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By considering a flavor expansion about the SU(3) flavor symmetric point, we investigate how flavor
blindness constrains octet baryon matrix elements after SU(3) is broken by the mass difference between
quarks. Similarly to hadron masses we find the expansions to be constrained along a mass trajectory where
the singlet quark mass is held constant, which provides invaluable insight into the mechanism of flavor
symmetry breaking and proves beneficial for extrapolations to the physical point. Expansions are given up
to third order in the expansion parameters. Considering higher orders would give no further constraints on
the expansion parameters. The relation of the expansion coefficients to the quark-line-connected and quark-
line-disconnected terms in the three-point correlation functions is also given. As we consider Wilson
cloverlike fermions, the addition of improvement coefficients is also discussed and shown to be included in
the formalism developed here. As an example of the method we investigate this numerically via a lattice

calculation of the flavor-conserving matrix elements of the vector first-class form factors.
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I. INTRODUCTION

Understanding the pattern of flavor symmetry breaking
and mixing, and the origin of CP violation, remains one of
the outstanding problems in particle physics. The big
questions to be answered are (i) what determines the
observed pattern of quark and lepton mass matrices and
(ii) are there other sources of flavor symmetry breaking? In
[1,2] we have outlined a program to systematically inves-
tigate the pattern of flavor symmetry breaking. The program
has been successfully applied to meson and baryon masses
involving up, down and strange quarks. In this article we will
extend the investigation to include matrix elements.
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The QCD interaction is flavor blind. Neglecting electro-
magnetic and weak interactions, the only difference
between flavors comes from the quark-mass matrix. We
have our best theoretical understanding when all three
quark flavors have the same masses, because we can use the
full power of flavor SU(3). The strategy is to keep the
average bare quark mass m = (m, + my + my)/3 constant
and expand the matrix elements about the flavor symmetric
point m, = m,; = my. Thus all the quark-mass dependence
will be expressed as polynomials in 6m, = m, —m, g = u,
d, s. It should be mentioned that this is a completely
different approach for studying the manifestations of low-
energy QCD than chiral perturbation theory. It is a
complementary method and based on group theory rather
than effective field theory.

The program has been successfully applied to meson and
baryon masses in [1,2] including an extension to incorpo-
rate QED effects [3-5]. Besides constraining the quark-
mass dependence of hadron masses, which helps in
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FIG. 1.
octet.

Left panel: The baryon octet. Right panel: The meson

extrapolations to the physical point, it provides valuable
information on the physics of flavor symmetry breaking.
For example, the order of the polynomial can be asso-
ciated with the order of 1/N_. corrections [6]. Furthermore,
similar to the analysis of Gell-Mann and Okubo [7,8], the
order of the polynomial classifies the order of SU(3)
breaking [1,2]. As opposed to the conventional method
of keeping the strange quark mass fixed, our method has
the further advantage that flavor-singlet quantities which
are difficult to compute can now be disentangled in
the extrapolation and are largely constant on the m
constant line.

In this article we shall concentrate on matrix elements
for the baryon octet as sketched in the Y-I5 plane in the
left-hand panel of Fig. 1. It is easy to translate the results
to octet mesons sketched in the right-hand panel of
Fig. 1. Furthermore we restrict ourselves to the case of
ng=2+1, ie., the case of degenerate u and d quark
masses, m, = m, = m;. (Initial results were given in [9].)
However our method is also applicable to isospin-breaking
effects arising from nondegenerate u and d quark masses.
We postpone this analysis to a separate paper, including
electromagnetic effects [10]. The formalism is general. In
our application we consider for definiteness just local
currents, but covering all possible Dirac gamma matrix
structure.'

While of intrinsic interest in itself, an obvious applica-
tion of this formalism is the determination of semileptonic
decay form factors and the associated CKM matrix element
|V .s|- In general disentangling quark-mass and momentum
dependencies is helpful for determining generalized form
factors of baryons, as described for example in the forth-
coming electron ion collider program [11].

The structure of this article is as follows. In Sec. II, we
discuss all possible currents (which we call “generalized
currents” here) and also their splitting into “first-class” and
“second-class” currents. Then in Secs. III-V we discuss the
group theory. In Sec. III we define our expansion parameter
om; and the general structure of our expansions. Also
discussed there (and at the beginning of Sec. VA) are

"It can also easily be extended to currents including covariant
derivatives.

simple cases which have previously been determined.
In particular the singlet case will be used later in this
article. Section IV gives our sign conventions (commonly
employed in chiral perturbation theory). As we have mass
degenerate u and d quarks, then there is an SU(2) isospin
symmetry. We then use the Wigner-Eckart theorem to
give the reduced matrix elements, contrasting the differ-
ence here to the usual conventions. Then in Sec. V, after
discussing the group theory classification of SU(3)
tensors, we determine those relevant to our study (with
complete tables being given in the Appendix B) and then
in Sec. VIA give the leading-order (LO) expansions.
Higher-order terms are given in Sec. VI B. These sections
giving the expansion coefficients form the heart of this
report. This is followed by Sec. VII where we briefly
restrict ourselves to a discussion of the amplitudes at the
symmetric point.

Continuing with the main thread, in Sec. VIII linear
combinations of the matrix elements are constructed for the
various baryons, leading to functions that all have the same
value at the SU(3) flavor symmetric point. Four different
“fan” plots are constructed, two detailed in Sec. VIII and a
further two given in Appendix B.

Lattice QCD determinations of matrix elements involve
the computation of three-point correlation functions, which
fall into two classes—quark-line-connected diagrams and
quark-line-disconnected diagrams. In Sec. IX, we discuss
the implications of this splitting for the SU(3) symmetry
flavor-breaking expansions at LO. In particular for the
connected terms, there are further constraints on the expan-
sion coefficients. In Sec. X this is applied to the baryon-
diagonal matrix elements (and as a special case to the
electromagnetic current). The quark-line-connected expan-
sions are given there with the general expressions described
in Appendix C, while the quark-line-disconnected expan-
sions are given in Appendix D.

In Sec. XI we discuss improvement coefficients
for the currents (see e.g., [12]) and show that they lead
to (small) modifications of the SU(3) flavor symmetric
breaking expansion coefficients. Using the vector current
as an example, we show how we can determine two
improvement coefficients (and the renormalization con-
stant). Section XII A briefly describes how matrix ele-
ments (i.e., form factors) are computed from the ratios of
three-point to two-point correlation functions. In Sec. XII
B, we describe our ny = 2 + 1 flavor Wilson clover action
used and provide some numerical details. In Sec. XIII,
specializing to the vector current again we give some
flavor-singlet “X” plots, showing their constancy for the
F| and F, form factors. This is followed by some fan plots
revealing SU(3)-breaking effects. The momentum transfer
(Q?) dependence of the expansion coefficients is also
investigated. The numerical values of two improvement
coefficients are also determined. Finally in Sec. XIV we
give our conclusions.
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II. BARYON MATRIX ELEMENTS AND
GENERALIZED CURRENTS

We take here generalized currents to be

3

I = gFyMg= > Frpan ™y, (1)
Fi

where ¢ is a flavor vector, ¢ = (u,d,s)T, F is a flavor
matrix and y™) is some Dirac gamma matrix. In particular
we have yM) = yM, 7(/\")/‘ng), 1, ing) and ¢M)" for
the vector VMK axial AM¥  scalar SM), pseudoscalar
PM) and tensor TV# generalized currents, respectively.
The further generalization to operators including covariant
derivatives is straightforward. With our gamma matrix
conventions, we obviously have

JEMT = GFTy (Mg, (2)

and so are Hermitian if the flavor matrix F is symmetric and
anti-Hermitian if F is antisymmetric.

We use Minkowski space,2 and to emphasize this we use
the superscript (M ). The expansion described later will be
valid whether we are working in Minkowski or Euclidean
space (when we will drop the superscript). We wish to
compute matrix elements for B — B’:

A(B— B) = (B'.p. 517" (q)

B,ﬁ,§> =Aprp. (3)

is also depicted there). This can thus include scattering
processes for example Be — Be or semileptonic (or
p-decays) B — B'er, from a parent baryon B to a daughter
baryon B’. For semileptonic decays in the standard model,
neutral currents are flavor diagonal, and hence there is an
absence of flavor-changing neutral currents (FCNCs), i.e.,
s — d transitions. In addition AS = AQ violating modes
are not seen. From Fig. 1 we see that this means that
transitions from right to the left in the picture are sup-
pressed or absent. For example 12 allowed nonhyperon and
hyperon f decays are listed in Table 1 of [13]. Of course the
present formalism does not incorporate these constraints,
but this can motivate our choice of independent matrix
elements, which are transitions from the left to the right
in Fig. 1.

Momentum transfer p) — pM)’ is more natural to take
for semileptonic decays, as this is the momentum carried by
the lepton and neutrino. However for scattering processes
pMY — pM) is more natural. We wish to adopt a unified
notation here, so we define the momentum transfer as

M) = p — M) = (Ey(5) — Eg(5). 7~ P). (4)

The decompositions of the matrix elements in Eq. (3) are
standard, and we write

(B 517" M (q)|B, p.5) = it (B'.5) T M (q)up(p. 5).

(5)
where B and B’ belong to the baryon octet, the members of
which are shown in Fig. 1 (the quark content of each baryon ~ with for M)
|
VM — Mg e Fo o s
MB + MB’ MB + MB'
. G G M)
AMu — ( MrG, 4 joMmgM __ 22 M3 > M)
4 ! YoMy my T Myt My )T
S(M) = gs,
PM = i gp,
h
TMupw — My 4 i aMpy, (M _ o (Mg, (Mypy 72
o 1 i(g ey Al vy v
h
4 i(gMmpMpy _ gMppMpy____ T3
(4 1 ) (Mg + Mp)?
h
i (MO M) (M My g (M) (Mpy T4 6
(r gDy A b v aur vy (6)

*The conventions used include " = diag(1,-1,-1,-1),
M .
y MOt = (M0, (M (MO Yg ) — iy MO0y (M1 (M)2, (M)3
oM = [ 2[y M (M),

and

where PM) = pM) 4 pM)Y - F, = FBFB G, =GBFB,
gs=g3""
and are functions of g2 and the masses of the baryons
(or alternatively the quark masses). Each combination in

, gp = gB"P and h; = hB'FP are the form factors
M)
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Egs. (5) and (6) represents a current times a form factor
(i.e., the coefficient). For example the first term for the
vector current reads iy (p', 5 )y ug(p, 5)FEFB(gM)?2),
The goal of this article is to establish ways in which these
form factors depend on the transition taking place and on
the quark masses.

From Egs. (2) and (3) we have

AEFTB’ = AE"FB’ (7)

and we now apply this to Eq. (5) with individual
terms defined by Eq. (6). Consider first the current
pieces. For example for the vector currents we find that
the first and second terms (i.e., currents) are unaltered:

M) (M))MB)* —

(iigy MPup ) = iigyMrug, (idgicMm(—g;

(M)””ql(,M)uB«, while the third current changes sign:
(itp (=g up )" = —iiy g™ up. Strong interactions are
invariant under 7 parity and from this it can be shown that
the form factors can be chosen to be all real. Hence from

Eq. (7) we must have

ﬁBiG

BFET R/ R/ RET R! p/
F?F B _ F?FB, FgF B _ FgFB, (8)
but
F‘ T p/ R/

F and F, are called first-class form factors while F; is
called a second-class form factor. This can be applied to all
the further currents. These properties of the form factors
thus give rise to the notation [14]

first class Fl,F2,G1,G3,gs,gp,h1,h2,h3,

second class F5, G5, hy (10)
[with the meaning given by Egs. (8) and (9)]. Note that
when B’ = B, then the second-class currents (i.e., form
factors) vanish. This occurs, either for a scattering process
(i.e., a diagonal current in flavor space, so the matrix F is
symmetric and the current is Hermitian) or for semileptonic
processes at the quark-mass symmetric point.

We now consider the flavor structures, i.e., the possible
flavor matrices in Eq. (1). In Table I we give the possible
octet states, i = 1,...,8 and in addition the singlet state,
labeled by i = 0. As we are primarily concerned with the
flavor structure of bilinear operators, we use the corre-
sponding meson name for the flavor structure of the bilinear
quark currents. So for example the i = 5 current is given by
the flavor matrix F, = diag(1,1,-2)/ /6. We shall use the
convention that the current i has the same effect as
absorbing a meson with the same index. In the operator
expressions ¢ is the annihilation operator and g the creation
operator. As an example, we note that absorbing a z™
annihilates one d quark and creates a u quark. That is,

TABLE I.  Our numbering and conventions for the generalized
currents. For example, By = X7, F3 = 7, J/3 = J* . We use the
convention that current (i.e., operator) numbered by i has the
same effect as absorbing a meson with the index i. y represents an
arbitrary Dirac matrix.

Index  Baryon (B)  Meson (F) Current (JF)

1 n K° dys

2 K+ itys

3 o - dyu

4 >0 7° \Lﬁ (tyu — dyd)

5 A° n \/LE (@yu + dyd — 25ys)

6 >t A iyd

7 =" K- Syu

8 =0 K° Syd

0 n \/L? (ityu + dyd + 5ys)
7710 « ), ()

while (pliyd|n) = (p|J*" |n) represents p = 7zt n.

As an example of this (current) notation the quark
electromagnetic current can be written by defining an
appropriate flavor matrix F or alternatively as

2 1- 1_
Jemu = guy”u —gdy”d—gsyﬂs
1 1

E%VZ‘UF%VZ. (12)

Furthermore the charged W currents are a mixture of the
charged 7 and K currents, while the Z current is diagonal
and thus a mixture of the z°, # and ' currents. The K°
current is a FCNC, so only contributes to beyond standard
model or higher-order processes.

The previous discussion on first- and second-class
currents can now be reformulated in terms of these flavor
matrices and isospin rotations.’ The diagonal currents, and
hence diagonal matrix elements, discussed here are given
by i =4, 5 and 0 with F,0, F, and F,, respectively. As a
result '3, Gy, gp, h, and A5 all vanish for these currents. For
the off-diagonal currents consider the SU(3) flavor sym-
metric point. As all the quark masses have the same mass,
and in particular the u and d quarks, then we first consider
isospin, /, invariance. Isospin rotations are d — u rotations
and relate off-diagonal currents to diagonal currents (for
example (p|J"|n) is related to (p|J™'|p); see Sec. IV B),
and similarly for U-spin rotations s —d and V-spin
rotations s — u. Hence we expect that for transitions within
a given multiplet (whether 7, U or V) at the SU(3) flavor
symmetric point then again F3, G, gp, h, and h5 all vanish.

3This discussion follows [15].
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Between isospin multiplets they need not vanish when
SU(3) flavor symmetry is broken. We later discuss this in
more detail and our coefficient tables, for example
Table VI, reflect these results.

ITI. QUARK-MASS EXPANSIONS

A. Choice of quark masses

As mentioned already, we follow the strategy used in [2]
of holding constant the average bare quark mass

[

n_’[:

3 (M +mg + my). (13)
This greatly reduces the number of mass polynomials
which can occur in Taylor expansions of physical quan-
tities and relates the quark-mass dependencies of hadron
masses or matrix elements within an SU(3) multiplet.
Since we expand about the symmetric point where all
three quarks have the same mass, it is useful to introduce
the notation

q=u,d,s, (14)

to describe the “distance” from the SU(3) flavor sym-
metry point. Note that it follows from the definition that
we have the identity

om, + omy + omy = 0, (15)

so we can always eliminate one of the m,,. In this article
we concentrate on the ny = 2 41 case; i.e., we keep

m, = my = m,. (16)

All our expansion coefficients are functions of m. The
methods developed here can be generalized to the case of
ny=1+1+1 nondegenerate quark-mass flavors. For
this case Eq. (15) reduces to

26m; + Smy = 0, (17)

which we use to eliminate om,. Thus, all mass depend-
ences will be expressed as polynomials in the single
variable 6m;. At the physical point m; < i, so om; is

|

(B;|JFi|B;) = Z(Singlet mass polynomial) x (singlet tensor), ;; + Z(octet mass polynomial) x (octet tensor)

TABLE II. Al the quark-mass polynomials up to O(ém3),
classified by symmetry properties.

Polynomial SU(3)

1 1

omy 8

(6m, — émy) 8

Sm? + sm? + 5m? 1 27
36m? — (6m,, — Smy)? 8 27
omy(my — 5m,,) 8 27

om, 6m  om 1 27 64
Smgy(Sm? + 5m? + 6m?) 8 27 64
(6m,, — dmy)(6m2 + Sm> + dm?) 8 27 64
(6mg—6m,,)(6mg—6my)(6m,—bmy) 10 10 64

negative. However on the lattice in principle we are free to
choose om; positive, and look at matrix elements on both
sides of the symmetric point.

B. Matrix elements

In the following we want to use group theory in flavor
space to calculate the possible quark-mass dependence of
baryonic form factors. However for simplicity of notation
we shall continue to discuss matrix elements and ampli-
tudes, but it should be noted that for form factors the
Lorentz or Dirac structure has been factored out. So we
shall consider the quark-mass expansion for

(Bi|J"1|By) = Ap,F,B,- (18)

The indices i and k will run from 1 to 8 for octet hadrons (or
1 to 10 for decuplets). The currents and operators we are
interested in are quark bilinears, so the index j will run
from 1 to 8 for nonsinglets or O for the singlet. In the
following the singlet will be considered separately. When
i # k we get transition matrix elements; when i = k within
the same multiplet, we get operator expectation values. This
has already been indicated in Table I.

The allowed quark-mass Taylor expansion for a hadronic
matrix element must follow the schematic pattern

ijk

+ Z(Z7-plet mass polynomial) x (27-plet tensor),;; + - - -. (19)

The mass polynomials have been determined and given in
Table III of [2]. The relevant part of this table is given in
Table IT where we classify all the polynomials which could
occur in a Taylor expansion about the symmetric point,

|
ém, =0,q = u, d, s up to O(5m}). The tensors in Eq. (19)
are three-dimensional arrays of integers and square roots of
integers, objects somewhat analogous to three-dimensional
Gell-Mann matrices. We recover the standard results for

114516-5
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unbroken SU(3) by only keeping singlet tensors on the
right-hand side of Eq. (19). Adding higher-dimensional
flavor tensors tells us the allowed mass dependences of
matrix elements. The dots in Eq. (19) represent terms that
are cubic or higher in ém,.

We now need to classify the three-index tensors accord-
ing to their group transformations, using the same tech-
niques we used for masses [2]. The new cases to look at will
be 8®8®8 and 10 @ 8 ® 10 for octet and decuplet
hadrons, respectively, 10 ® 8 ® 8 for transitions between
octet and decuplet baryons, and 3 ® 8 ® 3 for quark
matrix elements, useful for considering renormalization
and improvement of quark bilinear operators. We shall only
consider the octet (and singlet) baryon cases here.

C. Simple cases I: Decay constants f, and fx

The vacuum is a singlet, so vacuum to meson M matrix
elements or decay constants (0|JF/|M,), j=1,...,8, are
proportional to 1 ® 8 ® 8 tensors, i.e., 8 ® 8 matrices. So
again the allowed mass dependence of f, and f is similar
to the allowed dependence of M2 and M%, as given in [2].
Results using this approach are given in [16]. For example
to LO we have

fn=Fy+2Gém,
fK = FO - Géml (20)

The same argument applies in principle to hyperon dis-
tribution amplitudes ggq and to baryon decays via gqqe
4-Fermi grand unified theory interactions, but in this work
we shall only consider bilinear operators.

IV. METHOD FOR MATRIX ELEMENTS

Recall from Eq. (3) that we have used the notation for the
matrix element transition B — B’ of

Aprg = (B'|J7|B), (21)

where J is the appropriate operator from Table I and F
denotes the flavor structure of the operator. But note that as
we are suppressing the Lorentz structure, this includes first-
and second-class form factors as given in Eq. (10).

A. Sign conventions: Octet operators and octet hadrons

In the case of a ny = 2 + 1 simulation we only need to
give the amplitudes for one particle in each isospin
multiplet and can then use isospin symmetry to calculate
all other amplitudes in (or between) the same multiplets.
So, for example, we can calculate the X~ and >0 matrix
elements if we are given all the £t matrix elements.
Similarly, given the X' — p transition amplitude, we
can find all the other ¥ — N transition amplitudes. All
the symmetry factors will be listed in Sec. IV B.

In the next section we will calculate the allowed quark-
mass dependencies of the amplitudes between the baryons.
Within this set there are seven diagonal matrix elements and
five transition amplitudes, making 7 + 5 = 12 in total. The
seven diagonal elements are

A/inA7 AEnE and ANHN’ AiﬂZ? AEEE’

(22)

ANUN7 AinZ’

because there are four / = 0 amplitudes, one for each
particle, but only three / = 1 amplitudes, because isospin
symmetry rules out an I = 1, A° <> A® amplitude. There
are only five transition amplitudes:

Ason and Aggs,  Agga.  Ajgxs,  Askss (23)
because no octet operator changes strangeness by 42, so
there is no p <> Z° transition amplitude. See the forth-
coming Tables III and IV for the explicit results.

To discuss transition matrix elements, we need to specify
the hadron states carefully. If we do not, then the phases and
signs of transition matrix elements become ambiguous.
(This is not a problem with masses, or diagonal matrix
elements such as (p|J|p).)

We follow a convention commonly used in chiral
perturbation theory,4 e.g., [18,19] where the mesons trans-
form under SU(3) rotations like the 3 x 3 matrix

%EO—F%V] nt K"
M= n -5 +n K (24)
_ 0 2
K K — 7l

and octet baryons like the matrix

HE A Tt p
B= x- — 50+ A n ,
Cn g0 — A
50+ A - =
B— s+ _\/LEEO_’_\/LEAO =0
p il —\/igzio

(25)

“However some papers use different definitions, e.g., in
Chap. 18 of [17] the meson matrix M is defined the same
way as in Eq. (24), but in the baryon matrix B the £~ appears with
a minus sign in comparison to Eq. (25). Using the Gasiorowicz
convention [17] would give the opposite sign to all transition
matrix elements to or from the 2.
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TABLE III. The isospin relations connecting the set of octet
matrix elements with our standard subsets Azpp (each indepen-
dent set separated by an empty line). Top table: The / =0
diagonal relations; bottom table: the / = 1 transition relations
within the same isospin multiplet.

I
0 (n|J"|n) Ay
0 (pl"p) Ay
0 (=]7[=") Asys
0 (Z°J7Z0) Asys
0 (ZH|Z) Asys
0 (AO1J7|A°) Agya
0 (= |7E") Az
0 (2%)J7E") Agjz
I
1 (n|J* |n) —ANzN
1 (plJ*|p) ARan
1 (n|lJ™"|p) V2A5.n
1 (plJ="|n) V245
1 (=07 ) Aspy
1 <ZO‘J”O|EO> 0
1 T+ |2 Aspy
1 (|77 |20 Aszs
1 (X077 |z +) Aspx
1 (X017 |1Z7) Aszy
1 (Zt]J7"|Z0) Aszs
! (A0]J7'|A0) 0
1 (=17 |=27) —Agyz
1 (20177 |20) Agz
1 (=17 |2%) —V2Az,=
1 (207" |E7) —V2Az,=
So for example z™T, 0, 7~ are represented by the matrices
010 5 00 000
000|[, 0 -0 100|, (206
000 0O 0 0 000

respectively. Under an SU(3) rotation the M, B and B
matrices transform as
B— UBU",

M—UMUT, and B—UBU'. (27)

B. SU(2) relations

As discussed previously we use the convention that
operator number i, representing an appropriate flavor
matrix, has the same effect on quantum numbers as the
absorption of a meson with the index i. So, for example,

TABLE IV. The isospin relations connecting the transition set
of octet matrix elements with our standard subsets A 5 (each
independent set separated by an empty line). Tob table: The
“forward” I =1 and % relations; bottom table: the inverse

relations.

1
1 (Z7[J7 |A%) Aszn
1 (20177 |A) Aszn
! (ZFJ™|A%) Aszn
3 (n]J%"|27) Ayks
()
% ( |JKi|ZO> _ANKZ/\E
2 <p|JK0 |20> ANKZ/\/Q
: (p|JX° =) Ayks
: (n|JE"|A) Agka
% <P|JK+|AO> Afga
% <A0VK:)|E > AAKE
% (AO|JK7|20) Ajk=
> (Z|J5|27) Askz
% <ZO|JKZ|E > AEKE/\/z
% <ZO|JK+|E > —AEKE/\/E
3 (Z+|JK =0 Asgs
1
1 (A0]J™ |=7) Afzs
! (A7 |20) Az
(A01J7"|zH) ARez
3 (5 |n) Asgw
0
% (z |JK ) _Asz/\/_
% (=175 [p) AZKN/\/_
3 (=% p) Askn
% (A0|Jki)| ) ARknN
! (A% |p) Ak
3 (EITF]A%) Azga
3 (BOJF°|A9) Azga
2 (B [JF =) Asgs
) (& e I) Azgs/V2
> (B0 ~Azgx/V2
3 (E1F|ZH) Azgs

from Table I operator 6 annihilates a d quark and creates a u
and hence changes a neutron into a proton, i.e.,
(playd|n) = (p|J™"|n) = (Bo]J%e|By).  (28)
In Tables IIT and IV we list the isospin relationships
between all of the allowed matrix elements in the octet
and our standard 7 + 5 = 12 matrix elements.
Making the choice given in Egs. (24) and (25) which is
conventional in chiral perturbation theory, the isospin
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raising and lowering operators do not follow the usual
Condon-Shortley sign convention. The Wigner-Eckart
theorem applies, but the signs are not always the ones
from the standard Clebsch-Gordan coefficients.

To demonstrate this, consider the transformations given
in Eq. (27) with U = exp(ia;A’). Infinitesimal transforma-
tions (a; — 0) correspond to commutators of the type
[A!, B] or [A', M]. The isospin operations are constructed
from the first three 1 matrices:

1

Iiy=-7

3 D) s
1 1 112

I, == (A" +i2?),
2
1

I_ :5(,11 —i2?). (29)

. 1
IM=—-PM=| -=x 0 —3K° |, (30)
lp— 1p
-1k~ 1K 0
0 = Ip
. 1
13325[/13,3]2 =%~ 0 -—3in (31)
lo- 1
2= 2“0 0

For example regarding z~ as the matrix in Eq. (26) gives
0

2377.'_ = -1

0

0 0|=-r (32)

(see Fig. 1). Similarly for the baryons, for example
7371 = —%n, etc.

However 1, and I_ produce results at odds with the
Condon-Shortley or CS phase convention, which has
positive coefficients for the nonzero matrix elements of
the raising and lowering operators:

a —22° K°
M+i2M=]10 -z 0] (33
0 -K- 0

iM—l[
R)

Again using the 7~ as an example and comparing this result
with Eq. (24) we see that we have

1 0 0
I.wm=[0 -1 0] =22 (34)
0 0 0

Listing all the relations gives

7+7r_ = \/5710,

i+7r0 = 27+,

I,.K" =K+,

1.k~ =-K°. (35)
Similarly

1,2 =25,

1,320 = V25t

7+n =p,
1,58~ =-28° (36)

The action of _ is similar. Since these relations are not
those usually used to calculate the Clebsch-Gordan coef-
ficients, we need to tabulate the isospin relations within
each multiplet. The signs of the ] | matrix elements follow
directly from the choice of signs in the chiral perturbation
theory representation of the meson and baryon octets as
3 x 3 matrices in Egs. (24) and (25). The guiding principle
is to make the off-diagonal entries there positive. However
this tidy choice of matrix leads to a nonstandard phase
convention within isospin multiplets.

In the CS convention all the coefficients in Egs. (35) and
(36) would be positive. Looking at the baryon results
[Eq. (36)], we see that the neutron and proton are consistent
with that convention, while, for example, the Z~ and Z° are
not. The minus sign tells us that one of the = states must
have the opposite phase to the CS convention. Since only
relative phases are observable, we could choose the 20 to
have the CS phase and the =~ to have the flipped phase.
(Making the other choice would not change the final result.)
Similarly looking at the X baryons we could choose the X"
to have the CS phase and the £~ and X° to have flipped
phase (or vice versa).

One choice of phases that would match Egs. (35) and
(36) would be to choose the n, p, 2™ and =0 as standard,
and the ™, X% and Z~ as flipped, and the equivalent choice
for the meson currents (i.e., 7, o K- flipped). If we look
in Tables III and IV we see that matrix elements involving
an even number of hadrons from the flipped group, the
Clebsch-Gordan factor is the same as that in the usual
tables; if an odd number of flipped hadrons are involved,
the sign is the opposite to that in the usual tables.

As an example of the use of Table III, we show how the
unbroken SU(2) symmetry can be used to find the
transition amplitude (p|J” |n) from the corresponding

diagonal amplitude (p|J*'|p). From the table
(Pl™ |n) = V245, = V2(pl/"|p),  (37)

giving
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(playd|n) = (p|(iyu — dyd)|p). (38)

which is again the simple example showing the relation
between off-diagonal and diagonal currents briefly dis-
cussed in Sec. IL

V. MASS DEPENDENCE OF AMPLITUDES

We first consider the simple singlet case (operators with
the ' flavor structure, i = 0; see Table I) and then consider
the octet states.

A. Simple cases II: Flavor-singlet operators

For matrix elements involving singlet currents,
(B;|JF0|B;) = (B;|J"|B,), we need the SU(3) analysis of
8® 1 ® 8 tensors. These are just the 8§ @ 8 matrices
already analyzed in [2]. The conclusion is thus that matrix
elements of flavor-singlet operators follow the same for-
mulas as the hadron masses. An example of a flavor-singlet
operator is the quark component to the baryon spin, AX.
For example the LO expansion is given by

Ayyn = ao + 3a,6my,
ARya = ao + 3aémy,
Asys = ag — 3aomy,
Azyz = ag — 3(a; — az)ém, (39)

with higher orders given in [2].

B. Group theory classification: Flavor-octet operators

To find the allowed mass dependence of octet matrix
elements of octet hadrons we need the SU(3) decompo-
sition of 8 ® 8 ® 8. Using the intermediate result

SR8=10808d10® 10 @ 27, (40)

we find

SRR =10 1 O8D8DIDIDIDIDS
O8D2T D27 D27 B 27T D27 & 27
@410 10D 10010 106 10
1010350350350 35. (41)

With three unequal quark masses, the ny, =1 + 1 + 1 case,
I3 and Y are both “good” flavor quantum numbers, so the
tensors in Eq. (19) will satisfy I3 = 0, Y = 0; i.e., they will
be the central locations (spots) in each multiplet in Fig. 2.
Thus in a full n; =1+ 1+ 1 flavor calculation (three
different quark masses) we would see contributions from all
the representations in Eq. (41).

Fortunately in the n; =2+ 1 case the good flavor
quantum numbers are / and Y, giving us the stronger
constraint that only tensors with / =0, ¥ = 0 enter into
Eq. (19). The 10, 10, 35 and 35 do not contain any I =0,

FIG. 2. I3, Y plots for some of the SU(3) multiplets which
appear in the decomposition of 8 ® 8 ® 8. The left-hand plot
illustrates the octet, 27-plet and 64-plet representations (clock-
wise). The right-hand plot shows the 10- and 35-plets (left to
right). The number of spots in the central location gives the
number of flavor-conserving operators in each multiplet.

Y = 0 operators, so they no longer contribute in the 2 + 1
case, which means that we can neglect those representa-
tions at present [17,20]. For example for the ¥ = O line for
the octet, we have an isospin triplet and singlet of states and
similarly for the 27-plet (isospin 5-plet, triplet and singlet)
and 64-plet (isospin 7-plet, 5-plet, triplet and singlet).
However for the 10-plet we have just an isospin triplet
and for the 35-plet a 5-plet and triplet. In both cases there is
no Y = 0 isospin singlet.

We have already seen this phenomenon in [2] for the case
of the 10 and 10. The simplest quark-mass polynomial with
10, 10 symmetry was (m;—3om,,)(Sms—my)(m, —5my)
(see Table II), which vanishes if any two quark masses are
equal. The 10 and 10 only appeared in two quantities we
have considered, the violation of the Coleman-Glashow
mass relation and in X% — A? mixing [21], both of which
are isospin violating.

C. The SU(3) symmetry-breaking expansions

1. Basis

Because 8 x 8 x 8 tensors are easier to think about than
3x3x3x3x3x3 tensors we switch to regarding
baryons and mesons as vectors of length 8. We have used
the ordering

n KO

P K*
5 _
>0 7°

0 and . (42)

A n
v+ e
=2 K~
EO kO
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The 8 generators of SU(3) are now a set of 8 x 8 matrices, chosen so that AB in the matrix-vector notation has the same

effect as [4, B] in the 3 x 3 matrix-matrix notation. We have

0

2

0

V2 0

0 0

0
0

iv2

0

-iv2 0 0

—i\/i

0 O

2=

0
0
0
0
0
0
0

0
0
0
0
0
0
-1

0 0 0 O
0 0O
0

0

0

-1

-2 0 0 O

0
0
0
0
0

0 O

0 0O
0 0 O
0 0 2
0 0 O
0 0 O

0
0
0
0
0

/13

0000@0
OOlﬁOO
o o o o o o
on
f_OOOOﬁ
T o o o o —
oo o o o o
lﬁ
o o 7 =
|
<
o c o o o
|
'S
o
I
<
~<
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0 0 W2 0 0 0 0 0
0 0 0 i i3 0 0 0
-iv2 0 0O 0 0 0 0 0
s_Ll oo —i 0O 0 0 0 —i 0
V2 o -iv3 0 0 0o o0 —-iv3 o |
0 0 0 0 0 0 0 -iV2
0 0 0 i i3 0 0 0
0 0 0 0 0 W2 0 0
0 0 0 1 —/3 0 0 0
0 0O 0 0 0 -2 0 0
0 0O 0 0 0 0 V2 0
o L] 0O 0 0 0 0o 0 -1
V2 =v3 0 0 0 0 0 0 V3|
0 -2 0 0 0 0 0 0
0 0 V2 0 0 0 0 o0
0 0 0 -1 3 0 0 0
0 0 0 —i W3 0 0 0
0 0 0 0 0 V2 0 0
0 0 0 0 0 0 -iv2 0
AR 0 0O 0 0 0 0 i
V2| -iv3 0 0 0 0 0 0 -iv3|
0 —-iv/2 0 0 0 0 0 0
0 0 W2 0 0 0 0 0
0 0 0 —i iWv3 0 0 0
1 00000 O O
010000 O O
000O0O0O0O O O
000O0O0O0O O O
’18:\@0000000 0 (43)
000O0O0OO0O O O
000O0O0GO0 -1 0
000O0O0O0O 0 -1

These 8 x 8 1 matrices follow similar relations to the  with the difference that the 3 x 3 matrices tell us about /5
familiar 3 x 3 matrices, and Y for the individual quarks, but the 8 x 8 matrices give
the quantum numbers of the octet baryons or octet mesons.

[Al, ] = 2ifik K, Tr(AW) = 126Y, (44)
2. Transformations

and Under an SU(3) rotation the tensors on the right-hand
side of Eq. (19) transform according to

T;jk = UjaTabC Up;Uer- (46)

114516-11



J. M. BICKERTON et al.

PHYS. REV. D 100, 114516 (2019)

The change in 7 under an infinitesimal transformation by
the generator A* is

OT = =2, Taji + Tindfyy + Tijeddy. (47)

The Casimir operator for the SU(3) representation is

~ 1 A
er=7 00T, (48)
a=1.,8

while the Casimir for the SU(2) isospin subgroup is

. 1 =~ &
’T = 1 > 0°0°T. (49)
a=13

The n; = 2 + 1 mass matrix commutes with 2', 2%, 2> (the
generators of isospin) and A% (hypercharge). We are looking
for tensors which obey these symmetries, so we require
0°T=0, a=1,2238. (50)
The Casimir operator has the following eigenvalues for the

representations occurring in 8 ® 8 ® 8 [see for example
Chap. 4 of [20] or Chap. 7 (exercise 7.12) of [22]]:

representation 1 8 10 10 27 35 35 64,
Casimir eigenvalue 0 3 6 6 8 12 12 15.

We now want to construct tensors which are eigenstates of
the Casimir operator and which satisfy the conditions in
Eq. (50). This is analogous to constructing an eigenvector if
we know the eigenvalues. We have a large number of
simultaneous linear equations involving the numbers 7';j;.
The solutions tend to be sparse with the conditions in
Eq. (50) forcing many entries to be zero. We calculate the
tensors of a given symmetry with the help of Mathematica
[23]. We begin with a completely general tensor T';;; with
83 entries and impose the conditions Eq. (50). This forces
many entries to be zero, as it eliminates all entries in which
the flavor quantum numbers of the “outgoing” particle i is
not the sum of the flavors of j and k (for example
(29|77 |p) = 0 because charge and strangeness do not
balance). The conditions Eq. (50) are also sufficient to force
all the relations in Tables III and IV to hold. After imposing
Eq. (50) we have reduced the initial general tensor with
83 = 512 entries down to a tensor with only 17 independent
parameters. From the decomposition of 8 ® 8 ® 8 as given
in Eq. (41) we can work out how many solutions there are
of each symmetry. The representations 1, 8, 27 and 64 each
have a single state satisfying Eq. (50), while the 10, 10, 35
and 35 have no states compatible with Eq. (50) because
they do not have a ¥ = 0, I? = 0 central state; see Fig. 2
and the related discussion. The 17 linearly independent
tensors remaining after imposing Eq. (50) can now be

further classified as eigenstates of the Casimir operator.
Finding these tensors is a simple matter of solving
simultaneous equations, analogous to determining an
eigenvector once the eigenvalue is known.

As in the case of degenerate eigenvalues, there is a
degree of choice in choosing which linear combinations of
the eigenstates we choose as our basis. Often there are
interchange operations which we can choose to be even or
odd. In particular we can choose our tensors to be first class
or second class depending on the symmetry or antisym-
metry when the baryons are switched, as discussed
in Sec. II.

We can see this by introducing a reflection matrix R
which inverts each octet, leaving the central two states
unchanged:

- O O O O o o O
o = O O O O o O©
S O = O O O O O
o O O O = O O O
S O O = O O O O
o O O o o = O O
S O O O o o = O
S O O O o o o ==

For the mesons this is the charge conjugation operation. We
note that R? = I (the unit matrix), so R can only have the
eigenvalues +1; hence we can classify states according to
whether they are even or odd under operations involving R.
Tensors can be divided into first or second class depending
on the symmetry:

first class T, = +T4iRyjs

second class Ty = =T iRy (53)
in which the baryon order is reversed and R applied to the
current (meson) index. Furthermore the definition of first-
or second-class tensors in Eq. (53) agrees with the previous
discussion: in Egs. (8), (9) we interchanged B and B’ and
took the transpose of the flavor matrix F. This latter
operation is easily seen to be equivalent to the reflection
R in Eq. (53).

We can further classify tensors by the symmetry when R
is applied to all three indices:

d—=like Tjj = +R;gTapcRpjR
f=like Ti=—RiuTapRpRex- (54)
As can be seen from Eq. (41) there must be two singlet

eigenstates, eight octets, six 27-plets and one 64-plet, 17 in
total. All tensors T are classified by their symmetry
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TABLE V. All the quark-mass polynomials in the isospin limit
up to O(dm3), classified by symmetry properties.

Polynomial SU(3)

1 1

om )i 8

Sm? 1 27

Sm? 8 27

s’ 1 27 64
s 8 27 64

properties, according to whether first or second class,
Eq. (53), and whether they are f-like or d-like, Eq. (54),
and are given by

T. 1%tclass T, 2"class
SU(3) d-like f-like d-like  f-like
¢ f (55)
8 ry,r,r3 S$1, 982 tl,tz u
27 q1-92 Wi, Wy X1 Y1
64 z

Furthermore in Appendix A we list all nonzero elements for
all 17 tensors, together with their values. For example in
Eq. (56) we give the nonzero elements of the tensors T = ry
and #;:

T Ty ijk
r.__ 1 151 252 353 454 555 656 751 858
1 115 225 335 445 665 775 885

—1 518 527 536 544 563 572 581

(56)

The values of the nonzero T, elements are given in the
second column, while their position is given in the third
block. In particular we see that the r; tensor only has eight
nonzero entries, all identical in value, in the positions 7s;,
where i can take any value from 1 to 8. It can easily be
checked, for example, that the tensors r; and #; with
nonzero elements as given in Eq. (56) are first- and second-
class tensors, respectively.

The r; tensors are d-like and can be regarded as
responsible for the quark-mass dependence of the d
coupling (see the d fan in Sec. VIII), while the s; tensors
are f-like and act as quark-mass-dependent additions to the
f coupling (as seen in the f fan—see Sec. VIII).

We are now finally in a position to present the
SU(3) flavor symmetry-breaking expansions. As we are
considering only the isospin limit, Eq. (16), then Table II
reduces to Table V. For example, let us consider
(p|J*" |n) = (B,|J¥4|B,), Eq. (28). From Table III, this is
\/EAN,;N- Hence from Eq. (19), and using Table V and

Appendix A (for the nonzero 261 component of the
appropriate tensor) and using the same notation for the
expansion coefficients as for the tensor gives the LO
expansion

V245, =1 X (V2f +V6d) +6m; x (=2v/2r; +2/2s,).
(57)

At higher orders, we also need in addition the nonzero
elements of the 27- and 64-plet. Further examples are given
in the next section in Egs. (61) and (62).

VI. COEFFICIENT TABLES

We use the same notation for the expansion coefficients
as for the tensor. For example the r; tensor (with compo-
nents 7T';s5;) has expansion coefficient r;.

A. Leading-order coefficient tables

The SU(3) singlet and octet coefficients in the mass
Taylor expansion of operator amplitudes are tabulated in
Table VI. These coefficients are sufficient for the linear
expansion of hadronic amplitudes on the constant 7 line.
(If m were not kept constant, there would be two more
linear terms.)

The table is to be read: for first-class currents the f and d
terms are independent of the quark mass, while the r, r,, r3
and sy, s, coefficients are the LO or ém; terms. For second-
class currents, as discussed previously, there are no leading
f and d terms; the expansion starts at O(5m;) for the off-
diagonal currents or completely vanishing for the diagonal
currents.

Thus for example to first order in om; (i.e., LO) we can
read off from Tables III, IV and VI

(Pl p)=AxNn = V3f—d+(r)—sy)0m,,
(n|JX"|27) = Aggs = —V2f +V6d+ (V2r; +V2s,)6m,
(SHJIEY) = Agys =2d + (r) +2V/3r3)dm, (58)

for first-class currents [for example for the vector current
the form factors F| and F, from Eq. (10)] and

(n|J5"|27) = Aggs = (\/512 + \/6”1)5st
()X |n) = As gy = —(V21, + V6uy)dm,  (59)

for second-class currents (for example for the F5 vector
form factor).

A notational comment: we shall usually suppress argu-
ments and indices, but each coefficient in Table VI is a
function of the (momentum transfer)? Q2 as well as being
renormalized or not. Thus for example for the renormalized
vector current, the f coefficient in Table VI is to be
understood as f — fVE (i, Q?).
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TABLE VI. Coefficients in the mass Taylor expansion of A operator amplitudes: SU(3) singlet and octet, for both first-class and
second-class currents. The first row gives whether singlet or octet and first or second class, and the second row gives the order in ém;.
The third row gives whether the associated tensor is f-like or d-like according to the definition given in Eq. (54). These coefficients are

sufficient for the linear expansion of hadronic amplitudes.

1, st class, O(1)

8, 1st class, O(6m;)

8, 2nd class, O(5m;)

f d d d d f f d d f

I Apgrp f d r ra r3 81 52 1 5 up
0 NyN V3 -1 1 0 0 0 -1 0 0 0
0 YD) 0 2 1 0 2V3 0 0 0 0 0
0 AnA 0 -2 1 2 0 0 0 0 0 0
0 EnE -3 -1 1 0 0 0 1 0 0 0
NzN 1 V3 0 0 -2 2 0 0 0 0

1 ¥ 2 0 0 0 0 ) NG 0 0 0
1 ErZ 1 -3 0 0 2 2 0 0 0 0
1 SzA 0 2 0 1 -3 0 0 1 0 0
Axx 0 2 0 1 -3 0 0 -1 0 0

! NKX -2 V6 0 0 V2 V2 0 0 V2 V6
! NKA -3 -1 0 1 0 -3 1 1 V3 -1
! AKE V3 -1 0 1 0 V3 -1 -1 -3 -1
1 K2 V2 V6 0 0 V2 -2 0 0 -2 V6
! KN -2 V6 0 0 V2 V2 0 0 /2 -6
: AKN -3 -1 0 1 0 -3 1 -1 -3 1
1 EKA V3 -1 0 1 0 V3 -1 1 V3 1
! EKS V2 V6 0 0 V2 -2 0 0 V2 /6

Note that the clean separation of amplitudes and form
factors into first and second class depends on the fact
that we have defined our amplitudes in ways that treat
the parent and daughter baryons symmetrically. If we had
used an unsymmetric definition, for instance always
normalizing amplitudes in terms of the parent baryon’s
mass, we would find #; and u; coefficients appearing in the
expansions of quantities which “should” only involve the
symmetric terms.

B. Higher-order coefficient tables

For completeness in Table VII we detail the additional
quadratic and cubic coefficients in the mass Taylor
expansion of the operator amplitudes for the 27- and
64-plets.

For first-class currents in Table V the singlet terms do
not contribute at the linear O(5m;) level but are present
at the quadratic O(ém?) and cubic O(ém;) levels.
Similarly the octet terms are missing at the O(1) level
but are present at higher orders. Hence these terms are
also present at the higher orders in the SU(3) flavor-
breaking expansion. There are 54 7 = 12 amplitudes,
and at the O(6m?) level 11 free parameters, so there is
one constraint. (Alternatively at the O(6m?) level one can

have all possibilities which are orthogonal to the 64-plet,
so there is again just one constraint.) At the O(5m?) level
one has 12 free parameters for the 12 amplitudes (11
previous and one extra one from the 64-plet, the z term).
Hence there are now no more constraints available at this
and higher orders in om;.

For second-class currents, there are constraints at the
O(6m;) order as we have five amplitudes but only three
expansion coefficients. However at the next O(6m?) level
we have additional two parameters, so there are no more
constraints available. Hence for second-class operators
there is no point in going higher than linear in the quark
mass in the SU(3) flavor-breaking expansion.

Thus, for example, from Tables VI and VII we would
have for the first-class current

(pl"|p) = Agyn
=V3f —d+ (r, — $3)0m; + (V3f* — d&* + r*
— 55 + 64, + 3> + 3V3w,)m?
+ (V3N = d 4 X — 55 + 64 + 3¢5

+3V3w5 + 3V3z)om3, (60)
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TABLE VIL

Additional coefficients in the mass Taylor expansion of operator amplitudes: SU(3) 27-plet and 64-plet. These additional

terms first appear at the quadratic and cubic levels, respectively. The same notation as for Table VI.

27, Ist class, O(5m%)

64, 1st class,O(ﬁm?) 27, 2nd class, 0(5m12)

d d f f d d f
1 Aprp 91 q2 wi w2 z X1 V1
0 NyN 9 3 0 3V3 3V3 0 0
0 = -6 -10 0 -3 0 0
0 AnA -18 18 0 -9V3 0 0
0 BB 9 3 0 -3\/3 3V3 0 0
1 NzN -5V3 V3 4 -1 1 0 0
1 Vo) 0 0 —4 0 0 0
1 EnE 5V3 V3 4 -1 -1 0 0
1 SzA 14 -6 0 -3 4 0
1 AzZ 14 -6 0 _J/3 —4 0
3 N KX 0 2v6 -3V2 2V2 V2 V6 V2
! NKA -6 0 3V3 3V3 -3 3V3
1 AKE -6 0 -3V3 3v3 3 3V3
! IKE 0 26 3v2 -2V2 V2 -6 V2
1 ZKN 0 26 -3V2 2V2 V2 -6 -V2
3 AKN -6 0 3v3 3V3 3 -3V3
! EKA -6 0 33 33 -3 _3/3
! EKX 0 2/6 3v2 —2V2 V2 V6 -2

where f and d are the leading coefficients and f*, f** and
d*, d** are the additional subdominant coefficients of the
same form as the LO singlet; see Table V. (We use x and xx
superscripts to distinguish them.) Similarly for ry, s,, g1, ¢»
and w, and the octet. For the second-class current

(n|JE"|27) =Aggs = (\/Efz + \/6”1)5’"1

+ (V285 +V6us +V5x, +V2y,)dm?.  (61)

However as just discussed the O(Sm;) term for the first-
class currents and the O(ém?) term for the second-class
currents have no constraints between the coefficients and
hence contain no new information.

From Egs. (40) and (41) and as previously discussed we
see that there is one 64-plet in the decomposition of
8®8®S, but none in 8 @ 8 and therefore 64-plet
quantities only show up at O(6m3}) as shown in Table V.
In [2] we have seen that the 64-plet combination of decuplet
baryon masses is extremely small and we should probably
expect that the 64-plet combination of amplitudes will also
remain very small all the way from the symmetric point to
the physical point. By using Mathematica we construct the
64-plet flavor tensor and find that it corresponds to the
combination

Q64 = 2A1\77/N - Afr]E - 3A/§qA + 2A§11E

2
+—= Ay — Azzz) — (Asn + Aies)

V3

+2(Agks +Agxa T Aign T AzkA)

2
+ \/;(ANKZ + Askz + Azgs +Askw)

= O(om}), (62)
and as expected the linear and quadratic terms in om,
vanish. We also note that this quantity should be zero at the
one-loop level in chiral perturbation theory [6].

In the remainder of this article we shall not consider
these next-to-leading-order (NLO) and next-to-next-to-
leading-order (NNLO) higher orders further.

VII. AMPLITUDES AT THE SYMMETRIC POINT

We now further discuss amplitudes at the symmetric
point. From Eq. (41) there are two octets and one singlet in
the decomposition of 8 ® 8, so there will be two singlets in
8 ® 8 ® 8. This means that at the symmetric point there
are two ways to couple an octet operator between octet
baryons. These correspond to the first two columns of
Table VI. These two couplings are traditionally given the
letters F and D. The F coupling has a pattern related to the
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SU(3) structure constant f;;, and the D coupling is
related to d;j. In terms of the 3 x 3 matrices, the F
coupling is proportional to Tr(M|[B, B]) and the D coupling
to Tr(M{B, B}).

Let us first look at the pattern of amplitudes at the
symmetric point [with no breaking of SU(3) flavor
symmetry]. We can read off the corresponding hadronic
matrix elements from Table VI and can construct many
matrix element combinations which have to be equal at the
symmetric point, for example

V3 1
- (PWp) +5 (™ Ip) = (ZF 77 [2H)
V3 i oe 1 _
=) + L)
— 2f’

L)+ 2 1 ) = ()
= — (A0
1 V3

=0 =0 =01 77° =0
= ——(E°|J1EY) —— (B°|J" |E
2 (EOE?) — L2 (20 |2

= 2d. (63)

These relations become more transparent if we write the
operators out in gyq form, following Table I, giving

\i@@<ayu—sys>|p>=%<z+|<ayu—£zyd>|z+>

_ 1 =0 (G A =0\ _

ﬂ<~ |(Sys—dyd)|E”) =2f, (64)
from the first line of Eq. (63). Written out in this form, it is
clear why these three matrix elements have to be the same
at the symmetric point. The u content of the proton is the
same as the u content of the = or the s content of the E°,
because in each case it is the “‘doubly represented” valence
quark. Likewise the s in the proton is the same as the d in
the =* or the d in the E° because in each case it is the
nonvalence flavor. So the relations in Eq. (64) are simple
consequences of flavor permutation [the S5 subgroup of
SU(3)]. Similarly, the second line of Eq. (63) implies

.
7 (pl(@tyu + Sys — 2dyd)|p)
1 -
= 2 &y + dyd = 2579)|")
[y 5 N
=7 (E2%(5ys + dyd — 2iiyu)|E°)
— 2. (65)

All these matrix elements have the same pattern, doubly
represented + nonvalence —2x singly represented, so again
we can understand why they all have to be the same at the

symmetric point. Note that the operator in the d equation,
Eq. (65), is always orthogonal to the operator in the f
equation, Eq. (64). We could also look at the pattern
“doubly represented—singly represented,” which is just a
linear combination of Egs. (64) and (65). Thus

%(pKﬁyu — dyd)|p)

(X[ (ityu — 5ys)|=")

(20|(5ys — iayu)|E°) = f +V/3d.  (66)

S-Sl

Of course we cannot deduce the full structure at the
symmetric point from flavor permutations alone; identities
such as

Air/E = _A/inA = AAnZ’ (67)

connecting diagonal matrix elements to transition amplitudes,
require more general SU(3) rotations to establish them.

VIII. MASS DEPENDENCE: “FAN” PLOTS

If we move away from the symmetric point, keeping
fixed, nonsinglet tensors can contribute to Eq. (19). To first
order in 6m; we only need consider the octets, so we can
then read the mass terms off from Table VI with an example
being given in Eq. (58). We can examine the violation of
SU(3) symmetry caused by the m, — m; mass difference by
constructing quantities which must all be equal in the fully
symmetric case but which can differ in the case of ny =
2 4+ 1 quark masses.

We now discuss two so-called fan plots—the d-fan plot
and the f-fan plot. In Appendix B we discuss some further
fan plots (called there the doubly represented—singly rep-
resented fan plots, namely the P-fan plot and the V-fan plot).

A. The d fan

Using Table VI we can construct seven quantities D;,
which all have the same value (2d) at the symmetric point
but which can differ once SU(3) is broken:

Dl = _(AN;']N +AE_J]E) =2d- 2r16m[’

Dy = Ag;s = 2d + (ry +2V3r3)5m,,
D3 = _AAnA = 2d — (7'1 + 27’2)5"’11,

1 4
D,=— Ai;z _Aflr': = 2d — —=r36m,,
4 \/g( NzN —-—-) \/g 3 !
Dy = Agon =24+ (12— VAry)om,
1 2
D, = Ajrs + Asp=) = 2d + —=ry0my,
° \/6( six + Asiz) V3
D7 = —(Ajga + Ajkz) = 2d — 2r)my. (68)
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Plotting these quantities gives a fan plot with seven lines
but only three slope parameters (ry, r, and r3), so the
splittings between these observables are highly constrained.
Of course, these seven quantities are not a unique choice;
other linear combinations of them could be chosen. At the
next order (quadratic) in ém; there is one constraint, from
Eq. (62). In terms of the D; this reads

(69)

In the d fan we can thus choose six independent quadratic
coefficients and fix the seventh from this constraint.

A useful “average D” can be constructed from the
diagonal amplitudes

X, Eé(Dl 42D, +3D,) = 2d + O(5m?), (70)
chosen so that the O(6m;) coefficient vanishes. Other
average D quantities are possible if we also incorporate
transition matrix elements. These average quantities can be
useful for helping to set the lattice scale [24].

It is useful to construct from this fan plots of D;/Xp.
However for our later example of the vector current, X
vanishes at Q> = 0 and is always small, so we consider
alternatively here D; = D;/X.

B. The f fan

Again using Table VI we can construct five quantities F,
which all have the same value (2f) at the symmetric point
but which can differ once SU(3) is broken:

1 2
Fi=—7 Ay —Ag) =2f - 75525””1’

>

Fy = (Agzy + Aggz) = 2f + 4s10my,
F3=Ag,y = 2f + (=251 + V3s55)m,

1
F,=—(Asre — Ay =2f —2s,6my,
4 \/§< SKE NKz) S 1om;
1 2
Fei=—(Afre —Ag =2f +—(\/3s, — 5,)6m,.
5 \/g( AKE NKA) f \/g( 1 2) [

(71)

Plotting these quantities gives a fan plot with five lines but
only two slope parameters (s; and s,), so the splittings
between these observables are again highly constrained. At
quadratic and higher level there are no constraints between
the coefficients for the f fan.

Again a useful “average F”’ can be constructed from the
diagonal amplitudes

1
6

and again we can construct fan plots of F; = F,/Xp.

| ®
N N

0

—

0

—

FIG. 3. The three-point quark correlation function for a baryon.
The cross represents the current insertion. Left panel: The quark-
line-connected piece; right panel: the quark-line-disconnected
piece.

The f fan has the nice property that, to linear order, there
is no error from dropping quark-line-disconnected contri-
butions. This is because r; is the only parameter with a
quark-line-disconnected piece, and none of the r; param-
eters appear in the f fan. We shall prove and expand on this
point in the following sections by considering the con-
nected and disconnected expansions separately.

IX. QUARK-LINE-CONNECTED
AND -DISCONNECTED DIAGRAMS

In lattice QCD for the three-point function and its
associated matrix element (see Sec. XII A for some further
details) we have two classes of diagrams to compute:
quark-line connected (left panel of Fig. 3) and quark-line
disconnected (the right panel of Fig. 3). We first write

(B'lJT|B) = (B'|J¥|B)*" + (B'[J*|B)*.  (73)

corresponding to the left and right panels of Fig. 3,
respectively. Note that an alternative notation for the
quark-line-connected piece is the valence matrix element
(B'|JF|B)*°" = (B'|J7|B)¥™. However we shall usually just
say connected matrix element.

The quark-line-disconnected diagrams cannot occur for
transition matrix elements B’ # B but can for diagonal
matrix elements B’ = B. From Table I we see that dis-
connected diagonal matrix elements can only happen for
the currents J”O, J"and J7 (indices 4, 5 and 0, respectively).
As we are only considering mass degenerate u# and d quarks
then for the J*' operators, the #-loop and d-loop quark-line-
disconnected pieces always cancel. Thus apart from the
singlet operator J”, this leaves only the J” operator to
consider. At the symmetric point, the disconnected con-
tribution to J” will cancel. If one moves to m, # m;, then
disconnected # contributions will become nonzero, as twice
the strange loop will not be equal to the u loop + d loop.
However, at leading order, this effect is going to be the
same for all baryons, so it has the pattern only of r; in
Table VI. Hence r; must have a disconnected piece.
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More explicitly first consider the flavor diagonal ampli-
tudes. In each baryon the disconnected u and d terms are
equal (as m, = my), so
<2+‘Jﬂ0|2+>dis,

<p|JJz“|p>dis’ <EO|J71“|EO>dis (74)

all vanish. Hence

fdis + \/gddis =0, fdis =0, fdis _ \/gddis -0
(75)
and
_r(3jis + stliis =0, _2S(ljis + \/gsgis =0, dlS + SdlS _
(76)
giving
fdis’ ddis, ’,.f31is, scliis7 S(Ziis =0. (77)

This was briefly considered for the axial current in [25] but
the results here are more general than given there.

Consider now the transition amplitudes. As stated
previously disconnected terms cannot cause a transition
that changes flavor. In particular considering K current
transitions they must all be connected, so from Table VI
this again shows that all the above coefficients in Eq. (77)
have no disconnected piece, together with the additional
result

rdis = 0, (78)
which means that indeed only r4* contributes. Thus in future
we need only distinguish between connected and discon-
nected contributions for the r; coefficient. Differences
between the disconnected pieces in different baryons will
therefore first contribute at quadratic order in the SU(3)
flavor symmetry-breaking expansion.

We shall now develop and make these considerations
more explicit in the following section.

X. MASS DEPENDENCE: FLAVOR-DIAGONAL
MATRIX ELEMENTS

In the previous sections we have developed SU(3)
flavor-breaking expansions for (B’|J”|B), which are suffi-
cient for transition matrix elements. However for diagonal
matrix elements we need the additional expansion
(B|J|B) as discussed in Sec. VA. This will now enable
all diagonal matrix elements to be given for each individual
quark flavor.

From Table I we see that the diagonal flavor states are
given by z° (index 4) and 7 (index 5), together with the

singlet flavor state ' (index 0). These can be inverted to
give ityu, dyd and §ys in terms of J” J* and J" as

1,1,
Sy A L ()
V3iioV2 V6

_ 1 1 1
dyd = —J7" ——J" +
ri=5"~p7 R

1, 2
Sys = —J1 —\/:1’7. 79
=5 3 (79)

As discussed previously in Sec. V A, the additional expan-
sion for the singlet current J” is the same as the mass
expansion presented in [2]. We shall only consider LO here
(higher orders are also given in [2]). We take the expansion
as already given in Eq. (39).

Using Eq. (79) together with Eq. (39) and Tables IIT and
VI allows us to give the SU(3) flavor-breaking expansion
for flavor diagonal matrix elements. In Appendix C we give
this expansion to LO for the representative octet baryons p,
=+, A% and E° (the others n, =, % and Z~ can be similarly
determined).

While it appears from Eq. (39) that we now have extra
coefficients ay, a; and a, that have to be determined,
this can be somewhat ameliorated when the quark-line-
connected and -disconnected matrix elements are consid-
ered. There was a general discussion in Sec. [X. We now
consider this in more detail by considering separate
expansions for both the connected and disconnected pieces.
So the previous equations are doubled, as given in Eq. (73).
For example

uyu =

>con

(pliyulp) = (pliyu|p)* + (pliyu|p)**.  (80)
corresponding to the left and right panels of Fig. 3,
respectively. There are now some additional constraints.
For completeness we list the disconnected matrix
element results in Appendix D, using a3, af, a$* and

Egs. (77) and (78).

A. Connected terms

For p(uud), " (uus) and Z°(ssu) there are no con-
nected pieces for (p|5ys|p), (|dyd|=*) and (2°|dyd|E°).
Thus there are now conditions on ay™, a{*" and a5*" from

the previous expansion parameters. We find

ag™ = Vof —v2d,
3a°1°“ = \/irﬁ"“ — \/Esz,

\/§ C°n+\/_rs+\/_51—ﬁsz (81)

(These consistently satisfy all the previous equations.)
Using these expressions for ag’™, a‘f"“ and a5 gives for
the octet baryons p, =, A? and Z

con __
3a5™" =
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<p|ayup>°°n=2f2f+( on _ \/2r5 + V25, — \/s2>5m,,

(pldyd|p) = V2(f — V3d) + <\/ N 4+ V2r3 —V2s) - \ﬂh) my, (82)
(EF|ayul ) = 2V2f + (=2V2s) + V6s,)dm,,
(ZF[5ys|ZH)eom = V2(f — V/3d) + < \érgon 3V2r; — V25 + \/ s2>6m1, (83)

(Alapul A0 = (A0[dyd| %)

=) (i e

(A0)5ys|AO)yeon = f2<f + 7§d> + ( %rgon VA +V2r + V25 — \/:s2> omy, (84)

and
(E]arulE) = VA(f - V3d) + (2v/2rs +2v/25,)om,
(E0|5ys|=0)con = 2\/§f + (—\/:r?"“ + \/_r3 + \/_sl \/:s2> omy. (85)

Without A° there are six equations, together with six parameters, so no constraint. Adding the A gives two more equations
and one extra parameter, so this is now constrained. In addition off-diagonal matrix elements would also give more
constraints.

B. The electromagnetic current

Using the previous results of this section, we can also give the results for the electromagnetic current, Eq. (12). Using this
equation we find, for example, that for the octet baryons p, =+, A° and Z°

2
(P Jem|p)" = V2f + \/;d‘F <\/6 0 — 23 + V25 —%h)émz’

2
(Ve ZH) = V2f + \/gm ( T VEr = Vs - \ﬂ)am

2 1 2
(A AT)0 = —\fgd T (% Aot \/g)am

2 1 1
2|7, °°“_—2\ﬁd+< KO0 4+ V2r3 4+ V25, + —=s >5m, 86
< | | > 3 \/6 3 1 \/8 2 [ ( )

for the quark-line-connected terms, and for the quark-line-disconnected terms
- . - _ e 1
<p|']em|p>dlb = <AO|‘]em|AO>dlb = <Z+‘Jem|z+>d15 = <‘:‘0"]em|:‘o>dlb = \/6 dls5ml' (87)
Similar expansions hold for the n, >0 ¥~ and 2 electromagnetic matrix elements.
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XI. RENORMALIZATION AND O(a)
IMPROVEMENT FOR THE VECTOR CURRENT

A. General comments

The computed matrix elements are bare (or lattice)
quantities and must be renormalized and O(a) improved.
We would expect that the effect of the O(a) improvement
terms is simply to modify the SU(3) flavor-breaking
expansion coefficients. In this section we shall show that
this expectation is indeed correct. Again, for illustration, we
shall only consider the diagonal sector (B’ = B) of the
vector current here. By using the results and notation in
[12] (see also [26]) we have for on-shell improvement

VE'R = Zy[1 + (by + 3by )i + byom|VE
VIR = Zy[(1 + (by + 3by) — bydm)V}
+V2(by +3fy)em V),
VIR = Zury[(1+ (dy + 3dy)m)V] + 2v/2dyomVl).
(88)

where V for the local vector current denotes
Vi =V +icyd,TL, (89)

with Tﬁu:qFauzxq and ay¢(x) = [¢(x+ﬁ) —¢(X—ﬂ)]/2
This additional term only plays a role in nonforward matrix
elements. Note that all the improvement coefficients by,
dy, by, dy and c, are just functions of the coupling
constant go.s Thus we do not have to be precisely at the
correct (physical) m to determine the coefficients. The ry
parameter accounts for the fact that the singlet renormal-
ization is different to the nonsinglet renormalization
Zy(go)- ry also depends on the chosen scheme and scale.
Tree level gives for the relevant coefficients

by(g0)=1+0(%).  fv(g0)=0(g5). cv(g0)=0(g0)
(90)
[together with Zy(go) = 1 + O(g3) and dy(go) = O(g3)],

where by(gy) and dy(gy) being connected with the sea
contributions are ~O(g¢) and are usually taken as negli-
gible. Furthermore we can write

There is a further improvement coefficient, 90 - 3=
g5(1 4 byim), where b, is a function of g3. Little is known about
the value of bg, however perturbatively it is very small, so we
shall ignore it here. Note that as we always consider m = const,
then the value of g3 is only slightly shifted by a constant.

VIR = Zy[1 + byom V7,
ViR = 2y[(1 = bydm)Vi + V2(by + 3Fv)om Vi ],
VIR = Zyry VI + 2v2dyom, V), (91)

where for constant 7 we have absorbed these i1 terms into
the renormalization constant and improvement coefficients.
For example we have®

Zy = Zy(1 + (by + 3by)m),
by = by(1 4 (by + 3by)m)~",
Fv=fv(1+ (by + 3by)m)~". (92)

We take Eq. (91) as our definition of the improvement
coefficients, as the SU(3) flavor-breaking expansion coef-
ficients are already functions of /. To avoid confusion with
the previous SU(3) flavor-breaking expansion coefficients
we have denoted them with a caret. Note that in any case we
have also numerically that |mém;| < 1 and m? < 1 so the
improvement coefficients are effectively unchanged.

1. Vi
Let us first consider VZOR in Eq. (91), together with (for
example) (p|VF'|p)", (ZF[VF[Z%)%, and (V] [E0)%.
From the expansion for F = z° given in Table VI for
Ajzns Asys and Az,= we see that as expected the effects
of the expansion coefficients simply change their value
slightly:

1 .
5| = 8y =8 +§fbv,

Sz_)5/2252+\/§fi7v,

ry = ry=r3 —?d@v. (93)

Furthermore, as a reminder, from Eq. (77) the disconnected
pieces for f, d, r,, 3, 51, and s, all vanish, which implies
that BV also has no disconnected piece. In particular this
means that the results for VﬁOR remain valid when just
considering the connected matrix elements.

2. Vi
We can repeat the process for V}°, which gives in
addition to the results of Eq. (93) the further results
ry — r/l =r + d@v + \/an(z;v + 3fv),
ry = rh=ry+dby. (94)

*Similarly #y = ry(1+ (dy + 3dy)m)(1 + (by + 3by)m)™!
and dV = dv(l + (dV -+ 3dv)n_’l)71
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In addition splitting r, into 7¢°" and 74! pieces gives upon
using ag™" from Eq. (81)

r<1:0n N rcon/: C0n+2\/_f(bv+3fcon) (bv+6fcon),
rtlhs — r(lhs/ _ r<lhs 4 3\/5(1818]“\1/15. (95)

3. viIk

Lastly, considering VIR we find

2 1 N
a, = d, =a +2\/7< —d)d,
1 1 1 3 /3 v

4 N
ay = dy =a, — 5\/§ddv. (96)

4. Concluding remarks

As expected, all improvement coefficients are terms in
the SU(3) symmetry flavor-breaking expansion and indeed
upon inclusion leads to slightly modified expansion coef-
ficients, as given in Egs. (93), (94), and (96). We anticipate
that the additional improvement term ¢y, is also of
this form.

B. Determination of Zy and by, f$™

There is an exact global symmetry of the lattice action,
g — e %gq, valid for each quark separately. Using
Noether’s theorem this leads to an exactly conserved vector
current (CVC). Practically the operator counts the number
of u quarks and the number of d quarks in the baryon. The
local current considered here is not exactly conserved, so
that Veye =V 4 O(a). We can use this to define the
renormalization constant and several improvement
terms. (A similar method was used for two flavors and
quenched QCD in, e.g., [27].) Thus we shall see that
imposing CVC is equivalent to determining some improve-
ment coefficients.

Practically here we restrict our considerations to the
forward matrix elements for V, at Q?> = 0 (no momentum
transfer, so there is no additional ¢, term).

Or
1.V}
First for the CVC, we consider the representative matrix
elements

1
7[0 J—
(PIVEIP) = Al =52
1
(EHVIEN" = ALy = 5 (2-0)
1
BEO|VE|ENR = AR = —(1-0). 97
(ENVEIEY) m\/g() (97)

Using this together with Vj{o in Eq. (91) gives

1

One possibility is thus to determine f from Xy at Q> =0
[see Eq. (72)] as

Zy = )\f (99)

Also from Eq. (93) and due to the lack of O(6m;) terms in
Eq. (97) we have s} =0, s, =0 and 75 = 0 or

1 . .
s1==5fby, 5o = =3 fby, ry=0. (100)

Using §; = s;/ X, which to leading order is s;/(2f), gives
directly the by improvement coefficient.

2. VK
Additionally using the equivalent results from Eq. (97)
but now for V¥, namely

<p\VZ|p>R=A§7,,N—7(2+1‘0)

1
<Z+\V’4{|Z+>R:Ag72 %(ZJFO 2),

1
EOVIENR = AR — (1 +0—4), 101
(B2 V4= £z ﬂ( ) (101)

not only gives consistency with the previous results
Egs. (98) and (99), but in addition we have r{°" =0,
rh, = 0 or from Egs. (94) and (95)

ron = 2\3f(by + 35", r,=0. (102)

Again using 7" = r{°"/Xp = r{°"/(2f) automatically
eliminates f. We observe that once Zy and lA’v (and
F5°") have been determined by using Eq. (92) and varying

m, then it is in principle possible to determine by.

3. The Ademollo-Gatto theorem

The Ademollo-Gatto theorem [28] (see also [13,29]) in
the context of our flavor-breaking expansions states that the
O(8m,) terms vanish for the F5'FB form factor at Q% = 0
and B’ # B. This means that r,, r3, s, and s, vanish at
Q? = 0 (or the primed versions if we include the improve-
ment coefficients). This agrees with the results of this
section.
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XII. LATTICE COMPUTATIONS
OF FORM FACTORS

A. General discussion

We now need to determine the matrix elements from a
lattice simulation which computes two- and three-point
correlation functions. For completeness as well as form
factors with B = B’, we are developing a formalism for
semileptonic decays, B # B’ so we first consider the
general method here.

The baryon two-point correlation function is given by

= TplBa

aff

CE(t; p) (:p)B4(0: p)), (103)

while the three-point correlation function generalizes this
and is given by

CEB (1,75, '3 J) = > _Tpa(Ba(t: ')J (3 G)By(0; p)),
ap

(104)

with J at time 7 either the vector, axial or tensor current,
and where the source is at time 0, the sink operator is at
time ¢ and

C=rweol = —(1+4y,) or

1
2
r=rvl = (

L+ y4)iysy - 7, (105)

[NSR

where 7 is the polarization axis.

To eliminate overlaps of the source and sink operators
with the vacuum, we build ratios of three-point to two-point
correlation functions. More explicitly let us set

CB/B([ T'ﬁ 1—5/.])
CB (13 )

-7,p)
-7 p)

fi’mpol (T )Cgunpol ( )Cgunpol (

Ry (t,
Cﬁunpo] (T p) Crunpo] (t p) C?unpol (

op,phJ) =

(106)

This is designed so that any smearing for the source and sink operators is canceled in the ratios, e.g., [30,31]; of course
smearing the baryon operators improves the overlap with the lowest-lying state, so the relevant overlaps for the two- and
three-point correlation functions must match.

Inserting complete sets of unit-normalized states in Eq. (106) and for 0 < 7 < 1 < 1T gives

frltmp ) = ¢ B )y ) 1o
with
1 . P7 Mp . PY Mpg
Fe) =gor (i w7 (T B ) (108)

[with 7 being given from the Euclideanized version of Eq. (5)]. The transferred (Euclidean) momentum from the initial, B,
to final, B, state is given by Q = (i(Eg/(p') — Eg(p)), p' — P) so
Q% = —(My — Mp)* +2(Eg(p')Eg(P) — MpyMp —p - p'). (109)
To illustrate the previous SU(3) flavor symmetry-breaking results, we shall now consider here only the vector current.
Furthermore in general for arbitrary momenta geometry, the kinematic factors can be complicated; in this article we shall
only be considering the simpler case p’ = 0. The technical reason is that in the lattice evaluation, it requires less numerical
inversions and is hence computationally cheaper. (Physically, of course it is more natural to start with a stationary baryon,
but computationally of course it does not matter.) Evaluating Q? in this frame, Eq. (109), shows that for flavor diagonal
matrix elements form factor Q? is always positive, while for semileptonic decays for small momentum it can also be

negative. For the vector current with p’ = 0 this gives’

"We use the Euclideanization conventions given in [32]. In particular V4, = yMO Yy — iy M with g, = MO0y = iy (M)

M .
Vs = _)é )’ and Ouy = l/z[yﬂ’}/b]'
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E§+MB

Rl—*unpol (t, T, ﬁ, O; V4) — |: B'FB

> —M _ EB— My
B - prp_ P B FB’FB:|
3 )

2EE ! Mg+ Mg 2 Mg+ My
i, _ EB M, EB+ M _
R ip , B B
Ry (2,73, 0, V) = — l {FB FB _ Mot Mo {I; My ngB——,‘ !1; My Ff FB] ,

2EE(EE + Mp)

(p x i),
2EZ(ES + Mp)

Rr'pnl (t, T, ﬁ, 0; Vl) -

Rrpol(t, T, 1_7', 0; V4) - 0.

In particular for p = 0 then the only nonzero ratio is

My — My

Rpwnpol (2,7,0,0; V) = FBFB _
rpl( T 4) 1 Mg+ My

FEFB (111)

so we see that in this case for B’ # B then we cannot

disentangle F?¥® from F5'FB, However to LO [i.e., O(6m,)
effects in the matrix elements] and as Mg — My o« om,
then from Eq. (111) we can write

Rpwpa (1,7;0,0; V) = FEFB - 0(6m?),  (112)

for all B and B', where the O(6m?) term is not present when
B = B.

B. Lattice details

As a demonstration of the method we apply the
formalism outlined in the previous sections to the form
factors published in [33,34]. Further details of the
numerical simulations can be found there. The simula-
tions have been performed using n, =2+1, O(a)
improved clover fermions [35] at =10/ g(z) of 5.50
and on 323 x 64 lattice sizes [2]. Errors given here are
primarily statistical [using ~O(1500) configurations].

As discussed previously and particularly in Sec. III A
our strategy is to keep the bare quark-mass constant.
Thus once the SU(3) flavor degenerate sea quark mass
mg is chosen, subsequent sea quark-mass points m; and
my are then arranged in the various simulations to keep
m (= mg) constant. This then ensures that all the
expansion coefficients given previously do not change.
In [2], masses were investigated and it was seen that a
linear fit provides a good description of the numerical
data on the unitary line over the relatively short distance
from the SU(3) flavor symmetric point down to the
physical pion mass. This proved useful in helping us in
choosing the initial point on the SU(3) flavor symmetric
line to give a path that reaches (or is very close to) the
physical point.

(PP + FP),

(110)

The bare unitary quark masses in lattice units are
given by

1/1 1 )
mq_§<]<_q_l('_oc> with q:l,S, (113)
and where vanishing of the quark mass along the SU(3)
flavor symmetric line determines k.. We denote the SU(3)
flavor symmetric kappa value k; as being the initial point
on the path that leads to the physical point. m is given in
Eg. (113) by replacing «, by k. Keeping i = const = m,
then gives

1/1 1

o =3 (11,
2\k; Ko

We see that k. has dropped out of Eq. (114), so we do not

need its explicit value here. Along the unitary line the quark
masses are restricted and we have

(114)

(115)

So a given k; determines «, here. This approach is much
cleaner than the more conventional approach of keeping
(the renormalized) strange quark mass constant, as this
necessitates numerically determining the bare strange
quark mass. In addition the O(a) improvement of the
coupling constant is much simpler in our approach as it
only depends on m [2]. Thus here, the coupling constant
remains constant and hence the lattice spacing does not
change as the quark mass is changed. In the more
conventional approach this can be problematical as you
must in principle monitor the changing of the coupling
constant as the quark masses vary.

An appropriate SU(3) flavor symmetric «, value chosen
here for this action was found to be x; = 0.120900 [2]. The
constancy of flavor-singlet quantities along the unitary line
to the physical point [2] leads directly from X, to an
estimate for the pion mass of ~465 MeV at our chosen
SU(3) flavor symmetric point and from X an estimation
of the lattice spacing of ay(xy = 0.120900) = 0.074 fm.
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TABLE VIII. Outline of the ensembles used here on the
323 x 64 lattices together with the corresponding pion masses.
K; Ky M, MeV
0.120900 0.120900 465
0.121040 0.120620 360
0.121095 0.120512 310

Specifically as indicated in Table VIII we have generated
configurations [33,34] at the (k;,k,) values listed, all
with xy = 0.120900.

Equations (110) and (112) are used to determine from the
ratio R the appropriate form factor. As described in [33,34],
we bin Q? to directly compare each configuration and,
using the bootstrapped lattice configurations, we set up a
weighted least squares to extract the linear fit parameters
and weighted errors at each Q? value. The lattice momenta
used here in this study in units of 2z/32 are given by
ag = (0,0,0), (1,0,0), (1,1,0), (1,1,1), (2,0,0), (2,1,0),
(2,1,1), and (2,2,0) together with all permutations (where
different) and all possible £ values.

XIII. RESULTS

We now illustrate some of the features that we have
described in previous sections, using our lattice calcula-
tions and the ensembles in Table VIII.

A. X plots

We first consider the lattice quantities X}/, X%' and

X xF2 - As discussed previously we only consider
diagonal form factors to construct the X’s, i.e., the equations:
D", D5°" and D, in Eq. (68) and Fy, F; and F; in Eq. (71 )2
Using the method of Sec. XIIB allows us to create the
appropriate D{*", DS°" and D, defined in Eq. (68) and hence
X1 and X 7" in Eq. (70) or F, F and F5 in Eq. (71) and
thus again X?‘ and X?Z in Eq. (72). In Fig. 4 we consider
X5 and X5 for the F, form factor for Q2 =0 and
0.49 GeV2.” First, as we expect they are constant and show
little sign of O(6m?) or curvature effects. Although not so
relevant on this plot, as an indication of how far we must
extrapolate in the quark mass from the symmetric point to the
physical point, we also give this, using the previous deter-
mination [21] of ém; = —0.01103. Note also, as shown in
Eq. (98) for 0% = 0, X' vanishes as d = 0, which we also
see on the plot.

This constancy of X does not depend on the form factor
used. In Fig. 5 we show similar plots, but now for the F,

*We note that care needs to be taken to distinguish the F;
corresponding to a form factor and the F; defined in Eq. (71).

This corresponds to a lattice momentum of ag = (2z)/
32(1,1,0).
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3
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c
©
I 0.5
5
0.0F----- L R EEE LR L e L @ *----
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-0.5
—-0.012 —-0.010 —0.008 —0.006 —0.004 —0.002 0.000
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1.5 i xp
¢ Xy
1.0
T R S B Aooees
S
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c
G 0.5
3
S
————— L Ll i ...ees: kb
0.0 %
Q?=0.49 GeV?
—-0.012 —0.010 —0.008 —0.006 —0.004 —0.002 0.000

omy

FIG. 4. X} and X}' for F| at 0% = 0 (top panel) and for
0? = 0.49 GeV? (lower panel). The lower filled circles in each

Fcon

plot are X", and the upper filled triangles are X?‘ . The dashed
lines are constant fits, and the stars represent the physical point.

form factors: X5 and X%, for Q* =0.25" and
0.49 GeV2. Again these are all constant, within our
statistics. (We can only determine X5 at Q% =0 via
an extrapolation, so we show Q? = 0.25 GeV? instead.)

Finally we can plot the dependence of X on Q2. In Fig. 6
we show X" and X} and similarly for X*2 versus Q?
(using the previously determined fitted values). This gives
the Q? dependence of d and f, respectively. For X?, dis
initially zero and remains small for larger Q2, while f drops
monotonically. We expect d and f to drop like ~1/Q? for
large Q2 for all the form factors.

B. Fan plots

We now turn to fan plots, as defined by Egs. (68) and
(71). Note that again we only consider lattice quantities; the
improved operator would have small changes to the SU(3)
flavor-breaking expansion, as discussed in Sec. XIA.
Again we only consider diagonal form factors in these
equations: D{°", D5°" and D, in Eq. (68) and F'|, F, and F,

""This corresponds to a lattice momentum of ag = (27)/
32(1,0, 0).
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FIG. 5. X5 and X2 for F, at 0% =0.25GeV? (top panel) and
for 0>=0.49GeV? (lower panel). The same notation as for Fig. 4.

in Eq. (71). We construct the system of linear equations in
Eq. (68) with parameters r{°", r3 and d for the d fan and
Eq. (71) with parameters s, s, and f for the f fan. In Fig. 7
we show D' = DI /X, for i=1, 2 and 4 and F!' =
Fl.F‘ /X fori = 1,2 and 3. Note that as d vanishes for the F,
form factorat Q> = 0 and even away from Q? = (it remains
small—see the lower panel of Fig. 4—then dividing by X ’;'
is not possible or very noisy, so we use X?. Although for
XLF)2 this is not the case (as seen in Fig. 5), however for

consistency we still use X 52. The only change in these cases
is that the value at the symmetric point is no longer one.
The lines shown in Fig. 8 correspond to linear fits to the

DY°°" using Eq. (68) (upper plot) and F!'°" using Eq. (71)
(lower plot). The fits to D" determine 7<°* and r5 using
three fits and are hence constrained. Furthermore determin-
ing these two parameters also allows us to plot the off-

diagonal hyperon decays for i = 6, which is also shown.

Similarly for F iF‘, we first determine the constrained fit
parameters §; = s; /Xy and 5, = s,/X; and then plot the
off-diagonal hyperon decays for i = 4, 5.

Similarly in Fig. 8 we show the equivalent results
for F,. As previously we have normalized the parameters:
O = r{""/Xp, 73 = r;/Xrpand §; = 51/ XF, 5§, = 5,/ Xp.
Again we have some constraints. In addition off-diagonal

2.0

[
X b X
15
1.0
K
< ‘ 3 \
0.5 A
0.0} o . ‘ * ‘ ‘ *
0350 05 1.0 15
Q*(GeV?)
1.6
4 boxp
1.4 ¢ Xy
1.2 A
1.0
@ ¢
><~ 0.8 + +
0.6 4 L
, ;
o t 4 i :
0.2 A
00555 0.5 1.0 1.5
Q*(GeV?)

FIG. 6. Top panel: X,' (filled circles) and X} (filled
triangles) versus Q. Lower panel: Similarly for F,.

hyperon decays for i = 6, d-fan plot and i =4, 5, f-fan
plot are also shown.

From these fan plots at various Q” we can determine the
dependence of the expansion coefficients as a function of
Q?. InFig. 9 we show the expansion coefficients r$°", rs, s1,
and s, for the F{°" and F, form factors as a function of 0>
As discussed previously in Sec. XIA, at Q? =0 the
expansion coefficients for F{°" vanish, which determines
the improvement coefficients by and f§7". Thus in the top
panel of Fig. 9 the negative values of the {°", s, and s, are a
clear indication of the nature of the improvement coeffi-
cients. For rather small Q?, these all change sign rather
quickly and also their order inverts. We have (approxi-
mately) |r3], |s;] ~ 0 and |r{°"| is a factor of 2—4 larger than
|55 . For F, the expansion coefficients tend to be flatter. Also
s, =~ 0, indicated in Fig. 8 by the small difference between

ng and Ffz.

C. Estimating Zy, by, and ™"
Xi‘ at Q% = 0 determines the renormalization constant
7y via Eq. (99). The constant fit described in Eq. (72) and
shown in Fig. 4 (see also Fig. 6) leads to f = 0.814(1) or

Zy = 0.869(1). (116)
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FIG. 7. Top panel: Df‘ = Df‘ /X? for i = 1 (filled circles), 2
(filled squares) and 4 (filled triangles) for Q%> = 0.49 GeV?. The
three fits are from Eq. (68), and the line for i = 6 is also shown.
The vertical dotted line represents the physical point. Lower
panel: FI'' = FI'/X}! again at Q% = 0.49 GeV? for i = 1 (filled
circles), 2 (filled squares) and 3 (filled triangles), together with
fits from Eq. (71) normalized by X?. The line for i =35
is also shown.

Our previous nonperturbative estimates of Zy at f = 5.50
are given in [36,37] of 0.863(4) and 0.857(1), respectively,
and are quite close to Z, in Eq. (116). Note that the different
determinations can have O(«) differences. Also Z, has been
measured rather than Zy,. The difference is ~1 + by m. Here
we have by ~ O(1) and i ~ 0.01 (using the k. found in
[2]), so there a further possible difference (and reduction
from the Zy value) of ~1%.

From Fig. 9, the Q* = 0 value for r5 is 0.06(2), which
compared to other values is compatible with zero. The
Q? =0 values for s; and s, are s; = —0.479(22) and
sy = —1.643(44), respectively. The ratio is s,/s; = 3.42,
which is in good agreement with the theoretical value for
the ratio from Eq. (100) of 2v/3 ~ 3.46. Similarly, using
Eq. (100), we find a weighted average of

by = 1.174(21), (117)
which is about a 15% increase from the tree-level value.
Although a strict comparison with other determinations of
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1.0 : )
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F
- e

FlxE
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—0.012 -0.010 -0.008 -0.006 -0.004 -0.002 0.000 0.002 0.004 0.006
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FIG. 8. Top panel: sz for i =1 (filled circles), 2 (filled
squares) and 4 (filled triangles) for Q> = 0.49 GeV?. The three
fits are from Eq. (68) normalized by X%2: also shown is the i = 6
line. The vertical dotted line represents the physical point. Lower
panel: F fz for i = 1 (filled circles), 2 (filled squares) and 3 (filled
triangles), also for Q% = 0.49 GeV?, together with fits from

Eq. (71) normalized by X?. Also shown are the lines i =4
(upper line) and 5 (lower line).

this improvement coefficient is not possible, it is interesting
to note that compared to other computations, e.g., [26] and
forny = 0,2 [27], the value determined here is much closer
to its tree-level value Eq. (90). This suggests that improve-
ment coefficients are small, including possibly ¢y.

Using the value of EV from s, and s, and using Eq. (102)
together with r{°" = —3.65(8) gives a weighted average of

F5om = 0.041(4). (118)

As expected this is quite small.

D. Electromagnetic form factor results

With a knowledge of f, d and r{°", r3, d, 51, and s, we
can find the electromagnetic Dirac form factor F$°"(Q?)
and Pauli form factor F5**(Q?) using the electromagnetic
current Jgi, (see Sec. X B) and results of Eq. (86). Also we
shall use Zy, by and 75" (i.e., equivalent to CVC) from
Sec. XIII C.
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FIG. 9. Top panel: r{°" (filled circles), r; (filled triangles), s,
(filled squares) and s, (filled diamonds) expansion coefficients
for the vector F$°" form factor as a function of Q*. Lower panel:
Similarly for the F, form factor.

It is interesting to determine the various contributions to
the form factors from the expansion coefficients. For
illustrative purposes, we shall just consider F{° here
and for p and Z°. From Eq. (86) we can write

<p|_]em‘p>conR
CXp (@A) 2y
<E0|Jem|E0>COHR
COXp(QP)[ 4 o

Xr(0,m) { 3d( ) —EL0(Q ,m)ém,)], (119)
with

| - o -

= %(r?(’"' —5)+2(5 - 7).
1

L = (7 +5) 425+ ),

where, for example, 7°" = r¢°V(Q?,m)/Xr(Q% m) and

similarly for the other expansion coefficients. The prime

includes the improvement terms; see Egs. (93) and (94).

(120)
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FIG. 10. Xz(Q%)/Xr(0) (filled circles) and d(Q?) (filled
triangles) for F$°" against Q2. The interpolation formulae used
are given in Eq. (121).

15
P — +
10 §
,‘,/’ r
5 . 4 9
Tu%j o 0
l:‘:: o gieezezozd | S SN 3 B R * ,:,::: ,,,,,,,
W :
I B
Tl
=S a ¢
""" 7y T
. 5 LI}
55 L
-15
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Q%(GeV?)
FIG. 11. 7°" (filled circles), 5, (filled diamonds), 5| (filled

squares) and 7 (filled triangles) against 0? together with
interpolation formulas also given by Eq. (121).

In this form, we can investigate the contributions to the
form factors. In Fig. 10 we show the results for the terms of
Eq. (119): X5(Q?)/X(0) and d. In Fig. 11 we show 75,
§,, ¥ and 3. All the interpolation formulas (fits) are of the
form

AQ?
1+BQ* +C(0*)*
From Fig. 10 and the leading term in Eq. (119) for the
proton form factor, the dominant contribution comes from
Xr(Q?)/Xp(0)—the f term, while there is a small con-
tribution from the d term (as d). Furthermore from Fig. 11
we see that for the € coefficients 7 and §| are essentially
negligible and most of the contribution comes from 7°"
and 5.
We illustrate this for the F; form factor for the p
and Z°. In Fig. 12 we show F{°™ for these baryons at
the physical point ém; = —0.01103, i.e., a small and

(121)
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FIG. 12. F{°"® for the proton (filled circles) and =0 (filled
triangles) at the physical point. The dashed line is
X#(0?)/Xr(0). The dashed-dotted lines are the complete leading
terms, for the proton: X (Q?, ) /X r(0,m)(1 +2//3d(Q?, 1))
and for 20 X(Q2, m)/X(0,m) x 4/v/3d(Q?, 1)), while the
full lines are the complete expressions in Eq. (119).

negative value. The dashed line is Xz(Q?)/Xp(0).
The dashed-dotted lines are the complete leading
terms: X (Q2,m)/Xp(0,m)(1+2/+/3d(Q? m)) for p and
Xp(Q% 1)/ Xp(0,1m) x 4/4/3d(Q?, m)) for the Z°, while
the full lines are the complete expressions in Eq. (119).

We see that for the proton the f term [represented by
Xrp(Q?, m)/Xp(0,7)] gives a result very close to the
numerical result; the addition of the d term pulls it slightly
away in the +ve direction. The inclusion of the O(ém;)
term, being —ve, pushes it back. However the additional
terms to the f term contributes very little (only a few
percent) to the final result. For the Z° the O(6m;) term
improves the agreement.

XIV. CONCLUSIONS AND OUTLOOK

In this article we have outlined a program for inves-
tigating the quark-mass behavior of matrix elements, for
ny =2+ 1 quark flavors starting from a point on the
SU(3) flavor symmetric line when the u, d and s quarks
have the same mass and then following a path keeping the
singlet quark-mass constant. This is an extension of our
original program for masses [1,2], using a generalization of
the techniques developed there.

When flavor SU(3) is unbroken all baryon matrix
elements of a given operator octet can be expressed in
terms of just two couplings (f and d), as is well known. We
find that when SU(3) flavor symmetry is broken, at LO and
NLO, the expansions are constrained (but not at further
higher orders). By this we mean that there are a large
number of relations between the expansion coefficients.
Our main results for the expansions are contained in
Secs. VIA and VIB. Although we concentrated on the
ny=2+1 case, in which symmetry breaking is due to

mass differences between the strange and light quarks, our
methods are also applicable to isospin-breaking effects
coming from a nonzero m, — m,, along the lines of [21,38].

The results here parallel those for the mass case. Firstly,
for example we have constructed ‘“singletlike” matrix
elements—collectively called X here—where the LO term
vanishes. As noted in [2] these can be extrapolated to the
physical point, using a one-parameter constant fit. In this
article we constructed several of these X functions and
indeed can isolate the constant as either the f or d coupling.
Secondly again in analogy to the mass expansions we
constructed fan plots, each element of which is a linear
combination of matrix elements, where at the SU(3) flavor
symmetric point all the elements have a common value and
then radiate away from this point as the quark masses
change. This is slightly more complicated than for the mass
case as we now have two couplings, f and d. Indeed the fan
plot expansions can be constructed involving either f or d
alone at the SU(3) flavor symmetric point (more generally
we have some combination of them).

Technically important for lattice determinations of matrix
elements is the difference between quark-line-connected
and quark-line-disconnected terms in the calculation of the
three-point correlation functions. (The quark-line-discon-
nected terms are small but difficult to compute using lattice
methods, due to large gluon fluctuations.) Applying the
SU(3) flavor-breaking expansion to these cases separately,
we have identified which expansion coefficient(s) have
contributions coming from the quark-line-disconnected
terms. We found that at LO there is just one expansion
coefficient which has a quark-line-disconnected piece.

As numerically we are using Wilson clover improved
fermions, then for O(a?) continuum expansions, improve-
ment coefficients need to be determined. The general
structure for ny =2+ 1 flavors of fermions has been
determined; see e.g., [12]. We showed here these coef-
ficients are equivalent to modifications to the expansion
parameters. Using the subsidiary condition that the relation
between the local and conserved vector current is O(a)
allowed us to determine two improvement terms (together
with the renormalization constant).

To demonstrate how the expansions work, we discussed
numerical results using the vector current and diagonal
matrix elements. However these can be extended to include
transition hyperon decays (a phenomenological review is
given in [13]). These would allow an alternative method to
the standard K,; decays of determining |V, e.g.,
[13,39,40]. Earlier quenched and n; = 2 results for £~ —
n?v and E° - 7£v can be found in [41,42], and n; =
2+ 1 results have been obtained in [43,44]. The latter
reference also investigates the possibility of nonlinear effects
in the quark mass, which in the SU(3) symmetry flavor-
breaking expansion means including terms from Table VIL

Future theoretical developments include extending the
formalism to partially quenched quark masses, when the
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valence quark mass 6y, does not have to be the same as
the sea or unitary quark mass. Then Eq. (14) is replaced by
ouy = py — m. In this case the generalization of Eq. (17)
does not hold. This allows the determination of the expan-
sion coefficients over a larger quark-mass range than is
possible using the unitary quark masses (and allows, for
example, the charm quark to be included [45]). Furthermore
expansions for “fake” hadrons would be useful. Possible are
a “nucleon” with three mass degenerate strange quarks and a
“Lambda” with two mass degenerate strange quarks.
Although they are not physical states, they can be measured
on the lattice and do not introduce any more SU(3) mass
flavor-breaking expansion coefficients, so simply add more
constraints to the coefficient determination. An example of
this for the baryon octet masses is given in [21].

Another extension of the SU(3) mass flavor-breaking
method is to the baryon decuplet with 10 ® 8 ® 10 tensors
and also to the meson octet. While the latter extension is
straightforward, there are some extra constraints, as due to
charge conjugation the particles in the meson octet are
related to each other.

Furthermore generalized currents can be evaluated between
quark states. This leads to a SU(3) mass flavor-breaking
expansion involving 3 ® 8 ® 3 tensors. This will help when
considering the nonperturbative RI'’ — MOM scheme which
defines the renormalization constants (and improvement
constants) by considering the generalized currents between
quark states. Useful would also be to consider the axial current
improvement coefficients using a partially conserved axial-
vector current along the lines of [12].

Finally, a more distant prospect is to include QED
corrections to the matrix elements [10], along the lines
of our previous studies of the SU(3) flavor-breaking
expansion for masses [3-5].
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APPENDIX A: NONZERO TENSOR ELEMENTS

The nonzero elements of the tensors T are listed in
Tables IX—XIII.

TABLE IX. Flavor-singlet first-class nonzero elements of the
f and d tensors.

Tensor Value Position

f 2 334 463 646
—2 343 436 664
V3 151 252 518 527 775 885
—/3 115 225 572 581 757 858
V2 132 261 317 628 783 876
_3 123 216 371 682 738 867
1

114 242 427 481 774 848
—1 141 224 418 472 747 884

d V6 123 132 216 261 317 371
628 682 738 783 867 876
2 335 353 445 454 536 544 563 656 665
-2 555
V3 224 242 427 472 747 774
—/3 114 141 418 481 848 884
-1 115 151 225 252 518 527
572 581 757 775 858 885

TABLE X. First-class octet nonzero elements of the ry, ry, r3
and s, s, tensors.

Position

454 555 656 757 858

Tensor Value

r 1 151 252 353
r 2 555

1 115 225 335 445 518 527 536

544 563 572 581 665 775 885

3 2+/3 353 454 656
—24/2 132 261 738 867
2 141 848
=2 242 747
—+/3 335 445 536 544 563 665
V2 123 216 317 371 628 682 783 876

1 224 427 472 774
-1 114 418 481 884

51 23 132 261
_2\/3 738 867
2 242 343 436 664 848
—2 141 334 463 646 747
/3 518 527 775 885
—v3 115 225 572 581
V2 123 216 371 682
—V2 317 628 783 876

1 224 418 472 884
—1 114 427 481 774

(Table continued)
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TABLE X. (Continued)

TABLE XII. (Continued)

Tensor Value Position Tensor  Value Position
o V3 334 463 646 wy 44/2 132 261
—/3 343 436 664 —44/2 738 867
1 115 225 572 581 757 858 33 115 225 572 581
—1 151 252 518 527 775 885 33 518 527 775 885
32 317 628 783 876
-3y/2 123 216 371 682
4 242 343 436 664 848
TAdBLEtXI. Second-class octet nonzero elements of the 7, t, —4 141 334 463 646 747
and u, tensors. 3 114 427 481 774
Tensor  Value Position —3 224 418 472 884
z, 1 115 225 335 445 665 775 885 W2 3v3 151 252
-1 518 527 536 544 563 572 581 -3v3 757 858
123 216 371 682
zz V3 115 225 775 885 2v2
518 527 572 581 -2¢/2 317 628 783 876
—V3 23 216 783 876 2 224 334 418 463 472 646 884
V2 -2 114 343 427 436 481 664 774
-2 317 371 628 682 V2 738 867
1 224 418 481 774 —v2 132 261
-1 114 427 472 884 1 141 747
u V6 123 216 317 628 -1 242 848
-6 371 682 783 876
V3 224 427 481 884
—/3 114 418 472 774
1 572 581 775 885
-1 115 225 518 527 TABLE XIII.  First-class 64-plet and second-class 27-plet non-
zero elements of the z and x;, y; tensors.
Tensor Value Position
TABLE XII. First-class 27-plet nonzero elements of the ¢, ¢, z —9y/3 555
and wy, w tensors. 33 115 151 225 252 518 527
Tensor Value Position 572 581 7757 775 858 885
3 sss —/3 335 353 445 454 536 544 563 656 665
g - 123 132 216 261 317 371
14 335 445 536 544 563 665 V2
56 132 261 738 867 628 682 738 783 867 876
- 1 224 242 427 472 747 774
9 151 252 757 858 —1 114 141 418 481 848 884
5v/3 141 848
—6 115 225 353 454 518 527 —4 536 544 363
572 581 656 775 885 ST
q 18 555 V6 123 216 783 876
—10 353 454 656 _J6 317 371 628 682
—6 335 445 536 544 563 665 V3 224 418 481 774
26 123 216 317 371 628 682 783 876 114 427 472 884
23 224 427 472 774 -v3
—2y/3 114 418 481 884 i 3v3 115 225 518 527
3 151 252 757 858 —3Vv3 572 581 775 885
V6 132 261 738 867 V2 123 216 317 628
V3 242 747 —v/2 371 682 783 876
—\/3 141 848 1 224 427 481 884
—1 114 418 472 774

(Table continued)
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APPENDIX B: ALTERNATIVE FAN PLOTS

1. The doubly represented-singly represented
fan, the P fan

The traditional way of expressing the two ways of
coupling octet operators to octet hadrons are the f and d
couplings. In terms of hadron structure, this choice is
perhaps more natural for octet mesons than it is for
octet baryons. Consider Egs. (64) and (65). In the KT,
with quark content u§ the f combination (K*|(iayu —
Sys)|K") is very natural (the difference between the two
valence quarks), and the d combination (K*|(iyu +
§ys —2dyd)|K*) is also a natural-looking symmetric
combination. For the A, the d combination is also the
natural nonsinglet operator to consider, d < (A|(25ys —
ityu — dyd)|A), because the u and d in the A have the
same structure functions, while the s structure is different
[even before breaking SU(3)].

But in the proton, it might be a bit more natural to
choose the combinations (ityu — dyd) and (iiyu + dyd —
25ys) instead. The first combination is the nonsinglet
combination normally considered in discussions of proton
structure, and the second is almost (but not exactly) a
measure of the total valence contribution, because the
quark-line-disconnected (sea) contribution to (a@yu +
dyd — 25ys) is zero at the symmetric point and will
probably stay small if the nucleon’s sea is approximately
SU(3) symmetric.

We can therefore construct a fan plot for the doubly
represented—singly represented quark:

Py = V2Az,y = (V2f +V6d) = 2V2(r3 = 51)dm,,

P, = \1[ (Ages + V345,5) = (V2f +V6d)
T(Wn + 675 — 251 + V/35,)m,.

py—— \2(/‘:,,:+f As,z) = (V2f + V6d)
%(\fr1 +2r3 4 25, +V35,)0m,

Py = Asgz = (V2f +V6d) +V2(ry — 5)6m,.  (B1)

We have based this fan plot on the doubly—singly repre-
sented structure, so several of the observables have very
simple quark structures:

(B2)

This P fan only includes the “outer” octet baryons. The
natural plot for the A structure is the d fan. There are two
linear constraints on the P fan:

1

g(P]+Pz+P3) (V2f +V6d) + 0(6m?),

;(P1 +2P,) = (V2f + V6d) + O(6m3). (B3)
A fan with just the four lines from Eq. (B2), P, P, P53, Py,
is a four-line plot with just two independent slope param-
eters, (r3 —s;) and (v/3r, +4r; +/3s,).

The advantage of this fan plot is that some of the
quantities are of immediate physical interest; for example
in the weak decay case P; gives the neutron decay constant,
while P, gives the semileptonic decays Z° — X/, and
E~ — XI77,. The disadvantages are that there are fewer
constraints than the d fan. Also, the d fan and f fan are
independent—they involve different parameters, and there
are no constraints that mix F; and D; quantities. A first
attempt to show this fan plot for the fraction of the baryon’s
momentum carried by a quark, i.e.,(x), is given in [48].

Finally it is again often useful to note from Eq. (B3) that
for example

1
Xp=3(P1+Py+P;)= (V2f +V6d)+0(5m})  (B4)
and to consider the quantities P;/Xp.
2. The V fan

The other natural nonsinglet to look at in the proton is
(p|(ityu + dyd — 25ys)|p). This is approximately the total
valence distribution; the quark-line-disconnected (sea)
contribution to (ityu + dyd — 23ys) is zero at the symmet-
ric point and will probably stay small if the nucleon’s sea is
approximately SU(3) symmetric:

Vi= \/EAA_MN =V6(V3f —d)+V6(r| —s5,)0m,.
3

V2 :%AET[Z_ \/7A2112 \/_(\/—f d)

(\/5}’1 +6r3 +6S1 —3\/§s2)5m1,

2 oo o= VWA -0

——(\/grl —6r3—651 +\/§32)5m1,

|
“’%\
—_
¥

V3:

&

Vi=V2(Aguy +24z:z)

V6(V3f —d)+2v2(ry +3s,)dm,,

Vs = (Asgz —2Aks) = VO(V3f —d) = V2(r;+3s1)om,.
(BS)
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We have the two constraints

(Vl +V2+V3) -

W | =

Lviravg) =

W

and can again construct an Xy from either combination, for

example set

V6(V3f —d) + 0(6m}),
V6(V3f —d) + 0(6m?) (B6)

Xy (Vi+V,y+Vy),

UJI»—A

and again consider ratios such as V,;/Xy.

MATRIX ELEMENTS

baryons p, Z*, A° and E°
|

(pliayu|p) = 7((10 + \/_f+ \/_d) \/§ (3a1 —I—\%rl — \/6r3 + \/651 —%&)(Sml,
} 1
(pldrdp) = s (ag = 2v3d) + ﬂ(sal 4 Vers = Vs, - ﬂsz)aml,
(plsys|p) = if( —V6f + /2 \/_d)—l—%@al V2r, + V2sy)om,,
(EHayulzT) = 7-(ao+\/_f+\/_d) \/§< 3“2‘1'\/-”1 +V6bry — V6s, +5552)5m17
(Z*|dyd|Zt) = 7_(110 —Vof +2d) + \/_ (—3(12 +%r1 +V6ry + V6s, —%sz)éml,
(4 5751E) = = (g = 2/24) + (=B = V21, = 26r)om,
(AiyulA) = (A|dyd|A).
%( fd) 7 <3612 + \}—7’1 + \/irz)éml,
(A|5ys|A) :\}§(a0+2\/_ d) + 7(3a2—\/§r1 —2V/2r,)ém,,
and
(&) = (a0~ 2/2d) +—( )+ + oy + Vo, +\%s2)5ml,
E'|dyd|E — — —a ir ry —Vos Ls m
(B%dyd|E%) = \/-( \/_f+ \/_d) \/-< 3(ay 2)+\/§ | —V6 3 Vs, +\/§ 2)5 I
(20575 20) = \/%(ao +VEf +V2d) + 7§(—3(a1 — ay) = V3r, = V35y)m).

APPENDIX D: LO DISCONNECTED FLAVOR DIAGONAL MATRIX ELEMENTS

From Egs. (77) and (78) we have fdis, gdis, pdis, pdis gdis and 59 all vanishing at LO and only rdis

Thus we have

o o
<N|M}’M|N>dls _ <N|dyd|N>d1§ _ \/§ dlq <\/_ad1§ \/6 dls) 51’1’1[,

(N|57s|N)%

1 d \/_ di \/5 di >
1S a 1S — —7 1S 6m
N < 3! !
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(B7)

To leading order we have for the representative octet

(C1)

(C3)

contributing.
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(for n, p),

A - A 1
SlavulZVs = (S|dvdls)dis = — dlS
(Slarulz) = (2ldrdiz)™ = —=af

< \/_adm \/6 d1s>5ml’

S is 1 is is 2 is
(2| 5ys|x)di :75543 ( V3ad —\/3 4 >6m (D2)

(for TF, 20, =),

. . L1
Aliyul )™ = (Aldyd|A)™ = —=af® +

<\/_ad1§ \/6 d1§>5ml’

(Alspl) = i + (Ve - e o, (D3)

(for A%), and

= = =\ dis =7 =\dis 1 is is is 1 is
(ElrrulE® = (@2 = + (-3t - ) + A Jom,

N
. 1 4 \/E
=5y o=\ dis dlS f dis dis < dis
=|5ys|2) = a™ —as®) — r om D4
(Elisl)® =+ (=Vilat - ) =\ 3 )om (D4
(for B0, =7).
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