkyl chain stereocentre configuration is retained during conver-
sion of (R)-GSH-1 precursor to (R)-1 (via (R)-Cys-1) [34], of (R)-Cys-
1 to (R)-1 [13], and of (S)-Cys-1 to (S)-1 [13]. Furthermore, upon
fermentation of a diastereomeric mixture of (R)- and (S)-Cys-1, (S)-
1 was produced in amounts that were almost three times higher
than (R)-1 in the final ferments [34], although almost equal
amounts of (R)- and (S)-1 were reported elsewhere [13]. The dif-
ferences between production of (R)- and (S)-1 could result from
different expression levels of tryptophanase enzymes [35] in yeast,
and precursor diastereomer ratios are likely to play a role (if they
are indeed important precursors to thiols in wine).

A reasonably high proportion of (S)-1 (over 60%) was observed
by Tominaga et al. at the beginning of fermentation but by the end,
both (S)- and (R)-1 were present in similar amounts (albeit slightly
in favour of (S)-1 as noted above) [4]. The initial difference could
potentially relate to the greater abundance of (S)-Cys-1 and (S)-
GSH-1 in grapes and juices together with the favoured selectivity of
B-lyase towards producing (S)-1 at the beginning of fermentation.
The reason for the subsequent equalisation of (S)- and (R)-1 during
fermentation is presently unknown, but could potentially arise due
to differences in enzyme expression or activity as fermentation
progresses [4]. In contrast, 2 was observed to be produced consis-
tently in favour of its (S)-enantiomer throughout fermentation,
leading to the predominance of (S)-2 in the end [4]. The dispro-
portionate production of (5)-2 from the beginning of fermentation
could be related to the higher occurrence of its precursor (S)-1 at
the same time; hypothetically, the enzymatic reaction yielding (S)-
2 was triggered at an early stage of fermentation such that the
proportion of (S)-2 did not change thereafter. Substrate selectivity
as a function of the enzymes involved in O-acylation of 1 has pre-
viously been proposed but three different yeast strains had no in-
fluence on enantiomer distributions of 1 and 2 during fermentation
[4]. Interestingly, the greater abundance of (S)-1 found in botrytised
wine (above 70%), including throughout fermentation [4], in
conjunction with a relatively stable proportion of (S)-2 (around
70%) suggests that botrytis infection and elevated (S)-1 proportions
have little effect on 3-SHA 2 enantiomer distribution. Whatever the
reasons, it should be noted that monitoring evolution of enantio-
mers during fermentation has only been tested under limited cir-
cumstances [4] and much more could be done to understand the
factors involved.

4. Conclusions

This study presents a new SIDA chiral HPLC-MS/MS method for
quantitation of enantiomers of polyfunctional thiols 3-SH 1 and 3-
SHA 2 in wine. Method development consisted of the synthesis of
authentic DTDP derivatives, chiral column screening, and chro-
matographic optimisation. Enantiomers of 1 and 2 in wine were
separated using a polysaccharide based chiral column and the
method was fully validated in model and real wine matrices,
revealing excellent performance with respect to linearity, accuracy,
precision, and sensitivity. The method was successfully applied to a
selection of commercial white, red, and rosé wines to examine the
enantiomer profiles, revealing that enantiomers of 3-SH 1 were
almost equally distributed in dry wines regardless of variety,
whereas a botrytised wine showed elevated (S)-1. Enantiomers of 2
in dry and botrytised wines were nearly always present in favour of
(S5)-2 over (R)-2, with a ratio of up to 70:30. This method enables

further investigation of additional aspects associated with the
enantiomer profiles of 1 and 2 in wine, including studies on their
relationship to the diastereomeric precursors, changes in ratios
during fermentation, and their sensory impact on wines. Finally, it
is envisaged that the method could be extended to the evaluation of
the enantiomers of 1 and 2 in other food and beverage products.
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SHA, 4-MSP, FT, and BMT isolated as their derivatives from commercial wines, aligned with their

respective deuterium labelled analogues. S-4
Fig. S2. '"H NMR spectrum of synthesised 3-SH derivative 3. S-5
Fig. S3. 3C NMR spectrum of synthesised 3-SH derivative 3. S-6
Fig. S4. '"H NMR spectrum of synthesised 3-SHA derivative 4. S-7
Fig. S5. 3C NMR spectrum of synthesised 3-SHA derivative 4. S-8
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Table S1.

Chiral analysis of 3-SH and 3-SHA in wine

Commercial wines assessed for the distribution of enantiomers of 3-SH and 3-SHA in this
study (from Australia unless indicated with NZ for New Zealand).

Variety Code Vintage Region

Sauvignon blanc SABI1 2014 Marlborough, NZ
Sauvignon blanc SAB2 2014 Marlborough, NZ
Sauvignon blanc SAB3 2016 Marlborough, NZ
Sauvignon blanc SAB4 2014 Adelaide Hills, SA
Sauvignon blanc SABS 2015 Adelaide Hills, SA
Sauvignon blanc SAB6 2016 Reynella, SA
Sauvignon blanc SAB7 2015 Orange, NSW
Sauvignon blanc SABS 2017 Riverina, NSW
Sauvignon blanc SAB9 2016 Riverina, NSW
Sauvignon blanc SAB10 2016 Sunraysia, VIC
Chardonnay CH1 2013 Barossa, SA
Chardonnay CH2 2014 Adelaide Hills, SA
White blend ? WBI1 2014 McLaren Vale, SA
Semillon SEM1 2014 Hunter Valley, NSW
Botrytised Semillon BSEM1 2011 Riverina, NSW
Rosé ® R1 2016 Riverina, NSW
Rosé ° R2 2016 Surry Hills, NSW
Rosé (Shiraz) R3 2017 Barossa, SA
Shiraz SH1 2012 Pyrenees, VIC
Shiraz SH2 2009 Yarra Valley, VIC
Shiraz SH3 2013 Riverina, NSW
Shiraz SH4 2011 Margaret River, WA
Cabernet Sauvignon CS1 2013 Coonawarra, SA

2 Riesling, Sauvignon blanc, Marsanne, Roussane.

® Variety not specified.
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Table S2.

Chiral column screening conditions for 3-SH and 3-SHA analysed as their derivatives 3 and 4.2

Chiral analysis of 3-SH and 3-SHA in wine

3-SH Analysis Mobile 3-SHA Analysis Mobile
Column : . . b . ) . b
enantiomers  time (min) phase enantiomers  time (min) phase
Amylose-]  Daseline 35 30:70 ~ Daseline 15 40:60
resolved resolved
Amylose-2 ~ 0aseline 15 60:40 ~ pascline 15 60:40
resolved resolved
Cellulose-1 ~ 0%seline 15 60:40  Partially 15 50:50
resolved resolved

2 Data provided by Phenomenex Australia (Lane Cove, NSW, Australia).
5 All tested chromatographic conditions were isocratic methods using 5 mM ammonium
bicarbonate:MeCN mobile phase.

Table S3.

Endogenous concentrations (ng L) of enantiomers of 3-SH and 3-SHA present in commercial

bag-in-box wines used for method validation.

SAB Rosé Red
(S)-3SH 1173 189 130
(R)-3SH 931 182 125
(S)-3SHA 38.8 7.6 3.7
(R)-3SHA 23.8 8.3 2.5
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Chiral analysis of 3-SH and 3-SHA in wine
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Fig. S1. Comparison of HPLC-MS/MS(ESI+) MRM chromatograms of enantiomers of 3-SH
and 3-SHA, 4-MSP, FT, and BMT isolated as their derivatives from commercial Sauvignon
blanc (3-SHA) and Chardonnay (3-SH, 4-MSP, FT, and BMT) wines, aligned with their
respective deuterium labelled internal standards (d10-3SH, ds-3SHA, d10-4MSP, ds-FT, and ds-
BM). Blue line: MRM chromatogram of internal standard; black line: MRM chromatogram of

analyte.
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ABSTRACT: Five co-located clones of Sauvignon blanc grapes were fermented under controlled conditions at laboratory-scale
to investigate the impact of yeast strain, commercial enzyme, or nutrient addition on the concentrations of enantiomers of 3-
sulfanylhexan-1-ol (3-SH) and 3-sulfanylhexyl acetate (3-SHA) in resulting wines. The relationship of these enantiomers with the
odorless 3-SH precursors present in diastereomeric forms in grape juice was also examined. Possible variations may have existed
due to clone type, not only for the diastereomers of 3-SH precursors in juices but also for the enantiomers of 3-SH and 3-SHA in
the resulting wines, although there was no obvious stereochemical relationship between precursors and free thiols. From a flavor
enhancement perspective, the use of a commercial enzyme in the juice significantly enhanced 3-SH production for some clones.
In contrast, less impact on the production of 3-SH and 3-SHA was seen as a result of yeast strain and nutrient regardless of clone

type.

KEYWORDS: 3-sulfanylhexan-1-ol, 3-sulfanylhexyl acetate, stereochemistry, Vitis vinifera, winemaking

Bl INTRODUCTION

Chiral volatile compounds broadly distributed in fragrances,
foods, and beverages are of great interest to chemists because of
their importance to perceived aroma and flavor, and due to the
fact that different olfactory thresholds and aroma qualities can
exist for enantiomers." Aroma compounds in wine provide an
excellent example of this phenomenon, with potent chiral
thiols, 3-sulfanylhexan-1-0l (3-SH) and related 3-sulfanylhexyl
acetate (3-SHA), both existing as a pair of enantiomers that
differ in odor intensity and quality. Found at ng/L levels® and
mainly studied as racemic mixtures, these character impact
compounds are among the polyfunctional thiols deemed
important to the tropical aromas of certain varietal wines.’
The olfactory properties and detection thresholds of
enantiomer pairs for 3-SH ((R)-3-SH has a “grapefruit” or
“citrus peel” aroma with a threshold of 50 ng/L; (S)-3-SH has a
“passionfruit” aroma with threshold at 60 ng/L) and 3-SHA
((R)-3-SHA has a “passionfruit” aroma with a threshold of 9
ng/L; (S)-3-SHA has a “boxwood” aroma with a threshold of
2.5 ng/L) are distinguishable in model wine media,” and the
sensory properties of wines can be affected by the (R):(S)
ratios of enantiomers of 3-SH and 3-SHA.*

Despite the impact of 3-SH and 3-SHA on wine aroma,
studies focusing on the chiral distribution of these key volatiles
in wines are lacking, as is knowledge of factors that drive the
chiral thiol profiles. One possible reason has been the lack of a
sensitive analytical method for chiral determination of 3-SH
and 3-SHA, which has been overcome with our recently
reported approach using stable isotope dilution analysis (SIDA)
with chiral high-performance liquid chromatography coupled
with tandem mass spectrometry (HPLC-MS/MS).” This

v ACS Publica‘tions © 2018 American Chemical Society
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simple method has enabled us to begin inspecting chiral
profiles of 3-SH and 3-SHA in wines on a broad scale,” but
elucidating the pathways for the biogenesis of 3-SH in this
complex natural system involving different biologies requires
further research. Current understanding indicates that 3-SH in
wine ostensibly derives mainly from odorless cysteine and
glutathione (GSH) conjugated precursors (Cys-3-SH,> Glut-3-
SH6) that are formed in grapes/musts and is released and
partially acetylated during alcoholic fermentation by enzymes
from Saccharomyces cerevisiae.”® Cys-3-SH and Glut-3-SH are
present as (R)- and (S)-diastereomers,” "' which are related to
the enantiomers of 3-SH (and 3-SHA) in wine. However, the
stereochemical relationship between diastereomeric precursors
and enantiomeric free thiols has yet to be investigated, and the
overall impact of formation of racemic 3-SH (thus racemic 3-
SHA), via H,$ addition to (E)-2-hexenal during fermentation, "
for example, is unknown.

From a winemaking perspective, the concentrations of 3-SH
and 3-SHA in wines decisively depend on grape composition
and winemaking operations.” Wines made from different grape
varieties contain contrasting concentrations of such thiols, >~
although Sauvignon blanc wines usually have higher amounts."*
Aside from the obvious varietal differences in thiol production,
the concentrations of thiol precursors in grape juices’ and the
profile of free thiols and sensory properties of wines can also
vary at the clone level.”'® In addition, the production of thiols
during winemaking could potentially be affected by widely used
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additives, such as enzymes or nutrient supplements.

Despite the significance of thiol enantiomers to wine aroma and
the intensive attention being paid to evaluate the effects of
enological and viticultural applications on thiol production
more generally,” scientific investigations have barely addressed
thiol production from a stereochemical perspective.

We aimed to address knowledge gaps by exploring the
stereochemical relationships between conjugated precursors
and free thiols under the influence of several winemaking
variables. Five clones of Vitis vinifera Sauvignon blanc grapes,
two yeasts, one enzyme, and one nutrient were evaluated in a
laboratory-scale fermentation trial using a high-throughput
robot, and the diastereomers of Cys-3-SH and Glut-3-SH (and
intermediate CysGly-3-SH) in juices and the enantiomers of 3-
SH and 3-SHA in resulting wines were determined for the first
time, to the best of our knowledge.

B MATERIALS AND METHODS

Chemicals. Unlabeled standards and deuterium-labeled internal
standards of thiols and thiol precursors were previously synthesized as
their racemates (referring to the alkyl chain stereochemistry in the case
of precursors) according to literature procedures: 3-SH and 3-SHA,”’
dio-3-SH,” and ds-3-SHA,*' S-[(1R/S)-1-(2-hydroxyethyl)butyl]-L-
cysteine (Cys-3-SH),”> S-[(1R/S)-1-(2-hydroxyethyl)-1-butyl]-L-cys-
teinylglycine (CysGly-3-SH),”* S-[(1R/S)-1-(2-hydroxyethyl)butyl]-L-
cysteinylglycine (Glut-3-SH),”* S-[(1R/S)-1-(2-hydroxyethyl)butyl-
1,2,2,3,3,4,4,4-dg)-L-cysteine (dg-Cys-3-SH),”> and y-L-glutamyl-S-
[(1R/S)-1-(2-hydroxyethyl-2-d, )butyl-1,2,2,3,3,4,4,4-dg]-L-cysteinyl-
glycine (dy-Glut-3-SH).>* The following chemicals and consumables
were purchased from commercial suppliers: 4,4'-dithioldipyridine
(DTDP), acetaldehyde (>99%), ethylenediaminetetraacetic acid
disodium salt (EDTA 2Na), ammonium bicarbonate, formic acid,
and potassium hydrogen tartrate (Sigma-Aldrich, Castel Hills, NSW,
Australia); Bond Elut C18 SPE cartridges (500 mg, 6 mL) (Agilent,
Mulgrave, VIC, Australia); Strata SDB-L SPE cartridges (Phenomenex,
Lane Cove, NSW, Australia); and Merck HPLC-grade ethanol,
methanol, and acetonitrile (VWR International, Tingalpa, QLD,
Australia). Water was obtained from a Milli-Q purification system
(Millipore, North Ryde, NSW, Australia). All solutions were prepared
volumetrically, and model wine was prepared with 10% (v/v) aqueous
ethanol saturated with potassium hydrogen tartrate and pH adjusted to
3.4 with tartaric acid. DTDP derivatization reagent was prepared
according to a previous procedure.'* Stock solutions and DTDP
reagent were stored at —20 °C. Working solutions were kept at 4 °C
until required.

Grape Samples. Five samples of Sauvignon blanc grapes (clones
HSV10, F4V6, F7V7, 5385, and Q9720), grown on own roots from
vines of the same age, were collected from a commercial vineyard in
the Adelaide Hills, South Australia, on 20 March 2017. The grapevines
were grown adjacent to each other in the same block of the vineyard
and collected from an area of about 0.6 ha. Harvesting was conducted
in the morning 1 day prior to commercial harvest. Whole bunches of
berries for each sample were randomly hand-picked from both sides of
the canopy from multiple rows and stored in resealable plastic bags
(approximately 8 kg total per clone). Grapes were immediately
transported (<1 h) to the laboratory and stored at 4 °C overnight.
Each bag of grapes (whole bunches) was dosed with 50 mg/kg SO,
(added as aq. potassium metabisulfite solution), hand-crushed on a
benchtop, and the juice obtained (approximately S L in total per
clone) was passed through a coarse sieve and stored at —20 °C in
sealed 5 L plastic containers until required. Juice handling was
conducted in the presence of dry ice to minimize oxidation.

Basic Juice Parameters. Juices were measured for total soluble
solids (TSS), pH, and titratable acidity (TA, expressed as g/L
equivalents of tartaric acid), sugar content (glucose + fructose, g/L),
and yeast assimilable nitrogen (YAN) in duplicate. TA and pH were
measured using a TSO Autotitrator (Mettler Toledo, Port Melbourne,
VIC, Australia). TSS was measured with a hand-held digital

4675

refractometer (PR-101, Atago, Tokyo, Japan). Sugar content and
YAN were quantitated enzymatically using commercially available kits
(Megazyme K-FRUGL for sugar, Megazyme K-AMIAR and K-
PANOPA kits for YAN; VWR International) following the
manufacturer’s instructions.

Laboratory-Scale Fermentations. Frozen juices were thawed
and settled at 4 °C for approximately 12 h. After siphoning into S L
Schott bottles in the presence of dry ice, juices were homogenized
prior to subsampling. For each clone, 5 L of juice was divided into
another three Schott bottles for the treatments: one subsample acted
as the control, and the remaining two were supplemented at the
recommended doses with either a commercial nutrient (4 g/L
NUTRICELL AA, Martin Vialatte, Grapeworks, Dingley Village, VIC,
Australia) or a commercial enzyme (0.04 mL/L Endozym Thiol, AEB
Oceania, Hanwood, NSW, Australia). Subsequently, for each treat-
ment of the five clones, triplicate aliquots of 100 mL juice were
transferred into 180 mL modified Schott bottles fitted with air locks,
pending inoculation (1 mL of culture) with either VIN13 (Anchor,
Cape Town, South Africa) or W28 (Sofralab, Grapeworks) cultured
independently (from isolation, after plating) in liquid yeast extract—
peptone—dextrose (YPD) medium overnight at 28 °C. Fermentations
were conducted with a high-throughput fermentation robot (TEE-
BOT) at 16 °C (to minimize loss of volatiles), and without mixing
except for gentle stirring for S min at 100 rpm prior to sampling for
sugar measurements. Fermentation progress was monitored by
enzymatic sugar analysis and wines were cold settled at 4 °C for 1
week once residual sugar content was <1 g/L. Wine (20 mL) was
decanted from fermentation bottles for chiral thiol analysis
immediately after bottles were opened. TA and pH of wines were
also measured in triplicate. Wine samples have been abbreviated
according to grape clone designation (e.g, HSV10 wines) in the
following discussion.

Enantiomers of 3-SH and 3-SHA in Wine by SIDA Chiral
HPLC-MS/MS. 3-SH and 3-SHA were extracted and analyzed
according to our previous method.® An aliquot of 50 uL of combined
internal standard solution containing d,-3-SH and ds-3-SHA in
ethanol was spiked into 20 mL of wine, followed by the addition of 20
mg of EDTA 2Na, 80 uL of 50% aq. acetaldehyde solution, and 200
uL of DTDP reagent. After 30 min of derivatization, the wine sample
was loaded onto a preconditioned (6 mL of methanol followed by 6
mL of water) Bond Elut C18 SPE cartridge. The cartridges were
washed with 12 mL of 50% aq. methanol, dried under air for S min,
and eluted with 3 mL of methanol. The eluted fractions were collected
and dried under N, at 25 °C, dissolved in 200 uL of 10% aq. ethanol,
and stored at —20 °C prior to analysis.

Quantitative analyses were performed on an Amylose-1 column
(150 X 2.0 mm, 3 um particle size, Phenomenex) protected by
Amylose-1 guard cartridge (4 X 2.0 mm) fitted to a Sciex ExionLC AD
system connected to a Sciex QTRAP 6500+ tandem mass
spectrometer, which was equipped with an IonDrive source and
TurbolonSpray probe. HPLC conditions, multiple reaction monitoring
(MRM) transition pairs, and MS parameters were the same as
previously reported.” Analyst software (Version 1.6.3) was used for
instrument control, data acquisition and analysis.

Diastereomers of 3-SH Precursors in Juice by SIDA HPLC-
MS/MS. Cys-3-SH, CysGly-3-SH, and Glut-3-SH in juices were
extracted and analyzed according to the procedure detailed
previously.”> HPLC-MS/MS analysis was performed on the same
instrument as used for chiral thiol determinations.

Statistical Analysis. Data reduction was performed using Excel
(Version 2013 for Windows, Microsoft). Statistical treatments and
figure constructions were performed using either XLSTAT (Version
2018.2 for Windows, Addinsoft) or Prism 7 (Version 7.02 for
Windows, GraphPad Software Inc.). Where relevant, data are
presented as mean values of replicates with uncertainty expressed as
standard deviation (SD). Mean values were compared by unpaired ¢
test (p < 0.05) or one-way analysis of variance (ANOVA) followed by
Tukey’s HSD multiple comparison test (p < 0.05). Principal
component analysis (PCA, correlation type) was performed after
data standardization to visualize the differences among treatments.

DOI: 10.1021/acs.jafc.8b01806
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Table 1. Basic Compositional Data for Juices from Five Clones of Sauvignon blanc”

clone pH TA (g/L) TSS (°Brix) YAN (mg N/L)
HS5V10 288 +001b 8.82 + 033 a 200+00d 129+ 4c¢
F4V6 285+ 001b 8.79 + 042 a 19.7 £ 0.1 ¢ 111 + 13 be
Q9720 284 +002b 8.94 + 039 a 188 +£0.1b 125+ 1c
E7V7 2.85 + 0.00 b 9.02 +£ 025 a 18.1 +£ 0.0 a 91 +1ab
5385 2.79 + 0.01 a 9.15S + 0.16 a 18.1 £ 0.0 a 69+ 1a

“Data were derived from duplicate samples and presented as mean values + standard deviations. Different letters in the same column indicate

significant differences (p < 0.05) between the means.
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Figure 1. Tukey box-and-whisker plots showing concentrations of (A) (S)-3-SH, (B) (R)-3-SH, (C) (S)-3-SHA, (D) (R)-3-SHA, and (E) apparent

molar conversions of 3-SH to 3-SHA in wines (n = 90) made from five clones of Sauvignon blanc. The

the differences in the y-axis scales.

«,»

+” symbol indicates the mean value. Note

B RESULTS AND DISCUSSION

Basic Grape Composition. Characterization of freshly
obtained juices from the five Sauvignon blanc clones included
the determination of pH, TA, TSS, and YAN (Table 1). Clone
5385 showed a pH (2.79) slightly lower than that of the other
four clones but showed no significant differences in TA, which
ranged from 8.82 to 9.15 g/L across the clones. TSS varied
from 18.1 to 20.0 °Brix and was significantly higher in clones
H5V10, followed by F4V6 and Q9720. Large variations in YAN
were evident between the five samples, with almost 2-fold
higher YAN in HSV10 (129 mg N/L) compared to 5385 (69
mg N/L). High variability of YAN, as seen among clones of
other varieties, such as Albarifio*> and Cabernet franc,*® could
impact fermentation performance and consequently the quality
of resulting wines.”’

Fermentation. Two commercial yeast strains were put
through trials in laboratory-scale fermentations: VIN13 acted as
a reference strain due to its widely reported ability to release
thiols,”" and W28 was selected as a comparison yeast due to its
apparent capability of releasing thiols.”® Fermentations
conducted at 16 °C were completed within 20 days or less,
based on residual sugars of <1 g/L, although one sluggish
control ferment for clone 5385 had 6.4 g/L. The fermentations
were affected by clones, yeasts, and additives (Figure S1 of
Supporting Information). In general, fermentations were in
agreement with previous studies using the VIN13 strain,” but
the fermentation rate and duration varied for different clones,
which could be attributable to differences in YAN content (69
vs 129 mg N/L, Table 1).27’30 Yeast W28 metabolized sugars
equally or slightly faster than VIN13 for all clones. The
inclusion of additive seemed to accelerate fermentation rates in
most cases, with a greater effect from the addition of nutrient
rather than enzyme, which could be related to greater nitrogen
supplementation from the nutrient in these nitrogen deficient
juices.27

3-SH and 3-SHA in Wines. The enantiomer profiles for 3-
SH and 3-SHA in wines resulting from the five clones of
Sauvignon blanc were assessed using a recently developed
SIDA approach with chiral HPLC-MS/MS.* Total 3-SH (sum
of enantiomers) ranged from 172 to 734 ng/L and covered a
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broader concentration range than determined previously for
wines made from the same clones (313—419 ng/L, vintage
2011).” This was not surprising in light of probable differences
due to vintage conditions, winemaking operations, and
fermentation scales. Nonetheless, the pattern observed
previously for wines obtained from the same clones, whereby
the highest concentration of 3-SH was present in HSV10 wines,
followed by F4V6 and F7V7, with the lowest in Q9720 and
5385,” was mirrored in the enantiomers found here (Figures
1A,B). The total amount of 3-SHA, not previously reported for
these clones, was determined at 3—21 ng/L. The quantitative
results for the summed enantiomers of 3-SH and 3-SHA in
these laboratory-scale fermentations accorded somewhat with
previous results from a commercial wine survey,® although the
maximum concentrations were almost an order or magnitude
lower in the present case. Other than technological or
compositional differences during winemaking, scale effects®!
and greater losses due to volatilization or oxidation in
microscale fermentations could be related to the disparity
between the research and commercial wines.

Potential Influence of Clone Type on Chiral 3-SH and
3-SHA Profiles. Although the variation of racemic thiol
production during winemaking across clones has been
examined previously,”' the determination of enantiomers of
3-SH and 3-SHA in wines made from different clones is
reported here for what appears to be the first time (Table S1 of
Supporting Information). The data were initially examined with
a broad focus on the Sauvignon blanc clones. As shown in
Figure 1A—D and Table S1 of Supporting Information, HSV10
and F4V6 wines had amounts of both pairs of enantiomers of 3-
SH and 3-SHA significantly greater than those of wines from
the other three clones (Table S2 of Supporting Information).
This does not seem attributable to potential differences in grape
ripeness, however, given the consistent pattern of 3-SH in the
clones across the studies, as mentioned above (and considering
the clones in 2011 were almost identical in TSS). Respective
average concentrations of (S)-3-SH in HSV10 and F4V6 wines
were 219.3 and 180.7 ng/L, much higher than that in 5385
(1354 ng/L), Q9720 (120.2 ng/L), and F7V7 (144.5 ng/L)
wines (Figure 1A). The results for (R)-3-SH also showed that
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HSVI10 had the highest average concentration (244.5 ng/L),
followed by F4V6 (204.0 ng/L), F7V7 (130.3 ng/L), Q9720
(123.9 ng/L), and 5385 (113.3 ng/L) (Figure 1B). Calculated
odor activity values (OAV = concentration/detection threshold,
which may give some guide as to the importance of an odorant)
for the 3-SH enantiomers all exceeded 1, indicating potentially
important aroma contributions from these enantiomers to the
overall aroma profiles of finished wines. According to the
quantitative data, OAV variations among clones were evident,
with HSV10 having the highest OAVs (3.7 and 4.9 for (S)- and
(R)-3-SH, respectively), whereas the lowest OAVs were
calculated for 5385 (2.2 and 2.3 for (S)- and (R)-3-SH,
respectively).

In terms of 3-SHA enantiomers, respective average
concentrations of (R)- and (S)-3-SHA in wines from five
clones ranged from 1.7-4.5 ng/L and 3.8—10.0 ng/L. The
distribution patterns (concentrations and OAVs) across clones
were mostly in agreement with those of 3-SH, where HSV10
was the highest followed by F4V6, and 5385 was the lowest, but
there were slightly higher concentrations in Q9720 than in
F7V7 (Figure 1C,D). However, unlike the near equal OAVs
between enantiomers of 3-SH, the OAVs for (S)-3-SHA (1.1—
4.0) were higher than those of (R)-3-SHA (0.2—0.5), implying
greater sensory effects from (S)-3-SHA (“boxwood”) compared
to (R)-3-SHA (“passionfruit”).

Taking into account that 3-SHA is formed from 3-SH and
assuming no losses, the molar conversion rates from 3-SH to 3-
SHA (moly gya/mol; gpy,5.90a) were calculated and found to
range from 1.1 to 4.7% in the wines (Figure 1E), which was
close to but overall lower than that in the previous fermentation
studies.”® The highest apparent conversion occurred for F4V6
clone with an average of 3.6%, followed by HSV10 clone
(average of 3.1%), which were both significantly higher than the
other three clones (p < 0.001). In contrast, only about 1.8% of
3-SH, was seemingly converted to 3-SHA in clone 5385. The
variable conversion rates indicated an effect of the clone on
acetylation of 3-SH to 3-SHA during fermentation, possibly
related to the expression of the yeast ATFI gene.*

Based on our previous investigations that included a small
survey of commercial wines, enantiomers of 3-SH were roughly
distributed equally in different varieties (with the exception of
botrytized wines), and (S)-3-SHA was more abundant than its
(R)-counterpart.® Similar patterns were evident in a total of 90
fermentations quantitated in the present study, although the
ratios of pairs of enantiomers varied significantly across the
clones regardless of treatment applied (Table S2 of Supporting
Information). The (S):(R) ratio of 3-SH varied from 0.79 to
1.38 (Figure 2A), and 3-SHA varied from 1.34 to 2.71 (Figure
2B), which accorded well with previous data in dry commercial
wines of different varieties.® Similarly, the Sauvignon blanc
clone type may have affected the (S):(R) ratios of chiral 3-SH
and 3-SHA to some extent. In terms of 3-SH, the (S)-
enantiomer exceeded the (R)-form in clone F7V7 and 5385
(ratio >1.0), whereas HSV10 and F4V6 mostly contained less
(S)-3-SH than (R)-3-SH. The amounts of (S)-3-SHA detected
in clone HSV10 and F4V6 were more than 2-fold higher than
that of (R)-3-SHA, in contrast to the ratios for Q9720, F7V7,
and 5385, which were generally <2.0. Considering the
concentrations of 3-SH and 3-SHA detected for each clone,
in conjunction with the ratios between pairs of enantiomers, it
appeared that (S)-3-SH tended to be less dominant when the
combined concentrations of 3-SH were higher, but (S)-3-SHA
was likely to be more prevalent when combined 3-SHA
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Figure 2. Tukey box-and-whiskers plot showing (A) ratios of (S):(R)-
enantiomers of 3-SH and (B) 3-SHA in wines (n = 90) made from five
clones of Sauvignon blanc. The “+” symbol indicates mean values.
Note the differences in the y-axis scales.

amounts were higher (Figures 1 and 2). This apparent negative
correlation for 3-SH and positive correlation for 3-SHA were
verified by Pearson correlation analysis between the ratios of
(S):(R) and combined enantiomer concentrations, yielding r =
—0.59 for 3-SH and r = 0.74 for 3-SHA. These variations in the
patterns of chirality for 3-SH and 3-SHA (concentrations and
ratios) indicated the fundamental influences of grapes from
different clones during fermentation, beyond the effects of yeast
or additive that were tested.

Influence of Yeast, Enzyme, and Nutrient on Chiral
Profiles of 3-SH and 3-SHA. The amounts of 3-SH and 3-
SHA in wines could also be affected by various winemaking
decisions.” Quantitative results of 3-SH and 3-SHA enan-
tiomers from the treatments (five clones, two yeasts, plus
enzyme or nutrient) are shown in Figures 3 and 4, and data
were compared using an unpaired ¢ test or a one-way ANOVA
with a multiple comparison test.

Yeast. The formation of 3-SH during winemaking from its
conjugated grape precursors is an enzymatic process requiring
carbon—sulfur (C—S) lyase produced by yeast.” Acetyltransfer-
ase, also from yeast, then converts 3-SH to 3-SHA.** Numerous
studies have investigated the impact of yeast on 3-SH and 3-
SHA production’ but have not evaluated the effect on the
individual enantiomers, nor the effects of yeasts in combination
with commercial additives. The comparison of two commercial
yeasts on the final amounts of individual enantiomers of 3-SH
and 3-SHA in finished wines (Table S1 of Supporting
Information) is presented in Figure 3. In wines without any
supplementation with additives (control in Figure 3), most
fermentations showed no significant differences between the
two yeasts, except for variations in F4V6 and 5385 wines.
VINI13 yeast produced significantly more of each 3-SH
enantiomer in 5385 wines compared to W28 (160.8 vs 122.5
ng/L for (S)-3-SH, p = 0.0062; 129.9 vs 93.2 ng/L for (R)-3-
SH, p = 0.0054) but less (S)-3-SHA (2.1 vs 2.7 ng/L, p =
0.0090). A greater amount of (R)-3-SH was seen in F4V6 wines
fermented with VIN13 as opposed to W28 (226.4 vs 167.7 ng/
L, p = 0.0181).

Regarding treatments with commercial enzyme added prior
to inoculation (enzyme in Figure 3), the two yeasts behaved
very similarly apart from F7V7, in which wines fermented with
W28 yeast showed significantly higher (S)-3-SH (27% increase
relative to VIN13) and higher amounts of both enantiomers of
3-SHA, and 5385 wines, which had a higher concentration of
(R)-3-SHA (Figure 3). When nutrient was added to juices, the
concentrations of both pairs of enantiomers of 3-SH and 3-
SHA were generally not different between yeasts, except in the
case of HSV1O0 and F4V6, where VINI3 gave significantly
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Figure 3. Comparison of S. cerevisae yeast strains (VIN13 and W28) on (A) the production of (S)- and (R)-enantiomers, and (B) the (S):(R) ratio
of pairs of enantiomers of 3-SH and 3-SHA in wines from five clones of Sauvignon blanc. Results are presented as the standardized means of
triplicate samples with yeast as the fixed variable compared with an unpaired ¢ test (p < 0.05). * and ** indicate significant differences between the
means at p < 0.05 and p < 0.01, respectively.
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Figure 4. Comparison of the effects of winemaking additives on concentrations (ng/L) of pairs of enantiomers of 3-SH and 3-SHA in wines from
five clones of Sauvignon blanc. Results represent mean values (bars) and SD (error bars) of triplicate samples compared with one-way ANOVA
followed by Tukey HSD multiple comparison (p < 0.05). *, **, and *** indicate significant differences between the means at p < 0.0S, p < 0.01, and
p < 0.001, respectively. Note the differences in the x-axis scales.

higher amounts of (R)-3-SH and (S)-3-SHA. Similarly, there
was minimal influence of the two yeasts on the (S):(R) ratios in
most cases (Figure 3). The thiol production abilities of the two
yeasts varied randomly between treatments, and overall there
were no obvious consistent differences in thiol enantiomer
production abilities in these juices. Changes that were evident
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with or without winemaking additives could possibly be a
consequence of yeast metabolism related to thiol production,
i.e., through the enzymes involved in uptake of thiol precursors
and release of free thiols,>*~>* which could potentially depend
on their stereochemical specificity.” Despite the inconsistent
effects on enantiomers of the two yeasts that went through the
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Figure S. Concentrations (ug/L) of diastereomers of (A) Cys-3-SH, (B) CysGly-3-SH, and (C) Glut-3-SH, and (D) (S):(R) ratios of precursor
diastereomers in juices from five clones of Sauvignon blanc. Data are presented stacked as diastereomer mean values (bars) and SD (error bars) for
duplicate samples. Letters in the same format (normal or italic) indicate significant differences between the means for the particular precursor

diastereomer (p < 0.0S).

trials, the sensory profiles of wines from different yeasts could
potentially be affected based on OAVs for these potent
enantiomeric thiols. For instance, the OAV of (R)-3-SH in
F4V6 wines with VIN13 yeast was 1.2-fold higher than that of
W28 yeast (with no additive), which implied that the
“grapefruit” and “citrus peel” aromas exhibited in F4V6 wines
fermented with VIN13 may be stronger than those in W28.
However, other aroma compounds, such as methoxypyrazines
and esters in combination with thiol enantiomers, can be highly
influential in the overall expression of wine aroma.*

Enzyme. Using enzymes in winemaking is a common
practice that offers a number of benefits, including aroma
enhancement,” but nothing detailed has been reported
regarding the impact of exogenous enzymes on chiral thiols.
Only scarce descriptions of the contributions (mixed or
positive) of some commercial enzymes on racemic thiol
production during winemaking have been reported previ-
ously.””™" To investigate the potential impact of winemaking
enzymes on thiols, we selected a commercial enzyme (claimed
to contain secondary enzymatic activities along with
pectinase*’) that had previously yielded mixed effects.'® Our
results clearly showed that this commercial enzyme could
contribute positively to thiol production (Figure 4). The most
remarkable example was an approximate 2-fold increase in
concentration of 3-SH enantiomers in HSVIO wines after
enzyme treatment compared with the control (Table S2 of
Supporting Information) regardless of the yeast strain.
Differences among the other clones were limited, and there
were no significant changes in any enantiomers in F4V6 wines.
In addition, it appeared that the chosen enzyme showed a more
positive impact on 3-SH enantiomers than those of 3-SHA.
There were no significant differences for 3-SHA enantiomers
except for (R)-3-SHA in HSV10, whereas the effect on 3-SH
enantiomers was seen in three out of five clones. This indicated
that exogenous enzyme addition was more associated with
enhancing the production of 3-SH rather than affecting its
acetylation. From a sensory perspective, the enhancement of 3-
SH enantiomers in the HSV10 wines upon enzyme treatment
led to the OAVs increasing by factors of around 2 and 3 for the
(S)- and (R)-enantiomers, respectively, indicating that the
“tropical” aromas of enzyme-treated wines may be perceptibly
more intense.

The use of pectinase during maceration of Muscadine grapes
has been shown to produce greater amounts of thiols than
traditional skin-contact, possibly due to the extraction of
glutathione derivatives.'"” However, in the present study, the
enzyme was added directly to the juice and additional
extraction from the grapes could not occur, so perhaps the
enzyme acted by breaking down juice substances (e.g,
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polysaccharides or proteins) to subsequently influence yeast
metabolism and thiol production. Although the extent of
enhancement of 3-SH and 3-SHA enantiomers depended on
the possible interactions between grape clone and yeast, there
appears to be good potential in boosting 3-SH in finished wines
from exogenous enzyme addition.

Nutrient. Preferred nitrogen sources (e.g, ammonium,
glutamine, asparagine) are vital for the metabolism of yeast”’
and can be another important factor affecting 3-SH and 3-SHA
production.””*® Other than effects on H,S production,
alternation of these two thiols in wines as a result of yeast
rehydration nutrient treatment has been demonstrated in a low
nitrogen Riesling fermentation.”® Amino acid composition has
also been shown to affect the production of 3-SH and 3-SHA
during fermentation.*® The commercial nutrient used in our
fermentations, consisting of inactive dry yeast rich in amino
acids, was designed to provide favorable nitrogen sources for
alcoholic fermentation, and especially for nitrogen-deficient
circumstances.*' Although the juices used in this study were
deemed low in nitrogen content,”” treating juices with nutrient
showed less impacts than enzyme treatment, in terms of
enantiomeric 3-SH and 3-SHA production, in comparison to
untreated wines (Figure 4). Significant effects compared to the
control were limited to the increases of (S)-3-SH (157.8 vs
122.8 ng/L, p = 0.0219) and (R)-3-SH (145.8 vs 111.3 ng/L, p
=0.0168) in F7V7 wines using VIN13 and of (S)-3-SH in 5385
wines (134.6 vs 122.5 ng/L, p = 0.0132) with W28 yeast.
However, such enhancements may not be as significant in
terms of sensory contributions (based on a difference in OAV <
1) compared to enzyme treatment. Significant decreases
compared to the control were noted for (S)-3-SH in 5385
wine (123.1 vs 160.8 ng/L, p = 0.0168) and both enantiomers
of 3-SHA in H5V10 wine when using VIN13 yeast. Moreover,
the nutrient effects seemed to be more evident for VIN13 strain
in comparison to W28 (Figure 4). These results suggested the
use of nutrient alone was not a solution for thiol enhancement
under the low nitrogen conditions tested, and it seems that
consideration ideally needs to be given to juice amino acid
composition as well.*®

3-SH Precursors in Juices. Concentrations of the
diastereomers of three 3-SH precursors (Cys-3-SH, CysGly-3-
SH, and Glut-3-SH) were determined in juices from the five
clones of Sauvignon blanc (Figure S). The quantitative data for
Cys-3-SH, CysGly-3-SH, and Glut-3-SH agreed with previous
observations that Glut-3-SH always presented at higher
concentrations followed by Cys-3-SH and CysGly-3-SH.”**
The sum of precursor diastereomers ranged from 40—116 ug/L
for Glut-3-SH, 4—15 ug/L for Cys-3-SH, and 0.4—1.6 ug/L for
CysGly-3-SH. Juice from F7V7 was found to contain
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significantly higher concentrations of precursors (up to twice as
much) than the other four clones (Figure SA—C), with this
trend being consistent with previous studies.”** Similarly, juice
from F4V6 showed concentrations of 3-SH precursors relatively
higher than that of HSV10, Q9720, and 5385, but on the whole,
there was a lower abundance and larger variation in 3-SH
precursor concentrations that was not seen in the previous
studies on the same clones.”** These inconsistencies may relate
to differential responses due to variations in climate and
vineyard management practices”** between vintages, and the
comparatively lower abundances could also be reflective of a
gentler juice extraction process.

Stereochemically, (S)-diastereomers of Cys-3-SH, CysGly-3-
SH, and Glut-3-SH were dominant over their (R)-diaster-
eomers, which mirrored previous observations.”***> As shown
in Figure SD, the ratios of the (S):(R) diastereomers were
highest for Glut-3-SH (3.0—3.6), followed by Cys-3-SH (2.1—
2.5) and CysGly-3-SH (1.2—1.8). The ratios varied among
precursor types for the different clones but showed no
significant differences (P > 0.05), except for Glut-3-SH between
5383 and HS5V10 clones. Any shift in diastereomer distributions
could be a consequence of known and unknown formation and
degradation pathways of these precursors in grapes or juice.”*

Stereochemistry from Precursors to Thiols. Despite the
relationships between precursors (and other metabolites) and
free thiols having been investigated before,”**** a focus on the
stereochemical perspective was lacking until now. The
relationship between concentrations of thiol enantiomers (3-
SH and 3-SHA, ng/ L) in wines and diastereomeric precursors
(Glut-3-SH, CysGly-3-SH, and Cys-3-SH, pg/L) in juices was
examined by Pearson correlation analysis, but there were no
obviously strong correlations (r = —0.34—0.06) among these
quantitative data sets. The concentrations of 3-SH precursor
diastereomers in grapes did not necessarily relate to levels of 3-
SH enantiomers found in resulting wines, nor to the combined
amounts of 3-SH and 3-SHA enantiomers with that of the
precursor diasteromers (Glut-3-SH+CysGly-3-SH+Cys-3-SH).
HS5V10 had the highest concentrations of 3-SH enantiomers in
wines (Figure 4) but was low in all precursors in juices (Figure
5). Following this, the correlation was checked between the
ratios of (S):(R) enantiomers of 3-SH/3-SHA and concen-
trations of precursor diastereomers in juices, and again, the
correlations were not evident or weak (r = —0.20—0.40). It
appeared that no correlation existed between the concen-
trations (and ratios) of thiols in wines and that of the
precursors in juices, which is in accordance with results for the
racemic 3-SH in the previous studies.”** However, correlations
were more obvious when the (S):(R) ratios of thiols and
precursors were compared. Weak to moderate negative
correlations were seen for (S)-:(R)-3-SH with (S)-:(R)-
precursors (r = —0.58, —0.32, —0.49, and —0.58 for Cys-3-
SH, CysGly-3-SH, Glut-3-SH, and combined precursors,
respectively), whereas positive correlations were found for
(S):(R)-3-SHA (r = 0.16, 0.48, 0.55, and 0.59 for Cys-3-SH,
CysGly-3-SH, Glut-3-SH, and combined precursors, respec-
tively).

Principal Component Analysis. Quantitative chemical
data on grapes and wines were subjected to PCA to visualize
the differences among treatments (clone X enzyme or nutrient
X yeast) and possible factors driving these differences. As
shown in the biplot (Figure 6), the first two principal
components (PC1+PC2) explained 84% of total variance, and
wines were generally separated according to clone type. Among
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Figure 6. PCA biplot showing scores and loadings of the standardized
means for juice and wine chemical data. The boxed insets show
expanded regions of the plot to more clearly reveal those details.

them, F7V7 was well isolated from the rest and located on the
right along PC1, which positively corresponded with all
precursors and pH. In contrast, HSV10, Q9720, and 5385
wines were situated to the left along PC1, and F4V6 was
positioned more centrally. The separation of H5V10, Q9720,
and 5385 was obvious along PC2 and related to differences in
free thiols, TSS, and YAN, which appeared in the top half, and
TA located in the bottom half. Compared with the obvious
separation of the clones, there was less evident impact of the
different additives and yeasts within a clone, although slight
separations were seen in HSV10 and F4V6, possibly due to an
influence of thiol precursor profiles. When the basic juice data
(TSS, pH, TA, and YAN) were omitted from the PCA, an
almost identical biplot was obtained (data not shown), which
suggested the differences present among treatments were less
influenced by those basic parameters (i.e, measures of
ripeness) and more by the interaction of grape precursor
composition (which did not trend in parallel with ripeness) and
winemaking in the release of free thiols, although the precise
cause could not be pinpointed.

Future Directions. The prevalence of precursor stereo-
chemistry in the (S)-form along with an almost equal
distribution of 3-SH enantiomers, but greater abundance of
(S)-3-SHA over (R)-3-SHA, suggested there was stereo-
selectivity of the enzymes involved in thiol production.’
However, the relationship is potentially confounded because
changes to thiol enantiomer profiles could also arise from the
asymmetric production of precursors or free thiols. That is, the
chemical formation of racemic Glut-3-SH from reaction of (E)-
2-hexenal and GSH via 3-S-glutathionylhexanal as an
intermediate,'® or of thiols through the formation of racemic
3-SH from H,S and (E)-2-hexenal*® followed by enzymatic
carbonyl reduction. Besides these (bio)chemical reactions that
have been directly linked to thiol and precursor formation
pathways, attention could also be paid to other compounds
derived from thiols that are involved in their apparent
consumption, such as the equilibrium between 3-SH and its
disulfide,*” and oxidative loss of thiols*® during and/or after
winemaking. Last but not the least, searching for unknown

DOI: 10.1021/acs.jafc.8b01806
J. Agric. Food Chem. 2018, 66, 4674—4682

110 of 182



Chapter 4 | Publication | Research article | Chiral thiols and their precursors

Journal of Agricultural and Food Chemistry

precursors”*’ and better elucidating the pathways for thiol
biogenesis would also be very useful. Given the dynamic and
complex nature of the system and the incomplete picture of
formation/consumption of precursors®*° and thiols,””*® the
current lack of correlations regarding the stereochemistry of
precursors and thiols raises more questions about the
biogenesis of these potent volatile compounds that require
further investigation.
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Table S1. Basic compositional data (pH, TA) and concentrations (ng/L) of enantiomers of 3-SH and 3-SHA in

wines from five clones of Sauvignon blanc.”

clone  yeast  additive pH TA(gL)  (5)-3-SH  (R)3-3-SH  (5)-3-SHA (R)-3-SHA

H5V10 VINI3 control 2.85+0.22  7.05+0.05 176.8£31.5 190.1£27.6 11.2+1.1 4.8+0.2
enzyme  2.96+£0.00 7.04+0.06 306.3+54.7 357.8£59.4 12.6+0.2 5.9+0.3
nutrient ~ 2.96+0.02  7.10+0.10 191.2+14.5 211.8+16.4 8.1+1.0 3.5+0.4

w28 control 2.97+0.01  6.84+0.03 140.8+29.6  153.5£39.1 8.9+2.4 3.7+1.0
enzyme  2.97+0.00  6.93+0.05 293.849.4  334.3+6.5  12.5+0.3 5.840.1

nutrient  2.98+0.03  6.93+0.12 161.5¢1.2  161.4£7.8 4.9+1.3 2.240.5

5385 VIN13  control 2.88+£0.03  6.77+0.05 160.8+6.8 129.9+1.7  2.1£0.2 1.6+0.2
enzyme  2.94+0.03  6.89+0.06 138.5£13.2  124.2+£13.9 2.7+0.2 1.740.1
nutrient ~ 2.90+£0.02  6.58+0.31 123.1£13.4 105.6+£18.5 3.5+1.3 1.9+0.3

W28 control 2.91+0.01 6.37+0.40 122.5£10.6  93.2+11.5  2.7+£0.1 1.7+£0.0
enzyme  2.94+0.01 6.32+0.21 132.84£5.5 116.8+3.8  3.1+0.6 1.8+0.1
nutrient  2.90+£0.04  6.54+0.02 134.6+3.3 110.4+4.8  2.9+0.5 1.8+0.1

Q9720  VIN13  control 2.89+0.05 6.31+0.08 102.7+6.8 108.1+9.7  4.5+0.4 2.7+0.3
enzyme  2.90+0.01 7.03+0.21 138.4+£20.8 144.8+22.4 4.8+1.9 2.5+0.8
nutrient ~ 2.90£0.00  6.76+0.01 133.7£27.9 145.6+£374 4.1£1.6 2.5+0.9

w28 control 2.92+0.00 6.28+0.02 95.6 £9.7 90.1+7.1 3.9+0.4 2.2+0.2
enzyme  2.93+0.01 6.38+0.02 152.4+16.3 161.9£27.8 4.7+1.1 2.6+0.8
nutrient  2.94+0.01  6.65+0.29 109.4£18.5 105.3£154 3.4+0.6 2.1+0.3

F4V6  VINI13  control 2.84+0.07  6.81£0.06 184.8£15.9 226.4£10.5 8.7£1.9 3.7+0.5
enzyme  2.92+0.00 6.72+0.19 205.2+43  237.3+4.6  10.6+3.8 4.7£2.4
nutrient ~ 2.93£0.00  6.62+0.14 200.8£10.4 225.5+12.9 13.1+1.3 5.8+0.9

W28 control 2.93+£0.01 6.50+0.02 151.6+10.4 167.7+15 9.9+1.1 4.3+0.3
enzyme  2.94+0.01  6.69+0.05 194.6£16.8 217.9£20.5 10.1+1.9 4.1+0.8
nutrient  2.94+0.00 6.82+0.06 157.0£25.6  167.9+£30.5 7.5£2.9 3.5%1.6

F7V7  VINI13  control 2.88+0.00  8.25+0.03 122.8£21.1 111.3£17.0 4.4+0.7 2.4+0.3
enzyme  2.89+0.00 8.32+0.04 123.1£3.1 117.6£3.7  2.9+0.4 1.6+0.2
nutrient  2.89+0.00  8.82+0.72 157.8£16.7 145.8+20.2 4.2+0.4 2.2+0.3

w28 control 2.90+0.01 8.01+0.11 142.0£16.9 126.7£12.4 3.6+0.4 2.1+0.3
enzyme  2.90+0.01 8.18+0.01 155.8+8.8 143.6£16.3 4.0+0.3 2.2+0.2
nutrient  2.90£0.00  8.16+0.06 165.2+£21.7 136.8£20.9 3.6+0.5 2.1+0.4

“ Data indicate the mean + standard deviation of triplicate samples. Results of the statistical analysis of quantitative

chiral thiol data for clone type are presented in Table S2 of the Supporting Information.
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Table S2. Matrix of ANOVA p-values from Tukey’s HSD multiple comparison tests of the mean concentrations (ng/L) of enantiomers of 3-SH

and 3-SHA, and the (S):(R) enantiomer ratios, in wines from five clones of Sauvignon blanc.

(8)-3-SH F4V6 Q9720 F7V7 5385 (R)-3-SH F4V6 Q9720 F7V7 5385
H5V10 0.0313 <0.0001 <0.0001 <0.0001 H5V10 0.0860 <0.0001 <0.0001 <0.0001
F4V6 <0.0001 0.0404 0.0050 F4V6 <0.0001  <0.0001 <0.0001
Q9720 0.3003 0.7398 Q9720 0.9930 0.9564
F7V7 0.9463 F7V7 0.7843
(5)-3-SHA F4V6 Q9720 F7V7 5385 (R)-3-SHA F4V6 Q9720 F7V7 5385
H5V10 >0.9999  <0.0001 <0.0001 <0.0001 H5V10 0.9944 <0.0001 <0.0001 <0.0001
F4V6 <0.0001  <0.0001 <0.0001 F4V6 <0.0001  <0.0001 <0.0001
Q9720 0.9620 0.1638 Q9720 0.7948 0.1157
F7V7 0.4845 F7V7 0.6695
(S)-:(R)-3-SH | F4V6 Q9720 F7V7 5385 (5)-:(R)-3-SHA | F4V6 Q9720 F7V7 5385
H5V10 0.9296 0.0162 <0.0001  <0.0001 H5V10 0.1875 0.1710 <0.0001 <0.0001
F4V6 0.0012 <0.0001 <0.0001 F4V6 0.0002 <0.0001 <0.0001
Q9720 <0.0001 <0.0001 Q9720 0.0536 0.0007
F7V7 0.0006 F7V7 0.6042
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ARTICLE INFO ABSTRACT

Keywords:

3-Sulfanylhexan-1-ol
3-Sulfanylhexyl acetate
4-Methyl-4-sulfanylpentan-2-one
Aroma enhancement

Wine aroma

Winemaking

Sauvignon blanc grape samples (n = 21) from across a single Geographical Indication of South Australia were
analysed for thiol precursors and amino acids, and fermented in an identical laboratory-scale fermentation trial
to investigate the intraregional pattern of varietal thiols in the wines. Precursors and thiols exhibited obvious
intraregional diversity, and notably, stronger correlations were observed between a number of amino acids and
thiol precursors (especially with glutamic acid, r < —0.73) rather than free thiols. Additionally, pre-fermenta-
tion freezing (—20 °C, 1 month) was applied to five selected fresh grape samples and their juices, followed by

identical fermentation. In comparison to wines from fresh grapes or frozen juices, significant elevation of varietal

Chemical compounds studied in this article:
3-Sulfanylhexan-1-ol (PubChem CID 521348)
3-Sulfanylhexyl acetate (PubChem CID
518810)

4-Methyl-4-sulfanylpentan-2-one (PubChem
CID 88290)

Arginine (PubChem CID 6322)

Proline (PubChem CID 145742)

Glutamic acid (PubChem CID 33032)
y-Aminobutyric acid (PubChem CID 119)
a-Alanine (PubChem CID 5950)

during winemaking.

thiols (up to 10-fold) occurred in the wines derived from frozen grapes, with parallel increases of precursors (up
to 19-fold) in juices from frozen berries. These novel results may lead to new strategies for thiol enhancement

1. Introduction

Sauvignon blanc (Vitis vinifera) is one of the most widely cultivated
grapevine varieties in all major wine-producing countries (OIV, 2017).
According to the International Organisation of Vine and Wine, Sau-
vignon blanc is the only top white variety that had a significant increase
(> 3%) in annual change of vineyard area worldwide from 2000 to
2015 (OIV, 2017). The success and popularity of Sauvignon blanc wine
undoubtedly relate to its distinctive and characteristic “grassy”, “ci-
trus”, and “tropical fruit” aromas, which are largely contributed by
potent volatile compounds with odour thresholds in the nanogram-per-

litre range, such as methoxypyrazines and varietal thiols (Coetzee & du
Toit, 2012; Jeffery, 2016).

In relation to varietal thiols, 3-sulfanylhexan-1-ol (3-SH), 3-sulfa-
nylhexyl acetate (3-SHA), and 4-methyl-4-sulfanylpentan-2-one (4-
MSP) are well recognised as the fundamental volatile compounds im-
parting aromas of “passionfruit”, “grapefruit”, “guava”, and “box tree”
to Sauvignon blanc wine as well as wines made from several other Vitis
vinifera grape varieties (Roland, Schneider, Razungles, & Cavelier,
2011). 3-SH and 4-MSP are formed through alcoholic fermentation by
the action of yeast enzymes from their non-volatile precursors extracted
from grapes, and 3-SHA is formed enzymatically from 3-SH (Roland

Abbreviations: 3-SH, 3-sulfanylhexan-1-ol; 3-SHA, 3-sulfanylhexyl acetate; 4-MSP, 4-methyl-4-sulfanylpentan-2-one; ANOVA, analysis of variance; Cys-3-SH, 3-S-
cysteinylhexan-1-ol; DTDP, 4,4’-dithiodipyridine; GABA, y-aminobutyric acid; GI, Geographical Indication; Glut-3-SH, 3-S-glutathionylhexan-1-ol; IS, internal
standard; PC, principal component; PCA, principal component analysis; PFF, pre-fermentation freezing; SD, standard deviation; SIDA, stable isotope dilution assay;

SPE, solid-phase extraction; TA, titratable acidity; TSS, total soluble solids

* Corresponding author at: Department of Wine and Food Science, The University of Adelaide (UA), PMB 1, Glen Osmond, South Australia 5064, Australia.

E-mail address: david.jeffery@adelaide.edu.au (D.W. Jeffery).
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0308-8146/ © 2019 Elsevier Ltd. All rights reserved.
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et al., 2011). However, precursors identified in grape juice so far, in-
volving glutathione, dipeptide and cysteine conjugates, and a,f-un-
saturated carbonyls, can only partially account for the amounts of the
varietal thiols found in wine, primarily for 3-SH (Bonnaffoux et al.,
2018; Roland et al., 2011). Furthermore, no consistent correlations
have been seen between varietal thiols and their putative precursors
(Chen, Capone, Tondini, & Jeffery, 2018; Jeffery, 2016; Pinu,
Jouanneau, Nicolau, Gardner, & Villas-Boas, 2012), which suggests that
other varietal thiol precursors or alternative biogenesis and fate path-
ways are still waiting to be revealed. Apart from precursor availability,
varietal thiol production during fermentation also depends on grape
composition (Pinu et al., 2019), such as the profile of amino acids and
certain organic acids (Alegre, Culleré, Ferreira, & Hernandez-Orte,
2017; Pinu et al., 2014). However, other than studies involving thiol
precursors, literature linking grape composition to varietal thiol for-
mation is limited, and although the enhancive or suppressive roles of
amino acids (amounts and ratios) on varietal thiol production have
been demonstrated as outlined already, such effects and relationships
require further elucidation.

With the incomplete picture of biogenesis of varietal thiols and
complex relationship to other grape metabolites, controllable manage-
ment of the production of varietal thiols and the related sensory quality
of a wine through viticultural or oenological practices is still not easy to
achieve. In recent years, vineyard practices (application of nitrogen and
sulfur), grapes (maturity, clones, grape metabolites), berry processing
(harvest, crush, press etc.), and fermentation choices (yeast, commer-
cial additives) have been investigated for their impacts on varietal
thiols and/or their precursors (Chen et al., 2018; Jeffery, 2016; Roland
et al., 2011; Santiago & Gardner, 2015). However, most of the practices
exhibited mixed effects (grape-dependent or product-specific) and the
modulation of precursors in grapes was not always reflected in the
production of varietal thiols in wine. As such, vineyard and/or wine-
making practices for enhancing thiol concentrations in wines are still
required. Low temperature treatment of grapes maybe a useful option
based on the use of cryogenic processing technology in the beverage
industry (Brown, 1975; Pando Bedrifiana, Picinelli Lobo, & Suarez
Valles, 2019). The first indication of its potential utility for thiol
management in Sauvignon blanc was revealed in a study of thiol pre-
cursors 3-S-cysteinylhexan-1-ol (Cys-3-SH) and 3-S-glutathionylhexan-
1-ol (Glut-3-SH), whereby Glut-3-SH increased by around four times in
frozen grapes stored at —20 °C for 2months compared to frozen or
fresh juices (Capone, Sefton, & Jeffery, 2011). In a subsequent study,
pre-fermentative cryomaceration, undertaken by adding dry ice to
crushed Sauvignon blanc grape must and leaving it to thaw over a 24-h
period, was found to increase 3-SH and 3-SHA concentrations in the
wine (Olejar, Fedrizzi, & Kilmartin, 2015). However, the effect of
cryogenic storage on thiol production during fermentation remained to
be further investigated, and influences of cryogenic treatments on grape
precursors and wine thiols have never been shown in parallel.

The present work sought to investigate a number of hypotheses
related to varietal thiols and precursors, which included: i) the presence
of intraregional variation; ii) relationship with grape amino acids; iii)
pre-fermentation freezing (PFF) as a tool to enhance thiols in wine.
Parcels of Sauvignon blanc grapes (n = 21) were hand harvested from
commercial vineyards within the Geographical Indication (GI) of the
Adelaide Hills wine region. Amino acids and thiol precursors were
measured in grape juices and laboratory-scale fermentation trials were
conducted with a high throughput automated fermentation platform.
Varietal thiols were analysed in the finished wines by HPLC-MS/MS
after derivatisation. Intraregional variations of precursors in juices and
varietal thiols in wines were examined and correlated with amino acids
in grapes. To test the potential applicability for thiol enhancement
during winemaking, PFF treatment (— 20 °C, 1 month) was applied for
the first time to the fermentation of a subset of fresh whole grape
bunches and matched juices that were obtained from the fresh grapes.
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2. Material and methods
2.1. Chemicals and solutions

The following chemicals and consumables were obtained from
commercial suppliers: 4,4’-dithiodipyridine (DTDP), formic acid, acet-
aldehyde, and EDTA 2Na (Sigma-Aldrich, Castle Hill, NSW, Australia);
Merck liquid chromatography-grade ethanol, methanol, and acetoni-
trile (VWR International, Tingalpa, QLD, Australia); Bond Elut C18
(500mg, 6mL) solid-phase extraction (SPE) cartridges (Agilent,
Mulgrave, VIC, Australia); polymeric Strata-X-C (30mg, 1mL) and
Strata SDB-L (500 mg, 6 mL) SPE cartridges (Phenomenex, Lane Cove,
NSW, Australia); AccQ-Fluor amino acid reagent kit and AccQ-Tag
eluent A (Waters, Rydalmere, NSW, Australia). Water used was purified
through a Milli-Q purification system (Millipore, North Ryde, NSW,
Australia). Thiol and precursor standards and internal standards (IS)
were prepared as previously reported (Chen et al., 2018). Standard and
IS solutions were prepared volumetrically either in Milli-Q water (for
mixtures of precursors) or in absolute ethanol (for mixtures of thiols).
Stock solutions were kept at —20 °C and working solutions were stored
at 4 °C until required. DTDP solution (10 mM) was prepared as detailed
previously (Capone, Ristic, Pardon, & Jeffery, 2015).

2.2. Grape and juice

Parcels of Vitis vinifera L. cv Sauvignon blanc grapes (n = 21, ab-
breviated in Table S1 of the Supporting Information) encompassing five
clones were hand-picked from seven commercial vineyards located in
the Adelaide Hills GI of South Australia (L1-L7, mapped in Fig. S1 of
the Supporting Information) on 27th February (n = 9), 28th February
(n =7), and 7th March (n = 5) during the 2018 vintage. For each
sample, =8 kg of whole grape bunches were collected from both sides
of the vines across multiples rows within each vineyard, temporarily
stored in food-grade resealable plastic bags (=2 kg/bag), transported to
the laboratory (< 2h) and stored at 4°C overnight. Grape bunches
were then gently randomised in a plastic sample tray and divided into
two subsets (=5kg + =3kg).

The first subset of fresh grape bunches (=5kg) was sulfured
(50mg/kg SO, added as potassium metabisulfite) and crushed im-
mediately under dry ice protection following a previously reported
procedure (Chen et al., 2018). The resultant juices were collected in
food-grade plastic storage bottles (1 L), cold settled at 4 °C for 12 h, and
the clear juices were divided into two groups: the first group of juices
(n = 21) was subjected to laboratory-scale fermentation immediately,
acting as the Control wines (non-PFF); the other group of clear juices
was stored in PET bottles (500 mL, protected by dry ice during filling)
at —20°C, and used as the frozen juice treatment (PFF-juice).

The second subset of fresh bunch grapes (=3kg) was carefully
sealed in food-grade resealable plastic bags and wrapped in aluminium
foil, and stored at —20 °C as the frozen grape treatment (PFF-grape).
After 1 month, only the frozen juices and matching grape bunches from
co-located Sauvignon blanc clones (L4, n =5, Table S1 of the
Supporting Information) were assessed to highlight this concept. Juices
were thawed at 4°C overnight, and defrosted grape bunches were
crushed and the resultant juices were collected in the same manner as
for non-PFF wine, undergoing cold settling at 4 °C overnight. Fermen-
tation of the thawed juices and juices obtained from frozen grape
bunches was conducted in an identical manner to the Control wines.

2.3. Fermentation

Laboratory-scale fermentations were performed in triplicate on an
automated fermentation platform (TEE-BOT) as detailed previously
(Chen et al., 2018). Yeast Saccharomyces cerevisiae strain VIN13 (after
culturing in liquid YPD for 24 h at 28 °C) was used for inoculation (1 mL
of culture). Fermentation temperature was set at 16 °C. Residual sugars

121 of 182



Chapter 5 | Publication | Research article | Intraregional and freezing effects

L. Chen, et al.

were sampled daily and measured using an enzymatic assay (Chen
et al., 2018). Fermentation was considered to be completed when re-
sidual sugars were < 2.5g/L. Finished ferments were cold settled at
4°C for about 1 week before being opened for varietal thiol analysis.

2.4. Basic juice parameter measurement

Total soluble solids (TSS), pH, and titratable acidity (TA) were
measured in freshly obtained juice samples in duplicate according to
the previously reported methods (Chen et al., 2018).

2.5. High-performance liquid chromatography (HPLC) analysis for amino
acids in juices

Freshly thawed juice obtained from fresh whole bunches (n = 21)
was centrifuged at 14,462g for 10 min and 60 pL of supernatant was
collected and mixed with 60 pL of a-aminobutyric acid (0.5mM in
MilliQ water). Mixed samples (100 pL) were loaded onto Strata-X-C
cartridges preconditioned with 1 mL of methanol followed by 1 mL of
water. After sample loading, the column was washed with 1 mL of 80%
aq. methanol solution and eluted with 1 mL of freshly prepared 25%
ammonium hydroxide:methanol (1:1) and the eluate was dried under
nitrogen flow at room temperature using an Alltech drying lid attach-
ment for a vacuum manifold (Grace Davison Discovery Sciences,
Rowville, VIC, Australia). The dried extract was reconstituted with 1 mL
of sodium borate buffer (0.2 M, pH = 8.8), derivatised according to the
manufacturer’s instructions using an AccQ-Fluor reagent kit, and ana-
lysed by HPLC with a fluorescence detector following a published
procedure and using the same instrumentation and HPLC parameters
(Culbert et al., 2017).

2.6. Stable isotope dilution assay (SIDA) using high-performance liquid
chromatography and tandem mass spectrometry (HPLC-MS/MS) for thiol
precursors in juices

Freshly thawed juice obtained from fresh whole bunches (n = 21)
was cold settled at 4 °C for 2h and aliquot was analysed for thiol pre-
cursors (Cys-3-SH, Glut-3-SH) in duplicate according to a previously
reported method with modified reconstitution procedure (Capone &
Jeffery, 2011). Analysis was performed on a Thermo Finnigan Surveyor
HPLC fitted with an Alltima C18 HPLC column (250 X 2.1 mm i.d.,
5um, 100 1°\, Grace Davison Discovery Sciences, Rowville, VIC, Aus-
tralia) connected to a Thermo Finnigan LCQ Deca XP Plus mass spec-
trometer using electrospray ionisation in positive ion mode. Chroma-
tographic conditions and ion pairs were as described previously
(Capone, Sefton, Hayasaka, & Jeffery, 2010) and helium was used as
collision gas with the following source and mass spectrometer condi-
tions: spray voltage of 4.5kV, respective sheath and aux/sweep gas
flow rates of 30 and 19, capillary voltage of 36 V, capillary temperature
of 250 °C, single reaction monitoring mode with activation Q of 0.250,
activation time of 30 ms, normalised collision energy of 35%, and iso-
lation width m/z = 1.50. Xcalibur software (Thermo Finnigan, version
1.3) was used for instrument control and data acquisition. Cys-3-SH and
Glut-3-SH concentrations were reported as the sum of the two re-
spective diastereomers.

2.7. SIDA HPLC-MS/MS analysis for thiols in wines

Thiol extracts were prepared and analysed following a previously
published method (Capone et al., 2015). After cold settling, ferment
bottles were opened and an aliquot of wine (20 mL) was accurately
pipetted into a 22 mL glass vial for sample preparation according to the
previously reported derivatisation and isolation steps. Extracts were
reconstituted with 10% aq. ethanol solution (200 uL) and stored at
—20°C pending analysis. A batch of calibration and quality control
samples was prepared in the same manner with the wine samples for
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quantitation. HPLC-MS/MS analysis was performed with an Agilent
1200 Series HPLC connected to an Agilent 6410A Triple Quad MS
(Agilent, Santa Clara, CA, USA) as reported previously (Chen, Capone,
& Jeffery, 2018).

2.8. Statistics

Data reduction, mean values, standard deviation (SD), and Pearson
correlation were performed with Microsoft Excel 2016. Unpaired t-test
(two tailed) and one-way analysis of variance (ANOVA) was conducted
with a = 0.05 using Prism 7 (GraphPad Software, CA, USA). Principal
component analysis (PCA) was undertaken on all significantly different
variables after standardisation using The Unscrambler X (CAMO
Software, Oslo, Norway).

3. Results and discussion

Regional investigations of varietal thiols and precursors have been
previously reported in few instances and mostly focused on Sauvignon
blanc from the world famous Marlborough region of New Zealand
(Jouanneau et al., 2012; Pinu et al., 2012) although other regions and
varieties have also been evaluated (Capone, Barker, Williamson, &
Francis, 2017; Fracassetti et al., 2018). The cool climate Adelaide Hills
wine region in South Australia was the focus for the present work, with
a total of 21 Sauvignon blanc grape parcels sourced from vineyard
blocks in seven locations (Fig. S1 of the Supporting Information) during
the 2018 vintage to investigate the intraregional variations of pre-
cursors in juices and thiols in wines. Grape samples were harvested by
hand at around the same maturity levels (Table S1 of the Supporting
Information) and fermented in triplicate under identical winemaking
conditions at laboratory-scale using an automated fermentation plat-
form (Chen et al., 2018).

3.1. Basic juice parameters and fermentation

The results for TSS, pH, and TA for freshly obtained juices of the 21
Sauvignon blanc grape parcels are summarised in Table S1 of the
Supporting Information. A TSS of around 20-21 °Brix was targeted but
sampling had to occur within the constraints of the commercial vine-
yards. TSS values generally ranged from 19 to 22 °Brix (L1_1 and L3_2
were <17 °Brix), pH varied from 2.53 to 3.32, and TA was between 6.5
and 13.9 g/L. Except for the higher TA values in 2018, the basic juice
parameters of L4 were similar to the data from the 2017 vintage for
grapes from the same vines (Chen et al., 2018). Slight differences in
ripeness within single locations (even for the same clones) and across
the GI were considered to result from complex ecophysiological re-
sponses and/or viticulture practices (Dai et al., 2011). For all fermen-
tation trials, cold-settled clear juices were fermented in triplicate in an
identical manner without any adjustments to composition using com-
mercial yeast strain VIN13 at 16 °C. Fermentations all proceeded to
dryness (< 2.5g/L) within 3 weeks and no obvious patterns of fer-
mentation duration across grape samples were noticed.

3.2. Overview of intraregional variation on precursors in juices and thiols in
wines

Data from quantitative analysis of juice precursors (Glut-3-SH and
Cys-3-SH, sum of respective diastereomers) and wine varietal thiols (3-
SH, 3-SHA, and 4-MSP) are presented in Fig. 1a—f and Table S2 of the
Supporting Information. The two precursors were detected in all juice
samples with Glut-3-SH (33.7-170.7 ug/L) dominating over Cys-3-SH
(7.9-44.7 pg/L) (Fig. la, Table S2 of the Supporting Information).
There was a strong positive correlation between Cys-3-SH and Glut-3-
SH (r = 0.98, Fig. 1f). The higher abundance of Glut-3-SH and the
strong correlation between precursors were in accord with previous
studies (Capone et al., 2010; Fracassetti et al., 2018; Pinu et al., 2012),
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Fig. 1. Overview of the precursors (Glut-3-SH and Cys-3-SH) in juices and varietal thiols (3-SH, 3-SHA, and 4-MSP) in wines from 21 Sauvignon blanc grape parcels
from seven locations (L1 to L7) within the Adelaide Hills wine region showing: mean concentrations of (a) precursors (ug/L) and (b) thiols (ng/L), where error bars
represent the group SD and scattered dots in black indicate the measured value of analyte in individual samples; statistically significant differences (coloured) of (c)
precursors and (d) thiols across locations, examined by one-way ANOVA (a = 0.05); (e) heat maps showing the quantitative results of precursors and thiols by grape
parcel; and (f) scatter plots (Glut-3-SH vs. Cys-3-SH, 3-SH vs. 3-SHA, precursors vs. varietal thiols) with shaded areas indicating 95% confidence bands and black lines
showing the best-fit lines based on Pearson correlation analysis. For location (L) details, refer to Table S1 and Fig. S1 of the Supporting Information. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

and is reflective of an enzymatic degradation pathway of Glut-3-SH to
Cys-3-SH as detailed previously (Jeffery, 2016). The overall con-
centrations of precursors were well in line with data from the previous
vintage for grapes from the Adelaide Hills (samples from L4) (Chen
et al., 2018).

Previous studies have demonstrated variations of precursors in
Sauvignon blanc juices but they had either been assessed in a smaller
sample set (n = 5) (Allen et al., 2011) or used commercial juices arising
from standard practices (Pinu et al., 2012) that were unlikely to involve
consistent grape processing (e.g., transport, maceration, and press
cycle). In that latter report, variations of precursors in 55 commercial
New Zealand Sauvignon blanc juices from different vintages but mainly
from locations within Marlborough were up to 20-fold and 126-fold for
Glut-3-SH and Cys-3-SH, respectively (Pinu et al., 2012). In the present
study, 21 grape parcels and corresponding juices were obtained in an
identical manner so the results may better reflect possible intraregional
variations of precursors.

The concentrations of precursors in grapes from different locations
were examined by one-way ANOVA (a = 0.05), with results presented
in Fig. lc. In terms of Glut-3-SH, significant differences occurred be-
tween L1 (118.0 + 27.8 pg/L) and L2 (58.3 * 34.7 ug/L), L1 and L4

640

(50.3 = 5.0pug/L), L2 and L3 (112.2 * 40.4 ng/L), and L3 and L4. For
Cys-3-SH, a significant difference was only present between L1 samples
(average 33.9 ug/L) and others (average 12.6-20.2 ug/L). Within the
vineyard locations containing different blocks (and clones) that were
sampled (i.e., L1 to L4), Cys-3-SH varied almost consistently, around
1.4-fold (L4) to 1.7-fold (L2), whereas Glut-3-SH fluctuated from 1.3-
fold (L4) to 3.6-fold (L2), apparently independent of grape ripeness.
This variation among grape parcels from within single locations may
suggest that the biological accumulation of Glut-3-SH was more af-
fected (e.g., by genetics and/or environment) than Cys-3-SH, as the
post-harvest processing conditions were essentially identical.

3-SH, 3-SHA, and 4-MSP in the resulting wines also occurred at
various concentrations (Fig. 1b, Table S2 of the Supporting
Information), with 3-SH ranging from 29 to 528 ng/L (average 152 ng/
L, 18-fold variation) and 3-SHA ranging from 4 to 53 ng/L (average
15ng/L, 13-fold variation), in agreement with previous data reported
for Adelaide Hills Sauvignon blanc wines (Capone et al., 2011; Chen
et al., 2018). Wines high in 3-SH were usually high in 3-SHA, with the
strong correlation (r = 0.86, Fig. 1f) being consistent with the yeast
acetylation pathway linking 3-SHA to 3-SH (Roland et al.,, 2011).
Concentrations of 4-MSP in the finished wines varied from undetectable
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Fig. 2. (a) Relative quantity (%) of amino acids in 21 Sauvignon blanc juices from Adelaide Hills; (b) correlation values between thiols and precursors to amino acids;
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showing the best-fit lines based on Pearson correlation analysis. For location (L) details, refer to Fig. S1 and Table S1 of Supporting Information.

in six samples up to a notable high of 97 ng/L (Fig. 1b). Compared to
reported odour detection thresholds of thiols (Roland et al., 2011), 15
out of 21 Sauvignon blanc wines contained 3-SH above its odour
threshold (odour activity value, OAV: 1.1-8.8), 17 out of 21 wines had
3-SHA greater than its reported threshold (OAV: 1.0-13.3), and all
wines containing 4-MSP had concentrations above its odour threshold
(OAV: 3.4-121.7). The abundances of these thiols at concentrations
well-above threshold means they would be expected to contribute
perceivable “tropical fruit” aromas in these laboratory scale Adelaide
Hills Sauvignon blanc wines.

Regarding intraregional variations, the patterns for 3-SH, and
especially 3-SHA and 4-MSP, were similar (Fig. 1b), with L5 standing
out with significantly higher thiol levels compared with others based on
one-way ANOVA (Fig. 1d). In contrast, L3 and L6 showed lower
amounts of all three thiols. In combination with precursor data, no
obvious relationship from precursors to thiols was apparent in their
patterns of variation. Juices with higher amounts of precursors did not
necessarily lead to wines with greater levels of thiols, with L1 being a
notable example (Fig. 1e). The opposite could also be said, as was the
case for L5, with moderate juice precursor levels but high wine thiol
concentrations. Quantitatively, 3-SH and 3-SHA in the wines were both
negatively correlated to Glut-3-SH (r = —0.38 with 3-SH, r = —0.21
with 3-SHA) and Cys-3-SH (r = —0.38 with 3-SH, r = —0.29 with 3-
SHA) in juices (Fig. 1f). These correlations between precursors and
varietal thiols contrasted to previously reported correlation results for
55 Sauvignon blanc juices and wines, where little correlation was found
for 3-SH and weak but positive correlations to Cys-3-SH, Glut-3-SH and
total precursors were evident for 3-SHA (Pinu et al., 2012).

Due to the limited availability of results that examine correlations
between precursors and thiols, several previously reported sets of
quantitative data for Sauvignon blanc juice and wine (Allen et al., 2011;
Capone et al., 2011; Chen et al., 2018) were selected and the correlation
coefficients were calculated. Interestingly, the calculated correlations
were 0.32 (Capone et al.,, 2011) and 0.40 (data from hand-picked
grapes were selected) (Allen et al., 2011) for Glut-3-SH to 3-SH, in-
dicating a weak to moderate positive relationship. The correlations
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between 3-SH to Cys-3-SH were negative but essentially absent (—0.05
and —0.11) (Allen et al., 2011; Capone et al., 2011; Chen et al., 2018)
but 3-SHA was positively related to both Cys-3-SH (r = 0.34) and Glut-
3-SH (r = 0.61) (Allen et al., 2011). The inconsistent correlations de-
monstrated in the present study and from the abovementioned litera-
ture indicate that the relationship between precursors and varietal
thiols is even more complicated than perhaps is appreciated, and that
ongoing work is required to resolve aspects of varietal thiol biogenesis
during winemaking.

3.3. Potential relationship between grape amino acids with precursors and
thiols

Grapes from V. vinifera cultivars are compositionally complex sys-
tems containing numerous chemical components of various categories.
In relation to varietal thiols in wine, two major types of precursors to 3-
SH and 4-MSP identified in grapes are conjugates of cysteine (Cys-3-SH
and Cys-4-MSP) and glutathione (Glut-3-SH and Glut-4-MSP) (Roland
et al., 2011). Interestingly, the conjugates all involve amino acid unit(s)
(i.e., glycine, glutamic acid, cysteine), which also applies to some re-
cently identified precursors (Bonnaffoux et al., 2018). As a key group of
grape metabolites, amino acids have been intensively investigated for
their relationship with aroma development during fermentation (Burin,
Gomes, Caliari, Rosier, & Bordignon Luiz, 2015; Hernédndez-Orte, Ibarz,
Cacho, & Ferreira, 2006; Park, Boulton, & Noble, 2000) but only a few
publications have investigated their influences on varietal thiol pro-
duction during fermentation (Alegre et al., 2017; Pinu et al., 2014,
2019). Since previous studies either involved synthetic media or a
single Sauvignon blanc juice (Alegre et al., 2017), or showed incon-
sistent correlations between amino acids and thiols (Pinu et al., 2014,
2019), the profiles of amino acids in a range of Sauvignon blanc grapes
from within a single GI were determined and compared with both
precursor and varietal thiol concentrations.

The total amino acid concentrations of the 21 grape juices ranged
from 390 to 1091 mg/L (L1_3 and L7, respectively). Compositionally,
the major amino acids were arginine (146 * 84 mg/L), proline
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(124 = 52mg/L), glutamic acid (124 * 44 mg/L), y-amino butyric
acid (GABA, 75 + 16 mg/L), and a-alanine (52 * 21 ug/L) in contrast
to minor amino acids such as glycine, asparagine, methionine, lysine,
tryptophan, and isoleucine (Table S3 of the Supporting Information),
which accords with literature data on amino acids in Sauvignon blanc
(Martin et al., 2016; Park et al., 2000; Spayd & Andersen-Bagge, 1996).
The ratio of proline to arginine, a suggested cultivar-dependent index,
varied widely from 0.36 to 2.78 in the 21 Sauvignon blanc juices, with
such an inconsistency having been observed in a previous multi-cultivar
survey (Spayd & Andersen-Bagge, 1996). Variation of individual amino
acid concentrations between juices from different locations was ap-
parent, as shown in the heatmap (Fig. 2a). Two samples from L1 (L1_1
and L1_2) and juices from L5 to L7 contained higher amounts of minor
amino acids. Greater amounts of aspartic acid, serine, proline, and
glutamic acid were seen in juices from L4 to L7. Various factors influ-
ence grape amino acid concentrations including fertilisation, irrigation
and climatic conditions (Ortega-Heras et al., 2014).

Correlation analysis was performed to investigate the potential re-
lationships between amino acids and both thiols and their precursors
(Fig. 2b-d). As a whole, amino acids in juices were only weakly cor-
related to 3-SH and 3-SHA in the wines (r < 0.2, Fig. 2b). Individually,
correlations (positive or negative) with 3-SH and 3-SHA ranged from
absent to weak (|r| = 0.30, Fig. 2¢) except for glutamic acid (r = 0.42
for 3-SH, r = 0.32 for 3-SHA) and proline (r = 0.34 for 3-SH, r = 0.36
for 3-SHA). Glutamic acid has previously been positively correlated to
thiol concentrations in a metabolomic profiling study of Sauvignon
blanc, along with GABA and glutamine (Pinu et al., 2014). As varietal
thiol production is the result of yeast metabolism during fermentation,
the observed correlations between amino acids and varietal thiols could
indicate the impacts of amino acids (especially glutamic acid and pro-
line in the present case) on thiol production or interactions between
amino acids and thiol precursors during fermentation. The significant
enhancing effects of glutamic acid on 3-SH and 3-SHA production were
demonstrated previously (Pinu et al., 2014). Glutamic acid stands out
perhaps because it is a preferred yeast nitrogen source for fermentation
but the similar correlation results obtained for proline, a non-preferred
nitrogen source, were somewhat intriguing.

In contrast to the results for the free thiols, precursors were more
strongly correlated to a greater number of amino acids (|r| = 0.30 for
thirteen amino acids) (Fig. 2b). Among these apparently novel findings,
glutamic acid featured again and had the strongest correlation to both
of the precursors (r < —0.73), followed by glycine (r = 0.62), GABA
(r = 0.59), alanine (r < —0.55), and isoleucine (r = 0.55). The mod-
erate to strong correlations were suggestive of the interaction between
the biochemical accumulation/degradation outcomes of thiol pre-
cursors and amino acids during grape ripening. Glutamic acid and
glycine are component amino acids of glutathione, which plants require
to respond to environmental stress (Galant, Preuss, Cameron, & Jez,
2011), so the strong correlations likely relate to promotion (glycine) or
inhibition (glutamic acid) of glutathione biosynthesis and thus of glu-
tathione-conjugated thiol precursor Glut-3-SH, which in turn is linked
to Cys-3SH formation. The moderate correlations between proline and
thiol precursors (r = —0.39 for Glut-3-SH, r = —0.48 for Cys-3-SH)
could also be related to glutamic acid production, which serves as a
precursor to proline (Anjum et al., 2014). Nonetheless, the mechanisms
underlying these correlations as well as those of precursors with GABA,
alanine, and isoleucine are still unclear and require further investiga-
tions. Recent literature suggested that certain ratios of amino acids
could also modify thiol production (Alegre et al., 2017) so the corre-
lations of various amino acid combinations (Glu/GABA, Glu — GABA,
Glu + GABA, Glu/Pro, Glu — Pro, Glu + Pro, GABA/Pro, GABA + Pro,
GABA — Pro) with thiols and precursors were assessed but no notable
correlations were observed (data not shown).

PCA analysis of quantitative data for varietal thiols, precursors, and
amino acids is presented in Fig. 3. The first two principal components
(PC) explained a total of 68% variance, with 43% and 25% of the total
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attributable to PC 1 and PC 2, respectively (Fig. 3a). Samples from L1
were located in the top quadrants of the figure and generally corre-
sponded to higher concentrations of Cys-3-SH, Glut-3-SH, GABA, and
glycine (Fig. 3b). Samples from L3 were relatively closely plotted to L1
samples, which indicated similarity between them. Three out of five L2
samples grouped together in the bottom left quadrant, close to the
varietal thiols but far away from all amino acids. L4 samples were lo-
cated together in the bottom quadrants and close to the free thiols
(Fig. 3b), indicating relative higher amounts of 3-SH, 3-SHA, and 4-MSP
(Fig. 1b). Notably, L5 wine contained the highest amounts of 3-SHA and
4-MSP and was clustered with L6 and almost inseparable from L7,
which were dominated by the higher levels of amino acids, indicating
the potential impact of amino acids on the variation of thiol metabo-
lism.

3.4. Impact of pre-fermentation freezing (PFF) treatment on precursors and
thiols

Cryomaceration (low temperature maceration with solid CO, for a
period of time) or grape/must freezing can be employed to induce berry
damage and enhance extraction of components (Sacchi, Bisson, &
Adams, 2005), and has primarily been assessed for its impact on the
non-volatile composition (e.g., phenolics or organic acids) of wines or
on stability (Alvarez, Aleixandre, Garcia, & Lizama, 2006; Baiano et al.,
2012). Several studies have considered the impact of cryogenic treat-
ment on volatile compounds in grape or wine (Moreno-Pérez, Vila-
Lépez, Fernandez-Ferndndez, Martinez-Cutillas, & Gil-Mufoz, 2013;
Ouellet & Pedneault, 2016; Peinado, Moreno, Bueno, Moreno, &
Mauricio, 2004; Peng, Wen, Tao, & Lan, 2013) but only one report
appeared to be available on the potential effect on varietal thiols (Olejar
et al., 2015). This is despite the technique potentially offering a prac-
tical way to increase thiol concentrations in wine through greater ex-
traction of components from grape skin or formation of precursors
(Roland et al., 2011). Some further insight into the possible impact can
be gained from a previous study, whereby frozen storage of fresh grapes
increased the concentrations of Cys-3-SH (inconsistently) and Glut-3-SH
(substantially) (Capone et al., 2011). However, the impact of PFF
treatment on varietal thiols was not pursued in that work.

In the present study, a period of 30 days of frozen storage (20 °C)
was selected as the PFF treatment on freshly harvested whole grape
bunches and their subsequently obtained fresh juices. The conditions
for PFF were based on a previous study (Capone et al., 2011) and were
also chosen for convenience, to accommodate other time-sensitive as-
pects of the experiments. Optimisation of PFF conditions (e.g., tem-
perature, duration, thawing process) was not included but previous
work has assessed some conditions and shown an effect on wine vola-
tiles with as little as 6 h of freezing at —20 °C (Peng et al., 2013). The
concentrations of Glut-3-SH and Cys-3-SH in juices obtained from
grapes from L4 with/without PFF treatment and those of 3-SH, 3-SHA,
and 4-MSP in subsequent wines from corresponding juices are demon-
strated in Fig. 4. After PFF treatment of grape berries, concentrations of
Glut-3-SH and Cys-3-SH were 724.3 + 78.7 pg/Land 73.1 * 11.7 pg/
L, respectively. Compared to grapes without PFF (see L4 in Fig. 1, Glut-
3-SH: 50.3 *+ 5.0ug/L, Cys-3-SH: 15.4 + 2.2pug/L), Glut-3-SH ex-
hibited a significant 11-19 fold increase and Cys-3-SH increased about
4-6 fold, and with the exception of sample L4_5, all the increments
were statistically significant (Fig. 4a). The enhancement of precursors
after PFF was much higher than previously reported, in which Glut-3-
SH increased by about 5-fold after 1 month of frozen storage but little
change was observed for Cys-3-SH (Capone et al., 2011). The significant
increase of Glut-3-SH appeared to be caused by de novo formation due
to berry damage that occurred during PFF, as explained previously
(Capone et al., 2011). Higher amounts of Cys-3-SH after PFF treatment
in the present study suggested a similar formation mechanism might
occur for Cys-3-SH, but potential degradation from Glut-3-SH to Cys-3-
SH or improved extraction of Cys-3-SH from damaged cells (Sacchi
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et al., 2005) during the freezing/thawing process could also contribute
to the greater amounts of Cys-3-SH observed.

As with precursors in the juices, varietal thiol concentrations were
also significantly enhanced in wines with PFF treatment (Fig. 4b) ex-
cept for 3-SHA in L4_3 wine and 4-MSP in L4_1 wine. Overall, 3-SH
concentrations of L41 to L45 were 1139.0 + 412.1 and
526.0 = 279.4ng/L in wines from PFF treatment of grape bunches and
juices, respectively, and both were higher than the average for wine
derived from non-PFF treatment (222.8 + 128.0ng/L). Stronger in-
creases of thiols were seen in wines from PFF of grapes bunches than
PFF of juices and similar trends were observed for 3-SHA and 4-MSP.
Compared to wines made from fresh grapes, 3-SH, 3-SHA, and 4-MSP
increased by around 2-10, 3-7, and 2-8 times when PFF was applied to
grapes. Although lower in magnitude, significant increases of varietal
thiols were also noted when comparing wines from PFF grapes to wines
arising from PFF juices (Fig. 4b). When considering production from
fresh grapes versus frozen juices, significant differences were only ob-
served for 3-SH production in L4_2 and L4_3 wines (approximate 4-fold
increase). Notably, even though the increased concentrations from PFF
treatments were evident for both precursors and free thiols, with the

latter potentially being a reflection of elevated precursor levels, there
were much greater relative increases for precursors. Consistent with the
weak correlation between precursor and thiol concentrations after PFF
treatments (data not shown), this outcome implied that only partial
amounts of the enhanced precursor levels induced by PFF treatments
were converted to varietal thiols. Nonetheless, whatever the precise
mechanism (i.e., from known precursors or some other thiol biogenesis
pathway), the significant effects of the freezing treatments showed that
remarkable thiol augmentation in wine was possible, which comple-
ments the previous work involving dry ice cryomaceration of Sauvignon
blanc grape musts (Olejar et al., 2015).

4. Conclusion

Intraregional variations of precursors in juice and varietal thiols in
wine were characterised for 21 Sauvignon blanc samples from the
Adelaide Hills wine region. Obvious intraregional variations were seen
in the amounts of precursors in juices and thiols produced in wines. The
mixed correlations, weak between grape amino acids and wine varietal
thiols but moderate to strong between amino acids and precursors,
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together with multivariate data analysis, indicated the potential inter-
actions between amino acids and both precursor biosynthesis in grapes
and thiol metabolism during fermentation. Notably, pre-fermentation
freezing treatment of grape berry parcels induced significant increases
in concentrations not only of precursors but also of free thiols, which
was revealed for the first time on the same set of grape and wine
samples. Pre-fermentation freezing could be a potential approach for
winemakers to enhance the production of varietal thiols in wines and
this warrants further investigation. In particular, experiments focusing
on optimal PFF conditions, for instance, the duration of PFF, storage
temperature, thawing process, and single/multiple PFF cycles, could be
conducted.

Declaration of Competing Interest
The authors declare no conflict of interest.
Acknowledgements

We are immensely grateful to David Coleman from Adelaide Hills
Vine Improvement Inc. (AHVI) for assistance of with grape harvesting
and facilitating access to vineyards. We acknowledge the time con-
tributions and generous donations of grapes provided by Peter Bird and
David Kohl (Casella Family Brands), Chris Mein (Shaw + Smith), David
Blows (Spring Dale), Spiro Papadopoulos (Australian Vintage Ltd), and
James Thorpe (Nova Vita Wines). We are thankful to our UA colleagues,
Michelle Walker and Nick Van Holst for help with fermentation, and
Ross Sanders for laboratory assistance. Sue Maffei from CSIRO is ac-
knowledged for providing assistance with HPLC-MS/MS analysis. L.C.
was a recipient of the joint scholarship of UA and China Scholarship
Council (CSC201506350012), and was also supported by a Wine
Australia supplementary scholarship (AGW Ph1512). The Australian
Research Council Training Centre for Innovative Wine Production
(www.ARCwinecentre.org.au; project number IC170100008) is funded
by the Australian Government with additional support from Wine
Australia and industry partners. The University of Adelaide and CSIRO
are members of the Wine Innovation Cluster.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.foodchem.2019.05.126.

References

Alegre, Y., Culleré, L., Ferreira, V., & Hernandez-Orte, P. (2017). Study of the influence of
varietal amino acid profiles on the polyfunctional mercaptans released from their
precursors. Food Research International, 100, 740-747.

Allen, T., Herbst-Johnstone, M., Girault, M., Butler, P., Logan, G., Jouanneau, S., ...
Kilmartin, P. A. (2011). Influence of grape-harvesting steps on varietal thiol aromas
in Sauvignon blanc wines. Journal of Agricultural and Food Chemistry, 59(19),
10641-10650.

Alvarez, 1., Aleixandre, J. L., Garcfa, M. J., & Lizama, V. (2006). Impact of pre-
fermentative maceration on the phenolic and volatile compounds in Monastrell red
wines. Analytica Chimica Acta, 563(1-2), 109-115.

Anjum, N. A., Aref, I. M., Duarte, A. C., Pereira, E., Ahmad, 1., & Igbal, M. (2014).
Glutathione and proline can coordinately make plants withstand the joint attack of
metal(loid) and salinity stresses. Frontiers in Plant Science, 5, 662.

Baiano, A., Terracone, C., Longobardi, F., Ventrella, A., Agostiano, A., & Del Nobile, M. A.
(2012). Effects of different vinification technologies on physical and chemical char-
acteristics of Sauvignon blanc wines. Food Chemistry, 135(4), 2694-2701.

Bonnaffoux, H., Delpech, S., Rémond, E., Schneider, R., Roland, A., & Cavelier, F. (2018).
Revisiting the evaluation strategy of varietal thiol biogenesis. Food Chemistry, 268,
126-133.

Brown, M. S. (1975). Wine from frozen grapes. American Journal of Enology and Viticulture,
26(2), 103-104.

Burin, V. M., Gomes, T. M., Caliari, V., Rosier, J. P., & Bordignon Luiz, M. T. (2015).
Establishment of influence the nitrogen content in musts and volatile profile of white
wines associated to chemometric tools. Microchemical Journal, 122, 20-28.

Capone, D. L., Barker, A., Williamson, P. O., & Francis, I. L. (2017). The role of potent
thiols in Chardonnay wine aroma. Australian Journal of Grape and Wine Research,
24(1), 38-50.

644

Food Chemistry 295 (2019) 637-645

Capone, D. L., & Jeffery, D. W. (2011). Effects of transporting and processing Sauvignon
blanc grapes on 3-mercaptohexan-1-ol precursor concentrations. Journal of
Agricultural and Food Chemistry, 59(9), 4659-4667.

Capone, D. L., Ristic, R., Pardon, K. H., & Jeffery, D. W. (2015). Simple quantitative
determination of potent thiols at ultratrace levels in wine by derivatization and high-
performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS)
analysis. Analytical Chemistry, 87(2), 1226-1231.

Capone, D. L., Sefton, M. A., Hayasaka, Y., & Jeffery, D. W. (2010). Analysis of precursors
to wine odorant 3-mercaptohexan-1-ol using HPLC-MS/MS: Resolution and quanti-
tation of diastereomers of 3-S-cysteinylhexan-1-ol and 3-S-glutathionylhexan-1-ol.
Journal of Agricultural and Food Chemistry, 58(3), 1390-1395.

Capone, D. L., Sefton, M. A., & Jeffery, D. W. (2011). Application of a modified method
for 3-mercaptohexan-1-ol determination to investigate the relationship between free
thiol and related conjugates in grape juice and wine. Journal of Agricultural and Food
Chemistry, 59(9), 4649-4658.

Chen, L., Capone, D. L., & Jeffery, D. W. (2018). Identification and quantitative analysis of
2-methyl-4-propyl-1,3-oxathiane in wine. Journal of Agricultural and Food Chemistry,
66(41), 10808-10815.

Chen, L., Capone, D. L., Tondini, F. A., & Jeffery, D. W. (2018). Chiral polyfunctional
thiols and their conjugated precursors upon winemaking with five Vitis vinifera
Sauvignon blanc clones. Journal of Agricultural and Food Chemistry, 66(18),
4674-4682.

Coetzee, C., & du Toit, W. J. (2012). A comprehensive review on Sauvignon blanc aroma
with a focus on certain positive volatile thiols. Food Research International, 45(1),
287-298.

Culbert, J. A., McRae, J. M., Condé, B. C., Schmidtke, L. M., Nicholson, E. L., Smith, P. A.,
... Wilkinson, K. L. (2017). Influence of production method on the chemical com-
position, foaming properties, and quality of Australian carbonated and sparkling
white wines. Journal of Agricultural and Food Chemistry, 65(7), 1378-1386.

Dai, Z. W., Ollat, N., Gomés, E., Decroocq, S., Tandonnet, J.-P., Bordenave, L., ... Delrot, S.
(2011). Ecophysiological, genetic, and molecular causes of variation in grape berry
weight and composition: A review. American Journal of Enology and Viticulture, 62,
413-425.

Fracassetti, D., Stuknyté, M., La Rosa, C., Gabrielli, M., De Noni, I., & Tirelli, A. (2018).
Thiol precursors in Catarratto Bianco Comune and Grillo grapes and effect of clar-
ification conditions on the release of varietal thiols in wine. Australian Journal of
Grape and Wine Research, 24(1), 125-133.

Galant, A., Preuss, M. L., Cameron, J. C., & Jez, J. M. (2011). Plant glutathione bio-
synthesis: Diversity in biochemical regulation and reaction products. Frontiers in Plant
Science, 2, 45.

Hernandez-Orte, P., Ibarz, M. J., Cacho, J., & Ferreira, V. (2006). Addition of amino acids
to grape juice of the Merlot variety: Effect on amino acid uptake and aroma gen-
eration during alcoholic fermentation. Food Chemistry, 98(2), 300-310.

Jeffery, D. W. (2016). Spotlight on varietal thiols and precursors in grapes and wines.
Australian Journal of Chemistry, 69(12), 1323-1330.

Jouanneau, S., Weaver, R. J., Nicolau, L., Herbst-Johnstone, M., Benkwitz, F., &
Kilmartin, P. A. (2012). Subregional survey of aroma compounds in Marlborough
Sauvignon Blanc wines. Australian Journal of Grape and Wine Research, 18(3),
329-343.

Martin, D., Grose, C., Fedrizzi, B., Stuart, L., Albright, A., & McLachlan, A. (2016). Grape
cluster microclimate influences the aroma composition of Sauvignon blanc wine.
Food Chemistry, 210, 640-647.

Moreno-Pérez, A., Vila-Lépez, R., Fernandez-Ferndndez, J. I., Martinez-Cutillas, A., & Gil-
Muiioz, R. (2013). Influence of cold pre-fermentation treatments on the major vo-
latile compounds of three wine varieties. Food Chemistry, 139(1-4), 770-776.

OIV (2017). Distribution of the world's grapevine varieties. Accessed 4 February 2019 http://
www.oiv.int/public/medias/5888/en-distribution-of-the-worlds-grapevine-varieties.
pdf.

Olejar, K. J., Fedrizzi, B., & Kilmartin, P. A. (2015). Influence of harvesting technique and
maceration process on aroma and phenolic attributes of Sauvignon blanc wine. Food
Chemistry, 183, 181-189.

Ortega-Heras, M., Pérez-Magarino, S., Del-Villar-Garrachén, V., Gonzélez-Huerta, C.,
Moro Gonzalez, L. C., Guadarrama Rodriguez, A., ... Martin de la Helguera, S. (2014).
Study of the effect of vintage, maturity degree, and irrigation on the amino acid and
biogenic amine content of a white wine from the Verdejo variety. Journal of the
Science of Food and Agriculture, 94(10), 2073-2082.

Ouellet, E., & Pedneault, K. (2016). Impact of frozen storage on the free volatile com-
pound profile of grape berries. American Journal of Enology and Viticulture, 67(2),
239-244.

Pando Bedrinana, R., Picinelli Lobo, A., & Sudrez Valles, B. (2019). Influence of the
method of obtaining freeze-enriched juices and year of harvest on the chemical and
sensory characteristics of Asturian ice ciders. Food Chemistry, 274, 376-383.

Park, S. K., Boulton, R. B., & Noble, A. C. (2000). Formation of hydrogen sulfide and
glutathione during fermentation of white grape musts. American Journal of Enology
and Viticulture, 51(2), 91-97.

Peinado, R. A., Moreno, J., Bueno, J. E., Moreno, J. A., & Mauricio, J. C. (2004).
Comparative study of aromatic compounds in two young white wines subjected to
pre-fermentative cryomaceration. Food Chemistry, 84(4), 585-590.

Peng, C.-T., Wen, Y., Tao, Y.-S., & Lan, Y.-Y. (2013). Modulating the formation of Meili
wine aroma by prefermentative freezing process. Journal of Agricultural and Food
Chemistry, 61(7), 1542-1553.

Pinu, F. R., Edwards, P. J. B., Jouanneau, S., Kilmartin, P. A., Gardner, R. C., & Villas-
Boas, S. G. (2014). Sauvignon blanc metabolomics: Grape juice metabolites affecting
the development of varietal thiols and other aroma compounds in wines.
Metabolomics, 10(4), 556-573.

Pinu, F. R., Jouanneau, S., Nicolau, L., Gardner, R. C., & Villas-Boas, S. G. (2012).

127 of 182



Chapter 5 | Publication | Research article | Intraregional and freezing effects

L. Chen, et al.

Concentrations of the volatile thiol 3-mercaptohexanol in Sauvignon blanc wines: No
correlation with juice precursors. American Journal of Enology and Viticulture, 63(3),
407-412.

Pinu, F. R., Tumanov, S., Grose, C., Raw, V., Albright, A., Stuart, L., ... Greven, M. (2019).
Juice Index: An integrated Sauvignon blanc grape and wine metabolomics database
shows mainly seasonal differences. Metabolomics, 15, 3.

Roland, A., Schneider, R., Charrier, F., Cavelier, F., Rossignol, M., & Razungles, A. (2011).
Distribution of varietal thiol precursors in the skin and the pulp of Melon B. and
Sauvignon Blanc grapes. Food Chemistry, 125(1), 139-144.

Roland, A., Schneider, R., Razungles, A., & Cavelier, F. (2011). Varietal thiols in wine:

645

Food Chemistry 295 (2019) 637-645

Discovery, analysis and applications. Chemical Reviews, 111(11), 7355-7376.
Sacchi, K. L., Bisson, L. F., & Adams, D. O. (2005). A review of the effect of winemaking
techniques on phenolic extraction in red wines. American Journal of Enology and

Viticulture, 56(3), 197-206.

Santiago, M., & Gardner, R. C. (2015). Yeast genes required for conversion of grape
precursors to varietal thiols in wine. FEMS Yeast Research, 15(5), 1-10.

Spayd, S. E., & Andersen-Bagge, J. (1996). Free amino acid composition of grape juice
from 12 Vitis vinifera cultivars in Washington. American Journal of Enology and
Viticulture, 47(4), 389-402.

128 of 182



Chapter 5 | Publication | Research article | Intraregional and freezing effects

Chen et al. Intraregional and freezing effects on varietal thiols and precursors

SUPPLEMENTARY INFORMATION FOR

Investigation of intraregional variation, grape amino acids, and pre-fermentation freezing on

varietal thiols and their precursors for Vitis vinifera Sauvignon blanc
Liang Chen?, Dimitra L. Capone®°, Emily L. Nicholson®, David W. Jeffery**

2 Department of Wine and Food Science, The University of Adelaide (UA), PMB 1, Glen Osmond,
South Australia 5064, Australia

b Australian Research Council Training Centre for Innovative Wine Production, UA, PMB 1, Glen

Osmond, South Australia 5064, Australia
¢ CSIRO Agriculture and Food, Locked Bag 2, Glen Osmond, SA 5064, Australia
* Corresponding author.

Email address: david.jeffery@adelaide.edu.au (D.W. Jeffery)

Table of Contents
Page

Figure S1. Map of Adelaide Hills Geographical Indication (GI) and locations of sampled vineyards.
S-2

Table S1. Clone, harvest date and basic chemical parameters of 21 Sauvignon blanc grape samples from

locations within the Adelaide Hills GI. S-3
Table S2. Concentrations of precursors (pg/L) in 21 Sauvignon blanc juices from the Adelaide Hills and varietal
thiols (ng/L) in resulting wines. S-4
Table S3. Concentrations (mg/L) of amino acids in 21 Sauvignon blanc grape samples from the Adelaide Hills.
S-5
S-1

129 of 182



Chapter 5 | Publication | Research article | Intraregional and freezing effects

Intraregional and freezing effects on varietal thiols and precursors

Chen et al.

Adelaide Hills
L1 (Carrswood, n=6)

L2 (Gumeracha, n=5)

L3 (Woodside, n=2)
Adelaide, SA L4 (Hahndorf, n=5)

L5 (Hahndorf, n=1)

L6 (Hahndorf, n=1)

L7 (Macclesfield, n=1)

McLaren Vale

Fig. S1. Map of Adelaide Hills Geographical Indication (GI) and locations of sampled vineyards. GI

map of Adelaide Hills derived from Wine Australia (https://www.adelaidehillswine.com.au/region/);

pinned locations indicate the commercial vineyards (L1-7) sampled in this study; location

information sourced from Google Map.
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Table S1. Clone, harvest date and basic chemical parameters of 21 Sauvignon blanc grape samples

from locations within the Adelaide Hills GI.

Clone Harvest date  pH® TSS (°Brix)? TA (g/L)?
L1_1 F4V6 27 Feb 2018 2.53+£0.02 16.0 £ 0.1 10.18 £0.01
L1.2 F4V6 27 Feb 2018 2.91+£0.01 20.1+04 6.50+0.03
L13 F4V6 27 Feb 2018 2.83+£0.01 18.8 £0.2 7.30+0.01
L1 4 F4V6 27 Feb 2018 2.82 £0.01 20.7+0.1 7.16 £0.02
L15 F4Ve6 27 Feb 2018 2.72 £0.01 19.3+0.1 8.71 £0.02
L1 6 F4V6 27 Feb 2018 2.95+0.01 21.6+0.1 7.41 +£0.05
average 2.79+0.14b 19.4 £ 1.9ab 7.87 £ 1.28bc
L2 1 H5V10 7 Mar 2018 3.13+£0.02 21.8+0.1 8.67+0.01
L2 2 F4V6 7 Mar 2018 3.12+0.02 22.3+0.0 7.87+0.01
L2 3 F7Vv7 7 Mar 2018 3.32+0.06 21.0+0.1 8.48 £0.08
L2 4 Q9720 7 Mar 2018 3.02+0.03 21.1+£0.0 9.78 £ 0.01
L2 5 5385 7 Mar 2018 2.91+0.01 19.5+£0.1 8.51+£0.01
average 3.10£0.14a 21.1t1.1a 8.66 = 0.65abc
L3 1 F4V6 27 Feb 2018 2.71 £0.01 18.9+0.0 8.70+0.04
L3 2 F4V6 27 Feb 2018 2.76 £0.01 16.9+0.2 8.45+0.01
average 2.73+£0.03b 17.9+ 1.2b 8.58 £ 0.15abc
L4 1 H5V10 28 Feb 2018 2.76 £ 0.04 21.5+0.6 10.94 +0.01
L4 2 F4V6 28 Feb 2018 2.65+0.01 20.7+0.1 11.28 £0.23
L4 3 F7v7 28 Feb 2018 2.59+£0.04 19.4+0.3 13.90 + 0.06
L4 4 Q9720 28 Feb 2018 2.86 £0.02 21.4+0.0 10.46 £ 0.02
L4 5 5385 28 Feb 2018 2.82+0.01 20.7 £0.1 9.11£0.01
average 2.75+0.12b 20.7 = 0.8ab 11.14 £ 1.65a
L5 F4V9 28 Feb 2018 2.944+0.00ab 21.8+0.1a 6.64 +0.02¢
L6 F4V6 28 Feb 2018 2.74 £0.03b 19.8 £ 0.1ab 10.67 £ 0.05a
L7 F4V6 27 Feb 2018 2.64 +0.00b 19.8 +0.0ab 10.08 + 0.05ab

2 Data represent mean values + standard deviations derived from duplicate samples. Different lower
case letters within a column denote significant differences among the means (one-way ANOVA, o =
0.05, Tukey multiple comparisons test).
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Table S2. Concentrations of precursors (png/L) in 21 Sauvignon blanc juices from the Adelaide Hills

and varietal thiols (ng/L) in resulting wines.

Glut-3-SH Cys-3-SH 3-SH 3-SHA 4-MSP
L11 170.7+4.3 446+44 73.5+£42 10.0+2.6 n.d.
L1.2 111.4+39 30.2+0.1 41.7+12.2 52+09 n.d.
L13 1192+ 7.7 30.0£3.7 74.8 £ 30.5 12.1+£4.0 n.d.
L1 4 88.9+3.1 333+£0.5 53.9+6.5 55+1.5 n.d.
L1S 954+29 323+1.5 71.5+79 47+1.0 3.6+0.8
L16 122.0+3.7 33.3+£8.8 126.0+69.4  20.7+13.6 3.1*
L2 1 36.3+£0.3 10.7+£0.5 52.6+21.3 9.0+4.0 55+32
L2 2 1226+ 11.3 182+0.5 197.1+£104.0 18.6+10.5 356+11.5
L2 3 33.7+1.5 11.1+0.5 513.5+14.0 364+3.7 39.8+3.5
L2 4 534+24 11.1+0.5 192.1+25.6  22.1+£3.6 294+3.5
L2 5 45.6+£2.6 11.8+£0.1 456 2.7 4.1+0.2 57+1.1
L3 1 146.3+6.8 243+£13 68.8+27.0 12.1+£52 n.d.>
L3 2 78.2+13.9 162+1.4 52.0+3.2 7.8+ 1.6 n.d.
L4 1 525+1.0 17.8+2.4 442.2 +£66.2 243+0.1 45.8+4.5
L4 2 439+2.0 13.1+0.9 151.3 £84.7 19.5+8.3 19.8£5.0
L4 3 499+3.0 13.4+£0.1 292.7+24.6 18.4+£52 29.8+£3.8
L4 4 475+1.1 155+1.0 194.6 £ 30.9 17.9 £1.6 6.2+0.6
L4 5 574+24 16.8 £ 1.6 97.0 +14.2 11.0+£1.9 4.9%
LS 80.5+3.5 16.8 £ 1.5 3855+ 11.8  474+55 93.8 £4.1
L6 71.5+2.8 17.0+ 0.2 404=+1.4 6.1+£0.7 44+1.2
L7 65.1£0.6 154+0.6 385.5+11.8 11.3+£0.7 23.7+12.2

2 Only one replicate out of the three ferments was found with detectable amount of the analyte. ® n.d., not

detected (<3 ng/L).
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Table S3. Concentrations (mg/L) of amino acids in 21 Sauvignon blanc grape juices from the Adelaide Hills.?

Aspartate Asparagine Serine Glutamate Histidine Glutamine Glycine Arginine Threonine
RT (min)° 20.813 22.189 22567 22.810 23.794 24.223 24.403 26.469 28.096
L11 10.1+0.2 14+£0.0 22.8+0.3 74.7+1.7 94+0.0 31.8+04 0.21+0.02 162.7+29 468+0.8
L1 2 85+05 1.9+0.0 242+0. 71.6+0.9 124+0.1 39.2+0.2 0.11+0.01 2424410 559+0.1
L13 83+0.0 1.1£0.0 154+0.2 65.7+0.9 47+0.1 20.7+0.1 0.11+£0.00 67.6+0.3 29.8+0.1
L1 4 129+04 1.0+0.0 186+0.2 76.5+0.6 52+0.1 21.5+0.1 0.17+0.02 574+18 352104
L1 5 11.3+02 1.0+£0.0 185+0.3 82.9+0.6 49+0.1 204+02 0.17+£0.01 363+13 30.6+0.5
L1 6 10.0+0.1 1.1+0.0 162+0.0 67.0+0.8 43+00 21.0+0.1 0.10+0.02 604+08  319+05
L2 1 11.8+0.5 14+0.1 256+02 158.1+9.2 103+0.1 421+04 0.14+0.01 271.1+1.7 56.1+0.5
L2 2 10.1+03 1.0+0.0 19.5+£0.5 84.8+53 6.0+£02 30.0+1.2 0.14+0.02 872+35 378+1.3
23 8.8+0.1 1.0+£0.0 21.0+0.8 143.3+24 5.6+0.1 249+03 0.11+£0.01 1464+09 484+0.0
L2 4 11.5+£03 09+0.0 189+0.3 1109+08  65+00 275+02 0.06£0.00 1604+1.1 41809
L25 164+0.1 09+0.0 169+0.1 123.3+4.2 44+00 20.1+04 0.07+0.00 123.5+09 369+04
L3 1 204+0.2 1.2+0.0 20.7+£0.0 97.5+25 63+0.0 28.6+0.1 0.18+£0.01 1350+0.7 459405
L3 2 20.1+0.3 1.3+£0.0 18.7+0.1 97.3+04 59+0.1 265+0.0 0.13+£0.00 1104+10 43.0+04
41 39.1+09 1.6+0.0 333+04 181.4+9.1 92+0.1 472+04 0.05+0.02 149.1£1. 48.8+0.8
142 39.5+0.0 14+£0.0 31.6+0.8 183.6+24 73+£0.2 37.0+0.8 0.05+0.02 1135+16 433404
143 364+02 1.1+£0.0 24.6+0.0 1545435 55400 313+02 0.05+0.01 719+04  388+02
L4 4 353+0.1 1.2+0.0 27.7+0.1 1552445 7.1£0.1 332+04 0.003 +0.002 95.8+0.3 423+£03
L4 5 29.7+0.1 12+0.0 269+0.3 151.5+3.6 6.1+£0.1 334+04 0.008 +0.005 1248+0.1 392+04
L5 37.1£02 14+0.0 30.2+0.1 167.1+£24 109+0.1 39.0+£0.0 0.13+0.01 189.0+0.5 555402
L6 359+02 20+0.0 33.7+0.2 174.5+5.1 129+0.1 56.0+0.6 0.07+£0.01 320710 66.1+0.5
L7 36.8+0.2 1.8+0.0 31.7+04 1882+40  114+02 512+03 0.06+0.01 3245+63 638+03
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ABSTRACT: On the basis of the chemistry of wine and the co-occurrence of 3-sulfanylhexan-1-ol (3-SH) and acetaldehyde,
we investigated the existence of 2-methyl-4-propyl-1,3-oxathiane (1) and identified the presence of a single detectable geometric
isomer, cis-1, in wines for the first time. A stable isotope dilution assay (SIDA) using headspace—solid-phase microextraction
(HS—SPME) and gas chromatography—mass spectrometry (GC—MS) was developed and validated, and used to quantitate cis-
1 in a survey of wines, revealing a range from undetectable (limit of detection = 2.6 ng/ L) to 460 ng/L. The odor detection
threshold of 1 (using a standard comprising 85% cis-1 and 15% trans-1) in neutral white wine was determined to be 7.1 ug/L.
Despite cis-1 not appearing above the determined sensory threshold in the studied wines, the findings demonstrated the
presence of a new volatile sulfur compound with a strong correlation to 3-SH concentration (r = 0.72), showing that cis-1 has
potential implications for the fate of the important wine aroma compound 3-SH.

KEYWORDS: 3-sulfanylhexan-1-ol, polyfunctional thiol, stable isotope dilution assay, tropical fruit, wine aroma

Bl INTRODUCTION

Extensive knowledge of the volatiles associated with the aroma
of foods and beverages has been progressively achieved in
recent decades through instrumental and sensory analysis.
Typically, key aroma volatiles are first noticed for their unique
olfactory attributes, which, in turn, leads to studies involving
their identification and quantitative analysis to explore the
relevance of the new odorants.

As a prime example, the first mention of polyfunctional
thiols in wine was raised in a sensory study focusing on “guava”
aroma in white wines." Naturally, this led to the development
of analytical methods, and ultimately a number of polyfunc-
tional thiols were identified®™ as odorants that could impart
profound organoleptic impacts in wine.” Polyfunctional thiols
including 3-sulfanylhexan-1-ol (3-SH), 3-sulfanylhexyl acetate
(3-SHA), and 4-methyl-4-sulfanylpentan-2-one (4-MSP) pos-
sess extremely low olfactory thresholds (nanogram per liter
levels) and are regarded as key volatile sulfur compounds
(VSCs) responsible for distinctive citrus and tropical fruit
aromas, usually described as “grapefruit”, “box hedge”, and
“passionfruit”, in many wine varieties and particularly white
wines made from Sauvignon blanc.®™® Indeed, these same
polyfunctional thiols occur in grapefruit’ and passionfruit,'”""
so the high resemblance of the aromas of such fruits and wines
should not be surprising.

Among the VSCs identified in foods and beverages, 2-
methyl-4-propyl-1,3-oxathiane (1, Figure 1, potentially existing
as pairs of enantiomers of the geometric isomers) is another
odorant that significantly contributes to a characteristic
“tropical” aroma.'°”"® Found in passionfruit,'°""* oxathiane
1 has a strong “fruity” aroma with “green” and “slightly burnt”
descriptors,'" with reported olfactory thresholds in water for
cis-1 enantiomers of 2 and 4 ug/L for (25,4R)-1 and (2R,4S)-
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Figure 1. Structures of the possible stereoisomers of 2-methyl-4-
propyl-1,3-oxathiane (1) and the enantiomers of 3-sulfanylhexan-1-ol
(3-SH).

1, respectively.'* As a high-impact volatile, 1 has been used as
an important ingredient in the fragrance industry.'®

The occurrence of 1 has been reported in passionfruit at
trace levels as (45)-1 (1 pug/L of cis-(2R,4S)-1 and <0.5 ug/L
of trans-(28,4S)-1),"* and apart from being a powerful VSC
itself, 1 was suggested to be related to the extremely potent
polyfunctional thiol, 3-SH (Figure 1).'> However, studies of 1
in foods and beverages are very limited, and according to
available relports, 1 has only been occasionally found in
passionfruit'' ~'*'® and has apparently not been revealed in
other foodstuffs, including wine. This was peculiar to us, given
the distinct possibility that 1 could be formed through the
coupling of 3-SH with acetaldehyde naturally present in an
acidic wine matrix. Indeed, acid-catalyzed reactions between 3-
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Table 1. Details of Commercial Wines Used for Quantitation of 1

variety” vintage regionb
1 SAB 2007 Frankland River, WA
2 SAB 2007 Marlborough, NZ
3 SAB 2013 Marlborough, NZ
4 SAB 2014 Adelaide Hills, SA
S SAB 2014 Adelaide Hills, SA
6 SAB 2014 Adelaide Hills, SA
7 SAB 2014 Marlborough, NZ
8 SAB 2013 Marlborough, NZ
9 SAB 2014 Sancerre, FR
10 SAB 2014 Sancerre, FR
11 WB*® 2015 Bordeaux, FR
12 WB“ 2015 Bordeaux, FR
13 SAB 2015 Vendée-Poitou, FR
14 SAB 2015 Cabardes, FR
18 CH 2013 Hunter Valley, NSW
16 CH 2012 Bicheno, TAS
17 CH 2012 Eden Valley, SA
18 CH 2012 Piccadilly Valley, SA
19 CH 2012 Margaret River, WA
20 CH 2013 Mornington Peninsula, VIC
21 CH 2012 Pipers River, TAS

variety” vintage regionb
22 CH 2013 Yenda, NSW
23 CH 2013 Margaret River, WA
24 CH 2013 Coonawarra, SA
25 CH 2013 Adelaide Hills, SA
26 CH 2012 Adelaide Hills, SA
27 CH 2011 Margaret River, WA
28 CH 2014 Margaret River, WA
29 CH 2011 Yarra Valley, VIC
30 CH 2013 Barossa Valley, SA
31 CH 2013 Southern WA
32 CH 2013 Barossa Valley, SA
33 CH 2011 Eden Valley, SA
34 CH 2011 Beechworth, VIC
35 CH 2013 Margaret River, WA
36 PG 2007 Pokolbin, NSW
37 RIES 2007 Rowella, TAS
38 WB* 2014 Caversham, WA
39 M 2013 Milawa, VIC
40 PN 2012 Lake George, NSW
41 SAN 2012 ‘Whitfield, VIC
42 RO* 2012 Yarra Valley, VIC

“Variety abbreviated as SAB, Sauvignon blanc; WB, white blend; CH, Chardonnay; PG, Pinot Grigio; RIES, Riesling; M, Muscat; PN, Pinot noir;
SAN, Sangiovese; RO, rosé. bRegions abbreviated as WA, Western Australia; SA, South Australia; TAS, Tasmania; VIC, Victoria; NSW, New South
Wales; FR, France; NZ, New Zealand. “85% SAB. 70% SAB, 20% Muscadelle, 10% Sauvignon gris. “Variety not specified.

SH and acetaldehyde have already been applied for the
chemical synthesis of 1."'*'” Sensory interactions between 3-
SH and acetaldehyde reported in a recent sensory study further
prompted our interest, wherein acetaldehyde influenced the
intensity of “grapefruit’, “guava”, and “passionfruit” aromas
when coexisting with 3-SH in model wine.'® Enhancive and
suppressive effects were used to rationalize this sensorial
phenomenon between 3-SH and acetaldehyde,'® but nothing
has been addressed at the molecular level from an analytical
perspective.

On the basis of the aforementioned chemical and sensory
evidence, and given the potential relationship with 3-SH, we
aimed to investigate the presence of 2-methyl-4-propyl-1,3-
oxathiane (1) in wine. Headspace—solid-phase microextraction
(HS—SPME) coupled to gas chromatography—mass spec-
trometry (GC—MS) was applied to the identification of 1 in
wine for the first time, and upon the synthesis of deuterium-
labeled 1 (d,-1), a stable isotope dilution assay (SIDA) was
developed and validated. The new method was applied to a
selection of commercial wines to assess the occurrence of cis-1,
which was correlated with 3-SH and 3-SHA concentrations in
those wines. In addition, the odor detection threshold of 1 was
determined in a neutral white wine for the first time.

B MATERIALS AND METHODS

Chemicals and Solutions. The following chemicals were
obtained from commercial suppliers: 2-methyl-4-propyl-1,3-oxathiane
(1) (=98% purity, mixture of cis- and trans-1), dg-naphthalene, C,—
C, alkanes, EDTA 2Na, formic acid, 4,4'-dithiodipyridine (DTDP),
acetaldehyde, and silica gel (Sigma-Aldrich, Castle Hill, NSW,
Australia); AR-grade sodium chloride (Chem-Supply, Gillman, SA,
Australia); d,-acetaldehyde (>99 atom % D, >98% chemical purity)
(Cambridge Isotope Laboratories, Tewksbury, MA); AR-grade
dichloromethane and ethanol and HPLC-grade ethanol, acetonitrile,
and methanol (VWR International, Tingalpa, QLD, Australia); Bond
Elut C18 cartridges (500 mg, 6 mL) (Agilent, Mulgrave, VIC,

10809

Australia). Water was obtained from a Milli-Q purification system
(Millipore, North Ryde, NSW, Australia). Standard and internal
standard (IS) syntheses were reported in previous studies (3-SH and
3-SHA," d,,-3-SH,*® ds-3SHA") and in the present work (d,-1, see
later). Standard and IS solutions were prepared volumetrically in
absolute ethanol. EDTA was added to solutions of thiol standards to
prevent oxidation. Solutions of 1 and d,-1 were prepared freshly
before use. Model wine and DTDP reagent were prepared according
to a previously published procedure.” Stock solutions and DTDP
reagent were kept at —20 °C, and working solutions were stored at 4
°C until required.

Nuclear Magnetic Resonance (NMR) Spectroscopy. Proton
("H) and carbon (C) spectra were recorded with a Varian 500
instrument (Agilent, Santa Clara, CA) operating at S00 and 125 MHgz,
respectively. Chemical shifts were recorded as ¢ values in parts per
million (ppm). Spectra were acquired in chloroform-d at 26 °C. The
isomeric purity of commercial 1 was determined to be 85% cis-1 and
15% trans-1 by '"H NMR using a relaxation delay of 10 s and
integration of the methine proton on C-2.

High-Resolution Mass Spectrometry (HRMS). Spectra were
obtained on an Agilent 1290 Infinity II HPLC coupled to an Agilent
6530 Accurate-Mass Q-TOF LC—MS system with electrospray
ionization (ESI) in positive mode using a solution prepared in 50%
v/v aqueous ethanol at a concentration of ~1 mg/L.

Synthesis of 2-(*H;)methyl-4-propyl-1,3-(2-2H)oxathiane
(d4-1). This IS was prepared by adapting the method reported for
the synthesis of unlabeled 1'* using 3-SH and d-acetaldehyde. In
brief, to a stirred solution of d,-acetaldehyde (511 mg, 10.6 mmol) in
dry CH,Cl, (S mL) containing a catalytic amount of p-TsOH (25
mg) and activated 4 A sieves (0.96 g) under nitrogen was added 3-SH
(400 pL, 391 mg, 2.4 mmol), and the reaction was stirred for 30 min.
The solution was diluted with CH,Cl, (S mL), and the organic layer
was washed with NaHCO; (5 mL) and brine (5 mL), dried over
anhydrous MgSO,, and concentrated by short-path distillation. The
crude product, isolated as a colorless oil, was purified by flash column
chromatography using silica gel (60 A, 230—400 mesh) with CH,Cl,
(R¢ = 0.45), and the removal of solvent in vacuo afforded d,-1 (306
mg, 1.91 mmol, 80% based on 3-SH) as a colorless oil with a purity of
>93% and a cis/trans ratio of 85:15 by 'H NMR and GC—MS
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(method details provided in the caption of Figure SI of the
Supporting Information). Spectroscopic data were in full accord with
those reported for the unlabeled compound,'" apart from the absence
of signals corresponding to the labeled positions in the 'H NMR
spectrum. ESI-HRMS (m/z): [M+H'] caled for CgH,3°H,OS*
165.1173; found 165.1239. EI-MS, m/z (%) 164 (M, 90), 146
(100), 114 (20), 101 (65), 87 (75), 73 (55), 55 (67).

Wine Samples. Wines (n = 42) of various vintages (Table 1) were
obtained from commercial retailers and screened for the occurrence of
1.

Analytical Method Development. Sample Preparation.
Sample (S mL), sodium chloride (2 g), and an aliquot of IS solution
were added to a 20 mL clear HS—SPME vial, and the vial was sealed
with a PTFE-lined screwcap (Agilent). For early preliminary method
development, 10 yL of dg-naphthalene ethanolic solution was spiked
as IS, affording a final concentration of 2 ug/L. For the final SIDA
HS—SPME—GC—MS method validation and quantitative analysis
(commercial wine survey and sensory verification), 40 uL of d,-1
ethanolic solution was used as IS, giving a final concentration of 100
ng/L.

HS—SPME. Evaluation of SPME fibers included divinylbenzene/
carboxen/polydimethylsiloxane (1 or 2 cm DVB/CAR/PDMS, 50/30
um), PDMS/DVB (65 um), CAR/PDMS (75 pm), and polyacrylate
(PA, 85 pum) (Supelco, Sigma-Aldrich). The PDMS/DVB fiber was
used for subsequent method development and quantitative analysis.
Fibers were preconditioned according to the manufacturer’s
recommendation. Sample vials were incubated at 35 °C for 0.1 min
with agitation speed of S00 rpm and extracted for 30 min (agitator on
time 10 s and off time 1 s) at the same speed and temperature. The
fiber was then desorbed in the inlet for 900 s at 250 °C. HS—SPME
was performed using a Gerstel MPS autosampler (Lasersan
Australasia, Robina, QLD, Australia).

Preliminary GC—MS Method Development. Instrumentation
for Preliminary GC—MS Method. Preliminary GC—MS method
development was performed using an Agilent 7890 GC (Santa Clara,
CA) coupled to an Agilent 5897 mass spectrometer fitted with a DB-
WAXetr capillary GC column (60 m X 0.25 mm, 0.25 ym, Agilent
J&W). Ultrapure helium (BOC, North Ryde, NSW, Australia) was
used as carrier gas at a constant flow rate of 1.5 mL/min. Splitless
injection mode was used with a desorption temperature of 250 °C
into an inlet fitted with an ultra inert SPME liner (0.75 mm i.d.,
Agilent). The oven program started at 40 °C for 3 min, then increased
at 5 °C/min to 250 °C and was held for 10 min at that temperature.
The transfer line was maintained at 250 °C. Positive ion electron
impact spectra at 70 eV were recorded. Full-scan mode (m/z 35—
350) and selective ion monitoring (SIM) mode were used for method
development. The ions subsequently monitored in SIM runs were m/
z 160, 145, 101, and 87 for 1 and 136 and 108 for dg-naphthalene. A
dwell time of 25 ms was used for all ions. The underlined ions were
used for quantitation, and the other ions were used as qualifiers.
Instrument control and data acquisition were performed using MSD
ChemStation software (version E02, Agilent).

Matrix Effects with Preliminary GC—MS Method. For the
investigation of matrix effects when using model wine, three sets of
check samples (control, nitrogen headspace, acetaldehyde-spiked)
were prepared with seven replicates in each set for consecutive
analysis. Control samples were prepared according to the above-
mentioned sample preparation procedure. Nitrogen headspace and
acetaldehyde-spiked samples were prepared in the same manner,
except vials were either carefully flushed with nitrogen or spiked at
100 mg/L with pure acetaldehyde prior to being sealed.

Validation of Preliminary GC—MS Method. Method validation
was conducted in model wine and a commercial dry white wine using
dg-naphthalene as IS. In duplicate, a series of standard additions of
authentic 1 spiked into model or white wine led to nine calibration
levels (0, 0.1, 0.25, 0.5, 1, 2.5, S, 10, 1S ug/L). Seven replicates of
samples spiked with 0.5 and S ug/L of 1 were prepared along with the
calibration samples to check precision and accuracy. The limit of
detection (LOD) and limit of quantitation (LOQ) were estimated as

three and ten times the standard error of the y intercept divided by
the slope of the calibration equation.

Verification of 1 in Wine. Linear Retention Index (LRI). Values
were calculated on a DB-WAXetr column (60 m X 0.25 mm, 0.25 ym,
J&W Agilent) and a DB-SMS UI column (60 m X 0.25 mm, 0.25 ym,
J&W Agilent) using C,—C,, n-alkanes and the preliminary GC—MS
method.

Co-Injection Experiments. Co-injection experiments were per-
formed on a DB-WAXetr column (with preliminary GC—MS
method) and an HP-INNOWax column (with SIDA GC-MS
method). Increased amounts of 1 (containing 85% cis-1 and 15%
trans-1) spiked into a random wine selected from a laboratory-scale
Sauvignon blanc fermentation trial®! (containing S ng/L of cis-1,
affording an extra 8.5 and 17 ng/L) and a commercial Sauvignon
blanc wine (containing 80 ng/L of cis-1, to yield an extra 100, 200,
and 300 ng/L) were used for co-injection experiments.

SIDA GC—MS Method Development. Instrumentation for
SIDA GC—MS Method. SIDA GC—MS method development,
validation, and quantitative analysis were performed with an Agilent
6890 GC coupled to an Agilent 5793N mass spectrometer (Santa
Clara, CA). Ultrapure helium (BOC, North Ryde, NSW, Australia)
was used as carrier gas at a constant flow rate of 1.4 mL/min. Splitless
injection mode was used with a desorption temperature of 250 °C
into an inlet fitted with an ultra inert SPME liner (0.75 mm id.,
Agilent). The transfer line was maintained at 250 °C. Positive ion
electron impact spectra at 70 eV were recorded. The ions monitored
in SIM runs were m/z 160, 145, 101, and 87 for 1 and 164, 146, 101,
and 87 for d,-1. A dwell time of 30 ms was used for all ions. The
underlined ions were used for quantitation, and the other ions were
used as qualifiers. Instrument control and data acquisition were
performed using MSD ChemStation software (version E02, Agilent).

Initially, GC capillary column evaluation was undertaken with the
same oven program as the preliminary GC—MS method, and DBS-
MS UI (60 m X 0.25 mm, 0.25 ym, Agilent J&W), Solgel WAX (30 m
% 0.25 mm, 0.25 um, SGE, Ringwood, VIC, Australia), VF-200 ms
(30 m X 0.25 mm, 0.25 ym, Agilent J&W), and HP-INNOWax (60 m
X 025 mm, 025 um, Agilent J&W) were compared for their
sensitivity and selectivity for 1.

Finally, an HP-INNOWax column (60 m X 0.25 mm, 0.25 um,
Agilent J&W) was selected for the optimized method validation and
quantitative analysis using an improved oven program that began at
40 °C for 3 min, increased at 5 °C/min to 150 °C, then at 15 °C/min
to 250 °C, and was held at this temperature for 10 min.

Validation of SIDA GC—MS Method. In brief, a series of duplicate
standard additions of unlabeled 1 (giving 0, 2.5, S, 7.5, 10, 25, 50, 75,
100, 250, 500, and 1000 ng/L of cis-1) and d,-1 (100 ng/L) were
prepared in a commercial Sauvignon blanc wine. Seven replicates of
samples spiked with low and high levels of 1 (7.5 and 7S ng/L of cis-
1) were prepared for repeatability (using the same Sauvignon blanc
wine). Recovery and matrix effect were evaluated in duplicate in a
commercial Chardonnay, a rosé, and a red wine at low (7.5 ng/L) and
high (75 ng/L) spiked levels of cis-1. LOD and LOQ were
determined as previously outlined for the preliminary GC-MS
method.

Quantitation of cis-1 in Commercial Wines by SIDA GC—MS.
Fresh calibration and QC samples prepared in duplicate were
included when analyzing a batch of commercial wine samples.
Calibration levels were spiked at 0, 10, 25, 50, 100, 250, and 500 ng/L
of ¢is-1 in a commercial Sauvignon blanc wine, and QC samples were
spiked at 7.5 and 75 ng/L in a commercial Chardonnay wine. All
samples were prepared and analyzed according to the optimized
conditions.

Quantitation of 3-SH and 3-SHA by SIDA HPLC-MS/MS. 3-
SH and 3-SHA were analyzed by HPLC—MS/MS after derivatization
with DTDP according to a previously reported method.” HPLC—
MS/MS analysis was performed using an Agilent 1200 Series HPLC
connected to an Agilent 6410A Triple Quad MS (Agilent, Santa
Clara, CA). The HPLC was fitted with an Alltima C18 column (250
mm X 2.1 mm id,, S gm, 100 A) protected by a C18 guard cartridge
(7.5 mm X 2.1 mm id.). Chromatographic and mass spectrometric
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parameters were the same as previously reported.” Instrument control
and data acquisition were performed using Agilent MassHunter
Workstation software (B.03.01).

Odor Detection Threshold Determination. The odor
detection threshold of 1 in white wine was determined according to
the forced-choice ascending concentration series method of limit
(E679-04, Reapproved 2011) by ASTM International. This sensory
study was approved by the Human Research Ethics Committee of
The University of Adelaide (Ethics approval number: H-2018-152).
The panelists (n = 18) were recruited from the School of Agriculture,
Food and Wine, The University of Adelaide, aged from 24 to 51 years
old, with 11 males and 7 females, and most panelists had previous
experience in sensory evaluation of wine. A commercial Chardonnay
wine (vintage 2013, unoaked) was selected as the base wine for
threshold determinations because of its neutral aroma character. The
employed ascending concentrations of 1 were decided based on
quantitative data from our commercial wine survey and further refined
by informal benchtop sensory testing with six researchers. Bottles of
the commercial wine were carefully blended in a 20 L glass demi-john
to obtain a sufficient quantity of homogeneous base wine, which was
then divided into seven lots, with one to be used as a control and the
other six for spiking.

Wines with ascending concentrations (0.486, 1.46, 4.40, 13.1, 39.4,
and 118 ug/L of cis-1 using 85:15 cis-1/trans-1 standard) were
prepared by spiking S00 uL of ethanolic working solutions of 1,
whereas an equal amount of ethanol was spiked into the control wine.
Wines to be evaluated were prepared on the same day as the sensory
session, and samples (20 mL) were presented in clear ISO XL S wine
tasting glasses labeled with four-digit codes and covered with clear
glass lids. The sensory session was conducted in sensory booths at
ambient temperature (22—24 °C) under orange lights to mask color.
The panelists were asked to sniff the wine only and were forced to
take a short break between each sample. The best-estimate threshold
(BET) for each panelist was calculated as the geometric mean of the
highest concentration missed and next higher concentration detected.
The panel threshold was the geometric mean of BET's of all panelists.
Sample randomization and data collection were performed with
RedJade software (Redwood City, CA).

Statistics. Data reduction, mean values, standard deviations, linear
regressions, and Pearson correlation were calculated in Microsoft
Excel (Microsoft Office Professional Plus 2013 for Windows).
Normality testing of residuals (a = 0.05) was performed in GraphPad
Prism 7 (GraphPad Software, version 7.02) to verify the linearity of
calibration curves.

B RESULTS AND DISCUSSION

Preliminary GC—MS Method Development. A suitable
analytical method was required to verify our hypothesis that 1
existed in wine (likely as a result of the reaction of 3-SH with
acetaldehyde). Historically, 1 was isolated from passionfruit
using liquid—liquid extraction'>** and simultaneous distilla-
tion—extraction,'”'" followed by GC with flame ionization
detection, while more recently, 1 was tentatively identified in
an aroma profiling study of passionfruit using HS—SPME and
GC—MS." Applying HS—SPME to the analysis of 1 in wine-
like medium was an obvious approach and was first
investigated with a PDMS/DVB/CAR fiber to extract 1 after
being spiked into Milli-Q water or model wine. GC—MS
analysis was conducted in scan mode with separation on a DB-
WAXetr column. One major and one minor peak appeared for
1 at respective retention times (RTs) of 23.622 and 24.525
min (Figure S2A of the Supporting Information), and the mass
spectra (with ions at m/z 160 (M"), 145, 133 (relatively more
intense for the peak that was later confirmed as trans-1), 114,
101, 87, and 73) (Figure S2B,C) were matched with the
NIST05 MS library and previously reported spectra of 1."
Ions obtained in this stage (m/z 160, 145, 101, and 87) were

considered as ions to monitor in the later stages of method
development. The two peaks had a peak area ratio of
approximately 85:15 in favor of the first peak (Figure S2A),
which corresponded to the proportion of cis/trans in
commercial 1, as verified by "H NMR. The elution order of
cis-1 prior to trans-1 agreed with that reported for passionfruit
juice extracts using a polar column."’

HS—SPME. After obtaining chromatographic and spectral
data of authentic 1, four SPME fibers (PDMS/DVB/CAR,
PDMS/DVB, PDMS, and PA) were compared for their
extraction efficiency of 1 spiked in model wine. Deuterated 1
was not commercially available, and dg-naphthalene was
selected as the IS for preliminary method development. dg-
Naphthalene eluted about 5 min after cis-1 and trans-1 at
29.190 min and showed no interfering ions (abundant ions at
m/z 136 and 108 were selected as SIM ions for dg-napthalene).
Compared with other fibers, PDMS/DVB of 1 cm length
demonstrated comparably better extraction and exhibited no
carryover of 1 (data not shown) and was selected for further
experimentation.

Preliminary GC—MS Method Validation. Preliminary
GC—MS method development proceeded with dg-naphthalene
as IS in model wine and white wine to assess the calibration
range, linearity, precision (evaluated as repeatability, % RSD),
accuracy (evaluated as recovery), and sensitivity. Duplicate
samples spiked with 1 (0, 0.1, 0.25, 0.5, 1, 2.5, S, 10, and 15
ug/L) and dg-naphthalene (2 ug/L) were analyzed in SIM
mode. The standard curve of 1 obtained in a commercial
Sauvignon blanc wine was linear across the calibration range
(0—15 ug/L), having a coefficient of determination (R?) of
0.9987. Precision values at spiking levels of 0.5 and 5 ug/L of
seven replicates were 5.6 and 6.6%, respectively. Accuracy
values were 92—104% and 93—110% at respective spiking
levels of 0.5 and 5 pg/L. The calculated LOD and LOQ for
this white wine matrix were 0.085 and 0.28 ug/L, respectively.
However, a deterioration of method performance was noted
when method validation was attempted in model wine.

Matrix Effects with Preliminary GC—MS Method.
Upon reviewing the GC—MS chromatograms of model wine
repeatability samples spiked with 1, a decrease in peak intensity
over time was noticed (data not shown), and it seemed that 1
was decomposing while awaiting analysis. Compared with the
successful method performance in Sauvignon blanc wine, the
aberrant results in model wine indicated that the wine matrix
(possibly the equilibrium between ordinary wine matrix
compounds, i.e., 3-SH, acetaldehyde, and 1) was crucial for
stabilizing 1. In other words, a lack of 3-SH or acetaldehyde in
model wine may lead to an equilibrium shift toward the
reactants and away from 1. This was investigated by controlling
the headspace compositions of the vials. Three sets of check
samples (seven replicates) were prepared with model wine
spiked with 1 at 5 pug/L. Before capping the vials, one set was
gently flushed with N,, the second set was spiked at 100 mg/L
acetaldehyde, and a control set was prepared without any
alterations. Serial HS—SPME—GC—MS analysis of the
replicates was performed to ascertain the peak ratios of 1
versus dg-naphthalene (Figure 2).

Notably, the peak areas of 1 in control samples (air as
headspace) decreased dramatically over time (Figure 2).
Samples flushed with N, also showed a decline in peak area
ratio but at a slower rate compared with the controls.
Relatively consistent peak area ratios were only observed in
model wine containing acetaldehyde, which evidently played
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Figure 2. Grouped bar chart of serial HS—SPME—GC—MS analysis
on three sets of replicate samples (n = 7, with bars from left to right in
each group representing samples in the serial injection sequence)
prepared in model wine with acetaldehyde, nitrogen, or air as
headspace (control).

an important role in stabilizing 1. As such, validation of a
preliminary method in model wine was performed by adding
acetaldehyde (final concentration at 100 mg/L) when
preparing calibration solutions. Method performance was
improved compared with the initial attempt in model wine
and yielded a standard curve for 1 that was linear (R* =
0.9957) throughout the calibration range (0—15 ug/L), with
good precision (RSD < 5% for 0.5 and S ug/L levels) and
accuracy (92—110% for 0.5 ug/L and 99—108% for S ug/L)
and good sensitivity (0.05 and 0.13 ug/L for calculated LOD
and LOQ, respectively).

B VERIFICATION OF 1 IN WINE BY GC—MS

With a workable HS—SPME—GC—-MS method using
commercially available dg-naphthalene, a range of wines was
submitted to a preliminary search for the presence of 1; wines
comprised samples from two independent projects that were
active at the time. One set consisted of commercial red, white,
and rosé wines (n = 23) obtained from retail outlets, as
detailed elsewhere;*® another set (n = 90) was from a
laboratory-scale Sauvignon blanc fermentation trial>' The
commercial wines (including 10 Sauvignon blanc wines) did
not appear to contain any 1, whereas wines”' from the
laboratory-scale fermentation trial had detectable levels (data
not shown). The identification of 1 was based on the

comparison of mass spectra with authentic 1, LRIs of naturally
present 1 on two GC phases, and co-injection experiments.
The observed peaks at 23.700 min of four ions (m/z 160, 145,
101, and 87) aligned at almost the same retention time as
authentic cis-1 (23.622 min) and had the same ratio of qualifier
ions to quantifier ion. The measured LRIs were 1261 on a DB-
SMS UI column and 1538 on a DB-WAXetr column, with the
latter according well with the reported LRI of 1530 on a
Carbowax column for the cis-isomer of 1."

Co-injection experiments were performed using a fermenta-
tion-trial Sauvignon blanc wine”" (that was deemed to contain
S ng/L of cis-1) to verify the peak identity. Spiking increased
amounts of authentic 1 yielded corresponding peak enhance-
ments in the selected ion chromatograms and ion ratios within
the expected range (data not shown). Together these data
ensured the positive identification of cis-2-methyl-4-propyl-1,3-
oxathiane (cis-1) in wine for the first time. The co-injection
experiment was repeated in a commercial Sauvignon blanc
wine using the final SIDA GC—MS method described later to
confirm the identification: Wine no. 1 (Table 1), which was
found to contain cis-1 at 80 ng/L (Table S1 of the Supporting
Information), was spiked with cis-1 at 100, 200, and 300 ng/L,
yielding the expected increases in peak intensity of all selected
qualifier ions (Figure 3). The ion ratios were also taken into
account for confirming the identity of cis-1 in the wine. In
contrast, although spiking with 1 also increased trans-1 in the
correct proportions (Figure S3A of the Supporting Informa-
tion), the endogenous presence of trans-1 was not detectable
based on signal-to-noise ratio for the m/z 160 ion (Figure
S3B), and the four SIM ions did not line up at the correct
retention time in the unspiked wine sample (Figure S3C).

Development of SIDA HS—SPME—-GC—MS Method for
Quantitation of cis-1 in Wines. From the identification of
cis-1 in wine, we noticed that its concentration tended to be
below the ug/L level (= ng/L), so the calibration range was
adjusted from 0—15 ug/L to 0—1000 ng/L. Upon further
application of the HS—SPME—GC—MS method to a broader
range of commercial wines (Table 1), interferences were
observed in a proportion of the wines, which hampered the
positive identification of 1. Modification of the temperature
program was trialed (data not shown) but no improvement
was seen for separation of cis-1 from the coeluter(s) that gave
similar ions. At this point, we revisited the method develop-
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Figure 3. Overlaid selected ion chromatograms (obtained with the optimized SIDA HS—SPME—GC—MS method) of co-injection experiments
using a commercial Sauvignon blanc wine (wine no. 1 in Table 1) found to contain 80 ng/L of cis-1, with further addition of 100, 200, and 300 ng/
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ment and tested additional column phases with the aim of
eliminating interferences, while also developing a SIDA
approach after synthesizing d,-1 as IS (from 3-SH and d,-
acetaldehyde) to compensate for possible changes to the
concentration of cis-1 during analysis. Four GC capillary
columns of various stationary phases were tested for their
ability to resolve cis-1 from interfering components. Milli-Q
water spiked with 200 ng/L of 1 was first run on the different
columns to obtain RTs, and a wine that previously showed
interferences was tested on the candidate columns. In the end,
an HP-INNOWax column was selected due to being best able
to eliminate possible interferences.

Validation of SIDA Method Using HS—SPME—-GC—-MS
for Quantitation of cis-1 in Wine. Synthesized d,-1 (85:15
mixture of cis and trans) was used as the IS at a concentration
of 100 ng/L (ie., 85 ng/L of dycis-1), and d,-cis-1 eluted
slightly earlier than cis-1 (Figure SIC,D of the Supporting
Information). Because of the previously observed matrix effects
when developing a method in model wine (despite this being
overcome by the addition of acetaldehyde), the validation of
the SIDA GC—MS method was only performed in a
commercial Sauvignon blanc, which encompassed the
determination of linearity, precision (repeatability), accuracy
(recovery in commercial Chardonnay, rosé, and red wines),
and sensitivity (LOD and LOQ). The calibration levels of 0—
1000 ng/L, being the most likely range that could be expected
in real wines, showed linearity (R* = 0.9997) throughout the
range. Values for repeatability (RSD < 4% at 7.5 and 75 ng/L
spiking levels) and recovery (94—106 and 95—106% for 7.5
and 75 ng/L, respectively, in three wine matrices) showed the
precision and accuracy of the method. The estimated LOD and
LOQ were 2.6 and 8.6 ng/L, respectively, which were entirely
appropriate for this analytical method.

Survey of cis-1 in Commercial Wines by SIDA with
HS—SPME—GC—MS. In our preliminary screening, cis-1
(present as an unresolved pair of enantiomers, Figure 1) was
quantitated at nanogram per liter concentrations in wines”’
from a laboratory-scale fermentation trial (data not shown).
After the analytical approach was upgraded to a SIDA method,
we screened a new set of commercial wines (n = 42) of various
vintages, which included Chardonnay (n = 21), Sauvignon
blanc (n = 14), and a few other varieties (Table 1). cis-1 was
present in 35 out of the 42 wines and ranged from
undetectable (LOD = 2.6 ng/L) to 460 ng/L. Notably,
trans-1 (LOD = 3.4 ng/L) was not found in any of the samples
analyzed throughout this entire study, with the lack of trans-1,
as demonstrated in Figure S3C of the Supporting Information,
being representative of the studied wines. The predominant
occurrence of cis-1 could be explained on the basis that cis-1 is
thermodynamically more stable due to having the methyl and
propyl groups in equatorial positions in the oxathiane ring."'
However, the possibility of the presence of trans-1 in wine
could not be excluded given that only a small number of wines
was surveyed in this study.

Wines found to contain cis-1 included Sauvignon blanc,
Chardonnay, Riesling, Pinot Grigio, Muscat, Pinot noir, and
Sangiovese (Table 2). This broad presence of cis-1 across
different varieties indicated its formation was general rather
than exclusive to certain varieties. The high likelihood that cis-1
derives from 3-SH means its presence in different wines could
be expected due to the widespread occurrence of 3-SH itself.”
Even so, the highest concentration of cis-1 was seen in a
Sauvignon blanc wine (460 ng/L), and this variety generally

Table 2. Summary of Concentrations (ng/L) of cis-1 in
Commercial Wines Selected for the Study

. b
concentration

wine occurrence”  min max mean SD
variety Sauvignon blanc 10/12 14 460 119 155
Chardonnay 17/21 7 69 27 22
white blend 2/3 16 33 16 16
Pinot Grigio 1/1 - - 15 -
Riesling 1/1 — - 367 —
Muscat 1/1 - - 22 -
Sangiovese 1/1 - - 14 -
Pinot noir 1/1 - - 14 -
rosé 1/1 — - 35 —
origin® New Zealand 4/4 131 460 287 171
Australia 3/4 14 80 36 36
France 4/6 33 62 28 24

“Number of wines found containing cis-1/number of wines analyzed
for that variety. b, not applicable (only one sample). “Sauvignon
blanc wines (France includes Sauvignon blanc-dominant white blend
wines 11 and 12).

contained higher amounts of cis-1 than others that were
analyzed (Table S1 of the Supporting Information). This fits
well with the fact that Sauvignon blanc wines tend to have
higher abundances of 3-SH than other varieties.”* Apart from
Sauvignon blanc, a Riesling (367 ng/L) had relatively high
amounts of cis-1, and, notably, 17 out of 21 Chardonnay wines
contained cis-1 ranging in concentration from 7 to 69 ng/L.
Besides the suspected influence of grape variety, the potential
impact of wine origin was also evident when comparing
Sauvignon blanc wines made in New Zealand, Australia, and
France. Sauvignon blanc wines from the Marlborough region
of New Zealand had considerably greater amounts of cis-1 than
those from Australia or France, which potentially reflects the
fact that Marlborough Sauvignon blanc wines are well known
for their high 3-SH concentrations.***°

To further investigate the possible relationship between cis-1
and 3-SH (and 3-SHA), 3-SH and 3-SHA were measured by
HPLC—MS/MS analysis’ in the commercial wines in parallel
to compare against the concentrations of cis-1 in the same
wines (Table S1 of the Supporting Information). 3-SH and 3-
SHA were present in all 42 wines at various concentrations: 3-
SH ranged from 459—7923 ng/L (wine no. 7 in Table 1 was
outside the calibration range and was extrapolated), and 3-
SHA varied from 4—20 ng/L. The concentrations of 3-SH in
this selection of wines were similar to data reported
elsewhere,** whereas the relatively low levels of 3-SHA in
these wines were not too surprising given the vintages of the
wines (2007 to 2015, Table 1) and that 3-SHA can hydrolyze
during storage.”” Sauvignon blanc wines contained higher
amounts of 3-SH (516—7923 ng/L) than other wines, followed
by Chardonnay (459—3347 ng/L), which mirrored the
previous data reported for these two varieties.”*****® The
Pearson correlation analysis between concentrations of cis-1
and 3-SH was used to evaluate the relationship among the
data, revealing a strong positive correlation (r = 0.72) between
cis-1 and 3-SH when all wines (n = 42) were considered, which
was highly suggestive that cis-1 could originate from 3-SH in
the proposed manner (i.e., reaction with acetaldehyde under
acidic wine conditions). Even stronger positive correlations
were observed when correlation analysis was conducted with
single varieties (r = 0.81 for Sauvignon blanc wines, n = 14; r =
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0.84 for Chardonnay wines, n = 21). A very weak but positive
correlation (r = 0.20, all wine data) was seen between 3-SHA
and cis-1, but we hesitate to indicate any possible correlation
with 3-SHA and cis-1 in this case because the concentrations of
3-SHA were relatively low (with some being close to LOQ).
Another point worth mentioning was that all 42 wines
contained detectable amounts of 3-SH, but cis-1 was not
detected in seven wines (three Sauvignon blanc and four
Chardonnay) in which the concentrations of 3-SH were far
from negligible (467—1596 ng/L). This suggested that grape
and wine components other than 3-SH or biological or
chemical factors (such as yeast strains, postfermentation
conditions, etc.) could play a significant role in the formation
of cis-1 in wines.

Odor Detection Threshold of 1 in White Wine. The
odor detection threshold of 1 was determined to be 7.1 ug/L
using a commercially available mixture of 85:15 cis/trans
(assuming the presence of 15% trans-1 did not impact the odor
threshold of cis-1) in a neutral Australian Chardonnay wine.
Although this appeared to constitute the first report of a
threshold for 1 in wine, the value was in general agreement
(but several times higher) with those measured in water (2 ug/
L for (28,4R)-1 and 4 pug/L for (2R,4S)-1'*). Such a difference
was to be expected given that aroma thresholds of odorants
determined in water are normally lower than those in wine.*’
Combining the quantitative results and odor detection
threshold, the calculated odor activity value (OAV) of cis-1
(based on the threshold of 1 as described above) in wines was
<0.06 (Table S1 of the Supporting Information). On the basis
of OAYV, it seemed that the contribution of cis-1 to the aroma
of the studied wines was not significant, although volatiles with
low OAV can still play a crucial role in wine aroma.*’ In
addition, taking the odor detection thresholds of 1, 3-SH (60
ng/L’"), and acetaldehyde (500 pg/L**) into consideration, it
is anticipated that the production of several hundred
nanograms per liter of cis-1 may provoke a considerable
sensory impact through the consumption of similar amounts of
3-SH, as opposed to affecting wine aroma due to a direct
contribution of cis-1 or a decrease in acetaldehyde. Notably, a
previous study had already reported the sensory interactions
between acetaldehyde and 3-SH,'® but with our new
identification of cis-1 it seems necessary to conduct further
studies to better elucidate the sensory impact of cis-1 on the
aroma profile of wines, especially in conjunction with changes
in concentration of 3-SH.

Taking all results into account, this work presents a detailed
study that arose by considering the potential presence of 1 in
wine based on the chemistry of 3-SH and acetaldehyde that are
present in a wine matrix. This led to the first identification of
cis-1 as a new VSC in wine and the development of a targeted
HS—SPME—GC—MS method. Quantitation of cis-1 in wines
was achieved by SIDA using synthesized d,-1 as an IS. The
concentrations of cis-1 in a small set of commercial wines
ranged from undetectable to 460 ng/L, with the highest
concentration being below the odor detection threshold of 7.1
ug/L determined in a neutral white wine. Nonetheless, cis-1
could still play a significant indirect role in wine aroma as a
source or sink of potent odorant 3-SH, and our findings
expand the knowledge of the potential fate of 3-SH during
winemaking and storage. More research is required to better
understand the role of cis-1 in wine in terms of formation and
sensory impacts (including studies investigating chirality),
which could provide opportunities to optimize the production

and/or preservation of 3-SH in wines to improve or retain
desirable sensory qualities.
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Concentrations (ng/L) of 3-SH and 3-SHA in Commercial Wines Selected for the Study (see Table 1).

2-Methyl-4-propyl-1,3-oxathiane in Wine
Table S1. Concentrations (ng/L) and Calculated Odor Activity Values (OAVs) of cis-1, and

wine cis-1 OAV 3-SH 3-SHA wine cis-1 OAV 3-SH 3-SHA

1 80 £ 14 0.01 1064 + 47 4.1+£0.2 22 7£0 0.00 461 £ 1 7.4+0.2
2 460 = 1 0.06 4523 +£ 96 5.4+0.0 23 25+0 0.00 121010  7.1+0.9
3 131+1 0.02 4470 £ 28 202+03 |24 18+1 0.00 940 + 1 6.6 0.4
4 14+0 0.00 1489 £ 13 10.3+£2.1 25 15+0 0.00 953 +4 11.9+04
5 b - 853+ 15 7.1+£0.3 26 - - 932 +15 84+0.9
6 50+£2 0.01 2420 + 46 9.5+£0.3 27 36+ 1 0.00 1631+£75  8.1+£0.5
7 407+10 0.06 7923 £153¢  18.1+1.1 28 83+£3 0.01 2888 £ 50 179+1.4
8 150+ 5 0.02 4948 £ 51 102+£0.0 |29 17+1 0.00 1249 + 8 11.5+0.3
9 62+2 0.01 1156 £22 6.2+0.2 30 14+£0 0.00 682 + 14 6.3+0.1
10 - - 1334+ 1 7.1+£0.1 31 20+ 1 0.00 969 +9 84+04
11 - - 516+9 39+0.5 32 12+1 0.00 718 £ 65 10.7+4.4
12 33£1 0.01 1464 £ 22 142+0.1 |33 44 +3 0.01 825+21 6.0£0.3
13 33£3 0.01 1179 £ 2 7.1+0.4 34 - - 657+ 1 7.0+ 1.1
14 40+0 0.01 1132+ 11 53+04 35 69 £ 1 0.01 3347 £ 1 9.5+0.4
15 7+0 0.00 459 £ 11 5.6+0.2 36 15+0 0.00 729+£9 45+0.3
16 - - 1596 + 42 64+0.2 37 367+5 0.05 1116 £37  47+0.2
17 - - 467 £2 4.6+0.3 38 16+0 0.00 722 +1 59+0.3
18 54+0 0.01 882 +£47 5.8+£0.2 39 2240 0.00 670 + 15 55+0.1
19 19+1 0.00 791 +£43 6.8+0.6 40 14+0 0.00 1127+5 73+£0.3
20 9+0 0.01 717+3 6.7+0.2 41 14+1 0.00 514+1 49+0.3
21 17+0 0.00 654 +24 7.0£0.6 42 35+2 0.01 1128+ 6 4.1+0.2

¢ Data presented as the mean + standard deviation of duplicate analyses. See Table 1 of the paper for details about the

wines. ’—, not detected (LOD = 2.6 ng/L). “Extrapolated, outside the calibration range (0-5000 ng/L).
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Figure S2. Total ion chromatogram of commercial standard 1 (10 pg/L in water) showing (A)
separation of cis-1 and trans-1, and the corresponding mass spectra of (B) cis-1 and (C) trans-1.
Chromatograms and spectra data obtained using the preliminary GC-MS method.
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Figure S3. Overlaid selected ion chromatograms (m/z 160) showing (A) the corresponding peak intensity increase for both cis-1 (same as Figure 3) and

trans-1 after spiking a commercial wine with increasing amounts of standard 1, (B) an enlargement of chromatograms for trans-1 compared with 3 times

the signal-to-noise ratio (S/N) for this wine, and (C) overlaid chromatograms of four selected ions of the unspiked wine at the retention time of trans-1.
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Chapter 7 | Concluding remarks & future perspectives
7.1. Conclusions

This thesis has focused on potent, odour-active polyfunctional thiols in wine and
applied chemical synthesis, analytical chemistry (SIDA, chemical derivatisation,
SPE, HPLC-MS/MS, HS-SPME GC-MS), winemaking trials by an automated
robotic fermentation platform, and sensory evaluation to explore:

(1) chirality of polyfunctional thiols,

(2) relationship between thiol and precursor stereochemistry,

(3) impacts of various winemaking parameters on thiols and/or precursors,

(4) potential fate of polyfunctional thiols.

7.1.1. Chiral analysis of 3-SH and 3-SHA in wine by SIDA HPLC-MS/MS

Chiral analysis of polyfunctional thiols 3-SH and 3-SHA in wine has been
achieved by a newly developed method. Simple chemical derivatisation of thiols
in wine with DTDP and isolation of derivatives by SPE were applied to 3-SH and
3-SHA. Chiral separation of 3-SH and 3-SHA derivatives was evaluated with
synthesised authentic derivatives on three polysaccharide chiral stationary
phases. An Amylose-1 column afforded baseline resolution of the enantiomers
of both 3-SH and 3-SHA derivatives, and was selected for further method
development and validation. Deuterium labelled internal standards were utilised
in the development of a stable isotope dilution assay, employing HPLC-MS/MS
and detection in multiple reaction monitoring (MRM) mode. The method was
optimised for major chromatographic parameters and validation encompassed
calibration range, linearity, accuracy, precision, sensitivity, and matrix effect. The
newly developed method was fast (analysis time: 30 min), accurate (recovery:

90% — 111%; Z-score: -1.8-1.9), precise (RSD, < 8%), and sensitive (LOD: 0.1 ng/L
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- 0.7 ng/L), and required a wine matrix (as opposed to a model wine solution) for
quantitation purposes, especially for red and rosé wines (matrix effect: -20% —
61%). This new chiral method is by far the most sensitive method proposed for

analysis of 3-SH and 3-SHA enantiomers in wine.

This method has been successfully applied to the analysis of the enantiomers of
3-SH and 3-SHA in a set of commercial wines (n = 23) consisting of dry white, red,
rosé, and botrytised wine. The results revealed that regardless of the variety, dry
wines contained roughly equal amounts of (S)-3-SH and (R)-3-SH, whereas (S)-3-
SHA was more abundant than (R)-3-SHA in most wines with an average ratio of
60:40. For botrytised wine, both 3-SH and 3-SHA were dominated by (S)-
enantiomers (above 70%). The reported data were not only the most
comprehensive data set published on chiral 3-SH and 3-SHA in wine, but this also
led to more research questions around the biochemical drivers for such chirality
patterns, particularly with respect to thiol precursor stereochemistry, which was

subsequently explored.

7.1.2. Chiral polyfunctional thiols and their conjugated precursors

upon winemaking with five Vitis vinifera Sauvignon blanc clones

The link between thiol and precursor stereochemistry has been comprehensively
evaluated for the first time in a controlled laboratory winemaking trial using a
fermentation robot. Sauvignon blanc grapes of five clones from a single vineyard
were harvested and analysed for precursor diastereomers (Glut-3-SH, GlyCys-3-
SH and Cys-3-SH) by a SIDA HPLC-MS/MS approach. After fermentation, 3-SH
and 3-SHA enantiomers in the finished wines were assayed by the newly
developed SIDA chiral HPLC-MS/MS method and compared against the
concentrations of precursor diastereomers of Glut-3-SH and Cys-3-SH measured
in grape juices. The correlation analysis demonstrated no obvious relationship

(r = -0.35-0.06) between data sets of precursor diastereomers and thiol
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enantiomers, strongly suggesting that other unknown factors may significantly
influence the dynamic processes of degradation and/or formation of precursors
and thiols. The impacts of grape clone (n = 5), yeast (n = 2), commercial nutrient
(n = 1), and commercial enzyme (n = 1) on chirality of 3-SH and 3-SHA were also
examined in this winemaking trial. Under identical fermentation condition, clonal
variation of 3-SH and 3-SHA enantiomers was seemingly obvious, which
indicated the fundamental influences of grape clones, regardless of yeast
choices or the addition of winemaking additives. Two tested yeasts produced
insignificantly different amounts and ratios of 3-SH and 3-SHA enantiomers in
most cases, which suggested that there were minimal yeast influences on the
chirality of 3-SH and 3-SHA. The addition of a commercial nutrient prior to yeast
inoculation also showed limited impact on production of 3-SH and 3-SHA
enantiomers, with no consistent nor obvious trends observed. In contrast, the
use of a commercial enzyme significantly enhanced the production of 3-SH and
3-SHA enantiomers, apparently in a clone-dependent manner. Although the exact
reasons of such enhancing effects were unclear, the results have demonstrated

the potential of enzyme addition for managing thiol production.

7.1.3. Investigation of intraregional variation, grape amino acids, and
pre-fermentation freezing on varietal thiols and their precursors for

Vitis vinifera Sauvignon blanc.

A total of 21 Sauvignon blanc grape parcels from seven commercial vineyards
(n = 7) in Adelaide Hills Geographical Indication of South Australia were
harvested, processed to juice, and fermented at laboratory-scale under controlled
conditions to assess sub-regional variation of thiols (3-SH, 3-SHA, and 4-MSP)
and precursors (Glut-3-SH and Cys-3-SH). Thiol precursors in juices and thiols in
finished wines were measured by SIDA HPLC-MS/MS methods, with the

obtained data showing variation across sub-regions but with no obvious
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correlation between precursors and thiols (r = -0.21--0.38).

Grape amino acids were analysed by HPLC with fluorescence detection and
compared with thiol precursors in juices and thiols in the wines. As with thiols
and precursors, grape amino acids displayed sub-regional variation. More
importantly, correlation analysis revealed, for the first time, moderate to strong
correlations between certain amino acids and thiol precursors (e.g., r< -0.73 for
glutamic acid, r = 0.62 for glycine) but much weaker correlations with free thiols.
These novel results indicate the potential interactions between amino acids and

thiol metabolism.

In addition, pre-fermentation freezing treatment (1-month storage at -20 °C),
applied both on fresh grapes and freshly obtained grape juices from the same
grapes, was tested through an identical winemaking trial for its potential impact
on thiols and precursors from an aroma enhancement perspective. After pre-
fermentation freezing, the frozen grapes showed a significant increase in Glut-3-
SH and Cys-3-SH concentrations, being 11-19 and 4-6 fold, respectively,
compared to those in fresh grapes. In the wines made from frozen grapes, 3-SH,
3-SHA, and 4-MSP were also significantly increased by around 2-10, 3-7, and 2—
8 times, in contrast to wines made from fresh grapes. Such results clearly
demonstrated the possibility of significant thiol enhancement through a rather

simple freezing treatment.

7.1.4. Identification and quantitative analysis of 2-methyl-4-propyl-1,3-

oxathiane in wine

Curiously, after decades of research, knowledge related to the fate of 3-SH in
wine is still rather limited. This prompted the search for 3-SH related compounds,
leading to a new volatile sulfur compound, 2-methyl-4-propyl-1,3-oxathiane that
is reminiscent of passion fruit aroma, being identified and quantitated in wine for

the first time.
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The presence of this oxathiane in wine was theorised based on the co-existence
of 3-SH and acetaldehyde. 2-(?H_,)methyl-4-propyl-1,3-oxathiane was synthesised
as deuterium labelled internal standard for development of a SIDA GC-MS
approach. SPME fibres, GC capillary columns, and matrix effects were evaluated
and the optimised method demonstrated good performances in linearity
(R?=0.9997) through the calibration range (0—500 ng/L), repeatability (RSD < 4%),
recovery (94-106%), and sensitivity (LOD 2.6 ng/L). The identification of cis-2-
methyl-4-propyl-1,3-oxathiane in wine was verified by the comparison of LRIs and
the mass spectra with authentic 2-methyl-4-propyl-1,3-oxathiane, and with co-
injection experiments that involved spiking increasing amounts of authentic 2-
methyl-4-propyl-1,3-oxathiane to a commercial wine. Notably, no trans-isomer
was identified in wines, which can be explained on the basis of formation

pathways and relative distribution of the geometric isomers.

Quantitative analysis of cis-2-methyl-4-propyl-1,3-oxathiane in a selection of
commercial wines revealed that concentrations ranged from undetectable to 460
ng/L and that Sauvignon blanc wines tended to contain greater amounts of the
oxathiane than other varieties. The 3-SH concentrations in the same wines were
measured by SIDA HPLC-MS/MS and compared against cis-2-methyl-4-propyl-
1,3-oxathiane data, revealing a strong positive correlation (r = 0.72), which
indicates the potential link between 3-SH and the oxathiane. The ODT of this
newly identified compound was determined by an untrained panel to be 7.1 pg/L,
using a mixture of 15%:85% cis-:trans-2-methyl-4-propyl-1,3-oxathiane in a neutral
dry white wine . Although the threshold was well below the concentrations found
in wines, cis-2-methyl-4-propyl-1,3-oxathiane could still play a significant role in
wine aroma through its possible molecular interaction with the potent odour-

active 3-SH.
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7.2. Future perspectives

As some of the most potent odour-active odorants that have been identified in
wine, certain polyfunctional thiols have been the focus of wine aroma chemists
for almost three decades, and will remain an active topic while many important

scientific questions around them continue to be resolved.

7.2.1. Thiol analysis

The analysis of polyfunctional thiols in wine has progressively evolved from
complicated and laborious methods to more simplified analytical approaches, as
systematically reviewed in Chapter 2. Already acknowledged for their
fundamental role in thiol analysis throughout this thesis, modern sample
preparation and analytical techniques will still be expected to make significant
contributions for simpler extraction, more efficient separation, and highly

sensitive analytical methods, either for targeted or non-targeted analysis.

In terms of specific thiol extraction, new possibilities could be found by
developing new extraction protocols using novel extraction materials or new
derivatisation reagents. For example, a SPE phase that features Ag* (instead of
Hg) has been proposed for volatile thiol extraction from beer and hops [1]. This
commercially available SPE cartridge contains a selective sorbent for thiols,
which essentially leads to good extraction efficiency of thiols in their native
forms. Another category of selective extraction material used for volatile
analysis is molecularly imprinted polymers (MIP). The potential of molecularly
imprinted solid-phase microextraction (MIP-SPME) for volatile analysis has
been demonstrated in various samples [2]. Apart from SPME, MIP can also been
used with SPE techniques, with some MIP-SPE cartridges having already been

commercialised for special analytes [3, 4] and used for food analysis [5].
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With the development of MIP design, the application of MIP to thiol extraction,
either in free thiol or derivative forms, would be optimistic. Other than using novel
extraction materials, testing new chemical reagents for derivatisating thiols in
wine is another direction for thiol extraction [6]. For example, newly proposed N-
(4-(carbazole-9-yl)-phenyl)-N-maleimide [7] or 2-bromo-3-methoxy acetophen-

one [8] could potentially be used as candidate reagents for thiol derivatisation.

For chromatographic separation of thiols in wine, future trends include separa-
tions by novel stationary phases and separation techniques, to achieve better
separation efficiency and resolution than conventional chromatographic
approaches for thiols (or thiol derivatives). As for the novel stationary phases of
interest, a commercially available chiral polysaccharide-based LC column has
not only been demonstrated for its resolution ability for the enantiomers of two
of the most important polyfunctional thiols (3-SH and 3-SHA), but also displayed
the possibility for the simultaneous separation of other important achiral
polyfunctional thiols [9]. Another stationary phase that could potentially be useful
for thiol analysis is the new generation of superficially porous silica particle
columns (SPSPCs), which can typically reduce run times down to a few minutes
with ultra-fast HPLC [10, 11]. If adopted for thiol analysis, this could greatly
shorten run times of the LC-based chromatographic methods. Besides relying on
new stationary phases, exploring new separation techniques can also be
considered to improve separation efficiency, such as the use of ultraperformance
convergence chromatography (UPC?) for thiol analysis in wine that has achieved

speedy separation (7 min run time per sample) [12].
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Regarding the trend for detection during thiol analysis, triple quadrupole (QgQ)
and high-resolution MS (Q-TOF or Orbitrap) are expected to be more prevalent
for both identification and quantitation [6]. Some major analytical advantages of
using QgQ and high-resolution MS have been reviewed recently (see Chapter 2).
Briefly, QqQ, Q—-TOF, and Orbitrap MS offer unparalleled ability for screening new
volatile thiols based on precursor ion scan mode with diagnostic fragmented
ions for QgQ and high resolution measurements for the determination of
molecular formulas with Q—TOF and Orbitrap instruments. QqQ in MRM mode
(both GC [1] and LC [9]) will likely be applied more frequently for quantitating

known volatile thiols.

Analytical chemistry development focusing on volatile thiols is essential and a
prerequisite for thiol research. As already reviewed in Chapter 2, the knowledge
of thiols in wine expands in parallel with the analytical methods developed for
polyfunctional thiols. Through developing more sensitive, simpler, greener, more
informative analytical methods to be used for thiol evaluation and exploration,
crucial understanding of the biological and chemical pathways of these potent
polyfunctional thiols has been achieved (such as the results presented in
Chapter 3-6) and will still be expected to be expanded. Some of the aspects of
biological and chemical pathways of polyfunctional thiols are suggested in the

following sections.
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7.2.2. Thiol chirality, precursors, and management

Chirality of 3-SH and 3-SHA in wine has been examined and discussed in Chapter
2 and Chapter 3. Based on these results, 3-SH enantiomers are almost evenly
distributed, in contrast to 3-SHA that is present with the (S)-form in excess, which
leaves a number of aspects to be resolved regarding stereoselectivity and
involvement of chemical and enzymatic reactions. The anticipated outcomes
would contribute to a better understanding of chirality of thiols in wine (and thus
their influence on sensory properties). For instance, acetylation of 3-SH to form
3-SHA is thought to be catalysed by Saccharomyces cerevisiae alcohol-O-
acyltransferases. This enzymatic process should obviously proceed with a high
level of enantioselectivity, so more research is needed to elucidate why this does
not appear to be the case. In addition, the evolution of 3-SH and 3-SHA
enantiomers throughout alcoholic fermentation could also be studied to

understand how and when the resultant ratios arise.

Currently, two major categories of thiol precursors — conjugates with amino acid
/small peptides (Glut-3-SH, GluCys-3-SH, CysGly-3-SH, Cys-3-SH, Glut-4-MSP,
GluCys-4-MSP, CysGly-4-MSP, Cys-4-MSP) and carbonyl precursor ((E)-2-hexenal)
- have been identified. A recent study using a set of deuterated tracers to
evaluate the conversion rates from conjugated precursors to 3-SH and 4-MSP
has once again revealed that the proposed precursors can only partially explain
the amounts of 3-SH and 4-MSP in wine, even when residual precursors
(precursor availability) were taken into account when calculating the conversion
yields [13]. This implies that there are other compounds potentially acting as
precursors and that new pathways relating to thiol production remain to be
discovered. As such, the use of alternative isotope labelled tracers of candidate

precursors (*C and %S) could be employed in future to tackle this question.
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The identification of new precursors remains elusive and further research on
some of the already-known precursors is still warranted. For instance, the
recently identified yGluCys-3-SH is present as diastereomers in the ratio of 70:30
in grapes [14], but their accumulation as well as other precursors such as CysGly-
3-SH during grape ripening, evolution during fermentation, relationship to 3-SH
enantiomers, and impacts of various viticultural (cultivar, clone, viticultural
management, etc.) and oenological practices are still unknown. Moreover,
research could be directed to the investigation of the potential interactions and
relation between grape metabolites and thiols/precursors. Addressed only in a
few recent publications [15-17], including Chapter 5 [18] in this thesis, it is
evident that the metabolism of thiols and precursors is very likely linked to
various grape metabolites and their biological pathways. Further research
focusing on understanding the link between grape metabolites and
thiols/precursors will create new knowledge, on which new approaches for thiol

management could be proposed.

In recent years, some novel strategies for enhancing thiol production during
winemaking have been suggested and tested, such as the use of grape tannins
[19], addition of commercial winemaking additives, clone selection (Chapter 3),
and pre-fermentation freezing of grape bunches (Chapter 5). Some promising
results have been offered for thiol enhancement, but improvements can still be
made with future research focusing on optimising the best conditions for
specific treatments, such as pilot trials at larger scale with more varieties, and
testing more commercial additives, alone or in combination. Additionally, novel
viticultural or winemaking practices (e.g., the use of non-Saccharomyces yeast

strains) could also be explored to offer other alternatives.
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7.2.3. Fate of polyfunctional thiols

Other than the discovery of thiol precursors, research should also focus on better
understanding the fate of polyfunctional thiols (which could assist in calculating
a proper mass balance). With cis-2-methyl-4-propyl-1,3-oxathiane being identified
(notably, this is also a chiral molecule, in Chapter 6) and suggested to be a new
volatile sulfur compound that is closely associated with 3-SH, future research
could be conducted to investigate the chemical, sensorial, and microbiological
impacts on 2-methyl-4-propyl-1,3-oxathiane. Studies involving its occurrence,
chirality, stability, biogenesis, and sensory contributions remain unknown and the
endeavour to discover additional new volatiles to address the fate of

polyfunctional thiols would be strongly encouraged.
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Figure 2. Derivatisation reagents and reactions of volatile thiols in wine,
foods, and other beverages for (a) gas chromatography (GC)
analysis, (b) liquid chromatography (LC) analysis, and (c) LC with

stable isotope labelled derivatisation reagents.
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Figure 1. Approach to resolving and determining enantiomers of 3-SH 1 and
3-SHA 2 in wine using chemical synthesis of thiol-DTDP
derivatives, chiral column screening, derivatisation in wine and SPE
clean-up, and precise quantitation by SIDA with chiral HPLC-
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of Capone et al. [14] for racemic thiol analysis. Atom numbering of
3 and 4 relates to the numbering used for NMR structural
assignments (see Figs. S2-S5 of the Supplementary material for
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Figure 2. Bar chart showing the increased analyte/IS ratios after spiking (R)-
3-SH and (R)-3-SHA. All samples contained racemic 1 at
1000 ng L™ and racemic 2 at 200 ng L™"; (R)-1 and (R)-2 were spiked
at 500 and 100 ng L, respectively, for the low-level spiked
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Figure 3. MRM chromatograms of enantiomers of 3-SH 1 and 3-SHA 2 p89
isolated from a Sauvignon blanc wine (as their derivatives) using
the optimised chiral HPLC-MS/MS method (Section 2.9) with an
Amylose-1 column. Grey line: MRM chromatograms of internal
standards (d,,-1, m/z 254.5 = 144.9; d.-2, 291.3 — 144.1), black
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Figure 4. Concentrations of enantiomers of (a) 3-SH 1 and (b) 3-SHA2ina p91
selection of commercial wine samples. Error bars indicate SD
between duplicate analyses. (S): enantiomers in (S)-form; (R):
enantiomers in (R)-form; SAB, Sauvignon blanc; CH, Chardonnay;

WB, white blend; SEM, Semillon; BSEM, botrytised Semillon; R, rosé;
CS, Cabernet Sauvignon. For sample details refer to Table S1 of
Supplementary material.

Figure 5. Relative distribution of enantiomers of (a) 3-SH 1 and (b) 3-SHA 2 p91
determined in commercial wines. (S): enantiomers in (S)-form; (R):
enantiomers in (R)-form; SAB, Sauvignon blanc; CH, Chardonnay;

WB, white blend; SEM, Semillon; BSEM, botrytised Semillon; R, rosé;
CS, Cabernet Sauvignon. For sample details refer to Table S1 of

Supplementary material.
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five clones of Sauvignon blanc. The “+” symbol indicates mean

values. Note the differences in the y-axis scales.

Comparison of S. cerevisae yeast strains (VIN13 and W28) on (A)
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variable compared with an unpaired t test (p < 0.05). * and **
indicate significant differences between the means at p < 0.05 and
p < 0.01, respectively.
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ANOVA. *: p<0.05, **: p<0.001, ***: p<0.0005, ****. p<0.0001. For
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Information.
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