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ABSTRACT Barrier coverage is an important coverage model for intrusion detection. Clearly energy
consumption of sensors is a critical issue to the design of a sensor deployment scheme. In mobile sensor
network, it costs the sensors much energy to move. In this paper, we study how to optimize the sensor
movement while scheduling the mobile sensors to achieve barrier coverage. Given a line barrier and n sink
stations that can supply a required number of mobile sensors, we study how to find the mobile sensors’ final
positions on the line barrier so that the barrier is covered and the total sensor movement is minimized.We first
propose a fast algorithm for determining the nearest sink for the given point on the barrier. We then propose
a greedy algorithm and an optimal polynomial-time algorithm for calculating the optimal sensor movement.
To obtain an optimal algorithm, we first introduce a notion of the virtual-cluster which represents a subset of
sensors covering a specified line segment of the barrier and their sensor movements are minimized. Then we
construct a weighted barrier graph with the virtual-clusters modeled as vertexes and the weight of each vertex
as the total sensor movements of the virtual-cluster. We also prove that the minimum total sensor movements
for achieving barrier coverage is the minimum total weights of the path between the two endpoints of the line
barrier in this graph. We also solve this barrier coverage problem for the case when the barrier is a cycle by
extending the techniques used for the line barrier. Finally, we demonstrate the effectiveness and efficiency
of our algorithms by simulations.

INDEX TERMS Barrier coverage, MinSum, mobile sensors, sink-based deployment.

I. INTRODUCTION
Wireless sensor network has received a great interest in appli-
cations such as border surveillance, battlefield surveillance
and critical infrastructure security. Barrier coverage is an
important coverage model in wireless sensor network, which
can provide a sensor-chain barrier for detecting the intruders
crossing the boundaries of the surveillance area. Sensors are
often randomly dispersed from the airplane. However, it is
difficult to achieve barrier coverage only using stationary
sensors. Recently, with the development of mobile sensors
(e.g., Robomote [1], Packbot [2] and Khepera [3]), it is
possible to deploy mobile sensors in practical applications.

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhenliang Zhang.

Mobile sensors can move to the desired positions for con-
structing a sensor-chain barrier, which can save a lot of
stationary sensors. However, the movement of mobile sen-
sors consumes much more energy than sensor’s sensing and
communication. Most of sensors are equipped with batteries,
thus it is a critical problem how to minimize the sensor move-
ment for saving the energy, thus prolonging the network’s
lifetime.

A widely-used random sensor deployment model assumes
that sensors, dispersed from an airplane, are randomly dis-
tributed in a deployed area [4]. This deployment model
requires that sensors are dispersed by a airplane flying at
a low altitude because of sensors’ small measurement and
light weight; otherwise, sensors may have a very large offset
from their target landing points, and some sensors cannot

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 156301

https://orcid.org/0000-0002-1014-3166
https://orcid.org/0000-0002-7666-8985


S. Li et al.: Optimizing the Sensor Movement for Barrier Coverage in a Sink-Based Deployed Mobile Sensor Network

communicate with other sensors. In some applications such as
the battlefield surveillance and nuclear leakage monitoring,
it is impossible that the airplane is flying at a low altitude and
thus a new deployment model should be explored.We assume
that a sink station and some mobile sensors are packed up as
a package. These packages are dispersed by a airplane, which
are distributed randomly in a deployed area. After these
packages are deployed, the sink stations communicate with
their neighbor sink stations, then compute the final positions
of mobile sensors and schedule the sensors to move to the
desired positions for achieving barrier coverage. Since the
mobile sensors may have quite different moving distances,
the mobile sensors in a package are equipped with different
initial energies. The sensor with more initial energy is sent
to a farther final position. This kind of deployment model is
called as the sink-based deployment model, which has some
advantages. First, sinks can communicate with neighbor sinks
easily for their large communication range. Second, sinks
can compute the final positions of sensors for their powerful
computing ability and storage capacity. Third, fewer mobile
sensors are used than the random deployment model.

This model was first studied in the target coverage problem
in the work [5]. It assumed that initially all the sensors are
located at k sink stations and proposed a polynomial-time
approximation scheme to minimize the moving distance of
sensors to cover all targets in the surveillance region. How-
ever, little work has been studied in the barrier coverage prob-
lem based on this deployment model and we are the first to
study this problem.Given a line barrier and n sink stations that
can supply a required number of sensors, we study the barrier
coverage problem which aims to find the mobile sensors’
final positions on the line barrier so that the barrier is covered
and the total sensor movement is minimized. We find that the
barrier coverage problem under the sink-based deployment
model can be solved by a polynomial-time algorithm. The
challenge of this problem is that the sensors can move to
arbitrary point of the line barrier.

The main contributions of this paper are summarized as
follows:

1) To the best of our knowledge, we are the first to study the
barrier coverage problem under the sink-deployment model.
This model is suitable for the scenario that sensors can only
be dispersed from a airplane flying at a high altitude.

2) We present a fast algorithm for determining the nearest
sink for a given point on the barrier and a greedy algorithm for
finding the final positions of sensors to cover the line barrier
energy-efficiently.

3) We propose an optimal algorithm for finding the final
positions of sensors to cover the line barrier while minimizing
the total sensor movements. First, we define a concept of
virtual-cluster which represents a subset of sensors cover-
ing a specified line segment of the barrier and their sensor
movements are minimized. Then we construct a weighted
barrier graph with the virtual-clusters modeled as vertexes
and the weight of each vertex as the total sensor movements
of the virtual-cluster. Two vertexes have an edge if these

two corresponding sensor-clusters overlap. We prove that
the minimum total sensor movements for achieving barrier
coverage is the minimum total weights of the path between
the two endpoints of the line barrier in this graph.

4) By extending the techniques used for the line barrier
coverage, we also propose a polynomial-time algorithm for
the barrier coverage problem when the barrier is a cycle.

5) We conduct simulations to evaluate the performance of
our algorithms.

The remainder of this paper is organized as follows.
We present the previous work in Section 2. The network
model and the problem definition are given in Section 3.
We present a fast algorithm for determining the nearest sink
for a given point and then propose a greedy algorithm for
the line barrier coverage problem in Section 4. An optimal
polynomial-time algorithm is also proposed for the line bar-
rier coverage problem in Section 5. We propose an optimal
algorithm for the cycle barrier coverage problem in Section 6.
Extensive performance evaluations of our algorithms are
presented in Section 7. Finally, we conclude this paper in
Section 8.

II. PREVIOUS WORK
Barrier coverage in wireless sensor network has been studied
for over ten years. Most of the work focuses on stationary
sensor network [6]–[11]. Since the mobile sensors can move
to the desired positions, fewer sensors are used to achieve
barrier coverage. Recently, the researchers turn to study how
to deploy the mobile sensor to achieve barrier coverage in
mobile sensor network, especially minimizing the sensor
movement.

Some work studied the barrier coverage problem in one-
dimensional setting. Suppose the barrier is a line segment
and all sensors are initially located on the line containing
the barrier. Some work studied the minimum maximum sen-
sor movement problem (MinMax). The work [12] first pro-
posed anO(n2) time algorithm for solving this problem when
the sensing range of sensors are uniform. The work [13]
improved the time complexity to O(n log n) for the uniform
case, and also proposed an O(n2 log n) time algorithm when
the sensing ranges of sensors are arbitrary. The work [14]
studied the minimum total sensor problem (MinSum). It pro-
posed an O(n2) time algorithm when the sensing ranges of
sensors are uniform and proved the problem is NP-complete
by reduction to the 3-partition problem for the general case.
The work [15] studied the minimum sensor number problem
(MinNum). It proved the problem is NP-hard for the gen-
eral case and proposed efficient algorithms for the uniform
case.

Some work studied the barrier coverage problem in two-
dimensional setting. Suppose the barrier is a line segment
and all sensors are initially located in a plane containing
the barrier. The minimum total sensor problem (MinSum)
was studied in [16] and was proved to be NP-hard when
the sensing range of sensors are arbitrary and can be solved
in O(n2) time when the sensors can only move vertically
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to the barrier. The minimum maximum sensor movement
problem (MinMax) was studied in [16] and was proved be
NP-hard when the sensing range of sensors are arbitrary. This
problem can be solved in O(n log n) time when the sensors
can only move vertically to the barrier. The work [17] first
studied the MinMax problem when the sensing ranges of
sensors are uniform and presented an optimal algorithm. The
work [18] studied how to form the maximum number of
barriers and also minimize the maximum sensor movement
when the number of sensors is given and the positions of the
barriers are not known a priori. It proposed a two-phase sensor
mobility scheme, which was proved order optimal.

Some work studied the case when the barrier is a circle
or simple polygon. The work [19] studied the MinMax prob-
lem and proposed an O(n3.5 log n) time algorithm for cycle
barriers and proposed an O(mn3.5 log n) time for polygon
barriers, where m is the number of edges of the polygon.
The work [19] studied the MinSum problem and proposed a
PTAS. TheMinMax result for polygon barriers was improved
by [20], which proposed an O(n2.5 log n) algorithm. It also
proposed an O(n4) time algorithm for the MinSum problem
when the sensors are moved from the circle perimeter to a
regular n-gon. The work [21] studied how to cover the targets
on the line bymobile sensors while minimizing the maximum
sensor movement and it was proved that this problem is
NP-hard when the sensors are initially on this line and the
sensing ranges of sensors are non-uniform.

Thework [22] studied the hybrid sensor network composed
by stationary sensors andmobile sensors. The problem is how
to move mobile sensors to fill the gaps while balancing the
energy consumptionwhen the stationary sensors are deployed
under the line-based deployment. The work [23] studied how
many mobile sensors are needed to form k barriers when
the stationary sensors are deployed and proposed an optimal
algorithm. The work [24] studied the problem when there are
not enough sensors to form a barrier and proposed a dynamic
sensor patrolling algorithm. It proved that the total sensor
movement during one time slot is minimized. The work [25]
studied the dynamic barrier coverage problem by combining
an inspection robot and stationary sensors and proposed a
heuristic algorithm based on game theory.

III. PRELIMINARIES AND PROBLEM STATEMENT
In this section, we present the networkmodel and the problem
formulation.

A. NETWORK MODEL
We assume that the deployed area is a two-dimensional rect-
angular area with the length L and the width W . A barrier is
a line segment starting from [0, 0] to [L, 0] in the deployed
area. Suppose n sink stations SK = {sk1, sk2, . . . , skn}
are randomly deployed along the barrier, whose positions
are {(xi, yi)|i = 1, 2, . . . , n}. The sink stations can supply a
required number of sensors and send the sensors to locate at
one point on the barrier for achieving barrier coverage. Sen-
sors can move in any direction. The movement of sensor si,

denoted by di, is the Euclidean distance of the sensor’s initial
position pi and its final position p′i, that is di = dist(pi, p′i).
The sensing range of the sensors are denoted as r .
We also study the case when the barrier is a cycle. The

cycle barrier is located in the deployed area with the cen-
ter at [x0, y0] and the radius R. Let p denote the point on
the circle barrier, then it can be represented by a 4-tuple
< R, θ, xi, yi >, where (R, θ) is polar coordinate of p and the
(xi, yi) is the rectangular coordinate of p. We choose the point
with its polar coordinate [R, 0] as the origin of B denoted
as p0. Suppose n sink stations SK = {sk1, sk2, . . . , skn} are
randomly deployed along the cycle. The sink stations can
supply a required number of sensors and send the sensors to
locate at one point on the cycle for achieving barrier coverage.

B. PROBLEM DEFINITION
Our barrier coverage problem focuses on how to schedule the
sensors to cover the barrier so that the total sensor movement
is minimized.

Suppose the barrier is a line segment, we define n-Sink
Minimum Sum of Movement for Line Barrier Coverage
(L-MSBC) problem as follows:
Definition 1 (n-Sink Minimum Sum of Movement for Line

Barrier Coverage Problem, Short for L-MSBC Problem):
There are n sink stations SK = {sk1, sk2, . . . , skn} which
send mobile sensors to cover the line barrier. The L-MSBC
problem is to schedule the sinks to send the mobile sensors
S = {s1, s2, . . . , sm} to locate on the line barrier so that this
line barrier is covered by the sensing ranges of the mobile
sensors and the total sensor movement

∑m
i=1{dist(pi, p

′
i)} is

minimized.
Suppose the barrier is a cycle, we define n-Sink Minimum

Sum of Movement for Cycle Barrier Coverage (C-MSBC)
problem as follows:
Definition 2 (n-SinkMinimum Sum ofMovement for Cycle

Barrier Coverage Problem, Short for C-MSBC Problem):
There are n sink stations SK = {sk1, sk2, . . . , skn} which
send mobile sensors to cover the cycle barrier. The C-MSBC
problem is to schedule the sinks to send the mobile sensors
S = {s1, s2, . . . , sm} to locate on the cycle barrier so that
this barrier is covered by the sensing ranges of the mobile
sensors and the total sensor movement

∑m
i=1{dist(pi, p

′
i)} is

minimized.

IV. THE FAST ALGORITHM FOR THE L-MSBC PROBLEM
In this section, we first present a fast algorithm for deter-
mining the nearest sink for a given point on the barrier and
then propose a greedy and fast algorithm for the L-MSBC
problem.

A. THE ALGORITHM FOR DETERMINING
THE NEAREST SINK
Given a point on the barrier, how to find the nearest sink to
send a sensor to locate at this point?

A trivial way is to compute all the distances between this
target point and each sink, and then find the nearest sink for
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FIGURE 1. Illustration of b_segments.

this point. Obviously, at least dL/2re sensors are needed to
cover the barrier. Thus, it costs O(nL/2r) time to find the
nearest sinks for all the sensors covering the barrier. If L is
a big number, this method is time consuming. We’ll show a
fast method to find the nearest sinks.

The main idea of our algorithm is to compute the set
of equaldistant points on the line barrier for every pair
of sinks, then find a subset of equaldistant points, called
boundary-points, such that any point between two consecu-
tive boundary-points in this subset has a same nearest sink,
and compute the nearest sink for the subsegment between
such two consecutive points. Given a target point, we first
identify the subsegment which include it and then return the
nearest sink for this subsegment as the nearest sink for this
target point.

Before showing the detail of this algorithm, we first intro-
duce some definitions.
Definition 3 (balance-Point): A point on the line barrier

is called balance-point, denoted as bpk , if the distance from
sink si to it is equal to that from sink sj to it.
A balance-point is an equaldistant point on the line barrier

for a pair of sinks. Let BP denote the set of balance-points.
For a pair of sinks si and sj, we compute the balance-point
bpk by drawing the vertical bisector of the line segment sisj,
and bpk is the intersection point between this vertical bisector
and the line barrier. For every pair of sinks, we can compute
all the balance-points and sort them increasingly. As shown
in Fig.1, bp1, bp2, bp3 are balance-points.
Definition 4 (boundary-Point): A balance-point is called

boundary-point, denoted as dpi, if the two points dpi-ε and
dpi + ε have a different nearest sink, where ε is a very small
positive number.

Let DP denote the set of boundary-points. We can com-
pute all the boundary-points by binary searching all the
balance-points and computing their nearest sink.
Lemma 5: Any point on the subsegment bounded by two

consecutive boundary-points has the same nearest sink.
Proof: Suppose there exist two points pi1 , pi2 on the

subsegment bounded by two consecutive boundary-points
dpj1 , dpj2 has different nearest sink skt1 , skt2 .
It is easy to know that there is a balance-point bpk between

pi1 and pi2 which has the same distance to skt1 and skt2 .
It implies that bpk is also a boundary-point. It is a contradic-
tion, since dpj1 , dpj2 are two consecutive boundary-points.
Therefore, the lemma is proved.

Definition 6 (b_Segment): A line segment is called a
b_segment if its endpoints are two consecutive boundary-
points.

Let bsi denote the ith b_segment and BS = {bs1, bs2, . . . ,
bsτ } denote the set of b_segments. Let BE = {bei|1 ≤
i ≤ τ } = {b0, b1} ∪ DP denote the set of the endpoints
of b_segments, which consists of the endpoints of the line
barrier and the set DP. That is bsi = dpi−1dpi.
Definition 7 (Assigned Sink): Sink sk is said to be

assigned sink of b_segment bsi if sk is the nearest sink of one
point on bsi.
Let asi denote the assigned sink of b_segment bsi and

AS = {as1, as2, . . . , asτ } be the set of these assigned
sinks. As shown in Fig.1, {bp1, bp2, bp3} is a set of balance-
points. Since bp2 is not a boundary-point, {bp1, bp3} is the
set of boundary-points. Thus, {bs1, bs2, bs3} is the set of
b_segments and BE = {b0, bp1, bp3, b1}, where b0 and b1
are the endpoints of the barrier and {sk1, sk2, sk3} is the set of
assigned sinks.

These b_segments have the following property:
Lemma 8: Any two b_segments have different assigned

sinks.
Proof: We’ll prove it by contradiction. Suppose there

are two b_segments which have the same assigned sink.
Suppose b_segment bsi and bs(i+1) have a common end-

point bei. Sink ski is the assigned sink of bsi while sink sk(i+1)
is the assigned sink of bs(i+1). We claim that the line segment
ski+1bei is on the right of skibei. If not, the distance from sink
ski+1 to bei+1 is larger than that from sink ski to bei+1, which
is contradiction.

Suppose there is one b_segment bsi+1 between these two
b_segments bsi and bsi+2. Suppose bsi and bsi+2 have the
same assigned sink ski while ski+1 is the assigned sink of
bsi+1. As shown in Fig.2(a), we draw a circle ci with bei
as its center and beiski as its radius. We also draw another
circle ci+1 with bei+1 as its centre and bei+1ski as its radius.
By the claim, ski+1bei is on the right of skibei. Thus, ski+1
is in the circle ci+2, which implies that bei+1ski+1 is shorter
than bei+1ski. However, bei+1ski+1 is equal to bei+1ski since
bei+1 is the common point of bsi+1 and bsi+2, which is a
contradiction. Thus, if there is one b_segment between two
b_segment, these three b_segments have different assigned
sinks.

Suppose there are two b_segments bsi+1 and bsi+2 between
these two b_segments bsi and bsi+3. As shown in Fig.2(b), bsi
and bsi+3 have the same assigned sink ski, while ski+1 and
ski+2 are the assigned sinks of bsi+1 and bsi+2 respectively.
We draw a circle ci with bei as its centre and beiski as its
radius. We also draw another circle ci+1 with bei+2 as its
centre and bei+2ski as its radius. By the claim, skibei+2 is on
the right of ski+2bei+2. Thus, ski+2 is in the circle ci,
which implies beiski+2 is shorter than beiski. Since ski is
the assigned sink of bsi, beiski+2 is not shorter than beiski,
which is a contradiction. Thus, if there are two b_segments
between two b_segments, these four b_segments have differ-
ent assigned sinks.
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FIGURE 2. Illustration of lemma 8.

Suppose there are m(m > 2) b_segments between these
two b_segments. Similarly, we can prove that these two
b_segments have different assigned sinks using the above
method.

Therefore, the lemma is proved.
Next, we propose an algorithm to find all the b_segments

and their assigned sinks by computing the boundary-points.
First, compute all the balance-points and sort them increas-

ingly, denoted as bp1, bp2 . . . bpm; Let bp0, bpm+1 denote the
endpoints of the line barrier; Second, let i = 0, j = 0 and
bei = bpj, compute the nearest sink of the point bpj+ε as sk ,
where ε is a small positive number; Third, use binary search
technique to find the largest balance-point bpl whose nearest
sink is also sk . Let i = i+1 and bei = bpl . Next, if l ism+1,
the algorithm stops; Otherwise, compute the nearest sink of
the point bei+ε as sk . Go to the third step. The pseudocode of
the algorithm is presented in Algorithm 1. It costs O(n2logn)
time.

Given one point of the line barrier (xp, 0), we propose a
method to find its nearest sink by binary searching the set
BE and finding the index i such that bei−1 < x ≤ bei. The
nearest sink of this point is asi. The detail of this algorithm is
in Algorithm 2. It costs O(logn) time.

B. GREEDY ALGORITHM FOR THE L-MSBC PROBLEM
Given the locations of sinks and a line barrier, the L-MSBC
problem is how to calculate the final locations of sensors
sent by sinks such that the line barrier is covered and the
total sensor movements are minimized. We propose a greedy

and fast algorithm for the L-MSBC problem. In the greedy
algorithm, we send sensors to cover the grid points on the
line barrier G = {r, 3r, 5r, . . . , }. We always choose the
closest sink to send the sensor to locate at each grid points
until all the grid points are covered. This algorithm runs in
max{O(Llogn/2r),O(n2logn)} time.

Algorithm 1 Algorithm for Computing the Set of
b_Segments
INPUT: SK = {sk1, sk2, . . . , skn}, L
OUTPUT: BE = {be0, be1, . . . , beτ }, AS =

{as1, as2, . . . , asτ }
1: bp0←0, k ← 1, AS ← φ;
2: for each ski in SK
3: for each skj (i < j) in SK
4: calculate bpk ;
5: if bpk < L
6: k ++;
7: endif
8: endfor
9: endfor
10: bpk ← L;
11: sort bp0, bp1, . . . , bpk increasingly;
12: i←0, be0← bp0, mid ←0, BE ← BE ∪ {be0};
13: while bei! = L
14: l ← mid + 1; r ← k;
15: find the nearest sink sk1 for the point bei + 0.001;
16: while l ≤ r
17: mid ← (l + r)/2;
18: find the nearest sink sk2 for the point bpmid + 0.001;
19: if sk1 6= sk2
20: r ← mid − 1;
21: else
22: l ← mid + 1;
23: endif
24: endwhile
25: bei+1← bpmid ;
26: BE ← BE ∪ {bei+1};
27: AS ← AS ∪ {sk};
28: i← i+ 1;
29: endwhile
30: return BE,AS;

V. THE OPTIMAL ALGORITHM FOR
THE L-MSBC PROBLEM
In this section, we propose an optimal algorithm for the
L-MSBC problem by introducing a weighted barrier graph
model.

A. WEIGHTED BARRIER GRAPH
We first give some definitions as follows.
Definition 9 (Projective-Point): A point on the line bar-

rier, denoted as ppi, is called the projective-point of sink si
if sink si’s x-coordinate equals to ppi’s x-coordinate.
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Algorithm 2 Algorithm for Finding the Nearest Sink When
the Barrier Is a Line Segment
INPUT: BE , AS, xp
OUTPUT: sk
1: l ← 1; r ← |BE|;
2: while l ≤ r
3: mid ← (l + r) /2;
4: if BEmid > xp
5: r ← mid − 1;
6: else
7: l ← mid + 1;
8: endif
9: endwhile
10: return skmid ;

Algorithm 3 Greedy Algorithm for the L-MSBC Problem
INPUT: SK = {sk1, sk2, . . . , skn}, L, r
OUTPUT: P, d
1: compute BE,AS using Algorithm 1;
2: p← r, d← 0;
3: while p < L + r
4: find the nearest sink ski to p using Algorithm 2;
5: d+ = dist(p, ski);
6: put p into P;
7: p = p+ 2r ;
8: endwhile
9: return P, d ;

FIGURE 3. Illustration of projective-subsegments.

The line segment between two projective-points is called a
projective-subsegment.
Definition 10 (Projective-Subsegment): A line segment

on the line barrier, denoted as psi = ppippj, is called
a projective-subsegment if both endpoints are also the
projective-points.

There are O(n2) projective-subsegments. As shown
in Fig.3, pp0, pp1, pp2, pp3 are the projective-points and
ps1, ps2, . . . ps6 are the projective-subsegments.
Lemma 11: For a projective-subsegments psk = ppippj,

the minimum number of sensors needed for covering it,
denoted as n1k , is d((ppj − ppi) − 2r)/2re, while the

FIGURE 4. Illustration of sensor-clusters.

maximum number of sensors needed, denoted as n2k ,
is d((ppj − ppi)+ 2r)/2re.

Proof: The line segment starting from ppi to ppi + r ,
denoted as ppi (ppi + r), can be covered by the sensor
located within its left neighbor projective-subsegment. Sim-
ilarly,

(
ppj − r

)
ppj can be covered by the sensor located

within the right neighbor projective-subsegment. Thus, the
minimum number of sensors needed for covering psk is
the maximum number of sensors needed to cover the line
segment (ppi + r)

(
ppj − r

)
. Since these sensors are in

attaching positions, d((ppj − ppi) − 2r)/2re sensors are
needed. Thus, the minimum number of sensors needed is
d((ppj − ppi)− 2r)/2re.
Suppose the line segment (ppi − r) ppi is covered by a

sensor located at psk and ppj
(
ppj + r

)
is covered by a sensor

located at psk . Thus, the maximum number of sensors needed
is d((ppj − ppi)+ 2r)/2re.
Definition 12: Sensors si1 , si2 , . . . , siq are said to be in

attaching positions if any pair of neighbor sensors overlap at
only one point, that is ∀1 ≤ j < q, xij+1 = xij + 2r holds.
Lemma 13: In a sensor deployment of minimizing the total

sensor movements, the sensors are in attaching positions
if their positions are within, not including, two consecutive
projective-points.

Proof: Suppose there is a sensor in these sensors which
overlaps with its left neighbor sensor at more than one
point. If the x-coordinate of this sensor’s final position is
smaller than that of this sensor’s initial position, the sen-
sor’s final position can be shifted to the right a bit, which
can reduce its movement; otherwise, the final position of
its left neighbor sensor can be shifted to the left a bit,
which can reduce its movement. It is a contradiction of the
optimality.

Suppose there is a sensor in these sensors which overlaps
with its right neighbor sensor at more than one point. We can
also prove that it is a contradiction of the optimality.

Thus, the lemma is proved.
Now we define a notion of sensor-cluster.
Definition 14 (Sensor-Cluster): A set of sensors {si1 , . . . ,

siτ } with final positions
{
p′i1 , . . . , p

′
iτ

}
is called a

sensor-cluster within ppippj if ppi ≤ p′i1 < . . . < p′iτ ≤
ppj holds and for any k (1 ≤ k < τ) which satisfies that
p′ik+1 − p

′
ik = 2r holds, where n1k ≤ τ ≤ n

2
k .

As shown in Fig.4, there are three sensor-clusters, which
are the set of sensors s1, s2, s3, the set of sensors s4, s5, s6, s7
and the set of sensor s8, s9, s10.
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Suppose the sensors’ initial positions are fixed and their
final positions should be within ppippj, we can calculate
a sensor-cluster such that the sensors’ total movements are
minimized.
Definition 15 (Virtual-Cluster): A sensor-cluster, con-

sisting of sensors
{
si1 , . . . , siτ

}
with final positions{

p′i1 , . . . , p
′
iτ

}
, is called a virtual-cluster, denoted as vcijl ,

within ppippj if initial positions of sensors
{
pi1 , . . . , piτ

}
are

fixed and
∑τ

j=1

(
p′ij − pij

)
is minimized, where 1 ≤ l ≤ γ .

We’ll define the notion of a weighted barrier graph as
follows.
Definition 16 (A Weighted Barrier Graph): G = (V ,

E,W ) of a mobile sensor network is constructed as fol-
lows: The set V consists of vertices corresponding to
the left endpoint of line barrier (s), the virtual-clusters({
vcijl |1 ≤ i ≤ j ≤ n, 1 ≤ l ≤ n

})
and the right endpoint of

line barrier (t). That is, V = {s ∪ t ∪ {vcijl |1 ≤ i ≤ j ≤ n,
1 ≤ l ≤ n}}. The set E =

{
e(vi, vj)

}
consists of

edges which are between two vertices if their corresponding
sensor-clusters overlap. A vertex has an edge with s or t if the
corresponding sensor-cluster covers the left or right endpoint
of line barrier. W : V → R is the set of the weights of
each vertices, where the weight w(vi) of vertex vi is the total
movement of sensors in the corresponding sensor-cluster.

Then we have the following lemma.
Lemma 17: Any path from s to t on the weighted barrier

graph G means that the barrier can be covered by the corre-
sponding sensor-clusters of the vertices on the path.

Proof: By the definition of a weighted barrier graph, two
vertices have an edge if their corresponding sensor-clusters
overlap. A vertex has an edge with s or t if the corresponding
sensor-cluster covers the left or right endpoint of line barrier.
Thus, if there is a path from s to t on the weighted barrier
graph G, there are sensor-clusters which cover the barrier
from left to right.
Theorem 18: The minimum total sensor movement needed

to form a barrier under the sink-deployment model is exactly
the minimum total weight of s−t path on the weighted barrier
graph G.

Proof: Suppose the minimum total weight of s− t path
on the weighted barrier graph G is larger than the minimum
total sensor movement needed to form a barrier. Recall that
the path with the minimum total weight is composed of
virtual-clusters which cover the whole line barrier.

By lemma 13 and the definition of the sensor-cluster,
it implies that the sensor deployment of minimizing the total
sensor movements, called the optimal sensor deployment,
is composed of sensor-clusters.

Now we can produce a sensor deployment whose total
sensor movement is smaller than this optimal sensor deploy-
ment. We check the sensor-clusters in the optimal sensor
deployment from the left to the right.

If the ith sensor-cluster is not a virtual-cluster, we can
replace this sensor-cluster by the corresponding virtual-
cluster. If there is a gap between it and its left neighbor

virtual-cluster, then these two virtual-clusters can be replaced
by the corresponding virtual-cluster; If there is still a gap
between this new virtual-cluster and its left neighbor, con-
tinue replacing these two virtual-clusters by the correspond-
ing virtual-cluster until there is no gap between it and its left
neighbor. Since the virtual-cluster is a sensor-cluster with the
minimum total sensor movement, thus the total sensor move-
ment can be decreased by the replacement of virtual-clusters.
Thus, a sensor deployment consisting of virtual-clusters is
produced, whose total sensor movement is smaller than the
optimal sensor deployment, which is a contradiction.

Thus, the Theroem is proved.

B. ALGORITHM DESCRIPTION
In this subsection, we’ll present an optimal algorithm of the
L-MSBC problem.

The main idea of this algorithm is to compute all possible
projective-subsegments, then compute the virtual-clusters for
each projective-subsegment, and construct a weighted barrier
graph with the virtual-clusters as the vertices. The optimal
sensor deployment is the vertices on the path of the minimum
total weights.

1) COMPUTING THE VIRTUAL-CLUSTERS
In this subsection, we’ll show how to compute the virtual-
clusters after the projective-subsegments are calculated.

Recall that the virtual-clusters are the optimal deployments
of sensors located within the projective-subsegment. The dif-
ficulty to compute the virtual-clusters is that the initial posi-
tions of sensors deployed are unfixed. We solve this problem
by dividing the range of the sensors’ final positions into some
subranges such that the initial-positions of sensors are fixed.
In each subrange, we can compute the optimal sensor deploy-
ment by using optimization technique as a virtual-cluster.

First, we calculate the range of sensors’ final positions. For
a projective-subsegments psk = ppippj, the final positions of
the sensors within it should satisfy the two conditions:

1) Their final positions should be within the projective-
subsegment;

2) These sensors should cover the line segment starting
from ppi + r to ppj − r ;
By lemma 11, the minimum number of sensors needed

for covering the projective-subsegment psk = ppippj is n1k .
We calculate the range of the sensors’ final position as
follows:

1) Suppose these sensors are in attaching positions.
We consider the final position of first sensor, which is called
archor-sensor. We can calculate the range of the archor-
sensor’s final position, called as sensor-range, as follows:

Case 1: Suppose the number of sensors in the
virtual-cluster is n1k . If

(
ppj − ppi

)
%2r = 0, then the

sensor-range is [2r + ppi, 2r + ppi]; Otherwise, the sensor-
range is

[(
ppj − ppi

)
%2r + ppi, 2r + ppi

]
.

Case 2: Suppose the number of sensors in the
virtual-cluster is n1k + 1. If

(
ppj − ppi

)
%2r = 0, then the
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sensor-range is [ppi, 2r + ppi]; Otherwise, the sensor-range
is
[
ppi,

(
ppj − ppi

)
%2r + ppi

]
.

2) Suppose the first sensor is located the projective-point
and the other sensors are in attaching positions. Then we
choose the second sensor as the archor-sensor. This case can
be calculated as Case 1.

3) Suppose the last sensor is located the projective-point
and the other sensors are in attaching positions. Then we
choose the first sensor as the archor-sensor. This case can be
calculated as Case 1.

Second, we divide the sensor-range into some subranges,
called as sensor-subrange, such that the initial-positions of
sensors are fixed when the archor-sensor is located in this
subrange.

The sensor-subranges are calculated as follows:
1) check out all the boundary-points within this

subsegment;
2) calculate the anchor-sensor’s final position, called

change-point, such that there is a sensor in this sensor-cluster
exactly located at one boundary-point;

3) these change-points divide the sensor-range into
sensor-subranges.

Suppose sensor-range is [a, b] and the boundary-point
is bpi. Then the change-point cpj can be calculated as (bpi −
a)%2r + a. If cpj is larger than b, this change-point is not
within the sensor-range and ignored.

Third, we compute the optimal sensor deployment when
the archor-sensor is located with a sensor-subrange.

Suppose the sensors for covering psk = ppippj are
s1, s2, . . . sm. The archor-sensor is located in one sensor-
subrange [a1, b1] with initial position (x1, y1) and final posi-
tion (x, 0). Let yp1 , yp2 be the sensor movement when a sensor
is located at the left and right endpoints of for psk respectively.
Depending on four cases, we calculate the minimum total
sensor movement as follows:

(1) When the number of sensors is m = n1k , the minimum
total sensor movement M1 is calculated as follows:

If
(
ppj − ppi

)
%2r = 0,

M1←
∑m

i=1

√
(x1 − (ppi + 2r)− (i− 1) ∗ 2r)2 + y21

else
M1← Minimize

∑m
i=1

√
(x1 − x − (i− 1) ∗ 2r)2 + y21

s.t. x ∈ [a1, b1] ⊆
[(
ppj − ppi

)
%2r + ppi, 2r + ppi

]
Then optimization method, such as interpolation method,

can be adopted to find the minimum total sensor movement
value.

(2) When the number of sensors is m = n1k +
1 and a sensor is located at the left endpoint of the
projective-subsegment, the minimum total sensor movement
M2 = M1 + yp1 .
(3) When the number of sensors is m = n1k + 1 and there

is no projective-sensor, the minimum total sensor movement
M3 is calculated as follows:

If
(
ppj − ppi

)
%2r = 0,

M3←
∑m

i=1

√
(x1 − (ppi + r)− (i− 1) ∗ 2r)2 + y21

else
M3← minimize

∑m
i=1

√
(x1 − x − (i− 1) ∗ 2r)2 + y21

s.t. x ∈ [a1, b1] ⊆
[
ppi,

(
ppj − ppi

)
%2r + ppi

]
Then optimization method, such as interpolation method,

can be adopted to find the minimum total sensor movement
value.

(4) When the number of sensors ism = n1k+1 and a sensor
is located at the right endpoint of the projective-subsegment,
the minimum total sensor movement M4 = M1 + yp2 .
Finally, we’ll compute all the virtual-clusters.
The virtual-cluster is denoted by< M , l, r, indx >. LetM

denote the minimum total sensor movement of this cluster,
while l(resp. r) is represented as the leftmost(resp. rightmost)
covering point of this cluster. Let indx denote the index of the
projective-subsegment. The left endpoint of the line barrier is
also regarded as a virtual-cluster denoted by < 0, 0, 0, 0 >,
while the right endpoint of the line barrier is also regarded as
a virtual-cluster denoted by < 0,L,L, size(PS)+ 1 >. Note
that size(PS) is the number of the projective-subsegments.
There areO(n2) projective-subsegments. Besides, there are

O(n) sensor-subranges for each projective-subsegment. Thus,
there are O(n3) virtual-clusters and it costs O(n3C) time to
calculate all virtual-clusters, where C is the time consumed
by the optimization method adopted to find the minimum
total sensor movement value.

2) CONSTRUCTING WEIGHTED BARRIER GRAPH
Now we’ll show how to construct the weighted barrier graph.

We construct a weighted barrier graph G = (V ,E). Each
node in V represents a virtual-cluster and its weight is the
virtual-cluster’sM value. Let s and t be the virtual-clusters of
the left and right endpoint of the line barrier respectively. The
weight of each edge is set as follows:

Initially, the weight of each edge is set to be infinity.
For two nodes vci = {Mi, li, ri, indxi} and vcj ={
Mj, lj, rj, indxj

}
, the weights of the edges e(i, j) and e(j, i)

are calculated as follows:
1) If indxi 6= indxj, rj ≥ ri, ri ≥ lj and lj > li hold, e(i, j)

is set to be Mj;
2) if indxi 6= indxj, rj < ri, ri ≤ lj and lj < li hold, e(j, i) is

set to be Mi;
Our optimization problem is converted into finding a path

with the minimum total weights from s to t in G. We use
Djikstra algorithm to find the minimum total weight path,
which represents the minimum total sensor movement. The
Djikstra algorithm costs O(E + V lgV ) time.
Theorem 19: The L-MSBC problem can be solved in

O(n3lgn) time.
Proof: By Theorem 18, Algorithm 4 can find the mini-

mum total sensor movements for the L-MSBC problem.
There are O(n3) virtual-clusters, thus there are O(n3) ver-

tices. There are O(n3) edges, since only two vertices belong-
ing to the neighbor projective-subsegments have an edge.

Thus, Algorithm 4 runs in O(n3lgn) time.
Therefore, the Theorem is proved.
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Algorithm 4 The Optimal Algorithm for the L-MSBC
Problem
Input: SK = {sk1, . . . skn}, L
Output: M // the total sensor movement
1: Generate all possible projective-subsegments;
2: Generate all virtual-clusters;
3: Generate the weighted barrier graph G = (V ,E).
4: Run djikstra algorithm on this graph and find a path with
the minimum total weights from s to t in G.
5: return the minimum total weights of the path as M ;

VI. THE OPTIMAL ALGORITHM FOR THE
C-MSBC PROBLEM
In this section, we study the C-MSBC problem for achieving
barrier coverage when the barrier is a cycle by extending the
technique used for line barrier coverage.

A. OVERVIEW
Although the cycle barrier coverage problem is as similar as
the line barrier coverage problem, the solution for line barrier
coverage cannot be directly applied to solve the cycle barrier
coverage case. There are some challenging issues. First, how
to determine the starting point and ending point of the cycle
barrier as the line barrier? Second, even though these two
points are determined, there exists a sensor in the sensor
deployment which may cover both the starting point and
ending point. How to solve this special case? Third, we cannot
sort the points on the circle barrier by their x-coordinates like
the line barrier.

We’ll study these issues and try to extend the technique
used for line barrier coverage to solve the circle barrier cover-
age problem. The basic idea is to introduce weighted barrier
graph and find the minimum weight cycle on the weighted
barrier graph to obtain the minimum total sensor movement
needed to form a cycle barrier.

B. DETERMINING THE NEAREST SINK
In this subsection, we propose a method to determine the
nearest sink for one point of the cycle barrier.

We adopt the algorithm from the line barrier coverage,
which is to first compute the boundary-points and then find
all the b_segments and the assigned sinks. However, there are
two differences between the line barrier coverage and cycle
barrier coverage. First, there may be two boundary-points
for each pair of sinks, thus the algorithm for the line bar-
rier can not be directedly applied to the cycle barrier cov-
erage. It implies that two b_segments may have the same
assigned sinks. Second, there may exist a b_segment which
crosses the starting point and ending point of the cycle
barrier.

To handle these two challenges, we propose an algorithm.
We choose the point with its polar coordinate [R, 0] as

the origin of B denoted as bp0 and bpµ+1. Then calculate
all the boundary-points, and then sort these boundary-points

by their polar angles, denoted by bp1, . . . bpµ. Our algorithm
considers the set of boundary-points BP = {bp0, bp1, . . .
bpµ, bpµ+1}. For simplicity, bpi = θi, where θi is the polar
angle of the point bpi. The basic idea is to compute all
b_segments satisfying that the neighbor b_segments share
different assigned sinks. Let bsi denote the ith b_segment and
BS = {bs1, bs2, . . . , bsτ } denote the set of b_segments. Let
BE = {be0, be1, . . . beτ } denote the set of the b_segments’
endpoints. That is bsi = ̂bei−1bei. The procedures of the
algorithm are described as follows:

1) Initialize BE as an empty set. Let i = 0, j = 0 and
be0 = bp0.

2) Calculate the assigned sink sk which is the nearest sink
of the point bei + 0.001.
3) Let j = j + 1. Check the boundary-point bpj + 0.001

whether its nearest sink is also sk . If yes, go to 3); Otherwise,
let i = i+ 1 and bei = bpj.
4) If j is η + 1, stop; otherwise, go to 2).
The pseudocode of the algorithm is presented in

Algorithm 5. It costs O(n3) time.

Algorithm 5 Algorithm of Finding the Nearest Sink When
the Barrier Is a Cycle
INPUT: SK = {sk1, sk2, . . . , skn}
OUTPUT: BE = {be0, be1, . . . , beτ }, AS =

{as1, as2, . . . , asτ }
1: bp0← 0, k ← 1, BE ← φ, AS ← φ;
2: for each sink ski
3: for each sink skj (i < j)
4: calculate bpk ;
5: k ++;
6: endfor
7: endfor
8: bpk ← 2π ;
9: sort bp0, bp1, . . . , bpk increasingly by their angles;
10: i← 0, j← 0, be0← bp0; BE ← BE ∪ {be0};
11: calculate the nearest sink sk1 of the point be0 + 0.001.
12: while bpj! = bpk
13: calculate the nearest sink sk2 of the point bpj + 0.001.
14: if sk1 6= sk2
15: BE ← BE ∪ {bpj};
16: AS ← AS ∪ {sk1};
17: i++;
18: sk1← sk2;
19: endif
20: j← j+ 1;
21: endwhile
22: return BE,AS;

C. CALCULATING PROJECTIVE-SUBSEGMENTS
In this subsection, we present a method to divide the cycle
barrier into segments called projective-subsegments.

We first calculate the projective-points. Note that for each
sink, there are two projective-points and we only choose
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FIGURE 5. Illustration of projective-points on the cycle barrier.

the nearer projective-point. Let PP = {pp1, . . . ppτ } denote
the set of projective-points. The p_segments are the arcs
satisfying that the endpoints of the arc are two projective-
points. Notes that for any pair of two projective-points,
there may exist two p_segments and one p_segment may
cross the starting point and ending point of the cycle bar-
rier, which is named crossed p_segment. As seen in Fig 5,
the projective-subsegment p̂p3pp1 crosses the point p0.
To handle the crossed p_segments, we add a duplication of
the projective-points to the set of projective-points, with the
polar angle added by 2π . Sort the projective-points by their
polar angles and the set of projective-points is denoted by
PP =

{
pp1, pp2, . . . , pp2(n−1), pp2n

}
with their polar angles

{θ1, θ2, . . . 2π + θn−1, 2π + θn}. A projective-subsegment is

denoted by psi =
a

ppjppk (j < k) and Let PS = {ps1, ps2, . . .}
denote the set of p_segments.

Then we enumerate all possible projective-subsegments
and there are four types of projective-subsegments. Let ppi
denote the starting endpoint of one projective-subsegment
and ppj be the ending endpoint.
For the first type of projective-subsegment, ppi < 2π and

ppj < 2π hold.
For the second type of projective-subsegment, ppi ≥ 2π

and ppj ≥ 2π hold.
For the third type of projective-subsegment, ppi < 2π ,

ppj > 2π and ppj − ppi ≤ 2π hold.
For the fourth type of projective-subsegment, ppi < 2π ,

ppj > 2π and ppj − ppi > 2π hold.
It is easy to know that the second type and the fourth of

projective-subsegment can be transformed into the first type
of projective-subsegment. Thus, we only choose the first type
and the third type of projective-subsegments and put them
into the set PS, which has O(n2) projective-subsegments.
The procedures of the algorithm are described as

follows:
1) Initialize PS and PP as an empty set.
2) For each sink, compute its projective-points. Choose

the nearer projective-point and add it to PP. We also add a
duplication of this projective-point toPP, with the polar angle
added by 2π .

3) Sort these projective-points by their polar angles.

4) For each pair of ppi and ppj (i < j), if ppi < 2π
and ppj − ppi ≤ 2π hold, then add the p_segment ppjppk
into PS.

D. DEFINING VIRTUAL-CLUSTER
Now we compute all the virtual-clusters after calculating
the projective-subsegments. First, we compute the minimum
number of sensors within each projective-subsegment. Sim-
ilar as the line barrier, we divide the range of sensors’ final
positions into subranges such that the sensors’ initial posi-
tions are fixed. We use the polar angle of the archor-sensor’
final position instead of its x-coordinate and use arcsin(r/R)
instead of r . The sensor-range and the sensor_subrange is
calculated as the line barrier.

Suppose the archor-sensor is located in one sensor-
subrange [a1, b1] with final position (R, θt1 ). Let yp1 , yp2 be
the polar radius of the initial position of the sensors whichwill
be located at the left and right endpoints of the projective-
subsegment. Let rr = arcsin(r/R). We calculate the ith
sensor’s initial position and final position. The ith sensor’s
final position is calculated as (R, θt1 + (i− 1) ∗ 2rr). That is,
the x-coordinate of the ith sensor is x ′i = Rcos(θt1 + (i− 1) ∗
2rr) and the y-coordinate is y′i = Rsin(θt1 + (i − 1) ∗ 2rr).
The ith sensor’s initial position is the position of its assigned
sink denoted by (xti , yti ). The virtual-cluster is calculated as
the line barrier. There are O(n3) virtual-clusters and it costs
O(n3C) time to calculate all virtual-clusters, where C is the
time consumed by the optimization method adopted to find
the minimum total sensor movement.

E. CONSTRUCTING WEIGHTED BARRIER GRAPH
We construct a directed weighted barrier graph G = (V ,E)
and the C-MSBC problem can be converted into finding
a cycle with the minimum total weights in G. Now we’ll
show how to construct the directed weighted barrier graph
G = (V ,E). Each node in V represents a virtual-cluster
and its weight is the virtual-cluster’s M value. The weight
of the edge of two nodes is not infinity if the corresponding
virtual-clusters belongs to different projective-subsegments
and they are connected. The weight of the edges are set as
follows:

Initially, the weight of all the edges are set to be infinity.
For two nodes vci = {Mi, li, ri, indxi} and vcj ={
Mj, lj, rj, indxj

}
, the weight of the edges e(i, j) and e(j, i) are

calculated as follows:
1) If indxi 6= indxj, rj ≥ ri, ri ≥ lj and lj > li hold, e(i, j)

is set to be Mi;
2) if indxi 6= indxj, rj < ri, ri ≤ lj and lj < li hold, e(j, i) is

set to be Mj;
3) if indxi 6= indxj, ri ≥ 2π , rj ≥ ri − 2π and ri − 2π > lj

hold, e(i, j) is set to be Mi;
4) if indxi 6= indxj, rj ≥ 2π , ri ≥ rj − 2π and rj − 2π > li

hold, e(j, i) is set to be Mj;
5) if ri − li ≥ 2π , e(i, i) is set to be Mi;
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Our optimization problem is converted into finding a cycle
with the minimum total weights in G. We can use the algo-
rithm in [26] to find the minimum weight cycle, which runs
in O(VE) time.
Theorem 20: The minimum total sensor movement needed

to form a cycle barrier is exactly the total weights
of the minimum weight cycle on the weighted barrier
graph G.

Proof: Suppose there is an optimal sensor deployment
of minimum total sensor movement forming a cycle barrier,
whose sensor movement is smaller than that of the minimum
weight cycle on G.

It is easy to know that there is a sensor-cluster in the
optimal sensor deployment, which is not a virtual-cluster.
By using the similar method in Theorem 19, we can also
produce a sensor deployment which has a smaller sensor
movement than the optimal sensor deployment, which is a
contradiction.

Thus, the Theorem is proved.
Theorem 21: The C-MSBC problem can be solved in O(n6)

time.
Proof: By Theorem 20, the C-MSBC problem can be

transformed to finding the minimum weight cycle on the
weighted barrier graphG. We can use the algorithm in [26] to
find the minimum weight cycle, which runs in O(VE) time.
There are O(n3) vertices and O(n3) edges in G. Thus, the
C-MSBC problem can be solved by O(n6) time.

VII. EVALUATION
In this section we evaluate the performance of the proposed
algorithms by simulation in two different cases.

A. THE LINE BARRIER CASE
Wefirst evaluate the solution for the L-MSBC problem called
SMC solution. The sinks are deployed randomly in a belt
region with length L and width W . The barrier is a line
segment in the belt region starting from [0, 0] to [L, 0]. L is
set to be 1057 and W is 30. The number of sinks is 5.
Each sink can send sensors to cover the barrier. The sensing
range of sensors is 22. We mainly focus on the minimum
total sensor movement for barrier coverage. This metric is
evaluated on the length of the line barrier, the width of the
deployed area, the number of sinks and the sensor’s sensing
range. We compare the SMC algorithm with the greedy algo-
rithm, which run 100 times. The data points are a average of
100 experiments.

Fig 6 shows the effect of the length of line barrier on
the minimum total sensor movement. The length of the line
barrier varies from 177 to 1200 with step 176. As the length
of the line barrier increases, the minimum total sensor move-
ment by two algorithms both increases. The reason is that
more sensors are needed to cover the line barrier . We can
see that the minimum total sensor movement by SMC is
always smaller than the result by the Greedy algorithm, which
implies that the SMC algorithm outperforms the Greedy
algorithm.

FIGURE 6. The length of the line barrier changes.

FIGURE 7. The width of the deployed area changes.

FIGURE 8. The number of sinks changes.

Fig 7 shows the effect of the width of the deployed
area on the minimum total sensor movement. The width of
the deployed area varies from 0 to 100 with the step 20.
With the increasing of the width of the deployed area,
the minimum total sensor movement by two algorithms both
increases nearly linearly. We can see that the result obtained
by SMC algorithm is about 90 percent of that by Greedy
algorithm.

Fig 8 shows the effect of the number of sinks on the
minimum total sensor movement. The number of sinks
varies from 3 to 13 with the step 2. With the increasing
of the number of sinks, the minimum total sensor move-
ment by two algorithms both decreases sharply until the
number of sinks approaches 7. After passing this value,
the result decreases slowly. This demonstrates a tradeoff
between the number of sinks and the minimum total sensor
movement required to achieve barrier coverage. The result
by SMC is always smaller than the result by the Greedy
algorithm.
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FIGURE 9. The sensing range of sensors changes.

FIGURE 10. The radius of the barrier cycle changes.

Fig 9 shows the effect of the sensing range of sensors on
the minimum total sensor movement. The sensing range of
sensors varies from 11 to 66 with 11 as the step size. As the
sensing range of sensors increases, the minimum total sensor
movement decreases. That’s becausemore sensors are needed
to achieve barrier coverage when the sensing range increases.
The result first decreases sharply, and then decreases slowly.
When the sensing range is larger than 55, the effect on the
result is not significant.

B. THE CYCLE BARRIER CASE
We evaluate the solution for the C-MSBC problem called
SCC solution. The barrier is a cycle with the radius R.
The sinks are deployed randomly along the cycle barrier
with the maximum offset W . Each sink can send sensors
to cover the cycle barrier. R is set to be 190 and W is set
to be 22. The sensing range of sensors, denoted as r , is set
to be 22. The number of sinks is 3. We mainly focus on
the minimum total sensor movement for barrier coverage.
This metric is evaluated on the radius of the barrier cycle,
the maximum offset of the sinks from the cycle barrier,
the number of sinks and the sensor’s sensing range. As similar
as the line barrier case, we also choose the greedy algorithm
for comparison. The greedy algorithm and the SCC algo-
rithm are run 100 times. The data points are a average of
100 experiments.

Fig 10 shows the effect of the radius of barrier cycle on the
minimum total sensor movement. The radius of barrier cycle
varies from 175 to 200 with step 5. The result by the SCC

FIGURE 11. The maximum offset of the sinks from the cycle barrier
changes.

FIGURE 12. The number of sinks changes.

FIGURE 13. The sensor’s sensing range changes.

algorithm is smaller than that by the Greedy algorithm, thus
SCC algorithm always outperforms the Greedy algorithm.
As the radius of barrier cycle increases, the minimum total
sensor movement also increases.We find that when the radius
of the barrier cycle approaches 190, the gap of the two curves
is the largest. Fig 11 shows the effect of the maximum offset
of the sinks from the cycle barrier on the minimum total
sensor movement. The maximum offset of the sinks from the
cycle barrier varies from 10 to 110 with the step 20. The result
by the two algorithms both increase as the maximum offset
of the sinks from the cycle barrier increases. That’s because
the sensors need to move a larger distance to cover the barrier
cycle.

Fig 12 shows the effect of the number of sinks on the
minimum total sensor movement. The number of sinks varies
from 2 to 6 with the step 1. The minimum total sensor
movement by two algorithms both decreases as the number
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of sinks increases. The minimum total sensor movement
decreases by 50 percent when the number of sinks increases
from 2 to 6. Fig 13 shows the effect of the sensing range of
sensors on the minimum total sensor movement. The sensing
range of sensors varies from 20 to 28 with 2 as the step
size. The minimum sensor movements by the two algorithms
both decrease as the sensing range of sensors increases. The
result decreases by 30 percent when the sensing range of
sensors increases from 20 to 28. The gap between these
two curves is the largest when the sensing range of sensors
is 22.

VIII. CONCLUSION
In this paper, we study the minimum total sensor movement
problem for barrier coverage under sink-based deployment
and propose some algorithms both for the line barrier and
the cycle barrier. To solve the line barrier case, we enumer-
ate all the projective-subsegments and compute all possible
optimal sensor deployments for each projective-subsegment
as virtual-clusters. Then we construct a weighted barrier
graph and find the path with the minimum weight, which is
the minimum total sensor deployment for achieving barrier
coverage. We also solve the cycle barrier case by extending
the techniques used in the line barrier case. In the future,
we will study an approximation algorithm for solving the
minimum total sensor movement problem for barrier cov-
erage under the assumption that sensors are randomly dis-
tributed in the surveillance area, which has been proved to be
NP-hard.
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