
Codification Pedagogy for Introductory
Procedural Programming Courses

Rita Alicia GARCIA

A thesis submitted for the degree of
DOCTOR OF PHILOSOPHY
The University of Adelaide

March 5, 2020





iii

Contents

Abstract xiii

Declaration of Authorship xv

Acknowledgements xvii

1 Introduction 1
1.1 Areas of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Program Comprehension . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Critical Thinking Skills . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Design Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Pedagogy Design and Background 9
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Pedagogical Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Program Comprehension . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Self-Regulated Learning Strategies . . . . . . . . . . . . . . . . . 13

2.3 Critical Thinking Skills . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Design Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Pedagogical Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Cognitive Apprenticeship . . . . . . . . . . . . . . . . . . . . . . 18
2.5.2 Proposed Pedagogical Design . . . . . . . . . . . . . . . . . . . . 19

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Related Work 23
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Pedagogical Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Program Comprehension . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Self-Regulated Learning Strategies . . . . . . . . . . . . . . . . . 25

3.3 Critical Thinking Skills . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.1 Self-Explanation Questions . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Socratic Questioning . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.3 Instructional Question Types . . . . . . . . . . . . . . . . . . . . 29

3.4 Design Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Cognitive Apprenticeship . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



iv

4 Pedagogy Studies 33
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Pedagogy Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Pedagogy Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.1 Assignment Presentation . . . . . . . . . . . . . . . . . . . . . . 37
4.4.2 Questioning Activity . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.3 Design Strategy Activity . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Pedagogy Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5.1 Assignment Design Study . . . . . . . . . . . . . . . . . . . . . . 38
4.5.2 Assignment Comparative Study . . . . . . . . . . . . . . . . . . 38
4.5.3 Assignment Design Interview Study . . . . . . . . . . . . . . . . 39
4.5.4 Questioning Activity Study . . . . . . . . . . . . . . . . . . . . . 39
4.5.5 Design Strategy Activity . . . . . . . . . . . . . . . . . . . . . . . 39
4.5.6 Entire Pedagogy Study . . . . . . . . . . . . . . . . . . . . . . . . 40

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Assignment Design Study 41
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.1 Search Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.1 Framework Design . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4.2 Program Description . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4.3 Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4.4 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4.5 Example Assignment Presentation . . . . . . . . . . . . . . . . . 51

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Assignment Comparative Study 53
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2.2 Comparative Study Design . . . . . . . . . . . . . . . . . . . . . 54
6.2.3 Student Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.1 Comparative Data Analysis . . . . . . . . . . . . . . . . . . . . . 59
6.3.2 Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.4 Comparative Study Results . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.4.1 Sum and Average Programming Tasks . . . . . . . . . . . . . . . 62
6.4.2 Sentinel Programming Task . . . . . . . . . . . . . . . . . . . . . 62
6.4.3 Negative Programming Task . . . . . . . . . . . . . . . . . . . . 63
6.4.4 Count Programming Task . . . . . . . . . . . . . . . . . . . . . . 63
6.4.5 DivZero Programming Task . . . . . . . . . . . . . . . . . . . . . 63

6.5 Survey Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.5.1 Understanding the Problem . . . . . . . . . . . . . . . . . . . . . 65
6.5.2 Assignment Presentation . . . . . . . . . . . . . . . . . . . . . . 67

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



v

7 Assignment Design Interview Study 71
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.2.2 Instructional Instrument Design . . . . . . . . . . . . . . . . . . 72
7.2.3 Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2.4 Narrative Interviewing . . . . . . . . . . . . . . . . . . . . . . . . 75

7.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.3.1 Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.3.2 Narrative Interview . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.4.1 Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.4.2 Interview Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8 Questioning Activity Study 83
8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.2.2 Framework Design . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.2.3 Instrument Development . . . . . . . . . . . . . . . . . . . . . . 85

8.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.3.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.3.2 Analysis of Students’ Answers . . . . . . . . . . . . . . . . . . . 87

8.4 Framework Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.5 Questioning Activity Results . . . . . . . . . . . . . . . . . . . . . . . . 90

8.5.1 Analysis of Activity Question 1 . . . . . . . . . . . . . . . . . . . 91
8.5.2 Analysis of Activity Question 2 . . . . . . . . . . . . . . . . . . . 92

8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

9 Design Strategy Activity Study 95
9.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.2 Parsons Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
9.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

9.3.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.3.2 Intervention Design . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.3.3 Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
9.3.4 Usability Testing Methods . . . . . . . . . . . . . . . . . . . . . . 102

9.4 Quantitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9.5 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.5.1 Questionnaire Analysis . . . . . . . . . . . . . . . . . . . . . . . 104
9.5.2 Cognitive Task Analysis . . . . . . . . . . . . . . . . . . . . . . . 105
9.5.3 Interview Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 105

9.6 Student Interactions Results . . . . . . . . . . . . . . . . . . . . . . . . . 106
9.6.1 Top-Down Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 107
9.6.2 Known-First Strategy . . . . . . . . . . . . . . . . . . . . . . . . 107
9.6.3 Experimenting Strategy . . . . . . . . . . . . . . . . . . . . . . . 109
9.6.4 Grade Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . 110

9.7 Usability Testing Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
9.7.1 Questionnaire Results . . . . . . . . . . . . . . . . . . . . . . . . 110
9.7.2 Think-Aloud Results . . . . . . . . . . . . . . . . . . . . . . . . . 113



vi

9.7.3 Interview Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
9.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

10 Pedagogy Evaluation Study 123
10.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
10.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

10.2.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
10.2.2 Metacognitive Awareness Instrument . . . . . . . . . . . . . . . 125
10.2.3 Academic Study Design . . . . . . . . . . . . . . . . . . . . . . . 127

10.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
10.3.1 Test Instrument Analysis . . . . . . . . . . . . . . . . . . . . . . 127
10.3.2 Analysis of Academic Success . . . . . . . . . . . . . . . . . . . . 128

10.4 Metacognitive Awareness Results . . . . . . . . . . . . . . . . . . . . . . 128
10.4.1 Diverging Opinions on Metacognitive Skills . . . . . . . . . . . 131
10.4.2 Increased Positive Opinions on Metacognitive Skills . . . . . . . 133
10.4.3 Unchanged Opinions on Metacognitive Skills . . . . . . . . . . 134

10.5 Academic Success Results . . . . . . . . . . . . . . . . . . . . . . . . . . 134
10.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

11 Conclusion 139
11.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

11.1.1 Assignment Design Framework . . . . . . . . . . . . . . . . . . 141
11.1.2 Instructional Question Framework . . . . . . . . . . . . . . . . . 142
11.1.3 Design-Based Parsons Problems . . . . . . . . . . . . . . . . . . 142

11.2 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
11.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
11.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A Programming Assignments 147
A.1 Pilot Group Codification Assignments . . . . . . . . . . . . . . . . . . . 147

A.1.1 Assignment 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.1.2 Assignment 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.1.3 Assignment 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A.1.4 Assignment 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

A.2 Experiment 2 Group Codification Assignments . . . . . . . . . . . . . . 168
A.2.1 Assignment 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

A.2.2 Assignment 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

A.2.3 Assignment 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180



vii

Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
A.2.4 Assignment 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

A.3 Questioning Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
A.3.1 Pilot Group Questioning Activities . . . . . . . . . . . . . . . . . 189
A.3.2 Pilot Group Questioning Activities . . . . . . . . . . . . . . . . . 190

B Interviews and Tests 191
B.1 Interviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

B.1.1 Student Interview . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
B.2 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

B.2.1 Student Pre- and Post-Test . . . . . . . . . . . . . . . . . . . . . . 192
B.2.2 Usability Study Questionnaire . . . . . . . . . . . . . . . . . . . 193
B.2.3 Rainfall Problem Survey . . . . . . . . . . . . . . . . . . . . . . . 194

Bibliography 195





ix

List of Figures

2.1 Program Comprehension Model (Schulte et al., 2010, p. 66) . . . . . . . 12
2.2 Problem-Solving Process Model (Gick, 1986, p. 101) . . . . . . . . . . . 20
2.3 Codification Pedagogy Workflow . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Original Rainfall Problem (Soloway, Bonar, and Ehrlich, 1983) . . . . . . 34
4.2 Placement of Pedagogical Goals and Strategies in Problem-Solving

Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Research Studies for Learning Activities . . . . . . . . . . . . . . . . . . 37

5.1 CS1 Assignment Design Framework . . . . . . . . . . . . . . . . . . . . 49
5.2 Example of Highly Scaffolded Rainfall Problem . . . . . . . . . . . . . . 50
5.3 Original Rainfall Problem (Soloway, Bonar, and Ehrlich, 1983) . . . . . . 51

6.1 Instructional Instrument Used in the Comparative Study . . . . . . . . 55
6.2 Original Rainfall Problem (Soloway, Bonar, and Ehrlich, 1983) . . . . . . 56
6.3 Ebrahimi, 1994 Problem Variant . . . . . . . . . . . . . . . . . . . . . . . 56
6.4 Lakanen, Lappalainen, and Isomöttönen, 2015 Exam Rainfall Problem . 57
6.5 Simon, 2013 Exam Rainfall Problem . . . . . . . . . . . . . . . . . . . . . 58
6.6 Correctly Implemented Tasks and Scaffolding Treatments Used in Rain-

fall Problem Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.7 Incorrect Solution for the Sentinel Task . . . . . . . . . . . . . . . . . 63
6.8 Incorrect Solution for the Count Task . . . . . . . . . . . . . . . . . . . 64
6.9 Misreading of the Sentinel Marker . . . . . . . . . . . . . . . . . . . . 66

7.1 Class Announcement for Student Volunteers . . . . . . . . . . . . . . . 72
7.2 Assignment A5.1 Problem Description . . . . . . . . . . . . . . . . . . . 74

8.1 Questioning Framework Development Process . . . . . . . . . . . . . . 85
8.2 Instructional Instrument Used in the Study . . . . . . . . . . . . . . . . 86

9.1 Example Parsons Problem with Code Fragments (Parsons and Haden,
2006) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

9.2 Instructional Instrument Presented in js-parsons Library . . . . . . 101
9.3 Top-Down Strategy for Solving Design Strategy Activity . . . . . . . . . . 107
9.4 Known-First Strategy for Solving the Design Strategy Activity . . . . . . 108
9.5 Experimenting Strategy for Solving the Design Strategy Activity . . . . . 109
9.6 Protocol Fragment for Student V2.1 . . . . . . . . . . . . . . . . . . . . . 114
9.7 Protocol Fragment for Student V2.2 . . . . . . . . . . . . . . . . . . . . . 115
9.8 Protocol Fragment for Student V1.1 . . . . . . . . . . . . . . . . . . . . . 116
9.9 Protocol Fragment for Student V1.2 . . . . . . . . . . . . . . . . . . . . . 117
9.10 Protocol Fragment for Student V2.7 . . . . . . . . . . . . . . . . . . . . . 117
9.11 Protocol Fragment for Student V2.3 . . . . . . . . . . . . . . . . . . . . . 118

10.1 Comparing the Results from Groups E2 and C1 Test Instruments . . . 130



x

10.2 Groups E2 and C1 Results for P3: I am aware of what strategies I use
when I study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

10.3 Groups E2 and C1 Results for P8: I think of several ways to solve a
problem and choose the best one. . . . . . . . . . . . . . . . . . . . . . . 132

10.4 Groups E2 and C1 Results for P9: I read instructions carefully before
I begin a task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

10.5 Groups E2 and C1 Results for P1: I try to use strategies that have
worked in the past. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

10.6 Groups E2 and C1 Results for P10: I organise my time to best accom-
plish my goals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

10.7 Overall Average of Programming Assignments . . . . . . . . . . . . . . 135
10.8 Programming Assignment Completion Rate . . . . . . . . . . . . . . . 137

11.1 Revised Codification Pedagogy Workflow (Gick, 1986, p. 101) . . . . . 141



xi

List of Tables

1.1 Overview of Thesis Questions, Hypotheses, and Data Sources . . . . . 5
1.2 List of Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Bloom’s Taxonomy Cognitive Levels (Bloom, 1956) . . . . . . . . . . . 16

3.1 SRL Strategies Categorised within a CS e-Learning Context (Garcia,
Falkner, and Vivian, 2018) . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Instructional Question Types for CS (* denotes emerging question cat-
egory (Boyer et al., 2010)) . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 List of Assignments Used in the Research . . . . . . . . . . . . . . . . . 35

5.1 Literature Review Selection Criteria . . . . . . . . . . . . . . . . . . . . 42
5.2 Publications Meeting Literature Review Selection Criteria . . . . . . . . 46

6.1 Rainfall Problem Rubric for Instructional Instrument . . . . . . . . . . 61
6.2 Response to Survey Question 1 . . . . . . . . . . . . . . . . . . . . . . . 65
6.3 Response to Survey Question 2 . . . . . . . . . . . . . . . . . . . . . . . 67

7.1 Participants’ Programming Experience . . . . . . . . . . . . . . . . . . . 77
7.2 Narrative Interview Coded Framework . . . . . . . . . . . . . . . . . . 79

8.1 Excerpt of the Coding Criteria for Students’ Answers . . . . . . . . . . 88
8.2 Instructional Framework (* Denotes Emerging Question Category (Boyer

et al., 2010)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.3 Group E2.2 Results for Bloom’s Cognitive Levels . . . . . . . . . . . . . 91
8.4 Group E2.2 Results for Knowledge Dimensions . . . . . . . . . . . . . . 92

9.1 Four Study Groups Involved in the Study . . . . . . . . . . . . . . . . . 99
9.2 Order of the Strategic Plans with the Associated Programming Tasks . 100
9.3 Strategies Used by Groups E1 and E2 to Complete the Learning Activity106
9.4 Overall Grades by Groups E1 and E2 . . . . . . . . . . . . . . . . . . . . 110
9.5 Volunteers’ Self-Assessment of Prior Programming Experience . . . . . 111
9.6 Identified SRL and Emotional Regulation Strategies . . . . . . . . . . . 112
9.7 Task Analysis for Groups V1 and V2 for Assignment A6.1 . . . . . . . . 113
9.9 Narrative Interview Coded Framework . . . . . . . . . . . . . . . . . . 120

10.1 Description of Study Groups . . . . . . . . . . . . . . . . . . . . . . . . 124
10.2 Means and Statistical Analysis Results for Pre-Post Tests . . . . . . . . 129
10.3 Final Course Grade Comparisons for Study Groups . . . . . . . . . . . 134

11.1 Summary of Research Questions and Hypotheses . . . . . . . . . . . . 140
11.2 List of Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . 142





xiii

University of Adelaide

Abstract

Codification Pedagogy for Introductory Procedural Programming Courses

by Rita Alicia GARCIA

Generally, students in introductory programming courses (CS1) do not devote
time to designing solutions to their programming problems, even though it is a nec-
essary part of the problem-solving process. Without the design process to reflect on
a problem, students might haphazardly solve them, but with incomplete solutions.
Students might skip the design process because they have limited design knowledge
and lack the skills to help them identify goals and create a plan for solving a prob-
lem. Students might also ignore problem-solving information provided to them and
instead rely on past problem-solving approaches, which keeps them from learning
both new problem-solving strategies and new programming concepts.

This research explores a pedagogical approach for procedural programming as-
signments facilitated within an online learning environment that encourages CS1
students to incorporate the design process into their problem-solving process. This
thesis refers to the pedagogical approach as the Codification Pedagogy, a teaching ap-
proach for ordering rules corresponding to a plan. The pedagogy is designed to
help students identify goals and create plans for solving problems. The pedagogy is
comprised of three learning activities:

1. A scaffolded assignment presentation designed to help students better under-
stand the programming problem. The assignment presentation helps students
identify the problem’s goals and provides additional support for struggling
students. This research produces a framework that educators can use to de-
velop scaffolded presentations for CS1 programming assignments.

2. A questioning activity that encourages students to engage their internal knowl-
edge to solve the current problem. This research produces a questioning frame-
work. The framework contains instructional questions mapped to the Bloom’s
Taxonomy cognitive levels. The framework can help educators construct learn-
ing activities through questioning to help elevate students’ cognitive level ap-
propriate for their learning.

3. A Parsons problems activity designed to help students organise an implemen-
tation plan. Parsons problems is a learning tool that has students arrange code
fragments to form a working program. The research demonstrates that Parsons
problems can be used to help students organise plans to solve programming
problems.

http://www.adelaide.edu.au


xiv

The Codification Pedagogy is integrated into CS1 programming assignments.
Studies were conducted for three semesters in an introductory programming course
offered at the University of Adelaide. The research comprises quantitative stud-
ies using interactive analytics and variable-oriented analysis, along with qualitative
studies using mixed methods that include pre-post tests, think-alouds, and inter-
view sessions.

The pedagogy is designed to help students better understand the programming
problem and support their learning of problem-solving strategies for practical pro-
gramming assignments. The results from this thesis demonstrates the pedagogy
can support students during the design process. The studies presented in this the-
sis shows the pedagogy supporting students’ use of problem-solving strategies that
help them to identify goals for the problems and enable them to validate their pro-
gramming solutions. The results also show the learning activities encouraging stu-
dents to analyse the assignment, promoting self-reflection that reduce misconcep-
tions. Through its design-based support, the pedagogy can support students to suc-
cessfully complete programming assignments.



xv

Declaration of Authorship
I certify that this work contains no material which has been accepted for the

award of any other degree or diploma in my name, in any university or other ter-
tiary institution and, to the best of my knowledge and belief, contains no material
previously published or written by another person, except where due reference has
been made in the text. In addition, I certify that no part of this work will, in the
future, be used in a submission in my name, for any other degree or diploma in any
university or other tertiary institution without the prior approval of the University
of Adelaide and where applicable, any partner institution responsible for the joint-
award of this degree.

I acknowledge that copyright of published works contained within this thesis
resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on
the web, via the University’s digital research repository, the Library Search and also
through web search engines, unless permission has been granted by the University
to restrict access for a period of time.

I acknowledge the support I have received for my research through the provision
of an Australian Government Research Training Program Scholarship.

Rita Alicia Garcia

November 2019





xvii

Acknowledgements
I want to thank my partner Tony Horstman for being so supportive and patient
throughout this journey. Thank you to my wordsmith Jon Hertzig who tirelessly
answered my grammar questions. I learned so much from his talents. Thanks to all
my friends and family, especially to Ron Howie and Melinda Jennings, who listened
to my ramblings about the research.

Thank you to Alicia Zakarevicius and Wanru Gao who administered the course
with my research. I am grateful for Alicia setting up the online courses and finding
inconsistencies in my assignment designs. Working with Alicia really elevated the
quality of the research. Thank you to the team who developed the js-parsons library:
Ville Karavirta, Petri Ihantola, and Juha Helminen. The comprehensive documenta-
tion and interface made it very easy to apply the Parsons problems in a novel way
needed for this research. Thanks to the University of Adelaide Computer Science
Education Research (CSER) group for the discussions and information sharing. The
conversations have been an inspiration.

Thank you to my manager at Method Studios, Vincent Dedun, and my co-workers,
especially Eva Lu and Rebecca Bever, who were supportive through my academic
journey and giving me the opportunity in continuing to contribute to the film indus-
try during this journey.

Thank you to my co-advisor, Rebecca Vivian, whose guidance and expertise in
data analysis really helped my skills in this area. Lastly, thank you to my supervi-
sor Katrina Falkner. Her experience and guidance has made me a better educator
and researcher. I will carry the skills and wisdom from both advisors in my future
endeavors.





1

Chapter 1

Introduction

Designing a solution to a programming problem is a necessary part of the CS problem-
solving process (Hoadley and Cox, 2009) However, many students in introductory
programming courses (CS1) do not always devote time to designing solutions to
their programming problems (Pintrich, Berger, and Stemmer, 1987; Rist, 1995). The
design process is a heuristic composed of task analysis, planning, and evaluating,
which requires practice and repetition from the learner to acquire (Ginat, 2008). Stu-
dents new to CS have not yet acquired skills used in the design process that can
help them take a systematic and methodical approach to successfully solve prob-
lems (Bishop-Clark, 1995). Instead, novices engage in haphazard approaches to the
software development process, choosing to skip the design process and not con-
sider their design decisions when making changes to their programming problems
(Chmiel and Loui, 2003).

With limited or fragile knowledge about the design process, novices have been
observed using Poor Learning Tendencies (PLTs) (Baird and Northfield, 1995) when
previous problem-solving approaches fail, leading to frustration (Kinnunen and Si-
mon, 2010). Poor Learning Tendencies are behaviours that promote impulsive ac-
tions that lack reflective thinking and instead encourage students to focus on sur-
face aspects of the problem, such as using lexical analysis instead of trying to un-
derstand the problem at the semantic level (Adelson, 1984). Problem solving using
Poor Learning Tendencies can result in misunderstandings when reading the prob-
lem description (Collins and Stevens, 1983).

To help students avoid using Poor Learning Tendencies, and instead build their
design knowledge and skills, educators can model problem-solving strategies that
can help them become expert programmers (Mead et al., 2006) and progress further
in their CS studies (Robins, Rountree, and Rountree, 2003). Teaching design-based
problem-solving approaches can help students identify goals and create plans for
solving problems, reducing the surface-level approaches to their learning (Joughin,
2010) and encouraging a deeper understanding of the programming problem (Spo-
her and Soloway, 1989). Without a deeper understanding of the problem, students
might form flawed mental representations of the solution, making it difficult for
them to develop correct learning concepts (diSessa, 2014). Teaching design-based
problem-solving approaches to students can help them integrate the design process
into their software development processes. When students integrate the design pro-
cess into their software development process, they take a more systematic approach
to solving problems and consider their changes prior to implementation (Bishop-
Clark, 1995). Taking a more considered approach to problem solving and reflecting
on design decisions are traits found in students who perform well in CS1 (Bergin,
Reilly, and Traynor, 2005).

This thesis focuses on helping students adopt design-based problem-solving ap-
proaches early in their CS1 studies, to discourage Poor Learning Tendencies. This



2 Chapter 1. Introduction

thesis has students model experts’ problem solving through a pedagogical approach.
The pedagogical approach supports CS1 students practising problem-solving ap-
proaches pertaining to planning and organising a programming solution, and is em-
bedded within programming assignments. The pedagogy is designed to help stu-
dents better understand the problem and support their learning of problem-solving
strategies for practical procedural programming assignments, an activity with mini-
mal supervision that focuses on the procedural programming paradigm. In this the-
sis, the term understanding is defined as ‘the ability to follow instructions successfully
and readily’ (Marcus, Cooper, and Sweller, 1996). The pedagogy is administered in
a CS1 course at the University of Adelaide, where the cohort size is between 100-250
students and supported by one lecturer and two tutors.

This thesis presents the development and evaluation of the Codification Pedagogy,
a pedagogical approach designed to help students identify goals and organise into
a corresponding plan. Codification is a legal term for arranging laws according to a
plan (Villiger, 1985) and is applicable to Software Development. Codification can
describe the processes that occurs during the design phase, where a person orders
program requirements into an organised plan prior to implementing a solution. This
thesis explores the extent to which the pedagogy can help improve CS1 students’
program comprehension, critical thinking, and design knowledge skills. The ped-
agogy is grounded in Cognitive Apprenticeship, a model of instruction designed to
bring reasoning and strategies to the forefront during the problem-solving process
(Collins, Brown, and Holum, 1991). Cognitive Apprenticeship is based on the prac-
tice of apprenticeship that demonstrates to the learner how to perform the task and
assists them through the process. The Codification Pedagogy models experts’ be-
haviour, to promote higher learning gains and encourage the adoption of this be-
havior.

This thesis investigates methods used by learners during the problem-solving
process. Methods include Self-Regulated Learning (SRL) strategies, strategies that can
help students ‘plan, set goals, organise, self-monitor, and self-evaluate’ (Zimmer-
man, 1989). The pedagogical approach is designed to guide the students through
the problem-solving process (Mayer, Richard, 1983), to help them form effective
problem-solving approaches, through the use of SRL strategies. The pedagogy en-
courages the learning of problem-solving approaches by providing students with
different activities that promote the use of SRL (Zimmerman, 1989) and design-
based strategies (Détienne, 2002), strategies used during the problem-solving pro-
cess for planning and setting goals (Greeno and Simon, 1988).

One part of the pedagogy is the assignment presentation, designed to help im-
prove students’ understanding of the instructional materials. The understanding of
the problem description is part of the concept known as Program Comprehension, the
process of forming a mental representation of a solution by assimilating the text-
based representation of the problem to associate with their current knowledgebase
using cognitive strategies (Schulte et al., 2010). This thesis investigates the presenta-
tion of the programming problem to help students better understand the problem.
The assignment presentations designed in this thesis are contained in a learning en-
vironment that promotes better understanding of the problems, to promote success
in identifying programming tasks. As the student progresses in their learning and
builds experience, the support within the learning environment is slowly removed
to encourage the independent practice of problem-solving skills (Ghefaili, 2003).

Based on a review of research literature in critical thinking, this pedagogy sup-
ports the use of critical thinking skills through a questioning activity that contains
questions related to the problem’s tasks (Roll et al., 2007). Critical thinking is thinking



1.1. Areas of Research 3

that attempts to form correct judgement about the problem (Le and Huse, 2016). In-
teracting with the learning activity can encourage a deeper analysis of the problem,
which can reduce students’ misconceptions about the problem (Weusijana, Reisbeck,
and Jr, 2004).

The pedagogy is also designed to help build students’ design knowledge, knowl-
edge that helps students plan and set goals (Greeno and Simon, 1988). To support
students’ design knowledge, pedagogy integrates Parsons problems (Parsons and
Haden, 2006) to demonstrate how to construct an organised plan. Parsons problems
is a learning tool that has students arranging code fragments to form a working
problem. Rather than presenting code fragments, the Parsons problems used in this
thesis presents design plans for students to organise.

1.1 Areas of Research

This section describes the areas of research explored by this thesis. These areas are
program comprehension (Section 1.1.1), critical thinking skills (Section 1.1.2), and
design knowledge (Section 1.1.3).

1.1.1 Program Comprehension

This thesis investigates an approach for improving students’ program comprehension,
the process of forming a better mental representation of the solution when assimilat-
ing the problem description with their internal knowledge (Schulte et al., 2010). The
pedagogical approach attempts to improve students’ program comprehension when
solving procedural programming problems. The study focusing on program com-
prehension evaluates how the presentation for the programming assignments can
help students better understand the problem. Through a better understanding of the
problem description, students might be able to successfully develop and complete
the assignment. When assignments are presented with ill-defined goals, more men-
tal effort is required from the student to understand the problem (Reitman, 1965).
The thesis examines approaches to minimising ill-defined goals, by identifying de-
sign treatments that can help construct well-formed programming assignments that
positively impact students’ understanding (Schulte et al., 2010). The well-formed
assignments can help students complete the programming problem (Feldman and
Zelenski, 1996). This thesis looks at how constructing well-formed assignments with
these treatments can help improve students’ program comprehension.

1.1.2 Critical Thinking Skills

This thesis integrates critical thinking skills into the pedagogical approach. Critical
thinking skills promote ‘thinking explicitly aimed at well-formed judgment, utilising
appropriate evaluative standards in an attempt to determine the true worth, merit,
or value of something’ (Paul and Elder, 2007) and engage students’ internal knowl-
edge to have them reflect on the problem prior to solving a problem (Bloom, 1956).
This thesis explores the use of a questioning activity as an intervention for CS1 pro-
cedural programming assignments. The purpose of the questioning activity is to en-
courage critical thinking skills. Questioning is a learning activity that requires think-
ing processes to answer the question (Bloom, 1956). Effective questions can promote
good learning behaviours that encourage self-reflection during the design process
and support the students’ comprehension of programming assignments, helping
them deconstruct problems and develop plans (Boyer et al., 2010).



4 Chapter 1. Introduction

The questioning activity is designed to encourage self reflection and the use of
Self-Regulated Learning (SRL) strategies (Zimmerman, 1989), such as seeking out
information needed to solve the problem. To construct the questioning activity, this
study uses instructional questions previously applied in a CS learning environment
(Boyer et al., 2010). These 23 instructional question types form a framework that
identifies the appropriate question for the students’ learning abilities. The frame-
work was formed by mapping the instructional questions to cognitive levels within
Bloom’s Taxonomy, a classification of critical thinking skills required for cognition
(Bloom, 1956).

1.1.3 Design Knowledge

Novice programmers either do not devote enough time (Pintrich, Berger, and Stem-
mer, 1987) or completely neglect (Rist, 1995) the design process. Novices might avoid
the design process because of their fragile design knowledge, which makes it diffi-
cult for them to identify plans and goals (Robins, Rountree, and Rountree, 2003).
Research (Prather et al., 2019) has shown that when students are provided with a
design-based intervention, they have a higher degree of completing programming
assignments. Prior research (Détienne, 2002) has shown CS1 students misapplying
design strategies, components in the cognitive activity used during the problem-
solving process for planning and setting goals (Greeno and Simon, 1988). Design-
based interventions can help students apply correctly to help them build their design
knowledge.

This thesis looks at helping students develop a decomposition problem-solving
strategy (Gick, 1986) that is invoked by the problem schema. The decomposition
approach has the student deconstruct requirements from problem’s specifications
and map them into programming language constructs. The pedagogical approach
developed in this thesis adopts the problem-decomposition problem-solving strat-
egy to demonstrate to students how to solve programming problems. When using
the problem decomposition problem-solving strategy, the software implementation
order is determined by the dependencies between goals and tasks.

This thesis supports novices during the design process by helping them analyse
and decompose problems. This thesis supports the learning of design strategies by
using Parsons problems as an intervention within procedural programming assign-
ments.

1.2 Research Questions

This thesis focuses on helping CS1 students develop design-based problem-solving
skills through a pedagogical approach. The pedagogical approach demonstrates
how to apply these skills in practical programming assignment by modeling problem-
solving approaches. The pedagogy is comprised of three learning activities that
work together to investigate problem-solving skills used during the design process.
These learning activities are a scaffold assignment presentation designed to improve
students’ program comprehension, a questioning activity that promotes the use of
critical thinking skills, and a Parsons problem used to support the learning of design
knowledge.

Five research questions have been posed to evaluate the pedagogical goals. These
five questions are divided into the three areas of research shown in Table 1.1. The re-
search questions are addressed in Chapters 5 through 10. Table 1.1 also provides the



1.2. Research Questions 5

Research Questions Hypothesis Data Source
Program Comprehension
RQ1.1: How does
scaffolding the assignment
presentation influence the
student’s ability to identify
goals and subgoals necessary
to complete a procedural
programming assignment?

RQ1.2: What presentation
treatments within the
programming assignments
support students in their
understanding of the
problem?

H1.1: Scaffolding the
assignment presentation will
guide students in identifying
the problem’s goals and
subgoals, providing them
support in identifying a
starting point for developing
a programming solution.
H1.2: Itemising goals and
subgoals as a treatment in
the assignment presentation
will help students identify
and apply the goals and
subgoals during the
programming process.

• Interviews
• Questionnaires
• Surveys
• Overall

programming
solutions
grades
• Generated

coded
solutions

Critical Thinking Skills
RQ2.1: Does encouraging
questions in an online CS1
learning environment
promote the expected
cognitive levels from
students when answering
the questions?

H2.1: Providing a
questioning activity as an
intervention to a
programming assignment
will help students internally
reflect on and apply their
knowledge when solving the
current problem.

• Answers to
questions
• Survey

responses

Design Knowledge
RQ3.1: How do students use
Parsons problems during the
design process for solving
CS1 procedural
programming assignments?

RQ3.2: What Self-Regulated
Learning (SRL) strategies are
supported by Parsons
problems used as a
design-based intervention
for programming
assignments.

H3.1: Parsons problems will
promote internal reflection,
enabling the student to form
a mental model on how the
problem’s plans interact
with each other prior to
developing a programming
solution.
H3.2: The Parsons problem
will promote organisation
and planning SRL strategies
that are necessary to solve
the programming problem.

• Parsons
problem
solutions
• Audio-visual

material
• Interview
• Metacognitive

Awareness
Inventory
Instrument
• Questionnaire

TABLE 1.1. Overview of Thesis Questions, Hypotheses, and Data
Sources

hypothesis for each question and a brief description of the data collected to help an-
swer the questions. The table shows a blend of quantitative and qualitative studies
used to collect the data.

The research was conducted over three semesters using different quantitative
approaches, such as interactive analytics (Turkay et al., 2017) and variable-oriented
analysis (Bergman and Trost, 2006). Metacognitive Awareness Inventory (MAI) (Schraw
and Dennison, 1994) was another quantitative instrument used in the study to mea-
sure skill gains through the use of the pedagogy. Metacognitive Awareness Inven-
tory has been shown in the field of Education to reliably measure skill growth (Akin



6 Chapter 1. Introduction

and Abaci, 2007).
The research incorporated qualitative studies with volunteers from the introduc-

tory programming course offered at the University of Adelaide. The qualitative
studies used a mixed-methods approach of pre-tests, surveys, questionnaires, think-
alouds, and interview sessions, and were conducted in a lab environment, where
students solved worked examples, completed practical programming assignments,
and received assistance from tutors.

1.3 Summary of Contributions

This section provides a summary of contributions made by this thesis. Table 1.2 pro-
vides an overview of these contributions to the field of Computer Science Education.
The table presents the contributions in three areas of research: program comprehen-
sion, critical thinking skills, and design knowledge.

The first contribution is towards improving program comprehension through the
assignment design for procedural programming assignments. This thesis looks at
presentation treatments that can help students better understand the programming
problem and develop mental representations of the solution. The outcome from this
study is the creation of a CS1 assignment design framework designed to help edu-
cators develop assignments that promote better understanding of the problem and
encourage students to use problem-solving skills appropriate for their learning abili-
ties. Another contribution in the area of program comprehension is the identification

Contribution Description
Program
Comprehension

• Provides a CS1 assignment design presentation frame-
work to assist in the scaffolding of assignment descrip-
tions.
• Finds that presenting goals in list format helps students

better identify the problem requirements and evaluate
solving the problem at higher cognitive levels.

Critical Thinking
Skills

• A framework to help educators construct questioning ac-
tivities that will help students practise critical thinking
skills appropriate to their cognitive levels.
• Demonstrates that the combination of lower and higher-

order questions in a learning activity can help students
generate answers that are appropriate to their cognitive
level.

Design Knowledge • Identifies three problem-solving approaches students
take when organising plans in a design strategy activ-
ity. These approaches are: experimenting with the plans
order, ordering plans from the top down, and addressing
easier plans first.
• Shows that the presence of a design-based Parsons prob-

lem as an intervention to a programming assignment can
support students’ use of SRL strategies to solve program-
ming problems. This study finds that the Parsons prob-
lems support the use of design and planning SRL strate-
gies.

TABLE 1.2. List of Thesis Contributions



1.4. Thesis Overview 7

of design treatments within the assignment presentation to help students better un-
derstand the problem. The thesis identifies design treatments that help students use
deeper reasoning and Self-Regulated Learning strategies to better understand the
problem and validate their work upon coding completion.

The third contribution relates to critical thinking skills through a questioning in-
tervention. A questioning framework was developed to identify the appropriate
question to ask students based on their abilities for the desired task. The frame-
work was formed by classifying instructional question types to the original Bloom’s
Taxonomy (Bloom, 1956) cognitive levels. The resulting framework can help educa-
tors build questioning activities that can also help their students improve skills to
analyse programming problems.

Another contribution relating to critical thinking skills is in identifying the ques-
tion types that encourage CS1 students to generate answers appropriate to their cur-
rent cognitive levels. The thesis findings suggest a blend of low and high-order
thinking questions help students to better understand the problem. When combin-
ing low and high-order questions, students analyse the problem deeper, and help
reduce misconceptions related the problem (Weusijana, Reisbeck, and Jr, 2004).

The fifth contribution relates to using Parsons problems learning tool as a design-
based intervention. The thesis shows students using Parsons problems to engage
Self-Regulated Learning (SRL) strategies, active strategies that students take when
taking control over their learning (Zimmerman, 1989). The study also identifies dif-
ferent behaviours adopted by the students when using Parsons problems during
the design process, which can help identify struggling students. By identifying the
struggling students during the design process, corrective feedback could be pro-
vided to help adjust their understanding of the problem, to help them successfully
complete the assignment.

1.4 Thesis Overview

The remainder of this thesis evaluates the Codification Pedagogy. The discussion of
the pedagogy is divided into three learning activities for deeper analysis: program
comprehension, critical thinking skills, and design knowledge. Chapter 2 presents
the motivation and background for developing the pedagogy, along with providing
a description of each of the pedagogy’s learning activities. Chapter 3 presents the
related work for this thesis. Chapter 4 outlines each of the studies performed in this
thesis.

Chapters 5, 6, and 7 present the studies performed on the pedagogy’s learning
activity focusing on improving students’ program comprehension through the as-
signment presentation. Chapter 8 discusses the support of critical thinking skills in
the pedagogy through questioning activities. Chapter 9 presents a design strategy
activity as an intervention for programming assignments to support design knowl-
edge. Chapter 10 brings together the three learning activities to evaluate the entire
pedagogy.

Chapter 11 is the final chapter, presenting the pedagogy’s contribution to the
field of Computer Science Education and future research opportunities. The the-
sis concludes with an Appendix containing the practical programming assignments
used in the research. Appendix A contains the assignments that include the Codifi-
cation Pedagogy, and Appendix B presents the instruments used in the quantitative
and qualitative studies for the data collection.





9

Chapter 2

Pedagogy Design and Background

This chapter presents the motivation, background, and design for the Codification
Pedagogy. The chapter is organised as follows. Section 2.1 presents the overview
for the Codification Pedagogy, which introduces the pedagogical goals. Section 2.2
presents the background for the pedagogical goals, and introduces the learning skills
and strategies used in the pedagogy. Sections 2.3 and 2.4 present the learning skills
and strategies that support the pedagogical goals. Section 2.5 presents the design of
the pedagogy. Section 2.6 presents the summary.

2.1 Overview

Introductory programming (CS1) students sometimes avoid the software design
process because they have limited design knowledge (Robins, Rountree, and Roun-
tree, 2003). With limited design knowledge to perform inquiry skills, students might
not fully comprehend the problem (Roll et al., 2007), resulting in the development
of misconceptions or difficulty in understanding the problem (Qian and Lehman,
2017). When CS1 students have difficulty understanding the problem, they might
adopt Poor Learning Tendencies (PLTs) to solve the problem (Carbone et al., 2001;
Ricken, 2005).

Poor Learning Tendencies (PLTs) are habits used by students to compensate for
their lack of understanding (Baird and Northfield, 1995). Poor Learning Tenden-
cies were defined by the Project to Enhance Effective Learning (PEEL), originating
at Bellarine Secondary College in 1993. The PEEL project identified habits that neg-
atively impact students’ approaches to learning, and provided teaching techniques
to practitioners that promote Good Learning Behaviours (GLBs). Good Learning Be-
haviours promote active learning (Baird and Northfield, 1995), which can improve
long-term retention and comprehension of the instructional material by students
(Briggs, 2005). Examples include:

• Impulsive and superficial attention: The student skims over instructional materi-
als, causing them to overlook the core concepts. As a result, the student focuses
on other aspects of the problem, leading to incorrect or incompleted program-
ming solutions (Carbone et al., 2000; Carbone et al., 2001).

• Lack of reflective thinking: The student does not engage prior experiences to
solve the problem, and views the problem in isolation without drawing on
past solved problems for guidance (Carbone et al., 2000; Carbone et al., 2001).

• Inappropriate application: The student applies a concept without considering
whether it is the best approach for the situation (Baird and Northfield, 1995).



10 Chapter 2. Pedagogy Design and Background

This thesis is motivated to minimise students’ adoption of Poor Learning Ten-
dencies and help them adopt Good Learning Behaviours. Within the context of CS1
students solving programming problems, Good Learning Behaviours identified by
the PEEL project are:

• Checking comprehension of instructional materials: Related to the ‘Self-evaluation’
(Zimmerman, 1989) SRL strategy, this behaviour encourages the student to
review the instructional materials to validate their understanding (Baird and
Northfield, 1995).

• Organising a strategy before starting the learning activity: Related to the ‘Goal-
setting and planning’ (Zimmerman, 1989) SRL strategy, this behaviour demon-
strates the student is thinking of ways to solve a problem prior to implement-
ing the solution (Baird and Northfield, 1995).

• Seeking additional information: Related to the ‘Seeking information’ (Zimmer-
man, 1989) SRL strategy, this behaviour shows the student pursuing additional
information if they feel they do not understand the problem (Baird and North-
field, 1995).

When examining Good Learning Behaviours within the context of Computer Sci-
ence, students take an active role in their learning to better understand and plan
programming problems. This thesis seeks to encourage students in taking an active
role in their learning by providing them support to improve their program compre-
hension and promote the use of Self-Regulated Learning (SRL) strategies. Improved
program comprehension and use of SRL strategies are the pedagogical goals for this
thesis. Section 2.2 introduces the background literature for the pedagogical goals, ex-
plaining the program comprehension process and usage of Self-Regulated Learning
(SRL) strategies.

To achieve these pedagogical goals, the Codification Pedagogy incorporates learn-
ing skills and strategies designed to encourage critical thinking skills and promote
the use of design strategies. Critical thinking skills are the learning skills that en-
courage students to use Good Learning Behaviours by checking their comprehension
on instructional materials, and seeking additional information to better understand the
problem. Critical thinking skills are presented in Section 2.3. Design strategies are
the learning strategies that encourage students to use the Good Learning Behaviours
for organising a strategy before starting the learning activity. Design strategies are de-
scribed in Section 2.4.

This thesis considers the pedagogical design while developing the Codification
Pedagogy. Pedagogical design includes the structure of the pedagogy and learning
objectives, to guide CS1 students through the software design process. The presen-
tation of the pedagogy gives students the opportunity to replicate the design process
after experts’ behaviours. The pedagogy is designed to model an expert’s behaviour
by applying a problem-solving process model (Gick, 1986). The overall design of the
pedagogy, discussing the problem-solving process model, is discussed in Section 2.5.
The model of the problem-solving process is contained within a scaffolded learning
environment, to provide students the opportunity to practise the expert’s problem-
solving process. Scaffolding is an instructional strategy that provides students a
path to successfully complete a task without giving the learner the answer (Wood,
Bruner, and Gail, 1976), and is a core teaching method for the the Cognitive Ap-
prenticeship teaching method (Collins, Brown, and Holum, 1991). The Codification
Pedagogy adopts Cognitive Apprenticeship for the core teaching method. Cognitive
Apprenticeship is presented in Section 2.5.1.



2.2. Pedagogical Goals 11

2.2 Pedagogical Goals

This section presents the background literature for the pedagogical goals. The ped-
agogical goals are designed to help students improve their program comprehen-
sion, and support their use of Self-Regulated Learning (SRL) strategies. Section 2.2.1
presents the background literature on program comprehension, while Section 2.2.2
presents the background literature on Self-Regulated Learning (SRL) strategies.

2.2.1 Program Comprehension

This section provides the background literature for the first pedagogical goal, pro-
gram comprehension. Program Comprehension occurs when a learner uses cognitive
strategies to form a mental representation of a solution through the assimilation of
the text-based representation and their current knowledgebase (Schulte et al., 2010).
Program comprehension is an action performed by the learner with the purpose
to better understand the problem (Détienne, 2002). Through the program compre-
hension process, the learner can form a better mental representation of what they
are trying to solve, which makes program comprehension an important part of the
problem-solving process (Sonnentag, 1998). Figure 2.1 provides a visual represen-
tation of program comprehension defined by Schulte et al. (Schulte et al., 2010).
Schulte et al. developed this representation through the synthesis of previous pro-
gram comprehension models. Figure 2.1 identifies common components within es-
tablished program comprehension models.

The generalised program comprehension model, shown in Figure 2.1, displays
two key components: World and Programmer. The World component is the external
representation of the problem. In the World component are external representations
that contributes to the learners’ understanding of the problem, such as the instruc-
tional material that describes the programming problem. The second component
in program comprehension model is the Programmer component, representing ele-
ments within the learner used in the program comprehension process. The Program-
mer component contains subcomponents. One subcomponent is the cognitive struc-
ture, which is the combination of the learner’s internal knowledgebase and their
mental model of the problem. The other subcomponent is the assimilation process.
In the assimilation process, the learner forms the mental model, or cognitive schema,
for solving the problem by applying their internal knowledgebase to the external
representations.

The cognitive schema is activated by the learner when they determine how to
solve the problem. Some cognitive schemas novices take are trial and error (Chi,
Glaser, and Rees, 1982) and means-ends analysis (Sweller and Levine, 1982). Means-
ends analysis is a goal-based strategy that is performed in the cognitive space by the
learner, where they focus on the goal state based on their current problem state.
‘Means-ends analysis does not foster the learning of problem states and associated
moved that will result in a new state’ (Gick, 1986, p. 109). To shift the learner from
using goal-based strategies, such as means-ends analysis, worked examples can be
incorporated into the instructional materials (Sweller, 1988) to help them develop
their cognitive schema formation. Worked examples provide the learner with a
problem that includes the problem description and guidance on how to solve the
problem (Morrison, Margulieux, and Guzdial, 2015). The worked examples can help
the learner identify design (Kuittinen and Sajaniemi, 2004) and algorithmic (Muller,
2005) patterns, which can help develop their cognitive schema formation.



12 Chapter 2. Pedagogy Design and Background

FIGURE 2.1. Program Comprehension Model (Schulte et al., 2010, p. 66)

The program comprehension process is unique to an individual because it in-
volves elements contained within the individual, such as the learner’s internal knowl-
edgebase and the method in which they form a cognitive schema. The program
comprehension process also evolves as the learner gains more internal knowledge
that can be applied in the process. The program comprehension process differs
between novices and experts due to how CS1 students draw from their internal
knowledge to help them understand the problem (Schulte et al., 2010). With limited
internal knowledge, a novice leans more towards discourse comprehension. Dis-
course comprehension forms a mental model that relies on word identification and
sentence parsing in the problem description. Using discourse comprehension can
sometimes result in flawed mental models, which demonstrates the learner does not
fully understand the problem (Perrig and Kintsch, 1985). A flawed mental model
can cause misconceptions about the problem, where the learner’s belief about the
solution does not produce a viable theory for the solution (Smith III, diSessa, and
Roschelle, 1993). Flawed mental models might form due to learner’s internal knowl-
edge, where the internal knowledge is a component within the program comprehen-
sion process. The learner’s fragile internal knowledge used in the program compre-
hension process might reflect fragile understanding of CS concepts, which could
influence their ability to form correct concepts (diSessa, 2014).

Previous research (Rajlich and Wilde, 2002) has identified the different program
comprehension processes made by novices and experts. When novices form a men-
tal model, they adopt a bottom-up approach (Pillay, 2003; Schulte et al., 2010). The
bottom-up approach ‘involves putting the system together to formulate sub-systems:
from lowest details to the high abstract level’ (Popovic and Kraal, 2010). The bottom-
up approach involves the novice mapping their knowledge about the problem to
microstructures within the programming solution before having an overall under-
standing of how these microstructures work together to form a solution. Experts use



2.2. Pedagogical Goals 13

a top-down approach (Schulte et al., 2010; Gerdes, Juering, and Heeren, 2012), incor-
porating higher-level abstractions when grouping code statements. Experts begin
with simpler elements across all the requirements, progressing to complicated as-
pects of the requirements until the solution is completed. Experts have been shown
to take time, ‘to evaluate the task and the data prior to engaging in the solution pro-
cess’ (Schoenfeld, 1992). How a novice evolves from the bottom-up model to inte-
grating a top-down approach involves the learner building their internal knowledge
through experience and the learning process (Détienne, 2002).

As novices acquire more knowledge and skills, they advance through the lev-
els of programming competence. Identifying the learner’s level of programming
competence can help educators better understand the learner’s behaviours and abil-
ities. The Dreyfus Model (Dreyfus and Dreyfus, 1986) identifies the progression of
programming competence, which includes the learner’s behaviours. The Dreyfus
Model is a taxonomy containing five developmental stages: Novice, Advanced Be-
ginner, Competent, Proficient, and Expert. A Novice elevates to an Advanced Beginner
when they begin to apply prior experiences to the problem-solving process. The be-
haviours provided by the Dreyfus Model relate to Good Learner Behaviours (Baird
and Northfield, 1995) previously introduced in Section 2.1. For example, a Compe-
tent programmer uses skills that help them develop plans designed to achieve their
programming goals, and they become aware of their actions to reach these goals,
which relates to the Good Learning Behaviour organising a strategy before starting the
learning activity. The Dreyfus Model can be helpful in identifying Good Learner Be-
haviours for learners at a certain level of competence, ensuring they are using these
behaviours for long-term retention and comprehension of the instructional materials
(Briggs, 2005).

This section presented the process novices engage when understanding a prob-
lem, comparing the process to an expert’s approach. These comparisons can help
guide novices towards using the expert’s problem-solving approaches. This thesis
focuses on the helping improve students’ program comprehension by focusing on
the external representation of the problem. Another method previously examined to
improve students’ program comprehension is another pedagogy, comprehension-first
pedagogy (Nelson, 2017), that focuses on teaching programming semantics before
teaching novices how to code. This pedagogy has been applied to program tracing
in CS1 (Nelson, Xie, and Ko, 2017), where the program tracing is performed during
the software implementation and debugging phases.

This section also identified novices’ behaviours when elevating their skills to-
wards becoming expert programmers. Identifying these behaviours can help with
assessing their progress using learning activities, and can help develop instructional
materials appropriate for their programming competence.

2.2.2 Self-Regulated Learning Strategies

This section provides the background literature for the second pedagogical goal, the
use of Self-Regulated Learning (SRL) strategies. SRL strategies help students ’plan,
set goals, organise, self-monitor, and self-evaluate’, which can improve the learn-
ing process (Zimmerman, 1989). The development of SRL strategies by students
is a complex issue, associated with the perceived purpose of engagement with the
activity, their self-perception of their ability, and the situated context of the activ-
ity—these three factors impact upon the self-regulation strategies that the student
then considers relevant for application (Paris and Turner, 1994).



14 Chapter 2. Pedagogy Design and Background

The SRL strategies were developed and categorised by Barry Zimmerman and
Manuel Martinez-Pons through the use of interviews with students, discussing strate-
gies they use when studying (Zimmerman and Pons, 1986). Zimmerman and Martinez-
Pons devised a 14 category taxonomy for SRL strategies, which has since been used
as a framework for researchers to investigate SRL strategies. In Computer Science
Education, SRL continues to be researched due to proven gains in students’ un-
derstanding of learning materials when strategies are applied (Bergin, Reilly, and
Traynor, 2005), resulting in higher grades and motivation (Kizilcec, Pérez-Sanagustín,
and Maldonado, 2017), along with higher student confidence to obtain their goals
from constructed plans (Alexiou and Paraskeva, 2010). Students performing well
in programming tasks have been shown to frequently use SRL strategies, showing
an increase in understanding of the learning materials (Bergin, Reilly, and Traynor,
2005). When students are encouraged to use SRL strategies, there is an increase in
their motivation, resulting in higher grades (Kizilcec, Pérez-Sanagustín, and Mal-
donado, 2017).

From the 14 identified SRL strategies, Zimmerman (2000) went on to develop a
model that describes a better approach to SRL. Zimmerman’s triadic model (Zim-
merman, 2000) is comprised of three stages. The first stage in the model, forethought,
gives the student the opportunity to analyse the problem’s goals, identify tasks, and
make a plan to carry out these tasks. The second phase, performance control, is when
the student will perform the task and manage how they are processing in accom-
plishing it. During the performance control phase, the student engages other skills
and strategies to stay on task and uses these skills and strategies to remain moti-
vated to accomplish all tasks. In the final phase, self-reflection, the student will eval-
uate their work on the tasks, judging whether they have successfully accomplished
them. This phase involves metacognition, the student’s ability to reflect and under-
stand the problem, which has them taking control of their learning (Schraw and
Dennison, 1994). With this last, self-reflection phase, as part of the problem-solving
process the student will likely spend more time in the design process (Bishop-Clark,
1995).

The triadic model brings in the essential SRL and places achievement goals as
one of four processes that students utilise in the initial, forethought phase of self-
regulation. For example, a student who adopts a mastery-approach goal would view
the purpose of activities as focused on developing learning and understanding. In
this example, the student would then proceed to employ strategies positively associ-
ated with this purpose (Pintrich, 2000). Nicholls (1992) expands upon this to identify
that achievement goals identify not only what it means to succeed but also how this
success will be achieved. In this view, a student’s adoption of SRL strategies is not
simply associated with those that are available to them, that is, those that they have
developed skill in, but is associated with those that they consider to be relevant to
the situation and purpose.

This section presented a type of learning strategy that has been shown (Bergin,
Reilly, and Traynor, 2005) to help students better understand the instructional mate-
rials. Promoting the use of SRL skills can help students elevate their skill set towards
becoming expert programmers (Buckley and Exton, 2003).



2.3. Critical Thinking Skills 15

2.3 Critical Thinking Skills

This section presents the background literature on critical thinking skills, which is
one of the learning skills incorporated into the Codification Pedagogy. Critical think-
ing skills encourage ‘thinking explicitly aimed at well-founded judgment, utilising
appropriate evaluative standards in an attempt to determine the true worth, merit,
or value of something’ (Paul and Elder, 2007). Critical thinking skills can promote re-
flective thinking, an approach that can help students better understand the problem
and improve their program comprehension.

Critical thinking skills are comprised of two types of thinking skills: lower and
higher-order thinking skills. Lower-order thinking skills help students to recall,
memorise, and understanding learning materials, to promote reflection on previ-
ously learned language constructs (Tikhonova and Kudinova, 2015). Lower-order
thinking skills engages the learners internal knowledge for recalling the information,
and can help demonstrate the learner’s pre-existing knowledge. Higher-order think-
ing skills promote the application of programming knowledge to the assignment’s
problem domain, encouraging internal reflection through deep reasoning (Bloom,
1956). Higher-order thinking skills require the learner to make certain judgements
prior to answering, which requires the learner to bring together other skills to form
the judgement, such as reasoning, comprehending, and analysing skills (Chi et al.,
1994).

In the CS problem space, when students use both lower and higher-order think-
ing skills, they are more likely to develop a cross-referencing comprehension strat-
egy (Pennington, 1987). Cross-referencing comprehension involves two layers for
understanding: the program and problem domain. The program layer is where the
student gains understanding by evaluating the program code. The problem domain
layer involves the understanding the problem at the abstract level, typically repre-
sented in CS as the problem description. Understanding the problem at both the
program and problem domain layer results in a higher level of understanding about
the problem (Pennington, 1987), which can contribute to the successful completion
of the programmed solution.

The cognitive processes required for lower and higher-order critical thinking
skills have been defined in educational objective taxonomies, such as Structure of
the Observed Learning Outcome (SOLO) (Biggs and Collis, 1982) and Bloom’s Tax-
onomy (Bloom, 1956). SOLO is an educational objective taxonomy that examines
students’ solutions to measure their mastery of the domain. The SOLO taxonomy
is comprised of five levels of comprehension, and can be used to help educators
with instructional materials, such as setting learning objectives and outcomes. Prior
work using SOLO in CS has classified reading problems (Lister et al., 2006) and exam
questions (Petersen, Craig, and Zingaro, 2011; Whalley et al., 2006).

Bloom’s Taxonomy, sometimes referred to as simply Bloom’s, is an educational
objective taxonomy that addresses the student’s depth of learning, and categorises
cognitive structures (Bloom, 1956). Table 2.1 shows the six cognitive levels that com-
prise Bloom’s Taxonomy. The table provides definitions for each of the levels and
definitions, ordered from lower to higher-order cognitive levels. The cognitive lev-
els start with the lower-order Recall level that involves recollection and memorisa-
tion skills by the student. The highest order is the Evaluation level that involves
deep reasoning to form judgements on the problem space. Bloom’s has been used
to develop CS classroom exercises (Sanders and Mueller, 2000), analyse assessments
(Howard, Carver, and Lane, 1996), develop assessment requirements (Thompson et
al., 2008), and identify various cognitive levels for testing (Scott, 2003). Frameworks



16 Chapter 2. Pedagogy Design and Background

using Bloom’s have been developed for programming knowledge (Buckley and Ex-
ton, 2003) and higher-order problem-solving questions (Zohar and David, 2008).

By engaging both lower and higher-order critical thinking skills, the learner has
different outlets to reflect on the problem. These outlets give the learner different
ways to access and apply their internal knowledge to the existing problem, provid-
ing them with more opportunities to think about and better understand the pro-
gramming problem.

Level Definition
Recall “Involves the recall of specifics and universals, the recall of

methods and processes, or the recall of a pattern, structure,
or setting.”

Comprehension “Refers to a type of understanding or apprehension such
that the individual knows what is being communicated and
can make use of the material or idea being communicated
without necessarily relating it to other material or seeing its
fullest implications.”

Application “Use of abstractions in particular and concrete situations.”
Analysis “Breakdown of a communication into its constituent ele-

ments or parts such that the relative hierarchy of ideas is
made clear and/or the relations between ideas expressed
are made explicit.”

Synthesis “Putting together of elements and parts so as to form a
whole.”

Evaluation “Judgments about the value of material and methods for
given purposes.”

TABLE 2.1. Bloom’s Taxonomy Cognitive Levels (Bloom, 1956)

2.4 Design Strategies

This section presents related work on design strategies that are supported within
the Codification Pedagogy. Design strategies are actions the student takes to find
answers when designing a programmed solution (Hoadley and Cox, 2009). An ex-
ample design strategy is the action taken during the problem-solving process to plan
and set goals for the programming problem (Greeno and Simon, 1988). Novices have
been shown to use general problem-solving strategies over specific strategies, such
as goal setting and planning (Winslow, 1996). Providing students with CS-specific
design strategies can support building their knowledge to coordinate the goals and
plans of a program (Spoher and Soloway, 1989).

Applying design strategies during the problem-solving process is a trait of an ef-
fective novice, enabling them to progress further in their learning with minimal as-
sistance (Robins, Rountree, and Rountree, 2003). The process of using design strate-
gies can help students build their design knowledge establishing metaknowledge
containing methods for finding solutions to problems (Hoadley and Cox, 2009). As
students gain more experience developing software and build their design knowl-
edge, they are able to identify more ambiguous aspects of the problem and its re-
quirements (Fincher et al., 2004). More design experience and knowledge can help
improve the quality in the student’s software designs (Atman et al., 1999), and help



2.4. Design Strategies 17

them ‘perform abstract thinking and to exhibit abstraction skills’ (Kramer, 2007). Im-
provements in CS1 students’ design process have been observed between their first
and final year at university (Falkner et al., 2015). Novices were shown in this study
to design after or during the coding process, while final-year students refactor their
designs using Self-Regulated Learning (SRL) design and demonstrating the use of
planning strategies.

When novices have limited design knowledge, they will spend little time de-
signing their programming solutions (Pintrich, Berger, and Stemmer, 1987), or com-
pletely neglect the design process (Rist, 1995). Instead of integrating a design phase
into the problem-solving process, novices will approach solving the problem one
line at a time, instead of designing a solution using structures (Winslow, 1996). With
fragile design knowledge, novices do not take the time to plan, and have difficul-
ties identifying plans and goals (Robins, Rountree, and Rountree, 2003). Novices
sometimes attempt to solve the problem with their existing internal knowledge and
generalised problem-solving strategies, rather than using the existing information in
the instructional material to help them form new approaches and knowledge (Roll
et al., 2007). The instructional materials can contain additional guidelines for the stu-
dent to elevate their skills (Vihavainen, Paksula, and Luukkainen, 2011a), but they
might not see value if the guidelines do not relate to their existing problem-solving
strategies.

One design strategy used in CS is the decomposition of programming goals,
a process of decomposing problems to identify programming goals and schemas
(Guzdial et al., 1998). Prior research (Jeffries, Polson, and Atwood, 1981) has shown
that novices and experts approach this design strategy differently. Novices use
a depth-first decomposition approach, focusing on details for one task before ad-
dressing others (Ormerod and Ridgway, 1999). Depth-first decomposition approach
has the novice fully developing the subgoal before evaluating or partially develop-
ing other subgoals (Détienne, 2002). This approach can work for novel problems
(Newell and Simon, 1972), but other approaches are required for more complex
problems, especially when the solution for the completed subgoal does not work
for the other problem’s subgoals (Ormerod, 2004). Experts integrate a breadth-first
decomposition approach that systematically explores the problem before focusing
on task details (Robillard, 1999). Experts will develop solutions for all the subgoals
at a higher level prior to solving them at a more detailed level. This approach gives
the expert more opportunities to explore the design (Ormerod, 2004).

The decomposition of programming goals can be performed at the task (Winslow,
1996) and plan (Soloway, 1986) levels. Task-level design strategies focus on algo-
rithm and data structures, while at the plan level, the design strategies identify the
software components and interrelationships for the programmed solution (Rom-
bach, 1990). During the design process, tasks are deconstructed, a process where
the learner analyses the problem then designs a solution structure (Fincher et al.,
2004). When novices deconstruct tasks, they construct more textual decomposition
tasks, while experts draw on more graphical notations (Fincher et al., 2004). Plan-
level design involves ‘breaking the problem into subproblems and finding a suitable
order for completion of the subproblems’ (Greeno, 1980). With plan-level design,
‘a plan corresponds to a fragment of code that performs actions to achieve a goal’
(Hu, Winikoff, and Cranefield, 2012). Planning helps the student identify the sub-
problems in the textural description of the problem, and outline the purpose of the
problem (Bergin, Reilly, and Traynor, 2005). The planning process generates core



18 Chapter 2. Pedagogy Design and Background

components that have been abstracted and represented explicitly (Bateson, Alexan-
der, and Murphy, 1987). During the planning process, novices have difficulty scop-
ing the problem, to identify plans for solving it (Sutcliffe and Maiden, 1992). Experts
draw on their internal design knowledge, using known design strategies to help
them identify plans for solving the problem (Soloway et al., 1982).

This section presented design strategies and are considerations for the Codifica-
tion Pedagogy to help students with the skills to decompose a problem into sub-
goals. Another theory designed to help students develop skills to decompose sub-
goals is automation, where high-level task procedures influence the students’ pro-
gramming behaviours (Merriënboer and Paas, 1990). Automation promotes the use
of worked examples that allow students to practice and better understand low-level,
task-specific procedures. As the novice gains more experience and understanding,
they can build on the previously learned low-level, task-specific procedures, which
allows them to construct more complex task-specific procedures like experts during
their problem-solving process (Anderson, 2013).

This section described the benefits to CS1 students using design strategies, and
the methods they use when starting to integrate design strategies into their problem-
solving process. This section also described the experts’ approach to design strate-
gies, which novices can progress towards developing their programming solutions.
The background literature presented in this section can help better understand the
novices’ progression in design strategy usage, and can help to assess their design
skills. This literature introduces different best practices used by experts during the
design process so that instructional materials can be developed to encourage novices
to adopt the same best practices.

2.5 Pedagogical Design

This section provides a high-level view of the pedagogy’s design, including intro-
ducing the pedagogy’s teaching methods. Cognitive Apprenticeship is the teach-
ing method applied to the Codification Pedagogy, to present the learning skills and
strategies. Section 2.5.1 provides the background literature for the Cognitive Ap-
prenticeship, presenting the six teaching methods within the Cognitive Apprentice-
ship theory. Section 2.5.2 describes the pedagogy’s instructional approach, layered
on the Cognitive Apprenticeship teaching methods.

2.5.1 Cognitive Apprenticeship

The design of the Codification Pedagogy is grounded in Cognitive Apprenticeship, a
teaching method that helps students practice difficult tasks through task demonstra-
tion modeled after experts’ behaviours (Caspersen and Bennedsen, 2007). Cognitive
Apprenticeship provides instructional and organisational guidance in the instruc-
tional design and learning activities. The following is a list of teaching methods
within Cognitive Apprenticeship (Collins, Brown, and Holum, 1991):

• Modeling: A teaching method that allows the student to observe how an expert
performs a given task. Through demonstration, the teaching method is mak-
ing the process visible, encouraging the learner to replicate the behaviour to
complete their tasks.

• Coaching: A teaching method that makes the expert responsible for guiding
the learner through the problem-solving process. The expert supervises the
student’s work through the entire learning experience.



2.5. Pedagogical Design 19

• Scaffolding: An instructional strategy that provides the learner a path to suc-
cessfully completing a task without giving them the answer (Wood, Bruner,
and Gail, 1976). Scaffolding has been show to control the student’s frustration
and focus the learner on the task (Chalk, 2001).

• Articulation: A teaching method that promotes the novice to self-reflect and fo-
cus on the problem, modeling an expert’s behaviour to engage their metacog-
nitive skills and problem-solving strategies for solving the problem.

• Reflection: A teaching method that encourages the student to compare their
work with others. Like the Articulation teaching method, Reflection also has the
student engaging their metacognitive skills, modeling problem-solving strate-
gies after an expert’s approach when encountering a problem.

• Exploration: A teaching method that encourages the learner to generate their
own problems and determine ways to solve them. Exploration attempts to help
the learner transfer their skills outside the scaffolding learning environment.

Cognitive Apprenticeship uses guided learning environments to support stu-
dents’ acquisition of knowledge and skills. Support within the learning environ-
ment is reduced so that students can apply their acquired knowledge and skills as
independent learners (Ghefaili, 2003). A pedagogical approach using Cognitive Ap-
prenticeship can raise students’ awareness of the processes used to solve a problem,
and teach them skills that enable them to apply those processes in other problem-
solving situations (Collins, Brown, and Holum, 1991).

Understanding the different teaching methods supported by the cognitive ap-
prenticeship can help identify methods that better support CS1 students when they
have little experience with the design process. For example, Exploration would re-
quire a learner to have more programming experience to create and solve problems.
This teaching method could be reserved for learners having more design experience,
encouraging them to demonstrate best practices previously learned.

2.5.2 Proposed Pedagogical Design

This section describes the design of the Codification Pedagogy. As stated in Sec-
tion 2.1, the development of this pedagogy is motivated to encourage CS1 students
to use Good Learning Behaviours when solving procedural programming assign-
ments. In the context of CS, these behaviours include having the student reflect on
the problem for better understanding, and organise a plan to solve the problem. To
encourage Good Learning Behaviours during the design process, the Codification
Pedagogy uses a problem-solving process model (Gick, 1986) that guides the stu-
dent through the problem-solving process. The Codification Pedagogy layers the
learning activities on the problem-solving states within the model. The learning ac-
tivities are designed to include skills and strategies that encourage students to use
Good Learning Behaviours when solving CS1 programming problems.

Figure 2.2 is the problem-solving process model used within the Codification
Pedagogy that presents the best practices in the problem-solving strategy. The fig-
ure shows four states in the model: Construct a Representation, Search for a Solution,
Implement Solution, and Stop. Within the model are transitions that represent the re-
lationship between the different problem-solving states. Figure 2.2 shows two high-
lighted states, to signify the states supporting the pedagogical goals. The Construct a
Representation state involves the program comprehension process, where the student



20 Chapter 2. Pedagogy Design and Background

FIGURE 2.2. Problem-Solving Process Model (Gick, 1986, p. 101)

forms a mental model of the solution. This process is initiated through the reading
of the problem description. The pedagogy is designed to help students through this
state by presenting them with learning activities that support the construction of a
better mental model of the solution. The Search for a Solution state involves the stu-
dent organising a plan for solving the problem. The pedagogy is designed to provide
learning activities that support students’ use of SRL skills that encourage them to
organise a plan prior to software implementation. The pedagogy is designed to sup-
port students in this state with interventions that encourage critical thinking skills
and use of SRL strategies.

Figure 2.2 shows the problem-solving process model with state transitions that
enable the student to return to prior problem-solving states. The pedagogy adopts
these transitions, allowing students to make the same transition to adjust their men-
tal model of the problem, and form a more accurate plan for solving the problem.

From the Cognitive Apprenticeship teaching methods presented in Section 2.5.1,
the pedagogy incorporates Modeling and Scaffolding core teaching methods for pro-
moting effective learning skills and strategies. Figure 2.3 shows how the pedagog-
ical goals with its learning skills and strategies are applied to the problem-solving
process model. The figure shows the pedagogy’s components supported within the
problem-solving states. Program comprehension, critical thinking skills, and sup-
port of Self-Regulated Learning strategies help students form a representation of the
solution by helping students form a more accurate mental model of the problem.

The Scaffolding teaching method is applied in the Codification Pedagogy by pro-
viding students a highly scaffolded learning environment in early assignments. In
assignments containing the pedagogy early in the semester, more instructional sup-
port and guidance are provided. As students practice programming and gain more
design experience, the guidance and support is reduced, to allow them to practice
their design skills and strategies as independent learners.

The application of the pedagogical goals is performed through three key compo-
nents in the Codification Pedagogy. The first learning activity is the Assignment Pre-
sentation activity, presenting the practical programming assignment in a scaffolded
learning environment, designed to help the student better understand the problem.

FIGURE 2.3. Codification Pedagogy Workflow



2.6. Summary 21

The second and third components, Questioning and Design Strategy activities, are
designed as interventions, to help students through the design process. The inter-
ventions are designed to encourage students to further think about the problem, to
identify the problem’s goals, and to organise a plan that will help them solve the
problem. More information on these learning activities are presented in Chapter 4.

2.6 Summary

This chapter presented the motivation and background for the Codification Peda-
gogy. The thesis is motivated to encourage CS1 students to use Good Learning Be-
haviours (GLBs) during the design process through the application of a design-based
pedagogy. Theories of cognitive and metacognitive strategies emerged from the mo-
tivation for this thesis that form the pedagogical goals. The pedagogical goals are
improving students’ program comprehension, and encouraging students to use Self-
Related Learning (SRL) strategies. To support the pedagogical goals, learning skills
and strategies were identified. SRL, Critical thinking skills, and design strategies
were presented to show how these skills and strategies achieve these pedagogical
goals.

This chapter presented the design of the Codification Pedagogy, grounded in
Cognitive Apprenticeship theory. The background literature on Cognitive Appren-
ticeship presented the teaching methods that can be used to support the pedagogy’s
instructional strategy. This chapter described how the pedagogy layers the problem-
solving process model on the Cognitive Apprenticeship’s Modeling and Scaffolding
core teaching methods, to demonstrate to novices how an expert would approach
the design process. The description of the proposed pedagogical design also de-
scribed how the learner is supported during their design process.

This chapter presented the background literature for theories that informed the
design and development of the Codification Pedagogy. The next chapter continues
investigating the design of the Codification Pedagogy, by surveying CS literature
related to the theories presented in this chapter. Surveying the literature can help
identify how best to apply the theories in the pedagogy and identify how this thesis
can build on work previously undertaken in the field of Computer Science Educa-
tion.





23

Chapter 3

Related Work

This chapter surveys previous work using theories explored in this thesis. The chap-
ter is organised as follows. Section 3.1 provides an overview of this chapter. Sections
3.3, 3.4, and 3.5 present the surveyed work using the theories that form the Codifi-
cation Pedagogy. Finally, Section 3.6 presents the summary.

3.1 Overview

In Chapter 2, background literature was presented that described the theories used
in the design and development of the Codification Pedagogy. This chapter is explor-
ing the Computer Science Education landscape more specifically to see what work
has been done previously to improve students’ program comprehension, and sup-
port their use of Self-Regulated Learning (SRL) strategies. This chapter explores re-
lated work in CS on program comprehension, SRL strategies, critical thinking skills,
and design strategies. The related work has influenced the design and development
of the Codification Pedagogy, providing guidance on presenting the learning activi-
ties and the applied teaching method.

This chapter organises the surveyed related work in a similar way as the pre-
sentation of the background literature in Chapter 2. Section 3.2 presents the related
work using the theories that support the pedagogical goals. Sections 3.3 and 3.4
present prior research using the learning skills and strategies. Finally, Section 3.5
presents related work using the Cognitive Apprenticeship teaching method.

3.2 Pedagogical Goals

Section 3.2.1 presents the related work in CS using theories in program comprehen-
sion. Section 3.2.2 presents the related work incorporating Self-Regulated Learning
(SRL) strategies into CS learning.

3.2.1 Program Comprehension

This section presents related work using program comprehension. The background
literature for program comprehension was discussed in Section 2.2.1. The back-
ground literature presented a generic program comprehension model that identi-
fied key components that explain the program comprehension process. This section
presents different program comprehension models, with some previously applied
in the classroom. These models focus on different areas of program comprehension,
helping students through the problem-solving process.

Different program comprehension models have been developed to describe the-
ories on the programmer’s cognitive processes as they attempt to better understand
the program. The first program comprehension model presented in this section is



24 Chapter 3. Related Work

the Pennington Model (Pennington, 1987). The Pennington Model brings to the
forefront textual descriptions as influencers to the students’ mental model. The
Pennington Model builds on the text comprehension theory (van Dijk and Kintsch,
1983), focusing on text-based understanding through the assimilation of the textual
information with the individual’s internal knowledgebase. Textual comprehension
is prominent in the Pennington Model, where one of the two model layers focuses on
the textual representation. The first model layer, the program model, relates to the
textual representation and how the student recalls the problem. The second layer is
the domain model, where the mental model is formed by the student when interpret-
ing the textual representation. The Pennington Model was developed by observing
professional software developers refactor code, and was developed by observing the
behaviours of software developers within the procedural language paradigm. The
study observed the participants evaluating the code for the first time, using strate-
gies to help them better understand. Think-alouds were used in this study to analyse
the developers’ refactoring processes. The study concluded that participants with
higher comprehension during the refactoring process could relate to the problem
both at the abstract problem domain and at the coding level.

Bonar and Soloway (1985) developed a program comprehension model by ob-
serving novices during the problem-solving process. The purpose for developing
the model was to better understand the reasons for novices introducing bugs in their
programming solutions. The model is the first approach to explaining to novices
why bugs are present in their software. The model was developed through observ-
ing novices solve programming problems and interviews conducted with them. The
results from the developing this model showed novices’ pre-programming knowl-
edge — the learner’s internal knowledge prior to programming (Spohrer, 1992) — is
vital in their ability to debug and create patches for programming problems.

Caspersen and Bennedsen (2007) developed a program comprehension model
based on cognitive architecture and three learning theories: cognitive load theory,
cognitive apprenticeship and worked examples. Cognitive Load Theory is an in-
structional theory ‘that was explicitly developed as a theory of instructional design
based on our knowledge of human cognitive architecture. Cognitive load theory
consists of aspects of human cognitive architecture that are relevant to instruction
along with the instructional consequences that flow from the architecture’ (Sweller,
Ayres, and Kalyuga, 2011, p. v). Cognitive apprenticeship is a teaching approach
that helps students practice difficult tasks through task demonstration modeled after
experts’ behaviours (Caspersen and Bennedsen, 2007). Worked examples are used
to promote cognitive skill acquisition in the program comprehension model. The
program comprehension model was developed by researching the theories in cogni-
tive sciences and educational psychology to form the model and learning activities,
designed to apply in the classroom. This program comprehension model and its
learning activities were later applied to a learning environment, which resulted in a
reduction in failing students (Knobelsdorf, Kreitz, and Böhne, 2014).

This section presented different program comprehension models developed to
represent how experts and novices understand a problem within the problem-solving
process. Researchers developed these models to help novices improve their program
comprehension, either through awareness of their current actions, such as introduc-
tion of bugs in programming problems, or leveraging established instructional de-
sign and educational theories for instructional design. The studies presented in this
section demonstrate to novices the best practices used by experts to better under-
stand a problem, which resulted in higher learning gains by the novices.



3.2. Pedagogical Goals 25

3.2.2 Self-Regulated Learning Strategies

This section presents the related work about Self-Regulated Learning (SRL) strate-
gies in the CS problem space. The background literature SRL strategies was previ-
ously presented in Section 2.2.2. In the background literature, the original Zimmer-
man and Martinez-Pons SRL taxonomy (Zimmerman, 1989) was presented. The tax-
onomy contains 14 SRL categories with an additional category initiated by outside
influencers (Zimmerman, 1989). Table 3.1 presents the 14 categories and definitions
defined by Zimmerman (1989) in a classroom environment. The table contains a
third column that provides adaptions for CS students when using these strategies
within e-learning tools (Garcia, Falkner, and Vivian, 2018). The adaptation for CS
usage evaluated the 14 SRL categories and devised a framework for how the strat-
egy could be applied in online setting with e-learning tools. The table demonstrates
the application of the SRL strategies in an online learning environment.

Since the original study (Zimmerman, 1989), the Computer Science Education
community has continued to research SRL within the CS problem space. Prior work
(Bergin, Reilly, and Traynor, 2005) focused on identifying a relationship between
SRL and programming performance in introductory programming courses. The
study was conducted in an introductory object-oriented programming course with
35 participants taking a questionnaire on motivational and learning strategies, and
evaluating the participants’ assessments throughout the course, such as examina-
tions. The results from the study showed students performing well with program-
ming tasks when they frequently used SRL strategies. Strategies related to cognitive,
metacognitive, and resource management played a significant (45%) role in partici-
pants’ programming performance.

Violet (1991) explored the co-operative development of metacognitive strategies
for a CS1 course that involved students developing metacognitive strategies through
the use of model behaviours and coaching procedures designed to guide them through
the strategy. The research involved an experiment and control groups studied for
13 weeks. The study examined the groups’ development of metacognitive strate-
gies related to programming. Students receiving instructional method to guide the
metacognitive strategies showed high learning outcomes.

Another study (Alexiou and Paraskeva, 2010) used the development of an e-
portfolio to encourage students’ use of SRL strategies. This study was conducted
with students enrolled in a CS professional development course. The 41 participants
took part in a pre-test to measure their pre-existing knowledge on learning strategies
and creating e-portfolio. The study applied the Zimmerman’s triadic model (Zim-
merman, 2000) of self-regulation, where students were guided through the three
SRL phases during the development of the e-portfolio. For example, the e-portfolio
system administrator guided students towards the execution phase of the model by
messaging with participants. Results from this study and developing the e-portfolio
showed students having higher confidence in their ability to apply SRL strategies to
construct plans to obtain their goals, and increased their motivation throughout the
construction of the e-portfolio.

The last study examined for this section (Kizilcec, Pérez-Sanagustín, and Mal-
donado, 2017) investigated the encouragement of SRL usage in Massive Open On-
line Courses (MOOCs), a learning environment with a low level of support and
guidance. The study involved training participants to use SRL strategies in MOOCs,
with the MOOC environment prompting the participants to use the SRL strategies.
When students were encouraged through prompts to use SRL strategies within the



26 Chapter 3. Related Work

MOOCs, the results from the study showed an increase in participants’ motivation
and grades when they engaged SRL strategies.

Categories Definitions CS Students’ Usage
1. Self-evaluation Student-initiated

evaluations of the quality or
progress of their work.

Student-initiated
self-assessments to validate
programming exercises.

2. Organising &
transforming

Student-initiated overt or
covert rearrangement of
instructional materials to
improve learning.

Student-initiated
development of design plans
prior to programming coding
assignments.

3. Goal-setting &
planning

Statements indicating
student setting of
educational goals or
subgoals and planning for
sequencing, time, and
completing activities
related to those goals.

Student setting programming
goals and time aside when
developing programming
assignments or studying for a
tests.

4. Seeking
information

Student-initiated efforts to
secure further task
information from nonsocial
sources when undertaking
an assignment.

Student-initiated use of
online knowledgebases to
assist in further
understanding of
programming objectives.

5. Keeping records
& monitoring

Student-initiated efforts to
record events or results.

Student-initiated effort to
save or link to learning
materials.

6. Environmental
structuring

Student-initiated efforts to
select or arrange the
physical setting to make
learning easier.

Student-initiated
arrangement of windows for
digital environment more
conducive to learning.

7. Self-
consequences

Statements indicating
students arrangement or
imagination of rewards or
punishment for success or
failure.

Students arrangement or
imagination of rewards or
punishment for success,
failure, or achievement of
awards during the learning
process.

8. Rehearsing &
memorising

Student-initiated efforts to
memorise material by overt
or covert practice.

Student-initiated efforts to
memorise programming
objectives by overt practice.

9-11. Seeking
social assistance

Statements indicating
student-initiated efforts to
solicit help from peers (9),
teachers (10), and adults (11).

Student-initiated efforts to
solicit or discover answers to
questions from peers (9),
teachers (10), and adults (11)
through social
knowledgebases.

12-14. Reviewing
records

Student-initiated efforts to
reread tests (12), notes (13),
or textbooks (14) to prepare
for class or further testing.

Student-initiated efforts to
reread notes, programming logs
(12), tests (13), or learning
materials (14) to prepare for
class or further testing.



3.3. Critical Thinking Skills 27

15. Other Statements indicating
behavior that is initiated by
other persons such as
teachers or parents and is
unclear verbal responses.

Learning behavior prompted
by outside influencers, such
as teacher, parents, or digital
agents.

TABLE 3.1. SRL Strategies Categorised within a CS e-Learning
Context (Garcia, Falkner, and Vivian, 2018)

This section presented related work in the field of Computer Science Education,
encouraging the use of SRL strategies. The related work encouraged the learning
of SRL strategies in learning environments, modeling strategy use through active
learning. The related work demonstrated higher motivation and grades from stu-
dents applying SRL strategies during their learning. The related work also showed
that additional guidance through questioning increase students’ use of SRL strate-
gies, even within online learning environments. The use of SRL strategies within
online learning environments can help students take an proactive approach to their
learning within a learning environment with a low level of guidance.

3.3 Critical Thinking Skills

This section describes the related work using critical thinking skills. Section 2.3 pre-
sented the background literature for critical thinking skills, promoting ‘thinking ex-
plicitly aimed at well-formed judgment, utilising appropriate evaluative standards
in an attempt to determine the true worth, merit, or value of something’ (Paul and El-
der, 2007, pp.71-72). Questioning is a teaching method that encourages critical think-
ing skills that engages students’ cognitive processes to reflect on a problem prior
to answering (Bloom, 1956), to help students reduce their misconceptions (Collins,
1985; Weusijana, Reisbeck, and Jr, 2004). Questioning helps students overcome cer-
tain aspects of their fragile knowledge by helping them fill in holes in their partial
knowledge and getting them to use skills to seek out information (Perkins and Mar-
tin, 1985).

Critical thinking skills are classified into lower and higher-order thinking skills.
Short-answer questions engage lower-order thinking skills and are used by educa-
tors in the classroom to assess students’ domain knowledge (Dillon, 1984). Higher-
order thinking skills promote internal reflection through deep-reasoning (Bloom,
1956) and knowledge-inference questions (Chi et al., 1994), yet few questions (4%)
generated by educators engage higher-order thinking skills (Kerry, 1987). Higher-
order thinking-skills questions require the educator to triage a student’s knowledge
deficit (Collins, 1985), which can be difficult to apply in a large classroom.

The literature presented in this section promotes questioning as an activity to en-
courage critical thinking skills, but there are other methods to teach critical thinking
skills, such as project-focused teaching (Kaasbøll, 1998). Project-focused teaching
gives students the opportunity to re-evaluate their work when developing and or-
ganising their projects over the course duration. However, project-focused teaching
requires changing the teaching approach in the classroom, and not the focus on this
research.

Though questioning has been examined in other disciplines (Conati and Van-
lehn, 2000; Hausmann and Chi, 2002; Weusijana, Reisbeck, and Jr, 2004; Yang, Newby,
and Bill, 2005) to support the teaching of critical thinking skills. The literature in this



28 Chapter 3. Related Work

section focused on evaluating questioning research in the CS space, researching dif-
ferent question types, such as self-explanation, Socratic, and instructional question
types. These different questioning types and the research related to the CS space are
discussed further in the following three sections.

3.3.1 Self-Explanation Questions

Self-explanation is a metacognitive skill that encourages students to further reflect
on the material by having them generate an explanation of what they are trying to
comprehend (Conati and Vanlehn, 2000; Vihavainen, Miller, and Settle, 2015). A
learning tool that supports self-explanation is AtoL (Yoo et al., 2006), a CS tutor-
ing system administered in a lab environment that integrates self-explanation ques-
tioning. AtoL provides CS1 and CS2 students with a list of questions to help them
develop programming skills. Teachers can distribute instructions in the lab using
AtoL, allowing them to tailor instructional materials for individuals’ needs. Results
showed students using AtoL had greater knowledge in programming concepts than
non-participants.

ProPL is a tutoring system for introductory programming courses, encouraging
students to write responses to questions related to the programming assignment
(Lane and VanLehn, 2005). Results showed improvements in students’ ability to de-
construct problems, especially during the debugging phase. Though ProPL gener-
ated positive results with participants, this tutoring system required extensive time
from the teacher to prepare instructional materials.

Another study (Vihavainen, Miller, and Settle, 2015) applied self-explanation in a
CS1 classroom. In this study, students were asked to explain code segments to their
peers, dividing the students into two groups: one receiving questions prompting
self-explanation, and the other group performing self-explanation without prompts.
The results from the study showed students receiving the self-explanation questions
were able to transfer this skill, such as better explanation of code provided in exams.
The questions helped the students focus their explanations by having them reflect
on the relevant segments of code.

3.3.2 Socratic Questioning

The Socratic questioning method is a form of questioning that encourages critical
thinking through rational arguments (El-Zakhem, 2016). Socratic questioning assists
students in making important observations to improve their programming knowl-
edge (Lane and VanLehn, 2005). A chatbot (Le and Huse, 2016) applied the So-
cratic Method (Nelson, 1970) in an online learning environment, having students
traverse the three Socratic phases. The three Socratic phases are: searching for ex-
amples, searching for attributes, and generalising the attributes. Using the chatbot
was shown to effectively guide students through the Socratic Method in a group
discussion. Socratic questioning has been applied to CS tutor-student dialogues
during the debugging process, helping students correct their misconceptions and
teach them skills to become more self-reliant during the this process (Wilson, 1987).
The Why System (Stevens and Collins, 1977) is a tutoring system that integrated
a student-teacher Socratic questioning approach into a script-based tool. The Why
System guided students through tutorial sessions, asking probing questions related
to a problem. The tool was useful in helping identify missing requirements for solv-
ing the problem within the students’ dialogues. However, the tool was limited by
technology to parse and interpret the natural language responses. When the tool



3.3. Critical Thinking Skills 29

was developed in 1977, the technology did not have the ability to support natural
language comprehension. Through this work, the authors were able to characterise
the goal structure of Socratic dialogues for future Socratic questioning tools, provid-
ing guidelines to better implement the goal structure of the dialogues.

3.3.3 Instructional Question Types

Instructional Question Types (IQTs) are classifications of questions that can be used
to ascertain students’ understanding of learning materials. IQTs can help raise the
awareness of misunderstandings (Graesser and Person, 1994). IQTs have been used
in the CS problem space, with IQTs being classified using CS questions (Boyer et al.,
2010). The IQT classification involved analysing the dialogues between 78 upper-
division CS students and 17 tutors in a classroom environment. The questions from
these dialogues were collated to assist CS teachers in asking effective questions in the
classroom, and to encourage students to use both lower and higher-order thinking
skills. Table 3.2 displays the 23 IQTs with example questions generated from the
study.

Category Types
Backchannel* Right?
Focus* See where the array is declared?
Hints* We didn’t declare it; should we do it

now?
Definition What does that mean?
Knowledge* Have you ever learned about arrays?
Calculation What is 13 % 10?
Casual Consequence What if the digit is 10?
Clarification* What do you mean?
Confirmation* Does that make sense?
Enablement How are the digits represented as bar

code?
Procedural How do we get the ith element?
Quantification How many times will this loop repeat?
Free Creation What shall we call it?
Goal Orientation Did you intend to declare a variable

there?
Casual Antecedent Why are we getting that error?
Feature/Concept Completion What do we want to put in digits[0]?
Free Option Should the array be in this method or

should it be declared up with the other
private variables?

Judgment Would you prefer to use math or strings?
Justification Why are we getting the error?
Plan What should we do next?
Improvement Can you see what we could do to fix that?
Assessment* Do you think we’re done?
Status* Do you have any questions?

TABLE 3.2. Instructional Question Types for CS (* denotes emerging
question category (Boyer et al., 2010))



30 Chapter 3. Related Work

3.4 Design Strategies

This section presents related work focusing on the students’ learning and usage of
design strategies during the problem-solving process. Background literature on de-
sign strategies was presented in Section 2.4, while this section presents related work
on the application of design strategies in prior research.

There are a number of approaches that have been taken to support CS students
in the development of design strategies through the use of Intelligent Tutoring Sys-
tem (ITS). Coached Program Planning (CPP) is an Intelligent Tutoring System that has
students identify the problem’s goal and generate steps to achieve the goal (Lane
and VanLehn, 2003). The tutoring system has students designing a solution to a
programming problem by using a notation to describe the solution. The notation
is called pseudocode that is a cross between program code and natural language,
which is designed to encourage students to reflect on the problem. The tutoring sys-
tem uses a dialogue approach to encourage the design process, asking students to
identify goals and describe how they would achieve those goals. The results from
the study showed students using CPP making fewer mistakes in the structure of
their programs, and their software development process was less erratic.

Another tutoring system, Program Planner (ProPL), uses questioning during the
design process to encourage CS1 students to deconstruct problems into subgoals
(Lane and VanLehn, 2005). Like Coached Program Planning , ProPL uses dialogues to
guide the students through the design process, and encourages them to use pseu-
docode to design a solution. ProPL is a Java-based tutoring system available via
a web browser. This tool allows the students to view their design nodes and pseu-
docode while developing their programming solution. The results from using ProPL
showed improvements with participants solving composition problems. The study
suggests the improvements were due to the participants reflecting on the problem
at a higher, abstract level.

Both Coached Program Planning and ProPL promoted pseudocode within the tu-
toring systems. Another study (Garner, 2007) applied pseudocode in a classroom
environment. The study was motivated to use pseudocode to encourage students
to think more on the design process. When pseudocode was provided in a class-
room learning environment, CS1 students felt they were learning another program-
ming language, giving them the impression they were learning two languages. The
perception of learning two programming languages influenced students’ feedback,
where they felt pseudocode was unhelpful.

Another tutoring system (Hu, Winikoff, and Cranefield, 2012) integrated the
goals/plan approach (Soloway, 1986), to guide students through the development
process. The tool extended the work on GPCeditor (Guzdial et al., 1998), for Build
Your Own Blocks (BYOB) within a Visual Programming Environment (VPE). Results
from using the tool showed improvements in students’ learning of programming
skills, but does not draw any conclusions about students’ usage of strategies during
the process.

Design-based exercises have been applied in the design space (Falkner, Vivian,
and Falkner, 2014). The purpose of these exercises were to give students the oppor-
tunity to practise SRL design and planning strategies (Falkner et al., 2015). For the
study, students were given two compulsory exercises that encouraged students to
describe their software development processes. Students involved in this study had
1-2 prior programming courses. The results from analysing the answers to these
exercises showed that more scaffolding assistance is needed to support students’
mastery of the SRL strategies as they progress through their studies.



3.5. Cognitive Apprenticeship 31

A framework, Multi-Faceted SOLO Taxonomy (Castro and Fisler, 2017), was devel-
oped to track the design skills of novices over the duration of a course. The frame-
work aligns with functional programming courses and mirrors the progression of
the SOLO taxonomy (Biggs and Collis, 1982). The development of the framework
included a methodology for educators to develop and apply assessments using the
framework. Another framework was developed with problems for ‘cross-linguistic
studies of plan compositions’ (Fisler, Krishnamurthi, and Siegmund, 2016, p. 215).
This framework was developed to assist plan-composition studies, focusing on or-
dering tasks to form a programming solution. The framework included exercises to
refine students’ plan-composition skills.

This section presented related work that supports the learning and use of design
strategies. The related work demonstrated different approaches used to support
design strategies, through learning tools, guidance from educators, and activities.

3.5 Cognitive Apprenticeship

This section presents related work in Computer Science that uses Cognitive Appren-
ticeship, the teaching method used in the Codification Pedagogy that helps students
practice difficult tasks through demonstrations modeled after experts’ behaviours
(Caspersen and Bennedsen, 2007). The background literature on Cognitive Appren-
ticeship was presented in Section 2.5.1, providing an overview of the core teaching
methods within the Cognitive Apprenticeship. Some of the related work showed
Cognitive Apprenticeship applied in classroom and online learning environments.
Classroom application includes Extreme Apprenticeship (Vihavainen, Paksula, and
Luukkainen, 2011b), a method of Cognitive Apprenticeship that adopts aspects of
Extreme Programming (Beck and Andres, 2004) and the teaching method. The re-
lated work presented in this section focuses on prior work applying Cognitive Ap-
prenticeship to tools used in the digital space. Focusing on tools within the digital
space can provide guidance in the design of the Codification Pedagogy, which is
applied in online learning environment.

Within the CS problem space, Cognitive Apprenticeship has been applied to In-
telligent Tutoring Systems (ITS). Cognitive Apprenticeship was used within an Intel-
ligent Tutoring Systems developed by Aleven et al. (2016) that provides a ‘step-by-
step guidance during (moderately) complex problem solving’ (Aleven et al., 2005).
Cognitive Tutor Authoring Tool (CTAT)/TutorShop (Aleven et al., 2016) is another
ITS, applying the Cognitive Apprenticeship teaching method to the edX online teach-
ing environment. The purpose of this research is to resolve some of limitations using
stand-alone Intelligent Tutoring Systems, such as platform dependencies, by lever-
aging the technologies provided by Massive Open Online Courses (MOOCs). Pro-
viding the Intelligent Tutoring System within a MOOC makes the tool available to a
wider audience. CTAT provides step-by-step support for CS assignments, and is the
first cognitive tutor to be integrated into MOOCs, using the feedback features from
the online learning environment. The study provides guidelines for using CTAT,
providing a case study, but no results from applying CTAT to the the course.

QBasic (Dadic, Stankov, and Rosic, 2008) is another example of an Intelligent Tu-
toring System using Cognitive Apprenticeship. QBasic models the teaching method
by comparing novice and expert solutions. This approach helped students learn pro-
gramming semantics and problem deconstruction. QBasic was found to be success-
ful in teaching students skills, and received satisfactory feedback from the students.



32 Chapter 3. Related Work

Jin is a CS1 pre-programming analysis tutor (Jin, 2008), containing a cognitive
model that provides students a solution path to help them through solving a task.
Jin provides corrective feedback when students deviate from the path for solving
the task. Though Jin has a higher completion rate of programming problems, the
development of the cognitive model is time-consuming for educators, due to the
number of programming problems, learning objectives, and the size of the cohort.

The tools presented in this section use the Cognitive Apprenticeship Modeling
and Scaffolding core teaching methods. A potential reason for using the Coaching,
Articulation, Reflection, and Exploration teaching methods might be how they require
students to use problem-solving skills. For example, Articulation requires metacog-
nitive skill and self-reflection to compare work with others. It is possible for these
other core teaching methods to be integrated into the upper division Cognitive Ap-
prenticeship tools after the basic skills are established through use of Modeling and
Scaffolding. This related work has highlighted teaching methods appropriate for a
pedagogy supporting students early in their learning of CS problem-solving skills.

3.6 Summary

This chapter presented the related work for this thesis. It showed how the theories,
teaching methods, and learning skills and strategies have been applied to previous
studies. Some of the related work presented in this section builds on the students’
prior knowledge to help them learn new skills and strategies. For example, three
works presented in Section 3.4 encouraged students to use pseudocode, a notation
that is closely aligns with the natural language, to best describe how they plan on
solving the problem. Using pseudocode allows the students to articulate the design
process with a familiar notation without learning another concept to perform the
design process; however, students do not realise the benefits of using pseudocode to
bridge the textual description of the problem to the programmed solution. Rather,
students view the notation as another programming language they are required to
learn (Garner, 2007). Another example of the related work building on students’ ex-
isting knowledge is prompting self-reflection through the use of questioning. Ques-
tioning allows the student to think of what they currently know and how they can
apply that to the existing problem space. Investigating how the related work builds
on the students’ internal knowledge helps with the development of the Codifica-
tion Pedagogy, ensuring that the learning activities developed within the pedagogy
attempt to build on what the student knows for greater success and understanding.

The related work showed how theories in program comprehension and SRL
strategies were applied using active learning to support students in building skills
to better understand problems. The related works also showed learning activities
modeling expert behaviour, to demonstrate best practices in problem solving. The
related work presented in this section target certain design process skills, such as
comprehending, analysing, and reflecting. The Codification Pedagogy investigates
bringing more of these skills together to encourage students to perform the work-
flow within the design process, over exercising design skills in isolation.

The Codification Pedagogy is influenced by the teaching principles in these works,
encouraging active learning and modeling best practices. The next chapter, Chapter
4, presents how the theories are applied, forming the learning activities within the
Codification Pedagogy. Chapter 4 describes a high-level view of the pedagogy’s de-
sign, development, and evaluation, building on the findings from the related work
presented in this chapter.



33

Chapter 4

Pedagogy Studies

This chapter presents an overview of the pedagogical design, and introduces the
studies performed in this thesis. This chapter is organised as follows. Section 4.1
is the overview of the chapter. Section 4.2 provides a high-level introduction to the
pedagogy. Section 4.3 presents the overarching context for the studies. Section 4.4
provides an overview for the pedagogical design. Section 4.5 presents commonali-
ties for the students participating in the study. Section 4.6 presents the summary.

4.1 Overview

This thesis attempts to encourage CS1 students to use Good Learning Behaviours
(GLBs) when solving procedural programming assignments. To help students use
Good Learning Behaviours, a design process pedagogy is explored as a teaching
method, supporting pedagogical goals to improve students’ program comprehen-
sion and encourage their use of Self-Regulated Learning (SRL) strategies. In Chap-
ter 2, critical thinking skills and design strategies are identified as being important
to helping to achieve these pedagogical goals. Chapter 2 presents the Cognitive
Apprenticeship theory as the teaching method for introducing the instructional con-
tent and demonstrating to CS1 students how an expert would approach solving a
programming problem. Chapter 2 also describes the layering of the pedagogical de-
sign over a problem-solving process model (Gick, 1986), shown in Figure 2.2. Lay-
ering the pedagogy over the model gives students the opportunity to practice the
problem-solving process strategy in the scaffolded learning environment, using the
Cognitive Apprenticeship teaching method.

This chapter provides an overview of the studies involved in designing and ex-
amining the Codification Pedagogy. The studies describe the design and creation
of learning activities that compose the Codification Pedagogy. Separate studies are
composed to design and evaluate the learning activities, along with evaluating the
pedagogy in its entirety.

4.2 Pedagogy Introduction

Based on the the research presented in previous chapters, good learning design can
engage students’ program comprehension, Self-Regulated Learning (SRL) strate-
gies, critical thinking skills, and design strategies. This thesis proposes an instruc-
tional approach grounded in Cognitive Apprenticeship that aims to guide students
through the design process for CS1 procedural programming assignments. The Cod-
ification Pedagogy provides CS1 students a scaffolded learning environment to build
effective skills and strategies for the software design process, by modeling an ex-
pert’s problem-solving approach through this process. The Codification Pedagogy



34 Chapter 4. Pedagogy Studies

Write a program that repeatedly reads in a positive
integers, until it reads the integer 99999. After seeing
99999, it should print out the average.

FIGURE 4.1. Original Rainfall Problem (Soloway, Bonar, and Ehrlich, 1983)

is comprised of three key learning activities, designed to help students through the
design process: an Assignment Presentation that contains the programming problem,
a Questioning Activity that helps the students reflect on the problem, and a Design
Strategy Activity that supports the students in organising a plan for implementing a
programming solution.

4.3 Context

This section describes the overarching context for the thesis studies. The informa-
tion presented in this section comprises commonalities for all studies. Any study
introducing custom attributes to the study’s context is described within its study
chapter.

The research into the Codification Pedagogy was conducted over three semesters
in a 12-week Introductory Programming course offered at the University of Ade-
laide. Students enrolled in the course were new to software development. The In-
troductory Programming course was a blended learning environment, composed of
a classroom lecture and a supervised computer lab that met once a week. This course
has a large cohort, ranging from 100 to 250 students each semester. During the lab
environment, two tutors were available to provide students guidance and assistance
when they seem assistance. This course used Canvas, a Learning Management Sys-
tem (LMS), administering the course’s reading materials, instructional videos, as-
sessments, practical programming assignments, and the instructional instruments
for this research. The procedural programming language used in this course is Pro-
cessing.js (Fry and Raes, 2018), a JavaScript variant of Processing that enabled stu-
dents to quickly develop graphic-based outcomes with minimal programming ex-
perience (Godwin-Jones, 2010).

The Codification Pedagogy is designed for practical procedural programming
assignments that are available a web page presented within the LMS. The Codifi-
cation Pedagogy is also available on the same web page presenting these practical
procedural programming assignments. The teacher administering the course is re-
sponsible for making the assignments available before the assignment’s start date,
and it remains accessible to the students throughout the semester.

The studies performed in this thesis use Soloway’s Rainfall Problem (Soloway,
Bonar, and Ehrlich, 1983) as the problem’s context. This is a well-known problem,
originating in a 1983 publication. The problem is commonly used in CS1 research (de
Raadt, Toleman, and Watson, 2004; Fisler, 2014; Lakanen, Lappalainen, and Isomöt-
tönen, 2015; Simon, 2013) and originally describes four programming tasks in two
sentences, shown in Figure 4.1.

1. Counting the number of positive integers entered by the user,

2. Summing those positive integers,

3. Stopping the the sentinel (99999) is encountered, and

4. Averaging the values entered.



4.4. Pedagogy Design 35

Semester
Assignment Name Week Released Feb 2018 & 2019 Aug 2018

A4.1 5 Appendix A.1.1 Appendix A.2.1
A4.2 5 Appendix A.1.1 Appendix A.2.1
A5.1 10 Appendix A.1.2 Appendix A.2.2
A5.2 10 Appendix A.1.2 Appendix A.2.2
A6.1 11 Appendix A.1.3 Appendix A.2.3
A6.2 11 Appendix A.1.3 Appendix A.2.3
A7.1 12 Appendix A.1.4 Appendix A.2.4
A7.2 12 Appendix A.1.4 Appendix A.2.4

TABLE 4.1. List of Assignments Used in the Research

The prior studies with the Rainfall Problem inform this research, contributing to
the design of some of the study methods. Any adjustments to the Rainfall Problem
are explained in the study chapters.

The introductory course has eight practical programming assignments contain-
ing between two and four programming exercises. The assignments focus on pro-
cedural programming because the introductory course teaching CS concepts in the
procedural programming paradigm with Processing.js.

The interventions for the Codification Pedagogy is introduced in the fourth prac-
tical programming assignment, Assignment 4, released at week 5 of the semester.
The presentation of the programming assignments, discussed in Chapters 5, 6, and
7, is for all the assignments, starting with Assignment 1, released at week 2 of the
semester. A selection of programming exercises within the practical programming
assignments contain the Codification Pedagogy. Table 4.1 presents the exercises con-
taining the Codification Pedagogy, with the name of the exercise and the week the
assignment was made available to students. The table also contains references to the
assignments within Appendix A, listing the assignments administered over the three
semesters, where the students enrolled in the first (February 2018) and third (Febru-
ary 2019) semesters received the identical assignment, while the second semester
(August 2018) received an isomorphic version of the programming assignments.
The isomorphic problems presents the learning objectives in the same way, so that
the learners develop the solutions in the same problem-solving paths. For the re-
mainder of this thesis, the exercises are referenced as ‘Assignment’; for example,
‘Assignment A4.2’ denotes the second exercise within the fourth practical program-
ming assignment.

4.4 Pedagogy Design

This section introduces the learning activities that comprise the Codification Ped-
agogy. It is described at a high level, providing a description of the activity, its
learning objectives, and its interaction with other learning activities. The roles and
interactions of the learning activities form a problem-solving approach modeled af-
ter an expert’s process model (Gick, 1986).

To model an expert’s problem-solving approach, the pedagogy is layered on a
problem-solving process model, shown in Figure 4.2. This model is described in
Section 2.5.2, providing background on the model and describing the states of the
model in greater detail. The pedagogical design has the learning activities layered
over the model for the purpose of supporting students’ problem-solving processes in



36 Chapter 4. Pedagogy Studies

FIGURE 4.2. Placement of Pedagogical Goals and Strategies in Problem-Solving
Process

a scaffolded learning environment. Figure 4.2 highlights the problem-solving states
and learning activities that are driven by the pedagogy. The figure contains a list
of pedagogical goals within each state, which include learning goals and strategies
supported in the state. The two problem-solving process states supporting the Cod-
ification Pedagogy are Construct a Representation and Search for a Solution. Construct a
Representation is the first state that takes into account the student’s view of the prob-
lem, where the student develops a mental model of a solution. The state supports
the pedagogical goal to improve students’ program comprehension. Search for a So-
lution is the second state, where the student determines the best approach to solve
the problem. This state represents the design process that can involve critical think-
ing skills and use of SRL strategies to solve the problem. The pedagogy is designed
to support students in this state by giving them learning activities to support the
design process.

Figure 4.2 shows the transition between states for the problem-solving process
model. The transitions allow students to return to prior states during the problem-
solving process. Like the model, the pedagogy is designed to allow students to tran-
sition between the problem-solving process states within the pedagogy’s scaffolded
learning environment. For example, the learning activities work together to help the
student identify the problem’s goals in the Construct a Representation state, and help
them identify a plan to solving the problem from these goals within the Search for a
Solution state.

The design of the Codification Pedagogy is grounded in Cognitive Apprentice-
ship. Cognitive Apprenticeship was introduced in Section 2.5.1, presenting its teach-
ing methods: Modeling, Coaching, Scaffolding, Articulation, Reflection, and Exploration.
The purpose of these teaching methods is to support students’ acquisition of knowl-
edge and skills. The Codification Pedagogy applies the Scaffolding teaching method
to provide the learner guidance, specifically metacognitive scaffolding, a type of scaf-
folding that does not focus on the problem content, but guides the learning approach
for solving the task (Roll et al., 2007). Metacognitive scaffolding has been shown to
have a positive influence on the learner’s problem-solving process ‘by helping them
set goals and deadlines, engage in research, organize their ideas and thoughts, cor-
rect misunderstandings, revise ineffective plans or strategies, avoid procrastination,
use time effectively, and monitor and evaluate their progress’ (An and Cao, 2014).

Figure 4.3 is a workflow of the Codification Pedagogy, layered on a problem-
solving process model. The figure includes the corresponding research methods
and learning activities used to support the problem-solving state. The three learning
activities are an Assignment Presentation, a Questioning Activity, and a Design Strategy
Activity. The figure shows transitions between the learning activities, to demonstrate
the workflow. The workflow shows that the learning activities allow the student
to return or skip activities, giving the student the opportunity to form their own



4.5. Pedagogy Studies 37

problem-solving process based off an expert’s model, or use the problem-solving
process suggested by the pedagogy. More details on the research studies and learn-
ing activities are presented in the remainder of this section.

4.4.1 Assignment Presentation

The Assignment Presentation is presented as the first learning activity in the peda-
gogy. This learning activity contains the programming assignment within a scaf-
folded learning environment. The activity is designed to help students improve
their program comprehension, helping them form a more accurate model for solving
the problem. The design and development of this activity is grounded in Program
Comprehension, described in Section 2.2.1.

4.4.2 Questioning Activity

The second learning activity is a design-based intervention that uses instructional
questions to encourage self-reflection, a behaviour present in high-performing stu-
dents (Hausmann and Chi, 2002). The Questioning Activity is designed to engage
the students’ lower and higher-order Critical Thinking Skills, described in Section
2.3. The learning activity gives students different views into their existing internal
knowledge to help them plan and organise a solution. The Questioning Activity is
the first intervention that follows the Assignment Presentation. The organisation of
the learning activities within the pedagogy allows students to reference the problem
description when answering the questions.

4.4.3 Design Strategy Activity

The final learning activity is a Design Strategy Activity that supports students to build
their Design Knowledge. The activity uses Parsons problems, a learning tool that
helps reduce students’ cognitive load when creating working programs, by arrang-
ing code fragments in the right order (Morrison, Margulieux, and Guzdial, 2015).
Reasons for using Parsons problems as the learning activity are presented with this
study. This activity resides after the Questioning Activity, where students use the As-
signment Presentation and their answers to the Questioning Activity as references for
this intervention.

4.5 Pedagogy Studies

This section describes the studies performed on the Codification Pedagogy. Six stud-
ies are performed to measure how the pedagogy achieves its pedagogical goals.

FIGURE 4.3. Research Studies for Learning Activities



38 Chapter 4. Pedagogy Studies

Qualitative studies using a mixed-methods approach of pre-tests, surveys, question-
naires, think-alouds, and interviews are conducted to collect students’ perceptions
on using the pedagogy, to gain insight into how they perceive the pedagogy helps
them with their understanding of the problem. The qualitative studies underwent
ethics approval at the University of Adelaide. Quantitative analysis is performed
using different analysis approaches, such as comparative analysis, to confirm that
the data aligns with the hypothesis that the pedagogy will improve students’ under-
standing of the problem, and support their use of SRL strategies.

The six studies are presented as separate chapters. The studies are organised in
the order the learning activities are presented to students within the pedagogy. The
first five studies examine the learning activities, while the final study evaluates the
pedagogy in its entirety. The rest of this section describes each study.

4.5.1 Assignment Design Study

Chapter 5 describes the study performed to identify best practices in CS1 assignment
design. The study involves a survey of literature seeking evidence-based design
treatments proven to help students’ understanding of programming assignments.
The study constructs a framework with the design treatments from peer-review pub-
lications. This study shows the framework being used to construct assignment pre-
sentations for procedural programming problems. This study contributes towards
answering the research question:

• RQ 1.2: What presentation treatments within the programming assignments support
students in their understanding of the problem?

From the study, an instructional instrument was constructed using the frame-
work, and used in the next study for further examination of the assignment presen-
tation.

4.5.2 Assignment Comparative Study

Chapter 6 describes a study that uses a comparative study method to examine the
assignment presentation formed in the first study. The assignment presentation
is a highly scaffolded version of Soloway’s Rainfall Problem (Soloway, Bonar, and
Ehrlich, 1983) that allows for comparison with other Rainfall Problem studies. The
study compares the completion rate of programming tasks, to determine whether
the design treatments help students complete tasks. The study addresses the follow-
ing research questions:

1. RQ1.1: How does scaffolding the assignment presentation influence the student’s abil-
ity to identify goals and subgoals necessary to complete a procedural programming
assignment?

2. RQ1.2: What presentation treatments within the programming assignments support
students in their understanding of the programming problem?

The results from this study provide insight into helpful design treatments; how-
ever, this study is performed with just one programming problem. The next study
continues to evaluate the Assignment Presentation learning activity by using a quali-
tative study with another programming problem.



4.5. Pedagogy Studies 39

4.5.3 Assignment Design Interview Study

Chapter 7 presents a qualitative study using a questionnaire and interviews with
CS1 students to evaluate the design treatments within a programming assignment.
This study involves collecting student volunteers’ feedback on how the presentation
impacts their understanding of the problem and their use of SRL strategies. The
interviews provide insight into how students are using the design treatments to help
them solve the problem. The study contributes towards answering the following
research questions:

• RQ1.1: How does scaffolding the assignment presentation influence the student’s abil-
ity to identify goals and subgoals necessary to complete a procedural programming
assignment?

• RQ1.2: What presentation treatments within the programming assignments support
students in their understanding of the programming problem?

The study strengthens the findings from the previous study on assignment pre-
sentation. The results help to identify design treatments that can help students better
understand the problem and support their use of SRL strategies.

4.5.4 Questioning Activity Study

Chapter 8 examines the first intervention in the Codification Pedagogy, the Ques-
tioning Activity. The activity builds on the Assignment Presentation by encouraging
students through questioning to use critical thinking skills to reflect on the program-
ming problem. The Assignment Presentation activity is designed to help students
form a better mental model from the assignment description, while this learning ac-
tivity helps the student apply their internal knowledge to solving this mental model.
The study presents the development of a questioning framework to construct ques-
tioning activities. The framework maps 23 instructional question types to Bloom’s
Taxonomy. The Bloom’s Taxonomy is an analysis tool to determine if the question-
ing helps students to support students in engaging with the design process through
questioning. This study is designed to answer the following research question:

• RQ2.1: Does encouraging questions in an online CS1 learning environment promote
the expected cognitive levels from students when answering the questions?

This study seeks to identify the cognitive levels used by students when answer-
ing the Questioning Activity, supporting the decomposition of programming goals
to help them better solve the problem. Results demonstrate students reflecting on
the problem and using Good Learning Behaviours (GLBs) to plan a solution for the
programming problem.

4.5.5 Design Strategy Activity

Chapter 9 presents a study on the second intervention in the pedagogy, a Design
Strategy Activity. The learning activity supports students’ use of design strategies
by having them arrange plans in the order of implementation. The learning activity
incorporates Parsons problems, a learning tool that enables students to construct
working programs by arranging code fragments in a scaffold environment (Parsons
and Haden, 2006). In this study, students arrange plans in the Parsons problems, to
order the plans for implementation.



40 Chapter 4. Pedagogy Studies

The study uses qualitative and quantitative study methods to show how stu-
dents use the learning activity during the design process. This study is designed to
answer the following research questions:

• RQ3.1: How do students use Parsons problems during the design process for solving
CS1 procedural programming assignments?

• RQ3.2: What Self-Regulated Learning (SRL) strategies are support by Parsons prob-
lems used as a design-based intervention for programming assignments?

Results from the study show SRL strategies being supported by the learning ac-
tivity, and students using the activity throughout the software development process.

4.5.6 Entire Pedagogy Study

Chapter 10 focuses on the entire pedagogy, evaluating how the entire pedagogy
might have influenced students’ awareness of skill usage and their academic suc-
cess. This study applies quantitative methods to compare the influence of the entire
pedagogy with the Questioning and Design Strategy activities, to students that did not
receive the activity. Results from the study show students exposed to the pedagogy
using Good Learning Behaviours (GLBs) to plan and understand the problem, along
with having higher completion rates for programming assignments.

4.6 Summary

This chapter presented a high-level view of the pedagogy design, and the studies
examining the pedagogy. The pedagogy design outlines the learning activities used
within the pedagogy, and identifies the pedagogical goals each learning activity sup-
ports.

The chapter described the pedagogical design layered over a problem-solving
process model. The pedagogical design allows students to transition between the
learning activities, similar to transitioning between problem-solving process states.
The pedagogy is designed to support students to transition through the problem-
solving process states, helping them readjust their understanding of the problem
and supporting their use of problem-solving strategies within a scaffolded learning
environment.

The evidence of the studies demonstrate that the pedagogy encourages students
to use SRL strategies and helps improve their program comprehension. The studies
also confirm that the Codification Pedagogy has a positive impact, revealing stu-
dents’ adjustments in their understanding of the problem through self-reflection,
their perception of their understanding of the instructional materials, and their use
of SRL strategies.

The study chapters identify which part of the pedagogy each study examines
and how that study’s findings relate to the other studies. Each chapter also provides
the study’s methodology, the experiment, the results from the experiment, and a
discussion summarising the study’s findings.



41

Chapter 5

Assignment Design Study

This is the first study on the Codification Pedagogy, focusing on the Assignment Pre-
sentation learning activity. Section 5.1 provides an overview of the study. Sections
5.2, 5.3, and 5.4 present the study method, analysis, and results. Finally, Section 5.5
presents the summary.

5.1 Overview

As stated in the background literature, Chapter 2, this thesis is motivated to en-
courage students to adopt Good Learning Behaviours (GLBs) so that they would
avoid using Poor Learning Tendencies (PLTs). This study evaluates the assignment
presentation as a means of promoting Good Learning Behaviours and improving
students’ program comprehension (Schulte et al., 2010), which could lead to higher
assignment completion rates (Bergin, Reilly, and Traynor, 2005). Practitioners have
the opportunity through the assignment design to discourage the adoption of Poor
Learning Tendencies, such as focusing on surface aspects (Adelson, 1984) or key-
words (Ginat, 2003) within the assignment description that could lead to misun-
derstandings. Prior assignment design research has focused on the inconsistencies
in the presentation of assessment tasks (Thompson et al., 2008) and assignments
for software engineering courses (Hashim and Khairuddin, 2009; Khairuddin and
Hashim, 2008), but this research focuses on the assignment design and how it can
be used to present CS1 programming assignments for better understanding, helping
students to follow instructions with success and with more ease (Marcus, Cooper,
and Sweller, 1996).

Assignment design can influence students’ learning, where inappropriate forms
of presentations, such as overly complicated assignment descriptions, can lead to the
adoption of surface-level learning approaches (Joughin, 2010). Poorly constructed
assignments require more understanding (Reitman, 1965), which could ‘impede stu-
dents from acquiring new concepts in computer programming’ (Veerasamy, D’Souza,
and Laakso, 2016, p. 51) and affect how they perceive their programming abilities,
potentially leading to lower assessment scores (Ramalingam, LaBelle, and Wieden-
beck, 2004). Well-formed assignments can help CS1 students complete assignments
(Feldman and Zelenski, 1996) and develop problem-solving skills (Fee and Holland-
Minkley, 2010).

This first study builds on the background literature, by seeking evidence-based
support in text-based representations of problems to improve students’ program
comprehension. The study presented in this chapter helps towards answering the
following research question:

• RQ1.2: What presentation treatments within the programming assignments support
students in their understanding of the problem?



42 Chapter 5. Assignment Design Study

Inclusion Criteria Exclusion Criteria

• Peer-reviewed papers published in
journals and conferences between
2000-2017.
• Papers on programming assignment

design for CS1 students to solve
independently.
• Assignments developed for

classroom and online learning
environments.
• Papers that identify guidelines that

the authors feel helped students
better understand the programming
problem.

• Studies focused on assignments and
learning strategies for students
beyond their first year at university.
• Purely theoretical papers.
• Research examining changes to

curriculum for higher learning gains.
• Literature providing guidelines for

either lab- or team-based
instructions.
• Research focusing on a single

programming concept, where
guidelines cannot be generalised nor
applied to other contexts.

TABLE 5.1 Literature Review Selection Criteria

To address this research question, this study surveys existing peer-reviewed pub-
lications that identify design treatments for instructional materials that positively
contribute to students’ understanding of the programming problem, or give stu-
dents support in using Self-Regulated Learning (SRL) strategies to help them better
understand.

The study method collates design treatments found in peer-review publications
into a framework. The framework is designed to help construct the presentation
of CS1 programming assignments. This chapter presents an example assignment
presentation, formed by using the framework.

5.2 Methods

This section describes the study method used to find design treatments that can im-
prove students’ program comprehension through a text-based representation of the
programming problem. A thorough and systematic literature review (Booth, Pa-
paioannou, and Sutton, 2012) is conducted to find design treatments in the existing
literature that can help improve students’ mental representation of the solution. A
systematic literature review identifies and collects research based on a defined crite-
ria, where the collected data is then analysed and presented. This section presents
the literature review processed used in this study. Section 5.2.1 describes the search
criteria for finding the design treatments. Section 5.2.2 describes the data collection
performed.

5.2.1 Search Criteria

The systematic literature review began with a search using a meta-search engine
provided through the university, which queries the ACM Digital Library, EBSCO-
host for Computers and Applied Science, IEEE Xplore Digital Library, Springer, and
SAGE Publications libraries. The search criteria, shown in Table 5.1, focus on publi-
cations in peer-reviewed journals and conferences between 2000 and 2017 that dis-
cuss design treatments for individual take-home CS1 programming assignments,
promoting improved program comprehension. As well as being the focus of the



5.3. Analysis 43

search results, design treatments also include authors’ observations made from per-
forming the study’s experiment, case study, or survey.

The applied selection criteria use the following search string: (Homework OR Ex-
ercises OR ‘Problem Description’ OR Assignment OR Comprehension) AND (CS1 OR
‘Computer Science’ OR ‘Introductory Programming’), where the meta-search engine ap-
plied the query string for all search fields, such as Title, Subject, and User tags. The
keywords used in the search criteria were selected from terms used in publications
(Kinnunen and Simon, 2011; Köppe and Pruijt, 2014) focusing on assignment design.

5.2.2 Data Collection

This section describes the process of selecting publications from the study’s search
criteria, and collating them using the multi-level assignment educational design pat-
tern to form the assignment presentation framework. Part of the data collection pro-
cess is applying exclusion criteria from the search criteria described in Section 5.2.1.
The exclusion criteria, presented in Table 5.1, contain five rules defining the exclu-
sion requirements.

To illustrate the selection process with the exclusion criteria, a couple of exam-
ple publications are presented. A peer-review journal paper (Buckley et al., 2004)
appeared in the initial search results, where the study discussed socially-relevant
content for assignments using three exemplar projects. However, the paper does not
meet the selection criteria because the example projects are designed for senior-level
undergraduate courses, and not CS1. Another example (Sharmin et al., 2019) inves-
tigates using open-ended assignment presentations for the purpose of improving
CS1 students’ self-efficacy. This paper did not meet the selection process because the
study uses design treatments to improve self-efficacy.

After the inclusion and exclusion criteria are applied, a quality evaluation step
(Booth, Papaioannou, and Sutton, 2012) is performed, to ensure the appropriate pub-
lications are selected. Abstracts from the publications are reviewed to determine if
the design treatments influence students’ program comprehension.

5.3 Analysis

This section describes the analysis process for this study. Section 5.2.2 presents the
selection process for the design treatments. Section 5.3.1 describes the method of
organising the data collected from the search criteria to form a framework, incorpo-
rating the design treatment into the assignment design framework.

5.3.1 Framework Design

A framework was chosen to organise and classify the publications collected from
the systematic literature review. This section describes how the design treatments
are classified to form an assignment design framework that can be used to construct
programming assignments. The publications identified through the systematic lit-
erature review are classified using a theoretical multi-level assignment educational
design pattern that incorporates ‘a variety of educational objectives into a single
assignment by including the concepts on multiple knowledge and process levels’
(Köppe and Pruijt, 2014). The design pattern is a variant pedagogical design pat-
tern (Alexander, Ishikawa, and Silverstein, 1977) for educational activities that can
improve applications for teaching and learning (Fioravanti and Barbosa, 2016).



44 Chapter 5. Assignment Design Study

Reliability of the literature review was considered by using strategies applied to
systematic literature reviews that mitigate bias and increase reliability (Haddaway
et al., 2015). Multiple databases were used in the search to avoid any bias that might
arise from finding literature within a single database. Another strategy used was
designing ‘search strings with appropriate synonyms and combinations of search
terms that the relevance of all search results be determined based on consistent cri-
teria’ (Haddaway et al., 2015).

This design pattern was selected to classify the design treatments, because it con-
tains layers of scaffolding. Scaffolding is a teaching method used within Cognitive
Apprenticeship, designed to help support students’ learning by providing students
a learning environment to successfully complete tasks (Wood, Bruner, and Gail,
1976). Background on Cognitive Apprenticeship was presented in Section 2.5.1. The
design pattern’s ability to support scaffolding aligns with the instructional strategy
used in the Codification Pedagogy.

The multi-level assignment educational design pattern is comprised of the fol-
lowing sections:

1. Context: Describes the conditions in which the design pattern is used that can
help facilitate deeper learning.

2. Problem: Attempts to support the learning experience for the student by focus-
ing on the presentation of materials, and presents examples and requirements
to help them for higher conceptual understanding.

3. Forces: Clarifies the problem by describing tactics used by students to complete
the assignment.

4. Solution: Describes how to solve the pattern’s Problem by encouraging students
to realise the concepts by integrating them into the assignment domain.

5. Implementation: Provides three examples on how to apply the design pattern.

6. Consequences: Discusses the risks that may arise from using the design pattern.

This study uses the Implementation Section as the template for the assignment
presentation structure. The Implementation Section identifies three categories to help
organise the design treatments:

• Context: Provides the basis and explanation for the programming problem
(Guzdial, 2010) and displays required concepts for completing the assignment.
The concepts are presented early in the assignment description to encourage
reflection on the concepts.

• Problem Description: Describes the problem needing to be solved using the con-
cepts identified in the Context Section.

• Hints: Depicts concepts in other knowledge levels to help the student better
understand the problem and concepts.

To determine the best category for a design treatment, the purpose of the treat-
ment is examined. The purpose is then mapped to one of the three categories in
the design pattern: Context, Program Description, or Hints. If the initial examination
suggests the treatment can be mapped to more than one category, the publication
introducing the treatment is further examined, providing additional background for
selecting the appropriate category.



5.4. Results 45

The classification of the design treatments within the design pattern forms an
assignment presentation framework. This study demonstrates framework usage by
applying the framework to a programming problem.

5.4 Results

The study’s search criteria generated 2169 results, but was reduced to 92 papers
when the meta-search engine’s Peer-reviewed filter was applied. The Peer-reviewed fil-
ter was previously applied to another search criteria outside the scope of this study,
which produced in an accurate search result. The exclusion criteria from Table 5.1
was applied to the 92 papers’ abstracts and titles. The exclusion criteria reduced the
92 papers to 11 papers. The citations from the 11 papers were evaluated to deter-
mine if any of the citations were relevant for this study. The citations from the 11
papers brought the final literature result to 14 publications.

Table 5.2 presents the 14 publications that meet the search criteria, listing the pub-
lications in alphabetical order by title, identifying the design treatments from the
publication. The 14 publications were then divided into three categories, Context,
Program Description, and Hints. These categories emerged from the multi-level as-
signment educational design pattern (Köppe and Pruijt, 2014), presented in Section
5.3.1 and used as the assignment presentation template. The remainder of this sec-
tion presents the design treatments organised by the three presentation categories,
followed by the developed framework and an exemplar assignment constructed by
the framework.

5.4.1 Context

The search criteria identify three publications supporting context. The assignment
design pattern suggests including the learning objectives and concepts required to
solve the problem, promoting internal reflection on previously learned materials.
The design pattern also suggests placing key concepts in bold to focus the student
and discourage them from concentrating on secondary or superficial concepts (de
Raadt, Watson, and Toleman, 2009).

Two of the publications focus on approaches to minimise Poor Learning Tenden-
cies (PLTs) (Carbone et al., 2000; Carbone et al., 2001). The first study targets Poor
Learning Tendencies related to superficial attention, impulse attention, and stay-
ing stuck, while the second study focuses on Poor Learning Tendencies related to
non-retrieval and lack of internal and external reflective thinking. The second study
(Kussmaul, 2008) presents lessons learned from scaffolding CS1 and CS2 Java-based
assignments, presenting best practices that helped with their understanding of the
programming problems. Design treatments from the literature include:

• Emphasising key points of the problem by highlighting the tasks to help re-
duce students making hasty problem-solving decisions (Carbone et al., 2000).

• Avoiding the presentation of numerous unfamiliar concepts in a single assign-
ment (Carbone et al., 2000). The tutors observed students could only focus on
one question when encountering a lot of new concepts.

• Containing familiar tasks, such as prior learning materials, which reinforces
learning (Carbone et al., 2001).



46 Chapter 5. Assignment Design Study

Title of Publications Suggested Design Treatments
A code snippet library for CS1
(Lorenzen et al., 2012)

Includes external code in the assignment
to help students learn more complex
concepts sooner, and allows practitioners
to build interesting problems.

Characteristics of programming
exercises that lead to poor learning
tendencies: Part II (Carbone et al.,
2001)

Includes tasks that students are familiar
with to promote learning reinforcement;
Present high-level justification to link
previously learned concepts.

Developing real-world programming
assignments for CS1 (Stevenson and
Wagner, 2006)

Incorporates layers in the assignment to
challenge students and make the problem
interesting and fun for them to complete.

Experiences in threading UML
throughout a computer science
program (Ruocco, 2001)

Includes use cases, class diagrams, and
associations within the assignment
design to provide better examples of how
control structures can be applied to the
problem.

Exploring factors that include
computer science introductory course
students to persist in the major
(Barker, McDowell, and Kalahar,
2009)

Provides concepts with context that is
interesting to students; provide
instructional material related to students’
background knowledge, for better
retention.

Extreme apprenticeship method in
teaching programming for beginners
(Vihavainen, Paksula, and
Luukkainen, 2011a)

Provides smaller goals and relevant
examples with clean guidelines to help
students find the starting point to solve
the problem.

Interesting basic problems for CS1
(Gal-Ezer, Lanzberg, and Shahak,
2004)

Provides realistic problems to help
increase motivation.

Note to self: Make assignments
meaningful (Layman, Williams, and
Slaten, 2007)

Provides socially-relevant material that
students find interesting to keep them
more engaged in solving the problem.

Novice programmers and the problem
description effect (Bouvier et al.,
2016)

Includes contextualisation that can help
with motivation and engagement.

Principles for designing programming
exercises to minimise poor learning
behaviours in students (Carbone
et al., 2000)

Emphasises the key point of the problem
by using bold text; minimises
overloading the student with unfamiliar
concepts, so they can remain focused.

Scaffolding for multiple assignment
projects for CS1 & CS2 (Kussmaul,
2008)

Provides design elements from lessons
learned in the classroom.

Research directions for teaching
programming online (Settle,
Vihavainen, and Miller, 2014)

Presents published materials to construct
acceptable practices to teach in online
learning environments.

Visualisations in preparing for
programming exercise sessions
(Ahoniemi and Lahtinen, 2007)

Includes visualisations into the problem
that can help students with no
programming experience better
understand the problem.

Why the rhetoric of CS programming
assignments matter (Wolfe, 2004)

Provides real-world context for the
problem to keep students motivated.

TABLE 5.2 Publications Meeting Literature Review Selection Criteria



5.4. Results 47

• Providing a broad view of the assignment to give it purpose and to help stu-
dents associate the concepts taught in the course with the problem (Carbone
et al., 2001).

• Providing an outline on how to approach solving the problem to help students
stay on the right problem-solving path (Carbone et al., 2000).

• Providing the students with the requirements (Kussmaul, 2008). The early as-
signments provide more detailed requirements and fade the support over the
duration of the course.

• Interleave assignments to provide a variety to the programming problems,
while giving students the opportunity to return to provide work and incor-
porate the previous feedback by the educator (Kussmaul, 2008).

5.4.2 Program Description

The results from the study’s search criteria contain seven publications focusing on
the assignment’s purpose. Three of the publications (Bouvier et al., 2016; Settle, Vi-
havainen, and Miller, 2014; Vihavainen, Paksula, and Luukkainen, 2011a) discuss
providing students with contextualised problem descriptions so they can develop a
cognitive schema by using their internal knowledgebases. The familiarity with the
contextualised content can free space in the students’ working memories so that they
can develop more complex solutions (Sweller, Merriënboer, and Paas, 1998). A study
(Bouvier et al., 2016) from the literature review performed a study on the impact of
contextualised content on students’ grades. Though the contextualised content did
not have an impact on the overall grades, it did have an impact on the participants’
motivation and interest in the assignment. Contextualisation has also been stud-
ied from the perspective of students’ motivation to persist with the problem-solving
process. Another study studied eight factors that predicted students’ persistence in
CS (Barker, McDowell, and Kalahar, 2009). One factor was related to contextualised
content, showing students persisting in solving programming assignments, and also
enabling them to retain more of the information.

Another study (Gal-Ezer, Lanzberg, and Shahak, 2004) found using problems
with real-world context can help demonstrate complex concepts in CS1 because of
students’ familiarity with the context. A study (Layman, Williams, and Slaten, 2007)
studied motivation by administering a survey at North Carolina State University
with 200 CS1 students, asking for testimonials on practical and socially-relevant as-
signments. The results showed that students preferred practical and socially rele-
vant assignments, a preference that could increase their interest in the assignment.
Another publication (Wolfe, 2004) conducted a survey with 81 students evaluating
different contextualised instructional materials. The results from the survey showed
a majority (54%) of the students prefer real-world assignments, since they felt the
assignments were easier to understand, and the real-world context motivated them
to complete the assignment. Another publication (Stevenson and Wagner, 2006) per-
formed a test using two programming assignments with real-world contexts in a
classroom environment. The students participating in the study found solving these
assignments fun and interesting because they appreciated seeing their work applied
to real external websites.

A study performed at the University of Helsinki within a CS1 learning environ-
ment and Java using Extreme Apprenticeship, a teaching approach based on prin-
ciples that guide students in solving programming problems, providing feedback



48 Chapter 5. Assignment Design Study

during the problem-solving process (Vihavainen, Paksula, and Luukkainen, 2011a).
The results show reduced drop-out rates. Outcomes using Extreme Apprenticeship
produced the following guidelines for presenting assignments:

• Providing students with smaller goals to help them identify intermediate goals.

• Presenting problems that have a defined starting point to assist students in
beginning the problem-solving process.

• Giving students examples of the output to better understand what the problem
is trying to achieve.

Another publication found the assignment description constructed in multiple
layers can provide struggling students with additional support to understand the in-
structional materials while continuing to challenge high-achieving students (Steven-
son and Wagner, 2006). Within the layered assignment, there is a basic solution that
all students can achieve, along with additional challenging layers. A layered ap-
proach in the assignment presentation gave struggling students the opportunity to
succeed by achieving some layers in the assignment (Stevenson and Wagner, 2006).
Achieving some layers in the assignment can increase the students’ self-confidence
and self-efficacy, possibly encouraging them to attempt more challenging layers in
future assignments.

5.4.3 Hints

The final section of the assignment presentation provides students with additional
assistance in understanding the problem. Four publications emerged from the search
criteria that align with this section, focusing on visualisation and coding exemplars.

One publication (Ahoniemi and Lahtinen, 2007) investigated the use of a vi-
sualisation tool for reviewing instructional materials. The study concluded visual
learners and students struggling to understand concepts benefited from using the
visual tool, which resulted in higher grades. The 30 students involved in the study
were also given a post-survey to provide their experience using the visualisation
tool. Students’ feedback in the survey showed them stating the visualisation tool
helped them better understand the problem. Another publication (Ruocco, 2001) in
the literature review uses the Unified Modelling Language (UML) (Object Manage-
ment Group (OMG), 2017) in assignments administered at the United States Mili-
tary Academy at West Point, New York. UML components, such as use cases, class
diagrams, and associations replaced a previous ad-hoc visual language used at the
academy. Students using UML valued the visualisation tool because it allowed them
to better describe their programs’ intentions. The visual aids helped students recog-
nise interactions between objects, identify workflow, and better understand state
changes in the problem.

Another publication (Lorenzen et al., 2012) discusses the presence of an external
codebase in assignments to encapsulate complex programming concepts that are
beyond the students’ cognitive abilities. Providing external codebases give students
the opportunity to develop more complex and interesting assignments earlier in the
course. The study attempts three different approaches to integrate external code-
bases in CS1 assignments: manuals, memorisation, and libraries. The use of man-
uals overwhelmed students, and memorisation of code structures was ineffective
when students attempted to apply them during the software-development process.
The final approach uses a code snippet library comprised of external C++ and Java-
based libraries to help reduce students’ frustration during the software development



5.4. Results 49
C

on
te

xt

El
em

en
t

Pr
ac

ti
ce

G
ui

da
nc

e

H
ea

di
ng

s
•

H
el

ps
to

id
en

ti
fy

se
ct

io
ns

•
Pr

ov
id

e
cl

ea
n

gu
id

el
in

es
(V

ih
av

ai
ne

n,
Pa

ks
ul

a,
an

d
Lu

uk
ka

in
en

,2
01

1a
)

C
or

e
O

bj
ec

ti
ve

s

•
M

in
im

is
es

ha
st

y
de

ci
si

on
s

•
Id

en
ti

fie
s

ta
sk

s

•
U

se
s

bo
ld

fa
ce

te
xt

(C
ar

bo
ne

et
al

.,
20

00
)

C
on

te
xt

In
fo

rm
at

io
n

•
G

iv
es

ba
ck

gr
ou

nd
fo

r
pr

ob
le

m
•

Pr
om

ot
es

lo
ng

-t
er

m
re

te
nt

io
n

•
D

ed
uc

es
pr

ac
ti

ca
lit

y

•
Pr

ov
id

e
ba

si
s

fo
r

as
si

gn
m

en
t

(C
ar

bo
ne

et
al

.,
20

01
)

Pr
og

ra
m

D
es

cr
ip

ti
on

El
em

en
t

Pr
ac

ti
ce

G
ui

da
nc

e

A
ss

ig
nm

en
tC

om
pl

ex
it

y

•
In

cr
ea

se
s

co
nfi

de
nc

e
•

R
ed

uc
es

Po
or

Le
ar

ni
ng

Te
nd

en
ci

es

•
R

ed
uc

es
th

e
nu

m
be

r
of

ne
w

co
nc

ep
ts

(B
ou

vi
er

et
al

.,
20

16
)

•
A

dj
us

ts
in

cr
em

en
ta

lly
th

e
co

nt
en

t
(S

et
tl

e,
V

ih
av

ai
ne

n,
an

d
M

ill
er

,2
01

4)
•

In
co

rp
or

at
es

sm
al

le
r

go
al

s
(V

ih
av

ai
ne

n,
Pa

ks
ul

a,
an

d
Lu

uk
ka

in
en

,2
01

1a
)

•
En

ca
ps

ul
at

es
co

m
pl

ex
it

y
in

ex
te

rn
al

m
od

ul
es

(L
ay

m
an

,
W

ill
ia

m
s,

an
d

Sl
at

en
,2

00
7)

Su
bj

ec
tM

at
te

r
•

In
cr

ea
se

s
m

ot
iv

at
io

n
•

Im
pr

ov
es

se
lf

-e
ffi

ca
cy

•
Pr

ov
id

e
in

te
re

st
in

g
(G

al
-E

ze
r,

La
nz

be
rg

,
an

d
Sh

ah
ak

,
20

04
),

so
ci

al
ly

-r
el

ev
an

t(
La

ym
an

,W
ill

ia
m

s,
an

d
Sl

at
en

,2
00

7)
an

d
re

-
al

is
ti

c
pr

ob
le

m
s

(W
ol

fe
,2

00
4)

•
Pr

ov
id

e
co

nc
ep

ts
to

st
ud

en
ts

w
it

h
in

te
re

st
in

g
co

nt
ex

ts
(S

te
ve

n-
so

n
an

d
W

ag
ne

r,
20

06
)

•
In

st
ru

ct
io

na
lm

at
er

ia
lr

el
at

ed
to

st
ud

en
ts

’k
no

w
n

ba
ck

gr
ou

nd
(S

te
ve

ns
on

an
d

W
ag

ne
r,

20
06

)
•

C
on

te
xt

ua
lis

at
io

n
fo

r
m

ot
iv

at
io

n
(B

ou
vi

er
et

al
.,

20
16

)

H
in

ts

El
em

en
t

Pr
ac

ti
ce

G
ui

da
nc

e

D
ia

gr
am

s

•
H

el
ps

w
it

h
de

si
gn

st
ra

te
gy

•
Ex

pl
ai

ns
so

ft
w

ar
e

de
si

gn

•
In

cl
ud

e
U

M
L

di
ag

ra
m

s
fo

r
ill

us
tr

at
io

n
(R

uo
cc

o,
20

01
)

C
od

e
Se

gm
en

ts

•
En

co
ur

ag
es

co
di

ng
st

an
da

rd
s

•
H

el
ps

de
ve

lo
p

al
go

ri
th

m
s

•
In

cl
ud

e
co

de
se

gm
en

ts
as

re
fe

re
nc

es
(L

or
en

ze
n

et
al

.,
20

12
)

Ex
am

pl
es

•
Le

ar
ns

fr
om

a
w

or
ke

d
so

lu
ti

on

•
In

cl
ud

e
re

le
va

nt
ex

am
pl

es
(V

ih
av

ai
ne

n,
Pa

ks
ul

a,
an

d
Lu

uk
ka

in
en

,2
01

1a
)

V
is

ua
li

sa
ti

on

•
Pr

ov
id

es
fu

rt
he

r
in

si
gh

t
•

D
ev

el
op

s
m

en
ta

lm
od

el

•
In

cl
ud

e
vi

su
al

ai
ds

to
as

si
st

vi
su

al
le

ar
ne

rs
(A

ho
ni

em
i

an
d

La
ht

in
en

,2
00

7)

FI
G

U
R

E
5.

1
C

S1
A

ss
ig

nm
en

tD
es

ig
n

Fr
am

ew
or

k



50 Chapter 5. Assignment Design Study

process and help students develop programming algorithms. The external codebase
exposes students early to experts’ code, a teaching approach used in apprenticeship
learning (Vihavainen, Paksula, and Luukkainen, 2011a). The last publication (Vi-
havainen, Paksula, and Luukkainen, 2011a) suggests using apprenticeship learning
through examples that give the students the opportunity to interact with interesting
problems, which has been shown to decrease dropout rates.

Averaging Rainfall
The purpose of this program is to practice programming
elements covered this week by converting a math formula
into a program. Here are the programming elements to use in
your assignment:

Variables
Integers

Loops
If Then/Else

Input/Output

Program Description:
Create a program that averages rainfall for a certain number
of days. Your program first receives the rainfall from the
keyboard. The days are entered one day at a time until the
user enters the number 99999. 99999 is a signal to stop
accepting rainfall information. Then your program should
calculate the Arithmetic Mean (Average) of the rainfall.
Lastly, it should display the result on the screen in the
following format:
The average rainfall for ‘n’ days is ‘x’.
The ‘n’ is the number of days, and ‘x’ is the average of
those days.

Hints:
• You can use Integers for the rainfall numbers.
• Do not accept negative rainfall, since this does not exist in

the real world. Provide a message letting the user know they
made a mistake, such as: Sorry, unacceptable rainfall.
• You will also need to calculate

the Arithmetic Mean (Average)
in your program.

Average =
x1 + x2 + ... + xn

n

• For more hints on the math formula, visit:
http://mathsisfun.com/data/mean-machine.html

Context
• Title
• Core

objectives
• Context

information

Assignment
Domain
• Assignment

complexity
• Subject Matter

Knowledge
Embellishments
• Diagrams
• Visualisation

FIGURE 5.2 Example of Highly Scaffolded Rainfall Problem

5.4.4 Framework

This section presents the assignment design framework constructed from the design
treatments identified by the study’s search criteria. This section also demonstrates



5.5. Summary 51

Write a program that repeatedly reads in a positive
integers, until it reads the integer 99999. After seeing
99999, it should print out the average.

FIGURE 5.3 Original Rainfall Problem (Soloway, Bonar, and Ehrlich, 1983)

how the framework is applied to form a high scaffold version of an existing pro-
gramming problem.

The framework is shown in Figure 5.1, and is divided into three categories from
the multi-level assignment educational design pattern (Köppe and Pruijt, 2014): Con-
text, Program Description, and Hints. In the presentation template, Context design
treatments appear first, followed by the Program Description, and Hints.

The prevalence of design treatments within an assignment presentation can de-
fine the scaffolding level that best suits the students’ abilities. A high number of
design treatments across the three categories would indicate a high-scaffold envi-
ronment, designed for students needing additional guidance in understanding and
solving the assignment. Fewer design treatments would indicate a low-scaffold en-
vironment, designed for students to solve the problem in an independent learning
environment, and practise their problem-solving skills (Knobelsdorf, Kreitz, and
Böhne, 2014).

5.4.5 Example Assignment Presentation

This section demonstrates the application of the assignment presentation framework
to a CS1 problem, using Soloway’s Rainfall Problem (Soloway, 1986). Background on
this problem was presented in Section 4.3. The demonstration constructs a highly
scaffolded learning environment from the original problem, shown in Figure 5.3.

Figure 5.2 shows the highly scaffolded version of the Rainfall Problem after ap-
plying the framework. The assignment presentation was designed for CS1 students
with little to no programming experience. The construction involves design treat-
ments from each category in the framework, incorporating a high number of design
treatments to provide a high level of support.

On the right side of the Figure 5.2 are lists describing the design treatments ap-
plied to the example assignment. In the figure, the Context Section presents previ-
ously learned programming concepts, to encourage students to use these concepts
within their solutions. The Program Description Section contextualises the averaging
algorithm. The Hints Section is a link to a worked example that provides students
with a visualisation tool for averaging. The Hints Section provides students with the
averaging formula to help them engage their existing mathematical knowledge.

5.5 Summary

This chapter presents a study performed on the Codification Pedagogy’s first ac-
tivity, the Assignment Presentation. This study was designed to identify previously
published design treatments, to help improve students’ program comprehension. A
systematic literature review was used as the study method to collect these design
treatments. The study engages an assignment design pattern as a template for struc-
turing the presentation of programming assignments.



52 Chapter 5. Assignment Design Study

The results from the study presented 14 publications that identified design treat-
ments that helped students’ understanding of the problem description. The iden-
tified design treatments were classified into categories to form an assignment pre-
sentation framework. The application of the framework to form a highly scaffolded
version of the Rainfall Problem demonstrates how the framework can contribute to
the field of Computer Science Education. The framework can be used as a guide
for educators, enabling them to select design treatments based on their students’
abilities.

There are limitations to the study. The keywords used in this study were selected
to maximise results, but publications on CS1 assignment design use a broad list of
terms for describing assignments and understanding. As a result, the search criteria
might have missed some of these keywords, potentially reducing the number of
publications.

There are future research opportunities with this study. This study presents a
highly scaffolded version of a CS1 programming problem. Future research can ex-
amine the fading of support, evaluating how students compensate when support is
removed. The example assignment presented in this chapter was developed by the
researcher, to evaluate the process of using the framework in the assignment design
process. Future research can invite other educators to develop CS1 assignments with
this framework. The results can provide insight into areas in the framework need-
ing additional development. The framework developed in this study focuses on CS1
programming assignments. Another future research opportunity would be to eval-
uate the framework when applied to upper division CS programming assignments.

The next study, described in Chapter 6, builds on the results from this study. The
next chapter continues to examine the Assignment Presentation learning activity. The
next study applies the example assignment constructed in this study as the instruc-
tional instrument, using the instrument formed in this study to measure the impact
the assignment presentation has on students completing programming tasks.



53

Chapter 6

Assignment Comparative Study

This chapter presents a study that continues to examine the Assignment Presentation
learning activity. Section 6.1 provides an overview of the study. Sections 6.2, 6.3, 6.4,
and 6.5 present the study method, analysis, and results. Finally, Section 6.6 presents
the summary.

6.1 Overview

A pedagogical goal for this thesis is helping students improve their program com-
prehension through the problem description. Background literature on program
comprehension was presented in Chapter 2, describing the process students take
when forming a mental representation of a solution involving the textual represen-
tation of the problem (Schulte et al., 2010). This study builds on research in program
comprehension by focusing on the textual representation of the programming as-
signments to improve students’ mental models. Assignments can be designed to
engage students in purposeful learning and encourage them to complete program-
ming assignments (Feldman and Zelenski, 1996; Veerasamy, D’Souza, and Laakso,
2016), whereas assignments designed above CS1 students’ cognitive abilities can
contribute to their failure rate (Oliver et al., 2004). This study contributes towards
identifying assignment presentations that may aide in improving CS1 students’ un-
derstanding of programming problems.

Chapter 5 presented the first program comprehension study, researching design
treatments from peer-reviewed publications that previously helped students better
understand problem descriptions. Another outcome from the study presented in
Chapter 5 was the classification of design treatments that formed an assignment
presentation framework. This study demonstrated how the framework could be ap-
plied to a problem to form a scaffolded learning environment for the assignment
presentation. The scaffold assignment presentation is being evaluated further as the
instructional instrument in this chapter, to determine the design treatment’s influ-
ence in a blended learning environment.

This chapter presents the second study into program comprehension, evaluat-
ing a highly scaffolded programming assignment developed for an existing CS1
problem, Soloway’s Rainfall Problem (Soloway, Bonar, and Ehrlich, 1983). The study
presented in this chapter compares the classroom application of the assignment to
other Rainfall Problem studies, measuring understanding through completed pro-
gramming tasks. This study then invites students to participate in a survey to pro-
vide feedback on the assignment presentation, getting their perspective on the as-
signment design. This study looks at addressing the following research questions
related to program comprehension:



54 Chapter 6. Assignment Comparative Study

• RQ1.1: How does scaffolding the assignment presentation influence the student’s abil-
ity to identify goals and subgoals necessary to complete a procedural programming
assignment?

• RQ1.2: What presentation treatments within the programming assignments support
students in their understanding of the problem?

Results from this study will show the hints and bullet points design treatments
helped students understand the programming assignment. The chapter concludes
with hints and bullet points as design treatment recommendations and opportuni-
ties for future research.

6.2 Methods

The study methods are presented in this section. Section 6.2.1 presents the partic-
ipants involved in the study. Section 6.2.2 describes the design study of the com-
parative study. Section 6.2.3 presents the survey developed, giving students the
opportunity to provide feedback on the assignment presentation.

6.2.1 Participants

This study was conducted in a 12-week Introductory Programming (CS1) course of-
fered during the August 2017 semester at the University of Adelaide. The study
involved 134 students from the course. Students were given the instructional instru-
ment during week 5 of the semester and given nine days to complete the assignment.
During the nine days, students had the opportunity to work on the problem dur-
ing the lab sessions, where they could receive support from the tutors. Additional
background for the study context was previously presented in Section 4.3, provid-
ing information on the course programming language, learning environment, and
students’ programming experience. The information shared in Section 4.3 provides
commonalities across studies incorporating student participation.

6.2.2 Comparative Study Design

This chapter describes a comparative study that builds on the prior work presented
in Chapter 5. The comparative study presents Soloway’s Rainfall Problem (Soloway,
Bonar, and Ehrlich, 1983), using design treatments from the assignment presentation
framework (See Chapter 5) and evaluating students’ completion of tasks to deter-
mine if the presentation helped students better understand the problem to complete
the task. A comparative study can help identify correlations between previous re-
search results that were performed in diverse settings, providing the opportunity
to observe and quantify the relationships between the research variables (Esser and
Vliegenthart, 2017). The comparative studies also help in providing additional ex-
planations on the previous findings, potentially strengthening the prior results.

The comparative study examines the students completed programming tasks
through the lens of assignment design, and continuing the research on the Rain-
fall Problem from this view. The comparative study uses data collected from prior
research using the Rainfall Problem (de Raadt, Toleman, and Watson, 2004; Ebrahimi,
1994; Fisler, 2014; Lovellette et al., 2017; Lakanen, Lappalainen, and Isomöttönen,
2015; Lovellette et al., 2017; Seppälä et al., 2015; Simon, 2013). These prior Rain-
fall Problem studies were selected based on the presentation of the results, which
identified completed programming tasks in the results and presented an exemplar



6.2. Methods 55

problem description of the Rainfall Problem. Completion of tasks can indicate that the
student identified the task in the problem description. Having access to task com-
pletion rates and different assignment designs is an opportunity to compare and
contrast design treatments.

Included in the comparative study is the instructional instrument presented in
Chapter 5. The instructional instrument generated from Chapter 5, shown in Figure
6.1, presents the Rainfall Problem in a highly scaffolded environment that consists
of design treatments from peer-reviewed publications, designed to help students
better understand the problem. The development of the instructional instrument
was described in Section 5.4.

Averaging Rainfall (8 marks)
In your assignment, you get to practise your coding skills using:

• Variables

• Integers

• Loops

• If Then/Else

• Arrays

Program Description:
Create a program that averages rainfall for a certain number of days. Your
program first receives the rainfall from an array. The days are processed one day
at a time from the array until an array entry is number 99999. 99999 is a signal
to stop accepting rainfall information. Then your program should calculate the
Arithmetic Mean (Average) of the rainfall. Lastly, it should display the result on
the screen in the following format:

The average rainfall for ‘n’ days is ‘x’.

The ‘n’ is the number of days, and ‘x’ is the average of those days.

Hints:

• You can use Integers for the rainfall numbers.

• Do not accept negative rainfall, since this does not exist in the real world. If
a negative rainfall is provided, convert that day’s rainfall to 0. Here is an
example rainfall list for 5 days: (15,0,-53,5,2,99999), with rainfall 15 mm, 0
mm, 0 mm, 5 mm, and 2 mm. Please note that -53 is an invalid rainfall value,
so your program converts the 3rd day to 0 mm.

• You will also need to calculate the Arithmetic Mean (Average) in your pro-
gram.

Average = (x1 + x2 + ... + xn) / n

• For more hints on the math formula, visit:
http://mathsisfun.com/data/mean-machine.html

FIGURE 6.1 Instructional Instrument Used in the Comparative Study

There are seven separate Rainfall Problem studies (de Raadt, Toleman, and Wat-
son, 2004; Ebrahimi, 1994; Fisler, 2014; Lovellette et al., 2017; Lakanen, Lappalainen,



56 Chapter 6. Assignment Comparative Study

Write a program that repeatedly reads in a positive integers, until it
reads the integer 99999. After seeing 99999, it should print out the av-
erage.

FIGURE 6.2 Original Rainfall Problem (Soloway, Bonar, and Ehrlich, 1983)

and Isomöttönen, 2015; Lovellette et al., 2017; Seppälä et al., 2015; Simon, 2013) used
as benchmarks for students’ problem-solving abilities in this comparative study.
These studies used different presentation approaches, focusing on programming
language design (Ebrahimi, 1994), context (Lovellette et al., 2017), and programming
paradigms (Fisler and Castro, 2017; Seppälä et al., 2015). Other studies (Bonar and
Soloway, 1985; Porter, Zingaro, and Lister, 2014) have used the Rainfall Problem, but
did not report on completed tasks. As a result, these studies are excluded from the
comparative study. The completed programming tasks reported in these studies are
(Fisler, 2014):

1. Sentinel ignores inputs after the sentinel.

2. Negative ignores invalid inputs.

3. Sum totals the valid inputs.

4. Count accumulates the non-negative inputs.

5. DivZero guards against division by zero.

6. Average averages the valid inputs.

The following are the studies that did report on completed tasks and are exam-
ined in this comparative study. These studies were selected because they provided
completed programming tasks for the Rainfall Problem, and explained the assign-
ment presentation used in the study. The following list provides the previous Rainfall
Problem research used in this comparative study. The list includes a brief description
of the research, its outcomes, and the details of its assignment presentation. Design
treatments from these studies are discussed, to demonstrate any additional support
provided to the students.

1. Lovellette et al. (2017) attempts to determine whether contextualisation had
an impact on students’ success rate. This research uses the original Rainfall
Problem problem, shown in Figure 6.2. The original problem is presented in
a non-scaffolded learning environment, presenting the problem given as two
sentences without elaboration on the task. The study concludes that contextu-
alisation has no impact on the task completion and overall grades.

“Rainfall” problem: Write a program that will read the amount of
rainfall for each day. A negative value of rainfall should be rejected,
since this is invalid and inadmissible. The program should print out
the number of valid recorded days, the number of rainy days, the rain-
fall average over the period, and the maximum amount of rain that fell
on any one day. Use a sentinel value of 9999 to terminate the program.

FIGURE 6.3 Ebrahimi, 1994 Problem Variant



6.2. Methods 57

2. Ebrahimi (1994) study uses the Rainfall Problem, shown in Figure 6.3, as a
benchmark for students’ problem-solving abilities. The presentation contains
additional hints about the Negative tasks: ‘A negative value of rainfall should
be rejected...’. The study conducts four separate experiment using Pascal, C,
FORTRAN, and LISP programming languages. The study shows that the as-
signment presentation’s additional context has no significant impact on stu-
dents’ results.

3. Seppälä et al. (2015) aims to identify factors during the problem-solving pro-
cess that might challenge students when solving programming problems. In
this study, the Rainfall Problem is presented with examples for the Sum task,
such as ‘a run with three positive inputs, a zero, and a negative number before
the sentinel’ (Seppälä et al., 2015, p. 88). The study was conducted across three
institutions, resulting in a list of factors, such as time constraints, that con-
tribute towards challenges faced by students when completing programming
problems.

/* Implement the ‘Average’ function, which takes the amounts of rain-
fall as an array and returns the average of the array. Notice that if the
value of an element is less than or equal to 0 (‘lowerLimit’), it is dis-
carded, and if it is greater than or equal to 999 (‘sentinel’), stop iterating
(the sentinel value is not counted in the average) and return the average
of counted values. */

public class Rainfall{
public static void Main(){
double[] rainfalls = new double[] { 12,
0, 42, 14, 999, 12, 55 };

double avg = Average(rainfalls, 0, 999);
System.Console.WriteLine(avg);

}
public static double Average(
double[] array, double lowerLimit,
double sentinel){
// Write implementation here

}
}
/* Bonus: Write unit tests. */

FIGURE 6.4 Lakanen, Lappalainen, and Isomöttönen, 2015 Exam Rainfall Problem

4. Lakanen, Lappalainen, and Isomöttönen (2015) uses a version of the Rain-
fall Problem that provides students with both an example and hints. Hints
were presented as parameters in the prototype and comments within the code,
shown in Figure 6.4. The study was conducted in an exam environment, con-
cluding students struggled with combining language constructs.

5. Fisler (2014) researches functional programming languages, to determine if the
programming language contributes towards students’ success. Their version
of the Rainfall Problem includes a hint for the Negative task: ‘There may be
negative numbers other than -999’. The problem also includes a hint to empha-
sise that the array may or may not include the sentinel marker: ‘lists up to the
first -999 (if it shows up)’. The study invited three institutions (two university,



58 Chapter 6. Assignment Comparative Study

one high school) to participate, which showed that students performed better
(81-90% success rate) than other Rainfall Problem studies using the procedural
programming languages.

6. Simon (2013) presents a version of the Rainfall Problem, shown in Figure 6.5,
was presented in a time-contained environment, devoting two paragraphs on
the Sentinel task. This produced different errors than the original problem,
concluding that arrays used for data entry had their own challenges over key-
board data entry.

A program has a one-dimensional array of integers called iRainfall,
which is used to record the rainfall each day. For example, if iRain-
fall[0] is 15 and iRainfall[1] is 0, there was 15mm of rain on the first day
and no rain on the second day.

Negative rainfall values are data entry errors, and should be ignored.

A rainfall value of 9999 is used to indicate that no more rainfall figures
have been registered beyond that element of the array; the last actual
rainfall value recorded is in the element immediately before the 9999.

The number of days represented in the array is open-ended; it might be
just a few days, or even none; it might be a month; it might be several
years. The number of days is determined solely by the location in the
array of the 9999 entry.

The array pictured here shows that rainfall was recorded for five days,
with falls of 15mm, 0, 0, 5mm, and 2mm.

i 0 1 2 3 4 5 ...
iRainfall[i] 15 0 -53 5 2 9999 ...

Write a function method to find and return the average rainfall over all
the days represented in the array. A day with negative rainfall is still
counted as a day, but with a rainfall of zero. The following code might
help.

private int AverageRainfall(int[] iRainfall) {...}

FIGURE 6.5 Simon, 2013 Exam Rainfall Problem

7. de Raadt, Toleman, and Watson (2004) study constructs a framework using the
Goal/Plan approach (Soloway, 1986) to develop assessments. The motivation
for the study is to help students become better problem solvers through assess-
ments constructed by this framework. To evaluate the framework’s influence,
the study uses the original Rainfall Problem, shown in Figure 6.2. Results from
the study shows that the framework can be used to construct assessments and
help students problem solve.



6.3. Analysis 59

The extracted quantitative features were placed in a spreadsheet for compar-
ison. Thirteen different reports were used, because two studies (Ebrahimi, 1994;
Seppälä et al., 2015) performed separate experiments, using different programming
languages and institutions. This study treats these experiments as separate studies,
raising the number of studies analysed to thirteen, including the analysis performed
on the instructional instrument.

6.2.3 Student Survey

A survey was used in this study to seek insight into the problem description, using
it to gain insight to support the quantitative results. The survey was administered
after the assignment due date, and when the students’ solutions were graded by
the tutors. The process of grading involved a tutor sitting with the student to run
their program and discuss any errors or missing components within the solutions.
Students were invited to participate in a voluntary online survey and given two
weeks to respond. The survey was administered through Google Forms (Google
LLC, 2019a), where students were asked to provide their student IDs to validate that
they completed the assignment. The invitation to participate in the survey was done
through Canvas, the LMS that administered the course materials.

The survey contains four questions, two Likert scale questions and two open-
text, and the assignment presentation for reference. The first two questions relate
to the participants’ understanding of the problem statement. The first question is a
Likert scale question, asking the participant to rate their understanding of the prob-
lem from ‘Completely understand’ to ‘Completely did not understand’. The second
question is open-text, allowing the participants to explain any issues when reading
the problem. The third and fourth questions relate to the presentation of the pro-
gramming problem, where the third question is a Likert scale question, asking the
participant if the layout was helpful; and the fourth is open-text for participants to
elaborate on the third question. Appendix B.2.3 provides the full survey adminis-
tered to the participants.

6.3 Analysis

This section describes the analysis performed in this study. Section 6.3.1 describes
the comparative analysis performed on the quantitative features extracted from the
prior studies reporting results using the Rainfall Problem. Section 6.3.2 describes the
coding analysis performed on the survey results.

6.3.1 Comparative Data Analysis

This section presents the quantitative analysis used for the data collected for the
comparative study. Two analysis approaches are used. The first is for the study per-
formed on the data collected from the instructional instrument. The second analysis
is on the data collected from prior Rainfall Problem research. The results are analysed
by comparing the completion rate of the six Rainfall Problem programming tasks:
Sentinel, Negative, Sum, Count, DivZero, and Average tasks. These tasks
were previously described in Section 6.2.2.

To analyse the data collected from the instructional instrument, the teacher for
the Introductory Programming course established grading consistency on students’
programming solutions to ensure accurate grade reporting. One teacher and seven



60 Chapter 6. Assignment Comparative Study

R
esearch

Year
C

om
pleted

R
ainfallP

roblem
Tasks

Scaffolding
Treatm

ents
Sentinel

N
egative

Sum
C

ount
D

ivZ
ero

A
verage

C
ontext

H
ints

Exam
ples

T
his

Study
2018

70%
95%

94%
83%

43%
76%

•
•

•
Lovellette

etal.,2017*
2017

5%
Seppälä

etal.,2015
C

ontext1
2015

91%
83%

97%
56%

•
•

Seppälä
etal.,2015

C
ontext2

2015
93%

75%
95%

75%
•

•
Seppälä

etal.,2015
C

ontext3
2015

98%
91%

98%
86%

•
•

Lakanen,
Lappalainen,

and
Isom

öttönen,2015†
2015

86%
85%

91%
50%

40%
92%

•
•

Fisler,2014
2014

81-90%
57%

85-89%
55-61%

•
Sim

on,2013†
2013

22%
40%

36%
21%

0%
•

•
•

de
R

aadt,Tolem
an,and

W
at-

son,2004*
2004

45.2%
42.9%

9.5%
88.2%

Ebrahim
i,1994

Pascal
1994

71%
•

•
Ebrahim

i,1994
C

1994
73%

•
•

Ebrahim
i,1994

FO
R

TR
A

N
1994

77%
•

•
Ebrahim

i,1994
Pascal

1994
74%

•
•

*
U

sed
the

originalSolow
ay

R
ainfallProblem

Solow
ay,Bonar,and

Ehrlich,1983
†

Presented
in

a
tim

e
constrained

environm
ent

F
IG

U
R

E
6.6

C
orrectly

Im
plem

ented
Tasks

and
Scaffolding

Treatm
ents

U
sed

in
R

ainfallProblem
Studies



6.3. Analysis 61

graders were involved in marking the students’ programming solutions and assign-
ing a grade. The seven graders met with the teacher the day of grading the assign-
ments, where they discussed how to grade based on the assignment’s rubric. Table
6.1 shows the rubric for the instructional instrument.

Component 1 Mark for Each
Averaging Rainfall
(8 marks)

Program correctly calculates the average
rainfall.
For loop is used to iterate over the array.
The 99999 signal is implemented cor-
rectly.
Negative rainfall is handled correctly.
Array is declared and initialised correctly.
Program displays the correct output.
Code styled appropriately.
Code is commented.

TABLE 6.1 Rainfall Problem Rubric for Instructional Instrument

Students’ grades and programming solutions are associated by de-identified num-
bers (IDs) for student anonymity and saved in Canvas. The teacher moderated the
grading requirements by meeting with the tutors prior to grading requirements,
to establish how to mark the programming tasks. The grades where recorded in
the Canvas Learning Management System, identifying the completed programming
tasks within the students’ solutions.

Analysis of means is applied to each task to identify the number of solutions
included in the task. The assignment average is included in the data for analysis, to
determine if there might be a correlation between successfully completed tasks and
academic success. Students that did not turn in their assignments are excluded from
the study.

For the seven studies, presented in Section 6.2.2, quantitative features on the
design treatments reported within the publications are extracted. The extraction
process includes identifying results from the studies on the six programming tasks
and the overall average of the Rainfall Problem. If the publication does not report
on a programming task or the overall average, the data point is left empty and not
included in the analysis.

6.3.2 Survey

This section presents the analysis performed on the survey results. Correspondence
analysis is performed on the two multiple choice survey questions. The correspon-
dence analysis includes a crosstabulation table of frequencies aligned with the stu-
dents’ choices. The crosstabulation table is used to generate the relative frequencies
for each multiple choice option, to produce the distribution of students’ choices us-
ing a Google Sheets spreadsheet (Google LLC, 2019b).

Content analysis was performed on the open-text survey questions, where com-
mon themes were identified in the responses. The analysis was initially hand coded,
to categorise students’ responses to form a thematic framework to discuss the results
(Gibbs, 2007). The analysis was then performed using NVivo version 12 for formal
coding, mapping the data to themes in the coding framework. The analysis of the



62 Chapter 6. Assignment Comparative Study

student surveys involved identifying segments in the responses representing a par-
ticular theme. The response segments were mapped into the coded framework to
identify common themes.

6.4 Comparative Study Results

This section reports on the results from the comparative study. Figure 6.6 includes
the completion rate of the six programming tasks, the overall average, and the de-
sign treatments applied to the assignment presentations. The design treatments are
classified as context, hints, and examples. The first row in Figure 6.6 shows the re-
sults from the instructional instrument, representing 92 (69%) students from the 134
students enrolled in the course. The remaining rows list the other studies in chrono-
logical order.

The overall average of the completed assignments are represented in the table,
to determine academic success. However, this study cannot draw any conclusions
from the overall averages reported, because only three (23.08%) studies reported
grades. The remainder of the section presents the results by the six programming
tasks, discussing the design treatments as potential factors for the results.

6.4.1 Sum and Average Programming Tasks

Analysis of the completed programming tasks show that students did well on the
Sum task (94%), with similar results generated in prior studies (95-98%) (Lakanen,
Lappalainen, and Isomöttönen, 2015; Seppälä et al., 2015). Evaluation of the pre-
sentation approaches for the three studies show that hints and examples were ap-
plied. Upon examining the Sum task in students’ programming solutions, students
understood the need for defining a global variable for accumulating rainfall, and
for using this global variable within the loop to accumulate the rainfall values con-
tained within the array. Other studies with low completion rates for the Sum task
are either administered in time-constrained environments (42.9%) (Simon, 2013) or
use the original Rainfall Problem presentation (21%) (de Raadt, Toleman, and Watson,
2004) without scaffolding treatments.

Results from the study show the Average task has a 76% completion rate. Stu-
dents’ programs with incorrect solutions to this task showed their implementation
did not check for a valid denominator. These solutions showed students assuming a
non-zero value for the denominator, which is related to the DivZero task. Students
might not have considered division by zero because of how Programming.js handles
this state. Instead of halting the program with a failure at runtime, a Processing.js
program will continue, setting the Average variable to undefined. Students are
able to inspect the value of the variable to determine the undefined value, but pro-
gramming solutions show students did not evaluate the variable’s value. Since the
program did not halt and they did not validate the variable’s value, perhaps stu-
dents perceived the denominator behaviour to be acceptable. The DivZero task is
discussed further in Section 6.4.5.

6.4.2 Sentinel Programming Task

The results from the instructional instrument show the Sentinel task (70%) are
comparable to the results from Ebrahimi (1994) study (71-77%). When comparing
the scaffolding treatments, both studies used additional context, but result in simi-
lar, lower completion rates. When students attempted to combine schemas for the



6.4. Comparative Study Results 63

Sentinel and Sum tasks, they seem to struggle (70%). These findings are supported
by Soloway (1986), concluding novices were challenged by the abutment of plan
compositions. Figure 6.7 shows a student’s solution that does not properly merge
schemas. In his solution, the student places the sentinel in a position that does not
guard the count variable (days) when encountering invalid rainfall.

for(int i = 1; i < rainfall.length; i = i + 1)
{

if(i <= 9999)
{
if(rainfall[i] < 0)
{
rainfall[i] = 0;

}
else if(rainfall[i] > 0)
{
rainfall[i] = rainfall[i];

}
average = average + rainfall[i];
days = i + days;
}

}

FIGURE 6.7 Incorrect Solution for the Sentinel Task

6.4.3 Negative Programming Task

When comparing the completion rates for the Negative tasks, students had diffi-
culty combining plan compositions. For the Negative task, the students participat-
ing in the instructional instrument performed well (95%), possibly due to the task
residing within the loop independently from other schemas.

6.4.4 Count Programming Task

When examining the results from the Count task, the instructional instrument has a
similar success rate (83%) to another study (85-89%) (Fisler, 2014) using a functional
programming language. Comparing the presentations, both studies included hints.
When examining the incorrect solutions for the Count task, 65% of the errors are
due to students assuming the length of the array provides the number of rainfall
days. For example, Figure 6.8 shows a student’s solution using the length attribute
as the denominator for averaging. These findings are similar to a study by Simon
(2013) that notes that students assumed all array entries were valid. The assumption
is an example of a student potentially focusing on the explicit cues, properties within
the text that satisfy certain properties necessary to solve the problem (Ginat, 2003);
in this case, the student associates the array length to the number of days.

6.4.5 DivZero Programming Task

The results from the study using the instructional instrument show that majority of
the students did not address the DivZero task. With 43% of the participants cor-
rectly implementing the DivZero task for the instructional instrument, the results
correspond to prior studies (Fisler, 2014; Lakanen, Lappalainen, and Isomöttönen,



64 Chapter 6. Assignment Comparative Study

text("The average rain fall for "+
rainfall.length+"days is:"+
sum/(rainfall.length)+" mm.",0,height/2 +5);

FIGURE 6.8 Incorrect Solution for the Count Task

2015; Seppälä et al., 2015). The instructional instrument and prior studies (Bonar
and Soloway, 1985; de Raadt, Toleman, and Watson, 2004; Ebrahimi, 1994; Lakanen,
Lappalainen, and Isomöttönen, 2015; Simon, 2013; Soloway, Bonar, and Ehrlich,
1983) do not explicitly identify the DivZero task, and posit the low success rates
for the DivZero task in this section. The absence of the task description in the as-
signment might give students the impression that the DivZero task is not required.
Ebrahimi previously suggest that alternative use cases were not being addressed
by the teacher nor the course learning materials (Ebrahimi, 1994), which might also
account for the low completion rate.

For the instructional instrument, a potential reason for the low success rate might
be how Programming.js handles the division-by-zero state. Details on how Process-
ing.js handles division-by-zero was presented in Section 6.4.1. The fact that Pro-
cessing.js did not provide students with an error, might explain why they did not
address DivZero in the survey. Another reason for low completion rates might
be the low transfer skills (Britton et al., 2007), where students do not apply their
mathematical knowledge to solve this problem. In the results for students using
the instructional instrument, shown in Figure 6.1, the average formula is presented
as a hint, to remind them of the division-by-zero rule. However, the low success
rate (43%) from the instructional instrument supports the notion that students are
not transferring skills. Another reason for the low completion rate might that while
other tasks are explicitly identified in the assignment presentation, the DivZero is
not explicitly stated.

Yet another reason for the low completion rate might be students’ apprehension
about adjusting their solutions after starting or approaching completion of the as-
signment. Adjustments to the code might introduce additional testing and debug-
ging, a trepidation shown by Simon (2013), where a student decided to provide a
lengthy description to justify the absence of the DivZero task instead of refactor-
ing.

6.5 Survey Results

The survey questions invited students to reflect on their understanding of the Rain-
fall Problem. Overall, 25% (n=33) of 134 students responded to the non-compulsory
online survey. There is selection bias in the survey results, since students who did
not complete the assignment did not participate in the survey. Students also had
their solutions graded by the tutors when the survey was released. This timing gave
students the opportunity to discuss with the tutors a correct solution of the problem,
and better understand any problems within their solutions. This section divides the
discussion of the survey results into two parts. Section 6.5.1 reports on responses re-
lating to the understanding of the problem, and Section 6.5.2 presents the opinions
students had on how the assignment presentation helped them solve the problem.



6.5. Survey Results 65

Question 1 Options Responses n=33 (25%)
Completely understood 11 (33%)
Mostly understood 18 (55%)
Mostly did not understand 3 (9.1%)
Completely did not understand 1 (3%)

TABLE 6.2 Response to Survey Question 1

6.5.1 Understanding the Problem

The following are two questions for the student survey related to understanding the
Rainfall Problem. Table 6.2 presents the students’ responses to the first question. All
students (n=33) responded to Q1 with majority (88%, n=29) selecting they under-
stood the problem.

• Q1: Rate your understanding of the Rainfall Problem statement.

• Q2: Explain any problems you encountered when reading the Rainfall Problem
statement.

For question 2, 64% of the students (n=21) responded to the open-text ques-
tions, to support their response to Q1. Content analysis was applied to the re-
sponses, which identified emerging categories about the tasks and other challenges
faced by the students. The analysis identified students reporting on issues with the
Sentinel, issues understanding the problem in general, misunderstanding edge
cases, and problems creating the test cases.

From the survey, 30% (n=10) of the responses were related to issues with the
Sentinel. Most of the problems were regarding how to use the sentinel to stop
reading data (21%, n=7). Figure 6.7 shows a solution from a student having prob-
lems integrating the sentinel. The example shows that the student did not use the
9999 marker to exit the loop. This student acknowledges having “...trouble under-
standing what the question wants”. Two other (6%, n=2) responses were related to mis-
reading the sentinel due to ‘design-by-keyword syndrome’ (Ginat, 2003). Design-
by-keyword syndrome is when the student carelessly associates textual patterns in
the problem description to programming patterns. Figure 6.9 shows a student mis-
interpreting the sentinel with a 99999.99999 marker. The students misinterpreted
two sentences in the problem statement as a single sentence: “The days are processed
one day at a time from the array until an array entry is number 99999. 99999 is a signal
to stop accepting rainfall information.” A response from a student commented that he
“... read 9999.9999”. One student (3%, n=1) stated he misunderstood the Sentinel
task’s intention , while two students acknowledged their misreading of the sentinel
(99999). Out of the two students, one rectified the problem by re-reading the as-
signment, stating “...that the rainfall trigger to stop was 99999.99999 when I first read
it”. The statement highlights their use of a Self-Reflective learning strategy to better
understand the task’s intention (Zimmerman and Pons, 1986).

Responses (18%, n=6) expressing difficulties understanding the problem demon-
strate that the students did not recognise that the programming problem was related
to solving an Arithmetic Mean equation. For example, “I found that it took me a while
to grasp the concept and had to speak to the tutors before I understood how to attack the
question, I feel maybe the wording was a little difficult to comprehend“. Figure 6.1 shows
the hint provided in the problem description, guiding students to use the Arith-
metic Mean. The comment made by the student might suggest he did not transfer



66 Chapter 6. Assignment Comparative Study

his mathematical skills to the CS problem space, a behaviour previously observed
with students not transferring mathematical skills to other STEM disciplines (Brit-
ton et al., 2007). Another student stated “Unsure if what the question desired covered the
scope of our material thus far at this time“. This statement might suggest the student
is comparing the problem context with previous problems, looking for cues in the
text to help solve the problem (Ginat, 2003), instead of looking at the problem to
identify reuseable schemas, mental structures that comprise conceptual knowledge
for solving a problem (Rist, 1995).

Students also reported misunderstanding the edge cases (12%, n=4), and prob-
lems creating test cases (9%, n=3). Examining the responses, it seems students made
assumptions on the edge and test cases. For example, a student assumed the sentinel
marker was always present. Examples include “I didn’t realise I have to cover a case that
an array doesn’t contain 99999” and “I assumed by the description given that 99999 would
always be provided”.

for (int j=0; j<days;j++)
{
if (rainfall[j]==99999.99999) { //when to stop

text("The average rainfall for " + days +
" days is "+average/days+" mm",25,40);

}
else if (rainfall[j]<0)
{
//for negative values of rainfall
rainfall[j]=0;
//finding average
average=average+rainfall[j];

}
else
{
//finding average
average=average+rainfall[j];

}
}

FIGURE 6.9 Misreading of the Sentinel Marker

Responses for Q1 and Q2 were analysed by word coverage, the percentage of
words used to answer a question associated with a given category. The majority
of words (54%) used to answer Q2 were related to the challenges with the sentinel.
18% (word coverage 27%, n=6) of the answers for Q2 provided vague feedback about
their overall understanding. For example, “I have trouble understanding what the ques-
tion what to be to do [sic]”. Four students (12%, word coverage 23%) had issues un-
derstanding edge cases, while three students (9%, word coverage 17%) felt the as-
signment presentation did not provide enough guidance. For example, “I found it
unclear on whether we were supposed to create our own data to test”. Two students (6%,
word coverage 2.5%) gave opinions unrelated to the survey question, stating “Not
notable”.

The three students who reported that they ‘Mostly did not understand’ provided
additional information on how they tried to better understand the problem. One
approach includes using the example in the assignment presentation. For exam-
ple, “The example gave a bit of clarification”. Another approach was taking the time
to evaluate the problem description. For example, “On first read, very difficult, but



6.5. Survey Results 67

Question 2 Options Responses n=33 (25%)
Yes, the format was helpful 22 (67%)
No, the format was not helpful 5 (15%)
I did not notice 5 (15%)
Not quite 1 (3%)

TABLE 6.3 Response to Survey Question 2

when worked through, it was reasonable”. The last approach provided in the survey
was to ask peers for help. For example, “I mostly discuss with my peers on what the
question meant before starting”. Approaches included asking peers for help, using
the examples provided in the assignment presentation, and taking the time to read
through the assignment–all employing self-reflective strategies to resolve their mis-
understandings (Zimmerman and Pons, 1986).

Survey results reveal no mention of the DivZero task, even though their solu-
tions were discussed with the tutors around the time the survey was released to the
students. Students who did not implement the task were not aware of the task’s exis-
tence, while the remaining students who did implement successfully might not have
had any complaints. The significance of the absence of DivZero from the survey is
supported by previous research (Lakanen, Lappalainen, and Isomöttönen, 2015; Si-
mon, 2013), where the task is not viewed by students as a requirement. Because the
survey was open for two weeks to receive students’ feedback, another possibility is
that students might have forgotten their discussion with the tutors on this task, and
did not raise in the survey when answering at a later date.

6.5.2 Assignment Presentation

The last two survey questions invited students to reflect on the presentation of the
instructional materials to help them solve the problem. Students were asked to re-
spond to the following questions:

• Q3: Did the layout of the Rainfall Problem statement help you in creating your
solution?

• Q4: Explain how the Rainfall Problem statement’s layout helped you create your
solution.

Table 6.3 shows the students’ responses to Question 3, Q3. There were 33 (25%)
students responding to this question, with 67% (n=22) reporting the layout was help-
ful.

Students reported that the hints in the assignment presentation provided ad-
ditional support in understanding language constructs, for example, “It helped me
understand the statement ‘break’ in the for loop”. This indicates that the presentation
helped the student reflect on the natural language description and translate his un-
derstanding to what he already knew about the break statement. Three students
(9%, word coverage of 25%) reported that the hints section was helpful, with one
student commenting “The examples and hints were helpful to know exactly what the rules
and constraints meant” and “The example gave me a bit of clarification”.

In terms of the assignment format (12%, n=4), two students made comments
about the bullet points being useful, for example, “Bullet points clarified some of the
criteria”. Three students mentioned that the presentation provided design guidance.



68 Chapter 6. Assignment Comparative Study

For example, “The layout help me to envision what the program should do...which is a good
way to start building the program”.

Two students (6%) mentioned that the presentation was unrelated to their un-
derstanding of the problem, and instead used different strategies. For example, "I
mostly discussed with my peers on what the question meant before starting", suggesting
that external factors, when not in a constrained test environment, are used by stu-
dents to better understand the problem. Students who reported that the format was
unhelpful (15%, n=5) did not provide additional feedback on Q4.

6.6 Summary

This chapter presents the second study on improving students’ program compre-
hension through the textual representation of CS1 procedural programming assign-
ments. This study builds on the first study presented in Chapter 5, by evaluating
an assignment presentation constructed from design treatments that help students
better understand programming assignments. This study takes the assignment pre-
sentation constructed in the first study and compares the completed programming
tasks with other Rainfall Problem studies using different design treatments. The study
invited students to participate in a survey, to provide their feedback on how the pre-
sentation may have helped them better understand the problem.

The study identified, through the comparative study and survey, what contributed
towards students’ completion of programming tasks. The comparative study showed
hints helping with the Negative task. The survey concluded that the students ap-
preciated the bullet point design treatment, enabling them to identify tasks through
the listing of concepts. Within the instructional instrument, the combination of
hints within bullet points might have contributed to the high success rate (96%)
in the Negative task. The study also finds students using ‘design-by-keyword’
syndrome, demonstrated by students combining two sentences in the assignment
presentation and interpreting the Sentinel as ‘99999.99999’. These types of misin-
terpretations could be avoided by educators reviewing the instructional materials, to
anticipate these misreadings. If students still engage the ‘design-by-keyword’ syn-
drome, this can also provide insight into how students are interpreting the problem
descriptions.

There are limitations and contextual variables to this research. The survey re-
ported on just 25% of the enrolled students, potentially not reflecting the entire co-
hort’s opinions on the design treatments. The survey also did not include those stu-
dents who did not complete the assignment. Inviting students to who did not com-
plete the assignment to participate might provide insight into their struggles. Other
limitations are the factors potentially contributing to the previous Rainfall Problem
studies’ results; factors, such as programming languages and time constraints might
have influenced task completion. Additional research is needed to test the treat-
ments in a controlled environment, to remove these factors.

There are future research opportunities with this study. Future research oppor-
tunities could focus on drawing comparisons between scaffold and non-scaffolded
learning environments. Evaluating the learning environments might provide insight
into tasks that benefited from design treatments.

This study used the instructional instrument from the previous chapter, by using
the assignment design framework developed to support students in their under-
standing of CS1 programming assignments. This study confirmed the application
of the framework helped better support students’ understanding. These findings



6.6. Summary 69

contribute to the field of Computer Science Education by providing assignment pre-
sentation recommendations to educators for future programming assignments.

One assignment was used in this study to evaluate the design treatments and
how it influences students’ understanding and completion of tasks. More research
can help strengthen these findings. Therefore, another study, described in the next
chapter, examines design treatments using a different assignment and involving
deeper analysis with students participating in a qualitative study.





71

Chapter 7

Assignment Design Interview
Study

This is the last study on the Assignment Presentation learning activity. The chapter is
organised as follows. Section 7.1 provides an overview of the study. Sections 7.2, 7.3,
and 7.4 present the study method, analysis, and results. Finally, Section 7.5 presents
the summary.

7.1 Overview

The evaluation of the Assignment Presentation learning activity continues with a final
study, designed to collect more in-depth feedback from students on the assignment
design. The purpose of the study is to gain insight into how students perceive that
the learning activity supports them in their understanding of the problem, and the
extent to which the activity engages students in SRL strategies. In this chapter, the
study addresses the following research questions that focus on the Assignment Pre-
sentation learning activity:

• RQ1.1: How does scaffolding the assignment presentation influence the student’s abil-
ity to identify goals and subgoals necessary to complete a procedural programming
assignment?

• RQ1.2: What presentation treatments within the programming assignments support
students in their understanding of the problem?

This chapter addresses these research questions by performing in-depth analysis
with students. Students were invited to participate in a qualitative study using a
mixed-methods approach of a questionnaire and interviews, to gain their perspec-
tive on an assignment design developed with the framework presented in Chapter
5. With support from the Assignment Presentation, this study seeks to identify design
treatments that help students identify core concepts and support their use of SRL
strategies. By better understanding the core concepts behind the problem, students
may be able to form a better mental model of the solution.

7.2 Methods

This section presents the study methods. This study uses an education research
design (Creswell, 2012) that can help produce ‘new theories, artifacts, and practices
that account for and potentially impact learning and teaching in naturalistic settings’
(Barab and Squire, 2004, p. 2). The education research design uses mixed-methods
approach of data collection with a questionnaire and a 30-minute interview session



72 Chapter 7. Assignment Design Interview Study

We are looking for 2-3 volunteers to talk about problem-solving
strategies you might show students during class or labs. The interview
should not take longer than one hour, and you will get treated to a cafe
snack and beverage for your time.

Your input would greatly help the research and would be greatly
appreciated. If you are interested in getting involved, please contact
the Student Researcher, Rita Garcia, at rita.garcia@adelaide.edu.au

The course lecturer is sending out this email on behalf of the re-
searchers. The lecturer has not shared with the researchers contact in-
formation for potential participants. The participation is completely
voluntary and that participation, non-participation, or withdrawal will
not impact your ongoing employment at the university.

FIGURE 7.1 Class Announcement for Student Volunteers

to form the study method. The remainder of this section presents the study methods,
including the study’s participants, context, and instruments.

7.2.1 Participants

The study was conducted in a 12-week Introductory Programming (CS1) course of-
fered at the University of Adelaide, during the February 2019 semester. Students
were invited to participate in the study by an announcement posted in the Canvas
Learning Management System, shown in Figure 7.1. From the 95 students enrolled
in the course, four male students volunteered for the study. The volunteers, for their
participation, received a movie poster and a $50 voucher.

The study was conducted in the lab environment with the participants. Because
the study examined students’ perceptions on how the assignment design help them
understand a problem, the study was performed on the same day the assignment
was due, for optimal recall performance. Additional study context was previously
presented in Section 4.3, providing background on the course programming lan-
guage and learning environment.

7.2.2 Instructional Instrument Design

This section describes the instructional instrument used in this study. This instruc-
tional instrument is a practical programming assignment provided in the middle
of the semester (week 6) for the Introductory Programming course and is the fifth
practical programming assignment for the semester. Using the fifth practical pro-
gramming assignment for this study gives the participants prior exposure to four
previous assignments developed with the assignment presentation framework.

The instructional instrument was developed using the assignment presentation
described in Chapter 5. The instructional instrument was constructed in collabora-
tion with the teacher for the Introductory Programming course. The teacher pro-
vided the problem’s context through presentations used in a prior semester.



7.2. Methods 73

The instrument was formed by using design treatments from the framework,
with the assignment context provided by the teacher. Design treatments were se-
lected for the instructional instrument based on the students’ prior exposure to the
programming concept.

For this problem used in this study, students practise the functions program-
ming concept, a concept first introduced in week 6 of the semester. New concepts,
such as the functions and refactoring concepts, are highly scaffolded in the
assignment design, to support learning and guidance for these concepts. Previously
practiced CS concepts, such as loops and variables, are presented with less scaf-
folding.

Another consideration in determining the amount of scaffolding provided for the
instrument was the time it would be released to the students during the semester.
Assignments administered at the start of the semester are highly scaffolded, contain-
ing headers, core objectives, context information, code segments, smaller goals, con-
textualisation, examples, hints, and visualisations. As students progress through the
semester, and practise CS concepts using other assignments, the design treatments
in the assignment presentation are reduced, fading the scaffolding in the assignment
presentations. Reducing scaffolding allows students to take control of their learning,
enabling them to solve learning objectives with less guidance (Knobelsdorf, Kreitz,
and Böhne, 2014). Reducing the scaffolding means the removal of design treatments
surrounding the programming concept or task. For example, Figure 7.2 does not
identify loops to construct the gradient scale, because they had prior experience
with loops in earlier programming assignments. Reducing the scaffolding in this
case, describes the looping process, stated in Figure 7.2 as “The gradient starts with 0
(black) and lightens until it reaches endValue”.

Figure 7.2 shows the results of combining the assignment context from the teacher
and the design treatments, placing considerations on the instrument being admin-
istered in week 6 of the semester. Refactoring is a new CS concept the students
practise in the instrument; therefore, the design treatments supporting refactoring
provide students with the existing code to incrementally adjust content (Settle, Vi-
havainen, and Miller, 2014), and present the refactoring requirements in list for-
mat to provide detailed and clean requirements (Kussmaul, 2008; Vihavainen, Pak-
sula, and Luukkainen, 2011a). Figure 7.2 shows the detailed requirements in table
format, giving the students a visual illustration of the software design. Boldface for-
mat (Carbone et al., 2000) is used to ensure students identify that the word drawGra-
dient refers to a function name and not its natural-language meaning. The variable
endValue is also bold face, to reduce students mistaking with the natural language
meaning. Design treatments absent from the instructional instrument are the con-
text and hints sections. Without the context section, CS concepts such as loops and
variables are not presented to the students, encouraging them to identify the con-
cepts independently. See Appendix A.2.2 for the full assignment presented with the
Codification Pedagogy.

7.2.3 Questionnaire

This section describes the questionnaire used in this study. The questionnaire is
designed for students to self-assess their prior programming experience and their
use of problem-solving strategies. The questionnaire is given to the participants in
paper format prior to the start of the first interview session. Students’ answers were
transcribed into a Google Sheets spreadsheet (Google LLC, 2019b) for analysis.



74 Chapter 7. Assignment Design Interview Study

Program Description
Below is code that draws a number of lines to form a grayscale gradient. The gradi-
ent starts at 0 (black) and lightens until it reaches endValue. You should copy this
code into the Processing IDE to see how it works. Try passing in different values to
the drawGradient function to see how the output changes.

void setup(){
size(400,400);
background(255);
//Call our function, draw a gradient from white to black
drawGradient(255);

}

// drawGradient - Draws a grayscale gradient,
// the gradient starts at 0 (black) and lightens
// until it reaches endValue.
void drawGradient(int endValue){

for(int i = 0; i <= endValue; i++){
stroke(i);
line(10,i,60,i);

}
}

For your assignment, you will need to copy the above code and extend the draw-
Gradient function to have the following parameters:

Parameter Description Possible Values Possible Values
x X-coordinate of the top

left corner of the gradient.
y Y-coordinate of the top

left corner of the gradient.
vertical Determines if the gradient

is drawn vertically or horizontally.
True - if the gradient
is drawn vertically
False - if the gradient is
drawn horizontally

endValue The end value of the gradient
(gradient will start at colour 0
and go to endValue)

. 0 to 255

opacity The opacity of the gradient. 0 to 255
col Determines the colour

of the gradient.
0 - grayscale
1 - red
2 - green
3 - blue

widHei The width or height of the gradient.

If any of the input parameters are invalid, your drawGradient function should dis-
play a warning, and not draw the gradient. See above for the valid values. Use a for
loop to call drawGradient several times, to design a pattern. The pattern should
be produced by modifying the gradient attributes: end value, width/height, opac-
ity, orientation (vertical/horizontal), or colour. To achieve full marks for this part,
please ensure you create a pattern with at least 5 gradients, and alter at least 2 of
the gradient attributes in your pattern.

FIGURE 7.2 Assignment A5.1 Problem Description



7.3. Analysis 75

The questionnaire contains eight questions: five open-text and three Likert scale
questions. See Appendix B.2.2 for the full questionnaire. For this study, three ques-
tions pertaining to the student’s prior programming experience are selected. The
three questions are composed of one Likert scale (Q4) and two open-text (Q7 and
Q8) questions. The Likert scale question uses a 5-point scale, asking participants to
rank their prior programming experience from ‘Very Experienced’ (5 points) to ‘Very
Inexperienced’ (1 point). The two open-text questions ask the number of years the
participants have programmed and which programming languages they used.

7.2.4 Narrative Interviewing

This study adopts a narrative interview protocol (Powell, Fisher, and Wright, 2005),
to collect data from students, and to get their perspectives on the assignment design.
Narrative interviews enable students to share in their own words their experiences
using the assignment presentations, and measure their success in solving the assign-
ment through perceived understanding.

The 30-minute interview involves the study’s instructional instrument shown
in Figure 7.2. The interview is conducted on the assignment due date for optimal
recall performance, using a more in-depth data collection with multiple interviews
(Thomson, 2011).

In narrative interviewing, the interview begins with a broad question to encour-
age the student to share their experiences in their own words. For example, “Can
you tell me how you use the assignment description to better understand the problem?”
The interviewer then encourages additional narrative information with open-text
questions, such as “Is there anything else you can say to ...?” The narrative interview
concludes with a question to recall points raised, such as “What else can you say that
helped you with the problem’s context in the previous assignment?” The questions used in
the narrative interviews are in Appendix B.1.1, and are used as a guide for conduct-
ing the interviews.

The interview sessions were conducted in the lab environment, with other stu-
dents in the course developing and discussing their assignments with peers and tu-
tors. The participants did not have privacy from the other students when these inter-
views were conducted. During the interview sessions, audio-visual materials were
used to collect data from the interviews for analysis. SimpleScreenRecorder
(Baert, 2019) was available on all the lab computers and used to collect the audio-
visual material. Upon completion of the interview sessions, the recorded material
was placed in Dropbox (Dropbox, Inc., 2019) cloud storage for the researcher to get
the interview sessions professionally transcribed as Microsoft Word documents for
further analysis.

7.3 Analysis

This section presents the analysis performed in the study. Section 7.3.1 presents the
analysis on the questionnaire responses, while Section 7.3.2 presents the analysis on
the narrative interviews.

7.3.1 Questionnaire

This section describes the analysis approaches used on the data collected from the
questionnaire. The participants answered eight questions in the questionnaire, but



76 Chapter 7. Assignment Design Interview Study

only three of the questions, those related to prior programming experience, were
used in this study.

1. How do you estimate your programming experience. (Likert scale question)

2. Besides Processing.js, how many additional languages do you know? (Open-
text question)

3. For how many years have you been programming? (Open-text question)

Two different analysis approaches were performed on the three questionnaire
questions: analysis of means, and directed content analysis. Analysis of means was
performed on the Likert scale question, where the analysis is performed in a spread-
sheet. Analysis of means identified the most frequent rating from the participants.
Participants were asked to rate their programming experience using a 5-point Likert
scale question. The scale ranges from ‘Very experienced’ (5 point) to ‘Very inexperi-
enced’ (1 point).

Thematic content analysis (Marshall and Rossman, 1999) was performed on the
two open-text questionnaire questions. These questions were related to previously
used programming languages and years of experience. Thematic content analysis
was used to identify and classify keywords within the answers that relate to the par-
ticipants’ prior programming experience. Identifying their prior programming ex-
perience can help determine how much prior experience they have with interpret-
ing programming assignments, which can influence how they process the instruc-
tional instrument. Thematic content analysis can be based on previously defined
and emerging categories. Emerging categories can arise during the analysis process,
which can add more themes to the coding framework.

Students’ answers were transcribed in a spreadsheet and imported into NVivo
version 12 to identify coded themes. The thematic content analysis started with two
nodes to identify the two open-text questionnaire questions. Two initial nodes were
created to identify no prior programming experience and programming languages.
Any prior experience was an emerging node, labeling the node with the amount of
time provided by the participant. Any identified programming languages were also
emerging nodes, labeled with the programming language provided by the partici-
pant.

The answers to the two open-text questions can be coded with multiple nodes.
For example, the answer can relate to their prior experience and programming lan-
guage, so the answer would be coded with nodes identifying their programming
experience and the programming language they have previously used. The coded
themes for the two open-text questions for the participants (n=4) were extracted
from NVivo as a matrix, to identify frequencies in the content analysis. The matrix
table was generated from the nodes within the coding framework.

7.3.2 Narrative Interview

Directed content analysis (Hazzan et al., 2006) was used to analyse the data from the
interview sessions. Directed content analysis allows for the coding of data within
pre-existing frameworks, while allowing for emerging categories to derive from the
participants’ responses. The initial coding framework used in this analysis was
based on the fifteen design treatments within the assignment presentation frame-
work, shown in Table 5.1. Though not all the design treatments were used in this
study’s instructional instrument, the intention was to establish a coding framework



7.4. Results 77

ID Experience Self Rating
StudentA No prior experience Inexperienced
StudentB No prior experience Inexperienced
StudentC Matlab experience Inexperienced
StudentD Python, but forgot

language constructs
Inexperienced

TABLE 7.1 Participants’ Programming Experience

for future studies evaluating assignment presentations constructed with the frame-
work. Key design treatments used in the instructional instrument are presenting
information in list format (Venables, Tan, and Lister, 2009), decomposing the pro-
gramming goals into subgoals (Venables, Tan, and Lister, 2009), using boldface text
to identify important concepts (Carbone et al., 2000), using visualisations (Ahoniemi
and Lahtinen, 2007), and presenting code fragements as reference (Lorenzen et al.,
2012). The analysis process is also looking for these key design treatments in stu-
dents’ responses, to determine if they did make an impact in the students’ under-
standing of the programming problem.

The directed content analysis was refined to include two nodes to identify posi-
tive or negative responses based on the participants’ perceptions of the design treat-
ment. Another node was created to identify volunteers’ responses on the overall
problem statement. Any emerging data that did not adhere to the existing coding
framework resulted in a newly created node.

The data from the transcribed interview sessions for each participant were im-
ported into NVivo version 12 for formal coding, mapping the data in the interviews
to the coding framework. When the coding was completed, the coding frequencies
were generated to interpret the findings from the interviews. The coding frequencies
were evaluated using a matrix table generated from the established and emerging
codes from volunteers’ responses. Frequencies from the content analysis were ex-
tracted using this matrix table in NVivo version 12, to further discuss the findings.
Alternative forms reliability (Creswell, 2012) compared the two interview sessions
performed in the qualitative study. These two sessions used alternate forms of the
instructional instrument, but measured the same variables in the coding framework,
which provides a different method of measuring internal consistency.

7.4 Results

This section presents the results from the questionnaire, and the results from the
narrative interview.

7.4.1 Questionnaire

This section presents the results from the questionnaire, shown in Table 7.1. Of the
four participants, two stated they had no prior experience. StudentC stated he had
Matlab experience when enrolled in a non-CS science course. StudentD stated he
learned basic Python, but did not provide details on being self-taught or learned
in another CS course. StudentD did state he forgot all the programming concepts
using Python. Table 7.1 also presents the participants’ self-assessment on their pro-
gramming experience. All participants ranked themselves as ‘Inexperienced’, the
lowest level of programming experience in the Likert scale. These results show that
majority of the participants (75%) do not have prior programming experience.



78 Chapter 7. Assignment Design Interview Study

7.4.2 Interview Results

This section presents the results from the narrative interviews. The following are se-
quential excerpts from the narrative interview conducted with StudentA, to demon-
strate how the interviews were conducted and the coding was performed. The in-
terviewer begins with asking the student to draw on prior assignments to compare
how this presentation helped with their understanding. Because the participants are
unfamiliar with writing code, they are drawing on past experiences with the assign-
ments previously administered in the course. StudentA stated, “I do definitely prefer
this one because this one very clearly states what’s needed. The last one that I had a bit
of difficulty with, it was just a paragraph of requirements. This one is very clearly stated
what’s needed.” StudentA’s statement shows his overall appreciation of the presenta-
tion, providing positive feedback (Coded as T16 General statements and T17 Positive
opinion). StudentA also compared the instructional instrument to a previous assign-
ment, which presented the problem in paragraph format. He claimed the paragraph
format was unhelpful (Coded as T19 Paragraph format and T18 Negative opinion).

The interviewer then draws out StudentA’s opinion about the paragraph format
by asking why he believes the assignment was easier to understand. StudentA re-
sponds, “This one was much nicer that I could basically check it off a list.” This statement
shows the student using the list format to support his use of Self-Regulated Learn-
ing (SRL) strategies and self-evaluation (Zimmerman, 1989) to validate his program-
ming exercise. This narrative segment is coded as T4 List Form, T20 Problem-solving
strategies, and T17 Positive opinion from the framework.

The interview concludes with the interviewer asking StudentA if there is any-
thing else he would like to say on the assignment design. StudentA concludes,
“Nothing wrong with the assignment. It was really good for how I look at the problems.”
StudentA’s final statement reaffirms his positive experience with the presentation.
This statement is coded as T16 General statements and T17 Positive opinion from the
framework.

All interviews are coded using the same coding approach as the example seg-
ment with StudentA. Table 7.2 shows the results from the coding framework, along
with example coded segments. Table 7.2 lists the total number of narrative segments
coded to themes containing students’ responses. In the reliability analysis, Cron-
bach’s alpha was found to be 0.73, an acceptable internal consistency. As stated in
Section 7.3.2, all the design treatments were included in the coding framework. Be-
cause some of the design treatments were not used in the instructional instrument,
these nodes were not included in the results. The table also shows the percentage
the theme appeared in the overall results. The examples show whether it is coded
as a positive or negative statement. The final coding framework contains 20 themes,
including two themes (T17 Positive opinion and T8 Negative opinion), representing the
narrative segment as a positive or negative influence in the students’ understand-
ing of the problem. Prior to coding participants’ responses, there were 18 nodes
in the framework (15 design treatment, 2 positive/negative opinion, and 1 general
statement). While coding the participants’ responses, two themes emerged: the pre-
sentation of the information in paragraph format (T19), and using the assignment
presentation to support problem-solving skills (T20).

In the results, four of the themes relate to guidelines in the presentation frame-
work: T1 Bold face text format (15.79%) (Carbone et al., 2000), T2 Code fragments
(10.53%) (Lorenzen et al., 2012), T3 Goal decomposition (15.79%) (Venables, Tan, and
Lister, 2009), and T4 List format (31.58%) (Venables, Tan, and Lister, 2009). These
results align with the instructional instrument, where these design treatments were



7.4. Results 79

ID Results Theme Examples
T17 16

(84.21%)
Positive opinion “This actually makes you sit down and me-

thodically think about how you going to ap-
proach it.” StudentB (T16)

T4 6
(31.58%)

List format (Vi-
havainen, Paksula,
and Luukkainen,
2011a)

“I think having it set out as dot points really,
clearly gives you all the points that you just
need to address. It’s just laying it out for you.”
StudentB (positive)
“When you’ve got dot points it’s more concise,
so you’ve got less fluff around it, so it’s easier
to get straight to the point.” StudentD (pos-
itive)

T20 4
(21.05%)

Problem-solving
skills

“I generally will reference back to it as I’m
doing the assignment just to make sure that
I’m ticking all the boxes that they want to see
ticked.” StudentB (positive)

T1 3
(15.79%)

Boldface text for-
mat (Carbone et al.,
2000)

“I don’t understand why that’s (function
name) is in bold. That is odd to me.” Stu-
dentA (negative)
“Maybe if it’s emboldened, people are paying
attention to where the conditions are in a state-
ment.” StudentB (positive)

T3 3
(15.79%)

Goal decomposi-
tion (Vihavainen,
Paksula, and
Luukkainen,
2011a)

“was a bit more step by step, this one. So it had
it really laid out for what you need to kind of
add into the program.” StudentC (positive)

T18 3
(15.79%)

Negative opinion “Actually had confusion with this problem
that I got help with earlier, I started asking
about it.” StudentC (T16)

T2 2
(10.53%)

Code fragments
(Lorenzen et al.,
2012)

“structure is useful, so you sort of know how
to start if off, because it’s very intimidating to
look at that and create it.” StudentD (posi-
tive)

T16 2
(10.53%)

General statements “The last one (assignment) that I had a bit of
difficult with, it was just a paragraph of re-
quirements. This one is very clearly stated
what’s needed.” StudentA (positive)

T19 2
(10.53%)

Paragraph format “The ones that are in paragraph form are
harder, and every time I check back I have to
read the entire paragraph again.” StudentA
(negative)

TABLE 7.2 Narrative Interview Coded Framework

used in the presentation. However, the participants did not remark on the table for-
mat in the instructional instrument, a visualisation designed to help the students
identify the parameters in the drawGradient method. Though the visualisation was



80 Chapter 7. Assignment Design Interview Study

not explicitly stated, volunteers might have referenced when identifying other treat-
ments, such as “structure is useful” (StudentD) and “laid out for what you need” (Stu-
dentC).

The remaining themes did not relate to the design treatments and emerged when
coding students’ responses. These themes are T19 Paragraph format (10.53%), T20
Problem-solving skills (21.05%), and T16 General statements (10.53%). The participants’
preference for bullet points over paragraphs demonstrates their difficulty in iden-
tifying programming tasks with the natural language description. StudentA stated
“The ones that are in paragraph form are harder, and every time I check back I have to read
the entire paragraph again”. This statement describes how StudentA is using the prob-
lem description for guidance, and has to process the instructional material again,
possibly becoming unfocused from their immediate goal. The bullet points seem to
help them better find the information, allowing them to remain focus. For example,
StudentB stated “dot points really, clearly gives you all the points that you just need to
address”. There are some subgoals listed in these dot points. The statement from Stu-
dentB demonstrates that the presentation of the subgoals helps this student better
identify what they need to do to successfully complete the problem.

Common themes include the presentation of goals in list format (31.58%) and the
support of problem-solving skills (21.05%), while bold face formatting (15.79%) and
decomposition of programming goals (15.79%) are rated equally by the participants’
responses.

Most of the comments are positive (84.21%), such as “very clearly stated what’s
needed” and “I think that’s a great way to structure the problem.” This might be due to
how the first question was posed, such as “Can you tell me how you use the assignment
description to better understand the problem?” Any negative narratives (15.79%) raised
in the interviews are presented as comparisons to support of the use of the another
guideline. For example, Student A stated, “The last one (assignment) that I had a bit of
difficulty with, it was just a paragraph of requirements. This one is very clearly stated what’s
needed.”

The results show participants’ concerns with identifying the explicit steps in
solving the problem, such as StudentC stating, “This was the one that kind of was a
bit more step by step, this one. So it had it really laid out for what you need to kind of
add into the program.” Participants’ responses show that they use: the list format to
progress through the problem-solving process, acknowledging the list format helps
them quickly identify the problem’s goals. Participants use the assignment presen-
tation to validate their work when solving the problem, using it as a checklist for
requirements when solving their programming problems. StudentA states, “I just
make sure that I’ve got all the requirements checked”, and StudentB states, “I think having
it set out as dot points really, clearly gives you all the points that you just need to address.
It’s just laying it out for you.” The results show participants raising concerns about
the paragraph formatting (T19), stating it is difficult to understand because of the
parsing of the requirements from the paragraph. For example, StudentA states, “The
ones that are in paragraph form are harder, and every time I check back I have to read the
entire paragraph again.”

7.5 Summary

In this chapter, the final study into the pedagogy’s Assignment Presentation learning
activity was presented. The study was designed to gain insight into how students
use the assignment presentation to better understand the problem and support their



7.5. Summary 81

use of Self-Regulated Learning (SRL) strategies. The narrative interviews showed
that the decomposition of programming goals, when presented in list format, helped
students when re-reading the problem description. Students were able to quickly
identify the subgoals when presented in list format. Students noted that when goals
were presented in paragraph form, they had difficulty parsing the information. The
results also showed that decomposition of programming goals, presented in list for-
mat, also supported students’ use of SRL strategies. Students would return to the
assignment presentation as a reference to determine the next implementation steps
and validate their work upon completion.

There are limitations to this study. Not all the design treatments were integrated
into the study’s instructional instrument, so participants were unable to comment
on all the design treatments. More research is needed to have students evaluate
each of the design treatments. The interviews were conducted in a lab environment
with other students developing their assignments, and asking the tutors for assis-
tance. Another limitation is the small sample size (n=4) of students participating
in the narrative interviews. The smaller sample size allowed for repeated and in-
volved observational data collection that generated in-depth information on how
the assignment presentation helped them better understand the problem and sup-
port their use of SRL strategies. Another limitation is the results from the study
comes from male participants. Future research can evaluate other approaches to
encourage more female students to get involved in participating in studies.

There are also other future research opportunities from this study. More work is
required to map students’ perceptions to their academic success. This study demon-
strates how narrative interviewing can get students involved with identifying pre-
sentation approaches they feel are helpful or difficult to comprehend. This study
method could be applied to assignments, where students could get more involved
in the design of future assignment presentations.

This study demonstrates through narrative interviewing how students can get
involved in the assignment design process, providing educators students’ perspec-
tives on the instructional materials. Bringing students into the assignment design
process can help identify presentation aspects that they struggle with, such as para-
graph formatting. The results from this chapter contributes to the Computer Sci-
ence Education community by demonstrating to CS educators how they can help
students better understand problems through design treatments. Depending where
CS1 students are in their learning, educators can use design treatments that identify
the decomposition of programming goals with bullet points.

The studies focusing on program comprehension, explained in this chapter and
Chapters 5 and 6, were designed to help students form accurate mental models of
the solution through better understanding of the programming assignment. With a
better mental model, students can take the next steps in the design process towards
solving the problem. The next step in the Codification Pedagogy is to help students
reflect on what they know to help their understanding of the problem. The Codifica-
tion Pedagogy attempts to help students through this next process of self-reflection
using a learning activity, described in Chapter 8.





83

Chapter 8

Questioning Activity Study

This chapter focuses on the second learning activity in the Codification Pedagogy,
the Questioning Activity. The chapter is structured as follows. Section 8.1 presents
the overview of the study. Sections 8.2, 8.3, 8.4, and 8.5 present the study method,
analysis, and results. Finally, Section 8.6 presents the summary.

8.1 Overview

This chapter presents the first intervention in the pedagogy, designed to encourage
students to reflect on the programming problem through questioning. Question-
ing can promote Good Learning Behaviours (GLBs), improving students’ ability to
comprehend assignments, deconstruct problems, and develop solution plans (Boyer
et al., 2010). Questioning can help students take an active role in their learning
(Graesser and Person, 1994) and overcome aspects of their fragile knowledge, by
encouraging them to reflect, seek out information (Perkins and Martin, 1985), and
form opinions on the problem (Bloom, 1956). Questioning can promote the use of
critical thinking skills, ‘thinking explicitly aimed at well-founded judgement, util-
ising appropriate evaluative standards in an attempt to determine the true worth,
merit, or value of something’ (Paul and Elder, 2007). Posed questions can help re-
duce ‘monotonous ineffective tutoring dialogs’ (Nielsen et al., 2008), encouraging
positive learning behaviours (Weusijana, Reisbeck, and Jr, 2004). Through question-
ing, students can learn to use Self-Regulated Learning (SRL) strategies (Zimmerman,
1989).

This chapter presents the Questioning Activity design and describes the study
method used to examine the learning activity. The learning activity is designed to
improve students’ comprehension and support their use of Self-Regulated Learning
(SRL) strategies. Measuring these pedagogical goals is done through Bloom’s Taxon-
omy, an educational objective taxonomy consisting of six cognitive levels to address
the student’s depth of learning (Bloom, 1956). Details on Bloom’s Taxonomy, de-
scribing the cognitive levels, are in the background literature, Section 2.3. This study
is designed to answer the following research questions:

• RQ2.1: How do the 23 CS-focused instructional question types align with Bloom’s Tax-
onomy cognitive levels?

• RQ2.2: Does eliciting the questions in an online CS1 learning environment promote the
expected cognitive levels from students answering the questions?

An outcome from this study is the construction of an Instructional Questioning
Framework, a framework that assists in the development of questioning activities.
Results from the study will show the Questioning Activity encourages students to



84 Chapter 8. Questioning Activity Study

reflect on the problem and helps them identify misconceptions in their initial inter-
pretation of the problem. Results also show the activity encourages students to use
SRL skills to plan a solution.

8.2 Methods

This section presents the study methods used to construct and analyse the Ques-
tioning Activity. Section 8.2.1 describes the participants for this study. Section 8.2.2
describes the development of a questioning framework used to construct the learn-
ing activity. Section 8.2.3 presents the instructional instrument used to examine the
learning activity.

8.2.1 Participants

The Questioning Activity is evaluated in a 12-week Introductory Programming (CS1)
course. Additional background for the learning environment was presented in Sec-
tion 4.3. The information presented in Section 4.3 consists of commonalities across
the studies. This study contains three study groups.

1. A control group (C1) is from the August 2017 semester, with 134 enrolled stu-
dents. Group C1 did not receive the learning activity. This group received the
practical programming assignment using the Rainfall Problem as the context.
Background on the Rainfall Problem can be found in Section 4.3.

2. An experiment group (E2.1) from the March 2018 semester, containing 129 stu-
dents. This group received an isomorphic version of the Rainfall Problem and
the Questioning Activity as a non-compulsory activity, but this group did not
submit answers to the Questioning Activity. Isomorphic problems presents the
learning objectives in the same way so that the learners development the solu-
tions along the same problem-solving paths. Isomorphic problems can reduce
the threats to validity, allowing for data comparison across cohorts.

3. An experiment group (E2.2) from March 2018 semester, containing 120 stu-
dents. This group received an isomorphic version of the Rainfall Problem and
the Questioning Activity as a non-compulsory activity. This group E2.2 did sub-
mit their answers to the Questioning activity.

8.2.2 Framework Design

This section describes the development of an Instructional Questioning Framework
that helps with the development of the Questioning Activity. Developing the frame-
work involves building on prior questioning research that identified 23 Instructional
Question Types (IQTs) used by CS teachers during student-teacher dialogues (Boyer
et al., 2010). The Boyer et al. research aimed to help teachers identify questions to
help guide students through the problem-solving process. Background on the 23
IQTs was introduced in Section 3.3, listing the IQTs in Table 3.2. The table also lists
the IQTs with exemplar questions provided by Boyer et al. (Boyer et al., 2010). The
table contains eight emerging questions, represented with asterisks.

This thesis selected these 23 IQTs to construct the framework, because the clas-
sification contains a combination of questions that support lower and higher-order
critical thinking skills. Having a variety of question types provides the opportunity
to construct a range of question activities for students’ different cognitive abilities.



8.2. Methods 85

FIGURE 8.1 Questioning Framework Development Process

To identify the critical thinking level for IQTs, the 23 IQTs are mapped to Bloom’s
Taxonomy’s six cognitive levels. Bloom’s Taxonomy is an educational objective tax-
onomy with six lower and higher-order cognitive levels (Bloom, 1956). Background
on Bloom’s Taxonomy was presented in Section 2.3, providing the definitions for the
six cognitive levels in Table 2.1.

To align the question categories to the Bloom’s cognitive levels, research was
performed to better understand the cognitive requirements for the question types.
This included reviewing previous question taxonomies (Boyer et al., 2010; Collins
and Stevens, 1983; Nielsen et al., 2008). For eight emerging IQT categories, denoted
with asterisks in Table 3.2, additional research was performed to better understand
these categories. The additional research included evaluating definitions for the cat-
egories and evaluating a model for detecting dialogue acts (Stolcke et al., 2000) for
the categories Backchannel, Knowledge, and Clarify.

After collecting the background materials to better understand the question types,
the 23 IQTs were classified within Bloom’s using the problem context for this study,
Soloway’s Rainfall Problem (Soloway, Bonar, and Ehrlich, 1983). The classification
process was similar to the task assessments constructed by Thompson et al. (2008),
where assessments were first constructed by the researchers individually and later
discussed as a group, to identify discrepancies and form a classification for each cog-
nitive level. Analysing the classification process is discussed in Section 8.3.1. Figure
8.1 shows the process of the framework design and analysis. The figure is a visuali-
sation of the mapping process, bringing the background literature, 23 IQTs, and the
Bloom’s Taxonomy cognitive level to form the framework. Section 8.3.1 describes the
analysis process in this figure, validating the placement of the IQTs in the Bloom’s
cognitive levels.

8.2.3 Instrument Development

This section describes the construction of a questioning activity using the Instruc-
tional Questioning Framework described in Section 8.2.2. The questioning activity
developed in this section is referred to as the ‘instructional instrument’ for the re-
mainder of this chapter, since it is used in this study as the measurement device.

The instructional instrument is constructed after the development of the Instruc-
tional Questioning Framework. The instructional instrument is analysed for proper
placement of the IQTs in the Bloom’s cognitive levels. To construct the instructional
instrument, question types are selected from the framework that engage lower and



86 Chapter 8. Questioning Activity Study

• Q1: What do you already know about collecting and organising data for
products sold that might help you complete this assignment? (open-text)

• Q2: Breaking down the problem into smaller tasks will help you complete
the assignment. How would you go about breaking down this problem into
smaller tasks? (open-text)

FIGURE 8.2 Instructional Instrument Used in the Study

higher-order thinking skills. The lower-order thinking skills help the students to re-
flect on previously learned language constructs, while higher-order thinking skills
can promote the application of programming knowledge to the assignment’s prob-
lem domain. By practising both thinking skills, students might develop a cross-
referencing comprehension strategy, where the program and problem domain lay-
ers are utilised for a solution, resulting in a higher level of understanding about
the problem (Pennington, 1987). Also, providing different views of the questions
gives students the opportunity to articulate solving the problem with their existing
knowledge, diversifying their learning process (Ragonis, 2012).

The instructional instrument contains two questions developed from the assign-
ment’s problem context, and administered as Assignment A4.1 The assignment is
Soloway’s Rainfall Problem (See Appendix A.2.1). Figure 8.2 shows the instructional
instrument that follows the Assignment Presentation activity in the Codification Ped-
agogy. The instructional instrument is designed to use the cognitive levels aligned
with the assignment’s problem context, giving students a context for answering the
activity.

The first question in the instructional instrument is from the Knowledge IQT,
mapped to Bloom’s Recall level. This question is designed to help students reflect
and apply their internal knowledge to solve the problem. The second question is
a Plan IQT, is mapped and designed to the Analysis level to encourage students to
deconstruct the problem’s tasks. The questions are designed to complement each
other, layering onto what students already know on their problem-solving skills.

Figure 8.2 shows the instructional instrument containing two open-text ques-
tions. The open-text questions allow students to respond in their own words, and are
the closest to providing students with free-form typing, an effective method for stu-
dents to provide their thinking processes (Hume et al., 1996). Answers to the activ-
ity are collected anonymously in a Google Sheets spreadsheet (Google LLC, 2019b).
Qualitative analysis involved coding segments of the answers into the appropri-
ate Bloom’s cognitive levels and knowledge dimensions. Section 8.3.2 provides the
analysis of the answers provided by the students for the instructional instrument.

8.3 Analysis

This section describes the analysis performed on the Instructional Questioning Frame-
work, described in Section 8.3.1; and analysis of students’ answers to the instruc-
tional instrument, described in 8.3.2.

8.3.1 Framework

Analysing the Instructional Questioning Framework involved validating the place-
ment of the 23 IQTs in the Bloom’s cognitive level. Analysis involved applying the
IQT within the context of a CS1 learning environment and using the cognitive level



8.3. Analysis 87

where the IQT was placed during the construction of the framework. Figure 8.1
provides a visualisation of the framework development process, including validat-
ing the placement of the IQTs in the Bloom’s cognitive levels. The analysis pro-
cess generates three questions using Soloway’s Rainfall Problem (Soloway, Bonar,
and Ehrlich, 1983), administered as Assignment A4.1 (See Appendix A.2.1). Dif-
ficult question generation with the Rainfall Problem context suggests the IQT is in
the wrong cognitive level. When difficulties are encountered, the IQT’s placement
is reassessed in another level. The three questions are generated within the new
cognitive level. This process continues until question generation becomes easier,
signifying proper placement of the IQT in the framework.

8.3.2 Analysis of Students’ Answers

This section describes the analysis performed on the data collection from students
answering the instructional instrument. A simple word frequency analysis is ap-
plied to the answers, to identify the most frequent words used by students that
might highlight their concerns. The frequency analysis was performed by importing
the answers into NVivo version 12, and using the word coverage feature across all
the nodes.

Directed content analysis (Hazzan et al., 2006) was conducted using a developed
coding framework based on the Bloom’s Taxonomy cognitive and knowledge di-
mensions, to identify and classify themes in the students’ answers. The questioning
activity contained two questions for the students to answer, so the directed content
analysis starts with creating two nodes to identify the first and second question in the
activity. Six additional nodes are created to identify the six Bloom’s cognitive levels
and the four nodes for the revised Bloom’s knowledge dimensions (Anderson and
Krathwohl, 2001): factual, conceptual, procedural, and metacognitive knowledge.
Knowledge dimensions were added to the revised Bloom’s Taxonomy (Anderson
and Krathwohl, 2001), where the original taxonomy was presented in one dimen-
sion, and the additional knowledge dimension’s taxonomy was presented in two
dimensions. The cognitive level in both the original and revised version identifies
the type of process used by the student to learn and the added knowledge dimension
represents the ‘kind of knowledge to be learned’. Three additional nodes are added
to denote behavioural attributes: answers related to not understanding the question,
answers in list format, and answers copied from the assignment description.

Each answer for the instructional instrument can be coded with multiple nodes.
For example, the answer is either placed in the first or second question node fol-
lowed by the answer added to nodes related to the knowledge and cognitive dimen-
sions and behavioural attributes.

A pilot project was created to evaluate the coding criteria, consisting of a sub-
set of student answers. Table 8.1 shows examples from the pilot project. After the
answers from the pilot project were coded, and a negotiation process transpired be-
tween the researcher and her advisors, to strengthen the coding reliability. The ne-
gotiation process was influenced by the Thompson et al. interpretation of Bloom’s
knowledge dimensions for CS programming assessments (Thompson et al., 2008).
The negotiation resulted in an agreed-upon coding criteria that was applied to the
remaining answers. When evaluating the answers during the negotiation process,
the answers were discussed to identifying the delineation between the Application
and Analysis cognitive levels. The delineation established answers in the Analysis



88 Chapter 8. Questioning Activity Study

Level Coding Criteria Example Student Answers

Recall • When student pro-
vides the name of the
schema or language
construct.
• When the student

provides the defini-
tion for the language
construct.

• Arrays are used
• if and else
• you can use arrays to store the data

Compre-
hension

• When the student in-
corporates part of the
current problem de-
scription into their an-
swer, along with ba-
sic description of the
schema or language
construct.

• An array with n elements (representing
n days) can be created, and filed with
the number of elements sold for each
day.
• use if and else to decide the number is

positive or negative and distinguish be-
tween -789 and other numbers

Applica-
tion

• When the student
maps tasks or con-
structs to a part of
the problem-solving
process.

• First generate the random numbers of
products sold.
• Setting something to read out how

many things are in the array before -789.

Analysis • When the student
connects constructs
to form parts of
the problem-solving
process.
• When the student

identifies the relation-
ship between tasks to
solve the problem.

• Create an array of products sold, pro-
gram goes through array and calculates
how many days (how many elements in
array) until reach value -789 (end loop),
calculate average of products sold (loop
from array (0 to N-1)

Synthesis • When the student
describes how all of
the tasks or constructs
work collectively to
solve the problem.

• shopkeeper who can simply enter the
products sold in chronological order.
• Next, to find the average, all the ele-

ments of the array (now with no neg-
atives)

Evalua-
tion

• When the student ex-
presses judgement or
assessment of the suit-
ability or quality of an
approach.

• The former because sales aren’t always
consistent and the later because of holi-
days, unforeseen events, etc
• make sure that works before testing

edge tests

TABLE 8.1 Excerpt of the Coding Criteria for Students’ Answers

cognitive level, representing the relationships between tasks as part of the problem-
solving process, while answers that mapped tasks or constructs to parts of the problem-
solving process were coded in the Application cognitive level. All coding was per-
formed in NVivo version 12.

A matrix table was generated using the Bloom’s cognitive levels and knowledge



8.4. Framework Results 89

dimensions. Frequencies from the content analysis (Hazzan et al., 2006) were ex-
tracted using this matrix table in NVivo version 12 and imported into IBM SPSS
Statistics version 2.5 for statistical analysis (Greasley, 2008). To ensure coding reli-
ability, the researcher’s supervisor coded 25% of the students’ answers, and nego-
tiated the partial coding with the author. To strengthen the coding validity, due to
the software limitation in inter-rater reliability, alternate coding reliability was per-
formed.

Level Category Example

Uncategorised Backchannel* Right?
Focus* See where the array is declared?
Hints* We didn’t declare it; should we do it now?

Recall Definition What does that mean?
Knowledge* Have you ever learned about arrays?

Comprehension Calculation What is 13 % 10?
Casual

Consequence
What if the digit is 10?

Clarification* What do you mean?
Confirmation* Does that make sense?
Enablement How are the digits represented as bar

code?
Procedural How do we get the ith element?
Quantification How many times will this loop repeat?

Application Free Creation What shall we call it?
Goal

Orientation
Did you intend to declare a variable there?

Analysis Casual
Antecedent

Why are we getting that error?

Feature/Con-
cept
Completion

What do we want to put in digits[0]?

Free Option Should the array be in this method or
should it be declared up with the other
private variables?

Judgement Would you prefer to use math or strings?
Justification Why are we getting the error?
Plan What should we do next?

Synthesis Improvement Can you see what we could do to fix that?
Evaluation Assessment* Do you think we’re done?

Status* Do you have any questions?

TABLE 8.2 Instructional Framework (* Denotes Emerging Question Category
(Boyer et al., 2010))

8.4 Framework Results

This section contains the results from generating the Instructional Questioning Frame-
work. Table 8.2 presents the Instructional Questioning Framework, with the IQTs
presented in the Bloom’s cognitive levels. The table includes the IQTs and example
questions from the Boyer et al. (2010) study.



90 Chapter 8. Questioning Activity Study

Validating the IQTs using question generation resulted in the reassessment for
three categories. Both Feature/Concept Completion and Plan IQTs were initially cate-
gorised in the Application cognitive level, but the questions generated were focusing
on how tasks were related to solve the problem, which is more aligned to the Anal-
ysis level. Subsequent generated questions for these categories were easier to con-
struct when moved to Analysis. The third category, Focus, was initially categorised
in Comprehension, but like Backchannel and Hints, mapping became difficult due to
the context, with generated Focus questions being applicable to different cognitive
levels. Therefore, for the preliminary framework, the three IQTs (Backchannel, Focus,
and Hints) remain uncategorised.

There was success in mapping most of the IQTs, except for Backchannel, Focus,
and Hints. These IQTs were found to span multiple cognitive levels based on the
question’s context. Results from Boyer et al. (2010) showed Hints as the most fre-
quently posed question type, perhaps due to student-teacher discourse generating
hints within multiple contexts and cognitive levels. The inability to classify these cat-
egories might be due to the way the questions are applied in the two studies. Boyer
et al. (2010) used questioning in a student-teacher discourse, showing that this type
of questioning can encourage deeper learning by the student. This study utilises
instructional questioning as a learning activity within a programming assignment.

The Comprehension cognitive level was observed to contain the most instructional
question types. These findings support educators’ frequent use of comprehension-
based questions in classroom environments (Graesser and Person, 1994). Perhaps in
the Boyer et al. (2010) study, educators used familiar question-asking strategies they
employed in the classroom. Results also demonstrate students predominately using
Procedural Knowledge that referenced language constructs to answer the questions.
The predominate use of Procedural Knowledge correlating to Bloom’s Analysis level
might be a unique behaviour for CS over other disciplines, since students might
draw on algorithms and programming techniques when analysing problems.

Answering the question might require different cognitive levels, depending on
the students’ domain knowledge and abilities. A previous study (Buckley and Ex-
ton, 2003) observed students using lower than the intended cognitive levels to com-
plete CS assessments, showing that students’ prior experience and domain knowl-
edge influenced their cognitive level. When using the framework to construct the
Questioning Activity, educators might observe students answering with different or
unexpected levels. If answers fall into unexpected cognitive levels, this might indi-
cate that students are struggling with concepts, might not understand the questions,
or are neglectful in forming satisfactory answers; or tht the question does not elicit
the desired cognitive or knowledge levels, which may require question revision by
the educator.

8.5 Questioning Activity Results

This section presents the results from students answering the instructional instru-
ment. The results were evaluated from the instructional instrument using directed
context analysis to determine the cognitive levels students used when answering.
The overall average of the programming assignment was also examined to deter-
mine if the Questioning Activity might have impacted the students’ programmed so-
lution.

The average grades were evaluated for the three groups’ programming assign-
ments. Group C1 with no exposure to the Questioning Activity had an overall average



8.5. Questioning Activity Results 91

of 83%. Group E2.1 who received but did not submit answers to the activity had an
overall average of 86.6%. Group E2.2 answered the activity with an overall average
of 86.9%. Comparing the grades for the groups showed no significant differences
when students answered the activity. Results from t-tests were also analysed, the
control group t(211)C1 = -1.194, p=0.861, and the experiment groups E2.1 and E2.2,
t(247)E2.1 = -0.140, p=0.889 and t(242.241)E2.2 = -0.140, p=0.889, with the results
showing no significant differences.

Keyword frequency analysis of student responses in NVivo were analysed. The
results showed array (f=202) was the most frequently used, followed by number
(f=162), and products (f=157). Whereas array focused on language constructs, the
second and third commonly used words relate to the problem’s context. The lan-
guage construct loop was observed as the next most commonly used term, ranking
12th (f=80) in the frequency list.

The remainder of this section analyses 141 unique responses to the Question-
ing Activity from group E2.2. Table 8.3 represents the coded answers aligned with
Bloom’s cognitive levels, while Table 8.4 shows the coded answers against the knowl-
edge dimensions. Both tables provide the percentages of the coded answers, repre-
senting the frequency of lexical items used to answer each question.

A bivariate correlation was performed across both Q1 and Q2 in the instruc-
tional instrument for more substantial data analysis. Additional reporting is done on
high correlations between the Bloom’s cognitive levels and knowledge dimensions,
shown in Tables 8.3 and 8.4. The analysis shows a high correlation between Re-
call and the Factual (r=0.515) and Conceptual (r=0.399) knowledge dimensions, while
Analysis has a high correlation with the Conceptual (r=0.430) and Procedural (r=0.418)
knowledge dimensions.

8.5.1 Analysis of Activity Question 1

This section discusses the answers from the first question in the instructional instru-
ment: Q1: What do you already know about collecting and organising data for products
sold that might help you complete this assignment? The first question, Q1, is designed to
target the Bloom’s Recall cognitive level, to engage the students’ internal knowledge-
base. Of the 120 participates in group E2.2, 12.8% (n=18) did not answer Q1. Table
8.3 shows answers predominately residing in the Recall 13.31% (n=54) and Compre-
hension 14.43% (n=58) cognitive levels. Answers in Recall include the definitions of
language constructs, such as ‘For loops can be used to check elements’, ‘arrays are
useful for storing and organising data’, and ‘Data is best stored and organised in an
array’. The Comprehension level show students answering in more detail, such as ‘An
array with n elements (representing n days) can be created, and filled with the num-
ber of elements sold for each day’ and ‘Number of products sold and the number of
days that they are sold on can vary’.

Bloom’s Taxonomy Q1 Q2
Recall 54 (13.31%) 8 (1.96%)
Comprehension 58 (14.43%) 25 (5.07%)
Application 32 (6.5%) 38 (10.91%)
Analysis 7 (1.51%) 77 (23.07%)
Synthesis 3 (0.45%) 4 (0.55%)
Evaluation 3 (0.63%) 4 (0.21%)

TABLE 8.3 Group E2.2 Results for Bloom’s Cognitive Levels



92 Chapter 8. Questioning Activity Study

Evaluating Q1 against the Bloom’s knowledge dimensions, shown in Table 8.4,
shows most answers residing in Principles and Generalisations 8.51% (n=42) and Deter-
mine Procedures 6.93% (n=39). Answers for Principles and Generalisations were about
the use of the array to ‘create an array to store data’, and data manipulation, where
‘collecting and organising data will help to sort the data out.’ Some answers go into
greater detail on selecting the procedures and criteria for using the array. For exam-
ple, ‘Your program processes each day from the array until your program encounters
the value -789 in the array’, ‘more efficient to use arrays when several values of the
same variable are used’, and ‘the program reads data in array. Each element which
is collected in this array represents the number of products sold for one day.’

Knowledge Dimensions Q1 Q2
Factual Knowledge
Terminology 25 (4.69%) 10 (1.61%)
Details & elements 30 (5.84%) 30 (3.83%)
Conceptual Knowledge
Classifications & categories 3 (0.64%) 0 (0%)
Principles & generalisations 42 (8.51%) 35 (4.44%)
Theories, models & structures 8 (1.54%) 13 (3.26%)
Procedural Knowledge
Skills & algorithms 18 (2.61%) 21 (4.32%)
Techniques & methods 8 (1.65%) 24 (4.83%
Determine procedures 39 (6.93%) 41 (6.82%)
Metacognitive Knowledge
Strategic knowledge 9 (1.89%) 28 (5.11%)
Cognitive tasks 1 (0.35%) 10 (1.79%)
Self-knowledge 5 (0.93%) 1 (0.09%)
Other
Does not understand 5 (1.27%) 3 (1.06%)
Unrelated 1 (0.35%) 1 (0.35%)

TABLE 8.4 Group E2.2 Results for Knowledge Dimensions

8.5.2 Analysis of Activity Question 2

This section discusses the answers from the second question in the instructional in-
strument: Q2: Breaking down the problem into smaller tasks will help you complete the
assignment. How would you go about breaking down this problem into smaller tasks? The
second question, Q2, is designed to target the Analysis level, to encourage the use of
strategic knowledge and to promote the identification of tasks prior to implementa-
tion. Of the 120 students that submitted answers, 90% (n=108) responded to question
Q2. Within the Bloom’s cognitive levels, shown in Table 8.3, answers mainly resided
in the Analysis 23.07% (n=77) and Application 10.91% (n=38) levels. Answers resid-
ing in the Application layer identified parts of tasks, for example, ‘That the program
needs to be written so that it’s able to read the data that is inputted and then sorted
in some way to produce the desired outcome’, ‘breaking down the multiple condi-
tions in the correct orders allows coding easier’, and ‘figure out which parts of the
code would be repetitive and decide on a way to do them easier.’

Determine Procedures 6.82% (n=41) and Principles and Generalisation 4.44 % (n=35),
shown in Table 8.4, were the predominately used knowledge dimensions. In Deter-
mine Procedures, students described procedures in detail, for example ‘using if loops.



8.6. Summary 93

Make it such that any negative number will be set to zero and such that if -789 is
found, the products sold will stop’, ‘make program processes each day from the ar-
ray until it encounters the value -789 in the array’, and ‘checking for the -789 value,
otherwise the value would be changed to zero and the stop requirement wouldn’t be
met until the whole array was checked.’ The last example demonstrates the student’s
ability to describe the algorithm by identifying tasks, such as the sentinel marker (-
789). Answers within Principles and Generalisation contained fewer task details, for
example ‘finally did the calculation and displaying of data’, ‘calculating the average
value of array elements’, and ‘determining the number of days and the number of
products sold each day.’

8.6 Summary

The Questioning Activity was developed as a learning activity within the Codification
Pedagogy, designed to encourage students to further reflect on the problem to re-
duce any misconceptions in approaching the problem. To construct the Questioning
Activity, an Instructional Questioning Framework was developed to identify ques-
tions that encourage students to engage different cognitive levels to view and reflect
on the problem. The results show students achieving the desired cognitive levels,
using both lower and higher-order thinking skills. Students predominately engaged
the Recall and Comprehension levels for lower-order thinking skills, while Analysis
was prevalent for higher-order thinking skills. These results are aligned with the
design of the first question in the instructional instrument, encouraging students to
reflect on what they know for solving the problem. The encouragement can be seen
influencing the answers, with the Recall level correlating to Factual and Conceptual
knowledge dimensions. For example, a student took a critical approach to answer-
ing the question by drawing on what they already knew (Factual) and bringing the
factual knowledge together to solve the problem or parts of the problem (Concep-
tual). The results from the study demonstrate to the Computer Science Education
community that layering questions from lower and higher-order thinking skills can
help promote the use of critical thinking skills.

The construction of the framework involved the classification of 23 Instructional
Question Types (IQTs) into Bloom’s Taxonomy, using Soloway’s Rainfall Problem as
the context for the questions, and ensuring the IQTs were classified in the correct
cognitive level. The framework can help diversify learning activities, which could
help students utilise the appropriate cognitive level in their CS1 learning. Student-
initiated questions have been previously classified (Graesser and Person, 1994) to
Bloom’s, but this is the first attempt mapping instructor-initiated CS question cate-
gories. Once the framework was developed, it was applied to a Questioning Activity
within a blended CS1 learning environment to support students in better under-
standing how to solve a programming assignment. The study was performed across
across multiple cohorts. The results showed that students exposed to the Questioning
Activity, both answering and not answering, had similar scores on the assignment,
potentially showing students that did not answer also benefited from exposure to
the activity. Additional analysis is needed to confirm this theory.

There are limitations to this study. Additional measurements are needed to de-
termine the impact of the Questioning Activity as a problem-solving intervention,
since the results showed no significant gains in the overall class average. Additional
analysis of the students’ approach to implementing their solution could determine



94 Chapter 8. Questioning Activity Study

whether the Questioning Activity helped reduce the completion time and students’
mistakes.

There are future research opportunities with this study. This study applied the
IQTs framework to CS1 courses, but the framework could be examined to construct
questioning activities for upper-division CS courses. Though the presented frame-
work is based on Bloom’s Taxonomy, the process of question classification could be
performed using SOLO Taxonomy, with future research comparing and contrasting
the results between the taxonomies.

The Questioning Activity is designed to engage critical thinking skills to help stu-
dents better understand the problem, so that they can think of ways to problem
solve. The next part of the Codification Pedagogy takes advantage of students think-
ing of ways to solve the problem, by helping them looking at organising a plan. The
following chapter describes the study on the next learning activity that supports
students in organising an implementation plan.



95

Chapter 9

Design Strategy Activity Study

This chapter presents the study on the last learning activity, the Design Strategy Ac-
tivity. The chapter is structured as follows. Section 9.1 presents the overview of the
study. Section 9.2 presents a learning tool, Parsons problems, integrated into the De-
sign Strategy Activity. Sections 9.3, 9.4, 9.5.1, 9.6, and 9.7 present the study method,
analysis, and results. Finally, Section 9.8 presents the summary.

9.1 Overview

This chapter presents the study performed on the Design Strategy Activity, the last
learning activity in the Codification Pedagogy, and builds on the Questioning Activ-
ity. The Questioning Activity has students reflecting to better understand the problem
and its goals, while this activity, the Design Strategy Activity, is designed to encourage
them to think about organising a plan and requirements they identified in the prob-
lem description. The Design Strategy Activity is designed to encourage the develop-
ment of the CS1 students’ design knowledge. Design knowledge is metaknowledge
containing methods for finding answers to problems (Hoadley and Cox, 2009). The
Design Strategy Activity is designed to help students through a scaffolded learning
environment, to help them successfully complete an ordered task list. The learning
activity integrates Parsons problems (Parsons and Haden, 2006), an existing learning
tool that provides the scaffolded learning environment. The Parsons problems tool
has been previously applied (Morrison et al., 2016) to successfully teach students CS
programming concepts within the scaffolded learning environment, which makes
this tool a viable solution for providing support for CS1 student during the design
process.

This chapter presents how the Design Strategy Activity was developed, describing
the study method to measure the activity’s ability to achieve the pedagogical goal of
supporting Self-Regulated Learning (SRL). Because this is the first known attempt
to use Parsons problems during the design process, the study examines students’
strategies in organising plans within the learning tool. This study is designed to
answer the following research questions:

• RQ3.1: How do students use Parsons problems during the design process for solving
CS1 procedural programming assignments?

• RQ3.2: What Self-Regulated Learning (SRL) strategies are supported by Parsons
problems when used as a design-based intervention for programming assignments?

Results from the study show that the learning activity supports various Self-
Regulated Learning (SRL) strategies during the design process. The results also
show students using the learning activity outside the activity’s original intention,



96 Chapter 9. Design Strategy Activity Study

to help them to validate their work during the software development process and
ensure they have completed all the programming tasks.

9.2 Parsons Problems

Before further presenting the Design Strategy Activity, this section describes Parsons
problem 1 (Parsons and Haden, 2006), the underlying tool responsible for the pre-
sentation of the Design Strategy Activity, providing the learning materials in a highly
scaffolded learning environment. The Parsons problems’ highly scaffolded learn-
ing environment gives students the opportunity to build their design knowledge in
a curated learning environment designed to help them succeed in completing the
learning task. This section provides background on Parsons problems, describing
the tool’s contribution to the design of the Design Strategy Activity. This section also
presents related work using Parsons problems, work that has made compelling ar-
guments for using this tool to help CS1 students through the design process.

Parsons problems is a learning tool originally designed to help students construct
a working program by arranging fragments of code within a scaffolded learning
environment (Parsons and Haden, 2006). Parsons problems has previously shown
(Morrison et al., 2016) higher learning gains when teaching programming concepts.
Morrison et al. showed this was accomplished by reducing the students’ cognitive
load (Morrison et al., 2016), the effort placed on the student’s working memory when
performing a task (Sweller, Ayres, and Kalyuga, 2011). Parsons problems has shown
students using less trial and error problem-solving strategies and instead engaged
logical problem-solving skills (Denny, Luxton-Reilly, and Simon, 2008) when de-
veloping programming solutions. Subgoal labeling is a feature introduced later to
Parsons problems, which provides natural language descriptions to code fragments
(Margulieux and Catrambone, 2014). When using subgoal labeling to help students
identify the fundamental structure of the working program, results showed it in-
creased their comprehension on ‘the meaning and sequence of programs without
having to also generate syntax’ (Morrison et al., 2016).

Figure 9.1 shows an example Parson problem that contains fragments of code
which the student arranges to form a working program. This figure shows the Par-
sons problem constructed with js-parsons (Karavirta et al., 2019), a Javascript
library that provides Parsons problems in online learning environments. Features
available in js-parsons include different types of feedback to students upon re-
quest, executing code to evaluate variable values, running unit tests, supporting
multiple programming languages, and supporting distractors. Distractors are extra-
neous fragments that can help educators identify students’ misconceptions about a
problem, but were found to show ‘no difference in task transfer performance’ with
learners (Harms, Chen, and Kelleher, 2016). The js-parsons library contains line-
based, variable-check, and unit-test feedback that are initiated by the user. The line-
based feedback validates the placement of code fragments, while variable-check and
unit-test feedback executes the code to ensure the constructed program works prop-
erly.

Figure 9.1 shows an example problem using the js-parsons library. The in-
terface provides students with three buttons: Start Again, Check Answer, and Submit
Final Answer. The Start Again button returns the fragments of code to the start state

1A survey of the literature shows the tool referenced as Parsons puzzles, Parsons problems, Parsons,
and Parson’s. Parson’s was the original label given to the tool by the original author, Dale Parsons. This
thesis uses the term Parsons problem.



9.2. Parsons Problems 97

FIGURE 9.1 Example Parsons Problem with Code Fragments (Parsons and Haden,
2006)

in the left-hand column, listing fragments in random order. The Check Answer but-
ton initiates feedback on students’ answers. The responses vary based on the feed-
back selected for the activity, such as line-based feedback that highlights incorrectly
placed fragments in the student’s arranged solution. The Submit Final Answer button
logs the student’s interactions.

Parsons problems was selected as the underlying presentation approach for the
Design Strategy Activity. Parsons problems was used to build students’ design knowl-
edge through a scaffolded learning environment, which has previously demonstrated
success in supporting the learning of CS concepts. Parsons problems minimises
other operations that might distract from the students’ learning of CS concepts,
such as focusing on syntax details. Because CS1 students might not have developed
design-based strategies to solve a problem, they might need assistance on where to
begin in the process. The intention of using Parsons problems during the design
process is to provide students with a learning environment that shows them where
to begin in the design process. This thesis builds on the prior Parsons problems re-
search, to investigate whether students also have learning benefits when the tool is
applied in the design space. This study can help determine whether Parsons prob-
lems can be used as a design strategy. The environment provided by the Parsons
problem may also help students focus on the design process, giving them guidance
through the process.



98 Chapter 9. Design Strategy Activity Study

9.3 Methods

This study uses an education research design study method (Creswell, 2012) that
can help produce ‘new theories, artifacts, and practices that account for and poten-
tially impact learning and teaching in naturalistic settings’ (Barab and Squire, 2004).
The education research design uses two different approaches to collect data for this
study. One approach uses a quantitative method for collecting data on how students
interact with the Design Strategy Activity. The other approach is a usability testing
study, comprised of a mixed-methods approach of a questionnaire, think-alouds,
and interviews to gather detailed data into students’ cognitive processes and expe-
riences when interacting with the activity.

This section describes the study methods used to develop and analyse the Design
Strategy Activity. Section 9.3.1 describes the participants and context for this study.
Section 9.3.2 describes the design of the learning activity, forming the instructional
instrument used in the quantitative data collection. Section 9.3.3 presents the ques-
tionnaire used in the usability testing, while Section 9.3.4 describes the think-aloud
and interview sessions included in the usability testing study.

9.3.1 Participants

The Design Strategy Activity was evaluated in a 12-week Introductory Programming
(CS1) course at the University of Adelaide. Section 4.3 previously described the
shared properties across all the studies, presenting information on the course pro-
gramming language, its blended learning environment, and assignments used in the
study. This section describes unique aspects of the participants and context for this
study.

The study methods presented in this chapter contain four study groups, shown
in Table 9.1. The table shows the study groups used in the quantitative and usability
testing study methods. The table provides the name of each group, the semester the
group participated in the study, and the size of the study groups. Groups E1 and
E2 participated in the quantitative study, where each group was divided into two
sections: participants using the learning activity, and non-participants. Because the
instructional instrument was non-compulsory, ‘non-participants’ refer to students in
the course that either did not interact with the activity or did not submit their an-
swers for the activity upon completion. A potential reason for non-participants is
struggling students viewing the activity as additional work. The data collected for
this study did not divide the non-participant group further to account of these strug-
gling students. Table 9.1 shows the distribution of participants and non-participants
in groups E1 and E2.

For the quantitative study, both groups E1 and E2 received instructions on how
to use the learning activity. Instructions were provided by the teacher, where she
explained how to use the learning activity prior to releasing Assignment A4.1. The
instructions were provided as a slide presentation, which included an explanation
on how to submit their answers in the learning activity.

Groups V1 and V2 were involved in the usability testing study. Students in-
volved in the usability testing volunteered, and met with the researcher individu-
ally for more in-depth data collection, observing their use of the activity. Table 9.1
shows the groups enrolled in the August 2018 and February 2019 semesters. Both
groups were recruited from an announcement posted in Canvas Learning Manage-
ment System (LMS). Volunteers for group V1 were selected based on their successful
completion of the learning activity for Assignment A4.1. Group V2 is comprised of



9.3. Methods 99

any student from semester 1 2019 (February 2019) who responded to the class an-
nouncement asking for study volunteers. Having a mix of volunteers previously
using the Design Strategy Activity and those who have not provides the opportu-
nity to observe students with different usage background. Both groups V1 and V2
were given vouchers and movie posters as incentives for their participation. Because
group V1 is a subset of group E2, this group received the learning activity instruc-
tions, as a slideshow presentation with the rest of group E2. Volunteers in group V2
were presented with the instructional slides before the first usability testing study
session.

9.3.2 Intervention Design

This section describes the development of the instructional instrument for evalu-
ating the Design Strategy Activity. This study uses the instructional instrument as
an intervention for a CS1 procedural programming assignment. The intervention is
designed to help students through the design process.

The instructional instrument was developed within the context of a program-
ming problem, Soloway’s Rainfall Problem (Soloway, Bonar, and Ehrlich, 1983). Back-
ground on the Rainfall Problem was previously presented in Section 4.3, describing
the problem and its six programming tasks. The version of the Rainfall Problem used
in this study has a different requirement for reading data. The version in this study
uses an array to collect rainfall information, instead of using the keyboard for data
entry.

The Design Strategy Activity is designed using Parsons problems as the presen-
tation approach to providing the learning materials. The Parsons problem tool was
presented in Section 9.2, providing an example problem using code fragments to
form a working program (See Figure 9.1). For the Design Strategy Activity, the frag-
ments of code are replaced with plans to organise, creating an implementation plan
for the programmed solution. This is the first attempt to use Parsons problems with
implementation plans during the design process. Three types of plans were consid-
ered for students to organise. These plans are strategic, tactical, and implementation
plans (Soloway et al., 1982). Strategic plans define the overall strategy of the prob-
lem, tactical plans define a local strategy for solving the problem, and implementation
plans focus on programming language specific approaches for analysing the strate-
gic and tactical plans. For this study, strategic plans were selected for use in the
Design Strategy Activity, to continue to encourage students to think of the overall
problem. The strategic plans align with the goal of the first intervention, the Ques-
tioning Activity, which encourages students to reflect on the overall problem. The
Design Strategy Activity is the second intervention following the Questioning Activity
in the Codification Pedagogy.

Group Course Total Participants Non-Participants
Quantitative Study

E1 Feb 2018 249 139 (55.8%) 110 (44.2%)
E2 Aug 2018 145 79 (54.5%) 66 (45.5%)

Usability Testing Study
V1 Aug 2018 6
V2 Feb 2019 5

TABLE 9.1 Four Study Groups Involved in the Study



100 Chapter 9. Design Strategy Activity Study

The strategic plans were developed using the problem’s context, Soloway’s Rain-
fall Problem. Because this is the first time students use the learning activity and
are new to the design process, the instructional instrument was developed within
a highly scaffolded learning environment, providing students a learning environ-
ment that would help them succeed in completing the learning tasks. For the highly
scaffolded environment, the strategic plans are closely related to the Rainfall Prob-
lem’s context, which are designed to help students relate the strategic plans to the
programming problem. When developing the strategic plans for the Rainfall Prob-
lem, sentence structures that resemble task variation were avoided, since task vari-
ation within instructional materials presents previously mastered skills with new
learning objectives (Winterling, Dunlap, and O’Neill, 1987). A lack of task variation
can discourage trial and error strategies from students when solving the activity
(Denny, Luxton-Reilly, and Simon, 2008), because students might focus on the mas-
tered skills and try to test the placement of the remaining unknown plans until they
receive a correct answer. In mathematical word problems, sequence sentences pro-
vide guidance in the form of simple phrase-by-phrase translation of the problem,
and though sequential sentences might minimise students’ frustration and mistakes
(Silbert and Stein, 1990), using sentence structure might provide students with or-
dering clues. Minimising these cues can help students think about the purpose of
each strategic plan, instead of forming the correct order based on sentence structure.

Ordered Plans Associated Programming Tasks
1. Define variables to create your

program.
2. Collect the rainfall. Sum totals the valid inputs
3. Check is it time to stop collecting

the rainfall.
Sentinel ignores inputs after
the sentinel

4. Check rainfall is valid number. Negative ignores invalid inputs
5. Calculate the average rainfall. Average the valid inputs
6. Display average rainfall.

TABLE 9.2 Order of the Strategic Plans with the Associated Programming Tasks

Table 9.2 shows the strategic plans presented for the instructional instrument,
where some of the strategic plans are associated with the programming tasks (Fisler,
2014) for the Rainfall Problem. The plans are closely related to the programming tasks,
to help students transition from the design process to the implementation process of
writing the programmed solution. Table 9.2 shows the instructional instrument with
six strategic plans, presented in the correct order for implementing a programmed
solution. This table shows the strategic plans used in the instructional instrument
for groups E2 and V1. Figure 9.2 shows the instructional instrument presenting
using the js-parsons library, the technology used to present the Design Strategy
Activity within the Canvas Learning Management System. To reduce plagiarism and
threats to validity, groups E1 and V2 received an isomorphic version of the Rainfall
Problem. The isomorphic version contains six strategic plans varying contexts, but the
ordering of the plans and their association to the programming tasks remained the
same. Appendix A.2.1 contains the isomorphic version of the assignment presented
to groups E1 and V2.

The method for this study lets participants interact with the learning activity



9.3. Methods 101

throughout the development of the programming assignment. The activity pro-
vides students with line-based feedback when selecting Check Answer button. Line-
based feedback was selected because the other feedback approaches provided by
js-parsons are designed to validate coded solutions, and are not appropriate for
the strategic plans. The Parsons problems approach used in this study presents stu-
dents with natural language options that do not work with variable-check and unit-
test feedback. When participants are ready to submit their interactions with the ac-
tivity, they can select the Submit Final Answer button. This button sends their interac-
tions to a Google Sheets spreadsheet (Google LLC, 2019b), along with a de-identified
student ID for anonymity and the time the student submitted their answer. The de-
identified ID allowed for tracking students’ interactions with the activity across the
assignments. The data collected in the spreadsheet are used for further analysis.

9.3.3 Questionnaire

This section presents the questionnaire administered to groups V1 and V2 prior to
performing the usability testing study. The questionnaire is designed for the volun-
teers to self-assess their prior programming experience and problem-solving strate-
gies. The questionnaire was provided to the volunteers in paper format, and their
answers were transcribed to a spreadsheet for further analysis.

The questionnaire contains eight questions: five open-text questions and three
Likert scale questions. See Appendix B.2.2 for the full questionnaire. The question-
naire does not ask if the volunteer has prior experience to Parsons problems. Three
questions use the Likert scale, while the remaining questions are open-text. Using a
5-point Likert scale, the questions ask participants to self assess their programming
experience and to compare it with that of classmates and experts. The scale ranges
from ‘Very Experienced’ (5 points) to ‘Very Inexperienced’ (1 point). Two open-text
questions ask students to elaborate on their prior programming experience, asking
for previously used programming languages. The remaining three open-text ques-
tions ask participants about previously used problem-solving strategies, including
strategies they use when encountering frustrating situations during the problem-
solving process. Students were asked prior strategies they use to overcome nega-
tive emotions during the problem-solving process. These questions help identify
whether these known strategies could interfere with the students’ use of SRL strate-
gies (Webster and Hadwin, 2014). The questions on prior problem-solving strategies
are asked in the context of a mathematical problem, to assess how the participant
could relate to the questions based on past problem-solving experiences.

FIGURE 9.2 Instructional Instrument Presented in js-parsons Library



102 Chapter 9. Design Strategy Activity Study

9.3.4 Usability Testing Methods

This section describes the usability testing methods performed on the Design Strat-
egy Activity. The methods involved are think-aloud and interview sessions, which
were conducted twice for each study group in the lab environment. Two assign-
ments were used in the usability testing, with sessions were conducted three weeks
apart. The sessions for group V1 were conducted on weeks 8 (Assignment A5.1) and
11 (Assignment A6.1) of the semester. See Appendices A.2.2 and A.2.3 for the full
assignments provided to group V1. Group V2 sessions were conducted on weeks 5
(Assignment A4.1) and 11 (Assignment A6.1) of the semester. See Appendices A.1.1
and A.1.3 for the full assignments provided to group V2.

Think-alouds were conducted to observe and measure students’ cognitive pro-
cesses and experiences while interacting with the learning activity. The think-aloud
sessions provide the most exact method of collecting the student’s thoughts while
problem solving. The think-aloud sessions use protocols developed by Ericsson and
Simon (1993), where students participating in the study were asked to verbalise their
problem-solving processes and their pre-existing knowledge while interacting with
the learning activity (Ericsson and Simon, 1993).

For this study, prior to the first session with each volunteer, the researcher pro-
vided students with instructions on the think-aloud protocol, instructing them to
verbalise their thoughts prior to performing actions. The first think-aloud was con-
ducted after administering the questionnaire. During the 30-minute think-alouds,
the researcher took observational notes and prompted the volunteers when an ex-
tended period of time lapsed with no utterances.

Following the think-alouds, a 30-minute narrative interview was conducted (Pow-
ell, Fisher, and Wright, 2005), to get students’ perspectives on the learning activ-
ity, and to give the researcher the opportunity to follow-up with them on remarks
made during the think-alouds. The interviews enabled students to share in their
own words their experiences using the learning activity. Nine interview questions
were prepared as a guide, related to the three learning activities in the Codification
Pedagogy: the Assignment Presentation, the Questioning Activity, and the Design Strat-
egy Activity. Appendix B.1.1 shows the pre-set interview questions, with additional
questions asked by the researcher when making observations of participants’ utter-
ances and behaviours during the usability testing. The 30-minute interview session
was audio recorded using a hand held device while the researcher took notes. The
audio recordings were professionally transcribed for further analysis.

The usability testing study was conducted in the lab environment, during the
regular tutoring period. The audio-visual materials were collected to help the re-
searcher review and analyse the volunteers’ interactions with the learning activ-
ity. SimpleScreenRecorder (Baert, 2019) was the application used to collect the
audio-visual material for the think-aloud session, containing voice and computer
screen recordings. This application was available on the lab computers. The audio
portion of the audio-visual recordings were professionally transcribed for analysis.
Upon completion of each usability testing session, the recorded materials were up-
loaded to Dropbox (Dropbox, Inc., 2019) Cloud storage as de-identified files. These
files were then professionally transcribed into Microsoft Word documents for further
analysis.



9.4. Quantitative Analysis 103

9.4 Quantitative Analysis

This section presents the analysis performed on the students’ system interactions
with the Parsons problems. Interactive analytics were used to provide different
views into the collected data. Interactive data analysis examines the exchange be-
tween the human and computer, which ‘can lead to actionable observations about
the phenomena being investigated’ (Turkay et al., 2017). The collected data were
students’ interactions with the learning activity and analysed to observe how they
are using the activity. Students were in the study groups E1 and E2, previously de-
scribed in Section 9.3.1. The study groups were subdivided into participants and
non-participants. The data was collected in a Google Sheets spreadsheet (Google
LLC, 2019b) for the participants selecting the Submit Final Answer button in the
learning activity. The participants’ answers were de-identified for anonymity, and
mapped to their grades for the programming assignment for analysis. The Assign-
ment A4.1 grades for the non-participants were included for comparison with those
students that used the instructional instrument.

Two sets of data were analysed. The first set was the classification of participants’
interaction with the activity. System analysis (Ericsson and Simon, 1993) was used
to annotate the participants’ recorded interactions. The participants’ interactions
contained their selection of strategic plans in an ordered list, their feedback requests,
and their requests for restarting the activity.

The participants’ interactions were collected within spreadsheets. The spread-
sheet were exported as comma-separated values (CSV) files that were processed by
a parsing tool with pre-defined pattern rules that identify the type of strategy per-
formed by the student. Pre-defined pattern rules were established by evaluating
a subset of the data, to determine patterns in the participants’ interactions. These
patterns formed a strategy that was given a label for easier identification. The pat-
terns describe the organisation and placement of plans until a correct ordered list
was achieved by the participant. For each interaction, the parser produced a recom-
mended strategy used by the participant to solve the activity. This recommendation
was manually validated by checking the generated patterns with the pattern rules,
to ensure the recommended strategy was accurate. Any interactions that could not
be identified by the parser were manually examined to determine if the interactions
were existing strategies, or if a new strategy needed to be identified. The identified
strategies were grouped together, to provide usage frequencies for comparisons.

The second quantitative analysis approach compared groups E1 and E2 grades
for Assignment A4.1. The analysis was designed to identify any trends from the
strategies used to solve the instructional instrument, comparing the academic suc-
cess between participants and non-participants. The comparative analysis might
also demonstrate whether the pedagogy influenced participants’ completion of the
assignment’s programming tasks. The comparative analysis uses the grades for As-
signment A4.1 contained within Canvas Learning Management System. The com-
parison used analysis of means on the grades for participants and non-participants
for groups E1 and E2. The comparative analysis was performed after grading was
completed for Assignment A4.1. The grades were exported from Canvas Learning
Management System and imported into a Google Sheets spreadsheet (Google LLC,
2019a) to generate the mean used in the comparative analysis.



104 Chapter 9. Design Strategy Activity Study

9.5 Qualitative Analysis

This section presents the qualitative analysis performed in the study. Section 9.5.1
presents the analysis performed on the questionnaire. Section 9.5.2 discusses the
analysis on the think-alouds. Section 9.5.3 presents the analysis performed on the
interviews with the volunteers from groups V1 and V2.

9.5.1 Questionnaire Analysis

This section describes the analysis on the data collected from the questionnaire. The
participants in the usability testing study answered eight questions in the question-
naire. The participants answered the questionnaire in paper format, which was then
transcribed into a spreadsheet. Two different data analysis approaches were per-
formed on the questionnaire responses.

The first analysis approach is analysis of means. Analysis of means was per-
formed on the three Likert scale questions, to identify the participants’ most fre-
quent response. The Likert scale responses were represented by a numeric value
corresponding to the Likert scale level within a spreadsheet, to generate the mean
across all responses to the questions. Internal consistency reliability (Creswell, 2012)
was used on the Likert scale questions to measure consistency of the volunteers’
answers across both groups.

The second analysis approach was thematic content analysis (Marshall and Ross-
man, 1999). Thematic content analysis was used to identify words within the an-
swers that form themes in the participants’ prior programming experience, and
problem-solving skills usage that could be used for further discussion. Thematic
content analysis can be based on previously defined and emerging categories. Emerg-
ing categories can arise during the analysis process, refining the coding framework.
The thematic content analysis was performed on the five open-text questions related
to past programming and problem-solving experiences. Identifying the themes of
participants’ prior programming experience and use of problem-solving strategies
was also performed to provide insight into how they might use the learning activity.
The participants’ responses to the open-text questions were exported from a spread-
sheet and imported into NVivo version 12, to code responses. The coded themes
were extracted from NVivo as a matrix, to identify common themes. Thematic con-
tent analysis was used to create a coding framework, to identify and classify themes
in the students’ answers.

The thematic content analysis started with five nodes to identify the five open-
text questions. Nineteen additional nodes were created, building on previously
identified categories related to Self-Regulated Learning and Emotional Regulation
strategies. Fourteen of these nodes identify the Self-Regulated Learning (SRL) strate-
gies identified by Zimmerman (1989). The 14 SRL strategies were introduced in
Chapter 3, presented in Table 3.1. The remaining five nodes identify Emotional Reg-
ulation strategies (Boekaerts, 2011): Expressing (venting) emotions, Suppressing emo-
tions, Denial and distraction, Re-appraising the situation, and Acquiring and Providing
Social Support.

Coding accuracy involved revisiting the coded responses four weeks after the
initial coding to include the Emotional Regulation strategies (Boekaerts, 2011). The
initial coding was performed using the SRL strategies. The decision to include the
Emotional Regulation strategies in the coding framework was due to open-test ques-
tions in the questionnaire asking about known strategies students use to reduce
frustration. As a result of introducing Emotional Regulation strategies to the coding



9.5. Qualitative Analysis 105

framework, all the existing coded responses were revisited, to determine if the coded
responses contained in the coded segments included utterances related to Emotional
Regulation strategies.

The answers to the five open-text questions can be coded with multiple nodes.
For example, the answer is identified with the open-text question ID, followed by the
SRL and any Emotional Regulation Strategy stated by the student. When the coding
was completed, the coded themes for the five open-text questions were extracted
from NVivo as a matrix, to identify frequencies in the content analysis. The matrix
table was generated from the nodes within the coding framework.

9.5.2 Cognitive Task Analysis

Cognitive task analysis was performed on the data collected in the think-alouds.
Cognitive task analysis is a type of task analysis used to understand tasks that
require cognitive processing, such as problem solving (Crandall, Klein, and Hoff-
man, 2006), that generates ‘first approximation of the model from information about
the task without taking specific psychological factors into account’ (van Someren,
Barnard, and Sandberg, 1994). Cognitive task analysis incorporates procedural anal-
ysis methods (Smith and Ragan, 1999), because the analysis approach involves the
temporal ordering of the students’ procedural tasks. The procedural analysis defines
the mental and physical steps the volunteer goes through to complete the learning
activity.

This study first applies the procedural analysis to the video recordings of the
volunteers’ think-alouds, identifying their procedural steps with the activity. A
flowchat is then generated from the identified procedural steps. This study used
the presentation approach by Schaafstal (1999) to visualise the procedural analysis,
showing the results in a table representation. The table lists all the procedural tasks
performed by the students, with their actions mapped to the procedural tasks. This
view demonstrates the common actions and problem-solving approaches performed
by the students.

After the flowchart is generated for the student, the think-aloud transcript is
applied over the flowchart states. Applying the transcript over the students’ actions
helps to identify the cognitive processes that occur during the procedural step. The
result is a protocol fragment explaining the student’s actions.

9.5.3 Interview Analysis

Directed content analysis (Marshall and Rossman, 1999) was used to analyse the data
from the interview sessions. Directed content analysis was selected to analyse the
interviews because data can be placed in a context of theory, which allows the data to
be applied within an established theory. For the interview sessions, the established
constructs are the 14 Self-Regulated Learning (SRL) strategies previously introduced
in Chapter 3 and presented in Table 3.1. The 14 SRL (Zimmerman, 1989) and five
Emotional Regulation (Boekaerts, 2011) strategies were used as the grounded ap-
proach to coding the data, since a goal of the instructional instrument was to sup-
port the students’ use of SRL strategies, and the questionnaire provided open-test
questions strategies to reduce frustration during the problem-solving process.

When the coding was completed, the coding frequencies are generated to in-
terpret the findings from the conversations. Frequencies from the content analysis
were extracted using the matrix table from NVivo version 12, to further discuss the
findings.



106 Chapter 9. Design Strategy Activity Study

To verify the coding accuracy by the researcher, results from the initial coding
were discussed with her advisors. In these results, only the SRL strategies were
included in the coding. The results were re-coded four weeks later to include the
Emotional Regulation strategies (Boekaerts, 2011). The decision to include the Emo-
tional Regulation strategies in the coding framework was due to open-test questions
in the questionnaire asking students to identify known strategies they use to reduce
frustration. As a result of introducing Emotional Regulation strategies to the coding
framework, all the existing coded responses were revisited, to determine if the coded
responses pertaining to the Design Strategy Activity contained utterances associated
with Emotional Regulation strategies.

9.6 Student Interactions Results

This section presents the quantitative results examining the strategies participants in
groups E1 and E2 used to solve the instructional instrument, by analysing the par-
ticipants’ system interactions. The strategies are identified as Top-down, Known-First,
and Experimenting strategies. These strategies are visually represented in Figures 9.3,
9.4, and 9.5. The figures show the plans represented as circles. The numbers in the
circle represent the six strategic plans identified in Figure 9.2. The arrangement of the
strategic plans are depicted from left to right in the figures. The blue circles represent
the last plan added to the ordered list. The squares in the figures represent the num-
ber of times the participant requests feedback using the Check Answer button. The
figures show the number of passes used to complete the activity. Six is the smallest
number of passes to complete the instructional instrument.

When administering the instructional instrument to group E1, there was a dis-
crepancy with two plans in the activity. The discrepancy affected 70 participants
that completed the activity prior to the researcher finding the discrepancy. The dis-
crepancy did not affect the participants’ assignment grades. To adjust the results
from the 70 participants’ interactions with the instructional instrument, their inter-
actions were analysed to the point where they arranged the plans correctly. Identi-
fying where these participants correctly arranged the strategic plans removed their
extraneous interactions needed to achieve positive feedback from the instructional
instrument.

Strategy E1 E2
Top-Down 58 (41.7%) 38 (48.1%)
Known-First 45 (32.4%) 23 (29.1%)
Experimenting 34 (24.5%) 16 (20.3%)
Incomplete 2 (1.4%) 2 (2.5%)
Total Strategies 139 79

TABLE 9.3 Strategies Used by Groups E1 and E2 to Complete the
Learning Activity

Table 9.3 provides an overview of the strategies used by the participants solving
the activity for groups E1 and E2. The table shows the total number of unique re-
sponses from groups E1 and E2. The interactions are divided into the three strategies
used to solve the instructional instrument. The most commonly used strategy for
both groups is the Top-Down strategy, followed by Known-First, then Experimenting.
After presenting these strategies in detail, the results from the comparative anal-
ysis are discussed. The results from the comparative analysis bring the different



9.6. Student Interactions Results 107

strategies into the discussion, to determine if any associations can be made between
the strategies and academic success. Section 9.6.1 presents the Top-Down strategy.
Section 9.6.2 presents the Known-First strategy, and Section 9.6.3 presents the Experi-
menting strategy.

FIGURE 9.3 Top-Down Strategy for Solving Design Strategy Activity

The rest of this section discusses the participants’ problem-solving strategies
when using the activity. The three strategies are discussed in detail, along with other
behaviours observed when interacting with the activity. Table 9.3 is referenced in
the remainder of this section to draw comparisons between the strategies. Table 9.3
shows the Top-Down strategy as the most commonly used approach to solving the
activity by groups E1 and E2.

9.6.1 Top-Down Strategy

This section describes the most used (E1=41.7%, E2=48.1%) strategy to solve the in-
structional instrument. Figure 9.3 shows an example of a participant using the Top-
Down strategy. The Top-Down strategy has on average the least number of passes for
completion (E1=12, E2=10) compared to the Known-First and Experimenting strate-
gies.

This strategy identifies the participant arranging the strategic plans sequentially
until all plans are arranged in the correct order in the list. Figure 9.3 depicts the par-
ticipant arranging the Rainfall Problem plans by selecting ‘Define variables to create
your program’ then initiating feedback. The remaining passes show the participant
arranging the plans in sequential order: ‘Collect the rainfall’, ‘Check is it time to
stop collecting the rainfall’, ‘Check rainfall is valid number’, ‘Calculate the average
rainfall’, and ‘Display average rainfall’. During the ordering process, some partic-
ipants initiate feedback from the activity, but they continue to systematically order
the plans in the list. In the example shown in Figure 9.3, the early feedback request
might suggest the participant was exploring the activity prior to proceeding further
in the learning process.

9.6.2 Known-First Strategy

This section describes the Known-First strategy, shown in Figure 9.4. This strategy
identifies participants selecting plans in non-sequential order to place in the ordered
list. Known-First is differentiated from the Top-Down strategy by the method in which



108 Chapter 9. Design Strategy Activity Study

the plans are selected. The Top-Down strategy primarily focuses on selecting and
placing plans in sequential order, while participants using the Known-First strategy
seem to draw ‘on past examples to tackle new situations’ (Riley, 1981). Figure 9.4
depicts a participant arranging the strategic plans for the Rainfall Problem in the fol-
lowing manner.

FIGURE 9.4 Known-First Strategy for Solving the Design Strategy Activity

1. Participant first arranges the ‘Display the average rainfall’, ‘Calculate the aver-
age rainfall’, and ‘Define variables to create your program’ plans in the ordered
list.

2. Participant selects the Check Answer button twice for feedback.

3. Participant adds the ‘Check rainfall is valid number’ plan to the ordered list.

4. Participant selects the Check Answer button once for feedback.

5. Participant adds ‘Collect the rainfall’ and ‘Check it is time to stop collecting
the rainfall’ plans to the ordered list.

6. Participant selects the Check Answer button three times for feedback.

7. Participant arranges the ‘Collect the rainfall’ plan correctly in the ordered list.

8. Participant selected the Check Answer button once for feedback.

9. Participant arranges the ‘Check it is time to stop collecting the rainfall’ plan
correctly in the list ordered.

The example shows the participant struggling with the placement of the ‘Check
it is time to stop collecting the rainfall’ plan. This plan relates to the Rainfall Problem’s
Sentinel task, which ignores inputs once the sentinel is processed. The Sentinel
task has been shown in prior studies (Ebrahimi, 1994) to be a challenge for novices.
The participant selecting ‘Check it is time to stop collecting the rainfall’ last and then
adjusting to place in the right order could indicate that the challenge for novices
might begin with understanding and identifying the plan within the problem de-
scription.



9.6. Student Interactions Results 109

FIGURE 9.5 Experimenting Strategy for Solving the Design Strategy Activity

9.6.3 Experimenting Strategy

This section presents the final strategy identified in this study, the Experimenting
strategy, shown in Figure 9.5. The Experimenting strategy shows participants ex-
ploring the instructional instrument by combining the following actions: using the
Restart button to restart the activity, re-arranging plans within the list, and selecting
the Check Answer button to receive feedback to validate their answers.

The Known-First strategy is different from the Experimenting strategy by the hap-
hazard approach participants take when using the Experimenting strategy. The Ex-
perimenting strategy shows participants excessively arranging plans and using the
feedback button when interacting with the activity. The average number of passes
to complete Experimenting is double (E1=24, E2=21) the average approach of the Top-
Down strategy. The higher number of passes might demonstrate trail and error or ad
hoc strategies the participants use to complete the activity. This behaviour could sug-
gest that the participant does not fully understand the problem, which might result
in the participant having problems identifying plans to arrange in the correct order.
Closer examination of the Experimenting strategy shows the usage of three different
behaviours to solve the activity: Exploration, Trial and error, and Incomplete activity.

1. Exploration: Shown in Figure 9.5, this behaviour demonstrates the participant
initially exploring the activity by clicking on buttons and arranging plans.
Once the participant is satisfied exploring, they proceed to arrange the plans
using either the Top-Down or Known-First approach. When the plans are placed
in the list, the user initiates feedback; and upon successful completion, they
either stop or continue to interact with the activity. Because this is the partici-
pants’ first intervention, the Exploration behaviour is understandable.

2. Trial and error: The participant erratically arranges the plans and presses but-
tons in the activity until they achieve the correct answer. This behaviour is
similar to haphazard tinkering of code, where the participant hopes for a work-
ing program without understanding the implications of their code changes
(Perkins and Martin, 1985).



110 Chapter 9. Design Strategy Activity Study

Group Description E1 E2
Cohort 86.6% (n=249) 79.4% (n=145)
Participants 86.9% (n=139) 81.0% (n=79)
Non-Participants 86.5% (n=110) 77.8% (n=66)
Incomplete Parsons 0% (n=2) 78.1% (n=2)
Experimenting Strategy 84.6% (n=34) 80.1% (n=16)
Top-Down Strategy 87.9% (n=58) 80.3% (n=38)
Known-First Strategy 84.1% (n=45) 83.8% (n=23)

TABLE 9.4 Overall Grades by Groups E1 and E2

3. Incomplete activity: The participant begins exploring in the activity, but decides
to not complete the activity. An extreme example of this behaviour is the par-
ticipant pressing feedback buttons without interacting with the plans to form
an ordered list.

9.6.4 Grade Comparisons

Table 9.4 provides a comparison of groups E1 and E2 overall grades for Assignment
4. Table 9.4 divides the overall grades between participants and non-participants,
showing a percentage gain of 3.2% for participants in group E2, but no significant
gains for group E1. To validate the results, paired t-tests were performed on the
overall grades, showing no statistical differences, t(119) = 0.1914, p = 0.8485. Both
cohorts used the Top-Down strategy, followed by Known-First, then Experimenting
to solve the activity. However, no significant academic success was demonstrated
when a particular strategy was applied by participants. All three strategies provided
similar academic outcomes from the participants.

Overall, participants performed slightly better than the overall cohort average,
but not significantly. Comparing the grades are compared based on strategy used
by the participants, Table 9.4 shows a percentage gain of 3.3% for E1 students using
the Top-Down strategy, and a percentage of 3.5% for E2 students using Known-First
strategy.

9.7 Usability Testing Results

This section presents the results from the qualitative study using a questionnaire,
think-alouds, and interviews with volunteers from two study groups, V1 and V2.
Section 9.7.1 presents the results from the questionnaire. Section 9.7.2 provides the
results from the think-alouds, and Section 9.7.3 presents the results from the inter-
views with groups V1 and V2.

9.7.1 Questionnaire Results

This section presents the results from the questionnaire performed in the qualitative
study. The study groups V1 and V2 received the same questionnaire, and were asked
to self-assess their prior programming and problem-solving experiences. Table 9.5
provides the results from the questionnaire self-assessment of prior programming
experiences. This table provides the questions number associated with the ques-
tions presented in the questionnaire (See Appendix B.2.2). Table 9.6 presents known
problem-solving strategies.



9.7. Usability Testing Results 111

Comparison To
Group Size Q4.

Self-
Assessment

Q5.
Experts

Q6.
Classmates

Q7.
Programming
Languages

V1 6 Somewhat
Experienced
(2.17)

Very
Inexperienced
(1.5)

Experienced
(3.33)

Python (n=1),
C++ (n=2)

V2 4 Inexperienced
(1.8)

Very
Inexperienced
(1.0)

Inexperienced
(2.4)

Mathlab (n=1),
Python (n=1)

TABLE 9.5 Volunteers’ Self-Assessment of Prior Programming Experience

Table 9.5 collates the responses for three questions related to prior programming
experiences, where volunteers answered with the best Likert scale level (1-5). In the
reliability analysis for these questions, Cronbach’s alpha was found to be 0.97, a rel-
atively high internal consistency. Included in the table are the analysis of means for
study groups’ answers. The table shows their answers to questions related to their
prior programming, and their abilities compared to their classmates and experts.
Table 9.5 shows group V1 ranking their experience higher (∆V1V2=0.37) than group
V2. This is due to two V1 volunteers stating two and three years experience using
Python and C++. The remaining V1 volunteers and all volunteers in group V2 stated
their programming experience started with this course. When comparing their expe-
rience to experts, both groups acknowledged they were very inexperienced (V1=1.5,
V2=1.0) compared to experts. Group V1 rated themselves experienced (V1=3.33)
compared to their classmates, while group V2 rated themselves a bit below experi-
enced (V2=2.4). The higher rating for V1 was due to the two volunteers with prior
programming experience.

The questionnaire asked the volunteers to provide their known problem-solving
strategies. Table 9.6 shows the volunteers’ responses to the questions using the
coding framework that includes SRL (Zimmerman, 1989) and Emotional Regula-
tion (Boekaerts, 2011) strategies. The table classifies the responses by the SRL and
Emotional Regulation strategies, providing a description of the strategy and exam-
ple responses. From the fourteen SRL strategies, four of the fourteen strategies were
used in the volunteers’ responses, while four out of the five emotional strategies
were used in their responses.

The most common SRL strategy cited for both groups (V1=21.1%, V2=15.8%)
was Organising & transforming, ‘student-initiated overt or covert rearrangement of
instructional materials to improve learning’ (Zimmerman, 1989). Volunteers stated
they seek assistance through online resources and peers (V1=2, V2=1), and review
notes (V1=1, V2=0). They also identified Goal-setting & transforming strategies, such
as “Collect the data for the assignment, and then plan how I will write it down”, and time
management (V1=1, V2=2), for example, “Try and evenly distribute the workload over
the week to give myself the least stress to completion.”

Another questionnaire question asked the volunteers about strategies they use
when they become frustrated during the problem-solving process. Table 9.6 shows
the response to this question, coding the responses with Emotion Regulation (ER)
strategies (Boekaerts, 2011). The table shows example responses from the volun-
teers, where the most common response was Taking breaks from solving the problem
(nV1=3, nV2=3). Most of the students’ responses were emotional strategies that could
help complete the problem, except for Denial & distraction, a procrastination strategy



112 Chapter 9. Design Strategy Activity Study

Self-Regulated Learning Strategies
Group

SRL Strategy Description V1 V2 Examples
Organising &
transforming

Deconstructs
the problem

4
(21.1%)

3
(15.8%)

“I try to divide the problems
in parts for easier understand-
ing then solve each of those” and
“Draw out and expand the prob-
lem. Explain each part to my-
self.”

Other Asks for
help from
tutors and
friends

3
(15.8%)

1
(5.3%)

”First I will try to solve it by
myself. After that I will get
some help from tutors, online re-
sources, friends.”

Goal-setting
& planning

Sets goals to
complete
activities

2
(10.5%)

2
(10.5%)

“Collect the data for the assign-
ment, and then plan how I will
write it down.”

Seeking infor-
mation

Uses online
resources

2
(10.5%)

1
(5.3%)

“I refer to online resources and
books to solve the problem.”

Keeping
records &
monitoring

Reviews
notes

0
(0.0%)

1
(5.3%)

“Using techniques I’ve been
taught - refer to notes.”

Emotional Regulation Strategies
Group

ER Strategy Description V1 V2 Examples
Re-appraise
situation

Takes
breaks from
solving the
problem

3
(25%)

3
(25%)

“Take a break. Go and do some-
thing recreational to get my mind
off of it” and “Revisit it at a later
date if it’s that bad. Fresh per-
spective can help.”

Starts the
problem
again

0
(0.0%)

1
(8.3%)

“Start again with a blank can-
vas.”

Social
support

Asks for
help from
peers or
online
resources

2
(16.7%)

0
(0.0%)

“I refer a lot to online resources
and books to solve the problem.”

Denial &
distraction

Leaves the
problem
entirely

1
(8.3%)

0
(0.0%)

“...if its a very difficult problem, I
usually might just leave it based
on the time left.”

Moves onto
other
problems

0
(0.0%)

1
(8.3%)

“Often move onto other problems
that need solving and if these are
also difficult then rotate through
them.”

Expressing
emotions

Uses
positive
thinking

1
(8.3%)

0
(0.0%)

“Try to make negative things into
positive.”

TABLE 9.6 Identified SRL and Emotional Regulation Strategies



9.7. Usability Testing Results 113

that can interfere with the learning process (Webster and Hadwin, 2014). None of
the responses included negative strategies, such as Suppressing emotions. However,
it is unclear from the questionnaire whether the volunteers used Denial & distrac-
tion at the end of the problem-solving process. Using this strategy can promote task
avoidance (Boekaerts, 1996), which can result in an incomplete solutions. From the
responses, it is unclear whether the participants used used Denial & distraction in
combination with another strategy, such as Re-appraise situation, to complete prob-
lems.

9.7.2 Think-Aloud Results

Volunteers
Group V1 Group V2

Procedural Tasks V1.2 V1.4 V2.1 V2.3 V2.4 V2.6
Environmental structuring • • •
Reads problem description • • • • •
Begins programming • •
Seek information •
Evaluates all strategic plans • • •
Identified first strategic plan
in activity

• • • •

Evaluates remaining strate-
gic plans

• • • •

Arranges strategic plans • • • • • •
Self-evaluation • • • •
Re-organises incorrect plan • •
Initial or revisit self-
evaluation

• •

Submit Answer • • • • • •
Begins or continue program-
ming

•

TABLE 9.7 Task Analysis for Groups V1 and V2 for Assignment A6.1

This section reports on the results from the cognitive task analysis of the think-
alouds. Table 9.7 presents the first analysis of the procedural steps taken by the vol-
unteers for both groups when interacting with the learning activity in Assignment
A6.1. The table shows the steps in temporal order, to show the volunteers’ interac-
tions in the order they were performed. The dots in the table denote the volunteer
performing the procedural step.

Table 9.7 shows the results from two out of the six volunteers in group V1. Two
volunteers excluded from the results completed the activity prior to the think-aloud.
These two volunteers identified in the questionnaire having prior programming ex-
perience (2-3 years). With the prior programming experience, they might have been
ahead in the lab activities, and approached the programming assignments earlier
than those volunteers that had no previous experience. Another volunteer in group
V1 was excluded from the results because she was behind in her work, and was
unable to participate in the think-aloud session for Assignment A6.1. The fourth
excluded volunteer’s collected data was corrupted and could not be analysed.



114 Chapter 9. Design Strategy Activity Study

All four of the volunteers for group V2 were reported in this section. The re-
ported results from the think-aloud sessions using Assignment A6.1 show all volun-
teers in both groups V1 and V2 using the Top-Down strategy to solve the activity.

Line Student’s Comments Analysis
1: I’m not making a full-on

plan when I see them,
Student acknowledges how he is
viewing the activity to help or-
ganise the plans.

3: besides probably the
very last one, because
those ones are very
obvious.

Student identifies the last plan as
easy, thinking of where it resides
in the organised plan.

7: But the ones in the
middle, they’re usually
just not the first and
they’re not the last.

Student acknowledges mentally
reviewing all the plans, but the
middle strategic plans are not
what he selects first to construct
the organised plan.

11: Once I see the first
one, then I move onto
the next one.

Student visits all the plans, and
identifies the first one in the or-
ganised plan.

14: But the other ones
aren’t already in my
head yet.

Student has not reflected on all
the plans.

17: I don’t put them into an
order in my head first.

Student has not reflected on these
plans.

19: But the middle ones, I
don’t order them at all.

Student acknowledges certain
strategic plans occur in the middle
of the organised plan.

21: Basically, if it’s more
simple then I compare
them to each other, but
I don’t keep track of
which one should be in
which order until I get
to the next one.

Student uses negotiating tactics
to determine the ordering of the
middle plans, because they re-
quire more programming logic to
perform.

FIGURE 9.6 Protocol Fragment for Student V2.1

A few observations can be made from the results shown in Table 9.7. Three (50%)
volunteers use the Environmental structuring, an SRL strategy to prepare their envi-
ronment for better learning, prior to starting other steps in the learning process.
The three volunteers adjusted their desktop environment to view the assignment
while using the Integrated Development Environment (IDE), preparing the student
to view the problem while working on the program. Another observation is that
all the volunteers participating in the think-aloud used the Top-Down strategy to
solve the learning activity. The Top-Down strategy was the most commonly applied
(E1=41.7%, E2=48.1%) strategy in the quantitative study, demonstrated in Section
9.6. Interacting with the activity while being observed might have motivated the
volunteers to use this strategy above others. The remainder of this section presents
the underlying thought processes the volunteers used when using the Top-Down
strategy. The following examples demonstrate the volunteers using the activity in
varying problem-solving processes.



9.7. Usability Testing Results 115

Line Student’s Comments Analysis
1: I would have at least,

maybe, two... Depending
on how many options
there are, two of these
grey boxes, one here and
one here.

Student begins to evaluate the
overall layout of the activity, to
determine plans he needs to ar-
range.

7: And so... And then I
would, yes, organise
what I would think
definitely has to come
first, what has to come
second.

Student begins to negotiate the
ordering of plans.

13: And then, I would look
in this and see...
I would see how to
organise this.

Student evaluates that the se-
lected order is correct.

17: And if something doesn’t
add up in this way, it’s
not possible, I would
then check here

Student selects the feedback fea-
ture in the activity, to determine
if his selection was correct.

21: and see what’s in here
that’s missing from
here, and then I would
swap it out.

Student uses the corrective feed-
back from the activity, to adjust
the plan he organised.

FIGURE 9.7 Protocol Fragment for Student V2.2

To better understand the volunteers’ cognitive processes when solving the ac-
tivity using the Top-Down strategy, the second view reports on the cognitive tasks
performed by the volunteers, layering their problem-solving process over the proce-
dural steps. This analysis allows a deeper view into the cognitive process when the
volunteers solve the activity using the Top-Down strategy. The cognitive task analysis
shows different approaches performed by the volunteers, and demonstrates differ-
ent cognitive processes used to complete the activity.

Figures 9.6, 9.7, and 9.8 are protocol fragments from three approaches that show
students interacting with the activity without referencing the problem’s context. Fig-
ures 9.9, 9.10, and 9.11 are examples of how students reference the problem’s con-
text when organising the plans. These figures show how participants use internal
knowledge to arrange the plans, find relationships between plans during the or-
ganisational process, reference the activity to develop the solution’s workflow, and
adopt trial and error strategies to solve the activity. The figures display the volun-
teers’ transcribed think-alouds in the left-hand column, and an explanation of the
their verbalisations in the right-hand column. The figures also display line numbers
associated with the transcribed think-alouds, which are used as references when dis-
cussing the results.

Figures 9.6 and 9.7 show the cognitive process of Students V2.1 and V2.2, us-
ing the Top-Down strategy to solve the Design Strategy Activity for Assignment A6.1
(See Appendix A.2.3). Student V2.1 demonstrates a student using the activity to
think about the organising of plans, where he identifies the plans he is most familiar
with first (line 3 Figure 9.6). He refers to the plan as ‘obvious’. Identifying known



116 Chapter 9. Design Strategy Activity Study

Line Student’s Comments Analysis
1: I guess it gives an

idea, I think
Student acknowledges that the
activity is helping her think more
about the problem.

3: and what you end up
doing is trying to get
it all green.

Student performs trial and error
strategy to complete the activity.

6: Rather than actually
thinking what you want
to do it.

Student acknowledges not think-
ing about the organisation of the
plans to solve the problem.

9: The hard part was
actually getting a
pattern to work.

Student acknowledges that the
trial and error strategy is not an
easy problem-solving approach.

FIGURE 9.8 Protocol Fragment for Student V1.1

plans first demonstrates the student is drawing on prior experiences to help solve
the problem (Riley, 1981; Roll et al., 2007). The approach of Student V2.2 is to iden-
tify the first plan (line 7 Figure 9.7) instead of recognising a familiar plan. To help
with the organisation process, Student V2.2 uses the Parsons problem feedback fea-
ture for help (line 17 Figure 9.7), whereas Student V2.1 evaluates the plans closer
to decide the order (line 21 Figure 9.6). Student V2.1 approaches the problem us-
ing means-ends analysis (Sweller and Levine, 1982), where they examine the plans
within the current problem-solving state and determine how the organisation of the
plans will help them achieve the final goal state. The protocol fragments presented
for Students V2.1 and V2.2 show the activity helped them think about the overall
problem, modeling the problem-solving process after an expert’s approach (Schulte
et al., 2010; Gerdes, Juering, and Heeren, 2012). Both of these volunteers are men-
tally organising the plans, using the Top-Down strategy. From the questionnaire,
volunteers cite Organising & transforming SRL strategy as the most common (36.9%)
approach they use for solving problems. This questionnaire response might suggest
their prior usage of this strategy might have resulted in their propensity to organise
the plans mentally, instead of the using the learning activity as a supplement for the
organisation process.

The protocol fragment presented in Figure 9.8 shows Student V1.1 using a trial
and error problem-solving approach for the Design Strategy Activity in Assignment
A5.1 (See Appendix A.1.2). The student uses the Experimenting strategy, where she
was observed not thinking about the plans when interacting with the activity. This
is the only think-aloud session demonstrating a student struggling while using the
activity. The small number (n=1) of students struggling in the think-alouds can
be supported by the quantitative results, where the Experimenting and Incomplete
strategies were the least commonly used to solve the instructional instrument, See
Table 9.3.

For this think-aloud, this is the third time Student V1.1 has used the activity,
with prior exposure in Assignments A4.1 and A4.2. With her interaction, she ac-
knowledges using the trial and error approach while solving the activity. Though
she acknowledges the approach is not the best for understanding the problem (line
6 Figure 9.8), she acknowledges that it encouraged her to think about the problem,
stating “but I guess it gives an idea, I think”.

Figure 9.9, like Figure 9.6, shows Student V1.2 using relationships between the



9.7. Usability Testing Results 117

Line Student’s Comments Analysis
1: So we’ll set up a basic grid

with all this. There we go.
Well, setting up the basic
grid obviously would have to
come first.

Student identifies and ar-
ranges the first plan in the
list.

6: That one has to be last,
resetting. We don’t want to
check the square field yet.

Student performs a negoti-
ation process to eliminate
plans from being next in the
ordered list.

9: So that probably and then
that. So implementing
the highlighting, then the
filling.

Student identifies and ar-
ranges the next plans in the
list.

13: Then we have to see when this
grid is full and when that
happens we have to reset the
grid.

Student identifies the final
plans in the ordered list.

17: Yes, seems good Student validates their work
by checking their answer
with the assessment in the ac-
tivity.

FIGURE 9.9 Protocol Fragment for Student V1.2

plans to help with the organisation process. Unlike Student V2.1 in Figure 9.6, Stu-
dent V1.2 uses the purpose of the plan to reason its placement in the problem space
(lines 3-5 Figure 9.9). Student V1.2 rationalises his selection of the first plan Set up
a basic grid, stating “setting up the basic grid obviously would have to come first”. He
also provides reasons for the placement of the last plan, Reset grid when filled, stating
“That one has to be last, resetting”. This statement demonstrates that he understands
the completion of the problem. Between identifying the first and last plan, he nego-
tiates the placement of the other plans in the list, stating “We don’t want to check the
square field yet”. Comparing the relationship between the plans in the context of the
problem’s workflow was how Student V1.2 organised the plans.

Line Student’s Comments Analysis
1: All right, so place ball on

game board.
Student assumes the second
plan is the first in the organ-
ised list.

3: Ooh, actually, construct basic
game... Okay, that one is
first.

Student realises his mistake,
and adjusts the ordered list.

8: Okay, and then try building
another and check the ball is
placed in hole.

Student identifies the re-
maining plans to add to the
list.

12: Let’s have a look at that.
Yes, done.

Student validates work.

FIGURE 9.10 Protocol Fragment for Student V2.7



118 Chapter 9. Design Strategy Activity Study

Like Student V1.2, Student V2.7, shown in Figure 9.10 for Assignment A6.1 (See
Appendix A.1.3), also negotiates the plan order by drawing on the problem’s con-
text. Student V1.2 starts with evaluating the first plan (line 1 Figure 9.10) in the
randomised list. For this think-aloud session, the first plan was in the randomised
list was Place ball on gameboard, which he assumed would be the first in the ordered
list, but he adjusts his decision after evaluating the other plans in the randomised
list, stating “construct basic game... Okay, that one is first”. Had the Place ball on game-
board plan was presented at the bottom of the randomised list, Student V1.2 might
have approached the organisation process differently, possibly reflecting on the re-
maining plans before making a decision.

Line Student’s Comments Analysis
1: You have to make the basic

setup, where the ball’s
position is, that’s what the
first thing is.

Student identifies the initial
plan, and begins to associate it
with other requirements in the
problem.

5: And then, yes, because, based
on the ball’s position, the
hole is random, and so the
game changes according to
that.

Student continues to bring
in other requirements to the
problem, such as randomising
the location of the initial hole
in the game.

10: And then, the ball is... You
have to check the ball’s
position to see if it’s in
there, because there’s no
point in tracking it around
if the ball’s already in the
hole.

Student considers ways to
make his solution robust.

Student begins to interact with the activity by arranging plans.
17: I think the meaning of this

plan, the construct basic game
board, is just creating the
playing space.

Student evaluates the first
plan to organise.

21: Okay. Oh, yes, that... If
it’s just that then it’s...
This should be in the front.

Student is justifying the order-
ing of the first plan.

24: Yes. Ball is placed in the
hole. That makes sense. Yes,
because I would try either
way; it depends on how you see
it.

Student examines how the
plans relate through his inter-
pretation of the problem.

FIGURE 9.11 Protocol Fragment for Student V2.3

The final example, shown in Figure 9.11, demonstrates the student using As-
signment A6.1 activity (See Appendix A.1.3) to better understand the problem by
reflecting on the plans to construct the workflow of the program. The first part of
the protocol fragment shows Student V2.3 describing the workflow by using the
plans to initiate thoughts on cases that will make this solution more robust. For ex-
ample, the Place ball on gameboard plan has him consider how the ball will be tracked
on the gameboard and cases where tracking is not required (lines 10-16 Figure 9.11).



9.7. Usability Testing Results 119

Upon reaching the end of the workflow, with the game ending with the ball in the
hole (lines 15-16 Figure 9.11), Student V2.3 interacts with the plans in the activity to
arrange the ordered list, helping him to decide where the plans reside (lines 24-28
Figure 9.11) in the workflow he mentally constructed earlier. This example shows
that though the student mentally constructed a workflow for solving the problem,
his understanding of how to approach it was different from the correct path. The
process of organising the plans through the activity helped adjust his understand-
ing.

9.7.3 Interview Results

This section presents the results from the seven narrative interviews that followed
the think-aloud sessions. Section 7.4.2 described the process of coding a narrative
interview, and the method in which a narrative interview is coded.

Table 9.9 shows the results from the coding framework, along with example
coded segments. The results of the coded segments are divided into groups V1 and
V2, to determine if students’ opinion on the learning activity were different due to
prior exposure. The results demonstrate similar skills usage by participants regard-
less of prior exposure to the activity. The final coding framework contains seven
themes. Table 9.9 lists the total number of narrative segments coded to each theme,
and the percentage the theme appears in the overall results.

In the results, four out of the fourteen Self-Regulated Learning (SRL) strategies
(Zimmerman, 1989) were identified by the participants. No Emotional Regulation
strategy (Boekaerts, 2011) was identified by students when using the Design Strategy
Activity. These strategies are T1 Environmental structuring (3.8%), T2 Organising &
transforming (19.2%), T3 Self-evaluation (30.7%), T4 Goal setting & planning (15.4%).

Only group V1 had feedback on using the activity, but this may be due to having
more practise using it over group V2. The first usability testing session with group
V2 was the volunteers first exposure to the activity. Feedback was both positive, T16
Motivation (11.5%), and negative, T18 Too easy (15.4%), about the activity.

The most common response made about the activity was the SRL strategy T3
Self-evaluation (n=8, 30.7%). For example, Student V1.6 stated the activity checks his
understanding; while Student V2.3 uses the activity to verify he is done with the
assignment, stating “I’m like, well, that, to me, feels like the end point. I’m going to figure
out what steps I need to take to get to the end-point.”

Though only one volunteer acknowledged setting up the environment for learn-
ing, in the think-aloud results (described in Section 9.7.2) three (50%) volunteers
were performing the procedural task of setting up their desktop space to view the
Integrated Development Environment (IDE), and approaching the assignment with
the Design Strategy Activity, using the Environmental structuring SRL strategy. It is
possible students did not view setting up their environment as an important step in
their learning process, or removed the process of setting up their environment from
their conscious mental efforts (Paas, Renkl, and Sweller, 2004).

One student in group V1 acknowledged approaching the problem using Poor
Learning Tendencies (PLTs) — habits used by students to compensate for their lack
of understanding (Baird and Northfield, 1995) — to complete the activity. She ac-
knowledged using the activity for the purpose of “making it green”, a visual feed-
back from the Parsons problem that denotes success. The motivation to complete
the activity over understanding how to solve the problem is a behaviour previously
observed when students debug code (Perkins and Martin, 1985), where they alter



120 Chapter 9. Design Strategy Activity Study

ID Results Theme Example
V1 V2

T1 0
(0.0%)

1
(3.8%)

Environmental
structuring

“...have it split screen, and have the cod-
ing open here...I have a problem of get-
ting distracted and going off course oc-
casionally, so I’ve gotten into the habit
of having what I need to be doing very
clear and obvious to me.” Student V1.1

T2 2
(7.7%)

3
(11.5%)

Organising &
transforming

“helps to find the start in the program”
Student V1.3, and “Helps organise
thoughts and what to do next” Student
V1.4

T3 3
(11.5%)

5
(19.2%)

Self-
evaluation

“validate as hints” Student V1.1, and
“I guess in doing that also showed me
what doesn’t work in a way” Student
V2.3

T4 2
(7.7%)

2
(7.7%)

Goal setting &
planning

“ordering plans helpful” Student V1.2,
and “Just what the process was to get to
my end goal was the way I was thinking
about it, like a logical order of how to get
there” Student V2.3

T16 3
(11.5%)

0
(0.0%)

Motivation “easier understanding and easier work-
ing while we do the problem” Student
V1.3

T17 1
(3.8%)

0
(0.0%)

Poor Learning
Behaviours

“making it green” Student V1.1

T18 4
(15.4%)

0
(0.0%)

Too easy “too basic” Student V1.5, and “would
like to have more task” Student V1.4

TABLE 9.9 Narrative Interview Coded Framework

code without understanding the implications to their changes, in the hopes of get-
ting the program to work.

There are comments made by group V1 related to improving the activity, stating
the activity was easy (15.4%). Students provided feedback to make the activity more
challenging by adding more plans.

The results from the interviews showed the number of plans provided in the
learning activity played a part in how the participants interacted with the activity.
The participants’ comments on the activity being “too easy” (T18, V1=15.4%) refer-
enced the amount of plans being arranged. A participant suggested that had there
been more plans, the activities would be “more challenging” and “Yes, I probably would
use that to organise”. When designing the instructional instrument used in this study,
the plans were designed at a high level, resulting in a number (n=6) of strategic plans
the participants claimed they could arrange mentally. Future designs could include
more strategic plans, and observe participants’ interactions and experiences using
the activity with more detailed plans.



9.8. Summary 121

9.8 Summary

This chapter presented a study on the Design Strategy Activity, the last learning ac-
tivity in the Codification Pedagogy. This study was conducted over three semesters,
with different groups of CS1 students taking part in qualitative and comparative
analysis. This chapter described how the learning activity was designed, devel-
oped, and tested. The results from this study showed students applying three differ-
ent strategies for organising strategic plans in the learning activity. These strategies
could relate to how the students are thinking about the problem. For example, stu-
dents approaching the activity haphazardly, defined as Experimenting, might suggest
they are struggling to understand the overall goal of the problem. This is demon-
strated by results from the usability testing, where a volunteer admits to solving the
activity for the purpose of solving it, and not thinking about the plans in the activity.
However, the activity did give this student an idea for solving the problem, which
this student might not have done otherwise without the activity. The results from
the think-alouds showed the presentation of plans in the initial randomised list was
a factor in the organising process. Future work can evaluate how the plan presen-
tation in the randomise list changes the students’ organisation process, potentially
identifying patterns that were better aligned with steps taken during the design pro-
cess.

The results from the usability testing show the learning activity supporting stu-
dents’ use of a variety of Self-Regulated Learning (SRL) strategies. Students were
shown using the tool to organise and plan prior to coding the solution, and to help-
ing them to better understand the problem by stepping through the workflow. The
learning activity was built on Parsons problems, and was the first attempt using Par-
sons problems during the design process. The study also shows students using the
activity to support them through the software development process. SRL strategies
used by students during the software design process included self-evaluation, deter-
mining the next steps in the design process, and validating that all the programming
tasks have been completed.

There are limitations and contextual variables to this work. A limitation to this
study is the data collection method used for the usability testing. The data collec-
tion might have increased the volunteers’ cognitive load when performing the think-
alouds, and may have affected how the volunteers interacted with the activity. How-
ever, the think-alouds provided an exact method of collecting volunteers’ thoughts
while problem solving. Another limitation is the small group (n=6) of participants
in this study, but the small sample size allowed for in-depth data collection that
enabled the participants to share in their own words their experiences while inter-
acting with the Design Strategy Activity. Another limitation is the gender disparity
(male=83.33%, female=16.67%) for the participants. Future research opportunities
can evaluate other approaches to encourage more female students to participate in
the usability testing.

There are also other future research opportunities for the Design Strategy Activity.
The Design Strategy Activity was evaluated as a non-compulsory activity. Evaluating
as a compulsory activity might generate new strategies for solving the activity, or
increase students’ usage of a particular strategy. Future research opportunities can
included evaluating the activity with different plans. This study was performed us-
ing strategic plans, but future evaluations could include tactical and implementation
plans. Using these plans might generate different strategies when solving the learn-
ing activity. Another future research opportunity includes evaluating the activity



122 Chapter 9. Design Strategy Activity Study

within the functional programming language paradigm, since this study was con-
ducted in the procedural paradigm. The future research could draw comparisons on
how students think about the design process based on the programming paradigm.

This chapter presents the last study evaluating individual activities in the Cod-
ification Pedagogy. This study allowed for deeper analysis of the Design Strategy
Activity, providing the opportunity to measure the activity’s contribution to the ped-
agogy. The next chapter brings all the learning activities together, to examine how
the entire pedagogy achieves its pedagogical goals.



123

Chapter 10

Pedagogy Evaluation Study

This chapter presents the final study on the Codification Pedagogy, examining the
pedagogy in its entirety. Section 10.1 presents the overview of the study. Sections
10.2, 10.3, 10.4, and 10.5 present the study method, analysis, and results. Finally,
Section 10.6 presents the summary.

10.1 Overview

This is the final study on the Codification Pedagogy, examining the overall peda-
gogy. The goal of this study is to evaluate how the pedagogical goals are achieved
through the lens of academic success and metacognitive awareness. Metacognitive
awareness is a process taken by students when thinking about solving a problem,
which includes their understanding of where they are at in the problem-solving
process (Metcalfe and Shimamura, 1994). This study examines academic success be-
cause of the linear relationship between grades and the usage of study skills (Pepe,
2012). Study skills are used to support the students’ learning process (Thomas, 1993),
where SRL strategies are incorporated into the process when they evaluate their
study skills for effectiveness (Winne, 2011). The relationship between academic suc-
cess and study skills can help identify whether the Codification Pedagogy is achiev-
ing the pedagogical goal of supporting students’ use of Self-Regulated Learning
(SRL) skills.

This study was conducted over three semesters, using quantitative study meth-
ods, comparing students receiving the entire pedagogy to those who did not receive
the Questioning and Design Strategy learning activities. When discussing the results
from this study, findings from prior studies evaluating the pedagogy are integrated
into the discussions.

10.2 Methods

This section presents the methods used in this study. Section 10.2.1 presents the
participants and study context. Section 10.2.2 describes the development of the first
study method, which is a test instrument designed to measure students’ metacogni-
tive awareness. Section 10.2.3 describes the second study method, using quantitative
methods, to evaluate academic success.

10.2.1 Context

The study was conducted over three semesters in an Introductory Programming
course offered at the University of Adelaide. Section 4.3 presented the background
information on the programming language and learning environment for the stud-
ies. This section describes the unique context components for this study.



124 Chapter 10. Pedagogy Evaluation Study

This study method contains three study groups, shown in Table 10.1. The table
contains the study groups’ name, cohort size, semester, instructor, and tutor-student
ratio. The table shows the educator for each of the semesters. EducatorA was the
teacher for study groups E1 and E2, and was involved in constructing all the instruc-
tional materials, including the programming assignments containing the Codifica-
tion Pedagogy. EducatorB taught group C1 during the 2019 semester 1 course, and
used the instructional materials developed for the February 2017 semester. The three
groups were supported by an equal number of tutors, which were available in the
lab environment for assistance. Two tutors were available during the two-hour lab
sessions.

The table shows the learning activities provided to each group. Groups E1 and
E2 received the three learning activities that comprise the Codification Pedagogy;
while group C1 received the one learning activity, the Assignment Presentation, be-
cause the Assignment Presentation reduces the threat to validity by providing all the
studies with the same learning environment. Using isomorphic learning environ-
ments reduces factors that could influence the study’s results.

E1 E2 C1
Pedagogy
Activities

•Assignment Design
•Questioning Activity
•Design Strategy
Activity

•Assignment Design
•Questioning Activity
•Design Strategy
Activity

•Assignment Design

Semester February 2017 August 2018 February 2019
Cohort Size 249 145 95
Instructor Instructor A Instructor A Instructor B
Tutors 1 Tutor:15 Students

Course Grading System
Assignments 5 (10%) 5 (10%) 5 (10%)
Projects 2 (5%) 2 (5%) 2 (5%)
Quizzes 20 (5%) 10 (5%) 10 (5%)
Exams 2 (10%) 2 (10%) 2 (10%)
Workshops 10 (10%) 10 (10%) 10 (10%)
Final Exam 1 (40%) 1 (40%) 1 (40%)

Group Project
Reports 2 (2%) 2 (2%) 2 (2%)
Code 1 (12%) 1 (13%) 1 (13%)
Statement – 1 (1%) 1 (1%)
Presentation 1 (6%) 1 (4%) 1 (4%)

TABLE 10.1 Description of Study Groups

Table 10.1 shows the course grading system for the three study groups, to show
grading differences between them. Table 10.1 shows the grading system divided
into individual and group assessments. The table presents the number of individ-
ual assessments given to the students over the semester, and the weight (%) the
assessment has in the final course grade. The table shows the learning activities that
comprise the group project, along with the project’s contribution (%) to the students’
final course grades. The table identifies five assignments used in the grading system.
Within these five assignments are eight exercises that are part of the Codification
Pedagogy. Section 4.3 provided background on how the exercises are references in



10.2. Methods 125

the studies, with Table 4.1 providing links to the Appendix that presents the exer-
cises.

Between groups E1 and E2 are changes to the number of quizzes administered.
Group E1 received 20 quizzes, while groups E2 and C1 received ten quizzes; yet for
both groups, the quizzes were weighted equally in the grading system. The second
change in the grading system occurred between group E1 and E2 studies. Start-
ing with group E2, a new assessment, an individual statement (1%) was integrated
into the group project. The individual statement altered the reporting for the group
project.

10.2.2 Metacognitive Awareness Instrument

This section presents the development of the test instrument used to evaluate stu-
dents’ metacognitive awareness. The test instrument was developed using a Metacog-
nitive Awareness Inventory (MAI) instrument. The Metacognitive Awareness In-
ventory measures changes in students’ metacognitive awareness over the duration
of the semester. The Metacognitive Awareness Inventory was designed to allow stu-
dents to self-assess their SRL strategies, and was selected for this study because it
has been shown in the field of Education to reliably measure skill growth (Akin and
Abaci, 2007). The Metacognitive Awareness Inventory has been previously used
in CS1 identify a correlation between the students’ metacognitive awareness and
Grade Point Averages (GPA) (Rum and Ismail, 2016), where the GPA includes the
final course grade.

The original Metacognitive Awareness Inventory was developed by Schraw and
Dennison (1994), consisting of 52 assessment prompts. The 52 prompts are clas-
sified into two metacognitive categories: Knowledge of Cognition and Regulation of
Cognition. Knowledge of Cognition contains 17 prompts related to acquired knowl-
edge about cognitive processes (van Velzen, 2016), divided into three subcategories:
Declarative (8 prompts), Procedural (4 prompts), and Conditional (5 prompts) Knowl-
edge. Regulation of Cognition contains 35 prompts related to metacognitve strategies
that students use to ensure a goal has been achieved (van Velzen, 2016). This cate-
gory contains five subcategories: Planning (7 prompts), Information Management (10
prompts), Comprehension Monitoring (7 prompts), Debugging (5 prompts), and Evalu-
ation (6 prompts).

Metacognitive Awareness Inventory classifies the prompts into categories to iden-
tify skill growth in the different areas of metacognition. In developing the test in-
strument, the categories and subcategories were evaluated to determine prompts
that are aligned with this thesis. Some of the categories were excluded from the de-
velopment of the test instrument because the prompts are unrelated to the research,
such as the prompts in the Debugging subcategory. Any Metacognitive Awareness
Inventory subcategories that are unrelated to the pedagogical goals are excluded
from the test instrument.

After researching the purpose of each subcategory, Procedural (4 prompts) in the
Knowledge of Cognition category, and Planning (7 prompts) in the Regulation of Cog-
nition category were selected for the test instrument. The Procedural subcategory
relates to knowledge on how to implement learning procedures, to obtain knowl-
edge through problem-solving, and to complete a process. The Planning category
contains prompts related to goal setting, planning, and allocation of resources by
the student prior to their learning.

Using the prompts from the Procedural and Planning subcategories resulted in
11 prompts for the test instrument. One prompt was removed to bring the tests to



126 Chapter 10. Pedagogy Evaluation Study

ten prompts, providing one prompt for each factor. The following is the full list of
prompts used in the test instrument.

P1. I try to use strategies that have worked in the past.

P2. I have a specific purpose for each strategy I use.

P3. I am aware of what strategies I use when I study.

P4. I find myself using helpful learning strategies automatically.

P5. I pace myself while learning in order to have enough time.

P6. I think about what I really need to learn before I begin a task.

P7. I ask myself questions about the material before I begin.

P8. I think of several ways to solve a problem and choose the best one.

P9. I read instructions carefully before I begin a task.

P10. I organise my time to best accomplish my goals.

A test-retest was used to examine the reliability and validity of the Metacogni-
tive Awareness Inventory when translated to the Turkish language (Akin and Abaci,
2007). For the reliability and validity testing, the researchers administered the same
instrument twice to correlate and evaluate the stability over time. The results from
the Turkish instrument were compared to the English version, to ensure the transla-
tion had the same reliability and validity. The results showed a relativity high inter-
nal consistency (.95) over the entire 52 prompt inventory, concluding the instrument
is valid and reliable.

The original Metacognitive Awareness Inventory uses ‘True’ (1 point) and ‘False’
(0 points) as response options to the survey. For this study, the ‘True’ and ‘False’
responses are replaced with a Likert scale, a rating scale that provides students with
a range of five to seven levels that best match their opinion to the prompt (Allen and
Seaman, 2007). The Likert scale can identify granular changes to students’ metacog-
nitive awareness of their skill usage. The Likert scale used in the test instrument
has five levels. The levels are ‘Strongly Agree’ (7 points), ‘Agree’ (6 points), ‘Nei-
ther Agree nor Disagree’ (4 points), ‘Disagree’ (2 points), and ‘Strongly Disagree’ (1
point). See Appendix B.2.1 for the tests used in this study.

To measure changes in students’ metacognitive awareness, the test instrument
was administered as a pre-post test. For each study group, the pre-test was adminis-
tered during the second week of the semester, while the post-test was administered
three weeks before the final exams (week 14).

Group E1 was given two weeks to complete the pre-post tests, using Google
Forms (Google LLC, 2019a), an online service for constructing and administering
surveys. Group E1 responses were exported from Google Forms and imported into
a Google Sheets spreadsheet (Google LLC, 2019b) for further analysis. Groups E2
and C1 received the in paper format during class because of the low participation
rate from group E1 receiving the survey through an online service. The change from
administering the survey from online to paper format is explained further in Sec-
tion 10.4. Students were asked to complete the tests during class, with completed
responses collected by the course educator. Test responses from groups E2 and C1
were transcribed in a spreadsheet, translating students’ Likert level to a numeric
value.



10.3. Analysis 127

10.2.3 Academic Study Design

This section describes the second study method, a comparative analysis (Pickvance,
2001) study that measures the students’ academic success, since there is a linear re-
lationship between GPAs and study skills, where the GPA contains the final course
grades for all courses taken during the semester. A previous study (Pepe, 2012) con-
cluded a relationship between GPA and study skills, but this study was performed
in a non-CS course and at a Turkish institution, where the assignments and cul-
ture is different than this study performed with CS programming assignments at
an Australian institution. To determine the relationship between GPAs and study
skills for the study presented in this chapter, the Introductory to Programming fi-
nal course grade, assignment completion rate, and grades for eight completed as-
signments as measurements of academic success were used. Measuring academic
success might determine students’ skills usage, which can demonstrate whether the
thesis achieves its pedagogical goals. Comparing the grades of the programming
assignments might demonstrate how the pedagogy might influence students’ com-
pletion of the assignments and how well they understood the problem.

The data for the comparative analysis was contained in the Canvas Learning
Management System (LMS), where the educator recorded the students’ final course
grade and the tutors recorded grades for the eight practical programming assign-
ments. At the end of the semester for each study group, students’ final course grades
and grades for the practical programming assignments were exported from the LMS
and imported into a Google Sheets spreadsheet (Google LLC, 2019a) for further anal-
ysis.

10.3 Analysis

This section describes the analysis performed. Section 10.3.1 presents the compara-
tive analysis performed using the test instrument. Section 10.3.2 presents the analy-
sis for measuring academic success.

10.3.1 Test Instrument Analysis

This section describes the three data analysis approaches performed on students’ re-
sponses to the test instrument. The first method was analysis of means (Boone Jr and
Boone, 2012), identifying the central tendency for each prompt in the test instrument.
The analysis of means was performed in a spreadsheet for the ten prompts in groups
E1, E2, and C1 pre-post tests. The result of the analysis of means was a central ten-
dency for the ten prompts. The central tendencies were placed in a spreadsheet to
create a comparative matrix. The central tendencies for the study groups’ pre-post
tests were compared, to measure change in metacognitive awareness. The compar-
ison results were classified into three categories: positive change in the students’
metacognitive awareness, negative change in their awareness, and no change. Posi-
tive change means that the study group ‘agreed’ more with (felt positive about) the
metacognitive skill usage, while negative change showed a trend towards disagree-
ing with using the skill. No change means the students’ opinions on the skill usage
did not change over the course of the semester.

The second analysis performed on the test responses was variable-oriented anal-
ysis (Bergman and Trost, 2006), a type of cross-case analysis to compare results across
the groups. Variable-oriented analysis was performed on the ten prompts, to deter-
mine if the students’ metacognitive awareness was influenced by the pedagogy. The



128 Chapter 10. Pedagogy Evaluation Study

central frequencies for all test instruments were collated into a spreadsheet, to create
a cross-table for comparison of each prompt across the groups. Any cross-table dif-
ferences were further examined by evaluating the prompt statement, to determine
how the statement relates to the pedagogical goals.

The final analysis performed was statistical analysis (Greasley, 2008), to deter-
mine if there was any statistical difference in the groups’ responses. The statistical
analysis was performed on the ten prompts for all test instruments, where the re-
sponses were exported from a spreadsheet and imported into IBM SPSS Statistics
version 2.5 for analysis. Prompts with statistical significance were further evaluated,
because the statistical differences might imply an outside influence on the students’
awareness of metacognitive skill usage.

10.3.2 Analysis of Academic Success

This section describes the data analysis performed on the data related to students’
academic success. The analysis was performed on the final course grade, and the
grades and completion rates for the practical programming assignments. Analysis
of means was performed on the final course grade for the students within the study
groups. The results from the analysis of means allowed for comparison of the co-
hort’s overall final course grades, to determine whether the pedagogy influenced the
cohorts’ final grades. Statistical analysis was applied to the final course data, to de-
termine if there is any statistical differences in the data across the study groups, and
whether the pedagogy might have influenced the students’ overall grades. Statisti-
cal analysis was performed by importing the final course grades from a spreadsheet,
and using IBM SPSS Statistics version 2.5.

To analyse academic success for the completion rate and grades of the program-
ming assignments, time-series analysis was used. Time-series analysis is a method
of statistical analysis that enables observation to be made on a variable at different
points in time (Chatfield, 2004). Time-series analysis was performed on the grades
and completion rates of eight practical programming assignments. The analysis con-
structs models that visualise the pedagogy’s potential influence on the completion
rates and grades. The time-series analysis was performed within a spreadsheet, us-
ing analysis of means for the grades and completion rates of eight assignments of
the three study groups.

10.4 Metacognitive Awareness Results

This section reports on the results of analysing the metacognitive awareness data to
evaluate change in students’ metacognitive awareness. Table 10.2 shows the results
from the means and statistical analysis for the three study groups. The table shows
the number of students enrolled in the course at the time of the test was taken, such
as TE1=283 for E1’s pre-test, and the percentage of students participating in each
test, such as AE1=99 for E1’s pre-test. Results from the pre-tests contain responses
from students who withdrew from the course. For example, group C1 shows 120
responses in the pre-test, but 95 students completing the course.

Table 10.2 shows group E1 with a low participation rate for the pre-post tests
(PreE1=34.98%, PostE1=8.84%) and was the reason the pre-post tests were changed
from an online survey to paper format administered during class. This change was
to encourage a higher participation rate from groups E2 and C1. Results verified
that administering the tests in paper format increased student participation. For
example, group E2 had a 92.55% participation rate for the pre-test, and a 99.31%



10.4. Metacognitive Awareness Results 129

E1 E2 C1
Prompt Pre

TE1=283
AE1=99
(34.98%)

Post
TE1=249
AE1=22
(8.84%)

Sig Pre
TE2=161
AE2=149
(92.55%)

Post
TE2=145
AE2=144
(99.31%)

Sig Pre
TC1=235
AC1=120
(51.06%)

Post
TC1=95
AC1=73
(79.35%)

Sig

P1. Past
strategies

2.30 2.55 ns 5.92 6.36 *** 6.02 6.38 *

P2.
Purposeful
strategy

2.69 2.77 ns 5.38 5.79 ** 5.37 5.73 *

P3.
Strategy
awareness

2.44 2.64 ns 5.42 5.92 *** 5.28 5.55 ns

P4.
Strategy
automati-
cally

2.83 2.77 ns 5.03 5.53 ** 4.78 5.23 *

P5. Pace
myself

3.17 3.23 ns 5.24 5.17 ns 4.61 4.51 ns

P6. Need to
learn

2.82 3.05 ns 5.46 5.52 ns 5.19 5.04 ns

P7. Ask
myself
questions

3.44 3.55 ns 4.92 5.32 * 4.51 4.85 ns

P8. Choose
best
strategy

2.97 3.45 ns 5.43 5.45 ns 5.15 5.34 ns

P9. Read
instructions
first

2.38 2.77 ns 5.81 5.85 ns 5.70 4.23 *

P10.
Organise
my time

3.16 3.32 ns 5.44 5.44 ns 4.53 4.55 ns

*** Significant at p < 0.001
** Significant at p < 0.01

* Significant at p < 0.05
ns Not Significant

TABLE 10.2 Means and Statistical Analysis Results for Pre-Post Tests

participation rate for the post-test. Group E1’s low participation rate does not reflect
the overall cohort’s opinions on the metacognitive awareness prompts; therefore, the
results from this group are not reported in the results. The remainder of this section
presents an overview of the results, then further discusses observations made from
the analysis.

Table 10.2 shows the central frequencies for the prompts, which helped to draw
out further discussion on the changes. Table 10.2 also shows the study groups’ t-tests
from the statistical analysis. The table shows statistical significance for prompts P1,
P2, P3, P4, P7, and P9. These results motivated further inspection on these prompts.

Figure 10.1 shows the results from the comparative analysis, demonstrating the
change in central frequency for the study groups E2 and C1. The figure provides



130 Chapter 10. Pedagogy Evaluation Study

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

P10. Organ-
ise my time

P9. Read
instruc-

tions first

P8. Choose
best strategy

P7. Ask
myself

questions

P6. Need
to learn

P5. Pace
myself

P4. Strat-
egy auto-
matically

P3. Strategy
awareness

P2. Pur-
poseful

strategy

P1. Past
strategies

Likert Scale Levels

C1 Pre-Test E2 Pre-Test C1 Post-Test E2 Post-Test

FIGURE 10.1 Comparing the Results from Groups E2 and C1 Test Instruments

an overview of the groups’ changes in their metacognitive awareness. The results
through this view provide comparisons for groups’ E2 and C1 results. Section 10.4.1
presents the diverging opinions between the two groups. Section 10.4.2 shows skills
that had an increase in both groups’ metacognitive awareness. Section 10.4.3 dis-
cusses strategies that remain unchanged by the study groups.



10.4. Metacognitive Awareness Results 131

10.4.1 Diverging Opinions on Metacognitive Skills

This section seeks to understand the diverging opinions between groups E2 and C1,
to determine whether the Codification Pedagogy influenced these changes. This
section presents observations made on Metacognitive Awareness Inventory (MAI)
prompts that had diverging opinions from groups E2 and C1. The following four
Metacognitive Awareness Inventory prompts show differences in opinions.

• P2. I have a specific purpose for each strategy I use.

• P3. I am aware of what strategies I use when I study.

• P8. I think of several ways to solve a problem and choose the best one.

• P9. I read instructions before I begin a task.

10 20 30 40 50 60 70 80 90 100

C1Post

C1Pre

E2Post

E2Pre

100

100

100

100

88

82

74

87

23

33

15

31

4

11

2

4

1

1

Responses (%)

Strongly Disagree Disagree Neither Agree nor Disagree
Agree Strongly Agree

FIGURE 10.2 Groups E2 and C1 Results for P3: I am aware of what strategies I use
when I study.

Figure 10.1 shows prompts P2 and P3 with similar responses to strategy usage.
P3 is discussed in greater detail, since the two prompts relate to the skill usage. Fig-
ure 10.2 shows group E2 increasing their strong agreement (∆E2=13.65%) for prompt
P3. Group C1 had a different opinion on this prompt than group E2. Group C1 de-
creased their strong agreement (∆C1=-5.17%) on this prompt. The positive increase
by group E2 may be the students’ awareness of their motivation to initiate strate-
gies during the learning process, engaging self-awareness that occurs during the
Self-Regulated Learning (SRL) forethought stage (Zimmerman, 2000). Forethought is
the first SRL stage that gives the student the opportunity to analyse the problems
goals. The Design Strategy Activity study, presented in Chapter 9, demonstrated that
the learning activity helped students through the forethought stage, by organising
students’ thoughts to approach the problem-solving process. Giving students the
Design Strategy Activity might have helped them identify design strategies to use in
the forethought stage, and taught them to apply design strategies to other problem-
solving contexts. The response from group C1 to prompt P3 might imply their self-
awareness is at the beginner SRL learner’s level, where they might not have the
awareness to identify the specific goals, but understand the general outcome for
solving the problem.

Prompt P8 was another prompt that showed diverging opinions between groups
E2 and C1, and is also related to selecting the best problem-solving strategy for a



132 Chapter 10. Pedagogy Evaluation Study

10 20 30 40 50 60 70 80 90 100

C1Post

C1Pre

E2Post

E2Pre

100

100

100

100

84

82

72

82

34

35

30

32

7

16

13

5

2

1

Responses (%)

Strongly Disagree Disagree Neither Agree nor Disagree
Agree Strongly Agree

FIGURE 10.3 Groups E2 and C1 Results for P8: I think of several ways to solve a
problem and choose the best one.

given situation. Figure 10.3 shows group E2 increasing (∆E29.66%) agreement to this
prompt, while group C1 showed a reduction (∆C1=-1.89%) in the students’ agree-
ment. This result might suggest group C1 placing less importance on the metacogni-
tive skill, suggesting the Codification Pedagogy provided support for the organising
and transforming SRL strategy for group E2, to recognise a need for correct strate-
gies. When used in the CS space, students develop a plan prior to implementing a
solution (Garcia, Falkner, and Vivian, 2018), which relates to identifying a strategy
that works. Group E1’s responses suggest that they are thinking about the problem-
solving process before the implementation process, potentially helping them to de-
velop their ‘organising and transforming’ SRL strategy earlier. Group C1 might be
showing behaviours common to CS1 students, where they postpone thinking about
the planning process until they begin coding (Falkner, Vivian, and Falkner, 2014).

10 20 30 40 50 60 70 80 90 100

C1Post

C1Pre

E2Post

E2Pre

100

100

100

100

78

70

66

72

34

23

19

19

14

7

6

3

3

1

1

Responses (%)

Strongly Disagree Disagree Neither Agree nor Disagree
Agree Strongly Agree

FIGURE 10.4 Groups E2 and C1 Results for P9: I read instructions carefully before
I begin a task.

Prompt P9, shown in Figure 10.4, demonstrates groups E2 and C1 having similar
central tendencies (E2=5.81, C1=5.70) about reading instructions carefully at the be-
ginning of the semester; but their opinions differing at the end of the semester. Fig-
ure 10.4 shows E2 raising their strong agreement (∆E2=6.56%), while C1 decreases
theirs (∆C1=-8.08%). The difference in opinion might be related to the Questioning
Activity. In Chapter 8, the results showed students interacting with the Questioning



10.4. Metacognitive Awareness Results 133

Activity, using cognitive levels that promote critical thinking skills to reflect on the
problem, where reflection on text can positively influence the learner’s reading com-
prehension (Facione, 2015). Reading comprehension involves students using skills
with their internal knowledge, to improve their comprehension (Collins, Gambrell,
and Pressley, 2002). By encouraging students to engage their critical thinking skills
within the Questioning Activity, the activity might have encouraged the use of critical
thinking skills for reading.

When combining ‘Strongly Disagree’ and ‘Disagree’ responses for group C1,
there is an increase in disagreement (∆C1=7.02%). Group C1’s response could sug-
gest that without the Questioning Activity, students were not encouraged read the as-
signment carefully, either through the activity promoting SRL strategy development,
or the Questioning Activity making the problem more interesting. Though group C1
received the Assignment Presentation in the same scaffolded learning environment as
E2, the Assignment Presentation activity might not have helped group C1 recognise
the importance of reading the problem.

10.4.2 Increased Positive Opinions on Metacognitive Skills

This section discusses the prompt that shows positive gains from both groups E1
and C1. One Metacognitive Awareness Inventory prompt demonstrates similar re-
sponses from both study groups: Prompt P1, I try to use strategies that have worked in
the past. Figure 10.5 shows both groups strongly agreeing, increasing (∆E1=14.87%,
∆C1=15.38%) their opinion over the course of the semester. These findings are sup-
ported by prior work, where CS1 students use their prior knowledge to solve prob-
lems (Roll et al., 2007). These results demonstrate that students rely on past strate-
gies, regardless of support from the pedagogy. The pre-test results in Chapter 9 also
show students early in their learning being aware of using past problem-solving
strategies. Section 9.7.1 shows students describing known strategies when encoun-
tering frustrating problem-solving situations. Perhaps more practice solving pro-
gramming assignments would reinforce their opinion that it’s helpful to use these
skills in the problem-solving process.

10 20 30 40 50 60 70 80 90 100

C1Post

C1Pre

E2Post

E2Pre

100

100

100

100

48

63

57

72

4

12

3

17

3

6

1

1

2

Responses (%)

Strongly Disagree Disagree Neither Agree nor Disagree
Agree Strongly Agree

FIGURE 10.5 Groups E2 and C1 Results for P1: I try to use strategies that have
worked in the past.



134 Chapter 10. Pedagogy Evaluation Study

10.4.3 Unchanged Opinions on Metacognitive Skills

This section describes the Metacognitive Awareness Inventory prompt that did not
change for both study groups. One Metacognitive Awareness Inventory prompt
show the groups’ opinions not changing over the duration of the semester. Figure
10.6 shows the distribution of Likert responses for Prompt P10, I organise my time to
best accomplish my goals.

10 20 30 40 50 60 70 80 90 100

C1Post

C1Pre

E2Post

E2Pre

100

100

100

100

90

89

74

76

55

52

30

30

19

24

11

9

7

7

3

1

Responses (%)

Strongly Disagree Disagree Neither Agree nor Disagree
Agree Strongly Agree

FIGURE 10.6 Groups E2 and C1 Results for P10: I organise my
time to best accomplish my goals.

Prompt P10 had no change (E2pre=5.44, E2post=5.44) for group E2 and slight
change (C1pre=4.53, C1post=4.55) from group C1, with an increase (∆C1=8.12%) in
the ‘Neither agree nor disagree’ option. The results suggest the Codification Ped-
agogy did not raise students’ awareness in time management. The Design Strategy
Activity is designed to encourage students to develop SRL strategies related to goal-
setting and planning. Students have previously recognised time management as a
key factor for success for goal-setting and planning (Falkner, Vivian, and Falkner,
2014); however, in this study, students did not identify the importance of time man-
agement. Perhaps students were not aware of their use of time management in
this study, since students use their time effectively when engaging in SRL (Schraw,
K.Crippen, and Hartley, 2006).

10.5 Academic Success Results

This section reports on the results from measuring academic success. Three data
points are reported in this section: final course grade, and grades and completion
rates for the practical programming assignments.

t-test Results
Group Cohort Size Final Course Grade (%) SD t df sig
E1 249 87.33% 8.57 11.79 343 0.0001
E2 145 76.41% 13.87 9.56 385 0.0001
C1 95 68.30% 28.44 4.59 238 0.0001

TABLE 10.3 Final Course Grade Comparisons for Study Groups



10.5. Academic Success Results 135

Table 10.3 presents the results from analysing the final course grades, the mean
for the three groups, the number of students completing the course, and the re-
sults from the statistical analysis. Comparing the final course grade for the groups
showed groups E1 (87.33%) and E2 (76.41%) performed better than the control group
C1 (68.30%), where the difference between E1 and C1 is 19.03% and the difference
between E2 and C1 is 8.11%. However, the cohort size and change in the instructor
for group C1 might have influenced the final grade, since there are fewer students
to discuss problems and the instructor might have changed the presentation of the
learning materials.

There are other possible reasons for these findings. One potential reason is the
small contribution (10%) the pedagogy had on the final grade, described in Section
10.2.1. Table 10.1 shows a variety of assessments that comprise the students’ final
course grades, and these other course assessments, such as workshops and quizzes,
were not presenting using the assignment presentation developed with the peda-
gogy. The presentation of the other assessments might have encouraged students to
use different behaviours, influencing the results from those activities.

Table 10.3 presents the results from the statistical analysis. The results shows
statistical significance, suggesting outside influence for the final grades. A possible
cause for these findings is the change made to the grading system between groups
E1 and E2. As described in Section 10.2.1, the t-tests show significant differences
between the study groups’ final course grades. The statistical difference in the final
grades might be due to the 10% difference in final course grades across groups. A
reason for the difference between groups E1 and E2 might be the changes made to
the grading system between the groups. As described in Section 10.1, Table 10.3
shows a reduction (50%) of quizzes starting with group E2, and the introduction
of a new assessment, a personal statement for the group project. A reason for the
differences between C1 and the other experiment groups, E1 and E2, might be the
influence of the Codification Pedagogy.

A4.1 A4.2 A5.1 A5.2 A6.1 A6.2 A7.1 A7.2
60

70

80

90

Assignments

A
ve

ra
ge

G
ra

de
s

(%
)

E1
E2
C1

FIGURE 10.7 Overall Average of Programming Assignments

The second view of academic success examines the grades for the practical pro-
gramming assignments containing the Codification Pedagogy. Figure 10.7 shows
the average grade for the eight practical programming assignments, with the figure
plotting the assignment averages over time. The figure does not show significant



136 Chapter 10. Pedagogy Evaluation Study

improvements from groups E1 and E2 over group C1. Higher grades in the practi-
cal programming assignments would imply the complete solutions from group E1
and E2 contained more completed tasks. However, the results are not consistent
enough across assignments to claim the pedagogy encouraged higher programming
task completion.

Exposing study groups E1 and E2 to the Questioning and Design Strategies activ-
ities might have supported SRL strategies, such as goal-setting and planning (Zim-
merman, 1989), which would have improved their ability to identify programming
tasks. Though the findings presented in Section 10.4.1 supports the groups E1 and E2
are recognising tasks in the problem description, the support does not seem constant
for all assignments. Inconsistent grades for the assignments might suggest an issue
with the problem’s context, hindering students’ reading or program comprehension.
In Section 10.4.1, group E2 shows higher agreement for reading instructions carefully
before beginning the tasks, which can reduce students’ misconceptions (Gick, 1986).
Misconceptions might contribute to missed or incomplete programming tasks, po-
tentially lowering the assignment grade. With the average grades showing inconsis-
tent improvements, this might suggest the problem’s context could be a factor.

The completion rate for practical programming assignments containing the Cod-
ification Pedagogy was also analysed, shown in Figure 10.8. The figure provides
a visualisation of the assignments completed by groups E1, E2, and C1. This re-
sults show a higher completion rate for groups E1 and E2. Unlike the distribution
of grades for the assignments, shown in Figure 10.7, Figure 10.8 shows the com-
pletion rate for groups E1 and E2 consistently higher (10.29%-19.35%) than group
C1. These results suggest the learning activities in the Codification Pedagogy might
have helped groups E1 and E2 persevere in completing the assignments. These re-
sults are strengthened by the findings from the metacognitive awareness study re-
ported in Section 10.4.1. Section 10.4.1 reported on students exposed to the learning
activities first having higher awareness using strategies to solve problems, and tak-
ing the time to find the best problem-solving strategy. These behaviours have been
shown to be common among experts (Schoenfeld, 1992). Another potential reason
for these findings is suggested by the results presented in Section 10.4.1, where E2
expressed higher awareness in reading instructions carefully, which could lead to
better understanding and possibly more complete programming tasks, leading to a
greater likelihood of completing the assignment.

The findings for the completion rate show all the groups had difficulties complet-
ing Assignment A7.2. Groups E1 and E2 had over 90% completion rate, except for
Assignment A7.2 (E1=78.71%, E2=77.92%), while group C1 had a completion rate of
68.42% for this assignment. A potential reason for the low completion rate for As-
signment A7.2 is the non-contextualisation of the problem description. Assignment
A7.2 asked students to perform transformation operations on matrices. The assign-
ment administered to group E1 and C1 asked students to transpose a 2D array (see
Appendix A.2.4), while group E2 involved rotating a 2D array (see Appendix A.1.4).
When comparing the problem description for Assignment A7.2 with the other prac-
tical programming assignments, Assignment A7.2 is the only problem without con-
textualisation. Contextualisation has been shown to help with students’ motivation
during problem solving (Lovellette et al., 2017), which could have contributed to-
wards the students’ completion of the earlier problems, or the higher workload to-
wards the end of the semester might have reduced their participation in Assignment
A7.2 (Rocca, 2010). Another potential reason for the lower completion rate for As-
signment A7.2 is the higher use of mathematics skills to solve this problem. Matrix
transformations use linear algebra concepts, and students tend not to transfer their



10.6. Summary 137

A4.1 A4.2 A5.1 A5.2 A6.1 A6.2 A7.1 A7.2

70

80

90

100

Assignments

C
om

pl
et

io
n

R
at

e
(%

)

E1
E2
C1

FIGURE 10.8 Programming Assignment Completion Rate

mathematical skills to other disciplines (Britton et al., 2007).

10.6 Summary

This chapter presented the final study, which examines the entire pedagogy. The
study was conducted over three semesters, to draw comparisons between the study
groups that received the learning activities to a control group that did not. This
study compared students’ metacognitive awareness, to determine how the peda-
gogy might have influenced their perception of metacognitive skills usage. This
study also compared academic success, to determine whether the pedagogy had
any influence in the students’ learning gains. The results showed higher comple-
tion rates for groups receiving the learning activities, which might suggest that the
learning activities help students develop skills for better understanding and solv-
ing the problem, a conclusion which is strengthened by the groups’ responses to the
Metacognitive Awareness Inventory also presented in this chapter.

This study was conducted over three semesters, gathering considerable quanti-
tative data. Studying across cohorts provided the opportunity to compare groups
receiving and not receiving the pedagogy. Comparison across cohorts helped to
identify trends and to demonstrate the pedagogy’s influence on the students’ learn-
ing, such as the higher completion rate in the practical programming assignments.

There are limitations and threats to validity for this study. Group E1 has a differ-
ent grading system than groups E2 and C1. Because two groups used the same grad-
ing system, this reduces the concerns about the results, but still raised as a treat to
validity since group E1’s grading system might have influenced the results for their
final course grades. The different instructor for group C1 may have influenced the
group’s final course grade. A threat to validity is drawing comparisons between the
pre-post tests’ results, where the participation rate for the tests had different distribu-
tions between the compared groups. Group C1’s participation rate (pre-test: 51.06%,
post-test: 79.35%) was less than group E2 (pre-test: 92.55%, post-test: 99.31%). Fu-
ture research can administer the tests to produce similar participation rate between
the groups, to draw more accurate conclusions.



138 Chapter 10. Pedagogy Evaluation Study

There are future research opportunities from this study. More research is needed
to determine how students use the learning activities without submitting their an-
swers. This research can strengthen the findings with higher completion rate in
groups receiving the learning activities. Another future research opportunity can
examine how the pedagogy helps students in other parts of the problem-solving
process, such as the debugging process. This research could identify stages in the
software development process that the students engage the learning activities, po-
tentially finding students using different skills at certain stages within the same ac-
tivity. This study showed no change in students’ perception of time management
skills. A future research opportunity is to include instructions in the Design Strategy
Activity to encourage students to use strategic plans as guidelines for time manage-
ment. Additional guidance might help raise students’ awareness on time manage-
ment. As stated in Section 10.5, other programming assessments, such as workshops
and quizzes, were not presented using design treatments identified in Chapter 5.
Future research opportunities could include applying the assignment design to all
assessments, and measuring the influence the unified presentation has on the stu-
dents’ academic success.



139

Chapter 11

Conclusion

Designing a solution to a programming problem is a necessary part of the CS problem-
solving process (Hoadley and Cox, 2009). However, many introductory program-
ming (CS1) students do not always devote time to designing solutions to their pro-
gramming problems (Pintrich, Berger, and Stemmer, 1987; Rist, 1995). Instead, CS1
students sometimes rely on past problem-solving approaches, and adopt Poor Learn-
ing Tendencies (PLTs) when these approaches fail (Baird and Northfield, 1995). Poor
Learning Tendencies encourage students to focus on surface aspects of the problem
(Adelson, 1984), resulting in misunderstandings (Collins, Brown, and Holum, 1991).
This thesis investigates a pedagogy integrated into procedural CS1 assignments that
promotes Good Learning Behaviours (GLBs) and discourages Poor Learning Ten-
dencies. The pedagogy is designed using theories in program comprehension, criti-
cal thinking skills, and design knowledge and promotes Good Learning Behaviours
by demonstrating the use of self-reflection and Self-Regulated Learning (SRL) strate-
gies, to better understand the problem and to organise a plan prior to software im-
plementation. The pedagogy is grounded in Cognitive Apprenticeship to support
students early in their learning through a scaffolded learning environment. As stu-
dents gain programming experience, the learning support within the pedagogy is
reduced to encourage them to become independent learners.

In this thesis are six chapters presenting studies on the pedagogy. These studies
examine the pedagogy’s learning activities in depth, to determine how each activ-
ity contributes to the pedagogical goals: improve students’ program comprehen-
sion and support their use of SRL strategies when designing a program solution.
Chapter 5 collates assignment design treatments that supported the development of
well-formed programming assignments. Chapter 6 presents a comparative study,
comparing completed programming tasks between the assignment presentation de-
veloped in this thesis and other presentation approaches. Chapter 7 uses a qualita-
tive study to gain more insight into students’ perception of the assignment presen-
tation. Chapter 8 evaluates the pedagogy’s first intervention, a questioning activity
designed to engage critical thinking skills. Chapter 9 discusses the influence the sec-
ond intervention had on students’ design knowledge, through the use of a design-
based Parsons problem. Chapter 10 examines how the entire pedagogy influenced
students’ learning and their usage awareness of problem-solving skills. This chapter
presents the contributions made by this thesis, along with concluding remarks about
the pedagogy.

11.1 Contributions

This section presents the contributions made by the pedagogy. The contributions
are outcomes from answering the research questions initially defined in the intro-
duction, Chapter 1. Table 11.1 shows the research questions and hypotheses that



140 Chapter 11. Conclusion

Research Questions Hypothesis
Program Comprehension:
RQ1.1: How does scaffolding the
assignment presentation influence
the student’s ability to identify goals
and subgoals necessary to complete a
procedural programming problem?

RQ1.2: What presentation treatments
within the programming
assignments support students in
their understanding of the
programming problem?

H1.1: Scaffolding the assignment
presentation will guide students in
identifying the problem’s goals and
subgoals, providing them support in
identifying a starting point for
developing a programming solution.
H1.2: Itemising goals and subgoals as
a treatment in the assignment
presentation will help students
identify and apply the goals and
subgoals during the programming
process.

Critical Thinking Skills:
RQ2.1: Does encouraging questions
in an online CS1 learning
environment promote the expected
cognitive levels from students when
answering the questions?

H2.1: Providing a questioning
activity as an intervention to a
programming assignment will help
students internally reflect on and
apply their knowledge when solving
the current problem.

Design Knowledge:
RQ3.1: How do students use Parsons
problems during the design process
for solving CS1 procedural
programming assignments?

RQ3.2: What Self-Regulated
Learning (SRL) strategies are
supported by Parsons problems used
as a design-based intervention for
programming assignments?

H3.1: Parsons problems will promote
internal reflection, enabling the
student to form a mental model on
how the problem’s plans interact
with each other prior to developing a
programming solution.
H3.2: The Parsons problem will
promote organisation and planning
SRL strategies that are necessary to
solve the programming problem.

TABLE 11.1 Summary of Research Questions and Hypotheses

guided the development of the pedagogy and the six studies. The research ques-
tions are divided into the pedagogy’s three research areas: program comprehension,
critical thinking skills, and design knowledge.

A goal of this thesis is to support students’ learning and practice of design-based
skills and strategies that help them better understand a problem and develop a
programming plan. The hypothesis is the pedagogy would help students use Self-
Regulated Learning (SRL) strategies. The results from the studies showed students
using SRL strategies within the pedagogical activities. Treatments within the assign-
ment presentation helped students identify the problem’s goals by deconstructing
the problem into subgoals and presenting them in list format. The treatment sup-
ported students’ use of SRL strategies by enabling them to use the list to validate
their solutions. The questioning activity encouraged students to analyse the assign-
ment, promoting self-reflection that reduced misconceptions. The Parsons problem
enabled students to practise SRL strategies when they were uncertain with the next
steps in the problem-solving process and when they validated their solutions upon
completion.

In Chapter 2, a description (See Figure 2.3) of the Codification Pedagogy was pro-
vided, layering the pedagogical goals over a problem-solving process model (Gick,



11.1. Contributions 141

FIGURE 11.1 Revised Codification Pedagogy Workflow (Gick, 1986, p. 101)

1986). The purpose of layering was to help students model experts’ behaviours dur-
ing the problem-solving process. Figure 11.1 shows an adjusted version of the ped-
agogy’s workflow. The solid blue problem-solving states were the focal states for
the Codification Pedagogy, supporting the Construct a Representation and Search for
a Solution states. The studies performed in this thesis demonstrated students us-
ing the pedagogy to support other states in the problem-solving process. Figure
11.1 shows the additional problem-solving states in grey, where students applied
the pedagogical goals to solve the programming problems. Students used the peda-
gogy during the Implement Solution state when struggling to determine the next steps
in the problem-solving process. During the Implement Solution state, students used
the pedagogy to support their Self-Regulated Learning (SRL) and design strategies.
Students also used (SRL) strategies during the Stop state, to validate their work upon
completion.

By answering the research questions in Table 11.1, contributions were made to
the field of Computer Science Education. Table 11.2 presents a brief summary of
these contributions, which are discussed further in this section.

11.1.1 Assignment Design Framework

Chapter 5 described the research performed to collect assignment design treatments
from peer-reviewed publications. These publications showed that these treatments
helped students better understand CS1 programming assignments. This study col-
lated the treatments into an assignment design framework, which was then applied
to the programming assignments. Though the research did not investigate educa-
tors’ use of the framework, it was designed to help guide them in constructing as-
signments that are appropriate to their students’ abilities. Careful assignment de-
sign considerations appeared to influence students’ software development process,
supporting them when implementing and validating programming solutions.

Chapter 7 described a study using the assignment design framework, where in-
terviews were conducted to get students’ perspective on how the assignment pre-
sentation help in their understanding of the problem. This work contributes to the
field of Computer Science Education by identifying CS1 students struggling when
reading requirements in paragraph form. Results from the study showed students
favouring the decomposition of programming goals and presenting them in list for-
mat. The decomposition of programming goals in list format helped students work
through the subgoals, ensuring they were addressing all the requirements. Stu-
dents also took advantage of the list format to validate their work, ensuring they
successfully completed all the requirements. Identifying this presentation format
can help future assignment design research, supporting students in transitioning to-
wards reading software requirements specification documents.



142 Chapter 11. Conclusion

Contribution Description
Assignment Design
Framework

• Provides a CS1 assignment design presentation
framework to assist in the scaffolding of assign-
ment descriptions.
• Identifies that the decomposition of program-

ming goals in list format helps students better
identify the problem requirements and evaluate
solving the problem at higher cognitive levels.

Instructional
Question
Framework

• Presents a framework to help educators con-
struct questioning activities that will help stu-
dents practise critical thinking skills appropriate
to their cognitive levels.
• Demonstrates that the combination of lower and

higher-order questions in a learning activity can
help students generate answers that are appro-
priate to their cognitive level.

Design-based
Parsons Problems

• Identifies three problem-solving approaches
students take when organising plans in a design
strategy activity. These approaches are: exper-
imenting with the plan’s order, ordering plans
from the top down, and addressing easier plans
first.
• Shows that the presence of a design-based Par-

sons problem as an intervention to a program-
ming assignment can support students’ use of
SRL strategies to solve programming problems.
These study finds the Parsons problems support
the use of design and planning SRL strategies.

TABLE 11.2 List of Research Contributions

11.1.2 Instructional Question Framework

Chapter 8 presented a study using instructional question types to encourage stu-
dents to use critical thinking skills during the problem-solving process. To construct
the questioning activity, the study identified 23 Instructional Question Types (IQTs)
that engage students’ cognitive levels. The study mapped the IQTs to Bloom’s Tax-
onomy, resulting in a framework (See Table 8.2) that can guide educators in con-
structing learning activities. The study demonstrated a combination of low and
high-order thinking questions as an intervention to a programming assignment can
encourage low and high-order critical thinking skills, where the results showed the
activity encouraged the desired cognitive levels (See Section 8.5). The activity can
encourage students to self-reflect and apply their knowledge to the programming
problem. The study showed the questioning activity helped students achieve cogni-
tive levels appropriate for the course.

11.1.3 Design-Based Parsons Problems

Parsons problems were used to help students learn programming by arranging code
fragments into a working program. This thesis is the first attempt to use Parsons
problems during the design process. Chapter 9 presented a study that used Parsons



11.2. Threats to Validity 143

problems to support the practice of design knowledge by having students organise
plans for solving programming problems. Results from the study showed Parsons
problems supporting students’ use of SRL strategies (See Table 9.6). Students used
the tool to validate programming problems upon completion. The tool also helped
struggling students to determine the next steps in the problem-solving process, such
as helping them better understand how the plans work together to form a working
a program (See Figure 9.6).

11.2 Threats to Validity

There are threats to validity for this research. One is the disparity between male
and female students participating in the qualitative studies. Majority of the results
come from male students, and the method of inviting participants through a class
announcement in Canvas did not attract more female students. Another limitation
is the small sample size in the qualitative studies, where the reported results came
from four to six participants. However, the smaller sample size allowed for repeated
and involved observational data collection that generated in-depth information on
how the Codification Pedagogy helped them in their understanding and solving of
procedural programming assignments. Another threat to validity is the change in
the instructor during the studies that collected data for the control group. The in-
structor’s teaching approach might have been different from the initial instructor,
and could have influenced how the instructional material was presented. Another
limitation is the Codification Pedagogy focused on procedural programming assign-
ments and was not explored in other programming paradigms, such as functional
paradigm. The pedagogy also focused on practical procedural programming en-
vironments and was not evaluated in other types of assessments, such as worked
examples.

11.3 Future Work

This section presents future work for the Codification Pedagogy. Future work on
individual learning activities was presented in the summary sections in the study
chapters. This section discusses future research opportunities for the overall peda-
gogy.

The Codification Pedagogy was tested in the CS problem space. Future research
opportunities can explore the use of the design process pedagogy benefiting Sci-
ence, Technology, Engineering, and Mathematics (STEM) disciplines. Examining the
learning activities in other disciplines can determine whether the activities provide
similar support in promoting critical thinking and SRL strategies, or whether the ac-
tivities promote the use of different SRL strategies. The guidance the Codification
Pedagogy provides through the problem-solving process might also be beneficial to
other STEM disciplines. The Codification Pedagogy allows for different activities
to be contained and arranged, which other STEM disciplines could adapt for their
own problem-solving process. Evaluating the pedagogy in other disciplines might
also demonstrate the activities might be better suited for the CS problem space. For
example, the Design Strategy Activity built on top of the Parsons problems tool might
be relevant to the CS design process, but possible not applicable to other disciplines.
Evaluating the learning activities in other disciplines could suggest replacing the
Parsons problems with different design-based activities.



144 Chapter 11. Conclusion

For this thesis, the Codification Pedagogy was evaluated within a Massive Open
Online Course (MOOC). Future evaluation of the pedagogy in a classroom learning
environment could determine whether the pedagogy can support aspects of collab-
orative design outside of the online learning environment. Applying in a collabora-
tive environment might demonstrate how the pedagogy can support Co-Regulated
Learning (CoRL) or Socially Shared Regulation of Learning (SSRL). Co-Regulated
Learning is where ‘group members take control of their own think, behavior, mo-
tivation, and emotion in the collaborative task’ (Järvelä et al., 2016), while Socially
Shared Regulation of Learning is where ‘group members work together to regulate
their collective cognition, behavior, motivation and emotions together in a synchro-
nized and productive manner’ (Järvelä et al., 2016).

As shown in Figure 11.1, the studies presented in this thesis demonstrate stu-
dents using the learning activities to support them in the problem-solving process
surrounding the planning and organising a solution. The results from this thesis
showed students using the pedagogy throughout the software development pro-
cess. Supporting other phases, such as debugging, in software development pro-
cesses outside the design process was not the expectation for this thesis. Observing
students using the pedagogy throughout the software development process was an
unexpected outcome, and provides future research opportunities. The future re-
search could help identify the learning activities that better support other software
development processes, such as debugging.

11.4 Concluding Remarks

This research began with the intention to help CS1 students integrate the design
process earlier in their learning. The methods to support the adoption of the de-
sign process formed a pedagogy designed to help CS1 students to learn and practise
design-based skills for procedural programming assignments. Contained within the
pedagogy are learning activities layered on top of a problem-solving process model
(Gick, 1986). This instructional method is designed to help students engage cer-
tain skills and strategies through the different problem-solving states. By designing
the pedagogy using a series of learning activities, the thesis demonstrates to the
Computer Science Education community that individual learning activities can be
combined with an agenda to present a broader learning objective. In the case of the
Codification Pedagogy, the broader learning objective is helping CS1 students adopt
Good Learning Behaviours to be used during the design process.

The thesis examines the pedagogy with six studies, evaluating the pedagogy’s
activities in detail. These studies are a combination of quantitative and mixed-
methods qualitative studies. The thesis used a mix of qualitative and quantita-
tive study methods that views the pedagogy through different lenses. The research
spanned three semesters involving large sample sizes in the quantitative data to re-
duce errors in testing and identify behavioural trends, such as the pedagogy’s influ-
ence with the completion rate of practical programming assignments. The qualita-
tive studies used smaller sample sizes, allowing for repeated and involved observa-
tional data collection that generated in-depth information of the students’ thinking
processes while interacting with the pedagogy. Some of the study methods demon-
strate how to get students more involved in the research process, giving students
the opportunity to identify to educators areas in the learning process that are a
challenge. The study methods also demonstrate how to collect students’ cognitive



11.4. Concluding Remarks 145

processes and experiences using the pedagogy as another approach to identify ar-
eas that are a challenge for students. With the students’ insights, educators can re-
examine the challenging areas to help improve the students’ learning processes and
experiences. The study methods used in this thesis can serve as a guide for evaluat-
ing future CS pedagogies, where the depth and variety of data collection and analy-
sis provided a comprehensive evaluation of the pedagogy. The study methods also
included a variety of study method approaches to the pedagogy’s learning activi-
ties. By evaluating individual activities, this thesis demonstrates how each activity
contributes to the students’ learning at the different problem-solving states.

This thesis investigates a pedagogy integrated into procedural CS1 assignments
that promotes Good Learning Behaviours (GLBs) and discourages Poor Learning
Tendencies. The pedagogy is designed using theories in program comprehension,
critical thinking skills, and design knowledge and promotes Good Learning Be-
haviours by demonstrating the use of self-reflection and Self-Regulated Learning
(SRL) strategies, to better understand the problem and to organise a plan prior to
software implementation. The thesis demonstrates the pedagogy helping students
better understand programming assignments, helping struggling students progress
through the problem-solving process, and supporting their use of SRL strategies.
This research provides suggestions for future introductory procedural programming
courses. Constructing the Codification Pedagogy with individual learning activities
invites CS educators to try different instructional approaches best suited for their
students’ needs. Educators have the opportunity to evaluate the presentation or-
der of the learning activities. For example, presenting the Design Strategy Activity
before the Questioning Activity might encourage more self-reflection, possibly ele-
vating students’ cognitive levels when they answer the activity. Re-arranging the
activities could result in different SRL strategies, or improved learning gains. Also,
because the pedagogy was designed with individual activities that serve a specific
purpose in the students’ learning, substituting other activities within sections of the
pedagogy could provide a framework for pedagogical experimental design.





147

Appendix A

Programming Assignments

A.1 Pilot Group Codification Assignments

A.1.1 Assignment 4

Question 1

Assignment 4 Question 1: Products Sold (8 marks)
In your programming assignment, you get to practise your coding skills using:

• Variables
• Integers
• Loops
• If Then/Else
• Arrays

Program Description
For this assessment, you will create a program that averages products

over a given amount of days. Your program initially reads in an array, where
an element in the array represent the number of products sold for one day.
Your program processes each day from the array until your program encoun-
ters the value -789 in the array. The number -789 signals your program to
stop reading products sold from the array, and proceed to calculate the aver-
age (arithmetic mean) of the products sold. Once the average is calculated,
display the results on the canvas as:

In ‘n’ days, the average products sold is ’u’ units.

The variable ‘n’ represents the number of days you program reads in from
the array. The variable ‘u’ represents the average units sold over those days.

Hints

• Negative units is not a valid value for your program. If there is a neg-
ative number of units sold, your program should instead replace that
negative value to 0 (zero).

• Here is an example list of products sold in 5 days: (15,0,-53,5,-789,2),
with 15 units, 0 units, 0 units, and 5 units. Please note that -53 is an
invalid number of units sold, so your program converts the 3rd day to
0 units.



148 Appendix A. Programming Assignments

• The formula for calculating the average is:
Average = (x1 + x2 + ... + xn)/n

• For more information on averaging (arithmetic mean), go to the web-
site:
http://mathsisfun.com/data/mean-machine.html

Assignment 4 Question 1: Planning Help
Instructions: The following two questions will help you think about the

programming assessment and apply it to what you already know. This will
help you identify the problem’s goal(s).

Student ID: (Required)

1. What do you already know about collecting and organising data for
products sold that might help you complete this assignment?

2. Breaking down the problem into smaller tasks will help you complete
the assignment. How would you go about breaking down this problem
into smaller tasks?

Instructions: This section will help you organise the tasks needed to con-
struct your program. The order of the tasks is the order you can use to de-
velop your programming solution. Move the tasks from the left hand column
to the right in the order you feel is the best way to program your solution.

You can check your work using the ‘Check Answer’ button. When are done
planning, please click ‘Submit Final Answer’.

http://mathsisfun.com/data/mean-machine.html


A.1. Pilot Group Codification Assignments 149

Question 2

Assignment 4 Question 2: Football League List (7 marks)
In your assignment, you get to practise your coding skills using:

• Variables
• Integers
• Loops
• If Then/Else
• Arrays

Program Description
Your program will create a table that displays a list of football teams and

their corresponding statistics, such as the one below:

Team Name Statistics
AFC Bournemouth 2
Arsenal 5
Brighton and Hove Albion 3
Burnley 3
Chelsea 5
Crystal Palace 1
Everton 2
Huddersfield Town 3
Leicester City 2
Liverpool 3
Manchester City 8
Manchester United 6
Newcastle United 4
Southampton 3
Stoke City 2
Swansea City 2
Tottenham Hotspur 6
Watford 4
West Bromwich Albion 2
West Ham United 2

Hints:

• Your football list needs to be created with the following of names in
your program:

String[] teamNames = { "AFC Bournemouth", "Arsenal",
"Brighton and Hove Albion",
"Burnley", "Chelsea",
"Crystal Palace", "Everton",
"Huddersfield Town",
"Leicester City", "Liverpool",
"Manchester City",
"Manchester United",



150 Appendix A. Programming Assignments

"Newcastle United",
"Southampton", "Stoke City",
"Swansea City",
"Tottenham Hotspur",
"Watford",
"West Bromwich Albion",
"West Ham United" };

• Create a second array to hold teams’ statistics. Statistics should be as-
signed randomly, but with biased towards a mean stat of 5 with a stan-
dard deviation of 3. View the RandomGaussian tutorial on Process-
ing.org to see how you can achieve this.

• The Team Name column should be left-aligned.

• The Statistics column should be center-aligned. The rows of the table
should be filled based on the following:

– Bottom (0-1) - yellow
– Low (2-3) - cyan
– Middle (4-5) - green
– High (6-7) - purple
– Lead (8-10) - red

Assignment 4 Question 2: Planning Help
Instructions: The following two questions will help you think about the

programming assessment and apply it to what you already know. This will
help you identify the problem’s goal(s).

Student ID: (Required)

1. You might not be familiar with football, but you might already know
about sports and competition. How can your current knowledge about
sports and competition help you better understand this problem?

2. A part of this assignment is to colour code a team’s row based on their
statistics. What do you think is a good approach to assigning the colour?

Instructions: This section will help you organise the tasks needed to con-
struct your program. The order of the tasks is the order you can use to de-
velop your programming solution. Move the tasks from the left hand column
to the right in the order you feel is the best way to program your solution.

You can check your work using the ‘Check Answer’ button. When are done
planning, please click ‘Submit Final Answer’.



A.1. Pilot Group Codification Assignments 151



152 Appendix A. Programming Assignments

A.1.2 Assignment 5

Question 1

Assignment 5 Question 1: Hue Function (6 marks)
In your assignment, you get to reuse programming components from

previous programs, like for loops and functions.

Program Description
Below is code that draws a number of lines to form grayscale hue. The hue

starts at the dark 0 (black) and lightens until it reaches haltValue. You should
copy this code into the Processing IDE to see how it works. Try passing in
different values to the displayHue function to see how the output changes.

void setup(){
size(400,400);
background(255);
noLoop(); //This prevents draw() from running

//more than once.
}

void draw(){
//Call our function, draw a gradient from white to black
displayHue(255);
}
// displayHue - Displays a grey hue scale, the scale
// starts at 0 (black) and lightens until it reaches
// haltValue.
void displayHue(int haltValue){
for(int i = 0; i <= haltValue; i++){
stroke(i);
line(10,i,60,i);

}
}

For your assignment, you will need to copy the above code and extend
the displayHue function to have the following syntax:

void displayHue(float x, float y, boolean o,
int hv, int s, int c, float d)

Where the input parameters will change the output of displayHue in ac-
cordance with the following table:



A.1. Pilot Group Codification Assignments 153

Parameter Description Possible Values Possible Values

x
X-coordinate of the top
left corner of the gradient.

y
Y-coordinate of the top
left corner of the gradient.

o Determines if the gradient
is drawn vertically
or horizontally.

True - if the gradient
is drawn vertically
(darkest at top)
False - if the gradient
is drawn horizontally
(darkest at left-side)

hv The halt value of the gradient
(gradient will start at colour 0
and go to hv).

0 to 255

s The opacity of the gradient. 0 to 255
c Determines the colour of the hue. 0 - grayscale

1 - yellow
2 - cyan
3 - purple

d
The width or height of the gradient
(width if drawn vertically, height
if drawn horizontally).

If any of the input parameters are invalid, your displayHue function
should display a warning, and not draw the gradient. See above for the valid
values. Use a for loop to call displayHue several times to design a pattern.
The pattern should be produced by modifying the hue attributes - halt value,
width/height, opacity, orientation, or colour. To achieve full marks for this
part please ensure you create a pattern with at least 5 hues, and alter at least
2 of the hues attributes in your pattern.

Assignment 5 Question 1: Planning Help
Instructions: The following two questions will help you think about the

programming assessment and apply it to what you already know. This will
help you identify the problem’s goal(s).

Student ID: (Required)

1. What ideas do you have for the patterns your program will need to
generate?

2. How do you think you will need to alter displayHue to create these
patterns?

Instructions: This section will help you organise the tasks needed to con-
struct your program. The order of the tasks is the order you can use to de-
velop your programming solution. Move the tasks from the left hand column
to the right in the order you feel is the best way to program your solution.

You can check your work using the ‘Check Answer’ button. When are done
planning, please click ‘Submit Final Answer’.



154 Appendix A. Programming Assignments



A.1. Pilot Group Codification Assignments 155

Question 2

Assignment 5 Question 2: Products Sold Graph (14 marks)
There are two parts to this assignment. This is the second part.

Program Description
Create a program that produces a product sold graph like the following:

You should build upon the following skeleton code to produce the prod-
uct sold graph.

void setup(){
size(900,600);
background(255);
noLoop(); // Only call the draw() function once

}

void draw(){
// Array of products sold per month for CompanyX in 2010.
int[] companyX2010 = {47, 72, 57, 50, 118, 103, 249,

37, 41, 13, 5, 17};

// Draw the products sold graph for CompanyX, 2010.
drawProductGraph(companyX2010,"CompanyX",2010);

}

// drawProductGraph - draws a product sold graph for a
// particular location in a particular year
// product: each element in the product array represents
// the total products sold for the
// respective month
// location: the location of the product sold
// year: the year of the products were sold
void drawProductGraph(int[] product,



156 Appendix A. Programming Assignments

String location, int year){}

// minimum - returns the minimum value in an int array
int minimum(int[] array){}

// maximum - returns the maximum value in an int array
int maximum(int[] array){}

// total - returns the total of a int array
int total(int[] array){}

// mean - returns the mean of a int array
float mean(int[] array){}

The specific requirements for the graph are as follows:

• Title: "Products Sold by company (year)"
• X-Axis:

– Label: "Month"
– Scale: One entry for every month of the year, Jan through to Dec.
– Gridlines: Light grey vertical gridlines for each month.

• Y-Axis:

– Label: "Products Sold (units)"
– Scale: Should start at 0 and go to just above the maximum prod-

uct sold, choose an appropriate scale interval so that it is clear and
easy to read. The scale interval should change depending on the
maximum products sold (if max is 250, an interval of 50 would be
appropriate, if max is 45, an interval of 10 would be appropriate).

– Gridlines: Light grey horizontal gridlines for each scale interval.

• Values

– A blue dot should be positioned on the graph to represent the prod-
ucts sold for each month.

– Connect the blue dots with black lines.
– Display the text "Min" next to the minimum product sold.
– Display the text "Max" next to the maximum product sold.
– Display the mean value as a red line, with "Mean = value" next to

the line.

• Statistical data

– Displayed to the right of the graph.
– Display the min, max, total and mean of the year’s sold products.

Your drawProductGraph function should also work with different prod-
uct sold data, test your code with the following data:

// Test data - 2
int[] companyW1995 = {72, 14, 16, 24, 28, 32, 110,

55, 198, 362, 579, 1674};



A.1. Pilot Group Codification Assignments 157

// Test data - 3
int[] companyY2005 = {3, 25, 42, 85, 81, 119, 183,

70, 96, 2, 8, 18};

// Test data - 4
int[] companyZ2016 = {53, 44, 51, 18, 40, 39, 56,

100, 67, 24, 6, 48};

Assignment 5 Question 2: Planning Help
Instructions: The following two questions will help you think about the

programming assessment and apply it to what you already know. This will
help you identify the problem’s goal(s).

Student ID: (Required)

1. Review the graph in the assignment. How does this graph help you
understand the problem?

2. There are a few separate programming parts to this assignment. De-
scribe your plan on how you will program these parts.

Instructions: This section will help you organise the tasks needed to con-
struct your program. The order of the tasks is the order you can use to de-
velop your programming solution. Move the tasks from the left hand column
to the right in the order you feel is the best way to program your solution.

You can check your work using the ‘Check Answer’ button. When are done
planning, please click ‘Submit Final Answer’.

These planning tasks describe higher level task descriptions typical of
how larger programs are planned. This approach enables you to have a
broad view of what needs to get solved without being overwhelmed with
coding details. Some sections are repeatable tasks for different functions,
represented by a loop over these functions written in pseudocode.



158 Appendix A. Programming Assignments

A.1.3 Assignment 6

Question 1

Assignment 6 Question 1: Coin in the Well (7 marks)
There are two parts to this assignment. This is the first of the two parts.

Program Description
Create a program that allows the user to move a yellow coin into a wish-

ing well using the arrow keys on the keyboard. Your program should meet
the following specifications:

• The coin starts in the lower right hand corner.
• The wishing well should be at a random location, it cannot overlap the

coin’s beginning position.
• The wishing well’s diameter must be scalable with the the sketch size.
• The coin’s diameter should be 75% of the hole’s diameter.
• The coin changes position when the arrow keys are pressed.
• The coin cannot go off the edge of the sketch.
• When the coin is completely or partially outside the wishing well the

background should be black and the wishing well should be white.
• When the coin is completely inside the wishing well the background

should be changed to red and the wishing well becomes green.
• Include a function named isWishMade() that returns true if the coin is

completely within the wishing well, false otherwise.

Start of the program:

When coin is completely inside the wishing well:



A.1. Pilot Group Codification Assignments 159

Assignment 6 Question 1: Planning Help

Instructions: The following two questions will help you think about the
programming assessment and apply it to what you already know. This will
help you identify the problem’s goal(s).

Student ID: (Required)

1. What have you already learned to help you move the coin around on
the canvas?

2. You might need additional information to help you solve the question.
What are your plans for seeking out additional information?

Instructions: This section will help you organise the tasks needed to con-
struct your program. The order of the tasks is the order you can use to de-
velop your programming solution. Move the tasks from the left hand column
to the right in the order you feel is the best way to program your solution.

You can check your work using the ‘Check Answer’ button. When are done
planning, please click ‘Submit Final Answer’.



160 Appendix A. Programming Assignments

Question 2

Assignment 6 Question 2: Interactive Grid (13 marks)

Create a program that allows the user to place a random shape in each
square of a grid. Once all of the squares in the grid have a shape placed
within them the grid can be reset by the user. Your program should meet the
following specifications:

• The grid should have 6 rows and 6 columns.
• The grid should scale with the width and height of the sketch (the sketch

should always be square - equal width and height).
• The grid should be made up of white squares with black outlines.
• When the mouse is over a square that does not have a shape placed

within it, it should highlight that square in green.
• When the mouse is clicked on a square that does not have a shape

placed within it, it should place a random shape within it. The avail-
able shapes to choose from are a circle, oval, rectangle or square.
• The fill colour of each shape will be determined by the row that they are

being placed in:

– Row 1 – Red
– Row 2 – Orange
– Row 3 – Yellow
– Row 4 – Green
– Row 5 – Blue
– Row 6 – Purple

• Once a square has had a shape placed within it, it cannot be highlighted
or have another shape placed within it until the entire grid is reset.
• Once the entire grid is filled with shapes, the next mouse click will reset

the grid back to white, allowing the user to fill the grid over again.
• When resetting the grid back to white you must reset the squares one

by one. For example, you could first reset square (0,0) back to white,
and then square (0,1) back to white, and then square (0,2) back to white,
and so on. You can choose the order in which the squares are reset.
• Use an appropriate frame rate, such that the resetting animation is eas-

ily visible.

Beginning state of the program:



A.1. Pilot Group Codification Assignments 161

Intermediate stage:

Completed stage:



162 Appendix A. Programming Assignments

Assignment 6 Question 2: Planning Help

Instructions: The following two questions will help you think about the
programming assessment and apply it to what you already know. This will
help you identify the problem’s goal(s).

Student ID: (Required)

1. What do you already know about this topic?
2. How will you apply what you already know to solve this question?

Instructions: This section will help you organise the tasks needed to con-
struct your program. The order of the tasks is the order you can use to de-
velop your programming solution. Move the tasks from the left hand column
to the right in the order you feel is the best way to program your solution.

You can check your work using the ‘Check Answer’ button. When are done
planning, please click ‘Submit Final Answer’.



A.1. Pilot Group Codification Assignments 163

A.1.4 Assignment 7

Question 1

Assignment 7 Question 1: Dragging Squares (8 marks)

Program Description
Create a program that animates a number of randomly positioned squares
being dragged down the screen. Your program should meet the following
specifications:

• The canvas should have a width and height of 500, and have a red back-
ground.
• Your program should have a frame rate of 30.
• There should be 75 squares displayed on the screen with the following

properties:

– x and y coordinates should be random.
– The side lengths should be random between 1 and 40.
– The fill should be black, with an opacity of 100.
– The entire square must be on the canvas initially.

• A white horizontal line will sweep up the canvas from the bottom to the
top of the canvas.
• As the horizontal line sweeps up it should drag any square that it touches

with it.
• Once the horizontal line has reached the top of the canvas the anima-

tion should reset with new random squares, moving from the top to the
bottom of the screen.

The images below show the animation in action.
Moving up:

Moving up:



164 Appendix A. Programming Assignments

Moving down:

Assignment 7 Question 1: Planning Help

Instructions: The following two questions will help you think about the
programming assessment and apply it to what you already know. This will
help you identify the problem’s goal(s).

Student ID: (Required)

1. What do you already know about this topic?
2. How will you apply what you already know to solve this question?

Instructions: This section will help you organise the tasks needed to con-
struct your program. The order of the tasks is the order you can use to de-
velop your programming solution. Move the tasks from the left hand column
to the right in the order you feel is the best way to program your solution.



A.1. Pilot Group Codification Assignments 165

You can check your work using the ‘Check Answer’ button. When are done
planning, please click ’Submit Final Answer’.



166 Appendix A. Programming Assignments

Question 2

Assignment 7 Question 2: Rotation Function (8 marks)

Program Description

Create a function name rotateArray that takes a 2D integer array as a pa-
rameter and rotates the array’s entries in a anti-clockwise fashion by one po-
sition like the following image.

This algorithm needs to work for a 4x5 matrix dimension. Your program
should meet the following specifications:

• Your function should print an error message to the console and not per-
form the rotation if the array passed in is empty, or if it does not adhere
to the 4x5 matrix dimension.

• Print the array that is being rotated, both before and after the rotateAr-
ray function is called. This information should be printed to the console.

• You need to test your rotateArray function with at least 4 different ma-
trices, including edge cases. Your test matrices need to be placed in your
program for to receive credit.

• Your solution must use loops to rotate the elements of the 2D array.

Hints:

• For the above diagram, you need to be familiar with the mathematical
use of subscripts to represent array elements. If not, visit:

http://northstar-www.dartmouth.edu/doc/idl/html_6.2/
Understanding_Array_Subscripts.html

• Example Input:

http://northstar-www.dartmouth.edu/doc/idl/html_6.2/Understanding_Array_Subscripts.html
http://northstar-www.dartmouth.edu/doc/idl/html_6.2/Understanding_Array_Subscripts.html


A.1. Pilot Group Codification Assignments 167

[ [ 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20] ]

Output from rotation:

[ [ 2, 3, 4, 5, 10]
[ 1, 8, 9, 14, 15]
[ 6, 7, 12, 13, 20]
[11, 16, 17, 18, 19] ]

Assignment 7 Question 2: Planning Help

Instructions: The following two questions will help you think about the
programming assessment and apply it to what you already know. This will
help you identify the problem’s goal(s). When you are done with your an-
swers, please click the "Submit Final Answer" button.

Student ID: (Required)

1. How are you going to try to better understand this problem?
2. What are your plans for trying to solve this problem?



168 Appendix A. Programming Assignments

A.2 Experiment 2 Group Codification Assignments

A.2.1 Assignment 4

Question 1

Assignment 4 Question 1: Averaging Rainfall (8 marks)

In your programming assignment, you get to practise your coding skills
using:

• Variables
• Integers
• Loops
• If Then/Else
• Arrays

Program Description

Create a program that averages rainfall for a certain number of days.
Your program first receives the rainfall from an array. The days are pro-
cessed one day at a time from the array until an array entry is number -99999.
The -99999 is a signal to stop accepting rainfall information. Then your pro-
gram should calculate the Arithmetic Mean (Average) of the rainfall. Lastly,
it should display the result on the screen in the following format:

The average rainfall for ’n’ days is ’x’ mm.

The variable ‘n’ represents the number of days you program reads in from
the array. The variable ‘x’ is the average rainfall over those days.

Hints

• Do not accept negative rainfall, since this does not exist in the real
world. If a negative rainfall is provided, convert that day’s rainfall to 0.
• Here is an example rainfall list for 5 days:

(15,0,-53,5,2,-99999), with rainfall 15 mm, 0 mm, 0 mm, 5 mm, and 2
mm. Please note that -53 is an invalid rainfall value, so your program
converts the 3rd day to 0 mm.
• The formula for calculating the average is:

Average = (x1 + x2 + ... + xn)/n
• For more information on averaging (arithmetic mean), go to the web-

site:
http://mathsisfun.com/data/mean-machine.html

Assignment 4 Question 1: Planning Help

Instructions: The following two questions will help you think about the
programming assessment and apply it to what you already know. This will
help you identify the problem’s goal(s).

http://mathsisfun.com/data/mean-machine.html


A.2. Experiment 2 Group Codification Assignments 169

Student ID: (Required)

1. What do you already know about collecting and organising data for
averaging rainfall that might help you complete this assignment?

2. Breaking down the problem into smaller tasks will help you complete
the assignment. How would you go about breaking down this problem
into smaller tasks?

Instructions: This section will help you organise the tasks needed to con-
struct your program. The order of the tasks is the order you can use to de-
velop your programming solution. Move the tasks from the left hand column
to the right in the order you feel is the best way to program your solution.

You can check your work using the ‘Check Answer’ button. When are done
planning, please click ‘Submit Final Answer’.



170 Appendix A. Programming Assignments

Question 2

Assignment 4 Question 2: Class Grade List (7 marks)

In your assignment, you get to practise your coding skills using:

• Variables
• Integers
• Loops
• If Then/Else
• Arrays

Program Description

Your program will create a table that displays a list of students and their
corresponding grades, such as the one below:

Student Name Grade
Beaubier, Jean-Paul 76
Bishop, Lucas 68
Cassidy, Sean 38
Drake, Robert 34
Frost, Emma 94
Grey, Jean 58
Gutherie, Paige 55
Howlett, James 54
LeBeau, Remy 61
Lee, Jubliation 87
Marie, Anna 88
McCoy, Hank 51
Monroe, Ororo 51
Moonstar, Danielle 99
Pryde, Kitty 81
Rasputin, Piotr 21
Summers, Scott 84
Wagner, Kurt 60
Worthington, Warren 73
Xavier, Charles 71

Hints:

• Your class grade list needs to be created with the following of names in
your program:
Use the following array of names in your program:

String[] studentNames =
{"Beaubier, Jean-Paul", "Bishop, Lucas",
"Cassidy, Sean", "Drake, Robert",
"Frost, Emma", "Grey, Jean",
"Guthrie, Paige", "Howlett, James",



A.2. Experiment 2 Group Codification Assignments 171

"LeBeau, Remy", "Lee, Jubilation",
"Marie, Anna", "McCoy, Hank",
"Monroe, Ororo", "Moonstar, Danielle",
"Pryde, Kitty", "Rasputin, Piotr",
"Summers, Scott", "Wagner, Kurt",
"Worthington, Warren", "Xavier, Charles"};

• Create a second array to hold the students’ grades.
• The Student Name column should be left-aligned.
• The Grade column should be center-aligned.
• The rows of the table should be filled based on the following:

– Fail (0-49) - red
– Pass (50-64) - purple
– Credit (65-74) - cyan
– Distinction (75-84) - green
– High Distinction (85-100) - yellow

• Grades should be assigned randomly, but biased towards a mean grade
of 60, with standard deviation of 20.
• View the RandomGuassian tutorial on Processing.org to see how you

achieve random generation.

Assignment 4 Question 2: Planning Help

Instructions: The following two questions will help you think about the
programming assessment and apply it to what you already know. This will
help you identify the problem’s goal(s).

Student ID: (Required)

1. How can your current knowledge about classroom and grading help
you better understand this problem?

2. A part of this assignment is to colour the row containing a student’s in-
formation based on their grade. What do you think is a good approach
to assigning the colour?

Instructions: This section will help you organise the tasks needed to con-
struct your program. The order of the tasks is the order you can use to de-
velop your programming solution. Move the tasks from the left hand column
to the right in the order you feel is the best way to program your solution.

You can check your work using the ‘Check Answer’ button. When are done
planning, please click ‘Submit Final Answer’.



172 Appendix A. Programming Assignments



A.2. Experiment 2 Group Codification Assignments 173

A.2.2 Assignment 5

Question 1

Assignment 5 Question 1: Gradient Function (6 marks)

In your assignment, you get to reuse programming components from pre-
vious programs, like for loops and functions.

Program Description

Below is code that draws a number of lines to form a grayscale gradient.
The gradient starts at 0 (black) and lightens until it reaches endValue. You
should copy this code into the Processing IDE to see how it works. Try pass-
ing in different values to the drawGradient function to see how the output
changes.

void setup(){
size(400,400);
background(255);
//Call our function, draw a gradient
//from white to black
drawGradient(255);

}

// drawGradient - Draws a grayscale gradient,
// the gradient starts at 0 (black) and lightens
// until it reaches endValue.
void drawGradient(int endValue){

for(int i = 0; i <= endValue; i++){
stroke(i);
line(10,i,60,i);

}
}

For your assignment, you will need to copy the above code and extend
the drawGradient function to have the following parameters:



174 Appendix A. Programming Assignments

Parameter Description Possible Values Possible Values
x X-coordinate of the top

left corner of the gradient.
y Y-coordinate of the top

left corner of the gradient.
vertical Determines if the gradient

is drawn vertically or horizontally.
True - if the gradient
is drawn vertically
(darkest at top)
False - if the gradient is
drawn horizontally
(darkest at left-side)

endValue The end value of the gradient
(gradient will start at colour 0
and go to endValue)

. 0 to 255

opacity The opacity of the gradient. 0 to 255
col Determines the colour

of the gradient.
0 - grayscale
1 - red
2 - green
3 - blue

widHei The width or height of the gradient
(width if drawn vertically,
height if drawn horizontally).

If any of the input parameters are invalid, your drawGradient function
should display a warning, and not draw the gradient. See above for the valid
values. Use a for loop to call drawGradient several times, to design a pat-
tern. The pattern should be produced by modifying the gradient attributes:
end value, width/height, opacity, orientation (vertical/horizontal), or colour.
To achieve full marks for this part, please ensure you create a pattern with at
least 5 gradients, and alter at least 2 of the gradient attributes in your pattern.

Assignment 5 Question 1: Planning Help

Instructions: The following two questions will help you think about the
programming assessment and apply it to what you already know. This will
help you identify the problem’s goal(s).
Student ID: (Required)

1. What ideas do you have for the patterns your program will need to
generate?

2. How do you think you will need to alter drawGradient to create these
patterns?

Instructions: This section will help you organise the tasks needed to con-
struct your program. The order of the tasks is the order you can use to de-
velop your programming solution. Move the tasks from the left hand column
to the right in the order you feel is the best way to program your solution.

You can check your work using the ‘Check Answer’ button. When are done
planning, please click ‘Submit Final Answer’.



A.2. Experiment 2 Group Codification Assignments 175



176 Appendix A. Programming Assignments

Question 2

Assignment 5 Question 2: Rainfall Graph (14 marks)

There are two parts to this assignment. This is the second part.

Program Description

Create a program that produces a rainfall graph like the following:

You should build upon the following skeleton code to produce the rainfall
graph.

void setup(){
size(900,600);
background(255);
// Array of rainfall per month for Adelaide in 1916.
float[] adelaide1916 = {17.3,5.6,13.2,41.4,37.1,

249.5,103.4,118.1,50.1,
57.7,72.4,47.2};

// Draw the rain graph for Adelaide, 1916.
drawRainGraph(adelaide1916,"Adelaide",1916);

}

/*
drawRainGraph
Draws a rain graph for a particular location and year
rainfall: each element in the rainfall array

represents the total rainfall for
the respective month



A.2. Experiment 2 Group Codification Assignments 177

location: the location of the rainfall
year: the year of the rainfall

*/
void drawRainGraph(float[] rainfall,

String location, int year){}

// minimum - returns the minimum value in a float array
float minimum(float[] array){}

// maximum - returns the maximum value in a float array
float maximum(float[] array){}

// total - returns the total of a float array
float total(float[] array){}

// mean - returns the mean of a float array
float mean(float[] array){}

Please note that you must implement the minimum, maximum, total and
mean functions yourself, you should not be be making calls to any in-built
Processing functions to assist with these functions. The specific requirements
for the graph are as follows:

• Title: "Rainfall in location (year)"
• X-Axis:

– Label: "Month"
– Scale: One entry for every month of the year, Jan through to Dec.
– Gridlines: Light grey vertical gridlines for each month.

• Y-Axis:

– Label: "Rain (mm)"
– Scale: Should start at 0 and go to just above the maximum rainfall,

choose an appropriate scale interval so that it is clear and easy to
read. The scale interval should change depending on the maximum
rainfall (if max is 250, an interval of 50 would be appropriate, if max
is 45, an interval of 10 would be appropriate).

– Gridlines: Light grey horizontal gridlines for each scale interval.

• Values

– A black dot should be positioned on the graph to represent the rain-
fall for each month.

– Connect the black dots with blue lines.
– Display the text "Min" next to the minimum rainfall.
– Display the text "Max" next to the maximum rainfall.
– Display the mean value as a red line, with "Mean = value" next to

the line.

• Statistical data

1. Displayed to the right of the graph.
2. Display the min, max, total and mean of the year’s rainfall.



178 Appendix A. Programming Assignments

Your drawRainGraph function should also work with different rainfall
data, test your code with the following data:

// Test data - 2
float[] cairns1979 = {1674.4,579.4,362.4,198.4,

55.9,110.5,32.4,28.8,24.4,
16.7,14,72};

// Test data - 3
float[] perth2002 = {18.4,8.2,2.6,96,70.4,183.8,

119.8,81.2,85.6,42.2,25.8,3.8};

// Test data - 4
float[] melbourne1968 = {48.3,6.6,24.6,67.2,100,

56.9,39.7,40,18.3,51.5,
44.5,53.6};

Assignment 5 Question 2: Planning Help

Instructions: The following two questions will help you think about the
programming assessment and apply it to what you already know. This will
help you identify the problem’s goal(s).

Student ID: (Required)

1. Review the graph in the assignment. How does this graph help you
understand the problem?

2. There are a few separate programming parts to this assignment. De-
scribe your plan on how you will program these parts.

Instructions: This section will help you organise the tasks needed to con-
struct your program. The order of the tasks is the order you can use to de-
velop your programming solution. Move the tasks from the left hand column
to the right in the order you feel is the best way to program your solution.

You can check your work using the ‘Check Answer’ button. When are done
planning, please click ‘Submit Final Answer’.

These planning tasks describe higher level task descriptions typical of
how larger programs are planned. This approach enables you to have a
broad view of what needs to get solved without being overwhelmed with
coding details. Some sections are repeatable tasks for different functions,
represented by a loop over these functions written in pseudocode.



A.2. Experiment 2 Group Codification Assignments 179



180 Appendix A. Programming Assignments

A.2.3 Assignment 6

Question 1

Assignment 6 Question 1: Hole in One (7 marks)

There are two parts to this assignment. This is the first of the two parts.

Create a program that allows the user to move a red ball into a hole using
the arrow keys on the keyboard. Your program should meet the following
specifications:

• The ball starts in the upper left hand corner.
• The hole should be at a random location, it cannot overlap the ball’s

beginning position.
• The hole’s diameter must be scalable with the sketch size.
• The ball’s diameter should be 80% of the hole’s diameter.
• The ball changes position when the arrow keys are pressed.
• The ball cannot go off the edge of the sketch.
• When the ball is completely or partially outside the hole the back-

ground should be white and the hole should be black.
• When the ball is completely inside the hole the background should be

changed to black and the hole becomes white.
• Include a function named isBallinHole() that returns true if the ball is

completely within the hole and false otherwise.

Example of display when ball is not in the hole:

Example of display when ball is in the hole:



A.2. Experiment 2 Group Codification Assignments 181

Assignment 6 Question 1: Planning Help

Instructions: The following two questions will help you think about the
programming assessment and apply it to what you already know. This will
help you identify the problem’s goal(s).

Student ID: (Required)

1. What have you already learned to help you move the ball around on
the canvas?

2. You might need additional information to help you solve the question.
What are your plans for seeking out additional information?

Instructions: This section will help you organise the tasks needed to con-
struct your program. The order of the tasks is the order you can use to de-
velop your programming solution. Move the tasks from the left hand column
to the right in the order you feel is the best way to program your solution.

You can check your work using the ‘Check Answer’ button. When are done
planning, please click ‘Submit Final Answer’.



182 Appendix A. Programming Assignments

Question 2

Assignment 6 Question 2: Interactive Grid (13 marks)

Create a program that allows the user to fill each square in a grid with
random colours. Once all of the squares are filled, the grid can be reset by the
user. Your program should meet the following specifications:

• The grid should have 5 rows and 5 columns.
• The grid should scale with the width and height of the sketch (the sketch

should always be square - equal width and height).
• The grid should be made up of white squares with black outlines.
• When the mouse is over a square that has not been filled it should high-

light that square in yellow.
• When the mouse is clicked on a square that has not been filled yet, it

should place a random colour within it. (Note: The squares have a
decreased opacity in the example below to soften the colours, but this is
not required.)
• Once a square has been filled with a random colour it cannot be high-

lighted or filled again until the entire grid is reset.
• After the last square is filled, the next mouse click will reset the entire

grid back to white, allowing the user to fill the grid over again.
• When resetting the grid back to white you must reset the squares one

by one. For example you could first reset square (0,0) back to white, and
then square (0,1) back to white, and then square (0,2) back to white, and
so on. You can choose the order in which the squares are reset.
• Use an appropriate frame rate, such that the resetting animation is eas-

ily visible.

Example of the display before any square is selected:

Example of the display after the user has clicked on some of the squares:



A.2. Experiment 2 Group Codification Assignments 183

Example of the display after the user has clicked on all of the squares, but
before resetting the grid:

Assignment 6 Question 2: Planning Help

Instructions: The following two questions will help you think about the
programming assessment and apply it to what you already know. This will
help you identify the problem’s goal(s).

Student ID: (Required)

1. What do you already know about this topic?
2. How will you apply what you already know to solve this question?

Instructions: This section will help you organise the tasks needed to con-
struct your program. The order of the tasks is the order you can use to de-
velop your programming solution. Move the tasks from the left hand column



184 Appendix A. Programming Assignments

to the right in the order you feel is the best way to program your solution.

You can check your work using the ‘Check Answer’ button. When are done
planning, please click ‘Submit Final Answer’.



A.2. Experiment 2 Group Codification Assignments 185

A.2.4 Assignment 7

Question 1

Assignment 7 Question 1: Dragging Circles (7 marks)

Program Description

Create a program that animates a number of randomly positioned circles
being dragged across the screen. Your program should meet the following
specifications:

• The canvas should have a width and height of 500, and have a black
background.
• Your program should have a frame rate of 30.
• There should be 100 circles displayed on the screen with the following

properties:

– x and y coordinates should be random.
– The diameters should be random between 1 and 30.
– The fill should be white, with an opacity of 100.
– The entire circle must be on the canvas initially.

• A red vertical line will sweep across the canvas from the left side to the
right side.
• As the vertical line sweeps across it should drag any circles that it touches

with it.
• Once the vertical line has reached the end of the canvas the animation

should reset with new random circles, moving from the right to the left
of the screen.

The images below show the animation in action.



186 Appendix A. Programming Assignments

Assignment 7 Question 1: Planning Help

Instructions: The following two questions will help you think about the
programming assessment and apply it to what you already know. This will
help you identify the problem’s goal(s).

Student ID: (Required)

1. What do you already know about this topic?
2. How will you apply what you already know to solve this question?

Instructions: This section will help you organise the tasks needed to con-
struct your program. The order of the tasks is the order you can use to de-
velop your programming solution. Move the tasks from the left hand column
to the right in the order you feel is the best way to program your solution.



A.2. Experiment 2 Group Codification Assignments 187

You can check your work using the ‘Check Answer’ button. When are done
planning, please click ‘Submit Final Answer’.



188 Appendix A. Programming Assignments

Question 2

Assignment 7 Question 2: Transpose Function (7 marks)

Program Description

Create a function named transpose that takes a 2D integer array as a pa-
rameter and returns the transpose of that array. Your function should return
an empty array if the array passed in is empty or if it contains arrays of vary-
ing lengths. Print the results of your transpose function either to the console
or the canvas.

You should test your transpose function with at least 4 different matrices,
paying particular attention to edge cases. Your test matrices should be placed
in your program code for ease of marking.

You can find more information about transposing here:

https://www.mathsisfun.com/algebra/
matrix-introduction.html

Assignment 7 Question 2: Planning Help

Instructions: The following two questions will help you think about the
programming assessment and apply it to what you already know. This will
help you identify the problem’s goal(s). When you are done with your an-
swers, please click the "Submit Final Answer" button.

Student ID: (Required)

1. How are you going to try to better understand this problem?
2. What are your plans for trying to solve this problem?

https://www.mathsisfun.com/algebra/matrix-introduction.html
https://www.mathsisfun.com/algebra/matrix-introduction.html


A.3. Questioning Activities 189

A.3 Questioning Activities

A.3.1 Pilot Group Questioning Activities

Assignment 4 Question 1: Products Sold

1. What do you already know about collecting and organising data for
products sold that might help you complete this assignment?

2. Breaking down the problem into smaller tasks will help you complete
the assignment. How would you go about breaking down this problem
into smaller tasks?

Assignment 4 Question 2: Football League List

1. You might not be familiar with football, but you might already know
about sports and competition. How can your current knowledge about
sports and competition help you better understand this problem?

2. A part of this assignment is to colour code a team’s row based on their
statistics. What do you think is a good approach to assigning the colour?

Assignment 5 Question 1: Hue Function

1. What ideas do you have for the patterns your program will need to
generate?

2. How do you think you will need to alter displayHue to create these
patterns?

Assignment 5 Question 2: Products Sold Graph

1. Review the graph in the assignment. How does this graph help you
understand the problem?

2. There are a few separate programming parts to this assignment. De-
scribe your plan on how you will program these parts.

Assignment 6 Question 1: Coin in the Well

1. What have you already learned to help you move the coin around on
the canvas?

2. You might need additional information to help you solve the question.
What are your plans for seeking out additional information?

Assignment 6 Question 2: Interactive Grid

1. What do you already know about this topic?
2. How will you apply what you already know to solve this question?

Assignment 7 Question 1: Dragging Squares

1. What do you already know about this topic?
2. How will you apply what you already know to solve this question?

Assignment 7 Question 2: Rotation Function

1. How are you going to try to better understand this problem?
2. What are your plans for trying to solve this problem?



190 Appendix A. Programming Assignments

A.3.2 Pilot Group Questioning Activities

Assignment 4 Question 1: Averaging Rainfall

1. What do you already know about collecting and organising data for
averaging rainfall that might help you complete this assignment?

2. Breaking down the problem into smaller tasks will help you complete
the assignment. How would you go about breaking down this problem
into smaller tasks?

Assignment 4 Question 2: Class Grade List

1. How can your current knowledge about classroom and grading help
you better understand this problem?

2. A part of this assignment is to colour the row containing a student’s in-
formation based on their grade. What do you think is a good approach
to assigning the colour?

Assignment 5 Question 1: Gradient Function

1. What ideas do you have for the patterns your program will need to
generate?

2. How do you think you will need to alter drawGradient to create these
patterns?

Assignment 5 Question 2: Rainfall Graph

1. Review the graph in the assignment. How does this graph help you
understand the problem?

2. There are a few separate programming parts to this assignment. De-
scribe your plan on how you will program these parts.

Assignment 6 Question 1: Hole in One

1. What have you already learned to help you move the ball around on
the canvas?

2. You might need additional information to help you solve the question.
What are your plans for seeking out additional information?

Assignment 6 Question 2: Interactive Grid

1. What do you already know about this topic?
2. How will you apply what you already know to solve this question?

Assignment 7 Question 1: Dragging Circles

1. What do you already know about this topic?
2. How will you apply what you already know to solve this question?

Assignment 7 Question 2: Transpose Function

1. How are you going to try to better understand this problem?
2. What are your plans for trying to solve this problem?



191

Appendix B

Interviews and Tests

B.1 Interviews

B.1.1 Student Interview

Interview Questions
Instructions: This interview gives you the opportunity to provide feedback

on your experiences working on the programming assignment. Please fill out
the questions below.

1. What are three things that stand out in your mind when going through
the programming assignment. Why did these things stand out?

2. Did you find yourself stuck in any situation and if so, how were you
able to get unstuck?

3. What materials provided to you help you understand the problem?
Materials can include assignment text description, the question activ-
ity, and the task activity proceeding the assignment text description. A
sample of the materials is provided at the end of the survey.

4. Can you describe any positive or negative feelings generated during the
session?

5. If you have any negative feelings during the activity, how did you over-
come/try to overcome them? Please explain.

6. Please provide your opinion on each of the following parts of the study.
Provide how the section was helpful, and how it could be improved. A
sample of the materials is provided at the end of the survey.

(a) Assignment Description:
(b) The question activity:
(c) The task activity:

7. Would you like to add any additional comments or feedback that was
not covered in the questions?

For the 2-4 interview sessions:

1. Did you see any benefits from doing the question and task activities?

2. Did you have any suggestions on how to improve the question and task
activities?



192 Appendix B. Interviews and Tests

B.2 Tests

B.2.1 Student Pre- and Post-Test

’Introduction to Programming’ Homework Planning Survey
This survey gives you the opportunity to think about how you go about

doing your assignments. Your feedback will give us, the teachers, a better
understanding of what you might need to successfully complete the assign-
ments. Please take a moment to complete this survey.

Student ID:

Planning Statements Strongly
Agree Agree Neither Agree

nor Disagree Disagree Strongly
Disagree

1. I try to use strategies
that have worked
in the past.

2 2 2 2 2

2. I have a specific
purpose for each
strategy I use.

2 2 2 2 2

3. I am aware of what
strategies I use when
I study.

2 2 2 2 2

4. I find myself using
helpful learning strategies
automatically.

2 2 2 2 2

5. I pace myself while
learning in order to have
enough time.

2 2 2 2 2

6. I think about what I
really need to learn
before I begin a task.

2 2 2 2 2

7. I ask myself questions
about the material
before I begin.

2 2 2 2 2

8. I think of several ways
to solve a problem and
choose the best one.

2 2 2 2 2

9. I read instructions
carefully before I
begin a task.

2 2 2 2 2

10. I organise my time to
best accomplish
my goals.

2 2 2 2 2



B.2. Tests 193

B.2.2 Usability Study Questionnaire

Instructions: This survey gives you the opportunity to provide background
information on prior studies that might help you with learning Computer
Science. Please fill out the questions below.

1. What strategies do you use in order to solve the problems? For example,
what do you do when trying to solve a complex math problem?

2. Sometimes difficult problems can be frustrating. How do you overcome
these negative emotions to try and solve the problem?

3. You are given a math homework assignment due in a week. Can you
describe what you do during the week to complete the assignment.

4. How do you estimate your programming experience?

5. How do you estimate your programming experience compared to ex-
perts with 20 years of practical experience?

6. How do you estimate your programming experience compared to your
class mates?

7. Besides Processing.js, how many additional languages do you know?

8. For how many years have you been programming?



194 Appendix B. Interviews and Tests

B.2.3 Rainfall Problem Survey

Rainfall Problem - Survey
We, the teachers, are investigating ways to improve how we present pro-
gramming assignments, and your feedback will greatly help us. At the bot-
tom of the survey, we provided the first part of Assignment 4 as reference.
Please take a moment to complete the survey.

1. Rate your understanding of the Rainfall Problem statement.

Completely understood

Mostly understood

Mostly did not understand

Completely did not understand

2. Explain any problems you encountered when reading the Rainfall
Problem statement.

3. Did the layout of the Rainfall Problem statement help you in creating
your solution?

Yes, the format was helpful

No, the format was not helpful

I did not notice

4. Explain how the Rainfall Problem statement’s layout helped you create
your solution.



195

Bibliography

Adelson, Beth (1984). “When novices surpass experts: The difficulty of a task may
increase with expertise”. In: Journal of Experimental Psychology: Learning, Memory,
and Cognition 10 (3), pp. 483–495.

Ahoniemi, Tuukka and Essi Lahtinen (2007). “Visualizations in preparing for pro-
gramming exercise sessions”. In: Electronic Notes in Theoretical Computer Science
(ENTCS) 178, pp. 137–144.

Akin, Ahmet and Ramazan Abaci (2007). “The validity and reliablity of the Turk-
ish version of the Metacognitive Awareness Inventory”. In: Educational Sciences:
Theory and Practice 7 (2), pp. 671–678.

Aleven, V., J. Sewall, O. Popescu, F. Xhakaj, D. Chand, R. Baker, Y. Wang, G. Siemens,
C. Rosé, and D. Gasevic (2005). “The beginning of a beautiful friendship? Intel-
ligent tutoring systems and MOOCs”. In: Artificial Intelligence in Education, Vol.
9112 of the Series Lecture Notes in Computer Science, pp. 525–528.

Aleven, V., J. Sewall, O. Popescu, M. Ringenberg, M. van Velsen, and S. Demi (2016).
“Embedding intelligent tutoring systems in MOOCs and e-learning platforms”.
In: ITS ‘16: Proceedings of the 13th International Conference on Intelligent Tutoring
Systems, pp. 409–415.

Alexander, Christopher, Sara Ishikawa, and Murray Silverstein (1977). A pattern lan-
guage: Towns, buildings, construction. Oxford University Press.

Alexiou, A. and F. Paraskeva (2010). “Enhancing self-regulated learning skills through
the implementation of a e-portfolio tool”. In: Procedia Social and Behaviorial Science
2, pp. 3048–3054.

Allen, Elaine and Christopher A. Seaman (2007). “Likert scales and data analysis”.
In: Quality Progress. Vol. 40. University of New York, pp. 64–65.

An, Yun-Jo and Li Cao (2014). “Examining the effects of metacognitive scaffolding
on students’ design problem solving and metacognitive skills in an online envi-
ronment”. In: MERLOT: Journal of Online Learning and Teaching 10 (4), pp. 552–
568.

Anderson, J.R. (2013). The architecture of cognition. Hove, East Sussex, United King-
dom: Psychology Press.

Anderson, L. and D.A. Krathwohl (2001). Taxonomy for Learning, Teaching and Assess-
ing: A Revision of Bloom’s Taxonomy of Educational Objectives. New York: Longman.

Atman, C.J., J.R. Chimka, K.M. Bursic, and H.L. Nachtmann (1999). “A compari-
son of freshman and senior engineering design processes”. In: Design Studies 20,
pp. 131–152.

Baert, M. (2019). SimpleScreenRecorder. https://www.maartenbaert.be/
simplescreenrecorder. [Online; accessed 11-Feb-2019].

Baird, J.R. and J.R. Northfield (1995). Learning from the PEEL experience. 2nd. Peel
Publications.

Barab, S. and K. Squire (2004). “Design-based research: Putting a stake in the ground”.
In: Journal of the Learning Series 13 (1), pp. 1–14.



196 BIBLIOGRAPHY

Barker, Lecia J., Charlie McDowell, and Kimberly Kalahar (2009). “Exploring factors
that influence computer science introductory course students to persist in the
major”. In: ACM SIGCSE Bulletin 41.2, pp. 282–286.

Bateson, A.G., R.A. Alexander, and M.D. Murphy (1987). “Cognitive processing dif-
ferences between novice and expert computer programmers”. In: International
Journal Man-Machine Studies 26, pp. 649–660.

Beck, K. and C. Andres (2004). Extreme programming explained: Embrace change. 2nd ed.
Addison-Wesley Professional.

Bergin, S., R. Reilly, and D. Traynor (2005). “Examining the role of self-regulated
learning on introductory programming performance”. In: ICER ‘05: Proceedings of
the First Annual Conference on International Computing Education Research, pp. 81–
86.

Bergman, Lars R. and Kari Trost (2006). “The person-oriented versus the variable-
oriented approach: Are they complementary, opposites, or exploring different
worlds?” In: Person-Centered and Variable-Centered Approaches to Longitudinal Data
52.3, pp. 601–632.

Biggs, J. B. and K. F. Collis (1982). “The SOLO Taxonomy (Structure of the Observed
Learning Outcome)”. In: Evaluating the Quality of Learning. Ed. by Allen J. Ed-
ward. New York, New York, pp. 237–242.

Bishop-Clark, Catherine (1995). “Cognitive style, personality, and computer pro-
gramming”. In: Computers in Human Behavior 11 (2), pp. 241–260.

Bloom, Benjamin S. (1956). Taxonomy of Educational Objectives: The Classification of Ed-
ucational Goals. New York: Longmans, Green, pp. 201–207.

Boekaerts, Monique (1996). “Self-regulated learning at the junction of cognition and
motivation”. In: European Psychologist 1, pp. 100–112.

Boekaerts, Monique (2011). “Emotions, emotion regulation, and self-regulation of
learning”. In: Handbook of Self-Regulation of Learning and Performance. Ed. by Zim-
merman B. J. and Schunk D. H. New York, NY: Routledge, pp. 408–425.

Bonar, Jeffrey and Elliot Soloway (1985). “Preprogramming knowledge: A major
source of misconceptions in novice programmers”. In: Human-Computer Inter-
action 1 (2), pp. 133–161.

Boone Jr, Harry N. and Deborah Boone (2012). “Analyzing Likert data”. In: Journal
of Extension 50 (2), pp. 1–5.

Booth, A., D. Papaioannou, and A. Sutton (2012). Systematic approaches to a successful
literature review. Sage Publications Ltd.

Bouvier, Dennis, Ellie Lovellette, John Matta, Bedour Alshaigy, Brett A. Becker, Michelle
Craig, Jana Jackova, Robert McCartney, and Kate Sanders (2016). “Novice pro-
grammers and the problem description effect”. In: ITiCSE ‘16: Proceedings of the
2016 ITiCSE Working Group Reports, pp. 103–118.

Boyer, Kristy Elizabeth, William Lahti, Robert Phillips, Michael D. Wallis, Mladen A.
Vouk, and James C. Lester (2010). “Principles of asking effective questions during
student problem solving”. In: Proceedings of the 41st ACM Technical Symposium on
Computer Science Education, pp. 460–464.

Briggs, Tom (2005). “Techniques for active learning in CS courses”. In: Journal of Com-
puting Sciences in Colleges 1 (2), pp. 156–165.

Britton, Sandra, Peter New, Andrew Roberts, and Manjula Sharma (2007). “Investi-
gating Students’ Ability to Transfer Mathematics”. In: Transforming a University.
The Scholarship of Teaching and Learning Practice. Ed. by In Angela Brew & Judyth
Sachs (Eds.) Sydney: Sydney University Press, pp. 127–140.



BIBLIOGRAPHY 197

Buckley, Jim and Chris Exton (2003). “Bloom’s Taxonomy: A framework for assess-
ing programmers’ knowledge of software systems”. In: Proceedings of the 11th
IEEE International Workshop on Program Comprehension, pp. 165–174.

Buckley, Michael, Helene Kershner, Kris Schindler, Carl Alphonce, and Jennifer Braswell
(2004). “Benefits of using socially-relevant projects in computer science and engi-
neering education”. In: SIGCSE ‘04: Proceedings of the 35th SIGCSE technical sym-
posium on Computer science education, pp. 482–486.

Carbone, Angela, John Hurst, Ian Mitchell, and Dick Gunstone (2000). “Principles
for designing programming exercises to minimise poor learning behaviours in
students”. In: ACSE ‘00 Proceedings of the Australasian conference on Computing ed-
ucation, pp. 26–33.

Carbone, Angela, John Hurst, Ian Mitchell, and Dick Gunstone (2001). “Characteris-
tics of programming exercises that lead to poor learning tendencies: Part II”. In:
ITiCSE ‘01: Proceedings of the 6th Annual Conference on Innovation and Technology in
Computer Science Education, pp. 93–96.

Caspersen, Michael E. and Jens Bennedsen (2007). “Instructional design of a pro-
gramming course – A learning theoretic approach”. In: Proceedings of the 3rd In-
ternational Workshop on Computing Education Research, pp. 111–122.

Castro, F. and K. Fisler (2017). “Designing a multi-faceted SOLO taxonomy to track
program design skills through an entire course”. In: Koli Calling ‘17: Proceedings
of the 17th Koli Calling International Conference on Computing Education Research,
pp. 10–19.

Chalk, P. (2001). “Scaffolding learning in virtual environments”. In: Proceedings of the
6th Annual Conference on Innovation and Technology in Computer Science Education,
pp. 85–88.

Chatfield, C. (2004). The analysis of time series: An introduction. 6th ed. Boca Raton, FL:
Chapman & Hall CRC Press.

Chi, M. T. H., R. Glaser, and E. Rees (1982). “Expertise in problem solving”. In: Ad-
vances in the psychology of human intelligence. Ed. by R. J. Sternberg. Vol. 1. Hills-
dale, NJ: Lawrence Erlbaum Associates, Inc, pp. 7–76.

Chi, Michelene T. H., Nicholas de Leeuw, Mei hung Chiu, and Christian LaVancher
(1994). “Eliciting self-explanations improves understanding”. In: Cognitive Sci-
ence 18, pp. 439–477.

Chmiel, Ryan and Michael C. Loui (2003). “An integrated approach to instruction
in debugging computer programs”. In: Proceedings of AEE/IEEE in Education 3,
pp. 1–6.

Collins, Gambrell, and Pressley (2002). Comprehension strategy instruction that works.
Sundance, pp. 1–7.

Collins, Allan (1985). “Teaching reasoning skills”. In: Thinking and Learning Skills.
Ed. by & R. Glaser S. Chipman J. Segal. Vol. 2. Hillsdale, NJ: Lawrence Erlbaum
Associates, pp. 579–586.

Collins, Allan, John Seely Brown, and Ann Holum (1991). “Cognitive apprentice-
ship: Making thinking visible”. In: American Educator 15 (3), pp. 6–11.

Collins, Allan and Albert Stevens (1983). “A cognitive theory of inquiry teaching”.
In: Instructional-design theories and models. Ed. by C.M. Reigeluth. Norwood, NJ:
Lawrence Erlbaum Associates, pp. 203–230.

Conati, Cristina and Kurt Vanlehn (2000). “Toward computer-based support of meta-
cognitive skills: A computational framework to coach self-explanation”. In: Inter-
national Journal of Artificial Intelligence in Education, pp. 398–415.

Crandall, B., G. Klein, and R.R. Hoffman (2006). Working minds: A practitioner’s guide
to cognitive task analysis. MIT Press.



198 BIBLIOGRAPHY

Creswell, J.W. (2012). Educational research: Planning, conducting, and evaluating quan-
titative and qualitative research. Educational Research: Planning, Conducting, and
Evaluating Quantitative and Qualitative Research. Pearson.

Dadic, T., S. Stankov, and M. Rosic (2008). “Meaningful learning in the tutoring sys-
tem for programming”. In: Proceedings of the ITI 2008 30th International Conference
on Information Technology Interfaces, pp. 483–488.

de Raadt, Michael, Mark Toleman, and Richard Watson (2004). “Training strategic
problem solvers”. In: InRoads - The SIGCSE Bulletin 36 (2), pp. 48–51.

de Raadt, Michael, Richard Watson, and Mark Toleman (2009). “Teaching and assess-
ing programming strategies explicitly”. In: ACE ’09: Proceedings of the Eleventh
Australasian Computing Educating Conference, pp. 45–54.

Denny, Paul, Andrew Luxton-Reilly, and Beth Simon (2008). “Evaluating a new
exam question: Parsons problems”. In: Proceeding of the Fourth international Work-
shop on Computing Education Research, pp. 113–124.

Détienne, F. (2002). “Software design: Theoretical approaches”. In: Software design—
Cognitive aspects. Ed. by Frank Bott. Berlin, Heidelberg: Springer-Verlag. Chap. 3,
pp. 21–41.

Dillon, J.T. (1984). “The classification of research questions”. In: Review of Educational
Research 54, pp. 327–361.

diSessa, Andrea (2014). “The construction of causal schemes: Learning mechanisms
at the knowledge level”. In: Cognitive Science 38 (5), pp. 795–850.

Dreyfus, H.L. and S.E. Dreyfus (1986). Mind over machine: The power of human intuitive
expertise in the era of the computer. New York: Free Press.

Dropbox, Inc. (2019). Dropbox. Available at https://www.dropbox.com. [Online; ac-
cessed 01-Nov-2019].

Ebrahimi, Alireza (1994). “Novice programmer errors: Language constructs and plan
composition”. In: International Journal Human-Computer Studies 41 (4), pp. 457–
480.

El-Zakhem, Imad H. (2016). “Socratic programming: An innovative programming
learning method”. In: International Journal of Information and Education Technology
6 (3), pp. 247–250.

Ericsson, K. A. and H. A. Simon (1993). Protocol Analysis: Verbal Reports as Data. A
Bradford Book, London: The MIT Press.

Esser, Frank and Rens Vliegenthart (2017). Comparative research methods. Ed. by Jörg
Matthes, Christine S. Davis, and Robert F. Potter. John Wiley & Sons Inc, pp. 1–
22.

Facione, Peter (2015). “Critical thinking: What it is and why it counts”. In: Insight
Assessment, pp. 1–27.

Falkner, Katrina, Rebecca Vivian, and Nickolas Falkner (2014). “Identifying com-
puter science self-regulated learning strategies”. In: ITiCSE ‘14: Proceedings of the
2014 ACM Conference on Innovation and Technology in Computer Science Education,
pp. 291–296.

Falkner, Katrina, Claudia Szabo, Rebecca Vivian, and Nickolas Falkner (2015). “Evo-
lution of software development strategies”. In: ICSE ‘15: Proceedings of the 37th
International Conference on Software Engineering, pp. 243–252.

Fee, Samuel B. and Amanda M. Holland-Minkley (2010). “Teaching computer sci-
ence through problems, not solutions”. In: Computer Science Education 20 (2),
pp. 129–144.

Feldman, Todd and Julie Zelenski (1996). “The quest for excellence in designing
CS1/CS2 assignments”. In: SIGCSE ‘96: Proceedings of the twenty-seventh SIGCSE
technical symposium on Computer science education, pp. 319–323.



BIBLIOGRAPHY 199

Fincher, S., M. Petre, J. Tenenberg, K. Blaha, T. Chen, D. Chinn, S. Cooper, A. Eck-
erdal, H. Johnson, R. McCartney, A. Monge, J. Moström, K. Powers, M. Ratcliffe,
A. Robins, D. Sanders, L. Schwartzman, B. Simon, C. Stoker, A. Tew, and T. Van-
DeGrift (2004). “A multi-national, multi-institutional study of student-generated
software designs”. In: Koli Calling ‘04: Proceedings of the 4th Koli Calling Interna-
tional Conference on Computing Education Research, pp. 20–27.

Fioravanti, Maria Lydia and Ellen Francine Barbosa (2016). “A systematic mapping
on pedagogical patterns”. In: 2016 IEEE Frontiers in Education Conference (FIE),
pp. 1–9.

Fisler, Kathi (2014). “The recurring rainfall problem”. In: ICER ‘14: Proceedings in the
tenth annual conference on International Computing Education Research Conference,
pp. 35–42.

Fisler, Kathi and Francisco Enrique Vicente Castro (2017). “Sometimes, rainfall ac-
cumulates: Talk-alouds with novice functional programmers”. In: ICER ‘17: Pro-
ceedings of the 2017 ACM Conference on International Computing Education Research
Conference, pp. 12–20.

Fisler, Kathi, Shriram Krishnamurthi, and Janet Siegmund (2016). “Modernizing plan-
composition studies”. In: SIGCSE ‘16: Proceedings of the 47th ACM Technical Sym-
posium on Computing Science Education, pp. 211–216.

Fry, Ben and Casey Raes (2018). Processing.js. Available at http://processingjs.org,
version 1.4.8. [Online; accessed 20-Feb-2019].

Gal-Ezer, Judith, Dvir Lanzberg, and Daphna Shahak (2004). “Interesting basic prob-
lems for CS1”. In: ACM SIGCSE Bulletin, pp. 275–275.

Garcia, Rita, Katrina Falkner, and Rebecca Vivian (2018). “Systematic literature re-
view: Self-Regulated learning strategies using e-learning tools for computer sci-
ence”. In: Computers & Education 123, pp. 150–163.

Garner, S. (2007). “A program design tool to help novices learn programming”. In:
ASCILITE ‘07: Proceedings of Annual Conference of the Australasian Society for Com-
puters in Learning in Tertiary Education, pp. 321–324.

Gerdes, Alex, Johan Juering, and Bastiaan Heeren (2012). “An interactive functional
programming tutor”. In: ITiCSE ‘12: Proceedings of the Annual Conference on Inno-
vation and Technology in Computer Science Education, pp. 250–255.

Ghefaili, Aziz (2003). “Cognitive apprenticeship, technology, and the contextualiza-
tion of learning environments”. In: Journal of Educational Computing, Design On-
line Learning, pp. 1–27.

Gibbs, Graham R. (2007). “Thematic coding and categorizing”. In: Analyzing Quali-
tative Data. London: SAGE Publications Ltd. Chap. 4, pp. 38–56.

Gick, Mary L. (1986). “Problem-solving strategies”. In: Educational Psychologist 21
(1&2), pp. 99–120.

Ginat, David (2003). “The novice programmers’ syndrome of design-by-keyword”.
In: ITiCSE ‘03: Proceedings of the 8th Annual Conference on Innovation and Technology
in Computer Science Education, pp. 154–157.

Ginat, David (2008). “Design disciplines and non-specific transfer”. In: Informatics
Education - Supporting Computational Thinking. ISSEP 2008. Lecture Notes in Com-
puter Science. Vol. 5090. Berlin, Heidelberg: Springer, pp. 87–98.

Godwin-Jones, R. (2010). “Emerging technologies: New developers in web browsing
and authoring”. In: Language Learning & Technology 14 (1), pp. 9–15.

Google LLC (2019a). Google Forms. Available at https://www.google.com/forms/about/.
[Online; accessed 04-Oct-2019].

Google LLC (2019b). Google Sheets. Available at https://www.google.com/sheets/about/.
[Online; accessed 04-Oct-2019].



200 BIBLIOGRAPHY

Graesser, Arthur and Natalie Person (1994). “Question asking during tutoring”. In:
American Educational Research Journal 31 (1), pp. 104–137.

Greasley, Pete (2008). Quantitative Data Analysis with SPSS. 1st. Milton Keynes, UK:
Open University Press.

Greeno, J.G. (1980). “Trends in the theory of knowledge for problem solving”. In:
Problem Solving and Education: Issues in Teaching and Research. Ed. by D.T. Tuma &
F. Reif (Eds.) Hillsdale, NJ: Lawrence Baum Associates Inc., pp. 9–23.

Greeno, J.G. and H.A. Simon (1988). “Problem solving and reasoning”. In: Stevens’
handbook of experimental psychology: Perception and motivation. Ed. by G. Lindzey &
R. D. Luce (Eds.) R. C. Atkinson R. J. Herrnstein. Oxford, England: John Wiley &
Sons, pp. 589–672.

Guzdial, M., L. Hohmann, M. Konneman, C. Walton, and E. Soloway (1998). “Sup-
porting programming and learning-to-program with an integrated CAD and
scaffolding workbench”. In: Interactive Learning Environments 6 (1-2), pp. 143–179.

Guzdial, Mark (2010). “Does contextualized computing education help?” In: ACM
Inroads 1.4, pp. 4–6.

Haddaway, N.R., P. Woodcock, B. Macura, and A. Collins (2015). “Making literature
reviews more reliable through application of lessons from systematic reviews”.
In: Conservation Biology 29 (6), pp. 1596–1605.

Harms, K., J. Chen, and F. Kelleher (2016). “Distractors in Parsons problems decrease
learning efficiency for young novice programmers”. In: ICER ‘16: Proceeds of the
2016 ACM Conference on International Computing Education Research, pp. 241–250.

Hashim, Khairuddin and Nurul Naslia Khairuddin (2009). “Software engineering
assessments and learning outcomes”. In: SEPADS ‘09: Proceedings of the 8th WSEAS
International Conference on Software engineering, parallel and distributed systems, pp. 131–
134.

Hausmann, Robert G.M. and Michelene T.H. Chi (2002). “Can a computer interface
support self-explaining? Cognitive training”. In: The 42nd ACM Technical Sympo-
sium on Computer Science Education 7 (1), pp. 4–14.

Hazzan, Orit, Yael Dubinsky, Larisa Eidelman, and Victoria Sakhnini (2006). “Qual-
itative research in computer science education”. In: ACM SIGCSE Bulletin 38 (1),
pp. 408–412.

Hoadley, C. and C. Cox (2009). “What is design knowledge and how do we teach it”.
In: Educating Learning Technology Designers. Routledge. Chap. 2, pp. 19–34.

Howard, R.A., C.A. Carver, and W.D. Lane (1996). “Felder’s learning styles, Bloom’s
Taxonomy, and the Kolb learning cycle: Tying it all together in the CS2 course”.
In: SIGCSE ‘96: Proceedings of the Twenty-Fifth SIGCSE Technical Symposium in
Computer Science Education, pp. 227–231.

Hu, M., M. Winikoff, and S. Cranefield (2012). “Teaching novice programming us-
ing goals and plans in a visual notation”. In: ACE ‘12: 14th Australian Computing
Education Conference, pp. 43–52.

Hume, Gregory, Joel Michael, Allen Rovick, and Martha W. Evens (1996). “Hinting
as a tactic in one-on-one tutoring”. In: Journal of the Learning Sciences 5 (1), pp. 23–
47.

Järvelä, S., P. Kirschner, A. Hadwin, H. Järvenoja, J. Malmberg, M. Miller, and J.
Laru (2016). “Socially shared regulation of learning in CSCL: understanding and
prompting individual- and group-level shared regulatory activities”. In: Interna-
tional Journal of Computer-Supported Collaborative Learning 11 (3), pp. 263–280.

Jeffries, R., A.A. Turner Polson, and M.E. Atwood (1981). “The processes involved in
designing software”. In: Cognitive Skills and their Acquisition. Ed. by J.R. Ander-
son. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 255–283.



BIBLIOGRAPHY 201

Jin, Wei (2008). “Pre-programming analysis tutors help students learn basic pro-
gramming concepts”. In: SIGCSE ‘08: Proceedings of the 39th SIGCSE Technical
Symposium on Computer Science Education 40 (1), pp. 276–280.

Joughin, Gordon (2010). “The hidden curriculum: a critical review of research into
the influence of summative assessment on learning”. In: Assessment & Evaluation
in Higher Education 35 (3), pp. 335–345.

Kaasbøll, Jens (1998). “Teaching critical thinking and problem defining skills”. In:
Education and Information Technologies 3 (2), pp. 101–117.

Karavirta, Ville, Petri Ihantola, Juha Helminen, and Mike Hewner (2019). js-parsons.
Available at https://github.com/js-parsons/js-parsons. [Online; accessed 23-Aug-
2019].

Kerry, T. (1987). “Classroom questions in England”. In: Questioning Exchange 1 (1),
pp. 32–33.

Khairuddin, Nurul Naslia and Khairuddin Hashim (2008). “Application of Bloom’s
Taxonomy in software engineering assessments”. In: ACS ‘08: Proceedings of the
8th conference on Applied computer science, pp. 66–69.

Kinnunen, P. and B. Simon (2010). “Experiencing programming assignments in CS1:
The emotional toll”. In: ICER ‘10: Proceedings of the Sixth Annual Conference on
International Computing Education Research, pp. 77–85.

Kinnunen, Päivi and Beth Simon (2011). “My program is ok – am I? Computing
freshmen’s experiences of doing programming assignments”. In: Computer Sci-
ence Education, pp. 1–28.

Kizilcec, R., M. Pérez-Sanagustín, and J. Maldonado (2017). “Self-regulated learning
strategies predict learner behavior and goal attainment in massive open online
courses”. In: Computers & Education 104, pp. 18–33.

Knobelsdorf, Maria, Christoph Kreitz, and Sebastian Böhne (2014). “Teaching theo-
retical computer science using a cognitive apprenticeship approach”. In: SIGCSE
‘14: Proceedings of the 45th ACM Technical Symposium on Computer Science Educa-
tion, pp. 67–72.

Köppe, Christian and Leo Pruijt (2014). “Improving students’ learning in software
engineering education through multi-level assignments”. In: CSERC ‘14: Proceed-
ings of the Computer Science Education Research Conference, pp. 57–62.

Kramer, J. (2007). “Is abstraction the key to computing?” In: Communication of the
ACM 50, pp. 36–42.

Kuittinen, Marja and Jorma Sajaniemi (2004). “Teaching roles of variables in elemen-
tary programming courses”. In: ITiCSE ‘04: Proceedings of the 9th Annual SIGCSE
Conference on Innovation and Technology in Computer Science Education, pp. 57–61.

Kussmaul, Clifton L. (2008). “Scaffolding for multiple assignment projects in CS1
CS2”. In: OOPSLA ‘08: Proceedings of the 23rd ACM SIGPLAN conference on Object-
Oriented Programming Systems, Languages, and Applications, pp. 873–876.

Lakanen, Antti-Jussi, Vesa Lappalainen, and Ville Isomöttönen (2015). “Revisiting
rainfall to explore exam questions and performance on CS1”. In: Koli Calling
‘15: Proceedings of the 15th Koli Calling Conference on Computing Education Research,
pp. 40–49.

Lane, Chad and Kurt VanLehn (2003). “Coached program planning: Dialogue-based
support for novice program design”. In: SIGCSE ‘03: Proceedings of the 34th SIGCSE
Technical Symposium on Computer Science Education, pp. 148–152.

Lane, Chad and Kurt VanLehn (2005). “Teaching the tacit knowledge of program-
ming to novices with natural language tutoring”. In: Computer Science Education
15 (3), pp. 183–201.



202 BIBLIOGRAPHY

Layman, Lucas, Laurie Williams, and Kelli Slaten (2007). “Note to self: Make as-
signments meaningful”. In: SIGCSE ‘07: Proceedings of the 38th SIGCSE Technical
Symposium on Computer Science Education, pp. 459–463.

Le, Nguyen-Thinh and Nico Huse (2016). “Evaluation of the formal methods for
the Socratic method”. In: ITS ‘16: International Conference on Intelligent Tutoring
Systems, pp. 68–78.

Lister, Raymond, Beth Simon, Errol Thompson, Jacqueline L. Whalley, and Christine
Prasad (2006). “Not seeing the forest for the trees: Novice programmers and the
SOLO Taxonomy”. In: ITiCSE ‘06: Proceedings on the 11th Annual Conference on
Innovation and Technology in Computer Science Education, pp. 118–122.

Lorenzen, Torben, Lee Mondshein, Abdul Sattar, and Seikyung Jung (2012). “A code
snippet library for CS1”. In: ACM Inroads 3 (1), pp. 41–45.

Lovellette, Ellie, John Matta, Dennis Bouvier, and Roger Frye (2017). “Just the num-
bers: An investigation of contextualization of problems for novice programmers”.
In: SIGCSE ‘17: Proceedings of the 2017 ACM SIGCSE Technical Symposium on Com-
puter Science Education, pp. 393–398.

Marcus, Nadine, Martin Cooper, and John Sweller (1996). “Understanding instruc-
tions”. In: Journal in Educational Psychology 88 (1), pp. 49–63.

Margulieux, Lauren E. and R. Catrambone (2014). “Improving program solving per-
formance in computer-based learning environments through subgoal labels”. In:
L@S ‘14: Proceedings of the first ACM conferences Learning@ scale conference, pp. 149–
150.

Marshall, Catherine and Gretchen B. Rossman (1999). Designing Qualitative Research.
3rd. London: Sage Publications.

Mayer, Richard (1983). Thinking, problem solving, condition. New York: Freeman.
Mead, Jerry, Simon Gary, John Hamer, Richard James, Juha Sorva, Caroline St. Clair,

and Lynda Thomas (2006). “A cognitive approach to identifying measurable mile-
stones for programming skill acquisition”. In: ITiCSE ‘06: Working group reports
on ITiCSE on Innovation and Technology in Computer Science Education, pp. 182–194.

Merriënboer, Jeroen J.G.Van and Fred G.W.C. Paas (1990). “Automation and schema
acquisition in learning elementary computer programming: Implications for the
design of practice”. In: Computers in Human Behavior 6 (3), pp. 273–289.

Metcalfe, Janet and Arthur P. Shimamura (1994). Metacognition: Knowing about know-
ing. Cambridge, MA, US: The MIT Press.

Morrison, Briana B., Lauren E. Margulieux, and Mark Guzdial (2015). “Subgoals,
context, and worked examples in learning and computing problem solving”. In:
ICER ‘15: Proceedings of the eleventh annual International Conference on International
Computing Education Research, pp. 21–29.

Morrison, Briana B., Lauren E. Margulieux, Barbara Ericson, and Mark Guzdial (2016).
“Subgoals help students solve Parsons problems”. In: SIGCSE ‘16: Proceedings of
the 47th ACM Technical Symposium on Computer Science Education, pp. 42–47.

Muller, Orna (2005). “Pattern oriented instruction and the enhancement of analogical
reasoning”. In: ICER ‘05: Proceedings of the 2005 International Workshop on Comput-
ing Education Research, pp. 57–67.

Nelson, Greg L. (2017). “Comprehension-first pedagogy and adaptive, intrinsically
motivated tutorials”. In: ICER ‘17: Proceedings of the 2017 ACM Conference on In-
ternational Computing Education Research, pp. 287–288.

Nelson, Greg L., Benjamin Xie, and Andrew J. Ko (2017). “Comprehension first: Eval-
uating a novel pedagogy and tutoring system for program tracing in CS1”. In:
ICER ‘17: Proceedings of the 2017 ACM Conference on International Computing Edu-
cation Research, pp. 42–51.



BIBLIOGRAPHY 203

Nelson, L. (1970). Progress and Regress in Philosophy: From Hume and Kant to Hegel and
Fries. Vol. 1. Oxford: Basil Blackwell.

Newell, A. and H.A. Simon (1972). Human Problem Solving. Englewood Cliffs, NJ:
Prentice-Hall.

Nicholls, J. (1992). “Students as educational theorists”. In: Student Perceptions in the
Classroom. Ed. by D.H. Schunk and J.L. Meece. Hillsdale, NJ: Lawrence Erlbaum
Associates, pp. 267–286.

Nielsen, Rodney D., Jason Buckingham, Gary Knoll, Ben Marsh, and Leysia Palen
(2008). “A taxonomy of questions for question generation”. In: Proceedings of the
1st Workshop on Question Generation Shared Task and Evaluation Challenge, pp. 25–
26.

Object Management Group (OMG) (2017). What is UML? http://www.uml.org/what-
is-uml.htm.

Oliver, Dave, Tome Dobele, Myles Greber, and Tim Roberts (2004). “This course has
a Bloom rating of 3.9”. In: ACE ‘06: Proceedings of the 8th Australian conference on
Computing education, pp. 227–231.

Ormerod, T. C. and J. Ridgway (1999). “Developing task design guides through cog-
nitive studies of expertise”. In: ECCS ‘99: European Conference on Cognitive Science,
pp. 401–410.

Ormerod, Thomas C. (2004). “Chapter 3. Planning and ill-defined problems”. In: The
Cognitive Psychology. Ed. by Robin Morris and Geoff Ward, pp. 53–70.

Paas, Fred, Alexander Renkl, and John Sweller (2004). “Cognitive load theory: In-
structional implications of the interaction between information structures and
cognitive architecture”. In: Instructional Science 32 (1–2), pp. 1–8.

Paris, S. and J. Turner (1994). “Situated motivation”. In: Student Motivation, Cogni-
tion and Learning: Essays in Honor of Wilbert J. McKeachie. Ed. by P.R. Pintrich,
D.R. Brown, and C.E. Weinstein. Hillsdale, NJ: Lawrence Erlbaum Associates,
pp. 213–237.

Parsons, Dale and Patricia Haden (2006). “Parson’s programming puzzles: A fun and
effective learning tool for first programming courses”. In: ACE ‘06: Proceedings of
the 8th Australian conference on Computing education, pp. 157–163.

Paul, Richard and Linda Elder (2007). Critical thinking: The art of Socratic questioning.
Dilton Beach, CA: The Foundation for Critical Thinking.

Pennington, Nancy (1987). “Comprehension strategies in programming”. In: Empir-
ical Studies of Programmers: Second Workshop, pp. 100–113.

Pepe, Kadir (2012). “A research of the relationship between study skills of students
and their GPA”. In: Procedia - Social and Behavioral Sciences (47), pp. 1048–1057.

Perkins, David and Fey Martin (1985). “Fragile knowledge and neglected strategies
in novice programmers”. In: Papers presented at the first workshop on empirical stud-
ies of programmers, pp. 213–229.

Perrig, Walter and Walter Kintsch (1985). “Propostitional and situational representa-
tions of text”. In: Journal of Memory and Language, pp. 503–518.

Petersen, Andrew, Michelle Craig, and Daniel Zingaro (2011). “Reviewing CS1 exam
question content”. In: SIGCSE ‘11: Proceedings of the 42nd ACM Technical Sympo-
sium on Computer Science Education, pp. 631–636.

Pickvance, Christopher G. (2001). “Four varieties of comparative analysis”. In: Jour-
nal of Housing and the Built in Environment 16, pp. 7–28.

Pillay, Nelishia (2003). “Developing intelligent programming tutors for novice pro-
grammers”. In: Inroads - The SIGCSE Bulletin 35 (2), pp. 78–82.



204 BIBLIOGRAPHY

Pintrich, P. (2000). “Multiple goals, multiple pathways: The role of goal orientation
in learning and achievement”. In: Journal of Educational Psychology 92 (3), pp. 544–
555.

Pintrich, P.R., C.F. Berger, and P.M. Stemmer (1987). “Students’ programming behav-
ior in a Pascal course”. In: Journal of Research in Science Teaching 24 (5), pp. 451–
466.

Popovic, Vesna and Ben J. Kraal (2010). “Expertise in software design: Novice and
expert models”. In: Proceedings of Studying Professional Software Design, pp. 1–7.

Porter, Leo, Daniel Zingaro, and Raymond Lister (2014). “Predicting student success
using fine grain clicker data”. In: ICER ‘14: Proceedings of the tenth annual confer-
ence on International Computing Education Research Conference, pp. 51–58.

Powell, M. B., R. P. Fisher, and R. Wright (2005). Investigative Interviewing. New York,
NY, US: The Guilford Press, pp. 11–42.

Prather, James, Raymond Pettit, Brett A. Becker, Paul Denny, Dastyni Loksa, Alani
Peters, Zachary Albrecht, and Krista Masci (2019). “First things first: Providing
metacognitive scaffolding for interpreting problem prompts”. In: SIGCSE ‘19:
Proceedings of the 50th ACM Technical Symposium on Computer Science Education,
pp. 531–537.

Qian, Yizhou and James Lehman (2017). “Students’ misconceptions and other diffi-
culties in introductory programming: A literature review”. In: ACM Transactions
on Computing Education 18 (1), pp. 1–24.

Ragonis, Noa (2012). “Type of questions - The case of computer science”. In: Olympiads
in Informatics 6, pp. 115–132.

Rajlich, Václav and Norman Wilde (2002). “The role of concepts in program compre-
hension”. In: IWPC ‘02: Proceedings of the 10th International Workshop on Program
Comprehension, pp. 271–278.

Ramalingam, Vennila, Deborah LaBelle, and Susan Wiedenbeck (2004). “Self-efficacy
and mental models in learning to program”. In: ITiCSE ‘04: Proceedings of the
9th Annual Conference on Innovation and Technology in Computer Science Education,
pp. 171–175.

Reitman, Walter R. (1965). Cognition and thought. An information processing approach.
New York: John Wiley & Sons, Inc.

Ricken, Mathias (2005). Assignments for an objects-first introductory software engineering
curriculum. Available at http://ricken.us/research/a4obj1st/a4obj1st.pdf. [On-
line; accessed 20-Feb-2020].

Riley, D.D. (1981). “Teaching problem solving in an introductory computer science
class”. In: SIGCSE ‘81: Proceedings of the twelfth SIGCSE technical symposium on
Computer science education, pp. 244–251.

Rist, R.S. (1995). “Program structure and design”. In: Cognitive Science 19, pp. 507–
562.

Robillard, P.N. (1999). “The role of knowledge in software development”. In: Com-
munications of the ACM 42 (1), pp. 87–92.

Robins, A., J. Rountree, and N. Rountree (2003). “Learning and teaching program-
ming: A review and discussion”. In: Computer Science Education 13 (2), pp. 137–
172.

Rocca, Kelly A. (2010). “Student participation in the college classroom: An extended
multidisciplinary literature review”. In: Communication Education 59 (2), pp. 185–
213.

Roll, Ido, Vincent Aleven, Bruce M. Mclaren, and Kenneth R. Koedinger (2007). “De-
signing for metacognition—applying cognitive tutor principles to the tutoring of
help seeking”. In: Metacognition and Learning 2 (2), pp. 125–140.



BIBLIOGRAPHY 205

Rombach, H.D. (1990). “Design measurement: Some lessons learned”. In: IEEE Soft-
ware, pp. 17–25.

Rum, Siti and Maizatul Ismail (2016). “Metacognitive awareness assessment and in-
troductory computer programming course achievement at university”. In: The
International Arab Journal of Information Technology 13.6, pp. 667–676.

Ruocco, Anthony S. (2001). “Experiences in threading UML throughout a computer
science program”. In: IEEE Transactions on Education 46 (2), pp. 226–228.

Sanders, I. and C. Mueller (2000). “A fundamentals-based curriculum for first year
computer science”. In: SIGCSE ‘00: Proceedings Thirty-First SIGCSE Technical Sym-
posium on Computer Science Education, pp. 227–231.

Schaafstal, A.M. (1999). “Diagnostic skill in progress operation: A comparison be-
tween experts and novices”. PhD thesis. University of Groningen, The Nether-
lands.

Schoenfeld, Alan H (1992). “Learning to think mathematically: Problem solving,
metacognition, and sense making in mathematics”. In: NCTM Handbook of re-
search on mathematics teaching and learning. Ed. by D.A. Grouws. Macmillan, pp. 334–
370.

Schraw, G. and R.S. Dennison (1994). “Assessing metacognitive awareness”. In: Con-
temporary Educational Psychology 19, pp. 460–475.

Schraw, G., K.Crippen, and K. Hartley (2006). “Promoting self-regulation in science
education: Metacognition as part of a broader perspective on learning”. In: Re-
search in Science Education 36 (1–2), pp. 111–139.

Schulte, Carsten, Teresa Busjahn, Tony Clear, James H. Paterson, and Ahmad Taherkhani
(2010). “An introduction to program comprehension for computer science edu-
cators”. In: ITiCSE ‘10: Proceedings of the 2010 ITiCSE Working Group, pp. 65–86.

Scott, T. (2003). “Bloom’s Taxonomy applied to testing in computer science”. In: Pro-
ceedings of the 12th Annual CCSC Rocky Mountain Conference, Consortium for Com-
puting Sciences in Colleges, pp. 267–274.

Seppälä, Otto, Petri Ihantola, Essi Isohanni, Juha Sorva, and Arto Vihavainen (2015).
“Do we know how difficult the rainfall problem is?” In: Koli Calling ‘15: Proceed-
ings of the 15th Koli Calling Conference on Computing Education Research, pp. 87–
96.

Settle, Amber, Arto Vihavainen, and Craig S. Miller (2014). “Research directions for
teaching programming online”. In: CSCE ‘14: Proceedings of the 10th International
Conference on Frontiers in Education: Computer Science and Computer Engineering,
pp. 1–7.

Sharmin, Sadia, Daniel Zingaro, Lisa Zhang, and Clare Brett (2019). “Impact of open-
ended assignments on student self-efficacy in CS1”. In: CompEd ‘19: Proceedings
of the ACM Conference on Global Computing Education, pp. 215–221.

Silbert, Jerry and Marcy Stein (1990). Direct Instruction Mathematics. 2nd. Columbus,
OH: Merrill.

Simon (2013). “Soloway’s rainfall problem has become harder”. In: LaTiCE ‘13: Inter-
national Conference on Teaching and Learning in Computing and Engineering, pp. 130–
135.

Smith, P.L. and T.J. Ragan (1999). Instructional design. New York: John Wiley & Sons,
Inc.

Smith III, J.P, A.A. diSessa, and J. Roschelle (1993). “Misconception reconceived: A
constructivist analysis of knowledge in transition”. In: The Journal of the Learning
Sciences 3 (2), pp. 115–163.

Soloway, E., J. Bonar, J. Greenspan, and K. Ehrlich (1982). “What do novices know
about programming?” In: Directions in Human-Computer Interactions, pp. 27–54.



206 BIBLIOGRAPHY

Soloway, Elliot (1986). “Learning to program = Learning to construct mechanisms
and explanations”. In: Communications of the ACM 29 (9), pp. 850–858.

Soloway, Elliot, Jeffrey Bonar, and Kate Ehrlich (1983). “Cognitive strategies and
looping constructs: An empirical study”. In: Communications of the ACM 26 (11),
pp. 853–860.

Sonnentag, Sabine (1998). “Expertise in professional software design: A process study”.
In: Journal of Applied Psychology 83 (5), pp. 703–715.

Spoher, J. and E. Soloway (1989). Studying the novice programmer. Hilldale, NJ. Lawrence
Erlbaum, pp. 412–413.

Spohrer, James C. (1992). MARCEL: Simulating the Novice Programmer. Intellect Books.
Stevens, Albert L. and Allan Collins (1977). “The goal structure of a Socratic tutor”.

In: ACM ‘77: Proceedings of the 1977 Annual Conference, pp. 256–263.
Stevenson, Daniel E. and Paul J. Wagner (2006). “Developing real-world program-

ming assignments for CS1”. In: ITiCSE ‘06: Proceedings of the 11th Annual Confer-
ence on Innovation and Technology in Computer Science Education, pp. 158–162.

Stolcke, Andres, Klaus Ries, Noah Coccaro, Elizabeth Shriberg, Rebecca Bates, Daniel
Jurafsky, Paul Taylor, Rachel Martin, Carol Van Ess-Dykema, and Marie Meteer
(2000). “Dialogue act modeling for automatic tagging and recognition of conver-
sational speech”. In: Computational Linguistics 26 (3), pp. 339–373.

Sutcliffe, A.G. and N.A.M. Maiden (1992). “Analysing the novice analyst: Cognitive
models in software engineering”. In: International Journal Man-Machine Studies 36,
pp. 719–740.

Sweller, John (1988). “Cognitive load during problem solving: Effects on learning”.
In: Cognitive Science 12, pp. 257–285.

Sweller, John, Paul Ayres, and Slava Kalyuga (2011). “Instrinsic and extraneous cog-
nitive Load”. In: Cognitive Load Theory. Ed. by J. Michael Spector and Susanne P.
Lajoie. Springer, pp. 57–69.

Sweller, John and Marvine Levine (1982). “Effects of goal specificity on means–ends
analysis and learning”. In: Effects of goal specificity on means–ends analysis and learn-
ing 8 (5), pp. 463–474.

Sweller, John, Jeroen J. G. van Merriënboer, and Fred G. W. C. Paas (1998). “Cognitive
architecture and instructional design”. In: Educational Psychology Review 10 (3),
pp. 251–296.

Thomas, Anne (1993). Study skills. Vol. 36. 5. Oregon School Study Council.
Thompson, Errol, Andrew Luxton-Reilly, Jacqueline L. Whalley, Minjie Hu, and Phil

Robbins (2008). “Bloom’s Taxonomy for CS assessment”. In: ACE ‘08: Tenth Aus-
tralasian Computing Education Conference, pp. 155–161.

Thomson, S.B. (2011). “Sample size and grounded theory”. In: JOAGG: Journal of
Administration & Governance 5.1, pp. 45–52.

Tikhonova, Elena and Natalia Kudinova (2015). “Sophisticated thinking: Higher or-
der thinking skills”. In: Journal of Language and Education 1 (3), pp. 12–23.

Turkay, Cagatay, Erdem Kaya, Selim Balcisoy, and Helwig Hauser (2017). “Design-
ing progressive and interactive analytics process for high-dimensional data anal-
ysis”. In: IEEE Transactions on Visualization and Computer Graphics 23 (1), pp. 131–
140.

van Dijk, T.A. and W. Kintsch (1983). Strategies of discourse comprehension. New York:
Academic Press.

van Someren, Maarten W., Yvonne F. Barnard, and Jocobijn A.C. Sandberg (1994).
The think aloud method. Academic Press.

van Velzen, J. (2016). Metacognitive learning: Advancing learning by developing general
knowledge of the learning process. Switzerland: Springer International Publishing.



BIBLIOGRAPHY 207

Veerasamy, Ashok Kumar, Daryl D’Souza, and Mikko-Jussi Laakso (2016). “Identi-
fying novice student programming misconceptions and errors from summative
assessments”. In: Journal of Education Technology Systems 45 (1), pp. 50–73.

Venables, Anne, Grace Tan, and Raymond Lister (2009). “A closer look at tracing,
explaining and code writing skills in the novice programmer”. In: ICER ‘09: Pro-
ceedings of the fifth international workshop on Computing education research workshop,
pp. 117–128.

Vihavainen, A., M. Paksula, and M. Luukkainen (2011a). “Extreme apprenticeship
method in teaching programming for beginners”. In: SIGCSE ‘11: Proceedings of
the 42nd ACM Technical Symposium on Computer Science Education, pp. 93–98.

Vihavainen, A., M. Paksula, and M. Luukkainen (2011b). “Extreme apprenticeship
method in teaching programming for beginners”. In: SIGCSE ‘11: Proceedings of
the 42nd ACM Technical Symposium on Computer Science Education, pp. 93–98.

Vihavainen, Arto, Craig S. Miller, and Amber Settle (2015). “Benefits of self-explanation
in introductory programming”. In: SIGCSE ‘15: Proceedings on the 46th ACM Tech-
nical Symposium on Computer Science Education, pp. 284–289.

Villiger, Mark (1985). “The factual framework: Codification in past and present”. In:
Customary International Law and Treaties, pp. 63–113.

Violet, Simone (1991). “Modelling and coaching of relevant metacognitive strate-
gies for enhancing university students’ learning”. In: Learning and Instruction 1,
pp. 319–336.

Webster, Elizabeth A. and Allyson F. Hadwin (2014). “Emotions and emotion regula-
tion in undergraduate studying: Examining students’ reports from a self-regulated
learning perspective”. In: Educational Psychology: An International Journal of Exper-
imental Educational Psychology 35 (7), pp. 794–818.

Weusijana, Baba Kofi A., Christopher K. Reisbeck, and Joseph T. Walsh Jr (2004).
“Fostering reflection with Socratic tutoring software: Results of using inquiry
teaching strategies with web-based HCI techniques”. In: ICLS ‘04: Proceedings of
the 6th International Conference on Learning Sciences, pp. 561–567.

Whalley, Jacqueline L., Raymond Lister, Errol Thompson, Tony Clear, Phil Robbins,
P.K. Ajith Kumar, and Christine Prasad (2006). “An Australasian study of reading
and comprehension skills in novice programmers, using the Bloom and SOLO
Taxonomies”. In: ACE ‘06: Eighth Australasian Computing Education Conference,
pp. 353–382.

Wilson, Judith D. (1987). “A Socratic approach to helping novice programmers de-
bug programs”. In: SIGCSE ‘87: Proceedings of the 18th SIGCSE Technical Sympo-
sium on Computer Science Education, pp. 179–182.

Winne, P. (2011). “A cognitive and metacognitive analysis of self-regulated learn-
ing”. In: Handbook of self-regulation of learning and performance. Ed. by B. J. Zim-
merman and D. H. Schunk. New York: Routledge, pp. 15–32.

Winslow, L.E. (1996). “Programming pedagogy – A psychological overview”. In:
SIGCSE Bulletin 28 (3), pp. 17–22.

Winterling, Vincent, Glen Dunlap, and Robert E. O’Neill (1987). “The influence of
task variation on the aberrant behaviors of autistic students”. In: Education and
Treatment of Children 10 (2), pp. 105–119.

Wolfe, Joanna (2004). “Why the rhetoric of CS programming assignments matter”.
In: Computer Science Education 14 (2), pp. 147–163.

Wood, D., J.S. Bruner, and R. Gail (1976). “The role of tutoring in problem solving”.
In: The Journal of Child Psychology and Psychiatry 17 (2), pp. 89–100.



208 BIBLIOGRAPHY

Yang, Ya-Ting C., Timothy J. Newby, and Robert L. Bill (2005). “Using Socratic ques-
tioning to promote critical thinking skills through asynchronous discussion fo-
rums in distance learning environments”. In: The American Journal of Distance Ed-
ucation 19 (3), pp. 163–181.

Yoo, J., C. Pettey, S. Yoo, J. Hankins, C. Li, and S. Seo (2006). “Intelligent tutoring sys-
tem for CS-I and II laboratory”. In: The Annual ACM Southeast Conference, pp. 146–
151.

Zimmerman, B. (1989). “A social cognitive view of self-regulated academic learn-
ing”. In: Journal of Educational Psychology 81 (3), pp. 329–339.

Zimmerman, B. (2000). “Attaining self-regulation: A social cognitive perspective”.
In: Handbook of Self-Regulation. Ed. by M. Boekaets, M. Zeidner, and P.R. Pintrich.
London, UK: Elsevier Academic Press, pp. 13–39.

Zimmerman, Barry J. and Manuel Martinez Pons (1986). “Development of a struc-
tured interview for assessing student use of self-regulated learning strategies”.
In: American Educational Research Journal 23 (4), pp. 614–628.

Zohar, Anat and Adi Ben David (2008). “Explicit teaching of meta-strategic knowl-
edge in authentic classroom situations”. In: Metacognition and Learning 3 (1), pp. 59–
82.


	Abstract
	Declaration of Authorship
	Acknowledgements
	Introduction
	Areas of Research
	Program Comprehension
	Critical Thinking Skills
	Design Knowledge

	Research Questions
	Summary of Contributions
	Thesis Overview

	Pedagogy Design and Background
	Overview
	Pedagogical Goals
	Program Comprehension
	Self-Regulated Learning Strategies

	Critical Thinking Skills
	Design Strategies
	Pedagogical Design
	Cognitive Apprenticeship
	Proposed Pedagogical Design

	Summary

	Related Work
	Overview
	Pedagogical Goals
	Program Comprehension
	Self-Regulated Learning Strategies

	Critical Thinking Skills
	Self-Explanation Questions
	Socratic Questioning
	Instructional Question Types

	Design Strategies
	Cognitive Apprenticeship
	Summary

	Pedagogy Studies
	Overview
	Pedagogy Introduction
	Context
	Pedagogy Design
	Assignment Presentation
	Questioning Activity
	Design Strategy Activity

	Pedagogy Studies
	Assignment Design Study
	Assignment Comparative Study
	Assignment Design Interview Study
	Questioning Activity Study
	Design Strategy Activity
	Entire Pedagogy Study

	Summary

	Assignment Design Study
	Overview
	Methods
	Search Criteria
	Data Collection

	Analysis
	Framework Design

	Results
	Context
	Program Description
	Hints
	Framework
	Example Assignment Presentation

	Summary

	Assignment Comparative Study
	Overview
	Methods
	Participants
	Comparative Study Design
	Student Survey

	Analysis
	Comparative Data Analysis
	Survey

	Comparative Study Results
	Sum and Average Programming Tasks
	Sentinel Programming Task
	Negative Programming Task
	Count Programming Task
	DivZero Programming Task

	Survey Results
	Understanding the Problem
	Assignment Presentation

	Summary

	Assignment Design Interview Study
	Overview
	Methods
	Participants
	Instructional Instrument Design
	Questionnaire
	Narrative Interviewing

	Analysis
	Questionnaire
	Narrative Interview

	Results
	Questionnaire
	Interview Results

	Summary

	Questioning Activity Study
	Overview
	Methods
	Participants
	Framework Design
	Instrument Development

	Analysis
	Framework
	Analysis of Students' Answers

	Framework Results
	Questioning Activity Results
	Analysis of Activity Question 1
	Analysis of Activity Question 2

	Summary

	Design Strategy Activity Study
	Overview
	Parsons Problems
	Methods
	Participants
	Intervention Design
	Questionnaire
	Usability Testing Methods

	Quantitative Analysis
	Qualitative Analysis
	Questionnaire Analysis
	Cognitive Task Analysis
	Interview Analysis

	Student Interactions Results
	Top-Down Strategy
	Known-First Strategy
	Experimenting Strategy
	Grade Comparisons

	Usability Testing Results
	Questionnaire Results
	Think-Aloud Results
	Interview Results

	Summary

	Pedagogy Evaluation Study
	Overview
	Methods
	Context
	Metacognitive Awareness Instrument
	Academic Study Design

	Analysis
	Test Instrument Analysis
	Analysis of Academic Success

	Metacognitive Awareness Results
	Diverging Opinions on Metacognitive Skills
	Increased Positive Opinions on Metacognitive Skills
	Unchanged Opinions on Metacognitive Skills

	Academic Success Results
	Summary

	Conclusion
	Contributions
	Assignment Design Framework
	Instructional Question Framework
	Design-Based Parsons Problems

	Threats to Validity
	Future Work
	Concluding Remarks

	Programming Assignments
	Pilot Group Codification Assignments
	Assignment 4
	Question 1
	Question 2

	Assignment 5
	Question 1
	Question 2

	Assignment 6
	Question 1
	Question 2

	Assignment 7
	Question 1
	Question 2


	Experiment 2 Group Codification Assignments
	Assignment 4
	Question 1
	Question 2

	Assignment 5
	Question 1
	Question 2

	Assignment 6
	Question 1
	Question 2

	Assignment 7
	Question 1
	Question 2


	Questioning Activities
	Pilot Group Questioning Activities
	Pilot Group Questioning Activities


	Interviews and Tests
	Interviews
	Student Interview

	Tests
	Student Pre- and Post-Test
	Usability Study Questionnaire
	Rainfall Problem Survey


	Bibliography



