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Abstract

Deep learning has become a leading machine learning approach in many domains

such as image classification, face recognition, and autonomous driving cars. How-

ever, its success is predicated on the availability of immense labelled training sets.

Furthermore, it is usually the case that these data sets need to be well-balanced,

otherwise the performance of the trained model is compromised. The outstanding

performance of deep learning compared to other traditional machine learning

approaches is therefore traded off by the need of a significant amount of human

resources for labelling and computational resources for training. Designing effec-

tive deep learning approaches that can perform well using small and imbalanced

labelled training sets is essential since that will increase the use of deep learning

in many real-life applications.

In this thesis, we investigate several learning approaches that aim to improve

the data efficiency in training deep models. In particular, we propose novel

effective learning methods that enable deep learning models to perform well with

relatively small and imbalanced labelled training sets.

We first introduce a novel theoretically sound Bayesian data augmentation

(BDA) method motivated by the fact that the current dominant data augmentation

(DA), based on small geometric and appearance transformations of the original

training samples, does not guarantee the usefulness and the realism of the gener-

ated samples. We formulate BDA with the generalised Monte-Carlo expectation

maximisation (GMCEM). We theoretically show the weak convergence of GMCEM

and introduce an implementation of BDA based on a variant of the generative

adversarial network (GAN). We empirically demonstrate that our proposed BDA

performs better than the dominant DA above.

One of the drawbacks of BDA mentioned above is that the generation of
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synthetic training samples is performed without considering their informativeness

to the training process. Therefore, we next propose a new Bayesian generative

active deep learning (BGADL) approach that aims to train a generative model

to produce novel informative training samples. We formulate this algorithm

based on a theoretically sound combination of the Bayesian active learning by

disagreement (BALD) and BDA, where BALD guides BDA to produce synthetic

samples. We provide a formal proof that these generated samples are informative

for the training process. We provide empirical evidence that our proposed BGADL

outperforms BDA and BALD with respect to training efficiency and classification

accuracy.

The Bayesian generative active deep learning above does not properly handle

class imbalanced training that may occur in the updated training sets formed at

each iteration of the algorithm. We extend BGADL with an approach that is robust

to imbalanced training data by combining it with a sample re-weighting learning

approach. We empirically demonstrate that the extended BGADL performs well

on several imbalanced data sets and produce better classification results compared

to other baselines.

In summary, the contributions of this thesis are the introduction of the following

novel methods: Bayesian data augmentation, Bayesian generative active deep

learning, and a robust Bayesian generative active deep learning for imbalanced

learning. All of those contributions are supported by theoretical justifications,

empirical evidence and published or submitted papers.
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CHAPTER 1
Introduction

Although deep learning has been shown to be a dominant machine learning ap-

proach in image classification [53], speech recognition [39], face recognition [75,83],

autonomous driving cars [9, 44] and many other domains such as drug discov-

ery [59, 100] and genomics [29, 54, 60, 77], its training process tends to be inef-

ficient since it relies heavily on not only sufficiently large [92] but also well-

balanced [1, 46, 68] labelled training sets. The outstanding performance of deep

learning compared to other traditional machine learning approaches [60] such as

support vector machine (SVM) [14] or random forests (RFs) [6] is, therefore, traded

off by the need for immense amounts of human resources for labelling and com-

putational resources for training. Designing effective deep learning methods that

can generalise well using relatively small and imbalanced data sets is, therefore,

essential for researchers and practitioners since it can lead to a reduction in the

need for large training sets, computational resources, and balanced training sets.

Among current learning approaches proposed to improve the data efficiency in

training deep models such as few-shot learning [56, 69] or continual learning [80],

we are particularly interested in the following three approaches: active learn-

ing [42, 85], data augmentation [53, 99], and hybrid methods that combine these

two approaches [51, 98, 108]. To handle the class imbalance data issue, current

solutions aim to re-balance the data set using, for example, re-sampling [8, 46], or

sample re-weighting [78] methods.

One of the most effective learning approaches aiming to reduce the need for a

large labelled training set is pool-based active learning [32,42,85]. This pool-based
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2 Chapter 1. Introduction

active learning is motivated by the fact that gathering a large amount of unlabelled

data is relatively effortless while obtaining labelled data is much more challenging

and expensive. A typical active learning framework relies on a small labelled

training data set and a large unlabelled pool data set, where the learner is initially

modelled with the small annotated data set, and it then actively selects the most

informative samples from the unlabelled data set by maximising an acquisition

function that is used to evaluate the information value of an unlabelled data point

to the training process. These most informative samples are then requested to

be labelled by an oracle – these newly annotated samples are then used in the

next training iterations. Although pool-based active learning has been shown to

achieve a good accuracy using significantly less labelled training data compared to

other passive learning methods [26, 32, 98], that classical active learning approach

cannot be directly applied for the estimation of deep models since at the early

stages of the training process, the active learner tends to over-fit the small initial

labelled training sets [98].

Alternatively, if the unlabelled data set is not available or challenging to be

gathered, then one reasonable solution (to reduce the need for a large training

set) is to synthetically generate new training samples to avoid over-fitting – that

approach is known as data augmentation (DA) [53, 99, 101]. The goal of data

augmentation is to enlarge the existing training set without manually labelling

training samples, which is commonly known to be time-consuming, expensive,

subjective and prone to mistakes [99]. The most common data augmentation

method involves an application of several small-scale linear transformations such

as random rotation, translation or colour perturbation to a real annotated sample

in order to preserve its ground truth label [53]. We refer to that data augmenta-

tion approach as the “poor man’s” data augmentation (PMDA) [95, 99] since it

is performed only once, and prior to the training process. That PMDA has been

employed as a heuristic regularisation scheme and shown some practical benefits

in several computer vision tasks [53, 89, 104]. However, a common drawback of

PMDA is that the usefulness of the generated training samples is not guaranteed

due to the strong assumption about the label-preserving small-scale transforma-

tions [99]. Consequently, PMDA can produce unrealistic samples and may fail to

generate a large range of realistic training samples [99].
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One of the drawbacks of both active learning and data augmentation ap-

proaches mentioned above is that they are not designed to handle the imbalanced

training problem that occurs when some majority classes contain considerably

more training samples than other minority classes. In particular, the active sample

selection in active learning and the synthetic data augmentation are performed

without regarding how balanced the newly updated labelled training data sets are.

Such imbalanced learning issue, which appears in many real-world applications,

such as cancer and fraud detection [46, 105], protein fold classification [110] and

weld flaw classification [103], can make model classification less effective due

to a poor prediction on minority classes [46]. Unfortunately, good classification

performance on the minority classes is often of interest in a typical imbalanced

learning problem [103]. To address the imbalanced learning issue, one reasonable

solution is to re-balance the original imbalanced data set by random re-sampling

approaches, such as under-sampling the majority class or over-sampling the mi-

nority class [46]. Alternatively, this issue can be addressed by re-weighting the

samples based on cost-sensitive weighting [47, 97] or average loss [2, 57], or based

on a novel robust meta-learning approach that learns to re-weight all the samples

of the original training set by using a weighted loss [78].

In this thesis, we address the training issues of deep models mentioned above

by developing several novel effective learning methods that enable deep learn-

ing models to perform well using not only relatively small, but also imbalanced

labelled training data sets. These proposed methods are: 1) Bayesian data aug-

mentation [99], 2) Bayesian generative active deep learning [98], and 3) a novel

extension of the Bayesian generative active deep learning that is robust to class

imbalanced data. The details about the contributions for each of these proposed

approaches are discussed in the following section.

1.1 Thesis Contributions

In Chapter 3, we first introduce a novel theoretically sound data augmentation,

referred to as Bayesian data augmentation (BDA), that aims to generate novel

synthetic samples from the approximately learned data distribution of the existing

observed samples [95, 99]. The main contributions of BDA are as follows:



4 Chapter 1. Introduction

∙ We formulate BDA [99] by introducing a variant of the expectation max-

imisation (EM) algorithm [18], called generalised Monte-Carlo expectation

maximisation (GMCEM). That BDA formulation was inspired by the classical

data augmentation using latent variable method [95].

∙ We theoretically show the weak convergence of BDA training. This weak

convergence is related to an improvement of the posterior of the model pa-

rameters given the observed data at each iteration of the GMCEM algorithm.

∙ We introduce an implementation of the BDA framework with an extension

of the generative adversarial network (GAN) [30]–this is depicted in Fig. 1.1.

We also provide a connection between the classical data augmentation using

latent variable in statistical learning and modern deep generative models

by theoretically showing that the loss function of the GAN-based model is

linked to the objective function of the GMCEM method above.

∙ We provide empirical evidence that shows the better classification perfor-

mance of BDA compared to the PMDA approach.

Figure 1.1: Bayesian data augmentation (BDA) [99], where z is a random noise, yl

is the class label for the generated sample, (xl , yl) represents the generated sample,

and (x, y) denotes the real labelled sample.
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One key drawback of the BDA method proposed above is that it tends to waste

not only training time but also computational resources due to the fact that the

generation of new synthetic samples is performed without considering the infor-

mativeness (or usefulness) to the training process of the generated samples [98].

In an attempt to handle this issue, in Chapter 4, we propose the Bayesian gen-

erative active deep learning framework that aims to train a generative model to

re-generate novel synthetic informative samples for the training process [98]. The

contributions are the following:

∙ We provide a formulation of the Bayesian generative active deep learning

algorithm based on a theoretically sound combination of the Bayesian active

learning by disagreement (BALD) [26, 42] and BDA [99]. The proposed

algorithm uses the active sample selection procedure in BALD to select the

most informative samples from the unlabelled pool data – these informative

samples are then used in the data augmentation scheme of BDA to generate

new synthetic training samples–see Fig. 1.2.

∙ We theoretically prove that the generated samples are informative for the

training process.

∙ We empirically demonstrate that our proposed Bayesian generative active

deep learning [98] outperforms both BDA [99] and BALD [26, 42] in terms of

training efficiency and classification performance.

One potential limitation of the Bayesian generative active deep learning [98]

mentioned in Chapter 4 is that it does not handle the imbalanced training prob-

lem may occur in the newly updated labelled training data at each iteration of

the Bayesian generative active deep learning [98], in Chapter 5, we extend that

learning method to introduce a novel learning approach that is robust against

class imbalance data. In our proposed method, the Bayesian generative active

learning framework is combined with a recently proposed imbalanced learning

approach [78]. In this chapter, we make the following contributions:

∙ We proposed the use the sample re-weighting method [78] to re-balance the

newly updated labelled training data set at each active learning iteration in

the Bayesian generative active deep learning approach [98]–this method is

illustrated in Fig. 1.3.
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Figure 1.2: Bayesian generative active deep learning [98] framework, where (x, y)

represents the initial labelled data, (x*, y*) denotes the most informative sam-

ple selected by maximising the acquisition function a(x, M) over the unlabelled

data Dpool, and (x
′
, y*) is the generated sample that is theoretically shown to be

informative. The details about VAE-ACGAN is mentioned in Chapter 2.

∙ We empirically show the considerable improvement with respect to the

classification performance on several imbalanced data sets of our novel

proposed method, compared to the original Bayesian generative active deep

learning from Chapter 4, and other baselines.

1.2 Thesis Outline

The thesis contents is organised as follows:

∙ Chapter 2 provides literature review exploring the following relevant meth-

ods: 1) (Pool-based) active learning; 2) Bayesian active learning; 3) Data

augmentation; 3) Generative active learning; and 4) Imbalanced learning.

∙ Chapter 3 focuses on the introduction of our proposed Bayesian data aug-

mentation (BDA) that aims to train a generative model to automatically

generate novel synthetic samples for the training of deep models.
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Figure 1.3: Our proposed Bayesian generative active deep learning that is robust to

imbalanced data, where the sample re-weighting scheme [78] is used to re-balance

the newly updated labelled data set at each iteration of the Bayesian generative

active deep learning [98]. In this figure, (x, y; w) represents the weighted sample,

where w is the associated weight to the labelled data point (x, y).

∙ Chapter 4 introduces Bayesian generative active deep learning that targets

the generation of informative data points for the training process.

∙ Chapter 5 first provides more comprehensive descriptions of BDA mentioned

in chapter 3, and Bayesian generative active deep learning mentioned in

chapter 4. This chapter also introduces our novel proposed robust Bayesian

generative active deep learning to handle imbalanced data.

∙ Chapter 6 concludes the thesis, discuss the current limitations and future

works for this research.
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CHAPTER 2
Literature Review

In this chapter, we review current literature, and identify several limitations and

research gaps in some of the relevant methods that we will address with our

proposed approaches. We first introduce in Sec. 2.1 some background of the classi-

cal (pool-based) active learning framework, and the recently proposed Bayesian

active learning by disagreement (BALD). In Sec. 2.2, we then analyse the dominant

“poor man’s” data augmentation (PMDA) that motivates our proposed theoreti-

cally sound Bayesian data augmentation method (BDA) [99]. We next discuss in

Sec. 2.3 some generative active learning schemes, including our proposed Bayesian

generative active deep learning [98]. In Sec. 2.4, we also explore generative ad-

versarial network (GAN) and its variants employed in several corresponding

demonstrations of our proposed algorithms mentioned above. Finally, we discuss

in Sec. 2.5 several class imbalanced learning methods, followed by an introduction

of our novel Bayesian generative active deep learning algorithm that is robust to

imbalanced data.

2.1 Active Learning

Active learning is a sub-field of machine learning that aims to mitigate the “la-

belling bottleneck” of human annotation [85]–this labelling process is often time-

consuming and prone to errors. This learning approach is well-motivated in

many machine learning tasks such as speech recognition [109], information ex-

traction [86], and classification and filtering [85], where unlabelled instances can

9
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be abundantly collected but labels are challenging and expensive to acquire. In

active learning, the learner is allowed to access an unlabelled pool data set, and

to request any samples from that pool to be labelled by an oracle (e.g., a human

annotator). In this manner, the objective of active learning is to achieve high

performance, while using less labelled training samples [85]. In contrast to the

traditional passive learning, where the unlabelled samples are randomly chosen,

in active learning, the learner can leverage its knowledge to request unlabelled

instances to be labelled (by the oracle) and trained upon [32, 85] (see Fig. 2.1).

Figure 2.1: Comparison between a) active learning and b) passive learning [76, 85].

In principle, the setup of a typical (pool-based) active learning scheme consists

of four main components: a learner (model), a small labelled training data set, a

large unlabelled pool data set, and an acquisition function used to evaluate the

information value of a sample for the training process. In that iterative active learn-

ing scheme [32,85], having been initially modelled with the small labelled training

data set, the active learner then automatically selects a subset of the most infor-

mative unlabelled samples by maximising the acquisition function over the pool

data. These informative samples are annotated by an oracle, and then added to

the original training data set for the next training iteration. In that active learning

framework, the acquisition function can be estimated, for example, by the “ex-

pected informativeness” [67], or the (negative) “expected error” of the learner [11].

However, optimising these acquisition functions is challenging in the estimation
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of deep models since it requires the evaluation of the inverse of the Hessian matrix

of the expected error with respect to the high-dimensional model parameter–that

process is commonly known to be computationally challenging [98].

Houlsby et al. [42] proposed the Bayesian active learning by disagreement

(BALD) scheme to facilitate the use of active learning in the estimation of deep

models. The BALD algorithm is also known as the “information theoretic active

learning” method, in which the acquisition function is estimated by the “mutual

information” of the label of the sample with respect to the model parameters. In

the BALD algorithm, this can be interpreted as the active learner aiming to select

an unlabelled sample from the pool data such that the current model parameters

(under the posterior distribution) firmly disagree about its outcome (label) [42].

Gal et al. [26] indicated that the BALD acquisition function estimation can be

based on an approximation of the posterior distribution of the model parameters.

Gal et al. [26] then introduced the use of a Monte-Carlo dropout method [25] to

approximate the BALD acquisition function and some other types of acquisition

functions that are usable in active deep learning. Recently, Kirsch et al. [50]

introduced an extension of that BALD acquisition function, called BatchBALD,

to target more diverse mini-batch of informative samples. Different from BALD,

where each individual data point is acquired and then immediately used to re-train

the model, in BatchBALD, a set of data points is selected by estimating the mutual

information between the samples in the set and the model parameters [50].

2.2 Data Augmentation

The estimation of a deep learning model in active learning may lead to over-fitting

since that model is assumed to initially rely on a small informative training set. One

reasonable way to avoid that over-fitting issue is to enlarge the given labelled data

set by generating novel synthetic training data points [53]. That learning approach

is known as data augmentation, which has been widely employed in several

computer vision tasks [53]. In the dominant “poor man’s” data augmentation

(PMDA) scheme [95,99], the generation of the new artificial training samples can be

performed by applying several sufficiently small scale linear transformations [53,

89, 104] to the real training samples to preserve their labels–this is depicted in
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Fig. 2.2.

Figure 2.2: Synthetic images generated by several geometric and appearance

transformations, including a rotation, translation, and colour perturbation from

PMDA on MNIST [61].

One common problem in using PMDA is that the random linear transforma-

tions are often manually selected to target better performance of a given model

with a specific data set–this task is known to be computationally expensive and

often to require expertise [16]. Cubuk et al. [16] and Lim et al. [64] then strength-

ened PMDA by introducing the use of reinforcement learning [71, 88, 93], in which

the reward function is defined as the validation accuracy on a target data set, to

find an optimal subset of the given sets of the linear transformations. Although

PMDA has been shown to work well in practice, it has not been properly tested.

For example, it has not been clearly explained if the labels of the real samples

are actually preserved through the small-scale linear transformations [99]. More-

over, in general, PMDA does not adapt well with the training process since the

data augmentation procedure is executed only once, and prior to the training

process [99].
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Targeting a novel theoretically sound data augmentation, we proposed in Tran

et al. [99] the Bayesian data augmentation (BDA) that aims to train a generative

model to produce new synthetic samples belonging to an approximated data

distribution of the real training samples. That BDA is inspired by the classical

data augmentation using latent variables [94], in which the latent variables are

used to accelerate the estimation of the posterior distributions of the model pa-

rameters given the observed data. An efficient way to present and then facilitate

that DA using latent variables is based on the expectation maximisation (EM)

algorithm [18]–this is depicted in Fig. 2.3. We provide a formulation of that BDA

framework by adapting the (EM) algorithm to introduce its variant, called gener-

alised Monte-Carlo expectation maximisation (GMCEM). More importantly, we

theoretically prove the weak convergence of the GMCEM framework–this proof

guarantees the improvement of the posterior distribution after each parameter

estimation step. We also provide in [99] a demonstration of that BDA algorithm

using a variant of generative adversarial network (GAN) [30], called ACGAN [74].

The details about our proposed BDA are mentioned in Chapter 3.

Figure 2.3: The expectation maximisation (EM) algorithm [96, 102], where D

denotes the observed data set, Dl is the set of latent variables, which represents

the generated samples in the BDA [99] model, and θ is the model parameters.
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2.3 Generative Active Learning

The training performance of an active learning framework can be considerably

accelerated by generating novel synthetic data points that are also informative

for the training process–this method is known as generative active learning. The

first generative active learning approach was proposed by Zhu and Bento [108],

namely the generative adversarial active learning (GAAL) method that aims to

generate novel synthetic training samples such that the current learner is uncertain

about them. The learning principle of that GAAL method involves solving an

optimisation problem, in which a pre-trained GAN model [30] is employed to

generate novel informative samples [108]. Recently, Kong et al. [51] introduced the

ActiveGAN algorithm that aims to directly generate labelled informative samples

for the training of support vector machine (SVM) [14], without the need of an

oracle. In that ActiveGAN, the estimation of the acquisition function (or the degree

of uncertainty) is based on the distance from a sample to the hyper-plane of the

SVM that was pre-trained with the existing labelled data points. This uncertainty

will be integrated into the loss function for the training of an ACGAN model [74].

The generated informative samples from the trained ACGAN are then used to

retrain the SVM classifier to achieve better performance. One common benefit

of the GAAL and ActiveGAN methods is that it can generate informative data

points for the training process without requiring the unlabelled pool data set,

given that the GAN model is pre-trained and the optimisation problem can be

solved efficiently. Nevertheless, directly applying those methods above in the

estimation of deep models is challenging since they tend to rely on overly simple

acquisition functions (e.g., the (negative) distance from the sample to the hyper-

plane [85, 108])–such acquisition functions are shown not to be appropriate for

active deep learning [26, 98].

Targeting a more effective generation process of informative samples for train-

ing deep models, we proposed in [98] a Bayesian generative active deep learn-

ing. This proposed approach consisted of a theoretically sound combination of

Bayesian data augmentation (BDA) [99] and Bayesian active learning by disagree-

ment (BALD) [26, 42]. In contrast to GAAL [108], which focus on the binary

classification problems (a potential extension to multi-class problem was briefly
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discussed in [108] without any explicit execution), our proposed Bayesian gener-

ative active deep learning [98] is designed to handle multi-class problems using

a deep classifier. Moreover, different from GAAL and ActiveGAN methods that

involve 2-stage training, in which the generator and the classifier are indepen-

dently trained, our proposed Bayesian generative active deep learning trains the

learner and the generator jointly–this training principle allows them to “co-evolve”

during the training process [98]. The details about the Bayesian generative active

deep learning are given in Chapter 4.

2.4 Generative Adversarial Networks and Variational

Auto-encoders

Generative adversarial network (GAN) [30] is one of the most effective deep gen-

erative model designed to learn how to produce novel synthetic data [29]. GAN

has been widely used in creating texts, speech, videos, new art, and synthetic

biology [15, 28]. In principle, GAN aims to estimate a generative model based

on an “adversarial training process” performed by simultaneously training two

deep learning models: a generator that learns to map a latent variable (e.g., ran-

dom noise) to a “realistically looking” sample (i.e., the sample that belongs to

a good approximation of the (unknown) ground truth data distribution), and a

discriminator that estimates the probability that a sample came from the true data

distribution rather than from the generator [28]. The performance of a GAN model

is commonly evaluated by both the quality and the diversity of the generated

samples that can be quantitatively measured by the inception score (IS) [82] and

the Frechet inception score (FID) [38]. Among the extensions of GAN proposed to

improve the synthetic image quality, one is particularly interesting: ACGAN [74],

where the generator is conditioned on the label of the generated sample, and

the discriminator is used to both identify the real/fake samples and classify that

sample (see Fig. 2.4). The ACGAN model is adapted to demonstrate our proposed

Bayesian data augmentation algorithm in [99].

One of the most challenging problems that can harm the ability of a GAN

model to generate diverse data is “mode collapsing” or ”mode missing”, where

the generator only focuses on generating synthetic samples from a few modes
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Figure 2.4: ACGAN model [74], where the generator is learned to map a tuple

(z, yl), where z is a random noise, and yl is a class label, to a synthetic labelled

sample (xl, yl). The discriminator is used not only to identify if a sample is real or

fake but also to classify that sample.

instead of the whole data distribution [41,91]. In other words, that mode collapsing

issue occurs when the generator learns to map several different latent variables

values to the same output data point [28], thereby many real samples may have

significantly small probability to be generated by the generator. One effective

method that mitigates the “mode collapsing” issue in GAN training is to use

variational autoencoder generative adversarial network (VAE-GAN) [58]–that

is a combination of VAE [49, 79] and GAN, where these generative models are

linked by the decoder/generator [107]. To provide an implementation for our

proposed Bayesian generative active deep learning [98] that aims to generate a

new synthetic training data point that is also informative for the training process,

we modified that combined network to introduce the VAE-ACGAN model, where

the generator is conditioned on both the selected informative sample and its label–

this model is depicted in Fig. 2.5. The motivation of using that VAE-ACGAN

in the Bayesian generative active deep learning [98] framework is based on the

“reconstruction property” of the VAE training that transfers the information value

from the selected sample to the novel generated data point–this is theoretically

guaranteed in [98].
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Figure 2.5: VAE-ACGAN model [58,98], where the encoder maps a labelled sample

(x, y) to a latent variable z. The generator/decoder is, therefore, conditioned on

the sample x and its label y to generate a novel labelled sample (xl, y). The

discriminator estimates if a sample is real or fake, and classifies that sample.

2.5 Imbalanced Learning

One drawback of our Bayesian generative active deep learning [98] is that it

does not handle the class imbalance issue that can arise in the newly updated

labelled training set at each iteration. Designing effective learning methods using

imbalanced data sets is essential since that can help improve prediction in the

minority group. It is important to note that such minority group predictions can

sometimes be more important than the prediction for the majority group (e.g., in

medical diagnosis applications, diseases tend to occur in minority classes, and
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false negatives must be avoided) [46].

One reasonable solution to mitigate class imbalance is to modify the class distri-

bution in the original imbalanced training data set. This method can be performed

by under-sampling the majority class (i.e., remove random samples from major-

ity group) or over-sampling the minority class (i.e., replicate random samples

from minority group) [34, 46]. For example, in imbalanced active learning [34],

Ertekin [22] introduced the virtual instance re-sampling technique using active

learning (VIRTUAL), in which the generation of the novel synthetic sample is only

performed on the selected informative samples that belong to the minority group.

One limitation of that over-sampling VIRTUAL method is that it focuses only on

the binary classification problem. Although these simple random re-sampling

approaches can partly reduce the imbalance level in the training data, there are

still several drawbacks that limit the ability to apply them in the field. In particular,

under-sampling can reduce the target information value of the model, while over-

sampling tends to increase the training time and computational resources, which

can even lead to over-fitting” [8, 46]. Recently, Ren et al. [78] proposed a novel

robust meta-learning method that aims to learn to re-weight the training samples

by minimising the weighted loss function associated to the performance on a

balanced validation set. Different from the random re-sampling techniques men-

tioned above, this sample re-weighting method aims to re-balance a skewed data

set without changing its original size. We then combine this sample re-weighting

method [78] with the Bayesian generative active deep learning [98] to propose

a novel algorithm that is robust against class imbalance data. In particular, at

each iteration of the Bayesian generative active deep learning framework [98], the

sample re-weighting procedure is used to handle the class imbalance issue that

may appear in the newly updated training data set.



CHAPTER 3
A Bayesian Data Augmentation Approach

for Learning Deep Models

The work contained in this chapter has been published as the following paper:

T. Tran, T. Pham, G. Carneiro, L. Palmer, and I. Reid. A bayesian data aug-

mentation approach for learning deep models. In Advances in Neural Information

Processing Systems, pages 2797–2806, 2017 [99].
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Abstract

Data augmentation is an essential part of the training process applied to deep

learning models. The motivation is that a robust training process for deep learning

models depends on large annotated data sets, which are expensive to be acquired,

stored and processed. Therefore a reasonable alternative is to be able to automat-

ically generate new annotated training samples using a process known as data

augmentation. The dominant data augmentation approach in the field assumes

that new training samples can be obtained via random geometric or appearance

transformations applied to annotated training samples, but this is a strong as-

sumption because it is unclear if this is a reliable generative model for producing

new training samples. In this paper, we provide a novel Bayesian formulation to

data augmentation, where new annotated training points are treated as missing

variables and generated based on the distribution learned from the training set.

For learning, we introduce a theoretically sound algorithm — generalised Monte

Carlo expectation maximisation, and demonstrate one possible implementation

via an extension of the Generative Adversarial Network (GAN). Classification

results on MNIST, CIFAR-10 and CIFAR-100 show the better performance of our

proposed method compared to the current dominant data augmentation approach

mentioned above — the results also show that our approach produces better

classification results than similar GAN models.

3.1 Introduction

Deep learning has become the “backbone” of several state-of-the-art visual object

classification [35, 53, 81, 90], speech recognition [17, 31, 40], and natural language

processing [12, 13, 106] systems. One of the many reasons that explains the success

of deep learning models is that their large capacity allows for the modelling of

complex, high dimensional data patterns. The large capacity allowed by deep

learning is enabled by millions of parameters estimated within annotated training

sets, where generalisation tends to improve with the size of these training sets.

One way of acquiring large annotated training sets is via the manual (or “hand”)

labelling of training samples by human experts — a difficult and sometimes
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subjective task that is expensive and prone to mistakes. Another way of producing

such large training sets is to artificially enlarge existing training data sets — a

process that is commonly known in computer science as data augmentation (DA).

In computer vision applications, DA has been predominantly developed with

the application of simple geometric and appearance transformations on existing

annotated training samples in order to generate new training samples, where

the transformation parameters are sampled with additive Gaussian or uniform

noise. For instance, for ImageNet classification [19], new training images can

be generated by applying random rotations, translations or colour perturbations

to the annotated images [53]. Such a DA process based on “label-preserving”

transformations assumes that the noise model over these transformation spaces

can represent with fidelity the processes that have produced the labelled images.

This is a strong assumption that to the best of our knowledge has not been properly

tested1. In fact, this commonly used DA process is known as “poor man’s” data

augmentation (PMDA) [95] in the statistical learning community because new

synthetic samples are generated from a distribution estimated only once at the

beginning of the training process.

Figure 3.1: An overview of our Bayesian data augmentation algorithm for learning

deep models. In this analytic framework, the generator and classifier networks

are jointly learned, and the synthesised training set is continuously updated as the

training progresses.

In the current manuscript, we propose a novel Bayesian DA approach for

training deep learning models. In particular, we treat synthetic data points as

instances of a random latent variable, which are drawn from a distribution learned

1It has not been clearly explained if the labels of the real samples are actually preserved through

the small-scale linear transformations [99]
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from the given annotated training set. Effectively, rather than generating new

synthetic training data prior to the training process using pre-defined transforma-

tion spaces and noise models, our approach generates new training data as the

training progresses using samples obtained from an iteratively learned training

data distribution. Fig. 3.1 shows an overview of our proposed data augmentation

algorithm.

The development of our approach is inspired by DA using latent variables

proposed by the statistical learning community [96], where the motivation is to

introduce latent variables to facilitate the computation of posterior distributions.

However, directly applying this idea to deep learning is challenging because

sampling millions of network parameters is computationally difficult. By replacing

the estimation of the posterior distribution by the estimation of the maximum

a posteriori (MAP) probability, one can employ the Expectation Maximization

(EM) algorithm, if the maximisation of such augmented posteriors is feasible.

Unfortunately, this is not the case for deep learning models, where the posterior

maximisation cannot reliably produce a global optimum. An additional challenge

for deep learning models is that it is nontrivial to compute the expected value of

the network parameters given the current estimate of the network parameters and

the augmented data.

In order to address such challenges, we propose a novel Bayesian DA algo-

rithm, called Generalized Monte Carlo Expectation Maximization (GMCEM),

which jointly augments the training data and optimises the network parameters.

Our algorithm runs iteratively, where at each iteration we sample new synthetic

training points and use Monte Carlo to estimate the expected value of the network

parameters given the previous estimate. Then, the parameter values are updated

with stochastic gradient decent (SGD). We show that the augmented learning loss

function is actually equivalent to the expected value of the network parameters,

and that therefore we can guarantee weak convergence. Moreover, our method

depends on the definition of predictive distributions over the latent variables, but

the design of such distributions is hard because they need to be sufficiently expres-

sive to model high-dimensional data, such as images. We address this challenge

by leveraging the recent advances reached by deep generative models [30], where

data distributions are implicitly represented via deep neural networks whose
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parameters are learned from annotated data.

We demonstrate our Bayesian DA algorithm in the training of deep learning

classification models [36, 37]. Our proposed algorithm is realised by extending a

generative adversarial network (GAN) model [30, 70, 74] with a data generation

model and two discriminative models (one to discriminate between real and fake

images and another to discriminate between the dataset classes). One important

contribution of our approach is the fact that the modularity of our method allows

us to test different models for the generative and discriminative models – in

particular, we are able to test several recently proposed deep learning models [36,

37] for the dataset class classification. Experiments on MNIST, CIFAR-10 and

CIFAR-100 datasets show the better classification performance of our proposed

method compared to the current dominant DA approach.

3.2 Related Work

3.2.1 Data Augmentation

Data augmentation (DA) has become an essential step in training deep learning

models, where the goal is to enlarge the training sets to avoid over-fitting. DA has

also been explored by the statistical learning community [18, 96] for calculating

posterior distributions via the introduction of latent variables. Such DA techniques

are useful in cases where the likelihood (or posterior) density functions are hard

to maximise or sample, but the augmented density functions are easier to work.

An important caveat is that in statistical learning, latent variables may not lie in

the same space of the observed data, but in deep learning, the latent variables

representing the synthesised training samples belong to the same space as the

observed data.

Synthesising new training samples from the original training samples is a

widely used DA method for training deep learning models [53, 89, 104]. The usual

idea is to apply either additive Gaussian or uniform noise over pre-determined

families of transformations to generate new synthetic training samples from the

original annotated training samples. For example, Yaeger et al. [104] proposed

the “stroke warping” technique for word recognition, which adds small changes

in skew, rotation, and scaling into the original word images. Simard et al. [89]
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used a related approach for visual document analysis. Similarly, Krizhevsky et

al. [53] used horizontal reflections and colour perturbations for image classifica-

tion. Hauberg et al. [33] proposed a manifold learning approach that is run once

before the classifier training begins, where this manifold describes the geometric

transformations present in the training set.

Nevertheless, the DA approaches presented above have several limitations.

First, it is unclear how to generate diverse data samples. As pointed out by Fawzi

et al. [24], the transformations should be “sufficiently small” so that the ground

truth labels are preserved. In other words, these methods implicitly assume a

small scale noise model over a pre-determined “transformation space” of the

training samples. Such an assumption is likely too restrictive and has not been

tested properly. Moreover, these DA mechanisms do not adapt with the progress

of the learning process— instead, the augmented data are generated only once

and prior to the training process. This is, in fact, analogous to the Poor Man’s

Data Augmentation (PMDA) [95] algorithm in statistical learning as it is non-

iterative. In contrast, our Bayesian DA algorithm iteratively generates novel

training samples as the training progresses, and the “generator” is adaptively

learned. This is crucial because we do not make a noise model assumption over

pre-determined transformation spaces to generate new synthetic training samples.

3.2.2 Deep Generative Models

Deep learning has been widely applied in training discriminative models with

great success, but the progress in learning generative models has proven to be

more difficult. One noteworthy work in training deep generative models is the

Generative Adversarial Networks (GANs) proposed by Goodfellow et al. [30],

which, once trained, can be used to sample synthetic images. A typical GANs

consist of one generator and one discriminator, both represented by deep learning

models. In “adversarial training”, the generator and discriminator play a “two-

player minimax game”, in which the generator tries to fool the discriminator by

rendering images as similar as possible to the real images, and the discriminator

tries to distinguish the real and fake ones. Nonetheless, the synthetic images

generated by GAN are of low quality when trained on the data sets with high

variability [20]. Variants of GAN have been proposed to improve the quality of the
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synthetic images [10, 70, 73, 74]. For instance, conditional GAN [70] improves the

original GAN by making the generator conditioned on the class labels. Auxiliary

classifier GAN (AC-GAN) [74] additionally forces the discriminator to classify

both real-or-fake sources as well as the class labels of the input samples. These two

works have shown significant improvement over the original GAN in generating

photo-realistic images. So far these generative models mainly aim at generating

samples of high-quality, high-resolution photo-realistic images. In contrast, we

explore generative models (in the form of GANs) in our proposed Bayesian DA

algorithm for improving classification models.

3.3 Data Augmentation Algorithm in Deep Learning

3.3.1 Bayesian Neural Networks

Our goal is to estimate the parameters of a deep learning model using an anno-

tated training set denoted by 𝒴 = {yn}N
n=1, where y = (t, x), with annotations

t ∈ {1, ..., K} (K = # Classes), and data samples represented by x ∈ RD. Denot-

ing the model parameters by θ, the training process is defined by the following

optimisation problem:

θ* = arg max
θ

log p(θ|y), (3.1)

where the observed posterior p(θ|y) = p(θ|t, x) ∝ p(t|x, θ)p(x|θ)p(θ).

Assuming that the data samples in 𝒴 are conditionally independent, the cost

function that maximises (3.1) is defined as [5]:

1
N

log p(θ|y) ≈ log p(θ) +
1
N

N

∑
n=1

(log p(tn|xn, θ) + log p(xn|θ)), (3.2)

where p(θ) denotes a prior on the distribution of the deep learning model parame-

ters, p(tn|xn, θ) represents the conditional likelihood of label tn, and p(xn|θ) is the

likelihood of the data x.

In general, the training process to estimate the model parameters θ tends to

over-fit the training set 𝒴 given the large dimensionality of θ and the fact that

𝒴 does not have a sufficiently large amount of training samples. One of the
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main approaches designed to circumvent this over-fitting issue is the automated

generation of synthetic training samples — a process known as data augmentation

(DA). In this work, we propose a novel Bayesian approach to augment the training

set, targeting a more robust training process.

3.3.2 Data Augmentation using Latent Variable Methods

The DA principle is to increase the observed training data y using a latent variable

z that represents the synthesised data, so that the augmented posterior p(θ|y, z)

can be easily estimated [95], leading to a more robust estimation of p(θ|y). The

latent variable is defined by z = (ta, xa), where xa ∈ RD refers to a synthesised

data point, and ta ∈ {1, ..., K} denotes the associated label.

The most commonly chosen optimisation method in these types of training

processes involving a latent variable is the expectation-maximisation (EM) algo-

rithm [18]. In EM, let θi denote the estimated parameters of the model of p(θ|y)
at iteration i, and p(z|θi, y) represents the conditional predictive distribution of z.

Then, the E-step computes the expectation of log p(θ|y, z) with respect to p(z|θi, y),

as follows:

Q(θ, θi) = Ep(z|θi,y) log p(θ|y, z) =
∫

z
log p(θ|y, z)p(z|θi, y)dz. (3.3)

The parameter estimation at the next iteration, θi+1, is then obtained at the M-step

by maximising the Q function:

θi+1 = arg max
θ

Q(θ, θi). (3.4)

The algorithm iterates until ||θi+1 − θi|| is sufficiently small, and the optimal θ* is

selected from the last iteration. The EM algorithm guarantees that the sequence

{θi}i=1,2,... converges to a stationary point of p(θ|y) [18, 95], given that the ex-

pectation in (3.3) and the maximisation in (3.4) can be computed exactly. In the

convergence proof [18, 95], it is assumed that θi converges to θ* as the number of

iterations i increases, then the proof consists of showing that θ* is a critical point

of p(θ|y).
However, in practice, either the E-step or M-step or both can be difficult to

compute exactly, especially when working with deep learning models. In such
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cases, we need to rely on approximation methods. For instance, Monte Carlo sam-

pling method can approximate the integration in (3.3) (the E-step). This technique

is known as Monte Carlo EM (MCEM) algorithm [95]. Furthermore, when the esti-

mation of the global maximiser of Q(θ, θi) in (3.4) is difficult, Dempster et al. [18]

proposed the Generalized EM (GEM) algorithm, which relaxes this requirement

with the estimation of θi+1, where Q(θi+1, θi) > Q(θi, θi). The GEM algorithm

is proven to have weak convergence [95], by showing that p(θi+1|y) > p(θi|y),
given that Q(θi+1, θi) > Q(θi, θi).

3.3.3 Generalized Monte Carlo EM Algorithm

With the latent variable z, the augmented posterior p(θ|y, z) becomes:

p(θ|y, z) =
p(y, z, θ)

p(y, z)
=

p(z|y, θ)p(θ|y)p(y)
p(z|y)p(y)

=
p(z|y, θ)p(θ|y)

p(z|y) , (3.5)

where the E-step is represented by the following Monte-Carlo estimation of

Q(θ, θi):

Q̂(θ, θi) =
1
M

M

∑
m=1

log p(θ|y, zm)

= log p(θ|y) + 1
M

M

∑
m=1

(log p(zm|y, θ)− log p(zm|y)), (3.6)

where zm ∼ p(z|y, θi), for m ∈ {1, ..., M}. In (3.6), if the label ta
m of the mth

synthesised sample zm is known, then xa
m can be sampled from the distribution

p(xa
m|θ, y, ta

m). Hence, the conditional distribution p(z|y, θ) can be decomposed as:

p(z|y, θ) = p(ta, xa|y, θ) = p(ta|xa, y, θ)p(xa|y, θ), (3.7)

where (ta, xa) are conditionally independent of y given that all the information

from the training set y is summarized in θ — this means that p(ta|xa, y, θ) =

p(ta|xa, θ), and p(xa|y, θ) = p(xa|θ).
The maximisation of Q̂(θ, θi) with respect to θ for the M-step is re-formulated

by first removing all terms that are independent of θ, which allows us to reach the
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following derivation (making the same assumption as in (3.2)):

Q̂(θ, θi) = log p(θ) +
1
N

N

∑
n=1

(log p(tn|xn, θ) + log p(xn|θ)) +
1
M

M

∑
m=1

log p(zm|y, θ)

(3.8)

= log p(θ) +
1
N

N

∑
n=1

(log p(tn|xn, θ) + log p(xn|θ))+

+
1
M

M

∑
m=1

(log p(ta
m|xa

m, θ) + log p(xa
m|θ)).

Given that there is no analytical solution for the optimisation in (3.8), we follow

the same strategy employed in the GEM algorithm, where we estimate θi+1 so that

Q̂(θi+1, θi) > Q̂(θi, θi).

As the function Q̂(·, θi) is differentiable, we can find such θi+1 by running one

step of gradient ascent. It can be seen that our proposed optimization consists of

a marriage between MCEM and GEM algorithms, which we name: Generalized

Monte Carlo EM (GMCEM). The weak convergence proof of GMCEM is provided

by Lemma 1.

Lemma 1. Assuming that θi+1 is obtained by a gradient ascent step, i.e., Q̂(θi+1, θi) ≥
Q̂(θi, θi), which is guaranteed from (3.8), then the weak convergence (i.e. p(θi+1|y) ≥
p(θi|y)) will be fulfilled.

Proof. Given Q̂(θi+1, θi) > Q̂(θi, θi), then by taking the expectation on both

sides, that is Ep(z|y,θi)[Q̂(θi+1, θi)] > Ep(z|y,θi)[Q̂(θi, θi)], we obtain Q(θi+1, θi) >

Q(θi, θi), which is the condition for p(θi+1|y) > p(θi|y) proven from [95].

So far, we have presented our Bayesian DA algorithm in a very general manner.

The specific forms that the probability terms in (3.8) take in our implementation

are presented in the next section.

3.4 Implementation

In general, our proposed DA algorithm can be implemented using any deep gen-

erative and classification models which have differentiable optimisation functions.

This is in fact an important advantage that allows us to use the most sophisticated
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extant models available in the field for the implementation of our algorithm. In

this section, we present a specific implementation of our approach using state-of-

the-art discriminative and generative models.

3.4.1 Network Architecture

Our network architecture consists of two models: a classifier and a generator. For

the classifier, modern deep convolutional neural networks [36, 37] can be used.

For the generator, we select the adversarial generative networks (GAN) [30], which

include a generative model (represented by a deconvolutional neural network)

and an authenticator model (represented by a convolutional neural network).

This authenticator component is mainly used for facilitating the adversarial train-

ing. As a result, our network consists of a classifier (C) with parameters θC, a

generator (G) with parameters θG and an Authenticator (A) with parameters θA.

Fig. 3.2 compares our network architecture with other variants of GAN recently

proposed [30,70,74]. On the surface, our network appears similar to AC-GAN [74],

where the only difference is the separation of the classifier network from the

authenticator network. However, this crucial modularisation enables our DA

algorithm to replace GANs by other generative models that may become available

in the future; likewise, we can use the most sophisticated classification models for

C. Furthermore, unlike our model, the classification subnetwork introduced in AC-

GAN mainly aims for improving the quality of synthesised samples, rather than

for classification tasks. Nonetheless, one can consider AC-GAN as one possible

implementation of our DA algorithm. Finally, our proposed GAN model is similar

to the recently proposed triplet GAN [63] 2, but it is important to emphasise that

triplet GAN was proposed in order to improve the training procedure for GANs,

while our model represents a particular realisation of the proposed Bayesian DA

algorithm, which is the main contribution of this paper.

2The triplet GAN [63] was proposed in parallel to this NIPS submission.
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Figure 3.2: A comparison of different network architectures including GAN [30],

C-GAN [70], AC-GAN [74] and ours. G: Generator, A: Authenticator, C: Classifier,

D: Discriminator.

3.4.2 Optimization Function

Let us define x ∈ RD, θC ∈ RC, θA ∈ RA, θG ∈ RG, u ∈ R`, c ∈ {1, ..., K}, the

classifier C, the authenticator A and the generator G are respectively defined by

fC : RD ×RC → [0, 1]K; (3.9)

fA : RD ×RA → [0, 1]2; (3.10)

fG : R` ×Z+ ×RG → RD. (3.11)

The optimisation function used to train the classifier C is defined as:

JC(θC) =
1
N

N

∑
n=1

lC(tn|xn, θC) +
1
M

M

∑
m=1

lC(ta
m|xa

m, θC), (3.12)

where lC(tn|xn, θC) = − log (softmax( fC(tn = c; xn, θC))).

The optimisation functions for the authenticator and generator networks are

defined by [30]:

JAG(θA, θG) =
1
N

N

∑
n=1

lA(xn|θA) +
1
M

M

∑
m=1

lAG(xa
m|θA, θG), (3.13)

where

lA(xn|θA) = − log (softmax( fA(input = real, xn, θA)) ; (3.14)

lAG(xa
m|θA, θG) = − log (1− softmax( fA(input = real, xa

m, θG, θA))) . (3.15)
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Following the same training procedure used to train GANs [30, 74], the optimisa-

tion is divided into two steps: the training of the discriminative part, consisting of

minimising JC(θC) + JAG(θA, θG) and the training of the generative part consisting

of minimising JC(θC)− JAG(θA, θG). This loss function can be linked to (3.8), as

follows:

lC(tn|xn, θC) = − log p(tn|xn, θ), (3.16)

lC(ta
m|xa

m, θC) = − log p(ta
m|xa

m, θ), (3.17)

lA(xn|θA) = − log p(xn|θ), (3.18)

lAG(xa
m|θA, θG) = − log p(xa

m|θ). (3.19)

3.4.3 Training

Training the network parameters θ follows the proposed GMCEM algorithm pre-

sented in Sec. 4.3. Accordingly, at each iteration we need to find θi+1 so that

Q̂(θi+1, θi) > Q̂(θi, θi), which can be achieved using gradient decent. However,

since the number of training and augmented samples (i.e., N + M) is large, evalu-

ating the sum of the gradients over this whole set is computationally expensive. A

similar issue was observed in contrastive divergence [7], where the computation

of the approximate gradient required in theory an infinite number of Markov

chain Monte Carlo (MCMC) cycles, but in practice, it was noted that only a few

cycles were needed to provide a robust gradient approximation. Analogously,

following the same principle, we propose to replace gradient decent by stochastic

gradient decent (SGD), where the update from θi to θi+1 is estimated using only a

sub-set of the M + N training samples. In practice, we divide the training set into

batches, and the updated θi+1 is obtained by running SGD through all batches (i.e,

one epoch). We found that such strategy works well empirically, as shown in the

experiments (Sec. 5.4).

3.5 Experiments

In this section, we compare our proposed Bayesian DA algorithm with the com-

monly used DA technique [53] (denoted as PMDA) on several image classification
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tasks (code available at: https://github.com/toantm/keras-bda). This compar-

ison is based on experiments using the following three datasets: MNIST [61]

(containing 60, 000 training and 10, 000 testing images of 10 handwritten digits),

CIFAR-10 [52] (consisting of 50, 000 training and 10, 000 testing images of 10 visual

classes like car, dog, cat, etc.), and CIFAR-100 [52] (containing the same amount of

training and testing samples as CIFAR-10, but with 100 visual classes).

The experimental results are based on the top-1 classification accuracy as a

function of the amount of data augmentation used – in particular, we try the

following amounts of synthesised images M: a) M = N (i.e., 2× DA), M = 4N

(5× DA), and M = 9N (10× DA). The PMDA is based on the use of a uniform

noise model over a rotation range of [−10, 10] degrees, and a translation range of

at most 10% of the image width and height. Other transformations were tested,

but these two provided the best results for PMDA on the data sets considered

in this paper. We also include an experiment that does not use DA in order to

illustrate the importance of DA in deep learning.

As mentioned in Sec. 5.1, one important contribution of our method is its

ability to use arbitrary deep learning generative and classification models. For the

generative model, we use the C-GAN [70] 3, and for the classification model we

rely on the ResNet18 [36] and ResNetpa [37]. The architectures of the generator

and authenticator networks, which are kept unchanged for all three datasets, can

be found in the supplementary material. For training, we use Adadelta (with

learning rate=1.0, decay rate=0.95 and epsilon=1e− 8) for the Classifier (C), Adam

(with learning rate 0.0002, and exponential decay rate 0.5) for the Generator (G)

and SDG (with learning rate 0.01) for the Authenticator (A). The noise vector used

by the Generator G is based on a standard Gaussian noise. In all experiments, we

use training batches of size 100.

Comparison results using ResNet18 and ResNetpa networks are shown in

Figures 3.3 and 3.4. First, in all cases it is clear that DA provides a significant

improvement in the classification accuracy – in general, larger augmented training

set sizes lead to more accurate classification. More importantly, the results reveal

that our Bayesian DA algorithm outperforms PMDA by a large margin in all

datasets. Given the similarity between the model used by our proposed Bayesian

3The code was adapted from: https://github.com/lukedeo/keras-acgan

https://github.com/toantm/keras-bda
https://github.com/lukedeo/keras-acgan
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Figure 3.3: Performance comparison using ResNet18 [36] classifier.
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Figure 3.4: Performance comparison using ResNetpa [37] classifier.

DA algorithm (using ResNetpa [37]) and AC-GAN, it is relevant to present a

comparison between these two models, which is shown in Fig. 3.5 – notice that

our approach is far superior to AC-GAN. Finally, it is also important to show

the evolution of the test classification accuracy as a function of training time –

this is reported in Fig. 3.6. As expected, it is clear that PMDA produces better

classification results at the first training stages, but after a certain amount of

training, our Bayesian DA algorithm produces better results. In particular, using

the ResNet18 [36] classifier, on CIFAR-100, our method is better than PMDA after

two hours of training; while for MNIST, our method is better after five hours of

training.

It is worth emphasizing that the main goal of the proposed Bayesian DA is to

improve the training process of the classifier C. Nevertheless, it is also of interest

to investigate the quality of the images produced by the generator G. In Fig. 3.7,
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Figure 3.5: Performance comparison with AC-GAN using ResNetpa [37]
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Figure 3.6: Classification accuracy (as a function of the training time) using PMDA

and our proposed data augmentation on ResNet18 [36]

we display several examples of the synthetic images produced by G after the

training process has converged. In general, the images look reasonably realistic,

particularly the handwritten digits, where the synthesized images would be hard

to generate by the application of Gaussian or uniform noise on pre-determined

geometric and appearance transformations.

3.6 Conclusions

In this chapter we have presented a novel Bayesian DA that improves the training

process of deep learning classification models. Unlike currently dominant methods
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(a) MNIST (b) CIFAR-10 (c) CIFAR-100

Figure 3.7: Synthesized images generated using our model trained on MNIST (a),

CIFAR-10 (b) and CIFAR-100 (c). Each column is conditioned on a class label: a)

classes are 0, ..., 9; b) classes are airplane, automobile, bird and ship; and c) classes

are apple, aquarium fish, rose and lobster.

that apply random transformations to the observed training samples, our method

is theoretically sound; the missing data are sampled from the distribution learned

from the annotated training set. However, we do not train the generator distri-

bution independently from the training of the classification model. Instead, both

models are jointly optimised based on our proposed Bayesian DA formulation that

connects the classical latent variable method in statistical learning with modern

deep generative models. The advantages of our data augmentation approach are

validated using several image classification tasks with clear improvements over

standard DA methods and also over the recently proposed AC-GAN model [74].
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CHAPTER 4
Bayesian Generative Active Deep Learning
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Abstract

Deep learning models have demonstrated outstanding performance in several

problems, but their training process tends to require immense amounts of com-

putational and human resources for training and labelling, limiting the types of

problems that can be tackled. Therefore, the design of effective training methods

that require small labelled training sets is an important research direction that

will allow a more effective use of resources. Among current approaches designed

to address this issue, two are particularly interesting: data augmentation and

active learning. Data augmentation achieves this goal by artificially generating

new training points, while active learning relies on the selection of the “most

informative” subset of unlabelled training samples to be labelled by an oracle.

Although successful in practice, data augmentation can waste computational re-

sources because it indiscriminately generates samples that are not guaranteed to

be informative, and active learning selects a small subset of informative samples

(from a large un-annotated set) that may be insufficient for the training process.

In this paper, we propose a Bayesian generative active deep learning approach

that combines active learning with data augmentation – we provide theoretical

and empirical evidence (MNIST, CIFAR-{10, 100}, and SVHN) that our approach

has more efficient training and better classification results than data augmentation

and active learning.

4.1 Introduction

Deep learning is undoubtedly the dominant machine learning methodology [23,

43, 54, 77]. Part of the reason behind this success lies in its training process that

can be performed with immense and carefully labelled data sets, where the larger

the data set, the more effective the training process [92]. However, the labelling

of such large data sets demands significant human effort, and the large-scale

training process requires considerable computational resources [92]. These training

issues have prevented researchers and practitioners from solving a wider range of

classification problems, where large labelled data sets are hard to acquire or vast

computational resources are unavailable [65]. Addressing these issues is one of the
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most important problems to be solved in machine learning [3, 26, 48, 53, 85, 99, 108].

One of the most successful approaches to mitigate the issue described above

relies on the use of a small labelled data set and a large unlabelled data set,

where small subsets from the unlabelled set are automatically selected using

an acquisition function that assesses how informative those subsets are for the

training process. These selected unlabelled subsets are then labelled by an oracle

(i.e., a human annotator), integrated into the labelled data set, which is then used

to re-train the model in an iterative training process. This algorithm is known as

(pool-based) active learning [85], and its aim is to reduce the need for large labelled

data sets and the computational requirements for training models because it tends

to rely on smaller training sets. Although effective in general, active learning may

overfit the informative training sets due to their small sizes.

Alternatively, if the unlabelled data set does not exist, then a possible idea is

to use the samples from the labelled set to guide the generation of new artificial

training points by sampling from a generative distribution that is assumed to

have a particular shape (e.g., Gaussian noise around rigid deformation parameters

from the labels) [53] or that have been estimated from a generative adversarial

training [99]. This training process is known as data augmentation, which targets

the reduction of the need for large labelled training sets. However, given that the

generation of new samples is done without regarding how informative the new

sample is for the training process, it is likely that a large proportion of the gener-

ated samples will not be important for the training process. Consequently, data

augmentation wastes computational resources, forcing the training process not

only to take longer than necessary, but also to be relatively ineffective, particularly

at the later stages of the training process, when most of the generated points are

likely to be uninformative.

In this paper, we propose a new Bayesian generative active deep learning

method that targets the augmentation of the labelled data set with generated

samples that are informative for the training process – see Fig. 4.1. Our paper

is motivated by the following works: query by synthesis active learning [108],

Bayesian data augmentation [99], auxiliary-classifier generative adversarial net-

works (ACGAN) [74] and variational autoencoder (VAE) [49]. We assume the

existence of a small labelled and a large unlabelled data set, where we use the
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Figure 4.1: Comparison between (pool-based) active learning [85] (a), generative

adversarial active learning [108] (b), and our proposed Bayesian generative active

deep learning (c). The labelled data set is represented by {(x, y)}, the unlabelled

point to be labelled by the oracle is denoted by x* (oracle’s label is y*), and the

point generated by the VAE-ACGAN model is denoted by x′.

concept of Bayesian active learning by disagreement (BALD) [26, 42] to select

informative samples from the unlabelled data set. These samples are then labelled

by an oracle and processed by the VAE-ACGAN to produce new artificial samples

that are as informative as the selected samples. This set of new samples are then

incorporated into the labelled data set to be used in the next training iteration.

Compared to a recently proposed generative adversarial active learning [108],

which relies on an optimisation problem to generate new samples (this opti-

misation balances sample informativeness with image generation quality), our

approach has the advantage of using acquisition functions that have proved to be

more effective [26] than the simple information loss in [108]. Different from our

approach that trains the generative and classification models jointly, the approach

in [108] relies on a 2-stage training, where the generator training is independent

of the classifier training. A potential disadvantage of our method is the fact that

the whole unlabelled data set needs to be processed by the acquisition function at

each iteration, but that is mitigated by the fact that we can sample a much smaller

(fixed-size) subset of the unlabelled data set to guarantee the informativeness of

the selected samples [34]. An important question about the VAE-ACGAN genera-

tion process is how informative the generated artificial sample is, when compared

with the active learning selected sample from the unlabelled training set. We show

that this generated sample is theoretically guaranteed to be informative, given a

couple of assumptions that are empirically verified. We run experiments which

show that our proposed Bayesian generative active deep learning is advantageous
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in terms of training efficiency and classification performance, compared with

data augmentation and active learning on MNIST [61], CIFAR-{10, 100} [52] and

SVHN [72].

4.2 Related Work

4.2.1 Bayesian Active Learning

In a (pool-based) active learning framework, the learner is initially modelled with

a small labelled training set, and it will iteratively search for the “most informative”

samples from a large unlabelled data set to be labelled by an oracle – these newly

labelled samples are then used to re-model the learner. The information value of

an unlabelled sample is estimated by an acquisition function, which is maximised

in order to select the most informative samples. For example, the most informative

samples can be selected by maximising the “expected informativeness” [67], or

minimising the “expected error” of the learner [11] – such acquisition functions are

hard to optimise in deep learning because they require the estimation of the inverse

of the Hessian computed from the expected error with respect to high-dimensional

parameter vectors.

Recently, Houlsby et al. [42] proposed the Bayesian active learning by dis-

agreement (BALD) scheme in which the acquisition function is measured by the

“mutual information” of the training sample with respect to the model parameters.

Gal et al. [26] pointed out that, in deep active learning, the evaluation of this func-

tion is based on model uncertainty, which in turn requires the approximation of

the posterior distribution of the model parameters. These authors also introduced

the use of Monte Carlo (MC) dropout method [25] to approximate this and other

commonly used acquisition functions. This approach [26] is shown to work well in

practice despite the poor convergence of the MC approximation. In our proposed

approach, we also use this method to approximate the BALD acquisition function

in the active selection process.
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4.2.2 Data Augmentation

In active learning, it is assumed that a model can be trained to achieve an accept-

able level of accuracy with a small data set. That assumption is challenging in

the estimation of a deep learning model since it often requires large labelled data

sets to avoid over-fitting. One reasonable way to increase the labelled training

set is with data augmentation that artificially generates new synthetic training

samples [53]. Gal et al. [26] also emphasised the importance of data augmentation

for the development of deep active learning. Data augmentation can be performed

with “label-preserving” transformations [53, 89, 104] – this is known as “poor’s

man” data augmentation (PMDA) [94, 99]. Alternatively, Bayesian data augmenta-

tion (BDA) trains a deep generative model (using the training set), which is then

used to produce new artificial training samples [99]. Compared to PMDA, BDA

has been shown to have a better theoretical foundation and to be more beneficial

in practice [99]. One of the drawbacks of data augmentation is that the generation

of new training points is driven by the likelihood that the generated samples

belong to the training set – this implies that the model produces samples that

are likely to be close to the generative distribution mode. Unfortunately, as the

training process progresses, these points are the ones more likely to be correctly

classified by classifier, and as a result they are not informative. The combination of

active learning and data augmentation proposed in this paper addresses the issue

above, where the goal is to continuously generate informative training samples

that not only are likely to belong to the learned generative distribution, but are

also informative for the training process – see Fig. 4.2.

4.2.3 Generative Active Learning

The training process in active learning can be significantly accelerated by actively

generating informative samples. Instead of querying most informative instances

from an unlabelled pool, Zhu & Bento [108] introduced a generative adversarial

active learning (GAAL) model to produce new synthetic samples that are infor-

mative for the current model. The major advantage of their algorithm is that it

can generate rich representative training data with the assumptions that the GAN

model has been pre-trained and the optimisation during generation is solved
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Figure 4.2: We target the generation of samples that belong to the generative distri-

bution learned from the training set, and that are also informative for the training

process. In particular, we aim to generate synthetic samples belonging to the inter-

section of different class distributions known as “disagreement region” [85]. These

generated instances are informative for the training process since the learning

model is uncertain about them [42].

efficiently. Nevertheless, this approach has a couple of limitations that make it

challenging to be applied in deep learning. First, the acquisition function must

be simple to compute and optimise (e.g., distance to classification hyper-plane)

because it will be used by the generative model during the sample generation

process – such simple acquisition functions have been shown to be not quite useful

in active learning [26]. Also, the GAN model in [108] is not fine-tuned as training

progresses since it is pre-trained only once before generating new instances – as a

result, the generative and discriminative models do not “co-evolve”.

In contrast, following the standard active learning, our Bayesian Generative

Active Deep Learning first queries the unlabelled data set samples based on their

“information content”, and conditions the generation of a new synthetic sample on

this selected sample. Moreover, the learner and the generator are jointly trained in

our approach, allowing them to “co-evolve” during training. We show empirically

that, in our proposed approach, a synthetic sample generated from the most infor-

mative sample belongs to its sufficiently small neighbourhood. More importantly,

the value of the acquisition function at the generated sample is mathematically

shown to be closed to its optimal value (at the most informative sample), and the

synthetic instance, therefore, can also be considered to be informative.

4.2.4 Variational Autoencoder Generative Adversarial Networks

Generative Adversarial Network (GAN) [30] is one of the most studied deep learn-

ing models. GANs typically contain two components: a generator that learns to
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map a latent variable to a sample data, and a discriminator that aims to guide the

generator to produce realistically looking samples. The generative performance

of GAN is often evaluated by both the quality and the diversity of the synthetic

instances. There have been several extensions proposed to improve the quality

of the GAN generated images, such as CGAN [70] and ACGAN [74]. In order to

tackle the low diversity problem (known as “mode collapse”), Larsen et al. [58]

introduced a variational autoencoder generative adversarial network (VAE-GAN)

that combines a variational autoencoder (VAE) [49] and a GAN in which these net-

works are connected by a generator/decoder [107]. We utilise both ACGAN and

VAE-GAN in our proposed Bayesian Generative Active Deep Learning framework,

but with the aim of improving the classification performance.

4.3 “Information-Preserving” Data Augmentation for

Active Learning

4.3.1 Bayesian Active Learning by Disagreement (BALD)

Let us denote the initial labelled data by 𝒟 = {(xi, yi)}N
i=1, where xi ∈ 𝒳 ⊆ Rd is

the data sample labelled with yi ∈ 𝒞 = {1, 2, . . . , C}, where C is the number of

classes. By using Bayesian deep learning framework, we can obtain an estimate

of the posterior of the parameters θ of the model ℳ given 𝒟, namely p(θ|𝒟).
In Bayesian Active Learning by Disagreement (BALD) scheme [42], the most

informative sample x* is selected from the (unlabelled) pool data 𝒟pool by [42]:

x* = arg max
x∈𝒟pool

a(x,ℳ)

= arg max
x∈𝒟pool

H[y|x,𝒟]−Eθ∼p(θ|𝒟)[H[y|x, θ]], (4.1)

where a(x,ℳ) is the acquisition function, H[y|x,𝒟] and H[y|x, θ] are represented

by the Shannon entropy [87] of the prediction p(y|x,𝒟) and the distribution

p(y|x, θ), respectively. The sample x* is labelled with y* (by an oracle), and the

labelled data set is updated for the next training iteration: 𝒟 ← 𝒟 ∪ (x*, y*). That

active selection framework is repeated until convergence.
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In order to estimate the acquisition function in (4.1), Gal et al. [26] introduced

the Monte Carlo (MC) dropout method. This objective function can be approxi-

mated by its sample mean [26]:

a(x,ℳ) ≈ −
C

∑
c=1

 1
T

T

∑
t=1

p̂t
c

 log

 1
T

T

∑
t=1

p̂t
c

+
1
T

C

∑
c=1

T

∑
t=1

p̂t
c log p̂t

c, (4.2)

where T is the number of dropout iterations, p̂t = [ p̂t
1, . . . , p̂t

C] = softmax( f (x; θt)),

with f representing the network function parameterized by θt that is sampled from

an estimate of the (commonly intractable) posterior p(θ|𝒟) at the t-th iteration.

4.3.2 Generative Model and Bayesian Data Augmentation

In the iterative Bayesian data augmentation (BDA) framework [99], each iteration

consists of two steps: synthetic data generation and model training. The BDA

model comprises a generator (that generates new training samples from a latent

variable), a discriminator (that discriminates between real and fake samples) and

a classifier (that classifies the samples into one of the classes in 𝒞). At the first

step, given a latent variable u (e.g., a multivariate Gaussian variable) and a class

label y ∈ 𝒞, the generator represented by a function g(.) maps the tuple (u, y) to

a data point xa = g(u, y) ∈ 𝒳 , and (xa, y) is then added to 𝒟 for model training.

In [99], the authors also showed a weak convergence proof that is related to the

improvement of the posterior distribution p(θ|𝒟).

4.3.3 Bayesian Generative Active Deep Learning

The main technical contribution of this paper consists of combining BALD and

BDA for generating new labelled samples that are informative for the training

process (see Fig. 4.3).

We modify BDA [99] by conditioning the generation step on a sample x and

a label y (instead of the latent variable u and label y in BDA). More specifically,

the most informative sample x* selected by solving (4.1) using the estimation (4.2)

is pushed to go through a variational autoencoder (VAE) [49], which contains an

encoder e(.) and a decoder g(.), in order to generate the sample x′, as follows:

x′ = g(e(x*)). (4.3)
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Figure 4.3: Network architecture of our proposed model.
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Figure 4.4: Reduction of ‖x′ − x*‖ as the training of the VAE model progresses (on

CIFAR-100 using ResNet-18).

The training process of a VAE is performed by minimising the “reconstruction

loss” `(x*, g(e(x*)) [49], where if the number of training iterations is sufficiently

large, we have:

‖x′ − x*‖ < ε, (4.4)

with ε representing an arbitrarily small positive constant – see Fig. 4.4 for an

evidence for that claim.

The label of x′ is assumed to be y* (i.e., the oracle’s label for x*) and the current

labelled data set is then augmented with (x*, y*) and (x′, y*), which are used for

the next training iteration. To evaluate the “information content” of the generated

sample x′, which is measured by the value of the acquisition function at that point,

a(x′,ℳ), we consider the following proposition.

Proposition 2. Assuming that there exists the gradient of the acquisition function
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a(x,ℳ) with respect to the variable x, namely∇xa(x,ℳ), and that x* is an interior

point of 𝒟pool, then a(x′,ℳ) ≈ a(x*,ℳ) (i.e., the absolute difference between

these values are within a certain range). Consequently, the sample x′ generated

from the most informative sample x* by (5.5) is also informative.

Proof. Given the assumptions of Proposition 2, and due to the fact that x* is a local

maximum of function a(x,ℳ) (4.1), then x* is a critical point of a(x,ℳ), i.e.,

∇xa(x*,ℳ) = 0. (4.5)

Condition (5.6), which is empirically verified by Fig. 4.4, indicates that x′ belongs

to a sufficiently small neighbourhood of x*. Therefore, by using the first order

Taylor approximation of the function a(x′,ℳ) at the point x* and (5.7), we obtain

a(x′,ℳ) ≈ a(x*,ℳ) +∇xa(x*,ℳ)T(x′ − x*)

≈ a(x*,ℳ), (4.6)

where T denotes the transpose operator. Thus, the synthetic sample x′ can also be

considered informative.

4.4 Implementation

Our network, depicted in Fig. 4.3, comprises four components: a classifier c(x; θC),

an encoder e(x; θE), a decoder/generator g(z; θG) and a discriminator d(x; θD).

The classifier c(.) can be represented by any modern deep convolutional neural

network classifier [36, 37, 61], making our model quite flexible in the sense that we

can use the top-performing classifier available in the field. Also, the generative

part of the model is based on ACGAN [74] and VAE-GAN [58], where the VAE

decoder is also the generator of the GAN model – our model is referred to as

VAE-ACGAN.

The VAE-GAN loss function [58,107] was formed by adding the reconstruction

error in VAE to the GAN loss in order to penalise both unrealisticness and mode

collapse in GAN training. Following that, the VAE-ACGAN loss of our proposed

model is defined by

ℒ = ℒVAE + ℒACGAN, (4.7)
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with the VAE loss [49, 58] represented by a combination of the reconstruction loss

ℒrec and the regularisation prior ℒprior, i.e.,

ℒVAE = ℒrec + ℒprior

= ℒrec(x, g(e(x; θE); θG) + DKL(q(z|x)‖p(z)), (4.8)

where z = e(x; θE), p(z) is the prior distribution of z (e.g.,𝒩 (0, I)) and DKL(q‖p) =∫
q log

p
q

denotes the Kullback-Leibler divergence operator. The ACGAN loss [74]

in (4.7) is computed by

ℒACGAN = log(d(x; θD)) + log(1− d(g(z; θG); θD))

+ log(1− d(g(u; θG); θD)) + log(softmax(c(x; θC)))

+ log(softmax(c(g(z; θG); θC)))

+ log(softmax(c(g(u; θG); θC))), (4.9)

where u ∼ 𝒩 (0, I). The training process of the VAE-ACGAN network is presented

in Algorithm 1.

4.5 Experiments and Results

In this section, we assess quantitatively our proposed Bayesian Generative Active

Deep Learning in terms of classification performance measured by the top-1 accu-

racy 1. In particular, our proposed algorithm, active learning using “information-

preserving” data augmentation (AL w. VAEACGAN) is compared with active

learning using BDA (AL w. ACGAN), BALD without using data augmentation

(AL without DA), BDA without active learning (BDA) [99] (using full and partial

training sets), and random selection as a function of the number of acquisition

iterations and the percentage of training samples. Our experiments are performed

on MNIST [61], CIFAR-10, CIFAR-100 [53], and SVHN [72]. MNIST [61] contains

handwritten digits, (with 60, 000 training and 10, 000 testing samples, and 10

classes), CIFAR-10 [53] is composed of 32× 32 colour images (with 50, 000 training

and 10, 000 testing samples, and 10 classes), CIFAR-100 [53] is similar to CIFAR-10,

1code available at https://github.com/toantm/BGADL

https://github.com/toantm/BGADL
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Algorithm 1 Bayesian Generative Active Learning
Initialise network parameters θE, θG, θC, θD, and pre-train the classifier c(x; θC)

with 𝒟
repeat

Pick the most informative x* from 𝒟pool with x* = arg maxx∈𝒟pool a(x,ℳ)

in (4.1) and (4.2), whereℳ is represented by the classifier c(x; θC);

Request the oracle to label the selected sample, which forms (x*, y*)

z← e(x*; θE)

ℒprior ← DKL(q(z|x*)‖p(z))

x′ = g(e(x*); θG)

ℒrec ← ℒrec(x*, x′)

Sample u ∼ 𝒩 (0, I)

ℒACGAN ← log(d(x*)) + log(1 − d(x′)) + log(1 − d(g(u))) +

log(softmax(c(x*))) + log(softmax(c(x′))) + log(softmax(c(g(u))))

θE ← θE −∇θE(ℒrec + ℒprior)

θG ← θG −∇θG(γℒrec − ℒACGAN) (parameter γ = 0.75 [58] in our experi-

ments)

θD ← θD −∇θDℒACGAN

θC ← θC −∇θCℒACGAN

until convergence

but with 100 classes, and SVHN [72] contains 32× 32 street view house numbers

(with 73257 training samples and 26032 testing samples, and 10 classes).

Given that our approach can use any classifier, we test it with ResNet18 [36]

and ResNet18pa [37], which have shown to produce competitive classification

results in several tasks. The sample acquisition setup for each data set is: 1) the

number of samples in the initial training set is 1, 000 for MNIST, 5, 000 for CIFAR-

10, 15, 000 for CIFAR-100, and 10, 000 for SVHN (the initial data set percentage

was empirically set – with values below these amounts, we could not make the

training process converge); 2) the number of acquisition iterations is 150 (50 for

SVHN), where at each iteration 100 (500 for SVHN) samples are selected from

2, 000 randomly selected samples of the unlabelled data set 𝒟pool (this fixed num-

ber of randomly selected samples almost certainly contains the most informative
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sample [34]). The training process was run with the following hyper-parameters:

1) the classifier c(x; θC) used stochastic gradient descent with (lr=0.01, momen-

tum=0.9); 2) the encoder e(x; θE), generator g(z; θG) and discriminator d(x; θD)

used Adam optimiser with (lr=0.0002, β1 = 0.5, β2 = 0.999); the mini-batch size is

100 for all cases.
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Figure 4.5: Training and classification performance of the proposed Bayesian

generative active learning (AL w. VAEACGAN) compared to active learning using

BDA [99] (AL w. ACGAN), BDA modelled with partial training sets (BDA (partial

training)), BALD [26, 42] without data augmentation (AL without DA), and random

selection of training samples using the percentage of samples from the original

training set (Random selection). The result for BDA modelled with the full training

set (BDA (full training)) and 10× data augmentation represents an upper bound

for all other methods. This performance is measured as a function of the number

of acquisition iterations and respective percentage of samples from the original

training set used for modelling. First row shows these results using ResNet18 [36],

and second row shows ResNet18pa [37] on MNIST [61] (column 1), CIFAR-10

(column 2) CIFAR-100 [53] (column 3), and SVHN [72] (column 4).

Fig. 4.5 compares the classification performance of several methods as a func-

tion of the number of acquisition iterations and respective percentage of samples

from the original training set used for modelling. The methods compared are: 1)

BDA [99] modelled with the full training set (BDA (full training)) and 10× data
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augmentation to be used as an upper bound for all other methods; 2) the proposed

Bayesian generative active learning (AL w. VAEACGAN); 3) active learning using

BDA (AL w. ACGAN); 4) BDA modelled with partial training sets (BDA (partial

training)); 5) BALD [26, 42] without data augmentation (AL without DA); and 6)

random selection of training samples using the percentage of samples from the

original training set (Random selection). Each point of the curves in Fig. 4.5 presents

the result of one acquisition iteration, where each new point represents a growing

percentage of the training set, as shown in the horizontal axis. In Fig. 4.5, BDA

(partial training) relies on 2× data augmentation, so it uses the same number of

real and artificial training samples as AL w. VAEACGAN and AL w. ACGAN – this

enables a fair comparison between these methods.

Table 4.1: Mean ± standard deviation of the classification accuracy on MNIST,

CIFAR-10, and CIFAR-100 after 150 iterations over 3 runs

MNIST

AL W. VAEACGAN AL W. ACGAN AL W. PMDA AL WITHOUT DA BDA (PARTIAL TRAINING) RANDOM SELECTION

RESNET18 99.53± 0.05 99.45± 0.02 99.37± 0.15 99.33± 0.10 99.33± 0.04 99.00± 0.13

RESNET18PA 99.68± 0.08 99.57± 0.07 99.49± 0.09 99.35± 0.11 99.35± 0.07 99.20± 0.12

CIFAR-10

RESNET18 87.63± 0.11 86.80± 0.45 82.17± 0.35 79.72± 0.19 85.08± 0.31 77.29± 0.23

RESNET18PA 91.13± 0.10 90.70± 0.24 87.70± 0.39 85.51± 0.21 86.90± 0.27 80.69± 0.19

CIFAR-100

RESNET18 68.05± 0.17 66.50± 0.63 55.24± 0.57 50.57± 0.20 65.76± 0.40 49.67± 0.52

RESNET18PA 69.69± 0.13 67.79± 0.76 59.67± 0.60 55.82± 0.31 65.79± 0.51 54.77± 0.29

To show a more informative comparison of our proposed approach (AL w.

VAEACGAN) with other methods presented in Fig. 4.5, especially with AL w. AC-

GAN and BDA (partial training), and active learning using PMDA (AL w. PMDA),

using Resnet18 and Resnet18pa on MNIST, CIFAR-10, and CIFAR-100, we ran the

experiments three times (with different random initialisations) and show the final

classification results (mean ± stdev) in Tab. 4.1 (after 150 iterations).

We also compare the average information value of samples measured by the

acquisition function (4.2) of the samples generated by AL w. ACGAN and AL w.

VAEACGAN in Fig. 4.6 using Resnet18 on CIFAR-100.

Figure 4.7 displays images generated by our generative model for each data

set.
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Figure 4.6: Average information value of samples measured by the acquisition

function (4.2) of the samples generated by AL w. ACGAN and AL w. VAEACGAN

using Resnet18 on CIFAR-100.

(a) MNIST (b) CIFAR-10 (c) CIFAR-100 (d) SVHN

Figure 4.7: Images generated by our proposed AL w. VAEACGAN approach for

each data set.

4.6 Discussion and Conclusions

Results in Fig. 4.5 consistently show (across different data sets and classification

models) that our proposed Bayesian generative active learning (AL w. VAEACGAN)

is superior to active learning with BDA (AL w. ACGAN), which is in fact an original

model proposed by this paper. Even though informative samples are used for

training AL w. ACGAN, the generated samples may not be informative, as depicted

by Fig. 4.6 which shows that samples generated by AL w. VAEACGAN are more

informative, particularly at latter stages of training. Nevertheless, the samples

generated by AL w. ACGAN seem to be important for training given its better

classification performance compared to AL without DA. Table 4.1 consistently

shows that our proposed approach outperforms other methods on three data
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sets. In particular, the classification results by AL w. VAEACGAN are statistically

significant with respect to BDA (partial training) on all those data sets, and with

respect to AL w. ACGAN on CIFAR-{10, 100} for both models (i.e., p ≤ .05,

two-sample t-test for ResNet18 and ResNet18pa). Fig. 4.5 also shows that with a

fraction of the training set, we are able to achieve a classification performance that

is comparable with BDA using 10× data augmentation over the entire training

set – this is evidence that the generation of informative training samples can use

less human and computer resources for labelling the data set and training the

model, respectively. When using MNIST and ResNet18, we let AL w. VAEACGAN

run until it reaches a competitive accuracy with BDA, which happened at 150

iterations – this is then used as a stopping criterion for all methods. If we leave all

models running for longer, both AL w. ACGAN and AL w. VAEACGAN converge to

BDA (full training), with AL w. VAEACGAN converging faster. Furthermore, results

in Fig. 4.5 demonstrate that for training sets of similar sizes, our proposed AL w.

VAEACGAN produces better classification results than BDA (partial training) for

all experiments, re-enforcing the effectiveness of generating informative training

samples. It can also be seen from Fig. 4.5 that, on MNIST, the active learning

methods initially behave worse than random sampling, but after a certain number

of training acquisition steps (around 75 steps and 13% of the training set), they

start to produce better results. Although the main goal of this work is the proposal

of a better training process, the quality of the images generated, shown in Fig. 4.7,

is surprisingly high.

In this work we proposed a Bayesian generative active deep learning approach

that consistently shows to be more effective than data augmentation and active

learning in several classification problems. One possible weakness of our paper is

the lack of a comparison with the only other method in the literature that proposes

a similar approach [108]. Although relevant to our approach, [108] focuses on

binary classification (that paper provides a brief discussion on the extension to

multi-class, but does not show that extension explicitly), and the results shown

in that paper are not competitive enough to be reported here. In principle, our

proposed approach is model-agnostic, it therefore can be combined with several

currently introduced active learning methods such as [21, 27, 84]. In the future, we

plan to investigate how to generate samples directly using complex acquisition
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functions, such as the one in (4.2), instead of conditioning the sample generation

on highly informative samples selected from the unlabelled data set. We also

plan to work on the efficiency of our proposed method because its empirical

computational cost is slightly higher than BDA [99] and BALD [26, 42].
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Abstract

This chapter extends our recently proposed Bayesian generative active deep

learning framework proposed in chapter 4 that aims to improve data efficiency

in training a deep learning model. In particular, the goal of our original method

is to generate new synthetic training data points that are informative for the

training process. The algorithm consists of an efficient combination of deep

Bayesian active learning and Bayesian data augmentation, in which the active

selection scheme in active learning is used to guide the generator of the Bayesian

data augmentation to generate novel informative training samples. We extend

the proposed Bayesian generative active deep learning method to work with

imbalanced learning problems by combining it with a sample re-weighting scheme.

Experiments on MNIST, CIFAR-10, and SVHN show a significant improvement of

the Bayesian generative active deep learning approach compared to other related

approaches. Furthermore, experiments with imbalanced data sets indicate that the

extension of the proposed method can perform well on imbalanced training data.

5.1 Introduction

Deep learning has been shown to be a dominant machine learning approach that

can improve the state-of-the-art in speech recognition, computer vision, and many

other domains such as drug discovery and genomics [29, 54, 60, 77]. One of the key

training issues in deep learning is that it often requires not only a large amount of

carefully labelled training samples [92], but also a well-balanced class distribution

in the training data [1, 46, 68]. Seeking solutions to handle these training issues is

essential for researchers and practitioners since that can help reduce the number

of training samples and computational resources for training deep models and

enable the use of imbalanced training sets. Relevant to this paper, we can identify

three learning approaches to improve data efficiency in training deep models:

active learning [42, 85], data augmentation [53, 99], and hybrid methods that

combine these two approaches [51, 98, 108]. To address the class imbalance data

problem, reasonable solutions involve a re-balancing of the skewed data set by

re-sampling [8, 46] or sample re-weighting [78] methods.

Active learning [32, 42, 85] was motivated by the fact that the large amount of
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unlabelled data is cheap to acquire while obtaining labelled data is much more

expensive. The goal of active learning is to achieve a certain model performance

using as less labelled training data as possible. Active learning generally consists

of an iterative learning scheme, where the learner is initially modelled with a small

annotated data set, and it then actively requests the most informative samples

to be labelled (by an oracle) and trained upon. The active selection of the most

informative samples is performed by maximising an acquisition function that

evaluates the usefulness of unlabelled data samples for the training process. Such

classical active learning has been shown to reduce the amount of necessary train-

ing samples (i.e., the sample complexity) compared to other traditional passive

learning methods [26, 32, 98]. However, this active learning approach is challeng-

ing to be directly applied in the estimation of a deep learning model since at the

beginning of the training process, the active learner is likely to over-fit the small

initial training sets [98].

If the unlabelled data set is unavailable or difficult to access, then one reason-

able alternative is to artificially enlarge the existing data sets to avoid over-fitting

the training set. That approach is known as data augmentation (DA), which can

lead to a robust training of a deep learning model [53,99]. One of the key benefits of

data augmentation is that it can avoid manually labelling training samples, which

is often time-consuming, subjective and prone to mistakes [99]. The data augmen-

tation can be performed by using several small-scale linear transformations such

as random rotation, translation or colour perturbation in order to preserve the

ground truth label of the real sample [53] – this is referred to as the “poor man’s”

data augmentation (PMDA) [95, 99]. Although useful in practice [53, 89, 104], the

strong assumption about the label-preserving small-scale transformations does not

provide any guarantee that PMDA generates useful training samples [99]. That is,

it can generate unrealistic samples and it can fail to produce realistic samples.

We first proposed in [99] a novel theoretically sound data augmentation,

namely Bayesian data augmentation (BDA) that targets the generation of novel

synthetic samples learned from the likelihood of the data given the model pa-

rameter. BDA [99], which was inspired by the data augmentation using latent

variable method [95], is trained by a variant of the expectation maximisation

(EM) algorithm [18], called generalised Monte-Carlo expectation maximisation
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(GMCEM). The key benefit of data augmentation is that it can generate immense

amount of artificial data points to target a more robust training of a deep learning

model. However, BDA tends to waste not only training time but also computa-

tional resources since the generation of new samples is done without regarding

the informativeness (usefulness) of the generated samples [98].

In an attempt to address the issues mentioned above regarding active learning

and BDA, we proposed a Bayesian generative active deep learning framework

that aimed to generate informative samples for the training process [98]. That

algorithm consists of a theoretically sound combination of the Bayesian active

learning by disagreement (BALD) [26, 42] and BDA [99], in which the active

selection step is employed to guide the data augmentation scheme to generate

informative training data points. One potential drawback of the generative active

deep learning in [98] is that it was not designed to handle imbalanced training

problems. That imbalanced data issue occurs when some classes, in the majority

group, contain significantly more training samples than other classes, in the

minority group – such problems appear in many real-world applications, such

as cancer classification and fraud detection [46], protein fold classification and

weld flaw classification [103]. Imbalanced learning can make model classification

less effective due to poor predictions on minority classes, but such classification

tends to be important in typical imbalanced learning problems (e.g., it is generally

more important to avoid false negative than false positive classification in cancer

diagnosis) [103]. Anand et al. [1] pointed out that the backpropagation algorithm-

based training process of a neural network can get stuck since the gradient can be

dominated by the majority classes’ gradient components. To handle imbalanced

learning, one of the most popular ways is to re-balance the original imbalanced

data set by using several random re-sampling schemes such as under-sampling

the majority class or over-sampling the minority class [46]. Recently, Ren et al. [78]

proposed a novel robust meta-learning method that aims to learn to re-weight the

training samples without changing the size of the original training set.

In this paper, we first present the two learning methods proposed in our previ-

ous papers, that are Bayesian data augmentation [99], and Bayesian generative

active deep learning [98]. In particular, we provide a more insightful literature re-

view, formulations, mathematical justifications for these two methods. To address
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the class imbalance issue that may occur in the newly updated labelled training

data at each iteration of the Bayesian generative active deep learning [98], we then

extend that learning method to introduce a novel learning approach that is robust

against class imbalance data by combining the Bayesian generative active learning

framework with the sample re-weighting approach [78]. In particular, we use

the sample re-weighting method [78] to re-balance the newly updated labelled

training data set at each active learning iteration in the Bayesian generative active

deep learning scheme [98]–as depicted in Fig. 5.1.

Figure 5.1: Comparison between our proposed methods in previous papers:

Bayesian data augmentation (BDA) [99], Bayesian generative active deep learn-

ing [98] and our novel proposed Robust Bayesian generative active deep learning

against imbalanced data.
Experimental results on MNIST, CIFAR-10 and SVHN show that the proposed

Bayesian generative active deep learning improves over other related approaches.

Furthermore, classification performance on three imbalanced data subsets sampled

from MNIST, CIFAR-10 and SVHN show a considerable improvement of our

proposed method compared to other baselines.

5.2 Related Work

In this section, we explore current literature, and analyse several research gaps in

some relevant methods that will be addressed in our proposed approaches. We first

provide a brief description of the (pool-based) active learning framework, and one

of its extensions for deep learning, called Bayesian active learning by disagreement

(BALD). We then discuss the concept of the dominant “poor man’s”data augmen-

tation (PMDA), and the motivation of our proposed Bayesian data augmentation
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method (BDA) [99]. We next introduce several generative active learning schemes,

including our proposed Bayesian generative active deep learning [98]. We also

discuss generative adversarial network (GAN) and its variants that are used in

some of the implementations of our proposed algorithms. Finally, we investigate

imbalanced learning methods to motivate our novel Bayesian generative active

deep learning algorithm that is robust to class imbalance data.

5.2.1 Active Learning

In a general (pool-based) active learning framework [32, 85], the model is initially

trained with a small labelled training set. Then, it automatically selects a subset

of the most informative unlabelled samples from the pool data to be annotated

(by an oracle) – these newly labelled informative samples are then added to the

original training data set for the next modelling iteration. The active selection of

the most informative instances can be performed, for example, by maximising an

acquisition function that can be evaluated by the “expected informativeness” [67],

or the (negative) “expected error” of the learner [11]. Optimising these acquisition

functions is challenging in deep learning due to the computational complexity

of the inverse of the Hessian matrix of the expected error with respect to the

high-dimensional model parameter [98].

Targetting an efficient acquisition function estimation in deep active learning,

Houlsby et al. [42] investigated the Bayesian active learning by disagreement

(BALD) scheme, in which the active learner aims to seek for unlabelled samples

from the pool data such that the current model parameters (under the posterior

distribution) vigorously disagrees about their labels [42]. That BALD algorithm

is also known as the “information theoretic active learning” method, in which

the acquisition function is estimated by the “mutual information” of the label of

the sample with respect to the model parameters. Gal et al. [26] then introduced

the Monte-Carlo dropout method to estimate the BALD acquisition function and

several other types of acquisition functions that can be employed in active deep

learning. Recently, Kirsch et al. [50] strengthened the BALD method by extending

that acquisition function, called BatchBALD, to improve the data diversity in

the mini-batch of informative samples. A common problem among the methods

above is that the estimation of a deep learning model in active learning may lead to
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over-fitting since that model is assumed to rely on a small informative training set.

One reasonable way is to enlarge the given labelled data set by generating novel

synthetic training data points [53]. That approach is known as data augmentation,

which has been widely employed in several computer vision tasks [53], and is

explained in the section below.

5.2.2 Data Augmentation

The dominant data augmentation used in the field is known as the “poor man’s”

data augmentation (PMDA) [95,99], where the generation of new artificial training

samples is executed only once, prior to the training process, and is performed by

using several sufficiently small scale linear transformations [53,89,104] to preserve

the labels of the real training samples. One of the challenging problems in using

PMDA lies in how to choose the group of transformations to optimise the model

performance. Cubuk et al. [16] and Lim et al. [64] extended PMDA by combining

it with reinforcement learning to seek for an optimal subset of the given sets of the

linear transformations. Although PMDA has been shown to work well in practice,

it has not been properly validated and may not generate realistic samples [99].

In an attempt to investigate a novel theoretically sound data augmentation,

we proposed in [99] a Bayesian data augmentation (BDA) that aims to train a

generative model to produce new training data points. In particular, we formulate

the BDA framework based on a variant of the expectation maximisation (EM)

algorithm, called generalised Monte-Carlo expectation maximisation (GMCEM).

We theoretically proved the weak convergence, which is related to an improvement

of the posterior distribution at each parameter estimation step, of that GMCEM

framework. We also introduced in [99] an implementation of BDA based on

ACGAN [74] – that is a variant of generative adversarial network (GAN) [30]. In

particular, our implementation adapts ACGAN [74] by using the generator and

separating the classifier and the discriminator. That separation makes our BDA

scheme more flexible since it allows us to use different discriminative models,

targeting at an improvement of the classification performance [99]. The key

difference of BDA compared to PMDA is that in BDA, the generator and the

model are jointly optimised, and the generation of the novel synthetic samples can

therefore be adaptively learned as the training progresses [99].
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5.2.3 Generative Active Learning

If the unlabelled data pool is not available, then one reasonable way is to generate

novel informative synthetic data points to accelerate the training performance.

This method is known as generative active learning, which aims to train a gen-

erative model to produce informative samples for the training process. Zhu and

Bento [108] proposed the generative adversarial active learning (GAAL) method to

generate novel informative artificial samples with a pre-trained GAN model [30].

Kong et al. [51] then extended the GAAL method with a new uncertainty reward

to guide a conditional GAN to generate new informative training data points. The

key advantage of these methods is that they can generate informative data points

for the training process without the requirement of the unlabelled pool data set,

given that the GAN model is pre-trained and the optimisation problem can be

solved efficiently. Nevertheless, this approach is challenging to be applied in deep

learning because they usually require overly simple acquisition functions, such

as the (negative) distance from the sample to the hyper-plane [85, 108] – these

functions do not in general represent well the complexity of active deep learning

problems [26, 98].

One of the drawbacks of both GAAL approaches above is that they only focus

on the binary classification problem. We proposed in [98] a Bayesian generative

active deep learning–an efficient combination of Bayesian data augmentation

(BDA) [99] and Bayesian active learning by disagreement (BALD) [26, 42], that

also targets the generation of informative training data points. In contrast to

the two methods above [51, 108], our proposed Bayesian generative active deep

learning [98] can handle multi-class problems using a deep classifier. Moreover, at

each iteration of that Bayesian generative active deep learning, the learner and the

generator are jointly optimised in the sample optimisation problem–this training

principle allows them to “co-evolve” during the training process [98]. In particular,

at each training iteration of that Bayesian generative active deep learning [98], the

most informative training sample selected by maximising the acquisition function

over the pool data set is then processed through a VAE-ACGAN [98] model to

generate novel synthetic data point. The current labelled training set is then

augmented by both of these selected and generated samples for the next training
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iteration. We theoretically show in [98] that the new generated synthetic sample

is also informative for the training process due to a small difference between the

value of the acquisition function at that sample and the optimal acquisition value

(i.e., the value at the selected most informative one).

5.2.4 GANs and VAEs

Generative adversarial network (GAN) [30] is an influential deep generative model

that aims to learn how to generate new artificial training samples from observed

data [29]. More specifically, GAN estimates a generative model through an “adver-

sarial process” performed by simultaneously training two deep learning models:

a generator that learns to produce samples belonging to a good approximation of

the (unknown) ground truth data distribution, and a discriminator that maximises

the probability that a sample came from the true data distribution rather than from

the generator. The performance of a GAN model is commonly evaluated by the

inception score (IS) [82] and the Frechet inception score (FID) [38] that relate both

to the quality and the diversity of the generated samples. In order to improve

the synthetic image quality, Odena et al. [74] introduced ACGAN, which is then

modified to demonstrate the Bayesian data augmentation algorithm in [99].

One of the most challenging problems that affects the diversity of the generated

images in the training of a GAN model is “mode collapse”–this issue occurs

when a real sample has significantly small probability to be generated. In an

attempt to address that “mode collapse” problem, Larsen et al. [58] proposed

a variational autoencoder generative adversarial network (VAE-GAN) that is a

combination of VAE [49] and GAN, in which these generative models are linked

by the decoder/generator [107]. In our previous work [98], we adapted that

combined network to introduce the VAE-ACGAN model in a demonstration of

the Bayesian generative active deep learning [98] by conditioning the generator on

the selected informative sample and its label to generate a new synthetic training

data point that is also informative for the training process.
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5.2.5 Imbalanced Learning

Effective learning with imbalanced data is crucial. Imbalanced learning can hap-

pen in many scenarios, such as in medical diagnosis, where the majority group

is usually healthy, but the performance on the minority class is more critical [46].

One of the most popular ways to address class imbalance is to re-balance the

original imbalanced training data set by under-sampling the majority class or

over-sampling the minority class [34, 46]. For example, in imbalanced active

learning [34], Ertekin [22] proposed the virtual instance re-sampling technique

using active learning (VIRTUAL) to re-balance data set by generating informative

minority samples–that VIRTUAL method focuses only on the binary classification

problem. One of the key drawbacks of those random re-sampling approaches is

that under-sampling can reduce the target information value of the model, while

over-sampling tends to increase the training time and computational resources,

which can even lead to over-fitting [8,46]. To re-balance a skewed data set without

changing its size, Ren et al. [78] proposed a novel robust meta-learning method

that aims to learn to re-weight the training samples by minimising the weighted

loss function associated to the performance on a balanced validation set. We then

use this sample re-weighting method [78] to handle the class imbalance issue that

may appear in the newly updated training data set in the Bayesian generative

active deep learning framework [98].

5.3 Methodology

In this section we provide comprehensive formulations and mathematical justi-

fications for the following methods: Bayesian active learning by disagreement

(BALD) [42]; Bayesian data augmentation [99]; Bayesian generative active deep

learning [98]; and meta sample re-weighting approach for imbalanced learning [78].

We then extend the Bayesian generative active deep learning [98] to introduce a

novel method that is robust to class imbalance data by combining that with the

sample re-weighting approach [78].
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5.3.1 Bayesian Active Learning by Disagreement (BALD)

Let us denote the observed data by 𝒟 = {(xi, yi)}N
i=1, where xi ∈ 𝒳 is the data

sample and its corresponding label yi ∈ 𝒞 = {1, 2, . . . , C}, where C is the number

of classes, and the modelℳ is parameterised by θ. This modelℳ is represented

by a Bayesian neural network, which means that the modelling process is based

on the estimation of the posterior distribution of the parameters θ given𝒟, namely

p(θ|𝒟).
We formulate the estimation of p(θ|𝒟) based on the Bayesian active learning

by disagreement (BALD) scheme [26, 42, 98]. In each iteration of BALD, the

most informative sample x* is selected from the (unlabelled) data pool 𝒟pool by

maximising the acquisition function a(x,ℳ) that can be approximated with Monte

Carlo (MC) dropout method [26], i.e.,

a(x,ℳ) ≈ −
C

∑
c=1

 1
D

D

∑
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c

 log

 1
D

D

∑
d=1

p̂d
c

+
1
D

C

∑
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D

∑
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p̂d
c log p̂d

c , (5.1)

where D is the number of dropout iterations, p̂d = [ p̂d
1, . . . , p̂d

C] = softmax( f (x; θd)),

with f denoting the network function parameterised by θd sampled from an ap-

proximation of the posterior p(θ|𝒟) at the d-th iteration. That sample x* is then

annotated by an oracle, producing (x*, y*), which is added to the annotated data

set for the next iteration of BALD (see Fig. 5.2).

5.3.2 Generative Models and Bayesian Data Augmentation

The estimation of a deep model using BALD in Sec. 5.3.1 may lead to over-fitting

since that model is assumed to rely on a small informative training set. One

reasonable way to avoid that over-fitting issue is to use data augmentation to

enlarge the given labelled data set by generating novel synthetic training data

points [53]. In the dominant data augmentation approach, the generation of the

new artificial training samples can be performed by using several sufficiently

small scale linear transformations [53, 89, 104] to preserve the labels of the real

samples. Although this approach is shown to work well in practice, that data

augmentation method, which we refer to as “poor man’s” data augmentation

(PMDA) [95], has not been properly validated. For instance, it is still unclear if
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Figure 5.2: Bayesian Active Learning by Disagreement (BALD) [42, 98].

small scale linear transformations actually preserve the labels of the sample, and

if such range of transformations provides good coverage of the image variations

for a particular visual classification problem. We introduce a novel theoretically

sound data augmentation, proposed in [99], called Bayesian data augmentation

(BDA) to train a generative model to re-generate new training data points.

The Bayesian data augmentation (BDA) scheme [99] is formulated based on a

generalised Monte-Carlo expectation maximisation (GMCEM) – a variant of the

expectation maximisation (EM) algorithm [18, 95, 99]. Each iteration of GMCEM

consists of two steps: 1) synthetic data generation and expectation approximation

(E-step); and 2) model training (M-step). This synthesised data is then inserted

in a set of latent variables defined by 𝒟l = {xl, yl}|𝒟
l |

l=1 , and the augmented data

set is represented by 𝒟a = 𝒟 ∪𝒟l. The E-step of the BDA algorithm consists of

computing a Monte-Carlo approximation Q̂(θ, θt) of Q(θ, θt) that is the expectation

of the log of augmented posterior log p(θ|𝒟a) [99]:

Q(θ, θt) = E(xl ,yl)∼p(𝒟l |θt,𝒟) log p(θ|𝒟a), (5.2)

where θt is the estimation at the t-th iteration of the model parameter θ. The

M-step of BDA comprises the estimation of θt+1 with:

θt+1 = arg max
θ

Q(θ, θt). (5.3)



72 Chapter 5. Bayesian Generative Active Deep Learning Applied to Imbalanced Learning

The algorithm iterates until ‖θt+1 − θt‖ is sufficiently small, and the optimal θ* is

selected from the final iteration. The EM steps of BDA in (5.2) and (5.3) guarantee

that:

Q̂(θt+1, θt) > Q̂(θt, θt). (5.4)

The weak convergence related to a true posterior improvement (i.e., p(θt+1|𝒟) >
p(θt|𝒟))) of the GMCEM framework is guaranteed by the following lemma that

we proposed in a previous paper [99]:

Lemma 3. Assuming that θt+1 is obtained by an iteration of the EM algorithm, i.e.,

Q̂(θt+1, θt) ≥ Q̂(θt, θt), which is guaranteed from (5.4), then the weak convergence (i.e.

p(θt+1|y) > p(θt|y)) will be fulfilled.

Proof. Given Q̂(θt+1, θt) > Q̂(θt, θt), then by taking the expectation on both

sides, that is Ep(z|y,θt)[Q̂(θt+1, θt)] > Ep(z|y,θt)[Q̂(θt, θt)], we obtain Q(θt+1, θt) >

Q(θt, θt), which is the condition for p(θt+1|y) > p(θt|y) proven from [95].

We propose an implementation of the BDA [99] based on an ACGAN model [74]

(see Fig. 5.1-(a)). In particular, our implementation extends ACGAN [74] by using

the generator and separating the classifier from the discriminator. In other words,

it consists of a generator g(·) (that generates new synthetic training samples), a

discriminator d(·) (that identifies real and fake samples) and a classification model

c(·) (that classifies samples in one of the classes in 𝒞). At each training iteration,

a novel synthetic labelled data point (xl, yl) ∈ 𝒟l is generated by xl = g(z, yl),

where the noise z is often chosen as a multivariate Gaussian, and the label yl ∈ 𝒞.

The loss function related to the training process of that three-subnetwork model

consists of two parts: the discriminative loss defined by Jc + Jdg, and the generative

loss defined by Jc− Jdg, where Jc is the optimisation function of the classifier c, and

Jdg is the one used to train the discriminator and the generator networks [99]. We

also theoretically show in [99] that that joint loss function is linked to the objective

function in (5.4), and therefore, the (weak) convergence of the training procedure

using stochastic gradient descent can be guaranteed [99].
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5.3.3 Bayesian Generative Active Deep Learning

The generation of samples from BDA, explained in Sec. 5.3.2, synthesises (xl, yl)

given a noise vector z sampled from a multivariate Gaussian. Such approach

guarantees that the synthesised samples belong to 𝒟l that approximates the true

data distribution𝒟 from the training of our ACGAN-extended model. However, it

does not guarantee that the generated sample is informative for the next iteration

process. In fact, as training progresses, it is expected that the synthesised samples

become less informative given that most of them will be based on samples z that

are close to the mean of the multivariate Gaussian. Therefore, we propose a new

approach that guarantees the generation of informative samples, resulting in a

training approach that requires much fewer annotated training samples.

Our proposed approach is the generative active deep learning method [98] that

consists of two steps (see Fig. 5.1-(b)): 1) active sample selection, and 2) informative

synthetic sample generation. In the first step, the most informative training data

point x* is selected by maximising the approximated acquisition function in (5.1).

That selected sample is then processed by a VAE-ACGAN [98] model, which is

modified from the Bayesian data augmentation [99] to generate new training data

sample x′,

x′ = g(e(x*)), (5.5)

where e(·) is the encoder and g(·) is the decoder of the VAE and also the generator

of the ACGAN model. The newly generated sample x′ is shown to belong to a

sufficiently small neighbourhood of the most informative sample x* due to the

deduction of the reconstruction loss in the VAE training [98], i.e., with an arbitrarily

small positive constant δ, we have

‖x′ − x*‖ < δ, (5.6)

and x′ therefore can inherit the label y* of x* (the label is provided by an oracle).

Both of these samples, (x*, y*) and (x′, y*) are then added to the original labelled

data set, i.e., 𝒟 ← 𝒟 ∪ (x*, y*), (x′, y*), which is used for the next training iter-

ation. More importantly, the informativeness of the generated data point x′ is

theoretically guaranteed by the following proposition [98]:
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Proposition 4. Assuming that there exists the gradient of the acquisition function

a(x,ℳ) with respect to the variable x, namely∇xa(x,ℳ), and that x* is an interior

point of 𝒟pool, then a(x′,ℳ) ≈ a(x*,ℳ) (i.e., the absolute difference between

these values are within a certain range). Consequently, the sample x′ generated

from the most informative sample x* by (5.5) is also informative.

Proof. Given the assumptions of Proposition 4, and due to the fact that x* is a local

maximum of function a(x,ℳ) (5.1), then x* is a critical point of a(x,ℳ), i.e.,

∇xa(x*,ℳ) = 0. (5.7)

Condition (5.6) indicates that x′ belongs to a sufficiently small neighbourhood

of x*. Therefore, by using the first order Taylor approximation of the function

a(x′,ℳ) at the point x* and (5.7), we obtain

a(x′,ℳ) ≈ a(x*,ℳ) +∇xa(x*,ℳ)T(x′ − x*)

≈ a(x*,ℳ), (5.8)

where T denotes the transpose operator. Thus, the synthetic sample x′ can also be

considered informative.

5.3.4 Imbalanced Learning

The generative active deep learning from Sec. 5.3.3 does not handle imbalanced

distribution of samples per class since the augmentation of the selected informative

and the generated training samples is done without regarding how balanced the

class distribution of the newly updated training set is. This section extends our

previously proposed method [98] by extending it to work in imbalanced problems.

The idea is to use the learn to re-weight method [78] to re-balance the updated

training data set at each iteration of the generative active learning framework [98].

One reasonable solution to address that class imbalance issue is to re-balance

the original imbalanced training data set by under-sampling the majority class or

over-sampling the minority class [34,46]. However, under-sampling can reduce the

target information value of the model, while over-sampling tends to increase the

training time and computational resources, and can even lead to over-fitting [8,46].
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Alternatively, Ren et al. [78] proposed a meta-learning scheme that learns to re-

weight the data samples without changing the training data size. The key idea of

that re-weighting process is to minimise a weighted loss [78]:

θ*(w) = arg min
θ

N

∑
i=1

wi`( f (xi; θ), yi), (5.9)

where `(·, ·) is the loss function, and the optimal weight vector w = (w1, . . . , wN) is

estimated by minimising the corresponding performance on a balanced validation

set 𝒟v = {xv
j , yv

j }M
j=1 [78], i.e.,

w* = arg min
w,w≥0

1
M

M

∑
j=1

`( f (xv
j ; θ*(w)), yv

j ). (5.10)

The authors in [78] also introduced an online approximation frame work to im-

prove the computational complexity of solving (5.10) by adapting online w at each

optimisation iteration. In particular, the weight vector w is first restricted to be

in the set {w : ‖w‖1 = 1} ∪ {0}, and its i-th element at t-th training iteration,

namely wi,t can be defined by [78]:

wi,t =
w̃i,t

(∑j w̃j,t) + δ(∑j w̃j,t)
, (5.11)

where δ(a) =

1, if a = 0

0, otherwise
, and

w̃i,t = max(ui,t, 0),

ui,t = −η
∂

∂εi,t

1
M

M

∑
j=1

`( f (xv
j ; θt+1(ε)), yv

j )
∣∣
εi,t=0,

θt+1(ε) = θt − α∇
N

∑
i=1

εi`( f (xi; θ), yi)
∣∣
θ=θt

,

where the last equation refers to the (t + 1)th update of model parameters θ.

5.3.5 Generative Active Deep Learning Robust to Imbalanced

Learning Algorithm

This section introduces the main contribution of this paper that extends our pre-

viously proposed method [98] to work for imbalanced learning problems (see
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Fig. 5.1-(c)). Assuming that the initial training data set 𝒟 is imbalanced, the idea

is to use the sample re-weighting meta-learning approach [78] to re-balance the

skewed data set without changing the data set size. The learning algorithm re-

lies on the weight wi of the sample (xi, yi) ∈ 𝒟 (defined in Eq. 5.9) to form the

weighted loss to be minimised. At each iteration of the generative active deep

learning [98], the initial training set 𝒟 is augmented by two novel training data

points including the selected most informative sample (x*, y*) and the informa-

tive generated sample (x′, y*), i.e., 𝒟 ← 𝒟 ∪ {(x*, y*), (x′, y*)}. These samples

in the updated training set are then re-weighted with the sample re-weighting

procedure [78] for the next training iteration.

We modify the Bayesian generative active deep learning [98] to propose a novel

training process, described in Algorithm 2, that is robust to class imbalanced data

sets. In that algorithm the balanced validation set 𝒟v is used for the re-weighting

procedure.

5.4 Experiments and Results

In this section, we first show and discuss the experiments for balanced data

sets [98] to show the better classification performance of the Bayesian generative

active deep learning approach [98] compared to other baseline methods. We

then evaluate our proposed generative active deep learning robust to imbalanced

learning in Sec. 5.3.5. For all experiments, we rely on the top-1 classification

accuracy in a comparison with several baselines.

5.4.1 Experiments on Balanced Data Sets [98]

We present the classification performance as a function of the number of acquisition

iterations and the respective percentage of training samples used in a particular

training iteration. We present results of the following methods: 1) 10× data

augmentation BDA [99] trained on the full training set (BDA (full training)); 2)

the Bayesian generative active learning (AL w. VAEACGAN); 3) active learning

using BDA (AL w. ACGAN); 4) 2× data augmentation BDA modelled with partial

training sets (BDA (partial training)); 5) BALD [26, 42] without data augmentation

(AL without DA); and 6) random selection of training samples using the percentage
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Algorithm 2 Robust Bayesian Generative Active Learning
Employ the sample re-weighting method [78] to obtain the weight vector w on

the initial training set 𝒟, using the validation set 𝒟v.

Initialise network parameters θE, θG, θC, θD, and pre-train the classifier c(x; θC)

with 𝒟
repeat

Pick the most informative x* from 𝒟pool with x* = arg maxx∈𝒟pool a(x,ℳ)

in (5.1), whereℳ is represented by the classifier c(x; θC);

Request the oracle to label the selected sample, which forms (x*, y*)

Re-weight the updated training set using the weight vector w, defined above

z← e(x*; θE)

ℒprior ← DKL(q(z|x*)‖p(z))

x′ = g(e(x*); θG)

ℒrec ← ℒrec(x*, x′)

Assign the learned weight of x* for the weight of x′

Sample u ∼ 𝒩 (0, I)

ℒACGAN ← log(d(x*)) + log(1 − d(x′)) + log(1 − d(g(u))) +

log(softmax(c(x*; w))) + log(softmax(c(x′; w))) + log(softmax(c(g(u))))

θE ← θE −∇θE(ℒrec + ℒprior)

θG ← θG −∇θG(γℒrec − ℒACGAN) (parameter γ = 0.75 [58] in our experi-

ments)

θD ← θD −∇θDℒACGAN

θC ← θC −∇θCℒACGAN

until convergence
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of samples from the original training set (Random selection). The comparison is

based on experiments using two classifiers, ResNet18 [36] and ResNet18pa [37],

on the following benchmark data sets: MNIST [61], CIFAR-10 [53], and SVHN [72].

MNIST [61] contains 28× 28 black and white handwritten digits, (with 60000

training and 10000 testing samples, and 10 classes), CIFAR-10 [53] is composed

of 32× 32 colour images (with 50000 training and 10000 testing samples, and 10

classes), and SVHN [72] contains 32× 32 colour images containing street view

house numbers (with 73257 training samples and 26032 testing samples, and 10

classes).

In [98], the sample acquisition setup for each data set is chosen as follows: 1)

the number of samples in the initial training set is 1000 for MNIST, 5000 for CIFAR-

10, and 10000 for SVHN (this initial data set size was empirically determined

based on the fact that with smaller sizes, we could not make the training process

converge); 2) the number of acquisition iterations is 150 (50 for SVHN), where

at each iteration, 100 (500 for SVHN) samples are selected from 2000 randomly

selected samples of the unlabelled data set 𝒟pool. The hyper-parameters of the

training process are chosen as follows: 1) the classifier c(x; θC) used stochastic

gradient descent with (lr=0.01, momentum=0.9); 2) the encoder e(x; θE), generator

g(z; θG) and discriminator d(x; θD) used Adam optimizer with (lr=0.0002, β1 = 0.5,

β2 = 0.999); the mini-batch size is 100 for all cases.

Fig. 5.3 shows the comparison with respect to the classification accuracy as a

function of both number of acquisition iterations and corresponding proportion of

training samples.

5.4.2 Experiments on Imbalanced Data Sets

In this section, our proposed Bayesian generative active deep learning robust to

imbalanced data sets (AL w. VAEACGAN using RW) is compared with the fol-

lowing baseline approaches: 2) Bayesian generative active deep learning without

sample re-weighting (AL w. VAEACGAN without RW); 3) AL w. ACGAN using

sample re-weighting (AL w. ACGAN using RW); 4) AL w. ACGAN without sam-

ple re-weighting (AL w. ACGAN without RW); 5) active learning using sample

re-weighting without data augmentation (AL using RW); 6) active learning with-

out data augmentation nor sample re-weighting (AL); 7) sample re-weighting
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Figure 5.3: Training and classification performance of the proposed Bayesian

generative active learning (AL w. VAEACGAN) compared to active learning using

BDA [99] (AL w. ACGAN), BDA modelled with partial training sets (BDA (partial

training)), BALD [26, 42] without data augmentation (AL without DA), and random

selection of training samples using the percentage of samples from the original

training set (Random selection). The result for BDA modelled with the full training

set (BDA (full training)) and 10× data augmentation represents an upper bound

for all other methods. This performance is measured as a function of the number

of acquisition iterations and respective percentage of samples from the original

training set used for modelling. First row shows these results using ResNet18 [36],

and second row shows ResNet18pa [37] on MNIST [61] (column 1), CIFAR-10

(column 2), and SVHN [72] (column 3).
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(RW) modelled on three training subsets associated with the first acquisition, the

50th-acquisition iteration, and the final acquisition iteration. That comparison is

based on experiments performed on imbalanced subsets randomly sampled from

MNIST [61], CIFAR-10 [53], and SVHN [72]. In particular, the imbalanced MNIST

contains 37829 training samples with the corresponding number of samples per

class: [5214, 6201, 2329, 5880, 2283, 3259, 1522, 4939, 5485, 717]; the imbalanced

CIFAR-10 consists of 31323 training samples with the corresponding number of

samples per class: [4375, 4570, 1922, 4800, 1978, 3000, 1298, 4001, 4697, 682];

the imbalanced SVHN contains 47482 training samples with the corresponding

number of samples per class: [4389, 12628, 4023, 8157, 2937, 4122, 1439, 4377,

4733, 677]–The class distribution of each imbalanced data set is depicted in Fig. 5.4.

(a) Imbalanced MNIST (b) Imbalanced CIFAR-10 (c) Imbalanced SVHN

Figure 5.4: Distribution of classes in imbalanced data sets used in the experiments

in Sec. 5.4.2 for (a) MNIST, (b) CIFAR-10, and (c) SVHN.

To demonstrate the flexibility of our proposed method, we test it with three

deep models: Lenet [62], Resnet18 [36] and Resnet18pa [37]. The setup for this

experiment is slightly different from the one used for the balanced data set experi-

ment regarding the number of samples in the initial data sets, and the number of

acquisitions. We needed to change this setup because of differences observed in the

structure of imbalanced data sets. In particular, the sizes of the initial training sets

are: a) for the imbalanced MNIST, 100 for Lenet, 1000 for Resnet18 and Resnet18pa;

b) for imbalanced CIFAR-10, 5000 for all three models; and c) for the imbalanced

SVHN, 5000 for all three models. For all experiments, the number of acquisition

iterations is 100, and at each acquisition function, 100 samples are selected from a

subset that contains 2000 samples of the unlabelled pool data set 𝒟pool. We use

the same hyper-parameters defined in [98], which is also mentioned in Sec. 5.4.1.

The balanced validation set in the sample re-weighting algorithm contains 1000
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samples (100 for each class) randomly chosen from the original balanced data

sets in Sec. 5.4.1 – this validation set does not contain samples belonging to the

corresponding imbalanced data set.

In our proposed Bayesian generative active deep learning robust to imbalanced

data, detailed in Alg. 2, the newly updated labelled training set is re-weighted

with the sample re-weighting scheme [78] at every acquisition. This makes the

training algorithm computationally expensive. To handle that issue, in our actual

experiments that are performed on the labelled data sets, we use the sample re-

weighting scheme only once on the whole imbalanced data set. The learned weight

is then stored and assigned to the corresponding selected informative sample in

order to form the weighted loss function at each training iteration.

All experimental results are presented in Fig. 5.5.

5.5 Discussion and Conclusion

It is clear from Fig. 5.3 that, in all experiments for balanced data sets, our proposed

Bayesian generative active deep learning (AL w. VAEACGAN) [98] provides better

classification accuracy than active learning with BDA (AL w. ACGAN), in which

the informative samples are also used for training, but the generated samples

may not be informative [98]. However, such training samples generated with AL

w. ACGAN seem to be crucial given its superior results, compared with active

learning without data augmentation (AL without DA). Moreover, results in Fig. 5.3

also indicate the efficiency of the generation of informative samples given the

similar classification accuracy produced by AL w. VAEACGAN and 10× BDA

(full training), but AL w. VAEACGAN uses a fraction of the training set of 10×
BDA (e.g., 26.67%, 40%, and 55% for MNIST, CIFAR-10, and SVHN, respectively).

Furthermore, it can be seen from Fig. 5.3 that given training sets with the same

number of training samples, AL w. VAEACGAN outperforms BDA (partial training)

by a larger margin across different data sets and classifiers [98].

The classification results in Fig. 5.5 consistently show that our proposed

Bayesian generative active deep learning using sample re-weighting (AL w. VAEAC-

GAN using RW) produces better classification results compared to Bayesian gen-

erative active deep learning without sample re-weighting (AL w. VAEACGAN
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Figure 5.5: Training and classification results produced by our proposed Bayesian

generative active deep learning with and without sample re-weighting (AL w.

VAEACGAN using/without RW), active learning with ACGAN with and with-

out sample re-weighting (AL w. ACGAN using/without RW), active learning

without data augmentation, but using sample re-weighting (AL using RW), active

learning without data augmentation and sample re-weighting (AL), and sample

re-weighting (RW). The graphs are organised as Lenet [62] (row 1), Resnet18 [36]

(row 2), and Resnet18pa [37] (row 3) on MNIST [61] (column 1), CIFAR-10 [53]

(column 2), and SVHN [72] (column 3)
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without RW). The advantage of using sample re-weighting is also depicted in the

comparison between AL w. ACGAN using RW and AL w. ACGAN without RW, and

between (AL using RW) and the original active learning (AL). Moreover, Fig. 5.5

indicates that the AL w. VAEACGAN [98] is superior to AL w. ACGAN for both the

original and the combination with RW. Fig. 5.5 also shows that the usage of the

Bayesian data augmentation [99] seems to be crucial due to the better classification

performance of AL w. ACGAN without RW compared to active learning using

sample re-weighting without data augmentation (AL using RW). Results in Fig. 5.5

also shows the importance of active learning as AL using RW produces better

classification accuracy compared to sample re-weighting (RW) at three points

(using the same training percentage).

In this paper, we provide more comprehensive descriptions for our previously

proposed approaches, the Bayesian data augmentation [99] and Bayesian gen-

erative active deep learning [98]. We also propose a novel Bayesian generative

active deep learning that targets a robust learning of deep models for imbalanced

data. This approach has been shown to be more effective than Bayesian generative

active deep learning on several imbalanced data sets. In the future, we plan to

improve the computational complexity of the Bayesian generative active deep

learning [98].

Acknowledgements

We gratefully acknowledge the support by Vietnam International Education De-

velopment (VIED), Australian Research Council through grants DP180103232,

CE140100016 and FL130100102.



84Chapter 5. Bayesian Generative Active Deep Learning Applied to Imbalanced Learning



CHAPTER 6
Conclusion and Future Works

In this thesis, we investigated several learning approaches that aim to improve

the efficiency in the use of labelled data sets for training deep models. In par-

ticular, we propose novel effective learning methods that enable deep learning

models to generalise well using not only relatively small, but also imbalanced

labelled training data sets. These proposed methods are: Bayesian data augmen-

tation [99], Bayesian generative active deep learning [98], and a novel extension

of the Bayesian generative active deep learning that is robust to class imbalanced

data. In this chapter, we first provide in Sec. 6.1 a summary of the contributions of

this thesis. We then analyse several limitations of the current work and discuss

some possible future directions for this research in Sec. 6.2.

6.1 Summary of Contributions

Firstly, in Chapter 3, we propose a novel theoretically sound Bayesian data aug-

mentation (BDA) that aims to train a generative model to produce new synthetic

samples, targeting the training of more accurate deep classification models. We

show that BDA is different from the current dominant data augmentation tech-

nique, which is referred to as “poor man’s” data augmentation (PMDA), where

the generation of artificial data points is executed only once, and prior to the

training process. In our proposed BDA, the generator and the classifier are jointly

trained, allowing the generator to adapt to the training process. We formulate that

BDA based on a variant of the expectation maximisation (EM) algorithm, called
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generalised Monte-Carlo expectation maximisation (GMCEM). We provide a theo-

retical justification for the weak convergence of the BDA framework. To introduce

a demonstration for BDA, we adapt an extension of the generative adversarial

network (GAN), namely ACGAN [74], by using the generator and splitting the

classifier from the discriminator. This separation is critical since it allows us to

test the BDA with different sophisticated classifiers to improve state-of-the-art

classification performance. We empirically show that our proposed BDA produces

more accurate classification results than the PMDA and also the ACGAN model.

Secondly, motivated by the fact that, in the BDA, the generated samples are

likely not informative, particularly at latter stages of the training process [98], we

introduce in Chapter 4 the Bayesian generative active deep learning that targets

the generation of novel synthetic data points that are informative for the training

process. To formulate that Bayesian generative active deep learning, we propose

a theoretically sound combination of the BDA and the Bayesian active learning

by disagreement (BALD) [26, 42], in which the most informative samples are

selected by BALD. These informative training instances are then used in the data

generation procedure of the BDA to produce novel synthetic samples. We also

theoretically show the informativeness of the generated samples. We provide

empirical demonstration that shows that our proposed Bayesian generative active

deep learning is superior to BDA and BALD regarding both training data efficiency

and classification results.

Finally, in an attempt to facilitate the Bayesian generative active deep learn-

ing, explained in Chapter 4, to perform well on class imbalanced data sets, we

strengthen that method in Chapter 5 with a novel extension that is robust to

imbalanced data. This idea is realised by combining the Bayesian generative

active deep learning algorithm with one of the most effective imbalanced learning

methods, namely the meta sample re-weighting approach [78]. In particular, that

sample re-weighting procedure is used at each iteration of the Bayesian generative

active deep learning to re-balance the newly updated labelled training set. We

also empirically demonstrate that our novel proposed method produces better

classification results compared to the original Bayesian generative active deep

learning across several imbalanced data sets and different deep classifiers.
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6.2 Thesis Limitations and Future Work

In Chapter 3, we investigated the Bayesian data augmentation (BDA) that aims to

train a generative model to produce new synthetic samples to avoid over-fitting in

training deep models. Aside from the informativeness of the generated samples

that has been addressed in the Bayesian generative active deep learning [98] in

Chapter 4, another crucial factor that could be taken into account is the difficulty

to fit those novel synthetic samples. This difficulty can be alleviated by the use of

training samples with an increasing difficulty level that can boost the convergence

of the BDA method [4,55]. One reasonable future direction is therefore to integrate

curriculum training (CL) [4], or self-paced learning (SPL) [45, 55] into BDA. More-

over, although BDA has been shown to be theoretically and empirically superior to

PMDA, it would be interesting to introduce an efficient combination between BDA

and the geometrical transformations of PMDA to utilise the “label-preserving”

property of those transformations. This idea is inspired by the parameter expan-

sion data augmentation (PX-DA) algorithm [66], in which some “distribution

preserving” linear transformations are applied to latent variables to accelerate the

convergence of the data augmentation using latent variables method [94]. Another

potential limitation of BDA is that it can waste computational resources for train-

ing since the number of synthetic samples are the same at each iteration, while the

generated samples at the initial training stages may be unrealistic or unhelpful

for the training process. One possible future work to improve the running time of

BDA is to design, for example, an adaptive DA, where the first training iteration

would start with a small number of synthetic samples, and this value is adaptively

increased after each iteration as training progresses.

Although the ability to perform well on imbalanced data set of Bayesian gen-

erative active deep learning [98] in Chapter 4 has been improved in its robust

extension in Chapter 5, there have been several limitations of the Bayesian gen-

erative active deep learning that need to be addressed. Firstly, in that Bayesian

generative active deep learning, the active sample selection procedure is based

on the BALD acquisition function, but BALD is currently not the state-of-the-art

active learning method. One possible future work is to introduce the use of some

more recent approaches, for example the BatchBALD [50] in the Bayesian gen-
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erative active deep learning framework. This research direction can potentially

improve data diversity of the selected mini-batch at each iteration of the Bayesian

generative active deep learning, and therefore may accelerate its convergence

rate [50]. Another limitation of the Bayesian generative active deep learning is

that, in the experiments, the stopping condition was empirically selected such

that the algorithm is executed until the classification performance reaches the

upper bound defined by the 10× BDA [98]. It is, therefore, an interesting future

work to theoretically investigate a general stopping criterion for that algorithm.

One reasonable solution may be to provide an estimate of the sample complex-

ity [32, 85]–the algorithm will be terminated when the number of training samples

reaches that sample complexity value to guarantee a given classification perfor-

mance level. Furthermore, the Bayesian generative active deep learning relies on

the assumption about the existence of a large unlabelled pool data, and a human

annotator to label the selected informative samples, but this labelling process

is expensive and prone to errors. One possible avenue for future research is to

directly generate informative labelled samples for the training process without

using an oracle. This can be done, for example, by integrating the sophisticated

acquisition functions in the objective function of GAN training to directly generate

informative samples for the training process–that is motivated by the ActiveGAN

approach [51].

In Chapter 5, we propose a novel Bayesian generative active deep learning that

is robust to imbalanced data. Although the empirical evidence in Chapter 5 shows

that the proposed method produces better classification results than the original

baseline methods on several imbalanced data sets, our approach is still relatively

straightforward since it is based on a combination of two existing methods. It is

an interesting future work to introduce a theoretically sound and more efficient

robust Bayesian generative active deep learning by, for example, incorporating the

weighted loss from the sample re-weighting scheme [78] into the objective function

of the VAE-ACGAN training, or to the acquisition function of BALD. Improving

the computational complexity of both the Bayesian generative active deep learning

and its novel robust extension is also an interesting research direction for future

work.
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[44] J. Janai, F. Güney, A. Behl, and A. Geiger. Computer vision for au-

tonomous vehicles: Problems, datasets and state-of-the-art. arXiv preprint

arXiv:1704.05519, 2017.

[45] L. Jiang, D. Meng, Q. Zhao, S. Shan, and A. G. Hauptmann. Self-paced cur-

riculum learning. In Twenty-Ninth AAAI Conference on Artificial Intelligence,

2015.

[46] J. M. Johnson and T. M. Khoshgoftaar. Survey on deep learning with class

imbalance. Journal of Big Data, 6(1):27, 2019.

[47] S. H. Khan, M. Hayat, M. Bennamoun, F. A. Sohel, and R. Togneri. Cost-

sensitive learning of deep feature representations from imbalanced data.

IEEE transactions on neural networks and learning systems, 29(8):3573–3587,

2017.

[48] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling. Semi-supervised

learning with deep generative models. In Advances in Neural Information

Processing Systems, pages 3581–3589, 2014.

[49] D. P. Kingma and M. Welling. Auto-encoding variational bayes. CoRR,

abs/1312.6114, 2013.

[50] A. Kirsch, J. van Amersfoort, and Y. Gal. Batchbald: Efficient and di-

verse batch acquisition for deep bayesian active learning. arXiv preprint

arXiv:1906.08158, 2019.

[51] Q. Kong, B. Tong, M. Klinkigt, Y. Watanabe, N. Akira, and T. Murakami.

Active generative adversarial network for image classification. 2019.

[52] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny

images. 2009.



94 Bibliography

[53] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with

deep convolutional neural networks. In Advances in neural information pro-

cessing systems, pages 1097–1105, 2012.

[54] A. Kumar, O. Irsoy, P. Ondruska, M. Iyyer, J. Bradbury, I. Gulrajani, V. Zhong,

R. Paulus, and R. Socher. Ask me anything: Dynamic memory networks for

natural language processing. In International Conference on Machine Learning,

pages 1378–1387, 2016.

[55] M. P. Kumar, B. Packer, and D. Koller. Self-paced learning for latent variable

models. In Advances in Neural Information Processing Systems, pages 1189–

1197, 2010.

[56] B. Lake, R. Salakhutdinov, J. Gross, and J. Tenenbaum. One shot learning

of simple visual concepts. In Proceedings of the annual meeting of the cognitive

science society, volume 33, 2011.

[57] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman. Building

machines that learn and think like people. Behavioral and brain sciences, 40,

2017.

[58] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther. Autoencoding

beyond pixels using a learned similarity metric. In M. F. Balcan and K. Q.

Weinberger, editors, Proceedings of The 33rd International Conference on Machine

Learning, volume 48 of Proceedings of Machine Learning Research, pages 1558–

1566, New York, New York, USA, 20–22 Jun 2016. PMLR.

[59] A. Lavecchia. Deep learning in drug discovery: opportunities, challenges

and future prospects. Drug discovery today, 2019.

[60] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436,

2015.

[61] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,

1998.

[62] Y. LeCun et al. Lenet-5, convolutional neural networks. URL: http://yann.

lecun. com/exdb/lenet, 20:5, 2015.



Bibliography 95

[63] C. Li, K. Xu, J. Zhu, and B. Zhang. Triple generative adversarial nets. CoRR,

abs/1703.02291, 2017.

[64] S. Lim, I. Kim, T. Kim, C. Kim, and S. Kim. Fast autoaugment. arXiv preprint

arXiv:1905.00397, 2019.

[65] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian,

J. A. van der Laak, B. van Ginneken, and C. I. Sánchez. A survey on deep

learning in medical image analysis. Medical image analysis, 42:60–88, 2017.

[66] J. S. Liu and Y. N. Wu. Parameter expansion for data augmentation. Journal

of the American Statistical Association, 94(448):1264–1274, 1999.

[67] D. J. MacKay. Information-based objective functions for active data selection.

Neural computation, 4(4):590–604, 1992.

[68] D. Masko and P. Hensman. The impact of imbalanced training data for

convolutional neural networks, 2015.

[69] E. G. Miller, N. E. Matsakis, and P. A. Viola. Learning from one example

through shared densities on transforms. In Proceedings IEEE Conference

on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No. PR00662),

volume 1, pages 464–471. IEEE, 2000.

[70] M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv

preprint arXiv:1411.1784, 2014.

[71] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level

control through deep reinforcement learning. Nature, 518(7540):529, 2015.

[72] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading dig-

its in natural images with unsupervised feature learning. In NIPS workshop

on deep learning and unsupervised feature learning, volume 2011, page 5, 2011.

[73] A. Odena. Semi-supervised learning with generative adversarial networks.

arXiv preprint arXiv:1606.01583, 2016.

[74] A. Odena, C. Olah, and J. Shlens. Conditional image synthesis with auxiliary

classifier gans. In International Conference on Machine Learning, pages 2642–

2651, 2017.



96 Bibliography

[75] O. M. Parkhi, A. Vedaldi, A. Zisserman, et al. Deep face recognition. In bmvc,

volume 1, page 6, 2015.

[76] W. Qian and D. Titterington. Estimation of parameters in hidden markov

models. Philosophical Transactions of the Royal Society of London A: Mathematical,

Physical and Engineering Sciences, 337(1647):407–428, 1991.

[77] A. Rajkomar, E. Oren, K. Chen, A. M. Dai, N. Hajaj, P. J. Liu, X. Liu, M. Sun,

P. Sundberg, H. Yee, et al. Scalable and accurate deep learning for electronic

health records. arXiv preprint arXiv:1801.07860, 2018.

[78] M. Ren, W. Zeng, B. Yang, and R. Urtasun. Learning to reweight examples

for robust deep learning. In International Conference on Machine Learning,

pages 4331–4340, 2018.

[79] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and

approximate inference in deep generative models. In International Conference

on Machine Learning, pages 1278–1286, 2014.

[80] M. B. Ring. Continual learning in reinforcement environments. PhD thesis,

University of Texas at Austin Austin, Texas 78712, 1994.

[81] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual

recognition challenge. International Journal of Computer Vision, 115(3):211–

252, 2015.

[82] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen.

Improved techniques for training gans. In Advances in neural information

processing systems, pages 2234–2242, 2016.

[83] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding

for face recognition and clustering. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 815–823, 2015.

[84] O. Sener and S. Savarese. Active learning for convolutional neural networks:

A core-set approach. In International Conference on Learning Representations,

2018.

[85] B. Settles. Active learning. Synthesis Lectures on Artificial Intelligence and

Machine Learning, 6(1):1–114, 2012.



Bibliography 97

[86] B. Settles, M. Craven, and L. Friedland. Active learning with real annotation

costs. In Proceedings of the NIPS workshop on cost-sensitive learning, pages 1–10.

Vancouver, CA, 2008.

[87] C. E. Shannon. A mathematical theory of communication. ACM SIGMOBILE

Mobile Computing and Communications Review, 5(1):3–55, 2001.

[88] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,

J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mas-

tering the game of go with deep neural networks and tree search. nature,

529(7587):484, 2016.

[89] P. Y. Simard, D. Steinkraus, and J. C. Platt. Best practices for convolutional

neural networks applied to visual document analysis. In Proceedings of the

Seventh International Conference on Document Analysis and Recognition - Volume

2, 2003.

[90] K. Simonyan and A. Zisserman. Very deep convolutional networks for

large-scale image recognition. CoRR, abs/1409.1556, 2014.

[91] A. Srivastava, L. Valkov, C. Russell, M. U. Gutmann, and C. Sutton. Veegan:

Reducing mode collapse in gans using implicit variational learning. In

Advances in Neural Information Processing Systems, pages 3308–3318, 2017.

[92] C. Sun, A. Shrivastava, S. Singh, and A. Gupta. Revisiting unreasonable ef-

fectiveness of data in deep learning era. In 2017 IEEE International Conference

on Computer Vision (ICCV), pages 843–852. IEEE, 2017.

[93] R. S. Sutton, A. G. Barto, et al. Introduction to reinforcement learning, volume 2.

MIT press Cambridge, 1998.

[94] M. A. Tanner. Tools for statistical inference, volume 3. Springer, 1991.

[95] M. A. Tanner. Tools for statistical inference: Observed data and data aug-

mentation methods. Lecture Notes in Statistics, 67, 1991.

[96] M. A. Tanner and W. H. Wong. The calculation of posterior distributions by

data augmentation. Journal of the American statistical Association, 82(398):528–

540, 1987.



98 Bibliography

[97] K. M. Ting. A comparative study of cost-sensitive boosting algorithms. In In

Proceedings of the 17th International Conference on Machine Learning. Citeseer,

2000.

[98] T. Tran, T.-T. Do, I. Reid, and G. Carneiro. Bayesian generative active deep

learning. In International Conference on Machine Learning, pages 6295–6304,

2019.

[99] T. Tran, T. Pham, G. Carneiro, L. Palmer, and I. Reid. A bayesian data

augmentation approach for learning deep models. In Advances in Neural

Information Processing Systems, pages 2797–2806, 2017.

[100] J. Vamathevan, D. Clark, P. Czodrowski, I. Dunham, E. Ferran, G. Lee, B. Li,

A. Madabhushi, P. Shah, M. Spitzer, et al. Applications of machine learning

in drug discovery and development. Nature Reviews Drug Discovery, page 1,

2019.

[101] D. A. Van Dyk and X.-L. Meng. The art of data augmentation. Journal of

Computational and Graphical Statistics, 10(1):1–50, 2001.

[102] D. A. Van Dyk, X.-L. Meng, et al. Cross-fertilizing strategies for better

em mountain climbing and da field exploration: A graphical guide book.

Statistical Science, 25(4):429–449, 2010.

[103] S. Wang and X. Yao. Multiclass imbalance problems: Analysis and poten-

tial solutions. IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), 42(4):1119–1130, 2012.

[104] L. Yaeger, R. Lyon, and B. Webb. Effective training of a neural network

character classifier for word recognition. In NIPS, volume 9, pages 807–813,

1996.

[105] C. Yoon, G. Hamarneh, and R. Garbi. Generalizable feature learning in the

presence of data bias and domain class imbalance with application to skin

lesion classification.

[106] X. Zhang and Y. LeCun. Text understanding from scratch. arXiv preprint

arXiv:1502.01710, 2015.

[107] Z. Zhang, Y. Song, and H. Qi. Gans powered by autoencoding a theoretic

reasoning. In ICML Workshop on Implicit Models, 2017.



Bibliography 99

[108] J.-J. Zhu and J. Bento. Generative adversarial active learning. arXiv preprint

arXiv:1702.07956, 2017.

[109] X. Zhu, J. Lafferty, and R. Rosenfeld. Semi-supervised learning with graphs.

PhD thesis, Carnegie Mellon University, language technologies institute,

school of . . . , 2005.

[110] Q. Zou, S. Xie, Z. Lin, M. Wu, and Y. Ju. Finding the best classification

threshold in imbalanced classification. Big Data Research, 5:2–8, 2016.


	Abstract
	Declaration
	Preface
	Dedication
	Acknowledgements
	Contents
	Introduction
	Thesis Contributions
	Thesis Outline

	Literature Review
	Active Learning
	Data Augmentation
	Generative Active Learning
	Generative Adversarial Networks and Variational Auto-encoders
	Imbalanced Learning

	A Bayesian Data Augmentation Approach for Learning Deep Models
	Introduction
	Related Work
	Data Augmentation
	Deep Generative Models

	Data Augmentation Algorithm in Deep Learning
	Bayesian Neural Networks
	Data Augmentation using Latent Variable Methods
	Generalized Monte Carlo EM Algorithm

	Implementation
	Network Architecture
	Optimization Function
	Training

	Experiments
	Conclusions

	Bayesian Generative Active Deep Learning
	Introduction
	Related Work
	Bayesian Active Learning
	Data Augmentation
	Generative Active Learning
	Variational Autoencoder Generative Adversarial Networks

	``Information-Preserving'' Data Augmentation for Active Learning
	Bayesian Active Learning by Disagreement (BALD)
	Generative Model and Bayesian Data Augmentation
	Bayesian Generative Active Deep Learning

	Implementation
	Experiments and Results
	Discussion and Conclusions

	Bayesian Generative Active Deep Learning Applied to Imbalanced Learning
	Introduction
	Related Work
	Active Learning
	Data Augmentation
	Generative Active Learning
	GANs and VAEs
	Imbalanced Learning

	Methodology
	Bayesian Active Learning by Disagreement (BALD)
	Generative Models and Bayesian Data Augmentation
	Bayesian Generative Active Deep Learning
	Imbalanced Learning
	Generative Active Deep Learning Robust to Imbalanced Learning Algorithm

	Experiments and Results
	Experiments on Balanced Data Sets tran2019bayesian
	Experiments on Imbalanced Data Sets

	Discussion and Conclusion

	Conclusion and Future Works
	Summary of Contributions
	Thesis Limitations and Future Work

	Bibliography



