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Using recently derived results for one-loop hadronic splitting functions from a nonlocal implementation
of chiral effective theory, we study the contributions from pseudoscalar meson loops to flavor asymmetries
in the proton. Constraining the parameters of the regulating functions by inclusive production of n,Δþþ, Λ,
and Σ�þ baryons in pp collisions, we compute the shape of the light antiquark asymmetry d̄ − ū in
the proton and the strange asymmetry s − s̄ in the nucleon sea. With these constraints, the magnitude
of the d̄ − ū asymmetry is found to be compatible with that extracted from the Fermilab E866
Drell-Yan measurement, with no indication of a sign change at large values of x, and an integrated
value in the range hd̄ − ūi ≈ 0.09–0.17. The s − s̄ asymmetry is predicted to be positive at x > 0, with
compensating negative contributions at x ¼ 0, and an integrated x-weighted moment in the range
hxðs − s̄Þi ≈ ð0.9 − 2.5Þ × 10−3.
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I. INTRODUCTION

It is well known that a complete characterization of
nucleon substructure must go beyond three valence quarks.
One of the great challenges of modern hadron physics is to
unravel the precise role of hidden flavors in the structure of
the nucleon. The observation of the d̄ − ū flavor asymmetry
in the light quark sea of the proton [1–4], following its
prediction by Thomas a decade earlier [5] on the basis of
chiral symmetry breaking [6,7], has been one of the seminal
results in hadronic physics over the past two decades. It has
led to a major reevaluation of our understanding of the role
of the nonvalence components of the nucleon and their
origin in QCD [8–10].
The role that strange quarks, in particular, play in the

nucleon has also been the focus of attention in hadronic
physics for many years. Early polarized deep-inelastic
scattering (DIS) experiments suggested that a surprisingly
large fraction of the proton’s spin might be carried by
strange quarks [11], in contrast to the naive quark model
expectations [12]. One of the guiding principles for

understanding the nonperturbative features of strange
quarks and antiquarks in the nucleon sea has been chiral
symmetry breaking in QCD. While the generation of ss̄
pairs through perturbative gluon radiation typically pro-
duces symmetric s and s̄ distributions (at least up to two
loop corrections [13]), any significant difference between
the momentum dependence of the s and s̄ distributions
would be a clear signal of nonperturbative effects [14–19].
In the previous paper [20], we presented the proton →

pseudoscalar meson (ϕ)þ baryon splitting functions for the
intermediate octet (B) and decuplet (T) baryon configura-
tions in nonlocal chiral effective theory [21,22]. From the
calculated splitting functions, the parton distribution func-
tions (PDFs) of the nucleon are obtained as convolutions of
these with PDFs of the intermediate state mesons and
baryons [23–25]. Here we apply the results from [20] to
compute, for the first time within the nonlocal theory, sea
quark PDF asymmetries in the proton, including the light
antiquark flavor asymmetry d̄ − ū and the strange quark
asymmetry s − s̄. Using SU(3) relations for the intermediate
state hadron PDFs, the only free parameters in the calcu-
lation of the asymmetries are the mass parameters appearing
in the ultraviolet regulator functions. These will be deter-
mined by fitting cross section data from inclusive baryon
production in high energy pp scattering, using the same
splitting functions that appear in the PDF asymmetries. All
other parameters, including coupling constants and inter-
mediate state baryon and meson PDFs, are fixed.
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We begin in Sec. II by summarizing the convolution
formulas for the quark and antiquark PDFs in terms of the
fluctuations of the nucleon into its meson-baryon light-
cone components. The calculation of the PDFs of the
intermediate state baryons and mesons in the chiral
theory is discussed in detail in Sec. III. Numerical results
for the sea quark asymmetries are presented in Sec. IV,
where we compare the results for d̄ − ūwith those extracted
from Drell-Yan and semi-inclusive DIS measurements,
and compare predictions for s − s̄ asymmetries with
some recent PDF parametrizations. Finally, in Sec. V we
summarize our results and discuss future measurements
which could further constrain the PDF asymmetries
experimentally.

II. CONVOLUTION FORMULAS

Using the crossing symmetry properties of the spin-
averaged PDFs, qð−xÞ ¼ −q̄ðxÞ, the nth Mellin moment
(n ≥ 1) of the distribution for a given flavor q
(q ¼ u; d; s;…) is defined by

Qðn−1Þ ¼
Z

1

0

dx xn−1½qðxÞ þ ð−1Þnq̄ðxÞ�: ð1Þ

In the operator product expansion, the moments Qðn−1Þ are
related to matrix elements of local twist-two, spin-n oper-
ators Oμ1���μn

q between nucleon states with momentum p,

hNðpÞjOμ1���μn
q jNðpÞi ¼ 2Qðn−1Þpμ1 � � �pμn ; ð2Þ

where the operators are given by

Oμ1���μn
q ¼ in−1q̄γfμ1D

↔μ2 � � �D↔μngq; ð3Þ

with D
↔ ¼ 1

2
ðD⃗ − D⃖Þ, and the braces f� � �g denote symmet-

rization of Lorentz indices. The effective theory allows the
quark operatorsOq to be matched to hadronic operatorsOj

with the same quantum numbers [23],

Oμ1���μn
q ¼

X
j

cðnÞq=jO
μ1���μn
j ; ð4Þ

where the coefficients cðnÞq=j are the nth moments of the PDF
qjðxÞ in the hadronic configuration j,

cðnÞq=j ¼
Z

1

−1
dx xn−1qjðxÞ≡Qðn−1Þ

j : ð5Þ

The nucleon matrix elements of the hadronic operators
Oμ1���μn

j are given in terms of moments of the splitting
functions fjðyÞ,

hNðpÞjOμ1���μn
j jNðpÞi ¼ 2fðnÞj pfμ1 � � �pμng; ð6Þ

where

fðnÞj ¼
Z

1

−1
dy yn−1fjðyÞ; ð7Þ

with y the light-cone momentum fraction of the nucleon
carried by the hadronic state j. The operator relation in
Eq. (4) then gives rise to the convolution formula for the
PDFs [23,24],

qðxÞ ¼
X
j

½fj ⊗ qvj �ðxÞ

≡X
j

Z
1

0

dy
Z

1

0

dz δðx − yzÞfjðyÞqvj ðzÞ; ð8Þ

where qvj ≡ qj − q̄j is the valence distribution for the quark
flavor q in the hadron j. The complete set of splitting
functions fjðyÞ for octet and decuplet baryons is given
in Ref. [20].
In the present analysis we work under the basic

assumption that the bare baryon states are composed of
three valence quarks plus quark-antiquark pairs that are
generated perturbatively through gluon radiation. Such
contributions will effectively cancel in any differences of
PDFs, such as d̄ − ū or s − s̄. We therefore focus only on
the nonperturbative contributions to sea quark PDFs which
arise from pseudoscalar meson loops. In this approximation
antiquark distributions arise only from diagrams involving
direct coupling to mesons, as in the meson rainbow and
bubble diagrams in Fig. 1. The meson loop contribution to
the antiquark PDFs in the nucleon can then be written as

q̄ðxÞ¼
X
B;T;ϕ

½ðfðrbwÞϕB þfðrbwÞϕT þfðbubÞϕ Þ⊗ q̄ϕ�ðxÞ; ð9Þ

where fðrbwÞϕB and fðrbwÞϕT represent splitting functions
from the rainbow diagrams with octet and decuplet baryons

in Figs. 1(a) and 1(b), respectively, fðbubÞϕ is the splitting
function for the meson bubble diagram in Fig. 1(c), and
q̄ϕðxÞ is the antiquark PDF in the meson.

(a) (b) (c)

FIG. 1. One-meson loop diagrams contributing to quark
and antiquark PDFs in the nucleon, representing (a) the rainbow
diagram with octet baryon (solid lines) intermediate state; (b) the
rainbow diagram with decuplet baryon (double solid lines)
intermediate state; and (c) the meson (dashed lines) bubble
diagram. The symbol “⊗” represents an operator insertion.
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Contributions to quark PDFs can in principle come
from both meson coupling and baryon coupling diagrams.
The latter are illustrated in Fig. 2 and involve the bare
nucleon coupling [Fig. 2(a)], wave function renormaliza-
tion [Figs. 2(b) and 2(c), with octet and decuplet
baryon intermediate states, respectively], baryon rainbow
[Figs. 2(d) and 2(g)], Kroll-Ruderman (KR) [Figs. 2(e) and
2(h)], and meson tadpole [Fig. 2(j)] diagrams, along with

gauge link dependent Kroll-Ruderman [Figs. 2(f) and 2(i)]
and tadpole [Fig. 2(k)] diagrams. Within the valence
approximation, all of these diagrams will contribute to
the u and d quarks in the nucleon. However, for the strange
quark the bare coupling and wave function renormalization
diagrams do not contribute. The total nonperturbative
contribution from meson loops to the quark PDF in the
nucleon can then be written

qðxÞ ¼ Z2qð0ÞðxÞ þ
X
B;T;ϕ

f½ðfðrbwÞϕB þ fðrbwÞϕT þ fðbubÞϕ Þ ⊗ qϕ�ðxÞ

þ ½f̄ðrbwÞBϕ ⊗ qB�ðxÞ þ ½f̄ðKRÞB ⊗ qðKRÞB �ðxÞ þ ½δf̄ðKRÞB ⊗ qðδÞB �ðxÞ
þ ½f̄ðrbwÞTϕ ⊗ qT �ðxÞ þ ½f̄ðKRÞT ⊗ qðKRÞT �ðxÞ þ ½δf̄ðKRÞT ⊗ qðδÞT �ðxÞ
þ ½f̄ðtadÞϕ ⊗ qðtadÞϕ �ðxÞ þ ½δf̄ðtadÞϕ ⊗ qðδÞϕ �ðxÞg; ð10Þ

whereqð0Þ is the quark PDF in the bare nucleon, and thewave
function renormalization Z2 arises from the summation over
the diagrams in Figs. 2(a)–2(c) [26]. Following Ref. [24], we
will work in terms of the same momentum fraction y for all
meson and baryon coupling diagrams in Figs. 1 and 2. Using
the same definition of the convolution integral as in Eq. (8), it
will be convenient therefore to define for each of the splitting
functions in Eq. (10) involving the coupling to baryons the
shorthand notation f̄jðyÞ≡ fjð1 − yÞ (see Sec. IV B below).

Explicit expressions for the splitting functions fðrbwÞBϕ , fðKRÞB ,

δfðKRÞB , fðrbwÞTϕ , fðKRÞT , δfðKRÞT , fðtadÞϕ , and δfðtadÞϕ , which
represent the diagrams in Figs. 2(d)–2(k), respectively, are
given in Ref. [20]. The corresponding quark PDFs for the
intermediate state octet and decuplet baryons are discussed in
the next section.

III. BARE BARYON AND MESON PDFS

To calculate the contributions to the quark and antiquark
distributions in the proton in the convolution formulas (9)

(a)

(d)

(g) (h)

(j) (k)

(i)

(e) (f)

(b) (c)

FIG. 2. Contributions to quark PDFs in the nucleon frombaryon coupling diagrams, representing (a) coupling to the bare nucleon; (b),(c)
contributions from wave function renormalization with octet and decuplet baryon intermediate states; (d) the rainbow diagram with octet
baryon; (e),(f) Kroll-Ruderman and gauge link (filled circle) Kroll-Ruderman diagrams with octet baryon; (g) the rainbow diagram with
decuplet baryon; (h),(i) Kroll-Ruderman diagrams with decuplet baryon; and (j),(k) meson tadpole and gauge link tadpole diagrams.
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and (10) requires the proton → baryon þ meson splitting
functions and the PDFs of the baryons and mesons to which
the current couples. The full set of splitting functions was
presented in our previous paper, Ref. [20]. In this section
we derive the (valence) PDFs of the bare baryon and meson
intermediate states using the same chiral SU(3) effective
field theory framework that was used to compute the
splitting functions.

A. Operators and moments

In the effective theory the quark level operators are
matched to a sum of hadronic level operators whose matrix
elements [see Eq. (4)] are given by the moments of the
splitting functions, as in Eq. (6). Identifying all possible
contributions from octet and decuplet baryon intermediate
states that transform as vectors, the most general expression
for the quark vector operator Oμ1���μn

q is given by [24,27]

Oμ1���μn
q ¼ aðnÞin

f2ϕ
4
fTr½U†λq∂μ1 � � � ∂μnU� þ Tr½Uλq∂μ1 � � � ∂μnU

†�g
þ ½αðnÞðB̄γμ1BλqþÞ þ βðnÞðB̄γμ1λqþBÞ þ σðnÞðB̄γμ1BÞTr½λqþ��pμ2 � � �pμn

þ ½ᾱðnÞðB̄γμ1γ5Bλq−Þ þ β̄ðnÞðB̄γμ1γ5λq−BÞ þ σ̄ðnÞðB̄γμ1γ5BÞTr½λq−��pμ2 � � �pμn

þ ½θðnÞðT αγ
αβμ1λqþT βÞ þ ρðnÞðT αγ

αβμ1T βÞTr½λqþ��pμ2 � � �pμn

þ ½θ̄ðnÞðT αγ
μ1γ5λ

q
−T αÞ þ ρ̄ðnÞðT αγ

μ1γ5T αTr½λq−��pμ2 � � �pμn

−
ffiffiffi
3

2

r
ω̄ðnÞ½ðB̄Θμ1μλq−T μÞ þ ðT μΘμμ1λq−BÞ�pμ2 � � �pμn þ permutations − Tr; ð11Þ

where “Tr” denotes traces over Lorentz indices. In the first
term of Eq. (11), the operator U represents pseudoscalar
meson fields ϕ,

U ¼ exp

�
i

ffiffiffi
2

p
ϕ

fϕ

�
; ð12Þ

where fϕ is the pseudoscalar decay constant and the
coefficients aðnÞ are related to moments of quark and
antiquark PDFs in the pseudoscalar mesons. The flavor
operators λq� are defined by

λq� ¼ 1

2
ðuλqu† � u†λquÞ; ð13Þ

where λq ¼ diagðδqu; δqd; δqsÞ are diagonal 3 × 3 quark
flavor matrices.
In the remaining terms of Eq. (11), the operators B

and T α represent octet and decuplet baryon fields, respec-
tively, andwe define the Dirac tensors γαβρ ¼ 1

2
fγμν; γαg and

γμν ¼ 1
2
½γμ; γν�. The coefficients fαðnÞ; βðnÞ; σðnÞg and

fᾱðnÞ; β̄ðnÞ; σ̄ðnÞg are related to moments of the spin-averaged
and spin-dependent PDFs in octet baryons, while fθðnÞ; ρðnÞg
and fθ̄ðnÞ; ρ̄ðnÞg are related to moments of spin-averaged and
spin-dependent PDFs in decuplet baryons, respectively. The
coefficients ω̄ðnÞ are given in terms of moments of spin-
dependent octet-decuplet transition PDFs, where the octet-
decuplet transition tensor operator Θμν is defined as

Θμν ¼ gμν −
�
Z þ 1

2

�
γμγν: ð14Þ

HereZ is the decuplet off-shell parameter, and since physical
quantities do not depend on Z, it is convenient to choose
Z ¼ 1=2 to simplify the form of the spin-3=2 propaga-
tor [28,29].
For the Kroll-Ruderman diagrams in Figs. 2(e), 2(f),

2(h), and 2(i), the presence of the pseudoscalar field at the
vertex introduces hadronic axial vector operators, whose
contribution to the quark axial vector operator can in
general be written as

Oμ1���μn
Δq ¼ ½ᾱðnÞðB̄γμ1γ5BλqþÞ þ β̄ðnÞðB̄γμ1γ5λqþBÞ þ σ̄ðnÞðB̄γμ1γ5BÞTr½λqþ��pμ2 � � �pμn

þ ½αðnÞðB̄γμ1Bλq−Þ þ βðnÞðB̄γμ1λq−BÞ þ σðnÞðB̄γμ1BÞTr½λq−��pμ2 � � �pμn

þ ½θ̄ðnÞðT αγ
μ1γ5λ

q
þT αÞ þ ρ̄ðnÞðT αγ

μ1γ5T αÞTr½λqþ��pμ2 � � �pμn

þ ½θðnÞðT αγ
αβμ1λq−T βÞ þ ρðnÞðT αγ

αβμ1T βÞTr½λq−��pμ2 � � �pμn

−
ffiffiffi
3

2

r
ω̄ðnÞ½ðB̄Θμ1μλqþT μÞ þ ðT μΘμμ1λqþBÞ�pμ2 � � �pμn þ permutations − Tr: ð15Þ

From the transformation properties of the operators Oμ1���μn
q and Oμ1���μn

Δq under parity [30], the sets of coefficients
fαðnÞ;βðnÞ;σðnÞ;θðnÞ;ρðnÞg and fᾱðnÞ;β̄ðnÞ;σ̄ðnÞ;θ̄ðnÞ;ρ̄ðnÞg in (15) are the same as those in the spin-averaged operators in (11).
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The operators B and T α appearing in Eqs. (11) and (15)
can be written in terms of the SU(3) baryon octet fields Bij

(which include N, Λ, Σ, and Ξ fields) and decuplet baryon
fields Tijk

α (which include Δ, Σ�, Ξ�, andΩ fields) using the
relations [24,31]

ðB̄BÞ ¼ Tr½B̄B�; ð16aÞ

ðB̄BAÞ¼−
1

6
Tr½B̄BA�þ2

3
Tr½B̄AB�þ1

6
Tr½B̄B�Tr½A�; ð16bÞ

ðB̄ABÞ¼−
2

3
Tr½B̄BA�−1

3
Tr½B̄AB�þ2

3
Tr½B̄B�Tr½A�; ð16cÞ

and

ðT αT βÞ ¼ Tkji
α Tijk

β ; ð17aÞ

ðT αAT βÞ ¼ Tkji
α AilTljk

β ; ð17bÞ

ðT αABÞ ¼ −
ffiffiffi
2

3

r
Tijk
α AilBjmεklm; ð17cÞ

where εklm is the antisymmetric tensor. Applying the
relations (16) and (17), the vector operator Oμ1���μn

q in
Eq. (11) can then be more intuitively rearranged in the form

Oμ1���μn
q ¼ Qðn−1Þ

ϕ Oμ1���μn
ϕ þQðn−1Þ

B Oμ1���μn
BB0 þQðn−1Þ

T Oμ1���μn
TT 0

þQðn−1Þ
ðtadÞBϕϕO

μ1���μn
Bϕϕ þQðn−1Þ

ðKRÞBO
μ1���μn
BB0ϕ

þQðn−1Þ
ðKRÞTO

μ1���μn
BTϕ : ð18Þ

The individual vector hadronic operators in (18) are
given by

Oμ1���μn
ϕ ¼ inðϕ̄∂μ1 � � � ∂μnϕ − ϕ∂μ1 � � � ∂μn ϕ̄Þ; ð19aÞ

Oμ1���μn
BB0 ¼ ðB̄0γμ1BÞpμ2 � � �pμn ; ð19bÞ

Oμ1���μn
TT 0 ¼ ðT 0

αγ
αβμ1TβÞpμ2 � � �pμn ; ð19cÞ

Oμ1���μn
Bϕϕ ¼ 1

f2ϕ
ðB̄γμ1Bϕ̄ϕÞpμ2 � � �pμn ; ð19dÞ

Oμ1���μn
BB0ϕ ¼ i

fϕ
ðB̄0γμ1γ5Bϕ − B̄γμ1γ5B0ϕ̄Þpμ2 � � �pμn ; ð19eÞ

Oμ1���μn
BTϕ ¼ i

fϕ
ðB̄Θμ1νTνϕ̄ − TνΘνμ1BϕÞpμ2 � � �pμn ; ð19fÞ

and correspond to the insertions in the diagrams of Figs. 1,
2(d), 2(g), 2(j), 2(e), and 2(h), respectively. The coefficients

Qðn−1Þ
j of each of the operators are defined in terms of

Mellin moments of the corresponding parton distributions
in the intermediate mesons and baryons, as in Eq. (5),

Qðn−1Þ
ϕ ¼

Z
1

−1
dx xn−1qϕðxÞ; ð20aÞ

Qðn−1Þ
B ¼

Z
1

−1
dx xn−1qBðxÞ; ð20bÞ

Qðn−1Þ
T ¼

Z
1

−1
dx xn−1qTðxÞ; ð20cÞ

Qðn−1Þ
ðtadÞBϕϕ ¼

Z
1

−1
dx xn−1qðtadÞϕ ; ð20dÞ

Qðn−1Þ
ðKRÞB ¼

Z
1

−1
dx xn−1qðKRÞB ; ð20eÞ

Qðn−1Þ
ðKRÞT ¼

Z
1

−1
dx xn−1qðKRÞT ; ð20fÞ

where the PDFs correspond to those appearing in the
convolution expressions in Eqs. (9) and (10). Each of the

moments Qðn−1Þ
j can be expressed in terms of the coef-

ficients faðnÞ;αðnÞ;βðnÞ;σðnÞ;θðnÞ;ρðnÞg appearing in Eq. (11),
as discussed below.
In particular, for the meson PDFs, the contributions to

the Uðn−1Þ
ϕ , Dðn−1Þ

ϕ , and Sðn−1Þϕ moments are listed in Table I
for the ϕ ¼ πþ; Kþ, and K0 mesons. Conservation of the
valence quark number fixes the normalization of the n ¼ 1
moment of the meson distribution, such that

að1Þ ¼ 2: ð21Þ
Note that in the SU(3) symmetric limit, the u-quark
moments in πþ and Kþ are equivalent, as are the s-quark
moments in Kþ and K0, while the d-quark moments in πþ

and K0 have equal magnitude but opposite sign,

Uðn−1Þ
πþ ¼ −Dðn−1Þ

πþ ¼ Uðn−1Þ
Kþ ¼ −Sðn−1ÞKþ ¼ Dðn−1Þ

K0

¼ −Sðn−1Þ
K0 ¼ 1

2
aðnÞ: ð22Þ

The results for other charge states (π−, π0, K−, and K̄0) are
obtained from those in Table I using charge symmetry.

TABLE I. Moments Qðn−1Þ
ϕ of the quark distributions

qð¼u; d; sÞ in the pseudoscalar mesons πþ, Kþ, and K0. The
moments are normalized such that að1Þ ¼ 2.

ϕ Uðn−1Þ
ϕ Dðn−1Þ

ϕ Sðn−1Þϕ

πþ 1
2
aðnÞ − 1

2
aðnÞ 0

Kþ 1
2
aðnÞ 0 − 1

2
aðnÞ

K0 0 1
2
aðnÞ − 1

2
aðnÞ
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Unlike in baryons, the sea quark distributions in mesons are
flavor symmetric. In the simplest valence quark models the
sea quark distributions in pions and kaons are zero.
For the moments of the quark PDFs in the intermediate

state baryons, the contributions from the u, d, and s flavors

to the octet baryon moments Qðn−1Þ
B are given in terms of

combinations of fαðnÞ; βðnÞ; σðnÞg and listed in Table II for
baryons B ¼ p; n;Σ�;0;Λ;Ξ−;0 as well as for the Λ − Σ0

interference. Solving for the coefficients, one can write
these as linear combinations of the individual u, d, and s
quark moments in the proton,

αðnÞ ¼ 4

3
Uðn−1Þ

p −
2

3
Dðn−1Þ

p −
2

3
Sðn−1Þp ; ð23aÞ

βðnÞ ¼ −
1

3
Uðn−1Þ

p þ 5

3
Dðn−1Þ

p −
4

3
Sðn−1Þp ; ð23bÞ

σðnÞ ¼ Sðn−1Þp : ð23cÞ

Assuming the strangeness in the intermediate state
nucleon to be zero (or equivalently, that the u content of
Σ−, for example, vanishes), one finds for the lowest (n ¼ 1)
moments,

αð1Þ ¼ 2; βð1Þ ¼ 1; σð1Þ ¼ 0: ð24Þ
For the quark PDFs in the decuplet baryon intermediate

states T, the moments Qðn−1Þ
T for the individual u, d, and s

flavors are given in terms of combinations of fθðnÞ; ρðnÞg,
and are listed in Table III for T ¼ Δ;Σ�;Ξ�, and Ω−.
Solving for the coefficients θðnÞ and ρðnÞ in terms of the
moments in the Δþ baryon, one has

θðnÞ ¼ 3ðDðn−1Þ
Δþ − Sðn−1ÞΔþ Þ ¼ 3

2
ðUðn−1Þ

Δþ − Sðn−1ÞΔþ Þ; ð25aÞ

ρðnÞ ¼ Sðn−1ÞΔþ : ð25bÞ

Again, assuming zero strangeness in the Δþ, the n ¼ 1
moments are given by

θð1Þ ¼ 3; ρð1Þ ¼ 0: ð26Þ

For the moments of the distributions generated by the
tadpole diagrams in Fig. 2(j), in Table IV we list the

contributions Qðn−1Þ
ðtadÞBϕϕ for the u, d, and s flavors in each

octet baryon B. Note that the combinations involving K0K̄0

do not contribute to the u-quark moments, those involving
KþK− do not contribute to the d-quark moments, and the
contributions from πþπ− to the s-quark moments are
also zero.
Finally, to complete the set of the contributions to

the unpolarized PDFs, in Table V we list the moments

Qðn−1Þ
ðKRÞB and Qðn−1Þ

ðKRÞT of the Kroll-Ruderman induced quark

TABLE II. MomentsQðn−1Þ
B of the unpolarized quark distributions for q ¼ u, d, or s for octet baryons B. The spin-dependent moments

ΔQðn−1Þ
B can be obtained from the entries here by the replacements fαðnÞ → ᾱðnÞ; βðnÞ → β̄ðnÞ; σðnÞ → σ̄ðnÞg.

B Uðn−1Þ
B Dðn−1Þ

B Sðn−1ÞB

p 5
6
αðnÞ þ 1

3
βðnÞ þ σðnÞ 1

6
αðnÞ þ 2

3
βðnÞ þ σðnÞ σðnÞ

n 1
6
αðnÞ þ 2

3
βðnÞ þ σðnÞ 5

6
αðnÞ þ 1

3
βðnÞ þ σðnÞ σðnÞ

Σþ 5
6
αðnÞ þ 1

3
βðnÞ þ σðnÞ σðnÞ 1

6
αðnÞ þ 2

3
βðnÞ þ σðnÞ

Σ0 5
12
αðnÞ þ 1

6
βðnÞ þ σðnÞ 5

12
αðnÞ þ 1

6
βðnÞ þ σðnÞ 1

6
αðnÞ þ 2

3
βðnÞ þ σðnÞ

Σ− σðnÞ 5
6
αðnÞ þ 1

3
βðnÞ þ σðnÞ 1

6
αðnÞ þ 2

3
βðnÞ þ σðnÞ

Λ 1
4
αðnÞ þ 1

2
βðnÞ þ σðnÞ 1

4
αðnÞ þ 1

2
βðnÞ þ σðnÞ 1

2
αðnÞ þ σðnÞ

ΛΣ0
ffiffi
3

p
12
½αðnÞ − 2βðnÞ� −

ffiffi
3

p
12
½αðnÞ − 2βðnÞ� 0

Ξ0 1
6
αðnÞ þ 2

3
βðnÞ þ σðnÞ σðnÞ 5

6
αðnÞ þ 1

3
βðnÞ þ σðnÞ

Ξ− σðnÞ 1
6
αðnÞ þ 2

3
βðnÞ þ σðnÞ 5

6
αðnÞ þ 1

3
βðnÞ þ σðnÞ

TABLE III. Moments Qðn−1Þ
T of the unpolarized quark distri-

butions for q ¼ u, d, or s for decuplet baryons T. The results for

the spin-dependent moments ΔQðn−1Þ
T can be obtained by the

replacements fθðnÞ → θ̄ðnÞ; ρðnÞ → ρ̄ðnÞg.

T Uðn−1Þ
T Dðn−1Þ

T Sðn−1ÞT

Δþþ θðnÞ þ ρðnÞ ρðnÞ ρðnÞ

Δþ 2
3
θðnÞ þ ρðnÞ 1

3
θðnÞ þ ρðnÞ ρðnÞ

Δ0 1
3
θðnÞ þ ρðnÞ 2

3
θðnÞ þ ρðnÞ ρðnÞ

Δ− ρðnÞ θðnÞ þ ρðnÞ ρðnÞ

Σ�þ 2
3
θðnÞ þ ρðnÞ ρðnÞ 1

3
θðnÞ þ ρðnÞ

Σ�0 1
3
θðnÞ þ ρðnÞ 1

3
θðnÞ þ ρðnÞ 1

3
θðnÞ þ ρðnÞ

Σ�− ρðnÞ 2
3
θðnÞ þ ρðnÞ 1

3
θðnÞ þ ρðnÞ

Ξ�0 1
3
θðnÞ þ ρðnÞ ρðnÞ 2

3
θðnÞ þ ρðnÞ

Ξ�− ρðnÞ 1
3
θðnÞ þ ρðnÞ 2

3
θðnÞ þ ρðnÞ

Ω− ρðnÞ ρðnÞ θðnÞ þ ρðnÞ
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distributions from Figs. 2(e) and 2(h), for the transitions
from a proton initial state to intermediate states including
octet B and decuplet T baryons, respectively. (Similar
results can be derived for other octet or decuplet baryon
initial states, but are not listed here to avoid unnecessary
detail.) Note that, unlike for all other contributions from the

diagrams in Fig. 2, the moments Qðn−1Þ
ðKRÞB and Qðn−1Þ

ðKRÞT are

given in terms of the coefficients ᾱðnÞ, β̄ðnÞ, and ω̄ðnÞ, which
are related to moments of the spin-dependent parton
distributions.
For the latter, recall that spin-dependent PDFs are related

to matrix elements of the axial vector operators Oμ1���μn
Δq in

Eq. (15), which, using the relations (16) and (17), can be
expanded in terms of hadronic axial vector operators with

coefficients given by moments ΔQðn−1Þ
j of the spin-depen-

dent distributions. In analogy to the expansion in Eq. (18),
we therefore expand the axial vector operators as

Oμ1���μn
Δq ¼ ΔQðn−1Þ

B Õμ1���μn
BB0 þ ΔQðn−1Þ

T Õμ1���μn
TT 0

þ ΔQðn−1Þ
BT Õμ1���μn

BT þ � � � ; ð27Þ

where only the operators relevant for the calculation of
unpolarized PDFs are listed. [The remaining terms not
listed in Eq. (27) will be relevant for the calculation of spin-
dependent PDFs in the proton [32].] More explicitly, the
axial vector hadronic operators in (27) are given by

Õμ1���μn
BB0 ¼ ðB̄0γμ1γ5BÞpμ2 � � �pμn ; ð28aÞ

Õμ1���μn
TT 0 ¼ ðT̄ 0

αγ
μ1γ5TαÞpμ2 � � �pμn ; ð28bÞ

Õμ1���μn
BT ¼ ðB̄Θμ1νTν þ TνΘνμ1BÞpμ2 � � �pμn ; ð28cÞ

with the corresponding moments ΔQðn−1Þ
j of the spin-

dependent PDFs defined by

ΔQðn−1Þ
B ¼

Z
1

−1
dx xn−1ΔqBðxÞ; ð29aÞ

ΔQðn−1Þ
T ¼

Z
1

−1
dx xn−1ΔqTðxÞ; ð29bÞ

ΔQðn−1Þ
BT ¼

Z
1

−1
dx xn−1ΔqBTðxÞ: ð29cÞ

For simplicity, in Eq. (29) we restrict ourselves to the
diagonal octet (B ¼ B0) and diagonal decuplet (T ¼ T 0)
cases, with respective spin-dependent PDFs ΔqBðxÞ and

TABLE V. Moments of the unpolarized u, d, and s quark
distributions from the Kroll-Ruderman vertex for transitions from
a proton initial state to octet and decuplet baryon intermediate
states, as in Figs. 2(e) and 2(h), respectively.

Bϕ Uðn−1Þ
ðKRÞB Dðn−1Þ

ðKRÞB Sðn−1ÞðKRÞB

nπþ −
ffiffi
2

p
3
ᾱðnÞ þ

ffiffi
2

p
6
β̄ðnÞ

ffiffi
2

p
3
ᾱðnÞ −

ffiffi
2

p
6
β̄ðnÞ 0

Σ0Kþ 1
12
ᾱðnÞ þ 1

3
β̄ðnÞ 0 − 1

12
ᾱðnÞ − 1

3
β̄ðnÞ

ΣþK0 0
ffiffi
2

p
12
ᾱðnÞ þ

ffiffi
2

p
3
β̄ðnÞ − 1

12
ᾱðnÞ − 1

3
β̄ðnÞ

Λ0Kþ ffiffi
3

p
4
ᾱðnÞ 0 −

ffiffi
3

p
4
ᾱðnÞ

Tϕ Uðn−1Þ
ðKRÞT Dðn−1Þ

ðKRÞT Sðn−1ÞðKRÞT

Δ0πþ 1ffiffi
6

p ω̄ðnÞ − 1ffiffi
6

p ω̄ðnÞ 0

Δþþπ− 1ffiffi
2

p ω̄ðnÞ − 1ffiffi
2

p ω̄ðnÞ 0

Σ�0Kþ 1

2
ffiffi
3

p ω̄ðnÞ 0 − 1

2
ffiffi
3

p ω̄ðnÞ

Σ�þK0 0 − 1ffiffi
6

p ω̄ðnÞ 1ffiffi
6

p ω̄ðnÞ

TABLE IV. Moments of the unpolarized u, d, and s quark distributions in octet baryons B arising from the BBϕϕ tadpole vertex, as in

Fig. 2(j). The moments Uðn−1Þ
ðtadÞBK0K̄0 , D

ðn−1Þ
ðtadÞBKþK− , and Sðn−1ÞðtadÞBπþπ− are zero for all baryons B, and are not listed in the table.

Uðn−1Þ
ðtadÞBϕϕ Dðn−1Þ

ðtadÞBϕϕ Sðn−1ÞðtadÞBϕϕ

B πþπ− KþK− πþπ− K0K0 K0K0 KþK−

p − 1
3
αðnÞ þ 1

6
βðnÞ − 5

12
αðnÞ − 1

6
βðnÞ 1

3
αðnÞ − 1

6
βðnÞ − 1

12
αðnÞ − 1

3
βðnÞ 1

12
αðnÞ þ 1

3
βðnÞ 5

12
αðnÞ þ 1

6
βðnÞ

n 1
3
αðnÞ − 1

6
βðnÞ − 1

12
αðnÞ − 1

3
βðnÞ − 1

3
αðnÞ þ 1

6
βðnÞ − 5

12
αðnÞ − 1

6
βðnÞ 5

12
αðnÞ þ 1

6
βðnÞ 1

12
αðnÞ þ 1

3
βðnÞ

Σþ − 5
12
αðnÞ − 1

6
βðnÞ − 1

3
αðnÞ þ 1

6
βðnÞ 5

12
αðnÞ þ 1

6
βðnÞ 1

12
αðnÞ þ 1

3
βðnÞ − 1

12
αðnÞ − 1

3
βðnÞ 1

3
αðnÞ − 1

6
βðnÞ

Σ0 0 − 1
8
αðnÞ þ 1

4
βðnÞ 0 − 1

8
αðnÞ þ 1

4
βðnÞ 1

8
αðnÞ − 1

4
βðnÞ 1

8
αðnÞ − 1

4
βðnÞ

Σ− 5
12
αðnÞ þ 1

6
βðnÞ 1

12
αðnÞ þ 1

3
βðnÞ − 5

12
αðnÞ − 1

6
βðnÞ − 1

3
αðnÞ þ 1

6
βðnÞ 1

3
αðnÞ − 1

6
βðnÞ − 1

12
αðnÞ − 1

3
βðnÞ

Λ 0 1
8
αðnÞ − 1

4
βðnÞ 0 1

8
αðnÞ − 1

4
βðnÞ − 1

8
αðnÞ þ 1

4
βðnÞ − 1

8
αðnÞ þ 1

4
βðnÞ

Ξ0 − 1
12
αðnÞ − 1

3
βðnÞ 1

3
αðnÞ − 1

6
βðnÞ 1

12
αðnÞ þ 1

3
βðnÞ 5

12
αðnÞ þ 1

6
βðnÞ − 5

12
αðnÞ − 1

6
βðnÞ − 1

3
αðnÞ þ 1

6
βðnÞ

Ξ− 1
12
αðnÞ þ 1

3
βðnÞ 5

12
αðnÞ þ 1

6
βðnÞ − 1

12
αðnÞ − 1

3
βðnÞ 1

3
αðnÞ − 1

6
βðnÞ − 1

3
αðnÞ þ 1

6
βðnÞ − 5

12
αðnÞ − 1

6
βðnÞ
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ΔqTðxÞ, and the octet-decuplet transition distribution,

ΔqBTðxÞ. In particular, the moments ΔQðn−1Þ
B of the spin-

dependent PDFs in octet baryons can be obtained from the
entries in Table II by substituting fαðnÞ → ᾱðnÞ; βðnÞ → β̄ðnÞ;
σðnÞ → σ̄ðnÞg, while the moments ΔQðn−1Þ

T of the spin-
dependent PDFs in decuplet baryons are obtained from
Table III with the replacements fθðnÞ → θ̄ðnÞ; ρðnÞ → ρ̄ðnÞg.
For the octet-decuplet axial transition distribution, the

moments, ΔQðn−1Þ
BT , are given in terms of the coefficient ω̄

in Eq. (15) and are listed in Table VI. Solving for the octet
coefficients in terms of the moments of the spin-dependent
proton PDFs in the proton, one has, in analogywith Eq. (23),
the relations

ᾱðnÞ ¼ 4

3
ΔUðn−1Þ

p −
2

3
ΔDðn−1Þ

p −
2

3
ΔSðn−1Þp ; ð30aÞ

β̄ðnÞ ¼ −
1

3
ΔUðn−1Þ

p þ 5

3
ΔDðn−1Þ

p −
4

3
ΔSðn−1Þp ; ð30bÞ

σ̄ðnÞ ¼ ΔSðn−1Þp : ð30cÞ

Similarly, for the decuplet case, the coefficients θ̄ðnÞ and
ρ̄ðnÞ can be written in terms of the moments of the spin-
dependent PDFs of quarks in the Δþ bayron,

θ̄ðnÞ ¼ 3ðΔDðn−1Þ
Δþ −ΔSðn−1ÞΔþ Þ¼ 3

2
ðΔUðn−1Þ

Δþ −ΔSðn−1ÞΔþ Þ;
ð31aÞ

ρ̄ðnÞ ¼ ΔSðn−1ÞΔþ : ð31bÞ

The moments of the octet-decuplet transition operators
can be related to the moments of the octet baryon operators
via the SU(3) relation

ω̄ðnÞ ¼ −
1

2
ᾱðnÞ þ β̄ðnÞ; ð32Þ

for all n. For the n ¼ 1 octet baryon moments, in particular,
the coefficients are given in terms of axial vector charges F
and D,

ᾱð1Þ ¼2

3
ð3FþDÞ; β̄ð1Þ ¼1

3
ð3F−5DÞ; σ̄ð1Þ ¼0: ð33Þ

In terms of moments of the spin-dependent proton PDFs,
for the octet-decuplet transition vertex, ω̄ð1Þ is given by the
SU(3) symmetry relation [27],

ω̄ð1Þ ¼ −ΔUð0Þ
p þ 2ΔDð0Þ

p − ΔSð0Þp ; ð34Þ
which also reproduces the relation C ¼ −2D between the
meson-octet-decuplet baryon coupling C and the meson-
octet couplingD [33]. Note that through Eq. (32) the quark
distributions in the Kroll-Ruderman diagrams with decup-
let baryon intermediate states in Fig. 2(h) are related to the
spin-dependent distributions of quarks in proton.
This completes the discussion of the moments of the

PDFs of the various mesons and baryons appearing in the
intermediate states in the diagrams of Fig. 2. From these, in
the next section we derive relations for the x dependence of
the PDFs themselves.

B. SU(3) relations for baryon and meson PDFs

In the previous section we derived relations between the
coefficients of the various operators in Oμ1���μn

q and Oμ1���μn
Δq

and the nth Mellin moments of the quark distributions in
Eqs. (22)–(26) and Eqs. (30)–(34). Since these relations are
valid for all moments n, one can derive from them explicit
expressions for the x dependence of the PDFs.
For the valence distributions in the pion and kaon, from

Eq. (22) and Table I one has

q̄πðxÞ≡ uπþðxÞ ¼ d̄πþðxÞ ¼ dπ−ðxÞ ¼ ūπ−ðxÞ
¼ uKþðxÞ ¼ s̄KþðxÞ ¼ dK0ðxÞ ¼ s̄K0ðxÞ; ð35Þ

for all values of x. For the PDFs in the baryons, to simplify
notations we shall label the bare distributions in the proton
without an explicit baryon subscript, qðxÞ≡ qpðxÞ, and
those in the Δþ baryon by qΔðxÞ≡ qΔþðxÞ. Starting with
the quark distributions in the SU(3) octet baryons, from
Table II the individual u-, d-, and s-quark flavor PDFs can
be written in terms of the proton PDFs as

unðxÞ¼ dðxÞ; dnðxÞ¼ uðxÞ; snðxÞ¼ sðxÞ; ð36aÞ
uΣþðxÞ¼ uðxÞ; dΣþðxÞ¼ sðxÞ; sΣþðxÞ¼ dðxÞ; ð36bÞ

uΣ0ðxÞ ¼ 1

2
½uðxÞ þ sðxÞ�;

dΣ0ðxÞ ¼ uΣ0ðxÞ; sΣ0ðxÞ ¼ dðxÞ; ð36cÞ
uΣ−ðxÞ¼ sðxÞ; dΣ−ðxÞ¼ uðxÞ; sΣ−ðxÞ¼ dðxÞ; ð36dÞ

uΛðxÞ ¼
1

6
½4dðxÞ þ uðxÞ þ sðxÞ�; dΛðxÞ ¼ uΛðxÞ;

sΛðxÞ ¼
1

3
½2uðxÞ − dðxÞ þ 2sðxÞ�: ð36eÞ

TABLE VI. Moments ΔQðn−1Þ
BT of the polarized u, d, and s

quark distributions from the axial octet-decuplet transition.

BT ΔUðn−1Þ
BT ΔDðn−1Þ

BT ΔSðn−1ÞBT

nΔ0 − 1ffiffi
3

p ω̄ðnÞ 1ffiffi
3

p ω̄ðnÞ 0

pΔþ − 1ffiffi
3

p ω̄ðnÞ 1ffiffi
3

p ω̄ðnÞ 0

Σ0Σ�0 − 1

2
ffiffi
3

p ω̄ðnÞ − 1

2
ffiffi
3

p ω̄ðnÞ 1ffiffi
3

p ω̄ðnÞ

ΣþΣ�þ 1ffiffi
3

p ω̄ðnÞ 0 − 1ffiffi
3

p ω̄ðnÞ

Σ−Σ�− 0 − 1ffiffi
3

p ω̄ðnÞ 1ffiffi
3

p ω̄ðnÞ

ΛΣ�0 1
2
ω̄ðnÞ − 1

2
ω̄ðnÞ 0
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For the quark distributions in the SU(3) decuplet
baryons, from Table III the u-, d-, and s-quark PDFs
can be written in terms of the PDFs in the Δþ as

uΔþþðxÞ¼ uΔðxÞþdΔðxÞ− sΔðxÞ;
dΔþþðxÞ¼ sΔðxÞ; sΔþþðxÞ¼ sΔðxÞ; ð37aÞ

uΔ0ðxÞ¼ dΔðxÞ; dΔ0ðxÞ¼ uΔðxÞ; sΔ0ðxÞ¼ sΔðxÞ;
ð37bÞ

uΔ−ðxÞ¼ sΔðxÞ; dΔ−ðxÞ¼ uΔþþðxÞ; sΔ−ðxÞ¼ sΔðxÞ;
ð37cÞ

uΣ�þðxÞ¼uΔðxÞ; dΣ�þðxÞ¼ sΔðxÞ; sΣ�þðxÞ¼dΔðxÞ;
ð37dÞ

uΣ�0ðxÞ¼dΔðxÞ; dΣ�0ðxÞ¼dΔðxÞ; sΣ�0ðxÞ¼dΔðxÞ;
ð37eÞ

uΣ�−ðxÞ ¼ sΔðxÞ; dΣ�−ðxÞ ¼ uΔðxÞ;
sΣ�−ðxÞ ¼ dΔðxÞ: ð37fÞ

In our actual numerical calculations for the strange
asymmetry, for simplicity we approximate dΔðxÞ ≈ dðxÞ
and assume valence quark dominance for the bare states,
so that sðxÞ ≈ sΔðxÞ ≈ 0. Numerically we find that the
octet baryon contributions to the s − s̄ asymmetry are in
fact dominant, and the approximations for the input PDFs
of the decuplet states do not affect the conclusions of our
analysis.
For the PDFs arising from the tadpole diagrams in

Fig. 2(j), from Table IV the u-, d-, and s-quark distributions
can be written as

uðtadÞπþ ðxÞ¼ dðtadÞπþ ðxÞ¼ uðxÞ−dðxÞ; sðtadÞπþ ðxÞ¼ 0; ð38aÞ

uðtadÞKþ ðxÞ¼sðtadÞKþ ðxÞ¼1

2
½uðxÞ−sðxÞ�; dðtadÞKþ ðxÞ¼0; ð38bÞ

dðtadÞ
K0 ðxÞ¼ sðtadÞ

K0 ðxÞ¼ dðxÞ− sðxÞ; uðtadÞ
K0 ðxÞ¼ 0: ð38cÞ

The distributions associated with the tadpole gauge link
diagrams in Fig. 2(g) turn out to be the same as those for the
regular tadpole diagrams,

qðδÞϕ ðxÞ ¼ qðtadÞϕ ðxÞ: ð39Þ

Turning now to the Kroll-Ruderman diagrams in
Figs. 2(e) and 2(h), for a proton initial state the corre-
sponding PDFs are expressed in terms of spin-dependent

PDFs in the proton, ΔqðxÞ≡ ΔqpðxÞ. From Table V, for
the octet baryon intermediate states the u-, d-, and s-quark
distributions are given by

uðKRÞn ðxÞ¼ dðKRÞn ðxÞ¼ΔuðxÞ−ΔdðxÞ
FþD

; sðKRÞn ðxÞ¼ 0;

ð40aÞ

dðKRÞΣþ ðxÞ ¼ sðKRÞΣþ ðxÞ ¼ ΔdðxÞ − ΔsðxÞ
F −D

; uðKRÞΣþ ðxÞ ¼ 0;

ð40bÞ

uðKRÞΣ0 ðxÞ ¼ sðKRÞΣ0 ðxÞ ¼ ΔdðxÞ − ΔsðxÞ
F −D

; dðKRÞΣ0 ðxÞ ¼ 0;

ð40cÞ

uðKRÞΛ ðxÞ¼ sðKRÞΛ ðxÞ¼ 2ΔuðxÞ−ΔdðxÞ−ΔsðxÞ
3FþD

;

dðKRÞΛ ðxÞ¼ 0: ð40dÞ

Similarly, for the decuplet baryon intermediate states the
individual quark flavor Kroll-Ruderman distributions are
given by

uðKRÞΔþþ ðxÞ ¼ dðKRÞΔþþ ðxÞ ¼ ΔuðxÞ − 2ΔdðxÞ þ ΔsðxÞ
2D

;

sðKRÞΔþþ ðxÞ ¼ 0; ð41aÞ

uðKRÞΔ0 ðxÞ ¼ dðKRÞΔ0 ðxÞ ¼ ΔuðxÞ − 2ΔdðxÞ þ ΔsðxÞ
2D

;

sðKRÞΔ0 ðxÞ ¼ 0; ð41bÞ

dðKRÞΣ�þ ðxÞ ¼ sðKRÞΣ�þ ðxÞ ¼ ΔuðxÞ − 2ΔdðxÞ þ ΔsðxÞ
2D

;

uðKRÞΣ�þ ðxÞ ¼ 0; ð41cÞ

uðKRÞΣ�0 ðxÞ ¼ sðKRÞΣ�0 ðxÞ ¼ ΔuðxÞ − 2ΔdðxÞ þ ΔsðxÞ
2D

;

dðKRÞΣ�0 ðxÞ ¼ 0: ð41dÞ

The PDFs associated with the KR gauge link diagrams in
Figs. 2(f) and 2(i) are the same as those for the regular KR
diagrams,

qðδÞB ðxÞ ¼ qðKRÞB ðxÞ; ð42aÞ

qðδÞT ðxÞ ¼ qðKRÞT ðxÞ: ð42bÞ
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With this set of distributions in the SU(3) octet and
decuplet baryons and mesons, and the proton → meson þ
baryon splitting functions from Ref. [20], we can finally
proceed with the computation of the meson loop contri-
butions to the quark and antiquark PDFs in the proton, as in
Eqs. (9) and (10). In the following section we focus on the
calculation of specific PDF asymmetries in the proton
numerically.

IV. SEA QUARK ASYMMETRIES
IN THE PROTON

To illustrate the calculation of the contributions to PDFs
from pseudoscalar meson loops within the nonlocal chiral
effective theory framework, we consider the examples of
the flavor asymmetry in the light antiquark sea in the
proton, d̄ − ū, and the strange-antistrange asymmetry in the
nucleon, s − s̄. In both quantities perturbatively generated
contributions from gluon radiation effectively cancel, at
least up to next-to-next-to-leading order corrections in αs
[13], so that observation of large asymmetries may be
indicative of nonperturbative effects [14–16].
For the numerical calculation of the meson-bayron

splitting functions, earlier work used various regularization
prescriptions, including sharp transverse momentum cut-
offs, Pauli-Villars regularization, as well as phenomeno-
logical vertex form factors [24,25,34–37]. At times the
prescriptions have been imposed in rather ad hoc ways,
without necessarily ensuring that the relevant symmetries,
such as Lorentz, chiral, and local gauge symmetries, are
necessarily respected. In the present work we for the first
time perform the calculation within nonlocal regularization,
which is consistent with all of the above symmetry require-
ments. An advantage of the nonlocal method is that only a
single parameter, Λ, is needed to regulate all of the on-
shell, off-shell, and δ functions associated with each of the
diagrams in Figs. 1 and 2.
Following Ref. [20], in the present analysis we adopt a

dipole shape in the meson virtuality k2 for the regulator
functions for the one-loop contributions, parametrized by a
cutoff parameter Λ,

eFðkÞ ¼ �Λ2 −m2
ϕ

DΛ

�2

; ð43Þ

where DΛ ¼ k2 − Λ2 þ iε. The cutoff Λ can be determined
by fitting the calculated meson-exchange cross section to
differential cross sections data for inclusive baryon pro-
duction in high-energy pp scattering, pp → BX, for
different species of baryon B. Summing over the particles
X in the final state, the differential inclusive baryon
production cross sections can be written as

σðy; k2⊥Þ≡ E
d3σ
d3k

¼ ȳ
π

d2σ
dy dk2⊥

; ð44Þ

where E is the incident proton energy and ȳ≡ 1 − y is the
longitudinal momentum fraction of the incident proton
carried by the produced baryon B. In Eq. (44) we have
used the fact that for spin-averaged scattering the differential
cross section is independent of the azimuthal angle.
Available data exist on inclusive neutron and Δþþ produc-
tion [38–40], as well as onΛ and Σ�þ production [39,41,42]
in the hyperon sector. In principle, the cutoffs may depend
on the baryon B, although within the SU(3) symmetry
framework we do not expect large variations among the
different Λ values.
Once the cutoffs are determined and the one-loop

splitting functions are fixed, these can then be convoluted
with the various meson and baryon PDFs in Eqs. (9) and
(10) to compute the contributions to the PDFs in the
proton. In the numerical calculations the input PDFs of the
pion and kaon are taken from Aicher et al. [43]. The spin-
averaged PDFs of the proton are from Ref. [44], while the
spin-dependent PDFs are taken from Ref. [45]. Since the
valence pion and proton PDFs are reasonably well deter-
mined, at least compared with the sea quark distributions,
using other pion [46–50] or proton [51,52] parametriza-
tions will not lead to significant differences.

A. d̄ − ū asymmetry

Turning to the light antiquark asymmetry in the
proton sea, within the chiral effective theory framework
the primary source of the asymmetry is the meson rainbow
and bubble diagrams in Fig. 1. In this approximation the
d̄ − ū difference does not depend directly on the structure
of the baryon coupling diagrams in Fig. 2, but only
on the splitting functions and the substructure of the
pion. More specifically, from Eq. (9) one can write the
contribution to the d̄ − ū difference in the proton as the
convolution

d̄ðxÞ− ūðxÞ¼ ½ðfðrbwÞπþn þfðrbwÞ
πþΔ0 −fðrbwÞπ−Δþþ þfðbubÞπ Þ⊗ q̄π�ðxÞ;

ð45Þ

where the first (octet rainbow) term in the brackets is from
Fig. 1(a), the second and third (decuplet rainbow) terms
correspond to Fig. 1(b), and the fourth (bubble) term is
from Fig. 1(c). Using the notations of Ref. [20], the
splitting functions in Eq. (45) for the rainbow and bubble
diagrams can be expressed in terms of octet and decuplet
basis functions. In particular, for the πN configuration the

function fðrbwÞπþn is given by a sum of nucleon on-shell and δ-
function contributions,

fðrbwÞπþn ðyÞ¼ 2ðDþFÞ2M2

ð4πfÞ2 ½fðonÞN ðyÞþfðδÞπ ðyÞ−δfðδÞπ ðyÞ�;

ð46Þ
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where D and F are the SU(3) flavor coefficients, and f ¼
93 MeV is the pseudoscalar meson decay constant. Explicit
forms for the basis functions are given in Ref. [20] for the
dipole regulator F̃ðkÞ in Eq. (43). The on-shell function

fðonÞN is nonzero for y > 0, while the local fðδÞπ and nonlocal

δfðδÞπ functions are proportional to δðyÞ [20], and therefore
contribute to the d̄ − ū asymmetry only at x ¼ 0 [34,35]. In
the pointlike limit, in which the form factor cutoff Λ → ∞,

the nonlocal function δfðδÞπ vanishes; however, at finite Λ
values it remains nonzero.
In the standard formulation of the chiral effective

theory, the δ functions at y ¼ 0 represent the contributions
from the so-called zero modes on the light front. These
are essential in order to ensure that fundamental sym-
metries, such as Lorentz invariance, chiral symmetry, and
local gauge symmetry, are respected in the calculation.
Experimentally, the physical appearance of this contribu-
tion at x ¼ 0 is still an open question. One may imagine
that in more elaborate treatments that better capture the
short-range structure of the intermediate state baryon in
QCD, the δ function contribution may soften into a peak
near x ¼ 0 [34]. However, in the absence of a solution to
QCD in the strong coupling regime this remains specula-
tive, and in the present formulation of the effective theory
the δ-function terms are a natural consequence.
For the πΔ contributions to the asymmetry in Eq. (45),

the splitting function for the rainbow diagram in Fig. 1(b)
includes several regular and δ-function terms,

fðrbwÞπ−ΔþþðyÞ¼ 3fðrbwÞ
πþΔ0ðyÞ

¼ C2M2

2ð4πfÞ2
�
fðonÞΔ ðyÞþfðon endÞΔ ðyÞ− 1

18
fðδÞΔ ðyÞ

þ2M2ðM2−m2
πÞ

3M2
ΔM

2
ðfðδÞπ ðyÞ−δfðδÞπ ðyÞÞ

�
; ð47Þ

where M ¼ M þMΔ and C is the meson-octet-decuplet
baryon coupling, which is related to the πNΔ coupling
constant gπNΔ by C ¼ ffiffiffi

2
p

fgπNΔ [20,35]. As for the πN
case, the on-shell function for the Δ intermediate state,

fðonÞΔ , is nonzero for y > 0, with a shape that is qualitatively

similar to fðonÞN , but peaking at smaller y because of the
positive Δ-nucleon mass difference [20,36,37]. The on-

shell end-point function, fðon endÞ
Δ , also has a similar shape

for finite Λ, but in the Λ → ∞ limit is associated with an
end-point singularity that gives a δ function at y ¼ 1. The
off-shell components of the Δ propagator induce several
terms that are proportional to δ functions at y ¼ 0. The

functions fðδÞπ and δfðδÞπ are equivalent to those in Eq. (46),

while fðδÞΔ is a new function that appears only for the
decuplet intermediate state [35].

Finally, the bubble diagram contribution to the d̄ − ū

asymmetry, fðbubÞπ , in Fig. 1(c) is given by the same
combination of basis δ-function contributions as for the
rainbow diagrams,

fðbubÞπ ðyÞ ¼ −
2M2

ð4πfÞ2 ½f
ðδÞ
π ðyÞ − δfðδÞπ ðyÞ�: ð48Þ

Although this term gives a nonzero PDF only at x ¼ 0,
since it contributes to the integral of d̄ − ū, it will indirectly
affect the normalization for x > 0. On the other hand,
experimental cross sections are in practice available
only for x > 0, so that the δ-function pieces are generally
difficult to constrain directly, especially in regularization
schemes that use different regulator parameters for the δ-
function and y > 0 contributions [35]. The advantage of the
nonlocal approach employed here is that by consistently
introducing a vertex form factor in coordinate space in the
nonlocal Lagrangian [20], the same regulator function
then appears in all splitting functions derived from the
fundamental interaction, which in our case is parametrized
through the single cutoff Λ. Even if experimental data
constrain only contributions at x > 0, such as from the on-
shell functions, once determined these can then be used to
compute other contributions, including those at x ¼ 0.
Following Refs. [24,25,36], we can constrain the param-

eter Λ for the octet intermediate states by comparing the
one-pion exchange contribution with the differential cross
section for the inclusive charge-exchange process pp →
nX at y > 0,

σðpp → nXÞ ¼ 2ðDþ FÞ2M2

ð4πfÞ2
ȳ
π
f̂ðonÞN ðy; k2⊥Þσπ

þp
tot ðysÞ;

ð49Þ

where s is the invariant mass squared of the reaction. The

function f̂ðonÞN ðy; k2⊥Þ in Eq. (49) is the unintegrated on-shell
nucleon splitting function, which is related to the corre-

sponding integrated splitting function fðonÞN ðyÞ in Eq. (46)
by [see also Eq. (63) in Ref. [20]]

fðonÞN ðyÞ≡
Z

dk2⊥f̂
ðonÞ
N ðy; k2⊥Þ: ð50Þ

The cross section σπ
þp

tot ðysÞ in Eq. (49) is the total
πþp scattering cross section evaluated at the center of
mass energy ys. In the numerical calculations, we use
the (approximately energy independent) empirical value

σπ
þp

tot ¼ 23.8ð1Þ mb [53]. For the SU(3) couplings we take
D ¼ 0.85 and F ¼ 0.41, which gives a triplet axial charge
gA ¼ ð2ᾱð1Þ − β̄ð1ÞÞ=3 ¼ Dþ F ¼ 1.26 and an octet axial
charge g8 ¼ ᾱð1Þ þ β̄ð1Þ ¼ 3F −D ¼ 0.38.
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The results for the differential neutron production cross
section are shown in Fig. 3 vs ȳ. The experimental data are
typically presented as a function of the ratio 2pL=

ffiffiffi
s

p
,

where pL is the longitudinal momentum of the produced
baryon in the center of mass frame; at high energies,
however, this is equivalent to ȳ. In Fig. 3(a) we compare our
results with the neutron production data from the ISR at
CERN at energies

ffiffiffi
s

p
between ≈31 and 63 GeV for 0°

neutron production angles, or k2⊥ ¼ 0 [38]. Data from
the hydrogen bubble chamber experiment at the CERN
proton synchrotron at

ffiffiffi
s

p
≈ 5 and 7 GeV [39] are shown in

Fig. 3(b) for the k⊥-integrated neutron cross section.
Because the pion-exchange process is dominant only at
large ȳ [54], with contributions from background processes

such as the exchange of heavier mesons [36,55,56] becom-
ing more important at lower ȳ, we include data only in the
region ȳ > 0.7. Corrections from rescattering and absorp-
tion are also known to play a role in inclusive hadron
production, and are estimated to be around 20% at high
values of ȳ [56–58]. A good description of the single and
double differential neutron data can be achieved with a
cutoff parameter ΛπN ¼ 1.0ð1Þ GeV. A marginally larger
value is found if fitting only the double differential data,
and slightly smaller value for just the k⊥-integrated cross
section, but consistent within the uncertainties.
For the inclusive production of decuplet baryons, the

invariant differential cross section for an inclusive Δþþ in
the final state can be written for y > 0 as

σðpp→ΔþþXÞ

¼ C2M2

2ð4πfÞ2
ȳ
π
½f̂ðonÞΔ ðy;k2⊥Þþ f̂ðonendÞΔ ðy;k2⊥Þ�σπ

−p
tot ðysÞ; ð51Þ

where σpπ
−

tot is the total π−p scattering cross section. In our
numerical calculations we assume this to be charge

independent, so that σπ
−p

tot ≈ σπ
þp

tot , and for the coupling
constant C we take the SU(6) symmetric value C ¼ −2D ¼
−1.72. The functions f̂ðonÞΔ ðy; k2⊥Þ and f̂ðon endÞ

Δ ðy; k2⊥Þ in
(51) are the unintegrated decuplet on-shell and on-shell
end-point splitting functions, which are related to the cor-
responding integrated splitting functions [see Eqs. (86)–
(88) in [20]] by the identities

fðonÞΔ ðyÞ≡
Z

dk2⊥f̂
ðonÞ
Δ ðy; k2⊥Þ; ð52aÞ

fðon endÞ
Δ ðyÞ≡

Z
dk2⊥f̂

ðon endÞ
Δ ðy; k2⊥Þ; ð52bÞ

respectively. The k2⊥-integrated Δþþ cross section is shown
in Fig. 3(c) compared with hydrogen bubble chamber data
taken at Fermilab for

ffiffiffi
s

p
≈ 20 GeV [40]. A good fit to the

data is obtained with a value of the decuplet cutoff of
ΛπΔ ¼ 0.9ð1Þ GeV, which is slightly smaller than that for
the neutron production cross sections.
To examine the model dependence of the analysis, for

comparison we also fitted the hadron production cross
sections in Figs. 3(a)–3(c) using instead the Pauli-Villars
regularization for the local effective theory [24,25]. The
explicit forms of the Pauli-Villars regularized octet on-shell
splitting functions can be found in [24,25]. The result for
the sum of the decuplet on-shell and on-shell end-point
functions is as in Eq. (96) of [20], with the integral
regularized by a factor of ð1þ 4DπΔ=DΛΔÞ, where DπΔ
and DΛΔ are momentum dependent functions given
in Eq. (86) of [20]. The results for the best fit Pauli-

Villars mass parameters ΛðPVÞ
πN ¼ 0.30 GeV and ΛðPVÞ

πΔ ¼
0.64 GeV are illustrated by the dashed curves in Fig. 3 and

(a)

(b)

(c)

FIG. 3. Differential inclusive hadron production cross section
σðy; k2⊥Þ vs ȳ for (a) pp → nX at k2⊥ ¼ 0 [38]; (b) pp → nX
integrated over k2⊥ [39]; (c) pp → ΔþþX integrated over k2⊥ [40],
compared with the fitted nonlocal pion exchange contributions
for ΛπN ¼ 1.0ð1Þ GeV and ΛπΔ ¼ 0.9ð1Þ GeV (solid red lines
and pink 1σ uncertainty bands) and with Pauli-Villars

regularization (dashed red lines) for ΛðPVÞ
πN ¼ 0.3 GeV and

ΛðPVÞ
πΔ ¼ 0.64 GeV.
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are similar to those for the nonlocal calculation, even
though the numerical values for the cutoffs are rather
different. While there is some difference in the shape of the
calculated k⊥-integrated neutron production cross section
in Fig. 3(b) at smaller values of ȳ, in the region where the
data provide constraints the Pauli-Villars results lie within
the uncertainty bands of the nonlocal calculation using with
the dipole regulator.
Using the values of ΛπN and ΛπΔ for our nonlocal

calculation constrained by the pp cross sections in Fig. 3,
we next evaluate the flavor asymmetry d̄ − ū from the
convolution of the splitting functions and the pion PDF in
Eq. (45). The results for xðd̄ − ūÞ are shown in Fig. 4 and
compared with the asymmetry extracted from the E866
Drell-Yan lepton-pair production data from Fermilab [4].
At nonzero x values only the on-shell nucleon and Δ and
end-point Δ terms contribute to the asymmetry, each of
which is indicated in Fig. 4. The positive nucleon on-shell
term makes the largest contribution, which is partially
canceled by the negative Δ contributions. For the values of
the cutoffs used here, the end-point term is relatively small
compared with the on-shell Δ component.
Although the δ-function contributions to the flavor

asymmetry are not directly visible in Fig. 4, their effect
can be seen in the lowest moment of the asymmetry,

hd̄ − ūi≡
Z

1

0

dxðd̄ðxÞ − ūðxÞÞ: ð53Þ

The contributions from the individual on-shell, end-point,
and δ-function components of the πN and πΔ rainbow
and the π bubble diagrams to the moment are shown in
Fig. 5 vs the dipole cutoff parameter Λ (¼ ΛπN or ΛπΔ),
for the approximate ranges of values found in the fits in
Fig. 3. For the best fit values ΛπN ¼ 1.0ð1Þ GeV and
ΛπΔ ¼ 0.9ð1Þ GeV, the contributions from the individual

terms in Eqs. (45)–(48) are listed in Table VII, along with
the combined contributions from the x > 0 and x ¼ 0
terms, and the local and nonlocal terms, to the total
integrated result. The nucleon on-shell term is the most
important component, with a contribution that is within
≈20% of the total integrated value hd̄ − ūi ¼ 0.127þ0.044

−0.042 ,
where the errors reflect the uncertainties on the cutoff
parameters. The on-shell and end-point πΔ terms yield
overall negative contributions, with magnitude≈30% of the
on-shell πN. Furthermore, the breakdown into the local and
nonlocal pieces shows that the latter is negative, with
magnitude ≈20% of the local.

FIG. 4. The flavor asymmetry of the proton xðd̄ − ūÞ vs x
from the lowest order pion exchange (solid red curve
and pink band), with cutoff parameters ΛπN ¼ 1.0ð1Þ GeV and
ΛπΔ ¼ 0.9ð1Þ GeV, including nucleon on-shell (dashed blue
line), Δ on-shell (dashed green line), and Δ end-point (dotted
green line) contributions, and compared with the asymmetry
extracted from the Fermilab E615 Drell-Yan experiment [4].

(a)

(b)

(c)

FIG. 5. Contributions to the hd̄ − ūi moment vs the dipole
cutoff parameter Λ (¼ ΛπN or ΛπΔ) from (a) the πN rainbow
diagram [Fig. 1(a)], including on-shell (solid red line), and local
(dotted blue line) and nonlocal (dot-dashed green line) δ-function
terms; (b) the pion bubble [Fig. 1(c)], including local (dotted blue
line) and nonlocal (dot-dashed green line) δ-function pieces;
(c) the πΔ rainbow [Fig. 1(b)], including on-shell (solid red line),
end-point (dashed red line), local (dotted blue line) and nonlocal
(dot-dashed green line) δ-function, and local decuplet δ-function
(dotted black line) contributions.
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The various δ-function terms from all three diagrams in
Fig. 1 cancel to a considerable degree, with the x ¼ 0
contribution making up ≈20% of the total. This contribu-
tion is smaller than the total uncertainty due to the variation
of the cutoff parameter Λ, making it difficult to draw
unambiguous conclusions about the phenomenological role
of the δ-function terms. With more precise experimental
data on the inclusive pp baryon production cross sections
and better theoretical constraints on our model, the range of
Λ could be further reduced. Eventually, if the total
uncertainty on Λ is smaller than the δ-function contribu-
tions, one could hope to make firmer conclusions about the
x ¼ 0 terms.
Experimentally, the asymmetry at x ¼ 0 is of course not

directly measurable, and typically extrapolations are made
to estimate contributions from outside of the measured
region. The New Muon Collaboration, for instance, found

hd̄ − ūiðexpÞNMC ¼ 0.169ð32Þ from their analysis of Fp
2 − Fn

2 in
the experimentally accessible region 0.004 ≤ x ≤ 0.8, and

hd̄ − ūiðtotÞNMC ¼ 0.148ð39Þ when including x → 0 and x → 1

extrapolations [1]. The E866 Collaboration, on the

other hand, extracted hd̄ − ūiðexpÞE866 ¼ 0.080ð11Þ in the
experimentally measured interval 0.015 ≤ x ≤ 0.035, and

hd̄ − ūiðtotÞE866 ¼ 0.118ð12Þ for the entire x range after
extrapolation. Note that the extrapolations by different
analyses are often based on different assumptions for the
asymptotic x → 0 and x → 1 behavior, so that a direct
comparison of extrapolated results is problematic.
Nevertheless, the general magnitude of the asymmetry is
comparable with that found in our calculation, even with
the uncertainties about the x ¼ 0 and extrapolated
contributions.

B. s− s̄ asymmetry

While the d̄ − ū asymmetry is perhaps the best known
consequence of pion loops on PDFs in the nucleon, an
equally intriguing ramification of SU(3) chiral symmetry
breaking is the s − s̄ asymmetry generated by kaon loops.
In analogy to the light antiquark PDFs in Eq. (45), the
contribution to the antistrange PDF in the proton arising
from kaon loops in Fig. 1 can be written as

s̄ðxÞ ¼
��X

ϕB

fðrbwÞϕB þ
X
ϕT

fðrbwÞϕT þ
X
ϕ

fðbubÞϕ

�
⊗ s̄K

�
ðxÞ;

ð54Þ

where here the sums are over the states ϕB ¼
fKþΛ; KþΣ0; K0Σþg for the kaon-octet baryon rainbow
diagram [Fig. 1(a)], ϕT ¼ fKþΣ�0; K0Σ�þg for the kaon-
decuplet baryon rainbow diagram [Fig. 1(b)], and for the
ϕ ¼ KþðK−Þ and K0ðK̄0Þ loop in the bubble diagram
[Fig. 1(c)]. In terms of the on-shell and δ-function basis
functions, the kaon-octet baryon rainbow function can be
written is given by a form similar to that in Eq. (46),

fðrbwÞKþΛ ðyÞ ¼
ðDþ 3FÞ2ðM þMΛÞ

12ð4πfÞ2
× ½fðonÞΛ ðyÞ þ fðδÞK ðyÞ − δfðδÞK ðyÞ�; ð55aÞ

2fðrbwÞKþΣ0ðyÞ ¼ fðrbwÞK0ΣþðyÞ ¼ ðD − FÞ2ðM þMΣÞ
2ð4πfÞ2

× ½fðonÞΣ ðyÞ þ fðδÞK ðyÞ − δfðδÞK ðyÞ�; ð55bÞ

for theKΛ andKΣ intermediate states, respectively. For the
kaon-decuplet baryon rainbow diagram, the corresponding
function is written analogously to Eq. (47),

TABLE VII. Contributions to the integral hd̄− ūi≡R
1
0 dxðd̄− ūÞ

from the πN rainbow, πΔ rainbow, and π bubble diagrams in
Fig. 1, for the best fit parameters ΛπN ¼ 1.0ð1Þ GeV and
ΛπΔ ¼ 0.9ð1Þ GeV. The contributions from the various terms
in Eqs. (45)–(48) are listed individually, as are the combined
contributions from x > 0 and x ¼ 0, and the local and nonlocal
terms, to the total. Note that some numbers do not sum to the
totals because of rounding.

Diagram hd̄ − ūi
πN (rbw) fðonÞN

0.152þ0.032
−0.030

fðδÞπ
−ð0.079þ0.020

−0.018 Þ
δfðδÞπ 0.044þ0.010

−0.009

Total πN 0.116þ0.022
−0.022

πΔ (rbw) fðonÞΔ
−ð0.044þ0.012

−0.012 Þ
fðon endÞ
Δ

−ð0.009þ0.004
−0.003 Þ

fðδÞΔ
0.002þ0.001

−0.001

fðδÞπ 0.039þ0.010
−0.010

δfðδÞπ
−ð0.022þ0.005

−0.005 Þ
Total πΔ −ð0.033þ0.010

−0.010 Þ
π (bub) fðδÞπ 0.099þ0.025

−0.022

δfðδÞπ
−ð0.054þ0.013

−0.012 Þ
Total π bubble 0.044þ0.012

−0.010

Total 0.127þ0.044
−0.042

x > 0 0.099þ0.047−0.046
x ¼ 0 0.028þ0.008−0.007
Local 0.159þ0.041−0.039
Nonlocal −ð0.032þ0.008−0.008Þ
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2fðrbwÞ
KþΣ�0ðyÞ ¼ fðrbwÞ

K0Σ�þðyÞ ¼ C2ðM þMΣ� Þ2
6ð4πfÞ2

×

�
fðonÞΣ� ðyÞ þ fðon endÞ

Σ� ðyÞ − 1

18
fðδÞΣ� ðyÞ

þ ðM þMΣÞ2½ðM þMΣ� Þ2 −m2
K�

6M2
Σ� ðM þMΣ�Þ2

× ðfðδÞK ðyÞ − δfðδÞK ðyÞÞ
�

ð56Þ

for the KΣ� states, where the coupling C is given in the
previous section. For the bubble diagram, the splitting
function for charged or neutral kaon loops is given by a
form similar to that in Eq. (48),

fðbubÞKþ ðyÞ¼ 2fðbubÞK0 ðyÞ¼−
ðMþMΣÞ2
ð4πfÞ2 ½fðδÞK ðyÞ−δfðδÞK ðyÞ�:

ð57Þ
Explicit expressions for all the basis functions are given
in Ref. [20].
For the loop contributions to the strange quark PDF, the

baryon-coupling rainbow, Kroll-Ruderman, and tadpole
diagrams in Figs. 2(d)–2(k) all play a role, as do the
additional gauge-link dependent diagrams that are generated
by the nonlocal Lagrangian. Assuming that all nonpertur-
batively generated strangeness resides in the intermediate
state hyperons, from Eq. (10) the loop contributions to the
strange quark PDF in the proton can be written as

sðxÞ¼
X
Bϕ

��
f̄ðrbwÞBϕ ⊗sB

�
ðxÞþ

�
f̄ðKRÞB ⊗sðKRÞB

�
ðxÞ

þ
�
δf̄ðKRÞB ⊗sðδÞB

�
ðxÞ

�
þ
X
Tϕ

��
f̄ðrbwÞTϕ ⊗sT

�
ðxÞ

þ
�
f̄ðKRÞT ⊗sðKRÞT

�
ðxÞþ

�
δf̄ðKRÞT ⊗sðδÞT

�
ðxÞ

�

þ
X
ϕ

��
f̄ðtadÞϕ ⊗sðtadÞϕ

�
ðxÞþ

�
δf̄ðtadÞϕ ⊗sðδÞϕ

�
ðxÞ

�
; ð58Þ

where the sums are over the octet bayon-meson states
Bϕ ¼ fΛKþ;Σ0Kþ;ΣþK0g, decuplet baryon-meson states
Tϕ ¼ fΣ�0Kþ;Σ�þK0g, and mesons ϕ ¼ KþðK−Þ and
K0ðK̄0Þ for the tadpole contributions. As in Eq. (10), the
splitting functions for all the hyperon coupling diagrams in
Eq. (58) use the shorthand notation f̄jðyÞ≡ fjð1 − yÞ.
For the octet hyperon rainbow diagrams, Fig. 2(d), the

individual splitting functions can be written in terms of the
on-shell, off-shell, and δ-function basis functions as

fðrbwÞΛKþ ðyÞ¼ðDþ3FÞ2ðMþMΛÞ2
12ð4πfÞ2

× ½fðonÞΛ ðyÞþfðoffÞΛ ðyÞþ4δfðoffÞΛ ðyÞ−fðδÞK ðyÞ�;
ð59aÞ

2fðrbwÞΣ0KþðyÞ¼ fðrbwÞΣþK0ðyÞ¼ ðD−FÞ2ðMþMΣÞ2
2ð4πfÞ2

× ½fðonÞΣ ðyÞþfðoffÞΣ ðyÞþ4δfðoffÞΣ ðyÞ−fðδÞK ðyÞ�;
ð59bÞ

where the functions fðonÞΛ;Σ and fðδÞK are the same as in
Eq. (55), and explicit expressions for the off-shell functions

fðoffÞΛ;Σ and δfðoffÞΛ;Σ are given in Sec. IV. B. 1 of Ref. [20]. For
the octet Kroll-Ruderman diagrams in Figs. 2(e) and 2(f),

the local and nonlocal splitting functions fðKRÞΛ;Σ and δfðKRÞΛ;Σ
are given by

fðKRÞΛ ðyÞ ¼ ðDþ 3FÞ2ðM þMΛÞ2
12ð4πfÞ2 ½−fðoffÞΛ ðyÞ þ 2fðδÞK ðyÞ�;

ð60aÞ

2fðKRÞΣ0 ðyÞ¼ fðKRÞΣþ ðyÞ

¼ ðD−FÞ2ðMþMΣÞ2
2ð4πfÞ2 ½−fðoffÞΣ ðyÞþ2fðδÞK ðyÞ�;

ð60bÞ

and

δfðKRÞΛ ðyÞ¼ðDþ3FÞ2ðMþMΛÞ2
12ð4πfÞ2 ½−4δfðoffÞΛ ðyÞ−δfðδÞK ðyÞ�;

ð61aÞ

2δfðKRÞΣ0 ðyÞ¼δfðKRÞΣþ ðyÞ

¼ðD−FÞ2ðMþMΣÞ2
2ð4πfÞ2 ½−4δfðoffÞΣ ðyÞ−δfðδÞK ðyÞ�;

ð61bÞ

respectively.
For the decuplet hyperon contributions, the respective

splitting functions are given by

2fðrbwÞΣ�0KþðyÞ¼ fðrbwÞΣ�þK0ðyÞ¼ C2ðMþMΣ�Þ2
6ð4πfÞ2 ×

�
fðonÞΣ� ðyÞþfðon endÞΣ� ðyÞ−2fðoffÞΣ� ðyÞ−2fðoff endÞΣ� ðyÞþ4δfðoffÞΣ� ðyÞþ 1

18
fðδÞΣ� ðyÞ

−
1

6
δfðδÞΣ� ðyÞ− ðMþMΣÞ2½ðMþMΣ�Þ2þ3m2

K�
6M2

Σ� ðMþMΣ� Þ2 fðδÞK ðyÞ
�

ð62Þ
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for the decuplet rainbow diagram in Fig. 2(g),

2fðKRÞΣ�0 ðyÞ¼fðKRÞΣ�þ ðyÞ

¼C2ðMþMΣ�Þ2
6ð4πfÞ2

�
2fðoffÞΣ� ðyÞþ2fðoff endÞΣ� ðyÞ

−
1

9
ðfðδÞΣ� ðyÞ−δfðδÞΣ� ðyÞÞ

þðMþMΣÞ2½ðMþMΣ� Þ2þm2
K�

3M2
Σ� ðMþMΣ� Þ2 fðδÞK ðyÞ

�
ð63Þ

for the Kroll-Ruderman diagram in Fig. 2(h), and

2δfðKRÞΣ�0 ðyÞ ¼ δfðKRÞΣ�þ ðyÞ

¼ C2ðM þMΣ� Þ2
6ð4πfÞ2

�
−4δfðoffÞΣ� ðyÞ þ 1

18
δfðδÞΣ� ðyÞ

−
ðM þMΣÞ2½ðM þMΣ�Þ2 −m2

K�
6M2

Σ� ðM þMΣ� Þ2 δfðδÞK ðyÞ
�

ð64Þ

for the nonlocal Kroll-Ruderman diagram in Fig. 2(i). The

expressions for the decuplet basis functions fðonÞΣ� , fðon endÞ
Σ� ,

fðoffÞΣ� , fðoff endÞΣ� , and fðδÞΣ� , as well as the nonlocal functions

δfðoffÞΣ� and δfðδÞΣ� , are given in Sec. IV.B.2 of Ref. [20].
Finally, for the local and nonlocal tadpole contributions

to the strange quark PDF from Figs. 2(j) and 2(k), the
splitting functions are given by

fðtadÞKþ ðyÞ ¼ 2fðtadÞ
K0 ðyÞ ¼ −

ðM þMΣÞ2
ð4πfÞ2 fðδÞK ðyÞ; ð65Þ

δfðtadÞKþ ðyÞ ¼ 2δfðtadÞ
K0 ðyÞ ¼ ðM þMΣÞ2

ð4πfÞ2 δfðδÞK ðyÞ; ð66Þ

in terms of the local and nonlocal basis functions fðδÞK

and δfðδÞK .
To determine the regulator mass parameter for the kaon-

hyperon-nucleon vertices in Figs. 1 and 2, we consider
inclusive hyperon production cross sections in pp colli-
sions, in analogy with the neutron and Δ production above.
Data on inclusive Λ production are available from the 2 m
hydrogen bubble chamber at the CERN proton synchrotron
[39] and the 12 foot hydrogen bubble chamber at ANL
[41], and on inclusive Σ� production from CERN bubble
chamber experiments [42]. The corresponding differential
cross sections for inclusive Λ and Σ� production (for y > 0)
are given by

σðpp→ΛXÞ

¼ðDþ3FÞ2ðMþMΛÞ2
12ð4πfÞ2

ȳ
π
f̂ðonÞΛ ðy;k2⊥ÞσK

þp
tot ðysÞ; ð67Þ

σðpp → Σ�þXÞ ¼ C2ðM þMΣ� Þ2
6ð4πfÞ2

ȳ
π
½f̂ðonÞΣ�þ ðy; k2⊥Þ

þ f̂ðon endÞ
Σ�þ ðy; k2⊥Þ�σK

0p
tot ðysÞ; ð68Þ

where f̂ðonÞΛ , f̂ðonÞΣ�þ , and f̂ðon endÞ
Σ�þ are the k⊥-unintegrated

splitting functions defined from the on-shell and end-point
basis functions [see Eqs. (63), (86), and (88) in Ref. [20]]
by the relations

fðonÞΛ ðyÞ≡
Z

dk2⊥f̂
ðonÞ
Λ ðy; k2⊥Þ; ð69aÞ

fðonÞΣ�þ ðyÞ≡
Z

dk2⊥f̂
ðonÞ
Σ�þ ðy; k2⊥Þ; ð69bÞ

fðon endÞ
Σ�þ ðyÞ≡

Z
dk2⊥f̂

ðon endÞ
Σ�þ ðy; k2⊥Þ: ð69cÞ

In Eqs. (67) and (68) σK
þp

tot and σK
0p

tot are the total
kaon-proton scattering cross sections, evaluated at invariant
mass ys. For the numerical calculations we take the

empirical value for σK
þp

tot ¼ 19.9ð1Þ mb from Ref. [53],
independent of energy. As there are no data for the K0p
total cross section, we assume charge symmetry and relate

this to the measured Kþn cross section, σK
0p

tot ≈ σK
þn

tot ¼
19.7ð1Þ mb [59].
In a similar vein to the pion exchange analysis of neutron

and Δ production discussed above, in Fig. 6 we compare
the inclusive pp → ΛX and Σ�þX cross sections for ȳ >
0.7 with the kaon exchange contributions calculated from
Eqs. (67) and (68). It has been established in several
analyses [53,54,56,58] that rescattering and absorption
effects in inclusive baryon production result in ≲20%
corrections at high ȳ. The previous studies found that
the t dependence at large values of ȳ is consistent with that
produced by meson exchange, and in our numerical
analysis we follow the earlier work [54,56,57] by focusing
on the region ȳ > 0.7.
The best fit to the CERN bubble chamber Λ production

data from Ref. [39] at k⊥ ¼ 0.075 GeV [Fig. 6(a)] and the
k⊥-integrated data from Ref. [41] [Fig. 6(b)] yields a dipole
regulator mass ΛKΛ ¼ 1.1ð1Þ GeV, similar to the value
found for the πN cutoff parameter from the inclusive
neutron production data in Fig. 3. Comparison of the
singly differential decuplet Σ�þ production data at large
ȳ [Fig. 6(c)] with the kaon exchange cross section in
Eq. (68) gives a best fit for the decuplet regulator mass of
ΛKΣ� ¼ 0.8ð1Þ GeV. The cutoff parameter for the decuplet
baryon is again slightly smaller than that for the octet
baryon, as was found for the pion exchange contributions to
the neutron and Δ cross sections in Fig. 3. Of course, the
cutoff parameters could also in principle be constrained
from data on kaon production, where the kaon is produced
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in conjunction with scattering from an exchanged virtual
baryon, as in Figs. 2(d) and 2(g). However, the back-
grounds from kaons produced through quark fragmentation
will be significant, making it considerably more difficult to
identify mesons produced through u-channel baryon
exchange and fragmentation.
With these values of the cutoffs, we can compute the

kaon loop contributions to the strange and antistrange
distributions in the proton, and estimate the shape and
magnitude of the strange asymmetry s − s̄. In Fig. 7 the
various octet and decuplet contributions to xs and xs̄ are
shown for the best fit parameters ΛKΛ ¼ ΛKΣ ¼ 1.1 GeV
and ΛKΣ� ¼ 0.8 GeV. For the xs̄ PDF in Fig. 7(a), the octet
on-shell contribution from the rainbow diagram [Fig. 1(a)]
dominates over the decuplet on-shell and end-point terms

from the decuplet rainbow [Fig. 1(b)]. The resulting xs̄
distribution peaks at x ≈ 0.1 and essentially vanishes beyond
x ≈ 0.6. The δ-function terms from the rainbow diagrams as
well as from the kaon bubble diagram [Fig. 1(c)] contribute
to s̄ only at x ¼ 0 and so do not appear in Fig. 7(a).
In contrast, for the strange quark distribution, from the

convolution in Eq. (58) one finds that all terms from each
of the rainbow, Kroll-Ruderman, and tadpole diagrams
in Figs. 2(d)–2(k) have nonzero contributions at x > 0.
Since there are many individual terms, we display ones
involving octetþ tadpole and decuplet baryons separately
in Figs. 7(b) and 7(c), respectively. Unlike the on-shell term
dominance of the antistrange PDF, for the strange distri-
bution there are sizable contributions from many of the
terms, with nontrivial cancellations between them. For the
octet baryons, the off-shell terms change sign at around
x ≈ 0.1, with significant cancellation occurring between the
local and nonlocal (gauge link dependent) off-shell con-
tributions. The (positive) local and (negative) nonlocal δ-
function terms come with the largest magnitudes, but
mostly cancel among themselves, leaving a total octet
contribution that is positive and peaks around x ≈ 0.2, with
a similar order of magnitude as the xs̄ distribution.
A qualitatively similar scenario is evident in Fig. 7(c) for

the decuplet intermediate state contributions to xs, where
the individual on-shell, off-shell, δ-function, and gauge link
terms are shown. (Note that the on-shell and off-shell terms
include also the respective end-point pieces.) The predomi-
nantly positive on-shell, off-shell, and nonlocal δ-function
contributions at x≳ 0.2 largely cancel with the predomi-
nantly negative local δ-function and nonlocal off-shell
terms, resulting in a very small overall decuplet contribu-
tion to xs, peaking at x ∼ 0.1, that is, an order of magnitude
smaller than the octet.
Finally, the resulting asymmetry xðs − s̄Þ in Fig. 7(d)

reflects the interplay between the s̄ PDF, which peaks at
lower x, and the s-quark PDF, which extends to larger
values of x. A key feature of this result is the strong
cancellations between positive local and negative nonlocal,
gauge-link dependent contributions, in both the octet and
the decuplet channels. The net effect is then a small positive
xðs − s̄Þ asymmetry, peaking at x ≈ 0.2–0.3, and about an
order of magnitude smaller than the asymmetry between
the d̄ and ū PDFs resulting from pion loops.
In addition to the shape, it is instructive also to examine

the contributions of the various terms to the lowest
moments of the s and s̄ PDFs, in particular, the average
number of strange and antistrange quarks,

hsi ¼
Z

1

0

dx sðxÞ; hs̄i ¼
Z

1

0

dx s̄ðxÞ; ð70Þ

and the average momentum carried by them,

(a)

(b)

(c)

FIG. 6. Differential inclusive hadron production cross section
σðy; k2⊥Þ vs ȳ for (a) pp → ΛX at k⊥ ¼ 0.075 GeV [39];
(b) pp → ΛX integrated over k2⊥ [41]; and (c) pp → Σ�þX
integrated over k2⊥ [42], compared with the fitted nonlocal kaon
exchange contributions for dipole regulator parameters ΛKΛ ¼
1.1ð1Þ GeV and ΛKΣ� ¼ 0.8ð1Þ GeV (solid red lines and pink 1σ
uncertainty bands).
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hxsi ¼
Z

1

0

dx xsðxÞ; hxs̄i ¼
Z

1

0

dx xs̄ðxÞ: ð71Þ

The conservation of strangeness of course requires equal
numbers of s and s̄ quarks in the nucleon, hsi ¼ hs̄i, as a
direct consequence of local gauge invariance, although the
shapes of the s and s̄ distributions themselves are obviously
rather different. The zero net strangeness can be verified
by explicitly summing the contributions to hsi and hs̄i
from the various diagrams in Figs. 1 and 2, as Table VIII
indicates. Note also that the conservation of strangeness
holds for the octet and decuplet contributions individually,
as well as for the tadpole and bubble diagrams,

hsioct ¼hs̄ioct; hsidec¼hs̄idec; hsitad ¼hs̄ibub: ð72Þ

Although the contribution to the total strange and
antiquark quark number from the decuplet intermediate
states is about an order of magnitude smaller than that from
octet intermediate states, the role of the kaon bubble and
tadpole terms is more significant, making up ≈60% of the
total. For the antistrange moment, hs̄i, including the δ-
function contributions from the rainbow diagrams, some
40% of the total moment comes from x ¼ 0. For the strange
hsi moment, on the other hand, the structure of the
convolution in Eq. (58) means that all of the contributions
to sðxÞ are at x > 0, including ones involving δ-function

splitting functions. Interestingly, significant cancella-
tion occurs between the local terms and the gauge link-
dependent nonlocal contributions, which turn out to be
negative and about half as large in magnitude as the local.
While the lowest moments of the s and s̄ are constrained

to be equal, there is no such requirement for higher
moments, including the x-weighted moment corresponding
to the momentum carried by s and s̄ quarks. Since the total
s − s̄ asymmetry is found to be mostly positive over the
range of x relevant in this analysis, not surprisingly the total
hxðs − s̄Þi moment is also positive. Including the uncer-
tainties on the kaon-nucleon-hyperon vertex regulator
parameters from Fig. 6, the combined asymmetry in our
analysis is

hxðs − s̄Þi ¼ ð1.66þ0.81
−0.74Þ × 10−3: ð73Þ

It is instructive, however, to observe the origin of the
asymmetry in our chiral effective theory formulation. As
mentioned above, there are no contributions to the momen-
tum carried by s̄ quarks from any of the δ-function terms
from the rainbow or kaon bubble diagrams, so that only the
on-shell and on-shell end-point terms are nonzero. In
contrast, all terms, including the δ function, contribute to
the momentum carried by s quarks. The result is a relatively
small asymmetry that survives the cancellation of the
(positive) on-shell s and s̄ terms, with large contributions

(a) (b)

(c) (d)

FIG. 7. Kaon loop contributions to (a) antistrange PDF xs̄ from the octet and decuplet rainbow diagrams [Figs. 1(a) and 1(b)];
(b) strange quark PDF xs from the octet rainbow [Fig. 2(d)], Kroll-Ruderman [Figs. 2(e) and 2(f)], and tadpole [Figs. 2(j) and 2(k)]
diagrams; (c) strange PDF xs from the decuplet rainbow [Fig. 2(g)] and Kroll-Ruderman [Figs. 2(h) and 2(i)] diagrams; (d) strange
asymmetry xðs − s̄Þ, showing the local and nonlocal (gauge) octet and decuplet contributions, along with the total asymmetry. The PDFs
are computed with the best fit regulator parameters ΛKΛ ¼ ΛKΣ ¼ 1.1 GeV and ΛKΣ� ¼ 0.8 GeV.
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TABLE VIII. Contributions from octet Y ¼ Λ;Σ0;Σþ and decuplet Y� ¼ Σ�0;Σ�þ hyperons to the average number
(in units of 10−2) and momentum carried (in units of 10−3) by s and s̄ quarks in the nucleon from diagrams in Figs. 1 and 2, for
dipole regulator mass parameters ΛKY ¼ 1.1ð1Þ GeV and ΛKY� ¼ 0.8ð1Þ GeV. Note that some of the numbers do not sum to the totals
because of rounding.

hs̄i ð×10−2Þ hxs̄i ð×10−3Þ hsi ð×10−2Þ hxsi ð×10−3Þ
KYðrbwÞ fðonÞY

1.39þ0.69
−0.54 1.33þ0.74

−0.56 YKðrbwÞ fðonÞY
1.39þ0.69

−0.54 1.67þ0.78
−0.63

fðδÞK
−ð1.66þ0.79

−0.63 Þ 0 fðoffÞY
−ð4.01þ1.68

−1.42 Þ −ð5.35þ2.12
−1.83 Þ

δfðδÞK
1.12þ0.50

−0.41 0 δfðoffÞY
2.70þ1.07

−0.92 3.12þ1.13
−1.02

fðδÞK
1.66þ0.79

−0.63 2.82þ1.35
−1.07

YKðKRÞ fðoffÞY
4.01þ1.68

−1.42 6.29þ2.50
−2.15

fðδÞK
−ð3.31þ1.58

−1.26 Þ −ð6.66þ3.18
−2.53 Þ

YKðδKRÞ δfðoffÞY
−ð2.70þ1.07

−0.92 Þ −ð3.68þ1.33
−1.20 Þ

δfðδÞK
1.12þ0.50

−0.41 2.24þ1.01
−0.82

Total octet 0.85þ0.40
−0.32 1.33þ0.74

−0.56 Total octet 0.85þ0.40
−0.32 0.46þ0.14

−0.14

KðbubÞ fðδÞK
4.85þ2.32

−1.84 0 KðtadÞ fðδÞK
4.85þ2.32

−1.84 7.87þ3.76
−2.98

δfðδÞK
−ð3.27þ1.47

−1.20 Þ 0 KðδtadÞ δfðδÞK
−ð3.27þ1.47

−1.20 Þ −ð5.30þ2.38
−1.94 Þ

Total bubble 1.59þ0.85
−0.64 0 Total tadpole 1.59þ0.85

−0.64 2.57þ1.38
−1.04

KY�ðrbwÞ fðonÞY� 0.09þ0.13
−0.07 0.06þ0.09

−0.04 Y�KðrbwÞ fðonÞY� 0.09þ0.13
−0.07 0.10þ0.14

−0.08

fðon endÞ
Y� 0.04þ0.07

−0.03 0.03þ0.06
−0.03 fðon endÞ

Y� 0.04þ0.07
−0.03 0.04þ0.07

−0.03

fðδÞY� −ð0.01þ0.01
−0.01 Þ 0 fðoffÞY� −ð0.59þ0.72

−0.42 Þ −ð0.75þ0.89
−0.52 Þ

fðδÞK
−ð0.15þ0.20

−0.11 Þ 0 fðoff endÞY� 0.17þ0.23
−0.12 0.21þ0.29

−0.15

δfðδÞK
0.11þ0.14

−0.08 0 δfðoffÞY� 0.34þ0.45
−0.24 0.38þ0.47

−0.27

fðδÞK
0.18þ0.24

−0.13 0.26þ0.34
−0.19

fðδÞY� 0.01þ0.01
−0.01 0.01þ0.02

−0.01

δfðδÞY� −ð0.07þ0.11
−0.05 Þ −ð0.10þ0.16

−0.07 Þ
Y�KðKRÞ fðoffÞY� 0.59þ0.72

−0.42 1.02þ1.21
−0.71

fðoff endÞY� −ð0.17þ0.23
−0.12 Þ −ð0.29þ0.39

−0.21 Þ
fðδÞK

−ð0.34þ0.44
−0.24 Þ −ð0.65þ0.85

−0.47 Þ
fðδÞY� −ð0.02þ0.03

−0.01 Þ −ð0.03þ0.05
−0.02 Þ

δfðδÞY� 0.05þ0.08
−0.03 0.09þ0.15

−0.07

Y�KðδKRÞ δfðoffÞY� −ð0.34þ0.45
−0.24 Þ −ð0.51þ0.63

−0.36 Þ
δfðδÞK

0.11þ0.14
−0.08 0.22þ0.27

−0.15

δfðδÞY� 0.02þ0.04
−0.02 0.05þ0.07

−0.03

Total decuplet 0.08þ0.12
−0.06 0.09þ0.15

−0.07 Total decuplet 0.08þ0.12
−0.06 0.04þ0.04

−0.03

Total 2.51þ1.36
−1.02 1.42þ0.89

−0.62 Total 2.51þ1.36
−1.02 3.08þ1.55

−1.20

Non-δ function 1.52þ0.88
−0.64 1.42þ0.89

−0.62 Non-δ function 1.52þ0.88
−0.64 2.25þ1.21

−0.92

δ function 0.99þ0.60
−0.50 0 δ function 0.99þ0.60

−0.50 0.82þ0.67
−0.63

Local 4.55þ2.23
−1.77 1.42þ0.89

−0.62 Local 4.55þ2.23
−1.77 6.58þ3.14

−2.60
Nonlocal −ð2.04þ1.04

−0.92 Þ 0 Nonlocal −ð2.04þ1.04
−0.92 Þ −ð3.50þ1.66

−1.46 Þ

PARTON DISTRIBUTIONS FROM NONLOCAL CHIRAL SU(3) … PHYS. REV. D 100, 094026 (2019)

094026-19



from individual off-shell and δ-function terms. As
illustrated in Fig. (8) for the various contributions
to the strange momentum asymmetry vs the regulator
cutoff mass, the largest of these in magnitude is the

(negative) fðδÞK term from the Kroll-Ruderman diagram
[Fig. 2(e)], with comparably large (positive) gauge link

contributions δfðδÞK from the rainbow [Fig. 2(d)] and non-
local Kroll-Ruderman [Fig. 2(f)] diagrams. After the
cancellations of various terms, the octet baryon contribu-
tion to the strange momentum asymmetry is actually
negative, hxðs − s̄Þioct ≈ −0.87 × 10−3. The terms involv-
ing decuplet hyperon states give relatively small absolute
contributions, with significant cancellations arising that

lead to a negligible overall strange decuplet asymme-
try, hxðs − s̄Þidec ≈ −0.05 × 10−3.
Interestingly, the most significant role played here is by

the kaon tadpole terms [Figs. 2(j) and 2(k)]. With strong

cancellations between the positive local fðδÞK and negative

nonlocal δfðδÞK terms, the total asymmetry from the tadpole,
hxðs − s̄Þitad ≈ 2.57 × 10−3, is still about 3 times larger in
magnitude than that from the rainbow and Kroll-Ruderman
diagrams. The result is an overall asymmetry in Eq. (73)
that is positive.
Experimentally, identifying an asymmetry of this size

will be challenging, but not impossible. Traditionally,
inclusive charm meson production in charged current
neutrino and antineutrino DIS from nuclei has been used
to provide information about the s and s̄ PDFs in the
nucleon, and analyses of data from neutrino experiments
at BEBC [60], CDHS [61], CDHSW [62], CCFR [63],
and NuTeV [64,65] have yielded values in the range
hxðs − s̄Þi ∼ ð0 − 3Þ × 10−3 [66–68]. Unfortunately, the
neutrino-nucleus data are known to be affected by uncer-
tainties in nuclear medium effects when relating nuclear
structure functions to those of free nucleons [69], and in the
nuclear dependence of charm quark energy loss and D-
meson interactions during hadronization in the nuclear
medium [70,71].
Alternatively, the s and s̄ distributions can be con-

strained by K� meson production data from semi-
inclusive deep-inelastic scattering (SIDIS) off protons
and deuterons, such as from the HERMES [72,73] or
COMPASS [74] experiments. In a first of its kind global
analysis, the JAM Collaboration recently fitted both the
SIDIS and inclusive DIS data, along with other high
energy scattering data, within a Bayesian likelihood
analysis using Monte Carlo techniques to simultaneously
determine both the spin-averaged PDFs and parton-to-
hadron fragmentation functions [75]. The analysis found
a suppressed strange content in the nucleon at large x,
and found no clear evidence for a nonzero s − s̄
asymmetry within relatively large uncertainties. In the
future, high-precision SIDIS data from the Jefferson Lab
12 GeV program or from the planned Electron-Ion
Collider should provide better constraints on the s and
s̄ PDFs, as may Wþ charm production data from pp
collisions at the LHC [76–78].
An important consequence of a better determination of

the s − s̄ asymmetry in the nucleon is more robust con-
straints on the weak mixing angle sin2 θW extracted from
the NuTeV data on ν and ν̄ nuclear cross sections [68,79–
81]. For the total strange asymmetries range found in this
analysis, 0.9 × 10−3 ≲ hxðs − s̄Þi≲ 2.5 × 10−3, the result-
ing correction to the weak angle lies in the range
−2.4 × 10−3 ≲ Δsin2θW ≲ −0.9 × 10−3, or between 18%
and 49% of the total quoted discrepancy [64,79] (see
Ref. [82] for a review and further discussion).

(a)

(b)

(c)

FIG. 8. Contributions to the hxðs − s̄Þi moment vs the dipole
cutoff parameter Λ (¼ ΛKY , for Y ¼ Λ or Σ hyperons, or ΛKΣ� )
from (a) the KY octet rainbow [Figs. 1(a) and 2(d)] and Kroll-
Ruderman [Figs. 2(e)–2(f)] diagrams; (b) the K bubble [Fig. 1(c)]
and tadpole [Figs. 2(j) and 2(k)] diagrams; (c) the KΣ� decuplet
rainbow [Figs. 1(b) and 2(g)] and Kroll-Ruderman [Fig. 2(h) and
2(i)] diagrams.

Y. SALAMU et al. PHYS. REV. D 100, 094026 (2019)

094026-20



V. CONCLUSION

In this paper we have calculated the contributions to the
sea quark distributions in the proton which are generated
within a nonlocal chiral effective field theory. Both octet
and decuplet intermediate states were included in the one-
loop calculation using a four-dimensional dipole regulator
to deal with the ultraviolet divergences. This regulator was
introduced explicitly in the nonlocal Lagrangian density,
with gauge invariance ensured through the presence of
gauge links. A consequence of the introduction of the
regulator are additional diagrams [Figs. 2(f), 2(i), and 2(k)]
that arise from the expansion of the gauge links to lowest
order in the electromagnetic coupling.
The free parameters entering the calculation, namely

the dipole regulator masses, have been determined by
fitting the available inclusive differential pp → nX,
pp → ΔX, pp → ΛX, and pp → Σ�X cross section data.
Using the fitted values of the dipole masses, Λ ¼
f1.0ð1Þ; 0.9ð1Þ; 1.1ð1Þ; 0.8ð1Þg GeV for the fπN; πΔ;
KΛ; KΣ�g states, respectively, we computed the x depend-
ence of the sea quark asymmetry d̄ − ū, which is dominated
at x > 0 by the on-shell contribution involving a nucleon
intermediate state. The general shape and magnitude of the
asymmetry extracted from the E866 Drell-Yan data [4] are
described quite well, with the exception of the apparent
change sign at higher x values, which is practically
impossible to accommodate within the current theoretical
framework. On the other hand, preliminary data from the
SeaQuest experiment at Fermilab [83] suggest that the
extracted d̄=ū ratio may flatten out at large x values and
remain above unity. The integrated d̄ − ū asymmetry was
found to lie in the range between hd̄ − ūi ≈ 0.09 and 0.17,
which encompasses the values extracted by the New Muon
[1] and E866 [4] Collaborations of ≈0.15 and 0.12,
respectively. Remarkably, some 30% of our calculated
value is associated with a δ-function contribution at
x ¼ 0, which is not accessible experimentally at finite
energy.
For the strange distributions in the proton, both the s and

s̄ PDFs were found to be positive at all values of x > 0.
Interestingly in this case, while the s̄ distribution receives
δ-function contributions also at x ¼ 0 (around 2=3 of the
total), the s PDF vanishes at x ¼ 0; both integrate to the
same value, however, to ensure zero total strangeness,
hsi ¼ hs̄i. Again, the contributions from the octet baryon

intermediate states are dominant, with decuplet baryon
contributions about an order of magnitude smaller. The
gauge link dependent terms play a significant role in the
nonlocal formulation of the chiral theory, contributing
about half of the total hsi and hs̄i, but of opposite sign.
Large cancellations also appear in the x-weighted

asymmetry xðs − s̄Þ, which remains small but positive
across all x, with the integrated value lying in the range
0.9 × 10−3 ≲ hxðs − s̄Þi≲ 2.5 × 10−3. This is broadly con-
sistent with previous determinations from neutrino scatter-
ing experiments [63,65], although the uncertainties on the
empirical bounds are rather large. A nonzero moment
hxðs − s̄Þi leads to a correction [68] to the NuTeV extrac-
tion of sin2 θW [79]. Our result supports the idea that the
strange-antistrange quark asymmetry may indeed reduce
the NuTeV anomaly by up to 1 standard deviation, which,
along with other corrections such as charge symmetry
breaking in the nucleon sea [84–86] and the isovector EMC
effect [87], may account for the apparent anomaly entirely
in terms of Standard Model physics.
Future progress on constraining the s − s̄ asymmetry

experimentally is expected to come on several fronts.
Parity-violating inclusive DIS and semi-inclusive kaon
electroproduction from hydrogen at Jefferson Lab and at
a future Electron-Ion Collider will provide independent
combinations of flavor PDFs, with the s and s̄ distributions
weighted by different electroweak charges and fragmenta-
tion functions, respectively. At higher energies, data on
inclusive Wþ charm production in pp collisions at the
LHC [76,77] can also provide sensitivity to differences
between the s and s̄ PDFs at small values of x, comple-
menting the constraints at higher x values from fixed target
experiments.
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