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Abstract 

 

The root lesion nematode Pratylenchus thornei feeds on roots of wheat (Triticum aestivum) 

plants, causing significant damage to the roots at the cellular level, resulting in yield reduction. 

In a previous study, P. thornei resistance QTL, QRlnt.sk-6D and QRlnt.sk-2B were identified 

in a Sokoll/Krichauff wheat DH population. The current project was undertaken with the aim 

to dissect the genetic and biological basis of this resistance. To better define the genetic basis 

of resistance, both resistance loci were fine mapped using the Sokoll/Krichauff DH population 

and six newly developed RIL populations. Bulked segregation analysis with the 90K Wheat 

SNP array identified linked SNPs, which were subsequently converted to KASP assays for 

mapping in the DH and RIL populations. QRlnt.sk-6D was delimited to a 3.5 cM interval, 

representing 1.77 Mbp in the bread wheat cv. Chinese Spring reference genome sequence and 

2.29 Mbp in the Ae. tauschii genome sequence. These intervals contained 42 and 43 gene 

models in the respective annotated genome sequences. QRlnt.sk-2B was delimited to 1.4 cM, 

corresponding 3.14 Mbp in the durum wheat cv. Svevo reference sequence and 2.19 Mbp in 

Chinese Spring. The interval in Chinese Spring contained 56 high confidence gene models. 

Intervals for both QTL contained genes with similarity to those previously reported to be 

involved in disease resistance, namely genes for phenylpropanoid-biosynthetic-pathway-

related enzymes, NBS-LRR proteins and protein kinases. The potential roles of these candidate 

genes in P. thornei resistance are discussed. The KASP markers reported in this study could 

potentially be used for marker assisted breeding of P. thornei resistant wheat cultivars. 

 

To quantify P. thornei from wheat root, a qPCR-based assay was developed. A standard curve 

was produced to quantify P. thornei from wheat root samples. The standard curve was validated 

by estimating P. thornei from sixteen wheat lines with known levels of resistance. Overall, the 

assay was 2.4-fold less expensive compared to the commercial service (PreDicta B test, 
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SARDI). The DNA extraction protocol was inexpensive as it works without using a 

commercial DNA extraction kit.   

 

In order to identify metabolites associated with resistance loci, the GC-MS based metabolic 

profiles of root exudates and root tissues from the resistant lines were compared with the 

susceptible lines. In root exudates, 21 metabolites were found to be associated with resistance 

QTL. Likewise, from root tissue, 15 metabolites were found to be associated with the resistance 

QTL. These metabolites were derived from diverse biochemical groups, including amino acids 

and amines, organic acids, sugars, sugar alcohols and sugar phosphates. The possible roles of 

these resistance compounds in P. thornei resistance is largely unknown. However, their 

nematotoxic properties against other plant parasitic nematodes were discussed.  

 

In response to P. thornei infection, the histological and histochemical responses of wheat roots 

were investigated. The use of the fluorescent dye PKH26 (for P. thornei labelling) and confocal 

microscopy enabled visualisation of live P. thornei both out and inside wheat root tissue. In 

response to P. thornei infection, secondary cell wall thickening (deposition of cellulose, 

callose, lignin and suberin) was observed in the P. thornei resistant cultivar, Sokoll. Secondary 

cell wall thickening might result in physical reinforcement of the cell wall restricting P. thornei 

migration in the resistant root tissues.  
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Chapter 1 

General introduction 

 

1.1 Introduction 

Root lesion nematode (Pratylenchus thornei) is one of the most important plant parasitic 

nematodes, causing significant damage in global wheat production (Smiley and Nicol 2009), 

including the Australian grain belt (Thompson et al. 2008; Vanstone et al. 2008).  They feed 

on roots of wheat plants, causing significant damage to the roots at the cellular level, resulting 

in yield reduction. Genetic resistance is believed to be the most effective and sustainable way 

to minimise the losses caused by this nematode species (Mokrini et al. 2019). In a previous 

study, a doubled haploid (DH) wheat population of 150 lines, developed from a cross between 

a synthetic derived wheat cultivar Sokoll (P. thornei resistant) and the cultivar Krichauff (P. 

thornei susceptible) was investigated to identify quantitative trait loci (QTL) for resistance 

(Linsell et al. 2014a). Two highly significant QTL for P. thornei resistance were identified, on 

chromosomes 6D (QRlnt.sk-6D) and 2B (QRlnt.sk-2B). In another study, the resistant and 

susceptible lines from the Sokoll/ Krichauff DH population were investigated to determine the 

stage at which resistance occur (Linsell et al. 2014b). P. thornei migration and multiplication 

was supressed in roots and root exudates of resistant wheat lines, suggesting the presence of 

chemical compounds in resistant wheat lines acting against P. thornei. The genes underlying 

the QTL might involve in synthesising these resistance compounds.  

 

The present research project was undertaken to make progress towards identifying the 

resistance genes underlying the QTL, to identify candidate root or root-exudate compounds 

with potential resistance activity, to use microscopy to identify potential nematode resistance 
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mechanisms, and to develop markers and methods to reliably and cheaply select for nematode 

resistance in breeding. To this end, the specific aims of this research were to:  

 

1.   Fine map the P. thornei resistance loci on chromosome 6D and 2B of wheat (Chapter 3) 

2. Develop a cost-effective P. thornei quantification method using quantitative real-time PCR 

(Chapter 4) 

3. Analyse metabolites of root exudates and root tissues from wheat lines contrasting for P. 

thornei resistance (Chapter 5) 

4. Characterize histochemical and histological responses of wheat roots infected by P. thornei 

(Chapter 6) 

 

The literature relevant to this research project are reviewed in Chapter 2 and the major findings 

of these studies, limitations and potential areas of future research are discussed in Chapter 7.  
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Resistance against root lesion nematode in wheat: A review 
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2.2 Introduction 

Plant parasitic nematodes of the genus Pratylenchus feed on roots of crop plants, causing 

significant damage to the roots, resulting in yield reduction. Two of the most important species, 

Pratylenchus thornei and Pratylenchus neglectus are associated with yield loss in wheat 

throughout the world, particularly in dryland agriculture, as in the Australian wheatbelt 

(Vanstone et al. 2008),  and the Pacific Northwest of the United States of America (USA) 

(Smiley et al. 2014). P. thornei has reduced yields by as much as 85% in Australia, 37% in 

Mexico, 70% in Israel, and 50% in the USA (Smiley and Nicol 2009). P. neglectus has caused 

losses of up to 37% in the USA and 30% in Australia (Vanstone et al. 2008). In controlling the 

damage, crop rotation or application of nematicides do not offer sustainable and economic 

control measures. Consequently, over the last 20 years, research has focused on genetic 

improvement in wheat cultivars for resistance and tolerance to root lesion nematodes. With the 

aim of genetic improvement, significant research progress has been made in finding natural 

sources of resistance and corresponding quantitative trail loci (QTLs). From this available 

genetic information, development of suitable markers that are useful for marker assisted 

breeding programs is still underway (Jayatilake et al. 2013; Linsell et al. 2014a; Mokrini et al. 

2019). Further, molecular dissection of resistance and tolerance loci aims to identify the 

underlying genes and their function in the plant’s defence mechanism. Knowledge of the 

defence mechanism controlled by specific QTL represents additional information for breeders 

that aim to combine different mechanisms for a longer lasting resistance or tolerance against 

nematodes. In comparison to sedentary endoparasitic nematode species, such as Meloidogyne 

and Heterodera, not much research progress has been presented (since the late 1980s) in 

Pratylenchus in terms of dissecting the molecular and biochemical basis of the plant’s 

resistance mechanisms. Host-plant biochemistry and the nature of plant resistance to nematode 

species were reviewed by Giebel (1982), Bell (1981) and Trudgill (1991). A review on root 
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lesion nematodes has recently been published by Fosu-Nyarko and Jones (2016) which 

described the current status of molecular research in Pratylenchus spp., with a major focus on 

host-pathogen interaction and molecular diagnostics were discussed. The following review will 

report on research progress on the topic of root lesion nematode resistance in wheat, with a 

focus on the nematode’s mode of infection and the plant’s resistance mechanism. Progress in 

breeding of resistant wheat cultivars will also be discussed here.  
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2.3 Root lesion nematodes 

Plant parasitic nematodes of the genus Pratylenchus are predominantly parasitic to plant roots 

and are known as root lesion nematodes (Castillo and Vovlas 2007). They are vermiform in 

shape and microscopic in size (about 0.5 mm long and 0.02 mm in diameter) (Smiley and Nicol 

2009). They damage the roots by puncturing the root cells and predispose plants to root-

infecting fungi such as Pythium, Rhizoctonia and Fusarium (Kurppa and Vrain 1985). Root 

lesion nematodes are important parasitic nematodes for cereals including wheat (Smiley 2009), 

barley (Sharma et al. 2011) and grain legumes (chickpea, faba beans and beans) (Luc et al. 

2005; McDonald and Nicol 2005). Their symptoms are non-specific and often confused with 

other stresses such as nitrogen deficiency, drought, and the above-mentioned fungal root rots. 

Although root lesion nematodes feed on living root tissues, they may also survive between the 

cropping seasons in dead root debris and in soil (Smiley and Nicol 2009). They can survive 

over dry periods in a dehydrated form until favourable conditions return.   

 

There are nearly 70 species in the genus Pratylenchus and eight of them are parasitic to wheat. 

Four species (P. neglectus, P. thornei, P. crenatus, and P. penetrans) occur throughout the 

world in temperate cereal producing areas (Smiley and Nicol 2009). P. neglectus and P. thornei 

are the most prevalent and associated with the greatest wheat yield losses (Vanstone et al. 1998) 

 

2.4 Life cycle  

Males are rare in Pratylenchus populations and thus females reproduce by mitotic 

parthenogenesis (De Waele and Elsen 2002). Pratylenchus penetrates and feeds within the root 

cortex, and eggs are deposited singly in the cavities created by migration (Acedo and Rhode 

1971; Bridge and Starr 2007). Females can also deposit eggs in the soil (Pudasaini et al. 2008).  
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The life cycle of root lesion nematode consists of six life stages, i.e., the egg, four juvenile (J1, 

J2, J3 and J4) and the adult stage. The first stage juvenile (J1) develops inside the egg, then 

moults to the second stage juvenile (J2). The J2 hatches from the egg and emerges into soil or 

root of the plant. With two additional moults, nematodes develop to third (J3) and fourth (J4) 

stage juveniles. Finally, the J4 moults to become a fully developed adult. The entire life cycle 

of root lesion nematode may require 45 to 65 days to complete (Castillo and Vovlas 2007). 

Motile Pratylenchus life stages (J2 to adult) are parasitic to plants as adults and juveniles can 

penetrate, migrate and feed within roots (Bridge and Starr 2007).     

 

2.5 Mechanism of pathogenesis 

Invasion mechanisms of P. thornei and P. neglectus in wheat are less studied. However, related 

Pratylenchus species, such as P. penetrans, which affect legume and fruit crops, have been 

investigated in more detail (Castillo et al. 1995; Castillo et al. 1998; Townshend 1963a, b, 

1978, 1984; Townshend et al. 1989). The proposed general invasion mechanisms (penetration 

and feeding) are based on histopathological models of closely related and well documented 

Pratylenchus species. Feeding behaviour of Pratylenchus nematodes broadly can be separated 

into four phases; probing and root exploration, penetration, ectoparasitic and endoparasitic 

feeding (Linsell et al. 2014a; Zunke 1990).  

 

Pratylenchus are attracted towards the plant’s root region most probably due to the stimulative 

properties of root exudates (Baxter and Blake 1967; Wallace 1974, 1989). Once reached the 

root hair zone, they search the surface of the root for an acceptable site to penetrate (Zunke 

1990). They explore the root by touching the epidermal layer with their lips and protracting 

their stylet enough to touch but not to pierce the cell wall (Kurppa and Vrain 1985). There 

appears to be no site preference for P. thornei in penetrating the roots (Castillo et al. 1998). 
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However, few studies have demonstrated that P. penetrans prefer the root hair zone 

(Townshend 1978; Zunke 1990). This preference may have a biochemical basis for attraction 

or a physical basis allowing easier entry (Townshend 1978).  

 

Following cell surface exploration, Pratylenchus insert their stylet several times into the chosen 

cellular site (Kurppa and Vrain 1985; Zunke 1990). They thrust their stylet repeatedly to 

penetrate the elastic epidermal cell wall. Once the stylet is inserted to a length of approximately 

2 µm, salivation commenced (Kurppa and Vrain 1985). During salivation, the median bulb of 

the oesophagus pulsated several times and secretions passed from the stylet into the root cell. 

The saliva predigests the cytoplasmic contents to be ingested. During salivation, the cellular 

content does not appear to be changed, but the cytoplasmic streaming rates increased (Zunke 

1990).  

 

After entering the root, Pratylenchus migrate intra-cellularly and feed on cortical cells. They 

puncture the cells by tearing a hole at the pierced site and then force root entry by waving their 

bodies vigorously (Kurppa and Vrain 1985; Zunke 1990). During migration at every new cell, 

the nematodes puncture all corners of the cell with stylet thrusts and then pierce a row of holes 

over the entire end wall. By pressing its anterior end against the weakened cell, it pushed 

through into the adjacent cells. Castillo et al. (1998) observed that within the cortical cells, 

Pratylenchus stretch out or coil, and depending on the cell size, they occupy a single cell or 

several layers of tissue. 

 

Pratylenchus activity (feeding and migration) is confine predominantly in cortical parenchyma. 

Both physical and biochemical factors result in cellular damage to cells in which they fed. 

Damaged cells contain cytoplasmic debris composed of degenerated organelles and condensed 
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cytoplasm. Common ultrastructural changes in cortical parenchyma cells include condensed 

necrotic cytoplasm, loss of membrane integrity in the plasmalemma, tonoplast and nuclear 

membrane as well as degradation of mitochondria, dictyosomes and endoplasmic reticula 

(Castillo et al. 1998; Townshend et al. 1989).  

  

2.6 The plant’s response 

The formation of root lesions is the ultimate symptom of the plants infected with Pratylenchus. 

Initially, a water-soaked lesion develops on the root which turns olive green and ultimately 

reddish brown (Townshend and Stobbs 1981; Waele and Elsen 2002). The initial lesions are 1-

2 mm in length and over time, the lesions increase and merge together to form large sections 

of discoloured tissue. As Pratylenchus infection impairs root function, above ground symptoms 

usually resemble nutrient and water deficiencies (Whitehead 1997). For instance, higher P. 

thornei populations reduced the water extraction rate in an intolerant wheat cultivar, QT8447 

compared to a tolerant cultivar Strzelecki, resulting in a 34% yield loss of the intolerant cultivar 

(Whish et al. 2014). 

 

2.7 Impact on wheat crop production 

P. thornei are widely distributed in the Australian wheat belt (Hollaway et al. 2008; Thompson 

et al. 2008; Vanstone et al. 2008) and is associated with yield reductions in northern (Thompson 

et al. 2010; Thompson et al. 2008), southern (Nicol et al. 1999; Vanstone et al. 1998) and 

western wheat growing regions (Vanstone et al. 2008) of Australia. It was estimated that P. 

thornei causes up to 62% wheat yield loss in the northern grain region of Australia (Owen et 

al. 2014). The extent of yield loss is related to the nematode density in the soil (Taylor and 

Evans 1998; Thompson et al. 1995). It was estimated that the damage caused by P. thornei 
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costs Australian wheat growers AU$50 M per year (wheat priced at AU$239/t) (Murray and 

Brennan 2010).  

 

2.8 P. thornei disease management 

A number of management practices have been followed to reduce the damage caused by P. 

thornei (reviewed in Mokrini et al. 2019). Cultural practices, such as crop rotation, field 

sanitation, conservation tillage and fertilization with inorganic sources of nitrogen were found 

to be less effective in managing P. thornei population (Mokrini et al. 2019; Thompson et al. 

2008). Application of nematicides to P. thornei infested field offered yield advantage to some 

extent (Taylor et al. 1999), but due to the toxic effects (on humans and environment), 

nematicides are not recommended (Taylor et al. 1999; Vanstone et al. 2008). Moreover, P. 

thornei can occur in large numbers throughout the soil profile, making it uneconomical to apply 

nematicides at an effective rate (Vanstone et al. 1998).  

 

Genetic resistance can reduce the reliance on pesticides and requires limited-technological 

management and hence is considered as the preferred means of controlling many diseases 

(Ogbonnaya et al. 2008). Incorporation of resistance into wheat cultivars results in yield 

advantages. For instance, incorporating partial P. thornei resistance into wheat cultivar 

increased yields by up to 17% compared to intolerant commercial cultivars (Thompson et al. 

2008). However, a high-level resistant wheat cultivar has not yet been found and current 

breeding activities are using different levels of partial resistance (Thompson et al. 2008). In 

order to achieve superior resistance against P. thornei, it is necessary to identify alternate 

sources of resistance genes which can be introduced into wheat cultivars through breeding 

activities. 
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2.9 Sources of resistant and tolerant wheat lines 

Reduced yield losses are observed in wheat cultivars which are tolerant or resistant to the 

presence of pathogenic nematode species. Tolerance describes the ability of the plant to 

withstand nematode infection and to yield well when grown in nematode infested soil (Cook 

1974). Resistance refers to the host gene effects that restrict or retard nematode multiplication 

in the host species (Rohde 1972). Resistance and tolerance have been shown to be under 

separate genetic control in some plant-nematode interactions (Roberts 2002; Thompson et al. 

1999). Consequently, the breeding objective would be the development of wheat varieties with 

both, tolerance and resistance, to root lesion nematodes.  

 

Modern hexaploid wheat cultivars are generally susceptible to root lesion nematodes. In order 

to improve resistance in wheat varieties by breeding, wheat germplasm has been screened for 

sources of resistance. Initially, a bread wheat line, GS50a, was selected as a source of partial 

resistance to P. thornei from a severely infested field of a susceptible wheat variety, Gatcher 

(Thompson and Clewett 1986). Since, GS50a has been used in breeding programs to improve 

P. thornei resistance in modern wheat cultivars. However, due to the only partial resistance 

offered by GS50a, additional germplasm such as Middle Eastern landraces, wild wheat 

progenitors and synthetic wheats have been evaluated for resistance. 

 

Pratylenchus thornei is likely to be native to the Middle Eastern region where modern wheat 

and its progenitors have developed (Feldman and Sears 1981). Host and pathogen co-evolved 

in this region. For instance, 25 wheat accessions were identified as having more superior 

resistance than GS50a in a screen of 274 Iranian landraces (Sheedy and Thompson 2009). 
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Diploid and tetraploid wheat accessions of wild progenitors were also evaluated for P. thornei 

resistance. For instance, a collection of 251 accessions were tested for P. thornei resistance and 

greater resistance than GS50a was found in 11 Aegilops speltoides (S-[B]-genome), 10 

Triticum monococcum (Am-genome), and 5 Triticum urartu (Au-genome) accessions (Sheedy 

et al. 2012). Moreover, 39 Aegilops tauschii (D-genome) P. thornei resistant accessions were 

reported from a screening experiment of 244 accessions (Thompson and Haak 1997). Gene 

transfer from these wild diploid and tetraploid wheat progenitors could be achieved by direct 

hybridisation with adapted durum and bread wheat cultivars, homologous recombination, 

backcrossing and selection (Friebe et al. 1996).  

 

Resistance found in diploid relatives, such as Ae. tauschii (2n=2x=14, DD), can be transferred 

to bread wheat by developing synthetic hexaploid wheat (2n=6x=42, AABBDD) through 

hybridising with tetraploid durum wheat (2n=4x=28, AABB) (Lagudah et al. 1993). By 

exploiting root lesion nematode resistance in a synthetic hexaploid wheat collection, 59 of 186 

wheat accessions were reported to possess higher resistance than GS50a (Thompson 2008). In 

another report, an additional 53 synthetic hexaploid wheat accessions were found to be resistant 

to P. thornei (Ogbonnaya et al. 2008).  

 

2.10 Genetic analysis of P. thornei and P. neglectus resistance in wheat 

In the majority of root lesion nematode resistance screening experiments, traditional 

phenotyping methods were applied. Nematodes were quantified from soil and roots through 

extraction of live nematodes and direct counting by microscopic assessment. However, high 

variation between replicates occurs with these traditional techniques due to variable nematode 

extraction efficiencies, taxonomic misidentification and sub-sampling errors (Hollaway et al. 

2003; Taylor and Evans 1998). In contrast to these lengthy, and thus expensive phenotypic 
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screening methods, molecular markers closely linked to resistance genes offer an alternative 

method to select for resistance or tolerance in a practical breeding program.   

 

In search of suitable markers for marker assisted selection and to identify genomic locations of 

resistance, genetic analyses were conducted in mapping populations segregating for resistance 

using large sets of molecular markers covering all chromosomes. Middle Eastern and synthetic 

wheat germplasm were utilised as sources of resistance in developing doubled haploid and 

recombinant inbred line populations. Molecular markers like Diversity Array Technology 

(DArT), Simple Sequence Repeats (SSRs) and Single Nucleotide Polymorphisms (SNPs) were 

utilised to construct linkage maps and to locate quantitative trait loci (QTLs) in wheat 

populations. A number of P. thornei and P. neglectus resistance QTLs have been reported and 

have been summarised in Table 2 by Linsell et al. (2014a). In the majority of these experiments, 

QTLs were repeatedly identified on chromosome 2B and 6D. Detailed fine mapping of these 

QTLs with the aim of identifying genes responsible for resistance and closely linked markers 

that are suitable for selection in a breeding program are underway.  

 

2.11 Nematode resistance genes 

Until now, eight nematode resistance genes have been cloned from plants (reviewed in Fuller 

et al. 2008; Kandoth and Mitchum 2013; Williamson and Kumar 2006). All of these genes 

confer resistance against sedentary endoparasites. Apart from HS1pro-1, all of the nematode 

resistance proteins resemble the most common class of plant R proteins in their domain 

structure. The nature of resistance responses of these genes were characterised by the 

prevention or breakdown of the specific nematode feeding structure (syncytium). Features of 

these resistance genes are summarised in Table 2.1. 
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Table 2.1 Features of cloned nematode resistance genes (adapted from Fuller et al. 2008) 

Gene Host plant (Source of resistance) 
Nematodes and other 

pathogens 

Protein 

structure 
Nature of resistance response References 

HS1Pro-1 Wild relative of sugar beet (Beta 

procumbens) 

Sugarbeet cyst 

nematode (Heterodera 

schachtii) 

Amino-terminal 

leucine-rich 

region 

 

Syncytium is initiated but develops 

abnormally and nematode development is 

restricted at J2 stage 

Cai et al. (1997); 

Murray et al. (2007) 

Rhg1 

and 

Rhg4 

Soybean (Glycine max) Soybean cyst nematode 

(Heterodera glycines)  

LRR, 

transmembrane 

region and 

kinase  

HR initiated following formation of 

syncytium, which subsequently breaks down. 

Surrounding cells become necrotic, isolating 

the syncytium. 

Hauge  et al. (2006); 

Lightfoot and 

Meksem (2002) 

 

Mi-1.2 Wild relative of cultivated tomato 

(Solanum peruvianum) 

Meloidogyne incognita, 

Meloidogyne javanica, 

Meloidogyne arenaria 

Potato aphid 

White Fly 

CC-NBS-LRR HR initiated before feeding site develops. Liu et al. (2012); 

Milligan et al. (1998); 

Vos et al. (1998) 

Mi9 Wild relative of cultivated tomato 

(Solanum peruvianum) 

Root knot nematode  

(Meloidogyne spp.) 

CC-NBS-LRR Not described in detail Jablonska et al. 

(2007) 

Hero A Wild relative of cultivated tomato 

(Solanum pimpinellifolium) 

Globodera 

rostochiensis,  

Globodera pallida   

CC-NBS-LRR HR initiated after the formation of syncytium. 

Development is abnormal and surrounding 

cells degenerate and become necrotic, 

isolating the syncytium. 

Ernst et al. (2002); 

Sobczak et al. (2005) 

Gpa2 Potato (S. tuberosum) Globodera pallida CC-NBS-LRR Not described in detail Van der Vossen et al. 

(2000) 

Gro1-4 Potato (S. tuberosum) Globodera  

rostochiensis  

TIR-NBS-LRR Not described in detail Paal et al. (2004) 
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The nematode resistance gene HS1pro-1 was isolated from a wild relative of sugar beet and acts 

against the cyst nematode H. schachtii (Cai et al. 1997). The encoded protein does not have 

obvious similarities with other known resistance proteins. The protein contains a putative N-

terminal extracellular imperfect LR region and a transmembrane domain. The HS1pro-1 encoded 

protein confers resistance on the basis of a gene-for-gene relationship (Thurau et al. 2003). 

HS1pro-1 is specifically expressed in syncytia of H. schachtii and is up-regulated 

transcriptionally in resistant sugar beet roots upon nematode infection.  

 

The tomato gene Mi-1.2 confers resistance against several root knot nematode species 

(Milligan et al. 1998; Vos et al. 1998). The Mi-1.2 gene also confers resistance against potato 

aphid (Rossi et al. 1998) and white fly (Nombela et al. 2003). The encoded protein belongs to 

the CC-NBS-LRR class of resistance genes. Mi-1.2 is constitutively expressed throughout the 

whole plant and this expression was not found to be altered by inoculation with the target 

pathogen (de Ilarduya et al. 2001). Resistance to the root-knot nematode involves induction of 

HR following nematode invasion. Generation of reactive oxygen species in the early stage of 

infection is thought to be one of the reasons for rapid induction of HR in the Mi-1,2 – mediated 

resistance response (Melillo et al. 2006).   

 

The potato cyst nematode (Globodera pallida) resistance gene Gpa-2 was isolated from potato 

and belongs also to the CC-NBS-LRR class of resistance genes (Van der Vossen et al. 2000). 

Gpa-2 is highly similar in its predicted amino acid sequence to the protein encoded by Potato 

Virus X (PVX) resistance gene Rx.  

 

The Hero A gene has been identified in a wild tomato (Lycopersicon pimpinellifolium) and 

confers broad spectrum resistance against the potato cyst nematode (PCN) species G. 
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rostochiensis and G. pallida. It belongs to the CC-NBS-LRR class of resistance genes (Ernst 

et al. 2002). Hero A gene- mediated resistance responses to PCN were characterised at the 

cellular and molecular level using the tomato breeding line (LA1792) (possessing the Hero 

multigene family) and a transgenic line (L10) (with the Hero A gene, driven by native 

promoter) (Sobczak et al. 2005). The Hero A gene was found to be expressed constitutively in 

all tissues and was up-regulated in root tissues in response to PCN infection. In both the 

breeding and transgenic lines, the syncytia degenerated a few days after infection. Only a few 

surviving syncytia were able to support the development of males and consequently, the 

nematode population decreased.  

 

2.12 Physical and chemical basis of plant defence against parasitic nematodes 

Biochemical and histopathological studies have suggested a number of physical and chemical 

mechanisms of defence responses against nematode species including migratory nematodes. 

These physical and chemical barriers affect nematode migration, development and 

reproduction and might lead to resistance. In the following section, the biochemical basis of 

disease resistance in plants against plant parasitic nematodes will be discussed. Emphasis will 

be given on migratory endoparasites, particularly the root lesion nematodes, Pratylenchus spp. 

 

2.12.1 Physical resistance 

The plant cell wall forms a rigid barrier to ectoparasitic nematodes that feed on the outer plant 

tissue and to endoparasitic nematodes that must penetrate to feed on cytoplasm or to move 

through roots and initiate a feeding structure. Plant cell walls consist of cellulose cross-linked 

with hemicelluloses embedded in a gel-like matrix composed of pectin and glycoproteins 

(Carpita and Gibeaut 1993). The invading nematode uses its stylet for mechanical disruption 

of the host plant cell wall (Wyss and Zunke 1986; Zunke 1990). Nematodes also secrete 
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hydrolytic cell wall-degrading enzymes to assist penetration (reviewed in Davis et al. 2011; 

Haegeman et al. 2012). For instance, beta-1,4-endoglucanase has been isolated from sedentary 

nematodes, and is capable of degrading cellulose (Smant et al. 1998). Based on transcriptome 

analysis, this endoglucanase has also been found in the migratory nematode species P. 

penetrans (Yoji et al. 2001), Radopholus similis (Haegeman et al. 2008) and P. zeae (Fosu-

Nyarko et al. 2016). It has also been found in sedentary nematode species from the genera 

Meloidogyne (Béra-Maillet et al. 2000), Globodera (Goellner et al. 2000) and Heterodera (de 

Boer et al. 1999). In addition to cellulose degrading enzymes, plant parasitic nematodes also 

secrete pectin-degrading enzymes. For instance, pectate lyase and polygalaturonases were 

identified by sequence analysis of the transcriptome of P. coffeae (Haegeman et al. 2011) and 

P. zeae (Fosu-Nyarko et al. 2016).  

 

Impregnation of cell walls with lignin (Ride 1978) or suberin (Vance et al. 1980), or cross-

linking of cell walls by hydroxycinnamic acids (Hartley and Jones 1977), may reduce substrate 

availability for these hydrolytic enzymes, and decrease nematode feeding or slow down 

migration. For instance, the presence of higher levels of lignin and suberin in endodermal cells 

of resistant banana roots (compared to the susceptible banana root) was thought to be associated 

with R. similis resistance (Valette et al. 1998; Wuyts et al. 2007). Moreover, a higher level of 

hydroxycinnamic acid (ferulic acid) might prevent R. similis feeding and migration in the 

cortex of banana roots by covalently binding with cell-wall polysaccharides (Wuyts et al. 

2007). 
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2.12.2 Chemical resistance 

Plant chemical compounds can be classified into two major groups; primary and secondary 

metabolites. Primary plant metabolites (e.g. sugars, amino acids and fatty acids) are produced 

by, and are involved in fundamental metabolic processes of the plant’s growth and 

development, such as photosynthesis and respiration. Secondary metabolites include all 

remaining plant chemicals, which are derived from primary metabolites (Seigler 1998) (Fig. 

2.1). A number of secondary metabolites are known to have a role in defence against plant 

parasitic nematodes (Giebel 1982; Zinov'eva et al. 2004) and other phytopathogens such as 

fungi and bacteria (Bednarek and Schulze-Lefert 2009). These chemical compounds may 

contribute to defence by creating a toxic environment, suppressing the development and 

reproduction of the nematodes. Defence compounds are divided into phytoanticipins and 

phytoalexins. The first group comprises low-molecular-weight antimicrobial compounds that 

are either preformed or generated from constitutively generated precursors following microbial 

invasion. The second group consists of low-molecular-weight antimicrobial metabolites that 

are both synthesized by and accumulated in plants after exposure to pathogens (VanEtten et al. 

1994). 
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Fig. 2.1 The major groups of plant secondary metabolites and their precursors from primary 

metabolism. 1. Shikimate pathway 2. Amino acid pathway 3. Acetate-mevalonate pathway 4. Acetate-

malonate pathway (modified from Mohr and Schopfer 1995) 
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So far, few chemical compounds have been found to be active against migratory endoparasitic 

nematodes, including P. penetrans and R. similis. The majority of these compounds represent 

end products of the phenylpropanoid pathway with a few other chemicals from terpenoid and 

alkaloid groups.  

 

In banana roots, histochemical observations revealed that higher level of flavonoids, dopamine, 

caffeic esters and ferulic acid constitutively produced in resistance root compared to the 

susceptible root. These phenolic compounds inhibit penetration of the nematodes in the root, 

contributing to R. similis resistance (Valette et al. 1998).  

 

The phenolic compounds were investigated for nematicidal activities in vitro (Wuyts et al. 

2006). Flavonoids were found as a repellent for R. similis and M. incognita. By contrast, 

dopamine was found as an attractant to R. similis, while ferulic acid acted as a motility inhibitor. 

By creating a toxic environment for nematode ingress and multiplication, these phenolic 

compounds might contribute to nematode resistance.  

 

In soybean, the isoflavonoid plytoalexin, glyceollin has been found to be active against M. 

incognita (Edens et al. 1995). Glyceollin inhibits oxidative respiration and motility of M. 

incognita in vitro, which is thought to be the possible reason behind limited nematode 

development in resistant soybean roots (Kaplan et al. 1980a, b). In response to P. scribneri 

invasion, two isoflavonoid phytoalexins, coumestrol and psoralidin, accumulated in resistant 

lima bean root (Rich et al. 1977). Coumestrol showed motility inhibitive activity in in vitro 

assays. In resistant alfalfa, a higher level of medicarpin may be involved in resistance to P. 

penetrans as it exhibited motility inhibitive activity in vitro (Baldridge et al. 1999).   
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In cotton, production of a terpenoid aldehyde, gossypol, has been implicated in resistance 

against M. incognita (Veech and McClure 1977). M. incognita larvae were inactivated when 

exposed to gossypol in vitro (Veech 1979).  

 

Genome-wide transcriptional changes revealed that, in ramie (Boehmeria nivea L. Gaud), three 

metabolic pathways, phenylalanine metabolism, carotenoid biosynthesis and phenylpropanoid 

biosynthesis were strongly influenced by root lesion nematode infection (Liu et al. 2015). In 

that study, six and seven genes in the phenylpropanoid biosynthesis pathway and the 

phenylalanine metabolism pathway were found to be enriched, respectively. It was 

hypothesised that the changes in the expression of genes in phenylpropanoid metabolism 

pathways lead to the change in phenylpropanoid production, which can increase resistance to 

RLN in ramie.    

 

Tissue browning and necrosis, or lesion formation, is often observed as a host response to 

nematode infection. In plants resistant to sedentary endoparasites, necrosis is sometimes 

localised around the nematode head or its feeding structure and is regarded as a defence 

response (Bleve-Zacheo et al. 1990; Paulson and Webster 1972). For migratory endoparasitic 

nematodes, lesion formation results from the disruption of cortical cell integrity. However, the 

extent and speed of lesion formation differs according to the host plant (Rohde 1972) Infected 

tissue is characterized by an accumulation of phenolic compounds (Giebel 1982). Phenolics 

accumulate either from direct synthesis through the phenylpropanoid pathway or by release 

from conjugates (Rohde 1972). Along with phenylpropanoids, oxidative enzymes, such as 

peroxidase and polyphenol oxidase, are released from cellular compartments or are newly 

synthesized after nematode infection. These enzymes catalyse the oxidation of 

phenylpropanoids to quinones, which polymerize into polyphenols, e.g.  tannins and melanins. 
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These pigments give necrotic tissue its characteristic brown colour (Rohde 1972). For instance, 

invasion of tomato roots by M. incognita resulted in the accumulation of a phenolic compound, 

chlorogenic acid, which was subsequently oxidised by polyphenol oxidase (either from the host 

or the nematode). This in turn resulted in the formation of brown-coloured melanins in injured 

areas (Hung and Rohde 1973). Oxidation products of chlorogenic acid inhibit nematode 

activity and prevent penetration of endodermal cells (Hung and Rohde 1973) by impairing the 

nematodes´ respiration process (Chang and Rohde 1969). 

 

In a compatible interaction between a host and a migratory nematode, tissue browning, and 

necrosis occurs at a slow rate as a consequence of cellular damage (Giebel 1982). 

Consequently, nematodes move away to healthy cells and spread necrosis or leave the root. In 

the case of an incompatible interaction with a migratory nematode, necrosis is believed to occur 

in a hypersensitive manner, i.e. rapid, highly localized and intensive (Giebel 1982; Rohde 

1972). Due to these hypersensitive-like reactions, nematodes may leave the root tissue or die.  

 

Until now, physical and biochemical mechanisms of resistance in wheat against P. thornei and 

P. neglectus have not been reported. The attraction and penetration behaviour of P. thornei 

were investigated in resistant and susceptible wheat lines (Linsell et al. 2014b). In that 

experiment, along with the parental lines, a sub-sample of doubled haploid lines with 

contrasting resistance phenotypes to P. thornei (3 most resistant and 3 most susceptible DH 

lines) were investigated to determine whether attraction and penetration of roots, and 

maturation within roots were involved in this resistance. At different time points (6 to 48 hours 

after inoculation), the number of nematodes attracted towards the roots was not significantly 

different between resistant and susceptible lines. This result suggested attractant or repellent 

compounds may not be a factor in determining resistance. Neither was a significant difference 
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found in P. thornei penetration rates between the resistant and susceptible genotypes, 

suggesting that resistance in the Sokoll x Krichauff population involved post-infectional 

mechanisms. However, crushed root suspensions from unchallenged plants of the resistant 

cultivar reduced nematode motility and development more than those of the susceptible cultivar 

in vitro. These results suggest the possibility of preformed plant metabolites in P. thornei 

resistance in wheat.  

 

It will be worthwhile to investigate chemical compounds inhibiting Pratylenchus migration 

and reproduction that are constitutively synthesised in wheat. Either this synthesis is specific 

to the resistant genotypes or the compound(s) accumulate to higher concentrations than in the 

susceptible genotypes.  Due to the role phytoalexins have played in plant resistance to other 

Pratylenchus species, the synthesis of phytoalexins, and whether they are involved in post 

penetration resistance also needs to be investigated in the Pratylenchus-wheat interaction. 

Resistance may also depend on location and rate of synthesis of these toxic chemical 

compounds (Veech 1982). Histochemcial observations need to be conducted in order to localise 

potential toxic compounds in plant tissues. The role of these compounds in defence can be 

determined through in vitro assays. Such a study may address the question, whether physical 

(such as cell wall lignification) or chemical (such as rapid accumulation of toxic phenolic 

compounds) or both defence mechanisms are leading to the resistance responses in resistant 

wheat genotypes against P. thornei and P. neglectus. In practical breeding, genetic sources of 

these different components of resistance could then be used alternatively or in combination to 

improve resistance.  
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2.13 Conclusion 

Histopathological changes in wheat to root lesion nematode invasion and during resistance 

responses have not been extensively analysed. Research so far suggested that in wheat, root 

lesion nematode resistance may supress several stages of nematode invasion, migration and 

development, and may involve several biochemical pathways. While several P. thornei and P. 

neglectus resistance QTLs have been identified, there is currently no (commercial) completely 

resistant bread wheat cultivar available. Thus, there is a need to identify genes underlying QTLs 

and develop gene-based markers that can be utilised by plant breeders in order to incorporate 

this resistance into commercial wheat cultivars.  
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Chapter 3 

Fine mapping of root lesion nematode (Pratylenchus thornei) resistance loci 

on chromosomes 6D and 2B of wheat 
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3.2 Abstract 

Two previously known resistance QTL for root lesion nematode (Pratylenchus thornei) in 

bread wheat (Triticum aestivum), QRlnt.sk-6D and QRlnt.sk-2B, were fine mapped using a 

Sokoll (moderately resistant) by Krichauff (susceptible) doubled haploid (DH) population and 

six newly developed recombinant inbred line populations. Bulked segregation analysis with 

the 90K Wheat SNP array identified linked SNPs which were subsequently converted to KASP 

assays for mapping in the DH and RIL populations. On chromosome 6D, 60 KASP and five 

SSR markers spanned a total genetic distance of 23.7 cM. QRlnt.sk-6D was delimited to a 3.5 

cM interval, representing 1.77 Mbp in the bread wheat cv. Chinese Spring reference genome 

sequence and 2.29 Mbp in the Ae. tauschii genome sequence. These intervals contained 42 and 

43 gene models in the respective annotated genome sequences. On chromosome 2B, 41 KASP 

and 5 SSR markers produced a map spanning 19.9 cM. QRlnt.sk-2B was delimited to 1.4 cM, 

corresponding 3.14 Mbp in the durum wheat cv. Svevo reference sequence and 2.19 Mbp in 

Chinese Spring. The interval in Chinese Spring contained 56 high confidence gene models. 

Intervals for both QTL contained genes with similarity to those previously reported to be 

involved in disease resistance, namely genes for phenylpropanoid-biosynthetic-pathway-

related enzymes, NBS-LRR proteins and protein kinases. The potential roles of these candidate 

genes in P. thornei resistance are discussed. The KASP markers reported in this study could 

potentially be used for marker assisted breeding of P. thornei resistant wheat cultivars. 

 

3.3 Keywords 

 QTL, fine mapping, wheat, nematode resistance, Pratylenchus thornei 
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3.5 Key message 

Resistance QTL to root lesion nematode (Pratylenchus thornei) in wheat (Triticum aestivum), 

QRlnt.sk-6D and QRlnt.sk-2B, were mapped to intervals of 3.5 cM/1.77 Mbp on chromosome 

6D and 1.4 cM/2.19 Mbp on chromosome 2B, respectively. Candidate resistance genes were 

identified in the QTL regions and molecular markers developed for marker-assisted breeding.
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3.6 Introduction 

Wheat (Triticum aestivum L.) is one of the most important grain crops for global food security. 

From 2013 to 2017, the world harvest averaged about 742 million tonnes per annum 

(http://faostat.fao.org/). However, current trends in wheat production increases appear to be 

insufficient for feeding the projected population by 2050 (Curtis and Halford 2014). 

Improvements in global wheat production will depend partly on how well the effects of various 

stresses (both biotic and abiotic) on wheat production can be mitigated (Shiferaw et al. 2013).  

 

Root lesion nematodes of the genus Pratylenchus are one of the most important biotic stress 

factors in wheat production, particularly in dryland agriculture, as in the Australian wheatbelt 

(Vanstone et al. 2008), and the Pacific Northwest of the United States (Smiley et al. 2014). At 

least eight Pratylenchus species parasitise wheat, with P. thornei and P. neglectus being the 

most prevalent and associated with the greatest wheat yield loss (Smiley and Nicol 2009; 

Vanstone et al. 1998). It was estimated that P. thornei causes up to 62% wheat yield loss in the 

northern grain region of Australia (Owen et al. 2014). 

 

As migratory endoparasites, root lesion nematodes penetrate the root using their stylet, and 

with the release of cell wall degrading enzymes they migrate intra-cellularly (Davis et al. 2011). 

They predominantly feed on the cortical tissues of the roots, causing significant damage 

(Castillo et al. 1998). Consequently, plants are unable to uptake nutrients and water from the 

soil properly, producing foliage symptoms resembling those of nutrient and water deficiencies. 

The current status of molecular research on root lesion nematodes including their life cycle, 

feeding behaviour and host-nematode interactions has recently been reviewed (Fosu-Nyarko 

and Jones 2016; Jones and Fosu-Nyarko 2014).  
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Cultural practices and application of nematicides for control root lesion nematodes are of 

doubtful sustainability, either environmentally or economically (Thompson et al. 2008). By 

contrast, growing resistant or tolerant cultivars is considered to be a more effective, 

economically viable and environmentally friendly method of control. A resistant cultivar can 

restrict nematode reproduction and nematode densities in the soil (Rohde 1972), while a 

tolerant cultivar can withstand nematode infection and yield well when grown in nematode 

infested soil, although will allow nematode reproduction, leaving nematodes within the soil to 

infest subsequent crops (Cook 1974; Robinson et al. 2019). 

 

To improve resistance in wheat varieties by breeding, wheat germplasm has been screened for 

sources of resistance. Initially, the bread wheat line GS50a was identified as a source of partial 

resistance to P. thornei from a severely infested field of a susceptible wheat variety Gatcher 

(Thompson et al. 1999). Due to the partial nature of the resistance in GS50a, additional wheat 

germplasm was evaluated for resistance, for example, Middle Eastern land races, wild wheat 

progenitors, synthetic wheats and CIMMYT wheat accessions (Dababat et al. 2019; 

Ogbonnaya et al. 2008; Sheedy et al. 2012; Sheedy and Thompson 2009).  

  

Most screening for root lesion nematode resistance has been done by quantifying nematodes 

from soil and roots through extraction of live nematodes and direct counting down a 

microscope. However, high variation between replicates occurs with these traditional 

techniques due to variable nematode extraction efficiencies, taxonomic misidentification and 

sub-sampling errors (Hollaway et al. 2003; Taylor and Evans 1998). However, once identified, 

molecular markers closely linked to resistance loci can offer a much cheaper and more reliable 

strategy to select for resistance in breeding. To identify genomic locations of resistance and 

markers suitable for selection, genetic analyses have been conducted in mapping populations 
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segregating for resistance using large sets of molecular markers covering all chromosomes. 

Several quantitative trait loci (QTL) for P. thornei resistance have been mapped on wheat 

chromosomes (predominantly on 2B and 6D) (Table 2 in Linsell et al. 2014a; Table 2 in 

Mokrini et al. 2019), yet complete resistance has not been achieved (Dababat et al. 2019). One 

possible reason is the wide genetic distance (>10 centiMorgan) between the closest available 

markers and the resistance loci (Linsell et al. 2014a). Detailed fine mapping of the QTL is 

needed for the development of closely linked molecular markers for selection of the resistance 

alleles in breeding programs, as well as to facilitate the molecular identification of the P. 

thornei resistance genes, which is most likely necessary for the development of diagnostic 

markers. Further, molecular dissection of resistance loci will help to identify the underlying 

molecular/physiological basis for the plant’s defences. Once identified, it may be possible to 

stack together QTL controlling different resistance mechanisms to achieve longer lasting 

resistance. 

 

In a previous study, a doubled haploid (DH) wheat population of 150 lines, developed from a 

cross between a synthetic derived wheat cultivar Sokoll (P. thornei moderately resistant) and 

the cultivar Krichauff ( susceptible) was investigated to identify quantitative trait loci (QTL) 

for resistance (Linsell et al. 2014a). Two highly significant QTL for P. thornei resistance were 

identified, on the distal ends of the short arms of chromosomes 6D (QRlnt.sk-6D) and 2B 

(QRlnt.sk-2B). The 6DS and 2BS QTL explained 43% (Likelihood Ratio Statistics, LRS = 

82.9) and 24% (LRS = 39.9) of the total phenotypic variation, respectively. The peak of the 

QTL effects on 6DS and 2BS were estimated to be at positions 12.8 centiMorgans (cM) and 

16.7 cM, respectively. Fine mapping of these QTL is required to deliver closely-linked 

molecular markers suitable for breeding and progress the positional cloning of the resistance 

genes. Opportunities for fine mapping have been enhanced by recent progress in wheat genome 
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sequencing and development of high throughput/density Single Nucleotide Polymorphism 

(SNP) based marker technologies in wheat.      

 

SNPs are abundant in wheat and provide the basis for efficient new marker genotyping 

technologies (Rimbert et al. 2018). Several genome-wide SNP-based marker arrays have been 

developed in wheat such as the 9K (Cavanagh et al. 2013) and 90K (Wang et al. 2014) arrays. 

These wheat SNP arrays are based on BeadArrayTM technology from Illumina 

(http://www.illumina.com) and are widely used in genetic studies including genome-wide 

association studies and QTL mapping. However, chip-based assays are expensive for large 

numbers of samples. For analysis of specific chromosome regions in a large number of samples, 

single-plex assays such as Kompetitive Allele Specific PCR (KASPTM, 

http://www.lgcgroup.com) are usually more affordable, and have been widely adopted (Allen 

et al. 2011).   

 

With the advances in genome sequencing technologies, significant progress has been achieved 

in sequencing the genomes of wheat and its close relatives. Among those recently sequenced 

are hexaploid wheat (Triticum aestivum) cv. Chinese Spring [IWGSC Reference Sequence 

v1.0, http://wheatgenome.org, The International Wheat Genome Sequencing Consortium 

(IWGSC) 2014], wheat D-genome progenitor (Aegilops tauschii) accession AL8/78 

(http://aegilops.wheat.ucdavis.edu, Luo et al. 2017), wild emmer wheat (Triticum turgidum 

subsp. dicocccoides) accession  Zavitan (WEWSeq v1.0, 

http://wewseq.wixsite.com/consortium, Avni et al. 2017), durum wheat (Triticum durum) cv. 

Svevo (https://www.interomics.eu/durum-wheat-genome; Maccaferri et al. 2019) and an 

accession of the wheat A-genome progenitor Triticum urartu (Ling et al. 2018).  

 



 

 

44 

 

The current study was undertaken to more accurately map the QRlnt.sk-6D and QRlnt.sk-2B 

QTL for P. thornei resistance. To achieve this, both loci were further genetically mapped using 

the wheat 90K SNP array, KASP assays and large segregating populations. Furthermore, the 

physical locations of the QTL in the reference genome sequences were defined, allowing 

identification of candidates for the underlying P. thornei resistance genes.
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3.7 Materials and methods 

 

3.7.1 Plant Material 

Initial work was undertaken using the Sokoll × Krichauff F1-derived DH population of 150 

lines (Linsell et al. 2014a). Additionally, a high-resolution mapping population was used, 

comprising of 1,727 recombinant inbred lines (RILs) from six bi-parental crosses (Table 3.1). 

The six sub-populations were developed by crossing two P. thornei resistant Sokoll/Krichauff 

DH lines with three P. thornei susceptible wheat cultivars, Correll, Mace and Scout. Both DH 

lines (DH-139 and DH-67) carried resistance alleles from Sokoll at the 6DS and 2BS loci. 

Seeds of these populations were kindly provided by Dr Hugh Wallwork (South Australian 

Research and Development Institute, Crop pathology, South Australia). The 1,727 RIL lines 

(F2:5 individuals) were genotyped with two pairs of flanking markers for each QTL. A total of 

108 RIL lines recombinant for the flanking markers (33, 34 and 41 from the crosses with 

Correll, Mace and Scout, respectively) were further analysed genotypically and phenotypically. 
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Table 3.1 Six bi-parental recombinant inbred line (RIL) populations used for high resolution 

mapping of Pratylenchus thornei resistance loci in wheat 

 

 Population Cross Number of RILs 

 HW-1318 Correll × HW2-894*C12 (DH-139) 294 

 HW-1319 Mace × HW2-894*C12 (DH-139) 224 

 HW-1320 Scout × HW2-894*C12 (DH-139) 280 

 HW-1325 Correll × HW-894*C16 (DH-67) 324 

 HW-1326 Mace × HW-894*C16 (DH-67) 294 

 HW-1327 Scout × HW-894*C16 (DH-67) 311 

    Total number of lines 1,727 
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3.7.2 P. thornei resistance experimental design and assessment 

The 108 recombinant RILs and seven parental lines were evaluated for P. thornei resistance in 

a controlled environmental room (CER) in trolleys (Fig. 3.1). Each of the trolleys contained 

two wire baskets each containing 5×5 = 25 sand-filled pots of 150 g in which the plants (one 

per pot) were grown for eight weeks. A total of six trolleys were used for the experiment, giving 

600 plants arranged in 20 rows and 30 columns. RIL lines and parents were replicated five 

times with inoculation, and parents were replicated 5 times without inoculation to provide 

negative controls. With these constraints, the experiment was designed as a randomized 

complete block design (RCBD) using the optimal design R package OD (Butler 2013) available 

in the R statistical computing environment. The model-based design functionality of the OD 

package allowed specification of row and column model terms to additionally ensure the 

RCBD was spatially optimal for the constraints of the experimental layout. 

 

Seeds were surface sterilized with 70% ethanol for one minute, soaked in 0.5% sodium 

hypochlorite for one minute and rinsed three times with deionised water. Seeds were then 

germinated on moist filter paper in petri dishes for three days. Seedlings were transplanted into 

the pots filled with 150 g of steam-pasteurized sand quarried near Tailem Bend, South Australia 

(Sloans Sand Pty Ltd, Dry Creek, SA). Plants were grown in a growth chamber with 12 h light 

at 22°C, 12 h darkness at 15°C, and 70% (daily average) relative humidity. Seven days after 

transplantation, approximately 1,500 nematodes were applied to the base of each plant, then 

plants were not watered for the next three days (Linsell et al. 2014a). Two days after 

inoculation, a slow release fertilizer (Osmocote, Scotts Miracle-Gro, USA) was added to the 

surface of the sand (4 g/kg sand) and each pot was covered with plastic beads to reduce water 

evaporation. The baskets with the plants were then placed in a hydroponic system. Water was 

pumped upwards three times a week, to one third the height of the tubes, which was sufficient 
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to wet the sand yet gentle enough to prevent excessive removal of P. thornei from the sand and 

roots of the plants. Eight weeks after inoculation, the shoots were cut off and discarded, and 

the sand with roots submitted to the SARDI Root Disease Testing Service where the DNA was 

extracted and the amount of P. thornei assessed via DNA quantification using a real time 

TaqMan PCR system (Haling et al. 2011; Ophel-Keller et al. 2008; Riley et al. 2010).   

 

Before analysing the nematode counts for the controlled environment RIL experiment, the P. 

thornei counts were log transformed to satisfy model assumption. The transformed nematode 

counts were then analysed using a linear mixed model (LMM) that appropriately partitioned 

genetic and non-genetic components of variation. Specifically, the LMM consisted of a fixed 

effect term to appropriately estimate means for each of the parental controls as well as estimate 

an overall mean for the RIL population. The random component of the LMM consisted of terms 

to capture potential differences in nematode variation between replicate blocks as well as 

potential variation differences between trolleys and between crates nested within trolleys. 

Importantly, the random component also contained a term to capture the genetic differences 

between the RIL lines. To ensure small scale spatial trends were appropriately modelled across 

the dimensions of the experimental layout, the residual error of the LMM was assumed to 

contain a separable autoregressive correlation structure in the row and column directions of the 

experiment. After fitting of the LMM, the best linear unbiased predictors (BLUPs) of the log 

transformed nematode counts were extracted for subsequent QTL analysis. Computationally, 

the LMM was fitted using the flexible LMM R package ASReml-R (Butler et al. 2009) 

available in the R statistical computing environment.  
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Fig. 3.1 Recombinant inbred lines (RILs) were evaluated for resistance to Pratylenchus thornei 

in a growth room. Plants were grown in steam-pasteurized sand-filled plastic pots fitted into 

baskets, which were in turn placed in plastic tubs. Water was supplied periodically from 

reservoirs to the tubs 
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3.7.3 90K SNP genotyping  

Total genomic DNA for 90K genotyping was extracted using the DNeasy® Plant Minikit 

(Qiagen, Germany). 90K SNP genotyping was done at the Department of Primary Industries 

(Victorian Agri Biosciences Centre, Bundoora, VIC 3083, Australia). 

 

3.7.4 KASP assays 

To extract wheat genomic DNA for KASP assays (LGC genomics, http://www.lgcgroup.com, 

Allen et al. 2011) a cetyltrimethylammonium bromide (CTAB) protocol was followed (Saghai-

Maroof et al. 1984). KASP assays were performed in 5 µL reactions containing 50-100 ng 

genomic DNA, 0.2 µM of each allele-specific forward primer, 0.5 µM of reverse primer, and 

2 µL of KASP master mix (LGC genomics, UK). KASP thermal cycling was carried out 

according to the manufacturer’s protocol: 94°C for 15 min; 10 step-down cycles of 94°C for 

20 s, and 61–55°C for 60 s (decreasing by 0.6°C each cycle); and 26 cycles of 94°C for 20 s, 

and 55°C for 60 s. The repliKator instrument (LGC genomics, UK) was used to dispense DNA 

samples. KASP master mix was dispensed using a Meridian dispenser. A FUSION laser sealer 

and KUBE heat sealer was used for sealing the polypropylene PCR plate. A HydroCycler16 

was used for thermal cycling and a BMG PHERAstar fluorescent plate reader was used for 

KASP marker fluorescence detection. The software Kraken was used to manage the KASP 

genotyping project, including designing the primers and allele calling. Newly designed KASP 

assays were initially tested on parental DNA and artificial F1 DNA (equal amount mix of 

parental line DNA) to ensure that genotypic classes could be differentiated.  

 

3.7.5 Initial identification and mapping of linked SNPs using Sokoll/Krichauff DH lines 

Bulked segregant analysis (BSA) was initially conducted using the 90K wheat SNP array to 

identify SNPs linked to the QTL. The 90K SNP genotyping was performed on three bulk DNA 
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samples derived from Sokoll/Krichauff DH lines: lines carrying resistance alleles at one or the 

other locus (6DS or 2BS) or lines carrying susceptibility alleles at both loci. Resistance status 

of lines defined using the marker data was corroborated by previous P. thornei resistance data 

(Linsell et al. 2014a), namely P. thornei DNA concentrations of 3,381 to 12,162 pg/plant for 

the resistant lines (carrying 6DS or 2BS resistance alleles), and 15,851 to 27,466 pg/plant for 

the susceptible lines (carrying susceptibility alleles at 6DS and 2BS). DNA samples were 

combined in equal amounts to produce the respective DNA bulks; 39 lines for the 6DS resistant 

bulk, 23 lines for the 2BS resistant bulk and 20 lines for the susceptible bulk. Parental lines 

Sokoll and Krichauff were also analysed.  

 

A subset of the 65 Sokoll/Krichauff DH lines were also analysed individually using the 90K 

wheat SNP array. These lines were chosen on the basis of marker data from the study of Linsell 

et al. (2014a): 38 were recombinant for the QRlnt.sk-6D flanking markers cfd49 and gdm36, 

located 68.0 cM apart, 10 were recombinant for the QRlnt.sk-2B flanking markers barc35 and 

wmc661, located 52.8 cM apart, 16 non-recombinants carried resistance alleles at both loci and 

one carried susceptibility alleles at both loci.  

 

The 90K SNP marker scores for the 65 Sokoll/Krichauff DH lines were diagnostically assessed 

and used to construct genetic maps of each of the two chromosome regions, using the 

functionality of the QTL (Broman and Sen 2009) and ASMap (Taylor and Butler 2017) R 

packages available in the R statistical computing environment (R Core Team 2018). Markers 

were initially assessed for missing alleles and markers with more than 20% missing scores were 

discarded. Additionally, markers were removed that showed segregation distortion 

significantly greater than a Bonferroni p-value threshold of 0.05 corrected for multiple 

comparisons. The remaining markers in each chromosome were then optimally ordered using 
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the MSTmap (Wu et al. 2008) functionality available in ASMap. From these initial marker 

linkages, the marker diagnostics were profiled and markers exhibiting a large number of double 

recombination were removed. For each chromosome, the markers were then optimally ordered 

a final time and chromosome orientations assigned using the 90K consensus map positions. It 

should be noted that because the scored DH lines were pre-selected as having recombinants in 

the QTL intervals, the genetic distances in the resulting maps were expected to be over-

estimates inside of the selected intervals and under-estimates (due to genetic interference) 

outside of the QTL intervals.  

 

3.7.6 QTL re-analysis in Sokoll/Krichauff DH lines using revised genetic maps 

Linkage between the KASP markers was established using the Map Manager QTX program 

(Manly et al. 2001). The linkage groups were constructed based on strong linkage criterion (p 

= 1e-5) between the markers and employing the Kosambi mapping function (Kosambi 1943). 

The ordering of the markers was done by using the software RECORD (Van Os et al. 2005) 

with the aim of minimizing apparent double crossovers. Markers with a large number of double 

crossovers were eliminated from the analysis. The map was illustrated using the software 

MapChart (Voorrips 2002).  The Map Manager QTX software was also used for QTL analysis. 

The likelihood ratio statistics (LRS) was calculated using the interval mapping functions with 

p = 0.0001. Permutation analyses (1000 iterations) were carried out to determine whether a 

particular LRS value was highly significant (Churchill and Doerge 1994). 

 

3.7.7 Reference genome sequence and gene annotation 

Physical genomic positions of the SNPs were determined by BLAST searching the sequence 

around each SNP (Wang et al. 2014) to the genome sequences of Chinese Spring 

(http://www.wheatgenome.org/), Aegilops tauschii (http://aegilops.wheat.ucdavis.edu, Luo et 
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al. 2017), wild emmer wheat (WEWSeq v1.0, http://wewseq.wixsite.com/consortium, Avni et 

al. 2017) and durum wheat (https://www.interomics.eu/durum-wheat-genome). Gene 

annotations in the Chinese Spring IWGSC RefSeq v1.0 (https://wheat-

urgi.versailles.inra.fr/Seq-Repository/Annotations) and Aegilops tauschii 

(http://aegilops.wheat.ucdavis.edu/ATGSP/annotation/) were used to search for candidate P. 

thornei resistance genes. Expression data for the genes were obtained using the Wheat 

Expression Browser database (wheat-expression.com, Ramírez-González et al. 2018). 
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3.8 Results 

 

3.8.1 Identification of SNPs 

The 90K wheat SNP array (Wang et al. 2014) was used on Sokoll/Krichauff DH lines and DNA 

bulks to identify SNPs linked to the P. thornei resistance QTL, QRlnt.sk-6D and QRlnt.sk-2B. 

A total of 16,907 SNPs were identified as being polymorphic between Sokoll and Krichauff. 

On the basis of best BLASTn hits against the Chinese Spring chromosome survey sequence 

(Wang et al. 2014), 776 and 1,597 of these SNPs were located on chromosome 6D and 2B, 

respectively. Of these, the DNA bulks identified that 58 and 120 of these SNPs were genetically 

linked to QRlnt.sk-6D and QRlnt.sk-2B, respectively (Supplementary Table 3.1 and 3.2).  

 

3.8.2 90K maps  

Genotyping of the 65 DH lines with the 90K wheat SNP array enabled full-chromosome maps 

to be constructed. A total of 255 SNPs were mapped on chromosome 6D, spanning a genetic 

distance of 201.3 cM (Supplementary Table 3.3). For chromosome 2B, at total of 1,325 SNPs 

were mapped, spanning 290.1 cM (Supplementary Table 3.4).  

 

3.8.3 QTL re-mapping QRlnt.sk-6D using the whole DH population 

KASP assays were designed for 143 SNPs mapped to the 6DS QTL interval (Supplementary 

Table 3.5). These markers were identified as being closely linked to the QTL, based on the 

BSA, 90K SNP map and cereal database (Allen et al. 2011) data. Of these, 60 KASP assays 

that gave clear allele calling were then chosen for mapping across the entire Sokoll/Krichauff 

DH population of 150 DH lines. In addition, five SSR markers that had been mapped close to 

QRlnt.sk-6D including the flanking markers (Linsell et al. 2014a) were integrated into the map. 

The markers were located in the Chinese Spring and Ae. tauschii genome sequences to obtain 
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the correct orientation. The map spanned a total genetic distance of 23.7 cM, representing 16.36 

Mbp in Chinese Spring and 16.81 Mbp in Ae. tauschii (Fig. 3.2). The relative positions of the 

markers in the genetic map corresponded well with their positions in both physical maps (Fig. 

3.2).  

 

Available P. thornei resistance data for the DH lines (Linsell et al. 2014a) were used for a QTL 

analysis with the new linkage map. Simple interval mapping defined the QTL interval (LRS 

score of 92.0) as being located between the KASP markers 6D_5 (and seven other co-

segregating markers) and 6D_143 (Fig. 3.2), with the QTL explaining 47% of the total 

phenotypic variation.
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                               Sokoll/ Krichauff linkage map, cM              Physical map, Chinese Spring, Mbp            Physical map, A. tauschii, Mbp  

          (a)                                               (b)                                                            (c) 

Fig. 3.2 Genetic linkage map of part of the 6DS chromosome arm made using the Sokoll/Krichauff doubled haploid population (a) and its alignment to the 

physical map of Chinese spring (b) and Aegilops tauschii (c). The interval of the Pratylenchus thornei resistance QTL QRlnt.sk-6D is shown as shaded bars and 

the physical locations of the markers defining the QTL interval are boxed 
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3.8.4 Fine mapping of QRlnt.sk-6D by graphical genotyping using DH and RIL 

recombinants  

The DH lines clearly grouped according to their resistance phenotype (P. thornei DNA per 

plant), into those that had more or less than 10,000 pg/plant, representing those lines likely to 

carry the susceptibility or resistance allele at QRlnt.sk-6D, respectively (Fig. 3.3a). This was 

consistent with QRlnt.sk-6D being between the markers 6D_4 and 6D_143, located 4.2 cM 

apart. These flanking markers were at positions 5.57 Mbp to 7.34 Mbp, respectively, in the 

Chinese Spring chromosome 6D sequence. In Ae. tauschii, a BLAST search using the 6D_4 

sequence detected no match, so the marker 6D_128, located a little further out in Chinese 

Spring, was considered as the flanking marker on that side. 6D_128 and 6D_143 were located 

at 4.64 Mbp and 6.93 Mbp in the Ae. tauschii chromosome 6D sequence. The co-segregating 

region for QRlnt.sk-6D in the DH lines spanned markers 6D_75 to 6D_5 (Fig. 3.3a).   

 

To validate the QTL and further fine map it, 108 RILs were used. These lines were selected 

from a larger set of lines (1,727 RILs from six bi-parental crosses) based on the presence of 

recombination between the markers flanking the QTL. Of the 65 KASP and SSR markers 

mapped in the DH lines, 32 were found to be polymorphic across all six bi-parental populations 

and these were scored in the 108 RILs.    

 

Compared to the DHs, the RILs could not be as clearly allocated to two phenotype groups (in 

this case using BLUPs for nematode DNA quantity; Fig 3.3b), likely owing to the lower 

number of replications with the RILs (three plants were phenotyped per RIL in one experiment 

vs. five plants total per DH in each of two experiments). Consequently, the RILs (Fig 3.3b) 

suggested two alternative intervals for QRlnt.sk-6D, depending on which threshold was chosen 

for defining the groups. A threshold of 0.5 gave the interval between markers 6D_139 and 
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6D_115, whereas a threshold of 1.0 gave the interval between 6D_128 and 6D_20. Both of 

these intervals were consistent with the (larger) interval defined using the DH recombinants. 

This interval defined by the DHs (between 6D_4 and 6D_143) was therefore regarded as the 

smallest interval to which QRlnt.sk-6D could be reliably ascribed. 

 

Subsequent mapping of the QRlnt.sk-2B locus (following sections) identified which lines were 

likely to carry the resistance allele at this locus (Fig 3.3). Due to the much larger effect of the 

QRlnt.sk-6D locus, the QRlnt.sk-2B locus status of individual lines did not influence their 

categorization as resistant or susceptible for the purposes of mapping QRlnt.sk-6D (not shown).
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Fig. 3.3 Graphical genotyping of the QRlnt.sk-6D QTL region in Sokoll/Krichauff doubled haploid (DH) lines (a) and recombinant inbred lines (RILs) from six crosses (b). 

Marker positions are given, as genetic locations (cM) in the Sokoll/Krichauff DH map and as physical locations in the Chinese Spring and Aegilops tauschii genome sequences. 

Marker alleles from the resistant parent Sokoll are denoted by ‘A’ and alleles from the susceptible lines Krichauff, Correll, Mace and Scout are denoted by ‘B’  
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2 5 1 A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A B B B 6,044
3 1 1 A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A B B B B B B B B 2,745
4 1 0 A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B 8,829
5 2 1 A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B B B 6,734
6 4 1 A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B B B B 6,993
7 1 0 B B B A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 8,018
8 2 2 B B B B B A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 5,409
9 1 1 B B B B B B A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 4,791
10 2 1 B B B B B B B A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 5,568
11 1 1 B B B B B B B B B B B B B B B A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 4,578
12 1 1 B B B B B B B B B B B B B B B B B B B B B B B B B B A A A A A A A A A A A A A A A A A A A A A A 4,770
13 2 0 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B A A A A A A A A A A A A A A 15,426
14 1 0 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B A A A A A A A A A A A A A 19,074
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b 1RIL Group 2n 32B 4P. thornei  DNA (pg/plant)

1 24 8 A A A A A A A A A A A A A A A A A A A A A A A A A A A A -0.44
2 1 0 A A A A A A A A A A A A A A A A A A A A A A A A A A B B -0.23
3 1 1 A A A A A A A A A A A A A A A A A A A A A A B B B B B B -1.53
4 2 2 A A A A A A A A A A A A A A A A A A A A A B B B B B B B -0.48
5 1 1 A A A A A A A A A A A A A A A A A A A A B B B B B B B B -1.68
6 23 9 A A A A A A A A A A A A A A A A A A A B B B B B B B B B -0.36
7 1 1 B B B B B B A A A A A A A A A A A A A B B B B B B B B B -1.23
8 1 1 B B B B B B B B B B B B B A A A A A A A A A A A A A A A 0.34
9 1 0 A A A A A A A A A A A A A A A A B B B B B B B B B B B B 0.80
10 3 0 B B B B B B B B B B B B B B B B B B B A A A A A A A A A 1.19
11 1 0 B B B B B B B B B B B B B B B B B B B B A A A A A A A A 1.67
12 8 0 B B B B B B B B B B B B B B B B B B B B B B B B B B B B 1.53
13 10 10 B B B B B B B B B B B B B B B B B B B B B B B B B B B 0.43
14 11 11 B B B B B B B B B B B B B B B B B B A A A A A A A A A A A 0.36

Marker

C. Spring (Mbp)

A. tauschii  (Mbp)

S/K map (cM)

1: DH group and RIL group are defined by the marker scores; 2: number of lines in respective group; 3: number of lines retrospectively shown to carry the resistance allele at the 2B locus; 4: average

phenotypic values of the lines in each group; P. thornei DNA (pg/plant) are given as raw means across two experiments in the DH lines, and as Best Liner Unbiased Predicated values (BLUPs) for the RILs.

Some markers that co-segregated with the asterisked markers (*) are not shown, due to space limitations. The QTL co-segregating region is denoted by the vertical lines
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3.8.5 Identification of candidate nematode resistance genes in the QRlnt.sk-6D interval 

In the annotation of the Chinese Spring reference genome (IWGSC RefSeq v1.0), the 1.77 Mbp 

interval of QRlnt.sk-6D contained 42 high confidence gene models (Supplementary Table 3.6). 

The corresponding 2.29 Mb interval in Ae. tauschii contained 43 high confidence gene models. 

Several of the functional classes to which these genes belong have members known to 

contribute to plant disease defence or resistance. Encoded products include protein kinases, 

nucleotide binding site leucine-rich repeat (NBS-LRR) proteins and enzymes involved in 

secondary metabolism. The gene models that are related to disease resistance are highlighted 

in Table 3.2. According to the Wheat Expression Browser database (Ramírez-González et al. 

2018), the majority of these genes were found to be expressed in wheat roots. Details on the 

involvement of these gene classes in resistance are provided in the Discussion section. 
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Table 3.2 Candidate nematode resistance genes in the QRlnt.sk-6D QTL interval, in genomic sequence annotations of Chinese Spring IWGSC RefSeq v1.0 and Aegilops 

tauschii, Aet v4.0. Homologous genes between two species are aligned in the same line and homologous group of genes are segmented with the horizontal lines 

Chinese spring        Aegilops tauschii       

Gene-ID Start end Annotation Root1 Gene ID Start End Annotation 

TraesCS6D01G013400.1 5477924 5481671 Receptor-like protein kinase, putative, expressed Y AET6Gv20022000 4632196 4719648 Disease resistance protein RPM1  

TraesCS6D01G013600.1 5562123 5566425  Receptor-like protein kinase, putative, expressed Y AET6Gv20022200 4655806 4662191 putative disease resistance RPP13-like protein 3  

         AET6Gv20023100 4773368 4785358 putative disease resistance RPP13-like protein 3  

TraesCS6D01G013900.1 5844543 5845856  F-box family protein N         

TraesCS6D01G015100.1 6314769 6316761 4,5-dioxygenase-like protein Y         

     AET6Gv20024100 4980269 4982544 Tyrosine/DOPA decarboxylase 3  

     AET6Gv20025500 5253288 5255652 Ribosome-inactivating protein 9  

     AET6Gv20026500 5486946 5488469 tyrosine decarboxylase 1-like  

TraesCS6D01G015000.1 6274077 6276905 Cytochrome P450 Y AET6Gv20027000 5607974 5611243 cytochrome P450 709B2-like  

TraesCS6D01G015200.1 6319338 6321386 Flavonoid 3'-hydroxylase Y AET6Gv20027200 5657247 5666250 flavonoid 3'-monooxygenase-like  

TraesCS6D01G015300.1 6328264 6328920 Flavonoid 3'-hydroxylase Y     

TraesCS6D01G015400.1 6342582 6344284 Isoflavone reductase-like protein Y AET6Gv20027300 5686821 5709253 Isoflavone reductase-IRL-like protein  

TraesCS6D01G015500.1 6351577 6353794 LRR receptor-like protein kinase family protein Y AET6Gv20027400 5695258 5698881 LRR receptor-like serine/threonine-protein kinase 

FLS2  TraesCS6D01G015600.1 6354023 6354982  LRR receptor-like protein kinase family protein Y AET6Gv20027600 5756181 5759396 LRR receptor-like serine/threonine-protein kinase 

FLS2  TraesCS6D01G015700.1 6370264 6373164 LRR receptor-like protein kinase family protein N AET6Gv20027700 5772461 5775676 LRR receptor-like serine/threonine-protein kinase 

FLS2  TraesCS6D01G015800.1 6425195 6426922  LRR receptor-like protein kinase family protein N AET6Gv20027800 5805867 5809727 LRR receptor-like serine/threonine-protein kinase 

FLS2  TraesCS6D01G015900.1 6426980 6428089 LRR receptor-like protein kinase family protein N AET6Gv20028900 6236911 6239682 LRR receptor-like serine/threonine-protein kinase 

FLS2  TraesCS6D01G016000.1 6441826 6443688 LRR receptor-like protein kinase family protein Y AET6Gv20029000 6241694 6243240 probable glutathione S-transferase GSTF1  

TraesCS6D01G016100.1 6496165 6501558 LRR receptor-like protein kinase family protein Y AET6Gv20029300 6296365 6299276 probable LRR receptor-like serine/threonine-protein 

kinase At1g34110          

TraesCS6D01G016600.1 6977348 6980077 LRR receptor-like protein kinase family protein Y AET6Gv20029500 6349131 6352966 wall-associated receptor kinase-like 6  

TraesCS6D01G016700.1 6982048 6983620 Glutathione S-transferase Y     

TraesCS6D01G016800.1 7032180 7035207 LRR receptor-like protein kinase family protein Y AET6Gv20033100 6564371 6570298 disease resistance protein RPP13-like  

TraesCS6D01G016900.1 7085603 7089322 Protein kinase family protein Y AET6Gv20034300 6696137 6700725 disease resistance protein RPM1-like  

TraesCS6D01G017500.1 7280447 7285137 Disease resistance protein RPM1 Y AET6Gv20034400 6702403 6707351 disease resistance protein RPM1-like  

TraesCS6D01G017600.1 7290076 7293584 Disease resistance protein (NBS-LRR class) 

family 

Y         

1: According to the Wheat Expression Browser, presence and absence of gene expression in root are referred as Y and N, respectively. Genes that are expressed at least 0.5 

transcript per million (tpm) are shown as ‘bold’
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3.8.6 QTL re-mapping QRlnt.sk-2B using the whole DH population 

KASP assays were designed on 92 SNPs (Supplementary Table 3.7), identified as being closely 

linked to the QTL, based on the BSA, 90K SNP map and cereal database (Allen et al. 2011) 

data. Of these, 41 were judged to be of high quality and were mapped across the entire 

population of 150 Sokoll/Krichauff DH lines. Together with five SSR markers previously 

mapped near the 2BS resistance locus, including the QTL flanking markers (Linsell et al. 

2014a), the KASP markers were used to produce a map spanning 19.9 cM (Fig. 3.4). The 

genetic map corresponded to a 16.92 Mbp physical interval in the genome sequences of durum 

wheat cv. Svevo (Maccaferri et al. 2019) and a 19.08 Mbp interval in bread wheat (Chinese 

Spring). The order of the markers corresponded well with the physical maps, except that 36 of 

the markers were inverted in the bread wheat physical map relative to the durum wheat physical 

map and the bread wheat genetic map (Fig. 3.4).  

 

Simple interval mapping analysis suggested a QTL interval of QRlnt.sk-2B between the 

markers 2B_74 and 2B_12 (and five other co-segregating markers; LRS score of 44.5) (Fig. 

3.4), with the QTL explaining 25% of the total phenotypic variation.
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Fig. 3.4 Genetic linkage map of part of the 2BS chromosome arm made using the Sokoll/Krichauff DH population (a), aligned with the sequence in durum 

wheat (Svevo) (b) and Chinese Spring (c). The interval of the QRlnt.sk-6D Pratylenchus thornei resistance QTL is shown as shaded bars and the physical 

locations of the markers defining the QTL interval are boxed 
  

 

Sokoll/Krichauff linkage map, cM Physical map, durum wheat, Svevo, Mbp  Physical map, Chinese spring, Mbp  

            (a)                                                               (b)                                                                                     (c) 
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3.8.7 Fine mapping of QRlnt.sk-2B by graphical genotyping using DH and RIL 

recombinants 

Graphical genotypes of the DH lines and RILs in the QRlnt.sk-2B QTL region are presented in 

Fig. 3.5 and Fig. 3.6, respectively. The DH lines were subdivided into two classes (Class ‘a’ 

and ‘b’) based on the presence of the Krichauff or Sokoll allele at the stronger QRlnt.sk-6D 

QTL (6D_4 to 6D_143 interval), respectively. A threshold level of P. thornei DNA for defining 

groups as resistant or susceptible at QRlnt.sk-2B, of 12,000 pg/plant in class ‘a’ and of 5,000 

pg/plant in class ‘b’, was consistent with a position for QRlnt.sk-2B between the markers 2B_74 

and 2B_12. The flanking markers were 1.4 cM apart and correspond to physical intervals of 

0.04 to 3.18 Mbp in durum wheat cv. Svevo, and 8.59 to 10.78 Mbp in bread wheat cv. Chinese 

Spring (Fig. 3.5). The co-segregating region spanned markers 2B_75 to 2B_9.  

  

The 108 RILs were genotyped for 21 KASP markers on chromosome 2B that were polymorphic 

across the six RIL populations. Again, lines were separated into two groups (‘a’ and ‘b’) based 

on the presence of the susceptible (Correll, Mace or Scout) or resistant (Sokoll) allele at 

QRlnt.sk-6D. If a threshold of nematode DNA quantity per plant (BLUPs) for declaring the 

presence of the resistance or susceptibility allele at QRlnt.sk-2B was set at 1.0 for group ‘a’ and 

at 0.4 for group ‘b’, the data were consistent with a location of QRlnt.sk-2B distal to the marker 

2B_78 (Fig. 3.6). This region covered the interval defined in the DHs (Fig 3.5), i.e., the 

QRlnt.sk-2B interval defined by the DHs (2B_74 to 2B_12) was smaller.  

 

3.8.8 Identification of candidate nematode resistance genes in the QRlnt.sk-2B interval  

The QRlnt.sk-2B interval was contained entirely within the previously mentioned inversion 

difference between the maps, and hence this inversion difference didn’t interfere with defining 

the QRlnt.sk-2B interval in the Chinese Spring genomic sequence. In the Chinese Spring gene 
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annotations, there were 56 high confidence gene models in the QRlnt.sk-2B interval 

(Supplementary Table 3.8). Of these, 26 were related to plant disease resistance, including 

those with similarities to NBS-LRR disease resistance proteins and receptor-like protein 

kinases (Table 3.3). A total of 20 genes were reported to be expressed in wheat root (Ramírez-

González et al. 2018).
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Fig. 3.5 Graphical genotypes of Sokoll/ Krichauff (S/K) doubled haploid (DH) lines in the QRlnt.sk-2B 

QTL region. The lines are grouped into two classes, ‘a’ and ‘b’ based on the presence of either the 

susceptibility (Krichauff) or resistance (Sokoll) allele at the stronger QRlnt.sk-6D QTL. Marker 

positions are shown as the genetic location (cM) in the S/K DH map, and the physical positions in the 

genome sequences of emmer wheat, bread wheat cv. Chinese Spring, and durum wheat cv. Svevo. 

Marker alleles from the resistant parent Sokoll are denoted by ‘A’ and alleles from the susceptible parent 

Krichauff are denoted by ‘B’ 
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a 1DH Group 2n 3P. thornei  DNA (pg/plant)

1 23 A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 8,215

2 1 A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A B B 6,258

3 1 A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A B B B 9,568

4 1 A A A A A A A A A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B B 9,919

5 1 A A A A A A A A A A A A A A A A B B B B B B B B B B B B B B B B B B B B B B B B 10,312

6 1 B B B B B B B B B B A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 14,894

7 1 B B B B B B B B B B B B B B B B A A A A A A A A A A A A A A A A A A A A A A A A 16,408

8 1 B B B B B B B B B B B B B B B B B B A A A A A A A A A A A A A A A A A A A A A A 14,796

9 1 B B B B B B B B B B B B B B B B B B B B B A A A A A A A A A A A A A A A A A A A 14,000

10 1 B B B B B B B B B B B B B B B B B B B B B B B A A A A A A A A A A A A A A A A A 16,046

11 1 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B A A A A A A A A A A 19,275

12 3 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B A A A 18,826

13 1 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B A A 20,916

14 1 A B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 20,474

15 22 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 18,209

b
1 33 A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 3,875

2 1 A A A A A A A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B B B B 3,330

3 1 A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B B B B B B B B B B B 3,610

4 1 A A A A A A A A A A B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 3,381

5 2 B B B B B B B B B B B B B B B B A A A A A A A A A A A A A A A A A A A A A A A A 7,584

6 2 B B B B B B B B B B B B B B B B B B A A A A A A A A A A A A A A A A A A A A A A 8,819

7 2 B B B B B B B B B B B B B B B B B B B A A A A A A A A A A A A A A A A A A A A A 6,217

8 1 B B B B B B B B B B B B B B B B B B B B B A A A A A A A A A A A A A A A A A A A 5,864

9 1 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B A A A A A A A A A 7,074

10 1 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B A A A A A A A A 7,726

11 1 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B A A A 6,797

12 37 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 7,128

Marker

1: DH group are defined by marker score; 2: number of lines in respective groups; 3: average phenotypic values of the lines in each group; P. thornei DNA (pg/plant) are

given as raw means across two experiments in the DH lines. Some markers that co-segregated with the asterisked markers (*) are not shown, due to space limitations. The

QTL co-segregating region is denoted by the vertical lines

Emmer Wheat (Mbp)

C. Spring (Mbp)

Durum Wheat (Mbp)

 S/K map (cM)
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Fig. 3.6 Graphical genotypes of recombinant RILs derived from six crosses, for the QRlnt.sk-2B QTL 

region. The lines were grouped into two classes, ‘a’ and ‘b’ based on the presence of either the 

susceptible (Correll, Mace and Scout) or resistance (Sokoll) allele at the 6DS QTL. Marker positions 

are shown as the genetic location (cM) in the Sokoll/Krichauff DH map, and the physical positions in 

the genome sequences of emmer wheat, bread wheat cv. Chinese Spring, and durum wheat cv. Svevo. 

Alleles from Sokoll are denoted by ‘A’ and alleles from the susceptible parents are denoted by ‘B’ 
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a 1RIL Group 2n 3 P. thornei  DNA, BLUPs

1 16 A A A A A A A A A A A A A A A A A A A A 0.17

2 1 A A A A A A A A A A A A B B B B B B B B 0.11

3 3 A A A A A A A A A A A B B B B B B B B B 0.35

4 2 A A A A A A A A A B B B B B B B B B B B 0.88

5 1 B B B B B B B B B B B A A A A A A A A A 1.64

6 6 B B B B B B B B B B B B A A A A A A A A 1.31

7 1 B B B B B B B B B B B B B A A A A A A A 1.19

8 9 B B B B B B B B B B B B B B B B B B B B 1.52

b
1 18 A A A A A A A A A A A A A A A A A A A A -0.77

2 1 A A A A A A A A A A A A A A A A A A A B -0.95

3 5 A A A A A A A A A A A B B B B B B B B B -1.01

4 1 A A A A A A A A B B B B B B B B B B B B -0.48

5 2 B B B B B B B B B B B A A A A A A A A A -0.03

6 1 B B B B B B B B B B B B A A A A A A A A -0.29

7 2 B B B B B B B B B B B B B B B B B B B B -0.23

8 22 B B B B B B B B B B B B B B B B B B B B -0.13

1: RIL group are defined by marker score; 2: number of lines in respective group; 3: average P. thornei DNA (pg/plant)

estimated as BLUPs of the lines from the respective group. Some markers that co-segregated with the asterisked markers

(*) are not shown, due to space limitations. The QTL co-segregating region is denoted by the vertical lines 

Marker

Emmer Wheat (Mbp)

C. Spring (Mbp)

Durum Wheat (Mbp)

S/K map (cM)
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Table 3.3 Candidate resistance genes in the QRlnt.sk-2B QTL interval on chromosome 2B, in 

the Chinese Spring IWGSC RefSeq v1.0 gene annotations  

Gene-ID Start End Root1 Annotation 

TraesCS2B01G018500.1 8561501 8569381 Y NBS-LRR disease resistance protein-like protein 

TraesCS2B01G018600.1 8592551 8596822 Y NBS-LRR disease resistance protein-like protein 

TraesCS2B01G018700.1 8666351 8668189 Y NBS-LRR disease resistance protein-like protein 

TraesCS2B01G018800.1 8670792 8671418 Y NBS-LRR-like resistance protein 

TraesCS2B01G018900.1 8747772 8748197 Y Cytochrome P450 

TraesCS2B01G019000.1 8749777 8750544 N Cytochrome P450 

TraesCS2B01G019200.1 8941857 8943384 Y Chalcone synthase 

TraesCS2B01G019300.1 8994419 8997178 Y NBS-LRR disease resistance protein-like protein 

TraesCS2B01G019400.1 8997920 8998846 Y Disease resistance protein (TIR-NBS-LRR class) 

family 

TraesCS2B01G019500.1 9016257 9034173 Y RING/U-box superfamily protein 

TraesCS2B01G019600.1 9104917 9105804 N Cytochrome P450 family protein, expressed 

TraesCS2B01G019800.1 9122805 9127661 Y NBS-LRR disease resistance protein-like protein 

TraesCS2B01G019900.1 9143706 9146396 Y Serine/threonine-protein kinase 

TraesCS2B01G020000.1 9197533 9199065 N Cytochrome P450 family protein, expressed 

TraesCS2B01G020100.1 9281721 9284724 Y Phenylalanine ammonia-lyase 

TraesCS2B01G020200.1 9617719 9622480 Y Disease resistance protein 

TraesCS2B01G020300.1 9724163 9725705 Y Zinc finger family protein 

TraesCS2B01G020600.1 9887738 9891511 Y Disease resistance protein 

TraesCS2B01G020700.1 10071914 10072957 N PP2A regulatory subunit TAP46 

TraesCS2B01G021000.1 10088694 10089647 N rRNA N-glycosidase 

TraesCS2B01G021200.1 10187555 10188157 N P-loop containing nucleoside triphosphate 

hydrolases superfamily protein 

TraesCS2B01G021400.1 10218063 10219031 Y Leucine-rich repeat receptor-like protein kinase 

TraesCS2B01G021500.1 10355958 10359967 Y Receptor-like protein kinase 

TraesCS2B01G021700.1 10382823 10389006 Y Disease resistance protein RPM1 

TraesCS2B01G021800.1 10575914 10593462 Y Receptor-like protein kinase 

TraesCS2B01G021900.1 10595588 10599145 Y receptor kinase 1 

 

1: According to the Wheat Expression Browser, presence and absence of gene expression data in root are referred 

as Y and N, respectively. Genes that are expressed at least 0.5 tpm are shown as ‘bold’ 
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3.9 Discussion  

Development of resistant cultivars is considered the best option for sustainable and economical 

control of root lesion nematode in wheat (Mokrini et al. 2019). Although several resistance 

QTL have been identified, wheat cultivars (commercial) with complete resistance have not yet 

been developed, perhaps partly owing to a lack of markers that are very closely linked to the 

resistance loci. Fine mapping of P. thornei resistance QTL is therefore needed for the 

development of molecular markers suitable for effective resistance breeding. With the aid of 

the recently available wheat genome sequence information, fine mapping of QTL for other 

traits has allowed identification of candidate genes underlying the QTL (Alaux et al. 2018; Wu 

et al. 2018; Wu et al. 2019).  

 

In a previous study, QTL for P. thornei resistance were mapped on the short arms of 

chromosome 6D and 2B, to intervals of 12.8 cM and 16.7 cM, respectively (Linsell et al. 

2014a). In the current study, the intervals for these loci were significantly reduced, to 3.5 cM 

and 1.4 cM, respectively, and validated in other genetic backgrounds represented by the RIL 

populations. The intervals were delimited to 1.77 Mbp and 2.19 Mbp in the Chinese Spring 

reference genome, respectively. 

  

The wheat 90K SNP array was utilised to fine map the QTL. The SNP array analysis of the 

DNA bulks made from resistant and susceptible lines identified SNPs that were linked with the 

QTL. Some of these were used to design KASP marker assays to provide markers suitable for 

further mapping in the DH and RIL populations.  

 

The order of the markers within chromosomal segments in the present study was largely 

consistent with those found in published physical maps. On 6DS, markers were in the same 



 

 

70 

 

order in the Chinese Spring and Ae. tauschii genome sequences. On 2BS, the order of markers 

was the same in the genetic map and genome of durum wheat, but differed in the Chinese 

Spring genome by an inverted segment. A chromosomal rearrangement or pericentric inversion 

might be an explanation for the disagreement (Ma et al. 2014).  

 

The wheat D-genome progenitor Ae. tauschii and durum wheat cv. Altar 84 were parents of the 

synthetic derived wheat cultivar Sokoll (Pastor/3/Altar84/Aegilops squarrosa (Taus)//Opata). 

The other parent Krichauff is bread wheat cultivar with the pedigree: 

Wariquam//Kloka/Pitic62/3/Warimek/Halberd/4/3Ag3Aroona. Thus, it was not surprising to 

see co-linearity for 6DS markers between Chinese Spring and Ae. tauschii, and for 2BS markers 

with durum wheat cv. Svevo. Consequently, in addition to the Chinese Spring assembly, the 

Ae. tauschii and durum wheat assemblies (not shown) were excellent resources for identifying 

genes in the resistance QTL intervals.    

 

Markers that co-segregated with the resistance loci in the DH and RIL populations might be 

useful for selecting for P. thornei resistance in breeding populations. Markers co-segregating 

with QRlnt.sk-6D were 6D_75, 6D_48, 6D_20, 6D_139, 6D_12 and 6D_5, while those co-

segregating with QRlnt.sk-2B were 2B_73, 2B_42, 2B-10, 2B_71, 2B_4 and 2B_9.  Markers 

further out could be used to rule out the possibility of marker-trait dissociation by 

recombination. The susceptible parents used in the mapping crosses (Krichauff, Correll, Mace 

and Scout) were all southern-Australian cultivars, suggesting that these resistance genes and 

markers should be useful at least in a southern-Australian breeding context.  
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3.9.1 Candidate genes for P. thornei resistance 

The physical interval for QRlnt.sk-6D, between the flanking markers 6D_4 and 6D_143, was 

1.77 Mbp (5.57 Mbp to 7.34 Mbp in Chinese Spring) (Fig. 3.3). The physical interval for 

QRlnt.sk-2B, between the flanking markers 2B_74 and 2B_12, was 3.14 Mbp (0.04 Mbp to 

3.18 Mbp in durum wheat) (Fig. 3.5). Both QTL intervals contained genes with similarity to 

those previously reported to be involved in disease resistance (Table 3.2 and 3.3). In the 

following section some of the candidates for P. thornei resistance genes are discussed.  

 

Isoflavone reductase (IFR) and Flavonoid 3'-hydroxylases 

Isoflavone reductase (IR) [EC 1.3.1.45] and flavonoid 3'-hydroxylase (F3'H) are involved in 

isoflavonoid and flavonoid phytoalexin biosynthesis, respectively (Dixon et al. 2002; 

Naoumkina et al. 2010). IR accumulation in plants increases with greater resistance toward 

various plant pathogen infections. For instance, overexpression of soybean IR (GmIFR) 

enhanced resistance to Phytopthora sojae in transgenic soybean (Cheng et al. 2015). Moreover, 

a rice blast fungal elicitor induced an IR-like gene in rice (Kim et al. 2003). A few studies also 

discuss a role of IR in plant parasitic nematode resistance. For instance, the isoflavonoid 

phytoalexin synthesis pathway is inferred to be under the control of the soybean cyst nematode 

resistance gene rhg1 (Afzal et al. 2009). IR is a key enzyme in biosynthesis of the phytoalexin 

medicarpin. In lucerne (Medicago sativa) genotypes with contrasting resistance to the root 

lesion nematode, Pratylenchus penetrans, resistance was positively associated with levels of 

root medicarpin. An in vitro study revealed that medicarpin inhibits motility of P. penetrans 

(Baldridge et al. 1998). Isoflavone reductase was also identified as a crucial enzyme involved 

in the biosynthesis of the phytoalexin glyceollin (Yu et al. 2003). Glyceollin has been shown 

to inhibit Meloidogyne and Heterodera motility in soybean (Boydston et al. 1983; Kaplan et 

al. 1980). Taken together, IR is an important enzyme in the biosynthesis of the phytoalexins 
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medicarpin and glyceollin. These phytoalexins were previously reported as inhibitors of 

nematode motility. Motility of P. thornei was found to be inhibited in Sokoll root extracts as 

compared to Krichauff root extracts (Linsell et al. 2014b). This seems consistent with the 

possibility that IR contributes to P. thornei resistance. 

 

Chalcone synthase 

Chalcone synthase (CHS, EC 2.3.1.74) is a key enzyme of the flavonoid/isoflavonoid 

biosynthesis pathway which is required for flavonoid and isoflavonoid phytoalexin synthesis. 

It is also involved in the salicylic acid defence pathway (Dao et al. 2011). Upon nematode 

(Meloidogyne javanica) infection of white clover, abundance of CHS transcripts increased 

(Hutangura et al. 1999).  

 

Phenylalanine ammonia-lyases 

Phenylalanine ammonia-lyase (PAL) plays a crucial role in secondary phenylpropanoid 

metabolism (Kim and Hwang 2014). PAL is involved in the biosynthesis of salicylic acid (SA), 

an essential signal involved in plant systemic resistance (Nugroho et al. 2002).  

 

The above mentioned IFR, F3’H, CHS and PAL enzymes are involved in biosynthesis of 

flavonoids and isoflavonoids. A simplified schematic diagram of the flavonoid and 

isoflavonoid biosynthetic pathways is presented in Fig. 3.7, where these 4 enzymes are 

highlighted. Phenylpropanoids including flavonoids and isoflavonoids are products derived 

from the amino acid L-phenylalanine via deamination by L-phenylalanine ammonia lyase 

(PAL) (Dixon et al. 2002). Their role in plant defence against pathogens is well documented 

(Reviewed in Dixon 2001; Dixon et al. 2002; Naoumkina et al. 2010). These products may be 

synthesized constitutively or in a pathogen-induced manner (VanEtten et al. 1994). Their action 
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can be through creating a toxic environment, or supressing the development and reproduction 

of the pathogen, including nematodes. The identified candidate genes related to the 

phenylpropanoid pathway could contribute to P. thornei resistance, given that root exudates 

and roots of Sokoll and Sokoll-derived P. thornei resistant DH lines reduced nematode motility 

and migration relative to those of susceptible cultivar Krichauff, respectively (Linsell et al. 

2014b). Moreover, phenylpropanoids are reported to be involved in a resistance mechanism 

against the migratory nematode P. penetrans (Baldridge et al. 1998) and R. similis (Hölscher 

et al. 2014; Valette et al. 1998; Wuyts et al. 2007; Wuyts et al. 2006). It will be worthwhile to 

characterise these genes and gene products to understand their role in P. thornei resistance in 

wheat. 
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Fig. 3.7 The flavonoid and isoflavonoid biosynthetic pathway (Dixon et al. 2002, Naoumkina et al. 

2010).  The enzymes are as follows: PAL: L-phenylalanine ammonia-lyase; CHS: Chalcone synthase; 

IFR: Isloflavone reductase; F3’H: Flavonoid 3’-hydroxylase; I2’H:  Isloflavone 2’-hydroxylase; VR: 

Vestitone reductase. The products of the candidate resistance genes for QRlnt.sk-6D and QRlnt.sk-2B 

QTL are boxed 
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NBS-LRR proteins 

NBS-LRR genes are the most commonly reported type of resistance gene among cloned 

resistance genes, and relate to a wide range of plant-pathogen systems. Eight NBS-LRR genes 

against plant nematodes have been cloned so far (Fuller et al. 2008; Davies and Elling 2015).  

  

NBS-LRR proteins are composed of a LRR domain involved in pathogen specificity, linked to 

an N-terminal NBS domain required for signal transduction (Takken and Goverse 2012). NBS-

LRR proteins directly or indirectly recognize an isolate-specific avirulence factor and trigger a 

resistance signalling cascade, which, in the majority of cases, includes localized cell death, 

termed the hypersensitive response. 

 

All the NBS-LRR nematode resistance proteins cloned so far confer resistance against 

sedentary plant parasitic nematodes. No resistance gene to a migratory plant parasitic nematode 

has been cloned so far. Further study is required to find out whether NBS-LRR genes act 

against the migratory root lesion nematodes.  

 

Receptor-like protein kinases 

Receptor-like kinases (RLKs) are cell surface receptors, mediating cellular signal transduction 

(Shiu and Bleecker 2001). Leucine-rich repeat RLK proteins (LRR-RLK) constitute the largest 

group of plant RLKs. They contain three functional domains; an extracellular LRR domain that 

perceives signals, a transmembrane domain, and an intracellular kinase domain that transduces 

the signal (Gou et al. 2010). Some LRR-RLKs are involved in plant responses to pathogens, in 

which case they are classified as pattern recognition receptors (PRRs). For instance, the 

pathogen associated molecular pattern (PAMP) flagellin from bacteria is recognized by the 

Arabidopsis receptor kinase, FLAGELLIN SENSING 2 (FLS2), mediating plant resistance 
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against bacterial pathogens (Gómez-Gómez and Boller 2000). PRRs that can detect nematode 

PAMPs have not been conclusively identified. However, a candidate is a homologue of the 

Arabidopsis brassinosteroid-associated kinase 1 (BAK 1) in tomato, which, when silenced in 

tomato, significantly increased susceptibility against root knot nematode (Meloidogyne spp.) 

(Peng and Kaloshian 2014). Conserved molecules in nematodes, such as ascarosides, chitin, 

and cuticle are potential PAMPs, which may play a role in PRR-mediated defence mechanisms 

(Holbein et al. 2016).   

 

Ribosome-inactivating proteins  

Ribosome-inactivating proteins (RIPs) are toxic N-glycosidases that depurinate eukaryotic and 

prokaryotic rRNAs inhibiting protein synthesis during translation (de Virgilio et al. 2010). 

Several studies suggested that plant derived RIPs have bioactive properties, including 

antibacterial, antifungal and antiviral (Reviewed in Zhu et al. 2018). However, a role of RIPs 

against nematodes has not yet been investigated.  

 

According to the Wheat Gene Expression database, the majority of the listed candidate genes 

were found to be expressed in wheat root (Ramírez-González et al. 2018). However, it could 

be worthwhile to investigate the gene expression profile of the wheat root in response to P. 

thornei challenge.  

 

In summary, two significant QTL for P. thornei resistance were fine mapped on wheat 

chromosome arms 6DS and 2BS, respectively. SNPs tightly linked to the QTL were identified 

first in a DH population and then validated using other bi-parental populations. The SNPs were 

used to design KASP assays, which could be used in marker-assisted breeding for P. thornei 

resistance. Several genes in the QTL intervals were identified that represent plausible 
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candidates for P. thornei resistance genes. Products of these genes included phenylpropanoid-

biosynthetic-pathway-related enzymes, NBS-LRR proteins and protein kinases. Further study 

is required to identify which, if any, of the candidates are responsible for the resistance QTL 

effects.  
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Chapter 4 

Detection and quantification of Pratylenchus thornei in wheat root using 

quantitative real-time PCR 
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4.2 Introduction 

 

Pratylenchus thornei is an important plant parasitic nematode species affecting bread wheat 

throughout the world, particularly in dryland agricultural areas of Australia and the Pacific 

Northwest of the United States of America (USA) (Nicol and Ortiz-Monasterio 2004; Smiley 

et al. 2005; Thompson et al. 2010). They penetrate the roots of a host plant and migrate through 

the root tissues, causing considerable damage to crop plants. Due to the damage in the root 

tissue, plants cannot uptake water and nutrients properly from the soil, impairing growth and 

development, and resulting in significant yield loss (Smiley and Nicol 2009; Thompson et al. 

2015).   

 

Many of the commercially available wheat cultivars are either susceptible or only moderately 

tolerant to P. thornei. A completely resistant commercial wheat cultivar has not been developed 

yet. Genetic improvement through exploiting natural genetic variation could be the most 

sustainable way to improve P. thornei resistance in wheat cultivars. Research so far has 

identified sources of resistance in middle-eastern landraces (Sheedy and Thompson 2009), 

wheat progenitor species (Thompson and Haak 1997), and in synthetic wheat cultivars 

(Thompson 2008).  

 

A susceptible wheat cultivar allows P. thornei multiplication in the roots and the nematode 

population to remain stable or grow in the soil. On the other hand, a resistant cultivar restricts 

nematode multiplication in the roots; consequently, a lower number of P. thornei nematodes 

will exist in the soil. Resistance to P. thornei can be evaluated by estimating the nematode 

multiplication rate in the roots and/or soil. Estimating the number of nematodes by counting 

them under the compound microscope is a very time-consuming process and requires 

specialized skill and knowledge. In comparison to the microscopic method, a real-time 
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polymerase chain reaction-based quantification method (qPCR) offers a much quicker method 

to objectively measure nematode populations in plants and soil. 

 

In recent years, several articles have reported on the use of qPCR for the quantitative detection 

of plant pathogenic nematodes, including migratory (Berry et al. 2008; Mokrini et al. 2014; 

Yan et al. 2011; Yan et al. 2013) and sedentary (Lopez-Nicora et al. 2012; Madani et al. 2005; 

Toumi et al. 2015) nematodes. At SARDI (South Australia Research and Development 

Institute), P. thornei quantification is offered as fee-for-service using crop and soil samples. 

Details on the protocol are proprietary information and thus not available to other researchers. 

A real-time qPCR protocol has been reported by Yan et al. (2011) to quantify P. thornei in soil 

samples. The assay was based on quantification of P. thornei using species-specific primers 

and DNA extracted from soil. They used a commercial DNA extraction kit (PowerSoil® DNA 

Isolation Kit, MoBio, Carlsbad, CA) to extract P. thornei DNA from soil. Again, the 

composition of the commercial DNA extraction kit is proprietary. A freely available DNA 

extraction protocol based on common laboratory chemicals would be desirable to keep the 

expenses low and thus make the quantification method available to a breeding program where 

large numbers of samples need to be processed.  However, extraction of P. thornei DNA from 

soil using common laboratory chemicals can be challenging due to the presence of phenolic, 

humic and other PCR-inhibitory substances in soil. Alternatively, plant pathogenic nematodes 

can also be quantified from pure root extract (Lopez-Nicora et al. 2012). The objective of this 

study was to develop a working protocol that enables a reliable and cost-effective protocol to 

extract and quantify nematode DNA from wheat root tissue.  
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4.3 Materials and methods 

 

4.3.1 Nematode DNA extraction from pure culture  

P. thornei was obtained from wheat at Nunjikompita, South Australia and cultures were 

maintained on carrot callus, as described by Moody et al. (1973). Cultures were kept at 22°C 

and subcultured every 3 months. P. thornei was extracted from carrot callus by placing them 

in a funnel set in a mister chamber with an intermittent aqueous mist for 10 s every 10 min for 

a total of 96 h. The collected nematodes were counted under a compound microscope in 250 

µL aliquots in three replicates and diluted with water to the required concentration (Linsell et 

al. 2014a). P. thornei genomic DNA was extracted following the protocol of Yan et al. (2008), 

with the following modifications. The lysis buffer used to extract genomic DNA consisted of 

500 mM KCl, 100 mM Tris-Cl (pH 8.3), 15 mM MgCl2, 10 mM dithiothreitol (DTT), 4.5% 

Tween 20 and 0.1% gelatin. At first, mixed-stage nematodes were put into 100 µL sterilized 

nanopure water in a 2 mL centrifuge tube.  Then, 205 µL lysis buffer and 4 µL proteinase K 

(20 mg/ml) were added to the nematode solution. The solution was incubated at 65°C for 1 hour 

in a water bath, followed by incubation at 95°C for 10 min in a thermal block. The nematode 

extraction mix was centrifuged at 15,000 rpm (21,200 x g) for 10 min. The supernatant (150 

µL) was transferred into a new tube and stored at -20°C for subsequent use as DNA template.   

 

4.3.2 Nematode DNA extraction from plant root  

To generate a standard curve and quantify nematodes from unknown samples, total DNA from 

nematode infected wheat root was extracted from wheat root powder following a modified 

cetyl trimethylammonium bromide (CTAB) DNA extraction protocol (Rahman et al. 2010). 

The root tissue was obtained from 8-week-old wheat seedlings. This time point was taken 

because P. thornei can complete its life cycle in 3-8 weeks (Agrios 1988, Linsell et al. 2014b). 
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Roots were gently removed from soil, washed under running tap water and stored at -80°C. 

Root tissue was freeze-dried, ground to a fine powder using a mortar and pestle, and 30 mg of 

root powder was used for DNA extraction. For each sample, three replications of DNA 

extraction were performed. The DNA extraction protocol is as follows:  

 

1.  30 mg Amberlite XAD-4 (Sigma Chemical Co.) was added to 30 mg of root powder 

in a 2 mL centrifuge tube. 

2. A lysis buffer (1000 µL) containing 4% (w/v) CTAB, 100 mM Tris-HCl (pH 8.0), 1.4 

M NaCl, 50 mM NaEDTA (pH 8.0) and 1% (w/v) dithioerythritol (DTE) was added to 

the root powder (Rahman et al. 2010). Then, 4 µL proteinase K (20 mg/mL) was added 

to each tube. The solution was mixed thoroughly using a vortex machine for 1 min.  

3. The samples were incubated at 65°C for 1 h in a water bath followed by incubation at 

95°C for 10 min in a thermal incubator. 

4. The solution was centrifuged at 15,000 rpm (21,200 x g) at room temperature for 10 

min. The supernatant (850 µL) was transferred into a new 2 mL centrifuge tube. An 

equal volume of phenol:chloroform:isoamylalcohol [25:24:1] was added, thoroughly 

mixed by vortexing, and centrifuged at 21,200 x g for 10 min. The upper aqueous phase 

(700 µL) was transferred into a new 2 mL centrifuge tube. An equal volume of 

chloroform:isoamylalcohol [24:1] was added and mixed before centrifugation for 10 

min at 21,200 x g. The upper aqueous phase (600 µL) was transferred into a new 1.5 

mL centrifuge tube.  

5. An equal volume of ice-cold isopropanol was added and mixed prior to incubation at –

80°C for 1 h. The sample was thawed without agitation prior to centrifugation at 21,200 

x g for 10 min. 
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6. The supernatant was discarded while the pellet was washed twice with 1 mL of 70% 

(v/v) ethanol. After each washing step, the sample was centrifuged at 21,200 x g at 

room temperature for 3 min. 

7. Finally, the pellet was air-dried and dissolved in 100 µL R40 (40 ug/mL RNAse A in 

1X TE). The DNA concentration and absorbance ratio (A260/280 and A260/230) were 

determined using a NanoDrop® ND-1000 spectrophotometer (Nanodrop Products, 

Wilmington, DE, USA). DNA was stored at -20°C prior to qPCR. 

 

4.3.3 Real-time PCR 

The primer pair, THOITS- F2 (5′-GTGTGTCGCTGAGCAGTTGTTGCC-3′) and THO-ITS-

R2 (5′-GTTGCTGGCGTCCCCAGTCAATG-3′) were used in this study. Primer development, 

selection and specificity were described by Yan et al. (2011). All real-time PCR assays were 

performed on a CFX384 TouchTM Real-Time PCR detection system (Bio-Rad Laboratories, 

USA) using the SsoAdvanceTM SBVRR Green Supermix (Bio-Rad Laboratories, USA) 

following the protocol described by Yan et al. (2013) with minor modifications. Each reaction 

mix consisted of 1 µL DNA extract, 5 µL of SsoAdvanceTM SBVRR Green Supermix, 250 nM 

of each primer and 40 µg BSA in a total volume of 10 µL. The amplification program consisted 

of an initial denaturation cycle for 10 min at 95°C, followed by 40 cycles of 5 s at 95°C, 10 s at 

70°C, and 10 s at 72°C, with fluorescence data collected after each annealing step. Melting 

curve profiles were generated by increasing the temperature from 65°C to 95°C in increments 

of 0.1 °C per 0.2 s. DNA from pure culture of P. thornei and sterile nanopure water were used 

as positive and negative controls, respectively. All samples in this study were amplified in 

triplicate. The resulting data were analyzed with the program Bio-Rad CFX manager (Version 

3.1) using the arithmetic baseline adjustment and second derivative maximum analysis to 

generate amplification curves, standard curves, and melting curves. 
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4.3.4 Generation of standard curves  

To examine the potential presence of PCR inhibitors in the roots that were used for generation 

of the standard curve, nematode DNA was extracted from five thousand P. thornei. DNA was 

serially diluted with wheat root DNA or with water. Amplification efficiencies (E) were 

calculated from the slope of a plot of cycle threshold (Ct) (y-axis) and log picograms (log pg) 

of DNA (x-axis) using the equation E = 10 (1/-m)-1, where m is the slope. Inhibitor activity was 

assessed by comparing E from DNA in root extracts to E from DNA in water.  

 

To generate a standard curve, DNA was extracted following above mentioned protocol from 

root powder mixed with various known amounts of pure nematode. For this, P. thornei (25, 50, 

100, 500, 1000, 2500, 5000, 7500, 10000) were added separately to 30 mg of root powder prior 

to DNA extraction. Standard curves were generated by plotting logarithmic values of number 

of nematodes per 30 mg root powder versus the corresponding cycle threshold (Ct) values.  

 

4.3.5 Quantification of P. thornei in root samples 

P. thornei was quantified from Sokoll (P. thornei resistant), Krichauff (P. thornei susceptible) 

and fourteen recombinant inbred wheat lines. The levels of P. thornei resistance (genetic and 

phenotypic) were evaluated in the previous experiment where P. thornei was quantified using 

PreDicta B test in a commercial laboratory (SARDI) (described in Chapter 3). Genetic 

resistance and susceptibility of these wheat lines towards P. thornei were determined as 

presence and absence of resistance alleles in 2B and/or 6D loci (described in Chapter 3). The 

wheat lines were grown under controlled growth conditions (12-hour light at 22°C and 12-hour 

dark at 18°C) in 2014. Each individual plant of each line was grown in a plastic tube containing 

150 g of sterilized silt-loam soil (Linsell et al. 2014b). Each pot with a single plant at the one-

leaf stage was inoculated with 1500 P. thornei nematodes derived from a culture maintained 
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on carrot. After 8 weeks of incubation, plant tops were removed, and roots were collected. 

DNA was extracted from 30 mg of powdered root samples and nematode DNA quantified using 

real-time PCR and the root standard curve. For each sample, three replications of DNA 

extraction were performed.  
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4.4 Results 

 

4.4.1 P. thornei DNA extraction from pure culture and wheat root 

In the present experiment, P. thornei DNA was extracted from pure P. thornei culture and 

inoculated wheat root samples. The concentrations of DNA from pure culture and wheat root 

samples ranged from 145 ng/µL to 204 ng/µL and 653 ng/µL to 3595 ng/µL, respectively. The 

average A260/A280 and A260/A230 ratio was 1.84 and 2.01, respectively demonstrating a good 

degree of purity (Desjardins and Conklin 2010).  

 

4.4.2 Real-time qPCR assay 

The primer pair, THO-ITS-F2 and THO-ITS-R2 (Yan et al. 2011) amplified, a product from 

DNA of pure P. thornei culture and also from infected wheat root extracts. A single PCR 

product was generated with a size consistent with the expected one of 131 bp (Yan et al. 2011). 

The melting curve analysis revealed a single peak at 86.7°C (Fig. 4.1). Non-specific 

fluorescence due to primer-dimers or non-specific amplification products were not observed 

confirming absence of false positive results (Fig. 4.1). No amplification signals were observed 

in the negative control samples.
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Fig. 4.1 (A) Amplification curves of each quantitative real-time PCR reaction used in the 

development of the standard curve. Y-axis is the relative fluorescence unit (RFU), which rises 

in each cycle (x-axis). The baseline threshold is 1107 RFU which is auto calculated by the 

BioRad CFX manager software. Control reaction without Pratylenchus thornei DNA template 

did not produced any amplification. (B) Melting curve profiles of amplicons amplified by a P. 

thornei-specific primer pair, with melting temperature at 86.7°C. Y-axis is the changes in 

florescence level (-d(RFU)/dT) with respect to per unit change (increase) in temperature (x-

axis)  
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4.4.3 Linear regression analysis from DNA of pure P. thornei culture and identification 

of PCR inhibitors 

Pratylenchus thornei DNA extracted from pure culture was serially diluted (100 ng/µL to 100 

pg/µL) with either nanopure water or DNA (100 ng/µL) extracted from uninoculated wheat 

root (Table 4.1). qPCR on these two sets of samples were compared to test for any inhibition 

of the qPCR by the root DNA. Plots from the respective qPCR data sets (Fig. 4.2) had log10 

values of P. thornei DNA concentrations (pg) in the x-axis and Ct values in the y-axis. The 

linear regressions generated from P. thornei DNA diluted with water and root DNA were y = 

-2.81x + 31.61 (R2 = 0.97) and y = -3.28x + 33.32 (R2 = 0.99), respectively (Table 4.1, Fig 4.2-

A). The qPCR efficiency (E) for P. thornei DNA in water and root extracts was 126.7% and 

102%, respectively (Table 4.1). Higher amplification efficiency (compared to the acceptable 

limit of 110%) from P. thornei DNA in water (126.7%) may result from higher DNA 

concentration in water. The efficiency can be improved by diluting the DNA concentration 

(Rogers-Broadway and Karteris 2015). There was a high correlation (y = 1.15x – 3.16, R² = 

0.99) between the Ct values obtained in these two-dilution series, for the same corresponding 

amount of input nematode DNA (Fig. 4.2-B), indicating that there was little or no interference 

in the qPCR assay caused by the wheat genomic DNA.  
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Table 4.1 Cycle threshold (Ct) values of quantitative real-time PCR reactions with a 

Pratylenchus thornei specific primer pair, using as template Pratylenchus thornei DNA serially 

diluted in either water or uninoculated root DNA extract 

 

Dilution Nematode DNA 

concentration 

(pg/µL)1 

Ct values2 using 

nematode DNA from 

pure culture in water 

Ct values2 using 

nematode DNA from 

pure culture diluted with 

root DNA3  

1:0 100,000  18.34  17.21  

1:1 50,000 18.43  18.13  

1:4 20,000 18.95  19.16  

1:9 10,000 20.28 19.84  

1:49 2,000 21.59  21.89  

1:99 1,000 22.99  23.62  

1:499 200 25.26  25.56  

1:999 100 26.55  27.29  

E (Amplification 

efficiency) 

  126.7 % 102% 

 R2   0.97 0.99 

    y= -2.81x + 31.61 y= -3.28x + 33.32 

 
1Concentration of P. thornei DNA in the solution 
2Mean and standard deviation of Ct obtained from qPCR detection of DNA extraction from 

two replicated samples  
3Root DNA = DNA extracted from uninoculated roots of a hexaploid wheat cultivar, Krichauff. 
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Fig. 4.2 (A) Linear regressions created from qPCR assays of Pratylenchus thornei DNA diluted with nano pure water or (B) uninoculated wheat 

root DNA. (C) Plot showing correlation between the regression curves in terms of Ct values of these qPCR assays 
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4.4.4 Generation of a Standard Regression using DNA extracted from mixtures of P. 

thornei and root powder 

A standard regression was generated using DNA extracted from a mixture of 30 mg 

uninoculated root powder to which various numbers of P. thornei were added, ranging from 25 

to 10,000 nematodes (Fig. 4.3). All of the samples were replicated (biological) three times and 

each biological sample was replicated (technical) three times. The linear regression was 

described by the equation, y = -3.16x + 32.02 (R2= 0.99). The amplification efficiency (E) was 

118.7% and average Ct values ranged from 19.23 to 27.76 (Table 4.2). No amplification was 

observed with control roots that were not inoculated with P. thornei (Fig. 4.1) 

 

The Ct values obtained using this method of nematode quantification was compared to those 

obtained by combining separately extracted nematode and (uninoculated) root DNA (taken 

from Table 4.1 and Fig. 4.2-B).  

 

The numbers of pure P. thornei added to root powder were highly correlated (R2 = 0.93) with 

the numbers of P. thornei determined by the real-time PCR assay using the above-mentioned 

standard curve (Fig. 4.4). The standard linear regression was described by the equation y = 

0.76x - 228.46, where ‘y’ refers to the number of nematodes added to 30 mg root powder and 

‘x’ refers to the number of nematodes determined by qPCR assay (Fig. 4.4). 
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Table 4.2 Ct values of the individual data points used for the development of the standard curve 

using the Pratylenchus thornei DNA samples extracted from wheat root powder 

 

 

Nematode numbers mixed with 30 

mg root 

Ct values Standard deviation 

25 27.76 0.64 

50 26.71 0.07 

100 25.22 0.13 

500 24.10 0.23 

1000 22.29 0.16 

2500 21.19 0.27 

5000 20.38 0.61 

7500 20.00 0.52 

10000 19.23 0.23 

E (Amplification efficiency)  118.7% 

 R2  0.99  

   y = -3.1561x + 32.023 
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Fig. 4.3 Standard regression based on Pratylenchus thornei DNA extracted from a series of 

Pratylenchus thornei (25 to 10,000 nematodes mixed with 30 mg root powder. Data also shown 

in Table 4.2 
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Fig. 4.4 Numbers of Pratylenchus thornei (Pt) determined by real-time PCR plotted against the 

numbers of Pratylenchus thornei added to the root powder. Pure Pratylenchus thornei (25, 50, 

100, 500, 1000, 2500, 5000, 7500, 10000) were added to 30 mg of root powder 
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4.4.5 Quantification of P. thornei grown on RIL lines of varying resistance levels 

Using the standard regression in Fig 4.3 the qPCR-based P. thornei quantification assay was 

conducted on sixteen wheat lines (fourteen RILs and two parental) with known levels of 

resistance (Table 4.3). The number of P. thornei in Sokoll (resistant) and Krichauff 

(susceptible) were 4,792 and 33,241 per plant, respectively. The total number of P. thornei/ 

plant among fourteen RILs were ranged from 1,939 to 53,120. Among the fourteen RILs, nine 

RILs were categorised as resistant, two RILs as moderately resistant and three RILs as 

susceptible lines. To categorise the level of resistance, fold- difference in P. thornei 

number/plant were estimated in comparison to the susceptible parent Krichauff. Fold 

differences of ≤1.5, 1.6-2.0, 2.1-2.5 and ≥2.6 categorised susceptible (S), moderately 

susceptible (MS), moderately resistant (MR) and resistant (R) lines, respectively (Table 4.3). 

In the PreDicta B test assay, similar relative levels of resistance were estimated for these 

genotypes. In both the PreDicta B test and current qPCR based P. thornei quantification assay, 

ten lines (R_55, R_43, R_68, R_16, R_12, R_40, R_18, R_65 and R_29) were categorised as 

resistant; two lines (R_24 and R_9) as moderately resistant and three lines (R_10, R_67 and 

R_7) as susceptible (Table 4.3).  
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Table 4.3 Quantification of Pratylenchus thornei in sixteen wheat lines (with various levels of Pratylenchus thornei resistance) using qPCR assay. 

The results (total nematode number and level of resistance) were compared with PreDicta B test conducted in a commercial laboratory (SARDI) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1: Loci at which resistance allele was present; 2: Levels of resistance = Fold differences of ≤1.5, 1.6-2.0, 2.1-2.5 and ≥2.6 categorised susceptible 

(S), moderately susceptible (MS), moderately resistant (MR) and resistant (R) lines, respectively; 3Total P. thornei/ plant = P. thornei in 30 mg 

root x Total processed root weight / 30 

 

 

Wheat 

lines
QTL

1

Fold-change 

compared to 

Krichauff

Levels of 

resistance
2 Ct values

P. thornei / 

30 mg root

Total root 

weight, mg

Fold-change 

compared to 

Krichauff

Levels of 

resistance
2

R_55 2B+6D 678 15.9 R 24.83 306 190 1,938 17.2 R

R_43 2B+6D 725 14.8 R 23.61 912 130 3,952 8.4 R

R_68 6D 810 13.3 R 25.50 259 380 3,281 10.1 R

R_16 6D 1,198 9.0 R 23.59 902 170 5,111 6.5 R

R_12 6D 1,370 7.9 R 24.20 707 280 6,599 5.0 R

Sokoll 2B+6D 1,534 7.0 R 23.43 958 150 4,790 6.9 R

R_40 2B+6D 1,592 6.8 R 25.40 235 560 4,387 7.6 R

R_18 6D 1,597 6.7 R 24.49 269 450 4,035 8.2 R

R_65 6D 2,320 4.6 R 24.25 573 460 8,786 3.8 R

R_29 6D 2,430 4.4 R 23.08 1181 140 5,511 6.0 R

R_24 2B 4,232 2.5 MR 22.82 1384 300 13,840 2.4 MR

R_9 2B 4,677 2.3 MR 22.62 1545 280 14,420 2.3 MR

R_10 None 7,526 1.4 S 20.27 9402 110 34,474 1.0 S

R_67 None 9,823 1.1 S 21.36 4326 230 33,166 1.0 S

Krichauff None 10,759 1.0 S 20.32 7671 130 33,241 1.0 S

R_7 None 27,497 0.4 S 21.67 5141 310 53,124 0.6 S

P. thornei /plant             

(PreDricta B test)
P. thornei / Plant

3

P. thornei  quantified in commercial laboratory P. thornei quantified by qPCR assay in present study
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4.5 Discussion 

 

The assay presented here represents the first study on evaluation of a SYBR Green real-time 

qPCR assay to detect and quantify P. thornei in infected wheat roots. Previously, a qPCR assay 

was developed to detect and quantify P. thornei (Yan et al. 2011) and P. neglectus (Yan et al. 

2013) in DNA extracts of nematode-containing soil samples. In addition to soil samples, a plant 

pathogenic nematode quantification assay was also developed for DNA extracted from infected 

root. The authors describe detection and quantification of H. glycine from infected soybean 

roots using real-time qPCR (Lopez-Nicora et al. 2012). Plant pathogenic fungi and bacteria 

were also quantified from infected roots. For example, Fusarium solani from soybean roots 

(Gao et al. 2004; Li et al. 2008); Rhizoctonia solani from wheat roots (Okubara et al. 2008) 

and Azospirillum brasilense bacteria from wheat roots (Stets et al. 2015), were quantified.  

 

In the current study, a modified CTAB DNA extraction protocol was developed to extract the 

nematode DNA from wheat root samples. The DNA extraction protocol was inexpensive as it 

works without costly commercial plant extraction kits. Moreover, the nematode quantification 

assay is less expensive compared to the commercial service provider (PreDicta B test at 

SARDI, PIRSA). For instance, the cost for P. thornei quantification using the current protocol 

is approximately 50 AUD/ sample. This includes laboratory consumables, chemicals, 

glasshouse facility and labour (Table 4.4). On the other hand, the cost for PreDicta B test at 

SARDI is 120 AUD/ sample (SARDI Molecular Diagnostic Group, Personal communication).   
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Table 4.4 Estimated cost for QPCR based Pratylenchus thornei quantification from wheat root 

samples 

 

Item Estimated cost for 100 samples 

Consumables and chemicals for nematode assay in the 

glasshouse, DNA extraction and QPCR assay 

600 AUD 

Access to glasshouse and laboratory facilities for 10 

weeks 

1000 AUD 

Labour cost for a total 100 hours, 33 AUD/ hour 3300 AUD 

Miscellaneous  100 AUD 

Total cost for 100 samples  5000 AUD 

Total cost per sample  50 AUD 
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The extraction protocol was able to produce DNA without noticeable inhibition of PCR 

reactions. For the precise quantification of the pathogen in infected roots, it is important to 

minimize the presence of any PCR inhibitor, such as humic acids, fulvic acids and 

polysaccharides which may lower the efficiency of qPCR (Demeke and Jenkins 2010; Gao et 

al. 2004). With the use of washed root samples in this study, PCR inhibitors from soil as 

observed by Yan et al. (2011) was minimized. Moreover, the presence of any PCR inhibitor 

was checked by comparing qPCR assays using DNA extracted from pure P. thornei vs. pure 

P. thornei DNA mixed with uninoculated wheat root DNA. Ct values for each of these 

experiments were well correlated, indicating little/no PCR inhibition by the wheat root DNA.  

Amberlite was added to the extraction buffer to minimize potential inhibition by wheat root or 

nematode compounds. Its beneficial effects on PCR performance had previously been reported 

by Okubara et al. (2008) who added acid–washed Amberlite XAD-4 for DNA extraction from 

R. solani-infected wheat roots. 

 

The THOITS-F2 and THO-ITS-R2 primer pairs were designed from the internal transcribed 

spacer regions (ITS1) of the nuclear ribosomal RNA genes (Yan et al. 2011). The primers are 

highly specific to P. thornei and did not amplify DNA from 27 isolates of other Pratylenchus 

spp., other nematodes, and six fungal species. Moreover, in this study, the primer pairs did not 

amplify DNA from the wheat root samples.  
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Using the root standard curve developed in this study, qPCR based P. thornei quantification 

was performed on wheat lines with known levels of resistance. This experiment was conducted 

to compare the outcome of the quantification method with the PreDicta B test (SARDI). For 

both these assays, wheat lines were grown in the growth chamber under the similar growing 

conditions. P. thornei were also inoculated from the same sources and wheat samples (root 

and/or soil) samples were collected at the same time. Thus, sources of variation in P. thornei 

estimation from growing conditions and inoculation were avoided. However, in the PreDicta 

B test, a mixture of soil and plant root were used to extract P. thornei DNA. On the other hand, 

in the qPCR quantification assay, P. thornei DNA was extracted from root samples only. 

Approximately three fold higher total P. thornei/ plant were estimated from root samples 

(qPCR experiment) compared to the soil + root sample (PreDicta B test) (Table 4.3). Whether 

this difference occurred due to the type of the sample (soil + root vs root only), required further 

investigation. However, all the wheat lines were classified for resistance (resistant/moderately 

resistant/susceptible) the same in both assays. Thus, the present assay was able to accurately 

estimate P. thornei present in unknown wheat root samples.   

 

The present study demonstrated that the real-time PCR assay can be used to detect and quantify 

P. thornei from infested roots. The method required DNA extraction from root samples washed 

clean of soil, but eliminated time consuming microscopic identification and nematode 

counting. The method required only basic laboratory chemicals and consumables, resulting in 

a more cost-effective method than that requiring a DNA extraction kit and commercial service 

provider. This assay forms the basis of a cost-effective tool for rapid and efficient detection 

and quantification of P. thornei for germplasm characterisation, genetic mapping studies and 

screening for breeding improved (P. thornei resistant) cultivars.  
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Chapter 5 

Metabolomic analysis of root tissues and root exudates from wheat lines 

contrasting for Pratylenchus thornei resistance 

5.1 Statement of authorship 
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5.2 Introduction 
 
The mode of root lesion nematode (Pratylenchus thornei) resistance in the Sokoll / Krichauff 

doubled haploid (DH) population was previously investigated by Linsell et al. (2014). The 

parental lines and six DH lines (three most resistant and three most susceptible) were examined 

to see whether resistance acts by affecting nematode attraction to roots, penetration of roots, 

nematode motility, maturation or reproduction within roots. Nematode motility was found to 

be suppressed in root exudates and crushed root suspensions from the resistant genotypes 

compared to the susceptible genotypes. Nematode migration was also found to be suppressed 

inside the roots of the resistant genotype.  Maturation of the juvenile stage was suppressed in 

resistance genotypes. In addition, egg deposition and hatching of P. thornei was significantly 

reduced in resistant roots and their exudates (Linsell et al. 2014). These results suggested the 

presence of chemical compounds in resistant roots and root exudates acting on P. thornei by 

suppressing nematode motility, migration and reproduction.  

 

Metabolomic analyses allow us to detect and, to some extent, identify compounds that are 

secreted by plants and the organisms interacting with them in the rhizosphere (reviewed in van 

Dam and Bouwmeester 2016). Metabolic profiling involves detection, quantification and 

identification of metabolites within an extract by employing chromatographic separation (gas 

chromatography or liquid chromatography) coupled with mass spectrometry (Allwood et al. 

2008). Gas chromatography-mass spectrometry (GC-MS) based platforms allow analysis of 

volatile compounds and primary metabolites present in the root. For example, GC-MS analysis 

was employed to characterize the chemical composition of the root exudates of Sedum alfredii 

(Luo et al. 2017), sunflower (Bowsher et al. 2015), Arabidopsis (Schmidt et al. 2014) and rice 

(Suzuki et al. 2009). GC-MS based metabolic profiling has also been employed to reveal the 

metabolic changes occurring in plants due to pathogen infection, including by plant pathogenic 
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nematodes (Eloh et al. 2016; Hofmann et al. 2010; Machado et al. 2012), fungi (Aliferis et al. 

2014; Kumar et al. 2015; Rosati et al. 2018; Scandiani et al. 2015) and bacteria (Camañes et 

al. 2015; López-Gresa et al. 2017).  

 

Plant roots exude a diverse array of low-molecular weight primary and secondary metabolites 

(Dakora and Phillips 2002; Faure et al. 2009). Approximately 10% of the net photosynthetically 

fixed carbon is released by the soil-grown plant as root exudates into the rhizosphere (Jones et 

al. 2009), strongly influencing rhizosphere ecology (reviewd in Badri and Vivanco 2009; Bais 

et al. 2006; Bertin et al. 2003). 

 

Root exudates have been shown attract or repel certain microbial species (Rudrappa et al. 

2008). Several studies describe the allelopathic effects of root exudates on nematodes (Dutta 

et al. 2012; Hiltpold et al. 2015). Root exudates can affect egg hatching of plant parasitic 

nematodes (Gaur et al. 2000; Khokon et al. 2009; Oka and Mizukubo 2009; Perry and Clarke 

2011; Pudasaini et al. 2008) and may also be involved in host identification by the nematodes. 

For example, plant parasitic nematodes respond to the signals originating from root exudates 

or sites of penetration (made by other nematodes) to locate their host (Prot 1980; Reynolds et 

al. 2011; Rolfe et al. 2000). 

 

Yet root exudates can also protect roots against plant-parasitic nematodes. For instance, 

metabolites exuded from the root-cap cells of legumes and maize (Zea mays) slow down 

movement in plant-parasitic nematodes, sometimes resulting in a state of quiescence, reducing 

the ability of the nematodes to infect the plant (Zhao et al. 2000).  
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The current study involves a non-targeted metabolic profiling of root tissues and root exudates 

from wheat genotypes contrasting for P. thornei resistance. A GC-MS based platform was used 

to analyse the root samples. It was hypothesized that metabolic profiles of resistant and 

susceptible genotypes may differ, which could help to identify candidate metabolites that are 

important in understanding the wheat-root lesion nematode interaction.  
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5.3 Materials and methods 

 

5.3.1 Plant Materials 

The study investigated wheat lines from a DH mapping population which contrast in P. thornei 

resistance. Five wheat lines, Sokoll (P. thornei resistant parent), Krichauff (P. thornei 

susceptible parent) and three progenies, DH line-35, DH line-52 and DH line-114, were 

analysed. DH line-35 and DH line-52 carried the positive alleles for P. thornei resistance only 

at the 6DS and 2BS locus, respectively (described in Chapter 3). DH line-114 carried the 

susceptible alleles at both loci. For ease of reporting, these DH lines will be referred to as 6D-

R, 2B-R and Null-S, respectively. The parental lines will be referred as Sk-R and Kr-S, 

respectively.  

 

5.3.2 Collection of root exudates 

 For root exudates, all five genotypes, Sk-R, Kr-S, 6D-R, 2B-R and Null-S were 

analysed.   

 A total of 16 plants of each genotype were grown. Root exudates from four plants were 

bulked to produce each of four bulk samples for each genotype.  

 At first, seeds were surface sterilised. Seeds were treated with 70% ethanol for one 

minute then rinsed with sterile reverse osmosis (RO) water (two times, five minutes 

each). Seeds were then treated with 0.5% sodium hypochlorite for one minute followed 

by a rinse with sterile RO water.  

 After sterilisation, seeds were germinated on wet filter paper (Whatman) fitted in a Petri 

dish. When the root length of the seedlings reached approximately 2 cm, each seedling 

was transferred from the Petri dish to a 6.0 mL glass tube filled with 4.0 mL sterile 

milli-Q water. To prevent the seedling submerging completely, seeds were placed in a 
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0.2 mL PCR tube with the bottom part cut off, and the tube rested on the top of the glass 

tube. Each of the glass test tubes were wrapped with aluminium foil to prevent exposure 

of the roots to light. The seedlings were grown at room temperature for 14 days. Each 

day, the plants were monitored visually for any obvious microbial contamination, but 

no contamination was observed in the root exudate solution. Water was added when 

needed to keep the level at 4.0 mL. The experimental setup was shown in Fig. 5.1.  

 

 After 14 days from transplantation, seedlings were removed from the tubes and 4.0 mL 

water containing root exudates were collected after passing through a 0.22 µm syringe 

filter (Millex GV, Millipore). Filtration allowed removal of any potential microbial 

contaminants present in the root exudate solution. Moreover, root samples were 

collected, and fresh weights of the roots were measured.   

 

 The concentration of the root exudate solution was adjusted per unit of root weight 

(mg). The root exudate solution was freeze dried for further analysis.



 

 

119 

 

Fig. 5.1 Collection of root exudates from wheat seedlings. A. Experimental setup B. Checking 

for contamination in root exudate solution 
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5.3.3 Sampling roots challenged with P. thornei  

 Plants were grown in steam-pasteurized sand in plastic pots in a controlled 

environmental room (CER) (as described in Chapter 4). A total of 16 plants of each 

genotype were grown. Plants of each genotype were grown in separate crates.   

 Two weeks after transplantation, approximately 5,000 P. thornei were inoculated near 

the root zone of each plant (as described in Chapter 4). The parental lines Sokoll and 

Krichauff were also grown without nematode inoculation as controls. For ease of 

reporting P. thornei challenged samples will be referred as Sk-R-I, Kr-S-I, 6D-R-I, 2B-

R-I and Null-S and the uninoculated parental lines will be referred as Sk-R-C and Kr-

S-C, respectively.   

 Roots were harvested 6 weeks after inoculation. Root samples were freeze dried and 

ground in liquid nitrogen. For a given genotype, 0.5 g root powder from four plants 

were bulked to constitute 2.0 g of bulked sample. For each genotype four bulked 

samples were analysed.  

 

5.3.4 Nematode samples 

For GC-MS analysis and to inoculate wheat lines, P. thornei was collected from carrot callus 

and counted using a compound microscope (described in Chapter 4). Four replicated samples 

containing approximately 5,000 P. thornei were prepared in a 2.0 mL Eppendorf® tube. 

Nematode samples were freeze-dried and ground using an Eppendorf® micropestle.     

 

5.3.5 Preparation of root exudates for metabolomic analysis 

For metabolomics analyses, dried root exudate samples were further processed by 

Metabolomics, Australia (Victoria, Australia). Dried root exudate samples were re-constituted 

in 500 µL methanol containing the internal standards 13C6-Sorbitol (0.005 mg/mL) and 13C5-
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15N-Valine (0.005 mg/mL) followed by a 30-sec sonication at room temperature. Samples were 

then vacuum-dried using a Rotational Vacuum Concentrator (RVC 2-33 CD plus, John Morris 

Scientific, Pty Ltd, Melbourne, Australia) set at room temperature. Dried samples were 

prepared by addition of 200 µL methanol followed by a 10-min centrifugation at 15,000 rpm 

(21,200 × g). Aliquots of 120 µL were transferred to clean glass inserts in Eppendorf tubes and 

vacuum dried as above. 

 

5.3.6 Preparation of root tissues for metabolomic analysis 

Sub-samples (15 mg) of freeze-dried root material were transferred to Cryo-mill tubes and 

weights recorded. Methanol (MeOH, 600 µL), containing the internal standards 13C6-Sorbitol 

(0.02 mg/mL) and 13C5-
15N-Valine (0.02 mg/mL), was added to the sample tubes. The samples 

were homogenized using a Cryo-mill (Bertin Technologies; program #2 (6800-3x30x30 at -

10oC) and then incubated in a Thermomixer at 30oC with a mixing speed of 1,400 rpm for 15 

minutes, followed by 5 minutes of centrifugation at 15,000 rpm (21,200 x g). The MeOH 

supernatant was transferred into a 2 mL Eppendorf tube and set aside. Water (600 µL) was 

added to the remaining sample pellet and vortexed before being centrifuged for 10 minutes at 

15,000 rpm (21,200 x g). The supernatant was removed and combined with the MeOH 

supernatant. Aliquots of 50 µL were transferred to clean glass inserts in Eppendorf tubes and 

vacuum dried as above. 

 

5.3.7 Preparation of nematode samples for metabolomic analysis  

Sub-samples (15 mg) of ground freeze-dried nematodes were transferred to 2 mL Eppendorf 

tubes and accurate weights recorded. Methanol (MeOH, 600 µL) containing the internal 

standards 13C6-Sorbitol (0.02 mg/mL) and 13C5-
15N-Valine (0.02 mg/mL) was added to the 

sample tubes. The samples were then incubated in a Thermomixer at 30oC with a mixing speed 
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of 1,400 rpm for 15 minutes, followed by a 5minute centrifugation at 15,000 rpm (21,200 x g). 

The MeOH supernatant was transferred into a 2 mL Eppendorf tube and set aside. Water (600 

µL) was added to the remaining sample pellet and vortexed before being centrifuged for 10 

minutes at 15,000 rpm (21,200 x g). The supernatant was removed and combined with the 

MeOH supernatant. Aliquots of 50 µL were transferred to clean glass inserts in Eppendorf 

tubes and dried in vacuo using a Rotational Vacuum Concentrator (RVC 2-33 CD plus, John 

Morris Scientific, Pty Ltd, Melbourne, Australia) set at ambient temperature. 

 

5.3.8 Sample derivatisation 

Sample derivation was performed for the root and nematode samples to change the analyte 

properties for a better separation and for enhancing the method sensitivity. Dried root exudates 

were prepared by the addition of 10 µL of Methoxyamine Hydrochloride (30 mg/mL in 

Pyridine) followed by shaking at 37oC for 2h. The sample was then derivatised with 20 µL of 

N, O-bis (Trimethylsilyl) trifluoroacetamide with Trimethylchlorosilane (BSTFA with 1% 

TMCS, Thermo Scientific) for 30 minutes at 37°C. The sample was then left for 1 h before 1 

µL was injected onto the GC column using a hot needle technique. Splitless injections were 

done for each sample. 

 

Dried root exudates and nematode extracts were prepared by the addition of 10 µL of 

Methoxyamine Hydrochloride (30 mg/mL in Pyridine) followed by shaking at 37oC for 2h. 

The sample was then derivatised with 20 µL of N, O-bis (Trimethylsilyl) trifluoroacetamide 

with Trimethylchlorosilane (BSTFA with 1% TMCS, Thermo Scientific) for 30 minutes at 

37°C. The sample was then left for 1 h before 1 µL was injected onto the GC column using a 

hot needle technique. Splitless injections were done for each sample. 
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5.3.9 GC-MS analysis 

The GC-MS system used comprised of a Gerstel 2.5.2 autosampler, a 7890A Agilent gas 

chromatograph and a 5975C Agilent quadrupole mass spectrometer (Agilent, Santa Clara, 

USA). The mass spectrometer (MS) was tuned according to the manufacturer’s 

recommendations using tris-(perfluorobutyl)-amine (CF43). 

 

Gas chromatography was performed on a 30 m Agilent J & W VF-5MS column with 0.25 µm 

film thickness and 0.25 mm internal diameter with a w/10 m Integra guard column. The 

injection temperature (Inlet) was set at 250°C, the MS transfer line at 280°C, the ion source 

adjusted to 230°C and the quadrupole at 150ºC. Helium was used as the carrier gas at a flow 

rate of 1 mL/min.  

 

The analysis of Trimethylsilyl (TMS) derivatized samples was performed under the following 

temperature program; start at injection 70°C, a hold for 1 minute, followed by a 7°C min-1 oven 

temperature ramp to 325°C and a final 6 minute heating at 325°C. Mass spectra were recorded 

at 2.66 scans.s-1 with an m/z 50-600 scanning range.  

 

5.3.10 Data processing and statistical analysis 

Data was processed using the Agilent MassHunter Quantitative Analysis software, version 

B.07.00. Mass spectra of eluting TMS compounds were identified using the commercial mass 

spectra library NIST (http://www.nist.gov), the public domain mass spectra library of Max-

Planck-Institute for Plant Physiology, Golm, Germany (http://csbdb.mpimp-

golm.mpg.de/csbdb/dbma/msri.html) and the in-house Metabolomics Australia mass spectral 

library. Resulting relative response ratios normalized per mg dry weight for each analysed 

metabolite were prepared as described in Roessner et al. (2001). Differences between sample 
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groups were tested for statistical significance using the Student’s t-test (P-value < 0.05). 

Statistical analysis was performed using Excel (Microsoft, www.microsoft.com) and 

metabolomic data was analysed using MetaboAnalyst 3.0 (Xia and Wishart 2002).  
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5.4 Results 

In this section, the outcome of the two experiments, metabolomic analysis of root exudates and 

tissues will be described.  

 

5.4.1 Metabolomic analysis of root exudates 

Metabolomic profiles of root exudates from five wheat genotypes described 100 metabolites 

(Supplementary Table 5.1). These metabolites were categorized into classes: amino acids and 

amines (18), organic acids (14), sugars, sugar alcohols and sugar phosphates (17), 

miscellaneous (14) and unidentified (37). Significant differences in metabolite levels were 

observed between the P. thornei resistant (Sk-R, 6D-R and 2B-R) and susceptible (Kr-S and 

Null-S) genotypes.   

 

5.4.1.1 Metabolites in wheat root exudates associated with P. thornei resistance QTL 

To identify the metabolites associated with the resistance QTL, levels of metabolites were 

compared between resistant (Sk-R, 6D-R and 2B-R) and susceptible (Kr-S, Null-S) wheat 

genotypes. The most important features from this comparison are shown in Table 5.3 and a 

more detailed analysis is presented in Supplementary Table 5.2.   

 

Exudate metabolites associated with both the 6D and 2B QTL (Table 5.1, section A) 

To identify metabolites in root exudates associated with both 6D and 2B loci, metabolites in 

Sk-R were compared with those in Kr-S and Null-S. Twenty-one metabolites were significantly 

higher (≥ 1.1-fold) in Sk-R than in Kr-S. These comprised six amino acids (alanine, beta 

alanine, methionine, proline, tyrosine and valine), eight organic acids (2-hydroxyglutaric acid, 

4-hydroxy-benzoic acid, citric acid, glutaric acid, glyceric acid, malic acid, quinic acid and 

shikimic acid) and six sugars (arabitol, fructose, glucose, maltose, myo inositol and sucrose). 
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However, among these metabolites, only one (quinic acid) was also found to be significantly 

higher (≥ 1.1-fold) in Sk-R than in Null-S. Specifically, quinic acid was 3.84-fold and 3.46-

fold higher in Sk-R as compared to Kr-S and Null-S, respectively. These metabolites might act 

in P. thornei resistance in Sokoll.    

 

Eight metabolites (homoserine, fumaric acid, erythritol, galactitol, ribitol, threitol, uracil and 

uric acid) were found to be significantly lower (≤ 0.9-fold) in Sk-R than in Kr-S and Null-S. 

These metabolites may play a role in facilitating host-pathogen compatibility.   

 

Exudate metabolites associated only with the 6D QTL (Table 5.1, section B) 

To identify metabolites associated with the 6D QTL, metabolites in Sk-R and 6D-R were 

compared with those in Kr-S and Null-S.  

 

None of the metabolites were found to be consistently higher in Sk-R and 6D-R (≥1.1-fold) as 

compared to Kr-S and Null-S. However, four metabolites (shikimic acid, malic acid, citric acid 

and alanine) were found to be significantly higher (≥ 2.0-fold) in both Sk-R and 6D-R as 

compared to Kr-S.  

 

None of the metabolites were found to be consistently lower (≤ 0.9-fold) in Sk-R and 6D-R 

than in Kr-S and Null-S. However, uracil and ribitol were lower (≤ 0.9-fold) in Sk-R and 6D-

R than in Kr-S, and threitol was lower in Sk-R and 6D-R than in Null-S.  

 

Exudate metabolites associated only with the 2B QTL (Table 5.1, section C)  

To identify metabolites associated with the 2B resistance QTL, metabolites in Sk-R and 2B-R 

were compared (fold-change) with those in Kr-S and Null-S. None of the metabolites were 
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found be consistently higher in Sk-R and 2B-R (≥ 1.1-fold) compared to Kr-S and Null-S. Ten 

metabolites were significantly higher (≥ 2.0-fold) in both the Sk-R and 2B-R lines relative to 

Krichauff. These metabolites were beta alanine, proline, 4-amino butyric acid, 2-

hydroxyglutaric acid, glutaric acid, glyceric acid, shikimic acid, fructose and maltose. Uracil, 

erythritol and galactinol were significantly lower in Sk-R and 2B-R than in Kr-S. In addition, 

threitol was significantly lower in Sk-R and 2B-R than in Null-S. 
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Table 5.1 Analysis of metabolites in root exudates associated with Pratylenchus thornei resistance. The level of metabolites (fold-difference) were compared 

between resistant (Sk-R, 6D-R and 2B-R) and susceptible (Kr-S and Null-S) lines to identify metabolites associated with 6D+2B (Section A), 6D (Section B) 

or 2B (Section C) resistance QTL. 1: Fold- differences were calculated based on average values from four replicates. 2: Highlights show compounds that were 

significantly (t-test, P <0.05) higher (green colour) or lower (blue colour) in resistant line compared to the susceptible line. AA, OA, S and M refers to amino 

acids, organic acids, sugars and miscellaneous biochemical groups, respectively 

 

 
Metabolites2 Metabolites2 Metabolites2

SK-R/      

KR-S

Sk-R/           

Null-S

SK-R/   

KR-S

6D-R/   

KR-S

Sk-R/ 

Null-S

6D-R/ 

Null-S

SK-R/   

KR-S

2B-R/   

KR-S

Sk-R/ 

Null-S

2B-R/ 

Null-S

2.31 0.05 AA_4-amino butyric acid 2.31 204.87 0.05 3.74 AA_4-amino butyric acid 2.31 6.32 0.05 0.36 AA_4-amino butyric acid

3.77 0.17 AA_beta alanine 3.77 14.17 0.17 1.21 AA_beta alanine 3.77 3.31 0.17 0.36 AA_beta alanine

2.42 0.05 AA_Proline 2.42 30.35 0.05 2.47 AA_Proline 2.42 2.97 0.05 0.33 AA_Proline

8.97 0.88 OA_2-hydroxyglutaric acid 8.97 24.10 0.88 2.13 OA_2-hydroxyglutaric acid 8.97 4.09 0.88 0.66 OA_2-hydroxyglutaric acid

3.38 0.47 OA_4-hydroxy-benzoic acid 3.38 5.17 0.47 0.86 OA_4-hydroxy-benzoic acid 3.38 1.88 0.47 0.28 OA_4-hydroxy-benzoic acid 

2.19 0.31 OA_Glutaric acid 2.19 2.83 0.31 0.40 OA_Glutaric acid 2.19 2.90 0.31 0.96 OA_Glutaric acid

1.97 0.28 OA_Glyceric acid 1.97 1.74 0.28 0.42 OA_Glyceric acid 1.97 1.60 0.28 0.83 OA_Glyceric acid

13.87 1.01 S_Fructose 13.87 4.53 1.01 0.43 S_Fructose 13.87 5.61 1.01 0.12 S_Fructose

4.90 0.14 S_Maltose 4.90 14.99 0.14 0.45 S_Maltose 4.90 9.61 0.14 0.28 S_Maltose

3.72 0.26 OA_Shikimic acid 3.72 6.01 0.26 0.73 OA_Shikimic acid 3.72 5.85 0.26 0.16 OA_Shikimic acid 

2.10 0.44 AA_Alanine 2.10 5.12 0.44 2.40 AA_Alanine 2.10 1.41 0.44 0.41 AA_Alanine

2.52 0.09 OA_Citric acid 2.52 9.19 0.09 1.95 OA_Citric acid 2.52 2.55 0.09 0.26 OA_Citric acid 

2.11 0.65 OA_Malic acid 2.11 3.69 0.65 3.25 OA_Malic acid 2.11 0.94 0.65 0.54 OA_Malic acid

2.59 0.11 AA_Methionine 2.59 8.12 0.11 0.71 AA_Methionine 2.59 2.88 0.11 0.33 AA_Methionine

2.74 0.17 AA_Tyrosine 2.74 37.85 0.17 6.09 AA_Tyrosine 2.74 1.65 0.17 0.45 AA_Tyrosine

2.02 0.09 AA_Valine 2.02 21.19 0.09 3.80 AA_Valine 2.02 1.83 0.09 0.78 AA_Valine

1.76 0.13 S_Arabitol 1.76 1.68 0.13 0.41 S_Arabitol 1.76 1.92 0.13 1.02 S_Arabitol

4.82 0.24 S_Glucose 4.82 3.11 0.24 0.34 S_Glucose 4.82 3.42 0.24 0.94 S_Glucose

3.35 0.27 S_myo inositol 3.35 1.62 0.27 0.40 S_myo inositol 3.35 1.47 0.27 0.19 S_myo inositol

4.30 0.17 S_Sucrose 4.30 1.00 0.17 0.13 S_Sucrose 4.30 2.60 0.17 0.47 S_Sucrose

3.84 3.46 OA_Quinic acid 3.84 0.55 3.46 0.60 OA_Quinic acid 3.84 0.75 3.46 0.47 OA_Quinic acid

0.75 0.08 AA_Homoserine 0.75 3.05 0.08 0.52 AA_Homoserine 0.75 0.92 0.08 0.12 AA_Homoserine

0.79 0.19 OA_Fumaric acid 0.79 1.18 0.19 1.27 OA_Fumaric acid 0.79 0.87 0.19 0.72 OA_Fumaric acid

0.83 0.64 S_Erythirtol 0.83 0.88 0.64 0.60 S_Erythirtol 0.83 0.81 0.64 0.32 S_Erythirtol

0.87 0.20 S_Galactitol 0.87 0.81 0.20 0.84 S_Galactitol 0.87 0.69 0.20 0.67 S_Galactitol

0.73 0.21 S_Threitol 0.73 1.05 0.21 0.68 S_Threitol 0.73 0.81 0.21 0.52 S_Threitol

0.44 0.37 S_Ribitol 0.44 0.64 0.37 0.47 S_Ribitol 0.44 0.96 0.37 0.11 S_Ribitol

0.51 0.39 V_Uracil 0.51 0.74 0.39 0.84 V_Uracil 0.51 0.73 0.39 0.83 V_Uracil

0.44 0.79 V_Uric acid 0.44 0.89 0.79 2.43 V_Uric acid 0.44 0.51 0.79 1.39 V_Uric acid

A. Differences in metabolites associated with 6D+2B QTL B. Differences in metabolites associated with 6D QTL C. Differences in metabolites associated with 2B QTL 

Fold-difference (Average)1 Fold-difference (Average)1 Fold-difference (Average)1
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5.4.2 Metabolomic analysis of root tissues 

Using the reference libraries, a total of 64 metabolites were identified in the metabolic profiles 

of root tissues from the five wheat genotypes (Supplementary Table 5.3). Metabolites were 

classified into the following biochemical classes; amino acids organic acids, sugars and a 

miscellaneous group.  

 

5.4.2.1 Principal Component Analysis (PCA) 

To obtain a global view of the metabolic responses of the root tissues, a principal component 

analysis (PCA) was performed. Results of the PCA showed that first five components 

explained 81.3% of the overall variance of metabolic profiles (Fig. 5.2-A). The first two 

components, PC1 and PC2 explained half of the overall variance (50.8%) (Fig. 5.2-B). These 

two components clearly differentiated the metabolic profiles of P. thornei inoculated roots from 

those of uninoculated roots. Among the P. thornei inoculated root samples, the profiles also 

largely differentiated the genotypes.  

 

The data were also used to construct a dendrogram of the sample replicates (Fig. 5.3). Again, 

the samples were differentiated on the basis of both treatment and genotype.   

 

Differences in metabolite profiles were observed between the resistant and susceptible 

genotypes. In order to identify metabolites associated with P. thornei resistance, firstly, the 

metabolite profiles of the parental lines (control and P. thornei inoculated) were compared. 

Secondly, all the samples from nematode challenged roots were compared – both the double 

haploid lines and the parental lines (resistance vs susceptible). 
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Fig. 5.2 Principal Component Analysis (PCA) of the root tissue metabolic profiles of Sokoll, 

Krichauff and three doubled haploid lines. Pratylenchus thornei resistance and susceptible 

lines are referred as R and S, respectively. Pratylenchus thornei inoculated and control samples 

are referred as I and C, respectively. The first and second principal components explained 

51.1% of the variance 

 

 

Sk-R-C 
Kr-S-C 
Sk-R-I 
6D-R-I 
2B-R-I 
Kr-S-I 
Null-S-I 
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Fig. 5.3 Dendrogram of root tissue metabolite samples (replicates of genotype treatment 

combinations) generated using the method of Ward as the algorithm method and the Spearman 

distance as the dissimilarity coefficient 
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5.4.2.2 Root tissue metabolite differences between Sokoll and Krichauff  

Amino acids 

In the absence of nematode challenge, most of the amino acids (14 out of 16) were significantly 

more abundant in roots of Sk-R-C than in roots of Kr-S-C (Table 5.2. Sk-R-C contained 

considerably higher amounts of asparagine (21.1-fold), proline (16-fold) and tyrosine (8.4-

fold) compared to Kr-S-C. In addition, ten amino acids (threonine, isoleucine, serine, 

phenylalanine, aspartic acid, beta alanine, pyroglutamic acid, valine, alanine and glycine) were 

4.9 to 2.2 times more abundant in Sk-R-C than in Kr-S-C (Table 5.2). 

 

With nematode challenge, levels of six amino acids were significantly different between Sk-

R-I and Kr-S-I (Table 5.2). Among these, five amino acids were significantly higher in Sk-R-

I than Kr-S-I; proline (2.5-fold), alanine, isoleucine, phenylalanine (1.7-fold) and valine (1.5-

fold). The remaining amino acid, glycine, was significantly lower (0.8-fold) in Sk-R-I than in 

Kr-S-I (Table 5.2).  

 

Within each cultivar, nematode challenge resulted in significant changes. In the susceptible 

cultivar Krichauff, 13 out of 16 amino acids were more abundant in Kr-S-I than in Kr-S-C 

(Table 5.2). The largest difference was for asparagine (37.2-fold increase). In the resistant 

cultivar Sokoll, five amino acids (glycine, beta alanine, 4-amino-butyric acid, pyroglutamic 

acid and ethanolamine) were significantly lower in Sk-R-I than in Sk-R-C (Table 5.2).  

 

Organic acids 

In the absence of nematode challenge, levels of five organic acids were significantly higher in 

Sk-R-C than in Kr-S-C (Table 5.2). These were, gluconic acid (3.9-fold), pipecollic acid (3.0-

fold), quinic acid (2.2-fold), benzoic acid (1.6-fold), and glyceric acid (1.5-fold). Citric acid, 
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threonic acid and malic acid were significantly lower (≤ 0.9-fold) in Sk-R-C than in Kr-S-C 

(Table 5.2). With P. thornei challenge, levels of four organic acids were significantly higher in 

Sk-R-I than in Kr-S-I (Table 5.1-B). These were, quinic acid (2.5-fold), malic acid (2.0-fold), 

shikimic acid (1.8-fold), and gluconic acid (1.6-fold). However, levels of six organic acids were 

significantly lower (≤ 0.8-fold) in Sk-R-I than Kr-S-I (Table 5.2). These were ferulic acid, 4-

hydroxybenzoic acid, 4-hydroxy-3-methoxybenzoic acid, azelaic acid, 4-hydroxy-cinnamic 

acid and threonic acid.  

 

Within each cultivar, nematode challenge resulted in significant changes. The level of five 

organic acids; citric acid, shikimic acid, malic acid, aconitic acid and ribonic acid were 

significantly higher (2.7-fold to 1.5-fold) in Sk-R-I than in Sk-R-C (Table 5.1-D), while levels 

of seven organic acids were significantly lower (0.4-fold to 0.7-fold) in Sk-R-I than in Sk-R-C 

(Table 5.2). In Krichauff, the level of pipecolic acid, ferulic acid and 4-hydroxy-cinnamic acid 

were significantly higher (2.1-fold to 1.3-fold), and level of malic acid was significantly lower 

(0.7-fold), in Kr-S-I as compared to Kr-S-C.    

 

Sugars 

In the absence of P. thornei challenge, higher level of mannitol (2.5-fold) and myo-inositol 

(1.6-fold) were observed in Sk-R-C than in Kr-S-C (Table 5.2). Levels of 1-kestose (0.1-fold) 

and melezitose (0.3-fold) were significantly lower in Sk-R-C than in Kr-S-C. With P. thornei 

challenge, glucose-6-phosphate (3.6-fold), fructose (1.8-fold) and erythritol (1.6-fold) were 

significantly higher in Sk-R-I than in Kr-S-I (Table 5.2). 

 

With P. thornei challenge, 10 sugars differed significantly between Sk-R-I and Sk-R-C (Table 

5.2). Among them, four were significantly higher (3.0-fold to 2.5-fold); 1-kestose, sucrose, 
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melezitose and galactinol, and six metabolites were significantly lower (0.4-fold to 0.7-fold), 

in Sk-R-I as compared to Sk-R-C (Table 5.2).   

 

Miscellaneous 

In the absence of inoculation, Urea was significantly higher (11.3-fold) in Sk-R-C than in Kr-

S-C (Table 5.2). Four other metabolites (guanosine, phosphoric acid, adenosine and glycerol) 

were also significantly higher (2.7-fold to 1.4-fold) in Sk-R-C than in Kr-S-C. After nematode 

infection, the level of octadecenoic acid was significantly lower in Sk-R-I (0.1-fold) than in 

Kr-S-I (Table 5.2).  

 

In Krichauff, octadecenoic acid (38.4-fold) and urea (10.1-fold) were significantly higher in 

Kr-S-I than in Kr-S-C (Table 5.2). However, in Sokoll, the levels of five metabolites were 

significantly lower (0.4-fold to 0.6-fold) in Sk-R-I than in Sk-R-C (Table 5.2). 
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Table 5.2 Fold- differences of metaboliltes between root samples of Pratylenchus thornei 

resistant (R) and susceptible (S) cultivars Sokoll (Sk) and Krichauff (Kr), respectively. Control 

(without nematode inoculation) and nematode inoculated are denoted by C and I, respectively. 

Values that are highlighted in cyan have a t-test value (fold- difference between the two 

samples in the heading of each column) significant at P <0.05 but not for the Bonferroni-

corrected P value. Values that are highlighted in green also have a t-test value significant for 

the Bonferroni-corrected P value (0.05 divided by the number of metabolites) 

 

Metabolites 
Sk-R-C/   

Kr-S-C 

Sk-R-I /   

Kr-S-I 

Kr-S-I /   

Kr-S-C 

Sk-R-I /   

Sk-R-C 

Amino acids     
Alanine 2.4 1.7 1.1 0.8 

Valine 2.9 1.5 2.6 1.3 

Ethanolamine  1.5 1.0 1.0 0.6 

Isoleucine 4.7 1.7 4.4 1.6 

Proline  16.0 2.5 3.1 0.5 

Glycine 2.2 0.8 2.3 0.8 

Serine 4.7 1.3 3.4 0.9 

Threonine 4.9 1.3 4.9 1.3 

beta Alanine 3.5 1.1 2.3 0.7 

Aspartic acid 4.5 0.9 4.9 1.0 

Pyroglutamic acid 3.4 1.1 2.2 0.7 

 4-amino-Butyric acid 1.3 1.0 0.8 0.7 

Glutamic acid  1.1 1.0 1.5 1.4 

Phenylalanine 4.6 1.7 2.6 0.9 

Asparagine 21.1 0.7 37.2 1.2 

Tyrosine 8.4 1.9 4.7 1.1 

Organic acids     
Glycolic acid 1.0 0.9 0.9 0.7 

Benzoic acid  1.6 1.1 0.9 0.6 

Succinic acid 0.8 0.9 1.1 1.2 

Glyceric acid 1.5 1.0 0.8 0.5 

Fumaric acid 0.9 1.1 1.0 1.2 

Pipecolic acid  3.0 0.9 2.1 0.6 

Threonic acid  0.8 0.8 0.9 1.0 

2-hydroxyglutaric acid 1.3 1.1 1.2 1.0 

4-hydroxy benzoic acid 1.1 0.5 1.3 0.6 

Aconitic acid 0.8 1.4 1.0 1.6 

2-ketao-L-gluconic acid 0.9 1.1 0.9 1.1 

Ribonic acid 0.7 0.9 1.1 1.5 

4-hydroxy-3-methoxybenzoic acid 1.1 0.6 1.3 0.6 

Azelaic acid 1.2 0.6 0.9 0.4 

Shikimic acid  1.2 1.8 1.2 1.9 

Quinic acid  2.2 2.5 1.1 1.2 

4-hydroxy-Cinnamic acid  1.1 0.7 1.3 0.8 
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Gluconic acid  3.9 1.6 1.0 0.4 

Ferulic acid  1.3 0.5 1.7 0.7 

Malic acid 0.9 2.0 0.7 1.6 

Citric acid  0.5 1.2 1.1 2.7 

Sugars     
Erythirtol  1.5 1.6 0.7 0.7 

Xylose 0.9 0.4 1.3 0.5 

Xylitol  1.3 0.9 0.7 0.5 

Rhamnose  0.9 0.8 0.8 0.7 

Arabitol  1.4 1.0 0.8 0.6 

Ribitol  0.8 1.2 0.4 0.6 

Mannitol 2.5 1.2 0.7 0.4 

myo-Inositol 1.6 1.0 1.0 0.6 

Glucose-6- phosphate 1.7 3.6 0.3 0.5 

Trehelose  1.0 1.2 0.7 0.9 

beta-Gentibiose 0.7 1.5 0.4 0.8 

Galactinol  0.7 1.4 1.2 2.5 

1-Kestose  0.1 0.9 0.4 3.0 

Melezitose 0.3 1.2 0.6 2.6 

Fructose  1.0 1.8 0.4 0.8 

Glucose 0.8 1.8 0.4 0.9 

Sucrose 0.6 1.5 1.0 2.6 

Miscellaneous       

Urea  11.3 0.7 10.1 0.7 

Glycerol  1.4 0.8 1.2 0.6 

Phosphoric acid  1.8 1.2 0.6 0.4 

Putrescine 1.0 0.7 2.2 1.6 

Glycerol-3-phosphate 1.7 1.1 0.7 0.4 

Hexadecanoic acid 1.3 0.9 1.0 0.7 

Octadecenoic acid 1.8 0.1 38.4 2.3 

Eicosanoic acid  2.0 0.9 1.3 0.6 

Adenosine 1.4 0.8 1.3 0.7 

Guanosine 2.7 0.8 2.0 0.6 
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5.4.2.3 Differences in metabolites of P. thornei challenged roots associated with resistance 

QTL 

To identify metabolites related to resistance QTL, metabolites in resistant lines (Sk-R-I, 6D-R-

I and 2B-R-I) were compared with those of susceptible lines (Kr-S-I and Null-S-I). Important 

features are described in Table 5.3 and a more detailed analysis is presented in Supplementary 

Table 5.4. 

  

Firstly, the levels of metabolites in Sk-R-I were compared to those in Kr-S-I and Null-S-I to 

identify the metabolites associated with both loci. Secondly, Sk-R-I and 6D-R-I were compared 

with Kr-S-I and Null-S-I to identify 6D-QTL associated metabolites. Likewise, Sk-R-I and 2B-

R-I were compared with Kr-S-I and Null-S-I to identify 2B-QTL associated metabolites. A 

total of 15 metabolites were found to be higher (≥ 1.1-fold) in Sk-R-I than in Kr-S-I and Null-

S-I (Table 5.3, section A). Nine of these metabolites were amino acids (alanine, beta alanine, 

isoleucine, phenylalanine, pyroglutamic acid, serine, threonine, tyrosine and valine), three were 

organic acids (2-hydroxyglutaric acid, aconitic acid and benzoic acid) two were sugars 

(galactinol and mannitol) and one was from the miscellaneous group (phosphoric acid). Apart 

from three metabolites (2-hydroxyglutaric acid, galactinol and mannitol), the remaining 12 

metabolites were also found to be associated with the 6D-QTL (≥ 1.1-fold higher in Sk-R-I and 

6D-R-I than in Kr-S-I and Null-S-I) (Table 5.3, section B). Benzoic acid was the only 

metabolites found to be associated with 2B-QTL (≥ 1.1-fold higher in Sk-R-I and 2B-R-I than 

in Kr-S-I and Null-S-I) (Table 5.3, section C). 

 

A total of 13 metabolites were also found to be lower (≤ 0.9-fold) in Sk-R-I than in Kr-R-I and 

Null-S-I (Table 5.3, section A). These comprised one amino acid (asparagine), five organic 

acids (4-hydroxy benzoic acid, ferulic acid, glycolic acid, pipecolic acid and threonic acid), 
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three sugars (1-kestose, rhamnose and xylose) and four from the miscellaneous group 

(eicosanoic acid, glycerol, hexadecenoic acid and octadecenoic acid). Of the 13 metabolites, 

six metabolites (asparagine, pipecolic acid, threonic acid, 1-kestose, rhamnose and 

octadecenoic acid) were found to be associated with the 2B-QTL (≤ 0.9-fold lower in Sk-R-I 

and 2B-R-I than in Kr-S-I and Null-S-I) (Table 5.3, section C). Likewise, four metabolites 

(rhamnose, octadecenoic acid, xylose and glycerol) were found to be associated with the 6D-

QTL (≤ 0.9-fold lower in Sk-R-I and 6D-R-I than in Kr-S-I and Null-S-I) (Table 5.3, section 

B).   

 

5.4.2.4 Metabolic analysis of nematode samples  

A total of 50 metabolites were identified by GC-MS in the P. thornei samples (Supplementary 

Table 5.5). These compounds included eight amino acids, eight organic acids, six sugars, 14 

miscellaneous metabolites and 14 unknown metabolites.  
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Table 5.3 Analysis of metabolites in root tissues associated with Pratylenchus thornei resistance. The level of metabolites (fold-difference) were compared 

between resistant (Sk-R-I, 6D-R-I and 2B-R-I) and susceptible (Kr-S-I and Null-S-I) lines to identify metabolites associated with 6D+2B (Section A), 6D 

(Section B) or 2B (Section C) QTL. 1: Fold-differences were calculated based on average values from four replicates. 2: Highlights shows where compounds 

were significantly (t-test, P <0.05) higher (green colour) or lower (blue colour) in resistant line compared to the susceptible line. AA, OA, S and M refers to 

amino acids, organic acids, sugars and miscellaneous biochemical groups 

  A. Differences in metabolites associated with 6D+2B QTL B. Differences in metabolites associated with 6D QTL C. Differences in metabolites associated with 2B QTL

Metabolites2 Metabolites2 Metabolites2

Sk-R-I/  

Kr-S-I

Sk-R-I/             

Null-S-I

Sk-R-I/ 

KR-S-I

6D-R-I 

/KR-S-I

Sk-R-I/ 

Null-S-I

6D-R-I/ 

Null-R-I

Sk-R-I/  

Kr-S-I

2B-R-I/ 

KR-S-I

SK-R-I/ 

Null-S-I

2B-R-I/ 

Null-S-I

1.7 1.1 AA_Alanine 1.7 1.9 1.1 1.2 AA_Alanine 1.7 0.7 1.1 0.5 AA_Alanine

1.1 3.5 AA_beta Alanine 1.1 1.3 3.5 4.2 AA_beta Alanine 1.1 0.4 3.5 1.4 AA_beta Alanine

1.7 1.3 AA_Isoleucine 1.7 1.7 1.3 1.3 AA_Isoleucine 1.7 0.7 1.3 0.5 AA_Isoleucine

1.7 1.2 AA_Phenylalanine 1.7 2.1 1.2 1.5 AA_Phenylalanine 1.7 0.9 1.2 0.6 AA_Phenylalanine

1.1 1.2 AA_Pyroglutamic acid 1.1 1.8 1.2 2.0 AA_Pyroglutamic acid 1.1 0.6 1.2 0.6 AA_Pyroglutamic acid

1.3 1.4 AA_Serine 1.3 1.5 1.4 1.6 AA_Serine 1.3 0.5 1.4 0.5 AA_Serine

1.3 1.6 AA_Threonine 1.3 1.5 1.6 1.8 AA_Threonine 1.3 0.6 1.6 0.7 AA_Threonine

1.9 2.0 AA_Tyrosine 1.9 2.7 2.0 2.9 AA_Tyrosine 1.9 0.7 2.0 0.8 AA_Tyrosine

1.5 1.5 AA_Valine 1.5 1.5 1.5 1.4 AA_Valine 1.5 0.7 1.5 0.7 AA_Valine

1.1 1.3 OA_2-hydroxyglutaric acid 1.1 1.0 1.3 1.2 OA_2-hydroxyglutaric acid 1.1 0.9 1.3 1.1 OA_2-hydroxyglutaric acid

1.4 1.2 OA_Aconitic acid 1.4 1.7 1.2 1.6 OA_Aconitic acid 1.4 1.1 1.2 1.0 OA_Aconitic acid

1.1 1.4 OA_Benzoic acid 1.1 1.2 1.4 1.4 OA_Benzoic acid 1.1 1.1 1.4 1.3 OA_Benzoic acid 

1.4 1.3 S_Galactinol 1.4 0.9 1.3 0.8 S_Galactinol 1.4 1.1 1.3 1.0 S_Galactinol 

1.2 1.6 S_Mannitol 1.2 1.0 1.6 1.2 S_Mannitol 1.2 0.8 1.6 1.0 S_Mannitol

1.2 1.4 M_Phosphoric acid 1.2 1.2 1.4 1.4 M_Phosphoric acid 1.2 0.9 1.4 1.0 M_Phosphoric acid 

0.7 0.6 AA_Asparagine 0.7 2.2 0.6 2.2 AA_Asparagine 0.7 0.4 0.6 0.4 AA_Asparagine

0.5 0.8 OA_4-hydroxy benzoic acid 0.5 0.7 0.8 1.2 OA_4-hydroxy benzoic acid 0.5 0.7 0.8 1.2 OA_4-hydroxy benzoic acid

0.5 0.9 OA_Ferulic acid 0.5 0.8 0.9 1.3 OA_Ferulic acid 0.5 0.7 0.9 1.2 OA_Ferulic acid 

0.9 0.9 OA_Glycolic acid 0.9 1.0 0.9 1.0 OA_Glycolic acid 0.9 0.9 0.9 0.9 OA_Glycolic acid

0.9 0.3 OA_Pipecolic acid 0.9 2.8 0.3 1.1 OA_Pipecolic acid 0.9 0.8 0.3 0.3 OA_Pipecolic acid 

0.8 0.5 OA_Threonic acid 0.8 1.0 0.5 0.6 OA_Threonic acid 0.8 0.8 0.5 0.5 OA_Threonic acid 

0.9 0.2 S_1-Kestose 0.9 1.4 0.2 0.3 S_1-Kestose 0.9 0.8 0.2 0.2 S_1-Kestose 

0.8 0.8 S_Rhamnose 0.8 0.7 0.8 0.6 S_Rhamnose 0.8 0.9 0.8 0.8 S_Rhamnose 

0.4 0.9 S_Xylose 0.4 0.3 0.9 0.8 S_Xylose 0.4 0.5 0.9 1.2 S_Xylose

0.9 0.7 M_Eicosanoic acid 0.9 1.1 0.7 0.8 M_Eicosanoic acid 0.9 1.1 0.7 0.8 M_Eicosanoic acid 

0.8 0.8 M_Glycerol 0.8 0.9 0.8 0.9 M_Glycerol 0.8 0.9 0.8 1.0 M_Glycerol 

0.9 0.8 M_Hexadecanoic acid 0.9 1.0 0.8 0.9 M_Hexadecanoic acid 0.9 1.0 0.8 0.9 M_Hexadecanoic acid

0.1 0.2 M_Octadecenoic acid 0.1 0.3 0.2 0.4 M_Octadecenoic acid 0.1 0.4 0.2 0.5 M_Octadecenoic acid

Fold-differnce (Average)1 Fold-difference (Average)1 Fold-difference (Average)1
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5.5 Discussion  

Root exudates and root tissues from wheat cultivar Sk-R showed nematotoxic properties 

against P. thornei (Linsell et al. 2014). To reveal the biochemical basis of this resistance, 

metabolic profiles of root exudates and root tissues from Sk-R and related resistant wheat lines 

6D-R and 2B-R were compared with those of the susceptible lines Kr-S and Null-S. In the 

following sections the outcome of these two experiments are discussed.  

 

5.5.1 Analysis of root exudates 

Growth and development of P. thornei was previously reported to be affected by root exudates, 

more so in the exudates from Sokoll (Sk-R) than those from Krichauff (Kr-S). Sokoll root 

exudates inhibited egg hatching, suppressed mobility and induced a state of quiescence in P. 

thornei as compared to Krichauff (Linsell et al. 2014). To understand the biochemical basis of 

this resistance, the present experiment was undertaken to compare the metabolic profiles of 

root exudates from Sk-R and Kr-S using the GC-MS platform. In addition, metabolic profiles 

of doubled haploid lines representing 6D, 2B and Null QTLs were also compared to identify 

candidate metabolites associated with the resistance loci.   

 

Non-targeted GC-MS based metabolic analysis identified a total of 100 root exudate 

metabolites from diverse biochemical groups including amino acids, organic acids, sugars and 

miscellaneous compounds. These profiles are generally consistent with those seen in other 

studies of root exudates in wheat (Fan et al. 2001; Warren 2015). Significant differences were 

observed between resistant (Sk-R, 6D-R and 2B-R) and susceptible genotypes (Kr-S and Null-

S) for certain metabolites. This supports the hypothesis that differences in root exudate 

composition of genotypes can influence the outcome of host-nematode interactions in the 

rhizosphere (Bais et al. 2006; Li et al. 2013). In an incompatible host-nematode relationship, 
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compounds in root exudates might restrict the nematodes by (i) paralysing  (nematostatic 

compounds), (ii) killing (nematicide compounds), (iii) repelling the nematodes from the host 

(repelling compounds), or (iv) inhibiting egg hatching (egg hatching inhibiting compounds) 

(Huang et al. 2014; Rocha et al. 2017). On the other hand, in a compatible host-nematode 

relationship, compounds in root exudates might act as chemoattractant that allow the 

nematodes to locate their hosts (Curtis 2008; Fleming et al. 2017).   

 

In the present experiment, 21 metabolites were found to be significantly higher in root exudates 

of Sk-R than in those of Kr-S and were therefore potentially associated with both 6D and 2B 

QTL. Of these, four were also found to be higher in 6D-R than in Kr-S, indicating a possible 

association with the 6D-QTL. Likewise, ten metabolites were found to be higher in 2B-R than 

in Kr-S and were therefore potentially associated with the 2B QTL. However, these metabolites 

were not found to be consistently higher in 6D-R and 2B-R as compared to Null-S. Further 

study is required to identify whether this variation resulted from the null-S line itself. 

Nevertheless, the above mentioned 21 metabolites were found to be higher in one or more of 

the resistance genotypes (Sk-R, 6D-R and 2B-R) as compared to the susceptible genotype Kr-

S, indicating their possible role in resistance.  

 

The 21 aforementioned resistance-associated metabolites comprised seven amino acids, eight 

organic acids and six sugars. Their possible roles in an incompatible wheat-P. thornei 

relationship is unknown. However, some of these compounds have been shown to possess 

nematotoxic (nematostatic and nematicidal) and egg hatching inhibition properties by in-vitro 

bioassays in which nematode behaviour (eg. motility, mortality, attraction, egg hatching) was 

studied in response to exogenous application of commercially sourced chemical compounds 

(eg. Čepulytė et al. 2018; Dutta et al. 2012; Linsell et al. 2014).   
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Amino acids 

According to the present study, seven amino acids in root exudates (4-amino butyric acid, 

alanine, beta-alanine, methionine, proline, tyrosine and valine) were identified as potentially 

contributing to P. thornei resistance. Previous studies reported activity of these amino acids 

against plant parasitic nematodes. For instance, in in vitro bioassays alanine, proline and valine 

inhibited M. incognita egg hatching (Tanda et al. 1989). Methionine inhibited M. incognita egg 

hatching in vitro ( Reddy et al. 1975). Valine and proline were also found to be nematotoxic 

against M. incognita second-stage juveniles (J2) (Reddy et al. 1975). Valine was also reported 

to be toxic for Caenorhabditis elegans (Perelman and Lu 2000).  

 

Organic acids 

In the present study, the level of eight organic acids were higher in root exudates of the resistant 

genotypes than in those of the susceptible genotypes. These were 2-hydroxy glutaric acid, 4-

hydroxy-benzoic acid, citric acid, glutaric acid, glyceric acid, malic acid, quinic acid and 

shikimic acid. These organic acids may possess nematotoxic activity against P. thornei. 

Previously, organic acids were reported to be toxic against plant parasitic nematodes. For 

example:   

 4-hydroxybenzoic acid caused strong mortality of M. incognita second-stage juveniles 

(J2) larvae in an in vitro bioassay. Nearly 100% of M. incognita J2 larvae died after 72 

h of contact with 4-hydroxybenzoic acid at the highest tested concentration (400 µg 

mL-1) (Bogner et al. 2017). Hydroxybenzoic acids were also found to be act as 

repellents against Radopholus similis in an in vitro bioassay (Nathalie et al. 2006).  

 Exposure of the plant parasitic nematode M. incognita to citric acid in vitro decreased 

egg hatching by 94% and completely immobilized second-stage juveniles after 4-6 days 

of exposure (Shemshura et al. 2016).  
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 Chemotactic responses of M. incognita and G. pallida to selected phytochemicals were 

investigated. Quinic was identified as a repellent of M. incognita and G. pallida relative 

to the negative control (Fleming et al. 2017).  

 Malic acid and citric acid at concentration of 0.5 µg/µL demonstrated a nematostatic 

activity, paralysing 90% M. incognita J2 after 48 h exposure (Rocha et al. 2017).  

 

Sugars 

The root exudate sugar compounds that have potential to act against P. thornei nematodes were 

arabitol, fructose, glucose, maltose, myo inositol and sucrose. Previously, glucose was 

identified as nematotoxic against M. incognita J2. Treating M. incognita J2 for 48 h at 0.26 

µg/µL paralyzed the majority of the nematodes. Moreover, glucose at higher concentration (0.5 

µg/µL) exhibited a nematicidal effect, killing more than 90% of J2 after 48h exposure (Rocha 

et al. 2017). In another study, G. pallida infective stage juveniles were repelled by glucose (50 

mM) relative to negative control (Warnock et al. 2016).  

 

Molecules in root exudates also act as chemo-attractants that cause nematodes to migrate 

towards the roots (Fleming et al. 2017; Liu and Park 2018). Studies have illustrated that 

monosaccharide sugars, amino acids can act as chemo-attractants for plant parasitic nematodes 

(Warnock et al. 2016). In the present experiment, levels of four sugar compounds, erythritol, 

galactinol, ribitol and threitol were significantly lower in resistant genotypes relative to the 

susceptible genotypes. Further studies are required to see whether these compounds act as 

chemo-attractants for P. thornei and related root lesion nematode species.    

 

GC-MS based metabolic analysis of wheat root exudates identified several metabolites that 

could potentially act against P. thornei nematodes. To test their effect against P. thornei, these 
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compounds require further investigation.  Commercially sourced compounds can be applied to 

nematodes to see their effect on egg hatching, motility and migration. Whether synthesis of 

these nematotoxic compounds are induced by nematode infection also requires further 

investigation. Production and release of root-derived compounds are commonly constitutive, 

but may be induced by biotic stress (Badri and Vivanco 2009). For instance, nematodes change 

the metabolite level in root exudates of tomato and Plantago (Escudero et al. 2014; Wurst et al. 

2010).  

 

5.5.2 Metabolic profiling of wheat roots challenged by P. thornei  

 

5.5.2.1 Constitutively synthesized metabolites 

At first, metabolic profiles of root tissues from Sk-C-R and Kr-C-S were compared. In the 

absence of nematode challenge, 26 metabolites from diverse biochemical groups were found 

to be significantly higher in Sk-C-R compared to Kr-C-S. It will be worthwhile to investigate 

whether these constitutively synthesized metabolites are involved in P. thornei resistance in 

wheat.  

 

Amino acids might play a significant role in P. thornei resistance. A total of 14 amino acids 

were synthesized constitutively at higher level in Sk-C-R than in Kr-C-S. Among these amino 

acids, levels of asparagine and proline were considerably higher (21.1-fold and 16-fold, 

respectively) in Sk-C-R than Kr-C-R. It is unknown whether higher level of root asparagine 

and proline contribute any resistance against plant parasitic nematodes. However, roles of 

asparagine and proline in plant defence against microbial pathogens have been described. For 

example, in pepper (Capsicum annum), increased level of asparagine synthetase (major enzyme 

for asparagine biosynthesis) was associated with resistance to Pseudomonas syringae and 
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Hyaloperonospora arabidopsidis (Hwang et al. 2011). Likewise, synthesis of pyrooline-5-

carboxylate (an intermediate product of proline biosynthesis) has a role in resistance against 

Pseudomonas syringae in tobacco and Arabidopsis (Qamar et al. 2015). Whether wheat 

asparagine synthetase and pyrooline-5-carboxylate involves in P. thornei resistance, is yet to 

be investigated. 

 

5.5.2.2 Changes in wheat metabolites after P. thornei challenge 

Under P. thornei challenge, several metabolites were found to be more abundant in resistant 

wheat genotypes as compared to the susceptible genotypes. Fifteen metabolites were higher in 

6D and /or 2B resistance QTL lines as compared to the lines lacking these resistance alleles. 

These comprised nine amino acids, three organic acids, two sugars and one from the 

miscellaneous group. Likewise, thirteen metabolites were lower in the 6D and /or 2B lines as 

compared to the lines lacking these resistance alleles. There were four organic acids, three 

sugars, one amino acid and four from the miscellaneous group. 

 

Amino acids 

Previous studies indicated that total amino acid concentration in plant roots changed upon 

nematode infection (Hofmann et al. 2010; Shukla et al. 2018). In the present study, levels of 

nine amino acids were higher in resistant lines compared to susceptible lines. All these amino 

acids were found to be associated with the 6D-QTL. Among these amino acids, alanine, beta 

alanine and threonine have been shown to act against plant parasitic nematodes. For instance, 

higher root alanine content (relative to control) were found in M. granimicola resistance rice 

cultivars (Jena and Seshagiri Rao 1977). Up-regulation of alanine and beta-alanine was also 

found to be associated with M. incognita resistance in tomato (Eloh et al. 2016). In another 
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study, when threonine was added to the nutrient medium in Arabidopsis culture, the number of 

female M. incognita were significantly reduced in the host plant (Blümel et al. 2018).  

 

Organic acids 

In P. thornei challenged roots, three organic acids (benzoic acid, aconitic acid and 2-

hydroxyglutaric acid) were higher in resistant wheat lines than in the susceptible lines. Among 

these, benzoic acid was associated with both the 6D and 2B QTL and aconitic acid was 

associated only with the 6D QTL. Benzoic acid is the immediate precursor of salicylic acid 

(SA) (Chen et al. 2009). In tomato, resistance against M. incognita was found to be associated 

with increased SA content in plant tissue (Zinovieva et al. 2011). SA might act as signalling 

component towards this resistance. SA is an important component of the signalling that leads 

to root-knot nematode resistance and the associated hypersensitive response in tomato (Branch 

et al. 2004). In another study, aconitic acid was found to possess nematotoxic properties against 

M. incognita (Rocha et al. 2017). These studies suggest that benzoic acid and aconitic might 

contribute in P. thornei resistance in wheat.    

 

Sugars 

Galactinol and mannitol were found to be higher in Sk-R-I than Kr-S-I and Null-S-I and might 

act in P. thornei resistance at both 6D and 2B loci. Galactinol was previously been reported as 

a nematotoxic compound. For instance, exogenous application of galactinol to Arabidopsis 

resulted a significant decrease in numbers of H. schachtii compared to the control. The 

nematotoxic effect of galactinol on H. schachtii was also observed in vitro and it might be 

involved in resistance signalling and act as osmoprotentant for this resistance (Siddique et al. 

2014).  
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In P. thornei challenged roots, 13 metabolites were lower in Sk-R-I than in Kr-R-I and Null-

S-I, suggesting a possible contribution of these compounds to compatible host-nematode 

interactions. For instance, the level of three sugar molecules were significantly lower in 

resistant lines as compared to susceptible lines. 1-kestose was found to be lower in Sk-R-I and 

2B-R-I compared to Kr-S-I and Null-S-I. In a previous study, H. schachtii infection was shown 

to increase levels of 1-kestose in Arabidopsis roots. In a compatible host-nematode interaction, 

1-kestose was proposed to play an essential role in the nematode diet as a carbohydrate source 

(Hofmann et al. 2010). Up-regulation of certain metabolites in Krichauff might promote P. 

thornei infection by providing source of nutrients for nematodes, assisting in host cell 

degradation processes and interrupting host resistance mechanisms (Qiao et al. 2019).  

 

Metabolic profiling of samples collected at a single time point (six weeks after nematode 

infection) was one of the limitations of the current investigation. Metabolites in plants change 

throughout the various stages of nematode or fungal infection (Afzal et al. 2009; Hofmann et 

al. 2010; Scandiani et al. 2015). Future studies should consider sampling from various 

nematode infection stages, such as early, mid and late.    
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Chapter 6 

Histochemical and histopathological responses of wheat roots infected by 

Pratylenchus thornei 
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6.2 Introduction 

 

In a previous study, resistance to Pratylenchus thornei in wheat was found to be associated 

with restricted nematode migration within the root (Linsell et al. 2014). By staining the roots 

in acid fuchsin, it was found that P. thornei could only migrate 10 mm through the root cortex 

from the point of inoculation in the resistant genotype Sokoll, compared to 70 mm in the roots 

of the susceptible genotype Krichauff. A number of physical and chemical barriers might 

contribute to this resistance in Sokoll (reviewed in Chapter 1). It is expected that the plant cell 

wall is the primary barrier for the nematodes migrating within host tissue (Wieczorek 2015). 

Plant parasitic nematodes use their stylet and cell wall degrading enzymes to break the host 

cell wall (Davis et al. 2011). In reply, host plants trigger plant cell wall-mediated resistance 

mechanisms to resist nematodes (reviewd in Holbein et al. 2016; Wieczorek 2015). For 

instance, the presence of higher levels of lignin and suberin in endodermal cells of resistant 

banana roots (compared to the susceptible banana root) was thought to be associated with 

Radopholus similis resistance (Valette et al. 1998; Wuyts et al. 2007). Hence, cell wall 

thickening with callose, suberin, lignin or lignin-like structures might play an important role in 

restricting nematode migration in plant tissue (Wieczorek 2015). 

 

Callose is a polysaccharide in the form of β-1,3-glucan with some β-1,6-branches and it exists 

in the cell walls of a wide variety of higher plants (Piršelová and Matušíková 2013). It is 

deposited at the interface between the plasma membrane and cell wall, and this process is a 

hallmark of the pathogen triggered immune (PTI) response (Ellinger and Voigt 2014; Luna et 

al. 2010). For instance, a common response of plants to fungal attack is the deposition of callose 

in the form of cell wall thickenings called papillae, at sites of attempted wall penetration (Luna 

et al. 2010; Voigt 2014).  
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Lignin is a natural phenolic polymer and one of the main components of certain kinds of plant 

cell walls (Liu et al. 2018). In plants, changes in lignin content and composition occur in 

response to pathogen attack, and this has been suggested as a defence mechanism (Moura et al. 

2010). Accumulation of lignin or lignin-like phenolic compounds was shown to occur in a 

variety of plant-microbe interactions (Vance et al. 1980). Deposition of lignin in infected cells 

may prevent the spread of toxins and enzymes from the pathogen into the host, as well as 

prevent the transfer of water and nutrients from the host cells to the pathogen (Smith et al. 

2007).  

 

A number of histological staining techniques have been developed to visualise differences in 

cell wall components between various plant-pathogen interactions (Mori and Bellani 1996; 

Soukup 2014). Many of the synthetic dyes used for staining plant tissues are highly florescent, 

allowing the selective staining of cell wall components (Ursache et al. 2018). For instance, 

calcofluor white and aniline blue have been used to observe cellulose and callose, respectively, 

with fluorescent microscopy (Pradhan and Loqué 2014).  

 

Sample preparation for histological staining can be a difficult and time-consuming process. At 

first, plant tissues need to be fixed with a fixation agent (such as an aldehyde), followed by 

embedding in resin, and finally by cutting the tissues into thin layers using a microtome (Hawes 

2000). On the other hand, there are relatively easy protocols for cutting and fluorescence 

staining of fresh samples (Zelko et al. 2012). High quality images can be obtained from thick 

sections using laser scanning confocal microscopy (Atkinson and Wells 2017; Truernit and 

Palauqui 2009). Confocal microscopy also allows observation of living nematodes in the host 

tissue. For example, the PKH26 stain binds to lipid droplets in the nematode without any 
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observable effect on the nematode viability (Dinh et al. 2013). Observation of living nematodes 

during the infection process could help us understand their behaviour in planta.   

 

The present study was done to test for the presence of cell wall thickening with cellulose, 

callose, lignin and suberin, in response to P. thornei infection, using a confocal microscope. 

The broader aim was to gain more of an understanding of the histopathological responses of 

wheat roots to challenge by P. thornei.  
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6.3 Materials and methods 
 

6.3.1 PKH26 labelling of nematodes 

P. thornei was collected from carrot callus and counted using a compound microscope 

(described in Chapter 4). Nematodes were labelled fluorescently with PKH26 using a MINI26 

PKH26 Red Fluorescent Cell Linker Kit (Sigma-Aldrich, St. Louis, MO) and following the 

protocol described by Dinh et al. (2013). In short, approximately 50,000 nematodes were 

collected in a 1.5 mL microcentrifuge tube and resuspended in 1 mL of sterile water. Then, 1 

µL of PKH26 (stock solution 1x10-3 M) was added into the nematode solution and the tube 

incubated in the dark at room temperature for 15 min. After centrifuging the nematode solution 

at 375 x g for three min, the supernatant was discarded. Then the nematodes were resuspended 

in 50 mL sterile water. This washing process was done three times. Stained nematodes were 

immediately used for inoculation. 

 

6.3.2 Plant materials and nematode inoculation 

Wheat cultivars Sokoll (P. thornei resistant) and Krichauff (P. thornei susceptible) were used 

for this experiment. Seeds were surface sterilised using ethanol and sodium hypochlorite 

followed by two rinses in sterile water (described in Chapter 3). Seeds were then germinated 

on moist filter paper for three days. Seedlings were transplanted into petri dishes containing 

0.5% phyto agar (Sigma-Aldrich, St Louis, MO). Two days after transplantation, 

approximately 500 nematodes were applied onto the roots of each plant. Root samples were 

collected 1, 3 and 5 days after inoculation for microscopy. In order to study infected roots 

beyond this time, a different subset of five-day old seedlings was grown in plastic pots filled 

with steam-pasteurized sand in a controlled environment room (CER) (as described in Chapter 

3). These seedlings were inoculated with 1,500 nematodes seven days after transplantation. 

After nematode inoculation, plants were maintained (fertilized and watered) following the 
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protocol described in Chapter 3. Root samples were collected after seven and ten days and six 

weeks from inoculation for microscopy.  

 

6.3.3 Root sample embedding and sectioning 

Confocal microscopy was conducted on fresh (without fixation) root samples using previously 

reported protocols for sample embedding and sectioning (Atkinson and Wells 2017; Truernit 

and Palauqui 2009; Zelko et al. 2012). Firstly, roots were observed under a compound 

microscope to locate the site of infection (where nematodes had aggregated). Then, nematode 

infected root samples were cut into segments (approximately 1 cm length) using a fresh double 

edge razor blade (Wilkinson Sword, United Kingdom) and these were embedded in 5% 

agarose. A vibrating blade microtome [Leica Microsystems (United Kingdom) Ltd] was used 

to produce sections of between 100 and 250 µm thickness. 

 

6.3.4 Staining 

For Calcofluor White staining, 0.1% Calcofluor White (Sigma-Aldrich, St. Louis, MO) was 

prepared and the root sections were stained for 30 min. To image Calcofluor White 

fluorescence, a wavelength of 405-nm was used for excitation and 425–475 nm used for 

emission (Ursache et al. 2018). 

 

For aniline blue staining, 0.1% Aniline blue (Biosupplies Australia Pry Ltd, Victoria, Aus) was 

prepared and the root sections were stained for 30 min at room temperature. Next, the root 

samples were washed in sterile water for 30 min. Aniline blue interaction with β-1,3-glucan 

induces a yellow-green fluorescence under UV light (Wood and Fulcher 1984).  For aniline 

blue fluorescence observation, a wavelength of 405 nm was used for excitation and 420-550 

nm wavelength was used for emission (Zavaliev and Epel 2015). 
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The lignin found in plant cell walls can be stained with phloroglucinol in the presence of 

alcohol and HCl (Liljegren 2010; Pradhan and Loqué 2014). To test for lignin, sections were 

soaked in 10% (w/v) phloroglucinol solution in 95% (v/v) ethanol for 3 min, then the solution 

was decanted off and placed in a drop of 37% HCl on a slide, covered with a cover-slip and 

observed under the confocal microscope.  

 

To visualise cell walls, sections were stained with propidium iodide (Merck KGaA, Darmstadt, 

Germany). Root sections were stained with propidium iodide solution (1%) for 30 min. For 

confocal microscopy the excitation and emission wavelength were 482 nm and 608 nm, 

respectively.  

 

6.3.5 Whole-mount confocal imaging  

In order to observe live nematodes (PKH26 stained) in root tissue, whole-mount sections was 

prepared following the protocol of Truernit and Palauqui (2009). In short, nematode infected 

root samples (without fixation or agarose embedding) were cut into segments approximately 3 

cm in length and put immediately in sterile water. The root sections were placed in a glass slide 

and mounted in water.  The root sections were observed using a confocal microscope.  

 

6.3.6 Confocal microscopy 

Image acquisition was performed using a Nikon A1R laser scanning confocal microscope 

(Nikon Instruments; Tokyo, Japan). The confocal microscope was equipped with three solid 

state lasers (405 nm, 561 nm and 640 nm) and a multiline Argon gas laser (457 nm, 488 nm 

and 514 nm). During scanning, all available wavelengths were used so that no data were 

missed. For each preparation, the most appropriate objectives were chosen to match the size of  
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the sample in the section. Images were analysed using the software NIS-Element (Nikon 

Instruments).
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6.4 Results 

 

6.4.1 Histological responses of wheat roots to P. thornei inoculation  

After being labelled with PKH26, all vermiform life stages of P. thornei were shown to be 

fluorescent in the lip region, oesophagus and intestine (Fig. 6.1). Strong staining was observed, 

particularly in the lipid droplets of the intestine of P. thornei. PKH26 did not have any obvious 

effects on the viability of P. thornei.  

 

The lesions in the wheat root were difficult to locate with the naked eye but were observable 

under the compound microscope. Nematodes were also observed under the compound 

microscope outside of the root accumulating at sites of infection already created by previous 

nematodes. Except the root cap, nematodes were observed throughout the entire root, hence 

there was no preferred zone of infection in the root for P. thornei.   

 

Confocal microscopy enabled observation of P. thornei behaviour throughout the infection 

process, including intracellular migration, feeding, coiling and resting inside wheat root cells 

(Fig. 6.2 and 6.3). In addition, morphological features such as the stylet, intestine and 

metacorpus were visible in PKH26 labelled nematodes located inside the roots (Fig. 6.2). 

Nematodes were stretched out or coiled, occupying a single cell or multiple cell layers (Fig. 

6.2 and 6.3). Nematodes were always seen in cortical cells, and never seen inside the 

endodermis or stele. They used their stylet at the corner of the cell to move on to the next cell 

(Movie clip 6.1 and Fig. 6.2). While striking with the stylet, the median bulb pulsated, and a 

globular secretion was seen from the stylet tip into the cell (Movie clip 6.1). Cortical cells 

penetrated and fed upon by the nematode were generally devoid of cytoplasm. Four weeks after 

nematode inoculation, extensive damage was observed in Krichauff root tissues (Fig. 6.3). 
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Empty cortical layers were observed in the passage of nematodes and egg masses were seen in 

the cavity of the cortical layer (Fig. 6.3). The passage of the nematode through the cortex was 

observed to be intracellular. A movie clip was captured with the confocal microscope showing 

the nematode was located inside the root cell. The nematode was trying to break the cell wall 

to move to the next cell. It was searching for a suitable site to thrust along the cell wall, and 

ultimately stylet thrusting was observed at the corner of the cell (Movie clip 6.1).
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Fig. 6.1 Confocal imaging of Pratylenchus thornei outside of plant roots. Pratylenchus thornei was stained with PKH26 for 24 h and stored at 4oC 

until imaging. A. Intense fluorescence of intestinal lipids (arrow). B. An entire PKH26 labelled Pratylenchus thornei. Morphological features such 

as the lip region (L) was visible in the labelled nematode. The anterior and posterior regions of Pratylenchus thornei are labelled AR and PR, 

respectively. Scale bars= 50 µm  
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Fig. 6.2 PKH26 labelled Pratylenchus thornei inside Sokoll root tissues. Images were taken 10 days after inoculation. Still images were taken of 

live nematodes inside root tissue using a confocal microscope. A. Nematode searching for suitable place to thrust at the cell wall. B and C. 

Pratylenchus thornei stylet thrusting (arrow) at the corner of the cell. I, Intestine; M, metacorpus; S, stylet. Scale bars= 50 µm 
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Fig. 6.3 PKH26 labelled Pratylenchus thornei inside Krichauff root tissues. Images were 

captured four weeks after inoculation. Nematodes (N) occupied multiple cells by breaking the 

cell walls, resulting in an empty layer (EL) in the cortical tissues. Deposition of eggs (E) in 

empty layers were also observed 
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Movie clip 6.1 Pratylenchus thornei in Sokoll root (10 days after inoculation). Pratylenchus 

thornei was labelled with PKH26. The movie of the live nematode was recorded using a Nikon 

A1 confocal microscope. Movie speed is 10x faster than real time 

 

 

The movie clip is supplied as an electronic file
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6.4.2 Histochemical staining 

Calcofluor white (CW) treated Sokoll root sections (three DAI) showed blue fluorescence 

(excitation 404 nm and emission 450, blue channel) from the cell walls of the cortical tissues 

(Fig. 6.4-B). This was a distinct difference compared to the control root section (nematode 

uninfected) (Fig. 6.4-A). Blue fluorescence was also not observed in CW treated Krichauff root 

sections (either control or nematode infected) (Fig. 6.5). CW binds to the cell wall components 

cellulose or other β‐1,4‐linked carbohydrates (Albani and Plancke 1999; Herrera-Ubaldo and 

de Folter 2018; Ursache et al. 2018). Thus, blue fluorescence in CW treated Sokoll root tissue 

may have resulted from additional cellulose deposition in response to P. thornei infection. The 

intensity of blue fluorescence increased at a later stage (10 DAI) (Fig. 6.6), at a time the cortical 

cell layer was found to be damaged significantly by the nematodes.  

 

To visualise callose (β-1,3-glucan) or callose-like substances (polysaccharides or glycoprotein) 

in the cell wall, P. thornei resistant Sokoll root tissues were stained with aniline blue. Callose 

deposition was observed in nematode infected Sokoll root tissues (Fig. 6.6). Due to the wide 

range of emission wavelengths of aniline blue (420 to 550 nm) (Zavaliev and Epel 2015), 

callose specific signals might be obtained from blue (450 nm), green (525 nm) or red (595 nm) 

channels. However, strong fluorescence was observed from green and red channels (Fig. 6.7).  

 

P. thornei infected Sokoll root tissues were treated with phloroglucinol to stain lignin. Strong 

fluorescence was obtained at excitation 561 nm and emission 595 nm (red) (Fig. 6.8 and 6.9). 

Fluorescence was also obtained at other wavelengths (excitation 488 nm and emission 525 nm, 

green channel). This might be due to lignin autofluorescence (Decou et al. 2017; Mast et al. 

2009). Lignin autofluorescence was observed from non-stained root sections (result not 

shown). In a different phloroglucinol treated Sokoll root section, nematode infected tissue was 
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found to be darker (Fig. 6.9). Red fluorescence observed surrounding this necrotic tissue, 

suggesting lignin or lignin like substances might be deposited surrounding the necrotic root 

tissues. 
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Fig. 6.4 Comparative anatomies of Pratylenchus thornei uninfected (A) and infected (B) Sokoll root. Calcofluor-white and propidium iodide 

stained (simultaneous) transverse sections. Sequential excitation at 404, 488 and 561 nm with corresponding emission at 450 (blue), 525 (green) 

and 595 (red) nm resulted the confocal image a, b and c, respectively. The blue channel might show the presence of cellulose and other β‐1,4‐

linked carbohydrates. The red channel shows the propidium iodide stained cell wall. The composite image of blue, red and green channels is shown 

in d. Co, cortical cells; Xy, Xylem; En, endodermis; Ep, epidermis; Ph, Phloem 
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Fig. 6.5 Comparative anatomies of Pratylenchus thornei uninfected (A) and infected (B) Krichauff root. Calcofluor-white and propidium iodide 

stained transverse sections. Sequential excitation at 404, 488 and 561 nm with corresponding emission at 450 (blue), 525 (green) and 595 (red) nm 

resulted the confocal image a, b and c, respectively. The blue channel might show the presence of cellulose and other β‐1,4‐linked carbohydrates. 

The red channel shows the propidium iodide stained cell wall. The composite image of blue, red and green channels is represented in image d 
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Fig. 6.6 Transverse section of calcofluor-white stained Sokoll root. Confocal images were taken 10 days after Pratylenchus thornei infection. 

Sequential excitation at 404 and 561 nm with corresponding emission at 450 (blue) and 595 (red) nm resulted the confocal image a and b, 

respectively. The composite image of blue and red channels is represented by image c. PKH26 stained Pratylenchus thornei (N) was observed 

damaging the cortical cell layer. Scale bars represent 50 µm 
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Fig. 6.7 Deposition of callose or callose-like substances in Pratylenchus thornei infected (10 

days after inoculation) Sokoll root section. Root tissues were treated with aniline blue and 

images were taken using a confocal microscope. Sequential excitation at 404, 488 and 561 nm 

with corresponding emission at 450 (blue), 525 (green) and 595 (red) nm resulted the confocal 

image a, b and c, respectively. The composite image of blue, red and green channels is 

represented by image d. Both green and red color shows the presence of callose and callose-

like substances. N, nematode 
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Fig. 6.8 Observation of lignin or lignin-like substances in Pratylenchus thornei infected (10 

days after inoculation) Sokoll root section. Root tissues were treated with phloroglucinol and 

images were taken using confocal microscope. Sequential excitation at 404, 488 and 561 nm 

with corresponding emission at 450 (blue), 525 (green) and 595 (red) nm resulted the confocal 

image a, b and c, respectively. Lignin was shown in red and green channel. The composite 

image of blue, red and green channels represented by image d. Cell layer damaged due to 

Pratylenchus thornei infection (arrow). N, nematode. Scale bars represent 50µm 

 

 

 

N 

a b 

c 
d 



 

175 

 

Fig. 6.9 Pratylenchus thornei infected (10 days after inoculation) Sokoll root section, treated with calcofluor white and phloroglucinol. Images 

were taken using confocal microscope. Sequential excitation at 404 and 561 nm with corresponding emission at 450 (blue) and 595 (red) nm 

resulted the confocal image a and b, respectively. Confocal image from transmitted light channel shown in image c and a combination of blue, red 

and transmitted light channel shown in image d. Necrosis occurred in the cell due to P. thornei infection (Nc). Strong fluorescence observed in 

proximity to nematode infected cell indicating lignin or lignin-like substances deposition (L). N, nematode. Scale bars represent 50 µm 
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6.5 Discussion 

 

In present study, live P. thornei was able to be visualised inside wheat root tissue. This was 

possible due to the use of the fluorescent dye PKH26 (for P. thornei labelling) and confocal 

microscopy. In a previous study, labelling plant parasitic nematodes (Pratylenchus penetrans, 

Heterodera schachtii, and Meloidogyne chitwoodi) with PKH26 did not kill the nematodes 

(Dinh et al. 2013). Moreover, fluorescence was stable at all life stages of these nematodes. In 

the present study PKH26 also did not prevent P. thornei from infecting the root and they were 

able to be observed at late stages of their life (4 weeks after inoculation) inside the wheat root. 

Due to this stability in fluorescence, PKH26 was an excellent choice of fluorescent dye to study 

plant-nematode interactions.  

 

Capturing images of living P. thornei inside wheat roots enabled us to observe the endoparasitic 

behaviour of P. thornei. In a previous study, endoparasitic behaviour of P. penetrans was 

described using video-enhanced contrast microscopy (Zunke 1990a). However, confocal 

microscopy offered higher resolution visualisation of fluorescent tagged molecules in both 

fixed and living cells (Cardinale 2014; Hardham 2012).  

 

In the present study, the behavioural patterns of P. thornei observed inside wheat root were 

largely similar to those reported for other root lesion nematode species observed in various 

hosts. These include P. thornei in chickpea root (Castillo et al. 1998), P. penetrans in 

Arabidopsis, pea, strawberry and alfalfa root (Dinh et al. 2013; Kurppa and Vrain 1985; 

Oyekan et al. 1972; Townshend 1963; Townshend et al. 1989; Zunke 1990a, b) and P. scribneri 

in soybean, snap bean and lima bean root (Acosta and Malek 1981; Thomason et al. 1976). 

Initially, P. thornei was seen to be searching for a suitable site to penetrate the wheat root. 

Where the damage occurred, other nematodes aggregated and followed the same path. Damage 
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sites in wheat roots might produce molecules that attract other P. thornei. After entering the 

epidermal layer, P. thornei moved through the cortical layer parallel to the stele. They moved 

from one cell to another by breaking the cell wall using their stylet. P. thornei passage through 

the cortical layer seemed to be intracellular. Video images of P. thornei clearly showed stylet 

thrusting at the corners of the cells (Movie clip 1). This was followed by searches for suitable 

places to break in through other areas of the cell wall. The corner of the cell might be easier to 

penetrate than other parts of the cell wall. During stylet thrusting, strong fluorescence was 

observed at the lip region of PKH treated P. thornei. This might be the autofluorescence from 

the mixture of enzymes released by the nematodes (eg. cellulase, pectinase etc.) (Haegeman et 

al. 2012) or might be partially digested cell wall components. Like most of the plant parasitic 

nematodes, P. thornei was often observed to either be outstretched or coiled through several 

wheat root cell layers. P. thornei were also found to be confined within the epidermal and 

cortical layer of the wheat tissue. Nematodes were not observed feeding on the endodermis or 

the central stele. However, in a previous study, damage to the endodermal cells adjacent to 

nematode feeding sites was occasionally observed (Castillo et al. 1998). In the present study, 

such damage was not observed in the P. thornei susceptible wheat cultivar, Krichauff.  

 

In the present study, distinct histopathological differences that correlated with resistance were 

not observed. The observable feeding behaviour, such as stylet probing, stylet insertion and 

feeding on root cortical tissues are the common features in root tissues. Perhaps additional root 

tissues need to be observed and over a longer period to identify any such differences, i.e., from 

root penetration until the end of lifecycle inside the root (eight weeks after inoculation). For 

instance, significant differences in P. thornei attraction, penetration, motility and reproduction 

were observed between Sokoll and Krichauff root tissues (Linsell et al. 2013b).  
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It is apparent that P. thornei uses its stylet to break the cell wall while migrating through the 

wheat root tissues. It may be possible to restrict this migration by strengthening root cell layers. 

In fact, in response to nematode attack, modification of cell wall, such as deposition of 

cellulose, callose, lignin and suberin have been reported in various plant-nematode interactions 

(reviewed in Holbein et al. 2016). Likewise, in the present study, cell wall thickening was 

observed in the P. thornei resistant cultivar, Sokoll.  

 

Staining Sokoll root section with the fluorescent dye calcofluor white resulted in blue 

fluorescence. Calcofluor white exhibits selective binding to cellulose and has widely been used 

as a fluorescent dye to study host-pathogen relation (Pradhan and  Loqué 2014; Zhou et al. 

2009). Cellulose occurs naturally in all cell walls but deposition of additional cellulose might 

occur in response to nematode infection (Marques et al. 2018). 

 

In the present study, aniline blue was used for callose staining. Imaging callose at 

plasmodesmata using aniline blue and confocal microscopy has previously been reported 

(Zavaliev and Epel 2015). Callose production is one of the earliest defence responses of plants 

against invading plant parasitic nematodes (Grundler et al. 1997). There is evidence that callose 

deposition is elicited in response to nematode infection (Holbein et al. 2016). For example, 

callose accumulates between the plasma membrane and cell wall around the nematode stylet 

(Hussey et al. 1992). Moreover, in transgenic Arabidopsis roots, overexpression of the 

transcription factor RAP2.6 lead to enhanced callose deposition in syncytia resulting in 

enhanced resistance against the beet cyst nematode H. schachtii (Ali et al. 2013). Callose 

deposition might interfere with nutrient import into syncytia. In response to M. graminicola 

infection, Callose deposition were enhanced in the resistant cultivar compared to the 

susceptible one (Kumari et al. 2016).  
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The contribution of lignin to plant defence against plant parasitic nematodes has been well 

documented. For instance, resistance to migratory nematodes correlates with increased lignin 

content in the cell walls of resistance banana plants (Suganthagunthalam et al. 2014; Wuyts et 

al. 2007). Similarly, changes in the lignin composition strongly influenced plants’ 

susceptibility to the root-knot nematode M. incognita (Wuyts et al. 2006). Fujimoto et al. 

(2014) found that sclareol, an antimicrobial molecule, enhanced Arabidopsis thaliana root-

knot nematode resistance by mediating ethylene-dependent lignin accumulation in the roots. 

Following nematode infection, resistance to rice stem nematode (D. angustus) was found to be 

associated with higher lignin content in a resistant rice cultivar, Manikpukha compared to a 

susceptible rice cultivar (Khanam et al. 2018). In the present study, the P. thornei resistant 

wheat cultivar Sokoll appeared to accumulate lignin upon nematode infection, which might 

strengthen the plant cell walls and inhibit nematode migration. However, further studies are 

required to confirm this result. Particularly, additional root samples from the susceptible 

cultivar need to be compared with the resistant cultivar.   

 

In this study, histochemical staining suggested that due to P. thornei infection, cellulose, 

callose and lignin was deposited in the cell wall of the P. thornei resistant wheat cultivar Sokoll. 

Deposition of cellulose, callose, lignin or lignin might result in physical reinforcement of the 

cell walls. Consequently, penetration of the cell wall by stylet thrusting may become more 

challenging for the nematodes. However, further studies are required to confirm this results. 

Particularly, the root tissues of susceptible wheat cultivar, Krichauff requires further 

investigation.  
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Chapter 7 

General discussion, contribution to the knowledge and future research 

direction 

 

7.1 Introduction 

In a previous study, a doubled haploid (DH) wheat population of 150 lines, developed from a 

cross between a synthetic derived wheat cultivar Sokoll (Pratylenchus thornei resistant) and 

the cultivar Krichauff (P. thornei susceptible) was investigated to identify quantitative trait loci 

(QTL) for resistance (Linsell et al. 2014a). Two highly significant QTL for P. thornei resistance 

were identified, on the short arms of chromosomes 6D (QRlnt.sk-6D) and 2B (QRlnt.sk-2B). 

The root and root exudates of the resistant lines also restricted nematode migration, 

development and reproduction (Linsell et al. 2014b). The present study aimed to investigate 

the genetic and biological basis of resistance of these P. thornei resistance loci in wheat. To 

achieve this aim, fine mapping was conducted for the root lesion resistant loci (Chapter 3), a 

cost-effective nematode quantification protocol was developed (Chapter 4), the metabolic 

profiles of the root exudates and root tissues from resistant and susceptible wheat lines were 

investigated (Chapter 5) and the histochemical and histological responses of P. thornei infected 

wheat roots were examined (Chapter 6). In the following section, the major findings of these 

studies, limitations and potential areas of future research are discussed.  
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7.2 Fine mapping of root lesion nematode (Pratylenchus thornei) resistance loci on 

chromosomes 6D and 2B of wheat 

In order to refine the genetic intervals of the QTL, it was necessary to add more markers to the 

existing genetic linkage maps. For this purpose, in addition to the Sokoll/Krichauff DH 

population, a high-resolution mapping population was used, comprising of 1,727 RILs (Table 

3.1). Of these, 108 RILs were identified as recombinant between the markers flanking the QTL, 

and these were further analysed genotypically and phenotypically. The P. thornei resistance 

data for the DH lines were available from a previous study (Linsell et al. 2014a), whereas the 

108 RILs were analysed in the present study (Fig. 3.1).   

 

The 90K SNP array was an excellent resource identifying single nucleotide polymorphic (SNP) 

markers in the wheat genome (Wang et al. 2014). The assay was performed using 

Sokoll/Krichauff DH lines and DNA bulks to identify SNPs linked to the QTL. A total of 

16,907 SNPs were identified as being polymorphic between Sokoll and Krichauff. Of these, 

776 and 1,597 SNPs were located on chromosome 6D and 2B, respectively. Of these, 143 and 

92 SNPs were identified as being closely linked to the QTL, and subsequently converted to 

KASP assay, a single-plex genotyping platform (Supplementary Table 3.5 and 3.7). Among 

these KASP assays, 60 and 41 markers (Supplementary Table 3.5 and 3.7) gave clear allele 

calling, and together with previously identified SSR markers flanking the QTL, the 6DS and 

2BS genetic linkage maps were re-constructed. 

 

On chromosome 6DS, 60 KASP and five SSR markers spanned a total genetic distance of 23.7 

cM, representing 16.36 Mbp in Chinese Spring and 16.81 Mbp in the Ae. tauschii reference 

genome (Fig. 3.2). With the use of previously available P. thornei resistance data for the DH 

lines (Linsell et al. 2014a), the QRlnt.sk-6D was mapped between the markers 6D_5 (and seven 
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other co-segregating markers) and 6D_143, explaining 47% of the total phenotypic variation 

(Fig. 3.2). The association between marker and phenotype was represented graphically, where 

the DH and RIL lines grouped according to their resistance phenotype (P. thornei DNA/plant). 

QRlnt.sk-6D was delimited to a 3.5 cM interval, representing 1.77 Mbp in the bread wheat cv. 

Chinese Spring reference genome sequence and 2.29 Mbp in the Ae. tauschii genome sequence 

(Fig. 3.3). These intervals contained 42 and 43 gene models in the respective annotated genome 

sequences (Supplementary Table 3.6).  

 

The genetic linkage map of chromosome 2BS constituted 41 KASP and five SSR markers, 

spanning a total genetic distance of 19.9 M (Fig. 3.4). The genetic map corresponded to a 16.92 

Mbp physical interval in the genome sequences of durum wheat cv. Svevo (Maccaferri et al. 

2019) and a 19.08 Mbp interval in bread wheat (Chinese Spring). The QTL was mapped 

between the markers 2B_74 and 2B_12 (and five other co-segregating markers; LRS score of 

44.5), and the closest markers explained 25% of the total phenotypic variation (Fig. 3.4). Fine 

mapping of QRlnt.sk-2B was performed using graphical genotyping, and the QRlnt.sk-2B 

interval was delimited to 1.4 cM, corresponding to 3.14 Mbp in the durum wheat cv. Svevo 

reference sequence and 2.19 Mbp in Chinese Spring (Fig. 3.5 and 3.6). The interval in Chinese 

Spring contained 56 high confidence gene models (Supplementary Table 3.8). 

 

Markers that co-segregated with the resistance loci in the DH and RIL populations might be 

useful for marker assisted breeding. Markers co-segregating with QRlnt.sk-6D were 6D_75, 

6D_48, 6D_20, 6D_139, 6D_12 and 6D_5, while those co-segregating with QRlnt.sk-2B were 

2B_73, 2B_42, 2B-10, 2B_71, 2B_4 and 2B_9. Details of these markers (SNP and primer 

sequence) are available in Supplementary Tables 3.5 and 3.7, respectively.  
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The QRlnt.sk-6D and QRlnt.sk-2B intervals contained genes with similarity to those previously 

reported to be involved in disease resistance, namely genes for phenylpropanoid-biosynthetic-

pathway-related enzymes, NBS-LRR proteins and protein kinases (Table 3.2 and 3.3). Among 

these candidate genes, isoflavone reductase (IFR), flavonoid 3'-hydroxylases (F3'H), Chalcone 

synthase (CHS), phenylalanine ammonia-lyase (PAL) are involved in biosynthesis of 

flavonoids and isoflavonoids (Fig. 3.7). They might involve in P. thornei resistance by creating 

a toxic environment or supressing the development and reproduction. It will be worthwhile to 

characterise these genes and gene products to understand their role in P. thornei resistance in 

wheat. Among the other candidate genes, NBS-LRR, receptor like protein kinase and 

ribosome-inactive proteins also need to be investigated to identify which, if any, of the 

candidates are responsible for the resistance QTL effect.  

 

7.3 Detection and quantification of P. thornei in wheat root using quantitative real-time 

PCR 

For fine mapping (Chapter 3), P. thornei resistance assays on the wheat lines were conducted 

by the SARDI Root Disease Testing Service, where the DNA was extracted and the amount of 

P. thornei assessed using a real time TaqMan PCR system (Haling et al. 2011; Ophel-Keller et 

al. 2008; Riley et al. 2010). At SARDI, P. thornei quantification is offered as fee-for-service 

using crop and soil samples. Details of the protocol are proprietary information, and thus not 

available to other researchers. However, a real-time qPCR protocol has been reported by Yan 

et al. (2011) to quantify P. thornei in soil samples. They used a commercial DNA extraction 

kit (PowerSoil® DNA Isolation Kit, MoBio, Carlsbad, CA) to extract P. thornei DNA from 

soil. Again, the composition of the commercial DNA extraction kit is proprietary. A freely 

available DNA extraction protocol based on common laboratory chemicals would be desirable 

to keep the expenses low, and thus make the quantification method available to a breeding 
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program where large numbers of samples need to be processed. Consequently, this study was 

aimed to develop a protocol to allow reliable and cost-effective extraction and quantification 

of nematode DNA from wheat root tissue. 

 

To amplify the P. thornei DNA, primer pairs THO-ITS-F2 and THO-ITS-R2 were used in the 

assay. The development and species specificity of the primer pairs were explained by Yan et 

al. (2011). In the present study, the primer pairs amplified P. thornei DNA with the expected 

amplification profile (Fig. 4.1). Moreover, the primer pairs did not amplify from wheat DNA 

alone.  

 

In the present study, a modified CTAB DNA extraction protocol was developed to extract the 

DNA from nematode infected wheat root samples. The details of the protocol are available in 

section 4.3.2 of Chapter 4. The protocol was able to produce good quality DNA, where the 

concentration ranged from 653 ng/µL to 3595 ng/µL, and the average A260/A280 and A260/A230 

ratio was 1.84 and 2.01. The extraction protocol was able to produce DNA without noticeable 

inhibition of PCR reactions (Table 4.1 and Fig. 4.2).  With the use of washed root samples in 

this study, PCR inhibition from soil as observed by Yan et al. (2011), was minimized.  

 

A standard regression was generated using DNA extracted from a mixture of 30 mg 

uninoculated root powder to which various numbers of P. thornei were added, ranging from 

25 to 10,000 nematodes (Fig. 4.3). The numbers of pure P. thornei added to root powder were 

highly correlated (R2 = 0.93) with the numbers of P. thornei determined by the real-time PCR 

assay using the above-mentioned standard curve (Fig. 4.4). Moreover, the standard regression 

was used to quantify P. thornei from sixteen wheat lines with known levels of resistance. All 

the wheat lines were classified for resistance (resistance/moderately resistance/susceptible) 
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similar to the PreDicta B test (Table 4.3). Moreover, the present assay was able to distinguish 

the resistant and susceptible lines more clearly (2.0-fold difference) compared to the PreDicta 

B test (1.6-fold difference). Thus, the present assay able to accurately estimate P. thornei from 

wheat root samples. 

  

Another important factor of the present study was the cost effectiveness of the experiment 

compared to the commercial service provider. To quantify P. thornei from wheat samples, the 

estimated cost was 50 AUD/ sample, whereas, the cost for PreDicta B test at SARDI is 120 

AUD/ sample (Table 4.4). The DNA extraction protocol was less expensive as it works without 

costly commercial plant extraction kits. Thus, the assay provides the basis of a cost-effective 

tool for rapid and efficient detection and quantification of P. thornei in wheat.  

 

7.4 Metabolomic analysis of root tissues and root exudates from wheat lines contrasting 

for Pratylenchus thornei resistance 

In a previous study, P. thornei resistant wheat roots and root exudates were found to supress 

nematode motility, migration and reproduction (Linsell et al. 2014b). Chemical compounds in 

root and root exudates of the resistant wheat lines might act on P. thornei. In order to investigate 

such compounds, the present study employed a non-targeted GC-MS based metabolic profiling 

of root tissue and root exudates from wheat genotypes contrasting for P. thornei resistance.  

 

A root exudate collection protocol was described in section 5.3.2 (Fig. 5.1). Passing the root 

exudate solution through the 0.22 µm syringe filter (Millex GV, Millipore) allowed removal of 

any potential microbial contaminants present in the solution.  

 



 

 

191 

 

The GC-MS based metabolic profiling of root exudates and root tissues from five wheat 

genotypes described 100 and 64 metabolites, respectively (Supplementary Table 5.1 and 5.3). 

These metabolites were categorised into major biochemical classes; amino acids and amines, 

organic acids, sugars, sugar alcohol and sugar phosphates. In addition, metabolic profiling of 

P. thornei samples identified 50 metabolites (Supplementary Table 5.5).  

 

To identify root exudate metabolites associated with resistance QTL, metabolic profiles of 

resistant lines (SK-R, 6D-R and 2B-R) were compared with those of susceptible lines (Kr-S 

and Null-S). A total of 21 metabolites were found to be associated with the resistance QTL, of 

which four and ten metabolites were associated with 6D and 2B QTL, respectively (Table 5.1, 

Supplementary Table 5.2). These 21 metabolites comprised six amino acids (alanine, beta 

alanine, methionine, proline, tyrosine and valine), eight organic acids (2-hydroxyglutaric acid, 

4-hydroxy-benzoic acid, citric acid, glutaric acid, glyceric acid, malic acid, quinic acid and 

shikimic acid) and six sugar compounds (arabitol, fructose, glucose, maltose, myo inositol and 

sucrose). Their possible roles against P. thornei is unknown, but some of these compounds 

have been shown to possess nematotoxic (nematostatic and nematicidal) and egg hatching 

inhibition properties in in-vitro bioassays in which nematode behaviour (eg. motility, mortality, 

attraction, egg hatching) were studied in response to exogenous application of commercially 

sourced chemical compounds (eg. Čepulytė et al. 2018; Dutta et al. 2012; Linsell et al. 2014b).   

 

In the present experiment, levels of four sugar compounds, erythritol, galactinol, ribitol and 

threitol were significantly lower in root exudates of the resistant genotypes relative to those of 

the susceptible genotypes. Further studies are required to see whether these compounds act as 

chemo-attractants towards P. thornei and related root lesion nematode species. 
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To identify root tissue metabolites associated with resistance QTL, metabolites in resistant lines 

(Sk-R-I, 6D-R-I and 2B-R-I) were compared with those of susceptible lines (Kr-S-I and Null-

S-I) (Table 5.3, Supplementary Table 5.4). Fifteen metabolites were higher in 6D and /or 2B 

resistant QTL lines as compared to the lines lacking the resistance alleles. Nine of these 

metabolites were amino acids (alanine, beta alanine, isoleucine, phenylalanine, pyroglutamic 

acid, serine, threonine, tyrosine and valine), three were organic acids (2-hydroxyglutaric acid, 

aconitic acid and benzoic acid), two were sugars (galactinol and mannitol) and one was from 

the miscellaneous group (phosphoric acid). Their role against P. thornei is unknown. However, 

in previous studies, these compounds were shown to act against plant parasitic nematodes 

(discussed in section 5.5.2 of Chapter 5).  

 

In P. thornei challenged roots, 13 metabolites were lower in Sk-R-I than in Kr-R-I and Null-

S-I (Table 5.3), suggesting a possible contribution of these compounds towards compatible 

host-nematode interactions. These metabolites might promote P. thornei infection by providing 

sources of nutrients for nematodes, assisting in host cell degradation processes or interrupting 

host resistance mechanisms (Qiao et al. 2019). Further studies are required to investigate their 

roles in the wheat-P. thornei relationship.  

 

7.5 Histochemical and histopathological responses of wheat roots infected by P. thornei 

Resistance to P. thornei in wheat was found to be associated with restricted nematode migration 

within the root (Linsell et al. 2014b). The present study was conducted to gain more of an 

understanding of the histochemical and histopathological responses of wheat roots to challenge 

by P. thornei.  
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In the present study, the use of fluorescent dye PKH26 (for P. thornei labelling) and confocal 

microscopy enabled visualisation of live P. thornei both out and inside wheat root tissue (Fig. 

6.1, 6.2, 6.3). The PKH26 dye did not prevent P. thornei from infecting the root and nematodes 

were observed at late stages of their life (four weeks after inoculation) inside the wheat root 

(Fig 6.3). Due to this stability in fluorescence, PKH26 can be use studying wheat-P. thornei 

interaction.  

    

Capturing images of living P. thornei inside wheat roots enabled the endoparasitic behaviour 

of P. thornei to be observed (Fig. 6.2, 6.3, Movie clip 6.1). The resolution of the images are 

better than the previous study reported by Zunke (1990), where the author used video-enhanced 

contrast microscopy. Some of the important findings from the histopathological study were as 

follows:  

 P. thornei was seen to be searching for a suitable site to penetrate the wheat root, and 

once damage occurred, other P. thornei aggregated and followed the same path. 

 P. thornei moved from one cell to another by breaking the cell wall using their stylet.  

 Video images of P. thornei clearly showed stylet thrusting at the corner of the cells, 

followed by searches for suitable places to break in through other areas of the cell wall 

(Movie clip 1). 

 P. thornei were found to be confined within the epidermal and cortical layer of wheat 

tissue, and they were not observed feeding on the endodermis or central stele.  

 

The above mentioned endoparasitic behaviour of P. thornei in wheat roots was largely like 

those reported for other root lesion nematode species in various hosts (discussed in section 6.5 

of Chapter 6). Additional study is required to test for differences between Sokoll and Krichauff. 
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Root tissues would need to be observed over a long period of time, from root penetration until 

the end of lifecycle inside the root (eight weeks after inoculation). 

 

In response to P. thornei infection, secondary cell wall thickening (deposition of cellulose, 

callose, lignin and suberin) was observed in the P. thornei resistant cultivar, Sokoll (Fig 6.4 to 

Fig. 6.9). Some of the important findings were as follows: 

 Calcofluor white staining Sokoll root sections resulted blue fluorescence confirming 

deposition of cellulose (Fig. 6.4). Although cellulose occurs in all cell walls, deposition 

of additional cellulose might occur in response to nematode infection (Marques et al. 

2018).  

 With aniline blue staining, callose (or callose-like substances) deposition was observed 

in nematode infected Sokoll root tissue (Fig. 6.6, 6.7).  

 Phloroglucinol stained Sokoll root tissues showed accumulation of lignin upon 

nematode infection, which might strengthen the plant cell walls and inhibit nematode 

migration (Fig. 6.8 and 6.9).   

Deposition of cellulose, callose and lignin might result in physical reinforcement of the cell 

walls in Sokoll. Therefore, penetration of the cell wall by stylet thrusting may become more 

challenging for the nematodes.  

 

7.6 Wheat P. thornei resistance genes may contribute to biochemical and physical 

resistance at the metabolic and cellular level 

In the present study, several genes in the QRlnt.sk-6D and QRlnt.sk-2B intervals were identified 

as plausible candidates for P. thornei resistance genes (Chapter 3). These genes might be 

related to the metabolic changes observed in wheat roots (Chapter 5) or the identified 

histochemical changes in root cells at nematode infection sites (Chapter 6).  
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Several phenylpropanoid pathway related genes have been identified underlying QRlnt.sk-6D 

and QRlnt.sk-2B QTL (Table 3.2 and 3.3 in Chapter 3). The genes encoding isoflavone 

reductase (IFR), flavonoid 3'-hydroxylases (F3'H), chalcone synthase (CHS) and phenylalanine 

ammonia-lyase (PAL). These enzymes are involved in biosynthesis of the phenylpropanoids, 

flavonoids and isoflavonoids (Fig. 3.7, Chapter 3). It is well documented that the 

phenylpropanoid compounds play important roles in resistance to pathogen attack (Reviewed 

in Dixon et al. 2002; Naoumkina et al. 2010). The resistance loci-associated metabolites found 

in this study (Table 5.1, 5.2 and 5.3 in Chapter 5) were searched in the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathway database (https://www.genome.jp/kegg/pathway.html) 

to identify phenylpropanoid pathway metabolites. As a result, several organic acids were found 

to be involved in the phenylpropanoid pathway; namely, 4-hydroxy-benzoic acid, malic acid, 

quinic acid, shikimic acid, aconitic acid and benzoic acid. Besides, the amino acids; alanine 

and phenylalanine were also found to be associated with phenylpropanoid biosynthetic 

pathway. Moreover, in response to P. thornei infection, lignin deposition was observed in the 

Sokoll root section (Fig. 6.8 and 6.9, Chapter 6). Lignin is a product of phenylpropanoid 

biosynthetic pathway (Fraser and Chapple 2011) that may provide physical resistance to 

nematode infection. These results suggest that phenylpropanoids might be excellent candidates 

for compounds acting against P. thornei in wheat. It will be worth doing further work to 

validate these potential resistance mechanisms against P. thornei in wheat. The outcomes of 

the present study suggest further research directions. In the following section, limitations of 

the present study and some potential areas of future research are discussed.   
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7.7 Limitations and future research directions 

Firstly, the candidate genes identified in present study require further characterisation. It will 

be worthwhile to investigate whether the resistance genes to P. thornei infection are 

differentially expressed in resistant and susceptible lines. Their expression profiles can be 

analysed by RT-PCR (eg. Hu et al. 2019). The use of near isogenic lines (NILs) contrasting for 

the presence of the QTL could be a valuable tool in studying the relative expression pattern for 

these candidate genes. NILs can be generated by crossing a donor line carrying the gene of 

interest to a recurrent parent and then backcrossing to the recurrent parent for five to six 

generations, followed by self-pollination (Zhou et al. 2005). The flanking markers identified in 

this study (Chapter 3) can be used for marker assisted selection strategies to accelerate this NIL 

development process (Xu et al. 2017).  

 

The present study has provided the foundation for further cloning of the resistance genes. 

Molecular cloning of the resistance QTL will be required to achieve a detailed understanding 

of the molecular mechanisms of resistance, and to develop perfect markers for marker assisted 

breeding.  Again, the NILs can be valuable materials to clone the resistance genes. Map-based 

cloning techniques can be used for this purpose (Krattinger et al. 2009). Alternatively, recently 

developed rapid cloning techniques can be used to clone the nematode resistance genes 

(Reviewed in Bettgenhaeuser and Krattinger 2019). Some of these techniques are Mutagenesis 

Resistance gene enrichment and Sequencing (MutRenSeq) (Steuernagel et al. 2016) and 

Targeted Chromosome-based Cloning via long-range Assembly (TACCA) (Thind et al. 2017).  

 

GC-MS based metabolic analysis is limited to volatile and thermally stable molecules (Balmer 

et al. 2013; Hill et al. 2016). However, most plant metabolites are not volatile, and may not be 

detectable by GC-MS. For example, flavonoids are an important class of defence metabolites 
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that cannot be detected by GC-MS. In such context, other metabolic technology, such as liquid 

chromatography-mass spectrometry (LC-MS) or nuclear magnetic resonance spectroscopy 

(NMR) can be considered. Compounds with higher molecular weight and lower thermostability 

are amenable for analysis via LC-MS (Allwood et al. 2008; Balmer et al. 2013). As a result, a 

much wider range of metabolites (compared to the GC-MS) can be analysed by LC-MS 

analysis. In fact, LC-MS metabolic analysis has already been conducted for the samples used 

in present study. Due to the time constraints, these large data set has not been analysed yet. It 

is very important to analyse these data to identify additional plant metabolites potentially acting 

against P. thornei. 

 

In present study, root tissue was collected from a single time point (six weeks after nematode 

infection) for metabolic profiling. This is one of the limitations in the root tissue metabolic 

analysis, as previous studies showed that metabolites in plants change throughout the various 

stages of nematode or fungal infection (Afzal et al. 2009; Hofmann et al. 2010; Scandiani et al. 

2015). Future studies should consider sampling from multiple nematode infection stages, such 

as early, mid and late.  

 

In relation to the root exudate study, metabolic analysis was performed only for the samples 

without nematode infection. Future work should consider exudates from roots challenged by 

P. thornei. Metabolic analysis of root exudates (in response to nematode infection) might 

provide an insight into biotic stress induced metabolites that are exuded from the roots.  

 

In present study, several nematode resistant metabolites were identified using GC-MS based 

metabolic analysis of the root exudates and root tissues of the wheat lines contrasting for P. 

thornei resistance (Table 5.1, Table 5.2 and Table 5.3; Chapter 5). Their possible roles in an 
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incompatible wheat-P. thornei relationship is unknown. They may possess nematotoxic 

(nematostatic and nematicidal) and egg hatching inhibition properties against P. thornei. To 

test their effect against P. thornei, these compounds require further investigation. 

Commercially sourced chemical compounds can be applied to P. thornei to investigate their 

effect on motility, migration and egg hatching (eg. Čepulytė et al. 2018; Dutta et al. 2012; 

Rocha et al. 2017).  

 

The microscopic study investigated histopathological responses of P. thornei resistant and 

susceptible wheat roots infected by P. thornei (Chapter 6). The behavioural patterns of P. 

thornei observed inside wheat roots were largely similar to those reported for other root lesion 

nematode species observed in various hosts. However, distinct histopathological differences 

that correlated with resistance were not observed in this study. Additional root tissue from P. 

thornei resistant and susceptible wheat lines needs to be investigated microscopically over a 

longer period to identify any such differences, i.e., from root penetration until the end of 

lifecycle inside the root (eight weeks after inoculation). In present study, the fluorescent dye 

PKH26 (for P. thornei labelling) and confocal microscopy offered a non-destructive method 

of histopathological investigation of live nematodes inside root tissue. For further 

investigation, in addition to confocal microscopy, transmission electron microscopy could be 

considered for observing ultra-structural changes in the host cells. 

 

The histochemical staining suggested that due to P. thornei infection, cellulose, callose and 

lignin was deposited in the cell wall of the P. thornei resistant wheat cultivar, Sokoll (Chapter 

6). They may contribute to physical reinforcement of the cell walls, restricting P. thornei 

movement inside the root tissue. Whether cell wall modifications act against P. thornei, 

requires further investigation. For instance, nanoscale fluorescence microscopy can be 



 

 

199 

 

considered to decipher cell wall modifications during nematode resistance. Specifically, 

fluorescence resonance energy transfer (FRET) microscopy can be used to visualise protein-

protein interaction within living tissue, complementing other information on plant resistance 

pathways and putative host-pathogen interactions (Ellinger and Voigt 2014). Moreover, future 

study should consider histochemical observation of additional nematode resistance 

compounds. For example, flavonoids can be visualised in wheat root tissue using DPBA 

staining (Ferrara and Thompson 2019; Kawanishi et al. 2015). It will be worthwhile to 

investigate presence/absence or semi-quantitative differences in phenylpropanoid deposition 

between resistant and susceptible wheat lines, and to see if any such differences are correlated 

with resistance. 

 

7.8 Conclusion 

P. thornei resistance mechanisms in wheat were investigated from genetic, metabolomic and 

histopathological points of view. The P. thornei resistance QTL, QRlnt.sk-6D and QRlnt.sk-2B 

were fine mapped on wheat chromosome 6DS and 2BS, respectively. Several genes in these 

QTL intervals were identified representing plausible candidates for P. thornei resistance genes. 

Products of these genes included phenylpropanoid-biosynthetic-related enzymes, NBS-LRR 

proteins and protein kinases. The GC-MS based metabolic analysis of the wheat lines 

contrasting in P. thornei resistance revealed several nematode resistant metabolites, including 

the phenylpropanoid-biosynthetic-related compounds. The phenylpropanoid, lignin was also 

observed to be deposited in the cell wall of the P. thornei resistant wheat line. It will be 

worthwhile to further characterise the candidate genes and to investigate whether the identified 

compounds possess nematotoxic properties against P. thornei in wheat. Additionally, the cost-

effective P. thornei quantification method reported in this study, and the molecular markers 
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linked to the two resistance QTL could be used for selection of P. thornei resistant wheat 

cultivars.   
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Appendix 1 

Supplementary tables of chapter 3 

 

The following supplementary tables of chapter 3 was provided as an electronic file (Microsoft 

Excel spreadsheets).  

Supplementary 

Table 3.1 

Details of SNPs from the 90 K wheat SNP array that were shown using 

bulked segregation analysis to be linked to the QRlnt.sk-6D nematode 

resistance locus. Details of these SNPs were derived from Wang et al. 

(2014) 

Supplementary 

Table 3.2 

Details of SNPs from the 90 K wheat SNP array that were shown using 

bulked segregation analysis to be linked to the QRlnt.sk-2B nematode 

resistance locus. Details of these SNPs were derived from Wang et al. 

(2014) 

Supplementary 

Table 3.3 

Genetic linkage map of chromosome 6D of Sokoll /Krichauff double 

haploid population (65 lines) obtained using the 90K wheat SNP chip 

assay 

Supplementary 

Table 3.4 

Genetic linkage map of chromosome 2B of Sokoll /Krichauff double 

haploid population (65 lines) obtained using the 90K wheat SNP chip 

assay 

Supplementary 

Table 3.5 

Details of KASP markers used for constructing the genetic linkage map 

of chromosome 6DS. 1: 'A' refers to 90K wheat SNP chip array (Wang 

et al. 2014) and 'B' refers to cereal database, University of Bristol (Allen 

et al. 2011) 

Supplementary 

Table 3.6 

List of gene models between the markers flanking QRlnt.sk-6D QTL. 

Gene annotation based in Chinese spring IWGSC RefSeq v1.0 
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Supplementary 

Table 3.7 

Details of KASP markers used for constructing the genetic linkage map 

of chromosome 2BS. 1: Source of SNPs, 1 refers to 90 K wheat SNP 

chip array (Wang et al. 2014) and 2 refers to cereal database, University 

of Bristol (Allen et al. 2011) 

Supplementary 

Table 3.8 

List of gene modes located between markers flanking QRlnt.sk-2B QTL. 

Gene annotation based in Chinese spring IWGSC RefSeq v1.0 
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Appendix 2 

Supplementary tables of chapter 5 

 

The following supplementary tables of chapter 5 was provided as an electronic file (Microsoft 

Excel spreadsheets).  

Supplementary 

Table 5.1 

Entire data set for metabolite profile from root exudates of Pratylenchus 

thornei resistance (R) and susceptible (S) wheat cultivars, Sokoll (Sk), 

Krichauff (Kr), 6D-QTL representative doubled haploid (DH) line 35 

(6D-R), 2B-QTL DH line 52 (2B-R) and Null QTL DH line 114 (Null-

S) 

Supplementary 

Table 5.2 

Analysis of metabolites in root exudates associated with Pratylenchus 

thornei resistance. The level of metabolites (fold-change) were 

compared between resistant (Sk-R, 6D-R and 2B-R) and susceptible 

(Kr-S and Null-S) lines to identify metabolites linked to 6D+2B (Section 

A), 6D (Section B) and 2B (Section C) QTL. 1: Fold-change differences 

were calculated based on average values from four replicates. 2: 

Highlighted values refers to the significantly (P <0.05) higher (green 

colour) and lower (blue colour) level of metabolites (fold-change) in 

resistance line compared to the susceptible line. AA, OA, S, M refers to 

Amino Acids, Organic Acids, Sugars and Miscellaneous biochemical 

groups 

Supplementary 

Table 5.3 

Entire data set for metabolite profile from root tissues of Pratylenchus 

thornei resistance (R) and susceptible (S) wheat cultivars, Sokoll (Sk), 

Krichauff (Kr), 6D-QTL representative doubled haploid (DH) line 35 

(6D-R), 2B-QTL DH line 52 (2B-R) and Null QTL DH line 114 (Null-

S) 
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Supplementary 

Table 5.4 

Analysis of metabolites association with Pratylenchus thornei resistance 

QTL. The level of metabolites (fold-change) were compared between 

resistant (Sk-R-I, 6D-R-I and 2B-R-I) and susceptible (Kr-S-I and Null-

S-I) lines to analyse metabolites linked to 6D+2B (Section A), 6D 

(Section B) and 2B (Section C) QTL. 1: Fold-change difference were 

calculated based on average values from four replicates. 2: Green and 

blue coloured metabolites refer to higher and lower level of metabolites 

in resistance line compared to susceptible lines. AA, OA, S, M refers to 

Amino Acids, Organic Acids, Sugars and Miscellaneous biochemical 

groups 

Supplementary 

Table 5.5 

List of metabolites present in Pratylenchus thornei sample 

 

 

 

 

 

 
 

 

 

 

 




