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By considering a flavor expansion about the SUð3Þ flavor symmetric point, we investigate how flavor
blindness constrains octet baryon matrix elements after SUð3Þ is broken by the mass difference between
quarks. Similarly to hadron masses we find the expansions to be constrained along a mass trajectory where
the singlet quark mass is held constant, which provides invaluable insight into the mechanism of flavor
symmetry breaking and proves beneficial for extrapolations to the physical point. Expansions are given up
to third order in the expansion parameters. Considering higher orders would give no further constraints on
the expansion parameters. The relation of the expansion coefficients to the quark-line-connected and quark-
line-disconnected terms in the three-point correlation functions is also given. As we consider Wilson
cloverlike fermions, the addition of improvement coefficients is also discussed and shown to be included in
the formalism developed here. As an example of the method we investigate this numerically via a lattice
calculation of the flavor-conserving matrix elements of the vector first-class form factors.
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I. INTRODUCTION

Understanding the pattern of flavor symmetry breaking
and mixing, and the origin of CP violation, remains one of
the outstanding problems in particle physics. The big
questions to be answered are (i) what determines the
observed pattern of quark and lepton mass matrices and
(ii) are there other sources of flavor symmetry breaking? In
[1,2] we have outlined a program to systematically inves-
tigate the pattern of flavor symmetry breaking. The program
has been successfully applied to meson and baryon masses
involving up, down and strange quarks. In this articlewewill
extend the investigation to include matrix elements.

The QCD interaction is flavor blind. Neglecting electro-
magnetic and weak interactions, the only difference
between flavors comes from the quark-mass matrix. We
have our best theoretical understanding when all three
quark flavors have the same masses, because we can use the
full power of flavor SUð3Þ. The strategy is to keep the
average bare quark mass m̄ ¼ ðmu þmd þmsÞ=3 constant
and expand the matrix elements about the flavor symmetric
point mu ¼ md ¼ ms. Thus all the quark-mass dependence
will be expressed as polynomials in δmq ¼ mq − m̄, q ¼ u,
d, s. It should be mentioned that this is a completely
different approach for studying the manifestations of low-
energy QCD than chiral perturbation theory. It is a
complementary method and based on group theory rather
than effective field theory.
The program has been successfully applied to meson and

baryon masses in [1,2] including an extension to incorpo-
rate QED effects [3–5]. Besides constraining the quark-
mass dependence of hadron masses, which helps in
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extrapolations to the physical point, it provides valuable
information on the physics of flavor symmetry breaking.
For example, the order of the polynomial can be asso-
ciated with the order of 1=Nc corrections [6]. Furthermore,
similar to the analysis of Gell-Mann and Okubo [7,8], the
order of the polynomial classifies the order of SUð3Þ
breaking [1,2]. As opposed to the conventional method
of keeping the strange quark mass fixed, our method has
the further advantage that flavor-singlet quantities which
are difficult to compute can now be disentangled in
the extrapolation and are largely constant on the m̄
constant line.
In this article we shall concentrate on matrix elements

for the baryon octet as sketched in the Y-I3 plane in the
left-hand panel of Fig. 1. It is easy to translate the results
to octet mesons sketched in the right-hand panel of
Fig. 1. Furthermore we restrict ourselves to the case of
nf ¼ 2þ 1, i.e., the case of degenerate u and d quark
masses, mu ¼ md ≡ml. (Initial results were given in [9].)
However our method is also applicable to isospin-breaking
effects arising from nondegenerate u and d quark masses.
We postpone this analysis to a separate paper, including
electromagnetic effects [10]. The formalism is general. In
our application we consider for definiteness just local
currents, but covering all possible Dirac gamma matrix
structure.1

While of intrinsic interest in itself, an obvious applica-
tion of this formalism is the determination of semileptonic
decay form factors and the associated CKMmatrix element
jVusj. In general disentangling quark-mass and momentum
dependencies is helpful for determining generalized form
factors of baryons, as described for example in the forth-
coming electron ion collider program [11].
The structure of this article is as follows. In Sec. II, we

discuss all possible currents (which we call “generalized
currents” here) and also their splitting into “first-class” and
“second-class” currents. Then in Secs. III–V we discuss the
group theory. In Sec. III we define our expansion parameter
δml and the general structure of our expansions. Also
discussed there (and at the beginning of Sec. VA) are

simple cases which have previously been determined.
In particular the singlet case will be used later in this
article. Section IV gives our sign conventions (commonly
employed in chiral perturbation theory). As we have mass
degenerate u and d quarks, then there is an SUð2Þ isospin
symmetry. We then use the Wigner-Eckart theorem to
give the reduced matrix elements, contrasting the differ-
ence here to the usual conventions. Then in Sec. V, after
discussing the group theory classification of SUð3Þ
tensors, we determine those relevant to our study (with
complete tables being given in the Appendix B) and then
in Sec. VI A give the leading-order (LO) expansions.
Higher-order terms are given in Sec. VI B. These sections
giving the expansion coefficients form the heart of this
report. This is followed by Sec. VII where we briefly
restrict ourselves to a discussion of the amplitudes at the
symmetric point.
Continuing with the main thread, in Sec. VIII linear

combinations of the matrix elements are constructed for the
various baryons, leading to functions that all have the same
value at the SUð3Þ flavor symmetric point. Four different
“fan” plots are constructed, two detailed in Sec. VIII and a
further two given in Appendix B.
Lattice QCD determinations of matrix elements involve

the computation of three-point correlation functions, which
fall into two classes—quark-line-connected diagrams and
quark-line-disconnected diagrams. In Sec. IX, we discuss
the implications of this splitting for the SUð3Þ symmetry
flavor-breaking expansions at LO. In particular for the
connected terms, there are further constraints on the expan-
sion coefficients. In Sec. X this is applied to the baryon-
diagonal matrix elements (and as a special case to the
electromagnetic current). The quark-line-connected expan-
sions are given there with the general expressions described
in Appendix C, while the quark-line-disconnected expan-
sions are given in Appendix D.
In Sec. XI we discuss improvement coefficients

for the currents (see e.g., [12]) and show that they lead
to (small) modifications of the SUð3Þ flavor symmetric
breaking expansion coefficients. Using the vector current
as an example, we show how we can determine two
improvement coefficients (and the renormalization con-
stant). Section XII A briefly describes how matrix ele-
ments (i.e., form factors) are computed from the ratios of
three-point to two-point correlation functions. In Sec. XII
B, we describe our nf ¼ 2þ 1 flavor Wilson clover action
used and provide some numerical details. In Sec. XIII,
specializing to the vector current again we give some
flavor-singlet “X” plots, showing their constancy for the
F1 and F2 form factors. This is followed by some fan plots
revealing SUð3Þ-breaking effects. The momentum transfer
(Q2) dependence of the expansion coefficients is also
investigated. The numerical values of two improvement
coefficients are also determined. Finally in Sec. XIV we
give our conclusions.
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FIG. 1. Left panel: The baryon octet. Right panel: The meson
octet.

1It can also easily be extended to currents including covariant
derivatives.
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II. BARYON MATRIX ELEMENTS AND
GENERALIZED CURRENTS

We take here generalized currents to be

JFðMÞ ¼ q̄FγðMÞq≡ X3
f1;f2¼1

Ff1f2 q̄f1γ
ðMÞqf2 ; ð1Þ

where q is a flavor vector, q ¼ ðu; d; sÞT , F is a flavor
matrix and γðMÞ is some Dirac gamma matrix. In particular

we have γðMÞ ¼ γðMÞμ, γðMÞμγðMÞ
5 , I, iγðMÞ

5 and σðMÞμν for
the vector VðMÞμ, axial AðMÞμ, scalar SðMÞ, pseudoscalar
PðMÞ and tensor TðMÞμν generalized currents, respectively.
The further generalization to operators including covariant
derivatives is straightforward. With our gamma matrix
conventions, we obviously have

JFðMÞ† ¼ q̄FTγðMÞq; ð2Þ

and so are Hermitian if the flavor matrixF is symmetric and
anti-Hermitian if F is antisymmetric.
We use Minkowski space,2 and to emphasize this we use

the superscript ðMÞ. The expansion described later will be
valid whether we are working in Minkowski or Euclidean
space (when we will drop the superscript). We wish to
compute matrix elements for B → B0:

AðB → B0Þ ¼ hB0; p⃗0; s⃗0jJFðMÞðqÞjB; p⃗; s⃗i≡ AB̄0FB; ð3Þ

where B and B0 belong to the baryon octet, the members of
which are shown in Fig. 1 (the quark content of each baryon

is also depicted there). This can thus include scattering
processes for example Be → Be or semileptonic (or
β-decays) B → B0eν̄e from a parent baryon B to a daughter
baryon B0. For semileptonic decays in the standard model,
neutral currents are flavor diagonal, and hence there is an
absence of flavor-changing neutral currents (FCNCs), i.e.,
s → d transitions. In addition ΔS ¼ ΔQ violating modes
are not seen. From Fig. 1 we see that this means that
transitions from right to the left in the picture are sup-
pressed or absent. For example 12 allowed nonhyperon and
hyperon β decays are listed in Table 1 of [13]. Of course the
present formalism does not incorporate these constraints,
but this can motivate our choice of independent matrix
elements, which are transitions from the left to the right
in Fig. 1.
Momentum transfer pðMÞ − pðMÞ0 is more natural to take

for semileptonic decays, as this is the momentum carried by
the lepton and neutrino. However for scattering processes
pðMÞ0 − pðMÞ is more natural. We wish to adopt a unified
notation here, so we define the momentum transfer as

qðMÞ ¼ pðMÞ0 − pðMÞ ¼ ðEB0 ðp⃗0Þ − EBðp⃗Þ; p⃗0 − p⃗Þ: ð4Þ

The decompositions of the matrix elements in Eq. (3) are
standard, and we write

hB0; p⃗0; s⃗0jJFðMÞðqÞjB; p⃗; s⃗i ¼ ūB0 ðp⃗0; s⃗0ÞJ ðMÞðqÞuBðp⃗; s⃗Þ;
ð5Þ

with for J ðMÞ

VðMÞμ ¼ γðMÞμF1 þ iσðMÞμνqðMÞ
ν

F2

MB þMB0
þ qðMÞμ F3

MB þMB0
;

AðMÞμ ¼
�
γðMÞμG1 þ iσðMÞμνqðMÞ

ν
G2

MB þMB0
þ qðMÞμ G3

MB þMB0

�
γðMÞ
5 ;

SðMÞ ¼ gS;

PðMÞ ¼ iγðMÞ
5 gP;

T ðMÞμν ¼ σðMÞμνh1 þ iðqðMÞμγðMÞν − qðMÞνγðMÞμÞ h2
MB þMB0

þ iðqðMÞμPðMÞν − qðMÞνPðMÞμÞ h3
ðMB þMB0 Þ2

þ iðγðMÞμ=qðMÞγðMÞν − γðMÞν=qðMÞγðMÞμÞ h4
MB þMB0

; ð6Þ

where PðMÞ ¼ pðMÞ þ pðMÞ0. Fi ≡ FB̄0FB
i , Gi ≡GB̄0FB

i ,
gS ≡ gB̄

0FB
S , gP ≡ gB̄

0FB
P and hi ≡ hB̄

0FB
i are the form factors

and are functions of qðMÞ2 and the masses of the baryons
(or alternatively the quark masses). Each combination in

2The conventions used include ημν ¼ diagð1;−1;−1;−1Þ,
γðMÞμ† ¼ γðMÞ0γðMÞμγðMÞ0, γðMÞ

5 ¼ iγðMÞ0γðMÞ1γðMÞ2γðMÞ3 and
σðMÞμν ¼ i=2½γðMÞμ; γðMÞν�.

PATTERNS OF FLAVOR SYMMETRY BREAKING IN HADRON … PHYS. REV. D 100, 114516 (2019)

114516-3



Eqs. (5) and (6) represents a current times a form factor
(i.e., the coefficient). For example the first term for the
vector current reads ūB0 ðp⃗0; s⃗0ÞγðMÞμuBðp⃗; s⃗ÞFB̄0FB

1 ðqðMÞ2Þ.
The goal of this article is to establish ways in which these
form factors depend on the transition taking place and on
the quark masses.
From Eqs. (2) and (3) we have

A�̄
BFTB0 ¼ AB̄0FB; ð7Þ

and we now apply this to Eq. (5) with individual
terms defined by Eq. (6). Consider first the current
pieces. For example for the vector currents we find that
the first and second terms (i.e., currents) are unaltered:

ðūBγðMÞμuB0 Þ� ¼ ūB0γðMÞμuB, ðūB0iσðMÞμνð−qðMÞ
ν ÞuBÞ� ¼

ūBiσðMÞμνqðMÞ
ν uB0 , while the third current changes sign:

ðūBð−qðMÞμÞuB0 Þ� ¼ −ūB0qðMÞμuB. Strong interactions are
invariant under T parity and from this it can be shown that
the form factors can be chosen to be all real. Hence from
Eq. (7) we must have

FB̄FTB0
1 ¼ FB̄0FB

1 ; FB̄FTB0
2 ¼ FB̄0FB

2 ; ð8Þ

but

FB̄FTB0
3 ¼ −FB̄0FB

3 : ð9Þ

F1 and F2 are called first-class form factors while F3 is
called a second-class form factor. This can be applied to all
the further currents. These properties of the form factors
thus give rise to the notation [14]

first class F1; F2; G1; G3; gS; gP; h1; h2; h3;

second class F3; G2; h4 ð10Þ

[with the meaning given by Eqs. (8) and (9)]. Note that
when B0 ¼ B, then the second-class currents (i.e., form
factors) vanish. This occurs, either for a scattering process
(i.e., a diagonal current in flavor space, so the matrix F is
symmetric and the current is Hermitian) or for semileptonic
processes at the quark-mass symmetric point.
We now consider the flavor structures, i.e., the possible

flavor matrices in Eq. (1). In Table I we give the possible
octet states, i ¼ 1;…; 8 and in addition the singlet state,
labeled by i ¼ 0. As we are primarily concerned with the
flavor structure of bilinear operators, we use the corre-
sponding meson name for the flavor structure of the bilinear
quark currents. So for example the i ¼ 5 current is given by
the flavor matrix Fη ¼ diagð1; 1;−2Þ= ffiffiffi

6
p

. We shall use the
convention that the current i has the same effect as
absorbing a meson with the same index. In the operator
expressions q is the annihilation operator and q̄ the creation
operator. As an example, we note that absorbing a πþ
annihilates one d quark and creates a u quark. That is,

Jπ
þj0i ∝ jπþi; ð11Þ

while hpjūγdjni ¼ hpjJπþjni represents p ¼ πþn.
As an example of this (current) notation the quark

electromagnetic current can be written by defining an
appropriate flavor matrix F or alternatively as

Jem μ ¼
2

3
ūγμu −

1

3
d̄γμd −

1

3
s̄γμs

≡ 1ffiffiffi
2

p Vπ0
μ þ 1ffiffiffi

6
p Vη

μ: ð12Þ

Furthermore the charged W currents are a mixture of the
charged π and K currents, while the Z current is diagonal
and thus a mixture of the π0, η and η0 currents. The K0

current is a FCNC, so only contributes to beyond standard
model or higher-order processes.
The previous discussion on first- and second-class

currents can now be reformulated in terms of these flavor
matrices and isospin rotations.3 The diagonal currents, and
hence diagonal matrix elements, discussed here are given
by i ¼ 4, 5 and 0 with Fπ0 , Fη and Fη0 , respectively. As a
result F3,G2, gP, h2 and h3 all vanish for these currents. For
the off-diagonal currents consider the SUð3Þ flavor sym-
metric point. As all the quark masses have the same mass,
and in particular the u and d quarks, then we first consider
isospin, I, invariance. Isospin rotations are d − u rotations
and relate off-diagonal currents to diagonal currents (for
example hpjJπþjni is related to hpjJπ0 jpi; see Sec. IV B),
and similarly for U-spin rotations s − d and V-spin
rotations s − u. Hence we expect that for transitions within
a given multiplet (whether I, U or V) at the SUð3Þ flavor
symmetric point then again F3,G2, gP, h2 and h3 all vanish.

TABLE I. Our numbering and conventions for the generalized
currents. For example, B3 ¼ Σ−, F3 ¼ π−, JF3 ≡ Jπ

−
. We use the

convention that current (i.e., operator) numbered by i has the
same effect as absorbing a meson with the index i. γ represents an
arbitrary Dirac matrix.

Index Baryon (B) Meson (F) Current (JF)

1 n K0 d̄γs
2 p Kþ ūγs
3 Σ− π− d̄γu
4 Σ0 π0 1ffiffi

2
p ðūγu − d̄γdÞ

5 Λ0 η 1ffiffi
6

p ðūγuþ d̄γd − 2s̄γsÞ
6 Σþ πþ ūγd
7 Ξ− K− s̄γu
8 Ξ0 K̄0 s̄γd

0 η0 1ffiffi
3

p ðūγuþ d̄γdþ s̄γsÞ

3This discussion follows [15].
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Between isospin multiplets they need not vanish when
SUð3Þ flavor symmetry is broken. We later discuss this in
more detail and our coefficient tables, for example
Table VI, reflect these results.

III. QUARK-MASS EXPANSIONS

A. Choice of quark masses

As mentioned already, we follow the strategy used in [2]
of holding constant the average bare quark mass

m̄ ¼ 1

3
ðmu þmd þmsÞ: ð13Þ

This greatly reduces the number of mass polynomials
which can occur in Taylor expansions of physical quan-
tities and relates the quark-mass dependencies of hadron
masses or matrix elements within an SUð3Þ multiplet.
Since we expand about the symmetric point where all
three quarks have the same mass, it is useful to introduce
the notation

δmq ≡mq − m̄; q ¼ u; d; s; ð14Þ

to describe the “distance” from the SUð3Þ flavor sym-
metry point. Note that it follows from the definition that
we have the identity

δmu þ δmd þ δms ¼ 0; ð15Þ

so we can always eliminate one of the δmq. In this article
we concentrate on the nf ¼ 2þ 1 case; i.e., we keep

mu ¼ md ≡ml: ð16Þ

All our expansion coefficients are functions of m̄. The
methods developed here can be generalized to the case of
nf ¼ 1þ 1þ 1 nondegenerate quark-mass flavors. For
this case Eq. (15) reduces to

2δml þ δms ¼ 0; ð17Þ

which we use to eliminate δms. Thus, all mass depend-
ences will be expressed as polynomials in the single
variable δml. At the physical point ml ≪ m̄, so δml is

negative. However on the lattice in principle we are free to
choose δml positive, and look at matrix elements on both
sides of the symmetric point.

B. Matrix elements

In the following we want to use group theory in flavor
space to calculate the possible quark-mass dependence of
baryonic form factors. However for simplicity of notation
we shall continue to discuss matrix elements and ampli-
tudes, but it should be noted that for form factors the
Lorentz or Dirac structure has been factored out. So we
shall consider the quark-mass expansion for

hBijJFj jBki≡ AB̄iFjBk
: ð18Þ

The indices i and kwill run from 1 to 8 for octet hadrons (or
1 to 10 for decuplets). The currents and operators we are
interested in are quark bilinears, so the index j will run
from 1 to 8 for nonsinglets or 0 for the singlet. In the
following the singlet will be considered separately. When
i ≠ k we get transition matrix elements; when i ¼ k within
the same multiplet, we get operator expectation values. This
has already been indicated in Table I.
The allowed quark-mass Taylor expansion for a hadronic

matrix element must follow the schematic pattern

hBijJFj jBki ¼
X

ðsinglet mass polynomialÞ × ðsinglet tensorÞijk þ
X

ðoctet mass polynomialÞ × ðoctet tensorÞijk
þ
X

ð27-plet mass polynomialÞ × ð27-plet tensorÞijk þ � � � : ð19Þ

The mass polynomials have been determined and given in
Table III of [2]. The relevant part of this table is given in
Table II where we classify all the polynomials which could
occur in a Taylor expansion about the symmetric point,

δmq ¼ 0, q ¼ u, d, s up toOðδm3
qÞ. The tensors in Eq. (19)

are three-dimensional arrays of integers and square roots of
integers, objects somewhat analogous to three-dimensional
Gell-Mann matrices. We recover the standard results for

TABLE II. All the quark-mass polynomials up to Oðδm3
qÞ,

classified by symmetry properties.

Polynomial SUð3Þ
1 1

δms 8
ðδmu − δmdÞ 8

δm2
u þ δm2

d þ δm2
s 1 27

3δm2
s − ðδmu − δmdÞ2 8 27

δmsðδmd − δmuÞ 8 27

δmuδmdδms 1 27 64
δmsðδm2

u þ δm2
d þ δm2

sÞ 8 27 64

ðδmu − δmdÞðδm2
u þ δm2

d þ δm2
sÞ 8 27 64

ðδms−δmuÞðδms−δmdÞðδmu−δmdÞ 10 10 64
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unbroken SUð3Þ by only keeping singlet tensors on the
right-hand side of Eq. (19). Adding higher-dimensional
flavor tensors tells us the allowed mass dependences of
matrix elements. The dots in Eq. (19) represent terms that
are cubic or higher in δmq.
We now need to classify the three-index tensors accord-

ing to their group transformations, using the same tech-
niques we used for masses [2]. The new cases to look at will
be 8 ⊗ 8 ⊗ 8 and 10 ⊗ 8 ⊗ 10 for octet and decuplet
hadrons, respectively, 10 ⊗ 8 ⊗ 8 for transitions between
octet and decuplet baryons, and 3 ⊗ 8 ⊗ 3 for quark
matrix elements, useful for considering renormalization
and improvement of quark bilinear operators. We shall only
consider the octet (and singlet) baryon cases here.

C. Simple cases I: Decay constants f π and f K
The vacuum is a singlet, so vacuum to meson M matrix

elements or decay constants h0jJFj jMki, j ¼ 1;…; 8, are
proportional to 1 ⊗ 8 ⊗ 8 tensors, i.e., 8 ⊗ 8 matrices. So
again the allowed mass dependence of fπ and fK is similar
to the allowed dependence of M2

π and M2
K , as given in [2].

Results using this approach are given in [16]. For example
to LO we have

fπ ¼ F0 þ 2Gδml;

fK ¼ F0 −Gδml: ð20Þ

The same argument applies in principle to hyperon dis-
tribution amplitudes qqq and to baryon decays via qqqe
4-Fermi grand unified theory interactions, but in this work
we shall only consider bilinear operators.

IV. METHOD FOR MATRIX ELEMENTS

Recall from Eq. (3) that we have used the notation for the
matrix element transition B → B0 of

AB̄0FB ¼ hB0jJFjBi; ð21Þ

where JF is the appropriate operator from Table I and F
denotes the flavor structure of the operator. But note that as
we are suppressing the Lorentz structure, this includes first-
and second-class form factors as given in Eq. (10).

A. Sign conventions: Octet operators and octet hadrons

In the case of a nf ¼ 2þ 1 simulation we only need to
give the amplitudes for one particle in each isospin
multiplet and can then use isospin symmetry to calculate
all other amplitudes in (or between) the same multiplets.
So, for example, we can calculate the Σ− and Σ0 matrix
elements if we are given all the Σþ matrix elements.
Similarly, given the Σþ → p transition amplitude, we
can find all the other Σ → N transition amplitudes. All
the symmetry factors will be listed in Sec. IV B.

In the next section we will calculate the allowed quark-
mass dependencies of the amplitudes between the baryons.
Within this set there are seven diagonal matrix elements and
five transition amplitudes, making 7þ 5 ¼ 12 in total. The
seven diagonal elements are

AN̄ηN; AΣ̄ηΣ; AΛ̄ηΛ; AΞ̄ηΞ and AN̄πN; AΣ̄πΣ; AΞ̄πΞ;

ð22Þ

because there are four I ¼ 0 amplitudes, one for each
particle, but only three I ¼ 1 amplitudes, because isospin
symmetry rules out an I ¼ 1, Λ0 ↔ Λ0 amplitude. There
are only five transition amplitudes:

AΣ̄πΛ and AN̄KΣ; AN̄KΛ; AΛ̄KΞ; AΣ̄KΞ; ð23Þ

because no octet operator changes strangeness by �2, so
there is no p ↔ Ξ0 transition amplitude. See the forth-
coming Tables III and IV for the explicit results.
To discuss transition matrix elements, we need to specify

the hadron states carefully. If we do not, then the phases and
signs of transition matrix elements become ambiguous.
(This is not a problem with masses, or diagonal matrix
elements such as hpjJjpi.)
We follow a convention commonly used in chiral

perturbation theory,4 e.g., [18,19] where the mesons trans-
form under SUð3Þ rotations like the 3 × 3 matrix

M ¼

0
BBB@

1ffiffi
2

p π0 þ 1ffiffi
6

p η πþ Kþ

π− − 1ffiffi
2

p π0 þ 1ffiffi
6

p η K0

K− K̄0 − 2ffiffi
6

p η

1
CCCA ð24Þ

and octet baryons like the matrix

B ¼

0
BBB@

1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ0 Σþ p

Σ− − 1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ0 n

Ξ− Ξ0 − 2ffiffi
6

p Λ0

1
CCCA;

B̄ ¼

0
BBB@

1ffiffi
2

p Σ̄0 þ 1ffiffi
6

p Λ̄0 Σ̄− Ξ̄−

Σ̄þ − 1ffiffi
2

p Σ̄0 þ 1ffiffi
6

p Λ̄0 Ξ̄0

p̄ n̄ − 2ffiffi
6

p Λ̄0

1
CCCA:

ð25Þ

4However some papers use different definitions, e.g., in
Chap. 18 of [17] the meson matrix M is defined the same
way as in Eq. (24), but in the baryon matrix B the Ξ− appears with
a minus sign in comparison to Eq. (25). Using the Gasiorowicz
convention [17] would give the opposite sign to all transition
matrix elements to or from the Ξ−.
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So for example πþ, π0, π− are represented by the matrices

0
B@
0 1 0

0 0 0

0 0 0

1
CA;

0
BB@

1ffiffi
2

p 0 0

0 − 1ffiffi
2

p 0

0 0 0

1
CCA;

0
B@
0 0 0

1 0 0

0 0 0

1
CA; ð26Þ

respectively. Under an SUð3Þ rotation the M, B and B̄
matrices transform as

M→UMU†; B→UBU†; and B̄→UB̄U†: ð27Þ

B. SU(2) relations

As discussed previously we use the convention that
operator number i, representing an appropriate flavor
matrix, has the same effect on quantum numbers as the
absorption of a meson with the index i. So, for example,

from Table I operator 6 annihilates a d quark and creates a u
and hence changes a neutron into a proton, i.e.,

hpjūγdjni≡ hpjJπþjni≡ hB2jJF6 jB1i: ð28Þ

In Tables III and IV we list the isospin relationships
between all of the allowed matrix elements in the octet
and our standard 7þ 5 ¼ 12 matrix elements.
Making the choice given in Eqs. (24) and (25) which is

conventional in chiral perturbation theory, the isospin

TABLE III. The isospin relations connecting the set of octet
matrix elements with our standard subsets AB̄FB (each indepen-
dent set separated by an empty line). Top table: The I ¼ 0
diagonal relations; bottom table: the I ¼ 1 transition relations
within the same isospin multiplet.

I

0 hnjJηjni AN̄ηN

0 hpjJηjpi AN̄ηN

0 hΣ−jJηjΣ−i AΣ̄ηΣ
0 hΣ0jJηjΣ0i AΣ̄ηΣ
0 hΣþjJηjΣþi AΣ̄ηΣ

0 hΛ0jJηjΛ0i AΛ̄ηΛ

0 hΞ−jJηjΞ−i AΞ̄ηΞ
0 hΞ0jJηjΞ0i AΞ̄ηΞ

I

1 hnjJπ0 jni −AN̄πN

1 hpjJπ0 jpi AN̄πN

1 hnjJπ− jpi ffiffiffi
2

p
AN̄πN

1 hpjJπþ jni ffiffiffi
2

p
AN̄πN

1 hΣ−jJπ0 jΣ−i −AΣ̄πΣ
1 hΣ0jJπ0 jΣ0i 0
1 hΣþjJπ0 jΣþi AΣ̄πΣ
1 hΣ−jJπ− jΣ0i AΣ̄πΣ
1 hΣ0jJπ− jΣþi −AΣ̄πΣ
1 hΣ0jJπþ jΣ−i AΣ̄πΣ
1 hΣþjJπþ jΣ0i −AΣ̄πΣ

1 hΛ0jJπ0 jΛ0i 0

1 hΞ−jJπ0 jΞ−i −AΞ̄πΞ
1 hΞ0jJπ0 jΞ0i AΞ̄πΞ
1 hΞ−jJπ− jΞ0i −

ffiffiffi
2

p
AΞ̄πΞ

1 hΞ0jJπþ jΞ−i −
ffiffiffi
2

p
AΞ̄πΞ

TABLE IV. The isospin relations connecting the transition set
of octet matrix elements with our standard subsets AB̄0FB (each
independent set separated by an empty line). Tob table: The
“forward” I ¼ 1 and 1

2
relations; bottom table: the inverse

relations.

I

1 hΣ−jJπ− jΛ0i AΣ̄πΛ
1 hΣ0jJπ0 jΛ0i AΣ̄πΛ
1 hΣþjJπþ jΛ0i AΣ̄πΛ

1
2 hnjJKþ jΣ−i AN̄KΣ
1
2 hnjJK0 jΣ0i −AN̄KΣ=

ffiffiffi
2

p
1
2 hpjJKþ jΣ0i AN̄KΣ=

ffiffiffi
2

p
1
2 hpjJK0 jΣþi AN̄KΣ

1
2 hnjJK0 jΛ0i AN̄KΛ
1
2 hpjJKþ jΛ0i AN̄KΛ

1
2 hΛ0jJKþ jΞ−i AΛ̄KΞ
1
2 hΛ0jJK0 jΞ0i AΛ̄KΞ

1
2 hΣ−jJK0 jΞ−i AΣ̄KΞ
1
2 hΣ0jJKþ jΞ−i AΣ̄KΞ=

ffiffiffi
2

p
1
2 hΣ0jJK0 jΞ0i −AΣ̄KΞ=

ffiffiffi
2

p
1
2 hΣþjJKþ jΞ0i AΣ̄KΞ

I

1 hΛ0jJπþ jΣ−i AΛ̄πΣ
1 hΛ0jJπ0 jΣ0i AΛ̄πΣ
1 hΛ0jJπ− jΣþi AΛ̄πΣ

1
2

hΣ−jJK− jni AΣ̄ K̄ N
1
2 hΣ0jJK̄0 jni −AΣ̄ K̄ N=

ffiffiffi
2

p
1
2

hΣ0jJK− jpi AΣ̄ K̄ N=
ffiffiffi
2

p
1
2 hΣþjJK̄0 jpi AΣ̄ K̄ N

1
2 hΛ0jJK̄0 jni AΛ̄ K̄ N
1
2

hΛ0jJK− jpi AΛ̄ K̄ N

1
2

hΞ−jJK− jΛ0i AΞ̄ K̄ Λ
1
2 hΞ0jJK̄0 jΛ0i AΞ̄ K̄ Λ

1
2 hΞ−jJK̄0 jΣ−i AΞ̄ K̄ Σ
1
2

hΞ−jJK− jΣ0i AΞ̄ K̄ Σ=
ffiffiffi
2

p
1
2 hΞ0jJK̄0 jΣ0i −AΞ̄ K̄ Σ=

ffiffiffi
2

p
1
2

hΞ0jJK− jΣþi AΞ̄ K̄ Σ
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raising and lowering operators do not follow the usual
Condon-Shortley sign convention. The Wigner-Eckart
theorem applies, but the signs are not always the ones
from the standard Clebsch-Gordan coefficients.
To demonstrate this, consider the transformations given

in Eq. (27) with U ¼ expðiαiλiÞ. Infinitesimal transforma-
tions (αi → 0) correspond to commutators of the type
½λi; B� or ½λi;M�. The isospin operations are constructed
from the first three λ matrices:

I3 ¼
1

2
λ3;

Iþ ¼ 1

2
ðλ1 þ iλ2Þ;

I− ¼ 1

2
ðλ1 − iλ2Þ: ð29Þ

I3 has the expected result

Î3M ¼ 1

2
½λ3;M� ¼

0
BB@

0 πþ 1
2
Kþ

−π− 0 − 1
2
K0

− 1
2
K− 1

2
K̄0 0

1
CCA; ð30Þ

Î3B ¼ 1

2
½λ3; B� ¼

0
BB@

0 Σþ 1
2
p

−Σ− 0 − 1
2
n

− 1
2
Ξ− 1

2
Ξ0 0

1
CCA: ð31Þ

For example regarding π− as the matrix in Eq. (26) gives

Î3π− ¼

0
B@

0 0 0

−1 0 0

0 0 0

1
CA ¼ −π− ð32Þ

(see Fig. 1). Similarly for the baryons, for example
Î3n ¼ − 1

2
n, etc.

However Îþ and Î− produce results at odds with the
Condon-Shortley or CS phase convention, which has
positive coefficients for the nonzero matrix elements of
the raising and lowering operators:

ÎþM ¼ 1

2
½λ1 þ iλ2;M� ¼

0
B@

π− −
ffiffiffi
2

p
π0 K0

0 −π− 0

0 −K− 0

1
CA: ð33Þ

Again using the π− as an example and comparing this result
with Eq. (24) we see that we have

Îþπ− ¼

0
B@

1 0 0

0 −1 0

0 0 0

1
CA ¼

ffiffiffi
2

p
π0: ð34Þ

Listing all the relations gives

Îþπ− ¼
ffiffiffi
2

p
π0;

Îþπ0 ¼ −
ffiffiffi
2

p
πþ;

ÎþK0 ¼ Kþ;

ÎþK− ¼ −K̄0: ð35Þ
Similarly

ÎþΣ− ¼
ffiffiffi
2

p
Σ0;

ÎþΣ0 ¼ −
ffiffiffi
2

p
Σþ;

Îþn ¼ p;

ÎþΞ− ¼ −Ξ0: ð36Þ
The action of Î− is similar. Since these relations are not
those usually used to calculate the Clebsch-Gordan coef-
ficients, we need to tabulate the isospin relations within
each multiplet. The signs of the Îþ matrix elements follow
directly from the choice of signs in the chiral perturbation
theory representation of the meson and baryon octets as
3 × 3 matrices in Eqs. (24) and (25). The guiding principle
is to make the off-diagonal entries there positive. However
this tidy choice of matrix leads to a nonstandard phase
convention within isospin multiplets.
In the CS convention all the coefficients in Eqs. (35) and

(36) would be positive. Looking at the baryon results
[Eq. (36)], we see that the neutron and proton are consistent
with that convention, while, for example, the Ξ− and Ξ0 are
not. The minus sign tells us that one of the Ξ states must
have the opposite phase to the CS convention. Since only
relative phases are observable, we could choose the Ξ0 to
have the CS phase and the Ξ− to have the flipped phase.
(Making the other choice would not change the final result.)
Similarly looking at the Σ baryons we could choose the Σþ

to have the CS phase and the Σ− and Σ0 to have flipped
phase (or vice versa).
One choice of phases that would match Eqs. (35) and

(36) would be to choose the n, p, Σþ and Ξ0 as standard,
and the Σ−, Σ0 and Ξ− as flipped, and the equivalent choice
for the meson currents (i.e., π−, π0, K− flipped). If we look
in Tables III and IV we see that matrix elements involving
an even number of hadrons from the flipped group, the
Clebsch-Gordan factor is the same as that in the usual
tables; if an odd number of flipped hadrons are involved,
the sign is the opposite to that in the usual tables.
As an example of the use of Table III, we show how the

unbroken SUð2Þ symmetry can be used to find the
transition amplitude hpjJπþjni from the corresponding
diagonal amplitude hpjJπ0 jpi. From the table

hpjJπþjni ¼
ffiffiffi
2

p
AN̄πN ¼

ffiffiffi
2

p
hpjJπ0 jpi; ð37Þ

giving
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hpjūγdjni ¼ hpjðūγu − d̄γdÞjpi; ð38Þ

which is again the simple example showing the relation
between off-diagonal and diagonal currents briefly dis-
cussed in Sec. II.

V. MASS DEPENDENCE OF AMPLITUDES

We first consider the simple singlet case (operators with
the η0 flavor structure, i ¼ 0; see Table I) and then consider
the octet states.

A. Simple cases II: Flavor-singlet operators

For matrix elements involving singlet currents,
hBijJF0 jBii≡ hBijJη0 jBii, we need the SUð3Þ analysis of
8 ⊗ 1 ⊗ 8 tensors. These are just the 8 ⊗ 8 matrices
already analyzed in [2]. The conclusion is thus that matrix
elements of flavor-singlet operators follow the same for-
mulas as the hadron masses. An example of a flavor-singlet
operator is the quark component to the baryon spin, ΔΣ.
For example the LO expansion is given by

AN̄η0N ¼ a0 þ 3a1δml;

AΛ̄η0Λ ¼ a0 þ 3a2δml;

AΣ̄η0Σ ¼ a0 − 3a2δml;

AΞ̄η0Ξ ¼ a0 − 3ða1 − a2Þδml; ð39Þ
with higher orders given in [2].

B. Group theory classification: Flavor-octet operators

To find the allowed mass dependence of octet matrix
elements of octet hadrons we need the SUð3Þ decompo-
sition of 8 ⊗ 8 ⊗ 8. Using the intermediate result

8 ⊗ 8 ¼ 1 ⊕ 8 ⊕ 8 ⊕ 10 ⊕ 10 ⊕ 27; ð40Þ
we find

8 ⊗ 8 ⊗ 8 ¼ 1 ⊕ 1 ⊕ 8 ⊕ 8 ⊕ 8 ⊕ 8 ⊕ 8 ⊕ 8 ⊕ 8

⊕ 8 ⊕ 27 ⊕ 27 ⊕ 27 ⊕ 27 ⊕ 27 ⊕ 27

⊕ 64 ⊕ 10 ⊕ 10 ⊕ 10 ⊕ 10 ⊕ 10 ⊕ 10

⊕ 10 ⊕ 10 ⊕ 35 ⊕ 35 ⊕ 35 ⊕ 35: ð41Þ
With three unequal quark masses, the nf ¼ 1þ 1þ 1 case,
I3 and Y are both “good” flavor quantum numbers, so the
tensors in Eq. (19) will satisfy I3 ¼ 0, Y ¼ 0; i.e., they will
be the central locations (spots) in each multiplet in Fig. 2.
Thus in a full nf ¼ 1þ 1þ 1 flavor calculation (three
different quark masses) we would see contributions from all
the representations in Eq. (41).
Fortunately in the nf ¼ 2þ 1 case the good flavor

quantum numbers are I and Y, giving us the stronger
constraint that only tensors with I ¼ 0, Y ¼ 0 enter into
Eq. (19). The 10, 10, 35 and 35 do not contain any I ¼ 0,

Y ¼ 0 operators, so they no longer contribute in the 2þ 1
case, which means that we can neglect those representa-
tions at present [17,20]. For example for the Y ¼ 0 line for
the octet, we have an isospin triplet and singlet of states and
similarly for the 27-plet (isospin 5-plet, triplet and singlet)
and 64-plet (isospin 7-plet, 5-plet, triplet and singlet).
However for the 10-plet we have just an isospin triplet
and for the 35-plet a 5-plet and triplet. In both cases there is
no Y ¼ 0 isospin singlet.
We have already seen this phenomenon in [2] for the case

of the 10 and 10. The simplest quark-mass polynomial with
10, 10 symmetry was ðδms−δmuÞðδms−δmdÞðδmu−δmdÞ
(see Table II), which vanishes if any two quark masses are
equal. The 10 and 10 only appeared in two quantities we
have considered, the violation of the Coleman-Glashow
mass relation and in Σ0 − Λ0 mixing [21], both of which
are isospin violating.

C. The SUð3Þ symmetry-breaking expansions

1. Basis

Because 8 × 8 × 8 tensors are easier to think about than
3 × 3 × 3 × 3 × 3 × 3 tensors we switch to regarding
baryons and mesons as vectors of length 8. We have used
the ordering

0
BBBBBBBBBBBBB@

n

p

Σ−

Σ0

Λ0

Σþ

Ξ−

Ξ0

1
CCCCCCCCCCCCCA

and

0
BBBBBBBBBBBBBBB@

K0

Kþ

π−

π0

η

πþ

K−

K̄0

1
CCCCCCCCCCCCCCCA

: ð42Þ

FIG. 2. I3, Y plots for some of the SUð3Þ multiplets which
appear in the decomposition of 8 ⊗ 8 ⊗ 8. The left-hand plot
illustrates the octet, 27-plet and 64-plet representations (clock-
wise). The right-hand plot shows the 10- and 35-plets (left to
right). The number of spots in the central location gives the
number of flavor-conserving operators in each multiplet.
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The 8 generators of SUð3Þ are now a set of 8 × 8 matrices, chosen so that λB in the matrix-vector notation has the same
effect as [λ; B] in the 3 × 3 matrix-matrix notation. We have

λ1 ¼

0
BBBBBBBBBBBBB@

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0
ffiffiffi
2

p
0 0 0 0

0 0
ffiffiffi
2

p
0 0 −

ffiffiffi
2

p
0 0

0 0 0 0 0 0 0 0

0 0 0 −
ffiffiffi
2

p
0 0 0 0

0 0 0 0 0 0 0 −1
0 0 0 0 0 0 −1 0

1
CCCCCCCCCCCCCA
;

λ2 ¼

0
BBBBBBBBBBBBB@

0 i 0 0 0 0 0 0

−i 0 0 0 0 0 0 0

0 0 0 i
ffiffiffi
2

p
0 0 0 0

0 0 −i
ffiffiffi
2

p
0 0 −i

ffiffiffi
2

p
0 0

0 0 0 0 0 0 0 0

0 0 0 i
ffiffiffi
2

p
0 0 0 0

0 0 0 0 0 0 0 −i
0 0 0 0 0 0 i 0

1
CCCCCCCCCCCCCA
;

λ3 ¼

0
BBBBBBBBBBBBB@

−1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 −2 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 2 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCA
;

λ4 ¼ 1ffiffiffi
2

p

0
BBBBBBBBBBBBB@

0 0 −
ffiffiffi
2

p
0 0 0 0 0

0 0 0 −1 −
ffiffiffi
3

p
0 0 0

−
ffiffiffi
2

p
0 0 0 0 0 0 0

0 −1 0 0 0 0 1 0

0 −
ffiffiffi
3

p
0 0 0 0

ffiffiffi
3

p
0

0 0 0 0 0 0 0
ffiffiffi
2

p

0 0 0 1
ffiffiffi
3

p
0 0 0

0 0 0 0 0
ffiffiffi
2

p
0 0

1
CCCCCCCCCCCCCA
;
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λ5 ¼ 1ffiffiffi
2

p

0
BBBBBBBBBBBBB@

0 0 i
ffiffiffi
2

p
0 0 0 0 0

0 0 0 i i
ffiffiffi
3

p
0 0 0

−i
ffiffiffi
2

p
0 0 0 0 0 0 0

0 −i 0 0 0 0 −i 0

0 −i
ffiffiffi
3

p
0 0 0 0 −i

ffiffiffi
3

p
0

0 0 0 0 0 0 0 −i
ffiffiffi
2

p

0 0 0 i i
ffiffiffi
3

p
0 0 0

0 0 0 0 0 i
ffiffiffi
2

p
0 0

1
CCCCCCCCCCCCCA
;

λ6 ¼ 1ffiffiffi
2

p

0
BBBBBBBBBBBBB@

0 0 0 1 −
ffiffiffi
3

p
0 0 0

0 0 0 0 0 −
ffiffiffi
2

p
0 0

0 0 0 0 0 0
ffiffiffi
2

p
0

1 0 0 0 0 0 0 −1
−

ffiffiffi
3

p
0 0 0 0 0 0

ffiffiffi
3

p

0 −
ffiffiffi
2

p
0 0 0 0 0 0

0 0
ffiffiffi
2

p
0 0 0 0 0

0 0 0 −1
ffiffiffi
3

p
0 0 0

1
CCCCCCCCCCCCCA
;

λ7 ¼ 1ffiffiffi
2

p

0
BBBBBBBBBBBBB@

0 0 0 −i i
ffiffiffi
3

p
0 0 0

0 0 0 0 0 i
ffiffiffi
2

p
0 0

0 0 0 0 0 0 −i
ffiffiffi
2

p
0

i 0 0 0 0 0 0 i

−i
ffiffiffi
3

p
0 0 0 0 0 0 −i

ffiffiffi
3

p

0 −i
ffiffiffi
2

p
0 0 0 0 0 0

0 0 i
ffiffiffi
2

p
0 0 0 0 0

0 0 0 −i i
ffiffiffi
3

p
0 0 0

1
CCCCCCCCCCCCCA
;

λ8 ¼
ffiffiffi
3

p

0
BBBBBBBBBBBBB@

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1

1
CCCCCCCCCCCCCA
: ð43Þ

These 8 × 8 λ matrices follow similar relations to the
familiar 3 × 3 matrices,

½λi; λj� ¼ 2ifijkλk; TrðλiλjÞ ¼ 12δij; ð44Þ

and

I3 ¼
1

2
λ3; Y ¼ 1ffiffiffi

3
p λ8; ð45Þ

with the difference that the 3 × 3 matrices tell us about I3
and Y for the individual quarks, but the 8 × 8 matrices give
the quantum numbers of the octet baryons or octet mesons.

2. Transformations

Under an SUð3Þ rotation the tensors on the right-hand
side of Eq. (19) transform according to

T 0
ijk ¼ U†

iaTabcUbjUck: ð46Þ
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The change in T under an infinitesimal transformation by
the generator λα is

ÔαT ≡ −λαiaTajk þ Tibkλ
α
bj þ Tijcλ

α
ck: ð47Þ

The Casimir operator for the SUð3Þ representation is

ĈT ¼ 1

4

X
α¼1;8

ÔαÔαT; ð48Þ

while the Casimir for the SUð2Þ isospin subgroup is

Î2T ¼ 1

4

X
α¼1;3

ÔαÔαT: ð49Þ

The nf ¼ 2þ 1 mass matrix commutes with λ1, λ2, λ3 (the
generators of isospin) and λ8 (hypercharge). We are looking
for tensors which obey these symmetries, so we require

ÔαT ¼ 0; α ¼ 1; 2; 3; 8: ð50Þ

The Casimir operator has the following eigenvalues for the
representations occurring in 8 ⊗ 8 ⊗ 8 [see for example
Chap. 4 of [20] or Chap. 7 (exercise 7.12) of [22] ]:

representation 1 8 10 10 27 35 35 64;

Casimir eigenvalue 0 3 6 6 8 12 12 15:
ð51Þ

We now want to construct tensors which are eigenstates of
the Casimir operator and which satisfy the conditions in
Eq. (50). This is analogous to constructing an eigenvector if
we know the eigenvalues. We have a large number of
simultaneous linear equations involving the numbers Tijk.
The solutions tend to be sparse with the conditions in
Eq. (50) forcing many entries to be zero. We calculate the
tensors of a given symmetry with the help of Mathematica
[23]. We begin with a completely general tensor Tijk with
83 entries and impose the conditions Eq. (50). This forces
many entries to be zero, as it eliminates all entries in which
the flavor quantum numbers of the “outgoing” particle i is
not the sum of the flavors of j and k (for example
hΞ0jJπþjpi ¼ 0 because charge and strangeness do not
balance). The conditions Eq. (50) are also sufficient to force
all the relations in Tables III and IV to hold. After imposing
Eq. (50) we have reduced the initial general tensor with
83 ¼ 512 entries down to a tensor with only 17 independent
parameters. From the decomposition of 8 ⊗ 8 ⊗ 8 as given
in Eq. (41) we can work out how many solutions there are
of each symmetry. The representations 1, 8, 27 and 64 each
have a single state satisfying Eq. (50), while the 10, 10, 35
and 35 have no states compatible with Eq. (50) because
they do not have a Y ¼ 0; I2 ¼ 0 central state; see Fig. 2
and the related discussion. The 17 linearly independent
tensors remaining after imposing Eq. (50) can now be

further classified as eigenstates of the Casimir operator.
Finding these tensors is a simple matter of solving
simultaneous equations, analogous to determining an
eigenvector once the eigenvalue is known.
As in the case of degenerate eigenvalues, there is a

degree of choice in choosing which linear combinations of
the eigenstates we choose as our basis. Often there are
interchange operations which we can choose to be even or
odd. In particular we can choose our tensors to be first class
or second class depending on the symmetry or antisym-
metry when the baryons are switched, as discussed
in Sec. II.
We can see this by introducing a reflection matrix R

which inverts each octet, leaving the central two states
unchanged:

R ¼

0
BBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCCA

: ð52Þ

For the mesons this is the charge conjugation operation. We
note that R2 ¼ I (the unit matrix), so R can only have the
eigenvalues �1; hence we can classify states according to
whether they are even or odd under operations involving R.
Tensors can be divided into first or second class depending
on the symmetry:

first class Tijk ¼ þTkaiRaj;

second class Tijk ¼ −TkaiRaj; ð53Þ

in which the baryon order is reversed and R applied to the
current (meson) index. Furthermore the definition of first-
or second-class tensors in Eq. (53) agrees with the previous
discussion: in Eqs. (8), (9) we interchanged B and B0 and
took the transpose of the flavor matrix F. This latter
operation is easily seen to be equivalent to the reflection
R in Eq. (53).
We can further classify tensors by the symmetry when R

is applied to all three indices:

d − like Tijk ¼ þRiaTabcRbjRck;

f − like Tijk ¼ −RiaTabcRbjRck: ð54Þ

As can be seen from Eq. (41) there must be two singlet
eigenstates, eight octets, six 27-plets and one 64-plet, 17 in
total. All tensors T are classified by their symmetry
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properties, according to whether first or second class,
Eq. (53), and whether they are f-like or d-like, Eq. (54),
and are given by

T; 1stclass T; 2ndclass
SUð3Þ d-like f-like d-like f-like

1 d f
8 r1; r2; r3 s1; s2 t1; t2 u1
27 q1; q2 w1; w2 x1 y1
64 z

ð55Þ

Furthermore in Appendix Awe list all nonzero elements for
all 17 tensors, together with their values. For example in
Eq. (56) we give the nonzero elements of the tensors T ¼ r1
and t1:

T Tijk ijk
r1 1 151 252 353 454 555 656 757 858
t1 1 115 225 335 445 665 775 885

−1 518 527 536 544 563 572 581

ð56Þ

The values of the nonzero Tijk elements are given in the
second column, while their position is given in the third
block. In particular we see that the r1 tensor only has eight
nonzero entries, all identical in value, in the positions Ti5i,
where i can take any value from 1 to 8. It can easily be
checked, for example, that the tensors r1 and t1 with
nonzero elements as given in Eq. (56) are first- and second-
class tensors, respectively.
The ri tensors are d-like and can be regarded as

responsible for the quark-mass dependence of the d
coupling (see the d fan in Sec. VIII), while the si tensors
are f-like and act as quark-mass-dependent additions to the
f coupling (as seen in the f fan—see Sec. VIII).
We are now finally in a position to present the

SUð3Þ flavor symmetry-breaking expansions. As we are
considering only the isospin limit, Eq. (16), then Table II
reduces to Table V. For example, let us consider
hpjJπþjni ≡ hB2jJF6 jB1i, Eq. (28). From Table III, this isffiffiffi
2

p
AN̄πN . Hence from Eq. (19), and using Table V and

Appendix A (for the nonzero 261 component of the
appropriate tensor) and using the same notation for the
expansion coefficients as for the tensor gives the LO
expansion

ffiffiffi
2

p
AN̄πN ¼ 1× ð

ffiffiffi
2

p
fþ

ffiffiffi
6

p
dÞþδml× ð−2

ffiffiffi
2

p
r3þ2

ffiffiffi
2

p
s1Þ:
ð57Þ

At higher orders, we also need in addition the nonzero
elements of the 27- and 64-plet. Further examples are given
in the next section in Eqs. (61) and (62).

VI. COEFFICIENT TABLES

We use the same notation for the expansion coefficients
as for the tensor. For example the r1 tensor (with compo-
nents Ti5i) has expansion coefficient r1.

A. Leading-order coefficient tables

The SUð3Þ singlet and octet coefficients in the mass
Taylor expansion of operator amplitudes are tabulated in
Table VI. These coefficients are sufficient for the linear
expansion of hadronic amplitudes on the constant m̄ line.
(If m̄ were not kept constant, there would be two more
linear terms.)
The table is to be read: for first-class currents the f and d

terms are independent of the quark mass, while the r1, r2, r3
and s1, s2 coefficients are the LO or δml terms. For second-
class currents, as discussed previously, there are no leading
f and d terms; the expansion starts at OðδmlÞ for the off-
diagonal currents or completely vanishing for the diagonal
currents.
Thus for example to first order in δml (i.e., LO) we can

read off from Tables III, IV and VI

hpjJηjpi¼AN̄ηN ¼
ffiffiffi
3

p
f−dþðr1− s2Þδml;

hnjJKþjΣ−i¼AN̄KΣ ¼−
ffiffiffi
2

p
fþ

ffiffiffi
6

p
dþð

ffiffiffi
2

p
r3þ

ffiffiffi
2

p
s1Þδml;

hΣþjJηjΣþi¼AΣ̄ηΣ ¼ 2dþðr1þ2
ffiffiffi
3

p
r3Þδml ð58Þ

for first-class currents [for example for the vector current
the form factors F1 and F2 from Eq. (10)] and

hnjJKþjΣ−i ¼ AN̄KΣ ¼ ð
ffiffiffi
2

p
t2 þ

ffiffiffi
6

p
u1Þδml;

hΣ−jJK− jni ¼ AΣ̄ K̄ N ¼ −ð
ffiffiffi
2

p
t2 þ

ffiffiffi
6

p
u1Þδml ð59Þ

for second-class currents (for example for the F3 vector
form factor).
A notational comment: we shall usually suppress argu-

ments and indices, but each coefficient in Table VI is a
function of the ðmomentum transferÞ2 Q2, as well as being
renormalized or not. Thus for example for the renormalized
vector current, the f coefficient in Table VI is to be
understood as f → fVRðm̄; Q2Þ.

TABLE V. All the quark-mass polynomials in the isospin limit
up to Oðδm3

l Þ, classified by symmetry properties.

Polynomial SUð3Þ
1 1

δml 8

δm2
l 1 27

δm2
l 8 27

δm3
l 1 27 64

δm3
l 8 27 64
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Note that the clean separation of amplitudes and form
factors into first and second class depends on the fact
that we have defined our amplitudes in ways that treat
the parent and daughter baryons symmetrically. If we had
used an unsymmetric definition, for instance always
normalizing amplitudes in terms of the parent baryon’s
mass, we would find ti and u1 coefficients appearing in the
expansions of quantities which “should” only involve the
symmetric terms.

B. Higher-order coefficient tables

For completeness in Table VII we detail the additional
quadratic and cubic coefficients in the mass Taylor
expansion of the operator amplitudes for the 27- and
64-plets.
For first-class currents in Table V the singlet terms do

not contribute at the linear OðδmlÞ level but are present
at the quadratic Oðδm2

l Þ and cubic Oðδm3
l Þ levels.

Similarly the octet terms are missing at the Oð1Þ level
but are present at higher orders. Hence these terms are
also present at the higher orders in the SUð3Þ flavor-
breaking expansion. There are 5þ 7 ¼ 12 amplitudes,
and at the Oðδm2

l Þ level 11 free parameters, so there is
one constraint. (Alternatively at the Oðδm2

l Þ level one can

have all possibilities which are orthogonal to the 64-plet,
so there is again just one constraint.) At the Oðδm3

l Þ level
one has 12 free parameters for the 12 amplitudes (11
previous and one extra one from the 64-plet, the z term).
Hence there are now no more constraints available at this
and higher orders in δml.
For second-class currents, there are constraints at the

OðδmlÞ order as we have five amplitudes but only three
expansion coefficients. However at the next Oðδm2

l Þ level
we have additional two parameters, so there are no more
constraints available. Hence for second-class operators
there is no point in going higher than linear in the quark
mass in the SUð3Þ flavor-breaking expansion.
Thus, for example, from Tables VI and VII we would

have for the first-class current

hpjJηjpi ¼ AN̄ηN

¼
ffiffiffi
3

p
f − dþ ðr1 − s2Þδml þ ð

ffiffiffi
3

p
fx − dx þ rx1

− sx2 þ 6q1 þ 3q2 þ 3
ffiffiffi
3

p
w2Þδm2

l

þ ð
ffiffiffi
3

p
fxx − dxx þ rxx1 − sxx2 þ 6qx1 þ 3qx2

þ 3
ffiffiffi
3

p
wx
2 þ 3

ffiffiffi
3

p
zÞδm3

l ; ð60Þ

TABLE VI. Coefficients in the mass Taylor expansion of AB̄0FB operator amplitudes: SUð3Þ singlet and octet, for both first-class and
second-class currents. The first row gives whether singlet or octet and first or second class, and the second row gives the order in δml.
The third row gives whether the associated tensor is f-like or d-like according to the definition given in Eq. (54). These coefficients are
sufficient for the linear expansion of hadronic amplitudes.

1, 1st class, Oð1Þ 8, 1st class, OðδmlÞ 8, 2nd class, OðδmlÞ
f d d d d f f d d f

I AB̄0FB f d r1 r2 r3 s1 s2 t1 t2 u1

0 N̄ηN
ffiffiffi
3

p
−1 1 0 0 0 −1 0 0 0

0 Σ̄ηΣ 0 2 1 0 2
ffiffiffi
3

p
0 0 0 0 0

0 Λ̄ηΛ 0 −2 1 2 0 0 0 0 0 0
0 Ξ̄ηΞ −

ffiffiffi
3

p
−1 1 0 0 0 1 0 0 0

1 N̄πN 1
ffiffiffi
3

p
0 0 −2 2 0 0 0 0

1 Σ̄πΣ 2 0 0 0 0 −2
ffiffiffi
3

p
0 0 0

1 Ξ̄πΞ 1 −
ffiffiffi
3

p
0 0 2 2 0 0 0 0

1 Σ̄πΛ 0 2 0 1 −
ffiffiffi
3

p
0 0 1 0 0

1 Λ̄πΣ 0 2 0 1 −
ffiffiffi
3

p
0 0 −1 0 0

1
2

N̄KΣ −
ffiffiffi
2

p ffiffiffi
6

p
0 0

ffiffiffi
2

p ffiffiffi
2

p
0 0

ffiffiffi
2

p ffiffiffi
6

p
1
2

N̄KΛ −
ffiffiffi
3

p
−1 0 1 0 −

ffiffiffi
3

p
1 1

ffiffiffi
3

p
−1

1
2

Λ̄KΞ
ffiffiffi
3

p
−1 0 1 0

ffiffiffi
3

p
−1 −1 −

ffiffiffi
3

p
−1

1
2

Σ̄KΞ
ffiffiffi
2

p ffiffiffi
6

p
0 0

ffiffiffi
2

p
−

ffiffiffi
2

p
0 0 −

ffiffiffi
2

p ffiffiffi
6

p

1
2

Σ̄ K̄ N −
ffiffiffi
2

p ffiffiffi
6

p
0 0

ffiffiffi
2

p ffiffiffi
2

p
0 0 −

ffiffiffi
2

p
−

ffiffiffi
6

p
1
2

Λ̄ K̄ N −
ffiffiffi
3

p
−1 0 1 0 −

ffiffiffi
3

p
1 −1 −

ffiffiffi
3

p
1

1
2

Ξ̄ K̄ Λ
ffiffiffi
3

p
−1 0 1 0

ffiffiffi
3

p
−1 1

ffiffiffi
3

p
1

1
2

Ξ̄ K̄ Σ
ffiffiffi
2

p ffiffiffi
6

p
0 0

ffiffiffi
2

p
−

ffiffiffi
2

p
0 0

ffiffiffi
2

p
−

ffiffiffi
6

p
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where f and d are the leading coefficients and fx, fxx and
dx, dxx are the additional subdominant coefficients of the
same form as the LO singlet; see Table V. (We use x and xx
superscripts to distinguish them.) Similarly for r1, s2, q1, q2
and w2 and the octet. For the second-class current

hnjJKþjΣ−i¼AN̄KΣ¼ð
ffiffiffi
2

p
t2þ

ffiffiffi
6

p
u1Þδml

þð
ffiffiffi
2

p
tx2þ

ffiffiffi
6

p
ux1þ

ffiffiffi
5

p
x1þ

ffiffiffi
2

p
y1Þδm2

l : ð61Þ

However as just discussed the Oðδm3
l Þ term for the first-

class currents and the Oðδm2
l Þ term for the second-class

currents have no constraints between the coefficients and
hence contain no new information.
From Eqs. (40) and (41) and as previously discussed we

see that there is one 64-plet in the decomposition of
8 ⊗ 8 ⊗ 8, but none in 8 ⊗ 8 and therefore 64-plet
quantities only show up at Oðδm3

l Þ as shown in Table V.
In [2] we have seen that the 64-plet combination of decuplet
baryon masses is extremely small and we should probably
expect that the 64-plet combination of amplitudes will also
remain very small all the way from the symmetric point to
the physical point. By using Mathematica we construct the
64-plet flavor tensor and find that it corresponds to the
combination

Q64 ≡ 2AN̄ηN − AΣ̄ηΣ − 3AΛ̄ηΛ þ 2AΞ̄ηΞ

þ 2ffiffiffi
3

p ðAN̄πN − AΞ̄πΞÞ − ðAΣ̄πΛ þ AΛ̄πΣÞ

þ 2ðAΛ̄KΞ þ AN̄KΛ þ AΛ̄ K̄ N þ AΞ̄ K̄ ΛÞ

þ
ffiffiffi
2

3

r
ðAN̄KΣ þ AΣ̄KΞ þ AΞ̄ K̄ Σ þ AΣ̄ K̄ NÞ

¼ Oðδm3
l Þ; ð62Þ

and as expected the linear and quadratic terms in δml
vanish. We also note that this quantity should be zero at the
one-loop level in chiral perturbation theory [6].
In the remainder of this article we shall not consider

these next-to-leading-order (NLO) and next-to-next-to-
leading-order (NNLO) higher orders further.

VII. AMPLITUDES AT THE SYMMETRIC POINT

We now further discuss amplitudes at the symmetric
point. From Eq. (41) there are two octets and one singlet in
the decomposition of 8 ⊗ 8, so there will be two singlets in
8 ⊗ 8 ⊗ 8. This means that at the symmetric point there
are two ways to couple an octet operator between octet
baryons. These correspond to the first two columns of
Table VI. These two couplings are traditionally given the
letters F and D. The F coupling has a pattern related to the

TABLE VII. Additional coefficients in the mass Taylor expansion of operator amplitudes: SUð3Þ 27-plet and 64-plet. These additional
terms first appear at the quadratic and cubic levels, respectively. The same notation as for Table VI.

27, 1st class, Oðδm2
l Þ 64, 1st class,Oðδm3

l Þ 27, 2nd class, Oðδm2
l Þ

d d f f d d f

I AB̄0FB q1 q2 w1 w2 z x1 y1

0 N̄ηN 9 3 0 3
ffiffiffi
3

p
3

ffiffiffi
3

p
0 0

0 Σ̄ηΣ −6 −10 0 0 −
ffiffiffi
3

p
0 0

0 Λ̄ηΛ −18 18 0 0 −9
ffiffiffi
3

p
0 0

0 Ξ̄ηΞ 9 3 0 −3
ffiffiffi
3

p
3

ffiffiffi
3

p
0 0

1 N̄πN −5
ffiffiffi
3

p ffiffiffi
3

p
4 −1 1 0 0

1 Σ̄πΣ 0 0 −4 2 0 0 0
1 Ξ̄πΞ 5

ffiffiffi
3

p
−

ffiffiffi
3

p
4 −1 −1 0 0

1 Σ̄πΛ 14 −6 0 0 −
ffiffiffi
3

p
4 0

1 Λ̄πΣ 14 −6 0 0 −
ffiffiffi
3

p
−4 0

1
2

N̄KΣ 0 2
ffiffiffi
6

p
−3

ffiffiffi
2

p
2

ffiffiffi
2

p ffiffiffi
2

p ffiffiffi
6

p ffiffiffi
2

p
1
2

N̄KΛ −6 0 3
ffiffiffi
3

p
0 3

ffiffiffi
3

p
−3 3

ffiffiffi
3

p
1
2

Λ̄KΞ −6 0 −3
ffiffiffi
3

p
0 3

ffiffiffi
3

p
3 3

ffiffiffi
3

p
1
2

Σ̄KΞ 0 2
ffiffiffi
6

p
3

ffiffiffi
2

p
−2

ffiffiffi
2

p ffiffiffi
2

p
−

ffiffiffi
6

p ffiffiffi
2

p

1
2

Σ̄ K̄ N 0 2
ffiffiffi
6

p
−3

ffiffiffi
2

p
2

ffiffiffi
2

p ffiffiffi
2

p
−

ffiffiffi
6

p
−

ffiffiffi
2

p
1
2

Λ̄ K̄ N −6 0 3
ffiffiffi
3

p
0 3

ffiffiffi
3

p
3 −3

ffiffiffi
3

p
1
2

Ξ̄ K̄Λ −6 0 −3
ffiffiffi
3

p
0 3

ffiffiffi
3

p
−3 −3

ffiffiffi
3

p
1
2

Ξ̄ K̄ Σ 0 2
ffiffiffi
6

p
3

ffiffiffi
2

p
−2

ffiffiffi
2

p ffiffiffi
2

p ffiffiffi
6

p
−

ffiffiffi
2

p
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SUð3Þ structure constant fijk, and the D coupling is
related to dijk. In terms of the 3 × 3 matrices, the F
coupling is proportional to TrðM½B̄; B�Þ and theD coupling
to TrðMfB̄; BgÞ.
Let us first look at the pattern of amplitudes at the

symmetric point [with no breaking of SUð3Þ flavor
symmetry]. We can read off the corresponding hadronic
matrix elements from Table VI and can construct many
matrix element combinations which have to be equal at the
symmetric point, for exampleffiffiffi
3

p

2
hpjJηjpi þ 1

2
hpjJπ0 jpi ¼ hΣþjJπ0 jΣþi

¼ −
ffiffiffi
3

p

2
hΞ0jJηjΞ0i þ 1

2
hΞ0jJπ0 jΞ0i

¼ 2f;

−
1

2
hpjJηjpi þ

ffiffiffi
3

p

2
hpjJπ0 jpi ¼ hΣþjJηjΣþi

¼ −hΛ0jJηjΛ0i

¼ −
1

2
hΞ0jJηjΞ0i −

ffiffiffi
3

p

2
hΞ0jJπ0 jΞ0i

¼ 2d: ð63Þ
These relations become more transparent if we write the
operators out in q̄γq form, following Table I, giving

1ffiffiffi
2

p hpjðūγu− s̄γsÞjpi¼ 1ffiffiffi
2

p hΣþjðūγu− d̄γdÞjΣþi

¼ 1ffiffiffi
2

p hΞ0jðs̄γs− d̄γdÞjΞ0i¼2f; ð64Þ

from the first line of Eq. (63). Written out in this form, it is
clear why these three matrix elements have to be the same
at the symmetric point. The u content of the proton is the
same as the u content of the Σþ or the s content of the Ξ0,
because in each case it is the “doubly represented” valence
quark. Likewise the s in the proton is the same as the d in
the Σþ or the d in the Ξ0 because in each case it is the
nonvalence flavor. So the relations in Eq. (64) are simple
consequences of flavor permutation [the S3 subgroup of
SUð3Þ]. Similarly, the second line of Eq. (63) implies

1ffiffiffi
6

p hpjðūγuþ s̄γs − 2d̄γdÞjpi

¼ 1ffiffiffi
6

p hΣþjðūγuþ d̄γd − 2s̄γsÞjΣþi

¼ 1ffiffiffi
6

p hΞ0jðs̄γsþ d̄γd − 2ūγuÞjΞ0i

¼ 2d: ð65Þ
All these matrix elements have the same pattern, doubly
representedþ nonvalence −2× singly represented, so again
we can understand why they all have to be the same at the

symmetric point. Note that the operator in the d equation,
Eq. (65), is always orthogonal to the operator in the f
equation, Eq. (64). We could also look at the pattern
“doubly represented–singly represented,” which is just a
linear combination of Eqs. (64) and (65). Thus

1ffiffiffi
2

p hpjðūγu − d̄γdÞjpi

≡ 1ffiffiffi
2

p hΣþjðūγu − s̄γsÞjΣþi

≡ 1ffiffiffi
2

p hΞ0jðs̄γs − ūγuÞjΞ0i ¼ f þ
ffiffiffi
3

p
d: ð66Þ

Of course we cannot deduce the full structure at the
symmetric point from flavor permutations alone; identities
such as

AΣ̄ηΣ ¼ −AΛ̄ηΛ ¼ AΛ̄πΣ; ð67Þ

connecting diagonalmatrix elements to transition amplitudes,
require more general SUð3Þ rotations to establish them.

VIII. MASS DEPENDENCE: “FAN” PLOTS

If we move away from the symmetric point, keeping m̄
fixed, nonsinglet tensors can contribute to Eq. (19). To first
order in δml we only need consider the octets, so we can
then read the mass terms off from Table VI with an example
being given in Eq. (58). We can examine the violation of
SUð3Þ symmetry caused by thems −ml mass difference by
constructing quantities which must all be equal in the fully
symmetric case but which can differ in the case of nf ¼
2þ 1 quark masses.
We now discuss two so-called fan plots—the d-fan plot

and the f-fan plot. In Appendix B we discuss some further
fan plots (called there the doubly represented–singly rep-
resented fan plots, namely theP-fan plot and theV-fan plot).

A. The d fan

Using Table VI we can construct seven quantities Di,
which all have the same value (2d) at the symmetric point
but which can differ once SUð3Þ is broken:

D1 ≡ −ðAN̄ηN þ AΞ̄ηΞÞ ¼ 2d − 2r1δml;

D2 ≡ AΣ̄ηΣ ¼ 2dþ ðr1 þ 2
ffiffiffi
3

p
r3Þδml;

D3 ≡ −AΛ̄ηΛ ¼ 2d − ðr1 þ 2r2Þδml;

D4 ≡ 1ffiffiffi
3

p ðAN̄πN − AΞ̄πΞÞ ¼ 2d −
4ffiffiffi
3

p r3δml;

D5 ≡ AΣ̄πΛ ¼ 2dþ ðr2 −
ffiffiffi
3

p
r3Þδml;

D6 ≡ 1ffiffiffi
6

p ðAN̄KΣ þ AΣ̄KΞÞ ¼ 2dþ 2ffiffiffi
3

p r3δml;

D7 ≡ −ðAN̄KΛ þ AΛ̄KΞÞ ¼ 2d − 2r2δml: ð68Þ
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Plotting these quantities gives a fan plot with seven lines
but only three slope parameters (r1, r2 and r3), so the
splittings between these observables are highly constrained.
Of course, these seven quantities are not a unique choice;
other linear combinations of them could be chosen. At the
next order (quadratic) in δml there is one constraint, from
Eq. (62). In terms of the Di this reads

−2D1−D2þ3D3þ2D4−2D5þ4D6−4D7 ¼Oðδm3
l Þ:
ð69Þ

In the d fan we can thus choose six independent quadratic
coefficients and fix the seventh from this constraint.
A useful “average D” can be constructed from the

diagonal amplitudes

XD ≡ 1

6
ðD1 þ 2D2 þ 3D4Þ ¼ 2dþOðδm2

l Þ; ð70Þ

chosen so that the OðδmlÞ coefficient vanishes. Other
average D quantities are possible if we also incorporate
transition matrix elements. These average quantities can be
useful for helping to set the lattice scale [24].
It is useful to construct from this fan plots of Di=XD.

However for our later example of the vector current, XD

vanishes at Q2 ¼ 0 and is always small, so we consider
alternatively here D̃i ≡Di=XF.

B. The f fan

Again using Table VI we can construct five quantities Fi,
which all have the same value (2f) at the symmetric point
but which can differ once SUð3Þ is broken:

F1 ≡ 1ffiffiffi
3

p ðAN̄ηN − AΞ̄ηΞÞ ¼ 2f −
2ffiffiffi
3

p s2δml;

F2 ≡ ðAN̄πN þ AΞ̄πΞÞ ¼ 2f þ 4s1δml;

F3 ≡ AΣ̄πΣ ¼ 2f þ ð−2s1 þ
ffiffiffi
3

p
s2Þδml;

F4 ≡ 1ffiffiffi
2

p ðAΣ̄KΞ − AN̄KΣÞ ¼ 2f − 2s1δml;

F5 ≡ 1ffiffiffi
3

p ðAΛ̄KΞ − AN̄KΛÞ ¼ 2f þ 2ffiffiffi
3

p ð
ffiffiffi
3

p
s1 − s2Þδml:

ð71Þ
Plotting these quantities gives a fan plot with five lines but
only two slope parameters (s1 and s2), so the splittings
between these observables are again highly constrained. At
quadratic and higher level there are no constraints between
the coefficients for the f fan.
Again a useful “average F” can be constructed from the

diagonal amplitudes

XF ≡ 1

6
ð3F1 þ F2 þ 2F3Þ ¼ 2f þOðδm2

l Þ; ð72Þ

and again we can construct fan plots of F̃i ≡ Fi=XF.

The f fan has the nice property that, to linear order, there
is no error from dropping quark-line-disconnected contri-
butions. This is because r1 is the only parameter with a
quark-line-disconnected piece, and none of the ri param-
eters appear in the f fan. We shall prove and expand on this
point in the following sections by considering the con-
nected and disconnected expansions separately.

IX. QUARK-LINE-CONNECTED
AND -DISCONNECTED DIAGRAMS

In lattice QCD for the three-point function and its
associated matrix element (see Sec. XII A for some further
details) we have two classes of diagrams to compute:
quark-line connected (left panel of Fig. 3) and quark-line
disconnected (the right panel of Fig. 3). We first write

hB0jJFjBi ¼ hB0jJFjBicon þ hB0jJFjBidis; ð73Þ

corresponding to the left and right panels of Fig. 3,
respectively. Note that an alternative notation for the
quark-line-connected piece is the valence matrix element
hB0jJFjBicon ≡ hB0jJFjBival. However we shall usually just
say connected matrix element.
The quark-line-disconnected diagrams cannot occur for

transition matrix elements B0 ≠ B but can for diagonal
matrix elements B0 ¼ B. From Table I we see that dis-
connected diagonal matrix elements can only happen for
the currents Jπ

0

, Jη and Jη
0
(indices 4, 5 and 0, respectively).

As we are only considering mass degenerate u and d quarks
then for the Jπ

0

operators, the u-loop and d-loop quark-line-
disconnected pieces always cancel. Thus apart from the
singlet operator Jη

0
, this leaves only the Jη operator to

consider. At the symmetric point, the disconnected con-
tribution to Jη will cancel. If one moves to ms ≠ ml, then
disconnected η contributions will become nonzero, as twice
the strange loop will not be equal to the u loop + d loop.
However, at leading order, this effect is going to be the
same for all baryons, so it has the pattern only of r1 in
Table VI. Hence r1 must have a disconnected piece.

FIG. 3. The three-point quark correlation function for a baryon.
The cross represents the current insertion. Left panel: The quark-
line-connected piece; right panel: the quark-line-disconnected
piece.
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More explicitly first consider the flavor diagonal ampli-
tudes. In each baryon the disconnected u and d terms are
equal (as mu ¼ md), so

hpjJπ0 jpidis; hΣþjJπ0 jΣþidis; hΞ0jJπ0 jΞ0idis ð74Þ

all vanish. Hence

fdis þ
ffiffiffi
3

p
ddis ¼ 0; fdis ¼ 0; fdis −

ffiffiffi
3

p
ddis ¼ 0

ð75Þ

and

−rdis3 þ sdis1 ¼ 0; −2sdis1 þ
ffiffiffi
3

p
sdis2 ¼ 0; rdis3 þ sdis1 ¼ 0;

ð76Þ

giving

fdis; ddis; rdis3 ; sdis1 ; sdis2 ¼ 0: ð77Þ

This was briefly considered for the axial current in [25] but
the results here are more general than given there.
Consider now the transition amplitudes. As stated

previously disconnected terms cannot cause a transition
that changes flavor. In particular considering K current
transitions they must all be connected, so from Table VI
this again shows that all the above coefficients in Eq. (77)
have no disconnected piece, together with the additional
result

rdis2 ¼ 0; ð78Þ

whichmeans that indeed only rdis1 contributes. Thus in future
we need only distinguish between connected and discon-
nected contributions for the r1 coefficient. Differences
between the disconnected pieces in different baryons will
therefore first contribute at quadratic order in the SUð3Þ
flavor symmetry-breaking expansion.
We shall now develop and make these considerations

more explicit in the following section.

X. MASS DEPENDENCE: FLAVOR-DIAGONAL
MATRIX ELEMENTS

In the previous sections we have developed SUð3Þ
flavor-breaking expansions for hB0jJFjBi, which are suffi-
cient for transition matrix elements. However for diagonal
matrix elements we need the additional expansion
hBjJη0 jBi as discussed in Sec. VA. This will now enable
all diagonal matrix elements to be given for each individual
quark flavor.
From Table I we see that the diagonal flavor states are

given by π0 (index 4) and η (index 5), together with the

singlet flavor state η0 (index 0). These can be inverted to
give ūγu, d̄γd and s̄γs in terms of Jη

0
, Jπ

0

and Jη as

ūγu ¼ 1ffiffiffi
3

p Jη
0 þ 1ffiffiffi

2
p Jπ

0 þ 1ffiffiffi
6

p Jη;

d̄γd ¼ 1ffiffiffi
3

p Jη
0 −

1ffiffiffi
2

p Jπ
0 þ 1ffiffiffi

6
p Jη;

s̄γs ¼ 1ffiffiffi
3

p Jη
0 −

ffiffiffi
2

3

r
Jη: ð79Þ

As discussed previously in Sec. VA, the additional expan-
sion for the singlet current Jη

0
is the same as the mass

expansion presented in [2]. We shall only consider LO here
(higher orders are also given in [2]). We take the expansion
as already given in Eq. (39).
Using Eq. (79) together with Eq. (39) and Tables III and

VI allows us to give the SUð3Þ flavor-breaking expansion
for flavor diagonal matrix elements. In Appendix C we give
this expansion to LO for the representative octet baryons p,
Σþ, Λ0 and Ξ0 (the others n, Σ−, Σ0 and Ξ− can be similarly
determined).
While it appears from Eq. (39) that we now have extra

coefficients a0, a1 and a2 that have to be determined,
this can be somewhat ameliorated when the quark-line-
connected and -disconnected matrix elements are consid-
ered. There was a general discussion in Sec. IX. We now
consider this in more detail by considering separate
expansions for both the connected and disconnected pieces.
So the previous equations are doubled, as given in Eq. (73).
For example

hpjūγujpi ¼ hpjūγujpicon þ hpjūγujpidis; ð80Þ

corresponding to the left and right panels of Fig. 3,
respectively. There are now some additional constraints.
For completeness we list the disconnected matrix

element results in Appendix D, using adis0 , adis1 , adis2 and
Eqs. (77) and (78).

A. Connected terms

For pðuudÞ, ΣþðuusÞ and Ξ0ðssuÞ there are no con-
nected pieces for hpjs̄γsjpi, hΣþjd̄γdjΣþi and hΞ0jd̄γdjΞ0i.
Thus there are now conditions on acon0 , acon1 and acon2 from
the previous expansion parameters. We find

acon0 ¼
ffiffiffi
6

p
f −

ffiffiffi
2

p
d;

3acon1 ¼
ffiffiffi
2

p
rcon1 −

ffiffiffi
2

p
s2;

3acon2 ¼ 1ffiffiffi
2

p rcon1 þ
ffiffiffi
6

p
r3 þ

ffiffiffi
6

p
s1 −

3ffiffiffi
2

p s2: ð81Þ

(These consistently satisfy all the previous equations.)
Using these expressions for acon0 , acon1 and acon2 gives for
the octet baryons p, Σþ, Λ0 and Ξ0
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hpjūγujpicon ¼ 2
ffiffiffi
2

p
f þ

� ffiffiffi
3

2

r
rcon1 −

ffiffiffi
2

p
r3 þ

ffiffiffi
2

p
s1 −

ffiffiffi
3

2

r
s2

�
δml;

hpjd̄γdjpicon ¼
ffiffiffi
2

p
ðf −

ffiffiffi
3

p
dÞ þ

� ffiffiffi
3

2

r
rcon1 þ

ffiffiffi
2

p
r3 −

ffiffiffi
2

p
s1 −

ffiffiffi
3

2

r
s2

�
δml; ð82Þ

hΣþjūγujΣþicon ¼ 2
ffiffiffi
2

p
f þ ð−2

ffiffiffi
2

p
s1 þ

ffiffiffi
6

p
s2Þδml;

hΣþjs̄γsjΣþicon ¼
ffiffiffi
2

p
ðf −

ffiffiffi
3

p
dÞ þ

�
−

ffiffiffi
3

2

r
rcon1 − 3

ffiffiffi
2

p
r3 −

ffiffiffi
2

p
s1 þ

ffiffiffi
3

2

r
s2

�
δml; ð83Þ

hΛ0jūγujΛ0icon ¼ hΛ0jd̄γdjΛ0icon

¼
ffiffiffi
2

p �
f −

2ffiffiffi
3

p d

�
þ
� ffiffiffi

2

3

r
rcon1 þ

ffiffiffi
2

3

r
r2 þ

ffiffiffi
2

p
r3 þ

ffiffiffi
2

p
s1 −

ffiffiffi
3

2

r
s2

�
δml;

hΛ0js̄γsjΛ0icon ¼
ffiffiffi
2

p �
f þ 1ffiffiffi

3
p d

�
þ
�
−

1ffiffiffi
6

p rcon1 −
4ffiffiffi
6

p r2 þ
ffiffiffi
2

p
r3 þ

ffiffiffi
2

p
s1 −

ffiffiffi
3

2

r
s2

�
δml; ð84Þ

and

hΞ0jūγujΞ0icon ¼
ffiffiffi
2

p
ðf −

ffiffiffi
3

p
dÞ þ ð2

ffiffiffi
2

p
r3 þ 2

ffiffiffi
2

p
s1Þδml;

hΞ0js̄γsjΞ0icon ¼ 2
ffiffiffi
2

p
f þ

�
−

ffiffiffi
3

2

r
rcon1 þ

ffiffiffi
2

p
r3 þ

ffiffiffi
2

p
s1 −

ffiffiffi
3

2

r
s2

�
δml: ð85Þ

Without Λ0 there are six equations, together with six parameters, so no constraint. Adding the Λ0 gives two more equations
and one extra parameter, so this is now constrained. In addition off-diagonal matrix elements would also give more
constraints.

B. The electromagnetic current

Using the previous results of this section, we can also give the results for the electromagnetic current, Eq. (12). Using this
equation we find, for example, that for the octet baryons p, Σþ, Λ0 and Ξ0

hpjJemjpicon ¼
ffiffiffi
2

p
f þ

ffiffiffi
2

3

r
dþ

�
1ffiffiffi
6

p rcon1 −
ffiffiffi
2

p
r3 þ

ffiffiffi
2

p
s1 −

1ffiffiffi
6

p s2

�
δml;

hΣþjJemjΣþicon ¼
ffiffiffi
2

p
f þ

ffiffiffi
2

3

r
dþ

�
1ffiffiffi
6

p rcon1 þ
ffiffiffi
2

p
r3 −

ffiffiffi
2

p
s1 −

ffiffiffi
3

2

r
s2

�
δml;

hΛ0jJemjΛ0icon ¼ −
ffiffiffi
2

3

r
dþ

�
1ffiffiffi
6

p rcon1 þ
ffiffiffi
2

3

r
r3

�
δml;

hΞ0jJemjΞ0icon ¼ −2
ffiffiffi
2

3

r
dþ

�
1ffiffiffi
6

p rcon1 þ
ffiffiffi
2

p
r3 þ

ffiffiffi
2

p
s1 þ

1ffiffiffi
6

p s2

�
δml; ð86Þ

for the quark-line-connected terms, and for the quark-line-disconnected terms

hpjJemjpidis ¼ hΛ0jJemjΛ0idis ¼ hΣþjJemjΣþidis ¼ hΞ0jJemjΞ0idis ¼ 1ffiffiffi
6

p rdis1 δml: ð87Þ

Similar expansions hold for the n, Σ0, Σ− and Ξ− electromagnetic matrix elements.
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XI. RENORMALIZATION AND OðaÞ
IMPROVEMENT FOR THE VECTOR CURRENT

A. General comments

The computed matrix elements are bare (or lattice)
quantities and must be renormalized and OðaÞ improved.
We would expect that the effect of the OðaÞ improvement
terms is simply to modify the SUð3Þ flavor-breaking
expansion coefficients. In this section we shall show that
this expectation is indeed correct. Again, for illustration, we
shall only consider the diagonal sector (B0 ¼ B) of the
vector current here. By using the results and notation in
[12] (see also [26]) we have for on-shell improvement

Vπ0 R
μ ¼ ZV ½1þ ðbV þ 3b̄VÞm̄þ bVδml�Vπ0

μ ;

VηR
μ ¼ ZV ½ð1þ ðbV þ 3b̄VÞm̄ − bVδmlÞVη

μ

þ
ffiffiffi
2

p
ðbV þ 3fVÞδmlV

η0
μ �;

Vη0 R
μ ¼ ZVrV ½ð1þ ðdV þ 3d̄VÞm̄ÞVη0

μ þ 2
ffiffiffi
2

p
dVδmlV

η
μ�;
ð88Þ

where V for the local vector current denotes

VF
μ ¼ VF

μ þ icV∂νTF
μν; ð89Þ

with TF
μν¼ q̄Fσμνq and ∂μϕðxÞ¼ ½ϕðxþ μ̂Þ−ϕðx− μ̂Þ�=2.

This additional term only plays a role in nonforward matrix
elements. Note that all the improvement coefficients bV ,
dV , b̄V , d̄V and cV are just functions of the coupling
constant g0.

5 Thus we do not have to be precisely at the
correct (physical) m̄ to determine the coefficients. The rV
parameter accounts for the fact that the singlet renormal-
ization is different to the nonsinglet renormalization
ZVðg0Þ. rV also depends on the chosen scheme and scale.
Tree level gives for the relevant coefficients

bVðg0Þ¼ 1þOðg20Þ; fVðg0Þ¼Oðg20Þ; cVðg0Þ¼Oðg20Þ
ð90Þ

[together with ZVðg0Þ ¼ 1þOðg20Þ and dVðg0Þ ¼ Oðg20Þ],
where b̄Vðg0Þ and d̄Vðg0Þ being connected with the sea
contributions are ∼Oðg40Þ and are usually taken as negli-
gible. Furthermore we can write

Vπ0 R
μ ¼ ẐV ½1þ b̂Vδml�Vπ0

μ ;

VηR
μ ¼ ẐV ½ð1 − b̂VδmlÞVη

μ þ
ffiffiffi
2

p
ðb̂V þ 3f̂VÞδmlV

η0
μ �;

Vη0 R
μ ¼ ẐV r̂V ½Vη0

μ þ 2
ffiffiffi
2

p
d̂VδmlV

η
μ�; ð91Þ

where for constant m̄ we have absorbed these m̄ terms into
the renormalization constant and improvement coefficients.
For example we have6

ẐV ¼ ZVð1þ ðbV þ 3b̄VÞm̄Þ;
b̂V ¼ bVð1þ ðbV þ 3b̄VÞm̄Þ−1;
f̂V ¼ fVð1þ ðbV þ 3b̄VÞm̄Þ−1: ð92Þ

We take Eq. (91) as our definition of the improvement
coefficients, as the SUð3Þ flavor-breaking expansion coef-
ficients are already functions of m̄. To avoid confusion with
the previous SUð3Þ flavor-breaking expansion coefficients
we have denoted them with a caret. Note that in any case we
have also numerically that jm̄δmlj ≪ 1 and m̄2 ≪ 1 so the
improvement coefficients are effectively unchanged.

1. Vπ0R
μ

Let us first consider Vπ0R
μ in Eq. (91), together with (for

example) hpjVπ0
4 jpiR, hΣþjVπ0

4 jΣþiR, and hΞ0jVπ0
4 jΞ0iR.

From the expansion for F ¼ π0 given in Table VI for
AN̄πN , AΣ̄πΣ and AΞ̄πΞ we see that as expected the effects
of the expansion coefficients simply change their value
slightly:

s1 → s01 ¼ s1 þ
1

2
fb̂V;

s2 → s02 ¼ s2 þ
ffiffiffi
3

p
fb̂V;

r3 → r03 ¼ r3 −
ffiffiffi
3

p

2
db̂V: ð93Þ

Furthermore, as a reminder, from Eq. (77) the disconnected
pieces for f, d, r2, r3, s1, and s2 all vanish, which implies
that b̂V also has no disconnected piece. In particular this
means that the results for Vπ0R

μ remain valid when just
considering the connected matrix elements.

2. VηR
μ

We can repeat the process for VηR
μ , which gives in

addition to the results of Eq. (93) the further results

r1 → r01 ¼ r1 þ db̂V þ
ffiffiffi
2

p
a0ðb̂V þ 3f̂VÞ;

r2 → r02 ¼ r2 þ db̂V: ð94Þ5There is a further improvement coefficient, g20 → ĝ20 ¼
g20ð1þ bgm̄Þ, where bg is a function of g20. Little is known about
the value of bg; however perturbatively it is very small, so we
shall ignore it here. Note that as we always consider m̄ ¼ const,
then the value of g20 is only slightly shifted by a constant.

6Similarly r̂V ¼ rVð1þ ðdV þ 3d̄VÞm̄Þð1þ ðbV þ 3b̄VÞm̄Þ−1
and d̂V ¼ dVð1þ ðdV þ 3d̄VÞm̄Þ−1.
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In addition splitting r1 into rcon1 and rdis1 pieces gives upon
using acon0 from Eq. (81)

rcon1 → rcon01 ¼ rcon1 þ 2
ffiffiffi
3

p
fðb̂V þ 3f̂conV Þ − dðb̂V þ 6f̂conV Þ;

rdis1 → rdis01 ¼ rdis1 þ 3
ffiffiffi
2

p
adis0 f̂disV : ð95Þ

3. Vη0R
μ

Lastly, considering Vη0R
μ , we find

a1 → a01 ¼ a1 þ 2

ffiffiffi
2

3

r �
f −

1ffiffiffi
3

p d

�
d̂V;

a2 → a02 ¼ a2 −
4

3

ffiffiffi
2

p
dd̂V: ð96Þ

4. Concluding remarks

As expected, all improvement coefficients are terms in
the SUð3Þ symmetry flavor-breaking expansion and indeed
upon inclusion leads to slightly modified expansion coef-
ficients, as given in Eqs. (93), (94), and (96). We anticipate
that the additional improvement term ĉV is also of
this form.

B. Determination of ẐV and b̂V , f̂
con
V

There is an exact global symmetry of the lattice action,
q → e−iαqq, valid for each quark separately. Using
Noether’s theorem this leads to an exactly conserved vector
current (CVC). Practically the operator counts the number
of u quarks and the number of d quarks in the baryon. The
local current considered here is not exactly conserved, so
that VCVC ¼ V þOðaÞ. We can use this to define the
renormalization constant and several improvement
terms. (A similar method was used for two flavors and
quenched QCD in, e.g., [27].) Thus we shall see that
imposing CVC is equivalent to determining some improve-
ment coefficients.
Practically here we restrict our considerations to the

forward matrix elements for V4 at Q2 ¼ 0 (no momentum
transfer, so there is no additional ĉV term).

1. Vπ0R
4

First for the CVC, we consider the representative matrix
elements

hpjVπ0
4 jpiR ¼ AR

N̄πN ¼ 1ffiffiffi
2

p ð2 − 1Þ;

hΣþjVπ0
4 jΣþiR ¼ AR

Σ̄πΣ ¼ 1ffiffiffi
2

p ð2 − 0Þ;

hΞ0jVπ0
4 jΞ0iR ¼ AR

Ξ̄πΞ ¼ 1ffiffiffi
6

p ð1 − 0Þ: ð97Þ

Using this together with Vπ0
4 in Eq. (91) gives

f ¼ 1ffiffiffi
2

p
ẐV

; d ¼ 0: ð98Þ

One possibility is thus to determine f from XF at Q2 ¼ 0
[see Eq. (72)] as

ẐV ¼
ffiffiffi
2

p

XF
: ð99Þ

Also from Eq. (93) and due to the lack of OðδmlÞ terms in
Eq. (97) we have s01 ¼ 0, s02 ¼ 0 and r03 ¼ 0 or

s1 ¼ −
1

2
fb̂V; s2 ¼ −

ffiffiffi
3

p
fb̂V; r3 ¼ 0: ð100Þ

Using s̃i ¼ si=XF, which to leading order is si=ð2fÞ, gives
directly the b̂V improvement coefficient.

2. VηR
4

Additionally using the equivalent results from Eq. (97)
but now for VηR

4 , namely

hpjVη
4jpiR ¼ AR

N̄ηN ¼ 1ffiffiffi
6

p ð2þ 1 − 0Þ;

hΣþjVη
4jΣþiR ¼ AR

Σ̄ηΣ ¼ 1ffiffiffi
6

p ð2þ 0 − 2Þ;

hΞ0jVη
4jΞ0iR ¼ AR

Ξ̄ηΞ ¼ 1ffiffiffi
2

p ð1þ 0 − 4Þ; ð101Þ

not only gives consistency with the previous results
Eqs. (98) and (99), but in addition we have rcon01 ¼ 0,
r02 ¼ 0 or from Eqs. (94) and (95)

rcon1 ¼ −2
ffiffiffi
3

p
fðb̂V þ 3f̂conV Þ; r2 ¼ 0: ð102Þ

Again using r̃con1 ¼ rcon1 =XF ¼ rcon1 =ð2fÞ automatically
eliminates f. We observe that once ẐV and b̂V (and
f̂conV ) have been determined by using Eq. (92) and varying

m̄, then it is in principle possible to determine ˆ̄bV .

3. The Ademollo-Gatto theorem

The Ademollo-Gatto theorem [28] (see also [13,29]) in
the context of our flavor-breaking expansions states that the
OðδmlÞ terms vanish for the FB̄0FB

1 form factor at Q2 ¼ 0

and B0 ≠ B. This means that r2, r3, s1, and s2 vanish at
Q2 ¼ 0 (or the primed versions if we include the improve-
ment coefficients). This agrees with the results of this
section.
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XII. LATTICE COMPUTATIONS
OF FORM FACTORS

A. General discussion

We now need to determine the matrix elements from a
lattice simulation which computes two- and three-point
correlation functions. For completeness as well as form
factors with B ¼ B0, we are developing a formalism for
semileptonic decays, B ≠ B0 so we first consider the
general method here.
The baryon two-point correlation function is given by

CB
Γðt; p⃗Þ ¼

X
αβ

ΓβαhBαðt; p⃗ÞB̄βð0; p⃗Þi; ð103Þ

while the three-point correlation function generalizes this
and is given by

CB0B
Γ ðt; τ; p⃗; p⃗0; JÞ ¼

X
αβ

ΓβαhB0
αðt; p⃗0ÞJðτ; q⃗ÞB̄βð0; p⃗Þi;

ð104Þ

with J at time τ either the vector, axial or tensor current,
and where the source is at time 0, the sink operator is at
time t and

Γ≡ Γunpol ¼ 1

2
ð1þ γ4Þ or

Γ≡ Γpol ¼ 1

2
ð1þ γ4Þiγ5γ⃗ · n⃗; ð105Þ

where n⃗ is the polarization axis.
To eliminate overlaps of the source and sink operators

with the vacuum, we build ratios of three-point to two-point
correlation functions. More explicitly let us set

RΓðt; τ; p⃗; p⃗0; JÞ ¼ CB0B
Γ ðt; τ; p⃗; p⃗0; JÞ
CB0
Γunpolðt; p⃗0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CB0
Γunpolðτ; p⃗0ÞCB0

Γunpolðt;p0ÞCB
Γunpolðt − τ; p⃗Þ

CB
Γunpolðτ; p⃗ÞCB

Γunpolðt; p⃗ÞCB0
Γunpolðt − τ; p⃗0Þ

vuut : ð106Þ

This is designed so that any smearing for the source and sink operators is canceled in the ratios, e.g., [30,31]; of course
smearing the baryon operators improves the overlap with the lowest-lying state, so the relevant overlaps for the two- and
three-point correlation functions must match.
Inserting complete sets of unit-normalized states in Eq. (106) and for 0 ≪ τ ≪ t ≪ 1

2
T gives

RΓðt; τ; p⃗; p⃗0; JÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EBðp⃗ÞEB0 ðp⃗0Þ
ðEBðp⃗Þ þMBÞðEB0 ðp⃗0Þ þMB0 Þ

s
FðΓ;J Þ; ð107Þ

with

FðΓ;J Þ ¼ 1

4
trΓ

�
γ4 − i

p⃗0 · γ⃗
EB0 ðp⃗0Þ þ

MB0

EB0 ðp⃗0Þ
�
J
�
γ4 − i

p⃗ · γ⃗
EBðp⃗Þ

þ MB

EBðp⃗Þ
�

ð108Þ

[with J being given from the Euclideanized version of Eq. (5)]. The transferred (Euclidean) momentum from the initial, B,
to final, B0, state is given by Q ¼ ðiðEB0 ðp⃗0Þ − EBðp⃗ÞÞ; p⃗0 − p⃗Þ so

Q2 ¼ −ðMB0 −MBÞ2 þ 2ðEB0 ðp⃗0ÞEBðp⃗Þ −MB0MB − p⃗ · p⃗0Þ: ð109Þ

To illustrate the previous SUð3Þ flavor symmetry-breaking results, we shall now consider here only the vector current.
Furthermore in general for arbitrary momenta geometry, the kinematic factors can be complicated; in this article we shall
only be considering the simpler case p⃗0 ¼ 0⃗. The technical reason is that in the lattice evaluation, it requires less numerical
inversions and is hence computationally cheaper. (Physically, of course it is more natural to start with a stationary baryon,
but computationally of course it does not matter.) Evaluating Q2 in this frame, Eq. (109), shows that for flavor diagonal
matrix elements form factor Q2 is always positive, while for semileptonic decays for small momentum it can also be

negative. For the vector current with p⃗0 ¼ 0⃗ this gives7

7We use the Euclideanization conventions given in [32]. In particular V4 ¼ VðMÞ0, Vi ¼ −iVðMÞi with γ4 ¼ γðMÞ0, γi ¼ −iγðMÞi,
γ5 ¼ −γðMÞ

5 , and σμν ¼ i=2½γμ; γν�.
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RΓunpolðt; τ; p⃗; 0;V4Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EB
p⃗ þMB

2EB
p⃗

vuut �
FB̄0FB
1 −

EB
p⃗ −MB

MB þMB0
FB̄0FB
2 −

EB
p⃗ −MB0

MB þMB0
FB̄0FB
3

�
;

RΓunpolðt; τ; p⃗; 0;ViÞ ¼ −
ipiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2EB
p⃗ðEB

p⃗ þMBÞ
q �

FB̄0FB
1 −

EB
p⃗ −MB0

MB þMB0
FB̄0FB
2 −

EB
p⃗ þMB

MB þMB0
FB̄0FB
3

�
;

RΓpolðt; τ; p⃗; 0;ViÞ ¼
ðp⃗ × n⃗Þiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2EB
p⃗ðEB

p⃗ þMBÞ
q ½FB̄0FB

1 þ FB̄0FB
2 �;

RΓpolðt; τ; p⃗; 0;V4Þ ¼ 0: ð110Þ

In particular for p⃗ ¼ 0 then the only nonzero ratio is

RΓunpolðt; τ; 0; 0;V4Þ ¼ FB̄0FB
1 −

MB −MB0

MB þMB0
FB̄0FB
3 ; ð111Þ

so we see that in this case for B0 ≠ B then we cannot
disentangle FB̄0FB

1 from FB̄0FB
3 . However to LO [i.e.,OðδmlÞ

effects in the matrix elements] and as MB −MB0 ∝ δml
then from Eq. (111) we can write

RΓunpolðt; τ; 0; 0;V4Þ ¼ FB̄0FB
1 þOðδm2

l Þ; ð112Þ

for all B and B0, where theOðδm2
l Þ term is not present when

B0 ¼ B.

B. Lattice details

As a demonstration of the method we apply the
formalism outlined in the previous sections to the form
factors published in [33,34]. Further details of the
numerical simulations can be found there. The simula-
tions have been performed using nf ¼ 2þ 1, OðaÞ
improved clover fermions [35] at β≡ 10=g20 of 5.50
and on 323 × 64 lattice sizes [2]. Errors given here are
primarily statistical [using ∼Oð1500Þ configurations].
As discussed previously and particularly in Sec. III A

our strategy is to keep the bare quark-mass constant.
Thus once the SUð3Þ flavor degenerate sea quark mass
m0 is chosen, subsequent sea quark-mass points ml and
ms are then arranged in the various simulations to keep
m̄ (¼ m0) constant. This then ensures that all the
expansion coefficients given previously do not change.
In [2], masses were investigated and it was seen that a
linear fit provides a good description of the numerical
data on the unitary line over the relatively short distance
from the SUð3Þ flavor symmetric point down to the
physical pion mass. This proved useful in helping us in
choosing the initial point on the SUð3Þ flavor symmetric
line to give a path that reaches (or is very close to) the
physical point.

The bare unitary quark masses in lattice units are
given by

mq ¼
1

2

�
1

κq
−

1

κ0c

�
with q ¼ l; s; ð113Þ

and where vanishing of the quark mass along the SUð3Þ
flavor symmetric line determines κ0c. We denote the SUð3Þ
flavor symmetric kappa value κ0 as being the initial point
on the path that leads to the physical point. m0 is given in
Eq. (113) by replacing κq by κ0. Keeping m̄ ¼ const ¼ m0

then gives

δmq ¼
1

2

�
1

κq
−

1

κ0

�
: ð114Þ

We see that κ0c has dropped out of Eq. (114), so we do not
need its explicit value here. Along the unitary line the quark
masses are restricted and we have

κs ¼
1

3
κ0
− 2

κl

: ð115Þ

So a given κl determines κs here. This approach is much
cleaner than the more conventional approach of keeping
(the renormalized) strange quark mass constant, as this
necessitates numerically determining the bare strange
quark mass. In addition the OðaÞ improvement of the
coupling constant is much simpler in our approach as it
only depends on m̄ [2]. Thus here, the coupling constant
remains constant and hence the lattice spacing does not
change as the quark mass is changed. In the more
conventional approach this can be problematical as you
must in principle monitor the changing of the coupling
constant as the quark masses vary.
An appropriate SUð3Þ flavor symmetric κ0 value chosen

here for this action was found to be κ0 ¼ 0.120900 [2]. The
constancy of flavor-singlet quantities along the unitary line
to the physical point [2] leads directly from Xπ to an
estimate for the pion mass of ∼465 MeV at our chosen
SUð3Þ flavor symmetric point and from XN an estimation
of the lattice spacing of aNðκ0 ¼ 0.120900Þ ¼ 0.074 fm.
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Specifically as indicated in Table VIII we have generated
configurations [33,34] at the ðκl; κsÞ values listed, all
with κ0 ¼ 0.120900.
Equations (110) and (112) are used to determine from the

ratio R the appropriate form factor. As described in [33,34],
we bin Q2 to directly compare each configuration and,
using the bootstrapped lattice configurations, we set up a
weighted least squares to extract the linear fit parameters
and weighted errors at each Q2 value. The lattice momenta
used here in this study in units of 2π=32 are given by
aq⃗ ¼ ð0; 0; 0Þ, (1,0,0), (1,1,0), (1,1,1), (2,0,0), (2,1,0),
(2,1,1), and (2,2,0) together with all permutations (where
different) and all possible � values.

XIII. RESULTS

We now illustrate some of the features that we have
described in previous sections, using our lattice calcula-
tions and the ensembles in Table VIII.

A. X plots

We first consider the lattice quantities XF1con
D , XF1

F and
XF2con
D , XF2

F . As discussed previously we only consider
diagonal form factors to construct theX’s, i.e., the equations:
Dcon

1 ,Dcon
2 andD4 in Eq. (68) andF1,F2 andF3 in Eq. (71).

8

Using the method of Sec. XII B allows us to create the
appropriateDcon

1 ,Dcon
2 andD4 defined in Eq. (68) and hence

XF1con
D andXF2con

D in Eq. (70) orF1,F2 andF3 in Eq. (71) and
thus again XF1

F and XF2

F in Eq. (72). In Fig. 4 we consider
XF1con
D and XF1

F for the F1 form factor for Q2 ¼ 0 and
0.49 GeV2.9 First, as we expect they are constant and show
little sign of Oðδm2

l Þ or curvature effects. Although not so
relevant on this plot, as an indication of how far we must
extrapolate in the quarkmass from the symmetric point to the
physical point, we also give this, using the previous deter-
mination [21] of δm�

l ¼ −0.01103. Note also, as shown in
Eq. (98) forQ2 ¼ 0,XF1con

D vanishes asd ¼ 0, whichwe also
see on the plot.
This constancy of X does not depend on the form factor

used. In Fig. 5 we show similar plots, but now for the F2

form factors: XF2con
D and XF2

F , for Q2 ¼ 0.2510 and
0.49 GeV2. Again these are all constant, within our
statistics. (We can only determine XF2con

D at Q2 ¼ 0 via
an extrapolation, so we show Q2 ¼ 0.25 GeV2 instead.)
Finally we can plot the dependence of X onQ2. In Fig. 6

we show XF1con
D and XF1

F and similarly for XF2 versus Q2

(using the previously determined fitted values). This gives
the Q2 dependence of d and f, respectively. For XF1

F , d is
initially zero and remains small for largerQ2, while f drops
monotonically. We expect d and f to drop like ∼1=Q2 for
large Q2 for all the form factors.

B. Fan plots

We now turn to fan plots, as defined by Eqs. (68) and
(71). Note that again we only consider lattice quantities; the
improved operator would have small changes to the SUð3Þ
flavor-breaking expansion, as discussed in Sec. XI A.
Again we only consider diagonal form factors in these
equations:Dcon

1 ,Dcon
2 andD4 in Eq. (68) and F1, F2 and F4

TABLE VIII. Outline of the ensembles used here on the
323 × 64 lattices together with the corresponding pion masses.

κl κs Mπ MeV

0.120900 0.120900 465
0.121040 0.120620 360
0.121095 0.120512 310

FIG. 4. XF1con
D and XF1

F for F1 at Q2 ¼ 0 (top panel) and for
Q2 ¼ 0.49 GeV2 (lower panel). The lower filled circles in each
plot are XF1con

D , and the upper filled triangles are XF1

F . The dashed
lines are constant fits, and the stars represent the physical point.

8We note that care needs to be taken to distinguish the Fi
corresponding to a form factor and the Fi defined in Eq. (71).

9This corresponds to a lattice momentum of aq⃗ ¼ ð2πÞ=
32ð1; 1; 0Þ.

10This corresponds to a lattice momentum of aq⃗ ¼ ð2πÞ=
32ð1; 0; 0Þ.
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in Eq. (71). We construct the system of linear equations in
Eq. (68) with parameters rcon1 , r3 and d for the d fan and
Eq. (71) with parameters s1, s2 and f for the f fan. In Fig. 7
we show D̃F1

i ¼ DF1

i =XF for i ¼ 1, 2 and 4 and F̃F1

i ¼
FF1

i =XF for i ¼ 1, 2 and 3. Note that as d vanishes for theF1

form factor atQ2 ¼ 0 and even away fromQ2 ¼ 0 it remains
small—see the lower panel of Fig. 4—then dividing by XF1

D

is not possible or very noisy, so we use XF1

F . Although for
XF2

D this is not the case (as seen in Fig. 5), however for
consistency we still use XF2

F . The only change in these cases
is that the value at the symmetric point is no longer one.
The lines shown in Fig. 8 correspond to linear fits to the

DF1con
i using Eq. (68) (upper plot) and FF1con

i using Eq. (71)
(lower plot). The fits to DF1con

i determine rcon1 and r3 using
three fits and are hence constrained. Furthermore determin-
ing these two parameters also allows us to plot the off-
diagonal hyperon decays for i ¼ 6, which is also shown.
Similarly for FF1

i , we first determine the constrained fit
parameters s̃1 ¼ s1=XF and s̃2 ¼ s2=XF and then plot the
off-diagonal hyperon decays for i ¼ 4, 5.
Similarly in Fig. 8 we show the equivalent results

for F2. As previously we have normalized the parameters:
r̃con1 ¼ rcon1 =XF, r̃3 ¼ r3=XF and s̃1 ¼ s1=XF, s̃2 ¼ s2=XF.
Again we have some constraints. In addition off-diagonal

hyperon decays for i ¼ 6, d-fan plot and i ¼ 4, 5, f-fan
plot are also shown.
From these fan plots at various Q2 we can determine the

dependence of the expansion coefficients as a function of
Q2. In Fig. 9 we show the expansion coefficients rcon1 , r3, s1,
and s2 for the Fcon

1 and F2 form factors as a function of Q2.
As discussed previously in Sec. XI A, at Q2 ¼ 0 the
expansion coefficients for Fcon

1 vanish, which determines
the improvement coefficients bV and fconV . Thus in the top
panel of Fig. 9 the negative values of the rcon1 , s1, and s2 are a
clear indication of the nature of the improvement coeffi-
cients. For rather small Q2, these all change sign rather
quickly and also their order inverts. We have (approxi-
mately) jr3j, js1j ≈ 0 and jrcon1 j is a factor of 2–4 larger than
js2j. ForF2 the expansion coefficients tend to be flatter. Also
s2 ≈ 0, indicated in Fig. 8 by the small difference between
F̃F2

3 and F̃F2

4 .

C. Estimating ẐV , b̂V , and f̂ conV

XF1

F at Q2 ¼ 0 determines the renormalization constant
ẐV via Eq. (99). The constant fit described in Eq. (72) and
shown in Fig. 4 (see also Fig. 6) leads to f ¼ 0.814ð1Þ or

ẐV ¼ 0.869ð1Þ: ð116Þ

FIG. 6. Top panel: XF1

F (filled circles) and XF1con
D (filled

triangles) versus Q2. Lower panel: Similarly for F2.

FIG. 5. XF2con
D and XF2

F for F2 atQ2¼0.25GeV2 (top panel) and
for Q2¼0.49GeV2 (lower panel). The same notation as for Fig. 4.
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Our previous nonperturbative estimates of ZV at β ¼ 5.50
are given in [36,37] of 0.863(4) and 0.857(1), respectively,
and are quite close to ẐV in Eq. (116). Note that the different
determinations can haveOðaÞ differences. Also ẐV has been
measured rather than ZV . The difference is∼1þ bVm̄. Here
we have bV ∼Oð1Þ and m̄ ∼ 0.01 (using the κ0c found in
[2]), so there a further possible difference (and reduction
from the ẐV value) of ∼1%.
From Fig. 9, the Q2 ¼ 0 value for r3 is 0.06(2), which

compared to other values is compatible with zero. The
Q2 ¼ 0 values for s1 and s2 are s1 ¼ −0.479ð22Þ and
s2 ¼ −1.643ð44Þ, respectively. The ratio is s2=s1 ¼ 3.42,
which is in good agreement with the theoretical value for
the ratio from Eq. (100) of 2

ffiffiffi
3

p
∼ 3.46. Similarly, using

Eq. (100), we find a weighted average of

b̂V ¼ 1.174ð21Þ; ð117Þ

which is about a 15% increase from the tree-level value.
Although a strict comparison with other determinations of

this improvement coefficient is not possible, it is interesting
to note that compared to other computations, e.g., [26] and
for nf ¼ 0, 2 [27], the value determined here is much closer
to its tree-level value Eq. (90). This suggests that improve-
ment coefficients are small, including possibly ĉV.
Using the value of b̂V from s1 and s2 and using Eq. (102)

together with rcon1 ¼ −3.65ð8Þ gives a weighted average of

f̂conV ¼ 0.041ð4Þ: ð118Þ

As expected this is quite small.

D. Electromagnetic form factor results

With a knowledge of f, d and rcon1 , r3, d, s1, and s2 we
can find the electromagnetic Dirac form factor Fcon

1 ðQ2Þ
and Pauli form factor Fcon

2 ðQ2Þ using the electromagnetic
current Jconem μ (see Sec. X B) and results of Eq. (86). Also we
shall use ẐV , b̂V and f̂conV (i.e., equivalent to CVC) from
Sec. XIII C.

FIG. 8. Top panel: D̃F2

i for i ¼ 1 (filled circles), 2 (filled
squares) and 4 (filled triangles) for Q2 ¼ 0.49 GeV2. The three
fits are from Eq. (68) normalized by XF2

D ; also shown is the i ¼ 6

line. The vertical dotted line represents the physical point. Lower
panel: F̃F2

i for i ¼ 1 (filled circles), 2 (filled squares) and 3 (filled
triangles), also for Q2 ¼ 0.49 GeV2, together with fits from
Eq. (71) normalized by XF2

F . Also shown are the lines i ¼ 4

(upper line) and 5 (lower line).

FIG. 7. Top panel: D̃F1

i ≡DF1

i =XF1

F for i ¼ 1 (filled circles), 2
(filled squares) and 4 (filled triangles) for Q2 ¼ 0.49 GeV2. The
three fits are from Eq. (68), and the line for i ¼ 6 is also shown.
The vertical dotted line represents the physical point. Lower
panel: F̃F1

i ≡ FF1

i =XF1

F again at Q2 ¼ 0.49 GeV2 for i ¼ 1 (filled
circles), 2 (filled squares) and 3 (filled triangles), together with
fits from Eq. (71) normalized by XF1

F . The line for i ¼ 5

is also shown.
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It is interesting to determine the various contributions to
the form factors from the expansion coefficients. For
illustrative purposes, we shall just consider Fcon

1 here
and for p and Ξ0. From Eq. (86) we can write

hpjJemjpiconR

¼XFðQ2;m̄Þ
XFð0;m̄Þ

�
1þ 2ffiffiffi

3
p d̃ðQ2;m̄Þþ ϵ̃0pðQ2;m̄Þδml

�
;

hΞ0jJemjΞ0iconR

¼−
XFðQ2;m̄Þ
XFð0;m̄Þ

�
4ffiffiffi
3

p d̃ðQ2;m̄Þ− ϵ̃0Ξ0ðQ2;m̄ÞδmlÞ
�
; ð119Þ

with

ϵ̃0p ¼ 1ffiffiffi
3

p ðr̃con01 − s̃02Þ þ 2ðs̃01 − r̃03Þ;

ϵ̃0Ξ0 ¼ 1ffiffiffi
3

p ðr̃con01 þ s̃02Þ þ 2ðs̃01 þ r̃03Þ; ð120Þ

where, for example, r̃con01 ¼ rcon01 ðQ2; m̄Þ=XFðQ2; m̄Þ and
similarly for the other expansion coefficients. The prime
includes the improvement terms; see Eqs. (93) and (94).

In this form, we can investigate the contributions to the
form factors. In Fig. 10 we show the results for the terms of
Eq. (119): XFðQ2Þ=XFð0Þ and d̃. In Fig. 11 we show r̃con01 ,
s̃02, r̃

0
3 and s̃

0
1. All the interpolation formulas (fits) are of the

form

AQ2

1þ BQ2 þ CðQ2Þ2 : ð121Þ

From Fig. 10 and the leading term in Eq. (119) for the
proton form factor, the dominant contribution comes from
XFðQ2Þ=XFð0Þ—the f term, while there is a small con-
tribution from the d term (as d̃). Furthermore from Fig. 11
we see that for the ϵ̃ coefficients r̃03 and s̃01 are essentially
negligible and most of the contribution comes from r̃con01

and s̃02.
We illustrate this for the F1 form factor for the p

and Ξ0. In Fig. 12 we show FconR
1 for these baryons at

the physical point δm�
l ¼ −0.01103, i.e., a small and

FIG. 9. Top panel: rcon1 (filled circles), r3 (filled triangles), s1
(filled squares) and s2 (filled diamonds) expansion coefficients
for the vector Fcon

1 form factor as a function of Q2. Lower panel:
Similarly for the F2 form factor.

FIG. 10. XFðQ2Þ=XFð0Þ (filled circles) and d̃ðQ2Þ (filled
triangles) for Fcon

1 against Q2. The interpolation formulae used
are given in Eq. (121).

FIG. 11. r̃con01 (filled circles), s̃02 (filled diamonds), s̃01 (filled
squares) and r̃03 (filled triangles) against Q2 together with
interpolation formulas also given by Eq. (121).
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negative value. The dashed line is XFðQ2Þ=XFð0Þ.
The dashed-dotted lines are the complete leading
terms: XFðQ2;m̄Þ=XFð0;m̄Þð1þ2=

ffiffiffi
3

p
d̃ðQ2;m̄ÞÞ for p and

XFðQ2; m̄Þ=XFð0; m̄Þ × 4=
ffiffiffi
3

p
d̃ðQ2; m̄ÞÞ for the Ξ0, while

the full lines are the complete expressions in Eq. (119).
We see that for the proton the f term [represented by

XFðQ2; m̄Þ=XFð0; m̄Þ] gives a result very close to the
numerical result; the addition of the d̃ term pulls it slightly
away in the þve direction. The inclusion of the OðδmlÞ
term, being −ve, pushes it back. However the additional
terms to the f term contributes very little (only a few
percent) to the final result. For the Ξ0 the OðδmlÞ term
improves the agreement.

XIV. CONCLUSIONS AND OUTLOOK

In this article we have outlined a program for inves-
tigating the quark-mass behavior of matrix elements, for
nf ¼ 2þ 1 quark flavors starting from a point on the
SUð3Þ flavor symmetric line when the u, d and s quarks
have the same mass and then following a path keeping the
singlet quark-mass constant. This is an extension of our
original program for masses [1,2], using a generalization of
the techniques developed there.
When flavor SUð3Þ is unbroken all baryon matrix

elements of a given operator octet can be expressed in
terms of just two couplings (f and d), as is well known. We
find that when SUð3Þ flavor symmetry is broken, at LO and
NLO, the expansions are constrained (but not at further
higher orders). By this we mean that there are a large
number of relations between the expansion coefficients.
Our main results for the expansions are contained in
Secs. VI A and VI B. Although we concentrated on the
nf ¼ 2þ 1 case, in which symmetry breaking is due to

mass differences between the strange and light quarks, our
methods are also applicable to isospin-breaking effects
coming from a nonzeromd −mu along the lines of [21,38].
The results here parallel those for the mass case. Firstly,

for example we have constructed “singletlike” matrix
elements—collectively called X here—where the LO term
vanishes. As noted in [2] these can be extrapolated to the
physical point, using a one-parameter constant fit. In this
article we constructed several of these X functions and
indeed can isolate the constant as either the f or d coupling.
Secondly again in analogy to the mass expansions we
constructed fan plots, each element of which is a linear
combination of matrix elements, where at the SUð3Þ flavor
symmetric point all the elements have a common value and
then radiate away from this point as the quark masses
change. This is slightly more complicated than for the mass
case as we now have two couplings, f and d. Indeed the fan
plot expansions can be constructed involving either f or d
alone at the SUð3Þ flavor symmetric point (more generally
we have some combination of them).
Technically important for lattice determinations of matrix

elements is the difference between quark-line-connected
and quark-line-disconnected terms in the calculation of the
three-point correlation functions. (The quark-line-discon-
nected terms are small but difficult to compute using lattice
methods, due to large gluon fluctuations.) Applying the
SUð3Þ flavor-breaking expansion to these cases separately,
we have identified which expansion coefficient(s) have
contributions coming from the quark-line-disconnected
terms. We found that at LO there is just one expansion
coefficient which has a quark-line-disconnected piece.
As numerically we are using Wilson clover improved

fermions, then for Oða2Þ continuum expansions, improve-
ment coefficients need to be determined. The general
structure for nf ¼ 2þ 1 flavors of fermions has been
determined; see e.g., [12]. We showed here these coef-
ficients are equivalent to modifications to the expansion
parameters. Using the subsidiary condition that the relation
between the local and conserved vector current is OðaÞ
allowed us to determine two improvement terms (together
with the renormalization constant).
To demonstrate how the expansions work, we discussed

numerical results using the vector current and diagonal
matrix elements. However these can be extended to include
transition hyperon decays (a phenomenological review is
given in [13]). These would allow an alternative method to
the standard Kl3 decays of determining jVusj, e.g.,
[13,39,40]. Earlier quenched and nf ¼ 2 results for Σ− →
nlν and Ξ0 → Σþlν can be found in [41,42], and nf ¼
2þ 1 results have been obtained in [43,44]. The latter
reference also investigates the possibility of nonlinear effects
in the quark mass, which in the SUð3Þ symmetry flavor-
breaking expansion means including terms from Table VII.
Future theoretical developments include extending the

formalism to partially quenched quark masses, when the

FIG. 12. FconR
1 for the proton (filled circles) and Ξ0 (filled

triangles) at the physical point. The dashed line is
XFðQ2Þ=XFð0Þ. The dashed-dotted lines are the complete leading
terms, for the proton: XFðQ2; m̄Þ=XFð0; m̄Þð1þ 2=

ffiffiffi
3

p
d̃ðQ2; m̄ÞÞ

and for Ξ0: XFðQ2; m̄Þ=XFð0; m̄Þ × 4=
ffiffiffi
3

p
d̃ðQ2; m̄ÞÞ, while the

full lines are the complete expressions in Eq. (119).
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valence quark mass δμq does not have to be the same as
the sea or unitary quark mass. Then Eq. (14) is replaced by
δμq ¼ μq − m̄. In this case the generalization of Eq. (17)
does not hold. This allows the determination of the expan-
sion coefficients over a larger quark-mass range than is
possible using the unitary quark masses (and allows, for
example, the charm quark to be included [45]). Furthermore
expansions for “fake” hadrons would be useful. Possible are
a “nucleon”with threemass degenerate strange quarks and a
“Lambda” with two mass degenerate strange quarks.
Although they are not physical states, they can be measured
on the lattice and do not introduce any more SUð3Þ mass
flavor-breaking expansion coefficients, so simply add more
constraints to the coefficient determination. An example of
this for the baryon octet masses is given in [21].
Another extension of the SUð3Þ mass flavor-breaking

method is to the baryon decuplet with 10 ⊗ 8 ⊗ 10 tensors
and also to the meson octet. While the latter extension is
straightforward, there are some extra constraints, as due to
charge conjugation the particles in the meson octet are
related to each other.
Furthermore generalized currents can be evaluated between

quark states. This leads to a SUð3Þ mass flavor-breaking
expansion involving 3 ⊗ 8 ⊗ 3 tensors. This will help when
considering the nonperturbative RI0 −MOM scheme which
defines the renormalization constants (and improvement
constants) by considering the generalized currents between
quark states.Usefulwould also be to consider the axial current
improvement coefficients using a partially conserved axial-
vector current along the lines of [12].
Finally, a more distant prospect is to include QED

corrections to the matrix elements [10], along the lines
of our previous studies of the SUð3Þ flavor-breaking
expansion for masses [3–5].
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APPENDIX A: NONZERO TENSOR ELEMENTS

The nonzero elements of the tensors Tijk are listed in
Tables IX–XIII.

TABLE IX. Flavor-singlet first-class nonzero elements of the
f and d tensors.

Tensor Value Position

f 2 334 463 646
−2 343 436 664ffiffiffi
3

p
151 252 518 527 775 885

−
ffiffiffi
3

p
115 225 572 581 757 858ffiffiffi

2
p

132 261 317 628 783 876

−
ffiffiffi
2

p
123 216 371 682 738 867

1 114 242 427 481 774 848
−1 141 224 418 472 747 884

d
ffiffiffi
6

p
123 132 216 261 317 371
628 682 738 783 867 876

2 335 353 445 454 536 544 563 656 665
−2 555ffiffiffi
3

p
224 242 427 472 747 774

−
ffiffiffi
3

p
114 141 418 481 848 884

−1 115 151 225 252 518 527
572 581 757 775 858 885

TABLE X. First-class octet nonzero elements of the r1, r2, r3
and s1, s2 tensors.

Tensor Value Position

r1 1 151 252 353 454 555 656 757 858
r2 2 555

1 115 225 335 445 518 527 536
544 563 572 581 665 775 885

r3 2
ffiffiffi
3

p
353 454 656

−2
ffiffiffi
2

p
132 261 738 867

2 141 848
−2 242 747

−
ffiffiffi
3

p
335 445 536 544 563 665ffiffiffi

2
p

123 216 317 371 628 682 783 876
1 224 427 472 774

−1 114 418 481 884

s1 2
ffiffiffi
2

p
132 261

−2
ffiffiffi
2

p
738 867

2 242 343 436 664 848
−2 141 334 463 646 747ffiffiffi
3

p
518 527 775 885

−
ffiffiffi
3

p
115 225 572 581ffiffiffi

2
p

123 216 371 682

−
ffiffiffi
2

p
317 628 783 876

1 224 418 472 884
−1 114 427 481 774

(Table continued)
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TABLE XI. Second-class octet nonzero elements of the t1, t2
and u1 tensors.

Tensor Value Position

t1 1 115 225 335 445 665 775 885
−1 518 527 536 544 563 572 581

t2
ffiffiffi
3

p
115 225 775 885

−
ffiffiffi
3

p
518 527 572 581ffiffiffi

2
p

123 216 783 876

−
ffiffiffi
2

p
317 371 628 682

1 224 418 481 774
−1 114 427 472 884

u1
ffiffiffi
6

p
123 216 317 628

−
ffiffiffi
6

p
371 682 783 876ffiffiffi

3
p

224 427 481 884

−
ffiffiffi
3

p
114 418 472 774

1 572 581 775 885
−1 115 225 518 527

TABLE X. (Continued)

Tensor Value Position

s2
ffiffiffi
3

p
334 463 646

−
ffiffiffi
3

p
343 436 664

1 115 225 572 581 757 858
−1 151 252 518 527 775 885

TABLE XIII. First-class 64-plet and second-class 27-plet non-
zero elements of the z and x1, y1 tensors.

Tensor Value Position

z −9
ffiffiffi
3

p
555

3
ffiffiffi
3

p
115 151 225 252 518 527
572 581 757 775 858 885

−
ffiffiffi
3

p
335 353 445 454 536 544 563 656 665ffiffiffi

2
p

123 132 216 261 317 371
628 682 738 783 867 876

1 224 242 427 472 747 774
−1 114 141 418 481 848 884

x1 4 335 445 665
−4 536 544 563
3 518 527 572 581

−3 115 225 775 885ffiffiffi
6

p
123 216 783 876

−
ffiffiffi
6

p
317 371 628 682ffiffiffi

3
p

224 418 481 774

−
ffiffiffi
3

p
114 427 472 884

y1 3
ffiffiffi
3

p
115 225 518 527

−3
ffiffiffi
3

p
572 581 775 885ffiffiffi

2
p

123 216 317 628

−
ffiffiffi
2

p
371 682 783 876

1 224 427 481 884
−1 114 418 472 774

TABLE XII. First-class 27-plet nonzero elements of the q1, q2
and w1, w2 tensors.

Tensor Value Position

q1 −18 555
14 335 445 536 544 563 665

−5
ffiffiffi
6

p
132 261 738 867

9 151 252 757 858
5

ffiffiffi
3

p
141 848

−5
ffiffiffi
3

p
242 747

−6 115 225 353 454 518 527
572 581 656 775 885

q2 18 555
−10 353 454 656
−6 335 445 536 544 563 665

2
ffiffiffi
6

p
123 216 317 371 628 682 783 876

2
ffiffiffi
3

p
224 427 472 774

−2
ffiffiffi
3

p
114 418 481 884

3 151 252 757 858ffiffiffi
6

p
132 261 738 867ffiffiffi

3
p

242 747

−
ffiffiffi
3

p
141 848

(Table continued)

TABLE XII. (Continued)

Tensor Value Position

w1 4
ffiffiffi
2

p
132 261

−4
ffiffiffi
2

p
738 867

3
ffiffiffi
3

p
115 225 572 581

−3
ffiffiffi
3

p
518 527 775 885

3
ffiffiffi
2

p
317 628 783 876

−3
ffiffiffi
2

p
123 216 371 682

4 242 343 436 664 848
−4 141 334 463 646 747
3 114 427 481 774

−3 224 418 472 884

w2 3
ffiffiffi
3

p
151 252

−3
ffiffiffi
3

p
757 858

2
ffiffiffi
2

p
123 216 371 682

−2
ffiffiffi
2

p
317 628 783 876

2 224 334 418 463 472 646 884
−2 114 343 427 436 481 664 774ffiffiffi
2

p
738 867

−
ffiffiffi
2

p
132 261

1 141 747
−1 242 848
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APPENDIX B: ALTERNATIVE FAN PLOTS

1. The doubly represented–singly represented
fan, the P fan

The traditional way of expressing the two ways of
coupling octet operators to octet hadrons are the f and d
couplings. In terms of hadron structure, this choice is
perhaps more natural for octet mesons than it is for
octet baryons. Consider Eqs. (64) and (65). In the Kþ,
with quark content us̄ the f combination hKþjðūγu −
s̄γsÞjKþi is very natural (the difference between the two
valence quarks), and the d combination hKþjðūγuþ
s̄γs − 2d̄γdÞjKþi is also a natural-looking symmetric
combination. For the Λ, the d combination is also the
natural nonsinglet operator to consider, d ∝ hΛjð2s̄γs−
ūγu − d̄γdÞjΛi, because the u and d in the Λ have the
same structure functions, while the s structure is different
[even before breaking SUð3Þ].
But in the proton, it might be a bit more natural to

choose the combinations ðūγu − d̄γdÞ and ðūγuþ d̄γd −
2s̄γsÞ instead. The first combination is the nonsinglet
combination normally considered in discussions of proton
structure, and the second is almost (but not exactly) a
measure of the total valence contribution, because the
quark-line-disconnected (sea) contribution to ðūγuþ
d̄γd − 2s̄γsÞ is zero at the symmetric point and will
probably stay small if the nucleon’s sea is approximately
SUð3Þ symmetric.
We can therefore construct a fan plot for the doubly

represented–singly represented quark:

P1 ¼
ffiffiffi
2

p
AN̄πN ¼ ð

ffiffiffi
2

p
f þ

ffiffiffi
6

p
dÞ − 2

ffiffiffi
2

p
ðr3 − s1Þδml;

P2 ¼
1ffiffiffi
2

p ðAΣ̄πΣ þ
ffiffiffi
3

p
AΣ̄ηΣÞ ¼ ð

ffiffiffi
2

p
f þ

ffiffiffi
6

p
dÞ

þ 1ffiffiffi
2

p ð
ffiffiffi
3

p
r1 þ 6r3 − 2s1 þ

ffiffiffi
3

p
s2Þδml;

P3 ¼ −
1ffiffiffi
2

p ðAΞ̄πΞ þ
ffiffiffi
3

p
AΞ̄ηΞÞ ¼ ð

ffiffiffi
2

p
f þ

ffiffiffi
6

p
dÞ

−
1ffiffiffi
2

p ð
ffiffiffi
3

p
r1 þ 2r3 þ 2s1 þ

ffiffiffi
3

p
s2Þδml;

P4 ¼ AΣ̄KΞ ¼ ð
ffiffiffi
2

p
f þ

ffiffiffi
6

p
dÞ þ

ffiffiffi
2

p
ðr3 − s1Þδml: ðB1Þ

We have based this fan plot on the doubly–singly repre-
sented structure, so several of the observables have very
simple quark structures:

P1 ¼ hpjðūγu − d̄γdÞjpi;
P2 ¼ hΣþjðūγu − s̄γsÞjΣþi;
P3 ¼ hΞ0jðs̄γs − ūγuÞjΞ0i;
P4 ¼ hΣþjūγsjΞ0i: ðB2Þ

This P fan only includes the “outer” octet baryons. The
natural plot for the Λ structure is the d fan. There are two
linear constraints on the P fan:

1

3
ðP1 þ P2 þ P3Þ ¼ ð

ffiffiffi
2

p
f þ

ffiffiffi
6

p
dÞ þOðδm2

l Þ;
1

3
ðP1 þ 2P4Þ ¼ ð

ffiffiffi
2

p
f þ

ffiffiffi
6

p
dÞ þOðδm2

l Þ: ðB3Þ

A fan with just the four lines from Eq. (B2), P1, P2, P3, P4,
is a four-line plot with just two independent slope param-
eters, ðr3 − s1Þ and ð ffiffiffi

3
p

r1 þ 4r3 þ
ffiffiffi
3

p
s2Þ.

The advantage of this fan plot is that some of the
quantities are of immediate physical interest; for example
in the weak decay case P1 gives the neutron decay constant,
while P4 gives the semileptonic decays Ξ0 → Σþl−ν̄l and
Ξ− → Σ0l−ν̄l. The disadvantages are that there are fewer
constraints than the d fan. Also, the d fan and f fan are
independent—they involve different parameters, and there
are no constraints that mix Fi and Di quantities. A first
attempt to show this fan plot for the fraction of the baryon’s
momentum carried by a quark, i.e.,hxi, is given in [48].
Finally it is again often useful to note from Eq. (B3) that

for example

XP¼
1

3
ðP1þP2þP3Þ¼ ð

ffiffiffi
2

p
fþ

ffiffiffi
6

p
dÞþOðδm2

l Þ ðB4Þ

and to consider the quantities Pi=XP.

2. The V fan

The other natural nonsinglet to look at in the proton is
hpjðūγuþ d̄γd − 2s̄γsÞjpi. This is approximately the total
valence distribution; the quark-line-disconnected (sea)
contribution to ðūγuþ d̄γd − 2s̄γsÞ is zero at the symmet-
ric point and will probably stay small if the nucleon’s sea is
approximately SUð3Þ symmetric:

V1¼
ffiffiffi
6

p
AN̄ηN ¼

ffiffiffi
6

p
ð

ffiffiffi
3

p
f−dÞþ

ffiffiffi
6

p
ðr1− s2Þδml;

V2¼
3ffiffiffi
2

p AΣ̄πΣ−
ffiffiffi
3

2

r
AΣ̄ηΣ ¼

ffiffiffi
6

p
ð

ffiffiffi
3

p
f−dÞ

−
1ffiffiffi
2

p ð
ffiffiffi
3

p
r1þ6r3þ6s1−3

ffiffiffi
3

p
s2Þδml;

V3¼
3ffiffiffi
2

p AΞ̄πΞ−
ffiffiffi
3

2

r
AΞ̄ηΞ ¼

ffiffiffi
6

p
ð

ffiffiffi
3

p
f−dÞ

−
1ffiffiffi
2

p ð
ffiffiffi
3

p
r1−6r3−6s1þ

ffiffiffi
3

p
s2Þδml;

V4¼
ffiffiffi
2

p
ðAN̄πN þ2AΞ̄πΞÞ

¼
ffiffiffi
6

p
ð

ffiffiffi
3

p
f−dÞþ2

ffiffiffi
2

p
ðr3þ3s1Þδml;

V5¼ðAΣ̄KΞ−2AN̄KΣÞ¼
ffiffiffi
6

p
ð

ffiffiffi
3

p
f−dÞ−

ffiffiffi
2

p
ðr3þ3s1Þδml:

ðB5Þ
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We have the two constraints

1

3
ðV1 þ V2 þ V3Þ ¼

ffiffiffi
6

p
ð

ffiffiffi
3

p
f − dÞ þOðδm2

l Þ;
1

3
ðV4 þ 2V5Þ ¼

ffiffiffi
6

p
ð

ffiffiffi
3

p
f − dÞ þOðδm2

l Þ ðB6Þ

and can again construct an XV from either combination, for
example set

XV ¼ 1

3
ðV1 þ V2 þ V3Þ; ðB7Þ

and again consider ratios such as Vi=XV .

APPENDIX C: LO FLAVOR DIAGONAL
MATRIX ELEMENTS

To leading order we have for the representative octet
baryons p, Σþ, Λ0 and Ξ0

hpjūγujpi ¼ 1ffiffiffi
3

p ða0 þ
ffiffiffi
6

p
f þ

ffiffiffi
2

p
dÞ þ 1ffiffiffi

3
p

�
3a1 þ

1ffiffiffi
2

p r1 −
ffiffiffi
6

p
r3 þ

ffiffiffi
6

p
s1 −

1ffiffiffi
2

p s2

�
δml;

hpjd̄γdjpi ¼ 1ffiffiffi
3

p ða0 − 2
ffiffiffi
2

p
dÞ þ 1ffiffiffi

3
p

�
3a1 þ

1ffiffiffi
2

p r1 þ
ffiffiffi
6

p
r3 −

ffiffiffi
6

p
s1 −

1ffiffiffi
2

p s2

�
δml;

hpjs̄γsjpi ¼ 1ffiffiffi
3

p ða0 −
ffiffiffi
6

p
f þ

ffiffiffi
2

p
dÞ þ 1ffiffiffi

3
p ð3a1 −

ffiffiffi
2

p
r1 þ

ffiffiffi
2

p
s2Þδml; ðC1Þ

hΣþjūγujΣþi ¼ 1ffiffiffi
3

p ða0 þ
ffiffiffi
6

p
f þ

ffiffiffi
2

p
dÞ þ 1ffiffiffi

3
p

�
−3a2 þ

1ffiffiffi
2

p r1 þ
ffiffiffi
6

p
r3 −

ffiffiffi
6

p
s1 þ

3ffiffiffi
2

p s2

�
δml;

hΣþjd̄γdjΣþi ¼ 1ffiffiffi
3

p ða0 −
ffiffiffi
6

p
f þ

ffiffiffi
2

p
dÞ þ 1ffiffiffi

3
p

�
−3a2 þ

1ffiffiffi
2

p r1 þ
ffiffiffi
6

p
r3 þ

ffiffiffi
6

p
s1 −

3ffiffiffi
2

p s2

�
δml;

hΣþjs̄γsjΣþi ¼ 1ffiffiffi
3

p ða0 − 2
ffiffiffi
2

p
dÞ þ 1ffiffiffi

3
p ð−3a2 −

ffiffiffi
2

p
r1 − 2

ffiffiffi
6

p
r3Þδml; ðC2Þ

hΛjūγujΛi ¼ hΛjd̄γdjΛi;

¼ 1ffiffiffi
3

p ða0 −
ffiffiffi
2

p
dÞ þ 1ffiffiffi

3
p

�
3a2 þ

1ffiffiffi
2

p r1 þ
ffiffiffi
2

p
r2

�
δml;

hΛjs̄γsjΛi ¼ 1ffiffiffi
3

p ða0 þ 2
ffiffiffi
2

p
dÞ þ 1ffiffiffi

3
p ð3a2 −

ffiffiffi
2

p
r1 − 2

ffiffiffi
2

p
r2Þδml; ðC3Þ

and

hΞ0jūγujΞ0i ¼ 1ffiffiffi
3

p ða0 − 2
ffiffiffi
2

p
dÞ þ 1ffiffiffi

3
p

�
−3ða1 − a2Þ þ

1ffiffiffi
2

p r1 þ
ffiffiffi
6

p
r3 þ

ffiffiffi
6

p
s1 þ

1ffiffiffi
2

p s2

�
δml;

hΞ0jd̄γdjΞ0i ¼ 1ffiffiffi
3

p ða0 −
ffiffiffi
6

p
f þ

ffiffiffi
2

p
dÞ þ 1ffiffiffi

3
p

�
−3ða1 − a2Þ þ

1ffiffiffi
2

p r1 −
ffiffiffi
6

p
r3 −

ffiffiffi
6

p
s1 þ

1ffiffiffi
2

p s2

�
δml;

hΞ0js̄γsjΞ0i ¼ 1ffiffiffi
3

p ða0 þ
ffiffiffi
6

p
f þ

ffiffiffi
2

p
dÞ þ 1ffiffiffi

3
p ð−3ða1 − a2Þ −

ffiffiffi
2

p
r1 −

ffiffiffi
2

p
s2Þδml: ðC4Þ

APPENDIX D: LO DISCONNECTED FLAVOR DIAGONAL MATRIX ELEMENTS

From Eqs. (77) and (78) we have fdis, ddis, rdis2 , rdis3 , sdis1 and sdis2 all vanishing at LO and only rdis1 contributing.
Thus we have

hNjūγujNidis ¼ hNjd̄γdjNidis ¼ 1ffiffiffi
3

p adis0 þ
� ffiffiffi

3
p

adis1 þ 1ffiffiffi
6

p rdis1

�
δml;

hNjs̄γsjNidis ¼ 1ffiffiffi
3

p adis0 þ
� ffiffiffi

3
p

adis1 −
ffiffiffi
2

3

r
rdis1

�
δml ðD1Þ
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(for n, p),

hΣjūγujΣidis ¼ hΣjd̄γdjΣidis ¼ 1ffiffiffi
3

p adis0 þ
�
−

ffiffiffi
3

p
adis2 þ 1ffiffiffi

6
p rdis1

�
δml;

hΣjs̄γsjΣidis ¼ 1ffiffiffi
3

p adis0 þ
�
−

ffiffiffi
3

p
adis2 −

ffiffiffi
2

3

r
rdis1

�
δml ðD2Þ

(for Σþ, Σ0, Σ−),

hΛjūγujΛidis ¼ hΛjd̄γdjΛidis ¼ 1ffiffiffi
3

p adis0 þ
� ffiffiffi

3
p

adis2 þ 1ffiffiffi
6

p rdis1

�
δml;

hΛjs̄γsjΛidis ¼ 1ffiffiffi
3

p adis0 þ
� ffiffiffi

3
p

adis2 −
ffiffiffi
2

3

r
rdis1

�
δml; ðD3Þ

(for Λ0), and

hΞjūγujΞidis ¼ hΞjd̄γdjΞidis ¼ 1ffiffiffi
3

p adis0 þ
�
−

ffiffiffi
3

p
ðadis1 − adis2 Þ þ 1ffiffiffi

6
p rdis1

�
δml;

hΞjs̄γsjΞidis ¼ 1ffiffiffi
3

p adis0 þ
�
−

ffiffiffi
3

p
ðadis1 − adis2 Þ −

ffiffiffi
2

3

r
rdis1

�
δml ðD4Þ

(for Ξ0, Ξ−).
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