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Using recently derived results for one-loop hadronic splitting functions from a nonlocal implementation
of chiral effective theory, we study the contributions from pseudoscalar meson loops to flavor asymmetries
in the proton. Constraining the parameters of the regulating functions by inclusive production of n, A™*, A,

and X*t baryons in pp collisions, we compute the shape of the light antiquark asymmetry d — & in
the proton and the strange asymmetry s — 5 in the nucleon sea. With these constraints, the magnitude

of the d— it asymmetry is found to be compatible with that extracted from the Fermilab E866
Drell-Yan measurement, with no indication of a sign change at large values of x, and an integrated

value in the range (d — i) ~0.09-0.17. The s — 5 asymmetry is predicted to be positive at x > 0, with
compensating negative contributions at x = 0, and an integrated x-weighted moment in the range

{(x(s —5)) =~ (0.9 —2.5) x 1073,
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I. INTRODUCTION

It is well known that a complete characterization of
nucleon substructure must go beyond three valence quarks.
One of the great challenges of modern hadron physics is to
unravel the precise role of hidden flavors in the structure of
the nucleon. The observation of the d — i flavor asymmetry
in the light quark sea of the proton [1-4], following its
prediction by Thomas a decade earlier [5] on the basis of
chiral symmetry breaking [6,7], has been one of the seminal
results in hadronic physics over the past two decades. It has
led to a major reevaluation of our understanding of the role
of the nonvalence components of the nucleon and their
origin in QCD [8-10].

The role that strange quarks, in particular, play in the
nucleon has also been the focus of attention in hadronic
physics for many years. Early polarized deep-inelastic
scattering (DIS) experiments suggested that a surprisingly
large fraction of the proton’s spin might be carried by
strange quarks [11], in contrast to the naive quark model
expectations [12]. One of the guiding principles for
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understanding the nonperturbative features of strange
quarks and antiquarks in the nucleon sea has been chiral
symmetry breaking in QCD. While the generation of ss
pairs through perturbative gluon radiation typically pro-
duces symmetric s and 5 distributions (at least up to two
loop corrections [13]), any significant difference between
the momentum dependence of the s and 5 distributions
would be a clear signal of nonperturbative effects [14—19].

In the previous paper [20], we presented the proton —
pseudoscalar meson (¢) + baryon splitting functions for the
intermediate octet (B) and decuplet (7') baryon configura-
tions in nonlocal chiral effective theory [21,22]. From the
calculated splitting functions, the parton distribution func-
tions (PDFs) of the nucleon are obtained as convolutions of
these with PDFs of the intermediate state mesons and
baryons [23-25]. Here we apply the results from [20] to
compute, for the first time within the nonlocal theory, sea
quark PDF asymmetries in the proton, including the light
antiquark flavor asymmetry d — iz and the strange quark
asymmetry s — 5. Using SU(3) relations for the intermediate
state hadron PDFs, the only free parameters in the calcu-
lation of the asymmetries are the mass parameters appearing
in the ultraviolet regulator functions. These will be deter-
mined by fitting cross section data from inclusive baryon
production in high energy pp scattering, using the same
splitting functions that appear in the PDF asymmetries. All
other parameters, including coupling constants and inter-
mediate state baryon and meson PDFs, are fixed.
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We begin in Sec. II by summarizing the convolution
formulas for the quark and antiquark PDFs in terms of the
fluctuations of the nucleon into its meson-baryon light-
cone components. The calculation of the PDFs of the
intermediate state baryons and mesons in the chiral
theory is discussed in detail in Sec. III. Numerical results
for the sea quark asymmetries are presented in Sec. IV,
where we compare the results for d — i with those extracted
from Drell-Yan and semi-inclusive DIS measurements,
and compare predictions for s—5 asymmetries with
some recent PDF parametrizations. Finally, in Sec. V we
summarize our results and discuss future measurements
which could further constrain the PDF asymmetries
experimentally.

II. CONVOLUTION FORMULAS

Using the crossing symmetry properties of the spin-
averaged PDFs, g(—x) = —g(x), the nth Mellin moment
(n>1) of the distribution for a given flavor ¢
(g =u,d,s,...) is defined by

Qi) — / e lg() + (-1a)]. (1)

In the operator product expansion, the moments Q"~!) are
related to matrix elements of local twist-two, spin-n oper-
ators O between nucleon states with momentum p,

(N(p)|Og " |N(p)) =20V pr - pin,(2)

where the operators are given by
0/(;1"%: — i"_lé]/{”lDﬂz .. .Dﬂn}q, (3)

with D =1 (D — D), and the braces {- - -} denote symmet-
rization of Lorentz indices. The effective theory allows the
quark operators O, to be matched to hadronic operators O;
with the same quantum numbers [23],

OZI"',“/I _ ZCW O/;l"'.”n’ (4)

q/j

J

where the coefficients cf;oj are the nth moments of the PDF
¢;(x) in the hadronic configuration j,

M = /1 dxx"'gq,(x) = Q""" (5)
ali ~ \>) =55 -

1

The nucleon matrix elements of the hadronic operators
O are given in terms of moments of the splitting

functions f;(y),

(N(p)| O |N(p)) = 2f " pleo - pal (6)

where

s = /_ i dyy" ' f;(y), (7)

with y the light-cone momentum fraction of the nucleon
carried by the hadronic state j. The operator relation in
Eq. (4) then gives rise to the convolution formula for the
PDFs [23,24],

a(x) =Y _If; ® ¢](x)

= / 'y / Ldz6(x - y2) f,0)al(2). (8)

where ¢ = ¢; — g, is the valence distribution for the quark
flavor ¢ in the hadron j. The complete set of splitting
functions f;(y) for octet and decuplet baryons is given
in Ref. [20].

In the present analysis we work under the basic
assumption that the bare baryon states are composed of
three valence quarks plus quark-antiquark pairs that are
generated perturbatively through gluon radiation. Such
contributions will effectively cancel in any differences of
PDFs, such as d — @ or s — 5. We therefore focus only on
the nonperturbative contributions to sea quark PDFs which
arise from pseudoscalar meson loops. In this approximation
antiquark distributions arise only from diagrams involving
direct coupling to mesons, as in the meson rainbow and
bubble diagrams in Fig. 1. The meson loop contribution to
the antiquark PDFs in the nucleon can then be written as

G0 =Y [ + 5 + 7Y ® gl (x).  (9)

B.T.¢

where f ((/}rgw

from the rainbow diagrams with octet and decuplet baryons

) and ff;?w) represent splitting functions

in Figs. 1(a) and 1(b), respectively, ff;ub) is the splitting
function for the meson bubble diagram in Fig. 1(c), and
g4(x) is the antiquark PDF in the meson.
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FIG. 1. One-meson loop diagrams contributing to quark

and antiquark PDFs in the nucleon, representing (a) the rainbow
diagram with octet baryon (solid lines) intermediate state; (b) the
rainbow diagram with decuplet baryon (double solid lines)
intermediate state; and (c¢) the meson (dashed lines) bubble
diagram. The symbol “®” represents an operator insertion.
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FIG.2. Contributions to quark PDFs in the nucleon from baryon coupling diagrams, representing (a) coupling to the bare nucleon; (b),(c)
contributions from wave function renormalization with octet and decuplet baryon intermediate states; (d) the rainbow diagram with octet
baryon; (e),(f) Kroll-Ruderman and gauge link (filled circle) Kroll-Ruderman diagrams with octet baryon; (g) the rainbow diagram with
decuplet baryon; (h),(i) Kroll-Ruderman diagrams with decuplet baryon; and (j),(k) meson tadpole and gauge link tadpole diagrams.

Contributions to quark PDFs can in principle come
from both meson coupling and baryon coupling diagrams.
The latter are illustrated in Fig. 2 and involve the bare
nucleon coupling [Fig. 2(a)], wave function renormaliza-
tion [Figs. 2(b) and 2(c), with octet and decuplet
baryon intermediate states, respectively], baryon rainbow
[Figs. 2(d) and 2(g)], Kroll-Ruderman (KR) [Figs. 2(e) and
2(h)], and meson tadpole [Fig. 2(j)] diagrams, along with
|

gauge link dependent Kroll-Ruderman [Figs. 2(f) and 2(i)]
and tadpole [Fig. 2(k)] diagrams. Within the valence
approximation, all of these diagrams will contribute to
the u and d quarks in the nucleon. However, for the strange
quark the bare coupling and wave function renormalization
diagrams do not contribute. The total nonperturbative
contribution from meson loops to the quark PDF in the
nucleon can then be written

q(x) = Zog O (x) + > {5 + £ + 15 ® 4] (x)

BT

+ 75 ® gi)(x) + [P
+ [ @ g (x) + [FE

®q
®q

(x) + B3N ® ¢ (x)

(KR
B
R () + BN @ ¢¥)(x)

+ 175 @ ayl(x) + 675" ® a )(x)}, (10)

where ¢(% is the quark PDF in the bare nucleon, and the wave
function renormalization Z, arises from the summation over
the diagrams in Figs. 2(a)-2(c) [26]. Following Ref. [24], we
will work in terms of the same momentum fraction y for all
meson and baryon coupling diagrams in Figs. 1 and 2. Using
the same definition of the convolution integral as in Eq. (8), it
will be convenient therefore to define for each of the splitting
functions in Eq. (10) involving the coupling to baryons the
shorthand notation f;(y) = f;(1 — y) (see Sec. IV B below).

Explicit expressions for the splitting functions f gs)w), f %KR),

[
sfa, ria . AR e, f8Y and 675, which
represent the diagrams in Figs. 2(d)-2(k), respectively, are
given in Ref. [20]. The corresponding quark PDFs for the

intermediate state octet and decuplet baryons are discussed in
the next section.

III. BARE BARYON AND MESON PDFS

To calculate the contributions to the quark and antiquark
distributions in the proton in the convolution formulas (9)

094026-3



Y. SALAMU et al.

PHYS. REV. D 100, 094026 (2019)

and (10) requires the proton — baryon + meson splitting
functions and the PDFs of the baryons and mesons to which
the current couples. The full set of splitting functions was
presented in our previous paper, Ref. [20]. In this section
we derive the (valence) PDFs of the bare baryon and meson
intermediate states using the same chiral SU(3) effective
field theory framework that was used to compute the
splitting functions.

2
OZI“-/;” _ a<")i”%{Tr{UTﬂqaﬂl

a®
an Byﬂl},sg,{q) _|_ﬁ

+
+
+ (o™
+ (o

3 _ _
- \[Ew@)[(zs@ﬂluﬁﬂ) + (7,011 B)] p*

where “Tr” denotes traces over Lorentz indices. In the first
term of Eq. (11), the operator U represents pseudoscalar

meson fields ¢,
U = exp (i ﬂ(ﬁ) (12)
fo

where f, is the pseudoscalar decay constant and the

coefficients a(”) are related to moments of quark and
antiquark PDFs in the pseudoscalar mesons. The flavor
operators A% are defined by

M= % (udiu’ 4 u'Au), (13)
where A7 = diag (s
flavor matrices.

In the remaining terms of Eq. (11), the operators B
and 7, represent octet and decuplet baryon fields, respec-
tively, and we define the Dirac tensors y? = 1 {y*, y*} and
" =1[r".v"]. The coefficients {a™,p" ¢} and
|

qu» Oqa» Og5) are diagonal 3 x 3 quark

O = [ Byt B + B
al (Byt1 BAL) 4 p

-, U]+ Tr[U299),,

A. Operators and moments

In the effective theory the quark level operators are
matched to a sum of hadronic level operators whose matrix
elements [see Eq. (4)] are given by the moments of the
splitting functions, as in Eq. (6). Identifying all possible
contributions from octet and decuplet baryon intermediate
states that transform as vectors, the most general expression
for the quark vector operator O " is given by [24,27]

.. aﬂn UT]}

(Br1BAYL) + " (By A4 B) + o) (By* B)Tr[2% ]| p#2 - - - pH
( )(By'ysiiB) + &'
(Tar™ 24T p) + p" (T oy T ) Te (2] pr2 - - - ph
WT ar"ys2T) + pU(T gy ysToTe[A2]] pt - - ph

" (By*ysB)Tr[Ad]]ptz - - - i

2 ... ptn + permutations — Tr, (11)

{a<") WiOR 6(")} are related to moments of the spin-averaged
and spin-dependent PDFs in octet baryons, while {0, p(")}
and {8, (")} are related to moments of spin-averaged and
spin-dependent PDFs in decuplet baryons, respectively. The
coefficients @) are given in terms of moments of spin-
dependent octet-decuplet transition PDFs, where the octet-
decuplet transition tensor operator @ is defined as

1
O = gV — <Z+2>7/”]/”, (14)

Here Z is the decuplet off-shell parameter, and since physical
quantities do not depend on Z, it is convenient to choose
Z =1/2 to simplify the form of the spin-3/2 propaga-
tor [28,29].

For the Kroll-Ruderman diagrams in Figs. 2(e), 2(f),
2(h), and 2(i), the presence of the pseudoscalar field at the
vertex introduces hadronic axial vector operators, whose
contribution to the quark axial vector operator can in
general be written as

V(BytysALB) + 5" (BytysB)Te[a4]| pt - - - pho
)(By21B) + o

(Byﬂ]B)Tr[lz]]p”Z e pﬂn

+a
H 0T apysdT) + p"(TapttysTO)Te[AL ] po - pt
+ [9 (T y e Tﬂ) +/) (T yaﬂﬂlTﬁ)Tr[ﬂquﬂz S phn

3 _ _
- \/;&)(”)[(86”'”/117'”) + (7,019 B)|p*> - - - p*» + permutations — Tr. (15)

From the transformatlon propertles of the operators Oy " and (9” U"#n under parity [30], the sets of coefficients

{a ("1 and {a™,p" 5" 60" 5

} in (15) are the same as those in the spin-averaged operators in (11).
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The operators B and 7, appearing in Egs. (11) and (15)
can be written in terms of the SU(3) baryon octet fields B
(which include N, A, Z, and E fields) and decuplet baryon
fields Tf{ k (which include A, Z*, E*, and Q fields) using the
relations [24,31]

(BB) = Tr[BB], (16a)
_ | 2 1 -
=——Tr “Tr —Tr r[A].
(BBA) =~ Tr[BBA] +Tr{BAB] + Tr(BBTr{A], (16b)
= 2 1. .- 2 -
=—"Tr —=Tr “Tr r[A]. c
(BAB) =~ Tr[BBA| -, Tr[BAB] + S TH{BBITr(A],  (16¢)
and
(ToTy) =TT}, (17a)
(TLATy) = Td" AT}, (17b)
— 2o
(T ,AB) = —\/;Tﬁ{kA"B/”’e"”", (17¢)
where K" is the antisymmetric tensor. Applying the

relations (16) and (17), the vector operator OF'"*" in
Eq. (11) can then be more intuitively rearranged in the form

Ot — Q;n_l)(/)‘;]'”ﬂn + le—l)(z)ﬂ;g/-ﬂn + Q(Tn—l)OATnT-;-Mn

R s
+ Qs OBsa " + Qr)3O8r'p
n—1 1 Hy
+ Olkr 5" (18)

The individual vector hadronic operators in (18) are
given by

O!q;lu-ﬂn — iﬂ(¢8ﬂl . aﬂn¢ — ¢8ﬂ1 A aﬂn¢)’ (19&)
O,élé./.ﬂn — (B/yﬂ]B)pﬂz e pﬂn’ (19b)
Tl%'/'/"n — (T&y(lﬁﬂl Tﬁ)pﬂz e pl‘n’ (190)
1 - _
Ogg " = 7 (Br B (19d)
i - - -
B]B/(;f” = f_¢ (B'y"1ysBp — By 1ysB'¢p)p*> - - p*»,  (19e)
BI’IL‘(/')/Jn = f%ﬁ (B@ﬂwTUg_b — Tugvllle))pllz N (19f)

and correspond to the insertions in the diagrams of Figs. 1,
2(d), 2(g), 2(j), 2(e), and 2(h), respectively. The coefficients

Qﬁ"_w of each of the operators are defined in terms of

TABLE L Moments Q)" of the quark distributions
q(=u,d,s) in the pseudoscalar mesons 7+, K+, and K°. The

moments are normalized such that a(!) = 2.

(n—1) (n—1) (n—1)
4 Uy Dy Sp
7l'+ %a(") —%a(”)
K+ 140 0 gt
K° 0 1an —$al

Mellin moments of the corresponding parton distributions
in the intermediate mesons and baryons, as in Eq. (5),

1
oy = / dx X" g (x). (20a)
-1
1
05 = [ Laryayte), (200)
1
-1 _ 1
()% la')cx qr(x), (20¢)
n—1 1 n— ad
QEtad);qﬁ(ﬁ = /_1 dx x lq((/f g (20d)
~ 1
QEKRI)L = / 1 dxx" g™ (20e)
~ I
QEKR1)>T = / ] dxx" g™ (20f)

where the PDFs correspond to those appearing in the
convolution expressions in Egs. (9) and (10). Each of the

moments Qﬁ-n_l) can be expressed in terms of the coef-

ficients {a(”) alm ) o). gn) ,p(”)} appearing in Eq. (11),
as discussed below.
In particular, for the meson PDFs, the contributions to

the U;’H) , Dfﬁn_l), and S((/)"_l) moments are listed in Table I
for the ¢ = 7, K*, and K° mesons. Conservation of the
valence quark number fixes the normalization of the n = 1

moment of the meson distribution, such that
al) =2, (21)

Note that in the SU(3) symmetric limit, the wu-quark
moments in 7+ and K are equivalent, as are the s-quark
moments in K* and K°, while the d-quark moments in 7+
and K° have equal magnitude but opposite sign,

U(’l_l) — _D("_l) _ U(”_l) — _S("_l) _ D("_l)

V2 T T K* Kt T KO

1

n—1 n
= st = 5a. (22)

The results for other charge states (z~, z°, K=, and K°) are
obtained from those in Table I using charge symmetry.
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(n=1)

TABLEII. Moments Q, ' of the unpolarized quark distributions for ¢ = u, d, or s for octet baryons B. The spin-dependent moments

AQE;H) can be obtained from the entries here by the replacements {a(") —am, pm - g g0 r‘;(")}.

B vy piY st

p gam + %ﬁ(ﬂ) + o) %O,(n) + %ﬁ(ﬂ) + 6 o

n éa(w + %ﬂ(,,) + 60 %(1(”) + %/}(n) + 6 o

poas %a“’) + %ﬁ(n) + 6 o %a(n) + %ﬁ(n) + 6

30 %aw + éﬁ(ﬂ) + 6™ %a(n) + % (n) 1 () %a(n) + %ﬁ(n) + 6

> o 5l %ﬂ(ﬂ) 4 o) éa(”) + %ﬁ(n) + 60
%a(n> + %ﬂ(,,) + 6 %aw) + % (n) 1 () %a(n) 4+

A0 VB gn) — 2] — 3o — 2] 0

(=]

Loln) 1250 4 60
)

[I‘] [1]

o) + 1400 4 o)
o) + 1400 4 o)

S N

Unlike in baryons, the sea quark distributions in mesons are
flavor symmetric. In the simplest valence quark models the
sea quark distributions in pions and kaons are zero.

For the moments of the quark PDFs in the intermediate
state baryons, the contributions from the u, d, and s flavors
to the octet baryon moments QE;"_I) are given in terms of
combinations of {a(”), s, o(">} and listed in Table II for
baryons B = p,n, 259 A, E0 as well as for the A — X°
interference. Solving for the coefficients, one can write
these as linear combinations of the individual u, d, and s
quark moments in the proton,

4

n n=1 2 n-1 2 n=l
a()zgyﬁ, >—§D§, )—§S§, ), (23a)
1 n— 5 n— 4 n—
p =3 Up 430y =38 (23b)
o = sin=h. (23c)

Assuming the strangeness in the intermediate state
nucleon to be zero (or equivalently, that the u content of
2~, for example, vanishes), one finds for the lowest (n = 1)
moments,

o) =0. (24)

For the quark PDFs in the decuplet baryon intermediate
states 7', the moments Q?—]) for the individual u, d, and s
flavors are given in terms of combinations of {6, p("},
and are listed in Table III for 7= A,X*, 5%, and Q~.
Solving for the coefficients 8" and p(") in terms of the
moments in the A" baryon, one has

n n—1 n—1 3 n—1 n—1
o = 3(DY — sty :§(U<A+ F sty (259)
pln) = sl (25b)

Again, assuming zero strangeness in the AT, the n = 1
moments are given by
o) =3, pM =0. (26)

For the moments of the distributions generated by the
tadpole diagrams in Fig. 2(j), in Table IV we list the
:lad)ll>i’¢¢
octet baryon B. Note that the combinations involving K°K?°
do not contribute to the u-quark moments, those involving
K*K~ do not contribute to the d-quark moments, and the
contributions from zTz~ to the s-quark moments are
also zero.

Finally, to complete the set of the contributions to
the unpolarized PDFs, in Table V we list the moments

Qggl); and QEEI))T of the Kroll-Ruderman induced quark

contributions QE for the u, d, and s flavors in each

TABLE III. Moments Qg-"_l) of the unpolarized quark distri-
butions for ¢ = u, d, or s for decuplet baryons 7. The results for
the spin-dependent moments AQ<T”_1>

replacements {8 — 60", p(*) — p01,

can be obtained by the

T Ul p{rY st
A+ o) 1 PO o)

A+ 260 4 pln) L) 4. pln) )

A Lo 4 pln) 2900) 4 i) )

A~ o) o) 4 pn) )
s 260 4 pln) PO L) 4 pln)
50 Lo 4 pln) L) 4 pln) L) 4 pln)
¥ PO 20) 4 i L) 4 pln)
=40 Lo 4 pln) o) 2601) 4 pln)
T ) L) 4. pln) 2601 4 pl0)
Q PO ) o) 4 pln)
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TABLE IV. Moments of the unpolarized u, d, and s quark distributions in octet baryons B arising from the BB¢¢ tadpole vertex, as in

Fig. 2(j). The moments U(md> BKORO> DE";)I;K, x> and § :: dlgﬂ,ﬂ, are zero for all baryons B, and are not listed in the table.
(n—1) (n—1) (n—1)
Ulad)ppp D)9 S aa)Bgo

B rtr KtK- ata K°KO K°K° KK~

p _%a(n) +éﬁ<"> _15_20,(") _%ﬂ(n) a™ 1/};1 —ﬁa(”) _%ﬂ(n) Lza 3ﬂ Ea 6/;

n %a(") %ﬁ(") — ﬁa(n) - %[3(") ,a(w + é/} - %a(n) — %ﬂ(n) %a +1 ﬁ (n) E“ 3/3

s+ —15—20:<") _% (n) —%a(") +%ﬁ(n) n 4 éﬁ(n lea(n) +% (n) —ﬁa n ;[7’ n L) %/}(n)

30 0 —éa(") +i (n) 0 —%a(”) +% (n) Lo(n) _ 1 p(n) alm —1pn)
8 4 4

> 15—2(1(’1) +é (n) %a(n) +% (n) 157(1(@ _éﬂ(@ —%a(”) _|_% (1) %a(n) _% (n) ﬁa(n) _% (n)

A 0 %a(n)_% (n) 0 %a(”)—l (n) _éa 4ﬁ —ga Jr ﬁ

EO 112 a(n) 3 (n) %a(n) _ %ﬁ(n) ll_za(n) + %ﬁ(n) %a(n) 4 é (n) —%(1 n lﬁ n _ §a 6'6

= %a(n) +% (n) 15—26{(”) + éﬂ(n) _11*2(1(0 _%/}(@ %a(n) lﬂ(n) %a +1 ﬁ —%a(") _% (n)

distributions from Figs. 2(e) and 2(h), for the transitions
from a proton initial state to intermediate states including
octet B and decuplet 7 baryons, respectively. (Similar
results can be derived for other octet or decuplet baryon
initial states, but are not listed here to avoid unnecessary
detail.) Note that, unlike for all other contributions from the
and Q&E))T are
given in terms of the coefficients an, [_}("), and @™, which
are related to moments of the spin-dependent parton
distributions.

For the latter, recall that spin-dependent PDFs are related
to matrix elements of the axial vector operators O " in
Eq. (15), which, using the relations (16) and (17), can be
expanded in terms of hadronic axial vector operators with

diagrams in Fig. 2, the moments QEE;)L

TABLE V. Moments of the unpolarized u, d, and s quark
distributions from the Kroll-Ruderman vertex for transitions from
a proton initial state to octet and decuplet baryon intermediate
states, as in Figs. 2(e) and 2(h), respectively.

B¢

(KR)B
nrt — 45{(;1) + \/?E'B(n) 455(") _ %EB(”) 0
SOK+ ﬁa(’l) + %B(ﬂ) 0 _lea(n) — %ﬁ(n)
=tKO 0 V25 4 ? B —alm —1pm
AOK+ ?a(n) 0 _ @(}(’1)
(n=1) (n—1) (n-1)

e U(;QR)T D(nKR)T S(%R)T

0 = — L)
Azt %w(n) g 0

g 1 ~(n _ 1 =(n)

0 0 —_1_pm)
O+ ﬁw(") 0 2\/501 n
St KO 0 _\/Lg(b(n) %d)(”)

coefficients given by moments AQ;"_I) of the spin-depen-

dent distributions. In analogy to the expansion in Eq. (18),
we therefore expand the axial vector operators as

O/g]q’"ﬂn _ AQ(B” 1) 01;318//4" +AQY (n—1) O/}lTlﬂn
+ A0y VO - (27)

where only the operators relevant for the calculation of
unpolarized PDFs are listed. [The remaining terms not
listed in Eq. (27) will be relevant for the calculation of spin-
dependent PDFs in the proton [32].] More explicitly, the
axial vector hadronic operators in (27) are given by

D" = (B'y"ysB)pt - - ph, (28a)
Oﬂl Hn — ( }/ﬂlysTa)pﬂz e p/‘n’ (28b)
@IélT'"ﬂn — (B@ﬂ]'/Ty + TD(.)DﬂlB)pﬂz .. .pﬂn’ (28(3)
with the corresponding moments AQ;"_I) of the spin-
dependent PDFs defined by
1
a0y = [Caveiag. o)
-1
1
AQYY = / dx x"' Ay (x), (29b)
-1
1
a0 = [Laxr g, (2%

For simplicity, in Eq. (29) we restrict ourselves to the
diagonal octet (B = B’) and diagonal decuplet (T = T")
cases, with respective spin-dependent PDFs Agp(x) and
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TABLE VI. Moments AQ\=") of the polarized u, d, and s
quark distributions from the axial octet-decuplet transition.
BT NI ADpYY Ny
0 __L &) (7
+ - 1 ~(n
PA \{5 i 71§ (()) 0
0y 0 _ 1 =(n _ 1 =(n — (n
pIpY 23 23? \/ng( )
Tyt \/Lﬂ_‘@(n) 0 . _%@(ﬂ)
—§k— L = (r 1 =
DInd) 0 \lﬁw ! —3w(")
AT %@(n) -1 (n) 0

Agr(x), and the octet-decuplet transition distribution,

Agpr(x). In particular, the moments AQ%"_I) of the spin-
dependent PDFs in octet baryons can be obtained from the
entries in Table II by substituting {a<”> —am, pn) - g
o > 5(")}, while the moments AQ(T" U of the spin-
dependent PDFs in decuplet baryons are obtained from
Table IIT with the replacements {6 — 6 p(") — pM},
For the octet-decuplet axial transition distribution, the

moments, AQI(Q"T_ V. are given in terms of the coefficient @
in Eq. (15) and are listed in Table VI. Solving for the octet
coefficients in terms of the moments of the spin-dependent
proton PDFs in the proton, one has, in analogy with Eq. (23),
the relations

4 2 2

G — gAU;n—l) —gADg;H) —§ASE,"_1), (30a)
- 1 n— 5 n— 4 n—

B = _gAU; b +§AD§, b —gAsﬁ, D (30b)
51 = AsiY, (30c)

Similarly, for the decuplet case, the coefficients 0 and
p") can be written in terms of the moments of the spin-
dependent PDFs of quarks in the A* bayron,

3

—n n—1 n—1 n—1 n—1

6 =3(AD[ — s =2 (AU - asTY),
(31a)

pm = AsUTY. (31b)

The moments of the octet-decuplet transition operators
can be related to the moments of the octet baryon operators
via the SU(3) relation

P = ——am 4 B, (32)

for all n. For the n = 1 octet baryon moments, in particular,
the coefficients are given in terms of axial vector charges F
and D,

2 1
a<1):§(3F+D), ﬂ<1):§(3F—5D), s =0. (33)

In terms of moments of the spin-dependent proton PDFs,
for the octet-decuplet transition vertex, @) is given by the
SU(3) symmetry relation [27],

dV = —AUY 124D — ASY), (34)
which also reproduces the relation C = —2D between the

meson-octet-decuplet baryon coupling C and the meson-
octet coupling D [33]. Note that through Eq. (32) the quark
distributions in the Kroll-Ruderman diagrams with decup-
let baryon intermediate states in Fig. 2(h) are related to the
spin-dependent distributions of quarks in proton.

This completes the discussion of the moments of the
PDFs of the various mesons and baryons appearing in the
intermediate states in the diagrams of Fig. 2. From these, in
the next section we derive relations for the x dependence of
the PDFs themselves.

B. SU(3) relations for baryon and meson PDFs

In the previous section we derived relations between the
coefficients of the various operators in Oy ™" and O,
and the nth Mellin moments of the quark distributions in
Egs. (22)—(26) and Eqgs. (30)—(34). Since these relations are
valid for all moments 7, one can derive from them explicit
expressions for the x dependence of the PDFs.

For the valence distributions in the pion and kaon, from
Eq. (22) and Table I one has

Gr(X) = g (x) = dypi (x) = dp- (x) = i1, (%)
= ug+(x) =5+ (x) = dgo(x) =5po(x),  (35)

for all values of x. For the PDFs in the baryons, to simplify
notations we shall label the bare distributions in the proton
without an explicit baryon subscript, g(x) = ¢,(x), and
those in the A* baryon by g, (x) = g+ (x). Starting with
the quark distributions in the SU(3) octet baryons, from
Table II the individual u-, d-, and s-quark flavor PDFs can
be written in terms of the proton PDFs as

uy(x) =d(x), dy(x)=u(x), s,(x)=s(x),  (36a)
us+(x)=u(x), dg+(x)=s(x), sg+(x)=d(x), (36b)
() = 3 ux) + 0L,
dso(x) = uso(x), syo(x) = d(x), (36¢)
us () =500, dr () =u(v), s () =d(x). (36)
ur() = HA) + ) 4500 da() = n (o),
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For the quark distributions in the SU(3) decuplet
baryons, from Table III the u-, d-, and s-quark PDFs
can be written in terms of the PDFs in the A" as

up+ (x) = up(x) +da(x) —salx),

dyee (1) =sa(x). saee () =54 (x).

upo(x) =da(x),

(37a)

dyo(x) =ua(x),  sp0(x)=sa(x),

(37b)

sa- (%) = s (x),
(37¢)

up-(x) =sa(x), da-(x) =up++(x),

dy+(x) =55(x),  s5(x) =da(x),

(37d)

e (x) = s (¥),

usa(x) =dg(x).  dgo(x)=dy(x). szo(x)=ds(),

(37¢)

ds-(x) = u(x),

sz-(x) = da(x). (371)

In our actual numerical calculations for the strange
asymmetry, for simplicity we approximate d(x) =~ d(x)
and assume valence quark dominance for the bare states,
so that s(x) ~ so(x) #0. Numerically we find that the
octet baryon contributions to the s — 5 asymmetry are in
fact dominant, and the approximations for the input PDFs
of the decuplet states do not affect the conclusions of our
analysis.

For the PDFs arising from the tadpole diagrams in
Fig. 2(j), from Table IV the u-, d-, and s-quark distributions
can be written as

W () =d™ (x) =u(x) —d(x), s“(x)=0, (38a)
) (3) = s (1) = Tu(x) =5(x)). e (x) =0, (38b)
dBY () =58V () =d(x) —s(x),  wl(x)=0. (38¢)

The distributions associated with the tadpole gauge link
diagrams in Fig. 2(g) turn out to be the same as those for the
regular tadpole diagrams,

qy) (x) = ¢ (x). (39)

Turning now to the Kroll-Ruderman diagrams in
Figs. 2(e) and 2(h), for a proton initial state the corre-
sponding PDFs are expressed in terms of spin-dependent

PDFs in the proton, Ag(x) = Ag,(x). From Table V, for
the octet baryon intermediate states the u-, d-, and s-quark
distributions are given by

(KR) (KR)
A9 ) = ) ) = HEZ R g,
(40a)
Ad(x) — As(x)
d¥® (x) = s&®) (x) = ( F)_ - b), WS (x) =0,
(40b)
Ad(x) — As(x
ugR) (x) = S(ZI[J(R)( ) (12 - ( ), d(;R) (x) =0,
(40c)
(KR), \ _ (KR) _2Au(x)—Ad(x)—As(x)
() = s ) 2RI LA =R,
A (x)=0 (40d)

Similarly, for the decuplet baryon intermediate states the
individual quark flavor Kroll-Ruderman distributions are
given by

Au(x) —2Ad(x) + As(x)

W5 () = i (x) =

2D ’
s$$® ) =0, (41a)
Au(x) —2Ad(x) + As(x)
WS () = a5 (x) = D :
s =0, (41b)
Au(x) —2Ad(x) + As(x)
d¥ (x) = sE¥ (x) = D ,
WX () =0, (41c)
Au(x) —2Ad(x) + As(x)
000 = o) = A0 22800 + A1),
d%¥ (x) = 0. (41d)

The PDFs associated with the KR gauge link diagrams in
Figs. 2(f) and 2(i) are the same as those for the regular KR
diagrams,

a5 (x) = g5 (), (42a)
@ (x) = g (x) (42b)
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With this set of distributions in the SU(3) octet and
decuplet baryons and mesons, and the proton — meson +
baryon splitting functions from Ref. [20], we can finally
proceed with the computation of the meson loop contri-
butions to the quark and antiquark PDFs in the proton, as in
Egs. (9) and (10). In the following section we focus on the
calculation of specific PDF asymmetries in the proton
numerically.

IV. SEA QUARK ASYMMETRIES
IN THE PROTON

To illustrate the calculation of the contributions to PDFs
from pseudoscalar meson loops within the nonlocal chiral
effective theory framework, we consider the examples of
the flavor asymmetry in the light antiquark sea in the
proton, d — i, and the strange-antistrange asymmetry in the
nucleon, s — 5. In both quantities perturbatively generated
contributions from gluon radiation effectively cancel, at
least up to next-to-next-to-leading order corrections in «
[13], so that observation of large asymmetries may be
indicative of nonperturbative effects [14—16].

For the numerical calculation of the meson-bayron
splitting functions, earlier work used various regularization
prescriptions, including sharp transverse momentum cut-
offs, Pauli-Villars regularization, as well as phenomeno-
logical vertex form factors [24,25,34-37]. At times the
prescriptions have been imposed in rather ad hoc ways,
without necessarily ensuring that the relevant symmetries,
such as Lorentz, chiral, and local gauge symmetries, are
necessarily respected. In the present work we for the first
time perform the calculation within nonlocal regularization,
which is consistent with all of the above symmetry require-
ments. An advantage of the nonlocal method is that only a
single parameter, A, is needed to regulate all of the on-
shell, off-shell, and & functions associated with each of the
diagrams in Figs. 1 and 2.

Following Ref. [20], in the present analysis we adopt a
dipole shape in the meson virtuality k> for the regulator
functions for the one-loop contributions, parametrized by a
cutoff parameter A,

F(k) = (AzD;Am‘i)z, (43)

where D, = k* — A% + ie. The cutoff A can be determined
by fitting the calculated meson-exchange cross section to
differential cross sections data for inclusive baryon pro-
duction in high-energy pp scattering, pp — BX, for
different species of baryon B. Summing over the particles
X in the final state, the differential inclusive baryon
production cross sections can be written as

d*c _y d’c

oy, ki) =E—-==—— 7>,
L &k mdydid

(44)

where E is the incident proton energy and y = 1 — y is the
longitudinal momentum fraction of the incident proton
carried by the produced baryon B. In Eq. (44) we have
used the fact that for spin-averaged scattering the differential
cross section is independent of the azimuthal angle.
Available data exist on inclusive neutron and A™* produc-
tion [38-40], as well as on A and X** production [39,41,42]
in the hyperon sector. In principle, the cutoffs may depend
on the baryon B, although within the SU(3) symmetry
framework we do not expect large variations among the
different A values.

Once the cutoffs are determined and the one-loop
splitting functions are fixed, these can then be convoluted
with the various meson and baryon PDFs in Egs. (9) and
(10) to compute the contributions to the PDFs in the
proton. In the numerical calculations the input PDFs of the
pion and kaon are taken from Aicher et al. [43]. The spin-
averaged PDFs of the proton are from Ref. [44], while the
spin-dependent PDFs are taken from Ref. [45]. Since the
valence pion and proton PDFs are reasonably well deter-
mined, at least compared with the sea quark distributions,
using other pion [46-50] or proton [51,52] parametriza-
tions will not lead to significant differences.

A. d - it asymmetry

Turning to the light antiquark asymmetry in the
proton sea, within the chiral effective theory framework
the primary source of the asymmetry is the meson rainbow
and bubble diagrams in Fig. 1. In this approximation the
d — u difference does not depend directly on the structure
of the baryon coupling diagrams in Fig. 2, but only
on the splitting functions and the substructure of the
pion. More specifically, from Eq. (9) one can write the
contribution to the d — & difference in the proton as the
convolution

d(x) = a(x) = [(FE 4 £ = f 4 ) @ g, (x),
(45)

where the first (octet rainbow) term in the brackets is from
Fig. 1(a), the second and third (decuplet rainbow) terms
correspond to Fig. 1(b), and the fourth (bubble) term is
from Fig. 1(c). Using the notations of Ref. [20], the
splitting functions in Eq. (45) for the rainbow and bubble
diagrams can be expressed in terms of octet and decuplet
basis functions. In particular, for the zN configuration the

function f ftrf:/) is given by a sum of nucleon on-shell and §-
function contributions,

2(D+F)*M?

ang UV O+ 0) =0 )

(46)

£ () =
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where D and F are the SU(3) flavor coefficients, and f =
93 MeV is the pseudoscalar meson decay constant. Explicit
forms for the basis functions are given in Ref. [20] for the
dipole regulator F(k) in Eq. (43). The on-shell function

f 5\‘,)“) is nonzero for y > 0, while the local f ,(-,5) and nonlocal

Sf 5,‘” functions are proportional to 5(y) [20], and therefore
contribute to the d — iz asymmetry only at x = 0 [34,35]. In
the pointlike limit, in which the form factor cutoff A — oo,

the nonlocal function 6f ,(f) vanishes; however, at finite A
values it remains nonzero.

In the standard formulation of the chiral effective
theory, the 0 functions at y = O represent the contributions
from the so-called zero modes on the light front. These
are essential in order to ensure that fundamental sym-
metries, such as Lorentz invariance, chiral symmetry, and
local gauge symmetry, are respected in the calculation.
Experimentally, the physical appearance of this contribu-
tion at x = 0 is still an open question. One may imagine
that in more elaborate treatments that better capture the
short-range structure of the intermediate state baryon in
QCD, the ¢ function contribution may soften into a peak
near x = 0 [34]. However, in the absence of a solution to
QCD in the strong coupling regime this remains specula-
tive, and in the present formulation of the effective theory
the o-function terms are a natural consequence.

For the 7A contributions to the asymmetry in Eq. (45),
the splitting function for the rainbow diagram in Fig. 1(b)
includes several regular and §-function terms,

FV () =3£"0 ()

C2M2 (on) (onend) 1 ()
2M2 M2 —m?
#uﬁfkw—w@@» @)

where M = M + M, and C is the meson-octet-decuplet
baryon coupling, which is related to the zNA coupling
constant gya by C = v2fgya [20,35]. As for the zN
case, the on-shell function for the A intermediate state,

f Xm), is nonzero for y > 0, with a shape that is qualitatively

similar to f,(\(,m), but peaking at smaller y because of the

positive A-nucleon mass difference [20,36,37]. The on-

shell end-point function, f AO n end) , also has a similar shape

for finite A, but in the A — o limit is associated with an
end-point singularity that gives a o function at y = 1. The
off-shell components of the A propagator induce several
terms that are proportional to 6 functions at y = 0. The

functions f' ,(f) and of 5,5) are equivalent to those in Eq. (46),

while f(Aé> is a new function that appears only for the
decuplet intermediate state [35].

Finally, the bubble diagram contribution to the d — i

asymmetry, f,(,bUb), in Fig. 1(c) is given by the same
combination of basis S-function contributions as for the
rainbow diagrams,

(bub)  \ _ _ 2M 2

(6)
~lanfy? 00 -7 (48)

Although this term gives a nonzero PDF only at x = 0,
since it contributes to the integral of d — i, it will indirectly
affect the normalization for x > 0. On the other hand,
experimental cross sections are in practice available
only for x > 0, so that the 5-function pieces are generally
difficult to constrain directly, especially in regularization
schemes that use different regulator parameters for the o-
function and y > 0 contributions [35]. The advantage of the
nonlocal approach employed here is that by consistently
introducing a vertex form factor in coordinate space in the
nonlocal Lagrangian [20], the same regulator function
then appears in all splitting functions derived from the
fundamental interaction, which in our case is parametrized
through the single cutoff A. Even if experimental data
constrain only contributions at x > 0, such as from the on-
shell functions, once determined these can then be used to
compute other contributions, including those at x = 0.

Following Refs. [24,25,36], we can constrain the param-
eter A for the octet intermediate states by comparing the
one-pion exchange contribution with the differential cross
section for the inclusive charge-exchange process pp —
nX aty > 0,

2(D+F)*M?*y non o
O T ) 09)

(49)

o(pp — nX) =

where s is the invariant mass squared of the reaction. The
function f 1(\(,’“> (v, k%) in Eq. (49) is the unintegrated on-shell
nucleon splitting function, which is related to the corre-
sponding integrated splitting function fg\(,m) (y) in Eq. (46)
by [see also Eq. (63) in Ref. [20]]

Fo) = / 427 (5. 12). (50)

The cross section oﬁ;” (ys) in Eq. (49) is the total
7" p scattering cross section evaluated at the center of
mass energy ys. In the numerical calculations, we use
the (approximately energy independent) empirical value
aﬂp = 23.8(1) mb [53]. For the SU(3) couplings we take
D = 0.85 and F 0.41, which gives a triplet axial charge

= (2a) - )/3 =D + F = 1.26 and an octet axial
charge gs = al +ﬂ =3F-D =0.38.
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FIG. 3. Differential inclusive hadron production cross section

o(y, k%) vs ¥ for (a) pp — nX at K2 =0 [38]; (b) pp — nX
integrated over k3 [39]; (c) pp — ATTX integrated over k% [40],
compared with the fitted nonlocal pion exchange contributions
for Ay = 1.0(1) GeV and Ay = 0.9(1) GeV (solid red lines
and pink 1o uncertainty bands) and with Pauli-Villars

regularization (dashed red lines) for Agy) = 0.3 GeV and
AR = 0.64 GeV.

The results for the differential neutron production cross
section are shown in Fig. 3 vs y. The experimental data are
typically presented as a function of the ratio 2p;/+/s,
where p; is the longitudinal momentum of the produced
baryon in the center of mass frame; at high energies,
however, this is equivalent to y. In Fig. 3(a) we compare our
results with the neutron production data from the ISR at
CERN at energies /s between ~31 and 63 GeV for 0°
neutron production angles, or k3 =0 [38]. Data from
the hydrogen bubble chamber experiment at the CERN
proton synchrotron at /s ~ 5 and 7 GeV [39] are shown in
Fig. 3(b) for the k, -integrated neutron cross section.
Because the pion-exchange process is dominant only at
large y [54], with contributions from background processes

such as the exchange of heavier mesons [36,55,56] becom-
ing more important at lower y, we include data only in the
region ¥ > 0.7. Corrections from rescattering and absorp-
tion are also known to play a role in inclusive hadron
production, and are estimated to be around 20% at high
values of ¥ [56-58]. A good description of the single and
double differential neutron data can be achieved with a
cutoff parameter A,y = 1.0(1) GeV. A marginally larger
value is found if fitting only the double differential data,
and slightly smaller value for just the k| -integrated cross
section, but consistent within the uncertainties.

For the inclusive production of decuplet baryons, the
invariant differential cross section for an inclusive A™* in
the final state can be written for y > 0 as

o(pp—ATTX)
_CM*y

_2(4ﬂf)2;[f20n) ()’ski)+J?(A()nend)(y,ki)]agtp(ys), (51)

where o7 is the total 7~ p scattering cross section. In our
numerical calculations we assume this to be charge
independent, so that of,” ~¢",”, and for the coupling
constant C we take the SU(6) symmetric value C = —2D =
—1.72. The functions f\™ (y,k3) and f"(y,%2) in
(51) are the unintegrated decuplet on-shell and on-shell
end-point splitting functions, which are related to the cor-
responding integrated splitting functions [see Eqs. (86)—
(88) in [20]] by the identities

£ ) = / dk2 7 (. K2, (52a)
flomend) (1) — / di2 FO (y 42) (5b)

respectively. The k7 -integrated A" cross section is shown
in Fig. 3(c) compared with hydrogen bubble chamber data
taken at Fermilab for /s =~ 20 GeV [40]. A good fit to the
data is obtained with a value of the decuplet cutoff of
Aza = 0.9(1) GeV, which is slightly smaller than that for
the neutron production cross sections.

To examine the model dependence of the analysis, for
comparison we also fitted the hadron production cross
sections in Figs. 3(a)-3(c) using instead the Pauli-Villars
regularization for the local effective theory [24,25]. The
explicit forms of the Pauli-Villars regularized octet on-shell
splitting functions can be found in [24,25]. The result for
the sum of the decuplet on-shell and on-shell end-point
functions is as in Eq. (96) of [20], with the integral
regularized by a factor of (144D n/Dya), Where D,
and D,, are momentum dependent functions given

in Eq. (86) of [20]. The results for the best fit Pauli-
Villars mass parameters Ag\y) = 0.30 GeV and AEIPAW =

0.64 GeV are illustrated by the dashed curves in Fig. 3 and
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FIG. 4. The flavor asymmetry of the proton x(d — i) vs x
from the lowest order pion exchange (solid red curve
and pink band), with cutoff parameters A,y = 1.0(1) GeV and
Aza =0.9(1) GeV, including nucleon on-shell (dashed blue
line), A on-shell (dashed green line), and A end-point (dotted
green line) contributions, and compared with the asymmetry
extracted from the Fermilab E615 Drell-Yan experiment [4].

are similar to those for the nonlocal calculation, even
though the numerical values for the cutoffs are rather
different. While there is some difference in the shape of the
calculated k| -integrated neutron production cross section
in Fig. 3(b) at smaller values of y, in the region where the
data provide constraints the Pauli-Villars results lie within
the uncertainty bands of the nonlocal calculation using with
the dipole regulator.

Using the values of A,y and A, for our nonlocal
calculation constrained by the pp cross sections in Fig. 3,
we next evaluate the flavor asymmetry d — @ from the
convolution of the splitting functions and the pion PDF in
Eq. (45). The results for x(d — i) are shown in Fig. 4 and
compared with the asymmetry extracted from the E866
Drell-Yan lepton-pair production data from Fermilab [4].
At nonzero x values only the on-shell nucleon and A and
end-point A terms contribute to the asymmetry, each of
which is indicated in Fig. 4. The positive nucleon on-shell
term makes the largest contribution, which is partially
canceled by the negative A contributions. For the values of
the cutoffs used here, the end-point term is relatively small
compared with the on-shell A component.

Although the o-function contributions to the flavor
asymmetry are not directly visible in Fig. 4, their effect
can be seen in the lowest moment of the asymmetry,

(i) = /0 L (@) — a(x)). (53)

The contributions from the individual on-shell, end-point,
and S-function components of the zN and zA rainbow
and the 7 bubble diagrams to the moment are shown in
Fig. 5 vs the dipole cutoff parameter A (= A,y or A,,),
for the approximate ranges of values found in the fits in
Fig. 3. For the best fit values A,y = 1.0(1) GeV and
Aza = 0.9(1) GeV, the contributions from the individual

02{ mN rainbow o
N
0.1
<M M
N
~ 00
------------------------- ©)
-0.1 (a) ............... ..fn ......
02} 7 bubble
£
Ol __________________
|/=\ __________________
A
~ 00—
—0.1} () oo T |
0.10 '
A rainbow P
oosf .0 .
_________________ 6
D 000 £
= 0.00--_______-._.;.__._.;______;______;_—_ __________
Soosp T B
© o S 9
BV A1 B VR ¥ R W R I
A (GeV)
FIG. 5. Contributions to the (d — &) moment vs the dipole

cutoff parameter A (= A,y or A,,) from (a) the zN rainbow
diagram [Fig. 1(a)], including on-shell (solid red line), and local
(dotted blue line) and nonlocal (dot-dashed green line) d-function
terms; (b) the pion bubble [Fig. 1(c)], including local (dotted blue
line) and nonlocal (dot-dashed green line) o-function pieces;
(c) the zA rainbow [Fig. 1(b)], including on-shell (solid red line),
end-point (dashed red line), local (dotted blue line) and nonlocal
(dot-dashed green line) 5-function, and local decuplet J-function
(dotted black line) contributions.

terms in Eqgs. (45)—(48) are listed in Table VII, along with
the combined contributions from the x >0 and x =0
terms, and the local and nonlocal terms, to the total
integrated result. The nucleon on-shell term is the most
important component, with a contribution that is within
~20% of the total integrated value (d — it) = 0.12770043,
where the errors reflect the uncertainties on the cutoff
parameters. The on-shell and end-point zA terms yield
overall negative contributions, with magnitude ~30% of the
on-shell #N. Furthermore, the breakdown into the local and
nonlocal pieces shows that the latter is negative, with
magnitude ~20% of the local.
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TABLE VII.  Contributions to the integral (d— i) = [} dx(d i)
from the zN rainbow, 7A rainbow, and z bubble diagrams in
Fig. 1, for the best fit parameters A,y = 1.0(1) GeV and
Aza = 0.9(1) GeV. The contributions from the various terms
in Egs. (45)-(48) are listed individually, as are the combined
contributions from x > 0 and x = 0, and the local and nonlocal
terms, to the total. Note that some numbers do not sum to the
totals because of rounding.

Diagram (d—u)
aN (tbw) o 0.1522 053
70 —(0.0790.920)
570 0.044 19010
Total 7N 0.1 16t8.'82222
7A (tbw) (on —(0.04419017)
nens) ~(0.009:020%)
£ 0.002:5350!
70 0.039-9:010
59 —(0.022%9505)
Total zA _(0-033f8'81l(()) )
7 (bub) ®) 0.099°00%
5f7(16) - (0'054i8.'8113 )
Total 7 bubble 0.04413012
Total 0-127j3.‘g:g
x>0 0.0997004
x=0 00287000
Local 0.1 59f8f(0)§%
Nonlocal - (0-0328.'885)

The various d-function terms from all three diagrams in
Fig. 1 cancel to a considerable degree, with the x =0
contribution making up ~20% of the total. This contribu-
tion is smaller than the total uncertainty due to the variation
of the cutoff parameter A, making it difficult to draw
unambiguous conclusions about the phenomenological role
of the o-function terms. With more precise experimental
data on the inclusive pp baryon production cross sections
and better theoretical constraints on our model, the range of
A could be further reduced. Eventually, if the total
uncertainty on A is smaller than the J-function contribu-
tions, one could hope to make firmer conclusions about the
x =0 terms.

Experimentally, the asymmetry at x = 0 is of course not
directly measurable, and typically extrapolations are made
to estimate contributions from outside of the measured
region. The New Muon Collaboration, for instance, found
(d — @) &P = 0.169(32) from their analysis of F£ — F" in
the experimentally accessible region 0.004 < x < 0.8, and

(d - m)\ . = 0.148(39) when including x — 0 and x — 1
extrapolations [1]. The E866 Collaboration, on the
other hand, extracted (d — &)\aF) = 0.080(11) in the
experimentally measured interval 0.015 < x < 0.035, and

(d - ﬁ)g;’gﬁ =0.118(12) for the entire x range after
extrapolation. Note that the extrapolations by different
analyses are often based on different assumptions for the
asymptotic x — 0 and x — 1 behavior, so that a direct
comparison of extrapolated results is problematic.
Nevertheless, the general magnitude of the asymmetry is
comparable with that found in our calculation, even with
the uncertainties about the x =0 and extrapolated
contributions.

B. s —§ asymmetry

While the d — i asymmetry is perhaps the best known
consequence of pion loops on PDFs in the nucleon, an
equally intriguing ramification of SU(3) chiral symmetry
breaking is the s — § asymmetry generated by kaon loops.
In analogy to the light antiquark PDFs in Eq. (45), the
contribution to the antistrange PDF in the proton arising
from kaon loops in Fig. 1 can be written as

5(x) = {(fo,f};w) I Zf;f’“b)) ® ] (x).

¢B ¢T ¢

(54)

where here the sums are over the states @B =
{K*A, K+ K2+ for the kaon-octet baryon rainbow
diagram [Fig. 1(a)], ¢T = {K+X*0, K'Z**} for the kaon-
decuplet baryon rainbow diagram [Fig. 1(b)], and for the
¢ = K" (K™) and K°(K°) loop in the bubble diagram
[Fig. 1(c)]. In terms of the on-shell and é-function basis
functions, the kaon-octet baryon rainbow function can be
written is given by a form similar to that in Eq. (46),

(ww), (D +3F)*(M+M,)
fK*A (y>* 12(47Tf)2
< A 0) + £ ) = 62 )], (55a)
row row D - F 2 M M
20) = £ ) = P
< A 0) + 18 ) = 81 ), (55b)

for the KA and KX intermediate states, respectively. For the
kaon-decuplet baryon rainbow diagram, the corresponding
function is written analogously to Eq. (47),
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C*(M + My )?
6(4xf)?

on on ent 1
< [0+ 77 0) - 1o 120)

(M + Mx)*[(M + Ms.)* — mg]
6M3. (M + My-)?

x (f () =52 () (56)

for the KX* states, where the coupling C is given in the
previous section. For the bubble diagram, the splitting
function for charged or neutral kaon loops is given by a
form similar to that in Eq. (48),

(M +My)?
(4rf)?

rbw rbw
2f w0 () = Frowh () =

~5fQ ().
(57)

Explicit expressions for all the basis functions are given
in Ref. [20].

For the loop contributions to the strange quark PDF, the
baryon-coupling rainbow, Kroll-Ruderman, and tadpole
diagrams in Figs. 2(d)-2(k) all play a role, as do the
additional gauge-link dependent diagrams that are generated
by the nonlocal Lagrangian. Assuming that all nonpertur-
batively generated strangeness resides in the intermediate
state hyperons, from Eq. (10) the loop contributions to the
strange quark PDF in the proton can be written as

s)=3{ [ @] 00+ 75 05 0

B

o o) <x>}+TZ¢{ 7 @sr| 0
[ | )+ o7 s | 0}

+Z{[ ;! md}() [5ff/tad ?}(X)}, (58)

where the sums are over the octet bayon-meson states
B¢ = {AK ", 2K+, =T K"}, decuplet baryon-meson states
T¢p = {=OK*, 2" K"}, and mesons ¢ = K*(K~) and
K°(K") for the tadpole contributions. As in Eq. (10), the
splitting functions for all the hyperon coupling diagrams in
Eq. (58) use the shorthand notation f;(y) = f;(1 —y).
For the octet hyperon rainbow diagrams, Fig. 2(d), the
individual splitting functions can be written in terms of the
on-shell, off-shell, and §-function basis functions as

F () =20 () = — 7 )

C*(M + My )?
6(4nf)?
(M +Mys)*[(M+ My )* +3mi]
6M%. (M + My )?

215 (y) = o (y) =

1
—65f(zi) (J’) -

X LA 0) £ 0) =218 0) =218 ) + 451 () +

Tbw D+3F)2(M+M,)>
sl ) =P
<[P0+ ) +48£ () =12 )],
(59a)
2f il (1) = F () = Gl F)(Z(Z; M)
<[V )+ 180 (3) + 48780 () = £ )
(59b)

where the functions f 5()"2) and fgf) are the same as in
Eq. (55), and explicit expressions for the off-shell functions
f/ffzf and 5f/ffzf are given in Sec. IV. B. 1 of Ref. [20]. For
the octet Kroll-Ruderman diagrams in Figs. 2(e) and 2(f),
the local and nonlocal splitting functions fgfg ) and § fffg )

are given by

0y = L2 31?(4%§ MAV (e 0) 4+ 270 ()
(60a)

2180 () =5 (y)

_(D- 2>( 4<M)+Mz> =700 +212 ().

(60b)

and

5f<AKR><y>=(D+3Q<4%; Ma) asf ()50 )
(61a)

26150 (1) =515 (v)

_ 2

(61b)

respectively.
For the decuplet hyperon contributions, the respective
splitting functions are given by

[0
18f2* ()’)

7o) (62)
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for the decuplet rainbow diagram in Fig. 2(g),

2180 (0) =180 ()
_ CA(M+Ms)? foff
 6(4xf)? =
1
~5 (2 0) =612 ()

(M +Ms)*[(M+ My )+ my]
3M5- (M +My)?

) +2727 " (y)

s
FEO)| (63)
for the Kroll-Ruderman diagram in Fig. 2(h), and

261050 (v) = 6£80 (y)

_ C3(M + My )? (off) L
—W 45f2* ( )+ Efsfz* (J’)
(M + Mz)*[(M + Mg )* —mi] _ 5)
- 6M§*(M—|—M2¥)2 5f1( (y)
(64)

for the nonlocal Kroll-Ruderman diagram in Fig. 2(i). The

expressions for the decuplet basis functions f ;O*n), fgin end),

£ ploiend) “and £, as well as the nonlocal functions
(szo*ft and 5f2*, are given in Sec. [V.B.2 of Ref. [20].

Finally, for the local and nonlocal tadpole contributions
to the strange quark PDF from Figs. 2(j) and 2(k), the
splitting functions are given by

a a M+ M
Fet) =20y = - MM o) (o)
(4xf)*
5F90(y) = 2850 () = MI M 500 ()
K (4nf)? K
in terms of the local and nonlocal basis functions fg?)

and o fg?).

To determine the regulator mass parameter for the kaon-
hyperon-nucleon vertices in Figs. 1 and 2, we consider
inclusive hyperon production cross sections in pp colli-
sions, in analogy with the neutron and A production above.
Data on inclusive A production are available from the 2 m
hydrogen bubble chamber at the CERN proton synchrotron
[39] and the 12 foot hydrogen bubble chamber at ANL
[41], and on inclusive £* production from CERN bubble
chamber experiments [42]. The corresponding differential
cross sections for inclusive A and X* production (for y > 0)
are given by

o(pp— AX)
D 3F2M M 2_’\on +
=t +12>(4(ﬂf; ) ,y,f(A)(y’kbrffit”(ys), (67)

C*(M + Ms.)?y
6(4xf)?
+ FO e (3, 2ok P (s), (68)

o(pp - TX) = [fw (v. k%)

where fﬁfn), f(;'l), and f(zml ) are the k | -unintegrated

splitting functions defined from the on-shell and end-point
basis functions [see Egs. (63), (86), and (88) in Ref. [20]]
by the relations

£ () = / a7 (3,12, (69a)
£ () = / A2 7 (3,12, (69b)
) = [adfE ). ()

K™p K%p
In Egs. (67) and (68) o" and o, are the total
kaon-proton scattering cross sections, evaluated at invariant
mass ys. For the numerical calculations we take the

empirical value for X 7 =19.9(1) mb from Ref. [53],
independent of energy. As there are no data for the K°p
total cross section, we assume charge symmetry and relate

this to the measured K'n cross section, at’f,:p ~oKn =
19.7(1) mb [59].

In a similar vein to the pion exchange analysis of neutron
and A production discussed above, in Fig. 6 we compare
the inclusive pp — AX and **X cross sections for y >
0.7 with the kaon exchange contributions calculated from
Egs. (67) and (68). It has been established in several
analyses [53,54,56,58] that rescattering and absorption
effects in inclusive baryon production result in <20%
corrections at high y. The previous studies found that
the ¢ dependence at large values of y is consistent with that
produced by meson exchange, and in our numerical
analysis we follow the earlier work [54,56,57] by focusing
on the region y > 0.7.

The best fit to the CERN bubble chamber A production
data from Ref. [39] at k| = 0.075 GeV [Fig. 6(a)] and the
k | -integrated data from Ref. [41] [Fig. 6(b)] yields a dipole
regulator mass Ag, = 1.1(1) GeV, similar to the value
found for the #N cutoff parameter from the inclusive
neutron production data in Fig. 3. Comparison of the
singly differential decuplet £** production data at large
y [Fig. 6(c)] with the kaon exchange cross section in
Eq. (68) gives a best fit for the decuplet regulator mass of
Ags- = 0.8(1) GeV. The cutoff parameter for the decuplet
baryon is again slightly smaller than that for the octet
baryon, as was found for the pion exchange contributions to
the neutron and A cross sections in Fig. 3. Of course, the
cutoff parameters could also in principle be constrained
from data on kaon production, where the kaon is produced
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FIG. 6. Differential inclusive hadron production cross section
o(y,k3) vs y for (a) pp— AX at k;, =0.075 GeV [39];
(b) pp — AX integrated over k3 [41]; and (c) pp — T*tX
integrated over ki [42], compared with the fitted nonlocal kaon
exchange contributions for dipole regulator parameters Ag, =
1.1(1) GeV and Agy: = 0.8(1) GeV (solid red lines and pink lo
uncertainty bands).

in conjunction with scattering from an exchanged virtual
baryon, as in Figs. 2(d) and 2(g). However, the back-
grounds from kaons produced through quark fragmentation
will be significant, making it considerably more difficult to
identify mesons produced through wu-channel baryon
exchange and fragmentation.

With these values of the cutoffs, we can compute the
kaon loop contributions to the strange and antistrange
distributions in the proton, and estimate the shape and
magnitude of the strange asymmetry s — 5. In Fig. 7 the
various octet and decuplet contributions to xs and x5 are
shown for the best fit parameters Ag, = Agy = 1.1 GeV
and Agy+ = 0.8 GeV. For the x5 PDF in Fig. 7(a), the octet
on-shell contribution from the rainbow diagram [Fig. 1(a)]
dominates over the decuplet on-shell and end-point terms

from the decuplet rainbow [Fig. 1(b)]. The resulting x5
distribution peaks at x = 0.1 and essentially vanishes beyond
x = 0.6. The 5-function terms from the rainbow diagrams as
well as from the kaon bubble diagram [Fig. 1(c)] contribute
to 5 only at x = 0 and so do not appear in Fig. 7(a).

In contrast, for the strange quark distribution, from the
convolution in Eq. (58) one finds that all terms from each
of the rainbow, Kroll-Ruderman, and tadpole diagrams
in Figs. 2(d)-2(k) have nonzero contributions at x > 0.
Since there are many individual terms, we display ones
involving octet + tadpole and decuplet baryons separately
in Figs. 7(b) and 7(c), respectively. Unlike the on-shell term
dominance of the antistrange PDF, for the strange distri-
bution there are sizable contributions from many of the
terms, with nontrivial cancellations between them. For the
octet baryons, the off-shell terms change sign at around
x =~ 0.1, with significant cancellation occurring between the
local and nonlocal (gauge link dependent) off-shell con-
tributions. The (positive) local and (negative) nonlocal -
function terms come with the largest magnitudes, but
mostly cancel among themselves, leaving a total octet
contribution that is positive and peaks around x = 0.2, with
a similar order of magnitude as the x5 distribution.

A qualitatively similar scenario is evident in Fig. 7(c) for
the decuplet intermediate state contributions to xs, where
the individual on-shell, off-shell, 5-function, and gauge link
terms are shown. (Note that the on-shell and off-shell terms
include also the respective end-point pieces.) The predomi-
nantly positive on-shell, off-shell, and nonlocal s-function
contributions at x 2 0.2 largely cancel with the predomi-
nantly negative local J-function and nonlocal off-shell
terms, resulting in a very small overall decuplet contribu-
tion to xs, peaking at x ~ 0.1, that is, an order of magnitude
smaller than the octet.

Finally, the resulting asymmetry x(s —5) in Fig. 7(d)
reflects the interplay between the § PDF, which peaks at
lower x, and the s-quark PDF, which extends to larger
values of x. A key feature of this result is the strong
cancellations between positive local and negative nonlocal,
gauge-link dependent contributions, in both the octet and
the decuplet channels. The net effect is then a small positive
x(s —5) asymmetry, peaking at x ~ 0.2-0.3, and about an
order of magnitude smaller than the asymmetry between
the d and it PDFs resulting from pion loops.

In addition to the shape, it is instructive also to examine
the contributions of the various terms to the lowest
moments of the s and 5§ PDFs, in particular, the average
number of strange and antistrange quarks,

<s):A1dxs(x), <§>:/)ldx§(x), (70)

and the average momentum carried by them,
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Kaon loop contributions to (a) antistrange PDF x5 from the octet and decuplet rainbow diagrams [Figs. 1(a) and 1(b)];

(b) strange quark PDF xs from the octet rainbow [Fig. 2(d)], Kroll-Ruderman [Figs. 2(e) and 2(f)], and tadpole [Figs. 2(j) and 2(k)]
diagrams; (c) strange PDF xs from the decuplet rainbow [Fig. 2(g)] and Kroll-Ruderman [Figs. 2(h) and 2(i)] diagrams; (d) strange
asymmetry x(s — 5), showing the local and nonlocal (gauge) octet and decuplet contributions, along with the total asymmetry. The PDFs
are computed with the best fit regulator parameters Agy, = Agy = 1.1 GeV and Agy- = 0.8 GeV.

(xs) = Al dx xs(x), (x5) = /)1 dxxs(x). (71)

The conservation of strangeness of course requires equal
numbers of s and 5 quarks in the nucleon, (s) = (5), as a
direct consequence of local gauge invariance, although the
shapes of the s and 5 distributions themselves are obviously
rather different. The zero net strangeness can be verified
by explicitly summing the contributions to (s) and (5)
from the various diagrams in Figs. 1 and 2, as Table VIII
indicates. Note also that the conservation of strangeness
holds for the octet and decuplet contributions individually,
as well as for the tadpole and bubble diagrams,
<S>oct = <§>oct’ <s>dec = <§>dec7 <s>tad = <§>bub' (72)
Although the contribution to the total strange and
antiquark quark number from the decuplet intermediate
states is about an order of magnitude smaller than that from
octet intermediate states, the role of the kaon bubble and
tadpole terms is more significant, making up ~60% of the
total. For the antistrange moment, (5), including the &-
function contributions from the rainbow diagrams, some
40% of the total moment comes from x = 0. For the strange
(s) moment, on the other hand, the structure of the
convolution in Eq. (58) means that all of the contributions
to s(x) are at x > 0, including ones involving §-function

splitting functions. Interestingly, significant cancella-
tion occurs between the local terms and the gauge link-
dependent nonlocal contributions, which turn out to be
negative and about half as large in magnitude as the local.
While the lowest moments of the s and 5 are constrained
to be equal, there is no such requirement for higher
moments, including the x-weighted moment corresponding
to the momentum carried by s and 5 quarks. Since the total
s — s asymmetry is found to be mostly positive over the
range of x relevant in this analysis, not surprisingly the total
(x(s —5)) moment is also positive. Including the uncer-
tainties on the kaon-nucleon-hyperon vertex regulator
parameters from Fig. 6, the combined asymmetry in our
analysis is
(x(s = 5)) = (1.66108}) x 1073, (73)
It is instructive, however, to observe the origin of the
asymmetry in our chiral effective theory formulation. As
mentioned above, there are no contributions to the momen-
tum carried by s quarks from any of the J-function terms
from the rainbow or kaon bubble diagrams, so that only the
on-shell and on-shell end-point terms are nonzero. In
contrast, all terms, including the ¢ function, contribute to
the momentum carried by s quarks. The result is a relatively
small asymmetry that survives the cancellation of the
(positive) on-shell s and § terms, with large contributions

094026-18



PARTON DISTRIBUTIONS FROM NONLOCAL CHIRAL SU(3) ...

PHYS. REV. D 100, 094026 (2019)

TABLE VIIL

Contributions from octet ¥ = A,X%, =t and decuplet Y* =30, ** hyperons to the average number

(in units of 107%) and momentum carried (in units of 1073) by s and 5 quarks in the nucleon from diagrams in Figs. 1 and 2, for
dipole regulator mass parameters Agy = 1.1(1) GeV and Agy- = 0.8(1) GeV. Note that some of the numbers do not sum to the totals

because of rounding.

(5) (x1072)  (x3) (x107%) (s) (x1072)  (xs) (x1073)
KY (rbw) f(y‘m> 13910 1.33500¢ YK(rbw) f <y°“’ 1.39°9¢7 167506
0 ~(1.66+079) 0 Floth —(4015E)  —(535173)
o) BEEH 0 SR 2705 iy
19 1.6670%2 2.827] %
YK(KR) A0 a0 6293
F0 =GR (66630
YK (5KR) srom  —(2705557)  —(3.68113%)
1.01
5f§f) 1122937 224509
Total octet 0.85704) 133702 Total octet 0.85103% 0.46101;
K (bub) ) 4.851232 0 K (tad) 71 4.85°23 7.8753 08
59 ~(3.27447) 0 K (Stad) 51 -(3.27537)  =(5.30273%)
Total bubble 1.59j8.-22 0 Total tadpole 1.59f8:§2 2.57:1,'35;S
KY* (tbw) Flom 0.091013 0.0610% Y*K (rbw) flow 0.09*057 0.10% 508
e 00488 0037888 o 0048% 00450
® —(0.01+001) 0 £ —(0.59%03)  —(0.751505)
e —01ss 0 e oaTgR 021
59 0.1110.4 0 sl 0.3410% 0.381057
£ 01859H  026°0%
7 0015481 001p;
sf0  —0070) ~(01070)
Y*K(KR) ot 0.5919:72 1.0273]
ot (01797)  ~(029°93)
A 03 —0esE)
SO 002 —(003°5%)
5\ 0.05%063 0.09%563
Y*K(6KR) sfiem —(0.345055)  —(0.5150%%)
579 01l 02297
51 0.0250% 0.0510%7

Total decuplet

0.082002

0.09%5%)

Total decuplet

0.0810 02

0.04750

Total

3
25155

0.89
14208

Total

3
25145

3.081]5

Non-6 function

1525038

142508

Non-6 function

152108

22554

; 0.60 i 0.60 0.6
§ function 0.99+0:% 0 & function 0.9910% 0.82708
Local 455223 1.42108 Local 455722 6.5873 40
Nonlocal —(2.04559) 0 Nonlocal —(2.04557) —(3.50248)
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FIG. 8. Contributions to the (x(s — 5)) moment vs the dipole
cutoff parameter A (= Agy, for Y = A or Z hyperons, or Agy-)
from (a) the KY octet rainbow [Figs. 1(a) and 2(d)] and Kroll-
Ruderman [Figs. 2(e)-2(f)] diagrams; (b) the K bubble [Fig. 1(c)]
and tadpole [Figs. 2(j) and 2(k)] diagrams; (c) the KX* decuplet
rainbow [Figs. 1(b) and 2(g)] and Kroll-Ruderman [Fig. 2(h) and
2(i)] diagrams.

from individual off-shell and o&-function terms. As
illustrated in Fig. (8) for the various contributions
to the strange momentum asymmetry vs the regulator
cutoff mass, the largest of these in magnitude is the

(negative) fg?) term from the Kroll-Ruderman diagram
[Fig. 2(e)], with comparably large (positive) gauge link
contributions & fg?) from the rainbow [Fig. 2(d)] and non-
local Kroll-Ruderman [Fig. 2(f)] diagrams. After the
cancellations of various terms, the octet baryon contribu-
tion to the strange momentum asymmetry is actually
negative, (x(s —5)), & —0.87 x 1073, The terms involv-
ing decuplet hyperon states give relatively small absolute
contributions, with significant cancellations arising that

lead to a negligible overall strange decuplet asymme-
try, (x(s = 5))gec & —0.05 x 1073,

Interestingly, the most significant role played here is by
the kaon tadpole terms [Figs. 2(j) and 2(k)]. With strong

cancellations between the positive local ff,?) and negative

nonlocal of g?) terms, the total asymmetry from the tadpole,
(x(5 = 5))paq & 2.57 x 1073, is still about 3 times larger in
magnitude than that from the rainbow and Kroll-Ruderman
diagrams. The result is an overall asymmetry in Eq. (73)
that is positive.

Experimentally, identifying an asymmetry of this size
will be challenging, but not impossible. Traditionally,
inclusive charm meson production in charged current
neutrino and antineutrino DIS from nuclei has been used
to provide information about the s and 5§ PDFs in the
nucleon, and analyses of data from neutrino experiments
at BEBC [60], CDHS [61], CDHSW [62], CCFR [63],
and NuTeV [64,65] have yielded values in the range
(x(s —=5)) ~(0—=3) x 1073 [66-68]. Unfortunately, the
neutrino-nucleus data are known to be affected by uncer-
tainties in nuclear medium effects when relating nuclear
structure functions to those of free nucleons [69], and in the
nuclear dependence of charm quark energy loss and D-
meson interactions during hadronization in the nuclear
medium [70,71].

Alternatively, the s and § distributions can be con-
strained by K* meson production data from semi-
inclusive deep-inelastic scattering (SIDIS) off protons
and deuterons, such as from the HERMES [72,73] or
COMPASS [74] experiments. In a first of its kind global
analysis, the JAM Collaboration recently fitted both the
SIDIS and inclusive DIS data, along with other high
energy scattering data, within a Bayesian likelihood
analysis using Monte Carlo techniques to simultaneously
determine both the spin-averaged PDFs and parton-to-
hadron fragmentation functions [75]. The analysis found
a suppressed strange content in the nucleon at large x,
and found no clear evidence for a nonzero s—3§
asymmetry within relatively large uncertainties. In the
future, high-precision SIDIS data from the Jefferson Lab
12 GeV program or from the planned Electron-Ion
Collider should provide better constraints on the s and
5 PDFs, as may W+ charm production data from pp
collisions at the LHC [76-78].

An important consequence of a better determination of
the s —5 asymmetry in the nucleon is more robust con-
straints on the weak mixing angle sin® @y, extracted from
the NuTeV data on v and 7 nuclear cross sections [68,79—
81]. For the total strange asymmetries range found in this
analysis, 0.9 x 107 < (x(s — 5)) < 2.5 x 1073, the result-
ing correction to the weak angle lies in the range
—2.4 x 1073 < Asin?0y, <—0.9 x 1073, or between 18%
and 49% of the total quoted discrepancy [64,79] (see
Ref. [82] for a review and further discussion).
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V. CONCLUSION

In this paper we have calculated the contributions to the
sea quark distributions in the proton which are generated
within a nonlocal chiral effective field theory. Both octet
and decuplet intermediate states were included in the one-
loop calculation using a four-dimensional dipole regulator
to deal with the ultraviolet divergences. This regulator was
introduced explicitly in the nonlocal Lagrangian density,
with gauge invariance ensured through the presence of
gauge links. A consequence of the introduction of the
regulator are additional diagrams [Figs. 2(f), 2(i), and 2(k)]
that arise from the expansion of the gauge links to lowest
order in the electromagnetic coupling.

The free parameters entering the calculation, namely
the dipole regulator masses, have been determined by
fitting the available inclusive differential pp — nX,
pp — AX, pp — AX, and pp — X*X cross section data.
Using the fitted values of the dipole masses, A =
{1.0(1),0.9(1),1.1(1),0.8(1)} GeV for the {zN,zA,
KA, KX*} states, respectively, we computed the x depend-
ence of the sea quark asymmetry d — &, which is dominated
at x > 0 by the on-shell contribution involving a nucleon
intermediate state. The general shape and magnitude of the
asymmetry extracted from the E866 Drell-Yan data [4] are
described quite well, with the exception of the apparent
change sign at higher x values, which is practically
impossible to accommodate within the current theoretical
framework. On the other hand, preliminary data from the
SeaQuest experiment at Fermilab [83] suggest that the
extracted d/@ ratio may flatten out at large x values and
remain above unity. The integrated d — i asymmetry was
found to lie in the range between (d — i) ~ 0.09 and 0.17,
which encompasses the values extracted by the New Muon
[1] and E866 [4] Collaborations of ~0.15 and 0.12,
respectively. Remarkably, some 30% of our calculated
value is associated with a J-function contribution at
x =0, which is not accessible experimentally at finite
energy.

For the strange distributions in the proton, both the s and
5 PDFs were found to be positive at all values of x > 0.
Interestingly in this case, while the § distribution receives
o-function contributions also at x = 0 (around 2/3 of the
total), the s PDF vanishes at x = 0; both integrate to the
same value, however, to ensure zero total strangeness,
(s) = (5). Again, the contributions from the octet baryon

intermediate states are dominant, with decuplet baryon
contributions about an order of magnitude smaller. The
gauge link dependent terms play a significant role in the
nonlocal formulation of the chiral theory, contributing
about half of the total (s) and (5), but of opposite sign.

Large cancellations also appear in the x-weighted
asymmetry x(s —5), which remains small but positive
across all x, with the integrated value lying in the range
0.9 x 1073 < (x(s — 5)) < 2.5 x 1073, This is broadly con-
sistent with previous determinations from neutrino scatter-
ing experiments [63,65], although the uncertainties on the
empirical bounds are rather large. A nonzero moment
(x(s —5)) leads to a correction [68] to the NuTeV extrac-
tion of sin? @y, [79]. Our result supports the idea that the
strange-antistrange quark asymmetry may indeed reduce
the NuTeV anomaly by up to 1 standard deviation, which,
along with other corrections such as charge symmetry
breaking in the nucleon sea [§4—86] and the isovector EMC
effect [87], may account for the apparent anomaly entirely
in terms of Standard Model physics.

Future progress on constraining the s —§ asymmetry
experimentally is expected to come on several fronts.
Parity-violating inclusive DIS and semi-inclusive kaon
electroproduction from hydrogen at Jefferson Lab and at
a future Electron-Ion Collider will provide independent
combinations of flavor PDFs, with the s and § distributions
weighted by different electroweak charges and fragmenta-
tion functions, respectively. At higher energies, data on
inclusive W+ charm production in pp collisions at the
LHC [76,77] can also provide sensitivity to differences
between the s and 5 PDFs at small values of x, comple-
menting the constraints at higher x values from fixed target
experiments.
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