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Abstract: The fatty acid, lauric acid (‘C12’), and the amino acid, tryptophan ("Trp’), when given
intraduodenally at loads that individually do not affect energy intake, have recently been shown to
stimulate plasma cholecystokinin, suppress ghrelin and reduce energy intake much more markedly
when combined. Both fatty acids and amino acids stimulate insulin secretion by distinct mechanisms;
fatty acids enhance glucose-stimulated insulin secretion, while amino acids may have a direct effect
on pancreatic (3 cells. Therefore, it is possible that, by combining these nutrients, their effects to lower
blood glucose may be enhanced. We have investigated the potential for the combination of C12 and
Trp to have additive effects to reduce blood glucose. To address this question, plasma concentrations of
glucose, insulin and glucagon were measured in 16 healthy, lean males during duodenal infusions of
saline (control), C12 (0.3 kcal/min), Trp (0.1 kcal/min), or C12+Trp (0.4 kcal/min), for 90 min. Both C12
and C12+Trp moderately reduced plasma glucose compared with control (p < 0.05). C12+Trp, but not
C12 or Trp, stimulated insulin and increased the insulin-to-glucose ratio (p < 0.05). There was no
effect on plasma glucagon. In conclusion, combined intraduodenal administration of C12 and Trp
reduced fasting glucose in healthy men, and this decrease was driven primarily by C12. The effects of
these nutrients on postprandial blood glucose and elevated fasting blood glucose in type 2 diabetes
warrant evaluation.
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1. Introduction

Fat or protein, when consumed immediately before a carbohydrate-containing meal, may reduce
the postprandial glycaemic excursion in health and type 2 diabetes substantially [1-3]. The slowing of
gastric emptying and the release of gut hormones, particularly the incretin hormone, glucagon-like
peptide-1 (GLP-1), are central to this effect [4,5]. The slowing of gastric emptying reflects, at least in
part, the stimulation of pyloric contractile activity as a result of inhibitory feedback arising from the
presence of nutrients in the small intestine [6]. There is considerable variation between nutrients in
their effects to stimulate gut and glucoregulatory hormones; fat appears to be a more potent stimulant
of GLP-1 than protein, whereas protein appears to have greater effects on insulin and glucagon [7,8].
Fatty acids enhance glucose-stimulated insulin secretion [9], while amino acids may have a direct effect
on pancreatic {3 cells to simulate insulin release independent of glucose [10].

In this context, lauric acid, a fatty acid containing 12 carbon atoms (‘C12’), and tryptophan
("Trp’), an aromatic amino acid, are of particular interest [11-13], since both potently stimulate pyloric
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contractile activity and gut hormones. For example, Trp, when administered intraduodenally at a dose
of 0.15 kcal/min, but not 0.075 kcal/min, stimulated plasma insulin, glucagon and GLP-1 concentrations
modestly, but had no effect on blood glucose in healthy males [11], while intragastric administration of
3 g, butnot 1.5 g, of Trp attenuated the blood glucose response to a mixed-nutrient drink in lean and
obese participants [13]. In people with type 2 diabetes, C12, when delivered to the distal small intestine
in enteric-coated capsules prior to meals, lowered postprandial blood glucose and stimulated GLP-1,
but did not stimulate insulin [14]. Accordingly, blood glucose lowering may reflect the stimulation of
GLP-1 receptors on portal vagal afferents [15], to enhance hepatic and peripheral glucose uptake [16].

It is thought that C12 and Trp stimulate gut and glucoregulatory hormones via distinct populations
of receptors located on enteroendocrine cells [17-19]; therefore, it would not be surprising if the
combination of these nutrients would enhance their individual effects to lower blood glucose. In support
of this hypothesis, C12 and Trp, when given intraduodenally at loads that individually do not affect
energy intake, reduce energy intake substantially when combined, associated with much greater
stimulation of cholecystokinin (CCK) and suppression of ghrelin, in healthy males [20]. In contrast,
while C12 stimulated GLP-1, this effect was not augmented when C12 and Trp were combined.
Given the important role of GLP-1 in blood glucose regulation, as discussed above, this latter finding
suggests, however, that C12 and Trp, in contrast to their effects on energy intake, may not have additive
effects to lower blood glucose.

We have now investigated the potential for the combination of C12 and Trp to reduce fasting
blood glucose more than each nutrient individually. We assayed samples from our previous study to
quantify plasma concentrations of glucose, insulin and glucagon [20].

2. Materials and Methods

2.1. Study Participants

As described in the primary publication [20], 16 healthy, lean mean (mean age: 24 + 1.5 years;
body mass index (BMI): 22.9 + 0.4 kg/m?) were included. Participants were recruited, as described
previously [20]. All participants had been weight-stable and were unrestrained eaters (score <12 on the
eating restraint section (Factor 1) of the Three-Factor Eating Questionnaire [21]). None had a history
of gastrointestinal (GI) symptoms or surgery, used supplements or medications known to affect GI
function or appetite, smoked, consumed >20 g/d of alcohol, or were vegetarians. Once enrolled into the
study, each participant was allocated a random treatment sequence based on balanced randomisation
generated using an online tool (www.randomization.com), by an investigator who was not involved in
data analysis (P.C.E.E.). Both the participant and the investigator who assessed outcomes (C.M.) were
blinded to the randomisation. The Human Research Ethics Committee of the Central Adelaide Local
Hospital Network approved the study protocol, and all participants provided informed, written consent
prior to their inclusion. The study was registered as a clinical trial at the Australian and New Zealand
Clinical Trial Registry (www.anzctr.org.au, trial number: ANZCTR 12613000899741).

2.2. Study Design and Protocol

Comprehensive information about the design of the study, which was a randomised, double-blind,
cross-over design, including the participant enrolment flow diagram, has been published [20]. Briefly,
each participant was studied on four separate days, 3-10 days apart, to evaluate the effect of
intraduodenal administration of (1) lauric acid (‘C12’; load: 27 kcal, 0.3 kcal/min), (2) L-tryptophan
("Trp’; load: 9 kcal, 0.1 kcal/min), (3) a combination of C12 and Trp (‘C12+Trp’; load: 36 kcal, 0.4 kcal/min),
or (4) control (isotonic saline) on fasting plasma glucose, insulin and glucagon concentrations. The choice
of nutrient loads was based on our previous studies, which had established sub-maximal effects on gut
hormones, and doses were less than those shown to suppress energy intake [11,12,22].

After an overnight fast, participants attended our clinical laboratory in the morning at 8:00 am,
and were intubated, via an anaesthetised nostril, with a manometry catheter used for monitoring
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antropyloroduodenal pressures and duodenal infusion of the treatment solutions [20]. These were
infused through a dedicated infusion port located ~14.5 cm beyond the pylorus. Once the catheter
was in the correct position [23], and an intravenous cannula placed in an antecubital vein for blood
sampling, two baseline blood samples (10 mL) were taken (f = =10 min and ¢ = 0 min), during phase I of
the migrating motor complex (a period of motor quiescence). Infusion of one of the nutrient solutions,
or control, was then commenced and continued for 90 min (t = 0-90 min). During the infusion,
blood samples were collected every 15 min. At f = 90 min, the infusion was ceased, the nasoduodenal
catheter removed. The participant was offered a cold buffet-meal and instructed to consume as much as
they wished until comfortably full (f = 90-120 min) [20]. A final blood sample was taken at { = 120 min.
The intravenous cannula was removed, and the participant was free to leave the laboratory.

2.3. Control and Nutrient Treatments

The solutions were prepared as follows: for the C12 solution, we used 5.55 g of food-grade lauric
acid (C12:0) (Sigma-Aldrich, Milwaukee, WI, USA), 0.65 g NaOH and 4.5 g NaCl; for the Trp solution,
we used 4.07 g crystalline, food-grade L-tryptophan (PureBulk Inc., Roseburg, OR, USA), 0.1 g NaOH
and 4.1 g NaCl; for the C12+Trp solution, we used 5.55 g C12 and 4.07g crystalline L-tryptophan,
0.8 g NaOH and 3.8 g NaCl; for the control solution we used 4.9 g NaCl and 0.08 mL NaOH solution
(prepared by dissolving 1.75 g NaOH in 250 mL water). All solutions were made to a final volume
of 497 mL, were isotonic (~300 mOsm), had a pH of ~7.7-8.1 and were infused at a rate of 3 mL/min,
so that 270 mL was the total volume administered in 90 min.

2.4. Measurements

Plasma Glucose, Insulin and Glucagon Concentrations

Venous blood samples (10 mL) were collected into ice-chilled ethylenediaminetetraacetic
acid-treated tubes. Plasma was separated by centrifugation at 3200 rpm for 15 min at 4 °C within
15 min of collection and stored at —80 °C until analysed, as described [20].

Plasma glucose (mmol/L) was measured using a YSI2300 analyser (YSI, Inc., Yellow Springs, OH,
USA). Intra- and inter-assay coefficient variations (CVs) were <2%.

Plasma insulin (mU/L) was determined by enzyme-linked immunosorbent assay (ELISA, 10-1113,
Mercodia, Uppsala, Sweden). Intra- and inter-assay CVs were 2.4% and 9.5%, respectively. The detection
limit was 1 mU/L.

Plasma glucagon (pg/mL) was quantified using an RIA (GL-32K, Millipore, Billerica, MA, USA).
Intra- and inter-assay CVs were 3.2 and 6.1%, respectively. The detection limit was 20 pg/mL.

2.5. Data and Statistical Analyses

Power calculations were used to determine the number of participants, and indicated that n = 16
would allow detection of a 15% decrease in energy intake at o = 0.05 with a power of 80% [20].
A secondary calculation indicated that this number would also allow detection of a 0.8 mmol/L
difference in plasma glucose.

Baseline (‘0") values were calculated as the mean of values obtained at t = —10 and 0 min.
Raw data of plasma glucose, insulin and glucagon concentrations were used to calculate areas under
the curve (AUCs), from t = 0-90 min, using the trapezoidal rule. The insulin-to-glucose ratio was
calculated, using AUCs for insulin and glucose from individual participants, with the following formula:
insulin-to-glucose ratio = insulin AUC/glucose AUC. The plasma glucose nadir was determined as the
lowest value during the infusion period.

Statistical analyses were performed with SPSS software (version 24.0; SPSS Inc., IBM Corp,
Somers, NY, USA). One-factor analysis of variance (ANOVA) was used for analyses of AUCs for
glucose and hormone levels and insulin-to-glucose ratio, glucose nadir, and glucose and hormone
concentrations at t = 120 min (i.e. immediately after the buffet-meal). For all ANOVAs, sphericity
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was evaluated by Mauchly’s test, and when violated, the adjusted Greenhouse-Geisser p value was
reported. Normality assumption was met for all outcomes. Post hoc paired comparisons, adjusted for
multiple comparisons by Bonferroni correction, were performed where ANOVAs were significant.
Plasma glucose and hormone concentrations at t = 120 min were compared with concentrations at
t = 90 min (i.e. before the buffet-meal) using paired t-tests. p values < 0.05 were considered statistically
significant, and all data were reported as means + standard error of the mean (SEM).

3. Results

The study treatments were well tolerated. Plasma insulin could not be measured in one participant
due to technical problems. There were no significant differences in baseline plasma glucose, insulin or
glucagon between study days.

3.1. Plasma Glucose

There was an effect of treatment on glucose AUC (p < 0.01) (Table 1, Figure 1A). C12 and C12+Trp,
but not Trp, reduced the plasma glucose AUC compared with control (both p < 0.05), with no significant
differences between C12+Trp and C12 or Trp. There was an effect of treatment on nadir glucose
(p < 0.05) (Table 1), which was less during C12 and C12+Trp compared with control (all p < 0.05),
with no significant difference between nutrient treatments.

Following the meal, plasma glucose increased when compared with t = 90 min (p < 0.05), with no
difference between treatments at t = 120 min.

Table 1. Plasma glucose, insulin and glucagon concentrations, and insulin-to-glucose ratio during
duodenal administration of lauric acid (“C12”; 0.3 kcal/min), L-tryptophan (“Trp”; 0.1 kcal/min),
a combination of C12 and Trp (“C12+Trp”; 0.4 kcal/min), or isotonic saline (“control”), for 90 min.

Control C12 Trp C12+Trp p Value

Plasma glucose AUC

(mmol/L*min) 426 +7 414+ 5* 422 + 4 410+ 5* <0.05

Plasma glucose nadir 7, o1 45,01+ 46+01 44201% <005

(mmol/L)
Plasmainsulin AUC o6, a5 o408 266439 318+47*  <0.05
(mU/L*min)
Plasma glucagon AUC 3849 + 4146 + 3675 + 3787 + NS
(pg/mL*min) 457 690 492 375

Insulin-to-glucose ratio 0.5 + 0.1 0.6 0.1 06+01 08+01% <0.01

Data are expressed as means + standard error of the mean (SEM), n = 16 for glucose data and glucagon, n = 15 for
insulin and insulin-to-glucose ratio. Repeated-measures analysis of variance (ANOVA), with treatment as a factor,
was used to determine main treatment effects; post hoc comparisons (with Bonferroni correction) were performed
when the ANOVA revealed significant effects. * p < 0.05 vs. control; # p <0.01 vs. control; AUC, area under the
curve; NS, not significant.



Nutrients 2019, 11, 2697 50f9

A | ID infusion | meal |
—_ 77
=
% | 8
£
g— 64 -O- Control
'y = Trp
g 1+ C12
g -@- C12+Trp
> 54
o
*
£ W*
S
n- 4 T L] L] T L] T 1
0 15 30 45 60 90 120
Time (min)
B
60+
504 6
—_ #
=
S 404 4 %
E
g 301 2
? 204 oL :
£ 0 15 30 45 60 90
104
0- 1 T T T
0 15 30 45 60 90 120
Time (min)
1201

=

(=4

o
1

[}
o
1

p g F

Glucagon (pg/mL)
(<2}
o

40
204
0 T T T L] L] T L]
0 15 30 45 6 20 120
Time (min)

Figure 1. Plasma glucose (A), insulin (B), and glucagon (C) concentrations during duodenal
administration of lauric acid (“C12”; 0.3 kcal/min), L-tryptophan (“Trp”; 0.1 kcal/min), a combination
of C12 and Trp (“C12+Trp”; 0.4 kcal/min), or isotonic saline (“control”), for 90 min and, at t = 120 min,
after a buffet-meal. Data (AUCs of glucose and hormone profiles) were analysed using one-way repeated
measures ANOVAs, followed, if significant, by post hoc paired comparisons, adjusted for multiple
comparisons by Bonferroni’s correction. Post-meal (f = 120 min) and pre-meal (t = 90 min) values were
compared using paired t-tests. * p < 0.05 vs. control; # p < 0.05 all treatments vs corresponding values
att =90 min; o p < 0.05 C12+Trp and Trp vs. corresponding values at ¢ = 90 min. Data are means +
SEM, n = 16, except insulin, n = 15.

3.2. Plasma Insulin

There was an effect of treatment on insulin AUC (p < 0.05) (Table 1, Figure 1B). C12+Trp, but not
C12 or Trp, increased insulin AUC compared with control (p < 0.05).
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Following the meal, insulin increased when compared with ¢ = 90 min (p < 0.05), with no difference
between treatments at ¢ = 120 min.

3.3. Insulin-to-Glucose Ratio

There was an effect of treatment on the insulin-to-glucose ratio (p < 0.01) (Table 1), which was
greater with C12+Trp, but not C12 or Trp, compared with control (p < 0.01), with no significant
differences between C12+Trp and C12 or Trp.

3.4. Plasma Glucagon

Plasma glucagon was not affected by the nutrient treatments (Table 1, Figure 1C). Following the
meal, glucagon was increased with Trp and C12+Trp, but not C12 or control, when compared with
t =90 min (p < 0.05), with no difference between treatments at t = 120 min.

4. Discussion

This study investigated the effects of intraduodenal administration of C12 and Trp, alone and in
combination, on fasting plasma glucose, insulin and glucagon concentrations, in healthy men. Our data
demonstrate that intraduodenal infusion of C12 modestly reduces plasma glucose, and that this effect
was not further enhanced by its combination with Trp. This observation contrasts with the additive
(and possibly synergistic) effects of C12 and Trp on energy intake and some GI hormones, whereby the
combination of C12 and Trp, at loads that individually had no effect, substantially reduced energy
intake, associated with markedly augmented release of CCK, and suppression of ghrelin, than observed
in response to each nutrient alone [20].

Plasma glucose in response to C12 and C12+Trp, but not Trp, was lower compared with control,
suggesting that glucose-lowering was driven by C12. The lack of effect of Trp on plasma glucose is
consistent with findings from our previous studies with intraduodenal infusion of Trp at a slightly
higher load of 0.15 kcal/min [11], or intragastric administration, where Trp at a dose of 3 g alone
had no effect on fasting glucose, although it reduced postprandial glucose in both lean and obese
individuals [13], possibly via slowing of gastric emptying, which is pivotal to the regulation of
postprandial glycaemic control [4,5]. Our findings may appear to contradict results from animal
studies. For example, in rats, a dose of 100 mg L-tryptophan/kg body weight was reported to lower
fasting blood glucose levels [24]. It is, however, important to recognise that this dose corresponds to
~7 g in a 70 kg person, in contrast to the dose of ~2.2 g administered in the current study. We have
previously reported that Trp, when given intraduodenally, at loads of >4 g can induce nausea [11].
Thus, our findings probably do not contradict these earlier findings, which may represent responses to
supraphysiological doses, but suggest that Trp, when administered at doses that are well tolerated by
humans, and hence more physiological, does not affect fasting glucose concentrations.

The mechanisms underlying the observed glucose lowering in response to these nutrients are
unclear. Because insulin was higher, and the insulin-to-glucose ratio increased, with C12+Trp, but not
significantly in response to C12 or Trp alone, glucose lowering by C12+Trp is likely to reflect, at least in
part, insulin stimulation. Interestingly, although neither C12 nor Trp alone had any significant effect
on insulin, mean levels were higher in response to both nutrients, although only C12 reduced blood
glucose. Thus, other factors are likely to also be relevant.

In an original analysis, we observed potent stimulation of GLP-1 by C12 and C12+Trp; in contrast,
the effect of Trp was minor and not statistically significant [20]; while the incretin effect of GLP-1, i.e.
the glucose-dependent potentiation of insulin secretion [25], may not apply to the current situation,
because it requires circulating glucose concentrations of ~7-8 mmol/L [26], other studies have reported
that lower glucose concentrations of ~4-5 mmol/L are sufficient [27]. Animal studies indicate that
GLP-1 may also affect blood glucose via different mechanisms. GLP-1 receptors are present on neuronal
cells in the hepatoportal system and central nervous system, and appear to contribute to the regulation
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of glucose homeostasis, independent of changes in insulin secretion [28]. Therefore, it is possible that
GLP-1 acted in concert with insulin to lead to greater glucose suppression with C12 as well as C12+Trp.

Because there was no differential effect on plasma glucagon, possibly involving suppression of
glucagon by GLP-1, particularly during infusion of C12 and C12+Trp, an effect of glucagon to diminish
the glucose-lowering effect of insulin can be ruled out.

Some limitations of our study should be recognised. Only one dose of each nutrient was evaluated.
Nutrients were administered intraduodenally so that the small intestinal delivery of nutrients was
standardised and potential confounding effects of interindividual variations in gastric emptying
were avoided, thus, the effects of intragastric or oral administration warrant investigation. There is
increasing recognition of interrelations between glucose metabolism, dietary nutrients and the gut
microbiome [29], and dietary changes have the capacity to alter the microbiome within 24 hours
of introduction [30]. As we investigated the effects of only single doses, and very small amounts,
of individual nutrients, our study was not designed to evaluate effects on the microbiome, and we
would not expect these nutrients to have a major, if any, influence acutely; however, this warrants
investigation in longer-term studies. Moreover, it would be of interest to evaluate whether the
composition of the microbiome may influence the magnitude of glucose lowering in response to
these nutrients across individuals. Only effects on fasting plasma glucose were evaluated. The study
was performed in healthy people, because energy intake represented the primary study outcome.
Given our observations of effects on blood glucose lowering in healthy people with good blood glucose
control, we would expect more pronounced blood glucose lowering in people with type 2 diabetes
with elevated fasting and postprandial blood glucose concentrations.

5. Conclusions

The combined intraduodenal administration of C12 and Trp, in healthy men, modestly reduced
fasting plasma glucose, an effect most likely driven by C12, and possibly involving both insulin and
GLP-1. In light of the observed glucose-lowering effect, studies in healthy participants postprandially
and in patients with type 2 diabetes are now warranted. If effective, these nutrients may potentially
offer a novel, nutrient-based treatment option for the management of hyperglycaemia in people with
type 2 diabetes.

Author Contributions: Conceptualization, C.F-B. and M.H.; Data curation, C.M.; Formal analysis, C.M.;
Funding acquisition, C.E-B., Investigation, C.M. and P.C.E.E; Methodology, C.F.-B.; Project administration, P.C.E.F.
and C.E.-B.; Resources, C.E.-B.; Supervision, M.H., and C.F.-B.; Visualization, C.M.; Writing—original draft, C.M.
and C.F.-B.; Writing—review and editing, C.M., M.H., and C.E-B.

Funding: The research was supported by an NHMRC Project Grant (grant no. 1078471, 2015-19, to C.E.-B.). C.E-B.
was supported by an NHMRC Senior Research Fellowship (grant 1103020, 2016-21).

Acknowledgments: We are grateful to our biostatistician, Kylie Lange, The University of Adelaide, for statistical
support, and to Scott Standfield and Judith Wishart for performing the hormone analyses.

Conflicts of Interest: The authors declare no conflict of interest. The sponsors had no role in the design of the
study, the collection, analyses, or interpretation of data, writing of the manuscript, and in the decision to publish
the results.

References

1. Gentilcore, D.; Chaikomin, R.; Jones, K.L.; Russo, A.; Feinle-Bisset, C.; Wishart, ].M.; Rayner, C.K.; Horowitz, M.
Effects of fat on gastric emptying of and the glycemic, insulin, and incretin responses to a carbohydrate meal
in type 2 diabetes. J. Clin. Endocrinol. Metab. 2006, 91, 2062-2067. [CrossRef] [PubMed]

2. Ma, J.; Stevens, J.E.; Cukier, K.; Maddox, A.E; Wishart, J.M.; Jones, K.L.; Clifton, PM.; Horowitz, M.;
Rayner, C K. Effects of a protein preload on gastric emptying, glycemia, and gut hormones after a carbohydrate
meal in diet-controlled type 2 diabetes. Diabetes Care 2009, 32, 1600-1602. [CrossRef] [PubMed]

3. Heer, M.; Egert, S. Nutrients other than carbohydrates: Their effects on glucose homeostasis in humans.
Diabetes Metab. Res. Rev. 2015, 31, 14-35. [CrossRef] [PubMed]


http://dx.doi.org/10.1210/jc.2005-2644
http://www.ncbi.nlm.nih.gov/pubmed/16537685
http://dx.doi.org/10.2337/dc09-0723
http://www.ncbi.nlm.nih.gov/pubmed/19542012
http://dx.doi.org/10.1002/dmrr.2533
http://www.ncbi.nlm.nih.gov/pubmed/24510463

Nutrients 2019, 11, 2697 80f9

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Horowitz, M.; Edelbroek, M.A.L.; Wishart, ].M.; Straathof, ].W. Relationship between oral glucose tolerance
and gastric emptying in normal healthy subjects. Diabetologia 1993, 36, 857-862. [CrossRef] [PubMed]
Little, T.]J.; Pilichiewicz, A.N.; Russo, A.; Phillips, L.; Jones, K.L.; Nauck, M.A.; Wishart, J.; Horowitz, M.;
Feinle-Bisset, C. Effects of intravenous glucagon-like peptide-1 on gastric emptying and intragastric
distribution in healthy subjects: Relationships with postprandial glycemic and insulinemic responses. J. Clin.
Endocrinol. Metab. 2006, 91, 1916-1923. [CrossRef]

Heddle, R.; Collins, PJ.; Dent, J.; Horowitz, M.; Read, N.W.; Chatterton, B.; Houghton, L.A. Motor
mechanisms associated with slowing of the gastric emptying of a solid meal by an intraduodenal lipid
infusion. J. Gastroenterol. Hepatol. 1989, 4, 437-447. [CrossRef]

Moran-Ramos, S.; Tovar, A.R.; Torres, N. Diet: Friend or foe of enteroendocrine cells-how it interacts with
enteroendocrine cells. Adv. Nutr. 2012, 3, 8-20. [CrossRef]

Ryan, A.T.; Luscombe-Marsh, N.D.; Saies, A.A.; Little, T.J.; Standfield, S.; Horowitz, M.; Feinle-Bisset, C.
Effects of intraduodenal lipid and protein on gut motility and hormone release, glycemia, appetite, and energy
intake in lean men. Am. J. Clin. Nutr. 2013, 98, 300-311. [CrossRef]

Prentki, M.; Madiraju, S.R. Glycerolipid/free fatty acid cycle and islet beta-cell function in health, obesity and
diabetes. Mol. Cell. Endocrinol. 2012, 353, 88-100. [CrossRef]

Newsholme, P,; Bender, K ; Kiely, A.; Brennan, L. Amino acid metabolism, insulin secretion and diabetes.
Biochem. Soc. Trans. 2007, 35, 1180-1186. [CrossRef]

Steinert, R.E.; Luscombe-Marsh, N.D.; Little, T.].; Standfield, S.; Otto, B.; Horowitz, M.; Feinle-Bisset, C.
Effects of intraduodenal infusion of L-tryptophan on ad libitum eating, antropyloroduodenal motility,
glycemia, insulinemia, and gut peptide secretion in healthy men. J. Clin. Endocrinol. Metab. 2014, 99,
3275-3284. [CrossRef] [PubMed]

Little, T.J.; Feltrin, K.L.; Horowitz, M.; Smout, A.].; Rades, T.; Meyer, ]. H.; Pilichiewicz, A.N.; Wishart, ].;
Feinle-Bisset, C. Dose-related effects of lauric acid on antropyloroduodenal motility, gastrointestinal hormone
release, appetite, and energy intake in healthy men. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 289,
R1090-R1098. [CrossRef] [PubMed]

Ullrich, S.S.; Fitzgerald, P.C.E.; Giesbertz, P; Steinert, R.E.; Horowitz, M.; Feinle-Bisset, C. Effects of intragastric
administration of tryptophan on the blood glucose response to a nutrient drink and energy intake, in lean
and obese men. Nutrients 2018, 10, 463. [CrossRef] [PubMed]

Ma, J.; Checklin, H.L.; Wishart, ].M.; Stevens, J.E.; Jones, K.L.; Horowitz, M.; Meyer, ].H.; Rayner, C.K.
A randomised trial of enteric-coated nutrient pellets to stimulate gastrointestinal peptide release and lower
glycaemia in type 2 diabetes. Diabetologia 2013, 56, 1236-1242. [CrossRef] [PubMed]

Vahl, T.P,; Tauchi, M.; Durler, T.S,; Elfers, E.E.; Fernandes, T.M.; Bitner, R.D.; Ellis, K.S.; Woods, S5.C.; Seeley, R.].;
Herman, J.P; et al. Glucagon-like peptide-1 (GLP-1) receptors expressed on nerve terminals in the portal vein
mediate the effects of endogenous GLP-1 on glucose tolerance in rats. Endocrinology 2007, 148, 4965-4973.
[CrossRef] [PubMed]

Nishizawa, M.; Moore, M.C.; Shiota, M.; Gustavson, S.M.; Snead, W.L.; Neal, D.W.; Cherrington, A.D. Effect of
intraportal glucagon-like peptide-1 on glucose metabolism in conscious dogs. Am. J. Physiol. Endocrinol.
Metab. 2003, 284, E1027-E1036. [CrossRef] [PubMed]

Stewart, J.E.; Feinle-Bisset, C.; Keast, R.S. Fatty acid detection during food consumption and digestion:
Associations with ingestive behavior and obesity. Prog. Lipid Res. 2011, 50, 225-233. [CrossRef]

San Gabriel, A.; Uneyama, H. Amino acid sensing in the gastrointestinal tract. Amino Acids 2013, 45, 451-461.
[CrossRef]

Steensels, S.; Depoortere, I. Chemoreceptors in the gut. Annu. Rev. Physiol. 2018, 80, 117-141. [CrossRef]
McVeay, C.; Fitzgerald, P.C.E.; Ullrich, S.S.; Steinert, R.E.; Horowitz, M.; Feinle-Bisset, C. Effects of
intraduodenal administration of lauric acid and L-tryptophan, alone and combined, on gut hormones,
pyloric pressures, and energy intake in healthy men. Am. J. Clin. Nutr. 2019, 109, 1335-1343. [CrossRef]
Stunkard, A.J.; Messick, S. The three-factor eating questionnaire to measure dietary restraint, disinhibition
and hunger. J. Pyschosom. Res. 1985, 29, 71-83. [CrossRef]

Feltrin, K.L.; Little, T.].; Meyer, ].H.; Horowitz, M.; Rades, T.; Wishart, J.; Feinle-Bisset, C. Effects of lauric
acid on upper gut motility, plasma cholecystokinin and peptide YY, and energy intake are load, but not
concentration, dependent in humans. J. Physiol. 2007, 581, 767-777. [CrossRef] [PubMed]


http://dx.doi.org/10.1007/BF00400362
http://www.ncbi.nlm.nih.gov/pubmed/8405758
http://dx.doi.org/10.1210/jc.2005-2220
http://dx.doi.org/10.1111/j.1440-1746.1989.tb01741.x
http://dx.doi.org/10.3945/an.111.000976
http://dx.doi.org/10.3945/ajcn.113.061333
http://dx.doi.org/10.1016/j.mce.2011.11.004
http://dx.doi.org/10.1042/BST0351180
http://dx.doi.org/10.1210/jc.2014-1943
http://www.ncbi.nlm.nih.gov/pubmed/24926954
http://dx.doi.org/10.1152/ajpregu.00290.2005
http://www.ncbi.nlm.nih.gov/pubmed/15961531
http://dx.doi.org/10.3390/nu10040463
http://www.ncbi.nlm.nih.gov/pubmed/29642492
http://dx.doi.org/10.1007/s00125-013-2876-2
http://www.ncbi.nlm.nih.gov/pubmed/23471488
http://dx.doi.org/10.1210/en.2006-0153
http://www.ncbi.nlm.nih.gov/pubmed/17584962
http://dx.doi.org/10.1152/ajpendo.00503.2002
http://www.ncbi.nlm.nih.gov/pubmed/12569088
http://dx.doi.org/10.1016/j.plipres.2011.02.002
http://dx.doi.org/10.1007/s00726-012-1371-2
http://dx.doi.org/10.1146/annurev-physiol-021317-121332
http://dx.doi.org/10.1093/ajcn/nqz020
http://dx.doi.org/10.1016/0022-3999(85)90010-8
http://dx.doi.org/10.1113/jphysiol.2007.129650
http://www.ncbi.nlm.nih.gov/pubmed/17331985

Nutrients 2019, 11, 2697 90f9

23.

24.

25.
26.

27.

28.

29.

30.

Heddle, R.; Dent, J.; Toouli, J.; Read, N.W. Topography and measurement of pyloric pressure waves and tone
in humans. Am. J. Physiol. 1988, 255, G490-G497. [CrossRef] [PubMed]

Ardiansyah; Shirakawa, H.; Inagawa, Y.; Koseki, T.; Komai, M. Regulation of blood pressure and glucose
metabolism induced by L-tryptophan in stroke-prone spontaneously hypertensive rats. Nutr. Metab. 2011, 8,
45. [CrossRef] [PubMed]

Holst, J.J. The physiology of glucagon-like peptide-1. Physiol. Rev. 2007, 87, 1409-1439. [CrossRef] [PubMed]
Nauck, M.A; Kleine, N.; Orskov, C.; Holst, J.J.; Willms, B.; Creutzfeldt, W. Normalization of fasting
hyperglycaemia by exogenous glucagon-like peptide-1 (7-36 amide) in type 2 (non-insulin-dependent)
diabetic patients. Diabetologia 1993, 36, 741-744. [CrossRef]

Degn, K.B.; Brock, B.; Juhl, C.B.; Djurhuus, C.B.; Grubert, J.; Kim, D.; Han, J.; Taylor, K.; Fineman, M.;
Schmitz, O. Effect of intravenous infusion of exenatide (synthetic exendin-4) on glucose-dependent insulin
secretion and counterregulation during hypoglycemia. Diabetes 2004, 53, 2397-2403. [CrossRef]

Lamont, B.J.; Li, Y.; Kwan, E.; Brown, T].; Gaisano, H.; Drucker, D.]. Pancreatic GLP-1 receptor activation is
sufficient for incretin control of glucose metabolism in mice. J. Clin. Investig. 2012, 122, 388—402. [CrossRef]
Stefanaki, C.; Peppa, M.; Mastorakos, G.; Chrousos, G.P. Examining the gut bacteriome, virome,
and mycobiome in glucose metabolism disorders: Are we on the right track? Metabolism 2017, 73, 52—66.
[CrossRef]

David, L.A.; Maurice, C.E; Carmody, R.N.; Gootenberg, D.B.; Button, ].E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.;
Varma, Y.; Fischbach, M.A ; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature
2014, 505, 559-563. [CrossRef]

® © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1152/ajpgi.1988.255.4.G490
http://www.ncbi.nlm.nih.gov/pubmed/3140675
http://dx.doi.org/10.1186/1743-7075-8-45
http://www.ncbi.nlm.nih.gov/pubmed/21831334
http://dx.doi.org/10.1152/physrev.00034.2006
http://www.ncbi.nlm.nih.gov/pubmed/17928588
http://dx.doi.org/10.1007/BF00401145
http://dx.doi.org/10.2337/diabetes.53.9.2397
http://dx.doi.org/10.1172/JCI42497
http://dx.doi.org/10.1016/j.metabol.2017.04.014
http://dx.doi.org/10.1038/nature12820
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Participants 
	Study Design and Protocol 
	Control and Nutrient Treatments 
	Measurements 
	Data and Statistical Analyses 

	Results 
	Plasma Glucose 
	Plasma Insulin 
	Insulin-to-Glucose Ratio 
	Plasma Glucagon 

	Discussion 
	Conclusions 
	References

